12.07.2015 Views

A home-built lock-in amplifier for laser frequency stabilization

A home-built lock-in amplifier for laser frequency stabilization

A home-built lock-in amplifier for laser frequency stabilization

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

908 Can. J. Phys. Vol. 83, 20051. Introductionspectre d’absorption saturé chevauchant une base élargie Doppler. Nous montrons qu’il estpossible de réduire de façon importante ce signal de fond et de synchroniser le <strong>laser</strong> sur larésonance atomique en modifiant l’amplificateur synchrone maison pour générer un signald’erreur proportionnel à la troisième dérivée de l’absorption. Les résultats de ce travailpeuvent être adaptés à des laboratoires avancés pour étudiants de premier cycle.[Traduit par la Rédaction]Lasers with a broad-ga<strong>in</strong> profile can be made tunable by us<strong>in</strong>g wavelength-select<strong>in</strong>g elements, suchas grat<strong>in</strong>gs and etalons, that restrict the <strong>laser</strong> emission to a narrow <strong>frequency</strong> <strong>in</strong>terval. Typically, thecavity length of the <strong>laser</strong> is controlled by send<strong>in</strong>g a DC voltage to a piezo-electric transducer attachedto one or more of the optical elements associated with the <strong>laser</strong> cavity. This permits the <strong>laser</strong> <strong>frequency</strong>to be tuned cont<strong>in</strong>uously across the ga<strong>in</strong> profile. However, the sensitivity of the tun<strong>in</strong>g parameters toadditional factors such as current, temperature, or mechanical fluctuations causes the central <strong>frequency</strong>of the <strong>laser</strong> to drift. Consequently, applications <strong>in</strong> <strong>laser</strong> spectroscopy such as <strong>laser</strong> cool<strong>in</strong>g and trapp<strong>in</strong>gof neutral atoms require active <strong>frequency</strong> <strong>stabilization</strong>. The standard method <strong>in</strong>volves generat<strong>in</strong>g a DCerror signal, with a zero-cross<strong>in</strong>g at the <strong>lock</strong> po<strong>in</strong>t, to be used <strong>in</strong> a feedback loop that cont<strong>in</strong>uouslycorrects the <strong>laser</strong> <strong>frequency</strong>.Lock-<strong>in</strong> <strong>amplifier</strong>s are widely used <strong>for</strong> <strong>frequency</strong>-<strong>stabilization</strong> techniques. For this application,generat<strong>in</strong>g the error signal requires impos<strong>in</strong>g a small modulation on the <strong>laser</strong> <strong>frequency</strong> [1] and pass<strong>in</strong>ga beam through a vapor cell conta<strong>in</strong><strong>in</strong>g a dilute atomic vapor. The atomic spectra provide a <strong>frequency</strong>reference. The modulated <strong>laser</strong> <strong>frequency</strong> is scanned over an atomic resonance so that a modulatedabsorption signal can be recorded. This signal is sent to the <strong>lock</strong>-<strong>in</strong> where it is mixed with the orig<strong>in</strong>almodulation to produce a DC error signal proportional to the first derivative of the absorption. This l<strong>in</strong>eshape is suitable <strong>for</strong> correct<strong>in</strong>g the <strong>frequency</strong> s<strong>in</strong>ce it conta<strong>in</strong>s a slop<strong>in</strong>g section cross<strong>in</strong>g zero at theresonant <strong>frequency</strong>. After the amplitude and filter<strong>in</strong>g parameters of the error signal are adjusted, thescan is turned off and the feedback loop engaged. Figure 1 shows the ma<strong>in</strong> elements of the loop.Extensive mathematical descriptions of the <strong>lock</strong>-<strong>in</strong> techniques and properties of l<strong>in</strong>e shapes used<strong>for</strong> <strong>lock</strong><strong>in</strong>g have been described previously [2,3]. However, to expla<strong>in</strong> <strong>lock</strong>-<strong>in</strong> techniques <strong>for</strong> advancedundergraduate laboratories it is <strong>in</strong>structive to develop a physical explanation and a simple mathematicalmodel <strong>for</strong> the shape of the feedback signal [4]. We have implemented this technique us<strong>in</strong>g a commercial<strong>lock</strong>-<strong>in</strong> <strong>amplifier</strong> to <strong>lock</strong> <strong>laser</strong>s used <strong>in</strong> atom-trapp<strong>in</strong>g experiments <strong>for</strong> time scales of the order of 1 h.Although the method is simple and robust, the <strong>laser</strong> beam go<strong>in</strong>g to the experiment is <strong>frequency</strong> modulatedthereby caus<strong>in</strong>g residual heat<strong>in</strong>g of the cold sample. This can be avoided by send<strong>in</strong>g the modulation toan electro-optic phase modulator (EOM) [5] or an acousto-optic modulator (AOM) [6] placed <strong>in</strong> front ofthe reference cell. In our experiments, we used anAOM operat<strong>in</strong>g <strong>in</strong> the Bragg regime, to <strong>frequency</strong> shiftthe <strong>laser</strong> beam. The AOM was driven by a voltage-controlled, <strong>frequency</strong>-modulated oscillator (VCO)so that the central <strong>frequency</strong> of the AOM can be modulated. Although the <strong>frequency</strong> modulation causesthe diffracted beam to be deflected back and <strong>for</strong>th, this effect can be elim<strong>in</strong>ated by operat<strong>in</strong>g the AOM<strong>in</strong> a dual pass configuration [7] as shown <strong>in</strong> Fig. 2. This technique is widely used <strong>in</strong> <strong>laser</strong> spectroscopy.An additional advantage of us<strong>in</strong>g an AOM is that the stabilized <strong>laser</strong> <strong>frequency</strong> can be shifted simplyby chang<strong>in</strong>g the central <strong>frequency</strong> of the AOM.In this paper we show that an <strong>in</strong>expensive <strong>lock</strong>-<strong>in</strong> <strong>amplifier</strong> can be constructed us<strong>in</strong>g discrete off-theshelfRF components and <strong>home</strong>-<strong>built</strong> analog circuits. This device is versatile and can replicate expensiveoptions available <strong>in</strong> commercial <strong>lock</strong>-<strong>in</strong>s, such as the display of the <strong>in</strong> phase and quadrature componentsof the error signal as well as offer<strong>in</strong>g the flexibility to generate higher order derivatives of absorptionsignal.For applications related to atom trapp<strong>in</strong>g, it is necessary to stabilize the <strong>laser</strong> <strong>frequency</strong> to with<strong>in</strong>∼1 MHz of the desired atomic resonance. S<strong>in</strong>ce the Doppler width of the atomic vapor <strong>in</strong> the vapor cell© 2005 NRC Canada

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!