12.07.2015 Views

531nm Green Lasing of InGaN Based Laser Diodes on Semi-Polar ...

531nm Green Lasing of InGaN Based Laser Diodes on Semi-Polar ...

531nm Green Lasing of InGaN Based Laser Diodes on Semi-Polar ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Applied Physics Express 2 (2009) 082101531 nm <str<strong>on</strong>g>Green</str<strong>on</strong>g> <str<strong>on</strong>g>Lasing</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>InGaN</str<strong>on</strong>g> <str<strong>on</strong>g>Based</str<strong>on</strong>g> <str<strong>on</strong>g>Laser</str<strong>on</strong>g> <str<strong>on</strong>g>Diodes</str<strong>on</strong>g> <strong>on</strong> <strong>Semi</strong>-<strong>Polar</strong> f20 21gFree-Standing GaN SubstratesYohei Enya , Yusuke Yoshizumi, Takashi Ky<strong>on</strong>o, Katsushi Akita, Masaki Ueno, Masahiro Adachi,Takamichi Sumitomo, Shinji Tokuyama, Takatoshi Ikegami, Koji Katayama, and Takao Nakamura<strong>Semi</strong>c<strong>on</strong>ductor Technologies R&D Laboratories, Sumitomo Electric Industries, Ltd., Itami, Hyogo 664-0016, JapanReceived June 19, 2009; accepted June 25, 2009; published <strong>on</strong>line July 17, 2009<str<strong>on</strong>g>Lasing</str<strong>on</strong>g> in pure green regi<strong>on</strong> around 520 nm <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>InGaN</str<strong>on</strong>g> based laser diodes (LDs) <strong>on</strong> semi-polar f20 21g free-standing GaN substrates wasdem<strong>on</strong>strated under pulsed operati<strong>on</strong> at room temperature. The l<strong>on</strong>gest lasing wavelength reached to 531 nm and typical threshold currentdensity was 8.2 kA/cm 2 for 520 nm LDs. Utilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a novel f20 21g plane enabled a fabricati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> homogeneous <str<strong>on</strong>g>InGaN</str<strong>on</strong>g> quantum wells(QWs) even at high In compositi<strong>on</strong>, which is exhibited with narrower spectral widths <str<strong>on</strong>g>of</str<strong>on</strong>g> sp<strong>on</strong>taneous emissi<strong>on</strong> from LDs than those <strong>on</strong> otherplanes. The high quality <str<strong>on</strong>g>InGaN</str<strong>on</strong>g> QWs <strong>on</strong> the f20 21g plane advanced the realizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the green LDs.# 2009 The Japan Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied PhysicsDemands for compact <str<strong>on</strong>g>InGaN</str<strong>on</strong>g> based green laser diodes(LDs), which are expected to be used as lightsources in mobile full-color laser projectors, arerapidly growing. Although green lasers based <strong>on</strong> sec<strong>on</strong>dharm<strong>on</strong>ic generati<strong>on</strong> (SHG) technologies are already available,semic<strong>on</strong>ductor LDs have advantages in size, stabilityand efficiency in practical uses <str<strong>on</strong>g>of</str<strong>on</strong>g> these devices. <str<strong>on</strong>g>InGaN</str<strong>on</strong>g>based LDs <strong>on</strong> c<strong>on</strong>venti<strong>on</strong>al (0001) c-plane GaN substrateshave been actively developed toward l<strong>on</strong>ger wavelengths 1–3)and recently the l<strong>on</strong>gest lasing wavelength <str<strong>on</strong>g>of</str<strong>on</strong>g> 515 nm hasbeen reported. 4) However, lasing at even l<strong>on</strong>ger wavelengthis believed to be difficult owing to their large electric fieldscaused by both sp<strong>on</strong>taneous and piezoelectric polarizati<strong>on</strong>,which are intrinsic phenomena <str<strong>on</strong>g>of</str<strong>on</strong>g> the polar c-plane. Theseelectric fields give rise to the quantum c<strong>on</strong>fined Stark effect(QCSE) and reduce the radiative recombinati<strong>on</strong> probabilitywithin the quantum wells (QWs) especially at l<strong>on</strong>gerwavelength. 5,6) An attractive alternative approach to circumventthese effects is to grow laser structures <strong>on</strong> n<strong>on</strong>polarand semi-polar planes such as f1010g (m-plane),f1120g (a-plane), f1122g planes, and others. 7,8) Recently,m-plane LDs lasing at wavelengths <str<strong>on</strong>g>of</str<strong>on</strong>g> 499.8 nm under cwoperati<strong>on</strong> have been reported. 9) Furthermore, in the case <str<strong>on</strong>g>of</str<strong>on</strong>g>semi-polar f1122g plane LDs, stimulated emissi<strong>on</strong> at 514 nmby optical pumping has been dem<strong>on</strong>strated, 10) while thelasing wavelength by current operati<strong>on</strong> remains at 426 nm. 11)However, the other crucial problems still remain for greenlaser emissi<strong>on</strong>. The most influential issue is to fabricatehigh-quality green <str<strong>on</strong>g>InGaN</str<strong>on</strong>g> QWs. Increasing In compositi<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>InGaN</str<strong>on</strong>g> QWs <strong>on</strong> c-plane induces dark spots and drasticallyreduces the photoluminescence (PL) intensity, which isattributed to thermally-induced defects by In diffusi<strong>on</strong> in the<str<strong>on</strong>g>InGaN</str<strong>on</strong>g> QWs. 12,13) Alternatively, high density stacking faultswere generated in the <str<strong>on</strong>g>InGaN</str<strong>on</strong>g> QWs <strong>on</strong> m-plane. 14) Whereasthere are few reports <strong>on</strong> QW quality <strong>on</strong> f1122g plane,broadening <str<strong>on</strong>g>of</str<strong>on</strong>g> electroluminescence (EL) peak with increasingEL wavelength has been indicated. 15) Thus, we explorednovel planes which are desirable for fabricating green LDs.In this work, we report the growth <str<strong>on</strong>g>of</str<strong>on</strong>g> high quality <str<strong>on</strong>g>InGaN</str<strong>on</strong>g>QWs <strong>on</strong> free-standing GaN substrates with the novel semipolarf2021g plane, resulting in green laser emissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>531 nm under pulsed operati<strong>on</strong> at room temperature (RT).The semi-polar f2021g plane GaN substrates were E-mail address: enya-youhei@sei.co.jpDOI: 10.1143/APEX.2.082101produced by hydride vapor phase epitaxy (HVPE). Threadingdislocati<strong>on</strong> (TD) densities <str<strong>on</strong>g>of</str<strong>on</strong>g> the substrates are less than1 10 6 cm 2 . The substrates exhibit n-type c<strong>on</strong>ductivityand the resistivity is sufficiently low (approximately0.01 cm) to form ohmic c<strong>on</strong>tacts <strong>on</strong> the back surface <str<strong>on</strong>g>of</str<strong>on</strong>g>the substrates. 16) The LD structures were grown by metalorganic chemical vapor depositi<strong>on</strong> (MOCVD). An n-typeGaN layer was grown directly <strong>on</strong> the GaN substrates,followed by an n-type InAlGaN cladding layer, an n-type<str<strong>on</strong>g>InGaN</str<strong>on</strong>g> waveguiding layer, a three-period <str<strong>on</strong>g>InGaN</str<strong>on</strong>g> multipleQW (MQW) active layer, a p-type AlGaN electr<strong>on</strong>-blockinglayer, a p-type <str<strong>on</strong>g>InGaN</str<strong>on</strong>g> waveguiding layer, a p-type InAlGaNcladding layer, and a p-type GaN c<strong>on</strong>tact layer. The typicalgrowth temperature for MQW is 750 C, which is almostsame as that <strong>on</strong> c-plane GaN substrates.Gain-guided lasers with 10 m stripes were fabricated byc<strong>on</strong>venti<strong>on</strong>al depositi<strong>on</strong> and lift-<str<strong>on</strong>g>of</str<strong>on</strong>g>f technique. A p-typeelectrode was evaporated <strong>on</strong> the p-type c<strong>on</strong>tact layer, and ann-type electrode was evaporated <strong>on</strong> the backside <str<strong>on</strong>g>of</str<strong>on</strong>g> thewafer. The 600 m l<strong>on</strong>g cavities and mirror facets wereformed by cleaving method. Both facets were coated withdielectric mirrors <str<strong>on</strong>g>of</str<strong>on</strong>g> 80 and 95% reflectivity.Figure 1(a) shows the lasing spectrum above threshold forthe semi-polar f2021g plane LD with the l<strong>on</strong>gest lasingwavelength. <str<strong>on</strong>g>Laser</str<strong>on</strong>g> characteristics were measured underpulsed operati<strong>on</strong> at RT, with a pulse width <str<strong>on</strong>g>of</str<strong>on</strong>g> 500 ns and aduty ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.5%. The maximum peak <str<strong>on</strong>g>of</str<strong>on</strong>g> lasing spectrumwas observed at 531 nm. Threshold current (I th ) was924 mA, corresp<strong>on</strong>ding to a threshold current density (J th )<str<strong>on</strong>g>of</str<strong>on</strong>g> 15.4 kA/cm 2 . An image <str<strong>on</strong>g>of</str<strong>on</strong>g> the LD chip under pulsedoperati<strong>on</strong> is shown in Fig. 1(b). <str<strong>on</strong>g>Green</str<strong>on</strong>g> laser emissi<strong>on</strong> can beclearly seen from the LD chip.Figure 2 shows light output power vs current (L–I) andvoltage vs current (V–I) curves for a typical LD with lasingwavelength <str<strong>on</strong>g>of</str<strong>on</strong>g> 520 nm in this work. Threshold current (I th )was 491 mA, corresp<strong>on</strong>ding to a threshold current density(J th ) <str<strong>on</strong>g>of</str<strong>on</strong>g> 8.2 kA/cm 2 . The threshold voltages (V th ) were17.7 V. The maximum output power was 28 mW at a current<str<strong>on</strong>g>of</str<strong>on</strong>g> 1240 mA. The slope efficiency was 0.04 W/A. The highoperating voltage <str<strong>on</strong>g>of</str<strong>on</strong>g> this semi-polar LD was mainly due tounoptimized p-type ohmic c<strong>on</strong>tacts. Low slope efficiency isalso needed to be improved by adjustment <str<strong>on</strong>g>of</str<strong>on</strong>g> the devicestructure to a green emissi<strong>on</strong> regi<strong>on</strong>.EL peak wavelength shift <str<strong>on</strong>g>of</str<strong>on</strong>g> the 495 nm LD <strong>on</strong> f2021gplane was investigated to compare with those <strong>on</strong> other082101-1 # 2009 The Japan Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Physics


Appl. Phys. Express 2 (2009) 082101Y. Enya et al.Intensity (arb. unit)Output Power (mW)531 nm528 530 532 534 536 538Wavelength (nm)(a)Fig. 1. (a) <str<strong>on</strong>g>Laser</str<strong>on</strong>g> emissi<strong>on</strong> spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> semi-polar f2021g planegreen LD under pulsed operati<strong>on</strong>. (b) <str<strong>on</strong>g>Lasing</str<strong>on</strong>g> image <str<strong>on</strong>g>of</str<strong>on</strong>g> the green LD.20251620121581045(b)Voltage (V)FWHM (nm)504540353025201510m-planeRef. 19c-planeRef. 18−{1122}Ref. 15This work−{2021}400 425 450 475 500 525 550Wavelength (nm)Fig. 3. Dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> sp<strong>on</strong>taneous emissi<strong>on</strong> FWHM <strong>on</strong> EL peakwavelength under dc operati<strong>on</strong> around 150 A/cm 2 . Data for f2021gplane QWs in this work with 3 and 4 nm well thickness are indicated asclosed and open circles, respectively. Data for f1122g plane QWs with3 nm well thickness, 15) m-plane QWs with 4 nm well thickness, 18) andc-plane QWs with 2.5 nm well thickness 19) are indicated as closedtriangles, closed square, and closed diam<strong>on</strong>d, respectively, forcomparis<strong>on</strong>.00 200 400 600 800 1000Current (mA)0Fig. 2. Typical light output power–current–voltage (L–I–V )characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> semi-polar f20 21g plane LD with lasing wavelength<str<strong>on</strong>g>of</str<strong>on</strong>g> 520 nm under pulsed operati<strong>on</strong>.Fig. 4. BF-STEM image from a-plane cross secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> QWs regi<strong>on</strong><strong>on</strong> semi-polar f2021g plane with lasing wavelength <str<strong>on</strong>g>of</str<strong>on</strong>g> 520 nm.planes. The sp<strong>on</strong>taneous emissi<strong>on</strong> wavelength is shiftedfrom 513 to 499 nm with increasing an injecti<strong>on</strong> currentdensity from 0.02 to 5 kA/cm 2 , which corresp<strong>on</strong>ds to theblue-shift <str<strong>on</strong>g>of</str<strong>on</strong>g> 14 nm. This value is slightly larger thanthose reported <strong>on</strong> n<strong>on</strong>-polar m-plane LDs 17) and comparableto those <strong>on</strong> semi-polar f1122g plane, 15) whereas this isremarkably smaller than those <strong>on</strong> polar c-plane LDs. 3)We now focus <strong>on</strong> the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>InGaN</str<strong>on</strong>g> QWs <strong>on</strong> semipolarf2021g planes. Figure 3 summarizes the full width athalf maximum (FWHM) <str<strong>on</strong>g>of</str<strong>on</strong>g> EL peaks for QWs grown <strong>on</strong>several planes as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> EL wavelength from this andother works. 15,18,19) Operati<strong>on</strong> current density was selected tobe around 150 A/cm 2 . FWHMs <str<strong>on</strong>g>of</str<strong>on</strong>g> QWs <strong>on</strong> f2021g planesare the narrowest am<strong>on</strong>g that <str<strong>on</strong>g>of</str<strong>on</strong>g> QWs <strong>on</strong> various planes, andthe difference between those <strong>on</strong> f1122g plane 15) and f2021gplanes is enhanced with increasing the EL wavelength asshown in Fig. 3. FWHM values were also unchanged withincreasing the QW thickness, while blue-shifts <str<strong>on</strong>g>of</str<strong>on</strong>g> LDs <strong>on</strong>f2021g planes increased with increasing the QW thickness(not shown here). This result indicates that <str<strong>on</strong>g>InGaN</str<strong>on</strong>g> QWs <strong>on</strong>f2021g planes exhibit high homogeneity <str<strong>on</strong>g>of</str<strong>on</strong>g> In c<strong>on</strong>centrati<strong>on</strong>even at green regi<strong>on</strong>, which give rise to small and stableband tail states even though the QW thickness increases. Thereas<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> high homogeneity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>InGaN</str<strong>on</strong>g> QWs <strong>on</strong> f2021gplanes has not been revealed and still under investigati<strong>on</strong>.Cross secti<strong>on</strong>al images <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>InGaN</str<strong>on</strong>g> QWs <strong>on</strong> f2021g planeswere observed by bright-field scanning transmissi<strong>on</strong> electr<strong>on</strong>microscopy (BF-STEM) for the LD with lasing wavelength<str<strong>on</strong>g>of</str<strong>on</strong>g> 520 nm as shown in Fig. 4. Abrupt interfaces aresuccessfully formed and no defects are observed in theQW regi<strong>on</strong>. This is in agreement with the result <str<strong>on</strong>g>of</str<strong>on</strong>g> narrowFWHMs. Thus <str<strong>on</strong>g>InGaN</str<strong>on</strong>g> QWs <strong>on</strong> f2021g planes exhibit hugeadvantage to realize these green LDs.In summary, we have dem<strong>on</strong>strated 531 nm green lasing<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>InGaN</str<strong>on</strong>g> based LDs <strong>on</strong> semi-polar f2021g free-standingGaN substrates with low dislocati<strong>on</strong> density under pulsedoperati<strong>on</strong> at RT. The typical threshold current density is8.2 kA/cm 2 for 520 nm LDs. FWHMs <str<strong>on</strong>g>of</str<strong>on</strong>g> EL spectrum for<str<strong>on</strong>g>InGaN</str<strong>on</strong>g> QWs <strong>on</strong> f2021g plane were narrower than those <strong>on</strong>other planes. This indicates that highly homogeneous Incompositi<strong>on</strong> and QW thickness are obtained in <str<strong>on</strong>g>InGaN</str<strong>on</strong>g> QWs<strong>on</strong> f2021g plane. The high homogeneity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>InGaN</str<strong>on</strong>g> QWs wasalso c<strong>on</strong>firmed by STEM observati<strong>on</strong>. These results provedthat semi-polar f2021g plane is desirable plane for fabricatinggreen LDs.082101-2 # 2009 The Japan Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Physics


Appl. Phys. Express 2 (2009) 082101Y. Enya et al.1) T. Miyoshi, T. Yanamoto, T. Kozaki, S. Nagahama, Y. Narukawa,M. Sano, T. Yamada, and T. Mukai: Proc. SPIE 6894 (2008)689414.2) K. S. Kim, J. K. S<strong>on</strong>, S. N. Lee, Y. J. Sung, H. S. Paek, H. K. Kim,M. Y. Kim, K. H. Ha, H. Y. Ryu, O. H. Nam, T. Jang, and Y. J. Park:Appl. Phys. Lett. 92 (2008) 101103.3) D. Queren, A. Avramescu, G. Brüderl, A. Breidenassel, M.Schillgalies, S. Lutgen, and U. Strau: Appl. Phys. Lett. 94 (2009)081119.4) T. Miyoshi, S. Masui, T. Okada, T. Yanamoto, T. Kozaki, S.Nagahama, and T. Mukai: Appl. Phys. Express 2 (2009) 062201.5) S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura: Appl. Phys. Lett.69 (1996) 4188.6) T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H.Amano, and I. Akasaki: Jpn. J. Appl. Phys. 36 (1997) L382.7) T. Takeuchi, H. Amano, and I. Akasaki: Jpn. J. Appl. Phys. 39 (2000)413.8) S.-H. Park: J. Appl. Phys. 91 (2002) 9904.9) K. Okamoto, J. Kashiwagi, T. Tanaka, and M. Kubota: Appl. Phys.Lett. 94 (2009) 071105.10) A. Tyagi, Y.-D. Lin, D. A. Cohen, M. Saito, K. Fujito, J. S. Speck,S. P. DenBaars, and S. Nakamura: Appl. Phys. Express 1 (2008)091103.11) H. Asamizu, M. Saito, K. Fujito, J. S. Speck, S. P. DenBaars, and S.Nakamura: Appl. Phys. Express 1 (2008) 091102.12) S. Nagahama, T. Yanamoto, M. Sano, and T. Mukai: Jpn. J. Appl.Phys. 40 (2001) 3075.13) D. Queren, M. Schillgalies, A. Avramescu, G. Brüderl, A. Laubsch, S.Lutgen, and U. Strau: to be published in J. Cryst. Growth.14) A. M. Fischer, Z. Wu, K. Sun, Q. Wei, Y. Huang, R. Senda, D. Iida,M. Iwaya, H. Amano, and F. A. P<strong>on</strong>ce: Appl. Phys. Express 2 (2009)041002.15) M. Funato, M. Ueda, Y. Kawakami, Y. Narukawa, T. Kosugi, M.Takahashi, and T. Mukai: Jpn. J. Appl. Phys. 45 (2006) L659.16) K. Motoki, T. Okahisa, N. Matsumoto, M. Matsushima, H. Kimura,H. Kasai, K. Takemoto, K. Uematsu, T. Hirano, M. Nakayama, S.Nakahata, M. Ueno, D. Hara, Y. Kumagai, A. Koukitu, and H. Seki:Jpn. J. Appl. Phys. 40 (2001) L140.17) K. Okamoto, T. Tanaka, and M. Kubota: Appl. Phys. Express 1 (2008)072201.18) K. Iso, H. Yamada, H. Hirasawa, N. Fellows, M. Saito, K. Fujito, S. P.DenBaars, J. S. Speck, and S. Nakamura: Jpn. J. Appl. Phys. 46 (2007)L960.19) A. Chakraborty, B. A. Haskell, H. Masui, S. Keller, J. S. Speck, S. P.DenBaars, S. Nakamura, and U. K. Mishra: Jpn. J. Appl. Phys. 44(2005) L173.082101-3 # 2009 The Japan Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Physics

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!