12.07.2015 Views

Virulence Mechanisms of Moraxella osloensis to ... - COST Action 850

Virulence Mechanisms of Moraxella osloensis to ... - COST Action 850

Virulence Mechanisms of Moraxella osloensis to ... - COST Action 850

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Virulence</strong> <strong>Mechanisms</strong> <strong>of</strong> <strong>Moraxella</strong><strong>osloensis</strong> <strong>to</strong> the Slug Deroceras reticulatum:A Bacterium Associated With AMolluscicidal Nema<strong>to</strong>de PhasmarhabditishermaphroditaParwinder GrewalDepartment <strong>of</strong> En<strong>to</strong>mologyThe Ohio State UniversityWooster, Ohio 44691, USA


Slug DamageLeft:D. laeve biting a berry (Regents, University <strong>of</strong> California);Right:D. reticulatum damage <strong>to</strong> corn (pho<strong>to</strong> by M. Rice).


Slug-Parasitic Nema<strong>to</strong>de:Phasmarhabditis hermaphroditaInfective juvenile <strong>of</strong> P.hermaphrodita: two layers <strong>of</strong> cuticle. closed mouth andanus. Size: about 1 mmlong, 40 µm m bodydiameter.


Host Range <strong>of</strong> P.hermaphroditaSlugsSnailsArion aterCernuella virgataA. distinctusCochlicella acutaA. intermediusHelix aspersaA. lusitanicusLymnaea stagnalisA. silvaticusMonacha cantianaDeroceras caruanaeTheba pisanaD. laeveD. reticulatumLeidyula floridanaTandonnia budapestensisT. sowerbyi-from Glen and Wilson (1997); Speoser et al. (2001); Grewal et al. (2003).


Left: D. reticulatum infected with P. hermaphrodita.Right: Healthy D. reticulatum. . Note the swollen mantle<strong>of</strong> the infected slug (pho<strong>to</strong> by R. Harvey).


Parasitic Cycle <strong>of</strong> P. hermaphroditaSlug mantleInfective juvenile (IJ) HermaphroditeSlug dies in 7 –14 days


Bacteria associated with P. hermaphroditaFamilyAeromonadaceaeBacillaceaeEnterobacteriaceaeFlavobacteriaceae<strong>Moraxella</strong>ceaePseudomonadaceaeSphingobacteriaceaeSpeciesAeromonas hydrophilaAeromonas sp.Bacillus cereusProvidencia rettgeriSerratia proteamaculansFlavobacterium breveF. odoratum<strong>Moraxella</strong> <strong>osloensis</strong>Pseudomonas fluorescens (isolate no. 1a)P. fluorescens (isolate no. 140)P. fluorescens (isolate no. 141)P. paucimobilisSphingobacterium spiri<strong>to</strong>vorum-from Wilson et al. (1995).


<strong>Moraxella</strong> <strong>osloensis</strong> is a gram-negativeaerobic bacterium. is considered as anopportunistic humanpathogen. is preferred bacteriumfor mass-producingP.hermaphrodita.


Is M. <strong>osloensis</strong> vec<strong>to</strong>red in<strong>to</strong> the shellcavity pathogenic <strong>to</strong> the slug? Wilson et al. (1995) reported that a 24-hrculture <strong>of</strong> M. <strong>osloensis</strong> injected in<strong>to</strong> D.reticulatum hemocoel was not pathogenic. Shell cavity in the posterior mantle region <strong>of</strong> D.reticulatum serves as the main portal <strong>of</strong> entryfor P. hermaphrodita (Tan and Grewal, 2001a). Important organs, including kidney, lung andheart, are located in the slug mantle region.


Pathogenicity <strong>of</strong> 60-hrM. <strong>osloensis</strong> culture <strong>to</strong> D.reticulatum after injection in<strong>to</strong> the shell cavity% slug mortality100806040200 (Control) 6.006.15 × 10 2 6.15 × 10 46.15 × 10 6 6.15 × 10 8R 2 = 0.54*R 2 = 0.73***** ***01 4 8 12Days after injection


% slug motality10080604020Pathogenicity <strong>of</strong> M. <strong>osloensis</strong> cultures <strong>of</strong>different ages against D. reticulatum afterinjection in<strong>to</strong> the hemocoel0aSaline (Control)24 hr culture40 hr culture60 hr culturebaaaaab4 8 12 16Days after injectionaaabbR 2 = 0.66aababb


Effect <strong>of</strong> coinjection <strong>of</strong> penicillin andstrep<strong>to</strong>mycin with 60-hrM. <strong>osloensis</strong> culture onthe bacterial pathogenicity <strong>to</strong> D. reticulatum% slug mortality10080604020aSalineAntibioticsBacteriaBacteria+Antibioticscabbababcaababaabab01 4 8 12Days after infection


Numbers <strong>of</strong> viable M. <strong>osloensis</strong> in 20 IJs <strong>of</strong>fresh or aged P. hermaphrodita# <strong>of</strong> bacteria in 20 nema<strong>to</strong>des140120100806040200aabFresh 3-month old 8-month oldBatch <strong>of</strong> nema<strong>to</strong>desb


Percentage <strong>of</strong> P. hermaphrodita IJs from afresh, 3-month 3old, and 8-month 8old batchcarrying bacteriaPercentage <strong>of</strong> nema<strong>to</strong>des100806040200Fresh3-month old8-month old< 1 1 ~ 4 5 ~ 8 9 ~ 12 13 ~ 15Average # <strong>of</strong> bacteria per nema<strong>to</strong>de


Pathogenicity <strong>of</strong> fresh, aged and axenic P.hermaphrodita <strong>to</strong> D. reticulatum after injectionin<strong>to</strong> the shell cavity10080*% slug mortality6040200Fresh IJs3-month oldIJs8-month oldIJs8-month oldIJs withantibioticsAxenicJ1/J2s withantibioticsAntibioticsSaline


Conclusions Aged culture <strong>of</strong> M. <strong>osloensis</strong> (e.g. 60-hr bacterialculture) is pathogenic <strong>to</strong> D. reticulatum both in theshell cavity and hemocoel <strong>of</strong> the slug. Axenic J1/J2 nema<strong>to</strong>des were non-pathogenic afterinjection in<strong>to</strong> the shell cavity and the pathogenicity<strong>of</strong> the IJs depended on the number <strong>of</strong> viablebacteria carried by the nema<strong>to</strong>des. Therefore, P. hermaphrodita only vec<strong>to</strong>rs M.<strong>osloensis</strong> in<strong>to</strong> the shell cavity <strong>of</strong> D. reticulatum andthe bacterium is the main killing agent.


Questions:DoesDoes M. <strong>osloensis</strong> produce a <strong>to</strong>xin(s)<strong>to</strong> kill D. reticulatum?Is this an exo<strong>to</strong>xin or endo<strong>to</strong>xin(s)?What What is this <strong>to</strong>xin(s)?


% slug mortalityPathogenicity <strong>of</strong> different components <strong>of</strong> 3-day 3M. <strong>osloensis</strong> cultures <strong>to</strong> D. reticulatum afterinjection in<strong>to</strong> the shell cavity706050403020100SalineCell-free suspensionWashed cells+AntibioticsIntact cellsbbbbaAntibioticsBroken cells+AntibioticsWashed cellscb b b bc cbcb bc bca a aa a a a a a1 4 8 12Days after injectionababcc


Effect <strong>of</strong> heat treatment (at 60°C C or 100°C C for 15min) on the endo<strong>to</strong>xin activity <strong>of</strong> different types<strong>of</strong> M. <strong>osloensis</strong> cells <strong>to</strong> D. reticulatum% slug mortality5040302010Antibiotics22°C60°C100°Caaababb b b b b bb0a a a a aWashed 2-DcultureBroken 2-DcultureWashed 3-DcultureBroken 3-Dculture


Effect <strong>of</strong> proteases (trypsinand chymotrypsin)treatment on the endo<strong>to</strong>xin activity <strong>of</strong> differenttypes <strong>of</strong> M. <strong>osloensis</strong> cells <strong>to</strong> D. reticulatum% slug motality50403020100AntibioticsAntibiotics+ProteasesBacterial cellsBacterial cells+Proteasesaa aa aaba a a aWashed 2-DculturebBroken 2-DculturebccWashed 3-DcultureabbBroken 3-Dculture


% slug mortalityEndo<strong>to</strong>xin activity <strong>of</strong> purified lipopolysaccharide(LPS) from 3-day 3M. <strong>osloensis</strong> cultures <strong>to</strong> D.reticulatum after injection in<strong>to</strong> the shell cavity10080604020R 2 = 0.79P < 0.001LD 50 =48microgram/slug00 20 40 60 80 100Concentration <strong>of</strong> LPS (microgram/slug)


Conclusions M. <strong>osloensis</strong> produces an endo<strong>to</strong>xin(s), which is<strong>to</strong>lerant <strong>to</strong> heat and protease treatments and killthe slug after injection in<strong>to</strong> the shell cavity. Heat and protease treatments increase theendo<strong>to</strong>xin activity <strong>of</strong> the young broken cells butnot that <strong>of</strong> the young washed cells. M. <strong>osloensis</strong> LPS is an endo<strong>to</strong>xin that is activeagainst D. reticulatum.


What are the properties <strong>of</strong> M.<strong>osloensis</strong> LPS?


Injection, contact and oral <strong>to</strong>xicity <strong>of</strong> purifiedLPS (0.1 mg/slug) from 3-day 3M. <strong>osloensis</strong>cultures against D. reticulatum% slug mortality100bControl80Treated604020a a aaa0Injection Contact Oral


Toxicity <strong>of</strong> lipid A or polysaccharide moietyfrom M. <strong>osloensis</strong> LPS <strong>to</strong> D. reticulatum afterinjection in<strong>to</strong> the shell cavity100c% slug mortality806040bb20aa0Water Polysaccharide Lipid A Triethylamine Lipid A +Triethylamine


Semiquantitation <strong>of</strong> M. <strong>osloensis</strong> LPS byLimulus amebocyte lysate (LAL) assay Each LPS concentration and LAL were mixed andincubated. The formation <strong>of</strong> a firm gel wasconsidered a positive reaction. The minimal LPS concentration required for theLAL gelation was 1pg/ml for M. <strong>osloensis</strong> LPS or0.06 endo<strong>to</strong>xin units (EU)/ml for the standardendo<strong>to</strong>xin (E.coli 055:B5 LPS). The lipid A moiety <strong>of</strong> M. <strong>osloensis</strong> LPS caused apositive reaction in the LAL assay, but thepolysaccharide moiety did not.


Detection <strong>of</strong> LPSs by silver stain. Samples <strong>of</strong> 1 µg g were analyzedon SDS-PAGE except as noted. Lane 1 and 2: M. <strong>osloensis</strong> at 1and 5 µg, respectively; lane 3: E. coli EH100; lane 4: E. coli J5.


Effect <strong>of</strong> galac<strong>to</strong>samine or galac<strong>to</strong>samine/uridinecombination on the susceptibility <strong>of</strong> D.reticulatum <strong>to</strong> M. <strong>osloensis</strong> LPS Galanos et al. (1979) reported that sensitivities <strong>of</strong>experimental mammals <strong>to</strong> LPS were enhancedseveral thousand fold by coinjection <strong>of</strong> the LPS withgalac<strong>to</strong>samine, , which was thought <strong>to</strong> be a specifichepa<strong>to</strong><strong>to</strong>xic agent. The induced sensitization <strong>to</strong> LPS could be reversedby uridine, , which can inhibit the liver injury elicitedby galac<strong>to</strong>samine. D. reticulatum is a lower animal that does not have aliver.


Effect <strong>of</strong> the lethal dose (1 mg/slug) <strong>of</strong> galac<strong>to</strong>samine orgalac<strong>to</strong>samine/uridine(3 mg/slug) combination on thesusceptibility <strong>of</strong> D. reticulatum <strong>to</strong> M. <strong>osloensis</strong> LPS (0.03mg/slug)10080c% slug mortality6040bbb200aEFW G LPS G+LPS G+LPS+U


Effect <strong>of</strong> the sublethal dose (0.3 mg/slug) <strong>of</strong> galac<strong>to</strong>samine orgalac<strong>to</strong>samine/uridine(1 mg/slug) combination on thesusceptibility <strong>of</strong> D. reticulatum <strong>to</strong> M. <strong>osloensis</strong> LPS (0.01mg/slug)100% slug mortality806040200baa aaEFW G LPS G+LPS G+LPS+U


Discussion M. <strong>osloensis</strong> LPS possesses a lethal injection <strong>to</strong>xicitybut no contact or oral <strong>to</strong>xicity against D. reticulatumthus suggesting that P. hermaphrodita is a necessarynatural vec<strong>to</strong>r <strong>of</strong> M. <strong>osloensis</strong> for slug control. D. reticulatum may have some primitive liver-likelikeorgan (tissues or cells), which may be the targets <strong>of</strong>galac<strong>to</strong>samine. It is also possible that galac<strong>to</strong>samine hurts otherimportant slug organ(s), leading <strong>to</strong> the inducedsensitization.


Conclusions Toxicity <strong>of</strong> M. <strong>osloensis</strong> LPS resides in the lipid Amoiety but not in the polysaccharide moiety. M. <strong>osloensis</strong> LPS was quantitated as 6 × 10 7 EU/mg. M. <strong>osloensis</strong> LPS is a rough-type LPS with anestimated molecular weight <strong>of</strong> 5,300. Coinjection <strong>of</strong> galac<strong>to</strong>samine with the LPS increasedits endo<strong>to</strong>xin activity <strong>to</strong> D. reticulatum by 2-424 fold. The galac<strong>to</strong>samine-induced induced sensitization can beblocked completely by uridine.


Why are the aged M. <strong>osloensis</strong> cellsmore virulent <strong>to</strong> the slug? Surface exposed antigens such as LPS, OMPs, , and pilihave been considered as virulence fac<strong>to</strong>rs for M.catarrhalis or M. bovis. It is possible that OMP(s) and pili-like like projectionsmay also be virulence fac<strong>to</strong>rs for M. <strong>osloensis</strong> besidesLPS. We hypothesized that the temporal expression <strong>of</strong> oneor more surface exposed antigens correlates with thetemporal pattern <strong>of</strong> M. <strong>osloensis</strong> virulence <strong>to</strong>wards D.reticulatum.


athogenicity <strong>of</strong> 1 <strong>to</strong> 5-day5M. <strong>osloensis</strong> cultures <strong>to</strong>D. reticulatum after injection in<strong>to</strong> the shell cavity% slug mortality50403020100aababbbbSaline1-dayculture2-dayculture3-dayculture4-dayculture5-dayculture


Detection <strong>of</strong> LPS during culture. Proteinase K-digestedlysates <strong>of</strong> 1 ×10 10 M. <strong>osloensis</strong> cells were analyzed on SDS-PAGE except as noted.Lane 1 <strong>to</strong> 5: : 1 <strong>to</strong> 5-day 5culture, respectively; Lane 6 and 7: purifiedM. <strong>osloensis</strong> LPS from 3-day 3culture at 1 and 2 µg, respectively.


Detection <strong>of</strong> OMPs during culture. Purified OMPs from 1 ×10 10 M. <strong>osloensis</strong> cells were analyzed on SDS-PAGE except asnoted. Lane 1: molecular weight markers (unit: KDa); Lane 2<strong>to</strong> 6: 1 <strong>to</strong> 5-day 5cultures, respectively.


D E FLight micrographs <strong>of</strong> Gram-stainedM. <strong>osloensis</strong> cellsduring culture. A <strong>to</strong> F represent M. <strong>osloensis</strong> cells from0 <strong>to</strong> 5-day 5cultures, respectively.ABC


CDETransmission electron micrographs <strong>of</strong> sections <strong>of</strong> M.<strong>osloensis</strong> cells during culture. A <strong>to</strong> E represent an M.<strong>osloensis</strong> cell from 1 <strong>to</strong> 5-day 5cultures, respectively.AB


Numbers <strong>of</strong> pili-like like projections per bacterialsection <strong>of</strong> M. <strong>osloensis</strong> from 1 <strong>to</strong> 5-day 5cultures80# <strong>of</strong> pili-like projections/section6040200aabdcbc1-dayculture2-dayculture3-dayculture4-dayculture5-dayculture


Discussion Pili-like like projections presented on the bacterial surfacemay enable better and more rapid slug colonization. Aged M. <strong>osloensis</strong> cells appear <strong>to</strong> enhance theirpathogenicity <strong>to</strong> the slug during culture not byincreasing the LPS production but by altering theOMP(s) production, and most probably by developingand increasing the density <strong>of</strong> the pili-like like projectionson their surfaces. Changes <strong>of</strong> the pathogenicity <strong>of</strong> M. <strong>osloensis</strong> against D.reticulatum during culture strongly correlate withstructural changes in the bacterial cell wall.


Conclusions Average yield <strong>of</strong> M. <strong>osloensis</strong> LPS per bacteriumdoes not differ during culture. M. <strong>osloensis</strong> cells from 3-day 3cultures produce moreOMPs than those from the younger or older M.<strong>osloensis</strong> cultures. Aggregation <strong>of</strong> M. <strong>osloensis</strong> cells increased as thedensity <strong>of</strong> the pili-like like projections presented on thebacterial surfaces increased during culture. Temporal expression <strong>of</strong> the projections stronglycorrelates with the temporal pattern <strong>of</strong> M. <strong>osloensis</strong>virulence <strong>to</strong> D. reticulatum.


Overall Conclusions Shell cavity <strong>of</strong> D. reticulatum served as the main portal<strong>of</strong> entry for P. hermaphrodita. P. hermaphrodita vec<strong>to</strong>rs M. <strong>osloensis</strong> in<strong>to</strong> the shellcavity and the bacterium is the main killing agent inthe nema<strong>to</strong>de/bacterium complex. M. <strong>osloensis</strong> produces an active endo<strong>to</strong>xin (LPS) <strong>to</strong> killthe slug, which is a first reported biological <strong>to</strong>xinagainst mollusks. This is also the first report <strong>of</strong> galac<strong>to</strong>samine-inducedinducedsensitization <strong>to</strong> LPS in an animal without a liver.


Overall Conclusions (continued) Temporal expression <strong>of</strong> the pili-like like projectionsstrongly correlates with the temporal pattern <strong>of</strong> M.<strong>osloensis</strong> virulence <strong>to</strong> D. reticulatum. Changes in M. <strong>osloensis</strong>pathogenicityagainst Dreticulatumduring culture strongly correlate withstructural changes in the bacterial cell wall. Mutualism between P. hermaphrodita and M. <strong>osloensis</strong>is parallel <strong>to</strong> the association between en<strong>to</strong>mopathogenicnema<strong>to</strong>des and their associated bacteria.


Publications Tan, L., and P. S. Grewal. 2002b. Comparison <strong>of</strong> two silverstaining techniques for detecting lipopolysaccharides inpolyacrylamide gels. J. Clin. Microbiol. 40:4372-4374. Tan, L., and P. S. Grewal. 2002a. Endo<strong>to</strong>xin activity <strong>of</strong><strong>Moraxella</strong> <strong>osloensis</strong> aganist the grey garden slug, Derocerasreticulatum. Appl. . Environ. Microbiol. 68:3943-3947. Tan, L., and P. S. Grewal. 2001b. Pathogenicity <strong>of</strong><strong>Moraxella</strong> <strong>osloensis</strong>, a bacterium associated with thenema<strong>to</strong>de Phasmarhabditis hermaphrodita, <strong>to</strong> the slugDeroceras reticulatum. Appl. . Environ. Microbiol. 67:5010-5016.


Publications (continued)Tan, L., and P. S. Grewal. 2001a. Infection behavior <strong>of</strong> therhabditid nema<strong>to</strong>de Phasmarhabditis hermaphrodita <strong>to</strong> the greygarden slug Deroceras reticulatum. J. Parasi<strong>to</strong>l. 87:1349-1354.Grewal, P. S., S. K. Grewal, and L. Tan. 2003. Molluskparasitism by nema<strong>to</strong>des: types <strong>of</strong> associations and evolutionarytrends. J. Nema<strong>to</strong>l., in press.Tan, L., and P. S. Grewal. 2003. Characterization <strong>of</strong> the firstmolluscicidal lipopolysaccharide from <strong>Moraxella</strong> <strong>osloensis</strong>. Appl.Environ. Microbiol., in press.Tan, L., P. S. Grewal, and T. Meulia. Temporal expression <strong>of</strong>surface exposed antigens in <strong>Moraxella</strong> <strong>osloensis</strong> correlates withvirulence <strong>to</strong> the slug Deroceras reticulatum. J. Bacteriol., inreview.


AcknowledgmentsPh.D. Student: Li TanTechnical support on TEM: Tea Meulia, Karli J.Fitzelle, , and Dave Ful<strong>to</strong>n.Slug collection: Judy A. Smith and Sukhbir GrewalFinancial support: a competitive matching fund grantfrom OARDC and MicroBio Ltd., an OARDCGraduate Research Competitive Grant, and an OSUpresidential fellowship.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!