12.07.2015 Views

Salicylaldoxime (H2salox) in iron(III) carboxylate chemistry ...

Salicylaldoxime (H2salox) in iron(III) carboxylate chemistry ...

Salicylaldoxime (H2salox) in iron(III) carboxylate chemistry ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Polyhedron 24 (2005) 711–721www.elsevier.com/locate/poly<strong>Salicylaldoxime</strong> (H 2 salox) <strong>in</strong> <strong>iron</strong>(<strong>III</strong>) <strong>carboxylate</strong> <strong>chemistry</strong>:Synthesis, X-ray crystal structure, spectroscopic characterizationand magnetic behavior of tr<strong>in</strong>uclear oxo-centered complexesCather<strong>in</strong>e P. Raptopoulou * , Yiannis Sanakis, Athanassios K. Boudalis, Vassilis PsycharisInstitute of Materials Science, N.C.S.R. ‘‘Demokritos’’, 15310 Aghia Paraskevi, Athens, GreeceReceived 20 January 2005; accepted 11 February 2005AbstractTwo new neutral tr<strong>in</strong>uclear oxo-centered complexes, [Fe 3 (l 3 -O)(O 2 CPh) 5 (salox)L 1 L 2 ] [L 1 =L 2 = MeOH (1), L 1 = EtOH,L 2 =H 2 O(2)] are reported. In both complexes, the central oxygen atom is bridg<strong>in</strong>g the three <strong>iron</strong>(<strong>III</strong>) ions, which form a trianglewith an average edge of 3.3 Å. The central [Fe 3 (l 3 -O)] 7+ core is planar. The benzoato ligands are coord<strong>in</strong>ated through the usualsyn,syn l 2 :g 1 :g 1 mode and the salicylaldoximato ligand shows the common l 2 :g 1 :g 1 :g 1 coord<strong>in</strong>ation mode. Two of the <strong>iron</strong>(<strong>III</strong>)ions have an O 6 coord<strong>in</strong>ation env<strong>iron</strong>ment while the third has an O 5 N one. The two crystallographically <strong>in</strong>dependent trimers <strong>in</strong>the structure of 1 (a and b, respectively) through <strong>in</strong>termolecular <strong>in</strong>teractions form polymeric cha<strong>in</strong>s of the ...a–a–b–b...type, alongthe ac diagonal of the unit cell. In 2, aga<strong>in</strong> through <strong>in</strong>termolecular <strong>in</strong>teractions, the trimers form layers ly<strong>in</strong>g parallel to the [1 0 1]plane. Mössbauer spectra at room temperature from polycrystall<strong>in</strong>e samples of 1 and 2 give rise to two well-resolved doublets withan average isomer shift consistent with high sp<strong>in</strong> <strong>iron</strong>(<strong>III</strong>) ions. The two doublets, at 2:1 ratio, are characterized by different quadrupolesplitt<strong>in</strong>g and are assigned to the nonequivalent <strong>iron</strong>(<strong>III</strong>) ions of the clusters. Magnetic measurements of 1 and 2 <strong>in</strong> the2–z300 K temperature range show antiferromagnetic <strong>in</strong>teractions between the <strong>iron</strong>(<strong>III</strong>) ions <strong>in</strong> the trimers stabiliz<strong>in</strong>g a S = 1/2ground state. The derived values for the exchange <strong>in</strong>teraction constants fall <strong>in</strong> the range usually found <strong>in</strong> [Fe 3 (l 3 -O)] 7+ clusters. Solidstate X-band EPR spectra of 1 and 2 at liquid helium temperatures give rise to broad l<strong>in</strong>es extend<strong>in</strong>g several hundred Gauss, <strong>in</strong>dicat<strong>in</strong>gweak <strong>in</strong>termolecular <strong>in</strong>teractions. EPR spectra from 1 and 2 <strong>in</strong> an acetone glass at 4.2 K exhibit a strong symmetric signal atg 2.0 which is attributed to the S = 1/2 ground state of the clusters.Ó 2005 Elsevier Ltd. All rights reserved.Keywords: Tr<strong>in</strong>uclear oxo-centered Fe(<strong>III</strong>) complexes; Salicylaldehyde oxime; Magneto<strong>chemistry</strong>; Crystal structures; EPR spectroscopy; Mössbauerspectroscopy1. Introduction* Correspond<strong>in</strong>g author. Tel.: +3210 6503365; fax: +3210 6519430.E-mail address: craptop@ims.demokritos.gr (C.P. Raptopoulou).Our <strong>in</strong>terest <strong>in</strong> the coord<strong>in</strong>ation <strong>chemistry</strong> of phenolicoximes is related to our cont<strong>in</strong>u<strong>in</strong>g effort to synthesizepolynuclear 3d metal clusters <strong>in</strong> a quest for newmolecule-based magnetic materials. ÔMetal-oximatesÕhave been attract<strong>in</strong>g the <strong>in</strong>terest of <strong>in</strong>organic chemists,s<strong>in</strong>ce they can be used as Ôbuild<strong>in</strong>g blocksÕ for the designedsynthesis of polynuclear clusters [1]. Accord<strong>in</strong>gto this synthetic route, the ligands already bound toone metal have free coord<strong>in</strong>ation sites and can b<strong>in</strong>d toa second metal of the same or different k<strong>in</strong>d. The majoradvantages of this method are, the better control of thereaction and of the products formed, factors that cannotbe controlled by follow<strong>in</strong>g the self-assembly route. Byus<strong>in</strong>g the strategy of Ômetal oximatesÕ as build<strong>in</strong>g blocks,various homo- and hetero-metal complexes have beensynthesized [2–8]. The propensity of phenolic oximesto form polynuclear complexes by us<strong>in</strong>g both the oxime0277-5387/$ - see front matter Ó 2005 Elsevier Ltd. All rights reserved.doi:10.1016/j.poly.2005.02.002


712 C.P. Raptopoulou et al. / Polyhedron 24 (2005) 711–721and phenolate groups as chelat<strong>in</strong>g and/or bridg<strong>in</strong>g units,along with their ability to act <strong>in</strong> their mono- or di-anionicform, make them <strong>in</strong>terest<strong>in</strong>g candidates for theexploration of their metal coord<strong>in</strong>ation <strong>chemistry</strong> [9].In their mono-anionic form, phenolic oximes usuallyact as chelat<strong>in</strong>g agents through their oximatenitrogen and phenolate oxygen atoms (mode A <strong>in</strong>the follow<strong>in</strong>g scheme) <strong>in</strong> a variety of mono- andpoly-nuclear metal complexes [10–14]. A more <strong>in</strong>terest<strong>in</strong>gcoord<strong>in</strong>ation mode, <strong>in</strong>cludes the use of the phenolateoxygen atom as both chelat<strong>in</strong>g and bridg<strong>in</strong>g agent(mode B) [10,15].In their di-anionic form, phenolic oximes usually usetheir phenolate oxygen and oximate nitrogen atoms tochelate to one metal ion and their oximate oxygen asbridg<strong>in</strong>g unit to b<strong>in</strong>d a second metal (mode C). A varietyof di- [16–18], tri- [14,19] and tetranuclear [20–22] metalcomplexes present<strong>in</strong>g the l 2 :g 1 :g 1 :g 1 coord<strong>in</strong>ationmode have been reported. The oximate oxygen atomcan also b<strong>in</strong>d two metal ions, present<strong>in</strong>g thel 3 :g 1 :g 2 :g 1 coord<strong>in</strong>ation mode (mode D) giv<strong>in</strong>g rise tohigher nuclearity complexes, such as hexanuclear[23,24], although this coord<strong>in</strong>ation mode is also observed<strong>in</strong> tr<strong>in</strong>uclear [25] and tetranuclear [11] complexes.There is also one example [10] where the dianion of phenolicoximes can act as chelat<strong>in</strong>g tridentate ligandaccord<strong>in</strong>g to mode E.ACH=N-OHOOCMCH=N-OMMCH=N-OHOMBODMCH=N-OMMM<strong>iron</strong>(<strong>III</strong>) salicylaldoximato complex is the tetranuclear[11] cluster [{Fe(Hsalox)(salox)} 4 ], <strong>in</strong> which the fourHsalox act as chelat<strong>in</strong>g agents through their phenolateoxygen and oximate nitrogen atoms (mode A), whilstthe four salox 2 further use their oximate oxygen atomto b<strong>in</strong>d to two additional metal centers (mode D). In therema<strong>in</strong><strong>in</strong>g examples, coligands have been used to completethe coord<strong>in</strong>ation spheres of <strong>iron</strong>(<strong>III</strong>) centers <strong>in</strong>polynuclear complexes. In the d<strong>in</strong>uclear compound[(Me 3 tacn)Fe(<strong>III</strong>)(salox) 3 Fe(<strong>III</strong>)] [16], as well as <strong>in</strong> thetetranuclear compound [(Me 3 tacn) 2 Fe 4 (salox) 2 (l 3 -O) 2(l 2 -CH 3 CO 2 ) 3 ](ClO 4 ) [20] (where Me 3 tacn = 1,4,7-trimethyl-1,4,7-triazacyclononane)the dianion ofsalicylaldoxime adopts the l 2 :g 1 :g 1 :g 1 coord<strong>in</strong>ationmode. The only tr<strong>in</strong>uclear <strong>iron</strong>(<strong>III</strong>) salicylaldoximatocomplex known so far is [(C 2 H 5 ) 3 NH][Fe 3 O(Hsalox)(salox)2 (salmp)] [19] (salmp = 2-(bis(salicylideneam<strong>in</strong>o)-methyl)phenol, a new ligand formed dur<strong>in</strong>g thereaction process), where the Hsalox ligands act as chelat<strong>in</strong>gunits and the salox 2 ligands adopt thel 2 :g 1 :g 1 :g 1 coord<strong>in</strong>ation mode.The aim of our project is to explore the use of salicylaldoxime<strong>in</strong> <strong>iron</strong>(<strong>III</strong>) <strong>carboxylate</strong> <strong>chemistry</strong>, encouragedby our previous results on manganese(<strong>III</strong>) [24]. Here<strong>in</strong>,we report the first results of our project, <strong>in</strong> particularthe synthesis, X-ray crystal structure, spectroscopic (solidstate and frozen solutions EPR, Mössbauer) characterizationand magnetic behavior of two neutraltr<strong>in</strong>uclear oxo-centered <strong>iron</strong>(<strong>III</strong>) complexes, [Fe 3 (l 3 -O)-(O 2 CPh) 5 (salox)L 1 L 2 ](L 1 =L 2 = MeOH (1), L 1 = EtOH,L 2 =H 2 O(2)). The reported complexes are the first examplesof tr<strong>in</strong>uclear carboxylato <strong>iron</strong>(<strong>III</strong>) complexes withsalicylaldoxime, and can be considered as precursorsfor the synthesis of higher nuclearity complexes, basedon the pr<strong>in</strong>ciple of us<strong>in</strong>g Ômetal oximatesÕ as Ôbuild<strong>in</strong>gblocksÕ for polynuclear clusters. In both compounds,the salox 2 ligands adopt the l 2 :g 1 :g 1 :g 1 coord<strong>in</strong>ationmode (mode C) thus, the possibility of further us<strong>in</strong>gthe oximate oxygen atom, under certa<strong>in</strong> reaction conditions,to b<strong>in</strong>d to a second metal is left open.2. ExperimentalCH=NO2.1. Compound preparationsOEMAll manipulations were performed under aerobic conditionsus<strong>in</strong>g materials as received (Aldrich Co). Allchemicals and solvents were of reagent grade.Further restrict<strong>in</strong>g our discussion to polynuclear<strong>iron</strong>(<strong>III</strong>) complexes with the simplest member of thephenolic oximes, 2-hydroxy-benzaldehyde (salicylaldoxime,H 2 salox), only a few examples have beenreported. As far as we know, the only example of2.1.1. [Fe 3 (l 3 -O)(O 2 CPh) 5 (salox)(MeOH) 2 ] Æ1.25MeOH Æ 1.05H 2 O(1)A methanolic solution of H 2 salox (0.069 g,0.50 mmol) was stirred under reflux, until sodium benzoate(0.216 g, 1.50 mmol) was added. The refluxcont<strong>in</strong>ued for 30 m<strong>in</strong> and then Fe(NO 3 ) 3 Æ 9H 2 O


C.P. Raptopoulou et al. / Polyhedron 24 (2005) 711–721 713(0.202 g, 0.50 mmol) was added. The color of the solutionimmediately turned to deep brown. After 24 h of reflux,small amounts of a brown-red solid were filtered,washed with MeOH and identified as compound 1 byFT-IR spectroscopy. The brown filtrate was sealed andafter a period of one week X-ray quality brownish-redcrystals of 1 were formed (Yield: 0.34 g, 70%). Thecrystals of 1 were collected by filtration, washed withcold MeOH and dried <strong>in</strong> vacuo. The result<strong>in</strong>g powderanalyzed as solvent-free. Anal. Calc. for (1) (C 44 H 38 -NO 15 Fe 3 ): C, 53.47; H, 3.88; N, 1.42. Found: C, 53.45;H, 3.86; N, 1.40%.2.1.2. [Fe 3 (l 3 -O)(O 2 CPh) 5 (salox)(EtOH)(H 2 O)] ÆEtOH (2)The procedure followed was the same as describedabove, but FeCl 3 Æ 6(H 2 O) and ethanol were used <strong>in</strong>stead(Yield: 0.35 g, 70%). The powder of 2 analyzed as solvent-free.Anal. Calc. for (2)(C 44 H 38 NO 15 Fe 3 ): C, 53.47;H, 3.88; N, 1.42. Found: C, 53.45; H, 3.87; N, 1.39%.Table 1Crystallographic data for complex 1 Æ 1.25MeOH Æ 1.05H 2 OFormula C 45.25 H 46.1 Fe 3 NO 17.3Formula weight 1048.30Space group P2 1 /cUnit cell dimensionsa (Å) 19.67(2)b (Å) 26.96(2)c (Å) 19.70(2)b (°) 98.84(3)V (Å 3 ) 10323(2)Z 8T (°C) 298RadiationMo Kaq calcd (g/cm 3 ) 1.348l (mm 1 ) 0.899aR 1 0.0775awR 2 0.1994R 1 = P (jF o j jF c j)/ P (jF o j)andwR 2 ¼ P ½wðF 2 o F 2 o Þ2 Š= P ½wðF 2 o Þ2 Šfor 5082 reflections with I >2r(I).a w ¼ 1=½r 2 ðF 2 o ÞþðaPÞ2 þ bPŠ and P ¼ððmax F 2 o ; 0Þþ2F 2 c Þ=3;a = 0.1046, b = 86.0886.1=22.2. General and physical measurementsElemental analysis for carbon, hydrogen, and nitrogenwas performed on a Perk<strong>in</strong> Elmer 2400/II automaticanalyzer. Infrared spectra were recorded as KBr pellets<strong>in</strong> the range 4000–500 cm 1 on a Bruker Equ<strong>in</strong>ox 55/SFT-IR spectrophotometer. EPR spectra were recordedon a Bruker ER 200D-SRC X-band spectrometerequipped with an Oxford ESR 9 cryostat <strong>in</strong> 4.2–300 Ktemperature range. Variable temperature magnetic susceptibilitymeasurements were carried out on polycrystall<strong>in</strong>esamples of 1 and 2 <strong>in</strong> the 2.0–300 K temperaturerange us<strong>in</strong>g a Quantum Design MPMS SQUID susceptometerunder a magnetic field of 1000 G. Magnetizationmeasurements were carried out at 2.5 K over the 0–5 Tmagnetic field range. Diamagnetic corrections for thecomplexes were estimated from PascalÕs constants.Mössbauer spectra were taken with a constant accelerationspectrometer us<strong>in</strong>g a 57 Co (Rh) source at RT and avariable temperature Oxford cryostat.2.2.1. X-ray crystallography and solution of structuresBrownish-red prismatic crystals of 1 (0.05 · 0.25 ·0.75 mm) and 2 (0.05 · 0.15 · 0.25 mm) were mounted<strong>in</strong> capillary with drops of mother liquid. Diffraction measurementswere made on a Crystal Logic Dual Goniometerdiffractometer us<strong>in</strong>g graphite monochromated Moradiation. Important crystal data and parameters fordata collection for 1 are reported <strong>in</strong> Table 1. Unit celldimensions were determ<strong>in</strong>ed and ref<strong>in</strong>ed by us<strong>in</strong>g theangular sett<strong>in</strong>gs of 25 automatically centered reflections<strong>in</strong> the range 11°


714 C.P. Raptopoulou et al. / Polyhedron 24 (2005) 711–721and of very poor diffraction quality. Repeated efforts togrow larger crystals proved unsuccessful. We cont<strong>in</strong>uedwith data collection <strong>in</strong> order to establish the gross structureof the complex. S<strong>in</strong>ce the structure of 2 proved quitesimilar to that of 1, we felt that complete structural characterizationwas not crucial. Thus, the ref<strong>in</strong>ement wasdone with anisotropic thermal parameters for the <strong>iron</strong>(<strong>III</strong>)ions only, whilst all the rest atoms were ref<strong>in</strong>ed isotropically.No H-atoms were <strong>in</strong>cluded <strong>in</strong> the ref<strong>in</strong>ement.The phenyl r<strong>in</strong>gs of the salox 2 and benzoate ligandswere fitted to the geometry of a regular hexagon. Thecrystallographic analysis revealed the presence of oneethanol of crystallization per trimeric complex.3. Results and discussion3.1. SynthesesAs mentioned earlier, our aim was to <strong>in</strong>vestigatethe use of salicylaldehyde oxime (H 2 salox) to the<strong>iron</strong>(<strong>III</strong>) <strong>carboxylate</strong> <strong>chemistry</strong>, extend<strong>in</strong>g our previousexperience on manganese [24]. The 1:1 molar ratioreaction of Mn(O 2 CR) 2 (R = Me, Ph) and H 2 salox <strong>in</strong>EtOH led to the hexanuclear complexes [Mn 6 O 2(O 2 CR) 2 (salox) 6 (EtOH) 4 ] (R = Me, Ph). These complexesconta<strong>in</strong> the novel ½Mn <strong>III</strong> 6ðl 3 -OÞ 2ðl 2 -ORÞ 2Š 12þcore, whose topology consists of six Mn ions arrangedas two {Mn 3 (l 3 -O)} subunits bridged by two oximatooxygen atoms. Both compounds proved to behave ass<strong>in</strong>gle molecule magnets (SMM) and are the firstmembers of a new class of manganese-based SMMsconta<strong>in</strong><strong>in</strong>g exclusively Mn <strong>III</strong> ions with block<strong>in</strong>g temperaturegreater than 2 K. In order to <strong>in</strong>vestigate thepossibility of synthesiz<strong>in</strong>g the correspond<strong>in</strong>g polynuclear<strong>iron</strong>(<strong>III</strong>) complexes and to study their magneticproperties, we have designed the 1:3:1 molarratio reaction of Fe 3+ /PhCO 2/H 2 salox <strong>in</strong> alcoholicmedia. The 1:3:1 molar ratio has been chosen so thatthe M/<strong>carboxylate</strong>/H 2 salox ratio rema<strong>in</strong>s the same <strong>in</strong>go<strong>in</strong>g from manganese(II) to <strong>iron</strong>(<strong>III</strong>) ions. But itturned out that <strong>in</strong> the <strong>iron</strong>(<strong>III</strong>) case, the amount ofthe <strong>carboxylate</strong> ions was very high, and the tr<strong>in</strong>uclearoxo-centered complexes 1 and 2 were formed. The salox2 ions are coord<strong>in</strong>ated through the usuall 2 :g 1 :g 1 :g 1 mode while the possibility of further useof the oximato oxygen atom to bridge a second metaland to <strong>in</strong>crease the nuclearity of the derived complexhas failed. Nevertheless, we still consider compounds 1and 2 as useful star<strong>in</strong>g materials for polynuclear<strong>iron</strong>(<strong>III</strong>) complexes, under different reactionconditions.The synthesis of 1 and 2 can be summarized <strong>in</strong>Eqs. (1) and (2), respectively, based on the reasonableassumption that H 2 O from the start<strong>in</strong>g materials and/or the solvent is the source of the O 2 ion.3FeðNO 3 Þ 3 9H 2 O þ 5PhCO 2 Na þ H 2 salox þ 2MeOHMeOHƒ ƒ! ½Fe3 OðO 2 CPhÞ 5ðsaloxÞðMeOHÞ 2Šþ5NaNO 3þ 4HNO 3 þ 26H 2 Oð1Þ3FeCl 3 6H 2 O þ 5PhCO 2 Na þ H 2 salox þ EtOHƒ EtOH ƒ! ½Fe 3 OðO 2 CPhÞ 5ðsaloxÞðEtOHÞðH 2 OÞŠ þ 5NaClþ 4HCl þ 16H 2 Oð2Þ3.2. IR spectroscopyIn the IR spectrum of both 1 and 2, medium-<strong>in</strong>tensitybands at 3451, 3063, 2924 cm 1 (for 1) and 3414, 3063,2980 cm 1 (for 2), are assigned to the m(OH) H2 O,m(CH) aromatic , m(CH 3 ), respectively. Strong <strong>in</strong>tensitybands at 1598 cm 1 and medium <strong>in</strong>tensity bands at1286 cm 1 observed <strong>in</strong> the spectrum of both complexesare assigned to the m(C@N) and m(N–Oox) of the salicylaldoximatoligand [28]. The frequencies of the m s (CO 2 )bands of PhCO 2co<strong>in</strong>cide <strong>in</strong> the spectra of 1(1406 cm 1 ), and 2 (1405 cm 1 ). The bands at1557 cm 1 <strong>in</strong> 1 and 2, respectively, are assigned to them as (CO 2 ) of the benzoato ligands. The difference D(D = m as (CO 2 ) m s (CO 2 )) for 1 is 151 cm 1 and for 2 is152 cm 1 , less than that for NaO 2 CPh (184 cm 1 ), as expectedfor the bridg<strong>in</strong>g modes of benzoate ligation [29].A strong <strong>in</strong>tensity band at 480 cm 1 <strong>in</strong> the spectra of 1and at 478 cm 1 <strong>in</strong> the spectra of 2 is characteristic ofthe presence of the [Fe 3 O] moiety <strong>in</strong> the structures of 1and 2.3.3. Structural description of [Fe 3 (l 3 -O)(O 2 CPh) 5(salox)(MeOH) 2 ] Æ 1.25MeOH Æ 1.05H 2 O(1)Compound 1 crystallizes <strong>in</strong> the monocl<strong>in</strong>ic spacegroup P2 1 /c with two crystallographically <strong>in</strong>dependenttr<strong>in</strong>uclear complexes <strong>in</strong> the asymmetric unit (further reportedas molecules 1a and 1b). The structure of themolecule 1a is given <strong>in</strong> Fig. 1. Selected bond distancesand angles for both 1a and 1b are listed <strong>in</strong> Table 2.The structure of 1 consists of a tr<strong>in</strong>uclear <strong>iron</strong>(<strong>III</strong>)oxo-centered complex. The three Fe <strong>III</strong> ions <strong>in</strong> 1a forman isosceles triangle whilst <strong>in</strong> 1b the triangle is best describedas scalene (see Table 2). The Fe–O oxo bond distancesare <strong>in</strong> the range 1.86–1.94 Å <strong>in</strong> both molecules 1aand 1b, and the central [Fe 3 (l 3 -O)] 7+ moiety is planar.Ions Fe(2) and Fe(3) <strong>in</strong> molecule 1a and the correspond<strong>in</strong>gions Fe(5) and Fe(6) <strong>in</strong> molecule 1b have an octahedraloxygen rich coord<strong>in</strong>ation env<strong>iron</strong>ment, while ionsFe(1) and Fe(4) <strong>in</strong> molecules 1a and 1b, respectively,have a distorted octahedral O 5 N coord<strong>in</strong>ation geometry.The angles with<strong>in</strong> the tetragonal plane of the octahedronrange from 82.2° to 97.5° for 1a and from 78.5° to 99.1°for 1b. The angles <strong>in</strong>volv<strong>in</strong>g the axial positions of the


C.P. Raptopoulou et al. / Polyhedron 24 (2005) 711–721 715Fig. 1. The molecular structure of the molecule 1a with the atomiclabell<strong>in</strong>g (40% thermal probability ellipsoids).octahedron range from 168.5° to 178.5° and from 163.9°to 178.1° <strong>in</strong> 1a and 1b, respectively.The salicylaldoximato ligand shows the commonl 2 :g 1 :g 1 :g 1 coord<strong>in</strong>ation mode with the N–O oximatogroup and the phenolate oxygen atom ly<strong>in</strong>g above and belowthe [Fe 3 (l 3 -O)] 7+ plane, respectively. The Fe–O oximatobond distances are 1.982 Å <strong>in</strong> both molecules 1a and 1b,the Fe–O phenoxy are 1.914 and 1.930 Å <strong>in</strong> molecules 1aand 1b, respectively. The Fe–N oximato bond lengths are2.133 and 2.145 Å <strong>in</strong> molecules 1a and 1b, respectively.The whole salicylaldoximato ligand is planar and makesan angle of 51.1° and 65.3° with the [Fe 3 (l 3 -O)] 7+ plane<strong>in</strong> molecules 1a and 1b, respectively.The benzoato ligands are coord<strong>in</strong>ated <strong>in</strong> the commonsyn,syn l 2 :g 1 :g 1 mode. The Fe–O carboxylato bond distancesare <strong>in</strong> the range 1.977–2.029 and 1.990–2.052 Å<strong>in</strong> molecules 1a and 1b, respectively.The polymeric lattice structure of 1, shown <strong>in</strong> Fig. 2,arises from the strong <strong>in</strong>termolecular <strong>in</strong>teractions betweenthe isolated trimers. More specifically, the oximatooxygen atom O(1) <strong>in</strong> molecule 1a is strongly <strong>in</strong>teract<strong>in</strong>g(most likely through hydrogen bond<strong>in</strong>g <strong>in</strong>teractions)to a coord<strong>in</strong>ated methanolic oxygen atom Om(1) belong<strong>in</strong>gto a centrosymmetrically related molecule 1a[O(1)...Om(1 0 ) = 2.574 Å (1 x, y, 1 z)]. Thus, a dimerof trimers of the a–a type, is formed though two<strong>in</strong>termolecular <strong>in</strong>teractions across a center of symmetry.The closest FeFe <strong>in</strong>teratomic distance <strong>in</strong> the a–a dimeris Fe(2)Fe(2 0 ) = 5.067 Å. The same feature is observed<strong>in</strong> the case of molecule 1b, where the oximato oxygenatom O(61) is strongly <strong>in</strong>teract<strong>in</strong>g (most likely throughH-bond<strong>in</strong>g <strong>in</strong>teractions) to a coord<strong>in</strong>ated methanolOm(3) from a centrosymmetrically related molecule 1b[O(61)...Om(3 00 ) = 2.666 Å (2 x, y, 2 z)]. Thus, adimer of trimers of the b–b type, is formed due to thedouble <strong>in</strong>teractions described above. The closest FeFe<strong>in</strong>teratomic distance <strong>in</strong> the b–b dimer is Fe(5)Fe(5 00 )=5.207 Å. Apart from the formation of dimers, anotherfeature is also observed <strong>in</strong> the lattice structure of 1.The phenoxy oxygen atom O(62) of molecule 1b isTable 2Selected bond distances (Å) and angles (°) for 1 Æ 1.25MeOH Æ 1.05H 2 OMolecule 1aBond distancesFe(1)–Ox(1) 1.944(8) Fe(2)–Ox(1) 1.882(9) Fe(3)–Ox(1) 1.855(8)Fe(1)–O(2) 1.914(10) Fe(2)–O(1) 1.982(9) Fe(3)–O(42) 1.977(11)Fe(1)–O(21) 1.999(10) Fe(2)–O(12) 2.004(11) Fe(3)–O(22) 1.983(11)Fe(1)–O(31) 2.013(12) Fe(2)–O(41) 2.012(10) Fe(3)–O(32) 2.006(10)Fe(1)–O(11) 2.020(12) Fe(2)–O(51) 2.017(11) Fe(3)–O(52) 2.029(10)Fe(1)–N(1) 2.133(11) Fe(2)–Om(1) 2.070(10) Fe(3)–Om(2) 2.110(9)Fe(1)...Fe(2) 3.254(2) Fe(1)...Fe(3) 3.327(2) Fe(2)...Fe(3) 3.251(2)Bond anglesFe(1)–Ox(1)–Fe(2) 116.5(4) Fe(2)–Ox(1)–Fe(3) 120.9(2) Fe(3)–Ox(1)–Fe(1) 122.3(4)Molecule 1bBond distancesFe(4)–Ox(2) 1.932(9) Fe(5)–Ox(2) 1.877(9) Fe(6)–Ox(2) 1.868(9)Fe(4)–O(62) 1.930(10) Fe(5)–O(61) 1.982(10) Fe(6)–O(82) 1.998(10)Fe(4)–O(81) 1.990(11) Fe(5)–O(111) 2.008(10) Fe(6)–O(92) 2.006(12)Fe(4)–O(71) 2.012(11) Fe(5)–O(72) 2.009(9) Fe(6)–O(102) 2.011(12)Fe(4)–O(91) 2.052(11) Fe(5)–O(101) 2.045(12) Fe(6)–O(112) 2.028(11)Fe(4)–N(61) 2.145(13) Fe(5)–Om(3) 2.099(10) Fe(6)–Om(4) 2.103(10)Fe(4)...Fe(5) 3.222(2) Fe(4)...Fe(6) 3.317(2) Fe(5)...Fe(6) 3.284(2)Bond anglesFe(4)–Ox(2)–Fe(5) 115.5(4) Fe(5)–Ox(2)–Fe(6) 122.5(4) Fe(6)–Ox(2)–Fe(4) 121.5(5)


716 C.P. Raptopoulou et al. / Polyhedron 24 (2005) 711–721Fig. 2. Plot of the polymeric cha<strong>in</strong>s of 1 along the ac diagonal. The <strong>in</strong>termolecular <strong>in</strong>teractions between the trimers are shown as dashed l<strong>in</strong>es.strongly <strong>in</strong>teract<strong>in</strong>g (most likely through H-bond) to thesecond coord<strong>in</strong>ated methanolic oxygen Om(2) of molecule1a [O(62)Om(2 00 ) = 2.693 Å (2 x, y, 2 z)].Thus, polymeric cha<strong>in</strong>s of alternative dimers of the...a–a–b–b... are formed along the ac diagonal ofthe unit cell. The closest FeFe <strong>in</strong>teratomic distance<strong>in</strong> the a–b part of the cha<strong>in</strong> is Fe(3)Fe(4 00 )= 5.518 Å.3.4. Structural description of [Fe 3 (l 3 -O)(O 2 CPh) 5(salox)(EtOH)(H 2 O)] Æ EtOH (2)The structure of 2 (Figure S1) is analogous to that ofcompound 1, the only difference be<strong>in</strong>g <strong>in</strong> the monodendateligands complet<strong>in</strong>g the octahedral coord<strong>in</strong>ationaround the <strong>iron</strong>(<strong>III</strong>) ions (one ethanol and one watermolecules <strong>in</strong>stead of two methanols <strong>in</strong> 1). The three Fe <strong>III</strong>ions form a scalene triangle with edges 3.207, 3.277 and3.306 Å. The Fe–O oxo bond distances are <strong>in</strong> the range1.835–1.923 Å and the central [Fe 3 (l 3 -O)] 7+ moiety isplanar. Ions Fe(2) and Fe(3) have an octahedral oxygenrich coord<strong>in</strong>ation env<strong>iron</strong>ment, while Fe(1) has a distortedoctahedral O 5 N coord<strong>in</strong>ation geometry.Despite its similarities <strong>in</strong> the molecular structure withthat of 1, compound 2 presents a different latticestructure orig<strong>in</strong>ated by the existence of <strong>in</strong>termolecular<strong>in</strong>teractions between the isolated trimers. Strong <strong>in</strong>termolecular<strong>in</strong>teractions (possibly through H-bonds) betweenthe oximato oxygen atom O(1) and thecoord<strong>in</strong>ated ethanolic oxygen atom Oe(1) of a centrosymmetricallyrelated trimer [O(1)...Oe(1 0 ) = 2.674 Å( x, y, 1 z)], and between the phenolate oxygenatom O(2) and the coord<strong>in</strong>ated water molecule Ow(1)of a neighbor<strong>in</strong>g trimer [O(2)...Ow(1 00 ) = 2.967 Å(0.5 x, 0.5 + y, 0.5 z)], are responsible for the 2Dpolymeric network (parallel to the [1 0 1] crystallographicplane) <strong>in</strong> 2 (Figure S2). The closest Fe...Fe <strong>in</strong>teratomicdistances due to the H-bond<strong>in</strong>g <strong>in</strong>teractions areFe(2)...Fe(2 0 ) = 5.075 Å, and Fe(1)...Fe(3 00 ) = 5.913 Å.Compounds 1 and 2 can be considered as part of thelarge Ôbasic <strong>carboxylate</strong>sÕ family of trivalent oxo-centeredtr<strong>in</strong>uclear compounds with the general formula[M 3 (l 3 -O)(O 2 CR) 6 L 3 ] (L = term<strong>in</strong>al monodentateligand). The only difference between the Ôbasic <strong>carboxylate</strong>sÕand compounds 1 and 2 is that, one of the <strong>carboxylate</strong>sand one of the term<strong>in</strong>al ligands have beenreplaced by the oximato and phenoxy group of the salicylaldoxime,respectively. In that sense, bond distancesand angles <strong>in</strong> the coord<strong>in</strong>ation sphere are <strong>in</strong> the rangesfound for several <strong>iron</strong>(<strong>III</strong>) Ôbasic <strong>carboxylate</strong>sÕ [30–37].3.5. Mössbauer spectraFig. 3 shows Mössbauer spectra from powder samplesof 1 and 2 recorded at room temperature <strong>in</strong> theabsence of an external magnetic field. The spectra forboth compounds consist of two well resolved doublets.Solid l<strong>in</strong>es above the spectra are theoretical simulationsassum<strong>in</strong>g two <strong>iron</strong> sites at 2:1 ratio with theparameters quoted <strong>in</strong> Table 3. For both compoundsthe isomer shifts for sites I and II are typical for highsp<strong>in</strong> Fe <strong>III</strong> <strong>in</strong> an octahedral env<strong>iron</strong>ment compris<strong>in</strong>gO/N atoms.From the crystal structure of complex 1, site I whichrepresents the majority species is readily assigned to the<strong>iron</strong> sites with O 6 env<strong>iron</strong>ment whereas site II, them<strong>in</strong>ority species, is assigned to the <strong>iron</strong> site with O 5 Ncoord<strong>in</strong>ation. Site II is characterized by a significantlylarger DE Q relatively to site I. The DE Q parameter reflectsthe degree of asymmetry around the Fe ion. Thiscan be asymmetry of Fe–L bond lengths and coord<strong>in</strong>ationgeometry, or asymmetry <strong>in</strong> the nature of donoratoms (N or O). In terms of coord<strong>in</strong>ation geometry, significanttrans effects are experienced by Fe(2), Fe(3) <strong>in</strong>


C.P. Raptopoulou et al. / Polyhedron 24 (2005) 711–721 717the spectrum exhibits fairly narrow l<strong>in</strong>es suggest<strong>in</strong>g thatthe <strong>iron</strong> sites <strong>in</strong> molecules 1a and 1b are characterized bysimilar Mössbauer parameters and especially DE Q . Thesituation for complex 2 is similar and the O 5 N coord<strong>in</strong>ated<strong>iron</strong> atom [Fe(1)] with a larger DE Q is assignedto site II, despite its more symmetric octahedral coord<strong>in</strong>ationgeometry.At 4.2 K and <strong>in</strong> the absence of external magnetic fieldsa slight broaden<strong>in</strong>g of the doublets for both complexes isobserved (Fig. S3). No magnetic order<strong>in</strong>g is evidenced at4.2 K. The broaden<strong>in</strong>g can be attributed to the onset ofmagnetic relaxation effects. Alternatively, structuralchanges may occur lead<strong>in</strong>g to three dist<strong>in</strong>ct sites.Although the deconvolution of the spectra is not uniqueboth can be simulated assum<strong>in</strong>g two sites at 2:1 ratio as<strong>in</strong> the room temperature case with the parameters quoted<strong>in</strong> Table 3 (Fig. S3). The average isomer shift for bothcompounds at 4.2 K is 0.54 mm s 1 and the difference<strong>in</strong> the isomer shifts with the room temperature spectrais due to the second order Doppler effect [38].Fig. 3. Room temperature Mössbauer spectra from solid powdersamples of 1 and 2. Solid l<strong>in</strong>es are theoretical spectra assum<strong>in</strong>g twodifferent <strong>iron</strong> sites with the parameters quoted <strong>in</strong> Table 3.Table 3Mössbauer parameters for 1 and 2Complex Site Temperature(K)d a,b,cDE Qa,cC/2 a,d Area (%) d1 I 300 0.42(1) 0.56(1) 0.15 674.2 0.54(1) 0.61(1) 0.19II 300 0.41(1) 1.24(1) 0.15 334.2 0.53(1) 1.15(1) 0.192 I 300 0.42(1) 0.70(1) 0.14 674.2 0.55(1) 0.79(1) 0.19II 300 0.41(1) 1.29(1) 0.14 334.2 0.54(1) 1.31(1) 0.19a In mm s 1 .b Isomer shifts are reported relative to <strong>iron</strong> metal at roomtemperature.c Number <strong>in</strong> parentheses represent errors <strong>in</strong> the last digit.d Fixed.3.6. Magnetic behaviourFor complex 1, the v M T product at 300 K is3.94 cm 3 mol1 K(Fig. 4), significantly lower than thetheoretically expected value for three non-<strong>in</strong>teract<strong>in</strong>gS = 5/2 sp<strong>in</strong>s (13.14 cm 3 mol1 K), suggest<strong>in</strong>g antiferromagnetic<strong>in</strong>teractions. Upon cool<strong>in</strong>g, the v M T productdecreases to 0.31 cm 3 mol1 K at 2 K, without extrapolat<strong>in</strong>gto zero as the temperatures tends to zero, whichagrees with the <strong>in</strong>terplay of antiferromagnetic <strong>in</strong>teractions,and a magnetic ground state.As analyzed <strong>in</strong> the description of the structures, complex1 actually consists of two <strong>in</strong>dependent molecules(1a and 1b), with two rather different geometries; isosceles(for 1a) and scalene (for 1b, see description of structures).Due to the different geometries it is expected thatmolecule 1a, and by Fe(5), Fe(6) <strong>in</strong> molecule 1b, with theshortest bond be<strong>in</strong>g the Fe–(l 3 -O 2 ) <strong>in</strong> each case. Thecorrespond<strong>in</strong>g trans effect experienced by atoms Fe(1)and Fe(4) is <strong>in</strong>significant (see Table 2). In terms of donoratoms, there are two <strong>iron</strong> atoms with asymmetric O 5 Nchromophores [Fe(1) and Fe(4)] and four atoms withmore symmetric O 6 chromophores [Fe(2), Fe(3), Fe(5)and Fe(6)]. The Mössbauer spectra, therefore, <strong>in</strong>dicatethat the O 5 N coord<strong>in</strong>ation should be considered responsiblefor the larger DE Q value of site II.The resolution of the spectrum of complex 1 does notallow us to dist<strong>in</strong>guish the two crystallographically differentmolecules 1a and 1b. We observe however thatFig. 4. v M T vs. T experimental data for complex 1, and theoreticalcurves based on the Hamiltonian of Eq. (3), us<strong>in</strong>g the parameters ofsolution A.


718 C.P. Raptopoulou et al. / Polyhedron 24 (2005) 711–7211a and 1b have different magnetic properties. However,consideration of two different magnetic entities for theanalysis of the bulk magnetic susceptibility data wouldlead to a large number of parameters with a small degreeof reliability. Therefore, we have analyzed the dataassum<strong>in</strong>g one s<strong>in</strong>gle tr<strong>in</strong>uclear species.Initial attempts to simulate the magnetic properties ofthe complex by consider<strong>in</strong>g a s<strong>in</strong>gle exchange constant,J did not yield satisfactory results. It was, therefore,concluded that a model tak<strong>in</strong>g <strong>in</strong>to account a second exchangeconstant, J 0 , should be considered. The Hamiltonianused was^H ¼ 2Jð^S 1^S 3 þ ^S 2^S 3 Þ 2J 0^S 1^S 2 : ð3ÞThe fitt<strong>in</strong>g process yielded two solutions of comparablequality (with g fixed to 2.0), as is usually the case forcomplexes conta<strong>in</strong><strong>in</strong>g the [Fe 3 O] 7+ core, with a S = 1/2ground state [39,40]. The best-fit parameters were, A:J = 27.3 cm 1 , J 0 = 42.7 cm 1 , g = 2.0 (R = 1.2 ·10 3 ) and B: J = 34.7 cm 1 , J 0 = 24.6 cm 1 , g = 2.0(R = 1.7 · 10 3 ). This is better depicted by an error surfaceplot of J versus J 0 , which reveals the existence oftwo m<strong>in</strong>ima (Figure S4). Both these solutions imply aS = 1/2 ground state.In order to verify the validity of these results, a simulationof the M versus H curve at 2.5 K was carried outwith the MAGPACK program package [41,42], us<strong>in</strong>g thebest-fit parameters of solutions A and B. These reproducedthe experimental curves very nicely, produc<strong>in</strong>gpractically superimposable curves, without the use of aparamagnetic impurity fraction (Fig. 5).The situation is similar <strong>in</strong> the case of complex 2, withthe v M T product decreas<strong>in</strong>g smoothly from 3.65cm 3 mol1 K at 300 K down to 0.28 cm 3 mol1 K at2 K, without extrapolat<strong>in</strong>g to zero (Fig. 6). For the analysisof the data we assumed the same model as above.The fit shown <strong>in</strong> Fig. 6 was carried out over the 8–Fig. 6. v M T vs. T experimental data for complex 2, and the theoreticalcurve based on the Hamiltonian of Eq. (3) (solution B).300 K temperature region. Two solutions of comparablequality were determ<strong>in</strong>ed, their parameters be<strong>in</strong>g, A:J = 35.9 cm 1 , J 0 = 29.8 cm 1 , g = 2.0 (R = 3.7 ·10 4 ) and B: J = 31.3 cm 1 , J 0 = 41.2 cm 1 , g = 2.0(R = 4.3 · 10 4 ). Fitt<strong>in</strong>g over the 2–300 K temperaturerange yielded small discrepancies at low temperatures.These discrepancies are attributed to the presence ofweak <strong>in</strong>termolecular <strong>in</strong>teractions.The existence of two m<strong>in</strong>ima <strong>in</strong> the fitt<strong>in</strong>g procedureof the magnetic susceptibility data is an <strong>in</strong>herent propertyof tr<strong>in</strong>uclear complexes [40]. It would be reasonableto correlate the value of the exchange coupl<strong>in</strong>g constantswith the metric characteristics of the complexes. This approachhowever may not be realistic <strong>in</strong> the present case.First, complex 1 consists of two different molecules andthe unambiguous determ<strong>in</strong>ation of the <strong>in</strong>dividual magneticproperties is not feasible from the present bulkmagnetic susceptibility measurements. Second, even <strong>in</strong>the simpler case of equilateral complexes the necessityof at least two different exchange coupl<strong>in</strong>g constantsfor the reproduction of the magnetic susceptibility measurements<strong>in</strong>dicate that magnetostructural correlationsare not straightforward and other factors have to be taken<strong>in</strong>to account. We observe however that on average,the derived values for the exchange constants for solutionsA and B for both complexes fall well with<strong>in</strong> therange of values usually found <strong>in</strong> tr<strong>in</strong>uclear complexes[43–47].3.7. EPR spectroscopyFig. 5. Variation of the magnetization M vs. the applied field H at2.5 K for complex 1. The curves calculated accord<strong>in</strong>g to the parametersof solutions A or B are superimposable.EPR spectra from powder samples for both complexesat 4.2 K are shown <strong>in</strong> Fig. 7. For compound 1the spectra reveal a feature at g 2.0 accompanied bybroad features at lower magnetic fields. For compound2 an additional broad feature is observed at higher magneticfields. The magnetic susceptibility data <strong>in</strong>dicatethat the clusters are characterized by a S = 1/2 groundstate, however the EPR signals cannot be attributed to


C.P. Raptopoulou et al. / Polyhedron 24 (2005) 711–721 719Fig. 7. EPR spectrum from a solid powder sample of 1 and 2 at 4.2 K.EPR conditions: microwave frequency, 9.41 GHz; microwave power,50 mW; modulation amplitude 10 G pp .Fig. 8. EPR spectrum from 1 and 2 <strong>in</strong> acetone glass at 4.2 K. EPRconditions: microwave frequency, 9.41 GHz; microwave power, 2 mW;modulation amplitude 10 G pp .isolated S = 1/2 systems. We attribute this behaviour to<strong>in</strong>termolecular <strong>in</strong>teractions present <strong>in</strong> the solid state.This is supported by the crystal structure reveal<strong>in</strong>g <strong>in</strong>termolecular<strong>in</strong>teractions between neighbour<strong>in</strong>g trimers.We note that the low temperature magnetic susceptibilitydata for complex 2 cannot be reproduced with isolatedtrimers and the EPR spectra support weak<strong>in</strong>termolecular <strong>in</strong>teractions. For compound 1 the <strong>in</strong>termolecular<strong>in</strong>teractions appear to be weak enough, sothey do not affect the magnetic susceptibility data. However,weak dipolar <strong>in</strong>teractions may substantially affectthe EPR spectra. For <strong>in</strong>stance a weak dipolar <strong>in</strong>teractionbetween two S = 1/2 systems of the order of0.05 cm 1 can be hardly discernible <strong>in</strong> bulk magneticsusceptibility measurements, but it will critically affectthe EPR measurements lead<strong>in</strong>g to spectra extend<strong>in</strong>g <strong>in</strong>a large magnetic field region.In order to elim<strong>in</strong>ate the solid-state effects, we studiedby EPR both compounds <strong>in</strong> an acetone glass, a weaklycoord<strong>in</strong>at<strong>in</strong>g solvent. The 4.2 K spectra are shown <strong>in</strong>Fig. 8. A strong signal is observed at g 2.0 for bothcompounds. The signal is characterized by a symmetricderivative feature with a l<strong>in</strong>e-shape which is better describedby a Lorenztian curve. The temperature dependenceof this signal <strong>in</strong>dicates that it arises from aground state. The dependence of the signal on microwavepower and the l<strong>in</strong>e-shape argues aga<strong>in</strong>st a free radicalspecies. Further, it is improbable that this signalarises from monomeric Fe <strong>III</strong> (S = 5/2) species result<strong>in</strong>gfrom decomposition of the compound upon solvation<strong>in</strong> acetone. Usually such species gives rise to signals athigher g-values (for <strong>in</strong>stance at g 4.3) as a result ofzero-field splitt<strong>in</strong>g effects. No such signals are observed<strong>in</strong> the present case. A monomeric Fe <strong>III</strong> (S = 1/2) low sp<strong>in</strong>species can be also excluded because <strong>in</strong> this case fairlyanisotropic signals are expected.On the other hand, it is reasonable to assume that theEPR signals of Fig. 8 arise from the S = 1/2 ground stateof isolated trimers <strong>in</strong> both compounds. The symmetricl<strong>in</strong>e-shape of the signals suggests an isotropic system.This is <strong>in</strong>deed expected from a trimer compris<strong>in</strong>g Fe <strong>III</strong>(S = 5/2) sites antiferromagnetically coupled with theisotropic Heisenberg–Dirac–van Vleck Hamiltonian asthe ma<strong>in</strong> <strong>in</strong>teraction. Although symmetric EPR l<strong>in</strong>esare expected this is rarely met <strong>in</strong> tr<strong>in</strong>uclear complexesof Fe <strong>III</strong> (S = 5/2) or Cr <strong>III</strong> (S = 3/2) [39,48–53]. Usually,<strong>in</strong> such systems, non-Heisenberg <strong>in</strong>teractions such asantisymmetric exchange and/or s<strong>in</strong>gle-ion zero-fieldsplitt<strong>in</strong>g terms result <strong>in</strong> an anisotropic S = 1/2 groundstate. Due to the anisotropy, broad EPR signals are observedextend<strong>in</strong>g to high field values with g 2.0. In thepresent case the signal is symmetric and conf<strong>in</strong>ed at theg 2.0 region <strong>in</strong>dicat<strong>in</strong>g that the contribution of theseterms is negligible. From this po<strong>in</strong>t of view compounds1 and 2 are rare cases of triferric complexes where theanticipated S = 1/2 EPR signals are <strong>in</strong>deed observed.4. ConclusionsAs part of our cont<strong>in</strong>u<strong>in</strong>g efforts to synthesize polynuclear<strong>iron</strong>(<strong>III</strong>) complexes with novel magnetic properties,we have reacted H 2 salox with <strong>iron</strong>(<strong>III</strong>) <strong>in</strong> thepresence of <strong>carboxylate</strong>s. The two new neutral <strong>iron</strong>(<strong>III</strong>)complexes, [Fe 3 (l 3 -O)(O 2 CPh) 5 (salox)L 1 L 2 ] (L 1 =L 2 =MeOH (1), L 1 = EtOH, L 2 =H 2 O(2)) derived, conta<strong>in</strong>the [Fe 3 O] 7+ core found <strong>in</strong> Ôbasic <strong>iron</strong> <strong>carboxylate</strong>sÕ. Incomplexes 1 and 2 however two <strong>iron</strong> atoms are <strong>in</strong> anO 6 coord<strong>in</strong>ation env<strong>iron</strong>ment whereas the third is found<strong>in</strong> an O 5 N one. A detailed characterization of complexes1 and 2 <strong>in</strong>clud<strong>in</strong>g spectroscopic and magnetic studieshas been carried out. The nonequivalence of the


720 C.P. Raptopoulou et al. / Polyhedron 24 (2005) 711–721<strong>iron</strong>(<strong>III</strong>) ions is depicted <strong>in</strong> the Mössbauer spectra. Themagnetic properties are <strong>in</strong>terpreted with<strong>in</strong> the context ofa trimer with exchange constants typical for complexeswith the [Fe 3 (l 3 -O)] 7+ core and a S = 1/2 ground state.The crystal structure analysis of 1 reveals <strong>in</strong>termolecular<strong>in</strong>teractions between the trimers form<strong>in</strong>g 1D polymericcha<strong>in</strong>s. In 2 the <strong>in</strong>termolecular <strong>in</strong>teractions lead to theformation of a 2D network. These <strong>in</strong>teractions give riseto broad EPR spectra <strong>in</strong> the solid state. The salox 2 ligandadopts the usual l 2 :g 1 :g 1 :g 1 coord<strong>in</strong>ation mode,while the possibility of further use of the oximate oxygenatom to bridge to a second metal is left open. In thatsense, compounds 1 and 2 can be considered as importantstart<strong>in</strong>g materials for the synthesis of higher nuclearityclusters under certa<strong>in</strong> reaction conditions.AcknowledgementsThe Greek General Secretariat of Research andTechnology is acknowledged for support<strong>in</strong>g the presentwork with<strong>in</strong> the frame of the Competitiveness EPAN2000–2006, Centers of Excellence # 25. We also thankDr. D. Stamopoulos for the magnetic measurements.Appendix A. Supplementary dataFull crystallographic details have been deposited <strong>in</strong>CIF format with the Cambridge Crystallographic DataCentre. Copies of the data can be obta<strong>in</strong>ed free ofcharge on request from the CCDC, 12 Union Road,Cambridge CB2 1EZ, UK (fax: +44 1223 336408,e-mail: deposit@ccdc.cam.ac.uk or www. at http://www.ccdc.cam.ac.uk) quot<strong>in</strong>g the deposition numbersCCDC 261079 (1), and CCDC 261080 (2). Four figuresshow<strong>in</strong>g the molecular and lattice structure of 2, theMössbauer spectra from powder samples of 1 and 2 at4.2 K, and the surface error plot of J versus J 0 (withg = 2.00), as well as a table of the bond distances andangles around the coord<strong>in</strong>ation sphere of the three<strong>iron</strong>(<strong>III</strong>) ions <strong>in</strong> 1, are also given as supplementary material.Supplementary data associated with this article canbe found, <strong>in</strong> the onl<strong>in</strong>e version, at doi:10.1016/j.poly.2005.02.002.References[1] O. Kahn, Molecular Magnetism, VCH-Verlagsgesellschaft,We<strong>in</strong>he<strong>in</strong>, 1991.[2] D. Luneau, H. Oshio, H. Okawa, S. Kida, J. Chem. Soc., DaltonTrans. (1990) 2283.[3] P. Chaudhuri, M. W<strong>in</strong>ter, P. Fleischhauer, W. Haase, U. Florke,H.-J. Haupt, J. Chem. Soc., Chem. Commun. (1990) 1728.[4] P. Chaudhuri, M. W<strong>in</strong>ter, B.P.C. Della Vedova, E. Bill, A.Trautwe<strong>in</strong>, S. Gehr<strong>in</strong>g, P. Fleischhuer, B. Nuber, J. Weiss, Inorg.Chem. 30 (1991) 2148.[5] D. Luneau, H. Oshio, H. Okawa, S. Kida, Chem. Lett. (1989) 443.[6] H. Okawa, M. Koikawa, S. Kida, D. Luneau, H. Oshio, J. Chem.Soc., Dalton Trans. (1990) 469.[7] R. Ruiz, F. Lloret, M. Julve, M.C. Munoz, C. Bois, Inorg. Chim.Acta 219 (1994) 179.[8] E. Colacio, J.M. Dom<strong>in</strong>guez-Vera, A. Escuer, M. Kl<strong>in</strong>ga, R.Kivekas, A. Romerosa, J. Chem. Soc., Dalton Trans. (1995) 343.[9] P. Chaudhuri, Coord. Chem. Rev. 243 (2003) 143.[10] A.G. Smith, P.A. Tasker, D.J. White, Coord. Chem. Rev. 241(2003) 61.[11] J.M. Thorpe, R.L. Beddoes, D. Collison, C.D. Garner, M.Helliwell, J.M. Holmes, P.A. Tasker, Angew. Chem. Int. Ed. 38(1999) 1119.[12] L.F. Larkworthy, D.C. Povey, J. Crystallogr. Spectrosc. Res. 13(1983) 413.[13] M. Gallagher, M.F.C. Ladd, L.F. Larkworthy, D.C. Povey,K.A.R. Salib, J. Crystallogr. Spectrosc. Res. 16 (1986) 967.[14] P. Chaudhuri, M. Hess, T. Weyhermüller, E. Bill, H.-J. Haupt,U. Flörke, Inorg. Chem. Commun. 1 (1998) 39.[15] R. Willem, A. Bouhdid, A. Meddour, C. Camacho-CamachoF. Mercier, M. Gielen, M. Biesemans, F. Ribot, C. Sanchez,E.R.T. Tieknik, Organometallics 16 (1997) 4377.[16] P. Chaudhuri, M. W<strong>in</strong>ter, P. Fleischhauer, W. Haase, U. Flörke,H.-J. Haupt, Inorg. Chim. Acta 212 (1993) 241.[17] C.N. Verani, E. Bothe, D. Burd<strong>in</strong>ski, T. Weyhermüller, U.Flörke, P. Chaudhuri, Eur. J. Inorg. Chem. (2001) 2161.[18] S. Liu, H. Zhu, J. Zubieta, Polyhedron 8 (1989) 2473.[19] E. Bill, G. Krebs, M. W<strong>in</strong>ter, M. Gerdan, A.X. Trautwe<strong>in</strong>, U.Flörke, H.-J. Haupt, P. Chaudhuri, Chem. Eur. J. 3 (1997) 193.[20] P. Chaudhuri, E. Rentschler, F. Birkelbach, C. Krebs, E. BillT. Weyhermüller, U. Flörke, Eur. J. Inorg. Chem. (2003) 541.[21] P. Chaudhuri, M. W<strong>in</strong>ter, P. Fleischhauer, W. Haase, U. Flörke,H.-J. Haupt, J. Chem. Soc., Chem. Commun. (1993) 566.[22] P. Chaudhuri, F. Birkelbach, M. W<strong>in</strong>ter, V. Staemmlar, P.Fleischhauer, W. Haase, U. Flörke, H.-J. Haupt, J. Chem. Soc.,Dalton Trans. (1994) 2313.[23] P. Chaudhuri, M. Hess, E. Rentschler, T. Weyhermüller, U.Flörke, New J. Chem. (1998) 553.[24] C.J. Milios, C.P. Raptopoulou, A. Terzis, F. Lloret, R. Vicente,S.P. Perlepes, A. Escuer, Angew. Chem. Int. Ed. 43 (2004) 210.[25] V. Zerbib, F. Robert, P. Gouzerh, J. Chem. Soc., Chem.Commun. (1994) 2179.[26] G.M. Sheldrick, SHELXS-86: Structure Solv<strong>in</strong>g Program, Universityof Gött<strong>in</strong>gen, Germany, 1986.[27] G.M. Sheldrick, SHELXL-97: Crystal Structure Ref<strong>in</strong>ement, Universityof Gött<strong>in</strong>gen, Germany, 1997.[28] M. Alexiou, C. Dendr<strong>in</strong>ou-Samara, C.P. Raptopoulou, A. Terzis,D.P. Kessissoglou, Inorg. Chem. 41 (2002) 4732.[29] G.B. Deacon, R.J. Phillips, Coord. Chem. Rev. 33 (1980) 227.[30] F. Degang, W. Guoxiong, T. Wenxia, Y. Kaibei, Polyhedron 20(1993) 2459.[31] E.M. Holt, S.L. Holt, W.F. Tucker, R.O. Asplund, K.J. Watson,J. Am. Chem. Soc. 96 (1974) 2621.[32] V.M. Lynch, J.W. Sibert, J.L. Sessler, B.E. Davis, Acta Crystallogr.C 47 (1991) 866.[33] A.B. Blake, L.R. Fraser, J. Chem. Soc., Dalton Trans. (1975) 193.[34] R.V. Thundathil, E.M. Holt, S.L. Holt, K.J. Watson, J. Am.Chem. Soc. 99 (1977) 1818.[35] K. Anzenhofer, J. De Boer, J. Rec. Tav. Chim. 88 (1969) 286.[36] A.M. Bond, R.J.H. Clark, D.G. Humphrey, P. Panagiotopoulos,B.W. Skelton, A.H. White, J. Chem. Soc., Dalton Trans. (1998)1845.[37] C.E. Anson, J.P. Bourke, R.D. Cannon, U.A. Jayasooriya, M.Mol<strong>in</strong>ier, A.K. Powell, Inorg. Chem. 36 (1997) 1265, and refsthere<strong>in</strong>.[38] N.N. Greenwood, T.C. Gibb, Mössbauer Spectroscopy, Chapmanand Hall, London, 1971.


C.P. Raptopoulou et al. / Polyhedron 24 (2005) 711–721 721[39] A.K. Boudalis, Y. Sanakis, F. Dahan, J.-P. Tuchagues, Inorg.Chem., submitted for publication.[40] D.H. Jones, J.R. Sams, R.C. Thompson, J. Chem. Phys. 81 (1984)440.[41] J.J. Borrás-Almenar, J.M. Clemente-Juan, E. Coronado, B.S.Tsukerblat, Inorg. Chem. 38 (1999) 6081.[42] J.J. Borrás-Almenar, J.M. Clemente-Juan, E. Coronado, B.S.Tsukerblat, J. Comput. Chem. 22 (2001) 985.[43] R.D. Cannon, R.P. White, Prog. Inorg. Chem. 36 (1988) 195.[44] R.D. Cannon, U.A. Jayasooriya, R. Wu, S.K. arapKoske, J.A.Stride, O.F. Nielsen, R.P. White, G.J. Kearley, D. Summerfield,J. Am. Chem. Soc. 116 (1994) 11869.[45] F.E. Sowrey, C. Tilford, S. Wocadlo, C.E. Anson, A.K. Powell,S.M. Benn<strong>in</strong>gton, W. Montfrooij, U.A. Jayasooriya, R.D. Cannon,J. Chem. Soc., Dalton Trans. (2001) 862.[46] G.J. Long, W.T. Rob<strong>in</strong>son, W.P. Tappmeyer, D.L.J. Bridges,J. Chem. Soc., Dalton Trans. (1973) 573.[47] J.F. Duncan, C.R. Kanekar, K.F. Mok, J. Chem. Soc. A (1969)480.[48] Y.V. Rakit<strong>in</strong>, Y.V. Yablokov, V.V. Zelentzov, J. Magn. Reson.43 (1981) 288.[49] A. Caneschi, A. Cornia, A.C. Fabretti, D. Gatteschi, W.Malavasi, Inorg. Chem. 34 (1995) 4660.[50] Y.V. Yablokov, V.A. Gaponenko, A.V. Ablov, T.N. Zhkhareva,Sov. Phys. Solid. State 15 (1973) 251.[51] H. Nishimura, M. Date, J. Phys. Soc. Jpn. 54 (1985) 395.[52] M. Honda, M. Morita, M. Date, J. Phys. Soc. Jpn. 61 (1992) 3773.[53] A. Vlachos, V. Psycharis, C.P. Raptopoulou, N. Lalioti, Y.Sanakis, M. Fardis, M. Karayanni, G. Papavassiliou, A. Terzis,Inorg. Chim. Acta 357 (2004) 3162.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!