02.12.2012 Views

Chromosome - Fapesp

Chromosome - Fapesp

Chromosome - Fapesp

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

BioEnergy Workshop,<br />

May 2012, São Paulo, Brazil<br />

COSMIC: Clostridium acetobutylicum Systems Microbiology<br />

Systems and Synthetic Biology<br />

approaches to fuel and chemical<br />

commodity production through sugar and<br />

gas fermentation<br />

Nigel P Minton<br />

Clostridia Research Group


Professor Yang<br />

Fujia<br />

Chancellor 2001-<br />

總統<br />

• Founded 1798<br />

• 5 Faculties<br />

• 36,000 students,<br />

• 5 th largest in UK<br />

• 6,000 staff, 2,000<br />

academic staff<br />

• 4 UK campuses<br />

• 2 international campuses<br />

• 28 spinout companies<br />

The University<br />

綜合性大學<br />

5系<br />

36 000名學生,<br />

6000名工作人員,<br />

2000名教師<br />

4英國校園<br />

2個國際校園<br />

28分拆公司<br />

Professor David<br />

Greenaway<br />

Vice-Chancellor<br />

2008-<br />

行政長官


University of Nottingham<br />

UK Campus (1928)<br />

36,000 students<br />

University of Nottingham<br />

Malaysia Campus (2003)<br />

3,700 students<br />

University of Nottingham<br />

Ningbo Campus (2006)<br />

4,300 students<br />

The Location<br />

Birmingham<br />

Edinburgh<br />

Nottingham<br />

LONDON


The Location<br />

Birmingham<br />

Edinburgh<br />

Nottingham<br />

LONDON


Multidisciplinary Centre<br />

Centre for Biomolecular Sciences (CBS)<br />

CBS houses over 300 scientists in an environment<br />

that promotes core science and interdisciplinary<br />

research. A total of £40 million has been invested<br />

to create an excellent blend of chemistry,<br />

biology and engineering laboratories.


Clostridia Research Group<br />

HEAD<br />

Professor Nigel P Minton<br />

DEPUTY<br />

Dr Klaus Winzer<br />

Associated School<br />

Members<br />

Dr Alan Cockayne<br />

Dr Kim Hardie<br />

Centre for Biomolecular Sciences (CBS)<br />

CBS houses over 300 scientists in an environment<br />

that promotes core science and interdisciplinary<br />

research. A total of £40 million has been invested<br />

to create an excellent blend of chemistry,<br />

biology and engineering laboratories.


Clostridia Research Group<br />

HEAD<br />

Professor Nigel P Minton<br />

DEPUTY<br />

Dr Klaus Winzer<br />

Associated School<br />

Members<br />

Dr Alan Cockayne<br />

Dr Kim Hardie<br />

MEDICALLY IMPORTANT CLOSTRIDIA<br />

Research Fellows<br />

Dr Sarah Kühne (MRC)<br />

Dr Stephen Cartman (MRC)<br />

Dr Mark Collery (UoN)<br />

Dr Sheryl Philip (UoN)<br />

Vacancy (UoN)<br />

Vacancy (BRU)<br />

Technical<br />

Ms Michelle Kelly (UoN)<br />

Vacancy (UoN)<br />

PhD<br />

Magda Fit (BBSRC)<br />

Tom Bailey (BBSRC CASE)<br />

Aleksandra Kubiak (ZonMw)<br />

Nimit Joshi (MRC/UoN)<br />

Christopher Humphreys (BBSRC CASE)<br />

Daniella Heeg (EU Marie Curie)<br />

Nial Bollard (EU Marie Curie)<br />

Carlo Rotta (EU Marie Curie)<br />

Carolyn Meaney (EU Marie Curie)<br />

Jorge Mauricio Montfort (Self)<br />

Tom Layland (BBSRC)<br />

Patrick Budd (White Healthcare)<br />

Vacancy (MRC)<br />

Vacancy (BRU)<br />

Vacancy (BRU)<br />

Vacancy (BRU)<br />

NON-MEDICAL CLOSTRIDIA<br />

Research Fellows<br />

Dr Wouter Kuit (BBSRC BioEnergy)<br />

Dr Elisabeth Steiner (Industry)<br />

Dr Katalin Kovacs(BBSRC BioEnergy)<br />

Dr Katrin Schwartz (BBSRC BioEnergy)<br />

Dr Ying Zhang (BBSRC SysMO)<br />

Anne Henstra (UoN)<br />

Vacancy (Industry)<br />

Vacancy (UoN)<br />

Technical<br />

Vacancy (UoN)<br />

Vacancy (Industry)<br />

Vacancy (Industry)<br />

PhD<br />

Gareth Little (UoN/TMO)<br />

Muhammad Eshaan (UoN/TMO)<br />

Hengzheng Wang (UoN BioEnergy)<br />

Ben Willson(UoN BioEnergy)<br />

Sarah Mastrangelo (BBSRC DTA)<br />

Lili Sheng (BBSRC CASE)<br />

Anne-Katrin Kottë – (EU Marie Curie)<br />

Eric Liew (Industry)<br />

ADMINISTRATIVE<br />

Jacque Minton (EU)


STRENGTHS<br />

The Remit of the CRG<br />

5/28/2012 8<br />

• Biological Engineering<br />

� Systems and Synthetic Biology<br />

� Underpinned by Advanced Gene Tools (gene technologies are the<br />

largest portfolio of Material Transfer Agreements at Nottingham)<br />

Biobutanol (Clostridium & Geobacillus)<br />

Chemicals from Gas (CO & H2)


http://www.bsbec.bbsrc.ac.uk<br />

Key facts<br />

Duncan Eggar – January 2010<br />

• Inaugurated in January 2009<br />

• Largest ever single investment by the BBSRC<br />

• A virtual centre with six research programmes<br />

• Focus on biochemical routes to gasoline<br />

substitutes<br />

• Focus is Second Generation Biofuels


Perennial<br />

Bioenergy<br />

Crops<br />

Angela Karp<br />

(Rothamsted)<br />

• IBERS<br />

• Imperial<br />

College<br />

• University of<br />

Cambridge<br />

• Ceres Inc<br />

BSBEC UK Bioenergy Centre<br />

Cell Wall Lignin<br />

Claire Halpin<br />

(Dundee)<br />

• University of York<br />

• SCRI<br />

• RERAD<br />

• Limagrain UK Ltd<br />

• Syngenta<br />

• AgroParisTec –<br />

INRA joint Research<br />

Unit of Biological<br />

Chemistry<br />

Cell Wall Sugars<br />

Paul Dupree<br />

(Cambridge)<br />

• Newcastle University<br />

• Novozymes A/G<br />

Marine<br />

Wood Borer Enzyme<br />

Discovery<br />

Simon McQueen-Mason<br />

(York)<br />

• University of Portsmouth<br />

• Syngenta Biomass Traits<br />

Group<br />

Second Generation, Sustainable,<br />

Bacterial Biofuels<br />

Nigel Minton (Nottingham)<br />

• Newcastle University<br />

• TMO Renewables Ltd<br />

Lignocellulosic Conversion to<br />

Bioethanol<br />

Katherine Smart (Nottingham)<br />

• University of Bath • University of Surrey<br />

• BP • Bioethanol Ltd<br />

• Briggs of Burton • British Sugar Ltd<br />

• Coors Brewers Ltd • DSM<br />

• Ethanol Technology Ltd • HGCA<br />

• Pursuit Dynamics • SABMiller<br />

• Scottish Whisky Research Institute<br />

BSBEC Pipeline and the BSBEC People<br />

Fuel<br />

ENVIRONMENTAL, SOCIAL, ECONOMIC SUSTAINABILITY<br />

Duncan Eggar – October 2010


Unlike Yeast<br />

Bacteria Utilise<br />

Pentose Sugars<br />

Clostridia & Biofuels<br />

Lactate<br />

PENTOSES<br />

ATP<br />

NADH<br />

SUGAR<br />

Pyruvate<br />

2 NADH<br />

2 ATP<br />

Fd Ox<br />

Fd Red<br />

Acetate Acetyl-P Acetyl-CoA Acetaldehyde<br />

NADH<br />

HEXOSES<br />

H 2<br />

NADH<br />

Companies<br />

• MASCOMA<br />

• QTEROS<br />

ETHANOL<br />

Clostridium thermocellum<br />

Clostridium phytofermentans


Unlike Yeast<br />

Bacteria Utilise<br />

Pentose Sugars<br />

ACETONE<br />

Clostridia & Biofuels<br />

Acetate<br />

Lactate<br />

PENTOSES<br />

ATP<br />

Acetoacetate<br />

ATP<br />

NADH<br />

Acetyl-P<br />

SUGAR<br />

Pyruvate<br />

Acetyl-CoA Acetaldehyde<br />

Acetoacetyl-CoA<br />

NADH<br />

2 NADH<br />

2 ATP<br />

Fd Ox<br />

Fd Red<br />

NADH<br />

HEXOSES<br />

Butyrate Butyryl-P Butyryl-CoA Butyraldehyde<br />

H 2<br />

NADH NADH<br />

NAD(P)H<br />

Companies<br />

• COBALT<br />

• GBL<br />

• METEX<br />

ETHANOL<br />

Clostridium thermocellum<br />

Clostridium phytofermentans<br />

BUTANOL<br />

Clostridium acetobutylicum


Unlike Yeast<br />

Bacteria Utilise<br />

Pentose Sugars<br />

ACETONE<br />

isoPROPANOL<br />

Clostridia & Biofuels<br />

Acetate<br />

Lactate<br />

PENTOSES<br />

ATP<br />

Acetoacetate<br />

ATP<br />

NADH<br />

Acetyl-P<br />

SUGAR<br />

Pyruvate<br />

Acetyl-CoA Acetaldehyde<br />

Acetoacetyl-CoA<br />

NADH<br />

2 NADH<br />

2 ATP<br />

Fd Ox<br />

Fd Red<br />

NADH<br />

HEXOSES<br />

Butyrate Butyryl-P Butyryl-CoA Butyraldehyde<br />

H 2<br />

NADH NADH<br />

NAD(P)H<br />

Companies<br />

• COBALT<br />

• GBL<br />

• METEX<br />

ETHANOL<br />

Clostridium thermocellum<br />

Clostridium phytofermentans<br />

BUTANOL<br />

Clostridium beijerinckii Clostridium acetobutylicum


ACETONE<br />

isoPROPANOL<br />

Clostridia & Biofuels<br />

Acetate<br />

Lactate<br />

ATP<br />

Acetoacetate<br />

ATP<br />

NADH<br />

Acetyl-P<br />

SUGAR<br />

Pyruvate<br />

Acetyl-CoA Acetaldehyde<br />

Acetoacetyl-CoA<br />

NADH<br />

2 NADH<br />

2 ATP<br />

Fd Ox<br />

Fd Red<br />

NADH<br />

Butyrate Butyryl-P Butyryl-CoA Butyraldehyde<br />

H 2<br />

NADH NADH<br />

NAD(P)H<br />

Companies<br />

• LANZATECH<br />

• COSKATA<br />

CO + H 2<br />

(SynGas)<br />

ETHANOL<br />

Clostridium thermocellum<br />

Clostridium phytofermentans<br />

Clostridium ljungdahlii<br />

BUTANOL<br />

Clostridium beijerinckii Clostridium acetobutylicum


S T<br />

R AI<br />

N<br />

I<br />

M PROVE<br />

M ENT<br />

Clostridia & Biofuels<br />

Butanol is a superior Biofuel to Ethanol<br />

Three major factors * determine the economic competitiveness<br />

of butanol production:<br />

– low product yields versus solvent toxicity<br />

• wasteful production of acetone, ethanol & hydrogen<br />

• relative low resistance to butanol<br />

– substrate costs<br />

• sugar & starch – competition with food<br />

• lignocellulose – solventogenic clostridia not cellulosic<br />

– costs of downstream processing<br />

• distillation expensive at current butanol yields<br />

• gas stripping, pervaporation, adsorption<br />

* Peter Dürre (2006) Annals of the New York Academy of Sciences, 1125: p353 - 362


S T<br />

R AI<br />

N<br />

I<br />

M PROVE<br />

M ENT<br />

Clostridia & Biofuels<br />

Butanol is a superior Biofuel to Ethanol<br />

Three major factors * determine the economic competitiveness<br />

of butanol production:<br />

Pivotal Requirements<br />

– low product yields versus solvent toxicity<br />

• wasteful production of acetone, ethanol & hydrogen<br />

• a need • to relative better lowunderstand resistance to butanol the ‘System’, and;<br />

– substrate costs<br />

• a means to manipulate the System through gene<br />

• sugar & starch – competition with food<br />

modification, inactivation and addition<br />

• lignocellulose – solventogenic clostridia not cellulosic<br />

– costs of downstream processing<br />

• distillation expensive at current butanol yields<br />

• gas stripping, pervaporation, adsorption<br />

* Peter Dürre (2006) Annals of the New York Academy of Sciences, 1125: p353 - 362


ACETONE<br />

Clostridia & Biofuels<br />

Biphasic Metabolism<br />

1 st Phase – produces Acids<br />

2 nd Phase – produces Solvents<br />

Molecular basis of the switch is<br />

UNKNOWN<br />

ATP<br />

Acetate<br />

Acetoacetate<br />

ATP<br />

Acetyl-P<br />

SUGAR<br />

Pyruvate<br />

Acetyl-CoA Acetaldehyde<br />

Acetoacetyl-CoA<br />

NADH<br />

2 NADH<br />

2 ATP<br />

Fd Ox<br />

Fd Red<br />

NADH<br />

Butyrate Butyryl-P Butyryl-CoA Butyraldehyde<br />

H 2<br />

NADH NADH<br />

Acidogenesis<br />

Solventogenesis<br />

NAD(P)H<br />

ETHANOL<br />

BUTANOL<br />

Clostridium acetobutylicum


Clostridia & Biofuels<br />

Peter Dürre (Co-ordinator)<br />

Willem de Vos Servé Kengen<br />

John R. King<br />

Hubert Bahl Ralf-Jörg<br />

Fischer<br />

Klaus Winzer Nigel Minton (Vice Co-ordinator)<br />

Olaf<br />

Wolkenhauer<br />

Thomas<br />

Millat<br />

Armin Ehrenreich Peter Götz


pH<br />

7<br />

6,5<br />

6<br />

5,5<br />

5<br />

4,5<br />

4<br />

3,5<br />

Clostridia & Biofuels<br />

”Dynamic Shift Experiment”<br />

[transcriptome & metabolites analysed at set time points]<br />

Acidogenic phase: pH 5.8<br />

[pH held through addition of 2M<br />

KOH]<br />

pH control removed<br />

‘dynamic shift’<br />

pH 5.8 to 4.5<br />

sporulation vegetative cells<br />

3<br />

0 50 100 150 200 250 300<br />

time(h)<br />

Solventogenic phase: pH 4.5<br />

[pH held through addition of 2M<br />

KOH]


Clostridia & Biofuels<br />

‘Systems Biology’ of Butanol Formation<br />

Blue lines - model predictions<br />

Red dots - data from dynamic shift experiments<br />

Joint metabolic/<br />

gene regulation<br />

network model<br />

Parameters were<br />

estimated in<br />

SBToolbox for<br />

Matlab using several<br />

metabolic data sets<br />

(generated by the<br />

experimentalist<br />

groups)


Clostridia & Biofuels<br />

‘Systems Biology’ of Butanol Formation<br />

Blue lines - model predictions<br />

Red dots - data from dynamic shift experiments<br />

The Modellers<br />

requested a<br />

‘Reverse Shift’<br />

Experiment<br />

The model<br />

demonstrates a<br />

good fit to the data,<br />

providing the means<br />

to investigate the<br />

effects of altering<br />

gene expression<br />

through rDNA<br />

approaches.


Clostridia & Biofuels<br />

‘Systems Biology’ of Butanol Formation<br />

Can the model be<br />

used to develop<br />

experimentallytestable<br />

hypotheses<br />

concerning enhancing<br />

butanol production?<br />

Focus on steady-state studies: at constant pH 4.5 (i.e.<br />

solventogenesis) what is the effect on butanol yield of varying<br />

expression levels of individual genes?


Clostridia & Biofuels<br />

‘Systems Biology’ of Butanol Formation<br />

Prediction:<br />

Targeting a single<br />

gene is insufficient<br />

to increase butanol<br />

production<br />

significantly<br />

A Systems Biology Approach to Investigate the Effect of pH-induced Gene Regulation on<br />

Solvent Production by C. acetobutylicum in Continuous Culture. S. Haus, S. Jabbari, T. Millat,<br />

H. Janssen, R.J. Fischer, H. Bahl, J.R. King, O. Wolkenhauer BMC Systems Biology (2010)


Gene Knock-out<br />

The ClosTron: A rapid, highly effective mutagenesis system<br />

for meatbolic engineering in Clostridia (http://clostron.com)<br />

• Carries a small segment of DNA<br />

encoding a mobile group II intron<br />

• The intron jumps from the plasmid<br />

into the host chromosome causing<br />

gene inactivation<br />

• Through DNA synthesis we control<br />

into which gene the intron inserts<br />

• Concomitant with insertion, host<br />

becomes resistant to erythromycin<br />

• This allows the rapid, selectable<br />

creation of stable mutants<br />

Kuehne SA, Heap JT, Cooksley CM, Cartman ST, Minton NP (2011) ClosTron-Mediated Engineering of<br />

Clostridium. Methods Mol Biol. 765: 389-407


Streamlining the System<br />

http://www.clostron.com<br />

• Free to use webbased<br />

algorithm<br />

removes reliance on<br />

Sigma Aldrich kit<br />

• Retargeted region<br />

synthesised and<br />

cloned into ClosTron<br />

vector by DNA2.0<br />

• Retargeted plasmid<br />

delivered within 10-<br />

14 days<br />

• Integrants (mutants)<br />

isolated within 5-7<br />

days of receipt of<br />

plasmid


Lactate<br />

Clostridia & Biofuels<br />

LDH<br />

ctfA, ctfB<br />

ClosTron Mutational Analysis<br />

adhE, adhE,<br />

adhE, adhE,<br />

− over 300 mutants made in<br />

various clostridial species<br />

− >50 in C. acetobutylicum<br />

(10Xs as many as made<br />

worldwide in last 20 yrs),<br />

including 15 in the central<br />

ABE pathway<br />

− product profiles<br />

determined: transcriptome<br />

studies ongoing (TUM)<br />

− has identified those genes<br />

that cannot be inactivated


Clostridia & Biofuels<br />

Metabolic Engineering: ‘Knock-in’<br />

Metabolic Engineering requires more than just ‘knockout’<br />

of function. Equally important is the facility to<br />

make subtle alterations to existing function or to add<br />

an entirely new function through ‘knock-in’.<br />

Classical Allelic Exchange<br />

– reliant on the existence of Negative selection markers<br />

– two new markers developed: WO/2010/084349 and UK Patent<br />

Application No. 0900280.9<br />

Allele-Coupled Exchange (ACE) Technology<br />

– Heap and Minton (2009) Patent No. WO/2009/101400<br />

– rapid genome insertion of DNA fragments of any size or complexity


Principles:<br />

Clostridia & Biofuels<br />

Allele-Coupled Exchange (ACE)<br />

� Design an allele exchange construct in<br />

which a plasmid-borne allele is ‘coupled’<br />

to a chromosomally located allele creating<br />

a new selectable allele.<br />

� Control the sequence of recombination<br />

events using homology arms of very<br />

different lengths.<br />

� It is NOT reliant on negative selection


dcd<br />

ACE and Insertion at PyrE<br />

Insertion of DNA into Clostridium acetobutylicum genome<br />

CAC0026<br />

catP<br />

pyrE<br />

pyrE’<br />

BioBricks<br />

4 3 2 1<br />

pMTL-JH12 ACE Vector<br />

[ Tm R ]<br />

REP<br />

CAC0028<br />

CAC0028<br />

<strong>Chromosome</strong><br />

[ Tm S FOA S Ura + ]


dcd<br />

ACE and Insertion at PyrE<br />

The ACE vector carries two asymmetric homology arms, LHA and RHA<br />

CAC0026<br />

catP<br />

Left homology<br />

arm (LHA)<br />

pyrE<br />

pyrE’<br />

BioBricks<br />

4 3 2 1<br />

pMTL-JH12 ACE Vector<br />

[ Tm R ]<br />

− the ACE plasmid replicon (REP) is defective<br />

REP<br />

Right homology<br />

arm (RHA)<br />

CAC0028<br />

CAC0028<br />

<strong>Chromosome</strong><br />

[ Tm S FOA S Ura + ]


The long right homology arm (RHA) preferentially (always) directs integration<br />

dcd<br />

ACE and Insertion at PyrE<br />

catP<br />

Left homology<br />

arm (LHA)<br />

pMTL-JH12 ACE Vector<br />

[ Tm R ]<br />

REP<br />

Right homology<br />

arm (RHA)<br />

CAC0026 pyrE<br />

CAC0028<br />

BioBricks<br />

pyrE’ 4 3 2 1<br />

CAC0028<br />

− ACE plasmid replicon (REP) is defective: integrants grow faster on<br />

thiamphenicol<br />

<strong>Chromosome</strong><br />

[ Tm R FOA S Ura + ]<br />

homologous<br />

recombination


The shorter left homology arm (LHA) now directs plasmid excision<br />

dcd<br />

homologous<br />

recombination<br />

ACE and Insertion at PyrE<br />

catP<br />

Left homology<br />

arm (LHA)<br />

CAC0026 pyrE<br />

BioBricks<br />

pyrE’ 4 3 2 1<br />

pMTL-JH12 ACE Vector<br />

[ Tm R ]<br />

REP<br />

Right homology<br />

arm (RHA)<br />

CAC0028<br />

CAC0028<br />

<strong>Chromosome</strong><br />

[ Tm R FOA S Ura + ]


Double crossover selected on the basis of acquisition of resistance to fluoroorotic<br />

acid (FOA) due to pyrE inactivation – cells auxotrophic for uracil (Ura - )<br />

homologous<br />

recombination<br />

ACE and Insertion at PyrE<br />

catP<br />

Left homology<br />

arm (LHA)<br />

dcd CAC0026 pyrE’ 4 3 2 1<br />

pyrE<br />

BioBricks<br />

pMTL-JH12 ACE Vector<br />

[ Tm R ]<br />

REP<br />

Right homology<br />

arm (RHA)<br />

CAC0028<br />

CAC0028<br />

<strong>Chromosome</strong><br />

[ Tm S FOA R Ura - ]


ACE and Insertion at PyrE<br />

dcd CAC0026 pyrE’ 4 3 2 1<br />

The ACE plasmid is rapidly lost<br />

BioBricks<br />

CAC0028<br />

<strong>Chromosome</strong><br />

[ Tm S FOA R Ura - ]


ACE and Insertion at PyrE<br />

More BioBricks can be added in iterative cycles through the use of a sister<br />

ACE vector (that corrects the pyrE mutation) and a new RHA<br />

dcd CAC0026<br />

4 3 2 1<br />

pyrE’ CAC<br />

<strong>Chromosome</strong><br />

[ Tm S FOA R Ura - ]


ACE and Insertion at PyrE<br />

The sister ACE vector carries a ‘corrective’ pyrE allele, a RHA based on the<br />

previously added DNA (BioBrick 4) and a new cargo of BioBricks (5-8)<br />

dcd CAC0026<br />

4 3 2 1<br />

pyrE’ CAC<br />

pyrE<br />

BioBricks<br />

8 7 6 5<br />

pMTL-ME6 ACE Vector<br />

[ Tm R ]<br />

catP REP<br />

4<br />

<strong>Chromosome</strong><br />

[ Tm S FOA R Ura - ]


ACE and Insertion at PyrE<br />

The single crossover integrant is selected as before (Tm R ), and then the double<br />

crossover excision event selected on minimal media lacking uracil (Ura + )<br />

Left homology<br />

arm (LHA)<br />

dcd CAC0026<br />

4 3 2 1<br />

pyrE’ CAC<br />

pyrE<br />

BioBricks<br />

8 7 6 5<br />

pMTL-ME6 ACE Vector<br />

[ Tm R ]<br />

catP REP<br />

Right homology<br />

arm (RHA)<br />

4<br />

<strong>Chromosome</strong><br />

[ Tm R FOA R Ura - ]


ACE and Insertion at PyrE<br />

The ACE plasmid is rapidly lost<br />

Left homology<br />

arm (LHA)<br />

dcd CAC0026 pyrE<br />

3 2 1 CAC<br />

pyrE’<br />

BioBricks<br />

8 7 6 5<br />

4<br />

pMTL-ME6 ACE Vector<br />

[ Tm R ]<br />

catP REP<br />

Right homology<br />

arm (RHA)<br />

4<br />

<strong>Chromosome</strong><br />

[ Tm S FOA S Ura + ]


ACE and Insertion at PyrE<br />

The ACE plasmid is rapidly lost<br />

BioBricks<br />

8 7 6 5<br />

dcd CAC0026 pyrE<br />

3 2 1 CAC<br />

4<br />

<strong>Chromosome</strong><br />

[ Tm S FOA S Ura + ]


ACE and Insertion at PyrE<br />

A third iteration of the method can add further DNA (BioBricks 9-12)<br />

using the ACE vector pMTL-JH12<br />

BioBricks<br />

8 7 6 5<br />

dcd CAC0026 pyrE<br />

3 2 1 CAC<br />

BioBricks<br />

12 11 10 9<br />

dcd CAC0026 pyrE’<br />

CAC<br />

4<br />

BioBricks<br />

BioBricks<br />

8 7 6 5 4 3 2 1<br />

<strong>Chromosome</strong><br />

[ Tm S FOA S Ura + ]<br />

<strong>Chromosome</strong><br />

[ Tm S FOA R Ura - ]


ACE and Insertion at PyrE<br />

A third iteration of the method can add further DNA (BioBricks 9-12)<br />

using the ACE vector pMTL-JH12 – ad infinitum …………..<br />

BioBricks<br />

8 7 6 5<br />

dcd CAC0026 pyrE<br />

3 2 1 CAC<br />

BioBricks<br />

12 11 10 9<br />

dcd CAC0026 pyrE’<br />

CAC<br />

4<br />

BioBricks<br />

Etc, Etc ……………..<br />

BioBricks<br />

8 7 6 5 4 3 2 1<br />

<strong>Chromosome</strong><br />

[ Tm S FOA S Ura + ]<br />

<strong>Chromosome</strong><br />

[ Tm S FOA R Ura - ]<br />

<strong>Chromosome</strong><br />

[ Tm S FOA S Ura + ]


ACE Exemplification<br />

Iterative Exemplification of ACE: insertion of the entire<br />

lambda genome into the clostridial genome in 3 iterative cycles<br />

Success Confirmed by:-<br />

• Southern Blot<br />

• Nucleotide Sequencing<br />

An unprecedented<br />

achievement unmatched<br />

by any other group<br />

Heap et al (2012) Nucleic<br />

Acids Research. 2012 Jan<br />

18.


ACE & Metabolic Engineering<br />

C. acetobutylicum ATCC 824<br />

acetate<br />

acetone<br />

butyrate<br />

acetyl-CoA<br />

butyryl-CoA<br />

ethanol<br />

butanol<br />

John Heap


C. beijerinckii B593 makes isopropanol via a primarysecondary<br />

alcohol dehydrogenase, adh<br />

a strain of C. acetobutylicum producing isopropanol (a<br />

fuel) instead of acetone (not a fuel) would be useful<br />

isopropanol<br />

ACE & Metabolic Engineering<br />

acetate<br />

acetone<br />

butyrate<br />

acetyl-CoA<br />

butyryl-CoA<br />

ethanol<br />

butanol


Removal of Co-products?<br />

� C. acetobutylicum ATCC 824 Acetone<br />

Isopropanol<br />

Ethanol<br />

pSOL1<br />

acetate<br />

acetone<br />

butyrate<br />

pSOL1 Megaplasmid carries<br />

the key genes responsible<br />

for solvent production<br />

acetyl-CoA<br />

butyryl-CoA<br />

ethanol<br />

butanol<br />

Butanol<br />

Acetate<br />

Butyrate


Removal of Co-products?<br />

� C. acetobutylicum ATCC 824<br />

� pSOL1 cured using ACE<br />

acetate<br />

butyrate<br />

acetyl-CoA<br />

butyryl-CoA<br />

Acetone<br />

Isopropanol<br />

Ethanol<br />

Butanol<br />

Acetate<br />

Butyrate


Removal of Co-products?<br />

� C. acetobutylicum ATCC 824<br />

� pSOL1 cured using ACE<br />

� ‘blank canvas’ strain created<br />

acetate<br />

butyrate<br />

acetyl-CoA<br />

butyryl-CoA<br />

ethanol<br />

Acetone<br />

Isopropanol<br />

Ethanol<br />

Butanol<br />

Acetate<br />

Butyrate


isopropanol<br />

Removal of Co-products?<br />

� C. acetobutylicum ATCC 824<br />

� pSOL1 cured using ACE<br />

� ‘blank canvas’ strain created<br />

acetate<br />

acetone<br />

Required<br />

for<br />

isopropanol<br />

butyrate<br />

acetyl-CoA<br />

butyryl-CoA<br />

ethanol<br />

Acetone<br />

Isopropanol<br />

Ethanol<br />

Butanol<br />

Acetate<br />

Butyrate


BB-2 prefix BB-2 suffix<br />

GAATTCGCGGCCGCACTAGTPart sequence GCTAGCGCGGCCGCTGCAG<br />

EcoRI<br />

BioBrick-2 Assembly<br />

SpeI<br />

NheI<br />

• we use the BioBrick-2 standard (BB-2) in our work<br />

� ‘Parts’ are constructed in the standard form shown.<br />

� assembly is easy and standardised – the cloning<br />

strategy is always the same<br />

PstI<br />

� any combination can be easily assembled<br />

� ‘Parts’ can be re-used in different strategies


BB-2 prefix BB-2 suffix<br />

GAATTCGCGGCCGCACTAGT Part 1 GCTAGC<br />

EcoRI<br />

BioBrick-2 BioBrick-2 Standard Assembly<br />

Assembly<br />

SpeI<br />

NheI<br />

BB-2 prefix BB-2 suffix<br />

ACTAGT Part 2 GCTAGCGCGGCCGCTGCAG<br />

SpeI<br />

NheI<br />

PstI


BB-2 prefix BB-2 scar BB-2 suffix<br />

Part 1<br />

GAATTCGCGGCCGCACTAGT ACTAGC<br />

GCTAGCGCGGCCGCTGCAG<br />

EcoRI<br />

BioBrick-2 Assembly<br />

SpeI<br />

Part 2<br />

NheI<br />

PstI


BioBrick-2 Assembly<br />

P 1 S<br />

P 2 S<br />

P 1 2 S P 3 S P 4 S<br />

P 1 2 3 4 S<br />

P 3 4 S


RBS<br />

ORF<br />

RBS<br />

ORF<br />

BioBrick-2 Assembly<br />

STOP<br />

BB-2 assembly<br />

RBS<br />

ORF<br />

RBS<br />

ORF<br />

BB-2 assembly<br />

6His+STOP<br />

RBS<br />

ORF<br />

RBS<br />

ORF<br />

BB-2 assembly<br />

Tags allow monitoring of expression independently of strain<br />

performance, which is useful in metabolic engineering.<br />

We generally use FLAG Tags<br />

FLAG+STOP


RBS<br />

RBS<br />

ctfA<br />

ctfB<br />

RBS<br />

RBS<br />

BioBrick-2 Assembly<br />

ctfA<br />

ctfB<br />

BB-2 assembly<br />

BB-2 assembly<br />

FLAG+STOP<br />

FLAG+STOP<br />

RBS<br />

RBS<br />

adc<br />

adh<br />

RBS<br />

RBS<br />

adc<br />

adh<br />

BB-2 assembly<br />

BB-2 assembly<br />

FLAG+STOP<br />

FLAG+STOP


RBS<br />

RBS<br />

BioBrick-2 Assembly<br />

ctfA<br />

ctfA<br />

RBS<br />

ctfA<br />

RBS<br />

ctfB<br />

RBS<br />

adh<br />

RBS<br />

adc<br />

BB-2 assembly BB-2 assembly<br />

RBS<br />

ctfB<br />

RBS<br />

ctfB<br />

RBS<br />

BB-2 assembly<br />

RBS<br />

FLAG-tagged isopropanol Operon<br />

adh<br />

adh<br />

RBS<br />

RBS<br />

adc<br />

adc


ACE & Metabolic Engineering<br />

Adding isopropanol pathway to pSOL1-minus<br />

Western-Blot analysis of lysate, 2x YTG,<br />

12 µg<br />

200 kDa<br />

130 kDa<br />

95 kDa<br />

70 kDa<br />

55 kDa<br />

45 kDa<br />

35 kDa<br />

25 kDa<br />

24 kDa<br />

Katrin Schwarz<br />

+ P- P26 P27 P28 P17 P18 P15 P19 P24 P25


ACE & Metabolic Engineering<br />

Product profiles after 72 h<br />

WT P-<br />

P28 P24 P25<br />

Acetone<br />

Isopropanol<br />

Ethanol<br />

Butanol<br />

Acetoin<br />

Acetate<br />

Butyrate


ACE & Cellulosic Butanol<br />

C. thermocellum<br />

Cellulosome<br />

C. acetobutylicum<br />

Cellulosic clostridia make ethanol, not<br />

butanol<br />

They produce a ‘Cellulosome’:- a<br />

molecular nanomachine – very efficient<br />

in degrading lignocellulose<br />

The core of the complex is a modular,<br />

non-catalytic scaffoldin protein which<br />

serves to bring enzymes into close<br />

proximity via cohesin-dockerin<br />

interactions, enhance enzyme activity<br />

We seek to introduce a functional<br />

cellulosome into the genome of a noncellulolytic<br />

butanol producer using<br />

ACE technology


ACE & Cellulosic Butanol<br />

Cellulosome Scaffold Assembly<br />

• As proof of principle we tested the expression of a native hydrolase<br />

Cel5A in C. acetobutylicum in the presence and absence of the<br />

scaffoldin subunit<br />

• 1 st minicellulosome integrated into the genome of C. acetobutylicum<br />

• Functional benefit currently being tested


Clostridia & Biofuels<br />

STATUS<br />

• We have developed all of the platform technologies<br />

needed to establish Clostridium as a chassis for the<br />

production of chemical commodities and biofuels from<br />

renewables (lignocellulose and waste gas), including:-<br />

– Directed Gene Knock-out systems (inc. in-frame deletions*)<br />

– Random (transposon mariner)*<br />

– Allele-Coupled Exchange Technology (ACE)<br />

– Expression Systems (orthogonal and inducible*)<br />

• Systems working in many species, ie., C. beijerinckii,<br />

C. acetobutylicum, C. ljungdahlii & Geobacillus<br />

• In future our emphasis will switch to acetogenic<br />

bacteria, ie., C. ljungdahlii<br />

* not described due to lack of time


Systems Biology<br />

of BioButanol<br />

Germany, NL<br />

International Collaboration<br />

EUROPE (Germany, Italy, France, Finland, Slovenia)<br />

Clostridia ITN<br />

Germany France,<br />

Finland Slovenia Italy<br />

ASIA (China, Vietnam, India)<br />

Improving Biobutanol Production<br />

China Partnership Award<br />

Chemicals from Renewables<br />

India Partnership Award<br />

Chemicals from CO + H 2<br />

Fachagentur Nachwachsende<br />

Rohstoffe e.V (FNR)<br />

Cellulolytic clostridial consortia<br />

Student Exchange Programme:<br />

Rice Straw Conversion to Biofuels<br />

York/Dundee/IFR/Cardiff/Rothamsted


International Collaboration<br />

OTHER (USA & New Zealand))<br />

Bid to the US DOE with<br />

Jeff Blanchard<br />

(Uni of Massachusetts)<br />

Clostridium phytofermentans<br />

Chemicals from Renewables<br />

Clostridium spp<br />

Chemicals from CO + H 2<br />

Clostridium autoethanogen<br />

Cellulosome Components<br />

Clostridium papyrosolvens


International Collaboration<br />

OTHER (USA & New Zealand))<br />

Bid to the US DOE with<br />

Jeff Blanchard<br />

(Uni of Massachusetts)<br />

BRASIL !!!<br />

Clostridium phytofermentans<br />

Chemicals from Reneables<br />

Clostridium spp<br />

Chemicals from CO + H 2<br />

Clostridium autoethanogen<br />

Cellulosome Components<br />

Clostridium papyrosolvens


Acknowledgements<br />

Clostridia Research Group<br />

5/28/2012<br />

64

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!