12.07.2015 Views

Mixed Cournot-Bertrand Competition in N-firm Differentiated ...

Mixed Cournot-Bertrand Competition in N-firm Differentiated ...

Mixed Cournot-Bertrand Competition in N-firm Differentiated ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

whichisthensubstituted<strong>in</strong>to(4)toobta<strong>in</strong>p K= A K − B K ¯K+ B K ¯K³B ¯K ¯K´−1A ¯K −³B ¯K ¯K´−1p ¯K.If we further <strong>in</strong>troduce the follow<strong>in</strong>g notation,³α ¯K = B ¯K ¯K´−1A¯K,β ¯KK =∙³B KK − B K ¯KB ¯K ¯K´−1B ¯KK³B ¯K ¯K´−1B¯KK, β ¯K ¯K =α K = A K − B K ¯K ³ B ¯K ¯K´−1A¯K,¸q K³B ¯K ¯K´−1,β KK = B KK − B K ¯K ³ B ¯K ¯K´−1B ¯KK and β K ¯K = −B K ¯K ³ B ¯K ¯K´−1,then p K and q ¯K are written as l<strong>in</strong>ear functions of strategic vectors q K and p ¯K :p K = α K − β KK q K − β K ¯K p ¯Kandq ¯K = α ¯K − β ¯KK q K − β ¯K ¯K p ¯K.The k th components of p K and q ¯K ,p k and q¯k, are written asp k =andnP(1+(n−m−1)γ)A k −γ A ī −(1−γ)(1+(n−m)γ)q k +γī=m+11+(n−m−1)γnPnPmPp ī −(1−γ) q iī=m+1i=1,i6=k(1+(n−m−1)γ)A¯k−γ Aī−(1+(n−m−2)γ)p¯k+γpī−(1−γ) q kī=m+1ī=m+1,ī6=¯kk=1q¯k =(1−γ)(1+(n−m−1)γ).(7)We now turn our attention to the case of BC competition <strong>in</strong> which p k is thestrategic variable for <strong>firm</strong> k and so is q¯k for <strong>firm</strong> ¯k. S<strong>in</strong>ce BC competition is dualto CB competition, <strong>in</strong>terchang<strong>in</strong>g sets K and ¯K generates the k th componentsof q k and p¯k,q k and p¯k, as functions of the strategic variables:q k =mP(1+(m−1)γ)A k −γ A i −(1+(m−2)γ)p k +γ p i −(1−γ) qīi=1i=1,i6=kī=m+1(1−γ)(1+(m−1)γ)(8)its <strong>in</strong>verse matrix is1+(n − m − 2)γ(1 − γ)(1 + (n − m − 1)γ)and the off-diagonal element isγ−(1 − γ)(1 + (n − m − 1)γ) .The <strong>in</strong>vertibility of the matirx B KK is def<strong>in</strong>ed <strong>in</strong> the same way. This issue is discussed <strong>in</strong>more detail <strong>in</strong> Szidarovszky and Yakowitz (1978).mPnPnPmP(6)4


andmP mPi=1(1+(m−1)γ)A¯k−γ A i −(1−γ)(1+mγ)q¯k+γ p i −(1−γ)qīi=1ī=m+1,ī6=¯kp¯k =(1+(m−1)γ)(9)Firm k chooses optimal strategy to maximize its profit π k =(p k −c k )x k wherec k denotes the constant marg<strong>in</strong>al cost. In a l<strong>in</strong>ear demand oligopoly, changes <strong>in</strong>the production cost do not affect the optimal behavior of the <strong>firm</strong>s qualitatively.Thus the zero-cost assumption is usually adopted for the sake of analytical simplicity,and we follow this tradition <strong>in</strong> the follow<strong>in</strong>g discussions.3 Review: <strong>Mixed</strong> DuopolyBefore proceed<strong>in</strong>g to the general n-<strong>firm</strong> mixed oligopoly, we briefly reviewtheresults on the behavioral comparison <strong>in</strong> a duopoly framework. To this end,we take n =2and m =1. Let <strong>firm</strong> 1 be quantity-adjust<strong>in</strong>g and <strong>firm</strong> 2 priceadjust<strong>in</strong>gunder CB competition. The usual procedure for solv<strong>in</strong>g the profitmaximization problems leads to the optimal behavior of the <strong>firm</strong>s as follows:q1 CB = 2A 1 − γA 24 − 3γ 2 ,p CB1 =(1− γ 2 )q1 CB and π CB1 =(1− γ 2 ) ¡ q1CB ¢ 2andp CB2 = −γA 1 +(2− γ 2 )A 24 − 3γ 2 ,q2 CB = p CB2 and π CB2 = ¡ q2CB ¢ 2.Subscript "CB" over variables <strong>in</strong>dicates that the correspond<strong>in</strong>g variables areevaluated at a CB equilibrium.Firm 2 is quantity-adjust<strong>in</strong>g under BC competition and its optimal behavioris dual to the optimal behavior of quantity-adjust<strong>in</strong>g <strong>firm</strong> 1 under CB competition.We get its optimal behavior by replac<strong>in</strong>g A i by A j ,q i by q j and p i byp j for i 6= j, i, j =1, 2:q2 BC = −γA 1 +2A 24 − 3γ 2 ,p BC2 =(1− γ 2 )q2 BC and π BC2 =(1− γ 2 ) ¡ q2BC ¢ 2.In the same way, duality transforms the optimal behavior of <strong>firm</strong> 2 under CBcompetition <strong>in</strong>to the optimal behavior of <strong>firm</strong> 1 under BC competition,p BC1 = (2 − γ2 )A 1 − γA 24 − 3γ 2 ,q1 BC = p BC1 and π BC1 = ¡ q1BC ¢ 2.Let us compare the profits of <strong>firm</strong>s 1 and 2 under CB competition with thoseunder BC competition. Ratios of the profits areπ CB1π BC1µ 2 2 − αγ=(1− γ 2 )2 − γ 2 and πCB 2− αγ π BC2nP= 1 µ (2 − γ 2 2)α − γ1 − γ 2 2α − γ5


where α is the ratio of A 2 over A 1 . Differences between the numerator and thedenom<strong>in</strong>ator of the profit ratiosare(1 − γ 2 )(2 − αγ) 2 − (2 − γ 2 − αγ) 2 = −γ 3 (α 2 γ − 2α + γ)and¡(2 − γ 2 )α − γ ¢ 2− (1 − γ 2 )(2α − γ) 2 = γ 3 (α 2 γ − 2α + γ).The right hand sides of these two equations are negative and positive, respectively,if γ < 0. Henceπ CB1 < π BC1 and π CB2 > π BC2 if γ < 0. (10)Assume next that γ > 0. Then it can be shown that α 2 γ − 2α + γ < 0 underthe non-negativity conditions for the optimal prices and outputs,2 − γ 2γ≥ α ≥γ2 − γ 2imply<strong>in</strong>g thatπ CB1 > π BC1 and π CB2 < π BC2 if γ > 0. (11)The results (10) and (11) <strong>in</strong> the mixed duopoly agree with those obta<strong>in</strong>ed byS<strong>in</strong>gh and Vives (1984) and, as a benchmark for measur<strong>in</strong>g <strong>firm</strong>s’ profitability,they can be summarized <strong>in</strong> the follow<strong>in</strong>g way.Theorem 1 In a mixed duopoly, a quantity-adjust<strong>in</strong>g strategy is more profitablethan a price-adjust<strong>in</strong>g strategy if the goods are substitutes whereas the priceadjust<strong>in</strong>gstrategy is more profitable than the quantity-adjust<strong>in</strong>g strategy if thegoods are complements.4 <strong>Mixed</strong> N-Firm Oligopoly4.1 CB <strong>Competition</strong>We will beg<strong>in</strong> our discussion on the n-<strong>firm</strong> mixed oligopoly by consider<strong>in</strong>g theoptimal behavior of the <strong>firm</strong>s under CB competition. We first derive the bestresponses and then obta<strong>in</strong> equilibrium outputs, prices and profits.4.1.1 Best ResponsesS<strong>in</strong>ce <strong>firm</strong> k ∈ K is quantity-adjust<strong>in</strong>g, it chooses quantity of good k so as tomaximize its profit subject to (6), tak<strong>in</strong>g the other <strong>firm</strong>s’ quantities and pricesas given. Solv<strong>in</strong>g the first-order condition of the profit maximiz<strong>in</strong>g problemyields the best responseq k =nP(1+(n−m−1)γ)A k −γ Aī+γī=m+1nPmPpī−(1−γ) q iī=m+1i6=k2(1−γ)(1+(n−m)γ). (12)6


Us<strong>in</strong>g the simple fact that P mi=1 q i = q k + P mi6=k q i, the best response can berewritten asnPnPmPq k =(1+(n−m−1)γ)A k −γ Aī+γī=m+1pī−(1−γ) q iī=m+1i=1(1−γ)(2+(2(n−m)−1)γ). (13)The second-order condition (SOC) for the profit maximization is satisfied if∂ 2 π k∂q 2 k(1 − γ)(1 + (n − m)γ)= −2 < 0. (14)1+(n − m − 1)γIf 0 < γ < 1, then the terms on the right hand side of (14) are positive andthus this SOC is always satisfied. If −1 < γ < 0, thesignsof1+(n − m)γ and1+(n−m−1)γ are ambiguous and then the sign of the SOC is also ambiguous,so we need additional conditions to fulfill the SOC. S<strong>in</strong>ce1+(n − m)γ < 1+(n − m − 1)γ, (15)the required condition is 1+(n − m)γ > 0 or 1+(n − m − 1)γ < 0.S<strong>in</strong>ce <strong>firm</strong> ¯k ∈ ¯K is price-adjust<strong>in</strong>g, it chooses a price of good ¯k so as tomaximize its profit subject to (7), tak<strong>in</strong>g the other <strong>firm</strong>s’ quantities and pricesas given. Solv<strong>in</strong>g the first-order condition of the profit maximiz<strong>in</strong>g problemyields the best responsenPnPmP(1+(n−m−1)γ)A¯k−γ Aī+γ pī−(1−γ) q iī=m+1ī6=¯ki=1p¯k =2(1+(n−m−2)γ). (16)Us<strong>in</strong>g the simple fact that P nī=m+1 p ī = p¯k + P nī6=¯k p ī, the best response can berewritten asnPnPmP(1+(n−m−1)γ)A¯k−γ Aī+γī=m+1p¯k =The SOC for the profit maximization is satisfied ifpī−(1−γ) q iī=m+1i=12+(2(n−m)−3)γ. (17)∂ 2 π¯k∂p 2¯k(1 + (n − m − 2)γ)= −2(1 − γ)(1 + (n − m − 1)γ) < 0.If 0 < γ < 1, thenthisSOCisalwayssatisfied. If −1 < γ < 0, thenbythesame reason above, we need additional conditions to satisfy the SOC. S<strong>in</strong>ce1+(n − m − 1)γ < 1+(n − m − 2)γ, (18)the required condition is 1+(n−m−1)γ > 0 or 1+(n−m−2)γ < 0. From (15)and (18), <strong>in</strong> order to fulfill the SOCs <strong>in</strong> the optimiz<strong>in</strong>g problems under both CBand BC competitions, we assume the follow<strong>in</strong>g:Assumption 1. If γ < 0, either 1+(n − m)γ > 0 or 1+(n − m − 2)γ < 0holds.7


4.1.2 CB EquilibriumWe will next show that there is a unique CB equilibrium. Add<strong>in</strong>g (13) over allquantity-adjust<strong>in</strong>g <strong>firm</strong>s and (17) over all price-adjust<strong>in</strong>g <strong>firm</strong>s givesandP(1 + (n − m − 1)γ) m nPA k − mγ A¯k + mγmPk=1¯k=m+1q k =(1 − γ)(2 + (2n − m − 1)γ)k=1nPp¯k =¯k=m+1(1 − γ)If we <strong>in</strong>troduce the notation,PQ =(1− γ) m q k ,P=k=1nP¯k=m+1n P¯k=m+1A¯k − (n − m)(1 − γ)γ m P2+(n − m − 3)γnPp¯k¯k=m+1q ii=1Pp¯k, B k = m A k and B¯k =k=1.P n A¯k,¯k=m+1the above two equations can be rewritten as the simultaneous equations for Qand P⎧⎨ (2 + (2n − m − 1)γ)Q − mγP =(1+(n − m − 1)γ)B k − mγB¯k,(19)⎩(n − m)γQ +(2+(n − m − 3)γ)P =(1− γ)B¯k,whereweassume∆ CB =(2+(2n − m − 1)γ)(2 + (n − m − 3)γ)+m(n − m)γ 2 6=0 (20)to have a non-trivial solution. From the solution of (19) we obta<strong>in</strong>P − Q = 1∆ CB {−(1 + (n − m − 1)γ)(2 + (2(n − m) − 3)γ)B k+[2+(2n − 3)γ +(2n(m − 1) − (2m − 1)(m +1))γ 2 ]B¯k}.P − Q is substituted <strong>in</strong>to (13) and (17) to obta<strong>in</strong> the <strong>Cournot</strong>-<strong>Bertrand</strong> equilibriumoutput and price, 3andq CBk =p CB ¯ka CBkA k −b CBkB k − b CB ¯kB¯k∆ CB (1 − γ)(2 + (2(n − m) − 1)γ)A k −b CBkB k − b CB ¯kB¯k∆ CB (2 + (2(n − m) − 3)γ)= aCB k(21)(22)3 The CB output and price as well as the CB equilibrium values of another variables to beobta<strong>in</strong>ed below <strong>in</strong> the n-<strong>firm</strong> oligopoly can be reduced to those <strong>in</strong> the duopoly obta<strong>in</strong>ed aboveif we take n =2and m =1.8


whereandb CBkb CB¯ka CBk= ∆ CB (1 + (n − m − 1)γ),= γ(1 + (n − m − 1)γ)(2 + (2(n − m) − 3)γ)= γ(2 + (2(n − m) − 1)γ)(1 + ((n − m) − 2)γ).From the perceived demand (6) of <strong>firm</strong> k and the best response (12), we canobta<strong>in</strong> the price at which <strong>firm</strong> k sells its output as a function of its optimalquantity,p CBk=(1 − γ)(1 + (n − m)γ)qk CB . (23)1+(n − m − 1)γIn the same way, solv<strong>in</strong>g (7) and (16) for q¯k yields the output that <strong>firm</strong> ¯k sellsas a function of its optimal priceq¯k CB 1+(n − m − 2)γ=(1 − γ)(1 + (n − m − 1)γ) pCB ¯k. (24)Us<strong>in</strong>g (23) and (24), the <strong>Cournot</strong>-<strong>Bertrand</strong> profits of <strong>firm</strong>s k and ¯k are writtenasπ CB (1 − γ)(1 + (n − m)γ) ¡ ¢k = qCB 2k(25)1+(n − m − 1)γandπ CB¯k=4.2 BC <strong>Competition</strong>(1 − γ)(1 + (n − m − 1)γ)1+(n − m − 2)γ¡ ¢qCB 2¯k(26)In BC competition, the strategies of <strong>firm</strong>s are <strong>in</strong>terchanged. Namely, the firstm <strong>firm</strong>s <strong>in</strong> K are price-adjust<strong>in</strong>g and the last (n − m) <strong>firm</strong>s <strong>in</strong> ¯K are quantityadjust<strong>in</strong>g.By duality, we can obta<strong>in</strong> the optimal behavior under BC competitionfrom the optimal behavior under CB competition. In particular, the bestresponses of <strong>firm</strong>s k and ¯k areÃ!P(1 + (m − 1)γ)A k − γ m mPnPA i + γ p i − (1 − γ)p k =i=1i=1, i6=k2(1 + (m − 2)γ)q¯k¯k=m+1(27)andÃP(1 + (m − 1)γ)A¯k − γ m mPnPA k + γ p k − (1 − γ)q¯k =qīk=1k=1ī=m+1, ī6=¯k2(1 − γ)(1 + mγ)!(28)It is easy to see that the second-order conditions for the profit maximiz<strong>in</strong>gproblems are always satisfiedifthegoodsaresubstitutes. Ifthegoodsarecomplements, then the follow<strong>in</strong>g additional conditions are necessary.9


Assumption 2. If γ < 0, then either 1+mγ > 0 or 1+(m − 2)γ < 0.Duality also gives BC equilibrium price and output from (21) and (22):andwhereandp BCkq BC¯k= aBC k= aBC kA k − b BCkB k − b BC¯kB¯k∆ BC (2 + (2m − 3)γ)A¯k − b BCkB k − b BC ¯kA¯k∆ BC (1 − γ)(2 + (2m − 1)γ)∆ BC =(2+(m − 3)γ)(2 + (n + m − 1)γ)+m(n − m)γ 2b BCkb BC¯ka BCk= ∆ BC (1 + (m − 1)γ)= γ(1 + (m − 2)γ)(2 + (2m − 1)γ)= γ(1 + (m − 1)γ)(2 + (2m − 3)γ)(29)(30)Superscript "BC" over variables has the similar mean<strong>in</strong>g as "CB."Us<strong>in</strong>g the demands and the best responses, the output of the price-adjust<strong>in</strong>g<strong>firm</strong> k and the price of quantity-adjust<strong>in</strong>g <strong>firm</strong> ¯k can be expressed as l<strong>in</strong>earfunctions of the strategic variables, p BCkandand q BC¯k:qk BC 1+(m − 2)γ=(1 − γ)(1 + (m − 1)γ) pBC k (31)p BC ¯k=(1 − γ)(1 + mγ)1+(m − 1)γqBC ¯k(32)From (31) and (32), the profits under BC competition have the formsandπ BCk=π BC¯k(1 − γ)(1 + (m − 1)γ)1+(m − 2)γ=(1 − γ)(1 + mγ)1+(m − 1)γ¡ ¢qBC 2k(33)¡ ¢qBC 2k . (34)5 Comparison of the optimal behaviorWe compare the optimal behavior under CB competition with that under BCcompetition to f<strong>in</strong>d out which competition is more profitable. It, however, requirestedious calculations to make the comparison under general values of mand n. To simplify the analysis, we focus on the special case <strong>in</strong> which the follow<strong>in</strong>gcondition is satisfied:Assumption 3. n =2m.Notice that Assumptions 1 and 2 become identical under Assumption 3. Inthe follow<strong>in</strong>g analysis, we focus our attention to the optimal behavior of <strong>firm</strong>k. This treatment will suffice for our purpose to show that Theorem 1 does notnecessarily hold <strong>in</strong> the general n-<strong>firm</strong> mixed oligopoly.10


5.1 Ratios of optimal valuesReplac<strong>in</strong>g n with 2m, we can verify that∆ CB = ∆ BC =(2+(3m − 1)γ)(2 + (m − 3)γ)+m 2 γ 2 ,b CBk= b BC ¯k= γ(1 + (m − 1)γ)(2 + (2m − 3)γ)andb CB ¯k= b BCk = γ(1 + (m − 2)γ)(2 + (2m − 1)γ).Let ∆ CB and ∆ BC be denoted as ∆. Then we can also verify thata CBk= a BCk= ∆(1 + (m − 1)γ).To simplify the notation, we denote k by 1, ¯k by 2, a CBkand a BCkby a 1 ,b CBkand b BC by b ¯k 1 and b CB and b ¯kBCkby b 2 , respectively. With this new notation,CB price (23) and BC price (29) are rewritten asp CB(1 + mγ)mb 2 A 1¡1 =ϕ CB ¢(α 1 ) − α 2 (35)∆(1 + (m − 1)γ)(2 + (2m − 1)γ)andp BC mb 1 A 1¡1 =ϕ BC ¢(α 1 ) − α 2 (36)∆(2 + (2m − 3)γ)where α 1 , respectively α 2 , denotes the ratio between the average quality offeredby the <strong>firm</strong>s <strong>in</strong> K, respectively ¯K, and the quality offered by <strong>firm</strong> k,α 1 = B 1/m, respectively α 2 = B 2/m(37)A 1 A 1andϕ CB (α 1 )= a 1− b 1α 1 and ϕ BC (α 1 )= a 1− b 2α 1 . (38)mb 2 b 2 mb 1 b 1Both ϕ CB (α 1 ) and ϕ BC (α 1 ) are l<strong>in</strong>ear <strong>in</strong> α 1 . If b 1 6= b 2 , then they <strong>in</strong>tersect onceat po<strong>in</strong>t (α ∗ 1, α ∗ 2) whereα ∗ 1 = α∗ 2 = a 1(b 1 + b 2 )m and ϕCB (α ∗ 1 )=ϕBC (α ∗ 1 )=α∗ 2 . (39)Tak<strong>in</strong>g the ratio of (35) over (36), thenwhereandp CB11 − ε 2 ¡p BC − 1=α21ϕ BC − ϕ(α 1 ) − α p (α 1 ) ¢ (40)2ϕ p (α 1 )= ϕBC (α 1 ) − ε 2 ϕ CB (α 1 )1 − ε 2 (41)ε 2 =(1 + mγ)(1 + (m − 2)γ)(1 + (m − 1)γ) 2 .11


It is easy to con<strong>firm</strong> the follow<strong>in</strong>g properties of ϕ p (α 1 ). The def<strong>in</strong>ition of ϕ p (α 1 )<strong>in</strong> (41) <strong>in</strong>dicates that ϕ p (α ∗ 1 ) = α∗ 2 , that is, the α 2 = ϕ p (α 1 ) curve passesthrough the po<strong>in</strong>t (α ∗ 1, α ∗ 2). Forα 1 =0ϕ p (0) = a 1(b 2 − ε 2 b 1 ) a 1 γ 3 (1 + (m − 2)γ)m(1 − ε 2 =)b 1 b 2 m(1 − ε 2 )b 1 b 2 1+(m − 1)γ(42)and differentiat<strong>in</strong>g ϕ p (α 1 ) with respect to α 1 givesdϕ p (α 1 )dα 1= ε2 b 2 1 − b 2 2(1 − ε 2 )b 1 b 2= 2γ5 (1 + (m − 2)γ)(1 − ε 2 )b 1 b 2, (43)where the def<strong>in</strong>itions of b 1 ,b 2 and ε 2 are substituted <strong>in</strong>to the denom<strong>in</strong>ators ofthe middle expressions <strong>in</strong> (42) and (43) to obta<strong>in</strong> the last expressions.With the new notation, CB quantity (21) and BC quantity (31) are rewrittenasandq CB1 =mb 2 A 1¡ϕ CB ¢(α 1 ) − α 2∆(1 − γ)(2 + (2m − 1)γ)q1 BC(1 + (m − 2)γ)mb 1 A 1¡=ϕ BC ¢(α 1 ) − α 2 .∆(1 − γ)(1 + (m − 1)γ)(2 + (2m − 3)γ)Tak<strong>in</strong>g the ratio of q CB1 over q BC1 ,wehaveq1CBq1BC − 1= (b 1 − b 2 )(b 1 + b 2 )(ϕ BC (α ∗ 1 − α 1 ). (44)(α 1 ) − α 2 )b 1 b 2F<strong>in</strong>ally, from the ratio of (25) over (33), we getwhereandπ CB1π BC − 1= (1 + ε)(1 − ε)(ϕ+ π (α 1 ) − α 2 )(α 2 − ϕ − π (α 1 ))1(ϕ BC (α 1 ) − α 2 ) 2 . (45)ϕ + π (α 1 )= ϕBC (α 1 )+εϕ CB (α 1 )1+εϕ − π (α 1 )= ϕBC (α 1 ) − εϕ CB (α 1 )1 − ε(46)(47)withdϕ − π (α 1 )= εb2 1 − b2 2dα 1 (1 − ε 2 . (48))b 1 b 2Subtract<strong>in</strong>g (43) from (48) givesdϕ − π (α 1 )dα 1− dϕ p(α 1 )dα 1= ε(b2 1 − b 2 2)(1 − ε 2 )b 1 b 2. (49)12


5.2 γ > 0: the goods are substitutesWe first assume that the goods are substitutes (i.e., γ > 0). Let us start withthe price comparison. If γ > 0, then ∆ > 0, a 1 > 0, b 1 > 0, b 2 > 0 andb 1 − b 2 = γ 3 > 0. It also implies that the first factor <strong>in</strong> each of (35) and (36) ispositive. The non-negativity conditions for the prices areα 2 ≤ ϕ CB (α 1 ) and α 2 ≤ ϕ BC (α 1 ).From (38) and (39), it can be exam<strong>in</strong>ed that the boundary curves, α 2 = ϕ CB (α 1 )and α 2 = ϕ BC (α 1 ), slope downwards, have positive <strong>in</strong>tercepts and <strong>in</strong>tersect onceat po<strong>in</strong>t (α ∗ 1, α ∗ 2) with α ∗ 1 = α ∗ 2 > 0. We denote a feasible region of α 1 and α 2by Ω which is def<strong>in</strong>ed byΩ = © (α 1 , α 2 ) | ϕ CB (α 1 ) ≥ α 2 , ϕ BC (α 1 ) ≥ α 2 , α 1 > 0 and α 2 > 0 ª .S<strong>in</strong>ceϕ CB (α 1 ) − ϕ BC (α 1 )= b2 1 − b2 2(α ∗ 1 − α 1 ) and b 2 1 − b 2 2 > 0,b 1 b 2the upper bound of Ω for α 1 < α ∗ 1 is the α 2 = ϕ BC (α 1 ) curve and the upperbound of Ω for α 1 > α ∗ 1 is the α 2 = ϕ CB (α 1 ) curve. Relations (42) and (43)<strong>in</strong>dicate that the α 2 = ϕ p (α 1 ) curve slopes upwards and has a positive <strong>in</strong>tercept.S<strong>in</strong>ce the numerator of the first factor <strong>in</strong> the right hand side of (40) is positiveas ε 2 is positive and less than unity under γ > 0 4 and the denom<strong>in</strong>ator isalso positive by the non-negativity condition of p BC1 , we arrive at the follow<strong>in</strong>gcondition for the price difference:sign £ p CB1 − p BC ¤ £1 = sign α2 − ϕ p (α 1 ) ¤ . (50)Hence we have the follow<strong>in</strong>g results on the price difference:Proposition 1. If γ > 0, then the α 2 = ϕ p (α 1 ) curve divides the feasibleregion Ω <strong>in</strong>to two subregions: p CB1 > p BC1 <strong>in</strong> the subregion above thecurve and p CB1 0 implies q1 BC ≥ 0 due to (31). We then notice thatthe first factor of (44) is positive. In consequence, we arrive at the follow<strong>in</strong>gcondition for the quantity difference,sign £ q1 CB − q1BC ¤= sign[α∗1 − α 1 ]. (51)The sign of the quantity difference is determ<strong>in</strong>ed by the difference between α ∗ 1and α 1 , so we have the follow<strong>in</strong>g result.Proposition 2. If γ > 0, then q1 CB >q1 BC for α 1 < α ∗ 1 and q1 CB α ∗ 1.4 (1 + mγ)(1 + (m − 2)γ) − (1 + (m − 1)γ) 2 = −γ 2 < 0 implies ε 2 < 1 and ε 2 > 0 is clear.13


Figure 3. 1+mγ > 0 and ∆ > 0 where γ = −0.1 and m =6.We now assume ∆ < 0 that leads to a 1 < 0. S<strong>in</strong>ce the first factors <strong>in</strong> (35)and (36) are positive, the non-negativity conditions of the prices areϕ CB (α 1 ) − α 2 ≥ 0 and ϕ BC (α 1 ) − α 2 ≥ 0which is the same as the conditions <strong>in</strong> the case <strong>in</strong> which the goods are substitutes.Inthesameway,weobta<strong>in</strong>sign[p CB1 − p BC1 ]=sign[α 2 − ϕ p (α 1 )]sign[q1 CB − q1 BC ]=sign[α ∗ 1 − α 1 ]andsign[π CB1 − π BC1 ]=sign[α 2 − ϕ − π (α 1 )],which are the same as (50), (51) and (52). There are, however, differences: Theequal-price curve, ϕ p (α 1 )=α 2 , is negative slop<strong>in</strong>g and the slope of the profitequalcurve ϕ − π (α 1 )=α 2 , can be of either sign. The division of the feasibleregion is depicted <strong>in</strong> Figure 4 <strong>in</strong> which we take po<strong>in</strong>t a (i.e., γ = −0.095 andm =10). Despite of these differences, the ma<strong>in</strong> results is the same as Theorem2, and summarized as follows.Theorem 4 Assume that γ < 0, 1+mγ > 0 and ∆ < 0, then the α 2 = ϕ − π (α 1 )curvedividesthefeasibleregionΩ <strong>in</strong>to two parts: π CB1 > π BC1 <strong>in</strong> the dividedregion above the curve and π CB1 < π BC1 below.18


Figure 4. 1+mγ > 0 and ∆ < 0 where γ = −0.095 and m =105.3.2 The case of SOC 2If γ < 0 and 1+(m − 2)γ < 0, then1+(m − 1)γ < 0, 2+(2m − 1)γ < 0 and2+(2m−3)γ < 0, which, <strong>in</strong> turn, imply that b 1 < 0, b 2 < 0 and b 1 −b 2 = γ 3 < 0.Although ∆α 1 < 0, the sign of ∆ is undeterm<strong>in</strong>ed and so is the sign of α 1 .Weidentity two cases as <strong>in</strong> the case of SOC 1 : oneisthecasewhere∆ is positiveand the other is the case where ∆ is negative.Let us suppose that ∆ > 0, then a 1 < 0 which leads to α ∗ 1 > 0 and α ∗ 2 > 0.(35) and (36) imply that the non-negativity conditions for the prices and outputsareϕ CB (α 1 ) ≥ α 2 andϕ BC (α 1 ) ≥ α 2 .The feasible region for the price and outputs are Ω. ϕ p (α 1 ) slopes upwards andϕ + π (α 1 ) > α 2 . It is clear that ϕ − π (α 1 ) slopes upwards and is steeper than ϕ p (α 1 ).From (40), (44) and (45), we havesign[p CB1 − p BC1 ]=sign[α 2 − ϕ p (α 1 )],sign[q1 CB − q1 BC ]=sign[α ∗ 1 − α 1 ]andsign[π CB1 − π BC1 ]=sign[α 2 − ϕ − π (α 1 )].Thesethreeconditionsarethesameas (50), (51) and (52), respectively. Inconsequence the results obta<strong>in</strong>ed here are the same as the results obta<strong>in</strong>ed <strong>in</strong>thecaseofγ > 0. The profit differences are summarized as follows:Theorem 5 If γ < 0, 1+(m − 2)γ < 0 and ∆ > 0, then the α 2 = ϕ − π (α 1 )curvedividesthefeasibleregionΩ <strong>in</strong>to two parts: π CB1 > π BC1 <strong>in</strong> the dividedregion above the curve and π CB1 < π BC1 below.19


We take γ = −0.25 and m =6, which correspond to po<strong>in</strong>t b <strong>in</strong> Figure 2 anddepict the division of the feasible region <strong>in</strong> Figure 4. As far as profit comparisonis our concern, the similarity between Figures 3 and 5 is clear: π CB1 < π BC1 <strong>in</strong>the lighter-gray region and π CB1 > π BC1 <strong>in</strong> the darker-gray region.Figure 6. 1+(m − 2)γ < 0 and ∆ < 0 where γ = −0.25 and m =6.6 Conclud<strong>in</strong>g RemarkIn a mixed duopoly with product differentiation, Theorem 1 <strong>in</strong>dicates that aquantity-strategy is more profitable than a price-strategy if the goods are substitutesand the profit dom<strong>in</strong>ance is reversed if the goods are complements. Ourma<strong>in</strong> aim is to reconsider whether these clear-cut results still hold <strong>in</strong> a general(n-<strong>firm</strong>) oligopoly framework or not. Theorems 2, 3, 4, 5 and 6 lead us to theconclusion that the results obta<strong>in</strong>ed <strong>in</strong> the duopoly framework are no longervalid <strong>in</strong> general oligopoly framework. If the <strong>firm</strong>s can precommit to quantity orprice strategy, the dom<strong>in</strong>ant strategy depends on the average quality ratio ofthegoodsproducedbythequantity-adjust<strong>in</strong>g<strong>firm</strong>s and the goods produced bythe price-adjust<strong>in</strong>g <strong>firm</strong>s.21


References[1] Bylka, S., and J. Komar, <strong>Cournot</strong>-Bertrnad mixed oligopolies, <strong>in</strong> M. BeckmandH. P. Künize eds., Warsaw Fall Sem<strong>in</strong>ars <strong>in</strong> Mathematical Economics1975 (Lecture Notes <strong>in</strong> Economics and Mathematical Systems133), Spr<strong>in</strong>ger-Verlag, 22-33, 1976.[2] Häckner, J. A note on price and quantity competition <strong>in</strong> differentiatedoligopolies, Journal of Economic Theory, 93 (2000), 233-239.[3] Matsumoto, A., and T. Onozaki, Heterogenous strategies <strong>in</strong> nonl<strong>in</strong>earduopoly with production differentiation, Pure Mathematics and Applications,16(2005), 443-466,.[4] Matsumoto, A., and F. Szidarovszky, A Further Note on Price and Quantity<strong>Competition</strong> <strong>in</strong> <strong>Differentiated</strong> Oligopolies, mimeo (2008).[5] S<strong>in</strong>gh, N. and X. Vives, Price and quantity competition <strong>in</strong> a differentiatedduopoly, Rand Journal of Economics, 15 (1984), 546-554.[6] Szidarovszky, F., and S. Molnar, <strong>Bertrand</strong>, <strong>Cournot</strong> and mixed oligopolies,Keio Economic Studies, 26 (1992), 1-8,.[7] Szidarovszky, F., and S. Yakowitz, Pr<strong>in</strong>ciples and Procedures of NumericalAnalysis, Plenum Press, New York, 1978.[8] Yousefi, S. and F. Szidarovszky, One More on Price and Quantity <strong>Competition</strong><strong>in</strong> <strong>Differentiated</strong> Duopolies: A Simulation Study, Pure Mathematicsand Applications, 16 (2005), 515-53122

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!