12.07.2015 Views

Techniques in oscillatory shear rheology - Indian Institute of ...

Techniques in oscillatory shear rheology - Indian Institute of ...

Techniques in oscillatory shear rheology - Indian Institute of ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Techniques</strong> <strong>in</strong> <strong>oscillatory</strong> <strong>shear</strong> <strong>rheology</strong> 236. Dotsch T, Pollard M, Wilhelm M (2003) K<strong>in</strong>etics <strong>of</strong> isothermal crystallization <strong>in</strong> isotacticpolypropylene monitored with <strong>rheology</strong> and Fourier-transform <strong>rheology</strong>. J Phys:Condens MatS923–S9317. Ewoldt RH, Hosoi AE, McK<strong>in</strong>ley GH (2008) New measures for characteriz<strong>in</strong>g nonl<strong>in</strong>earviscoelasticity <strong>in</strong> large amplitude <strong>oscillatory</strong> <strong>shear</strong>. J Rheol 526:1427–14588. Fleury G, Schlatter G, Muller R (2004) Non L<strong>in</strong>ear Rheology for Long Cha<strong>in</strong> Branch<strong>in</strong>g characterization,comparison <strong>of</strong> two methodologies : Fourier Transform Rheology and Relaxation.Rheol Acta 44:174–1879. Guerrero A, Partal P,Gallegos C (2008) L<strong>in</strong>ear viscoelastic properties <strong>of</strong> sucrose esterstabilizedoil-<strong>in</strong>-water emulsions, J Rheol 42(6):1375–138810. Har<strong>in</strong>i M, Deshpande AP (2009) Rheology <strong>of</strong> poly (sodium acrylate) hydrogels dur<strong>in</strong>g crossl<strong>in</strong>k<strong>in</strong>gwith and without cellulose micro-fibrils, J Rheol, 53(1):31–4711. Har<strong>in</strong>i M, Sriram S, Deshpande AP and Pushpavanam S (2008) Variation <strong>of</strong> spatial and temporalcharacteristics <strong>of</strong> reactive flow <strong>in</strong> a periodically driven cavity: Gelation <strong>of</strong> sodium acrylate.Phys Rev E 78:1–812. Hyun K, Baik ES, Ahn KH, Lee SJ (2007) Fourier-transform <strong>rheology</strong> under medium amplitude<strong>oscillatory</strong> <strong>shear</strong> for l<strong>in</strong>ear and branched polymer melts. J Rheol 51(6):1319–134213. Hyun K, Kim SH, Ahn KH, Lee SJ (2002) Large amplitude <strong>oscillatory</strong> <strong>shear</strong> as a way toclassify the complex fluids. J Non-Newtonian Fluid Mech 107:51–6514. Hyun K, Wilhelm M (2009) Establish<strong>in</strong>g a New Mechanical Nonl<strong>in</strong>ear Coefficient Q fromFT-Rheology: First Investigation <strong>of</strong> Entangled L<strong>in</strong>ear and Comb Polymer Model Systems.Macromolecules 42:411–42215. Kalelkar C, Lele A, Kamble S (2009) Stra<strong>in</strong> rate frequency superposition <strong>in</strong> large amplitude<strong>oscillatory</strong> <strong>shear</strong>. arXiv:0910.059116. Larson RG (1998) Structure and <strong>rheology</strong> <strong>of</strong> complex fluids. Oxford University Press, USA.17. Li X, Wang S-Q, Wang X (2009) Nonl<strong>in</strong>earity <strong>in</strong> large amplitude <strong>oscillatory</strong> <strong>shear</strong> (LAOS)<strong>of</strong> different viscoelastic materials. J Rheol 53(5):1255–127418. Malk<strong>in</strong> AYa (1995) Non-l<strong>in</strong>earity <strong>in</strong> <strong>rheology</strong> an essay <strong>of</strong> classification. Rheol Acta 34:27–3919. Nam JG, Hyun K, Ahn KH, Lee SJ (2008) Prediction <strong>of</strong> normal stresses under large amplitude<strong>oscillatory</strong> <strong>shear</strong> flow. J Non-Newtonian Fluid Mech 150:1–1020. Narumi T, See H, Suzuki A, Hasegawa T (2005) Response <strong>of</strong> concentrated suspensions underlarge amplitude <strong>oscillatory</strong> <strong>shear</strong> flow. J Rheol 49(1):71–8521. Prost-Domasky SA, Khomami B (1996) A note on start-up and large amplitude <strong>oscillatory</strong><strong>shear</strong> flow <strong>of</strong> multimode viscoelastic fluids. Rheol Acta 35:21l–22422. Rav<strong>in</strong>dranath S, Wang S-Q (2008) Large amplitude <strong>oscillatory</strong> <strong>shear</strong> behavior <strong>of</strong> entangledpolymer solutions: Particle track<strong>in</strong>g velocimetric <strong>in</strong>vestigation. J Rheo 52(2):341–35823. Shih W-H, Shih WY, Kim S-I, Liu J, Aksay IA (1990) Scal<strong>in</strong>g behaviour <strong>of</strong> the elastic properties<strong>of</strong> colloidal gels. Phy Rev A 42(1):4772–477924. Thibierge C, L’Hote D, Ladieu F, Tourbot R (2008) A method for measur<strong>in</strong>g the nonl<strong>in</strong>earresponse <strong>in</strong> dielectric spectroscopy through third harmonics detection, Rev Sci Instr 79:103905–10391025. Wilhelm M, Mar<strong>in</strong>g D, Spiess H-W (1998) Fourier-transform <strong>rheology</strong>. Rheol Acta 37:399–40526. Wilhelm M, Re<strong>in</strong>heimer P, Ortseifer M (1999) High sensitivity Fourier-transform <strong>rheology</strong>.Rheol Acta 38:349–35627. W<strong>in</strong>ter HH, Mours M (1997) Rheology <strong>of</strong> polymers near liquid-solid transtion. Adv PolymSci 134:165-234.28. Yu W, Bousm<strong>in</strong>a M, Grmela M, Zhou C (2002) Model<strong>in</strong>g <strong>of</strong> <strong>oscillatory</strong> <strong>shear</strong> flow <strong>of</strong> emulsionsunder small and large deformation fields. J Rheol 46(6):1401–141829. Yu W, Wang P, Zhou C (2008) General stress decomposition <strong>in</strong> nonl<strong>in</strong>ear <strong>oscillatory</strong> <strong>shear</strong>flow. J Rheol 53(1):215–238

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!