12.07.2015 Views

electrical stimulation of the quadriceps muscle group in - School of ...

electrical stimulation of the quadriceps muscle group in - School of ...

electrical stimulation of the quadriceps muscle group in - School of ...

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

___________________________________________________Title pageELECTRICAL STIMULATION OF THE QUADRICEPSMUSCLE GROUP IN PATIENTS WITH PATELLOFEMORALPAIN SYNDROME.A <strong>the</strong>sis submitted to <strong>the</strong> University <strong>of</strong> Manchester for <strong>the</strong> degree <strong>of</strong> Doctor <strong>of</strong>Philosophy <strong>in</strong> <strong>the</strong> Faculty <strong>of</strong> Medic<strong>in</strong>e, Dentistry, Nurs<strong>in</strong>g and Pharmacy.2001Michael James CallaghanCentre for Rehabilitation Science,1


___________________________________________________Table <strong>of</strong> ContentsTable <strong>of</strong> Contents1 INTRODUCTION .................................................................................................271.1 The problem ...............................................................................................281.2 The treatment.............................................................................................282 THE PATELLOFEMORAL JOINT.......................................................................332.1 Anatomy .....................................................................................................332.2 Biomechanics ............................................................................................342.2.1 Patell<strong>of</strong>emoral jo<strong>in</strong>t reaction force.................................................................352.2.2 Contact areas................................................................................................352.3 Patell<strong>of</strong>emoral Pa<strong>in</strong> Syndrome.................................................................382.3.1 Nomenclature................................................................................................392.3.2 Aetiology .......................................................................................................392.3.2.1 Abnormal foot pronation ............................................................................402.3.2.2 S<strong>of</strong>t tissue tightness...................................................................................412.3.2.3 Proprioception dysfunction ........................................................................422.3.2.4 Muscle imbalance and weakness ..............................................................422.4 Quadriceps <strong>muscle</strong>s..................................................................................432.4.1 Introduction ...................................................................................................432.4.2 Anatomy........................................................................................................442.4.3 Methods <strong>of</strong> Quadriceps exercise...................................................................473


___________________________________________________Table <strong>of</strong> Contents3 ELECTRICAL STIMULATION.............................................................................513.1 Introduction................................................................................................513.2 Electrical <strong>stimulation</strong> <strong>of</strong> animal <strong>muscle</strong>...................................................523.2.1 Calcium regulatory system changes .............................................................523.2.2 My<strong>of</strong>ibrillar apparatus changes .....................................................................533.2.3 Energy metabolism changes.........................................................................533.2.4 Neurogenic changes .....................................................................................543.2.5 Summary.......................................................................................................543.3 Electrical <strong>stimulation</strong> <strong>of</strong> human <strong>quadriceps</strong> <strong>muscle</strong> ..............................553.3.1 Quadriceps Strength .....................................................................................563.3.1.1 EMS or isometric exercise .........................................................................563.3.1.2 EMS or isok<strong>in</strong>etic exercise.........................................................................573.3.1.3 EMS and isometric or isok<strong>in</strong>etic exercise comb<strong>in</strong>ed ..................................583.3.2 EMS at vary<strong>in</strong>g knee flexion angles ..............................................................593.3.2.1 Isometric strength ga<strong>in</strong>s.............................................................................593.3.2.2 Isok<strong>in</strong>etic strength ga<strong>in</strong>s ............................................................................603.3.3 Gender differences and strength improvement .............................................643.3.4 Quadriceps endurance..................................................................................643.4 Electrical <strong>stimulation</strong> <strong>of</strong> weak <strong>quadriceps</strong> <strong>muscle</strong> .................................663.4.1 Changes <strong>in</strong> isometric and isok<strong>in</strong>etic strength. ...............................................663.4.2 Electrical <strong>stimulation</strong> <strong>in</strong> PFPS .......................................................................703.5 O<strong>the</strong>r <strong>muscle</strong> changes due to EMS..........................................................714


___________________________________________________Table <strong>of</strong> Contents3.5.1 Histology and Biochemistry...........................................................................713.5.2 Functional Measurements.............................................................................743.5.3 Thigh Girth ....................................................................................................763.6 Stimulation parameters.............................................................................773.6.1 Waveform......................................................................................................783.6.2 Pulse duration ...............................................................................................793.6.3 Duty Cycle.....................................................................................................793.6.4 Intensity and Length <strong>of</strong> <strong>stimulation</strong>................................................................803.6.4.1 Length <strong>of</strong> Treatment ..................................................................................833.6.5 Low Frequency versus High Frequency Stimulation .....................................853.6.6 Mixed Frequency Stimulation........................................................................893.7 Summary ....................................................................................................934 MEASUREMENT OF MUSCLE STRENGTH ......................................................964.1 Introduction................................................................................................964.2 Methods......................................................................................................994.2.1 Subjects ........................................................................................................994.2.2 Instrumentation ...........................................................................................1004.2.3 Procedure ...................................................................................................1014.2.4 Isok<strong>in</strong>etic test<strong>in</strong>g..........................................................................................1024.2.5 Maximum Voluntary Isometric Contraction test<strong>in</strong>g ......................................1024.3 Data Analysis ...........................................................................................1035


___________________________________________________Table <strong>of</strong> Contents4.4 Results......................................................................................................1044.5 Discussion ...............................................................................................1124.6 Conclusion ...............................................................................................1155 MEASUREMENT OF MUSCLE FATIGUE ........................................................1175.1 Introduction..............................................................................................1175.2 Methods....................................................................................................1225.2.1 Subjects ......................................................................................................1225.2.2 Force measurement ....................................................................................1235.2.3 EMG measurements ...................................................................................1245.2.4 EMG Data Collection...................................................................................1275.3 Data analysis............................................................................................1275.3.1 Statistics......................................................................................................1285.4 Results......................................................................................................1295.4.1 Torque measurements ................................................................................1305.4.2 EMG measurements ...................................................................................1305.4.2.1 Initial Median Frequency..........................................................................1305.4.2.2 Median Frequency ...................................................................................1305.5 Discussion ...............................................................................................1375.5.1.1 Initial median frequency...........................................................................1375.5.1.2 Median Frequency ...................................................................................1385.6 Conclusion ...............................................................................................1426


___________________________________________________Table <strong>of</strong> Contents6 MEASUREMENT OF PATELLAR PAIN ...........................................................1446.1 Visual Analogue Scale ............................................................................1446.2 Kujala Score.............................................................................................1457 MEASUREMENT OF QUADRICEPS CROSS SECTIONAL AREA..................1487.1 Introduction..............................................................................................1487.2 Method......................................................................................................1497.3 Statistical analysis...................................................................................1527.4 Results......................................................................................................1537.4.1 Intrarater reliability.......................................................................................1537.4.2 Location <strong>of</strong> <strong>muscle</strong> border...........................................................................1547.5 Conclusion ...............................................................................................1558 PILOT STUDY 8v8 ............................................................................................1578.1 Introduction..............................................................................................1578.2 Methods....................................................................................................1588.2.1 Subjects ......................................................................................................1588.2.1.1 Inclusion criteria.......................................................................................1588.2.1.2 Exclusion criteria......................................................................................1598.2.1.3 Cl<strong>in</strong>ical exam<strong>in</strong>ation.................................................................................1598.3 Outcome measures .................................................................................1608.3.1 Instrumentation ...........................................................................................1607


___________________________________________________Table <strong>of</strong> Contents8.3.2 Isometric Strength.......................................................................................1608.3.3 Isok<strong>in</strong>etic strength .......................................................................................1618.3.4 Muscle Fatigue............................................................................................1628.3.5 Quadriceps Cross Sectional Area ...............................................................1638.3.6 Function ......................................................................................................1638.3.7 Pa<strong>in</strong>.............................................................................................................1648.3.8 Cl<strong>in</strong>ical tests................................................................................................1648.3.8.1 Step up ....................................................................................................1648.3.8.2 Step down................................................................................................1648.3.8.3 Squat flexion............................................................................................1658.4 Treatment .................................................................................................1658.4.1 RESTIM ......................................................................................................1658.4.2 COMPEX ....................................................................................................1668.5 Statistical Analysis..................................................................................1678.6 Results......................................................................................................1688.6.1 Isometric Strength.......................................................................................1718.6.2 Isok<strong>in</strong>etic strength .......................................................................................1728.6.3 Muscle Fatigue............................................................................................1728.6.4 Quadriceps Cross Sectional Area ...............................................................1748.6.5 Function ......................................................................................................1758.6.6 Pa<strong>in</strong>.............................................................................................................1758.6.7 Flexion ........................................................................................................1758


___________________________________________________Table <strong>of</strong> Contents8.6.8 Steps...........................................................................................................1768.7 Discussion ...............................................................................................1768.8 Limitations ...............................................................................................1788.9 Conclusions .............................................................................................1798.10 Considerations for <strong>the</strong> Ma<strong>in</strong> Study ........................................................1799 MAIN STUDY ....................................................................................................1839.1 Introduction..............................................................................................1839.2 Methodology ............................................................................................1839.2.1 The RESTIM <strong>stimulation</strong> regime .................................................................1839.2.2 The EMPI <strong>stimulation</strong> regime ......................................................................1869.2.3 Sample power calculations .........................................................................1899.2.4 Subjects ......................................................................................................1909.2.4.1 Inclusion Criteria ......................................................................................1909.2.4.2 Exclusion Criteria.....................................................................................1909.2.4.3 Cl<strong>in</strong>ical exam<strong>in</strong>ation.................................................................................1909.2.5 Randomisation ............................................................................................1909.3 Outcome measures .................................................................................1919.3.1 Instrumentation ...........................................................................................1919.3.2 Isometric Strength.......................................................................................1929.3.3 Isok<strong>in</strong>etic torque..........................................................................................1939.3.4 Muscle Fatigue............................................................................................1939


___________________________________________________Table <strong>of</strong> Contents9.3.5 Quadriceps Cross Sectional Area ...............................................................1949.3.6 Function ......................................................................................................1949.3.7 Pa<strong>in</strong>.............................................................................................................1959.3.8 Cl<strong>in</strong>ical tests................................................................................................1959.3.8.1 Step up ....................................................................................................1959.3.8.2 Step down................................................................................................1959.3.8.3 Knee Flexion............................................................................................1959.4 Statistical analysis...................................................................................1969.4.1 Normal Distribution <strong>of</strong> Data .........................................................................1969.4.2 Pre Treatment Analysis...............................................................................1969.4.3 Post Treatment Analysis .............................................................................1969.4.3.1 Multiple Regression Analysis...................................................................1979.4.3.2 Treatment Effect Size ..............................................................................2009.5 Results......................................................................................................2029.5.1 Patient Compliance .....................................................................................2029.5.2 Pooled <strong>group</strong>s versus Separate <strong>group</strong>s. .....................................................2049.5.3 Gender effects.............................................................................................2059.5.4 Correlations.................................................................................................2079.5.5 Isometric Strength.......................................................................................2119.5.5.1 Pre Treatment Analysis ...........................................................................2119.5.5.2 Post Treatment Analysis..........................................................................2119.5.5.3 Multiple Regression Analysis...................................................................21210


___________________________________________________Table <strong>of</strong> Contents9.5.6 Isok<strong>in</strong>etic Muscle strength...........................................................................2179.5.6.1 Pre Treatment Analysis ...........................................................................2179.5.6.2 Post Treatment Analysis..........................................................................2179.5.6.3 Multiple Regression Analysis...................................................................2189.5.7 Muscle Fatigue............................................................................................2219.5.7.1 VMO ........................................................................................................2219.5.7.2 VL ............................................................................................................2229.5.7.3 RF............................................................................................................2249.5.7.4 Quadriceps comb<strong>in</strong>ed..............................................................................2259.5.7.5 Multiple Regression Analysis...................................................................2269.5.8 Pa<strong>in</strong>.............................................................................................................2289.5.8.1 Pre Treatment Analysis ...........................................................................2289.5.8.2 Post Treatment Analysis..........................................................................2289.5.8.3 Multiple Regression Analysis...................................................................2309.5.9 Cl<strong>in</strong>ical Tests...............................................................................................2329.5.9.1 Pre Treatment Analysis - STEPS.............................................................2329.5.9.2 Post Treatment Analysis - STEPS ...........................................................2329.5.9.3 Multiple Regression Analysis - STEPS ....................................................2349.5.9.4 Pre Treatment Analysis - FLEXION .........................................................2369.5.9.5 Post Treatment Analysis - FLEXION .......................................................2369.5.9.6 Multiple Regression Analysis - FLEXION ................................................2379.5.10 Kujala Questionnaire...................................................................................24011


___________________________________________________Table <strong>of</strong> Contents9.5.10.1 Pre Treatment Analysis ...........................................................................2409.5.10.2 Post Treatment Analysis..........................................................................2409.5.10.3 Multiple Regression Analysis...................................................................2409.5.11 Quadriceps Cross Sectional Area ...............................................................2449.5.11.1 Pre Treatment Analysis ...........................................................................2449.5.11.2 Post Treatment Analysis..........................................................................2449.5.11.3 Multiple Regression Analysis...................................................................2449.5.11.4 Treatment Effect Size ..............................................................................2489.5.12 Gender effects.............................................................................................2499.6 Discussion ...............................................................................................2549.6.1 Basel<strong>in</strong>e Data..............................................................................................2549.6.2 Treatment Compliance................................................................................2569.6.3 Changes <strong>in</strong> Muscle Strength .......................................................................2599.6.4 Changes <strong>in</strong> Muscle Fatigue.........................................................................2629.6.5 Changes <strong>in</strong> Pa<strong>in</strong>..........................................................................................2659.6.6 Changes <strong>in</strong> Cl<strong>in</strong>ical Tests............................................................................2689.6.6.1 Steps .......................................................................................................2699.6.6.2 Flexion .....................................................................................................2709.6.7 Changes <strong>in</strong> Kujala questionnaire.................................................................2719.6.8 Changes <strong>in</strong> Quadriceps Cross Sectional Area ............................................2729.7 Limitations <strong>of</strong> and recommendations from <strong>the</strong> study ..........................2749.8 Conclusion ...............................................................................................27612


___________________________________________________Table <strong>of</strong> Contents9.9 Thesis Overview ......................................................................................2779.9.1 Inclusion and Exclusion Criteria ..................................................................2779.9.2 Sample Size................................................................................................2789.9.3 Autocorrelation............................................................................................2799.9.4 Compliance .................................................................................................2809.9.5 Reasons for No Differences between Groups.............................................28110 REFERENCES ..................................................................................................28311 APPENDICES ...................................................................................................31313


___________________________________________________Table <strong>of</strong> TablesTable <strong>of</strong> TablesTable 1. Comparison <strong>of</strong> strength/torque ga<strong>in</strong>s ..........................................................57Table 2. Percentage strength / torque ga<strong>in</strong>s ..............................................................62Table3. Comparison <strong>of</strong> Electrical Stimulation Parameters and delivery.....................63Table4. Frequency <strong>of</strong> EMS and effects on atrophied <strong>quadriceps</strong> <strong>muscle</strong> ..................84Table 5. Descriptive statistics for <strong>the</strong> subjects .........................................................105Table 6. Means±SD, 95% CI’s for all CKC measures. Healthy and PFPS <strong>group</strong>s...106Table 7 ICCs and SEM for Peak Torque. Healthy & PFPS <strong>group</strong>s..........................107Table8 Mean differences, 95% limits <strong>of</strong> agreements and 95% CI’s for QuadricepsStrength ............................................................................................................109Table 9 Group Means ±SD, ICC, and SEM for <strong>the</strong> IMF and MF ..............................132Table10 Means±SD & 95% CI’s for EMG MF slopes. Healthy and PFPS <strong>group</strong>s....133Table11 Mean differences, 95% limits <strong>of</strong> agreements and 95% CIs for QuadricepsEndurance ........................................................................................................134Table 12. A Two-way analysis <strong>of</strong> variance ANOVA for <strong>the</strong> MF slope.......................139Table 13 Intrarater reliability <strong>of</strong> ultrasound scann<strong>in</strong>g technique ...............................154Table14 Muscle strength, pa<strong>in</strong> and functional data. Means ±SD <strong>of</strong> mean changes. 170Table 15 Results <strong>of</strong> Repeated Measures ANOVA ...................................................171Table 16 Repeated Measures ANOVA for <strong>quadriceps</strong> <strong>muscle</strong> fatigue data.............174Table 17 Quadriceps <strong>muscle</strong> fatigue data................................................................174Table 18 Sample Size Calculations .........................................................................189Table 19 Descriptive statistics <strong>of</strong> patients completed (Means ± SD)........................20414


___________________________________________________Table <strong>of</strong> TablesTable 20 The distribution <strong>of</strong> <strong>the</strong> affected side and leg dom<strong>in</strong>ance (Means ± SD) ....204Table 21 Correlation Matrix <strong>of</strong> Pre Treatment Variables ..........................................208Table 22 Correlation Matrix <strong>of</strong> Treatment Compliance and Outcome Change.........209Table 23. Correlation matrix for Post Treatment Variables ......................................210Table 24 Association <strong>of</strong> each cont<strong>in</strong>uous basel<strong>in</strong>e covariate and compliance.........213Table 25 Association <strong>of</strong> dichotomous basel<strong>in</strong>e covariate.........................................213Table 26 Multiple Regression Analysis, Model summary.........................................216Table 27 Association <strong>of</strong> each cont<strong>in</strong>uous basel<strong>in</strong>e covariates and compliance .......219Table 28 Association <strong>of</strong> dichotomous basel<strong>in</strong>e covariates.......................................219Table 29 Multiple Regression Analysis Model Summary .........................................220Table 30. Association <strong>of</strong> each cont<strong>in</strong>uous basel<strong>in</strong>e covariate and compliance........226Table 31. Association <strong>of</strong> dichotomous basel<strong>in</strong>e covariates......................................227Table 32 Multiple Regression Analysis Model Summary .........................................227Table 33 Association <strong>of</strong> each cont<strong>in</strong>uous basel<strong>in</strong>e covariate and compliance.........230Table 34 Association <strong>of</strong> dichotomous basel<strong>in</strong>e covariates.......................................231Table 35 Multiple Regression Analysis Model Summary .........................................231Table 36. Association <strong>of</strong> each cont<strong>in</strong>uous basel<strong>in</strong>e covariate and compliance........234Table 37. Association <strong>of</strong> dichotomous basel<strong>in</strong>e covariates......................................235Table 38. Multiple Regression Analysis Model Summary ........................................236Table 39 Association <strong>of</strong> each cont<strong>in</strong>uous basel<strong>in</strong>e covariate and compliance.........238Table 40 Association <strong>of</strong> dichotomous basel<strong>in</strong>e covariates.......................................238Table 41 Multiple Regression Model Summary........................................................23915


___________________________________________________Table <strong>of</strong> TablesTable 42 Association <strong>of</strong> each cont<strong>in</strong>uous basel<strong>in</strong>e covariate and compliance.........242Table 43 Association <strong>of</strong> dichotomous basel<strong>in</strong>e covariates.......................................242Table 44 Multiple Regression Analysis Model Summary .........................................243Table 45 Association <strong>of</strong> each cont<strong>in</strong>uous basel<strong>in</strong>e covariate and compliance.........246Table 46 Association <strong>of</strong> dichotomous basel<strong>in</strong>e covariates.......................................246Table 47 Multiple Regression Analysis Model Summary .........................................247Table 48 Means ± SD or Medians (IQR), pre and post <strong>stimulation</strong> data. .................251Table 49. Quadriceps fatigue data. Means ±SD for normalised slopes ...................251Table 50. Between <strong>group</strong> analysis. Independent ‘t’ tests for normalised data .........252Table 51. Between <strong>group</strong> analysis. Mann Whitney U tests for non-normalised data253Table 52. Power sample calculation from <strong>the</strong> Ma<strong>in</strong> study ........................................25316


___________________________________________________Table <strong>of</strong> FiguresTable <strong>of</strong> FiguresFigure 1 Gross anatomy <strong>of</strong> <strong>the</strong> articular surface <strong>of</strong> <strong>the</strong> patella...................................37Figure 2 Diagram <strong>of</strong> <strong>the</strong> Patell<strong>of</strong>emoral Jo<strong>in</strong>t Reaction Force (PFJRF) .....................37Figure 3 Diagram <strong>of</strong> contact areas from full knee extension to full flexion .................38Figure 4 Cross section <strong>of</strong> <strong>the</strong> <strong>quadriceps</strong> femoris <strong>muscle</strong> <strong>group</strong>................................46Figure 5 Direction <strong>of</strong> pull <strong>of</strong> <strong>the</strong> Quadriceps...............................................................47Figure 6. Anterior view <strong>of</strong> <strong>the</strong> superficial <strong>quadriceps</strong> femoris. ......................................48Figure 7 Patient position us<strong>in</strong>g <strong>the</strong> CKC device on <strong>the</strong> Biodex dynamometer. ........101Figure 8. Bland & Altman plot, MVIC trials 2 & 3, healthy subjects. Means ± 2SD ..110Figure 9. Bland & Altman plot for CKC extension trials 2 & 3. Means ± 2SD...........110Figure 10. Bland & Altman plot for CKC flexion trials 2 & 3. Means ± 2SD..............110Figure 11. Bland & Altman plot, MVIC trials 2 & 3, PFPS patients. Means ± 2SD ...111Figure 12. Bland & Altman plot for CKC extension trials 2 & 3. Means ± 2SD.........111Figure 13. Bland & Altman plot for CKC flexion trials 2 & 3. Means ± 2SD..............111Figure 14 Graph show<strong>in</strong>g compression <strong>of</strong> power spectrum .....................................119Figure 15 Representation <strong>of</strong> <strong>in</strong>tercept and l<strong>in</strong>ear regression slope..........................120Figure 16. Use <strong>of</strong> acetate(left) allowed accurate reposition<strong>in</strong>g <strong>of</strong> sk<strong>in</strong> marks(right) .125Figure 17. EMG electrodes connected to <strong>the</strong> Biopac Tel 100..................................126Figure 18 A typical normalised graph <strong>of</strong> data from Vastus Lateralis (VL) ................128Figure 19.Bland & Altman Plot, trials 2 & 3 for VMO,healthy subjects.Means ±2SD 135Figure 20. Bland & Altman Plot, trials 2 & 3 for VL, healthy subjects. Means ± 2SD135Figure 21. Bland & Altman Plot, trials 2 & 3 for RF, healthy subjects. Means ± 2SD13517


___________________________________________________Table <strong>of</strong> FiguresFigure 22. Bland & Altman Plot, trials 2 & 3 for VMO, PFPS patients. Means ±2SD136Figure 23. Bland & Altman Plot, trials 2 & 3 for VL, PFPS patients. Means ± 2SD ..136Figure 24. Bland & Altman Plot, trials 2 & 3 for RF, PFPS patients. Means ± 2SD..136Figure 25. Compound B ultrasound scann<strong>in</strong>g..........................................................150Figure 26 Image produced by Compound B scanner...............................................151Figure 27. A detailed cross section <strong>of</strong> <strong>quadriceps</strong> for comparison...........................151Figure 28. Bland & Altman plot for CSA measures between days. Means ± 2SD....155Figure 29 Flow diagram <strong>of</strong> <strong>the</strong> Pilot study protocol ..................................................170Figure 30. Mean ± SD Plots <strong>of</strong> median frequency slope differences(%/s) ...............173Figure 31. Stimulation pattern for <strong>the</strong> RESTIM device. ............................................184Figure 32 Electrode placement (<strong>in</strong> white) for <strong>the</strong> RESTIM stimulator.......................185Figure 33. Stimulation pattern for <strong>the</strong> EMPI device..................................................186Figure 34 Electrode placement (<strong>in</strong> white) for <strong>the</strong> EMPI stimulator ...........................187Figure 35 The RESTIM device and electrodes ........................................................188Figure 36 The EMPI device and electrodes .............................................................188Figure 37 Flow diagram <strong>of</strong> <strong>the</strong> protocol <strong>of</strong> <strong>the</strong> Ma<strong>in</strong> study. ......................................201Figure 38 Distribution <strong>of</strong> compliance data for RESTIM and EMPI............................203Figure 39 Gender differences <strong>in</strong> <strong>the</strong> RESTIM <strong>group</strong> for all outcome measures.......206Figure 40 Gender differences <strong>in</strong> <strong>the</strong> EMPI <strong>group</strong> for all outcome measures............206Figure 41 Mean ± SD <strong>of</strong> pre and post test differences for isometric peak torque.....212Figure 42 Histogram <strong>of</strong> normal distribution for isometric strength...........................215Figure 43 Scatterplot <strong>of</strong> residuals for isometric strength ..........................................21518


___________________________________________________Table <strong>of</strong> FiguresFigure 44. Mean ± SD <strong>of</strong> pre and post test differences for isok<strong>in</strong>etic peak torque ...218Figure 45 Mean ±SD <strong>of</strong> <strong>the</strong> pre and post test differences for VMO fatigue slopes...222Figure 46. Mean ±SD <strong>of</strong> pre and post differences for VL fatigue slopes ..................223Figure 47. Mean ±SD for RF fatigue slope pre and post test differences.................224Figure 48. Mean ±SD for comb<strong>in</strong>ed <strong>quadriceps</strong> slopes ...........................................225Figure 49. Median and IQR for pre and post test pa<strong>in</strong> differences...........................229Figure 50. Medians and IQR for pre and post test steps differences .......................233Figure 51. Mean ± SD for pre and post test flexion differences ...............................237Figure 52. Mean ± SD for Kujala score pre and post test differences ......................241Figure 53. Mean ± SD for <strong>quadriceps</strong> CSA pre and post test differences................24519


___________________________________________________AbstractAbstractBACKGROUND. Patell<strong>of</strong>emoral pa<strong>in</strong> syndrome (PFPS) is <strong>of</strong>ten treatedconservatively with voluntary exercise for <strong>the</strong> <strong>quadriceps</strong> femoris. Never<strong>the</strong>less, asubstantial percentage <strong>of</strong> patients rema<strong>in</strong> symptomatic. Although exercise seems acrucial element for treatment, it may serve to <strong>in</strong>crease patellar irritation with <strong>the</strong>result<strong>in</strong>g dilemma that patients exercis<strong>in</strong>g <strong>the</strong> <strong>muscle</strong>s may be simultaneouslyirritat<strong>in</strong>g <strong>the</strong> knee. One resolution to this problem may lie <strong>in</strong> exercis<strong>in</strong>g <strong>the</strong> <strong>muscle</strong>with electromuscular <strong>stimulation</strong>. PFPS patients have previously used uniformpatterned frequency <strong>stimulation</strong>, with vary<strong>in</strong>g results on <strong>muscle</strong> strength, atrophy andpa<strong>in</strong>. However, <strong>the</strong>re are problems associated with <strong>the</strong>se forms <strong>of</strong> <strong>stimulation</strong> <strong>in</strong> that<strong>the</strong>y address only <strong>the</strong> strength or endurance components <strong>of</strong> a <strong>muscle</strong>. This <strong>the</strong>sissought to explore <strong>the</strong> effects from a new form <strong>of</strong> <strong>stimulation</strong> <strong>in</strong> <strong>the</strong> context <strong>of</strong> PFPS.AIM. To compare a commercially available <strong>electrical</strong> <strong>muscle</strong> <strong>stimulation</strong> regime with anew form <strong>of</strong> <strong>stimulation</strong> for <strong>the</strong> rehabilitation <strong>of</strong> <strong>the</strong> <strong>quadriceps</strong> <strong>in</strong> patients with PFPS.The null hypo<strong>the</strong>sis was that <strong>the</strong>re would be no difference <strong>in</strong> outcome between <strong>the</strong>two types <strong>of</strong> <strong>stimulation</strong>.METHODS. A double bl<strong>in</strong>ded randomised trial was conducted with a parallel <strong>group</strong>control. 80 patients (33 male, 47 female) with patell<strong>of</strong>emoral pa<strong>in</strong> were randomlyallocated to one <strong>of</strong> two treatment <strong>group</strong>s. One <strong>group</strong> received a uniform constantfrequency <strong>stimulation</strong> pattern <strong>of</strong> 35Hz (EMPI). The o<strong>the</strong>r <strong>group</strong> received a newexperimental form <strong>of</strong> <strong>stimulation</strong> that conta<strong>in</strong>s simultaneous mixed frequencycomponents (RESTIM). Subjective and objective outcome measures were isometricand isok<strong>in</strong>etic extension strength, <strong>muscle</strong> fatigue, pa<strong>in</strong>, a functional questionnaire, astep test, knee flexion and <strong>quadriceps</strong> cross sectional area. Where necessary, validityand reliability studies were undertaken to ensure complete rigor <strong>of</strong> assessment.Treatment lasted for 6 weeks for one hour per day, a total <strong>of</strong> 42 treatments.RESULTS. 74 patients (31 male, 43 female) completed <strong>the</strong> trial. Although <strong>the</strong>re weresignificant with<strong>in</strong> <strong>group</strong> improvements <strong>in</strong> all outcome measures for both <strong>group</strong>s (p 0.05) <strong>in</strong> any outcomeexcept <strong>quadriceps</strong> cross sectional area.CONCLUSION. This study has provided data on a heterogeneous sample <strong>of</strong> PFPSpatients that is representative <strong>of</strong> <strong>the</strong> typical <strong>group</strong>s <strong>of</strong> patients seen <strong>in</strong> NHSorthopaedic and physio<strong>the</strong>rapy departments. As such <strong>the</strong> results are reasonablygeneralisable to <strong>the</strong> population with PFPS. It has shown that one form <strong>of</strong> <strong>stimulation</strong>was just as efficacious as <strong>the</strong> o<strong>the</strong>r <strong>in</strong> improv<strong>in</strong>g subjective and objective measures.Due to <strong>the</strong> lack <strong>of</strong> statistical significance between <strong>the</strong> <strong>group</strong>s <strong>the</strong> null hypo<strong>the</strong>sis wasaccepted.20


___________________________________________________DeclarationsDeclaration <strong>of</strong> Authorship and CopyrightDeclarationNo portion <strong>of</strong> <strong>the</strong> work referred to <strong>in</strong> <strong>the</strong> <strong>the</strong>sis has been submitted <strong>in</strong> support <strong>of</strong> anapplication for ano<strong>the</strong>r degree or qualification <strong>of</strong> this any o<strong>the</strong>r university or o<strong>the</strong>r<strong>in</strong>stitute <strong>of</strong> learn<strong>in</strong>g.CopyrightCopyright <strong>in</strong> text <strong>of</strong> this <strong>the</strong>sis rests with <strong>the</strong> author. Copies (by any process) ei<strong>the</strong>r <strong>in</strong>full, or <strong>of</strong> extracts, may be made only <strong>in</strong> accordance with <strong>in</strong>structions given by <strong>the</strong>author or lodged <strong>in</strong> <strong>the</strong> John Rylands University Library. This page must form any part<strong>of</strong> such copies made. Fur<strong>the</strong>r copies (by any process) <strong>of</strong> copies <strong>in</strong> accordance withsuch <strong>in</strong>structions may not be made without <strong>the</strong> permission (<strong>in</strong> writ<strong>in</strong>g) <strong>of</strong> <strong>the</strong> author.The ownership <strong>of</strong> any <strong>in</strong>tellectual property right, which may be described <strong>in</strong> this <strong>the</strong>sisis vested <strong>in</strong> <strong>the</strong> University <strong>of</strong> Manchester, subject to any prior agreement to <strong>the</strong>contrary, and may not be made available for use by third parties without writtenpermission <strong>of</strong> <strong>the</strong> University, which will prescribe <strong>the</strong> terms and conditions <strong>of</strong> anysuch agreement.Fur<strong>the</strong>r <strong>in</strong>formation on <strong>the</strong> conditions under which disclosure and exploitation maytake place is available from Pr<strong>of</strong>essor K. Luker, Head <strong>of</strong> <strong>the</strong> <strong>School</strong> <strong>of</strong> Nurs<strong>in</strong>g,Midwifery and Health Visit<strong>in</strong>g22


__________________________________________________List <strong>of</strong> AbbreviationsList <strong>of</strong> abbreviationsACL = anterior cruciate ligamentAKP = anterior knee pa<strong>in</strong>ANOVA = analysis <strong>of</strong> varianceBMI = body mass <strong>in</strong>dexCI = confidence <strong>in</strong>tervalsCKC = closed k<strong>in</strong>etic cha<strong>in</strong>CMP = chondromalacia patellaeCSA = cross sectional areaCT = computerised axial tomographyCV = coefficient <strong>of</strong> variationcm = centimetrescm 2 = centimetres squaredEMG = electromyographyEMS = electromuscular <strong>stimulation</strong>Hz = HertzICC = <strong>in</strong>traclass correlation coefficientsIMF = <strong>in</strong>itial median frequencyIPI = <strong>in</strong>terpulse <strong>in</strong>tervalIQR = <strong>in</strong>terquartile rangesmA = milliampsm<strong>in</strong> = m<strong>in</strong>utesms = millisecondsmm = millimetresMF = median frequencyMJ = multi jo<strong>in</strong>tMR magnetic resonance imag<strong>in</strong>gMVIC = maximum voluntary isometriccontractionMVIT = maximum voluntary isometrictorquen = number <strong>of</strong> subjects / patients <strong>in</strong> astudyNm = Newton metresOKC = open k<strong>in</strong>etic cha<strong>in</strong>PNMS = patterned neuromuscular<strong>stimulation</strong>PFJFR = patell<strong>of</strong>emoral jo<strong>in</strong>t reactionforcePFPS = patell<strong>of</strong>emoral pa<strong>in</strong> syndromeRCT = randomised controlled trialRF = rectus femorisSD = standard deviationSDD = smallest detectable differenceSEM = standard error <strong>of</strong> measureSJ = s<strong>in</strong>gle jo<strong>in</strong>tTENS = transcutaneous <strong>electrical</strong>nerve <strong>stimulation</strong>VAS = visual analogue scaleVMO = vastus medialis obliqueVML = vastus medialis longusVL = vastus lateralisVI = vastus <strong>in</strong>termediusµs = microseconds± = plus or m<strong>in</strong>us0/ s = degrees per second,kΩ kilo ohms,23


__________________________________________________List <strong>of</strong> PublicationsPublications Aris<strong>in</strong>g from this workCallaghan MJ, Oldham JA, W<strong>in</strong>stanley J. A comparison <strong>of</strong> two types <strong>of</strong> <strong>electrical</strong><strong>stimulation</strong> <strong>of</strong> <strong>the</strong> <strong>quadriceps</strong> <strong>in</strong> <strong>the</strong> treatment <strong>of</strong> patell<strong>of</strong>emoral pa<strong>in</strong> syndrome. A Pilotstudy. Cl<strong>in</strong>ical Rehabilitation. 2001; 15(6): 636-646Callaghan MJ, Al-Zharani E, McCarthy CJ, Oldham JA, Doherty P. Reliability <strong>of</strong>surface EMG measures dur<strong>in</strong>g closed k<strong>in</strong>etic cha<strong>in</strong> test<strong>in</strong>g.Physio<strong>the</strong>rapy 2001; 87(2):88Callaghan MJ, McCarthy CJ, Oldham JA. Electromyographic fatigue characteristics<strong>of</strong> <strong>the</strong> <strong>quadriceps</strong> <strong>in</strong> patell<strong>of</strong>emoral pa<strong>in</strong> syndrome. Manual Therapy. 2001 6(1):27-33Callaghan MJ, McCarthy, CJ, Al-Omar A. Compar<strong>in</strong>g open and closed k<strong>in</strong>etic cha<strong>in</strong>isok<strong>in</strong>etic assessments. Isok<strong>in</strong>etics and Exercise Science. 2001(<strong>in</strong> press):Callaghan MJ, McCarthy CJ, Al-Omar A, Oldham JA. The reliability <strong>of</strong> multi jo<strong>in</strong>tisok<strong>in</strong>etic and isometric assessments <strong>in</strong> a healthy and patient populationCl<strong>in</strong>ical Biomechanics. 2000; 15: 678-683Callaghan MJ, Oldham JA. A critical review <strong>of</strong> <strong>electrical</strong> <strong>stimulation</strong> <strong>of</strong> <strong>the</strong> <strong>quadriceps</strong><strong>muscle</strong>s. Critical Reviews <strong>in</strong> Physical Rehabilitation Medic<strong>in</strong>e 1997; 9: 301-314.Callaghan MJ, Oldham JA. The role <strong>of</strong> <strong>quadriceps</strong> exercise <strong>in</strong> <strong>the</strong> treatment <strong>of</strong>patell<strong>of</strong>emoral pa<strong>in</strong>. Sports Medic<strong>in</strong>e. 1996; 21: 384-391.24


__________________________________________________DedicationDEDICATIONThis <strong>the</strong>sis is dedicated with love and thanks to my late Fa<strong>the</strong>r,my Mo<strong>the</strong>r, my bro<strong>the</strong>rs and sisters and <strong>the</strong>ir families and children.25


__________________________________________________Chapter 1Chapter 1INTRODUCTION26


__________________________________________________Chapter 11 INTRODUCTIONPatell<strong>of</strong>emoral pa<strong>in</strong> has been variously described as <strong>the</strong> ‘black hole <strong>of</strong> orthopaedics’ 1an enigma 1 , and a ‘mosaic <strong>of</strong> pathology’ 2 . A less flamboyant and dramatic description -'Patell<strong>of</strong>emoral Pa<strong>in</strong> Syndrome (PFPS)'- is now commonly used <strong>in</strong> preference to <strong>the</strong>ambivalent term ‘chondromalacia patellae’, although <strong>the</strong> term<strong>in</strong>ology and nomenclatureare constantly chang<strong>in</strong>g. PFPS refers to <strong>the</strong> cl<strong>in</strong>ical presentation <strong>of</strong> anterior knee pa<strong>in</strong>related to changes <strong>in</strong> <strong>the</strong> patell<strong>of</strong>emoral jo<strong>in</strong>t 3 . PFPS is a common condition andpresents a difficult problem for surgeons, <strong>the</strong>rapists and patients alike. Patients presentma<strong>in</strong>ly with peripatellar pa<strong>in</strong> <strong>of</strong> <strong>in</strong>sidious onset. This can brought on by prolonged sitt<strong>in</strong>g(<strong>the</strong> so called '<strong>the</strong>atre goer's sign'); by ascend<strong>in</strong>g and descend<strong>in</strong>g stairs, squatt<strong>in</strong>g,kneel<strong>in</strong>g and by athletic activity. Cl<strong>in</strong>ical assessment <strong>of</strong> patients reveals a generalpaucity <strong>of</strong> abnormal physical f<strong>in</strong>d<strong>in</strong>gs. PFPS is considered to have an uncerta<strong>in</strong>aetiology with numerous <strong>the</strong>ories propounded <strong>in</strong>clud<strong>in</strong>g tightness <strong>of</strong> s<strong>of</strong>t tissue andperiarticular structures, patell<strong>of</strong>emoral malalignment and maltrack<strong>in</strong>g, tibial torsion andgait abnormalities. These commonly cited <strong>the</strong>ories for PFPS have been supplementedrecently by nerve damage <strong>in</strong> <strong>the</strong> lateral ret<strong>in</strong>aculum 4;5 and patellar bone hypertension 6 .Ano<strong>the</strong>r proposal is that PFPS may develop due to a dysfunction <strong>of</strong> <strong>the</strong> extensormechanism. This dysfunction has been variously described as generalised <strong>quadriceps</strong>weakness and wast<strong>in</strong>g 7;8 , decreased eccentric function 9 , or differences <strong>in</strong> <strong>the</strong> activationpatterns <strong>of</strong> <strong>the</strong> vastus medialis oblique (VMO) and vastus lateralis(VL) 10 . To date it is stillunknown if <strong>the</strong> <strong>quadriceps</strong> dysfunction causes <strong>the</strong> patellar pa<strong>in</strong>, or <strong>the</strong> pa<strong>in</strong> causes <strong>the</strong>dysfunction 11 .27


__________________________________________________Chapter 11.1 The problemSeveral long term follow up studies have <strong>in</strong>dicated that overall outcome with nonoperative treatment <strong>of</strong> PFPS is generally good, with most patients rarely us<strong>in</strong>g analgesiaand report<strong>in</strong>g subjective and display<strong>in</strong>g functional recovery 12;13 . Never<strong>the</strong>less, one studyfound that 33% <strong>of</strong> patients still had symptoms or objective signs at seven years 13 ,whereas ano<strong>the</strong>r revealed 25% still hav<strong>in</strong>g significant symptoms at 20 years 12 . This isnot an unsubstantial <strong>group</strong> <strong>of</strong> patients, yet <strong>the</strong>se studies <strong>in</strong>dicate that conservativetreatment is <strong>the</strong> ma<strong>in</strong>stay for this condition. There is no consensus regard<strong>in</strong>g whatconstitutes an appropriate conservative approach to treatment for PFPS. Attempts havebeen made to correct extensor dysfunctions by differ<strong>in</strong>g methods <strong>of</strong> exercis<strong>in</strong>g <strong>the</strong><strong>quadriceps</strong>. Unfortunately exercise, which seems to be a crucial component <strong>of</strong>conservative treatment 14;15 , <strong>of</strong>ten serves to <strong>in</strong>crease patellar irritation with a subsequentworsen<strong>in</strong>g <strong>of</strong> patell<strong>of</strong>emoral pa<strong>in</strong> 16 . This study attempts to address this conundrum.Namely, how can <strong>the</strong> <strong>quadriceps</strong> be stimulated and exercised without concomitantirritation <strong>of</strong> <strong>the</strong> patell<strong>of</strong>emoral jo<strong>in</strong>t? The answer may lie <strong>in</strong> <strong>electrical</strong> <strong>stimulation</strong> <strong>of</strong> <strong>the</strong><strong>quadriceps</strong>.1.2 The treatmentElectromyo<strong>stimulation</strong> (EMS) represents an artificial means <strong>of</strong> activat<strong>in</strong>g <strong>muscle</strong> thatbypasses <strong>the</strong> processes associated with a voluntary contraction 17 . Ever s<strong>in</strong>cemethods <strong>of</strong> generat<strong>in</strong>g and stor<strong>in</strong>g electricity were first discovered <strong>in</strong> <strong>the</strong> 1740’s <strong>the</strong>re28


__________________________________________________Chapter 1has been considerable <strong>in</strong>terest <strong>in</strong> <strong>the</strong> role that <strong>electrical</strong> activity plays <strong>in</strong> treat<strong>in</strong>gillness 18 . Such <strong>in</strong>terest has escalated s<strong>in</strong>ce <strong>the</strong> work <strong>of</strong> Galvani who demonstratedthat a muscular contraction could be elicited by an externally applied current 19 .Galvanism was superseded by Faradism <strong>in</strong> <strong>the</strong> 1830’s, which cont<strong>in</strong>ued to be <strong>the</strong>ma<strong>in</strong>stay <strong>of</strong> treatment by <strong>stimulation</strong> to human skeletal <strong>muscle</strong> until <strong>the</strong> 1960’s. At thistime, Salmons and Vrbova 20were amongst those experiment<strong>in</strong>g on animals withchronic low frequency <strong>stimulation</strong> (i.e. 10Hz, 24 hours daily for several weeks).Discover<strong>in</strong>g <strong>the</strong> ability <strong>of</strong> EMS to change <strong>muscle</strong> fibre type helped <strong>the</strong>m to formulate<strong>the</strong> <strong>the</strong>ory <strong>of</strong> ‘<strong>muscle</strong> plasticity’. In <strong>the</strong> late 1970’s and early 1980’s Farragher andKidd used uniform low frequency <strong>stimulation</strong> (9 Hz) to treat <strong>the</strong> predom<strong>in</strong>antly type 1facial <strong>muscle</strong>s <strong>in</strong> patients with Bell’s Palsy and co<strong>in</strong>ed <strong>the</strong> term ‘eutrophic <strong>stimulation</strong>’mean<strong>in</strong>g supply<strong>in</strong>g nutrients to <strong>the</strong> <strong>muscle</strong> (i.e. τροφή (trophic) = nutrition). The firstprotocol to use non-uniformed frequencies to human <strong>muscle</strong>s was established <strong>in</strong> <strong>the</strong>late 1980’s by Oldham and Kidd 21 . This <strong>in</strong>volved extract<strong>in</strong>g <strong>the</strong> fir<strong>in</strong>g pattern from atype 1 motor unit from <strong>the</strong> first dorsal <strong>in</strong>terosseus <strong>muscle</strong>s <strong>of</strong> <strong>the</strong> hand result<strong>in</strong>g <strong>in</strong> <strong>the</strong><strong>in</strong>troduction <strong>of</strong> patterned neuromuscular <strong>stimulation</strong> (PNMS). This was very effectivefor <strong>the</strong> hand but extrapolation to o<strong>the</strong>r <strong>muscle</strong>s proved problematic. At <strong>the</strong> same time<strong>in</strong> <strong>the</strong> United K<strong>in</strong>gdom, Laycock 22 was experiment<strong>in</strong>g with EMS for <strong>the</strong> female pelvicfloor musculature us<strong>in</strong>g Interferential Therapy. With this, a uniform pulse tra<strong>in</strong> wasgenerated by two currents (2000Hz and 2050Hz) that ‘<strong>in</strong>terfered’ with each o<strong>the</strong>r(hence ‘<strong>in</strong>terfer-ential’) with <strong>the</strong> resultant frequency <strong>of</strong> 50Hz be<strong>in</strong>g delivered to <strong>the</strong><strong>muscle</strong>. This was later changed to 35Hz after consultation with physiologists <strong>in</strong> <strong>the</strong>29


__________________________________________________Chapter 1United K<strong>in</strong>gdom and parts <strong>of</strong> eastern Europe (Laycock, personal communication).Although this new approach was designed to ease patient discomfort dur<strong>in</strong>g<strong>stimulation</strong>, <strong>the</strong> frequencies used were still uniform. By <strong>the</strong> mid 1990’s attention hadturned to develop<strong>in</strong>g a non-uniform frequency tra<strong>in</strong> based on an ‘iterative pattern’ byJarvis and o<strong>the</strong>rs <strong>in</strong> animals 23 and by Armstrong <strong>in</strong> <strong>the</strong> human hand 24 . This was socalled because <strong>in</strong> order to obta<strong>in</strong> <strong>the</strong> non-uniform pattern, impulses at various<strong>in</strong>terpulse <strong>in</strong>tervals (IPI’s) were delivered to <strong>the</strong> <strong>muscle</strong> and once <strong>the</strong> maximum forceor force-time <strong>in</strong>tegral was established, <strong>the</strong> various IPI’s were ‘re-iterated’ to obta<strong>in</strong> <strong>the</strong>maximum or force-time <strong>in</strong>tegral for <strong>the</strong> second IPI and so on. In <strong>the</strong> human hand, <strong>the</strong>effectiveness this iterative pattern was limited when compared to uniform frequencyEMS. At <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> <strong>the</strong> 21 st century, <strong>the</strong> three concepts <strong>of</strong> PNMS, <strong>the</strong> iterativepattern and <strong>the</strong> use <strong>of</strong> ‘doublets’ (double impulses with a short IPI at <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong><strong>the</strong> pulse tra<strong>in</strong> 25 ) have been brought toge<strong>the</strong>r to form a fur<strong>the</strong>r novel development forEMS – that <strong>of</strong> simultaneous non-uniform mixed frequency simulation with high,medium and low frequency components. For <strong>the</strong> later experiments <strong>in</strong> Chapter 8 andChapter 9, this new form <strong>of</strong> EMS was termed RESTIM.EMS has been used for <strong>quadriceps</strong> rehabilitation <strong>in</strong> many knee conditions <strong>in</strong>clud<strong>in</strong>gPFPS ei<strong>the</strong>r as part <strong>of</strong> a rehabilitation prescription 26;27 28;29 or occasionally part <strong>of</strong> aresearch trial 30 . EMS has several advantages over a standard <strong>quadriceps</strong> regime.Firstly, treatment can be standardised thus reduc<strong>in</strong>g error <strong>in</strong> perform<strong>in</strong>g <strong>the</strong> exercise.Secondly, thanks to <strong>in</strong> built electronic data collection, progress and compliance can bemonitored. Thirdly, <strong>the</strong> new generation <strong>of</strong> <strong>electrical</strong> stimulator permits this treatment30


__________________________________________________Chapter 1regime to be performed <strong>in</strong> <strong>the</strong> patient’s home, thus reduc<strong>in</strong>g costs to outpatientphysio<strong>the</strong>rapy and <strong>the</strong> patient. Fur<strong>the</strong>rmore, <strong>the</strong> pattern <strong>of</strong> <strong>stimulation</strong> delivered to <strong>the</strong><strong>muscle</strong> can be precisely controlled <strong>in</strong>dependently <strong>of</strong> <strong>the</strong> patient or subject 31 .In order for a <strong>muscle</strong> such as <strong>the</strong> <strong>quadriceps</strong> to operate to optimum efficiency itrequires both strength and endurance characteristics. Exist<strong>in</strong>g EMS is designed toproduce a cont<strong>in</strong>uous pulse tra<strong>in</strong> <strong>of</strong> ei<strong>the</strong>r low or high frequency <strong>stimulation</strong>. This isproblematic as low frequency <strong>stimulation</strong> (characteristically between 1Hz – 10Hz) isused to <strong>in</strong>crease fatigue characteristics <strong>of</strong> a <strong>muscle</strong>, but at <strong>the</strong> expense <strong>of</strong> powergeneration 23 . On o<strong>the</strong>r hand, if <strong>stimulation</strong> is used to <strong>in</strong>crease power this is at <strong>the</strong>expense <strong>of</strong> fatigue 32 . Many exist<strong>in</strong>g EMS devices have higher frequencies between30 – 50Hz, giv<strong>in</strong>g little choice to <strong>the</strong> cl<strong>in</strong>ician and patient. A comb<strong>in</strong>ation <strong>of</strong> <strong>the</strong>se twoelements <strong>in</strong> a sequential <strong>stimulation</strong> regime whereby periods <strong>of</strong> low-frequency<strong>stimulation</strong> are accompanied by high-frequency periods may be advantageous. Thisis a physiological approach to <strong>stimulation</strong> as motor nerve fir<strong>in</strong>g patterns usuallyaddress both factors simultaneously.The object <strong>of</strong> this study was to evaluate a new form <strong>of</strong> EMS that <strong>in</strong>corporated asimultaneous mixed frequency pulse tra<strong>in</strong> to affect both strength and fatiguecharacteristics <strong>of</strong> <strong>the</strong> <strong>quadriceps</strong> <strong>muscle</strong>s. The patient <strong>group</strong> was that <strong>of</strong> PFPS.31


__________________________________________________Chapter 2Chapter 2THEPATELLOFEMORAL JOINT32


__________________________________________________Chapter 22 THE PATELLOFEMORAL JOINT2.1 AnatomyThe presence <strong>of</strong> a bony patella appears to be important <strong>in</strong> terrestrial existence 33 , and<strong>the</strong> dist<strong>in</strong>ctive characteristics <strong>of</strong> <strong>the</strong> design <strong>of</strong> <strong>the</strong> knee were established more than300 million years ago 34 .The patella is <strong>the</strong> largest sesamoid bone <strong>in</strong> <strong>the</strong> body with an undersurface possess<strong>in</strong>g,at a depth <strong>of</strong> 4-5 mm at <strong>the</strong> central portion - <strong>the</strong> thickest articular cartilage <strong>of</strong> all jo<strong>in</strong>ts 33 .This cartilage is avascular and aneural and its function is to spread <strong>the</strong> force <strong>of</strong> contactover a large area, thus prevent<strong>in</strong>g stress concentrations <strong>of</strong> bone to bone contact. Themechanical action <strong>of</strong> patell<strong>of</strong>emoral compression helps to provide nutrition to <strong>the</strong>cartilage.The articular surface <strong>of</strong> <strong>the</strong> patella has a smaller medial and a larger lateral convexfacet, which are separated by a vertical ridge. At <strong>the</strong> extreme <strong>of</strong> <strong>the</strong> medial border <strong>the</strong>reexists a smaller facet, described as <strong>the</strong> 'odd facet' 35 which is separated by a 2nd verticalridge (Figure 1). This ridge corresponds to <strong>the</strong> femoral groove (also called <strong>the</strong> trochlearnotch) that can vary <strong>in</strong> its shape and configuration between broad and shallow or a more‘V’ shaped groove. This variation <strong>in</strong> <strong>the</strong> boney structure <strong>of</strong> <strong>the</strong> patella and femuraccounts for differences <strong>in</strong> stability between <strong>in</strong>dividuals.33


__________________________________________________Chapter 22.2 BiomechanicsThe primary role <strong>of</strong> <strong>the</strong> patella is to enhance <strong>the</strong> extensor moment arm <strong>of</strong> <strong>the</strong><strong>quadriceps</strong> 1 and <strong>in</strong>crease its efficiency and mechanical advantage 36;37 . It also has a role<strong>in</strong> distribut<strong>in</strong>g <strong>the</strong> compressive forces on <strong>the</strong> femur by <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> contact area on <strong>the</strong>femur. It has a m<strong>in</strong>or role <strong>in</strong> protect<strong>in</strong>g <strong>the</strong> anterior surface <strong>of</strong> <strong>the</strong> knee 1and <strong>in</strong>improv<strong>in</strong>g <strong>the</strong> aes<strong>the</strong>tic appearance <strong>of</strong> <strong>the</strong> anterior aspect <strong>of</strong> <strong>the</strong> knee 37 .The patella provides a fulcrum for <strong>the</strong> static and dynamic stabilisation supports 29;36;38 .The static stabilisers <strong>of</strong> <strong>the</strong> patella are <strong>the</strong> jo<strong>in</strong>t capsule; <strong>the</strong> medial and lateral patellarret<strong>in</strong>aculum; <strong>the</strong> medial and lateral patell<strong>of</strong>emoral ligaments; <strong>the</strong> iliotibial band; <strong>the</strong>prepatella, <strong>in</strong>frapatella, pes anser<strong>in</strong>us bursae and several m<strong>in</strong>or bursae; and <strong>the</strong> anteriorfat pad.Dynamically, <strong>the</strong> ma<strong>in</strong> supports are <strong>the</strong> <strong>quadriceps</strong> <strong>muscle</strong> <strong>group</strong>. The vastus medialisoblique has been described separately as <strong>the</strong> medial dynamic stabiliser 38;39 . O<strong>the</strong>rdynamic stabilisers are <strong>the</strong> posterior thigh <strong>group</strong> <strong>of</strong> biceps femoris, semitend<strong>in</strong>osus,semimembranosus and gracilis that control <strong>in</strong>ternal and external rotation <strong>of</strong> <strong>the</strong> kneeand knee flexion; this can affect patellar track<strong>in</strong>g significantly. It is also thought that tighthamstr<strong>in</strong>gs can lead to patell<strong>of</strong>emoral symptoms due to <strong>the</strong>ir <strong>in</strong>sertion <strong>in</strong>to <strong>the</strong> patellarret<strong>in</strong>aculum laterally 38 .34


__________________________________________________Chapter 22.2.1 Patell<strong>of</strong>emoral jo<strong>in</strong>t reaction force.The patell<strong>of</strong>emoral jo<strong>in</strong>t reaction force (PFJRF) is <strong>the</strong> compressive force act<strong>in</strong>g on <strong>the</strong>patella (Figure 2). It has been described formally as <strong>the</strong> force which most equilibrates<strong>the</strong> patella and its equal and opposite, to <strong>the</strong> resultant <strong>of</strong> <strong>the</strong> patellar tendon and<strong>quadriceps</strong> force 40 . Many studies have described <strong>the</strong> PFJRF dur<strong>in</strong>g a variety <strong>of</strong>activities 29;37;38;41 . There is a general consensus that an <strong>in</strong>crease <strong>of</strong> activity from levelwalk<strong>in</strong>g to runn<strong>in</strong>g will <strong>in</strong>crease <strong>the</strong> PFJRF. This is due to an <strong>in</strong>crease <strong>in</strong> knee flexionand <strong>quadriceps</strong> and patella tendon tension. This also occurs with o<strong>the</strong>r activities such assquatt<strong>in</strong>g, or descend<strong>in</strong>g stairs. O<strong>the</strong>r authors suggest that tight hamstr<strong>in</strong>gs will <strong>in</strong>crease<strong>the</strong> patell<strong>of</strong>emoral jo<strong>in</strong>t reaction force dur<strong>in</strong>g <strong>the</strong> gait stance phase 42 or antagonise <strong>the</strong><strong>quadriceps</strong> function and cause greater patell<strong>of</strong>emoral jo<strong>in</strong>t load<strong>in</strong>g 43The force <strong>of</strong> <strong>the</strong> <strong>quadriceps</strong> has to <strong>in</strong>crease as <strong>the</strong> knee extends due to <strong>the</strong> loss <strong>of</strong>mechanical advantage and so exerts most force dur<strong>in</strong>g <strong>the</strong> last 15 0 <strong>of</strong> extension 29 . Themost effective l<strong>in</strong>e <strong>of</strong> pull for <strong>the</strong> <strong>quadriceps</strong> is parallel to <strong>the</strong> femoral shaft, pass<strong>in</strong>g 10 0lateral from a perpendicular through <strong>the</strong> axis <strong>of</strong> motion. This predisposes <strong>the</strong> abnormalknee jo<strong>in</strong>t to lateral patella drift, an effect that is <strong>in</strong>creased with <strong>the</strong> more widely placedhips <strong>of</strong> <strong>the</strong> female 44 .2.2.2 Contact areasPFJRF becomes more relevant cl<strong>in</strong>ically when it is related to patell<strong>of</strong>emoral contactareas 33 that are po<strong>in</strong>ts <strong>of</strong> contact on <strong>the</strong> articular surfaces <strong>of</strong> <strong>the</strong> patella and femur35


__________________________________________________Chapter 2(Figure 3). The patell<strong>of</strong>emoral contact area <strong>in</strong>creases with knee flexion as does <strong>the</strong>PFJRF. This helps ma<strong>in</strong>ta<strong>in</strong> some constant load distribution 33 .Investigations by Goodfellow et al. 35 found that as <strong>the</strong> knee jo<strong>in</strong>t moved from extensionto flexion a band <strong>of</strong> contact moved upwards (proximally) over <strong>the</strong> patella surface. Asknee flexion <strong>in</strong>creased <strong>the</strong> band moved fur<strong>the</strong>r upwards and became broader. At 90 0flexion <strong>the</strong> contact area on <strong>the</strong> patella reached its upper pole. Goodfellow et al. 35 noticedthat <strong>the</strong>re was an area on <strong>the</strong> medial marg<strong>in</strong> <strong>of</strong> <strong>the</strong> patella which did not make contactwith <strong>the</strong> patella from 0 0 -90 0 <strong>of</strong> flexion. This was called <strong>the</strong> 'odd medial facet' that wasseparated from <strong>the</strong> proper medial facet by a ridge. Fur<strong>the</strong>r knee flexion to 135 0 showedthat <strong>the</strong> contact areas divided <strong>in</strong>to medial and lateral zones with <strong>the</strong> medial zone exactlyfitt<strong>in</strong>g <strong>the</strong> 'odd facet'.O<strong>the</strong>r authors have s<strong>in</strong>ce described <strong>the</strong>se contact areas 37 . Some authors have taken<strong>in</strong>to account <strong>the</strong> position <strong>of</strong> <strong>the</strong> <strong>quadriceps</strong> tendon and <strong>the</strong> presence <strong>of</strong> pathology at <strong>the</strong>patell<strong>of</strong>emoral jo<strong>in</strong>t 29;39 .36


__________________________________________________Chapter 2Figure 1 Gross anatomy <strong>of</strong> <strong>the</strong> articular surface <strong>of</strong> <strong>the</strong> patella(From Cl<strong>in</strong>.Orthop.Rel.Res. 1979 144, reproduced with permission)Figure 2 Diagram <strong>of</strong> <strong>the</strong> Patell<strong>of</strong>emoral Jo<strong>in</strong>t Reaction Force (PFJRF)(From The Patella: A Team Approach, reproduced with permission)37


__________________________________________________Chapter 2Figure 3 Diagram <strong>of</strong> contact areas from full knee extension to full flexion(From, Cl<strong>in</strong>ical Orthopedics 1975; 107, reproduced with permission)2.3 Patell<strong>of</strong>emoral Pa<strong>in</strong> SyndromeMany texts describe PFPS as 'multifactorial', which reflects <strong>the</strong> difficulties not only <strong>of</strong>diagnosis but also <strong>in</strong> select<strong>in</strong>g appropriate treatment modalities 1;45 . PFPS is reportedto affect 25% <strong>of</strong> <strong>the</strong> general population at some time, although <strong>in</strong>terest<strong>in</strong>gly, <strong>the</strong>re is adisturb<strong>in</strong>g lack <strong>of</strong> hard demographic evidence for such a statistic. In a sports <strong>in</strong>jury cl<strong>in</strong>iccontext, patell<strong>of</strong>emoral pa<strong>in</strong> was diagnosed <strong>in</strong> 137 out <strong>of</strong> 549 knee <strong>in</strong>juries (25%) 27 .More recent prospective studies have been conducted which have shown a 9%<strong>in</strong>cidence over 2 years follow up <strong>in</strong> an athletic population 46 and 15% <strong>in</strong>cidence over 14weeks military tra<strong>in</strong><strong>in</strong>g 47 .38


__________________________________________________Chapter 22.3.1 NomenclatureFor many years, patients who presented with PFPS were given <strong>the</strong> diagnosischondromalacia patellae (CMP). CMP is a clearly def<strong>in</strong>ed cl<strong>in</strong>ical syndromeaccompanied by macroscopic s<strong>of</strong>ten<strong>in</strong>g, fissur<strong>in</strong>g and fragmentation <strong>of</strong> <strong>the</strong> articularcartilage <strong>of</strong> <strong>the</strong> patella 48 . This diagnosis can only be made by direct visualisation byarthrotomy or arthroscopy 4 or by magnetic resonance scann<strong>in</strong>g with <strong>the</strong> largest ordeepest <strong>of</strong> lesions 49 . Grelsamer & McConnell 50 outl<strong>in</strong>e <strong>in</strong> some detail <strong>the</strong> evolution <strong>of</strong>this term from <strong>the</strong> mid 1920's up to beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> 21 st century. It was <strong>in</strong> <strong>the</strong> 1970's that<strong>the</strong> advent <strong>of</strong> arthroscopy allowed easier view<strong>in</strong>g <strong>of</strong> <strong>the</strong> articular surfaces andsurgeons were report<strong>in</strong>g that many <strong>of</strong> <strong>the</strong>ir patients with patellar pa<strong>in</strong> and diagnosedwith CMP had normal articular cartilage, and some patients found to havechondromalacia had no patellar pa<strong>in</strong> 35;51;52 .Some authors have branded CMP a 'wastebasket' term 33;46 , and although it recursoccasionally this term has largely been superceded by ‘anterior knee pa<strong>in</strong> (AKP)’.More recently ‘PFPS’ has also become common usage, ma<strong>in</strong>ly thanks to authoritiessuch as Rad<strong>in</strong> 53 , who highlighted <strong>the</strong>se discrepancies and called for a specificdiagnosis.2.3.2 AetiologyTria et al. described four schools <strong>of</strong> thought to expla<strong>in</strong> <strong>the</strong> symptoms commonlyassociated with PFPS: Patellar malalignment; <strong>quadriceps</strong> dysplasia; excessivelateralisation and fourthly, biochemical sequences 3 . Present day authorities from both39


__________________________________________________Chapter 2<strong>the</strong> orthopaedic and physio<strong>the</strong>rapy worlds seem to relate PFPS to patellarmalalignment and have even designed algorithms for treatment based on thispremise 50;54 . Some form <strong>of</strong> patellar malalignment is purported to be present <strong>in</strong> <strong>the</strong>vast majority <strong>of</strong> patients with <strong>in</strong>sidious non traumatic patellar pa<strong>in</strong> with <strong>the</strong> exception<strong>of</strong> young teenagers 50 . Malalignment will lead to <strong>the</strong> dynamic problem <strong>of</strong> patellarmaltrack<strong>in</strong>g, <strong>in</strong> which <strong>the</strong> patellar can be seen or felt to be mov<strong>in</strong>g <strong>in</strong>correctly dur<strong>in</strong>gflexion and extension <strong>of</strong> <strong>the</strong> knee. Normal track<strong>in</strong>g will lead to normal alignment as aresult <strong>of</strong> balanced s<strong>of</strong>t tissue restra<strong>in</strong>ts and good dynamic <strong>quadriceps</strong> strength andco-ord<strong>in</strong>ation 54 . Despite patellar malalignment be<strong>in</strong>g accepted as an aetiologicalfactor for PFPS, <strong>the</strong> cause <strong>of</strong> <strong>the</strong> malalignment is less well accepted. Consequently,<strong>the</strong>re are o<strong>the</strong>r commonly cited causes <strong>of</strong> PFPS malalignment that must be<strong>in</strong>vestigated prior to select<strong>in</strong>g <strong>quadriceps</strong> rehabilitation as a first l<strong>in</strong>e treatment. Thislack <strong>of</strong> consensus is <strong>in</strong> itself a typical feature <strong>of</strong> this condition with authorities <strong>in</strong>rehabilitation select<strong>in</strong>g from <strong>the</strong> variety <strong>of</strong> <strong>the</strong>ories proposed for patella malalignment.The common <strong>the</strong>ories are:2.3.2.1 Abnormal foot pronationVarious <strong>in</strong>vestigations have used static goniometric 55 , k<strong>in</strong>ematic 56 , k<strong>in</strong>etic 57 and evendynamic visual estimation 58to assess <strong>the</strong> position <strong>of</strong> <strong>the</strong> foot <strong>in</strong> general and <strong>the</strong>subtalar jo<strong>in</strong>t <strong>in</strong> particular <strong>of</strong> patients with PFPS. All <strong>of</strong> <strong>the</strong>se studies have establisheda relationship between ei<strong>the</strong>r excessive or prolonged pronation and PFPS. This isdue to abnormal pronation caus<strong>in</strong>g a compensatory tibial external rotation. It has40


__________________________________________________Chapter 2been found that <strong>in</strong>creased external tibial rotation (torsion) is associated with <strong>in</strong>stability<strong>of</strong> <strong>the</strong> patell<strong>of</strong>emoral jo<strong>in</strong>t 59 . This is probably due to <strong>the</strong> tibial rotation caus<strong>in</strong>g patellamalalignment and torsional stresses at <strong>the</strong> knee normally a valgus vector force dur<strong>in</strong>g<strong>the</strong> gait cycle 50 . Foot postural problems can usually be corrected through an orthoticdevice and lead to a reduction <strong>in</strong> PFPS symptomology 60 or retra<strong>in</strong><strong>in</strong>g antipronatoryfoot <strong>muscle</strong>s ra<strong>the</strong>r than those <strong>of</strong> <strong>the</strong> <strong>quadriceps</strong> 50 .2.3.2.2 S<strong>of</strong>t tissue tightnessIn general four <strong>muscle</strong>s can cause biomechanical dysfunction with subsequentpatell<strong>of</strong>emoral malalignment. Tightness <strong>of</strong> any <strong>of</strong> <strong>the</strong> <strong>muscle</strong>s listed can have anadverse effect <strong>of</strong> patell<strong>of</strong>emoral biomechanics 50 .• Rectus Femoris – tightness <strong>of</strong> <strong>the</strong> rectus femoris results <strong>in</strong> a lack <strong>of</strong> full glide <strong>in</strong><strong>the</strong> femoral trochlear dur<strong>in</strong>g knee flexion.• Hamstr<strong>in</strong>gs – tightness <strong>of</strong> <strong>the</strong> hamstr<strong>in</strong>gs can <strong>in</strong>crease <strong>the</strong> dynamic ‘Q’ angleresult<strong>in</strong>g <strong>in</strong> lateral track<strong>in</strong>g <strong>of</strong> <strong>the</strong> patella.• Ilio-Tibial band – tightness <strong>of</strong> <strong>the</strong> Ilio-Tibial band causes lateral track<strong>in</strong>g andtilt<strong>in</strong>g <strong>of</strong> <strong>the</strong> patella and a resultant weakness <strong>of</strong> <strong>the</strong> medial ret<strong>in</strong>aculum.• Gastrocnemius - due to its <strong>in</strong>sertion above <strong>the</strong> knee jo<strong>in</strong>t this <strong>muscle</strong> can act asa weak knee flexor. Tightness, <strong>the</strong>refore, results <strong>in</strong> <strong>the</strong> same problems as <strong>the</strong>hamstr<strong>in</strong>g <strong>group</strong>.41


__________________________________________________Chapter 22.3.2.3 Proprioception dysfunctionRecently, it has been proposed that patients with PFPS may exhibit proprioceptivedysfunction. As yet <strong>the</strong> evidence is contradictory 61;62 and it has yet to be established ifthis is cause or effect. However, this new area <strong>of</strong> <strong>in</strong>terest is worthy <strong>of</strong> fur<strong>the</strong>r<strong>in</strong>vestigation as patellar tap<strong>in</strong>g has been shown to improve knee proprioception <strong>in</strong>healthy subjects 632.3.2.4 Muscle imbalance and weaknessProbably <strong>the</strong> most <strong>in</strong>tensive non operative research concerns <strong>the</strong> <strong>muscle</strong> activity <strong>of</strong><strong>the</strong> <strong>quadriceps</strong> <strong>in</strong> general and <strong>the</strong> VMO and VL <strong>in</strong> particular. Unfortunately, this largebody <strong>of</strong> knowledge has produced considerable controversial debate surround<strong>in</strong>g <strong>the</strong>role <strong>of</strong> <strong>the</strong> <strong>quadriceps</strong> <strong>group</strong> <strong>in</strong> <strong>the</strong> aetiology and treatment <strong>of</strong> patell<strong>of</strong>emoral pa<strong>in</strong>. Toexam<strong>in</strong>e this role objectively electromyography (EMG) has been used by many authorsto assess <strong>the</strong> magnitude <strong>of</strong> motor unit activity <strong>of</strong> <strong>the</strong> <strong>quadriceps</strong> (‘activity’) and <strong>the</strong> time<strong>of</strong> onset <strong>of</strong> contractions VMO and VL relative to each o<strong>the</strong>r (‘tim<strong>in</strong>g <strong>of</strong> onset’) 10;64-68 . Thelack <strong>of</strong> agreement amongst <strong>the</strong>se authors has certa<strong>in</strong>ly contributed to discrepancies andmisunderstand<strong>in</strong>gs <strong>in</strong> cl<strong>in</strong>ical practice. For example, an imbalance <strong>of</strong> VMO activityrelative to VL is considered a cause <strong>of</strong> PFPS, yet is based on <strong>in</strong>consistent evidence 10;69 .Similarly, differences <strong>in</strong> <strong>the</strong> tim<strong>in</strong>g <strong>of</strong> onset <strong>of</strong> contractions <strong>of</strong> <strong>the</strong> VMO and VL isregularly cited as a cause <strong>of</strong> PFPS, yet <strong>the</strong> evidence is disputed us<strong>in</strong>g a patellar tendonreflex test<strong>in</strong>g apparatus. 68;70;71 . Powers et al. 11 , look<strong>in</strong>g at both <strong>the</strong>se aspects <strong>in</strong> onestudy, analysed performance <strong>of</strong> <strong>the</strong> <strong>quadriceps</strong> dur<strong>in</strong>g more functional activities such as42


__________________________________________________Chapter 2stair climb<strong>in</strong>g, level and slope walk<strong>in</strong>g. They showed <strong>the</strong>re was nei<strong>the</strong>r imbalancedactivity nor asynchronous tim<strong>in</strong>g <strong>in</strong> any <strong>of</strong> <strong>the</strong> vastii but ra<strong>the</strong>r <strong>the</strong> patients with PFPSshowed a decrease <strong>in</strong> activity for both VMO and VL. This was confirmed by a later studyascend<strong>in</strong>g and descend<strong>in</strong>g stairs 72 .In terms <strong>of</strong> <strong>muscle</strong> weakness, <strong>the</strong>re is evidence that patients with PFPS have weaker<strong>quadriceps</strong> than healthy subjects 30;73;74 . For example, when measured by isok<strong>in</strong>eticdynamometry <strong>the</strong> knee extensors <strong>of</strong> a <strong>group</strong> <strong>of</strong> runners with anterior knee pa<strong>in</strong> weresignificantly weaker than a control <strong>group</strong> <strong>of</strong> runners. Interest<strong>in</strong>gly, <strong>the</strong> extensors <strong>of</strong> <strong>the</strong>non pa<strong>in</strong>ful knee were also weaker than <strong>the</strong> control <strong>group</strong>, <strong>in</strong>dicat<strong>in</strong>g that generalised<strong>quadriceps</strong> weakness was not just as a results <strong>of</strong> pa<strong>in</strong> <strong>in</strong>hibition on <strong>the</strong> <strong>in</strong>jured side butrepresented a bilateral deficit 8 .2.4 Quadriceps <strong>muscle</strong>s2.4.1 IntroductionExercise is <strong>the</strong> most commonly chosen method <strong>of</strong> conservative treatment for PFPS withrehabilitation focuss<strong>in</strong>g on <strong>the</strong> <strong>quadriceps</strong> femoris <strong>group</strong>. This section aims to review <strong>the</strong>anatomy and role <strong>of</strong> <strong>quadriceps</strong> exercise <strong>in</strong> PFPS. It concludes that although exercisecan still play a major role <strong>in</strong> <strong>the</strong> treatment <strong>of</strong> this condition, <strong>the</strong> currently used exerciseregimes for this <strong>muscle</strong> <strong>group</strong> can sometimes <strong>in</strong>crease symptomology if <strong>the</strong> regime is<strong>in</strong>correctly adhered to or is too demand<strong>in</strong>g for <strong>the</strong> patell<strong>of</strong>emoral jo<strong>in</strong>t.43


__________________________________________________Chapter 2When a diagnosis <strong>of</strong> PFPS has been made, conservative treatment <strong>of</strong>ten forms <strong>the</strong>ma<strong>in</strong>stay <strong>of</strong> management, with patients experienc<strong>in</strong>g a favourable response rate <strong>of</strong> 60-80% 75 . Response rates <strong>of</strong> 95% have also been reported without firm statistics and with<strong>the</strong> caveat that conservative treatment can mean ei<strong>the</strong>r exercise, stretch<strong>in</strong>g, kneebrac<strong>in</strong>g, activity modification or medication ei<strong>the</strong>r separately or <strong>in</strong> comb<strong>in</strong>ation 3;76 . Of<strong>the</strong>se treatment components <strong>the</strong> most important is thought to be exercise 77 , with<strong>quadriceps</strong> exercises <strong>in</strong> particular be<strong>in</strong>g employed 78 .There can be little doubt <strong>of</strong> <strong>the</strong> importance <strong>of</strong> normal <strong>quadriceps</strong> activity to <strong>the</strong> functional<strong>in</strong>tegrity <strong>of</strong> <strong>the</strong> knee jo<strong>in</strong>t. Lieb and Perry 78;79 describe <strong>the</strong> loss <strong>of</strong> term<strong>in</strong>al extension <strong>of</strong><strong>the</strong> knee jo<strong>in</strong>t as <strong>in</strong>dicative <strong>of</strong> general <strong>quadriceps</strong> weakness.In an attempt to correct <strong>the</strong> problem <strong>of</strong> generalised <strong>quadriceps</strong> weakness most texts <strong>of</strong>PFPS have <strong>in</strong>cluded <strong>in</strong>structions for general <strong>quadriceps</strong> exercises which usually consist<strong>of</strong> isometric, <strong>in</strong>ner range (term<strong>in</strong>al extension or short arc), eccentric and straight legraise exercises. Different studies advocate widely vary<strong>in</strong>g weight resistance andrepetition rates. Although <strong>the</strong> aim <strong>of</strong> <strong>the</strong>se exercises is said to be <strong>quadriceps</strong>'streng<strong>the</strong>n<strong>in</strong>g,' present knowledge casts doubt on <strong>the</strong> accuracy <strong>of</strong> such a statement and<strong>the</strong> value <strong>of</strong> some <strong>of</strong> <strong>the</strong>se exercise regimens.2.4.2 AnatomyThe <strong>quadriceps</strong> femoris is <strong>the</strong> only muscular <strong>group</strong> that causes extension <strong>of</strong> <strong>the</strong>knee 80 . It is comprised <strong>of</strong> four heads: rectus femoris (RF), vastus medialis (VM),vastus lateralis (VL) and vastus <strong>in</strong>termedius (VI)(Figure 4). These four <strong>muscle</strong>s44


__________________________________________________Chapter 2converge <strong>in</strong>to a common tendon that crosses <strong>the</strong> knee jo<strong>in</strong>t, envelopes <strong>the</strong> patella <strong>in</strong>a multilam<strong>in</strong>ar fashion and <strong>in</strong>serts <strong>in</strong>to <strong>the</strong> tibial tuberosity. A contraction <strong>of</strong> any <strong>of</strong><strong>the</strong>se components will cause knee extension. The four components also equaliseeach o<strong>the</strong>r medially and laterally to cause central alignment <strong>of</strong> <strong>the</strong> patella <strong>in</strong> <strong>the</strong>femoral groove dur<strong>in</strong>g knee extension (Figure 5). RF orig<strong>in</strong>ates from <strong>the</strong> anterior<strong>in</strong>ferior iliac sp<strong>in</strong>e and from just above <strong>the</strong> acetabulum. Thus, it is <strong>the</strong> only <strong>muscle</strong> <strong>of</strong><strong>the</strong> <strong>quadriceps</strong> cross<strong>in</strong>g two jo<strong>in</strong>ts and when contracted causes hip flexion and kneeextension simultaneously.VI lies directly anterior and lateral to <strong>the</strong> shaft <strong>of</strong> <strong>the</strong> femur. Its fibres end <strong>in</strong> anaponeurosis that forms <strong>the</strong> deep part <strong>of</strong> <strong>the</strong> <strong>quadriceps</strong> femoris tendon 81 .The VM <strong>muscle</strong> has been described as hav<strong>in</strong>g two parts; <strong>the</strong> vastus medialis oblique(VMO) and vastus medialis longus (VML)(Figure 6). These two components areseparated from each o<strong>the</strong>r by a fascial plane 82 conta<strong>in</strong><strong>in</strong>g a branch <strong>of</strong> <strong>the</strong> femoral nervewhich sub-divides to <strong>in</strong>nervate both VMO and VML. The VML fibres lie at an angle <strong>of</strong>15 0 to <strong>the</strong> longitud<strong>in</strong>al axis <strong>of</strong> <strong>the</strong> femur. The fibres <strong>of</strong> <strong>the</strong> VMO lie at 40-45 0 to <strong>the</strong> sameaxis. The VMO receives <strong>the</strong> richest nerve supply <strong>of</strong> <strong>the</strong> <strong>quadriceps</strong> due to a distalward<strong>in</strong>crease <strong>in</strong> <strong>the</strong> number <strong>of</strong> nerve fibres 83 . VM has also been described as hav<strong>in</strong>g atripartite arrangement <strong>of</strong> upper, middle and lower fibres 83 , though <strong>the</strong> bipartitearrangement described above is more generally accepted.45


__________________________________________________Chapter 2Figure 4 Cross section <strong>of</strong> <strong>the</strong> <strong>quadriceps</strong> femoris <strong>muscle</strong> <strong>group</strong>(from Gray’s Anatomy, reproduced with permission)VL <strong>muscle</strong> has also been described as hav<strong>in</strong>g two parts 82 . The proximal fibres form <strong>the</strong>vastus lateralis longus (VLL) while <strong>the</strong> distal and more horizontal fibres form <strong>the</strong> vastuslateralis oblique (VLO). An areolar fascial plane separates <strong>the</strong> two, but both sectionshave <strong>the</strong> same nerve supply. The VLL <strong>in</strong>serts <strong>in</strong>to <strong>the</strong> base <strong>of</strong> <strong>the</strong> patella but <strong>the</strong> VLOthat is said to orig<strong>in</strong>ate from <strong>the</strong> iliotibial tract and <strong>the</strong> <strong>in</strong>tramuscular septum <strong>in</strong>serts <strong>in</strong>to<strong>the</strong> lateral marg<strong>in</strong>s <strong>of</strong> <strong>the</strong> patella. The VML and VLL are seen to cross each o<strong>the</strong>r as anaponeurotic expansion <strong>in</strong> front <strong>of</strong> <strong>the</strong> <strong>quadriceps</strong> tendon. Unlike VM <strong>the</strong> two components<strong>of</strong> VL are generally considered to function as one <strong>in</strong>tegrated unit.46


__________________________________________________Chapter 2Figure 5 Direction <strong>of</strong> pull <strong>of</strong> <strong>the</strong> Quadriceps(from: The Patella: A Team Approach, reproduced with permission)2.4.3 Methods <strong>of</strong> Quadriceps exercise.There is a variety <strong>of</strong> exercises employed to rehabilitate <strong>the</strong> <strong>quadriceps</strong> <strong>muscle</strong>s andall are used <strong>in</strong> some form for patients with PFPS.• Firstly, isometric exercise that has been found to nei<strong>the</strong>r selectively fatigue <strong>the</strong> VMO<strong>muscle</strong> 84 nor selectively exercise it 26 .• Secondly, <strong>in</strong>ner range (also known as short arc or term<strong>in</strong>al extension exercise) thathas been shown to have equal EMG activity 64 <strong>of</strong> <strong>the</strong> VMO and VL.47


__________________________________________________Chapter 2• Thirdly, <strong>the</strong> straight leg raise. Despite <strong>the</strong> relatively small activation <strong>of</strong> <strong>the</strong><strong>quadriceps</strong> with straight leg raise, exercise regimens employ<strong>in</strong>g this activity (15m<strong>in</strong>utes, four times daily) over three months resulted <strong>in</strong> an <strong>in</strong>crease <strong>in</strong> EMG activityfor all <strong>quadriceps</strong> components tested 69 . This <strong>in</strong>crease <strong>in</strong> EMG activity wasaccompanied by some improvement <strong>in</strong> PFPS symptoms but <strong>the</strong> authors proposedthat this may not be <strong>the</strong> most effective form <strong>of</strong> tra<strong>in</strong><strong>in</strong>g for this syndrome.Figure 6. Anterior view <strong>of</strong> <strong>the</strong> superficial <strong>quadriceps</strong> femoris.48


__________________________________________________Chapter 2The three commonly used methods above have been described as Open K<strong>in</strong>etic Cha<strong>in</strong>exercises (OKC) as def<strong>in</strong>ed by Steidler 85 . Closed K<strong>in</strong>etic Cha<strong>in</strong> (CKC) exercises existwhen nei<strong>the</strong>r <strong>the</strong> proximal nor distal segments are free to move due to externalresistance e.g. a squat 86 . The use <strong>of</strong> CKC exercises 87;88 has been proposed as a morefunctional method <strong>of</strong> rehabilitation <strong>in</strong> PFPS 89;90ma<strong>in</strong>ly because <strong>of</strong> <strong>the</strong> role CKCexercises are said to have <strong>in</strong> tra<strong>in</strong><strong>in</strong>g <strong>the</strong> <strong>quadriceps</strong> eccentrically and <strong>the</strong>ir role <strong>in</strong> coord<strong>in</strong>ation91 .An additional method <strong>of</strong> rehabilitat<strong>in</strong>g <strong>the</strong> <strong>quadriceps</strong> is to use eccentric exercise. Dviret al. 73 found a significant (p


____________________________________________________________Chapter 3Chapter 3ELECTRICAL STIMULATION50


____________________________________________________________Chapter 33 ELECTRICAL STIMULATION3.1 IntroductionAs stated <strong>in</strong> section 1.2 ever s<strong>in</strong>ce methods <strong>of</strong> generat<strong>in</strong>g and stor<strong>in</strong>g electricity werefirst discovered <strong>in</strong> <strong>the</strong> 1740’s <strong>the</strong>re has been considerable <strong>in</strong>terest <strong>in</strong> <strong>the</strong> role that<strong>electrical</strong> activity plays <strong>in</strong> treat<strong>in</strong>g illness 18 . This chapter now cont<strong>in</strong>ues to summariseone particularly important area <strong>of</strong> research, namely that <strong>of</strong> <strong>quadriceps</strong> <strong>muscle</strong>rehabilitation and attempts to summarise <strong>the</strong> f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> this <strong>in</strong>creas<strong>in</strong>gly complexarea. Computerised searches were carried out from 1996 to <strong>the</strong> end <strong>of</strong> September2001. Databases <strong>in</strong>cluded Medl<strong>in</strong>e, W<strong>in</strong>spirs Silver Platter Information RetrievalSystem, Excerpta Medica, C<strong>in</strong>ahl, and Physio<strong>the</strong>rapy database. Key words forsearch<strong>in</strong>g <strong>in</strong>cluded <strong>quadriceps</strong>, <strong>muscle</strong>, <strong>stimulation</strong>, <strong>electrical</strong>, electricity,rehabilitation, femoris, vastus medialis, and vastus lateralis. The search was limited toEnglish language journals. Additional search<strong>in</strong>g was undertaken us<strong>in</strong>g referencesfrom exist<strong>in</strong>g reviews <strong>in</strong> <strong>the</strong> field and from publications obta<strong>in</strong>ed from electronicsearch<strong>in</strong>g. The criteria for <strong>in</strong>clusion <strong>of</strong> a study <strong>in</strong> <strong>the</strong> review were orig<strong>in</strong>al researchonly, no reviews; only <strong>stimulation</strong> over a treatment period <strong>of</strong> days or weeks but noacute <strong>stimulation</strong> with<strong>in</strong> one <strong>stimulation</strong> period; no functional <strong>electrical</strong> <strong>stimulation</strong> ortreatment for paraplegia.51


____________________________________________________________Chapter 33.2 Electrical <strong>stimulation</strong> <strong>of</strong> animal <strong>muscle</strong>Investigations on animals have provided useful <strong>in</strong>formation on <strong>the</strong> effects <strong>of</strong> EMS at acellular level. Studies <strong>in</strong>volv<strong>in</strong>g chronic low frequency <strong>stimulation</strong> (i.e. 10Hz, 24hoursdaily for several weeks) have shown that it affects <strong>the</strong> major functional elements <strong>of</strong><strong>the</strong> <strong>muscle</strong> fibre such as <strong>the</strong> calcium (Ca 2+ ) regulatory system, <strong>the</strong> my<strong>of</strong>ibrillarapparatus, energy metabolism and <strong>the</strong> microvascular system 92 .3.2.1 Calcium regulatory system changesCa 2+ is released from <strong>the</strong> sarcoplasmic reticulum <strong>in</strong>to <strong>the</strong> myoplasm <strong>in</strong> response toexcitation <strong>of</strong> <strong>the</strong> sarcolemma and T-tubules by a nerve impulse. This excitation canbe ei<strong>the</strong>r natural (voluntary contraction) or artificial (<strong>electrical</strong> <strong>stimulation</strong>). 48 hours <strong>of</strong>low frequency EMS can result <strong>in</strong> significant decreases <strong>in</strong> <strong>the</strong> <strong>in</strong>itial rate and maximumcapacity <strong>of</strong> Ca 2+uptake <strong>in</strong> <strong>the</strong> sarcoplasmic reticulum. These changes becomegreater with longer <strong>stimulation</strong> and are accompanied by decreases <strong>in</strong> <strong>the</strong> activity <strong>of</strong>Ca 2+transport ATPase 93 . There are also transformations <strong>in</strong> <strong>the</strong> sarcoplasmicreticulum to that resembl<strong>in</strong>g slow twitch <strong>muscle</strong> <strong>in</strong>clud<strong>in</strong>g a decrease <strong>in</strong> calsequestr<strong>in</strong>(<strong>the</strong> major b<strong>in</strong>d<strong>in</strong>g Ca 2+ prote<strong>in</strong> <strong>of</strong> <strong>the</strong> sarcoplasmic reticulum) and an <strong>in</strong>crease <strong>in</strong>phospholamban (a prote<strong>in</strong> normally only present <strong>in</strong> slow twitch fibres and cardiac<strong>muscle</strong>) 92 . These changes correlate well with ultrastructural changes such asdecreases <strong>in</strong> <strong>the</strong> number <strong>of</strong> T-tubules, term<strong>in</strong>al cisternae and <strong>the</strong> longitud<strong>in</strong>alsarcoplasmic reticulum 92 . Interest<strong>in</strong>gly, <strong>the</strong>se changes at <strong>the</strong> cellular level return t<strong>of</strong>ast twitch <strong>muscle</strong> levels 2-4 weeks after cessation <strong>of</strong> <strong>stimulation</strong> 94 .52


____________________________________________________________Chapter 33.2.2 My<strong>of</strong>ibrillar apparatus changesThe slow<strong>in</strong>g <strong>of</strong> a contraction <strong>in</strong>duced by chronic low frequency EMS results fromalterations <strong>in</strong> <strong>the</strong> Ca 2+dynamics and subsequently from changes <strong>in</strong> <strong>the</strong> my<strong>of</strong>ibrilapparatus from fast to slow characteristics. These <strong>in</strong>clude ultrastructural changessuch as widen<strong>in</strong>g <strong>of</strong> Z bands (thus resembl<strong>in</strong>g slow twitch fibres) and a significantdrop <strong>in</strong> weight and CSA although <strong>the</strong> total number <strong>of</strong> fibres is reta<strong>in</strong>ed 93 . It alsoseems that chronic <strong>stimulation</strong> leads to a thorough rearrangement <strong>of</strong> <strong>the</strong> my<strong>of</strong>ibrillarprote<strong>in</strong>s (tropon<strong>in</strong> and tropomyos<strong>in</strong> <strong>in</strong> <strong>the</strong> th<strong>in</strong> filament and myos<strong>in</strong> <strong>in</strong> <strong>the</strong> thickfilament) <strong>in</strong> <strong>the</strong> sense <strong>of</strong> a fast to slow transformation <strong>of</strong> <strong>the</strong> sarcomere 92 .3.2.3 Energy metabolism changesThe <strong>in</strong>crease <strong>in</strong> contractile activity imposed on fast twitch glycolytic <strong>muscle</strong> fibres,which are only <strong>in</strong>termittently active dur<strong>in</strong>g normal locomotion, causes an <strong>in</strong>creaseddemand for enhanced energy supply. Because fast glycolytic fibres are not usuallyexposed to susta<strong>in</strong>ed activity, <strong>the</strong> <strong>muscle</strong> moves from anaerobic to aerobicmetabolism to meet this demand 93 . Therefore <strong>the</strong>re are important alterations <strong>in</strong> <strong>the</strong>enzymes <strong>of</strong> <strong>the</strong> energy supply <strong>in</strong> <strong>the</strong> <strong>muscle</strong> undergo<strong>in</strong>g chronic <strong>stimulation</strong>.There are also important vascular changes concurrent with this. It has been notedthat <strong>the</strong>re can be a 5 fold <strong>in</strong>crease <strong>in</strong> capillary density with a marked elevation <strong>in</strong> <strong>the</strong>aerobic-oxidative capacity <strong>in</strong> fast twitch <strong>muscle</strong> from chronic low frequency EMS 94 .These vascular changes are dramatic enough to be observed even by <strong>the</strong> naked eyeas fast twitch <strong>muscle</strong>s (e.g. <strong>the</strong> rabbit tibialis anterior) change to <strong>the</strong> deep red colour53


____________________________________________________________Chapter 3associated with oxidative <strong>muscle</strong> characteristics 92 . Capillary density (i.e. <strong>the</strong> number<strong>of</strong> capillaries per area) is achieved probably as a result <strong>of</strong> an <strong>in</strong>crease <strong>in</strong> <strong>the</strong> number<strong>of</strong> capillaries and a decrease <strong>in</strong> <strong>the</strong> <strong>muscle</strong> fibre diameter, both <strong>of</strong> which occur afterchronic low frequency <strong>stimulation</strong>. This has <strong>the</strong> effect <strong>of</strong> improv<strong>in</strong>g <strong>the</strong> oxygen supplyto improve <strong>the</strong> oxidative changes <strong>in</strong> activity.3.2.4 Neurogenic changesIn contrast to <strong>the</strong> plethora <strong>of</strong> work to observe metabolic, vascular, my<strong>of</strong>ibrillar andcellular changes <strong>in</strong> <strong>muscle</strong> after chronic <strong>stimulation</strong>, <strong>the</strong>re has been very little work on<strong>the</strong> neural changes results from <strong>stimulation</strong>. The only published work <strong>in</strong> animals hasbeen concerned with nerve damage aris<strong>in</strong>g from chronic <strong>stimulation</strong> <strong>in</strong> preparation <strong>of</strong>phrenic nerve <strong>stimulation</strong> on humans 95 . Some experts have speculated that <strong>the</strong>remay be some changes <strong>in</strong> <strong>the</strong> nerve due to <strong>the</strong> antidromic nature <strong>of</strong> <strong>the</strong> stimulus andthat <strong>the</strong>re may be some adaptive changes to <strong>the</strong> nerve due to <strong>the</strong> <strong>in</strong>creas<strong>in</strong>g number<strong>of</strong> action potentials be<strong>in</strong>g delivered by a stimulator, but as yet <strong>the</strong>re is little or noevidence (Jarvis, personal communication 2002).3.2.5 SummaryThere seems to be irrefutable evidence <strong>in</strong> <strong>the</strong> animal model that EMS causes anadaptive change <strong>in</strong> a <strong>muscle</strong>’s normal pattern <strong>of</strong> use and that <strong>the</strong> changes underly<strong>in</strong>gthis response <strong>in</strong>volve every aspect <strong>of</strong> <strong>the</strong> metabolic, circulatory and energy systems 96 .54


____________________________________________________________Chapter 3This physiological basis for EMS is a basis to explor<strong>in</strong>g its efficacy both <strong>in</strong> terms <strong>of</strong>physiological changes observed <strong>in</strong> <strong>the</strong> <strong>muscle</strong>s and functional outcome as measuredby handicap, impairment and disability <strong>in</strong> humans. The next sections review <strong>the</strong> role<strong>of</strong> EMS <strong>in</strong> both healthy subjects and those with weakened <strong>quadriceps</strong> <strong>muscle</strong>s.3.3 Electrical <strong>stimulation</strong> <strong>of</strong> human <strong>quadriceps</strong> <strong>muscle</strong>Considerable debate has surrounded <strong>the</strong> role <strong>of</strong> EMS <strong>in</strong> <strong>in</strong>creas<strong>in</strong>g normal human<strong>quadriceps</strong> <strong>muscle</strong> strength. Many papers cite <strong>the</strong> work <strong>of</strong> <strong>the</strong> Russian <strong>in</strong>vestigatorKots, who reported that EMS techniques could produce a 30-40% <strong>in</strong>crease <strong>in</strong> <strong>muscle</strong>strength <strong>in</strong> already highly tra<strong>in</strong>ed athletes 97 . This section considers a number <strong>of</strong> o<strong>the</strong>r<strong>in</strong>vestigations that have attempted to replicate <strong>the</strong>se observations <strong>in</strong> healthy<strong>in</strong>dividuals. Unfortunately, it is difficult to come to any firm conclusions from <strong>the</strong>sepublications. Whilst some authors have compared EMS with exercise 31;32;98-114 , o<strong>the</strong>rshave compared different types <strong>of</strong> EMS with each o<strong>the</strong>r 115 116;117 or had no control orcomparison <strong>group</strong> at all 118-123 . Even with<strong>in</strong> each <strong>of</strong> <strong>the</strong>se <strong>group</strong>s <strong>of</strong> papers EMSregimes, methodological approaches, outcome measures and many o<strong>the</strong>r variablefactors made direct comparison impossible. It is aga<strong>in</strong>st this background that <strong>the</strong>drawn conclusions <strong>in</strong> this section are discussed.55


____________________________________________________________Chapter 33.3.1 Quadriceps Strength3.3.1.1 EMS or isometric exerciseTable 1 summarises <strong>the</strong> results for strength/torque changes described <strong>in</strong> sixpublications that compared isometric exercise with EMS. Only Mohr et al. 103 foundsignificant improvements <strong>in</strong> isometric <strong>quadriceps</strong> <strong>muscle</strong> strength with isometricexercise (14.7%, p


____________________________________________________________Chapter 3Table 1. Comparison <strong>of</strong> strength/torque ga<strong>in</strong>sbetween isometric exercise and <strong>electrical</strong>ly stimulated <strong>group</strong>s.Author Average %improvement <strong>in</strong>strength ga<strong>in</strong> forexercise <strong>group</strong>.Kramer &19% 13%Semple 100Average %improvements<strong>in</strong> strength ga<strong>in</strong>for EMS <strong>group</strong>.12% EMS&ExBetween <strong>group</strong>statisticalcomparisonsp= 0.256Laughman et al. 101 18% 22% NSS P value not statedMcMiken et al. 102 25% 22% p> 0.05Mohr et al. 103 14.7% 0.7% p< 0.05Kubiak et al. 107 43% 33% p> 0.05Caggiano et al. 109 10% 8.5% p= 0.7593.3.1.2 EMS or isok<strong>in</strong>etic exerciseTwo studies directly compare isok<strong>in</strong>etic exercise regimes with faradic EMS <strong>in</strong> healthy<strong>quadriceps</strong> 99;105 . Improvements <strong>in</strong> <strong>quadriceps</strong> power have been described for bothstudies though one case 99 was only able to provide a descriptive improvement (42%for <strong>the</strong> exercise <strong>group</strong>, 22% for <strong>the</strong> stimulated <strong>group</strong>), due to <strong>the</strong> small number <strong>of</strong>subjects <strong>in</strong> each <strong>group</strong>. Interest<strong>in</strong>gly, Nobbs & Rhodes 105 only describeimprovements <strong>in</strong> strength at velocities equal to or slower than <strong>the</strong> exercise tra<strong>in</strong><strong>in</strong>gvelocities i.e. 30 0 /s or 0 0 /s with no significant differences at angular velocities <strong>of</strong>100 0 /s or 180 0 /s. When results are re-calculated to reveal absolute percentagechanges <strong>the</strong> stimulated <strong>group</strong>, when treated isometrically at 45 0knee flexion,57


____________________________________________________________Chapter 3displayed percentage improvements <strong>of</strong> 29%, 11%, 9% and 1% at angular velocities <strong>of</strong>0 0 , 30 0 , 100 0 and 180 0 /sec respectively.3.3.1.3 EMS and isometric or isok<strong>in</strong>etic exercise comb<strong>in</strong>edA number <strong>of</strong> papers have attempted to describe <strong>the</strong> comb<strong>in</strong>ed effects <strong>of</strong> EMS whilstperform<strong>in</strong>g voluntary exercise. All papers agreed unequivocally that a comb<strong>in</strong>ation <strong>of</strong>EMS and exercise simultaneously is no more effective than exercisealone 105;106;108;110;124;125 . Fur<strong>the</strong>r more, this conclusion was arrived at irrespective <strong>of</strong>whe<strong>the</strong>r <strong>the</strong> exercise regime was isometric or isok<strong>in</strong>etic. It would, <strong>the</strong>refore, appearthat <strong>the</strong>re is noth<strong>in</strong>g to be ga<strong>in</strong>ed from comb<strong>in</strong><strong>in</strong>g <strong>the</strong>se two forms <strong>of</strong> <strong>in</strong>tervention <strong>in</strong>healthy <strong>quadriceps</strong>. One explanation proposed was that subjects reliedsubconsciously on <strong>the</strong> EMS current for extra effort towards a maximumcontraction 125 .Conversely, Strojnik 126used a s<strong>in</strong>gle test laboratory protocol withsubjects perform<strong>in</strong>g an isometric contraction at 45 oknee flexion, an isotonicconcentric activity from 90 o to full knee extension and a squat jump with and withoutEMS. He found that superimposed 0.8 s 100Hz EMS improved isometric torque by23% and isotonic torque by 4% <strong>of</strong> basel<strong>in</strong>e measures, but did not alter <strong>the</strong> morecomplex multi jo<strong>in</strong>t activity <strong>of</strong> squat jumps.58


____________________________________________________________Chapter 33.3.2 EMS at vary<strong>in</strong>g knee flexion anglesThe example from Nobbs and Rhodes 105 <strong>in</strong> section 3.2.1.2 above raises <strong>in</strong>terest<strong>in</strong>gquestions as to whe<strong>the</strong>r tra<strong>in</strong><strong>in</strong>g with EMS at one angle <strong>of</strong> knee flexion can <strong>in</strong>fluencestrength ga<strong>in</strong>s at o<strong>the</strong>r angles. This section <strong>of</strong> <strong>the</strong> review looked at this as a possibleconfound<strong>in</strong>g variable <strong>in</strong> assess<strong>in</strong>g <strong>muscle</strong> function.3.3.2.1 Isometric strength ga<strong>in</strong>sIn <strong>the</strong> majority <strong>of</strong> cases <strong>the</strong> knee angle adopted for EMS was <strong>the</strong> same as thatassumed dur<strong>in</strong>g test<strong>in</strong>g. A standardised position <strong>of</strong> 60 0 knee flexion was described bymany authors 32;98;100;101;103;107;109;110;113;121 . O<strong>the</strong>r authors cited different angles rang<strong>in</strong>gfrom 15 0 to 90 0 knee flexion 118;119 . In all cases hip flexion, if mentioned, was keptconstant for both treatment and assessment positions. When multiple angles were<strong>in</strong>vestigated, <strong>the</strong> improvement <strong>in</strong> strength occurred nearest <strong>the</strong> test angle 127 . Table 2summarises <strong>the</strong> percentage strength/torque ga<strong>in</strong>s over <strong>the</strong> range <strong>of</strong> knee flexionangles studied and Table 3 <strong>the</strong> parameters used. Each <strong>of</strong> <strong>the</strong>se studies describesstatistical improvement <strong>in</strong> <strong>quadriceps</strong> isometric <strong>muscle</strong> strength, although <strong>the</strong> range<strong>of</strong> results is quite varied (1 – 49.7%) and probably due to <strong>the</strong> wide diversity <strong>in</strong>methodological approachs and <strong>stimulation</strong> regimens. An improvement <strong>in</strong> isometric butnot isok<strong>in</strong>etic strength follow<strong>in</strong>g EMS has been noted on <strong>the</strong> dom<strong>in</strong>ant leg <strong>of</strong> healthysubjects us<strong>in</strong>g 50Hz on an alternat<strong>in</strong>g 2000Hz frequency 111 , but <strong>the</strong>se authorsconceded that <strong>the</strong>ir study had low power (1-β ranged from 0.24-0.45) due to a smallsample size. Fur<strong>the</strong>rmore, although <strong>the</strong> <strong>in</strong>creases <strong>in</strong> isometric strength were59


____________________________________________________________Chapter 3“impressive” and statistically significant (P < 0.05) <strong>the</strong>y doubted <strong>the</strong> value <strong>of</strong> EMS <strong>in</strong>supply<strong>in</strong>g <strong>the</strong> force needed for motor skills (as assessed isok<strong>in</strong>etically at 30 0 /s and60 0 /s), although it is helpful when normal movement is hampered.3.3.2.2 Isok<strong>in</strong>etic strength ga<strong>in</strong>sIn contrast to <strong>the</strong> above studies where <strong>the</strong> <strong>muscle</strong> was stimulated and testedisometrically at <strong>the</strong> same angle <strong>of</strong> knee flexion, o<strong>the</strong>r studies have considered <strong>the</strong>effects <strong>of</strong> <strong>stimulation</strong> and knee position on isok<strong>in</strong>etic function. Hartsell 104 stimulated at65Hz an isometrically constra<strong>in</strong>ed <strong>quadriceps</strong> <strong>muscle</strong> while <strong>the</strong> subject was <strong>in</strong> <strong>the</strong>sup<strong>in</strong>e position with <strong>the</strong> knee flexed at 20 - 30 0 , but tested <strong>quadriceps</strong> ‘dynamicstrength’ (30 0 /sec) and ‘muscular power’ (180 0 /sec) throughout an active range <strong>of</strong>motion <strong>of</strong> 90 0 to 0 0 knee flexion. Only a m<strong>in</strong>imal <strong>in</strong>crease <strong>in</strong> isok<strong>in</strong>etic values at bothvelocities was reported. Halbach and Straus 99 stimulated an isometrically constra<strong>in</strong>ed<strong>quadriceps</strong> <strong>muscle</strong> at 45 0 knee flexion. Quadriceps strength was tested isok<strong>in</strong>eticallyat 120 0 /s throughout a range <strong>of</strong> motion <strong>of</strong> 90 0 to 0 0 . This study described an averageimprovement <strong>in</strong> isok<strong>in</strong>etic strength <strong>of</strong> 22%. The two studies cannot be compareddirectly due to <strong>the</strong> large number <strong>of</strong> methodological differences between <strong>the</strong>m. Therewas only paper with<strong>in</strong> this series that did not tra<strong>in</strong> isometrically and testisok<strong>in</strong>etically 112 . Fahey et al. 112 looked at <strong>the</strong> effect <strong>of</strong> knee angles 0 0 and 65 0 dur<strong>in</strong>g<strong>stimulation</strong> tra<strong>in</strong><strong>in</strong>g. on healthy subjects. They concluded that EMS at 2000impulses/m<strong>in</strong> was more effective at <strong>in</strong>creas<strong>in</strong>g isok<strong>in</strong>etic, but not isometric, <strong>muscle</strong>strength if <strong>the</strong> knee was flexed at 65 0 . No explanation could be <strong>of</strong>fered for this f<strong>in</strong>d<strong>in</strong>g,60


____________________________________________________________Chapter 3but <strong>the</strong>y speculated that <strong>the</strong> improvement was due to ei<strong>the</strong>r a stretch stimulus appliedto <strong>the</strong> <strong>quadriceps</strong> at 65 0 , or (similar to Nobbs and Rhodes’s 105 explanation) due togreater tension with<strong>in</strong> <strong>the</strong> <strong>quadriceps</strong> dur<strong>in</strong>g <strong>the</strong> <strong>stimulation</strong> at 65 0 knee flexion.61


____________________________________________________________Chapter 3AuthorTable 2. Percentage strength / torque ga<strong>in</strong>sover a range <strong>of</strong> knee flexion treatment and assessment angles.Treatmentangle (kneeflexion)Assessmentangle (kneeflexion)improvement % MVIC P valueKramer &60 o 60 o 13% Max. Tol. p


____________________________________________________________Chapter 3Table3. Comparison <strong>of</strong> Electrical Stimulation Parameters and delivery.Monopolar Max.author waveform <strong>in</strong>tensity frequency duty cycle sessions improvementHalbach &50Hz 10:50:10 15 22%Straus 99 toleranceKramer and Monoasymm Average Not stated 10:50:10 10-12 13%Semple 100 biphasic 87%MVCLaughman et Monosymm 80% 50Hz * 10:10:10 12 44%MVC5% MVC 25Hz* 10:50:10 28 13.2%25%MVC50%MVCMax.tolerance50%MVCMax.25Hz25.3%50Hz 5:5:30 15 24.2%48.5%Balogan et al 117 Monophasictw<strong>in</strong> peak20Hz45Hz80Hz10:50:10 ? Average 24%all <strong>group</strong>sSoo et al 121 Mono symm50Hz* 15:10:8 10 47.7% menbiphasic8.1% womenSt Pierre et Bi symm50Hz* 10:50:10 7 not statedal. 120Biphasic toleranceObajuluwa 119 Mono Max. surged 3:10:10 30 49.7%asymm tolerance faradicbiphasic* = on a modulated frequency <strong>of</strong> 2500Hz63


____________________________________________________________Chapter 33.3.3 Gender differences and strength improvementOne fur<strong>the</strong>r observation made by Soo et al. 121 is that men displayed greater strengthimprovements after EMS than those <strong>of</strong> women (47.7% compared with 8.1%),although no physiological reason for this was given. Fahey et al. 112 on <strong>the</strong> o<strong>the</strong>r handshowed no sex differences <strong>in</strong> <strong>electrical</strong>ly stimulated strength <strong>in</strong>creases. It seemsunlikely that men perform differently from women <strong>in</strong> this respect. Indeed Soo et al. 121suggest <strong>the</strong>ir results are <strong>the</strong> likely result <strong>of</strong> an arbitrary division <strong>of</strong> subjects by sexresult<strong>in</strong>g <strong>in</strong> a small sample size (9male and 6 female) ra<strong>the</strong>r than a real sexdifference.3.3.4 Quadriceps enduranceThe effects <strong>of</strong> EMS on <strong>the</strong> endurance <strong>of</strong> healthy <strong>quadriceps</strong> have been considered onfew occasions 31;115;118;123 . Eriksson et al. 118 described endurance as <strong>the</strong> time taken fora susta<strong>in</strong>ed maximal voluntary isometric contraction (MVIC) to fall to 50% <strong>of</strong> <strong>the</strong> <strong>in</strong>itialvalue. N<strong>in</strong>e subjects were stimulated with uniform 100Hz for 4-5 days over 5 weeks.Karba et al. 31employed a more elaborate measure <strong>of</strong> endurance. This <strong>in</strong>volved<strong>stimulation</strong> <strong>of</strong> <strong>the</strong> <strong>muscle</strong>s for two 10 second susta<strong>in</strong>ed contractions at 20 and 100Hzrespectively. The measure <strong>of</strong> fatigue (a Fatigue Index) was taken as a ratio <strong>of</strong> <strong>the</strong>proportion <strong>of</strong> <strong>the</strong> area under <strong>the</strong> isometric curve (i.e. total force) dur<strong>in</strong>g <strong>the</strong> first 3.33seconds compared to <strong>the</strong> whole 10 seconds <strong>of</strong> <strong>the</strong> contraction for each frequencyrespectively. Both <strong>the</strong>se studies recorded no change <strong>in</strong> endurance irrespective <strong>of</strong> <strong>the</strong>64


____________________________________________________________Chapter 3osteoarthritic patients, def<strong>in</strong>ed endurance as <strong>the</strong> time taken to fall below 90% <strong>of</strong> <strong>in</strong>itialMVIC. Endurance results from this study showed that non uniform random and PNMS<strong>stimulation</strong> were superior to sham and uniform EMS.The reasons put forward for those results and <strong>in</strong>deed <strong>the</strong> premise for that study werethat patterned <strong>stimulation</strong>, <strong>in</strong> contrast to exist<strong>in</strong>g EMS devices, delivered a morenatural fir<strong>in</strong>g pattern that addressed both <strong>the</strong> strength and endurance components <strong>of</strong><strong>the</strong> <strong>muscle</strong>.The limited number <strong>of</strong> studies <strong>in</strong> this area suggest that fur<strong>the</strong>r research on humans isnecessary. Animal physiology experiments formed <strong>the</strong> basis for <strong>the</strong> endurancehypo<strong>the</strong>ses <strong>in</strong> humans and so were technically outwith <strong>the</strong> remit <strong>of</strong> this review.However, a recent study showed that low frequency (10Hz) <strong>stimulation</strong> <strong>of</strong> a rabbit’stibialis anterior for as little as 30 m<strong>in</strong>utes daily for 6 weeks resulted <strong>in</strong> a substantial<strong>in</strong>crease <strong>in</strong> <strong>the</strong> endurance capacity <strong>of</strong> <strong>the</strong> <strong>muscle</strong> 128 .3.4 Electrical <strong>stimulation</strong> <strong>of</strong> weak <strong>quadriceps</strong> <strong>muscle</strong>3.4.1 Changes <strong>in</strong> isometric and isok<strong>in</strong>etic strength.Despite experiments on healthy <strong>quadriceps</strong> allow<strong>in</strong>g <strong>in</strong>sight <strong>in</strong>to <strong>the</strong> effects <strong>of</strong> EMS on<strong>muscle</strong>, care should be taken when extrapolat<strong>in</strong>g <strong>the</strong> results to a pathologicalcondition with concomitant <strong>quadriceps</strong> weakness 129 . Indeed <strong>the</strong> literature suggeststhat <strong>the</strong>re are a number <strong>of</strong> considerations such as pa<strong>in</strong>, effusion and <strong>in</strong>hibition whenus<strong>in</strong>g EMS on weak as dist<strong>in</strong>ct from healthy <strong>quadriceps</strong>. Fur<strong>the</strong>rmore, <strong>the</strong> effect <strong>of</strong>66


____________________________________________________________Chapter 3EMS is <strong>in</strong>fluenced to a large extent by <strong>the</strong> degree <strong>of</strong> limb <strong>in</strong>jury or immobilisation and<strong>the</strong> result<strong>in</strong>g <strong>muscle</strong> weakness 130 . Consequently, EMS as used for a rehabilitationprogramme for various knee pathologies has been thought to m<strong>in</strong>imise 131 , improve 129or have no effect 130on <strong>muscle</strong> weakness as measured by isometric or isok<strong>in</strong>etictorque <strong>of</strong> <strong>the</strong> <strong>quadriceps</strong>.For example, <strong>in</strong> <strong>the</strong> period <strong>of</strong> lower limb immobilisation after anterior cruciate ligament(ACL) reconstruction, isometric <strong>quadriceps</strong> torque was found to be dim<strong>in</strong>ished over a6 weeks period by 60% after EMS <strong>of</strong> 500 impulses/m<strong>in</strong> for 8 hours daily compared to80% <strong>in</strong> a control <strong>group</strong> 131 ; decreased after 6 weeks by 39% after 40 m<strong>in</strong>utes EMS 3times weekly compared to 58% for controls 132 ; or demonstrated no significantdifference between <strong>the</strong> two <strong>group</strong>s despite 8 hours <strong>of</strong> daily <strong>stimulation</strong> for 6 weeks at800 impulses /m<strong>in</strong> 133 .The differences between <strong>the</strong>se studies is due to <strong>the</strong> smallsample sizes and <strong>the</strong>ir varied EMS regimes and methodology.Non-immobilisation regimes post ACL reconstruction have also advocated EMS aspart <strong>of</strong> <strong>the</strong> rehabilitation protocol. Delitto et al 134 . noted a 48% and 65% <strong>in</strong>crease <strong>in</strong>MVIC <strong>of</strong> <strong>quadriceps</strong> and hamstr<strong>in</strong>gs respectively <strong>in</strong> <strong>the</strong> <strong>in</strong>itial treatment phase after<strong>stimulation</strong> <strong>of</strong> both <strong>the</strong>se <strong>muscle</strong> <strong>group</strong>s <strong>in</strong> an ‘ABAB’ designed s<strong>in</strong>gle case study.Later work by <strong>the</strong> same <strong>group</strong> 129 observed statistically significant (p


____________________________________________________________Chapter 3performed an ‘ABAB’ cross over experimental design <strong>of</strong> exercise alone or exerciseand EMS comb<strong>in</strong>ed. Although <strong>the</strong>re were significant with<strong>in</strong> <strong>group</strong> differences, <strong>the</strong>yfound no differences <strong>in</strong> <strong>the</strong> mean strength changes between <strong>the</strong> two <strong>group</strong>s, probablyresult<strong>in</strong>g from <strong>the</strong> small sample size.Isok<strong>in</strong>etic strength was measured by Snyder-Mackler et al. 135 <strong>in</strong> a comparison <strong>of</strong> fivepatients after ACL reconstructive surgery us<strong>in</strong>g active exercise alone and five us<strong>in</strong>g acomb<strong>in</strong>ation <strong>of</strong> active exercise and EMS. For example, at an angular velocity <strong>of</strong> 90 0 /s<strong>the</strong> average and peak isok<strong>in</strong>etic <strong>quadriceps</strong> torque improvement, normalised to <strong>the</strong>un<strong>in</strong>jured leg, were 44 and 43% <strong>in</strong> <strong>the</strong> exercise <strong>group</strong>, but 70% and 69% respectivelyfor those who had EMS additionally. In o<strong>the</strong>r words, add<strong>in</strong>g 4 weeks <strong>of</strong> EMS at 1,250impulses/m<strong>in</strong> 3 times a week to voluntary exercise saw a statistically significant(P


____________________________________________________________Chapter 3torque were observed with<strong>in</strong> all <strong>group</strong>s with no significant differences between <strong>the</strong>se<strong>group</strong>s. However, a lack <strong>of</strong> a comparative control <strong>group</strong> and a small sample size were<strong>of</strong> concern <strong>in</strong> this study.The long term effect <strong>of</strong> EMS compared to voluntary exercise was analysed by Lieberet al 139 . Assessment <strong>of</strong> MVIC took place 6, 8, 12, 24 and 52 weeks post ACLreconstruction. At all stages and with<strong>in</strong> all <strong>group</strong>s <strong>the</strong>re was an <strong>in</strong>crease <strong>in</strong> <strong>the</strong> MVICthat was not significantly different between <strong>the</strong> <strong>group</strong>s. This study carefully matchedeach week <strong>the</strong> number <strong>of</strong> contractions for <strong>the</strong> voluntary exercise <strong>group</strong> and <strong>the</strong> EMS<strong>group</strong> (which received 1000 impulses/m<strong>in</strong> for 30 m<strong>in</strong>s 5 times a week for 4 weeks)and under <strong>the</strong>se circumstances <strong>the</strong>re seemed to be no advantage ga<strong>in</strong>ed from EMS.Fur<strong>the</strong>rmore, this work highlighted <strong>the</strong> problems encountered by previous studies <strong>in</strong>compar<strong>in</strong>g EMS with voluntary exercise and recommended controlled ‘treatmenttension’ <strong>of</strong> <strong>the</strong> <strong>muscle</strong> to resolve <strong>the</strong>se potential discrepancies.A fur<strong>the</strong>r concern aris<strong>in</strong>g from <strong>the</strong> studies cited was <strong>the</strong> problem <strong>of</strong> def<strong>in</strong><strong>in</strong>g maximaleffort <strong>of</strong> <strong>quadriceps</strong> contraction dur<strong>in</strong>g MVIC assessment. To overcome this, <strong>the</strong>method <strong>of</strong> twitch <strong>in</strong>terpolation has been advocated to ensure maximal effort 140;141 .Only two studies utilised this method <strong>in</strong> <strong>the</strong> context <strong>of</strong> evaluat<strong>in</strong>g EMS <strong>of</strong> <strong>the</strong><strong>quadriceps</strong> 115;142 . Oldham et al. 115found no difference <strong>in</strong> maximum voluntaryisometric torque (MVIT) after 10Hz <strong>stimulation</strong> compared to a placebo <strong>group</strong> <strong>in</strong>osteoarthritis knee. This study found no differences between sham, uniform,patterned and randomised pattern <strong>stimulation</strong> <strong>group</strong>s. Snyder-Mackler et al. 142 used“high <strong>in</strong>tensity” EMS (2500Hz carrier frequency modulated at 50Hz) for <strong>the</strong>69


____________________________________________________________Chapter 3<strong>quadriceps</strong> rehabilitation post ACL reconstruction compared to a <strong>group</strong> receiv<strong>in</strong>gexercise, ano<strong>the</strong>r with “low <strong>in</strong>tensity” EMS (55Hz) and a f<strong>in</strong>al <strong>group</strong> receiv<strong>in</strong>g acomb<strong>in</strong>ation <strong>of</strong> “low and high <strong>in</strong>tensity” EMS. They observed that <strong>quadriceps</strong> strengthaveraged 70% or greater than that <strong>of</strong> <strong>the</strong> contralateral limb after “high <strong>in</strong>tensity” EMSwith only 57% after high volitional <strong>quadriceps</strong> exercises and 51% after “low <strong>in</strong>tensity”EMS.3.4.2 Electrical <strong>stimulation</strong> <strong>in</strong> PFPSThere is a paucity <strong>of</strong> studies that have observed <strong>the</strong> effect <strong>of</strong> EMS on <strong>muscle</strong> strength<strong>in</strong> patients with PFPS. Williams 143 , <strong>in</strong> a poorly described study, provided no measure<strong>of</strong> <strong>muscle</strong> strength to expla<strong>in</strong> his remarkable success rate <strong>of</strong> 97 out <strong>of</strong> 100 subjectswith CMP be<strong>in</strong>g symptom free after treat<strong>in</strong>g <strong>the</strong> <strong>quadriceps</strong> with faradic EMS.Johnson et al. 144 <strong>the</strong> so called ‘russian <strong>stimulation</strong>’ also failed to provide any raw datato elucidate <strong>the</strong>ir 200% isometric <strong>quadriceps</strong> strength improvement <strong>in</strong> five patientswith ‘severe’ and 25.3% improvement <strong>in</strong> 30 patients with ‘mild’ CMP. Horodyski andSharp 145 produced a conference abstract with OKC isometric measures at variousknee angles and OKC isok<strong>in</strong>etic measures at a variety <strong>of</strong> angular velocities on 21female PFPS patients. They noted a significant (p < 0.05) <strong>in</strong>crease <strong>in</strong> peak torque <strong>in</strong>all tests when compar<strong>in</strong>g “high frequency s<strong>in</strong>usoidal” MS alone to EMS comb<strong>in</strong>ed with<strong>quadriceps</strong> exercises. Once aga<strong>in</strong>, no raw data was presented <strong>in</strong> this abstract.Werner et al. 30 tested <strong>in</strong> OKC isok<strong>in</strong>etic mode at 60 0 /s and 180 0 /s <strong>in</strong> a more robuststudy <strong>of</strong> 40 Hz EMS <strong>of</strong> 1,400 impulses/m<strong>in</strong> for 40 m<strong>in</strong>s daily for 10 weeks on <strong>the</strong>70


____________________________________________________________Chapter 3<strong>quadriceps</strong> <strong>of</strong> 30 PFPS patients. They noted modest with<strong>in</strong> velocity improvements <strong>of</strong>5.9% at 60 0 /s and 6.1% at 180 0 /s. They attributed <strong>the</strong> significant (p < 0.01) <strong>in</strong>creaseat 180 0 /s to preferential activation by <strong>the</strong> EMS <strong>of</strong> <strong>quadriceps</strong> type 2 <strong>muscle</strong> fibresmore than type 1, which is a reversal <strong>of</strong> activation patterns <strong>in</strong> normal voluntarycontractions. Unfortunately, this uncontrolled (nei<strong>the</strong>r placebo nor comparative) studywas confounded by a daily stretch<strong>in</strong>g rout<strong>in</strong>e for <strong>the</strong> lateral thigh structures dur<strong>in</strong>g <strong>the</strong>10 weeks treatment programme. This is an activity that, <strong>in</strong> itself, can have pr<strong>of</strong>oundbeneficial effects on <strong>muscle</strong> physiology 146 .3.5 O<strong>the</strong>r <strong>muscle</strong> changes due to EMS3.5.1 Histology and BiochemistryThe use <strong>of</strong> <strong>muscle</strong> biopsy has provided evidence <strong>of</strong> <strong>the</strong> cellular changes from EMSon human <strong>muscle</strong> particularly <strong>the</strong> <strong>quadriceps</strong> <strong>muscle</strong>. In <strong>the</strong> healthy <strong>quadriceps</strong>Eriksson et al. 118 demonstrated that <strong>muscle</strong> fibre area and fibre type compositionrema<strong>in</strong>ed unchanged with 200Hz EMS. St Pierre et al. 120 , on <strong>the</strong> o<strong>the</strong>r hand (work<strong>in</strong>gwith Kots and us<strong>in</strong>g his EMS protocol <strong>of</strong> “russian“ <strong>stimulation</strong> <strong>of</strong> 2,500Hz modulatedat 50Hz) described a significant decrease <strong>in</strong> fast twitch type 2 fibre area (<strong>in</strong> men only),but no change <strong>in</strong> fibre type distribution. This observation was supported by Delitto etal. 122 who used similar EMS protocols and also noted a significant decrease <strong>in</strong> type2a and 2b fibre area, with a concomitant <strong>in</strong>crease <strong>in</strong> Type 1 fibre area. They alsonoted an <strong>in</strong>crease <strong>in</strong> type 2 fibre type. Nei<strong>the</strong>r <strong>of</strong> <strong>the</strong> authors was able to expla<strong>in</strong> <strong>the</strong>71


____________________________________________________________Chapter 3contradiction <strong>of</strong> high frequency EMS caus<strong>in</strong>g fast twitch fibre area reduction but an<strong>in</strong>crease <strong>in</strong> fibre type and an <strong>in</strong>crease <strong>in</strong> slow twitch fibre area. The reduction <strong>in</strong> fibrearea post <strong>stimulation</strong> <strong>in</strong> healthy subjects contrasts with that observed post <strong>stimulation</strong><strong>in</strong> patients follow<strong>in</strong>g knee <strong>in</strong>jury 132 . This suggests that <strong>the</strong> mechanisms <strong>in</strong>volved <strong>in</strong>strength tra<strong>in</strong><strong>in</strong>g for healthy subjects compared with subjects with <strong>muscle</strong> atrophy areentirely different. In healthy subjects neural factors or enzymatic changes may bemore important than fibre type changes. Few papers describe <strong>in</strong> detail <strong>muscle</strong>enzymatic changes associated with EMS <strong>in</strong> healthy volunteers. Eriksson et al. 118observed no significant changes <strong>in</strong> enzyme activity <strong>in</strong>volved <strong>in</strong> <strong>the</strong> contration processalthough <strong>the</strong> same <strong>group</strong> also reported, on patients after five weeks <strong>of</strong> knee and<strong>quadriceps</strong> immobilisation, a decrease <strong>in</strong> succ<strong>in</strong>ate dehydrogenase activity (a marker<strong>of</strong> mitochondrial oxidative activity) that was significantly retarded after EMS 147 . On <strong>the</strong>o<strong>the</strong>r hand an uncontrolled study <strong>of</strong> eight healthy volunteers 123 observed a significant<strong>in</strong>crease <strong>in</strong> aerobic oxidative enzyme activity but no change <strong>in</strong> anaerobic markersafter 8 weeks chronic low frequency EMS (8Hz for 8 hours per day) <strong>of</strong> <strong>the</strong> <strong>quadriceps</strong>.It is important that <strong>the</strong> different f<strong>in</strong>d<strong>in</strong>gs reported by various studies are related todifference <strong>in</strong> EMS parameters. For example, <strong>the</strong> last cited study 123used 8Hz<strong>stimulation</strong> with a duty cycle <strong>of</strong> 55son and 5s <strong>of</strong>f giv<strong>in</strong>g a total <strong>of</strong> 440 impulses/m<strong>in</strong>. Incontrast, <strong>the</strong> most recent work on healthy human vastus lateralis phenotype afterEMS found that short bouts (30m per day, 3 days a week at 45-60Hz, deliver<strong>in</strong>g am<strong>in</strong>imum 1620 impulses/m<strong>in</strong>) <strong>in</strong>creased <strong>the</strong> percentage <strong>of</strong> type 2a fibres whereaspercentage <strong>of</strong> o<strong>the</strong>r fibres types all decreased. The histological and metabolic72


____________________________________________________________Chapter 3changes were not reflected <strong>in</strong> changes <strong>in</strong> <strong>the</strong> whole body <strong>in</strong>dicators <strong>of</strong> aerobiccapabilities <strong>of</strong> <strong>the</strong> untra<strong>in</strong>ed subjects, nor <strong>the</strong> neuromuscular performance <strong>of</strong> <strong>the</strong><strong>quadriceps</strong>, nor by <strong>muscle</strong> fibre hypertrophy 148 .In <strong>the</strong> atrophied <strong>quadriceps</strong>, a significant decrease <strong>in</strong> <strong>the</strong> <strong>muscle</strong> enzymes levels <strong>of</strong>citrate synthase and triphosphate dehydrogenase was shown <strong>in</strong> a control exercise<strong>group</strong> but not <strong>in</strong> a <strong>group</strong> receiv<strong>in</strong>g EMS 132 . Chronic <strong>muscle</strong> ewast<strong>in</strong>g is associatedwith a decrease <strong>in</strong> <strong>muscle</strong> prote<strong>in</strong> syn<strong>the</strong>sis and Gibson et al. 149 found <strong>muscle</strong> prote<strong>in</strong>concentration and fibre diameter <strong>of</strong> <strong>the</strong> <strong>quadriceps</strong> <strong>group</strong> <strong>of</strong> an osteoarthritic kneewas ma<strong>in</strong>ta<strong>in</strong>ed with EMS delivered at 400 impulses/m<strong>in</strong> with no difference <strong>in</strong> <strong>the</strong> rate<strong>of</strong> <strong>muscle</strong> prote<strong>in</strong> syn<strong>the</strong>sis compared to a control <strong>group</strong>. They <strong>in</strong>terpreted <strong>the</strong>irresults as a 45% <strong>in</strong>crease <strong>in</strong> <strong>muscle</strong> prote<strong>in</strong> volume concentration relative to <strong>the</strong>decrease <strong>in</strong> <strong>the</strong> control <strong>group</strong>. This study followed earlier work by <strong>the</strong> same <strong>group</strong> onimmobilised lower limbs after tibia fractures 150 that also found that <strong>the</strong> same EMSregime ma<strong>in</strong>ta<strong>in</strong>ed <strong>quadriceps</strong> <strong>muscle</strong> prote<strong>in</strong> syn<strong>the</strong>sis. V<strong>in</strong>ge et al. 151 found that <strong>the</strong>total concentration <strong>of</strong> ribosomes (a measure <strong>of</strong> prote<strong>in</strong> syn<strong>the</strong>sis) <strong>in</strong> vastus lateraliswas less reduced after EMS at 600 impulses/m<strong>in</strong> to <strong>the</strong> <strong>quadriceps</strong> <strong>in</strong> patients whowere immobilised after abdom<strong>in</strong>al surgery. Stanish et al. 152 found little decrease <strong>in</strong>ATPase activity (an <strong>in</strong>dicator <strong>of</strong> aerobic <strong>muscle</strong> activity) us<strong>in</strong>g an unspecified EMSregime after 6 weeks immobilisation post knee surgery.Detailed analysis from <strong>muscle</strong> biopsy <strong>of</strong> immobilised vastus lateralis has found nodifferences between 40Hz EMS at 1000 impulses/m<strong>in</strong> and control <strong>group</strong>s <strong>in</strong> fibre areareduction 153 . Fibre type analysis <strong>in</strong> this study also found no significant differences <strong>in</strong>73


____________________________________________________________Chapter 3type 1 fibres and a non significant 5% reduction <strong>in</strong> type 2a <strong>in</strong> all immobilised patients<strong>in</strong> all experimental conditions. Mart<strong>in</strong> et al. 154 found that after total knee replacementboth 30Hz EMS (90 m<strong>in</strong>s daily for 7 days) to <strong>the</strong> <strong>quadriceps</strong> and cont<strong>in</strong>uous passivemotion had no <strong>in</strong>fluence on <strong>the</strong> percentage <strong>of</strong> type 1 and type 2 fibres <strong>in</strong> vastuslateralis compared to cont<strong>in</strong>uous passive motion alone. Fibre CSA on <strong>the</strong> o<strong>the</strong>r hand,showed that EMS <strong>in</strong> addition to cont<strong>in</strong>uous passive motion significantly attenuatedfibre atrophy relative to pre surgery levels. Wigerstad-Loss<strong>in</strong>g et al. 132 observed that,relative to type 2, <strong>the</strong> area <strong>of</strong> type 1 fibres was unchanged <strong>in</strong> a 30Hz EMS <strong>group</strong>receiv<strong>in</strong>g 750 impulses/m<strong>in</strong> but was significantly reduced <strong>in</strong> an immobilised control<strong>group</strong>. The actual percentage, <strong>the</strong>refore, <strong>of</strong> type 1 fibre was unchanged <strong>in</strong> both<strong>group</strong>s. Therefore <strong>the</strong> ratio <strong>of</strong> type 2/1 fibres <strong>in</strong>creased <strong>in</strong> <strong>the</strong> EMS <strong>group</strong> <strong>in</strong>dicat<strong>in</strong>gthat <strong>the</strong>re was an <strong>in</strong>crease <strong>in</strong> type2 fibre type.In summary, <strong>the</strong>re is evidence that EMS can cause changes at <strong>the</strong> cellular level <strong>of</strong><strong>muscle</strong> physiology, notably ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g prote<strong>in</strong> syn<strong>the</strong>sis <strong>in</strong> atrophied <strong>muscle</strong>result<strong>in</strong>g from immobilised limbs.3.5.2 Functional MeasurementsOne problem with EMS delivered to healthy subjects or athletes is that it is mostcommonly applied to <strong>the</strong> <strong>muscle</strong> isometrically which is generally not applicable tosports performance 108 . Therefore one purpose <strong>of</strong> studies assess<strong>in</strong>g functionalparameters and dynamic movements is to observe how <strong>the</strong>y are affected by EMSra<strong>the</strong>r than <strong>the</strong> more common isometric or isok<strong>in</strong>etic outcomes. The high <strong>in</strong>tensity74


____________________________________________________________Chapter 3‘russian’ <strong>stimulation</strong> regime employed by 155 after knee ligament trauma improved <strong>the</strong>irathlete’s vertical jump test to 89% <strong>of</strong> <strong>the</strong> healthy leg one week after removal <strong>of</strong> <strong>the</strong>plaster <strong>of</strong> paris. In <strong>the</strong> healthy athlete <strong>the</strong> improvements <strong>in</strong> performance are lessobvious.Venable et al. 108compared 50Hz EMS to a weight tra<strong>in</strong><strong>in</strong>g <strong>group</strong> andobserved a 3% improvement <strong>in</strong> <strong>the</strong> vertical jump test for EMS but a 7% improvementafter weight tra<strong>in</strong><strong>in</strong>g. They concluded that <strong>in</strong> term <strong>of</strong> functional performance <strong>the</strong>re wasno benefit supplement<strong>in</strong>g weight tra<strong>in</strong><strong>in</strong>g with EMS. Contrary to this, Willoughby andSimpson 156found that supplement<strong>in</strong>g weight tra<strong>in</strong><strong>in</strong>g with a ’russian <strong>stimulation</strong>’protocol improved <strong>the</strong> vertical jump by 25% compared to 9% and 2% for weighttra<strong>in</strong><strong>in</strong>g or EMS alone. They expla<strong>in</strong>ed that this contrary result was due to us<strong>in</strong>g <strong>the</strong>EMS dur<strong>in</strong>g both concentric and eccentric <strong>quadriceps</strong> contractions thus provid<strong>in</strong>genough impetus to <strong>in</strong>crease strength. Wolf et al. 106also described significantimprovements <strong>in</strong> vertical jump distance along with movement velocity, total work,power, and spr<strong>in</strong>t time as a result <strong>of</strong> EMS when compared with controls. Absolutevalues are not described <strong>in</strong> this paper although Eriksson et al. 118 also described asignificant improvement (P < 0.01) <strong>in</strong> vertical jump height from 32cm to 40cmsuggest<strong>in</strong>g that <strong>the</strong> changes <strong>the</strong>y observed <strong>in</strong> isometric and isok<strong>in</strong>etic <strong>muscle</strong>strength could be translated <strong>in</strong>to more complex functional movements.Functional analysis <strong>of</strong> <strong>the</strong> effect <strong>of</strong> EMS has been also been performed us<strong>in</strong>gk<strong>in</strong>ematic gait analysis. EMS <strong>of</strong> <strong>the</strong> <strong>quadriceps</strong> and hamstr<strong>in</strong>g <strong>group</strong>s after ACLreconstruction was found to improve walk<strong>in</strong>g velocity, cadence, stance time andflexion excursion <strong>of</strong> <strong>the</strong> knee 135 . This study concluded that <strong>the</strong> improvement <strong>of</strong> flexion75


____________________________________________________________Chapter 3excursion <strong>of</strong> <strong>the</strong> knee was directly and significantly correlated with strength <strong>of</strong> <strong>the</strong><strong>quadriceps</strong>. Fur<strong>the</strong>r research by <strong>the</strong> same <strong>group</strong> reported that high <strong>in</strong>tensity EMS(2500Hz carrier frequency modulated at 50Hz) affected knee k<strong>in</strong>ematics to br<strong>in</strong>gabout a more normal gait pattern due to an <strong>in</strong>crease <strong>in</strong> strength <strong>of</strong> <strong>the</strong> <strong>quadriceps</strong> 142 .3.5.3 Thigh GirthFive studies 99 104 105;111;119 described comparative measures <strong>of</strong> thigh girth before andafter a programme <strong>of</strong> EMS on healthy <strong>quadriceps</strong>. All five chose different positions totake <strong>the</strong>ir measures and all used a tape measure to make <strong>the</strong> assessment. Only onedescribed a significant improvement <strong>of</strong> 10.7% <strong>in</strong> thigh girth, though this was anuncontrolled study and lacked experimental rigor 119 . The rema<strong>in</strong><strong>in</strong>g more rigorouspapers, described no change <strong>in</strong> thigh girth and would support <strong>the</strong> view that thigh girth<strong>of</strong> healthy <strong>muscle</strong> does not change with EMS.Thigh circumference us<strong>in</strong>g a tape measure has also been used when assess<strong>in</strong>g <strong>the</strong>girth <strong>of</strong> atrophied <strong>quadriceps</strong> even though this method has been criticised as an<strong>in</strong>accurate method 157 . Tak<strong>in</strong>g this <strong>in</strong>accuracy <strong>in</strong>to account, <strong>the</strong> studies reviewed havearrived at <strong>the</strong> same conclusion as those us<strong>in</strong>g cross sectional area (CSA) asmeasured by computerised axial tomography (CT) or ultrasonography; <strong>muscle</strong> <strong>group</strong>streated with EMS demonstrate less loss <strong>of</strong> mass than <strong>the</strong>ir control <strong>group</strong>s 131;144;147;158 .Some authors noted an actual <strong>in</strong>crease <strong>in</strong> thigh bulk 155;159and some noted nochange 122;160 , although one was a s<strong>in</strong>gle case study 122 .76


____________________________________________________________Chapter 3CSA measurement is a more accurate method <strong>of</strong> evaluat<strong>in</strong>g atrophy <strong>of</strong> <strong>the</strong><strong>quadriceps</strong> <strong>group</strong> and <strong>the</strong> studies reviewed reveal broadly similar results. CTscann<strong>in</strong>g has shown significantly less wast<strong>in</strong>g <strong>of</strong> <strong>the</strong> immobilised <strong>quadriceps</strong> <strong>group</strong>after EMS compared to a control <strong>group</strong> 132;150;153 . The same technique has been used<strong>in</strong> PFPS to show a 6% <strong>in</strong>crease <strong>in</strong> <strong>quadriceps</strong> CSA after EMS to <strong>the</strong> vastus medialis‘area’ 30 ; this study gave no actual figures <strong>of</strong> CSA measurements made nor <strong>of</strong> <strong>the</strong> pretestCSA.V<strong>in</strong>ge et al. 151 also used CT CSA to show that 30Hz EMS deliver<strong>in</strong>g 600 impulses/m<strong>in</strong>for 3 hours daily could retard <strong>the</strong> rate <strong>of</strong> <strong>muscle</strong> atrophy compared to <strong>the</strong> contralateralcontrol limb <strong>in</strong> 13 patients who were bed bound after abdom<strong>in</strong>al surgery. Morerecently, Quittan et al. 161<strong>in</strong>vestigated <strong>the</strong> effect <strong>of</strong> 8 weeks <strong>of</strong> uniform 50Hz<strong>stimulation</strong> (800 impulses/m<strong>in</strong> for 60 m<strong>in</strong>s daily) at 25% MVIC to <strong>the</strong> <strong>quadriceps</strong> andhamstr<strong>in</strong>gs <strong>group</strong>s <strong>of</strong> bed bound patients wait<strong>in</strong>g heart transplantation. They found a15.5% <strong>in</strong>crease <strong>in</strong> <strong>the</strong> <strong>quadriceps</strong> CSA compared to a control <strong>group</strong>. Contrary to<strong>the</strong>se results, Oldham et al. 115 used compound B ultrasound scann<strong>in</strong>g to observeCSA <strong>of</strong> <strong>the</strong> <strong>quadriceps</strong> <strong>in</strong> patients with osteoarthritis knee <strong>in</strong> a double bl<strong>in</strong>dassessment <strong>of</strong> patterned EMS. They found no change <strong>in</strong> CSA <strong>in</strong> any <strong>of</strong> <strong>the</strong> activeEMS <strong>group</strong>s compared to placebo.3.6 Stimulation parametersThe wide variation <strong>in</strong> <strong>stimulation</strong> parameters presents one <strong>of</strong> <strong>the</strong> major difficulties <strong>in</strong>obta<strong>in</strong><strong>in</strong>g any consensus about EMS. One <strong>of</strong> <strong>the</strong> most significant parameters is77


____________________________________________________________Chapter 3When consider<strong>in</strong>g o<strong>the</strong>r studies <strong>the</strong> picture becomes more confused. If a frequency <strong>of</strong>50Hz is taken for comparison, five papers describe <strong>the</strong> effects <strong>of</strong> this frequencydelivered on a (2,000 - 2,500Hz) s<strong>in</strong>usoidal carrier wave 101;107;120;121;165 . Changes <strong>in</strong><strong>muscle</strong> strength ranged from 0% 120to 47.7% 121 . This diversity <strong>in</strong> response wasmimicked by studies deliver<strong>in</strong>g a straight 50Hz <strong>stimulation</strong> without any carrier wave,record<strong>in</strong>g a 0% 103 and a 48.5% 114 improvement <strong>in</strong> strength.3.6.2 Pulse durationThis is <strong>of</strong>ten erroneously called ‘pulse width’. Although pulse durations <strong>of</strong> longer than60 µsec are likely to recruit pa<strong>in</strong> fibres, <strong>the</strong> longer durations set at 200 – 300 µsecproduce a more powerful contraction 164 . Pulse durations <strong>of</strong> 200 µsec have beenfrequently adopted <strong>in</strong> human studies <strong>in</strong> <strong>muscle</strong> 166 .3.6.3 Duty CycleThis is commonly referred to as <strong>the</strong> “on /<strong>of</strong>f ratio”. The ‘on’ phase is <strong>the</strong> period <strong>in</strong>which a period <strong>of</strong> pulses is delivered to a <strong>muscle</strong>. The ‘<strong>of</strong>f’ phase is <strong>the</strong> periodbetween sequential ‘on’ phases 164 . This parameter, along with frequency is importantto give <strong>the</strong> <strong>muscle</strong> a rest period between contractions and protect aga<strong>in</strong>st premature<strong>muscle</strong> fatigue. The rate <strong>of</strong> <strong>muscle</strong> fatigue is markedly dependant on <strong>the</strong> duration <strong>of</strong>rest periods between contractions 167-170 , A duty cycle with a short ‘on’ time and a long‘<strong>of</strong>f’ time is useful <strong>in</strong> protect<strong>in</strong>g aga<strong>in</strong>st <strong>muscle</strong> fatigue and, consequently, enhanc<strong>in</strong>g79


____________________________________________________________Chapter 3osteoarthritis <strong>of</strong> <strong>the</strong> knee when <strong>stimulation</strong> <strong>in</strong>tensities greater than 5% <strong>of</strong> maximumvoluntary isometric torque (MVIT) could not be tolerated 115 .Noel and Belanger 176 , compar<strong>in</strong>g pa<strong>in</strong> ratios <strong>in</strong> EMS and voluntary <strong>quadriceps</strong> <strong>muscle</strong>contractions <strong>of</strong> eight subjects, described maximum pa<strong>in</strong> experienced with averagestimulus <strong>in</strong>tensities <strong>of</strong> 47.1, 70.3 and 42.8% <strong>of</strong> MVIT for three stimulatorsrespectively. Many studies however, when <strong>in</strong>corporat<strong>in</strong>g <strong>quadriceps</strong> <strong>stimulation</strong>regimes, described <strong>stimulation</strong> levels set higher than <strong>the</strong>se. For example, Currier &Mann 177 set levels to 67% <strong>of</strong> <strong>the</strong> MVIT whereas S<strong>in</strong>acore et al. 178 set levels to 80% <strong>of</strong>MVIT (see Table 3).In studies compar<strong>in</strong>g <strong>the</strong> effects <strong>of</strong> EMS and exercise, changes <strong>in</strong> <strong>muscle</strong>strength/torque due to EMS alone ranged from 9% 109 to 33% 107 . Similarly, changesdue to exercise alone ranged from 9% 109 to 43% 107 (Table 1). One <strong>of</strong> <strong>the</strong> majordifferences between <strong>the</strong>se two studies was <strong>in</strong> <strong>the</strong> <strong>in</strong>tensity <strong>of</strong> <strong>muscle</strong> contractionachieved by exercise or EMS. Caggiano et al. 109 reported a level <strong>of</strong> activity for bothtreatment modalities that represented only 40% <strong>of</strong> MVIC (Table 3). Kubiak et al. 107however, reports an <strong>in</strong>tensity level represent<strong>in</strong>g MVIC for <strong>the</strong> exercise <strong>group</strong> and amaximal tolerable level <strong>of</strong> <strong>stimulation</strong> (up to 75% MVIC) for <strong>the</strong> second <strong>group</strong> (Table2). Once aga<strong>in</strong>, this would suggest that <strong>the</strong> greater <strong>the</strong> level <strong>of</strong> activity and <strong>stimulation</strong><strong>the</strong> greater <strong>the</strong> strength ga<strong>in</strong>s. However it is not always <strong>the</strong> case that strength ga<strong>in</strong>sare related to <strong>the</strong> <strong>in</strong>tensity <strong>of</strong> a <strong>muscle</strong> contraction when different studies arecompared. Examples <strong>of</strong> this are <strong>the</strong> studies by Laughman et al. 101 and Lai et al 114(Table 3). In <strong>the</strong> former study <strong>the</strong> exercise <strong>group</strong> worked at an average <strong>of</strong> 78% MVIC81


____________________________________________________________Chapter 3but <strong>the</strong> stimulated <strong>group</strong> worked at an average level <strong>of</strong> 33% MVIC yet similar resultsfrom <strong>the</strong> two <strong>group</strong>s were obta<strong>in</strong>ed (18% and 22% <strong>in</strong>crease <strong>in</strong> <strong>quadriceps</strong> strengthrespectively). In contrast, Lai et al. 114 compar<strong>in</strong>g two <strong>in</strong>tensities <strong>of</strong> <strong>electrical</strong>ly <strong>in</strong>duced<strong>muscle</strong> contraction (25% and 50% MVIC) demonstrated significantly differentimprovements <strong>in</strong> <strong>muscle</strong> strength (24.2 and 48.5% respectively). This latter studywould suggest that provid<strong>in</strong>g <strong>the</strong> <strong>muscle</strong> contraction is <strong>in</strong>duced by <strong>the</strong> samemechanism (i.e. EMS alone) <strong>the</strong> greater <strong>the</strong> <strong>in</strong>tensity <strong>of</strong> contraction <strong>the</strong> greater <strong>the</strong>result<strong>in</strong>g strength changes.In <strong>the</strong> cl<strong>in</strong>ical environment, <strong>stimulation</strong> <strong>in</strong>tensities need to produce a reasonablecontraction to effect change with<strong>in</strong> <strong>the</strong> <strong>muscle</strong> whilst rema<strong>in</strong><strong>in</strong>g acceptable to patients.Levels <strong>of</strong> 30% <strong>in</strong>itial MVIT <strong>of</strong> <strong>stimulation</strong> have been described <strong>in</strong> a number <strong>of</strong> studies<strong>in</strong>volv<strong>in</strong>g <strong>the</strong> <strong>quadriceps</strong> and have demonstrated measurable <strong>muscle</strong> changes. Forexample, a <strong>stimulation</strong> level <strong>of</strong> 33% MVIT br<strong>in</strong>gs about strength ga<strong>in</strong>s <strong>of</strong> 22% 101 ; a<strong>stimulation</strong> level <strong>of</strong> 25% MVIT br<strong>in</strong>gs about strength ga<strong>in</strong>s <strong>of</strong> 24.2% 114 . Such<strong>stimulation</strong> <strong>in</strong>tensities are tolerated by most patient <strong>group</strong>s. So for example, if <strong>the</strong> aim<strong>of</strong> early phase rehabilitation is to achieve a <strong>quadriceps</strong> recovery <strong>of</strong> 50% <strong>of</strong> <strong>the</strong> normalside, <strong>the</strong>n <strong>the</strong> <strong>in</strong>tensity should not drop below 10% and an average tra<strong>in</strong><strong>in</strong>g <strong>in</strong>tensity<strong>of</strong> 40% has been advocated <strong>in</strong> rehabilitation follow<strong>in</strong>g ACL reconstruction 179 .Neverthless, <strong>the</strong> major limitation seems to be <strong>the</strong> amount <strong>of</strong> current that <strong>the</strong> patientcan comfortably withstand. This is dependant on sk<strong>in</strong> resistance and capacitiveimpedance <strong>of</strong> sk<strong>in</strong> 164 . This is an important consideration, as patients us<strong>in</strong>g stimulators82


____________________________________________________________Chapter 3with constant frequency tra<strong>in</strong>s <strong>of</strong> 35Hz or greater (about 100Hz) will encounterproblems try<strong>in</strong>g to produce a forceful contraction comfortably at higher <strong>in</strong>tensities.3.6.4.1 Length <strong>of</strong> TreatmentUnfortunately, not only were <strong>the</strong> effects <strong>of</strong> EMS difficult to review due to differences <strong>in</strong><strong>the</strong> <strong>in</strong>tensity <strong>of</strong> <strong>the</strong> <strong>stimulation</strong>, but <strong>the</strong> treatment programmes reviewed variedconsiderably <strong>in</strong> terms <strong>of</strong> <strong>the</strong> amount <strong>of</strong> daily <strong>stimulation</strong> and <strong>the</strong> length <strong>of</strong> <strong>the</strong> full131;132 133experimental programme. A common treatment period was six weeks135;136;139;142;144;150;152;153;180 with some studies as short as 5 days 151 and o<strong>the</strong>rs as longas 10 weeks 30 . There were no obvious correlations between length <strong>of</strong> treatment andimprovement <strong>in</strong> <strong>quadriceps</strong> strength or effect on atrophied <strong>muscle</strong>.Similarly, <strong>the</strong> weekly and daily repetition <strong>of</strong> EMS varied from 8 hours daily every dayfor 8 weeks 131 to 10 contractions every o<strong>the</strong>r day for 6 weeks 144 . Yet each <strong>of</strong> <strong>the</strong>sestudies with widely divergent protocols suggest that EMS could help retard<strong>quadriceps</strong> <strong>muscle</strong> atrophy or loss <strong>of</strong> strength.83


____________________________________________________________Chapter 3Table4. Frequency <strong>of</strong> EMS and effects on atrophied <strong>quadriceps</strong> <strong>muscle</strong>Authors Knee pathology frequency Effects from EMSNitz & Dobner 155 Ligament stra<strong>in</strong> 50Hz Increase thigh girthWigerstad-Loss<strong>in</strong>g et al. 132 ACL Reconstruction 30Hz Decrease <strong>in</strong> rate <strong>of</strong>quads strength lossSisk et al. 133 ACL Reconstruction 40Hz Non-Significant <strong>in</strong>quads strength EMSv exerciseDelitto et al. 134 ACL Reconstruction 50Hz Increase quadsstrength with EMS vexerciseDraper &Ballard 136 ACL Reconstruction 35Hz Increase quadsstrength withbi<strong>of</strong>eedback v EMSLieber et al. 139 ACL Reconstruction 50Hz Non-Significant <strong>in</strong><strong>quadriceps</strong> strengthEMS v exerciseGould et al. 158 Disuse atrophy 35Hz Decrease <strong>in</strong> rate <strong>of</strong>quads atrophyWilliams et al. 159 Post menisectomy 50Hz EMS worse thanexerciseArvidsson et al. 153 ACL Reconstruction 40Hz Decrease <strong>in</strong> rate <strong>of</strong>quads atrophyGibson et al. 150 Immobilised fractured tibia 30Hz Decrease <strong>in</strong> rate <strong>of</strong>quads atrophyIncrease quadstorque at 180 0 /secWerner et al. 30 Patell<strong>of</strong>emoral Pa<strong>in</strong>Syndrome40HzV<strong>in</strong>ge et al. 151 Disuse atrophy 30Hz Decrease <strong>in</strong> rate <strong>of</strong>quads atrophyGibson et al. 149 Osteoarthritis 30Hz Increase <strong>muscle</strong>prote<strong>in</strong> concentrationMart<strong>in</strong> et al. 154 Post arthroplasty 30Hz Decrease <strong>in</strong> rate <strong>of</strong>quads atrophyHaug & Wood 181 Post arthroplasty 35Hz Non-Significant EMSv Cont<strong>in</strong>uouspassive motion84


____________________________________________________________Chapter 3an <strong>in</strong>crease <strong>in</strong> power generat<strong>in</strong>g ability, high force (higher frequency) contractionsmust be generated with<strong>in</strong> <strong>the</strong> <strong>muscle</strong> 167 . Results have been described from animalstudies 194compar<strong>in</strong>g 2.5Hz with 10Hz EMS suggest<strong>in</strong>g that 12 weeks chronic<strong>stimulation</strong> may <strong>in</strong>crease force output without compromis<strong>in</strong>g <strong>the</strong> acquisition <strong>of</strong> fatigueresistance by <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> amount <strong>of</strong> type 2a fibres.There have been few studies compar<strong>in</strong>g different types <strong>of</strong> high and low frequencyEMS. In animals, Ferguson et al. 195 compared a 10Hz cont<strong>in</strong>uous to a 30Hz burstregime for 90 days. 30Hz EMS caused significantly greater preservation <strong>of</strong>contraction time and <strong>muscle</strong> mass but 10Hz EMS better preserved <strong>the</strong> <strong>in</strong>dex <strong>of</strong>fatigue. This seemed to confirm <strong>the</strong> accepted viewpo<strong>in</strong>t concern<strong>in</strong>g high and lowfrequency EMS. In humans, Snyder-Mackler et al. 135compared 4 weeks <strong>of</strong> highfrequency EMS on a carrier frequency <strong>of</strong> 2500Hz modulated at 50Hz and what <strong>the</strong>ytermed ’low’ EMS at 55Hz on patients follow<strong>in</strong>g ACL reconstruction. Directcomparison <strong>of</strong> MVIC and k<strong>in</strong>ematic analysis found no significant differences between<strong>the</strong> two frequencies. A comb<strong>in</strong>ed treatment protocol <strong>of</strong> 2500Hz modulated at 50Hzand 55Hz <strong>stimulation</strong> was significantly better than exercise and ‘low’ frequency EMS,and showed an average <strong>quadriceps</strong> strength improvement <strong>of</strong> 70% or greater than <strong>the</strong>control. However, doubts should be cast on <strong>the</strong>ir def<strong>in</strong>ition <strong>of</strong> ‘low’ frequency at 55Hz.One <strong>of</strong> <strong>the</strong> few studies on <strong>the</strong> effect <strong>of</strong> chronic low frequency EMS on human <strong>muscle</strong><strong>in</strong>volved <strong>the</strong> gracilis <strong>muscle</strong> transplanted to form a neoanal sph<strong>in</strong>cter 196 . Us<strong>in</strong>g <strong>the</strong>low frequency techniques <strong>in</strong> animals <strong>of</strong> Salmons 197 , this <strong>group</strong> was able to convert a87


____________________________________________________________Chapter 3The ‘doublet’ phenomenon has also been demonstrated <strong>in</strong> studies on <strong>the</strong> human<strong>quadriceps</strong>. B<strong>in</strong>der-Macleod & Baadt 202 <strong>in</strong>vestigated constant frequency tra<strong>in</strong>s at 70ms IPI and variable frequency tra<strong>in</strong>s with a short 1 st IPI (chosen from 5,10,15,20,30ms <strong>in</strong>tervals) followed by an IPI <strong>of</strong> 70 ms. Results showed that 2 short IPIs resulted <strong>in</strong>a 64% augmentation <strong>of</strong> <strong>the</strong> force <strong>of</strong> fatigued <strong>quadriceps</strong> <strong>muscle</strong> than ei<strong>the</strong>r 1 short IPI(32% improvement) or 3 short IPIs (29%). Karu et al. 208 <strong>in</strong>vestigated <strong>the</strong> <strong>quadriceps</strong> <strong>of</strong>healthy and sp<strong>in</strong>al cord <strong>in</strong>jured human subjects and concluded that <strong>the</strong> length <strong>of</strong> <strong>the</strong>first IPI should be approximately 5 ms with subsequent <strong>in</strong>tervals limited to 20 ms tooptimise force output.EMS devices can now be programmed to deliver <strong>the</strong> naturally occur<strong>in</strong>g fir<strong>in</strong>g patternsto <strong>muscle</strong>. This type <strong>of</strong> <strong>stimulation</strong> may prevent <strong>the</strong> problems previously associatedwith exist<strong>in</strong>g uniform patterns by prevent<strong>in</strong>g premature <strong>muscle</strong> fatigue associated withhigh aggregate numbers <strong>of</strong> impulses 209 . Fur<strong>the</strong>rmore, <strong>the</strong> <strong>in</strong>itial large forces <strong>of</strong>contraction achieved with <strong>the</strong> ‘doublet’ may mimic <strong>the</strong> heavy resistance tra<strong>in</strong><strong>in</strong>geffective <strong>in</strong> streng<strong>the</strong>n<strong>in</strong>g <strong>muscle</strong> thus illustrat<strong>in</strong>g <strong>the</strong> power <strong>of</strong> this <strong>stimulation</strong> overprevious regimes 210 .Any new study should <strong>the</strong>refore use <strong>stimulation</strong> that has a simultaneous non uniformmixed pattern <strong>in</strong>corporat<strong>in</strong>g high and low frequencies and a ‘doublet’.92


____________________________________________________________Chapter 3<strong>the</strong> magnitude <strong>of</strong> changes <strong>in</strong> human <strong>quadriceps</strong> compared to animals appear to bemodest.Secondly, <strong>the</strong> use <strong>of</strong> a uniform pattern EMS has been questioned, when <strong>the</strong> literaturehas evidence that <strong>the</strong> normal physiological fir<strong>in</strong>g pattern for <strong>the</strong> <strong>quadriceps</strong> has a nonuniformed,mixed frequency composition. This has recently been fur<strong>the</strong>r developed asa comb<strong>in</strong>ation <strong>of</strong> high, moderate and low frequencies be<strong>in</strong>g delivered to <strong>the</strong> <strong>muscle</strong>simultaneously. It is <strong>the</strong> patterned non-uniform mixed frequency EMS, emulat<strong>in</strong>g <strong>the</strong>normal physiological fir<strong>in</strong>g rates and frequencies <strong>of</strong> human <strong>muscle</strong>, that is be<strong>in</strong>gadopted for <strong>the</strong> studies conducted later <strong>in</strong> this <strong>the</strong>sis.Therefore, it is proposed that a patterned non-uniform mixed frequency EMS (<strong>in</strong> this<strong>the</strong>sis this has been named ‘RESTIM’*) will be more beneficial for <strong>the</strong> human<strong>quadriceps</strong> than uniform fixed frequency pulse tra<strong>in</strong>s. These benefits may be manifestby improved <strong>muscle</strong> strength, function and pa<strong>in</strong> but not at <strong>the</strong> expense <strong>of</strong> <strong>muscle</strong>fatigue.* RESTIM is a work<strong>in</strong>g product title for <strong>the</strong> device and is not a trademarked name94


____________________________________________________________Chapter 4Chapter 4MEASUREMENT OFMUSCLE STRENGTH95


____________________________________________________________Chapter 44 MEASUREMENT OF MUSCLE STRENGTH4.1 IntroductionIt is commonly accepted that <strong>quadriceps</strong> weakness accompanies patell<strong>of</strong>emoral pa<strong>in</strong>syndrome (PFPS). This has been confirmed by isok<strong>in</strong>etic assessment <strong>of</strong> PFPSpatients compared to control <strong>group</strong>s 73;74;211 . The presence <strong>of</strong> patellar pa<strong>in</strong> not onlyconfounds <strong>the</strong> torque values but also has ethical implications for test<strong>in</strong>g <strong>in</strong> isometricmode or at slow isok<strong>in</strong>etic angular velocities 212 . The studies cited above illustrate thatisok<strong>in</strong>etic assessment us<strong>in</strong>g isolated knee extension and flexion is <strong>the</strong> mostcommonly used method to assess strength* and function <strong>of</strong> <strong>the</strong> thigh musculatureand <strong>the</strong> knee. To this end reliability has been shown for <strong>the</strong> Biodex 213 <strong>the</strong> Cybex II 214and <strong>the</strong> K<strong>in</strong>Com isok<strong>in</strong>etic dynamometers 215 . However, isolated knee or s<strong>in</strong>gle jo<strong>in</strong>t(SJ) test<strong>in</strong>g may be undesirable or even contra<strong>in</strong>dicated <strong>in</strong> some pathologicalconditions <strong>of</strong> <strong>the</strong> knee jo<strong>in</strong>t 216 . This may be due to differ<strong>in</strong>g <strong>muscle</strong> recruitment and forjo<strong>in</strong>t and ligament stresses between multi jo<strong>in</strong>t (MJ) and SJ test<strong>in</strong>g 217 and because <strong>of</strong><strong>quadriceps</strong> <strong>muscle</strong> <strong>in</strong>hibition dur<strong>in</strong>g SJ test<strong>in</strong>g 218 . Greater <strong>muscle</strong> isolation <strong>of</strong> <strong>the</strong><strong>quadriceps</strong> <strong>in</strong> OKC test<strong>in</strong>g has been shown to produce higher tibio- femoral jo<strong>in</strong>tshear<strong>in</strong>g forces caus<strong>in</strong>g anterior tibial translation on <strong>the</strong> femur <strong>in</strong> <strong>the</strong> anterior cruciateligament deficient knee 219 and <strong>the</strong> normal knee 220 .The terms multi jo<strong>in</strong>t and s<strong>in</strong>gle jo<strong>in</strong>t are rarely used <strong>in</strong> cl<strong>in</strong>ical practice. Usuallycl<strong>in</strong>icians employ <strong>the</strong> terms closed k<strong>in</strong>etic cha<strong>in</strong> (CKC) and open k<strong>in</strong>etic cha<strong>in</strong> (OKC)with <strong>the</strong>ir abbreviations based on <strong>the</strong> orig<strong>in</strong>al work by Steidler 85 .* although <strong>the</strong> correct term is ‘torque’ this will be used <strong>in</strong>terchangably with <strong>the</strong> term ‘strength’ to reflect cl<strong>in</strong>ical practice.96


____________________________________________________________Chapter 4Although <strong>the</strong> terms MJ and CKC are not <strong>in</strong>terchangeable, several publications andjournals have used and cont<strong>in</strong>ue to use <strong>the</strong> cl<strong>in</strong>ical terms. Due to <strong>the</strong> cl<strong>in</strong>ical aspect <strong>of</strong>this study, <strong>the</strong> follow<strong>in</strong>g chapters will employ <strong>the</strong> OKC and CKC abbreviations.The effects <strong>of</strong> OKC test<strong>in</strong>g on <strong>the</strong> patell<strong>of</strong>emoral jo<strong>in</strong>t have been studied by Nisell &Ericson 221 who showed that patellar compression forces were almost 12 times higherthan walk<strong>in</strong>g and six times higher than runn<strong>in</strong>g at <strong>the</strong> most functional range <strong>of</strong>movement dur<strong>in</strong>g isok<strong>in</strong>etic knee extension. They advised that patients with PFPSundergo<strong>in</strong>g OKC isok<strong>in</strong>etic tests should only perform submaximal efforts which is atodds with <strong>the</strong> rationale <strong>of</strong> some test<strong>in</strong>g procedures requir<strong>in</strong>g a maximum contraction.However patell<strong>of</strong>emoral stresses dur<strong>in</strong>g OKC test<strong>in</strong>g can be reduced by us<strong>in</strong>g a CKCleg press exercise 222 . The improvement <strong>in</strong> perceived function <strong>in</strong> PFPS us<strong>in</strong>g CKCtest<strong>in</strong>g 223 is thought to be due to <strong>the</strong> co-contraction <strong>of</strong> <strong>the</strong> biarticular <strong>muscle</strong>s <strong>of</strong> <strong>the</strong>lower limb, proprioception, jo<strong>in</strong>t position sense and k<strong>in</strong>aes<strong>the</strong>sia 224 . It has beenproposed that <strong>the</strong> <strong>in</strong>tegration <strong>of</strong> all jo<strong>in</strong>ts and segments <strong>in</strong> a movement such as kneeextension <strong>in</strong> stand<strong>in</strong>g is more preferable than an isolated motion <strong>of</strong> a OKC activitysuch as seated knee extension 86 .In terms <strong>of</strong> isok<strong>in</strong>etics, CKC test<strong>in</strong>g is still a relatively new method <strong>of</strong> assessment anddata on its reliability and normative values are not yet available 225 . Dynamometerdata for CKC test<strong>in</strong>g have been limited to isok<strong>in</strong>etic concentric leg extension torque 226or concentric/eccentric extension comb<strong>in</strong><strong>in</strong>g hip and knee activity 227 . Dvir 227compared isok<strong>in</strong>etic OKC and CKC f<strong>in</strong>d<strong>in</strong>gs, and although not analys<strong>in</strong>g test-retestreliability found low and <strong>in</strong>significant correlations between OKC and CKC lower limb97


____________________________________________________________Chapter 4tests. He concluded that total lower limb dynamic strength and <strong>quadriceps</strong> isolatedstrength could not be predicted by each o<strong>the</strong>r, thus highlight<strong>in</strong>g <strong>the</strong> need for new sets<strong>of</strong> data on <strong>the</strong> CKC mode <strong>of</strong> test<strong>in</strong>g. Lafree et al. 226 also compared isok<strong>in</strong>etic OKCknee extension to a CKC leg press movement. Us<strong>in</strong>g concentric extension peaktorque, reliability was exam<strong>in</strong>ed <strong>in</strong> only 5 <strong>of</strong> <strong>the</strong> subjects, which revealed a ICC forseated leg press <strong>of</strong> 0.83 (SEM = 9.96) and sup<strong>in</strong>e leg press <strong>of</strong> 0.86 (SEM = 8.79).Lev<strong>in</strong>e et al. 228 found high ICCs <strong>of</strong> 0.85 – 0.94 on comb<strong>in</strong>ed hip and knee concentrictests at angular velocities from 30 0 /s to 210 0 /s us<strong>in</strong>g a K<strong>in</strong>-Com dynamometer. Theyonly assessed extension efforts for peak torque.The reproducibility <strong>of</strong> isok<strong>in</strong>etic evaluation <strong>in</strong> a patient <strong>group</strong> has been rarely tested.Although <strong>the</strong>re are some test-retest studies on healthy subjects, it is erroneous toassume that a similar protocol will prevail for a patient population 229 . If a CKC test<strong>in</strong>gdevice is to be accepted as part <strong>of</strong> assessment and rehabilitation <strong>the</strong>n <strong>the</strong>reproducibility <strong>of</strong> f<strong>in</strong>d<strong>in</strong>gs derived from its application has to be fully established <strong>in</strong> anormal population and <strong>the</strong>n applied to populations with relevant pathology.The objectives <strong>of</strong> this study were (i) to establish a reproducible protocol for comb<strong>in</strong>edhip and knee movement <strong>in</strong> normal subjects us<strong>in</strong>g <strong>the</strong> Biodex CKC attachment forresultant torque, total work and average power; (ii) if a reproducible protocol wasestablished, to apply it to a patient <strong>group</strong> with PFPS. Reliability studies <strong>of</strong>ten usehealthy subject <strong>group</strong>s, which although useful, have limited relevance andgeneralisability to patient populations. We wanted to ga<strong>in</strong> comprehensivereproducibility data on multi-jo<strong>in</strong>t assessment <strong>in</strong> healthy subjects, and also show that98


____________________________________________________________Chapter 4CKC test<strong>in</strong>g could be used safely and reliably <strong>in</strong> patients with patell<strong>of</strong>emoral pa<strong>in</strong>syndrome.4.2 Methods4.2.1 SubjectsThe right lower limb was assessed <strong>in</strong> a convenience sample <strong>of</strong> twenty healthysubjects who volunteered for <strong>the</strong> study (8 female, 12 male; mean age 30.6 years(±SD,5.5); body mass <strong>in</strong>dex (BMI) 23.8(±SD, 0.8). None had a history <strong>of</strong> lower limb<strong>in</strong>jury. The patient <strong>group</strong> consisted <strong>of</strong> 16 subjects (12 female, 4 male; mean age 29.6years (±SD,5.9); BMI 26.4(±SD, 4.4) with PFPS. This patient <strong>group</strong> is one <strong>of</strong> severalorthopaedic dysfunctions <strong>in</strong> which isok<strong>in</strong>etic test<strong>in</strong>g, rehabilitation and follow-up are<strong>in</strong>dicated 229 . Patients were <strong>in</strong>cluded if <strong>the</strong>y had atraumatic unilateral peripatellar pa<strong>in</strong>for greater than six months and not longer than three years. Patell<strong>of</strong>emoral pa<strong>in</strong> wasreported by <strong>the</strong> patient as be<strong>in</strong>g present dur<strong>in</strong>g one <strong>of</strong> <strong>the</strong> follow<strong>in</strong>g alone or <strong>in</strong>comb<strong>in</strong>ation: prolonged sitt<strong>in</strong>g, deep squatt<strong>in</strong>g, kneel<strong>in</strong>g, ascend<strong>in</strong>g or descend<strong>in</strong>gstairs. Patients were also <strong>in</strong>cluded if <strong>the</strong>y had a normal radiograph, magneticresonance imag<strong>in</strong>g or arthroscopy, but were excluded if <strong>the</strong>y had o<strong>the</strong>r forms <strong>of</strong>recent knee surgery. Patients had fur<strong>the</strong>r cl<strong>in</strong>ical exam<strong>in</strong>ation to assess <strong>the</strong>irsuitability and to determ<strong>in</strong>e <strong>the</strong> presence <strong>of</strong> o<strong>the</strong>r lower extremity dysfunction thatmay account for <strong>the</strong> knee symptoms. These <strong>in</strong>cluded referred pa<strong>in</strong> from <strong>the</strong> lumbarsp<strong>in</strong>e and hip jo<strong>in</strong>t, severe leg length discrepancy, knee ligament, <strong>quadriceps</strong> tendon99


____________________________________________________________Chapter 4and meniscal pathologies, H<strong>of</strong>fa’s syndrome, medial plica syndrome, femoralanteversion and tibial torsion. Exam<strong>in</strong>ation was also performed to detect loss <strong>of</strong>flexibility compared to <strong>the</strong> pa<strong>in</strong> free contralateral limb <strong>of</strong> <strong>the</strong> s<strong>of</strong>t tissue structures suchas <strong>the</strong> <strong>quadriceps</strong>, hamstr<strong>in</strong>gs, triceps surae and iliotibial band which have beenassociated with PFPS 230 . If <strong>the</strong>re were any discrepancies between <strong>the</strong> affected andunaffected side, <strong>the</strong>n <strong>the</strong> patients were not entered <strong>in</strong> <strong>the</strong> study and were given astretch<strong>in</strong>g exercise programme.4.2.2 InstrumentationA Biodex System 2 isok<strong>in</strong>etic dynamometer (Biodex Medical Systems, Shirley, NY,USA) was used for all tests. The attachment for multi-jo<strong>in</strong>t test<strong>in</strong>g was <strong>the</strong> standarddevice supplied by <strong>the</strong> manufacturers. All post test data acquisition was performedus<strong>in</strong>g <strong>the</strong> Biodex Advantage S<strong>of</strong>tware (v4.5). On each test<strong>in</strong>g day <strong>the</strong> mach<strong>in</strong>e wascalibrated <strong>in</strong> accordance with <strong>the</strong> manufacturer's <strong>in</strong>structions. The Biodex s<strong>of</strong>twarecompensated for <strong>the</strong> effects <strong>of</strong> gravity as part <strong>of</strong> <strong>the</strong> setup procedure when <strong>the</strong>subject was positioned on <strong>the</strong> chair (Figure 7).100


____________________________________________________________Chapter 44.2.4 Isok<strong>in</strong>etic test<strong>in</strong>gSubjects were seated <strong>in</strong> <strong>the</strong> chair with <strong>the</strong> seat angle adjusted to give a maximum <strong>of</strong>90 0 hip flexion. The position <strong>of</strong> <strong>the</strong> seat and o<strong>the</strong>r components <strong>of</strong> <strong>the</strong> dynamometerwere standardised for each test. Straps were placed over <strong>the</strong> shoulders and across<strong>the</strong> waist to ensure <strong>the</strong> torso was stable. The foot was placed flat aga<strong>in</strong>st <strong>the</strong> footplate attachment and was supported by Velcro straps. With <strong>the</strong> knee at full extension<strong>the</strong> knee jo<strong>in</strong>t axis was aligned with <strong>the</strong> axis <strong>of</strong> <strong>the</strong> power head. Ranges <strong>of</strong> movementlimits were set from 0 0 (full knee extension) to 90 0 <strong>of</strong> knee flexion with a decelerationcushion sett<strong>in</strong>g at 0 (‘hard’) and lever oscillation sensitivity on medium sett<strong>in</strong>g ( ‘c’ ).The angular velocity was set at 90 0 /sec (1.57 rad/s). Subjects were asked to place<strong>the</strong>ir arms across <strong>the</strong>ir chest when test<strong>in</strong>g and received <strong>the</strong> strictly standardisedverbal <strong>in</strong>structions <strong>of</strong> “push” and “pull” dur<strong>in</strong>g <strong>the</strong> appropriate phase <strong>of</strong> <strong>the</strong> movement.Each subject had a practice <strong>of</strong> 6 submaximal repetitions followed by 2 m<strong>in</strong>utes rest aspart <strong>of</strong> <strong>the</strong> warm up prior to <strong>the</strong> test. The subjects were allowed to see <strong>the</strong> screendur<strong>in</strong>g <strong>the</strong> practice session but not dur<strong>in</strong>g data collection. After 6 maximal repetitionsfor data collection, <strong>the</strong> subjects had 5 m<strong>in</strong>utes rest before <strong>the</strong> next test <strong>in</strong> order toavoid fatigue 231 .4.2.5 Maximum Voluntary Isometric Contraction test<strong>in</strong>gTo test isometric extension, subjects were positioned <strong>in</strong> <strong>the</strong> chair as for <strong>the</strong> isok<strong>in</strong>etictest, with hip flexion fixed at 90 0 and <strong>the</strong> knee angle set at 45 0 flexion. The knee anglewas with<strong>in</strong> <strong>the</strong> range that had been determ<strong>in</strong>ed <strong>in</strong> o<strong>the</strong>r studies as <strong>the</strong> most102


____________________________________________________________Chapter 4appropriate to reduce patell<strong>of</strong>emoral stress to a m<strong>in</strong>imum dur<strong>in</strong>g test<strong>in</strong>g 50;217 . Toensure that <strong>the</strong> subjects ma<strong>in</strong>ta<strong>in</strong>ed <strong>the</strong> 45 0 angle, <strong>the</strong> operator placed an arm under<strong>the</strong> knee to act as a popliteal pad. Subjects pushed <strong>in</strong>to <strong>the</strong> foot plate without push<strong>in</strong>g<strong>the</strong> popliteal surface <strong>of</strong> <strong>the</strong> knee <strong>in</strong>to <strong>the</strong> operator's arm and beyond 45 0 . Subjectshad practice contractions prior to data collection to familiarise <strong>the</strong>mselves with thismethod and to ensure that <strong>the</strong>y were able to ma<strong>in</strong>ta<strong>in</strong> a knee angle <strong>of</strong> 45 0 . A twitch<strong>in</strong>terpolation technique was used to ensure a maximum voluntary <strong>quadriceps</strong>contraction 140;141 . The protocol <strong>of</strong> subjects perform<strong>in</strong>g three maximum contractions <strong>of</strong>10 seconds duration with 2 m<strong>in</strong>utes rest between each contraction was based on that<strong>of</strong> previous researchers <strong>in</strong> this field 231;232 .4.3 Data AnalysisData were collected for <strong>the</strong> maximum s<strong>in</strong>gle torque value (peak torque), total workand average power for extension and flexion dur<strong>in</strong>g <strong>the</strong> isok<strong>in</strong>etic tests. The peaktorque for extension was recorded for <strong>the</strong> maximum voluntary isometric contraction(MVIC) tests. Statistical analysis was performed us<strong>in</strong>g SPSS (Statistical Package for<strong>the</strong> Social Sciences) for W<strong>in</strong>dows (V7.5). Assessment <strong>of</strong> test-retest reliability wasmade by <strong>in</strong>traclass correlation coefficient (ICC 2,1 ) for s<strong>in</strong>gle rat<strong>in</strong>g for isok<strong>in</strong>etic peaktorque and mean <strong>of</strong> rat<strong>in</strong>gs for total work, average power and isometric peak torque.as well as <strong>the</strong> Standard Error <strong>of</strong> Measurement (SEM). In addition, <strong>the</strong> mean valuesfor isok<strong>in</strong>etic extension peak torque and extension MVIC for both <strong>group</strong>s wereanalysed by <strong>in</strong>dependent sample ‘t’ tests to ascerta<strong>in</strong> differences between a patient103


____________________________________________________________Chapter 4and healthy <strong>group</strong>. Peak torque values were chosen as <strong>the</strong>y are popular isok<strong>in</strong>eticparameters amongst cl<strong>in</strong>icians and researchers 228 . High ICC values do notnecessarily mean that <strong>the</strong> sets <strong>of</strong> data agree but ra<strong>the</strong>r that <strong>the</strong>re is an associationbetween <strong>the</strong>m 233 . Therefore, Bland and Altman plots for 95% limits <strong>of</strong> agreementwere also presented. These are visual <strong>in</strong>terpretations <strong>of</strong> <strong>the</strong> amount <strong>of</strong> agreement <strong>of</strong><strong>the</strong> means <strong>of</strong> two trials aga<strong>in</strong>st <strong>the</strong> difference between <strong>the</strong> trials 233 . The use <strong>of</strong> 95%confidence <strong>in</strong>tervals <strong>of</strong> <strong>the</strong> range <strong>of</strong> differences between <strong>the</strong> two trials candemonstrate how closely <strong>the</strong> measurements agree on different occasions. The level<strong>of</strong> significance for all calculations was set at <strong>the</strong> 5% confidence level.4.4 ResultsPrior to analysis, <strong>the</strong> data were tested us<strong>in</strong>g <strong>the</strong> Kolmogorov-Smirnov test and foundto be normally distributed (p


____________________________________________________________Chapter 4test<strong>in</strong>g (p


____________________________________________________________Chapter 4Table 6. Means±SD, 95% CI’s for all CKC measures. Healthy and PFPS <strong>group</strong>s106


____________________________________________________________Chapter 4this would <strong>in</strong>dicate no difference between <strong>the</strong> two trial means. For example, Figure 8shows a comparison between trial 2 and 3 for MVIC <strong>in</strong> healthy subjects. The meandifference for this test was 1.88Nm (95% CI 4.9 – 8.5) with 95% lower limit <strong>of</strong>agreement <strong>of</strong> -26.88Nm (95% CI -38.5 - -15.2) and 95% upper limit <strong>of</strong> agreement <strong>of</strong>30.64Nm (95% CI 19- -42.3). This <strong>in</strong>dicates a high level <strong>of</strong> agreement between <strong>the</strong>two measures.108


____________________________________________________________Chapter 4Table8 Mean differences, 95% limits <strong>of</strong> agreements and 95% CI’s for QuadricepsStrengthHEALTHYTest Mean difference (Nm) 95% CIMVIC trials 2 & 3 1.8 ± 14.4 4.9 - 8.5CKC extension trials 2&3 1.3 ± 16.37 -6.56 – 9.16CKC flexion trial 2 & 3 1.69 ± 4.23 0.73 – 3.7195% lower limits <strong>of</strong> agreementMVIC trials 2 & 3 -26.88 -38.5 - -15.2CKC extension trials 2&3 -30.78 -44.39 - -17.17CKC flexion trial 2 & 3 -6.6 -10.1 - -3.195% upper limits <strong>of</strong> agreementMVIC trials 2 & 3 30.64 19.0 – 42.3CKC extension trials 2&3 33.38 19.77 – 46.98CKC flexion trial 2 & 3 9.98 13.5 – 6.5PFPS PATIENTSTest Mean difference (Nm) 95% CIMVIC trials 2 & 3 3.3 ± 11.8 -2.88 – 9.48CKC extension trials 2&3 3.5 ± 18.1 -6.1 – 13.1CKC flexion trial 2 & 3 -0.2 ± 3.5 -1.9 – 1.595% lower limits <strong>of</strong> agreementMVIC trials 2 & 3 -19.8 30.6 – -8.9CKC extension trials 2&3 -31.9 -48.5 - -15.3CKC flexion trial 2 & 3 -7.1 -10.6 - -3.695% upper limits <strong>of</strong> agreementMVIC trials 2 & 3 26.4 37.26 – 15.54CKC extension trials 2&3 38.9 55.5 – 22.3CKC flexion trial 2 & 3 6.6 10.1 – 3.1109


____________________________________________________________Chapter 46050difference between MVIC 2 &3403020100-10-20-30-40-50-60406080100120140mean <strong>of</strong> MVIC 2 and 3 (Nm)Figure 8. Bland & Altman plot, MVIC trials 2 & 3, healthy subjects. Means ± 2SD60difference between CKC extension 2 & 350403020100-10-20-30-40-50-606080100120140160180mean <strong>of</strong> CKC extension 2 & 3 (Nm)Figure 9. Bland & Altman plot for CKC extension trials 2 & 3. Means ± 2SD20difference between CKC flexion 2 & 31612840-4-8-12-16-2020304050mean <strong>of</strong> CKC flexion 2 & 3Figure 10. Bland & Altman plot for CKC flexion trials 2 & 3. Means ± 2SD110


____________________________________________________________Chapter 45545difference between MVIC 2 &33525155-5-15-25-35-45-55020406080100120140mean <strong>of</strong> MVIC 2 & 3 (Nm)Figure 11. Bland & Altman plot, MVIC trials 2 & 3, PFPS patients. Means ± 2SD90difference between CKC extension 2 & 370503010-10-30-50-70-90406080100120140160mean CKC extension 2 & 3 (Nm)Figure 12. Bland & Altman plot for CKC extension trials 2 & 3. Means ± 2SD1513difference between CKC flexion 2 & 31197531-1-3-5-7-9-11-13-152030405060mean CKC flexion 2 & 3 (Nm)Figure 13. Bland & Altman plot for CKC flexion trials 2 & 3. Means ± 2SD111


____________________________________________________________Chapter 44.5 DiscussionThis study has established a highly reliable test-retest protocol for <strong>the</strong> CKCattachment <strong>of</strong> <strong>the</strong> Biodex system 2 for a <strong>group</strong> <strong>of</strong> healthy subjects. Previous CKCstudies have limited <strong>the</strong>ir data to extension parameters. This is possibly <strong>the</strong> onlystudy to evaluate comprehensively a CKC protocol on not only a <strong>group</strong> <strong>of</strong> healthysubjects but also a patient <strong>group</strong> with a specific knee condition. In this respect, thisstudy has also established similarly high reliability <strong>in</strong>dicat<strong>in</strong>g that CKC test<strong>in</strong>g is auseful method <strong>of</strong> assess<strong>in</strong>g patients with PFPS. This is an important considerationbecause <strong>the</strong> alternative assessment method us<strong>in</strong>g OKC isolated knee extension hasbeen shown to <strong>in</strong>crease patell<strong>of</strong>emoral stress 221 , and <strong>in</strong>crease stra<strong>in</strong> <strong>in</strong> <strong>the</strong> anteriorand posterior cruciate ligaments 217 . An angular velocity <strong>of</strong> 90 0 /s was chosen follow<strong>in</strong>g<strong>the</strong> recommendations <strong>of</strong> Dvir 229that a reasonable and comfortable test velocitybetween 60 0 /s and 180 0 /s would meet <strong>the</strong> essential requirement <strong>of</strong> test validity. S<strong>in</strong>ce<strong>the</strong>n this angular velocity has been used <strong>in</strong> studies on patients with PFPSsymptomology 234;235 . The ICC <strong>of</strong> 0.76 for isok<strong>in</strong>etic CKC peak torque extensionshowed lower test-retest results to <strong>the</strong> only o<strong>the</strong>r study performed on <strong>the</strong> Biodex CKCattachment 226 . One reason for this difference may be that Lafree et al. performed <strong>the</strong>ir<strong>in</strong>tersession reliability data on only 5 subjects. ICCs for CKC hip and knee flexionhave not been reported before on healthy subjects and our f<strong>in</strong>d<strong>in</strong>g <strong>of</strong> an ICC estimate<strong>of</strong> 0.75 was highly significant (p


____________________________________________________________Chapter 4Com dynamometer makes extrapolation to o<strong>the</strong>r CKC devices difficult becauseprevious authors have cautioned aga<strong>in</strong>st <strong>in</strong>ter-mach<strong>in</strong>e comparisons 236 .This study also highlights <strong>the</strong> importance <strong>of</strong> a practice session fully replicat<strong>in</strong>g <strong>the</strong>proper data collection sessions. Johnson & Siegel 237 , us<strong>in</strong>g a Cybex II also had threeseparate test<strong>in</strong>g sessions and found stable data after three OKC isok<strong>in</strong>eticcontractions on session one. Kues et al 238 found <strong>the</strong>ir subjects’ measurements for K<strong>in</strong>Com OKC test<strong>in</strong>g became stable dur<strong>in</strong>g session 2, but concluded that greatest torquevalues were achieved on session 3. Therefore, <strong>the</strong>y recommended that subjectsneeded 2 practice sessions prior to proper data collection. The discrepancy betweenKues et al’s recommendations and this study may be expla<strong>in</strong>ed by <strong>the</strong>ir morecomplex experimental protocol <strong>in</strong>volv<strong>in</strong>g a variety <strong>of</strong> angular velocities and kneeflexion angles. The results from <strong>the</strong> present study <strong>in</strong>dicate that if a practice session(session 1) was excluded, <strong>the</strong> ICC estimates for isok<strong>in</strong>etic peak torque <strong>in</strong> healthysubjects improve from 0.55 to 0.76 for extension and 0.64 to 0.75 for flexion. TheSEM was also less after a practice session <strong>in</strong> all parameters except extension (Table7). Interest<strong>in</strong>gly, <strong>in</strong> healthy subjects MVIC peak torque ICC estimates at 45 0 did notalter with a practice session. This may have been because isometric test<strong>in</strong>g forextension does not require <strong>the</strong> same degree <strong>of</strong> complex, co-ord<strong>in</strong>ated <strong>muscle</strong>recruitment as isok<strong>in</strong>etic test<strong>in</strong>g for extension and flexion and also a twitch<strong>in</strong>terpolation technique was used ensur<strong>in</strong>g a maximum contraction. In <strong>the</strong> PFPS<strong>group</strong>, a similar pattern <strong>of</strong> results was found <strong>in</strong> terms <strong>of</strong> high test re-test reliabilitywhich improved fur<strong>the</strong>r if <strong>the</strong> practice session was excluded. The only exception to113


____________________________________________________________Chapter 4this was extension total work, which although still significant (p


____________________________________________________________Chapter 44.6 ConclusionThis study concludes that isok<strong>in</strong>etic concentric and MVIC values for peak torque,average power and total work us<strong>in</strong>g <strong>the</strong> CKC attachment for <strong>the</strong> Biodex system 2dynamometer are highly reliable <strong>in</strong> a <strong>group</strong> <strong>of</strong> healthy subjects and patients withPFPS. Researchers and cl<strong>in</strong>icians us<strong>in</strong>g <strong>the</strong> CKC device should have confidence <strong>in</strong><strong>the</strong>ir results when test<strong>in</strong>g healthy subjects and patients with PFPS.115


____________________________________________________________Chapter 5Chapter 5MEASUREMENT OFMUSCLE FATIGUE116


____________________________________________________________Chapter 55 MEASUREMENT OF MUSCLE FATIGUE5.1 IntroductionWhen EMS is applied to skeletal <strong>muscle</strong> <strong>the</strong>re will be effects on <strong>the</strong> strength orfatigue characteristics <strong>of</strong> that <strong>muscle</strong> dependent on <strong>the</strong> frequency parameters used.The possibility exists that some EMS studies have used an endurance enhanc<strong>in</strong>gfrequency but have only measured strength 242 . As a result it may been concludederroneously that EMS is <strong>of</strong> no benefit <strong>in</strong> <strong>the</strong> rehabilitation <strong>of</strong> <strong>the</strong> <strong>quadriceps</strong>. It isimportant <strong>the</strong>refore to <strong>in</strong>clude measures for <strong>quadriceps</strong> fatigue so that all aspects <strong>of</strong><strong>quadriceps</strong> function can be assessed. Fatigue can be def<strong>in</strong>ed as <strong>the</strong> failure <strong>of</strong> a<strong>muscle</strong> or <strong>muscle</strong> <strong>group</strong> to ma<strong>in</strong>ta<strong>in</strong> a required or expected force 243and currentcl<strong>in</strong>ical techniques for measur<strong>in</strong>g <strong>muscle</strong> fatigue are problematic. They usuallyproduce an <strong>in</strong>dex <strong>of</strong> <strong>muscle</strong> fatigue by contract<strong>in</strong>g <strong>muscle</strong> at a particular force until itcannot be ma<strong>in</strong>ta<strong>in</strong>ed (<strong>the</strong> failure po<strong>in</strong>t) or over a number <strong>of</strong> repetitions 191 . In additionto <strong>the</strong> conceptual problem <strong>of</strong> whe<strong>the</strong>r it actually measures fatigue, <strong>the</strong>re are alsosome practical disadvantages <strong>of</strong> this technique. Firstly, failure is recorded after itoccurs. Secondly, it is a global measure <strong>of</strong> <strong>muscle</strong> function because <strong>in</strong>dividual<strong>muscle</strong>s cannot be analysed. Thirdly, microscopic physiological and biochemicalprocesses that can alter <strong>the</strong> generat<strong>in</strong>g force dur<strong>in</strong>g a submaximal contraction cannotbe detected. Fourthly, <strong>the</strong>re are psychological and emotional factors work<strong>in</strong>g dur<strong>in</strong>g<strong>the</strong> failure po<strong>in</strong>t technique that may have more bear<strong>in</strong>g on <strong>the</strong> results thanphysiological factors 191 . The problems associated with <strong>the</strong> failure po<strong>in</strong>t technique117


____________________________________________________________Chapter 5were confirmed <strong>in</strong> pre-pilot feasibility work and were deemed unable to fulfill <strong>the</strong> basicrequirements <strong>of</strong> validity and reliability. At <strong>the</strong> same time, o<strong>the</strong>r authors suggested that<strong>the</strong> time – scor<strong>in</strong>g <strong>of</strong> fatigue did not represent an appropriate parameter 244 . Thisoutcome measure <strong>the</strong>refore needed a technique that could overcome <strong>the</strong>seproblems.An alternative technique was to employ surface electromyography (EMG). SurfaceEMG is central to a wide range <strong>of</strong> applications as it enables <strong>the</strong> <strong>electrical</strong> behaviour <strong>of</strong><strong>the</strong> <strong>muscle</strong> to be measured <strong>in</strong> a non-<strong>in</strong>vasive way. It was Piper 245 who first describedthat dur<strong>in</strong>g a susta<strong>in</strong>ed contraction, <strong>the</strong> EMG signal undergoes frequencycompression. O<strong>the</strong>r workers have noted that <strong>the</strong> measurement <strong>of</strong> <strong>the</strong>se changes is amore objective measure <strong>of</strong> skeletal <strong>muscle</strong> fatigue 246 . More recently, it has beenproposed that <strong>the</strong> dom<strong>in</strong>ant underly<strong>in</strong>g mechanism for <strong>the</strong>se changes is said to be adecrease <strong>in</strong> <strong>muscle</strong> fibre conduction velocity 247 , probably due to a decrease <strong>in</strong><strong>in</strong>tramuscular pH and a change <strong>in</strong> synchronisation and fir<strong>in</strong>g rate <strong>of</strong> <strong>muscle</strong> fibres 248 .In practical terms <strong>the</strong>re are also several advantages <strong>of</strong> surface EMG. For example,<strong>in</strong>dividual <strong>muscle</strong>s can be monitored simultaneously and fatigue can be analyseddur<strong>in</strong>g <strong>the</strong> <strong>in</strong>itial phase <strong>of</strong> a contraction, thus negat<strong>in</strong>g <strong>the</strong> use <strong>of</strong> <strong>the</strong> failure po<strong>in</strong>t.Fur<strong>the</strong>rmore, <strong>the</strong> use <strong>of</strong> EMG enables data to be collected over a fixed time po<strong>in</strong>t(usually 60 s) ra<strong>the</strong>r than <strong>the</strong> open ended, non-fixed-time-po<strong>in</strong>t scenario associatedwith failure po<strong>in</strong>t techniques.118


____________________________________________________________Chapter 5after fatiguesignal powerbefore fatigueMfa Mfbfrequency (Hz)Mfa = median frequency after fatigueMfb = median frequency before fatigueArea under <strong>the</strong> curve = <strong>the</strong> total power <strong>of</strong> <strong>the</strong> spectrumFigure 14 Graph show<strong>in</strong>g compression <strong>of</strong> power spectrumto lower frequencies dur<strong>in</strong>g a susta<strong>in</strong>ed contraction119


____________________________________________________________Chapter 5median frequency<strong>in</strong>tercept = <strong>in</strong>itial median frequencyslope = fatigue ratetime (60 sec)Figure 15 Representation <strong>of</strong> <strong>in</strong>tercept and l<strong>in</strong>ear regression slope.The EMG signal can be analysed <strong>in</strong> several ways, but two common measures <strong>of</strong> <strong>the</strong>power density spectrum are <strong>the</strong> mean power frequency and <strong>the</strong> median frequency(MF). In <strong>the</strong>ory, both variables are sensitive to a shift to lower frequencies dur<strong>in</strong>g asusta<strong>in</strong>ed <strong>muscle</strong> contraction. The MF is <strong>of</strong>ten chosen over mean frequency becauseit is less sensitive to noise 249and more sensitive to spectral compression 250 . Inaddition, MF is recognised as <strong>the</strong> most widely used measure <strong>of</strong> spectral shift result<strong>in</strong>gfrom fatigue 251 . The spectral shift can provide an <strong>in</strong>dex <strong>of</strong> <strong>muscle</strong> fatigue 246 (Figure 14) that can <strong>the</strong>n be plotted as a l<strong>in</strong>ear regression slope to <strong>in</strong>dicate fatigue rate(Figure 15). As a result, cl<strong>in</strong>ical applications <strong>of</strong> this technique have been suggestedas a diagnostic and prognostic aid <strong>in</strong> musculoskeletal and neuromuscular disorders 248and have been used to dist<strong>in</strong>guish between patients and normal subjects 244 ,and to120


____________________________________________________________Chapter 5evaluate patients undergo<strong>in</strong>g sp<strong>in</strong>al rehabilitation 246 . Reliability has been studied <strong>in</strong>human lumbar 252 , and cervical 253 parasp<strong>in</strong>al <strong>muscle</strong>s and <strong>the</strong> upper limb 254 . Thereare, however, very few studies that have exam<strong>in</strong>ed <strong>the</strong> reliability <strong>of</strong> EMG powerspectral analysis <strong>of</strong> <strong>the</strong> superficial <strong>muscle</strong>s <strong>of</strong> <strong>the</strong> <strong>quadriceps</strong> <strong>group</strong>. Recently,Kollmitzer et al. 255 exam<strong>in</strong>ed <strong>the</strong> short and long-term reliability <strong>of</strong> RF, VL, and VM<strong>muscle</strong>s <strong>in</strong> 18 healthy subjects. The root mean squared (RMS) and MF wereestimated for 100% MVC and 50% susta<strong>in</strong>ed maximum voluntary contraction (MVC)tasks with <strong>the</strong> knee at 45 0 <strong>of</strong> flexion. MF reliability was found to be excellent for RF(ICC = .87), whereas <strong>the</strong> reliability <strong>of</strong> <strong>the</strong> VM (ICC = .47), and VL (ICC = .34) werepoor. However, this study assessed <strong>the</strong> <strong>quadriceps</strong> <strong>in</strong> isolated open k<strong>in</strong>etic cha<strong>in</strong>(OKC) knee extension. OKC assessment us<strong>in</strong>g isolated knee extension is <strong>the</strong> mostcommonly used method to assess function <strong>of</strong> <strong>the</strong> <strong>quadriceps</strong> and <strong>the</strong> knee, eventhough isolated OKC knee test<strong>in</strong>g may be undesirable or even contra<strong>in</strong>dicated whenassess<strong>in</strong>g patients with pathological conditions <strong>of</strong> <strong>the</strong> knee jo<strong>in</strong>t 216 . For example,patell<strong>of</strong>emoral pa<strong>in</strong> syndrome is one <strong>of</strong> several orthopaedic dysfunctions <strong>in</strong> whichisok<strong>in</strong>etic test<strong>in</strong>g, rehabilitation and follow-up are <strong>in</strong>dicated 229 . CKC test<strong>in</strong>g has beenadvocated <strong>in</strong> favour <strong>of</strong> OKC test<strong>in</strong>g <strong>in</strong> this patient <strong>group</strong> due to <strong>the</strong> reduction <strong>of</strong>patell<strong>of</strong>emoral stresses 222 . The improvement <strong>in</strong> perceived function <strong>in</strong> patell<strong>of</strong>emoralpa<strong>in</strong> is thought to be due to <strong>the</strong> co-contraction <strong>of</strong> <strong>the</strong> biarticular <strong>muscle</strong>s <strong>of</strong> <strong>the</strong> lowerlimb, proprioception, jo<strong>in</strong>t position sense and k<strong>in</strong>aes<strong>the</strong>sia 224 . It has been proposedthat <strong>the</strong> <strong>in</strong>tegration <strong>of</strong> all jo<strong>in</strong>ts and segments <strong>in</strong> a movement such as CKC knee121


____________________________________________________________Chapter 5extension is more preferable than an isolated motion <strong>of</strong> a OKC activity such as seatedknee extension 86 .Although <strong>the</strong>re have been reliability studies <strong>of</strong> amplitude and frequency parametersfor <strong>the</strong> <strong>quadriceps</strong> <strong>in</strong> OKC knee extension, <strong>the</strong>se results cannot be extrapolated to <strong>the</strong><strong>quadriceps</strong> dur<strong>in</strong>g CKC evaluation. As <strong>the</strong> reliability <strong>of</strong> EMG power spectral analysisfor MF has not yet been <strong>in</strong>vestigated on <strong>the</strong> <strong>quadriceps</strong> <strong>in</strong> CKC test<strong>in</strong>g, <strong>the</strong> aims <strong>of</strong>this study were firstly to <strong>in</strong>vestigate <strong>the</strong> between day reliability <strong>of</strong> this technique. Ifreliability was established <strong>the</strong>n <strong>the</strong> second aim was to study <strong>the</strong> values <strong>in</strong> a patientpopulation with patell<strong>of</strong>emoral pa<strong>in</strong> syndrome.5.2 Methods5.2.1 SubjectsA convenience sample <strong>of</strong> 20 healthy volunteers (10 males and 10 females. Age: 29.3± 5.5 years; BMI: 23.3 ± 3.5) with no lower limb pathology was recruited from <strong>the</strong>University and hospital community. The patient <strong>group</strong> consisted <strong>of</strong> 19 subjects (13female, 6 male. Age 34.2 ± 8.7 years; BMI: 28.0 ± 6.9) with PFPS. Patients were<strong>in</strong>cluded if <strong>the</strong>y had atraumatic, peripatellar pa<strong>in</strong> for greater than six months and notlonger than three years. Patell<strong>of</strong>emoral pa<strong>in</strong> was reported by <strong>the</strong> patient as be<strong>in</strong>gpresent dur<strong>in</strong>g one <strong>of</strong> <strong>the</strong> follow<strong>in</strong>g alone or <strong>in</strong> comb<strong>in</strong>ation: prolonged sitt<strong>in</strong>g, deepsquatt<strong>in</strong>g, kneel<strong>in</strong>g, ascend<strong>in</strong>g or descend<strong>in</strong>g stairs. Patients were also <strong>in</strong>cluded if<strong>the</strong>y had a normal radiograph, magnetic resonance imag<strong>in</strong>g or arthroscopy, but wereexcluded if <strong>the</strong>y had o<strong>the</strong>r forms <strong>of</strong> recent knee surgery. All subjects gave <strong>the</strong>ir122


____________________________________________________________Chapter 5written, <strong>in</strong>formed consent. The study protocol was approved by <strong>the</strong> local ethicalcommittee <strong>of</strong> Manchester <strong>School</strong> <strong>of</strong> Physio<strong>the</strong>rapy and <strong>the</strong> local ethics researchcommittee <strong>of</strong> Central Manchester Health Care Trust.5.2.2 Force measurementEach subject was tested on 3 separate days with no less than 24 hours and no morethan 72 hours between consecutive test sessions. Factors such as diurnal variation,temperature, humidity, and menstruation were taken <strong>in</strong>to consideration when plann<strong>in</strong>gdata collection. The ambient temperature was monitored for all tests and rema<strong>in</strong>edconstant at 20 0 C 256 .All subjects were <strong>in</strong>structed <strong>in</strong> stretch<strong>in</strong>g exercises for <strong>quadriceps</strong> and hamstr<strong>in</strong>g<strong>muscle</strong> <strong>group</strong>s and <strong>the</strong>n sat on a Biodex dynamometer (Biodex system Inc. Shirley,N.Y. USA) that was calibrated on each test<strong>in</strong>g day <strong>in</strong> accordance with <strong>the</strong>manufacturer’s <strong>in</strong>structions. An attachment for CKC test<strong>in</strong>g was supplied by <strong>the</strong>manufacturer to measure <strong>the</strong> extension torque <strong>of</strong> <strong>the</strong> lower limb. Hip flexion was fixedat 90 0 and <strong>the</strong> knee angle set at 45 0 flexion. The knee angle was previouslydeterm<strong>in</strong>ed as <strong>the</strong> most appropriate to reduce patell<strong>of</strong>emoral stress to a m<strong>in</strong>imumdur<strong>in</strong>g test<strong>in</strong>g 50;222 . Practice contractions were performed prior to data collection t<strong>of</strong>amiliarise <strong>the</strong> subjects with this method and to ensure that <strong>the</strong>y were able to ma<strong>in</strong>ta<strong>in</strong>a knee angle <strong>of</strong> 45 0 . A twitch <strong>in</strong>terpolation technique was used to ensure a maximumvoluntary <strong>quadriceps</strong> contraction 140;141 . Subjects performed three maximum123


____________________________________________________________Chapter 5contractions with 2 m<strong>in</strong>utes rest between each contraction 231;232 ; data were collectedfor <strong>the</strong> maximum s<strong>in</strong>gle torque value (peak torque). Fifteen m<strong>in</strong>utes rest was allowedbefore <strong>the</strong> EMG fatigue protocol started 257 .5.2.3 EMG measurementsThe areas chosen for electrode placement were prepared by shav<strong>in</strong>g, if appropriate,abraded by f<strong>in</strong>e sandpaper and cleansed with isopropyl alcohol 258 . Sk<strong>in</strong> (source)impedance was monitored by an impedometer (RS components, UK) with every effortmade to keep <strong>the</strong> sk<strong>in</strong> impedance between each record<strong>in</strong>g electrode and <strong>the</strong>reference electrode less than 10 kΩ 259 . If necessary, <strong>the</strong> site was re-prepared.Electrode positions were determ<strong>in</strong>ed by us<strong>in</strong>g a protractor and tape measure andwere marked with <strong>in</strong>delible <strong>in</strong>k. The <strong>muscle</strong>s were determ<strong>in</strong>ed as follows: VMO at 50 0from <strong>the</strong> long axis <strong>of</strong> <strong>the</strong> femur and 5 cm from <strong>the</strong> superior medial border <strong>of</strong> <strong>the</strong>patella 79 . The VL at 12 0 -15 0 from <strong>the</strong> long axis <strong>of</strong> <strong>the</strong> femur and 15 cm from <strong>the</strong>superior lateral border <strong>of</strong> <strong>the</strong> patella. The RF at 7-10 0 medially <strong>in</strong> <strong>the</strong> frontal plane at<strong>the</strong> mid-po<strong>in</strong>t <strong>of</strong> <strong>the</strong> <strong>muscle</strong> belly, halfway between <strong>the</strong> anterior superior iliac sp<strong>in</strong>eand <strong>the</strong> superior pole <strong>of</strong> <strong>the</strong> patella 260 . A template <strong>of</strong> all reference po<strong>in</strong>ts was madewith an acetate sheet for each subject to ensure that <strong>the</strong> identified landmarks andplacement sites were reproducible (Figure 16) Pairs <strong>of</strong> pre-gelled silver/ silverchloride surface electrodes (Niko Medical Products, Gloucestershire, U.K.) wereplaced <strong>in</strong> a bipolar configuration on <strong>the</strong> sk<strong>in</strong> with <strong>the</strong> knee <strong>in</strong> 45 0 <strong>of</strong> flexion, parallel to<strong>the</strong> alignment <strong>of</strong> <strong>the</strong> <strong>muscle</strong> fibres 261with an <strong>in</strong>ter-electrode distance <strong>of</strong> 5 cm.124


____________________________________________________________Chapter 5Reference (ground) electrodes were placed locally on <strong>muscle</strong>s unrelated to thosebe<strong>in</strong>g <strong>in</strong>vestigated 262 .The electrodes were connected to a TEL 100M four-channel remoteamplifier/transmitter system with filter<strong>in</strong>g, <strong>of</strong>fset and ga<strong>in</strong> controls for each channel(Biopac Systems Inc. California USA) (Figure 17). This was connected via a cable toa TEL 100D receiver module, which was <strong>in</strong> turn connected to <strong>the</strong> MP 100-acquisitionunit. EMG signals were high pass (8Hz) and low pass (500Hz) filtered (Butterworthfilter), with a sharp notch (band stop) filter <strong>of</strong> 50Hz. The amplifier was set with a ga<strong>in</strong><strong>of</strong> 10, a Common Mode Rejection Ratio (CMMR) <strong>of</strong> 110-dB m<strong>in</strong>imum and a signal-tonoiseratio <strong>of</strong> 65dB m<strong>in</strong>imum. There was a differential <strong>in</strong>put impedance <strong>of</strong> 2MΩ. Thesignal was analogue to digital converted at a sampl<strong>in</strong>g rate <strong>of</strong> 1024 Hz.Figure 16. Use <strong>of</strong> acetate(left) allowed accurate reposition<strong>in</strong>g <strong>of</strong> sk<strong>in</strong> marks(right)125


____________________________________________________________Chapter 5VMOV.Lat.R.Fem.Figure 17. EMG electrodes connected to <strong>the</strong> Biopac Tel 100.126


____________________________________________________________Chapter 55.2.4 EMG Data CollectionSubjects were asked to perform a 60-second isometric contraction at a level <strong>of</strong> 60%<strong>of</strong> <strong>the</strong>ir MVIC. A submaximal level <strong>of</strong> 60% was chosen as it was deemed areasonable amount to both obta<strong>in</strong> some measure <strong>of</strong> fatigue and be comfortableenough for <strong>the</strong> patient. The submaximal tasks have been found easier to perform,more stable, and more reliable than maximal tasks 263 . The 60% contraction level wasshown to subjects via a computer-generated l<strong>in</strong>e on <strong>the</strong> dynamometer screen. Datacollection did not commence until <strong>the</strong> 60% level was reached and ceased before <strong>the</strong>subject stopped contract<strong>in</strong>g. O<strong>the</strong>r than completion <strong>of</strong> <strong>the</strong> 60s, <strong>the</strong> test was alsoterm<strong>in</strong>ated under two circumstances. If <strong>the</strong> output appeared to have decl<strong>in</strong>ed,consistently, to less than 90% <strong>of</strong> <strong>the</strong> target force or if repeated artifacts appeareddur<strong>in</strong>g <strong>the</strong> first 25 seconds, <strong>in</strong>dicat<strong>in</strong>g possible loss <strong>of</strong> electrode contact.5.3 Data analysisOn l<strong>in</strong>e real time analysis <strong>of</strong> <strong>the</strong> EMG signal from each <strong>muscle</strong> was performed everysecond by a graphical programm<strong>in</strong>g analysis system (LabVIEW TM5.0, NationalInstruments, Texas, USA), <strong>in</strong> order to cont<strong>in</strong>uously derive <strong>the</strong> MF <strong>of</strong> <strong>the</strong> power densityspectrum every second, us<strong>in</strong>g a Fast Fourier Transform (FFT) algorithm. The medianfrequency (MF) was <strong>the</strong>n computed. The data was exported to Micros<strong>of</strong>t Excel (97)for <strong>of</strong>f l<strong>in</strong>e analysis (Figure 18) and <strong>the</strong> raw signal checked for artifacts or signalanomalies. A normalisation procedure was required for between subject comparison<strong>in</strong> view <strong>of</strong> <strong>the</strong> <strong>in</strong>dividual anthropometric differences and, despite pa<strong>in</strong>stak<strong>in</strong>g efforts,127


____________________________________________________________Chapter 5any variations <strong>in</strong> standardis<strong>in</strong>g electrode placement 260 . MF was, <strong>the</strong>refore, normalisedaga<strong>in</strong>st <strong>in</strong>itial median frequency (IMF) dur<strong>in</strong>g <strong>the</strong> static MVIC, which is by far <strong>the</strong> mostcommonly used normalisation method 264 . A slope <strong>of</strong> regression was derived to<strong>in</strong>dicate MF decl<strong>in</strong>e. This slope was used to describe <strong>the</strong> rate <strong>of</strong> change over <strong>the</strong>contraction time to express a fatigue rate.Hz140120100806040200VL = -0.0566time (0-60 s)Figure 18 A typical normalised graph <strong>of</strong> data from Vastus Lateralis (VL)rate <strong>of</strong> fatigue. The l<strong>in</strong>ear regression l<strong>in</strong>e is fitted (<strong>in</strong> black) and <strong>the</strong> equation is <strong>in</strong> %/s5.3.1 StatisticsAssessment <strong>of</strong> test-retest reliability was made by <strong>in</strong>traclass correlation coefficient(ICC 1,3) for s<strong>in</strong>gle rat<strong>in</strong>g 265 . The reason for select<strong>in</strong>g this ICC equation was to test <strong>in</strong>trarater reliability <strong>of</strong> <strong>the</strong> fatigue measure repeated over three tests. The first <strong>in</strong>tegerrepresents <strong>the</strong> number <strong>of</strong> raters and <strong>the</strong> second <strong>in</strong>teger <strong>the</strong> number <strong>of</strong> measures 266 .128


____________________________________________________________Chapter 5This equation is also appropriate when <strong>the</strong> reliability <strong>of</strong> a specific protocol is be<strong>in</strong>gtested as a precursor to a ma<strong>in</strong> trial (as is <strong>the</strong> case here) ra<strong>the</strong>r than to provide<strong>in</strong>formation <strong>of</strong> generalisability. Statistical analyses were performed us<strong>in</strong>g SPSS(Statistical Package for <strong>the</strong> Social Sciences) for w<strong>in</strong>dows (v.9) to determ<strong>in</strong>e <strong>the</strong><strong>in</strong>traclass correlation correlation (ICC).A repeated measures ANOVA was used to test for significance <strong>in</strong>teractions betweentime and gender for all <strong>muscle</strong>s for IMF and MF. ‘Excellent reliability’ described ICCvalues <strong>in</strong> <strong>the</strong> range 80 – 100% and ‘good reliability’ described ICC values <strong>in</strong> <strong>the</strong> range60 – 80%, whereas values below 60% <strong>in</strong>dicated ‘poor reliability’ 267 . Statisticalsignificance was accepted at <strong>the</strong> 5% confidence level.As discussed <strong>in</strong> Chapter 4, ICCs alone do not represent a complete analysis <strong>of</strong>reliablity, <strong>the</strong>refore Bland and Altman plots with 95% limits <strong>of</strong> agreement between <strong>the</strong>trials were also calculated 233 . Outliers, bias or relationships between variance <strong>in</strong>measures can <strong>the</strong>refore be easily observed 268 .5.4 ResultsPrior to analysis <strong>the</strong> data were tested us<strong>in</strong>g <strong>the</strong> Kolmogorov-Smirnov test and foundto be normally distributed (p>0.05), thus <strong>in</strong>dicat<strong>in</strong>g analysis by parametric statistics.There were no statistically significant <strong>in</strong>teractions for time and gender for all <strong>muscle</strong>sand IMF and MF (p>0.05). Therefore <strong>the</strong> data for <strong>the</strong> male and female subjects werepooled and reported as a s<strong>in</strong>gle sample.129


____________________________________________________________Chapter 55.4.1 Torque measurementsAs expected, <strong>the</strong>re were lower torque values <strong>in</strong> <strong>the</strong> PFPS <strong>group</strong> than <strong>the</strong> healthy.This f<strong>in</strong>d<strong>in</strong>g concurs with <strong>the</strong> previous chapter and work s<strong>in</strong>ce published <strong>in</strong> different<strong>group</strong>s <strong>of</strong> healthy and PFPS patients us<strong>in</strong>g <strong>the</strong> CKC attachment 269 . Reliability <strong>of</strong> <strong>the</strong>MVIC torque measurements was excellent (ICC = .91 <strong>in</strong> healthy subjects; ICC = .82<strong>in</strong> PFPS subjects). The reliability improved when <strong>the</strong> tra<strong>in</strong><strong>in</strong>g session was excluded(ICC = .96 <strong>in</strong> healthy; ICC .92 <strong>in</strong> PFPS).5.4.2 EMG measurements5.4.2.1 Initial Median FrequencyTable 9 shows <strong>group</strong> means ±SD, SEM, and ICCs for <strong>the</strong> IMF for all <strong>muscle</strong>s with andwithout <strong>the</strong> practice trial. The healthy <strong>group</strong> showed excellent reliability between trials2 and 3 for VL (ICC 1.3 .81) and RF (ICC 1,3 .82), with good between-days reliability forVMO (ICC 1,378). In <strong>the</strong> PFPS <strong>group</strong>, similar reliability between trials 2 and 3 wasdemonstrated on VMO (ICC 1,3 .68), on VL (ICC 1,3 .86) and RF (ICC 1,3 .69).5.4.2.2 Median FrequencyTable 9 also shows <strong>the</strong> <strong>group</strong> means ±SD, SEM, and ICCs for MF for all <strong>muscle</strong>s withand without <strong>the</strong> practice trial. In <strong>the</strong> healthy <strong>group</strong>, good between-days reliability wasdemonstrated <strong>in</strong> <strong>the</strong> MF slope <strong>of</strong> <strong>the</strong> VL and VMO with ICC 1,3 .74 and .72respectively. In contrast, <strong>the</strong>re was poor reliability for <strong>the</strong> MF slope <strong>of</strong> RF with an130


____________________________________________________________Chapter 5ICC 1,3 <strong>of</strong> .33. There was a similar pattern <strong>in</strong> <strong>the</strong> PFPS <strong>group</strong>, with reliability betweentrials 2 and 3 be<strong>in</strong>g excellent for RF(.81), good for VMO (.62), and poor for VL (.39).Table10 shows <strong>the</strong> means ±SD and 95% CI for MF for each trial separately. In <strong>the</strong>healthy <strong>group</strong>, <strong>the</strong>re was a decl<strong>in</strong>e <strong>in</strong> <strong>the</strong> mean values for all <strong>muscle</strong>s dur<strong>in</strong>g <strong>the</strong> threedifferent trials, with MF slope decl<strong>in</strong>es <strong>of</strong> <strong>the</strong> mono-articular <strong>muscle</strong>s be<strong>in</strong>g larger than<strong>the</strong> bi-articular <strong>muscle</strong> (VMO -0.14; VL -0.12; RF -0.06). Bland & Altman plots werealso calculated for <strong>the</strong> limits <strong>of</strong> agreement between trials 2 and 3. The limits <strong>of</strong>agreement were def<strong>in</strong>ed as <strong>the</strong> mean difference <strong>of</strong> <strong>the</strong> two trials plus and m<strong>in</strong>us twostandard deviations (± 2SD). Thus if all <strong>the</strong> markers were on <strong>the</strong> zero l<strong>in</strong>e this would<strong>in</strong>dicate no difference between <strong>the</strong> two trial means. Table11 shows <strong>the</strong> values for95% limits <strong>of</strong> agreement and 95% confidence <strong>in</strong>tervals. Figures 19, 20, and 21 showplots for each <strong>of</strong> <strong>the</strong> <strong>muscle</strong>s <strong>of</strong> healthy subjects; figures 22,23,24 show those for <strong>the</strong>PFPS patients. This shows that <strong>the</strong> majority <strong>of</strong> values are well with<strong>in</strong> <strong>the</strong> 95% limits <strong>of</strong>agreement. For example, <strong>the</strong> mean difference <strong>in</strong> Figure 19 is -0.019 %/s (95% CI -0.23 - -0.061) with 95% lower limit <strong>of</strong> agreement <strong>of</strong> –0.219 (95% CI -0.3 - -0.14) and95% upper limit <strong>of</strong> 0.196 (95% CI 0.11 – 0.28).131


____________________________________________________________Chapter 5Table 9 Group Means ±SD, ICC, and SEM for <strong>the</strong> IMF and MFfor all <strong>muscle</strong>s and all trials. Normalised data.HealthyPFPSIMF Mean ±SD SEM SDD ICC 1,3 Mean ±SD SEM SDD ICC 1,3VMO 1,2 64.41 (9.93) 7.27 31 .55 63.66 (6.91) 2.97 13 .60VMO 2,3 63.24 (8.70) 2.85 12 .78 65.42 (6.99) 7.37 32 .68VL 1,2 61.26 (7.17) 7.26 31 .65 65.25 (7.13) 7.72 35 .36VL 2,3 61.41 (7.94) 2.00 9 .81 64.12 (9.01) 1.68 8 .86RF 1,2 60.72 (9.72) 2.60 12 .80 60.71 (8.43) 1.08 5 .30RF 2,3 59.74 (9.69) 2.52 12 .82 61.22 (8.13) 3.08 14 .69MFVMO 1,2 -0.123 (0.127) 0.144 41 .33 -0.098 (0.066) 0.054 123 .37VMO 2,3 -0.140 (0.127) 0.055 117 .72 -0.118 (0.089) 0.066 131 .62VL 1,2 -0.118 (0.057) 0.207 775 .34 -0.074 (0.071) 0.069 162 .15VL 2,3 -0.120 (0.117) 0.045 130 .74 -0.096 (0.065) 0.111 256 .39RF 1,2 -0.071 (0.061) 0.283 990 -.59 -0.055 (0.088) 0.027 105 .09RF 2,3 0.062 (0.106) 0.120 369 .33 -0.091 (0.082) 0.151 598 .81Legend: IMF = Initial Median FrequencyMF = Median FrequencySEM = Standard Error <strong>of</strong> MeasureICC = Intraclass Correlation CoefficientVMO = Vastus Medialis ObliqueVL = Vastus LateralisRF = Rectus Femoris132


____________________________________________________________Chapter 5Table10 Means±SD & 95% CI’s for EMG MF slopes. Healthy and PFPS <strong>group</strong>sHealthyPFPSMEAN ±SD 95% CI MEAN ±SD 95% CIVMO 1 -0.099 0.169 -0.178 ~ -0.019 -0.082 0.069 -0.116 ~ -0.047VMO 2 -0.146 0.139 -0.211~ -0.080 -0.119 0.091 -0.165 ~ -0.074VMO 3 -0.134 0.136 -0.198~ -0.070 -0.121 0.112 -0.176 ~ -0.065VL 1 -0.087 0.071 -0.120 ~ -0.053 -0.053 0.107 -0.106 ~ -0.0008VL 2 -0.149 0.127 -0.209 ~ -0.090 -0.103 0.078 -0.142 ~ -0.065VL 3 -0.092 0.122 -0.149 ~ -0.034 -0.096 0.078 -0.134 ~ -0.056RF 1 -0.070 0.113 -0.123 ~ -0.016 -0.014 0.036 -0.090 ~ 0.062RF 2 -0.072 0.141 -0.138 ~ -0.006 -0.095 0.089 -0.139 ~ -0.051RF 3 -0.059 0.111 -0.113 ~ -0.006 -0.089 0.086 -0.132 ~ -0.046Legend:VMO = Vastus Medialis ObliqueVL = Vastus LateralisRF = Rectus femorisPFPS = Patell<strong>of</strong>emoral pa<strong>in</strong> syndrome patients133


____________________________________________________________Chapter 5Table11 Mean differences, 95% limits <strong>of</strong> agreements and 95% CIs for QuadricepsEnduranceHEALTHYTest Mean difference (%/s) 95% CIVMO trials 2 & 3 -0.019 ± 0.104 -0.023 - -0.061VL trials 2 & 3 -0.058 ± 0.089 -0.10 – 0.02RF trials 2 & 3 -0.217 ± 0.146 -0.08 - -0.0495% lower limits <strong>of</strong> agreementVMO trials 2 & 3 -0.219 -0.30 - -0.14VL trials 2 & 3 -0.23 -0.29 - -0.17RF trials 2 & 3 -0.31 -0.44 - -0.1895% upper limits <strong>of</strong> agreementVMO trials 2 & 3 0.196 0.11 – 0.28VL trials 2 & 3 0.12 0.06 – 0.18RF trials 2 & 3 0.26 0.13 – 0.39PFPS PATIENTSTest Mean difference (%/s) 95% CIVMO trials 2 & 3 0.002 ± 0.0088 -0.04 – 0.04VL trials 2 & 3 -0.001 ± 0.0087 -0.04 – 0.04RF trials 2 & 3 -0.001 ± 0.0058 -0.03 – 0.0395% lower limits <strong>of</strong> agreementVMO trials 2 & 3 -0.17 -0.23 - -0.11VL trials 2 & 3 -0.17 -0.23 – 0.11RF trials 2 & 3 -0.11 -0.16 - -0.0695% upper limits <strong>of</strong> agreementVMO trials 2 & 3 0.17 0.11 – 0.23VL trials 2 & 3 0.17 0.23 – 0.11RF trials 2 & 3 0.11 0.06 – 0.16134


____________________________________________________________Chapter 5.5.4difference between VMO 2 & 3.3.2.1.0-.1-.2-.3-.4-.5-.6-.5-.4-.3-.2-.10.0.1mean VMO 2 & 3 (slope %/s)Figure 19.Bland & Altman Plot, trials 2 & 3 for VMO,healthy subjects.Means ±2SD.5.4difference between VL 2 & 3.3.2.1.0-.1-.2-.3-.4-.5-.6-.5-.4-.3-.2-.10.0.1mean <strong>of</strong> VL 2 & 3 (slope %/s)Figure 20. Bland & Altman Plot, trials 2 & 3 for VL, healthy subjects. Means ± 2SD.9difference between RF 2 & 3.6.3.0-.3-.6-.9-.4-.3-.2-.10.0.1.2mean <strong>of</strong> RF 2 & 3 (slope %/s)Figure 21. Bland & Altman Plot, trials 2 & 3 for RF, healthy subjects. Means ± 2SD135


____________________________________________________________Chapter 5.6.5difference between VMO 2 & 3.4.3.2.1-.0-.1-.2-.3-.4-.5-.6-.6-.5-.4-.3-.2-.10.0.1mean <strong>of</strong> VMO 2 & 3 (slope %/s)Figure 22. Bland & Altman Plot, trials 2 & 3 for VMO, PFPS patients. Means ±2SD.5.4difference between VL 2 & 3.3.2.1.0-.1-.2-.3-.4-.5-.3-.2-.10.0.1mean <strong>of</strong> VL 2 & 3 (slope %/s)Figure 23. Bland & Altman Plot, trials 2 & 3 for VL, PFPS patients. Means ± 2SD.5.4difference between RF 2 & 3.3.2.1.0-.1-.2-.3-.4-.5-.4-.3-.2-.10.0.1.2mean <strong>of</strong> RF 2 & 3 (slope %/s)Figure 24. Bland & Altman Plot, trials 2 & 3 for RF, PFPS patients. Means ± 2SD136


____________________________________________________________Chapter 55.5 DiscussionThe present study has exam<strong>in</strong>ed <strong>the</strong> reliability <strong>of</strong> <strong>the</strong> IMF and MF slope <strong>of</strong> <strong>the</strong> VMO,VL and RF dur<strong>in</strong>g susta<strong>in</strong>ed submaximal CKC isometric contractions. Once areliability protocol was established <strong>in</strong> a healthy subject <strong>group</strong>, <strong>the</strong> technique was <strong>the</strong>napplied to a patient <strong>group</strong> with PFPS. This seems to be <strong>the</strong> first study to analyse IMFand MF reliability <strong>in</strong> <strong>the</strong> <strong>quadriceps</strong> <strong>muscle</strong> <strong>in</strong> CKC lower limb extension ra<strong>the</strong>r thanisolated OKC knee extension; a method that represents a more functionalassessment <strong>of</strong> <strong>the</strong> lower limb. Although OKC knee extension is a commonly used andreliable procedure for some <strong>muscle</strong>s 255 , this method may be contra<strong>in</strong>dicated whenapply<strong>in</strong>g <strong>the</strong> technique on various knee pathologies 216 . Previous studies have noted apa<strong>in</strong> <strong>in</strong>hibitory effect on EMG data dur<strong>in</strong>g OKC knee extension 241 . As CKC test<strong>in</strong>gseems to hold several advantages over OKC, <strong>the</strong> present study has attempted toassess its value and reliability when tak<strong>in</strong>g EMG data <strong>in</strong> a patient population.5.5.1.1 Initial median frequencyIn <strong>the</strong> healthy <strong>group</strong>, IMF was <strong>the</strong> most reliable parameter across trials. The VMO, VLand RF exhibited good to excellent reliability <strong>of</strong> IMF (ICC 1,3 = .78, .81, .82). Thesedata compare with those reported for back <strong>muscle</strong>s dur<strong>in</strong>g a trunk hold<strong>in</strong>g test (ICC 2,1range 0.79 to 0.86 270 . O<strong>the</strong>r studies <strong>in</strong>vestigat<strong>in</strong>g <strong>the</strong> reliability on healthy back andcervical parasp<strong>in</strong>al <strong>muscle</strong>s have revealed better reliability <strong>of</strong> <strong>the</strong> IMF than ourstudy 252 . Merletti et al 271 also reported better IMF reliability for <strong>the</strong> vastus medialis(ICC = .86), but <strong>the</strong>y used <strong>electrical</strong>ly evoked ra<strong>the</strong>r than voluntary isometric137


____________________________________________________________Chapter 5contractions <strong>in</strong> <strong>the</strong> OKC test<strong>in</strong>g position. In <strong>the</strong> PFPS <strong>group</strong> <strong>the</strong>re was similarexcellent to good reliability for VMO, VL and RF ( .68, .86, .69).5.5.1.2 Median FrequencyThe current study showed vary<strong>in</strong>g reliability <strong>of</strong> <strong>the</strong> MF slopes dur<strong>in</strong>g CKC submaximalisometric contractions. In both <strong>the</strong> healthy and PFPS <strong>group</strong>s, ICCs varied between<strong>the</strong> record<strong>in</strong>g sites and between days. There have been several studies exam<strong>in</strong><strong>in</strong>g<strong>quadriceps</strong> MF reliability <strong>in</strong> <strong>the</strong> OKC test<strong>in</strong>g mode. Cornwall et al. 272 demonstratedgood with<strong>in</strong> day reliability for <strong>the</strong> VL only (ICC range .77 to .82). Similar reliability wasreported for VM only (ICC .79) 273 . Merletti and colleagues 271 reported between dayPearson’s correlation coefficient rang<strong>in</strong>g from r =.94 to .95 for <strong>the</strong> IMF and .59 to .72for <strong>the</strong> MF slope <strong>of</strong> VM only. Kollmitzer et al. 255exam<strong>in</strong>ed <strong>the</strong> three superficial<strong>quadriceps</strong> and reported poor between days reliability for <strong>the</strong> VM (ICC= .47) and VL(ICC= .34), but excellent reliability for <strong>the</strong> RF <strong>muscle</strong> (ICC = .87). The lack <strong>of</strong> reliability<strong>in</strong> VM and VL was attributed to subtle rotations result<strong>in</strong>g <strong>in</strong> altered load<strong>in</strong>g that mayoccur <strong>in</strong> <strong>the</strong> thigh dur<strong>in</strong>g susta<strong>in</strong>ed isolated knee extensions. It is well accepted thatelectrode placement can <strong>in</strong>fluence <strong>the</strong> EMG signal and one <strong>of</strong> <strong>the</strong> ma<strong>in</strong> causes <strong>of</strong>poor between-days reliability is <strong>in</strong>accurate replacement <strong>of</strong> electrodes 274 . Interest<strong>in</strong>gly,Kollmitzer et al. 255 had high with<strong>in</strong> days reliability without remov<strong>in</strong>g <strong>the</strong> electrodes, butmuch poorer between days reliability six weeks later when <strong>the</strong>y only approximatedelectrode positions. In <strong>the</strong> present study, great care was taken to standardise <strong>the</strong>electrode positions between test<strong>in</strong>g days by mark<strong>in</strong>g <strong>the</strong> sk<strong>in</strong> and us<strong>in</strong>g an acetate138


____________________________________________________________Chapter 5template for all reference po<strong>in</strong>ts to ensure consistent electrode position. VariableICCs <strong>of</strong> <strong>the</strong> MF might be fur<strong>the</strong>r expla<strong>in</strong>ed by <strong>in</strong>fluences such as changes <strong>in</strong> electrodelocation and <strong>muscle</strong> length 191 .These results raise two issues <strong>in</strong> need <strong>of</strong> fur<strong>the</strong>r discussion. Firstly <strong>in</strong> <strong>the</strong> healthy<strong>group</strong>, although VL had a high between trials (2 & 3) reliability (ICC 1,3 .74) fur<strong>the</strong>ranalysis with a repeated measures ANOVA <strong>in</strong>dicated a significant difference betweentrials (p< 0.01) (Table 12).Table 12. A Two-way analysis <strong>of</strong> variance ANOVA for <strong>the</strong> MF slope<strong>of</strong> <strong>the</strong> VMO, VL and RF <strong>muscle</strong>s dur<strong>in</strong>g trials 2 and 3Between –Subjects varianceBetween - Trials variancedf F P df F PVMO 19 6.04 0.0001* 1 0.26 0.6VL 19 6.79 0.00005 * 1 8.39 0.009 *RF 19 2.02 0.06 1 0.23 0.6Legend:VMO = Vastus Medialis ObliqueVL = Vastus LateralisRF = Rectus Femoris* = Significant at P < 0.05139


____________________________________________________________Chapter 5A Scheffé post hoc analysis found a significant difference between trials 2 and 3. Ifthis is <strong>the</strong> case, <strong>the</strong>n <strong>the</strong> MF slope cannot be considered a reliable technique <strong>in</strong> thisparticular <strong>muscle</strong>. Secondly, <strong>in</strong> contrast, <strong>the</strong>re was poor reliability <strong>of</strong> RF (ICC 1,3 .33).However, a repeated measures ANOVA showed no significant difference betweentrials 2 and 3 (p = 0.6). One reason for <strong>the</strong> RF ICC to be as low as .33 was largerbetween-trials differences at this record<strong>in</strong>g site. Methodological factors, even though<strong>the</strong>se were controlled as strictly as possible, have already been discussed as onereason for <strong>the</strong> day-to-day variations. Ano<strong>the</strong>r reason was that <strong>the</strong> between subjectsvariance was smaller than at o<strong>the</strong>r record<strong>in</strong>g sites, as can be seen by <strong>the</strong> nonsignificant F-value test between-subjects variance (Table 12). Insufficient betweensubject variability to adequately assess with<strong>in</strong>-subject agreement has been notedpreviously on MF fatigue data, albeit on <strong>the</strong> upper limb 254 . These authors advised <strong>the</strong>need for sufficient variability <strong>in</strong> overall measures to assess reliability. Consequently,caution needs to be exercised when quot<strong>in</strong>g <strong>the</strong> ICC value from statisticalprogrammes that may be mislead<strong>in</strong>g if taken <strong>in</strong> isolation from o<strong>the</strong>r calculations 268 .A fur<strong>the</strong>r reason for variability <strong>of</strong> <strong>the</strong> EMG signal and MF may be <strong>the</strong> more complexactions <strong>of</strong> CKC assessment. In OKC test<strong>in</strong>g, knee extension contractions may beattributed solely to knee extensors, whereas <strong>in</strong> a more functional assessment <strong>of</strong> <strong>the</strong>lower limb us<strong>in</strong>g CKC tests <strong>the</strong> knee extensors cannot be isolated due to cocontractions<strong>of</strong> additional <strong>muscle</strong>s such as hip and ankle extensors. Yang andW<strong>in</strong>ter 263 proposed that <strong>in</strong> movements where a number <strong>of</strong> synergists are <strong>in</strong>volved anda maximal effort is required, (such as a lower limb CKC extension) more variability140


____________________________________________________________Chapter 5would be observed than <strong>in</strong> simpler movements. Vary<strong>in</strong>g contributions and<strong>in</strong>consistent synchronisation <strong>of</strong> <strong>the</strong> synergists would thus affect between trials andbetween days reliability. This may account for <strong>the</strong> differences <strong>in</strong> MF fatigue ratesobserved <strong>in</strong> <strong>the</strong> present study dur<strong>in</strong>g CKC tests and those <strong>of</strong> o<strong>the</strong>r authors us<strong>in</strong>gOKC tests. This is especially so for RF that was more susceptible to fatigue thanei<strong>the</strong>r VM or VL dur<strong>in</strong>g OKC submaximal isometric contractions 259 but was <strong>the</strong> leastsusceptible <strong>in</strong> CKC test<strong>in</strong>g (Table 10). This section has also highlighted <strong>the</strong>importance <strong>of</strong> a practice session that fully replicates <strong>the</strong> test<strong>in</strong>g protocol. The resultshave shown that ICC values between trials 1 and 2 were always worse for all <strong>muscle</strong>sand both IMF and MF <strong>in</strong> <strong>the</strong> healthy <strong>group</strong> (Table 9). These values vastly improvedwhen values were calculated between trials 2 and 3. This pattern <strong>of</strong> results alsooccurred <strong>in</strong> <strong>the</strong> PFPS <strong>group</strong>. As far as is possible to ascerta<strong>in</strong>, no research has beenconducted to determ<strong>in</strong>e how practice affects <strong>the</strong> reliability <strong>of</strong> EMG power spectrumanalysis technique. A full practice session is <strong>the</strong>refore recommended prior to properdata collection.A f<strong>in</strong>al consideration is <strong>the</strong> usefulness <strong>of</strong> IMF. Clearly, <strong>the</strong> reliability <strong>of</strong> this measurewith good to excellent ICCs and low SEM <strong>in</strong> both <strong>the</strong> healthy and PFPS <strong>group</strong>sexceeds that <strong>of</strong> <strong>the</strong> MF slopes (Table 9). However, <strong>the</strong>re has been renewed debateas to whe<strong>the</strong>r <strong>the</strong> IMF can be used as a physiological parameter <strong>of</strong> <strong>muscle</strong>. Initialthoughts were that IMF may be able to determ<strong>in</strong>e <strong>the</strong> fibre composition <strong>of</strong> <strong>muscle</strong> 275 .A high IMF would be an <strong>in</strong>dication <strong>of</strong> more fast fibres <strong>in</strong> a <strong>muscle</strong> based on <strong>the</strong>observation that dur<strong>in</strong>g a contraction <strong>of</strong> fast fibre <strong>muscle</strong> <strong>the</strong>re is a short action141


____________________________________________________________Chapter 5potential and an <strong>in</strong>crease <strong>in</strong> <strong>the</strong> higher frequency components <strong>of</strong> <strong>the</strong> spectrum.Observations <strong>in</strong> <strong>the</strong> lumbar 276 , or cervical musculature 253<strong>of</strong> correlations betweenIMFand <strong>muscle</strong> biopsy fibre typ<strong>in</strong>g have not been confirmed <strong>in</strong> <strong>the</strong> human <strong>quadriceps</strong>.With <strong>the</strong>se considerations <strong>the</strong>re was no purpose <strong>in</strong> ga<strong>the</strong>r<strong>in</strong>g and analys<strong>in</strong>g IMF <strong>in</strong><strong>the</strong> Pilot study <strong>in</strong> Chapter 8 or <strong>the</strong> Ma<strong>in</strong> study <strong>in</strong> Chapter 9 o<strong>the</strong>r than to complete <strong>the</strong>normalisation process for MF.5.6 ConclusionUs<strong>in</strong>g a CKC test<strong>in</strong>g device, this study has shown good to excellent reliability <strong>in</strong> all<strong>muscle</strong>s for IMF <strong>in</strong> both a healthy <strong>group</strong> and a patient population with PFPS. It hasshown good reliability <strong>of</strong> MF for VMO and VL <strong>in</strong> healthy subjects. MF reliability forpatients with PFPS was also good <strong>in</strong> VMO and excellent <strong>in</strong> RF but poor <strong>in</strong> VL.Monitor<strong>in</strong>g <strong>the</strong> fatigue rate <strong>of</strong> <strong>the</strong> VMO and RF ra<strong>the</strong>r than <strong>the</strong> VL would be a moresuitable measure for use <strong>in</strong> cl<strong>in</strong>ical situations. Fur<strong>the</strong>r research would be needed toestablish reliability <strong>in</strong> o<strong>the</strong>r patient <strong>group</strong>s. This study has also highlighted <strong>the</strong> needfor a full practice session fully replicat<strong>in</strong>g <strong>the</strong> proper data collection trials.142


____________________________________________________________Chapter 6Chapter 6MEASUREMENT OFPATELLAR PAIN143


____________________________________________________________Chapter 66 MEASUREMENT OF PATELLAR PAINAlthough objective measures <strong>of</strong> patients’ strength, function and performance arefacilitated by numerous technical methods, subjective compla<strong>in</strong>ts <strong>of</strong> knee pa<strong>in</strong> <strong>in</strong>general and PFPS <strong>in</strong> particular are more difficult to measure. Yet <strong>the</strong>se outcomemeasures are no less important as pa<strong>in</strong> is usually <strong>the</strong> patient’s ma<strong>in</strong> compla<strong>in</strong>t.6.1 Visual Analogue ScaleThe Visual Analogue Scale (VAS) is a popular means <strong>of</strong> measur<strong>in</strong>g pa<strong>in</strong> <strong>in</strong> a variety<strong>of</strong> cl<strong>in</strong>ical contexts. It is quick and easy to adm<strong>in</strong>ister, easy for <strong>the</strong> researchers toscore and <strong>the</strong> patients do not need to be highly motivated to complete it 277 . A VASwas used <strong>in</strong> this study because it has been found to be reliable and valid <strong>in</strong> <strong>the</strong>measurement <strong>of</strong> pa<strong>in</strong> <strong>in</strong>tensity 278;279 . Fur<strong>the</strong>rmore, <strong>the</strong> VAS has also been used <strong>in</strong>knee compla<strong>in</strong>ts 280 <strong>in</strong> which it was more acceptable for patient use than <strong>the</strong> Noyes orLysholm knee scales, and specifically <strong>in</strong> PFPS 281;282 .In <strong>the</strong> present study, patients were asked to allocate <strong>the</strong> appropriate number on <strong>the</strong>VAS that corresponded to <strong>the</strong>ir patellar pa<strong>in</strong> at that particular moment. It consisted <strong>of</strong>a numerical scale <strong>of</strong> pa<strong>in</strong> <strong>in</strong>tensity rang<strong>in</strong>g from 0 - ‘no pa<strong>in</strong> ‘ to 10 - ‘severe pa<strong>in</strong>’.This was done at <strong>the</strong> same time po<strong>in</strong>t <strong>of</strong> each assessment, i.e. whilst sitt<strong>in</strong>g and priorto any physiological or functional test<strong>in</strong>g <strong>in</strong> order to prevent ‘contam<strong>in</strong>ation’ from o<strong>the</strong>raspects <strong>of</strong> <strong>the</strong> test<strong>in</strong>g procedure 277 . Although <strong>the</strong> VAS is a useful tool to quantify pa<strong>in</strong>,more <strong>in</strong> depth multidimensional scor<strong>in</strong>g methods were <strong>in</strong>cluded to give a betteroverall picture <strong>of</strong> <strong>the</strong> patients pa<strong>in</strong> 277 . These are discussed <strong>in</strong> <strong>the</strong> next section.144


____________________________________________________________Chapter 66.2 Kujala ScoreThere have been many scales and scor<strong>in</strong>g systems for <strong>the</strong> knee jo<strong>in</strong>t 280 but many arenot specific enough for <strong>the</strong> symptoms <strong>of</strong> PFPS. Kujala et al. 283 developed a self-reportquestionnaire scor<strong>in</strong>g system <strong>of</strong> 13 questions, carefully weighted to give a maximumbest score <strong>of</strong> 100 po<strong>in</strong>ts. The system evaluated pa<strong>in</strong> dur<strong>in</strong>g stair climb<strong>in</strong>g, squatt<strong>in</strong>g,runn<strong>in</strong>g, jump<strong>in</strong>g and prolonged sitt<strong>in</strong>g with knees flexed; <strong>the</strong> presence <strong>of</strong> a limp,swell<strong>in</strong>g, or subluxation; <strong>the</strong> amount <strong>of</strong> <strong>quadriceps</strong> atrophy and limitation <strong>of</strong> flexion;<strong>the</strong> need for support when walk<strong>in</strong>g. The authors related <strong>the</strong>m to an objective measure<strong>of</strong> patellar position analysed by MR scann<strong>in</strong>g. They also compared a <strong>group</strong> <strong>of</strong> healthysubjects with <strong>group</strong>s <strong>of</strong> patients diagnosed with ei<strong>the</strong>r PFPS, patellar subluxation, orpatellar dislocation. The questionnaire differentiated clearly between <strong>the</strong> <strong>group</strong>s (p


____________________________________________________________Chapter 6good correlation with <strong>the</strong> VAS <strong>in</strong> a <strong>group</strong> <strong>of</strong> patients with PFPS (n = 19, Pearson’s r =0.72, p


____________________________________________________________Chapter 7Chapter 7MEASUREMENT OFQUADRICEPSCROSS SECTIONAL AREA147


____________________________________________________________Chapter 77 MEASUREMENT OF QUADRICEPS CROSS SECTIONALAREA7.1 IntroductionQuadriceps <strong>muscle</strong> wast<strong>in</strong>g is a common cl<strong>in</strong>ical observation <strong>in</strong> patients with lowerlimb disease, <strong>in</strong>jury or after immobilisation 287 . One <strong>the</strong>ory is that pa<strong>in</strong> causes reflex<strong>in</strong>hibition <strong>of</strong> <strong>the</strong> <strong>quadriceps</strong>, which <strong>in</strong> time <strong>in</strong>duces an atrophic response with<strong>in</strong> <strong>the</strong><strong>muscle</strong> with subsequent loss <strong>of</strong> <strong>muscle</strong> size 288 . Most authors state that <strong>the</strong> loss <strong>of</strong>size is due to a decrease <strong>of</strong> <strong>muscle</strong> fibre area (atrophy) ra<strong>the</strong>r than a loss <strong>of</strong> fibrenumbers (hypoplasia) 287 .Usually, estimations <strong>of</strong> <strong>quadriceps</strong> wast<strong>in</strong>g <strong>in</strong> <strong>the</strong> cl<strong>in</strong>ical sett<strong>in</strong>g have used girthmeasurements, but this method also <strong>in</strong>volves o<strong>the</strong>r posterior, lateral, and medial thigh<strong>muscle</strong>s as well as subcutaneous fat and bone. The test-retest reliability <strong>of</strong> thismethod has been found to be poor with numerous factors account<strong>in</strong>g for <strong>in</strong>ter and<strong>in</strong>tra operator variability 289 .More sophisticated techniques are available <strong>in</strong> <strong>the</strong> research sett<strong>in</strong>g such asultrasound scann<strong>in</strong>g to measure cross sectional area (CSA) which was first describedfor human skeletal <strong>muscle</strong> <strong>in</strong> <strong>the</strong> 1960s and for <strong>the</strong> <strong>quadriceps</strong> specifically by Dons etal. 290 . S<strong>in</strong>ce <strong>the</strong>n <strong>the</strong> technique has been developed and superseded by CT scann<strong>in</strong>gand, more recently, magnetic resonance imag<strong>in</strong>g (MR). However, ultrasoundscann<strong>in</strong>g is non <strong>in</strong>vasive, <strong>in</strong>expensive and used by physio<strong>the</strong>rapists <strong>in</strong>dependentlywhich makes it still an attractive measurement tool. It has been demonstrated that <strong>the</strong>148


____________________________________________________________Chapter 7mean differences between ultrasound and MR imag<strong>in</strong>g <strong>in</strong> estimat<strong>in</strong>g <strong>quadriceps</strong> CSAis only 0.8%, conclud<strong>in</strong>g that <strong>the</strong>se limits are small enough for ei<strong>the</strong>r ultrasound orMR to be used <strong>in</strong> cl<strong>in</strong>ical practice 291 .The pieces <strong>of</strong> equipment for ultrasound scann<strong>in</strong>g <strong>in</strong> this <strong>the</strong>sis have been usedpreviously to study <strong>the</strong> <strong>quadriceps</strong>, and both face and criterion validity have beendemonstrated with a mean percentage <strong>of</strong> coefficient <strong>of</strong> variation (%CV) <strong>of</strong> 0.4% 292 .Reliability has also been <strong>in</strong>vestigated <strong>in</strong> both <strong>in</strong>tra-rater reliability <strong>of</strong> repeatedmeasures (mean %CV = 2.8% for one and 1.9% for two raters) and <strong>in</strong>ter-raterreliability (mean %CV 2.4) 292 . As a different rater was be<strong>in</strong>g used for this <strong>the</strong>sis, it wasdeemed necessary to re-<strong>in</strong>vestigate <strong>in</strong>trarater reliability.The two aims <strong>of</strong> this section were to establish <strong>in</strong>trarater reliability between scans anddays and, secondly, <strong>the</strong> s<strong>in</strong>gle rater reliability <strong>of</strong> location <strong>of</strong> <strong>the</strong> <strong>muscle</strong> borders.7.2 MethodUltrasound scans were taken <strong>of</strong> <strong>the</strong> right <strong>quadriceps</strong> <strong>of</strong> 9 healthy subjects (5 male, 4female; mean age 30.6 ± 5.5 years).The scann<strong>in</strong>g device was a static compound B ultrasound scanner (Technicare EDP1200) (Figure 25). A 5 and 2.25 MHz transducer with focal lengths <strong>of</strong> 13 and 19mmwere used for lean and obese subjects respectively. Coupl<strong>in</strong>g medium was used forall scans (Sonartrack, Diagnostic Sonar Ltd). A <strong>the</strong>rmal pr<strong>in</strong>ter (Sony Video Graphicpr<strong>in</strong>ter, UP 910) provided hard copies <strong>of</strong> <strong>the</strong> images (Figure 26) and <strong>the</strong> area <strong>of</strong> <strong>the</strong><strong>quadriceps</strong> <strong>muscle</strong> <strong>group</strong> was calculated us<strong>in</strong>g a planimetry system that consisted <strong>of</strong>149


____________________________________________________________Chapter 7a graphics tablet (Graphtec Digitizer, KD4030) with 'Digiteye' s<strong>of</strong>tware (MedicalPhysics Department, Hope Hospital Salford UK).Figure 25. Compound B ultrasound scann<strong>in</strong>g<strong>of</strong> <strong>the</strong> mid thigh section <strong>of</strong> <strong>the</strong> <strong>quadriceps</strong> <strong>muscle</strong> <strong>group</strong>150


____________________________________________________________Chapter 7Figure 26 Image produced by Compound B scannerFigure 27. A detailed cross section <strong>of</strong> <strong>quadriceps</strong> for comparisonwith <strong>the</strong> ultrasound scan <strong>in</strong> Figure 26 above.(From Gray’s anatomy: reproduced with permission)151


____________________________________________________________Chapter 7Patients lay sup<strong>in</strong>e on a couch. The lower limb was positioned <strong>in</strong> a neutral position forrotation (i.e. 0 0 medial and 0 0 lateral rotation) by a sandbag and velcro strapsattached to small board. A protractor confirmed neutral rotation. The scan took placeat <strong>the</strong> mid section <strong>of</strong> <strong>the</strong> thigh (Figure 25). This po<strong>in</strong>t lay half way from <strong>the</strong> greatertrochanter to <strong>the</strong> lateral jo<strong>in</strong>t l<strong>in</strong>e <strong>of</strong> <strong>the</strong> knee and was determ<strong>in</strong>ed by us<strong>in</strong>g a tapemeasure. The mid thigh position was marked on <strong>the</strong> thigh. To improve accuracy <strong>of</strong>reposition<strong>in</strong>g for <strong>the</strong> post treatment scan a template <strong>of</strong> all reference po<strong>in</strong>ts was madewith an acetate sheet for each subject to ensure that <strong>the</strong> identified landmarks and <strong>the</strong>scan thigh mark were reproducible. The CSA was calculated by exam<strong>in</strong><strong>in</strong>g <strong>the</strong> hardcopy (Figure 26) and trac<strong>in</strong>g around <strong>the</strong> outer borders <strong>of</strong> <strong>the</strong> VM, VL and RF <strong>muscle</strong>swith <strong>the</strong> hand held cursor <strong>of</strong> <strong>the</strong> planimetry system. The draw<strong>in</strong>g <strong>in</strong>cluded <strong>the</strong> vastus<strong>in</strong>termedius, but care was taken not to <strong>in</strong>clude <strong>the</strong> long head <strong>of</strong> biceps femoris,adductor longus or sartorius <strong>muscle</strong>s <strong>in</strong> <strong>the</strong> trac<strong>in</strong>g. The area <strong>of</strong> <strong>the</strong> shape from <strong>the</strong>trac<strong>in</strong>g was <strong>the</strong>n calculated by <strong>the</strong> s<strong>of</strong>tware. Each scan was repeated six times and<strong>the</strong>re was an <strong>in</strong>terval <strong>of</strong> seven days between tests.7.3 Statistical analysisStatistical analyses were performed us<strong>in</strong>g SPSS (Statistical Package for <strong>the</strong> SocialSciences) for w<strong>in</strong>dows (v.9). Analyses were performed for <strong>in</strong>trarater reliability for CSAand <strong>in</strong>trarater reliability for location <strong>of</strong> <strong>muscle</strong> borders. The previous method <strong>of</strong>assess<strong>in</strong>g reliability <strong>of</strong> this technique 292 us<strong>in</strong>g a coefficient <strong>of</strong> variation (CV) is now152


____________________________________________________________Chapter 7considered <strong>in</strong>appropriate for assess<strong>in</strong>g reliability 266 . Therefore reliability wasassessed <strong>in</strong> four ways:1. Intraclass correlation coefficient (ICC 1,1 ) for between scans reliability and ICC 1,2 forbetween days reliability 265;266 . ICCs were performed on <strong>the</strong> data from scans on day 1and day 2 and <strong>the</strong>n from <strong>the</strong> mean <strong>of</strong> those with<strong>in</strong> days scans for between daysreliability.2. Quot<strong>in</strong>g <strong>the</strong> ICC value may be mislead<strong>in</strong>g if taken <strong>in</strong> isolation from o<strong>the</strong>rcalculations 268 . Therefore <strong>the</strong> standard error <strong>of</strong> measure (SEM) was also calculated,which shows <strong>the</strong> consistency <strong>of</strong> <strong>the</strong> measurement with <strong>the</strong> advantage <strong>of</strong> be<strong>in</strong>g <strong>in</strong> <strong>the</strong>same units.3. A Bland and Altman plot was calculated show<strong>in</strong>g <strong>the</strong> differences between <strong>the</strong> CSAmeasures on <strong>the</strong> 2 days aga<strong>in</strong>st <strong>the</strong> mean <strong>of</strong> <strong>the</strong> measures on 2 days with ±2SD.4. The smallest detectable difference (SDD) is a parameter applied <strong>in</strong> recent reliabilitystudies 293 . This presents a cl<strong>in</strong>ically applicable percentage figure for <strong>the</strong> amount <strong>of</strong>change needed to detect a true change <strong>in</strong> a subject's or rater’s performance.7.4 Results7.4.1 Intrarater reliability1. With<strong>in</strong> days, between scans reliability was excellent for both days. ICC 1,1 valueswere 0.99 for day 1 and 0.99 for day 2. Between days reliability was also excellentwith an ICC 1,2 <strong>of</strong> 0.99.153


____________________________________________________________Chapter 72. The SEM for <strong>the</strong> scans on day 1 was 0.29cm 2 , for day 2 was 0.38cm 2 . Betweendays SEM was 0.29cm 2 .3. The SDD calculated for <strong>the</strong> between scans on day 1 was 0.81cm 2 or 3.4% and forday 2 was 1.07 cm 2 or 4.5%. The SDD calculated for between days was 0.80 cm 2 or3.3%.4. The limits <strong>of</strong> agreement for <strong>the</strong> Bland & Altman plot were def<strong>in</strong>ed as <strong>the</strong> meandifference between <strong>the</strong> measures ±2SD ( Figure 28). The mean difference was -0.0055cm 2 (95%CI 0.314 - -0.384) with a 95% lower limit <strong>of</strong> agreement <strong>of</strong> –0.83(95%CI -0.27 - -1.38) and a 95% upper limit <strong>of</strong> 0.84 (95%CI 1.39 – 0.29).7.4.2 Location <strong>of</strong> <strong>muscle</strong> borderThe <strong>in</strong>trarater reliability <strong>of</strong> locat<strong>in</strong>g <strong>muscle</strong> borders was excellent.ICC 1,6 values were 0.99. The SEM was 0.19 cm 2 . The SDD calculated was 0.52 cm 2or 2.2%. In addition, a repeated measures ANOVA showed no significant differencebetween <strong>the</strong> six values (P= 0.649). All results are summarised <strong>in</strong> Table 13 below.Table 13 Intrarater reliability <strong>of</strong> ultrasound scann<strong>in</strong>g techniquefor Quadriceps Cross Sectional AreaICC 1,1 ICC 1,2 95% CI SEM(cm 2 )(cm 2 )SDD(cm 2 )Between scans day 1 0.99 18.78 - 28.28 0.29 0.81 3.4Between scans day 2 0.99 18.85 - 28.29 0.38 1.07 4.5Between days (means) 0.99 18.80 - 28.29 0.29 0.80 3.3Locat<strong>in</strong>g <strong>muscle</strong> border ICC 1,6 0.99 18.83 - 28.54 0.19 0.52 2.2SDD(%)154


____________________________________________________________Chapter 73.0difference between CSA day 1 &22.01.00.0-1.0-2.0-3.014161820222426283032mean <strong>of</strong> CSA day 1&2 (Cm2)Figure 28. Bland & Altman plot for CSA measures between days. Means ± 2SD7.5 ConclusionIn practical terms <strong>the</strong>se results mean that <strong>quadriceps</strong> CSA would have to change bymore than 3.3% or by 0.80cm 2 <strong>in</strong> order to state that a treatment had an effect on thisoutcome measure. This section has <strong>in</strong>dicated via previous studies that <strong>the</strong> staticcompound B ultrasound scanner has both face and criterion validity 292 , and hasshown excellent <strong>in</strong>trarater reliability for between scans on both days 1 and 2 and alsobetween days. These results compare favourably with previous studies assess<strong>in</strong>g <strong>the</strong><strong>in</strong>trarater reliability <strong>of</strong> ultrasound scann<strong>in</strong>g <strong>of</strong> <strong>the</strong> <strong>quadriceps</strong> us<strong>in</strong>g static compound Bscann<strong>in</strong>g 292 and <strong>of</strong> <strong>the</strong> anterior tibial <strong>muscle</strong>s us<strong>in</strong>g a real time scanner 266 .155


____________________________________________________________Chapter 8Chapter 8THE PILOT STUDY156


____________________________________________________________Chapter 88 PILOT STUDY 8v88.1 IntroductionThe next phase <strong>of</strong> <strong>the</strong> study was to conduct a Pilot study fully replicat<strong>in</strong>g <strong>the</strong> Ma<strong>in</strong>study. This had several advantages. Firstly, all <strong>the</strong> outcome measures could be usedon a similar patient population as <strong>the</strong> Ma<strong>in</strong> study. Secondly, <strong>the</strong> results allowedproper calculation <strong>of</strong> appropriate sample size for <strong>the</strong> Ma<strong>in</strong> study. Thirdly, an important(and <strong>of</strong>ten neglected) consideration is that <strong>the</strong> Pilot study allowed <strong>the</strong> procedures,mechanics and overall flow <strong>of</strong> <strong>the</strong> study to be assessed. It was estimated from <strong>the</strong>reliability studies that a full patient assessment would take at least 60 m<strong>in</strong>utes.M<strong>in</strong>imis<strong>in</strong>g this as much as possible for patient comfort and co-operation andensur<strong>in</strong>g proper test sequence was considered as important component <strong>of</strong> this phase.This Pilot study evaluated a new form <strong>of</strong> <strong>electrical</strong> <strong>muscle</strong> <strong>stimulation</strong> withsimultaneously comb<strong>in</strong>ed high and low frequency components (RESTIM) andcompared it to a commercially exist<strong>in</strong>g form <strong>of</strong> sequentially comb<strong>in</strong>ed frequencies(COMPEX). The outcome measures were <strong>muscle</strong> strength, <strong>muscle</strong> fatigue, range <strong>of</strong>motion, pa<strong>in</strong>, function, a step test and <strong>quadriceps</strong> CSA. The research design was adouble bl<strong>in</strong>ded randomised trial on patients with PFPS. The null hypo<strong>the</strong>sis was that<strong>the</strong>re would be no statistical difference between <strong>the</strong> two <strong>stimulation</strong> <strong>group</strong>s157


____________________________________________________________Chapter 88.2 Methods8.2.1 SubjectsPatients were referred from <strong>the</strong> orthopaedic cl<strong>in</strong>ics <strong>in</strong> one hospital with a cl<strong>in</strong>icaldiagnosis <strong>of</strong> patell<strong>of</strong>emoral pa<strong>in</strong>. Of <strong>the</strong> 30 patients referred for this study, 7 hadequal <strong>quadriceps</strong> CSA, 5 had abnormal gait parameters, 1 had referred pa<strong>in</strong> from <strong>the</strong>hip jo<strong>in</strong>t and 1 had referred lumbar sp<strong>in</strong>e pa<strong>in</strong> (see sections 8.2.1.2 and 8.2.1.3below). These patients were subsequently excluded, leav<strong>in</strong>g a total <strong>of</strong> 16 patients toenter <strong>the</strong> study (mean age = 29.6 ± 5.9 years; BMI = 26.4 ± 4.4). All patients had <strong>the</strong>protocol and procedures expla<strong>in</strong>ed to <strong>the</strong>m, were given an <strong>in</strong>formation sheet, andsigned a consent form if <strong>the</strong>y wished to enter <strong>the</strong> study. The age limits were 18 – 60years. The study was approved by <strong>the</strong> ethics committee <strong>of</strong> <strong>the</strong> Central ManchesterHealthcare Trust.8.2.1.1 Inclusion criteriaPatients were <strong>in</strong>cluded if <strong>the</strong>y had atraumatic peripatellar pa<strong>in</strong> for greater than sixmonths and not longer than three years. Patell<strong>of</strong>emoral pa<strong>in</strong> was provoked by one <strong>of</strong><strong>the</strong> follow<strong>in</strong>g alone or <strong>in</strong> comb<strong>in</strong>ation: prolonged sitt<strong>in</strong>g, deep squatt<strong>in</strong>g, kneel<strong>in</strong>g,ascend<strong>in</strong>g or descend<strong>in</strong>g stairs. Additional <strong>in</strong>clusions were CSA differences betweenaffected and unaffected limb to be greater than 4%. Patients were also <strong>in</strong>cluded if<strong>the</strong>y had a normal radiograph, normal MR scan or normal arthroscopy, if performed.158


____________________________________________________________Chapter 88.2.1.2 Exclusion criteriaPatients were excluded from <strong>the</strong> study if <strong>the</strong>y had epilepsy, cancer, a cardiacpacemaker, a suspected heart problem, or if <strong>the</strong>y had recent surgery (not <strong>in</strong>clud<strong>in</strong>garthroscopy). Patients younger than 18 years and older than 60 years were not<strong>in</strong>vited to participate <strong>in</strong> <strong>the</strong> study. In order to exclude abnormal foot and anklepronation as <strong>the</strong> cause <strong>of</strong> PFPS <strong>the</strong> patients were screened by k<strong>in</strong>etic gait analysisus<strong>in</strong>g a force plate (Kistler Bio-mechanics Ltd. Switzerland.) to detect abnormalvalues <strong>of</strong> mediolateral force as described by Callaghan & Baltzopoulos 57 .8.2.1.3 Cl<strong>in</strong>ical exam<strong>in</strong>ationPatients had fur<strong>the</strong>r cl<strong>in</strong>ical exam<strong>in</strong>ation to assess <strong>the</strong>ir suitability and to determ<strong>in</strong>e<strong>the</strong> presence <strong>of</strong> o<strong>the</strong>r lower extremity dysfunction that may account for <strong>the</strong> kneesymptoms. These <strong>in</strong>cluded referred pa<strong>in</strong> from <strong>the</strong> lumbar sp<strong>in</strong>e and hip jo<strong>in</strong>t, severeleg length discrepancy, knee ligament, <strong>quadriceps</strong> tendon and meniscal pathologies;patella tend<strong>in</strong>itis ('Jumper's knee'); tibial tubercle apophysitis (Osgood Schlattersdisease); bursitis; <strong>in</strong>frapatella fat pad lesion (H<strong>of</strong>fa’s syndrome); medial plicasyndrome; femoral anteversion and tibial torsion, bipartite patella 1and alsoosteochondritis dessicans patella 294 . Exam<strong>in</strong>ation was also performed, as mentioned <strong>in</strong>Chapter 2.3.2.2., to detect loss <strong>of</strong> flexibility <strong>of</strong> <strong>the</strong> s<strong>of</strong>t tissue structures such as <strong>the</strong><strong>quadriceps</strong>, hamstr<strong>in</strong>gs, triceps surae and iliotibial band that have been associatedwith PFPS 230 .159


____________________________________________________________Chapter 88.3 Outcome measures8.3.1 InstrumentationIsometric and isok<strong>in</strong>etic concentric extension torque <strong>of</strong> <strong>the</strong> lower limb was measuredus<strong>in</strong>g <strong>the</strong> Biodex system 2 isok<strong>in</strong>etic dynamometer (Biodex systems Inc. Shirley N.Y.USA) with a closed k<strong>in</strong>etic cha<strong>in</strong> attachment as supplied by <strong>the</strong> manufacturers. Thisattachment has been assessed for extension test –retest reliability <strong>in</strong> PFPS patientswith ICC estimates 0.92 for isometric mode and 0.85 for isok<strong>in</strong>etic mode <strong>in</strong> Chapter4 269 . The closed k<strong>in</strong>etic cha<strong>in</strong> method was chosen <strong>in</strong> preference to <strong>the</strong> standardisok<strong>in</strong>etic lever arm as previously described <strong>in</strong> Chapter 4 because <strong>the</strong> latter wasthought to exacerbate <strong>the</strong> patients’ patell<strong>of</strong>emoral symptoms. Closed k<strong>in</strong>etic cha<strong>in</strong>exercise has been advocated for patients with PFPS due to a lessen<strong>in</strong>g <strong>of</strong> <strong>the</strong>patell<strong>of</strong>emoral jo<strong>in</strong>t reaction force and patell<strong>of</strong>emoral stress 222 . It was demonstratedthat <strong>the</strong>re were significantly fewer stresses at <strong>the</strong> patell<strong>of</strong>emoral jo<strong>in</strong>t at <strong>the</strong> mostfunctional range <strong>of</strong> movement dur<strong>in</strong>g a leg press (CKC) exercise than a leg extension(OKC) exercise. A CKC method <strong>of</strong> assessment may not only br<strong>in</strong>g about objectivechanges, but also lead to improvement <strong>in</strong> perceived function <strong>in</strong> patell<strong>of</strong>emoral pa<strong>in</strong>syndrome 223 .8.3.2 Isometric StrengthSubjects were positioned <strong>in</strong> <strong>the</strong> Biodex chair with <strong>the</strong> hip at 90 0 flexion and <strong>the</strong> kneeangle at 45 0 flexion. This position<strong>in</strong>g is an exact replication <strong>of</strong> <strong>the</strong> reliability study <strong>in</strong>160


____________________________________________________________Chapter 8Chapter 4. This angle had been determ<strong>in</strong>ed <strong>in</strong> o<strong>the</strong>r studies as <strong>the</strong> most appropriateto reduce patell<strong>of</strong>emoral stress to a m<strong>in</strong>imum dur<strong>in</strong>g test<strong>in</strong>g 222 . To ensure that <strong>the</strong>subjects ma<strong>in</strong>ta<strong>in</strong>ed <strong>the</strong> 45 0 angle, <strong>the</strong> operator placed a hand under <strong>the</strong> knee to actas a popliteal pad. Subjects pushed <strong>in</strong>to <strong>the</strong> foot plate without lower<strong>in</strong>g <strong>the</strong> poplitealsurface <strong>of</strong> <strong>the</strong> knee <strong>in</strong>to <strong>the</strong> operator's hand (and thus beyond 45 0 ). Subjects hadpractice contractions prior to data collection to familiarise <strong>the</strong>mselves with this methodand to ensure that <strong>the</strong>y were able to ma<strong>in</strong>ta<strong>in</strong> a knee angle <strong>of</strong> 45 0 . Twitch<strong>in</strong>terpolation was used to ensure a maximum voluntary isometric contraction 140;295 .Subjects performed three maximum contractions <strong>of</strong> 10 seconds duration with 2m<strong>in</strong>utes rest between each effort 232 . The concentric peak extension torque wasrecorded.8.3.3 Isok<strong>in</strong>etic strengthIn an exact replication <strong>of</strong> position<strong>in</strong>g <strong>in</strong> <strong>the</strong> reliability study <strong>in</strong> Chapter 4, subjects wereplaced <strong>in</strong> <strong>the</strong> chair with hip flexion set at 90 0and <strong>the</strong> shoulder and waist strapsapplied. The foot was placed flat aga<strong>in</strong>st <strong>the</strong> foot plate attachment and was held <strong>in</strong>place by velcro straps. With <strong>the</strong> knee at full extension <strong>the</strong> knee jo<strong>in</strong>t axis was alignedwith <strong>the</strong> axis <strong>of</strong> <strong>the</strong> power head. Limits were <strong>the</strong>n set at 0 0 and 90 0 flexion. Theangular velocity was set at 90 0 /sec. Each subject had 6 sub-maximal repetitions as awarm up and dur<strong>in</strong>g data collection verbal <strong>in</strong>struction was strictly standardised. Theconcentric peak extension torque was recorded.161


____________________________________________________________Chapter 88.3.4 Muscle FatigueFatigue <strong>in</strong>dices <strong>of</strong> <strong>the</strong> vastus medialis oblique (VMO), vastus lateralis (VL), and rectusfemoris (RF) were assessed by bipolar electrode surface electromyography (EMG).Sk<strong>in</strong> preparation, electrode placement and patient position were an exact replication<strong>of</strong> <strong>the</strong> reliability study <strong>in</strong> Chapter 5. The raw signal was captured and analysed via aTEL100M four channel remote amplifier/transmitter system (Biopac Systems Inc.California USA). This was to a TEL100D receiver module and a MP100 acquisitionunit. EMG signals were high pass (8Hz) and low pass (500Hz) filtered (Butterworthfilter), with a sharp notch (Band stop) filter <strong>of</strong> 50Hz filter to remove DC noise. Theamplifier was set with a ga<strong>in</strong> <strong>of</strong> 10, a Common Mode Rejection Ratio (CMMR) <strong>of</strong> 110-dB m<strong>in</strong>imum and a signal-to-noise ratio <strong>of</strong> 65dB m<strong>in</strong>imum. There was a differential<strong>in</strong>put impedance <strong>of</strong> 2MΩ. The signal was analogue to digital converted at a sampl<strong>in</strong>grate <strong>of</strong> 1024 Hz. The EMG signal was on-l<strong>in</strong>e analysed by a graphical programm<strong>in</strong>ganalysis system (LabVIEW TM5.0, National Instruments, Texas, USA), <strong>in</strong> order tocont<strong>in</strong>uously derive <strong>the</strong> MF <strong>of</strong> <strong>the</strong> power density spectrum every second, dur<strong>in</strong>g asusta<strong>in</strong>ed 60 second contraction at 60% MVIC, us<strong>in</strong>g a Fast Fourier Transform (FFT)algorithm. Median frequency was normalised aga<strong>in</strong>st <strong>in</strong>itial median frequency and al<strong>in</strong>ear regression was constructed over <strong>the</strong> contraction time <strong>of</strong> 60 seconds from whicha slope was derived to express <strong>the</strong> fatigue rate 296;297 .162


____________________________________________________________Chapter 88.3.5 Quadriceps Cross Sectional AreaCSA was assessed as part <strong>of</strong> <strong>the</strong> <strong>in</strong>clusion criteria, and immediately post <strong>stimulation</strong>.In an exact replication <strong>of</strong> <strong>the</strong> reliability study <strong>in</strong> Chapter 7, a static B compoundultrasound scanner (Technicare EDP 1200) was used with 5 and 2.25 MHztransducers. Scans were taken at <strong>the</strong> thigh mid po<strong>in</strong>t between <strong>the</strong> lateral jo<strong>in</strong>t l<strong>in</strong>e <strong>of</strong><strong>the</strong> knee and <strong>the</strong> greater trochanter. This was marked on an acetate sheet <strong>in</strong> order toensure exact reproduction <strong>of</strong> <strong>the</strong> position for <strong>the</strong> post treatment scan. A hard copy <strong>of</strong>each scan was obta<strong>in</strong>ed and <strong>the</strong> area <strong>of</strong> <strong>the</strong> <strong>quadriceps</strong> calculated us<strong>in</strong>g <strong>the</strong> Digiteyes<strong>of</strong>tware (Medical Physics Dept. Hope Hospital, Salford UK) (see Figures 25, 26 and27 <strong>in</strong> Chapter 7).8.3.6 FunctionThis was assessed us<strong>in</strong>g <strong>the</strong> Kujala Patell<strong>of</strong>emoral Score. This is a self reportedquestionnaire scor<strong>in</strong>g system with values rang<strong>in</strong>g from 100 (a normal, pa<strong>in</strong>less, fullyfunction<strong>in</strong>g knee) to 0 at <strong>the</strong> o<strong>the</strong>r extreme <strong>of</strong> <strong>the</strong> scale (severe knee pa<strong>in</strong> anddysfunction). It has been found to be valid and reliable <strong>in</strong> <strong>the</strong> measurement <strong>of</strong> function<strong>in</strong> PFPS 283 .163


____________________________________________________________Chapter 88.3.7 Pa<strong>in</strong>Patellar pa<strong>in</strong> on <strong>the</strong> day <strong>of</strong> assessment was assessed by use <strong>of</strong> a visual analoguescale 279compris<strong>in</strong>g a 10 cm l<strong>in</strong>e with 0 cm represent<strong>in</strong>g no pa<strong>in</strong> and 10 cmrepresent<strong>in</strong>g worst pa<strong>in</strong> ever.8.3.8 Cl<strong>in</strong>ical testsIn addition, <strong>the</strong> follow<strong>in</strong>g commonly used cl<strong>in</strong>ical tests were employed to ascerta<strong>in</strong> ifimprovement or deterioration <strong>in</strong> <strong>the</strong> physiological and pa<strong>in</strong> tests <strong>of</strong> lower limb functionwere also apparent <strong>in</strong> <strong>the</strong> simpler yet functional important movements. These testsform part <strong>of</strong> a dynamic evaluation <strong>of</strong> <strong>muscle</strong> action, symptomology and treatmenteffectiveness <strong>in</strong> PFPS 89 :8.3.8.1 Step upThe number <strong>of</strong> steps <strong>the</strong> patient could perform up onto a 25cm step until <strong>the</strong> onset <strong>of</strong>patellar pa<strong>in</strong>.8.3.8.2 Step downThe number <strong>of</strong> steps down a 25cm step <strong>the</strong> patient could perform until <strong>the</strong> onset <strong>of</strong>patellar pa<strong>in</strong>. The common activities <strong>of</strong> ascend<strong>in</strong>g and descend<strong>in</strong>g steps have beenused <strong>in</strong> previous studies <strong>in</strong>volv<strong>in</strong>g patients with PFPS 10;71;72 .164


____________________________________________________________Chapter 88.3.8.3 Squat flexionThe amount <strong>of</strong> knee flexion patients could achieve from a stand<strong>in</strong>g position until <strong>the</strong>onset <strong>of</strong> <strong>the</strong>ir patellar pa<strong>in</strong>. This was measured <strong>in</strong> <strong>the</strong> standard way by a universalgoniometer, aligned with <strong>the</strong> greater trochanter, through <strong>the</strong> lateral jo<strong>in</strong>t l<strong>in</strong>e to <strong>the</strong>lateral malleolus 298 .8.4 TreatmentPatients were randomly allocated by computer program to ei<strong>the</strong>r <strong>the</strong> RESTIM orCOMPEX treatment regimes.8.4.1 RESTIMThis was a two-channel portable pre programmed stimulator (DMI Ltd. Wigan, UK)that produced a balanced, asymmetrical biphasic pulse to a maximum <strong>of</strong> 90mA with aduty cycle <strong>of</strong> 10:50, and <strong>the</strong> pulse duration was set at 200µs as frequently adopted <strong>in</strong>human studies <strong>in</strong> <strong>muscle</strong> 166;299 . Stimulation parameters were controlled by anerasable programmable read only memory microchip (EPROM 2764) which wereprogrammed us<strong>in</strong>g a specifically written computer s<strong>of</strong>tware (CHAMP DMI, WiganU.K.) and a microchip programmer (Dataman S3). This <strong>stimulation</strong> pattern consisted<strong>of</strong> three simultaneously delivered components: a background low frequencycomponent, a high frequency component superimposed on <strong>the</strong> background at regular<strong>in</strong>tervals and a 'doublet' <strong>of</strong> pulses 23 delivered with<strong>in</strong> <strong>the</strong> higher frequency burst. This165


____________________________________________________________Chapter 8new pattern <strong>of</strong> <strong>stimulation</strong> has been used previously <strong>in</strong> <strong>the</strong> treatment <strong>of</strong> <strong>the</strong> humanpelvic floor <strong>muscle</strong>s 300 .Patients were <strong>in</strong>structed <strong>in</strong> <strong>the</strong> placement <strong>of</strong> <strong>the</strong> two self-adhesive electrodes(10cmx17cm – total area 340cm 2 : Chattanooga, TN, USA; Figure 32), <strong>in</strong> <strong>the</strong> use <strong>of</strong><strong>the</strong> device and were given an <strong>in</strong>formation sheet. Stimulation took place for one houreach day, every day for six weeks.8.4.2 COMPEXThis stimulator was a commercially available 3 channel model (Medicompex SA,Switzerland), which generated bipolar, biphasic, asymmetrical rectangular pulses.The treatment sequence specified <strong>in</strong> <strong>the</strong> <strong>in</strong>struction manual for PFPS, was once aday five days a week for <strong>the</strong> first two weeks (2 m<strong>in</strong>utes at 8Hz pulse width 250 µs; 20m<strong>in</strong>utes at 35 Hz; duty cycle 6s at 35Hz <strong>the</strong>n 8s ’rest’ at 8Hz = 2353 impulses /m<strong>in</strong>,pulse width 350µs; 3 m<strong>in</strong>utes at 3Hz pulse width 250µs). Then three times a week forweeks 3 and 4 and twice a week for <strong>the</strong> last two weeks ( 2 m<strong>in</strong>utes at 8Hz pulse width250 µs;20 m<strong>in</strong>utes at 45Hz pulse width 350 µs; 3 m<strong>in</strong>utes at 3 Hz pulse width 250µs). Placement <strong>of</strong> <strong>the</strong> COMPEX electrodes (4 x 5cmx5cm and 1 x 10cmx5cm totalarea 150cm 2 ) was demonstrated to <strong>the</strong> patients.All treatment sessions for both stimulators took place at home and patients wereasked to fill out a compliance diary to state each day if <strong>stimulation</strong> had taken place ornot. Patients were also asked to cont<strong>in</strong>ue with <strong>the</strong>ir normal daily activities. The166


____________________________________________________________Chapter 8treatment period <strong>of</strong> six weeks was chosen for several reasons. The overwhelm<strong>in</strong>gconsensus gleaned from <strong>the</strong> literature <strong>in</strong> previous studies used six weeks treatmentperiods. Consequently, this is a typical cl<strong>in</strong>ical regime used by physio<strong>the</strong>rapists.Additionally, <strong>the</strong>re is evidence from <strong>the</strong> literature us<strong>in</strong>g cont<strong>in</strong>uous <strong>stimulation</strong> that <strong>the</strong>effects are, <strong>in</strong> <strong>the</strong> ma<strong>in</strong>, complete by six weeks 24;128;183 , which seems to obviate <strong>the</strong>need for a longer period. Stimulation commenced <strong>the</strong> day after <strong>the</strong> f<strong>in</strong>al pre testassessment. The first post treatment assessment took place with<strong>in</strong> three days <strong>of</strong>complet<strong>in</strong>g <strong>stimulation</strong>. A flow diagram <strong>of</strong> <strong>the</strong> study protocol can been seen <strong>in</strong> Figure29.8.5 Statistical AnalysisData were tested and found to be normally distributed us<strong>in</strong>g <strong>the</strong> Kolmogorov -Smirnovtest. The mean pre and post differences were calculated and descriptive statisticsproduced. Statistical analysis was conducted <strong>in</strong>itially us<strong>in</strong>g a 3 factor repeatedmeasures analysis <strong>of</strong> variance (ANOVA). The follow<strong>in</strong>g variables were <strong>in</strong>cluded <strong>in</strong> <strong>the</strong>analysis: time (pre <strong>stimulation</strong> v post <strong>stimulation</strong>) and read<strong>in</strong>g (3 read<strong>in</strong>gs pre, 3read<strong>in</strong>gs post) as with<strong>in</strong> subjects factors. Group (RESTIM or COMPEX), was <strong>in</strong>cludedas a between subjects factor. Fur<strong>the</strong>r with<strong>in</strong> <strong>group</strong> comparisons us<strong>in</strong>g mean pre andpost scores were made us<strong>in</strong>g paired ‘t’ tests. For <strong>quadriceps</strong> <strong>muscle</strong> endurance data,<strong>the</strong> normalised slope coefficients <strong>of</strong> all three <strong>muscle</strong>s were analysed by a repeatedmeasures ANOVA with <strong>the</strong> variables <strong>of</strong> time (pre and post <strong>stimulation</strong>) and <strong>group</strong>(RESTIM or COMPEX). These data were also graphically represented by a method167


____________________________________________________________Chapter 8whereby pre treatment median frequency slopes are normalised to zero 297 . This isdone <strong>in</strong> order to control for <strong>the</strong> differences <strong>in</strong> responses between <strong>in</strong>dividuals prior totreatment. Any post treatment changes were <strong>the</strong>n expressed as <strong>the</strong> difference fromthis normalised value. A value <strong>of</strong> p


____________________________________________________________Chapter 8REFERRED TO TRIALn =30U/S SCANn = 7 excludedEXAMINATIONn = 2 excludedGAITn = 5 excludedTOTAL EXCLUDEDn = 14PATIENTS REGISTEREDn = 16RANDOMISATIONPRACTICE ASSESSMENTPRE ASSESSMENT 1PRE ASSESSMENT 2RESTIM 6 WEEKSn = 8WITHDRAWNn =1PRE ASSESSMENT 3START STIMULATIONSTOP STIMULATIONPOST ASSESSMENT 1n = 14COMPEX 6 WEEKSn = 8WITHDRAWNn =1POST ASSESSMENT 2POST ASSESSMENT 3169


____________________________________________________________Chapter 8Figure 29 Flow diagram <strong>of</strong> <strong>the</strong> Pilot study protocolTable14 Muscle strength, pa<strong>in</strong> and functional data. Means ±SD <strong>of</strong> mean changes.Raw score and mean percentage change between pre and post <strong>stimulation</strong>RESTIMPre-stim Post-stim Mean Change Mean % P value<strong>in</strong> raw score change frombasel<strong>in</strong>eIsometric (Nm) 66.2 ± 19.4 79.4 ± 27.7 13.3 ± 15.1 19.5% 0.059Isok<strong>in</strong>etic (Nm) 94.6 ± 36.2 106.3 ± 41.7 11.7 ±7.2 12.3% 0.005 *PAIN (po<strong>in</strong>ts) 5.3 ± 1.6 3.8 ± 1.8 -1.5 ±2.0 -24.3% 0.094STEPS (No.) 13.6 ± 12.6 18.7 ± 14.9 5.1 ±6.0 69.5% 0.065FLEXION (degrees) 98.6 ± 40.6 109.5 ± 30.8 11.0 ± 28.4 30.6% 0.346KUJALA (po<strong>in</strong>ts) 61.3 ± 8.4 67.0 ± 10.4 5.2 ± 10.3 9.5% 0.232CSA (cm 2 ) 20.6886 ±20.6300 ±-0.0586 ±-0.0519% 0.6036.4716.3460.282COMPEXPre-stim Post-stim Mean Change Mean % P value<strong>in</strong> raw score change frombasel<strong>in</strong>eIsometric (Nm) 70.7 ± 30.8 76.5 ± 28.1 5.9 ± 4.9 13.1% 0.019 *Isok<strong>in</strong>etic (Nm) 93.6 ± 26.1 100.2 ± 27.0 6.7 ± 16.4 9.7% 0.323PAIN (po<strong>in</strong>ts) 4.6 ± 1.8 3.4 ± 2.3 -1.2 ± 1.9 -30.0% 0.133STEPS (No.) 8.1 ± 2.8 14.2 ± 8.5 6.1 ± 7.6 76.4% 0.077FLEXION (degrees) 98.8 ± 21.9 95.7 ± 17.6 -3.1 ± 12.7 -2.0% 0.544KUJALA (po<strong>in</strong>ts) 65.4 ± 11.6 72.9 ± 9.1 6.7 ± 16.4 12.7% 0.045*CSA (cm 2 ) 17.9829 ± 17.9800 ± -0.0029 ± -0.1815% 0.989170


____________________________________________________________Chapter 82.218 1.854 0.5488.6.1 Isometric StrengthThere were no statistical differences between <strong>the</strong> RESTIM and COMPEX <strong>group</strong>s priorto <strong>stimulation</strong> ( t = -0.326 p=0.75). The repeated measures ANOVA showed no <strong>group</strong>or read<strong>in</strong>g effect but a significant time effect (p=0.018) (Table 15). When analysedseparately with a Paired 't' test, an improvement between pre and post measuresreached statistical significance for COMPEX (p=0.019) but not for RESTIM (p=0.059)(see Table 14).Table 15 Results <strong>of</strong> Repeated Measures ANOVAfor Muscle strength, pa<strong>in</strong> and functional outcomes.EFFECT Group Time Read<strong>in</strong>gF p F P F Pisometric (Nm) 0.01 0.921 7.79 0.018* 0.59 0.565Isok<strong>in</strong>etic (Nm) 0.002 0.966 6.02 0.032* 2.10 0.150PAIN (po<strong>in</strong>ts) 0.16 0.701 6.45 0.027* 0.41 0.668STEPS (Number) 0.07 0.794 8.80 0.013* 0.87 0.433FLEXION (degrees) 0.002 0.966 0.52 0.487 0.41 0.669KUJALA (po<strong>in</strong>ts) 1.64 0.226 8.62 0.014* 1.24 0.309171


____________________________________________________________Chapter 88.6.2 Isok<strong>in</strong>etic strengthThere were no differences between <strong>the</strong> RESTIM and COMPEX <strong>group</strong>s prior to<strong>stimulation</strong> (t=0.059; p=0.954). There was a significant time effect (p=0.032) (Table15). When analysed separately only <strong>the</strong> RESTIM <strong>group</strong> showed a significantimprovement between pre and post measures (p=0.005) (Table 14).8.6.3 Muscle FatigueFigure 30 graphically represents <strong>the</strong> data as means ±SD that shows a slight <strong>in</strong>crease<strong>in</strong> <strong>the</strong> RF average median frequency slope <strong>of</strong> 1.1± 8.1 for COMPEX and 1.8 ± 11 forRESTIM. For VL <strong>the</strong>re was an <strong>in</strong>crease <strong>in</strong> <strong>the</strong> average median frequency <strong>of</strong> 2.4± 3.9for COMPEX and 3.2 ± 4.9 for RESTIM. For VMO <strong>the</strong>re was a decl<strong>in</strong>e <strong>in</strong> <strong>the</strong> averagemedian frequency slope <strong>of</strong> 5.9 ± 9.1 for COMPEX. On <strong>the</strong> o<strong>the</strong>r hand <strong>the</strong>re is only a2.5 ± 6 decl<strong>in</strong>e for VMO for RESTIM. Table 16 shows <strong>the</strong> repeated measures ANOVAfor <strong>the</strong> three <strong>muscle</strong>s. There were no significant time or <strong>group</strong> effects for VMO, VLand RF. Table 17 shows <strong>the</strong> means <strong>of</strong> % rate <strong>of</strong> change per second for <strong>the</strong> three<strong>muscle</strong>s pre and post <strong>stimulation</strong>.172


____________________________________________________________Chapter 8Figure 30. Mean ± SD Plots <strong>of</strong> median frequency slope differences(%/s)(pre-stim / post-stim) for VMO, VL. and RF at 60% MVIC 60s contraction.173


____________________________________________________________Chapter 8Table 16 Repeated Measures ANOVA for <strong>quadriceps</strong> <strong>muscle</strong> fatigue data.EFFECT Group TimeF p F PVMO 0.688 0.425 0.533 0.480VL 0.075 0.790 0.006 0.939RF 0.000 0.991 0.473 0.506Table 17 Quadriceps <strong>muscle</strong> fatigue data.Group means <strong>of</strong> %rate <strong>of</strong> change per secondRESTIMCOMPEXPre stim Post-stim Pre stim Post stimVMO -0.082 -0.085 -0.138 -0.183VL -0.1011 -0.072 -0.084 -0.31RF -0.111 -0.144 -0.119 -0.538.6.4 Quadriceps Cross Sectional AreaThere were no significant differences between RESTIM and COMPEX <strong>group</strong>s prior to<strong>stimulation</strong> (t=1.046; p=0.316). As <strong>the</strong>re was only one read<strong>in</strong>g pre and post<strong>stimulation</strong>, this was analysed solely by ‘t’ tests. There were no statistically significantdifferences <strong>in</strong> <strong>the</strong> pre and post <strong>stimulation</strong> CSA values for RESTIM (p=0.603) andCOMPEX (p=0.989). As both <strong>group</strong>s had extremely small values with negligibledifferences, <strong>the</strong> means were reported to four decimal places and standard deviationsto three decimal places (Table 14).174


____________________________________________________________Chapter 88.6.5 FunctionThere were no significant differences <strong>in</strong> <strong>the</strong> Kujala scores between RESTIM andCOMPEX <strong>group</strong>s prior to <strong>stimulation</strong> (t=-1.03; p=0.323). There was significant timeeffect (p=0.014). When analysed separately <strong>the</strong>re was a significant differencebetween <strong>the</strong> pre and post <strong>stimulation</strong> values <strong>in</strong> <strong>the</strong> COMPEX <strong>group</strong> (p=0.045).(Tables 14 and 15)8.6.6 Pa<strong>in</strong>There were no differences between <strong>the</strong> two <strong>group</strong>s prior to <strong>stimulation</strong> (t=0.775;p=0.453). There was a significant time effect (p=0.027), <strong>in</strong>dicat<strong>in</strong>g that all <strong>the</strong> patientsimproved with treatment. But when analysed separately <strong>the</strong> improvement for pa<strong>in</strong>scores did not reach statistical significance for ei<strong>the</strong>r <strong>group</strong> (RESTIM p=0.09;COMPEX p=0.13) (Tables 14 and 15).8.6.7 FlexionThere were no significant differences between RESTIM and COMPEX <strong>group</strong>s prior to<strong>stimulation</strong> (t = -0.014; p=0.989). The repeated measures ANOVA showed nosignificant effects due to time, <strong>group</strong>, or read<strong>in</strong>g post <strong>stimulation</strong> (Table 15).175


____________________________________________________________Chapter 88.6.8 StepsThere were no differences between <strong>the</strong> RESTIM and COMPEX <strong>group</strong>s prior to<strong>stimulation</strong> (t=1.13 p=0.280). Both <strong>group</strong>s showed a significant time effect <strong>in</strong> <strong>the</strong>number <strong>of</strong> steps (p=0.013) but separate analysis no significance between <strong>the</strong> <strong>group</strong>s(RESTIM p=0.065; COMPEX p=0.077) (Tables 14 and 15).8.7 DiscussionIn order for a <strong>muscle</strong> to operate to optimum efficiency it requires both strength andendurance characteristics. Exist<strong>in</strong>g <strong>electrical</strong> <strong>muscle</strong> <strong>stimulation</strong> is designed toproduce ei<strong>the</strong>r low or high frequency <strong>stimulation</strong>. This is problematic as lowfrequency <strong>stimulation</strong> is used to <strong>in</strong>crease fatigue characteristics <strong>of</strong> a <strong>muscle</strong>, but at<strong>the</strong> expense <strong>of</strong> power generation 23 . On o<strong>the</strong>r hand, if <strong>stimulation</strong> is used to <strong>in</strong>creasepower this is at <strong>the</strong> expense <strong>of</strong> endurance 32 . A comb<strong>in</strong>ation <strong>of</strong> <strong>the</strong>se two elementshas been attempted <strong>in</strong> sequential <strong>stimulation</strong> regimens like COMPEX wherebyperiods <strong>of</strong> low-frequency <strong>stimulation</strong> have been followed by high-frequency periods orvice-versa. This is a non-physiological approach to <strong>stimulation</strong> as motor nerve fir<strong>in</strong>gpatterns usually address both factors simultaneously.The RESTIM regimeaddresses this by deliver<strong>in</strong>g low and high frequency to <strong>the</strong> <strong>muscle</strong> simultaneously,thus comb<strong>in</strong><strong>in</strong>g <strong>the</strong> development <strong>of</strong> strength and fatigue characteristics. The efficacy<strong>of</strong> this approach has been tentatively evaluated <strong>in</strong> this Pilot study on <strong>the</strong> <strong>quadriceps</strong><strong>of</strong> 14 patients with patell<strong>of</strong>emoral pa<strong>in</strong> syndrome, with outcome assessed us<strong>in</strong>g bothphysiological and functional measures. Large variances may expla<strong>in</strong> why some176


____________________________________________________________Chapter 8improvements <strong>in</strong> strength and function, as <strong>in</strong>dicated by percentage change, onlyshow borderl<strong>in</strong>e statistical significance (Table 14). Both regimes improved <strong>quadriceps</strong>strength as measured by MVIC and peak torque that concurs with previous studies onPFPS 30;138 . The lack <strong>of</strong> <strong>in</strong>creased cross sectional area <strong>of</strong> <strong>the</strong> <strong>quadriceps</strong> also concurswith a previous study us<strong>in</strong>g similar <strong>stimulation</strong> parameters and protocols onosteoarthritic knees 292 . There were statistically significant with<strong>in</strong>-<strong>group</strong> post<strong>stimulation</strong> improvements <strong>in</strong> <strong>the</strong> physiological measures <strong>of</strong> isometric and isok<strong>in</strong>etictorque, but not between <strong>the</strong> <strong>group</strong>s. The large variance <strong>in</strong> <strong>the</strong> measures may accountfor improvements <strong>in</strong> <strong>the</strong> raw data (for example for RESTIM <strong>stimulation</strong> a 19.5%improvement <strong>in</strong> isometric strength) not be<strong>in</strong>g reflected by statistical significance.Regard<strong>in</strong>g <strong>the</strong> fatigue data, numerous <strong>in</strong>vestigations have focussed on EMGamplitude and onset on activity ra<strong>the</strong>r than fatigue rates <strong>of</strong> <strong>the</strong> VMO relative to <strong>the</strong> VLand <strong>the</strong> RF, with differ<strong>in</strong>g methodologies caus<strong>in</strong>g contradictory results 301 . It has beenproposed that fatigue rates <strong>of</strong> VMO may be lower than VL <strong>in</strong> PFPS 302 . So far, <strong>the</strong> use<strong>of</strong> power spectral analysis us<strong>in</strong>g a median frequency slope has shown no selectivefatigue at 30% or 60% MVIC <strong>in</strong> <strong>the</strong> VMO and VL normal subjects 84 , but lower fatiguerates (i.e. greater fatigue) <strong>of</strong> VMO over VL <strong>in</strong> patients with anterior knee pa<strong>in</strong> 303 . InPFPS, <strong>the</strong> contribution <strong>of</strong> VL and RF are not considered to be as important as VMOdue to <strong>the</strong> role <strong>of</strong> <strong>the</strong> latter <strong>in</strong> ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g patella stability 29;50;304 . The effects <strong>of</strong>RESTIM on endurance characteristics <strong>of</strong> VMO were <strong>the</strong>refore <strong>of</strong> <strong>in</strong>terest <strong>in</strong> this <strong>group</strong><strong>of</strong> patients. Roy et al. 297 plotted <strong>the</strong> <strong>in</strong>teraction <strong>of</strong> surgery and time on <strong>the</strong> MF slope177


____________________________________________________________Chapter 8from <strong>the</strong> lumbar extensor musculature <strong>of</strong> patients with low back pa<strong>in</strong>. They <strong>in</strong>dicatedthat a less negative MF slope may be <strong>in</strong>terpreted as an”improvement” <strong>in</strong> <strong>the</strong> patients’endurance characteristics. As mentioned previously, <strong>the</strong> <strong>in</strong>crease <strong>in</strong> strength withconventional EMS is accompanied by a decrease <strong>in</strong> endurance. This was alsoobserved <strong>in</strong> <strong>the</strong> present study us<strong>in</strong>g COMPEX <strong>stimulation</strong> where decrease <strong>in</strong>endurance was observed <strong>in</strong> <strong>the</strong> VMO (Figure 30 and Table 17). RESTIM on <strong>the</strong> o<strong>the</strong>rhand seems to protect aga<strong>in</strong>st this by limit<strong>in</strong>g <strong>the</strong> decrease, thus support<strong>in</strong>g <strong>the</strong> use<strong>of</strong> simultaneous mixed frequency <strong>stimulation</strong>. This protection mechanism has notbeen reported previously, but caution is urged because although Table 17 <strong>in</strong>dicatessome <strong>in</strong>terest<strong>in</strong>g effects on endurance characteristics that are useful to report, <strong>the</strong>results from <strong>the</strong> repeated measures ANOVA (Table 16) are not significant.Whilst both <strong>group</strong>s demonstrated improvements <strong>in</strong> <strong>the</strong> raw data for steps, KujalaPatell<strong>of</strong>emoral score, pa<strong>in</strong> and knee flexion statistical differences between RESTIMand COMPEX were not apparent despite differences <strong>in</strong> physiological <strong>in</strong>dices.8.8 LimitationsThere are some limitations worth highlight<strong>in</strong>g <strong>in</strong> this study. First, is <strong>the</strong> difference <strong>in</strong><strong>the</strong> treatment regimes between RESTIM and COMPEX. The regime for COMPEXwas exactly that as specified <strong>in</strong> its manual for PFPS. It was considered unethical tochange prescribed regimes for this specific condition, even though this would mean adissimilar treatment period. The regime for <strong>the</strong> RESTIM was <strong>the</strong> same as previousstudies on <strong>the</strong> weakened pelvic floor musculature <strong>of</strong> women us<strong>in</strong>g <strong>the</strong> same178


____________________________________________________________Chapter 8simultaneous mixed frequency parameters 300 . The second issue is that <strong>of</strong> samplesize. This trial was <strong>in</strong>itiated as a Pilot study, <strong>in</strong> an attempt to assimilate <strong>in</strong>formationabout <strong>the</strong> protocol, <strong>the</strong> outcome measures and to form <strong>the</strong> basis <strong>of</strong> <strong>the</strong> Ma<strong>in</strong> study. Assuch a power sample calculation was considered <strong>in</strong>appropriate and this limitation isacknowledged.8.9 ConclusionsThis Pilot study has <strong>in</strong>dicated on patients with patell<strong>of</strong>emoral pa<strong>in</strong> that <strong>electrical</strong><strong>stimulation</strong> <strong>of</strong> <strong>the</strong> <strong>quadriceps</strong> can improve isometric and isok<strong>in</strong>etic strength, pa<strong>in</strong>, selfreport<strong>in</strong>g function, and step test<strong>in</strong>g. There were no significant differences between <strong>the</strong>two types <strong>of</strong> <strong>stimulation</strong> any <strong>of</strong> <strong>the</strong> outcome measures. There is some <strong>in</strong>dication that<strong>the</strong> RESTIM device, a simultaneous mixed frequency regime, seems to protectaga<strong>in</strong>st loss <strong>of</strong> fatigue resistance that was not as easily observed <strong>in</strong> <strong>the</strong> COMPEX, acommercially available sequential mixed frequency device.8.10 Considerations for <strong>the</strong> Ma<strong>in</strong> StudyAs a result <strong>of</strong> this phase <strong>of</strong> <strong>the</strong> study, certa<strong>in</strong> considerations and recommendationswere made prior to <strong>the</strong> Ma<strong>in</strong> study.Firstly, <strong>the</strong> results from <strong>the</strong> repeated measures ANOVA showed no significantdifferences between <strong>the</strong> three pre treatment assessments for all <strong>the</strong> outcomemeasures and no significant differences between <strong>the</strong> three post treatment179


____________________________________________________________Chapter 8assessments. A decision was made based on this statistical <strong>in</strong>formation to assessonly once post treatment. Two assessments (<strong>in</strong>clud<strong>in</strong>g a full practice session) wouldbe performed prior to treatment <strong>in</strong> order to establish a pre treatment basel<strong>in</strong>e level <strong>of</strong>assessment.Secondly, it was noted that many patients with PFPS were not considered for <strong>the</strong>study from orthopaedic cl<strong>in</strong>ics because <strong>the</strong> patients had PFPS for longer than 3years. O<strong>the</strong>r randomised studies have not specified a length <strong>of</strong> time for <strong>the</strong>ir patientswith PFPS 284;305 . It was decided that this criterion was too short and so that manysuitable patients o<strong>the</strong>rwise might be <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> Ma<strong>in</strong> study, this duration periodwas leng<strong>the</strong>ned to 10 years.Ano<strong>the</strong>r consideration was that <strong>the</strong> acknowledged type 2 statistical error due to <strong>the</strong>small sample size <strong>in</strong> <strong>the</strong> Pilot study may be avoided <strong>in</strong> <strong>the</strong> Ma<strong>in</strong> study now that<strong>in</strong>formation was available to calculate <strong>the</strong> appropriate sample size. The fact that noo<strong>the</strong>r EMS study on <strong>the</strong> same patient <strong>group</strong> was <strong>of</strong> sufficient quality to calculate <strong>the</strong>appropriate sample size confirmed <strong>the</strong> usefulness <strong>of</strong> <strong>the</strong> Pilot study <strong>in</strong> produc<strong>in</strong>g thisfigure.A decision was made to compare <strong>the</strong> RESTIM device with ano<strong>the</strong>r commerciallyavailable stimulator, <strong>the</strong> EMPI described below <strong>in</strong> section 9.2.1. This device was usedra<strong>the</strong>r than <strong>the</strong> COMPEX stimulator because it was deemed important to havematch<strong>in</strong>g periods <strong>of</strong> <strong>stimulation</strong> (i.e. 60 m<strong>in</strong>utes). In addition, <strong>the</strong> EMPI stimulator wasconsidered a market leader <strong>in</strong> <strong>the</strong> USA for <strong>the</strong> treatment <strong>of</strong> skeletal <strong>muscle</strong> by<strong>electrical</strong> <strong>stimulation</strong>. This raised <strong>the</strong> issue <strong>of</strong> <strong>the</strong> likelihood <strong>of</strong> differences between <strong>the</strong>180


____________________________________________________________Chapter 8performances <strong>of</strong> <strong>the</strong> COMPEX and EMPI devices and <strong>the</strong> implications forgeneralisation from <strong>the</strong> Pilot study to Ma<strong>in</strong> study. Although, essentially, <strong>the</strong> samefrequencies were <strong>in</strong>volved <strong>in</strong> both COMPEX and EMPI, <strong>the</strong> duty cycle parameterswere different result<strong>in</strong>g <strong>in</strong> 2353 impulses/m<strong>in</strong> be<strong>in</strong>g delivered to <strong>the</strong> <strong>muscle</strong> byCOMPEX and 350 impulses/m<strong>in</strong> by EMPI. The literature debates whe<strong>the</strong>r it is <strong>the</strong>total number <strong>of</strong> impulses delivered ra<strong>the</strong>r than just <strong>the</strong> frequency per se that is <strong>the</strong>most important parameter when stimulat<strong>in</strong>g <strong>muscle</strong> 193 . The difference <strong>in</strong> <strong>the</strong> number<strong>of</strong> impulses between COMPEX and EMPI may have been large enough to suggestthat differences would be seen between <strong>the</strong> two devices. Fur<strong>the</strong>rmore, <strong>the</strong> COMPEXand EMPI were also different <strong>in</strong> terms <strong>of</strong> <strong>stimulation</strong> time. It has been clearly stated <strong>in</strong><strong>the</strong> literature that <strong>the</strong> length <strong>of</strong> time <strong>of</strong> <strong>stimulation</strong> also has a pr<strong>of</strong>ound effect on<strong>muscle</strong> physiology 96 . RESTIM was developed with a daily treatment session <strong>of</strong> 60m<strong>in</strong>utes, whereas <strong>the</strong> COMPEX protocol for PFPS only demanded a maximum <strong>of</strong> 25m<strong>in</strong>utes daily. Therefore, <strong>the</strong> Ma<strong>in</strong> study would employ <strong>the</strong> EMPI device that had a 60m<strong>in</strong>utes treatment protocol for PFPS thus provid<strong>in</strong>g a better comparison with RESTIMand remov<strong>in</strong>g <strong>stimulation</strong> time as a confound<strong>in</strong>g variable. These differences highlight<strong>the</strong> issues <strong>of</strong> generalisation from <strong>the</strong> Pilot study to <strong>the</strong> Ma<strong>in</strong> study. However, us<strong>in</strong>gone device to generalise to ano<strong>the</strong>r can be justified <strong>in</strong> light <strong>of</strong> <strong>the</strong> fact that <strong>the</strong> Pilotstudy and <strong>the</strong> Ma<strong>in</strong> study would be conducted on <strong>the</strong> same patient <strong>group</strong>, from <strong>the</strong>same referral sources, us<strong>in</strong>g <strong>the</strong> same equipment to produce <strong>the</strong> same outcomemeasures, with <strong>the</strong> same mode <strong>of</strong> treatment (i.e. a comparison <strong>of</strong> EMS with EMS, nota comparison <strong>of</strong> EMS with voluntary exercise), for <strong>the</strong> same period <strong>of</strong> time.181


___________________________________________________________Chapter 9Chapter 9THE MAIN STUDY182


___________________________________________________________Chapter 99 MAIN STUDY9.1 IntroductionHav<strong>in</strong>g completed <strong>the</strong> Pilot study, appropriate sample size calculations could now bemade, and <strong>the</strong> mechanics and protocol <strong>of</strong> <strong>the</strong> test procedures were adjusted <strong>in</strong> <strong>the</strong>light <strong>of</strong> experience ga<strong>in</strong>ed <strong>in</strong> <strong>the</strong> Pilot study <strong>in</strong> Chapter 8.The Ma<strong>in</strong> study, <strong>the</strong>refore, was <strong>in</strong>stigated to compare <strong>the</strong> RESTIM with <strong>the</strong> EMPIstimulator. The research design was that <strong>of</strong> a double bl<strong>in</strong>ded randomised, controlledtrial. The null hypo<strong>the</strong>sis was that <strong>the</strong>re would be no statistical differences between<strong>the</strong> two devices.9.2 Methodology9.2.1 The RESTIM <strong>stimulation</strong> regimeThe <strong>stimulation</strong> pattern, frequency and pulse width for <strong>the</strong> RESTIM device was <strong>the</strong>same as <strong>the</strong> Pilot study, <strong>in</strong>corporat<strong>in</strong>g mixed frequency patterns <strong>of</strong> <strong>stimulation</strong> with a‘doublet’ <strong>of</strong> pulses at <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g 23 . This was a two-channel portable preprogrammed stimulator that produced a balanced, asymmetrical biphasic pulse to amaximum <strong>of</strong> 90mA with a duty cycle <strong>of</strong> 10:50. The pulse duration was set at 200µs asfrequently adopted <strong>in</strong> human studies <strong>in</strong> <strong>muscle</strong> 166;299 . The RESTIM* device used <strong>in</strong><strong>the</strong> Ma<strong>in</strong> study was manufactured specially (Smith & Nephew plc, York, UK). It used ama<strong>the</strong>matically derived pattern that consisted <strong>of</strong> <strong>the</strong> follow<strong>in</strong>g <strong>in</strong>terpulse <strong>in</strong>tervals:183


___________________________________________________________Chapter 98ms, 12ms, 20ms, 20ms, 20ms, 20ms, 400ms, 500ms that can be illustrated asfollows:8ms 12ms 20ms 20ms 20ms 20ms 400ms 500ms1000ms (1second)Figure 31. Stimulation pattern for <strong>the</strong> RESTIM device.Note <strong>the</strong> ‘doublet’ at <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> <strong>the</strong> pulse tra<strong>in</strong>.With a duty cycle <strong>of</strong> 10:50 <strong>the</strong> pattern delivered 90 impulses /m<strong>in</strong> to <strong>the</strong> <strong>quadriceps</strong>.Patients were shown how to use <strong>the</strong> device by a different physio<strong>the</strong>rapist <strong>in</strong>vestigator<strong>in</strong> order to preserve <strong>the</strong> bl<strong>in</strong>d<strong>in</strong>g for <strong>the</strong> study. All aspects <strong>of</strong> <strong>the</strong> device wereexpla<strong>in</strong>ed and <strong>the</strong> electrode positions were demonstrated on <strong>the</strong> patient’s thigh.Two self-adhesive electrodes (10cmx17cm – total area 340cm 2 : Chattanooga, TN,USA) were used. Patients were <strong>in</strong>structed to ma<strong>in</strong>ta<strong>in</strong> knee extension and not to walkor do o<strong>the</strong>r activities dur<strong>in</strong>g <strong>stimulation</strong>. This was to ensure equality <strong>of</strong> <strong>muscle</strong> lengthdur<strong>in</strong>g <strong>stimulation</strong> and to m<strong>in</strong>imise <strong>the</strong> <strong>in</strong>fluence <strong>of</strong> stretch on patients’ <strong>quadriceps</strong> 146 .An <strong>in</strong>formation sheet was given to <strong>the</strong> patient (see Appendices) and a diagram forelectrode position to ensure correct placement (Figure 32) as well as <strong>the</strong> compliancediary. One <strong>of</strong> <strong>the</strong> specifications <strong>of</strong> <strong>the</strong> RESTIM devices was an <strong>in</strong>built compliance* RESTIM is a work<strong>in</strong>g product title for <strong>the</strong> device and is not a trademarked name184


___________________________________________________________Chapter 9monitor that would provide <strong>in</strong>formation on <strong>the</strong> date and time <strong>of</strong> day, <strong>the</strong> period <strong>of</strong> timeand <strong>the</strong> amplitude sett<strong>in</strong>g for each treatment session. This was accessed after <strong>the</strong> 6weeks treatment period by <strong>the</strong> physio<strong>the</strong>rapist <strong>in</strong>vestigator bl<strong>in</strong>ded to <strong>the</strong> pretreatment test results.Figure 32 Electrode placement (<strong>in</strong> white) for <strong>the</strong> RESTIM stimulator185


___________________________________________________________Chapter 99.2.2 The EMPI <strong>stimulation</strong> regimeThe EMPI device was commercially available (EMPI Inc.,Mn., U.S.A.) and had atreatment protocol for PFPS. This protocol consisted <strong>of</strong> daily <strong>stimulation</strong> periodslast<strong>in</strong>g 60 m<strong>in</strong>utes with a fixed frequency <strong>of</strong> 35Hz. Similar to <strong>the</strong> RESTIM, it used aasymmetrical biphasic rectangular waveform with pulse duration set at 300µs, with amaximum amplitude set at 100mA. The pattern can be illustrated as follows:28ms 28ms 28ms 28ms 28ms 28ms 28ms 28msFigure 33. Stimulation pattern for <strong>the</strong> EMPI device1000ms - - - - - - -With a duty cycle <strong>of</strong> 10:50, this fixed frequency delivered 350 impulses to <strong>the</strong><strong>quadriceps</strong> <strong>muscle</strong>s every m<strong>in</strong>ute.Once aga<strong>in</strong>, <strong>the</strong> device was fully expla<strong>in</strong>ed to and demonstrated on <strong>the</strong> patients by<strong>the</strong> same physio<strong>the</strong>rapist <strong>in</strong>vestigator. A diagram <strong>of</strong> electrode placement was given(Figure 34). Four self adhesive electrodes were used (EMPI Inc. USA. 5cmx9cm: totalarea 180cm 2 ) Patients were <strong>in</strong>structed to ma<strong>in</strong>ta<strong>in</strong> knee extension as for <strong>the</strong> RESTIMdevice. Once <strong>the</strong> patients were confident and competent <strong>in</strong> its use, <strong>the</strong>y were given<strong>the</strong> compliance diary. Both devices were given to <strong>the</strong> patients for 6 weeks. Therationale for this treatment period was expla<strong>in</strong>ed <strong>in</strong> <strong>the</strong> Pilot study <strong>in</strong> section 8.4.186


___________________________________________________________Chapter 9Figure 34 Electrode placement (<strong>in</strong> white) for <strong>the</strong> EMPI stimulator187


___________________________________________________________Chapter 9Figure 35 The RESTIM device and electrodesFigure 36 The EMPI device and electrodes188


___________________________________________________________Chapter 99.2.3 Sample power calculationsOne benefit <strong>of</strong> <strong>the</strong> Pilot study was that it allowed an <strong>in</strong>vestigation <strong>in</strong>to sample powercalculations with a relevant population us<strong>in</strong>g methods <strong>of</strong> measurement that would beutilised <strong>in</strong> <strong>the</strong> Ma<strong>in</strong> study. Sample power calculations were performed <strong>in</strong> order toassess <strong>the</strong> number <strong>of</strong> subjects that would be required to see statistically significantdifferences between <strong>the</strong> two <strong>group</strong>s <strong>in</strong> <strong>the</strong> Ma<strong>in</strong> study. With pa<strong>in</strong>, measured us<strong>in</strong>g aVAS, as <strong>the</strong> ma<strong>in</strong> outcome measure, <strong>the</strong> observed difference between RESTIM andCOMPEX <strong>in</strong> <strong>the</strong> Pilot study was –0.5 units (±SD 2.3) (Table 14). It was consideredunfeasible to recruit this number <strong>of</strong> patients for each <strong>group</strong> <strong>the</strong>refore isok<strong>in</strong>eticstrength was chosen as <strong>the</strong> ma<strong>in</strong> outcome. O<strong>the</strong>r outcomes were <strong>the</strong>n used (MVIC,peak torque and <strong>quadriceps</strong> fatigue). The sample size calculations were moreacceptable (see Table 18), putt<strong>in</strong>g <strong>the</strong> power <strong>of</strong> <strong>the</strong> study at 85% with 40 subjects per<strong>group</strong> (P < 0.05). The Ma<strong>in</strong> study was approved by <strong>the</strong> ethics committee <strong>of</strong> <strong>the</strong>Central Manchester Health Care Trust.Table 18 Sample Size Calculationspoweroutcome observed ±SD 80% 85% 90%differencepa<strong>in</strong> -0.5 2.3 335 383 448isometric 6.3 (Nm) 8.05 27 31 36isok<strong>in</strong>etic 7.5 (Nm) 10.92 35 40 46fatigue 17.9 (Hz) 24.87 32 36 42189


___________________________________________________________Chapter 99.2.4 Subjects9.2.4.1 Inclusion CriteriaThese criteria were similar to <strong>the</strong> Pilot study <strong>in</strong> Chapter 8, with <strong>the</strong> exception <strong>of</strong> <strong>the</strong>duration period, which was changed to greater than six months and not longer than10 years and <strong>the</strong> use <strong>of</strong> 4% difference <strong>in</strong> <strong>quadriceps</strong> CSA between limbs that was notapplied.9.2.4.2 Exclusion CriteriaThese criteria were replicated from <strong>the</strong> Pilot study <strong>in</strong> Chapter 8,9.2.4.3 Cl<strong>in</strong>ical exam<strong>in</strong>ationThis was performed <strong>in</strong> <strong>the</strong> same way as <strong>the</strong> Pilot study <strong>in</strong> Chapter 8.9.2.5 RandomisationTo ensure broadly comparable <strong>group</strong>s with regard to basel<strong>in</strong>e variables <strong>of</strong> gender andbody mass <strong>in</strong>dex patients were stratified from one <strong>of</strong> four <strong>group</strong>s (Male; Female, BMI:≤ 26, BMI: >26), upon entry <strong>in</strong>to <strong>the</strong> trial. Randomisation was performed by consult<strong>in</strong>gfour computer generated randomisation lists, one for each <strong>of</strong> <strong>the</strong> four stratified<strong>group</strong>s. Patients were randomised <strong>in</strong>to <strong>the</strong> two treatment <strong>group</strong>s after <strong>the</strong>y hadsigned <strong>the</strong> consent form and had formally entered <strong>the</strong> study. The randomisation listprovided a trial number on which was based <strong>the</strong> correspond<strong>in</strong>g treatment <strong>group</strong> (i.e.RESTIM or EMPI). The lead <strong>in</strong>vestigator who was exam<strong>in</strong><strong>in</strong>g and measur<strong>in</strong>g <strong>the</strong>190


___________________________________________________________Chapter 9patients was not part <strong>of</strong> <strong>the</strong> randomisation process, thus ensur<strong>in</strong>g bl<strong>in</strong>dness to <strong>the</strong>stimulator allocation.9.3 Outcome measures9.3.1 InstrumentationIsometric and isok<strong>in</strong>etic concentric extension torque <strong>of</strong> <strong>the</strong> lower limb was measuredus<strong>in</strong>g <strong>the</strong> Biodex system 2 isok<strong>in</strong>etic dynamometer (Biodex systems Inc. Shirley N.Y.USA) with a closed k<strong>in</strong>etic cha<strong>in</strong> attachment as supplied by <strong>the</strong> manufacturers. Thisattachment has been assessed for extension test –retest reliability <strong>in</strong> PFPS patientswith ICC estimates 0.92 for isometric mode and 0.85 for isok<strong>in</strong>etic mode <strong>in</strong> Chapter4 269 . The closed k<strong>in</strong>etic cha<strong>in</strong> (CKC) method was chosen <strong>in</strong> preference to <strong>the</strong>standard isok<strong>in</strong>etic lever arm as previously described <strong>in</strong> Chapter 4 and <strong>the</strong> Pilot study<strong>in</strong> Chapter 8. CKC exercise has been advocated for patients with PFPS due to alessen<strong>in</strong>g <strong>of</strong> <strong>the</strong> patell<strong>of</strong>emoral jo<strong>in</strong>t reaction force and patell<strong>of</strong>emoral stress 222 . It wasdemonstrated that <strong>the</strong>re were significantly fewer stresses at <strong>the</strong> patell<strong>of</strong>emoral jo<strong>in</strong>t at<strong>the</strong> most functional range <strong>of</strong> movement dur<strong>in</strong>g a leg press (CKC) exercise than a legextension (OKC) exercise. A CKC method <strong>of</strong> assessment may not only br<strong>in</strong>g aboutobjective changes, but also lead to improvement <strong>in</strong> perceived function <strong>in</strong>patell<strong>of</strong>emoral pa<strong>in</strong> syndrome 223 . Static and dynamic measures <strong>of</strong> extension torquewere adopted <strong>in</strong> <strong>the</strong> Ma<strong>in</strong> study because <strong>the</strong> use <strong>of</strong> <strong>the</strong> two test<strong>in</strong>g modes gave acomprehensive assessment <strong>of</strong> <strong>muscle</strong> function. An isometric test was needed191


___________________________________________________________Chapter 9because <strong>the</strong> patients stimulated <strong>the</strong>ir <strong>quadriceps</strong> <strong>muscle</strong>s <strong>in</strong> a static position.Previous authors 284had highlighted <strong>the</strong> problems <strong>of</strong> a test<strong>in</strong>g protocol be<strong>in</strong>g adifferent nature to <strong>the</strong> exercise protocol, especially <strong>in</strong> terms <strong>of</strong> angular velocity. Theuse <strong>of</strong> an isometric test for an isometric treatment would help remedy this. Secondly,despite <strong>the</strong> isometric nature <strong>of</strong> <strong>the</strong> EMS, an isok<strong>in</strong>etic test was needed as this mayhave helped quantify any association <strong>of</strong> EMS on <strong>the</strong> dynamic, functional tests such assteps and knee flexion.9.3.2 Isometric StrengthSubjects were positioned <strong>in</strong> <strong>the</strong> Biodex chair with <strong>the</strong> hip at 90 0 flexion and <strong>the</strong> kneeangle at 45 0 flexion. This position<strong>in</strong>g is an exact replication <strong>of</strong> <strong>the</strong> reliability study <strong>in</strong>Chapter 4 and <strong>the</strong> Pilot study <strong>in</strong> Chapter 8. This angle had been determ<strong>in</strong>ed <strong>in</strong> o<strong>the</strong>rstudies as <strong>the</strong> most appropriate to reduce patell<strong>of</strong>emoral stress to a m<strong>in</strong>imum dur<strong>in</strong>gtest<strong>in</strong>g 222 . To ensure that <strong>the</strong> subjects ma<strong>in</strong>ta<strong>in</strong>ed <strong>the</strong> 45 0 angle, <strong>the</strong> operator placeda hand under <strong>the</strong> knee to act as a popliteal pad. Subjects pushed <strong>in</strong>to <strong>the</strong> foot platewithout lower<strong>in</strong>g <strong>the</strong> popliteal surface <strong>of</strong> <strong>the</strong> knee <strong>in</strong>to <strong>the</strong> operator's hand (and thusbeyond 45 0 ). Subjects had practice contractions prior to data collection to familiarise<strong>the</strong>mselves with this method and to ensure that <strong>the</strong>y were able to ma<strong>in</strong>ta<strong>in</strong> a kneeangle <strong>of</strong> 45 0 . Twitch <strong>in</strong>terpolation was used to overcome central fatigue and ensure amaximum voluntary isometric contraction 140 . Subjects performed three maximumcontractions <strong>of</strong> 10 seconds duration with 2 m<strong>in</strong>utes rest between each. Theconcentric peak extension torque was recorded.192


___________________________________________________________Chapter 99.3.3 Isok<strong>in</strong>etic torqueIn an exact replication <strong>of</strong> position<strong>in</strong>g <strong>in</strong> <strong>the</strong> reliability study <strong>in</strong> Chapter 4, subjects wereplaced <strong>in</strong> <strong>the</strong> chair with hip flexion set at 90 0and <strong>the</strong> shoulder and waist strapsapplied. The foot was placed flat aga<strong>in</strong>st <strong>the</strong> foot plate attachment and was held <strong>in</strong>place by velcro straps. With <strong>the</strong> knee at full extension <strong>the</strong> knee jo<strong>in</strong>t axis was alignedwith <strong>the</strong> axis <strong>of</strong> <strong>the</strong> power head. Limits were <strong>the</strong>n set at 0 0 and 90 0 flexion. Theangular velocity was set at 90 0 /sec. Each subject had 6 sub-maximal repetitions as awarm up and dur<strong>in</strong>g data collection verbal <strong>in</strong>struction was strictly standardised. Theconcentric peak extension torque was recorded.9.3.4 Muscle FatigueFatigue <strong>in</strong>dices <strong>of</strong> <strong>the</strong> vastus medialis oblique (VMO), vastus lateralis (VL), and rectusfemoris (RF) were assessed by bipolar electrode surface electromyography (EMG).Sk<strong>in</strong> preparation, electrode placement and patient position were an exact replication<strong>of</strong> <strong>the</strong> reliability study <strong>in</strong> Chapter 5 and <strong>the</strong> Pilot study <strong>in</strong> Chapter 8. Us<strong>in</strong>g a TEL100Dreceiver module and a MP100 acquisition unit, EMG signals were high pass (8Hz)and low pass (500Hz) filtered (Butterworth filter), with a sharp notch filter <strong>of</strong> 50Hz filterto remove DC noise. The amplifier was set with a ga<strong>in</strong> <strong>of</strong> 10, a Common ModeRejection Ratio (CMMR) <strong>of</strong> 110-dB m<strong>in</strong>imum and a signal-to-noise ratio <strong>of</strong> 65dBm<strong>in</strong>imum. There was a differential <strong>in</strong>put impedance <strong>of</strong> 2MΩ. The signal was analogueto digital converted at a sampl<strong>in</strong>g rate <strong>of</strong> 1024 Hz. The EMG was subjected to FastFourier Transform to extract <strong>the</strong> median frequency calculated at 1 second <strong>in</strong>tervals193


___________________________________________________________Chapter 9dur<strong>in</strong>g a susta<strong>in</strong>ed 60 second contraction at 60% MVIC. MF was normalised aga<strong>in</strong>stIMF and a l<strong>in</strong>ear regression was constructed over <strong>the</strong> contraction time <strong>of</strong> 60 secondsfrom which a slope was derived to express <strong>the</strong> fatigue rate 296;297 .9.3.5 Quadriceps Cross Sectional AreaCSA was assessed pre <strong>stimulation</strong> and immediately post <strong>stimulation</strong>. The techniquereplicated exactly <strong>the</strong> procedures described <strong>in</strong> Chapter 7 and <strong>the</strong> Pilot study <strong>in</strong>Chapter 8. Briefly, a static B compound ultrasound scanner (Technicare EDP 1200)was used with 5 and 2.25 MHz transducers. Scans were taken at <strong>the</strong> thigh mid po<strong>in</strong>tbetween <strong>the</strong> lateral jo<strong>in</strong>t l<strong>in</strong>e <strong>of</strong> <strong>the</strong> knee and <strong>the</strong> greater trochanter. This was markedon an acetate sheet <strong>in</strong> order to ensure exact reproduction <strong>of</strong> <strong>the</strong> position for <strong>the</strong> posttreatment scan. A hard copy <strong>of</strong> each scan was obta<strong>in</strong>ed and <strong>the</strong> area <strong>of</strong> <strong>the</strong><strong>quadriceps</strong> calculated us<strong>in</strong>g <strong>the</strong> Digiteye s<strong>of</strong>tware (Medical Physics Dept. HopeHospital, Salford UK).9.3.6 FunctionThis was assessed us<strong>in</strong>g <strong>the</strong> Kujala Patell<strong>of</strong>emoral Score. This is a self reportedquestionnaire scor<strong>in</strong>g system with values rang<strong>in</strong>g from 100 (a normal, pa<strong>in</strong>less, fullyfunction<strong>in</strong>g knee) to 0 at <strong>the</strong> o<strong>the</strong>r extreme <strong>of</strong> <strong>the</strong> scale (severe knee pa<strong>in</strong> anddysfunction). It has been found to be valid and reliable <strong>in</strong> <strong>the</strong> measurement <strong>of</strong> function<strong>in</strong> PFPS 283 .194


___________________________________________________________Chapter 99.3.7 Pa<strong>in</strong>Patellar pa<strong>in</strong> on <strong>the</strong> day <strong>of</strong> assessment was assessed by use <strong>of</strong> a visual analoguescale 279compris<strong>in</strong>g a 10 cm l<strong>in</strong>e with 0 cm represent<strong>in</strong>g no pa<strong>in</strong> and 10 cmrepresent<strong>in</strong>g worst pa<strong>in</strong> ever.9.3.8 Cl<strong>in</strong>ical testsIn addition, <strong>the</strong> follow<strong>in</strong>g commonly used cl<strong>in</strong>ical tests were employed to ascerta<strong>in</strong> ifimprovement or deterioration <strong>in</strong> <strong>the</strong> physiological and pa<strong>in</strong> tests <strong>of</strong> lower limb functionwere also apparent <strong>in</strong> <strong>the</strong> simpler yet functional important movements:9.3.8.1 Step upThe number <strong>of</strong> steps <strong>the</strong> patient could perform up onto a 25cm step until <strong>the</strong> onset <strong>of</strong>patellar pa<strong>in</strong>.9.3.8.2 Step downThe number <strong>of</strong> steps down a 25cm step <strong>the</strong> patient could perform until <strong>the</strong> onset <strong>of</strong>patellar pa<strong>in</strong>.9.3.8.3 Knee FlexionThe amount <strong>of</strong> knee flexion patients could achieve <strong>in</strong> squatt<strong>in</strong>g until <strong>the</strong> onset <strong>of</strong> <strong>the</strong>irpatellar pa<strong>in</strong>. This was measured <strong>in</strong> <strong>the</strong> standard way by a universal goniometer,aligned with <strong>the</strong> greater trochanter, through <strong>the</strong> lateral jo<strong>in</strong>t l<strong>in</strong>e to <strong>the</strong> lateralmalleolus.195


___________________________________________________________Chapter 99.4 Statistical analysisStatistical analyses were performed us<strong>in</strong>g SPSS (Statistical Package for <strong>the</strong> SocialSciences) for W<strong>in</strong>dows (v.9). A value <strong>of</strong> p0.05) for all parameters except Pa<strong>in</strong> (p=0.001) and Steps (p =0.02). Therefore all data were analysed us<strong>in</strong>g parametricstatistics except <strong>the</strong>se two measures which were analysed with non parametricequivalents.9.4.2 Pre Treatment AnalysisComparisons were made between <strong>the</strong> <strong>group</strong>s prior to treatment us<strong>in</strong>g <strong>in</strong>dependent ‘t’tests for all outcome measures, but Mann Whitney-U tests for pa<strong>in</strong> and stepsoutcomes.9.4.3 Post Treatment AnalysisThe post treatment differences between <strong>the</strong> <strong>group</strong>s were analysed us<strong>in</strong>g <strong>in</strong>dependent‘t’ tests for normally distributed data or Mann Whitney-U tests if <strong>the</strong> data did notdemonstrate normal distribution. If significances were found <strong>the</strong>n pre and post196


___________________________________________________________Chapter 9treatment analyses were performed with<strong>in</strong> each <strong>group</strong> us<strong>in</strong>g paired ‘t’ tests orWilcoxon Signed Ranks tests. A repeated measures analysis <strong>of</strong> variance (ANOVA)was also used to ascerta<strong>in</strong> time, <strong>group</strong> effects and <strong>group</strong> / time <strong>in</strong>teractions for eachoutcome. Factors for this were Time (pre <strong>stimulation</strong> v post <strong>stimulation</strong>) as a with<strong>in</strong>subjects factor and Group (RESTIM or EMPI) as a between subjects factor. Althoughit is not normal statistical procedure, with<strong>in</strong> <strong>group</strong> differences were analysed withpaired ‘t’ tests <strong>in</strong> <strong>the</strong> absence <strong>of</strong> between <strong>group</strong> differences <strong>in</strong> order to facilitate <strong>the</strong>discussion compar<strong>in</strong>g <strong>the</strong> two EMS devices.9.4.3.1 Multiple Regression AnalysisIn order to exam<strong>in</strong>e <strong>the</strong> simultaneous effect <strong>of</strong> multiple covariates on <strong>the</strong> each posttreatment outcome, a more detailed analysis was performed us<strong>in</strong>g a multipleregression analysis. There are no strict rules for select<strong>in</strong>g predictor variables, andpast experience or cl<strong>in</strong>ical knowledge may be sufficient to keep a variable <strong>in</strong> <strong>the</strong>model 306 . Thus a subjective assessment may be necessary when try<strong>in</strong>g to f<strong>in</strong>d <strong>the</strong>best model 306 . However, this did not preclude a logical procedure <strong>in</strong> order todeterm<strong>in</strong>e <strong>the</strong> most appropriate variables for <strong>the</strong> multiple regression models. Firstly, a<strong>the</strong>oretical model was derived based on previous studies and <strong>the</strong> literature on PFPS.For example, <strong>in</strong> <strong>the</strong>ir study on non operative treatment for PFPS Kannus andNiitymaki 14used age, gender, BMI and duration <strong>of</strong> symptoms and so <strong>the</strong>se wereconsidered. Next, <strong>the</strong> relationship between <strong>the</strong> dependent variable and predictorvariables was determ<strong>in</strong>ed by a Pearson product moment correlation coefficient. Thus,197


___________________________________________________________Chapter 9correlation coefficients were also used to ascerta<strong>in</strong> if <strong>the</strong>re were any o<strong>the</strong>r variables,<strong>of</strong> which <strong>the</strong>re was little prior <strong>in</strong>formation, which could be added to <strong>the</strong> model us<strong>in</strong>g acut <strong>of</strong>f confidence value <strong>of</strong> p>0.05 306 . As it is not advisable to perform correlationsbetween cont<strong>in</strong>uous and dichotomous data 14 , <strong>the</strong> <strong>in</strong>fluence <strong>of</strong> each <strong>of</strong> <strong>the</strong> latter oneach dependent variable was determ<strong>in</strong>ed by ‘t’ tests. Dichotomous data <strong>in</strong> <strong>the</strong> Ma<strong>in</strong>study were gender (male, female) treatment <strong>group</strong> (RESTIM, EMPI), and <strong>the</strong> kneeside tested (left, right). Each <strong>of</strong> <strong>the</strong> post treatment outcome measures acted as adependent variable with <strong>the</strong> o<strong>the</strong>r outcomes act<strong>in</strong>g as predictor (or <strong>in</strong>dependent)variables.F<strong>in</strong>ally, once <strong>the</strong> variables had been established for <strong>the</strong> model, multiple regressionanalysis was performed us<strong>in</strong>g both direct and stepwise regressions. Direct regressionentered all <strong>the</strong> predictor variables at <strong>the</strong> same time. This gave an R 2 value to <strong>the</strong><strong>the</strong>oretical model. The R 2 and adjusted R 2 are measures <strong>of</strong> <strong>the</strong> correlation between<strong>the</strong> observed and predicted value for <strong>the</strong> dependent variable and as such <strong>in</strong>dicateshow well <strong>the</strong> model predicts <strong>the</strong> dependent variable 306 . The adjusted R 2 was reportedas this can compensate for <strong>the</strong> expected chance prediction when <strong>the</strong> null hypo<strong>the</strong>sisis true and is thus more appropriate 306 . In order to select <strong>the</strong> important predictors from<strong>the</strong> <strong>the</strong>oretical model, a stepwise regression procedure was performed. This added <strong>in</strong>a new predictor variable to <strong>the</strong> model and a new relationship between <strong>the</strong> dependentvariable and <strong>the</strong> predictor (<strong>in</strong>dependent) variables was re-evaluated. In this way itwas possible to see if <strong>the</strong> new predictor variables improved <strong>the</strong> fit <strong>of</strong> <strong>the</strong> model and to198


___________________________________________________________Chapter 9see if <strong>the</strong> predictor variables already present were still significantly contribut<strong>in</strong>g to <strong>the</strong>model when new variables were added 307 .If a model had a low adjusted R 2 value, an attempt to improve it was made by look<strong>in</strong>gat <strong>the</strong> <strong>in</strong>ter-relationships between predict<strong>in</strong>g variables. By calculat<strong>in</strong>g an <strong>in</strong>teractionterm between two variables (ei<strong>the</strong>r cont<strong>in</strong>uous or dichotomous) and obta<strong>in</strong><strong>in</strong>g <strong>the</strong>irproduct, a new variable was created and added to <strong>the</strong> model. The results <strong>of</strong> add<strong>in</strong>g<strong>the</strong> new variable are reported for each outcome measure with a low adjusted R 2value.One <strong>of</strong> <strong>the</strong> assumptions <strong>of</strong> regression analysis is that <strong>the</strong> residuals for consecutiveobservations are uncorrelated or <strong>in</strong>dependent 308 . Although <strong>the</strong> R 2 value is used todescribe how well <strong>the</strong> model fits <strong>the</strong> data 306 , <strong>the</strong>re is also a need to check <strong>the</strong>distribution <strong>of</strong> <strong>the</strong> residuals for normality. This is best achieved by us<strong>in</strong>g simple visualdiagnostics <strong>of</strong> <strong>the</strong> plots <strong>of</strong> <strong>the</strong> residuals. If <strong>the</strong> data for <strong>the</strong> model are a good fit, <strong>the</strong>n<strong>the</strong> data po<strong>in</strong>ts should be be evenly scattered along <strong>the</strong> l<strong>in</strong>e and a histogram <strong>of</strong> <strong>the</strong>sedata will reveal a normal distribution shaped curve. The Durb<strong>in</strong>-Watson test providesa formal test <strong>of</strong> normality for autocorrelated observations, although this should beviewed <strong>in</strong> light <strong>of</strong> <strong>the</strong> conflict<strong>in</strong>g arguments surround<strong>in</strong>g visual and statisticalanalysis 308 . If <strong>the</strong> assumption for uncorrelation is true <strong>the</strong>n <strong>the</strong> expected value for <strong>the</strong>Durb<strong>in</strong>-Watson statistic is 2. Values less than 2 <strong>in</strong>dicate that positive autocorrelationand less than 2 are negatively autocorrelated. Both <strong>the</strong>se methods were used foreach <strong>of</strong> <strong>the</strong> multiple regression models.199


___________________________________________________________Chapter 99.4.3.2 Treatment Effect SizeIf cl<strong>in</strong>ical trials are to <strong>in</strong>fluence cl<strong>in</strong>ical practice <strong>the</strong>n <strong>the</strong>y must ascerta<strong>in</strong> how big <strong>the</strong>effect <strong>of</strong> <strong>the</strong> treatment ra<strong>the</strong>r than simply stat<strong>in</strong>g that <strong>the</strong> treatment had an effect.Some authors have highlighted <strong>the</strong> problem that although statistical significance maybe reached between <strong>group</strong>s or variables, <strong>the</strong> effect size may not be cl<strong>in</strong>icallysignificant 309;310 . Therefore, as <strong>the</strong> cl<strong>in</strong>ical effect <strong>of</strong> <strong>the</strong> EMS devices was consideredan important facet <strong>of</strong> this study, treatment effect sizes were calculated.Hopk<strong>in</strong>s 311described two methods <strong>of</strong> produc<strong>in</strong>g effect size statistics. Firstly, bycalculat<strong>in</strong>g <strong>the</strong> difference between <strong>the</strong> mean change over <strong>the</strong> treatment period with<strong>in</strong>each <strong>group</strong>, divided by <strong>the</strong> SD. This gave a figure that was a fraction <strong>of</strong> <strong>the</strong> SD, orrepresented by how many SD <strong>the</strong> pre and post means differed. An effect size <strong>of</strong> oneSD was regarded as large, but a figure less than 0.2 SD was regarded as poor and<strong>in</strong>dicated that <strong>the</strong>re was no effect worth consider<strong>in</strong>g 311 . A between <strong>group</strong>s comparisoncould also be calculated to report <strong>the</strong> change <strong>in</strong> outcome measures between <strong>group</strong>sover <strong>the</strong> treatment period 308;309 us<strong>in</strong>g <strong>the</strong> same SD values to assess effect.Secondly, ano<strong>the</strong>r way <strong>of</strong> report<strong>in</strong>g effect size statistics was to convert <strong>the</strong> differenceto a percentage figure. The percentage figure had <strong>the</strong> advantage <strong>of</strong> be<strong>in</strong>gdimensionless and more generic 311 . Fur<strong>the</strong>rmore, <strong>the</strong> figure could <strong>the</strong>n be comparedwith <strong>the</strong> smallest cl<strong>in</strong>ically worthwhile effect calculated <strong>in</strong> <strong>the</strong> previous reliabilitystudies <strong>in</strong> Chapter 7.200


___________________________________________________________Chapter 9REFERRED TO TRIALn = 124MISCELLANEOUSn = 17 excludedEXAMINATIONn = 15 excludedGAITn = 12 excludedPRACTICE ASSESSMENTn = 80RANDOMISATIONPatient lostn = 1PRE ASSESSMENT1n = 79START STIMULATIONRESTIM 6 WEEKSn = 38EMPI 6 WEEKSn = 41WITHDRAWNn =1STOP STIMULATIONPOST ASSESSMENTn = 74WITHDRAWNn = 4RESTIMn = 37EMPIn= 37Figure 37 Flow diagram <strong>of</strong> <strong>the</strong> protocol <strong>of</strong> <strong>the</strong> Ma<strong>in</strong> study.The mechanics <strong>of</strong> <strong>the</strong> study from <strong>the</strong> <strong>in</strong>itial referral to <strong>the</strong> post treatment assessmentafter 6 weeks <strong>stimulation</strong>.201


___________________________________________________________Chapter 99.5 ResultsOf <strong>the</strong> 80 patients recruited and consented to enter <strong>the</strong> trial, six were withdrawn <strong>in</strong>accordance with <strong>the</strong> agreed criteria discussed with <strong>the</strong> patients (see Appendices).Two <strong>of</strong> <strong>the</strong>se patients were withdrawn due to device failure. Three did not cont<strong>in</strong>uewith <strong>the</strong> <strong>stimulation</strong> regime and did not wish to have a post treatment assessment.One patient never attended for post treatment assessment and rema<strong>in</strong>ed uncontactable.This constitutes a 92% re-attendance rate. This left a rema<strong>in</strong><strong>in</strong>g study<strong>group</strong> for post treatment analysis <strong>of</strong> 74 patients. Table 19 and Table 20 providedescriptive statistics <strong>of</strong> <strong>the</strong> patients, show<strong>in</strong>g that <strong>the</strong> <strong>group</strong>s were well balanced forBMI, male and female distribution, and <strong>the</strong> tested side, dom<strong>in</strong>ant side and affectedside. In terms <strong>of</strong> age and duration <strong>of</strong> symptoms, <strong>the</strong> RESTIM <strong>group</strong> had a nonsignificant older mean age (P = 0.275). The RESTIM period <strong>of</strong> 122 weeks for <strong>the</strong>duration <strong>of</strong> symptoms is equivalent to 2 years 4 months; <strong>the</strong> EMPI period <strong>of</strong> 103weeks is almost exactly 2 years. There was no significant difference between <strong>the</strong><strong>group</strong>s (p = 0.193).9.5.1 Patient ComplianceUnfortunately, <strong>the</strong> <strong>in</strong>built compliance monitors for <strong>the</strong> RESTIM devices were unable toreta<strong>in</strong> data consistently and correctly and so were deemed unreliable. Therefore allcompliance <strong>in</strong>formation was taken from <strong>the</strong> patients’ self report<strong>in</strong>g diaries.Non compliance with <strong>the</strong> treatment programme was def<strong>in</strong>ed as miss<strong>in</strong>g sevenconsecutive sessions or more than three separate blocks <strong>of</strong> four sessions. Five202


___________________________________________________________Chapter 9compliance diaries were lost by <strong>the</strong> patients and never returned. These patients were<strong>in</strong>cluded <strong>in</strong> <strong>the</strong> f<strong>in</strong>al analysis because <strong>the</strong>y had a post treatment (week 7)assessment. Data from <strong>the</strong> 69 patients who completed and returned <strong>the</strong> diaryrevealed that <strong>the</strong> mean ±SD number <strong>of</strong> treatments for each <strong>group</strong> were 35 (± 6.5) forRESTIM and 35 (± 6.5) for EMPI, differences which were not significant (p =0.915).Figure 38 shows <strong>the</strong> distribution <strong>of</strong> <strong>the</strong> compliance data for both <strong>group</strong>s. Table 21 is acorrelation matrix for pre treatment outcome measures. There are also correlationmatrices to show no significant associations between treatment compliance and prepostoutcome change (Table 22) and to show no significant associations betweentreatment compliance and any post treatment outcome (Table 23). The <strong>in</strong>fluence <strong>of</strong>compliance on <strong>the</strong> o<strong>the</strong>r dependent variables was exam<strong>in</strong>ed <strong>in</strong> more detail later bymultiple regression analysis for each <strong>of</strong> <strong>the</strong> outcome measures.Figure 38 Distribution <strong>of</strong> compliance data for RESTIM and EMPI4236number <strong>of</strong> treatments30241812600 5 10 15 20 25 30 35 40RESTIMnumber <strong>of</strong> patientsEMPI203


___________________________________________________________Chapter 9Table 19 Descriptive statistics <strong>of</strong> patients completed (Means ± SD)GROUP N(male : female)BMI AGE(years)Duration <strong>of</strong>Symptoms(weeks)RESTIM 37 (16m : 21f) 25.7 ± 5.7 36.5 ± 13.6 122 ± 61EMPI 37 (15m : 22f) 25.9 ± 5.9 33.2 ± 9.4 103 ± 62TOTAL 74 (31m : 43f) 25.8 ± 5.7 35 ± 11.4 112 ± 62Table 20 The distribution <strong>of</strong> <strong>the</strong> affected side and leg dom<strong>in</strong>ance (Means ± SD)GROUP Dom<strong>in</strong>ant side Test side Affected sideRESTIM Left = 1 Left = 16 Left = 11Right = 36 Right = 21 Right = 11EMPI Left = 1Right = 36TOTAL Left = 2Right = 72Left = 18Right = 19Left = 34Right = 40Bilateral = 15Left = 12Right = 14Bilateral = 11Left = 23Right = 25Bilateral = 269.5.2 Pooled <strong>group</strong>s versus Separate <strong>group</strong>s.Independent ‘t’ tests showed no significant pre treatment differences (p > 0.05)between <strong>the</strong> <strong>group</strong>s for any outcome measure nor for any <strong>of</strong> <strong>the</strong> basel<strong>in</strong>e measuresexcept <strong>quadriceps</strong> CSA. As reported later, <strong>the</strong>re were also no significant posttreatment differences except for <strong>quadriceps</strong> CSA. Therefore correlation matrices andmultiple regression analyses were justified us<strong>in</strong>g <strong>the</strong> two <strong>group</strong>s pooled ra<strong>the</strong>r thanseparately. Fur<strong>the</strong>rmore, when <strong>the</strong> effect <strong>of</strong> <strong>the</strong> <strong>in</strong>dependent dichotomous variables204


___________________________________________________________Chapter 9(i.e. gender, treatment <strong>group</strong>, affected side) on <strong>the</strong> post treatment variables wereassessed, <strong>the</strong>re were no <strong>group</strong> effects. This suggested that <strong>the</strong> <strong>the</strong>oretical modelwould not be improved by add<strong>in</strong>g ‘<strong>group</strong>’.9.5.3 Gender effectsIndependent ‘t’ tests revealed that <strong>the</strong>re were no significant differences between maleand female patients for any <strong>of</strong> <strong>the</strong> outcome measures (p>0.05). Figure 39 and Figure40 below show <strong>the</strong> difference <strong>in</strong> responses to EMS between genders for bothRESTIM and EMPI. Although some experts had anecdotal evidence that EMS wasmore effective <strong>in</strong> males than females 175 , previous studies had <strong>in</strong>dicated that <strong>the</strong>rewere no greater benefits <strong>of</strong> EMS for males than females 112 . In contrast, Soo et al. 121found that men displayed greater strength improvements than women (47.7%compared with 8.1%), although <strong>the</strong>ir results may be expla<strong>in</strong>ed by small sample sizesra<strong>the</strong>r than a real sex difference. The only reason proposed <strong>in</strong> <strong>the</strong>ory for sexdifferences was <strong>the</strong> greater amount <strong>of</strong> subcutaneous fat <strong>in</strong> females. This was notmeasured <strong>in</strong> <strong>the</strong> Ma<strong>in</strong> study, although <strong>the</strong> ultrasound scans did reveal a higher CSAmeasure and hence a greater <strong>muscle</strong> mass for males. The ‘t’ tests to analyse <strong>the</strong>dichotomous variable <strong>of</strong> gender were significant for <strong>the</strong> basel<strong>in</strong>e covariates <strong>of</strong>isometric and isok<strong>in</strong>etic strength and <strong>quadriceps</strong> CSA. However, when <strong>the</strong> variablewas <strong>in</strong>cluded, it did not improve <strong>the</strong> model. Therefore, it could be concluded that <strong>the</strong>EMS devices used <strong>in</strong> this study were no more effective <strong>in</strong> males than females and <strong>the</strong>results <strong>of</strong> <strong>the</strong> Ma<strong>in</strong> study <strong>the</strong>refore agree with those <strong>of</strong> Fahey et al. 112205


___________________________________________________________Chapter 92000RESTIMisometricisok<strong>in</strong>etic% pre & post differences +- 1 SD150010005000-500-1000quads fatigueVASstepsflexionKujala-1500malefemaleCSAFigure 39 Gender differences <strong>in</strong> <strong>the</strong> RESTIM <strong>group</strong> for all outcome measures2000EMPIisometricisok<strong>in</strong>etic% pre & post differences +- 1 SD150010005000-500-1000quads fatigueVASstepsflexionKujala-1500malefemaleCSAFigure 40 Gender differences <strong>in</strong> <strong>the</strong> EMPI <strong>group</strong> for all outcome measures206


___________________________________________________________Chapter 99.5.4 CorrelationsTable 21 shows a correlation matrix <strong>of</strong> <strong>the</strong> pre treatment variables. Interest<strong>in</strong>gly thisrevealed that <strong>of</strong> several highly significant associations between basel<strong>in</strong>e outcomemeasures, <strong>the</strong> tests for <strong>muscle</strong> physiology, <strong>the</strong> cl<strong>in</strong>ical tests, and <strong>the</strong> two outcomemeasures <strong>of</strong> subjective improvement had <strong>the</strong> highest associations. For example, <strong>the</strong>associations between isometric, isok<strong>in</strong>etic strength and <strong>quadriceps</strong> CSA were highlysignificant (p < 0.0001). The number <strong>of</strong> steps and knee flexion were significantlyassociated (p < 0.0001). The Kujala score and <strong>the</strong> VAS for pa<strong>in</strong> were alsosignificantly associated (p < 0.0001). Table 22 is a correlation matrix produced toexplore any significant associations between treatment compliance and <strong>the</strong> pre andpost treatment change <strong>in</strong> outcome measures for all patients. This showed thatcompliance with <strong>the</strong> <strong>stimulation</strong> regime was not significantly associated withimprovement <strong>in</strong> any outcome at all.Table 23 is a correlation matrix produced to exam<strong>in</strong>e <strong>the</strong> associations betweenbasel<strong>in</strong>e measures and <strong>the</strong> post treatment outcome scores, except <strong>quadriceps</strong> CSA.This table reveals that <strong>the</strong> highly significant associations (p< 0.0001) are comparablewith those <strong>of</strong> <strong>the</strong> pre treatment associations. There were still highly significantassociations between post treatment isometric, isok<strong>in</strong>etic strength and <strong>quadriceps</strong>CSA (p < 0.0001). The number <strong>of</strong> post treatment steps and knee flexion weresignificantly associated with <strong>the</strong> additional association <strong>of</strong> Kujala score (p < 0.0001).The Kujala score and <strong>the</strong> VAS for pa<strong>in</strong> were still significantly associated, with <strong>the</strong>addition <strong>of</strong> post treatment flexion (p < 0.0001).207


n = 74 age BMI CSA 1 isometric 1 isok<strong>in</strong>etic 1 quadsfatigue1agePearson’s r.310 -.347 -.372 -.348 .71p Value.007* .002* .001* .002* .531BMIPearson’s rp ValueCSA 1Pearson’s rp Valueisometric 1Pearson’s rp Valueisok<strong>in</strong>etic 1Pearson’s rp Valuequads fatigue1Pearson’s rp valuepa<strong>in</strong> 1Pearson’s rp Valuesteps 1Pearson’s rp Valueflexion 1Pearson’s rp ValueKujala 1Pearson’s rp Value.310.007*-.347.002*-.372.001*-.348.002*.71.531.019.876-.207.076-.174.137-.143.225.267.021*-.128.278-.250.032*-.181.123-.026.830-.246.034-.383.001*-.245.036*.267.021*.512.0001*-.525.0001*-.128.227.087.463-.024.840-.090.443.113.258-.128.278.512.0001*.800.0001*-.067.568.152.200.016.894.058.625.082.486-.250.032.525.0001*.800.0001*-.124.924-.011.927.052.662.201.086.253.030*-.128.227-.128.227-.067.568-.124.924.092.437.043.715.067.571.180.124pa<strong>in</strong> 1 steps 1 flexion 1 Kujala 1.019.876-.026.830.087.830.152.200-.011.927.092.437-.064.592-.123.301-.496.0001*-.207.076-.246.034*-.024.840.016.894.052.662.043.715-.064.592.548.0001*.252.030*-.174.137-.383.001*-.090.443.058.625.201.086.067.571-.123.301.548.0001*.322.005*-.143.225-.245.036*.113.258.082.486.253.030*.180.124-.496.0001*.252.030*.332.005*


n = 74 age BMI compliance isometric7agePearson’s r.310 -.044 -.378p Value.007* .719 .001*BMIPearson’s rp ValuecompliancePearson’s rp valueisometric 7Pearson’s rp Valueisok<strong>in</strong>etic 7Pearson’s rp Valuequads fatigue7Pearson’s rp valuepa<strong>in</strong> 7Pearson’s rp Valuesteps 7Pearson’s rp Valueflexion 7Pearson’s rp ValueKujala 7Pearson’s rp ValueCSA 7Pearson’s rp Value.310.007*-.044.719-.378.001*-.381.001*.123.229-.084.476-.140.234-.029.810.028.816-.323.008*-.034.784-.143.225-.185.114-.083.487.079.502-.269.020*-.305.008*-.080.500.272.027*-.034.784.084.491.244.043-.062.615-.039.752.070.570-.066.588.175.149.128.323-.143.225.084.491.814.0001*-.161.173-.070.554.085.469.094.423.088.455.470.0001*isok<strong>in</strong>etic7-.381.001*-.185.114.244.043*.814.0001*.021.862-.085.471.078.510.090.444.156.184.474.0001*quadsfatigue7.123.299-.083.487-.062.615-.161.173.021.862.064.593-.066.576-.008.944-.069.562-.161.198pa<strong>in</strong>7-.084.476.079.502-.039.752-.070.554-.085.471.064.593-.373.001*-.426.0001*-.761.0001*.248.045*steps7-.140.234-.269.020*.070.570.085.469.078.510-.066.576-.373.001*.675.0001*.556.0001*-.073.558flexion7-.029.810-.305.008*-.066.588.094.423.090.444-.008.944-.426.0001*.675.0001*.483.0001*-.074.555Kujala7.028.816-.080.500.175.149.088.455.156.184-.069.562-.761.0001*.556.0001*.483.0001*-.095.450CSA 7-.323.008*.272.027*.128.323.470.0001*.474.0001*-.1610.98.248.045*-.073.558-.074.555-.095.450


n = 74 compliance isometric c isok<strong>in</strong>etic c quadsfatigue ccompliancePearson’s r.034 .023 -.071p value.783 .854 .568isometric changePearson’s rp Valueisok<strong>in</strong>etic changePearson’s rp Valuequads fatiguechangePearson’s rp valuepa<strong>in</strong> changePearson’s rp Valuesteps changePearson’s rp Valueflexion changePearson’s rp ValueKujala changePearson’s rp ValueCSA changePearson’s rp value.034.783.023.854-.071.568-.110.373.074.546-.114.239-.015.900-.152.238.386.001*.357.002*-.233.047*.194.098.275.018*.393.001*.089.476.386.001*.181.127-.089.456-.018.879.049.675.264.023*.007.953.357.002*.181.127.036.768.021.862.080.503.113.266.186.138pa<strong>in</strong> c steps c flexion c Kujala c CSA c-.110.373-.233.047*-.089.456.036.768-.249.034*-.321.006*-.557.0001*-.011.928.074.546.194.098-.018.879.021.862-.249.034*.535.0001*.376.0018-.281.022*-.114.239.275.018*.049.675.080.503-.321.006*.535.0001*.448.0001*-.197.112-.015.900.393.001*.264.023*.113.266-.557.0001*.376.001*.448.0001*-.150.229-.152.238.089.476.007.953186.138-.011.928-.281.022*-.197.112-.150.229


___________________________________________________________Chapter 99.5.5 Isometric Strength9.5.5.1 Pre Treatment AnalysisThere were no statistical differences between <strong>the</strong> RESTIM and EMPI <strong>group</strong>s prior totreatment (t = -1.165, P=0.248).9.5.5.2 Post Treatment AnalysisAn <strong>in</strong>dependent ‘t’ test showed no significant differences between <strong>the</strong> <strong>group</strong>s for posttreatment isometric strength (t = 1.870, p =0.066) (Table 50). Graphicalrepresentation <strong>of</strong> <strong>the</strong> pre and post test mean ± SD can be seen below <strong>in</strong> Figure 41. A2 x 2 ANOVA with one repeated measure revealed a significant time effect (p =0.001), but no significant <strong>group</strong> effect (p = 0.452). The time by <strong>group</strong> <strong>in</strong>teraction als<strong>of</strong>ailed to reach a level <strong>of</strong> significance (p = 0.066). Never<strong>the</strong>less, <strong>in</strong> order to facilitate<strong>the</strong> discussion a paired ‘t’ test for with<strong>in</strong> <strong>group</strong> analysis revealed a significantimprovement between pre and post treatment values for RESTIM <strong>of</strong> 10.5Nm (9.7%)(p =0.0001) but not for EMPI with values <strong>of</strong> 3.1Nm (2.8%)(p = 0.291). Thus, a 6.9%<strong>in</strong>crease was observed for RESTIM over EMPI (Table 48). The lack <strong>of</strong> between<strong>group</strong>s statistical significance precluded <strong>the</strong> calculation <strong>of</strong> treatment effect sizes.211


___________________________________________________________Chapter 930Difference between pre & post isometric tests20100-10-20N =37RESTIM37EMPIFigure 41 Mean ± SD <strong>of</strong> pre and post test differences for isometric peak torquefor RESTIM and EMPI. The l<strong>in</strong>e at zero = no difference between pre and post values.9.5.5.3 Multiple Regression AnalysisMultiple regression analysis was performed us<strong>in</strong>g a <strong>the</strong>oretical model based on <strong>the</strong>literature for PFPS. The follow<strong>in</strong>g cont<strong>in</strong>uous data covariates were used for posttreatment isometric strength: age, treatment compliance, duration <strong>of</strong> symptoms, pretreatment isometric and isok<strong>in</strong>etic strength, <strong>quadriceps</strong> fatigue rate and pa<strong>in</strong>. Inaddition, correlation coefficients were generated from <strong>the</strong> data to highlight o<strong>the</strong>r212


___________________________________________________________Chapter 9variables that might affect <strong>the</strong> model (Table 24). To assess <strong>the</strong> effect <strong>of</strong> <strong>the</strong>dichotomous variables ‘t’ tests were used(Table 25).Table 24 Association <strong>of</strong> each cont<strong>in</strong>uous basel<strong>in</strong>e covariate and compliancewith Post Treatment Isometric StrengthCO VARIATE Pearson’s r P valueAge 0.378 0.001*Body Mass Index (BMI) -0.143 0.225Duration <strong>of</strong> symptoms -0.001 0.992Basel<strong>in</strong>e isometric strength 0.900 0.0001*Basel<strong>in</strong>e isok<strong>in</strong>etic strength 0.818 0.0001*Basel<strong>in</strong>e <strong>quadriceps</strong> fatigue -0.211 0.070Basel<strong>in</strong>e pa<strong>in</strong> 0.042 0.722Basel<strong>in</strong>e Kujala Score 0.084 0.477Basel<strong>in</strong>e <strong>quadriceps</strong> cross sectional area (CSA) 0.483 0.0001*Basel<strong>in</strong>e steps 0.033 0.778Basel<strong>in</strong>e knee flexion 0.032 0.784Compliance (number <strong>of</strong> treatments) 0.084 0.491* = statistically significantTable 25 Association <strong>of</strong> dichotomous basel<strong>in</strong>e covariate.CO VARIATE t value p valueTreatment <strong>group</strong> (RESTIM / EMPI) -0.321 0.749Gender (Male / Female) 4.569 0.0001 *Test side (Right / Left) -0.539 0.591* = statistically significant213


___________________________________________________________Chapter 9Of <strong>the</strong> significant cont<strong>in</strong>uous and dichotomous variables discovered <strong>in</strong> Tables 24 and25 four were already <strong>in</strong> <strong>the</strong> model. Two more (i.e. <strong>quadriceps</strong> CSA and gender) wereduly added to <strong>the</strong> <strong>the</strong>oretical model. As described <strong>in</strong> Chapter 9.4.3.1 a directregressional analysis was performed first to give a R 2 value for <strong>the</strong> <strong>the</strong>oretical model<strong>of</strong> 0.915, with an adjusted R 2 <strong>of</strong> 0.813. Next, a stepwise multiple regression revealedthat three pre treatment variables were highly significant predictors <strong>of</strong> post treatmentisometric strength; <strong>the</strong>se were pre isometric strength, pre isok<strong>in</strong>etic strength and prefatigue rate measures <strong>of</strong> <strong>the</strong> <strong>quadriceps</strong>. The adjusted R 2 for <strong>the</strong> third model was0.825, <strong>in</strong>dicat<strong>in</strong>g that <strong>the</strong>se three variables could predict 82% <strong>of</strong> <strong>the</strong> variability <strong>of</strong> <strong>the</strong>post test isometric values (Table 26). There were no effects from <strong>the</strong> o<strong>the</strong>r variables.The implications are discussed <strong>in</strong> Chapter 9.6.3.In order to check <strong>the</strong> fit <strong>of</strong> <strong>the</strong> l<strong>in</strong>ear regression model, <strong>the</strong> normality <strong>of</strong> <strong>the</strong> residualstatistics were analysed visually by histograms (Figure 42) and scatterplots (Figure43) and tested formally by <strong>the</strong> Durb<strong>in</strong>-Watson test. For post treatment isometricmodel, <strong>the</strong> data were normally distributed with no obvious trends when plotted aga<strong>in</strong>stcovariates and each outcome variable. The Durb<strong>in</strong> – Watson test revealed a statistic<strong>of</strong> 2.030. The histograms and scatterplots for all o<strong>the</strong>r outcome measures may beseen <strong>in</strong> <strong>the</strong> appendices.214


___________________________________________________________Chapter 912Isometric strength108Frequency6420Std. Dev = 1.00Mean = .04N = 74.00-2.00-2.25-2.50Regression Standardised Residual2.252.001.751.501.251.00.75.50.250.00-.25-.50-.75-1.00-1.25-1.50-1.75Figure 42 Histogram <strong>of</strong> normal distribution for isometric strength3Isometric strengthRegression Standardised Residual210-1-2-3-2-1012345Regression Standardised Predicted ValueFigure 43 Scatterplot <strong>of</strong> residuals for isometric strength215


___________________________________________________________Chapter 9Table 26 Multiple Regression Analysis, Model summaryfor Post Treatment Isometric Strengthmodel 1isometric1model 2isometric1isok<strong>in</strong>etic1model 3isometric1isok<strong>in</strong>etic1quads 1R R 2 Adjusted R 2 B t P0.890 0.792 0.7890.969 15.838 0.00010.906 0.820 0.8150.752 8.535 0.00010.242 3.221 0.0020.913 0.833 0.8250.755 8.809 0.0001-53.01 -2.202 0.0030.228 3.103 0.031Legend:- isometric 1 = pre treatment isometric strength.quads 1 = pre treatment <strong>quadriceps</strong> fatigue.isok<strong>in</strong>etic 1 = pre treatment isok<strong>in</strong>etic strength.B = unstandardised coefficient216


___________________________________________________________Chapter 99.5.6 Isok<strong>in</strong>etic Muscle strength9.5.6.1 Pre Treatment AnalysisThere were no statistically significant differences between <strong>the</strong> RESTIM and EMPI<strong>group</strong>s prior to treatment ( t = -0.685, p = 0.496).9.5.6.2 Post Treatment AnalysisAn <strong>in</strong>dependent ‘t’ test showed no significant differences between <strong>the</strong> <strong>group</strong>s for posttreatment isok<strong>in</strong>etic strength (t = -1.119, p = 0.267) (Table 50). Graphical display <strong>of</strong><strong>the</strong> mean ±SD can be seen <strong>in</strong> Figure 44 below. A 2 x 2 ANOVA with one repeatedmeasure revealed a significant time effect between pre and post treatment measure(p = 0.04) but no significant effect for <strong>group</strong> (p = 0.355) nor a significant time by <strong>group</strong><strong>in</strong>teraction (p = 0.267). A paired ‘t’ test revealed significant improvements betweenpre and post treatment values for EMPI <strong>of</strong> 8.6Nm (7.8%, p =0.008) but not forRESTIM <strong>of</strong> 3.9Nm (3.7%, p = 0.191). Thus a 4.1% <strong>in</strong>crease was observed for EMPIover RESTIM (Table 49). The lack <strong>of</strong> between <strong>group</strong>s statistical significanceprecluded calculation <strong>of</strong> treatment effect sizes.217


___________________________________________________________Chapter 940Difference between pre & post isok<strong>in</strong>etic tests3020100-10-20N =36RESTIM37EMPIFigure 44. Mean ± SD <strong>of</strong> pre and post test differences for isok<strong>in</strong>etic peak torquefor RESTIM and EMPI. The l<strong>in</strong>e at zero = no difference between pre and post values.9.5.6.3 Multiple Regression AnalysisThe <strong>the</strong>oretical model for post treatment isok<strong>in</strong>etic strength was applied based on <strong>the</strong>literature for PFPS. The follow<strong>in</strong>g cont<strong>in</strong>uous data variables were entered: pretreatment isometric & isok<strong>in</strong>etic strength, <strong>quadriceps</strong> fatigue rate, treatmentcompliance, duration <strong>of</strong> symptoms and pa<strong>in</strong>. Additionally, correlation coefficients weregenerated <strong>in</strong>dicat<strong>in</strong>g that <strong>the</strong>re may be o<strong>the</strong>r variables that might affect <strong>the</strong> outcome218


___________________________________________________________Chapter 9(Table 27). To assess <strong>the</strong> effect <strong>of</strong> <strong>the</strong> dichomomous variables ‘t’ tests were used(Table 28).Table 27 Association <strong>of</strong> each cont<strong>in</strong>uous basel<strong>in</strong>e covariates and compliancewith Post Treatment Isok<strong>in</strong>etic StrengthCO VARIATE Pearson’s r P valueAge -0.381 0.001 *BMI -0.185 0.114Duration <strong>of</strong> symptoms 0.017 0.886Basel<strong>in</strong>e isometric strength 0.725 0.0001 *Basel<strong>in</strong>e isok<strong>in</strong>etic strength 0.905 0.0001 *Basel<strong>in</strong>e <strong>quadriceps</strong> fatigue -0.119 0.312Basel<strong>in</strong>e pa<strong>in</strong> 0.049 0.680Basel<strong>in</strong>e Kujala Score 0.180 0.125Basel<strong>in</strong>e <strong>quadriceps</strong> CSA 0.498 0.0001 *Basel<strong>in</strong>e steps 0.029 0.808Basel<strong>in</strong>e knee flexion 0.136 0.249Compliance (number <strong>of</strong> treatments) 0.244 0.043 ** = statistically significantTable 28 Association <strong>of</strong> dichotomous basel<strong>in</strong>e covariates.CO VARIATE t value p valueTreatment <strong>group</strong> (RESTIM / EMPI) -1.119 0.267Gender (Male / Female) 4.858 0.0001 *Test side (Right / Left) -1.182 0.241* = statistically significant219


___________________________________________________________Chapter 9Three additional variables were thus added to <strong>the</strong> <strong>the</strong>oretical model; gender,<strong>quadriceps</strong> CSA and age. The process outl<strong>in</strong>ed <strong>in</strong> section 9.4.3.1. was followed. First,a direct regressional analysis was performed to give a <strong>the</strong>oretical model R 2 value <strong>of</strong>0.840 and adjusted R 2 <strong>of</strong> 0.815. Next, a stepwise multiple regression analysisrevealed that only one <strong>of</strong> <strong>the</strong> <strong>in</strong>dependent variables (pre isok<strong>in</strong>etic strength) was ahighly significant predictor <strong>of</strong> post treatment isok<strong>in</strong>etic strength. The adjusted R 2 for<strong>the</strong> model was 0.820, <strong>in</strong>dicat<strong>in</strong>g that this variable could predict 82% <strong>of</strong> <strong>the</strong> variability<strong>of</strong> <strong>the</strong> post test isok<strong>in</strong>etic values (Table 29). There were no effects from <strong>the</strong> o<strong>the</strong>rvariables. In order to check <strong>the</strong> fit <strong>of</strong> <strong>the</strong> l<strong>in</strong>ear regression model, <strong>the</strong> normality <strong>of</strong> <strong>the</strong>residual statistics were analysed visually by histograms and scatterplots (seeappendices) and tested formally by <strong>the</strong> Durb<strong>in</strong>-Watson test. For post treatmentisok<strong>in</strong>etic strength model, <strong>the</strong> data were normally distributed with no obvious trendswhen plotted aga<strong>in</strong>st covariates and each outcome variable.Table 29 Multiple Regression Analysis Model Summaryfor Post Treatment Isok<strong>in</strong>etic Strengthmodel 1isok<strong>in</strong>etic1R R 2 Adjusted R 2 B t P Durb<strong>in</strong> -Watson0.907 0.822 0.8200.947 17.479 0.0001 2.037Legend:- isok<strong>in</strong>etic 1 = pre treatment isok<strong>in</strong>etic strengthB = unstandardised coefficient Beta220


___________________________________________________________Chapter 99.5.7 Muscle FatigueThe results from <strong>the</strong> three superficial <strong>quadriceps</strong> (VMO, VL and RF) were <strong>in</strong>itiallycompared separately and <strong>the</strong>n <strong>in</strong> comb<strong>in</strong>ation to provide an overall <strong>quadriceps</strong> fatigueresult.9.5.7.1 VMOThere were no statistically significant differences between <strong>the</strong> RESTIM and EMPI<strong>group</strong>s prior to treatment (t = -0.028, p = 0.978). An <strong>in</strong>dependent ‘t’ test showed nosignificant differences between <strong>the</strong> <strong>group</strong>s for post treatment VMO fatigue rates (t = -0.636, p = 0.527) (Table 49). A graphical representation <strong>of</strong> <strong>group</strong> mean ±SD can beseen <strong>in</strong> Figure 45 below. A 2 x 2 ANOVA with one repeated measure revealed nosignificant effects for time (p = 0.812) nor <strong>group</strong> (p = 0.527), nor significant time by<strong>group</strong> <strong>in</strong>teraction (p = 0.645). A paired ‘t’ test revealed no significant with<strong>in</strong> <strong>group</strong>improvements <strong>in</strong> <strong>the</strong> pre and post treatment slopes nei<strong>the</strong>r for RESTIM (p = 0.864)nor for EMPI <strong>group</strong>s (p = 0.723).221


___________________________________________________________Chapter 9.3Difference between pre & post VMO slopes.2.10.0-.1-.2N =36RESTIM37EMPIFigure 45 Mean ±SD <strong>of</strong> <strong>the</strong> pre and post test differences for VMO fatigue slopesfor RESTIM & EMPI. L<strong>in</strong>e at zero = no difference between pre & post test values.9.5.7.2 VLThere were no statistically significant differences between <strong>the</strong> RESTIM and EMPI<strong>group</strong>s prior to treatment (t = 0.838, p = 0.405). An <strong>in</strong>dependent ‘t’ test showed nosignificant differences between <strong>the</strong> <strong>group</strong>s for post treatment VL fatigue rates (t = –0.884, p = 0.380 (Table 49). A graphical representation <strong>of</strong> mean ± SD is <strong>in</strong> Figure 46below. A 2 x 2 ANOVA with one repeated measure revealed no effects for time (p =0.716 ) nor for <strong>group</strong> (p = 0.608) and no time by <strong>group</strong> <strong>in</strong>teraction (p = 0.380). A222


___________________________________________________________Chapter 9paired ‘t’ test revealed no improvements <strong>in</strong> <strong>the</strong> pre and post treatment slopes nei<strong>the</strong>rfor RESTIM (p = 0.275) nor for EMPI <strong>group</strong>s (p = 0.662)..3Difference between pre & post VLat slopes.2.1-.0-.1-.2-.3N =37RESTIM37EMPIFigure 46. Mean ±SD <strong>of</strong> pre and post differences for VL fatigue slopesfor RESTIM & EMPI. L<strong>in</strong>e at zero = no difference between pre & post test values.223


___________________________________________________________Chapter 99.5.7.3 RFThere were no statistically significant differences between <strong>the</strong> RESTIM and EMPI<strong>group</strong>s prior to treatment (t = -0.713, p = 0.478). An <strong>in</strong>dependent ‘t’ test showed nosignificant differences between <strong>the</strong> <strong>group</strong>s for post treatment RF fatigue rates (t =1.139, p =0.258) (Table 49). A graphical representation <strong>of</strong> <strong>the</strong> mean ± SD can beseen <strong>in</strong> Figure 47 below. A 2 x 2 ANOVA with one repeated measure revealed nosignificant effects for time (p = 0.235), nor for <strong>group</strong> (p = 0.258) nor any time by <strong>group</strong><strong>in</strong>teractions (p = 0.866). A paired ‘t’ test revealed no improvements <strong>in</strong> <strong>the</strong> pre andpost treatment slopes nei<strong>the</strong>r for RESTIM (p = 0.678) nor for EMPI <strong>group</strong>s (p =0.070)..2Difference between pre & post RFem slopes.10.0-.1-.2N =37RESTIM36EMPIFigure 47. Mean ±SD for RF fatigue slope pre and post test differencesFor RESTIM & EMPI. L<strong>in</strong>e at zero = no difference between pre & post test values.224


___________________________________________________________Chapter 99.5.7.4 Quadriceps comb<strong>in</strong>edThe slopes for VMO, VL, and RF were also comb<strong>in</strong>ed to produce an overall<strong>quadriceps</strong> fatigue rate. There were no statistically significant differences between <strong>the</strong>RESTIM and EMPI <strong>group</strong>s prior to treatment (t = 0.124, p = 0.902). An <strong>in</strong>dependent ‘t’test showed no significant differences between <strong>the</strong> <strong>group</strong>s for post treatment<strong>quadriceps</strong> fatigue rates (t = -0.355, p =0.724) (Table 50). A graphical representation<strong>of</strong> <strong>the</strong> <strong>group</strong> mean ±SD can be seen <strong>in</strong> Figure 48 below. A 2 x 2 ANOVA with onerepeated measure revealed no significant effects for time (p = 0.532) nor for <strong>group</strong>s (p= 0.931), nor significant time by <strong>group</strong> <strong>in</strong>teractions (p = 0.724). A paired ‘t’ test (Table49) revealed no significant improvements <strong>in</strong> <strong>the</strong> pre and post treatment slopes nei<strong>the</strong>rfor RESTIM, (-0.001%/s, p = 0.352) nor for EMPI ( -0.003 %/s, p = 0.874)..2Difference between quads slope pre post.10.0-.1-.2N =36RESTIM36EMPIFigure 48. Mean ±SD for comb<strong>in</strong>ed <strong>quadriceps</strong> slopesfor RESTIM &EMPIL<strong>in</strong>e at zero represents no difference between pre & post test values225


___________________________________________________________Chapter 99.5.7.5 Multiple Regression AnalysisMultiple regression analysis was performed on post treatment comb<strong>in</strong>ed <strong>quadriceps</strong>fatigue us<strong>in</strong>g a <strong>the</strong>oretical model based on <strong>the</strong> literature for PFPS. The follow<strong>in</strong>gcont<strong>in</strong>uous data covariates were used: age, treatment compliance, duration <strong>of</strong>symptoms, pre treatment isometric and isok<strong>in</strong>etic strength and <strong>quadriceps</strong> fatiguerate. In addition, correlation coefficients were generated from <strong>the</strong> data to elucidateo<strong>the</strong>r variables that might affect <strong>the</strong> outcome (Table 30). Dichotomous variables wereanalysed by ‘t’ tests (Table 31).Table 30. Association <strong>of</strong> each cont<strong>in</strong>uous basel<strong>in</strong>e covariate and compliancewith Post Treatment Quadriceps Fatigue RateCO VARIATE Pearson’s r P valueAge 0.123 0.299BMI -0.083 0.487Duration <strong>of</strong> symptoms -0.075 0.529Basel<strong>in</strong>e isometric strength -0.151 0.181Basel<strong>in</strong>e isok<strong>in</strong>etic strength -0.040 0.740Basel<strong>in</strong>e <strong>quadriceps</strong> fatigue 0.478 0.0001 *Basel<strong>in</strong>e pa<strong>in</strong> -0.014 0.905Basel<strong>in</strong>e Kujala Score 0.071 0.550Basel<strong>in</strong>e <strong>quadriceps</strong> CSA -0.170 0.150Basel<strong>in</strong>e steps 0.098 0.411Basel<strong>in</strong>e knee flexion 0.127 0.285Compliance (number <strong>of</strong> treatments) -0.062 0.615* = statistically significant226


___________________________________________________________Chapter 9Table 31. Association <strong>of</strong> dichotomous basel<strong>in</strong>e covariates.CO VARIATE t value p valueTreatment <strong>group</strong> (RESTIM / EMPI) 0.315 0.754Gender (Male / Female) -0.776 0.440Test side (Right / Left) -0.354 0.724From <strong>the</strong>se analyses no o<strong>the</strong>r variables were added to <strong>the</strong> model. Follow<strong>in</strong>g <strong>the</strong>procedure outl<strong>in</strong>ed <strong>in</strong> section 9.4.3.1., a direct regressional analysis was performed totest <strong>the</strong> <strong>the</strong>oretical model, which gave a R 2 value <strong>of</strong> 0.528 with an adjusted R 2 value<strong>of</strong> 0.208. Next, a stepwise regression revealed that <strong>the</strong> only significant predictor forpost treatment <strong>quadriceps</strong> fatigue rate was <strong>the</strong> pre treatment <strong>quadriceps</strong> fatigue rate(Table 32). The adjusted R 2 for this model was 0.207, <strong>in</strong>dicat<strong>in</strong>g that this variablecould only predict 20% <strong>of</strong> <strong>the</strong> variability <strong>of</strong> <strong>the</strong> post test isometric values. There wereno effects from <strong>the</strong> o<strong>the</strong>r variables. The implications are discussed <strong>in</strong> section 9.6.4.In order to check <strong>the</strong> fit <strong>of</strong> <strong>the</strong> l<strong>in</strong>ear regression model, <strong>the</strong> normality <strong>of</strong> <strong>the</strong> residualstatistics were analysed visually by histograms and scatterplots (see appendices) andtested formally by <strong>the</strong> Durb<strong>in</strong>-Watson test.model 1quads 1Table 32 Multiple Regression Analysis Model Summaryfor Post Treatment Quadriceps fatigueR R 2 Adjusted R 2 B T Durb<strong>in</strong>-0.460 0.212 0.200Watson0.432 4.209 2.024 0.0001PLegend:-quads 1 = <strong>quadriceps</strong> pre treatment fatigue rateB = unstandardised coefficient227


___________________________________________________________Chapter 99.5.8 Pa<strong>in</strong>9.5.8.1 Pre Treatment AnalysisThere were no statistically significant differences between <strong>the</strong> RESTIM and EMPI<strong>group</strong>s prior to treatment ( t = 0.448, p = 0.656).9.5.8.2 Post Treatment AnalysisAs <strong>the</strong> data for this outcome measure were not normally distributed (K-S test p =0.028) fur<strong>the</strong>r analysis was made us<strong>in</strong>g non-parametric tests. A Mann Whitney-U testshowed no significant differences between <strong>the</strong> <strong>group</strong>s for post treatment pa<strong>in</strong> levels(Z = -1.153, p = 0.249) (Table 51). A Wilcoxon Signed Ranks test for with<strong>in</strong> <strong>group</strong>sanalyses revealed significant pre and post treatment VAS improvements <strong>of</strong> -1.2 forRESTIM (35%, p = 0.004) and -0.7 for EMPI (20.2%, p = 0.047). Thus a 14.8 %improvement was observed for RESTIM over EMPI (Table 48).A graphical representation <strong>of</strong> <strong>the</strong> <strong>group</strong> medians and <strong>in</strong>terquartile ranges (IQR) canbe seen <strong>in</strong> Figure 49 below.228


___________________________________________________________Chapter 96Difference between pre & post pa<strong>in</strong> (VAS)420-2-4-6-8N =37RESTIM37EMPIFigure 49. Median and IQR for pre and post test pa<strong>in</strong> differencesfor RESTIM & EMPI.L<strong>in</strong>e at zero = no difference between pre & post test values.N.B. negative values = a decrease <strong>in</strong> pa<strong>in</strong>.o = outly<strong>in</strong>g values.Due to <strong>the</strong> non-parametric nature <strong>of</strong> <strong>the</strong> data, an exploratory 2 x 2 repeated measuresANOVA was performed. Any f<strong>in</strong>d<strong>in</strong>gs were <strong>the</strong>n confirmed by us<strong>in</strong>g a non-parametricWilcoxon Signed Ranks test. The repeated measures ANOVA revealed a significanteffect for time (p = 0.0001) but not for <strong>group</strong> (p = 0.915). There were no significanttime x <strong>group</strong> <strong>in</strong>teractions (p =0.278). The statistical significance for time wasconfirmed by <strong>the</strong> Wilcoxon Signed Ranks test (RESTIM p = 0.002; EMPI p = 0.034).229


___________________________________________________________Chapter 99.5.8.3 Multiple Regression AnalysisA <strong>the</strong>oretical model for post treatment pa<strong>in</strong> was applied based on <strong>the</strong> literature forPFPS. The follow<strong>in</strong>g cont<strong>in</strong>uous data covariates were used: age, treatmentcompliance, duration <strong>of</strong> symptoms, pre treatment isometric and isok<strong>in</strong>etic strength. Inaddition, correlation coefficients were generated from <strong>the</strong> data to <strong>in</strong>vestigate o<strong>the</strong>rvariables that might affect <strong>the</strong> outcome (Table 33). Dichotomous variables wereanalysed by ‘t’ tests (Table 34).Table 33 Association <strong>of</strong> each cont<strong>in</strong>uous basel<strong>in</strong>e covariate and compliancewith Post Treatment Pa<strong>in</strong>CO VARIATE Pearson’s r P valueAge -0.302 0.069BMI 0.079 0.502Duration <strong>of</strong> symptoms 0.175 0.302Basel<strong>in</strong>e isometric strength -0.248 0.139Basel<strong>in</strong>e isok<strong>in</strong>etic strength -0.285 0.087Basel<strong>in</strong>e <strong>quadriceps</strong> fatigue 0.145 0.218Basel<strong>in</strong>e <strong>quadriceps</strong> CSA 0.186 0.113Basel<strong>in</strong>e pa<strong>in</strong> 0.458 0.004 *Basel<strong>in</strong>e Kujala Score -0.339 0.040 *Basel<strong>in</strong>e steps -0.146 0.387Basel<strong>in</strong>e knee flexion -0.073 0.669Compliance (number <strong>of</strong> treatments) -0.088 0.627* = statistically significant230


___________________________________________________________Chapter 9Table 34 Association <strong>of</strong> dichotomous basel<strong>in</strong>e covariates.CO VARIATE t value p valueTreatment <strong>group</strong> (RESTIM / EMPI) -0.480 0.632Gender (Male / Female) 1.593 0.115Test side (Right / Left) -0.672 0.504These analyses revealed pre treatment Kujala score to be a significant variable,which was <strong>the</strong>n added to <strong>the</strong> model. In <strong>the</strong>ory, this f<strong>in</strong>d<strong>in</strong>g was expected as <strong>the</strong> Kujalascore was <strong>the</strong> o<strong>the</strong>r subjective evaluation <strong>of</strong> <strong>the</strong> patient’s knee discomfort dur<strong>in</strong>gvarious functional activities. A direct regressional analysis was performed asdescribed <strong>in</strong> section 9.3.4.1. This gave a R 2 value for <strong>the</strong> <strong>the</strong>oretical model <strong>of</strong> 0.555with an adjusted R 2 <strong>of</strong> 0.227. A stepwise regression revealed that <strong>the</strong> only significantpredictor for post treatment pa<strong>in</strong> score was <strong>the</strong> pre treatment pa<strong>in</strong> score. The R 2value for this model was 0.275 with an adjusted R 2<strong>of</strong> 0.264, <strong>in</strong>dicat<strong>in</strong>g that thisvariable could predict 26% <strong>of</strong> <strong>the</strong> variability <strong>of</strong> <strong>the</strong> post treatment pa<strong>in</strong> values (Table35). There were no effects from <strong>the</strong> o<strong>the</strong>r variables. In order to check <strong>the</strong> fit <strong>of</strong> <strong>the</strong>l<strong>in</strong>ear regression model, <strong>the</strong> normality <strong>of</strong> <strong>the</strong> residual statistics were analysed visuallyby histograms and scatterplots (see appendices) and tested formally by <strong>the</strong> Durb<strong>in</strong>-Watson test.model 1Pa<strong>in</strong> 1Table 35 Multiple Regression Analysis Model Summaryfor Post Treatment Pa<strong>in</strong>R R 2 Adjusted R 2 B t Durb<strong>in</strong>-0.525 0.275 0.264Watson0.650 5.007 2.003 0.0001Legend: Pa<strong>in</strong> 1 = pre treatment pa<strong>in</strong> score (VAS) B = unstandardised coefficientP231


___________________________________________________________Chapter 99.5.9 Cl<strong>in</strong>ical Tests9.5.9.1 Pre Treatment Analysis - STEPSThere were no statistically significant differences between <strong>the</strong> RESTIM and EMPI<strong>group</strong>s prior to treatment ( t =-0.057 , p =0.955 ).9.5.9.2 Post Treatment Analysis - STEPSThe number <strong>of</strong> steps up and steps down were added to give a cumulative posttreatment steps score, whose mean score was 20. As <strong>the</strong> data were not normallydistributed (K-S test p = 0.019) non-parametric tests were used for post treatmentanalysis. A graphical representation <strong>of</strong> <strong>the</strong> <strong>group</strong> medians and IQR can be seen <strong>in</strong>Figure 50 below. A Wilcoxon Signed Ranks test revealed significant improvementsbetween pre and post treatment values for RESTIM (6 steps, p = 0.0001) and forEMPI (8 steps, p = 0.0001) (Table 48). A Mann Whitney –U test showed no significantdifferences between <strong>the</strong> <strong>group</strong>s for post treatment values (raw difference 3 steps, Z =-0.493, p = 0.562) (Table 51).232


___________________________________________________________Chapter 9120Difference between pre & post treament steps100806040200-20-40N =37RESTIM37EMPIFigure 50. Medians and IQR for pre and post test steps differencesfor RESTIM & EMPI. L<strong>in</strong>e at zero = no difference between pre & post test values.Legend:- o = outly<strong>in</strong>g values. + = extreme valuesDue to <strong>the</strong> non-parametric nature <strong>of</strong> <strong>the</strong> data, an exploratory 2 x 2 ANOVA with onerepeated measure was performed. Any f<strong>in</strong>d<strong>in</strong>gs were <strong>the</strong>n confirmed by us<strong>in</strong>g a nonparametric Wilcoxon Signed Ranks test. The repeated measures ANOVA revealed asignificant effect for time (p =0.0001) but not for <strong>group</strong> (p = 0.739) nor for time by<strong>group</strong> <strong>in</strong>teractions (p = 0.416). The statistical significance for time was confirmed by<strong>the</strong> Wilcoxon Signed Ranks test (RESTIM p = 0.0001; EMPI p = 0.0001).233


___________________________________________________________Chapter 99.5.9.3 Multiple Regression Analysis - STEPSMultiple regression analysis was performed us<strong>in</strong>g a <strong>the</strong>oretical model for posttreatment steps based on <strong>the</strong> literature for PFPS. The follow<strong>in</strong>g cont<strong>in</strong>uous datacovariates were used: age, treatment compliance, duration <strong>of</strong> symptoms, pa<strong>in</strong>, pretreatment isometric and isok<strong>in</strong>etic strength and <strong>quadriceps</strong> fatigue. In addition,correlation coefficients were generated from <strong>the</strong> cont<strong>in</strong>uous data to discover if <strong>the</strong>rewere o<strong>the</strong>r variables that might affect <strong>the</strong> outcome (Table 36). Dichotomous variableswere analysed by ‘t’ tests (Table 37).Table 36. Association <strong>of</strong> each cont<strong>in</strong>uous basel<strong>in</strong>e covariate and compliancewith Post Treatment StepsCO VARIATE Pearson’s r P valueAge -0.140 0.234BMI -0.269 0.020 *Duration <strong>of</strong> symptoms -0.033 0.783Basel<strong>in</strong>e isometric strength 0.001 0.996Basel<strong>in</strong>e isok<strong>in</strong>etic strength 0.108 0.359Basel<strong>in</strong>e <strong>quadriceps</strong> fatigue -0.114 0.222Basel<strong>in</strong>e <strong>quadriceps</strong> CSA -0.037 0.751Basel<strong>in</strong>e pa<strong>in</strong> -0.105 0.375Basel<strong>in</strong>e Kujala score 0.310 0.007*Basel<strong>in</strong>e steps 0.632 0.0001*Basel<strong>in</strong>e knee flexion 0.399 0.0001*Compliance (number <strong>of</strong> treatments) 0.070 0.570* = statistically significant234


___________________________________________________________Chapter 9Table 37. Association <strong>of</strong> dichotomous basel<strong>in</strong>e covariates.CO VARIATE t value p valueTreatment <strong>group</strong> (RESTIM / EMPI) 0.611 0.543Gender (Male / Female) -0.407 0.685Test side (Right / Left) -0.743 0.460Knee flexion (<strong>the</strong> o<strong>the</strong>r cl<strong>in</strong>ical test) and <strong>the</strong> Kujala score for functionality weresignificantly associated variables and were added to <strong>the</strong> model. Fur<strong>the</strong>rmore, BMIwas also significantly associated (r = -0.269, p = 0.020), <strong>in</strong>dicat<strong>in</strong>g that patients withlower BMI were able to perform more steps (Table 36). Follow<strong>in</strong>g <strong>the</strong> procedureoutl<strong>in</strong>ed <strong>in</strong> section 9.4.3.1., a direct multiple regressional analysis was performed totest <strong>the</strong> <strong>the</strong>oretical model and generate a R 2 value <strong>of</strong> 0.696 with an adjusted R 2 <strong>of</strong>0.384. Next, a stepwise multiple regression revealed that <strong>the</strong> only significant predictorfor post treatment steps was pre treatment steps. The adjusted R 2 for this model was0.406, <strong>in</strong>dicat<strong>in</strong>g that this variable could predict 40% <strong>of</strong> <strong>the</strong> variability <strong>of</strong> <strong>the</strong> posttreatment steps values (Table 38). There were no effects from <strong>the</strong> o<strong>the</strong>r variables.In order to check <strong>the</strong> fit <strong>of</strong> <strong>the</strong> l<strong>in</strong>ear regression model, <strong>the</strong> normality <strong>of</strong> <strong>the</strong> residualstatistics were analysed visually by histograms and scatterplots (see appendices) andtested formally by <strong>the</strong> Durb<strong>in</strong>-Watson test. For post treatment steps model, <strong>the</strong> datawere normally distributed with no obvious trends when plotted aga<strong>in</strong>st covariates andeach outcome variable.235


___________________________________________________________Chapter 9model 1Steps 1Table 38. Multiple Regression Analysis Model Summaryfor Post Treatment StepsR R 2 Adjusted R 2 B t Durb<strong>in</strong>-WatsonP0.635 0.403 0.3940.725 6.674 1.820 0.0001Legend:- Steps 1 = pre treatment stepsB = unstandardised coefficient9.5.9.4 Pre Treatment Analysis - FLEXIONThere were no statistically significant differences between <strong>the</strong> RESTIM and EMPI<strong>group</strong>s prior to treatment (t = 1.076, p = 0.285).9.5.9.5 Post Treatment Analysis - FLEXIONAn <strong>in</strong>dependent ‘t’ test showed no significant differences between <strong>the</strong> <strong>group</strong>s (t =0.449, p = 0.654) (Table 50). A graphical representation <strong>of</strong> <strong>the</strong> mean ±SD can beseen <strong>in</strong> Figure 51 below. A 2 x 2 ANOVA with one repeated measure revealed asignificant time effect (p = 0.0001) but no significant <strong>group</strong> effect (p = 0.170) nor timeby <strong>group</strong> <strong>in</strong>teractions (p = 0.654). A paired ‘t’ test revealed significant improvementsbetween pre and post treatment values <strong>of</strong> knee flexion for both <strong>the</strong> RESTIM <strong>of</strong> 15 0(15%, p = 0.003) and for <strong>the</strong> EMPI <strong>of</strong> 12 0 (12.9%, p = 0.0001). Thus a 2.1%improvement was observed for RESTIM over EMPI (Table 48).236


___________________________________________________________Chapter 950Difference between pre post knee flexion403020100-10-20-30N =37RESTIM37EMPIFigure 51. Mean ± SD for pre and post test flexion differencesfor RESTIM & EMPI. L<strong>in</strong>e at zero = no difference between pre & post test values9.5.9.6 Multiple Regression Analysis - FLEXIONMultiple regression analysis was performed us<strong>in</strong>g a <strong>the</strong>oretical model based on <strong>the</strong>literature for PFPS. The follow<strong>in</strong>g covariates were used <strong>in</strong> <strong>the</strong> model for posttreatment flexion: pre treatment number <strong>of</strong> steps, knee flexion, pa<strong>in</strong>, Kujala score,isometric & isok<strong>in</strong>etic strength, duration <strong>of</strong> symptoms, age, and treatment compliance.Correlation coefficients were generated to f<strong>in</strong>d any o<strong>the</strong>r variables that could beadded to <strong>the</strong> model (Table 39). This table demonstrated highly significant237


___________________________________________________________Chapter 9associations between <strong>the</strong> cl<strong>in</strong>ical tests <strong>of</strong> steps and flexion and <strong>the</strong> Kujalafunctionality score. BMI was <strong>the</strong> only significant variable added to <strong>the</strong> model.Dichotomous variables were analysed by ‘t’ tests (Table 40).Table 39 Association <strong>of</strong> each cont<strong>in</strong>uous basel<strong>in</strong>e covariate and compliancewith Post Treatment FlexionCO VARIATE Pearson’s r P valueAge -0.029 0.810BMI -0.305 0.008*Duration <strong>of</strong> symptoms 0.012 0.922Basel<strong>in</strong>e isometric strength 0.017 0.883Basel<strong>in</strong>e isok<strong>in</strong>etic strength 0.132 0.262Basel<strong>in</strong>e <strong>quadriceps</strong> fatigue -0.134 0.256Basel<strong>in</strong>e <strong>quadriceps</strong> CSA -0.101 0.394Basel<strong>in</strong>e pa<strong>in</strong> -0.136 0.250Basel<strong>in</strong>e Kujala score 0.264 0.023*Basel<strong>in</strong>e steps 0.450 0.0001*Basel<strong>in</strong>e knee flexion 0.647 0.0001*Compliance (number <strong>of</strong> treatments) 0.066 0.588* = statistically significantTable 40 Association <strong>of</strong> dichotomous basel<strong>in</strong>e covariates.CO VARIATE t value p valueTreatment <strong>group</strong> (RESTIM / EMPI) 1.429 0.157Gender (Male / Female) 0.332 0.741Test side (Right / Left) -1.643 0.105238


___________________________________________________________Chapter 9A direct multiple regression analysis was performed <strong>in</strong>itially to test <strong>the</strong> <strong>the</strong>oreticalmodel. This gave an R 2 value <strong>of</strong> 0.501 with adjusted R 2 <strong>of</strong> 0.403. A stepwise multipleregression was <strong>the</strong>n performed to reveal that <strong>the</strong> only highly significant predictor <strong>of</strong>post treatment knee flexion was pre treatment knee flexion. The adjusted R 2 for <strong>the</strong>model was 0.443, <strong>in</strong>dicat<strong>in</strong>g that this variable could predict 44% <strong>of</strong> <strong>the</strong> variability <strong>of</strong><strong>the</strong> post treatment knee flexion (Table 41). There were no effects from <strong>the</strong> o<strong>the</strong>rvariables.In order to check <strong>the</strong> fit <strong>of</strong> <strong>the</strong> l<strong>in</strong>ear regression model, <strong>the</strong> normality <strong>of</strong> <strong>the</strong> residualstatistics were analysed visually by histograms and scatterplots (see appendices) andtested formally by <strong>the</strong> Durb<strong>in</strong>-Watson test. For post treatment flexion model, <strong>the</strong> datawere normally distributed with no obvious trends when plotted aga<strong>in</strong>st covariates andeach outcome variable.model 1flexion1Table 41 Multiple Regression Model Summaryfor Post Treatment FlexionR R 2 Adjusted R 2 B t Durb<strong>in</strong>-WatsonP0.672 0.451 0.4430.689 7.362 2.032 0.0001Legend:-flexion 1 = basel<strong>in</strong>e flexionB = unstandardised coefficient239


___________________________________________________________Chapter 99.5.10 Kujala Questionnaire9.5.10.1 Pre Treatment AnalysisThere were no statistically significant differences between <strong>the</strong> RESTIM and EMPI<strong>group</strong>s prior to treatment ( t = 0.970, p =0.335 ).9.5.10.2 Post Treatment AnalysisAn <strong>in</strong>dependent ‘t’ test showed no significant differences between <strong>the</strong> <strong>group</strong>s for posttreatment Kujala scores (t = -0.772, p = 0.443)(Table 50). A graphical representation<strong>of</strong> mean ± SD can be seen <strong>in</strong> Figure 52 below. A 2 x 2 ANOVA with one repeatedmeasure revealed a significant time effect (p = 0.0001) but no <strong>group</strong> effects (p =0.443) nor time by <strong>group</strong> <strong>in</strong>teractions (p = 0.502). A paired ‘t’ test revealed significantimprovements between pre and post treatment values for RESTIM (p = 0.007) and forEMPI (p = 0.0001) (Table 48).9.5.10.3 Multiple Regression AnalysisMultiple regression analysis was performed us<strong>in</strong>g a <strong>the</strong>oretical model based on <strong>the</strong>literature for PFPS. The follow<strong>in</strong>g predictor variables were entered <strong>in</strong> <strong>the</strong> model: pretreatment isometric and isok<strong>in</strong>etic strength, pre treatment pa<strong>in</strong>, steps, flexion, Kujalascore, duration <strong>of</strong> symptoms and compliance. In addition, correlation coefficients weregenerated to illucidate any o<strong>the</strong>r covariates that may be used <strong>in</strong> <strong>the</strong> model (Table 42).This table shows <strong>the</strong> significant associations between variables that had already been240


___________________________________________________________Chapter 9entered <strong>in</strong>to <strong>the</strong> model, viz: <strong>the</strong> Kujala score for functionality, and pre treatment pa<strong>in</strong>(us<strong>in</strong>g <strong>the</strong> VAS), and <strong>the</strong> pre treatment cl<strong>in</strong>ical tests <strong>of</strong> flexion and steps.Dichotomous variables were analysed by ‘t’ tests but none were added to <strong>the</strong> model(Table 43).30Difference between pre post test Kulaja scores20100-10N =37RESTIM37EMPIFigure 52. Mean ± SD for Kujala score pre and post test differencesfor RESTIM & EMPI. L<strong>in</strong>e at zero = no difference between pre & post test values241


___________________________________________________________Chapter 9Table 42 Association <strong>of</strong> each cont<strong>in</strong>uous basel<strong>in</strong>e covariate and compliancewith Post Treatment KujalaCO VARIATE Pearson’s r P valueAge 0.028 0.816BMI -0.080 0.500Duration <strong>of</strong> symptoms -0.016 0.894Basel<strong>in</strong>e isometric strength -0.052 0.658Basel<strong>in</strong>e isok<strong>in</strong>etic strength 0.128 0.267Basel<strong>in</strong>e <strong>quadriceps</strong> fatigue -0.071 0.546Basel<strong>in</strong>e <strong>quadriceps</strong> CSA -0.022 0.852Basel<strong>in</strong>e pa<strong>in</strong> -0.520 0.0001*Basel<strong>in</strong>e Kujala score 0.673 0.0001*Basel<strong>in</strong>e steps 0.270 0.020*Basel<strong>in</strong>e knee flexion 0.246 0.035*Compliance (number <strong>of</strong> treatments) 0.175 0.149* = statistically significantTable 43 Association <strong>of</strong> dichotomous basel<strong>in</strong>e covariates.CO VARIATE t value p valueTreatment <strong>group</strong> (RESTIM / EMPI) 0.293 0.771Gender (Male / Female) -1.402 0.165Test side (Right / Left) 0.508 0.613As described <strong>in</strong> section 9.4.3.1., direct regressional analysis was performed to test<strong>the</strong> model. This gave a R 2 value <strong>of</strong> 0.723 with an adjusted R 2 <strong>of</strong> 0.476. A stepwiseregression analysis was <strong>the</strong>n performed that revealed two variables that were242


___________________________________________________________Chapter 9significant predictors <strong>of</strong> <strong>the</strong> post treatment Kujala score: pre treatment pa<strong>in</strong> and pretreatment Kujala score. The adjusted R 2 for <strong>the</strong> second model was 0.491. Thesevariables <strong>the</strong>refore accounted for 49% <strong>of</strong> <strong>the</strong> variability <strong>of</strong> <strong>the</strong> pre treatment Kujalascore (Table 44). There were no o<strong>the</strong>r effects from any o<strong>the</strong>r variables.In order to check <strong>the</strong> fit <strong>of</strong> <strong>the</strong> l<strong>in</strong>ear regression model, <strong>the</strong> normality <strong>of</strong> <strong>the</strong> residualstatistics were analysed visually by histograms and scatterplots (see appendices) andtested formally by <strong>the</strong> Durb<strong>in</strong>-Watson test. For post treatment Kujala model, <strong>the</strong> datawere normally distributed with no obvious trends when plotted aga<strong>in</strong>st covariates andeach outcome variable.Table 44 Multiple Regression Analysis Model Summaryfor Post Treatment Kujala Scoremodel R R 2 Adjusted R 2 B t Durb<strong>in</strong>-Watsonmodel 1 0.687 0.472 0.464PKujala10.759 7.686 0.0001model 20.712 0.506 0.491Kujala10.6485.9160.0001Pa<strong>in</strong> 1-1.637-2.121 2.0160.038Legend: Kujala 1 = basel<strong>in</strong>e Kujala acorePa<strong>in</strong>1 = basel<strong>in</strong>e pa<strong>in</strong> score (VAS)B = unstandardised coefficient243


___________________________________________________________Chapter 99.5.11 Quadriceps Cross Sectional Area9.5.11.1 Pre Treatment AnalysisThere were no statistically significant differences between <strong>the</strong> RESTIM and EMPI<strong>group</strong>s prior to treatment (t = -1.198, p = 0.235).9.5.11.2 Post Treatment AnalysisSome patients were unable to have ultrasound scans performed on <strong>the</strong> post<strong>stimulation</strong> assessment. Therefore, data from post <strong>stimulation</strong> scans were taken from33 patients <strong>in</strong> each <strong>group</strong>. An <strong>in</strong>dependent ‘t’ test showed a significant differencebetween <strong>the</strong> <strong>group</strong>s <strong>in</strong> <strong>the</strong> post treatment CSA (t = -2.329, p = 0.023) (Table 50). Agraphical representation <strong>of</strong> mean ± SD can be seen <strong>in</strong> Figure 53 below. A 2 x 2ANOVA with one repeated measure revealed nei<strong>the</strong>r a significant time effect (p =0.225) nor <strong>group</strong> effect (p = 0.264), but a significant time by <strong>group</strong> <strong>in</strong>teraction (p =0.023). A paired ‘t’ test revealed significant improvements between pre and posttreatment values for 0.58cm 2 (3.4%) for RESTIM (p = 0.021), but a decrease for EMPI<strong>of</strong> -0.18cm 2 (0.97%) (p = 0.422) (Table 48).9.5.11.3 Multiple Regression AnalysisMultiple regression was performed us<strong>in</strong>g a <strong>the</strong>oretical model derived from <strong>the</strong>literature on PFPS and us<strong>in</strong>g <strong>the</strong> follow<strong>in</strong>g variables: pre treatment isometric andisok<strong>in</strong>etic strength, pre treatment <strong>quadriceps</strong> fatigue, treatment <strong>group</strong>, compliance,244


___________________________________________________________Chapter 9duration <strong>of</strong> symptoms, BMI, age, and gender. Correlation coefficients were generatedto highlight any o<strong>the</strong>r predictor variables that might be used <strong>in</strong> <strong>the</strong> model (Table 45).Dichotomous variables were analysed by ‘t’ tests (Table 46). No o<strong>the</strong>r variables wereadded. As outl<strong>in</strong>ed <strong>in</strong> section 9.4.3.1., a direct multiple regressional analysis wasperformed to test <strong>the</strong> model, which gave an adjusted R 2 value <strong>of</strong> 0.907 and adjustedR 2 <strong>of</strong> 0.882.3difference between pre & post treatment CSA210-1-2N =33RESTIM33EMPIFigure 53. Mean ± SD for <strong>quadriceps</strong> CSA pre and post test differencesfor RESTIM & EMPI. L<strong>in</strong>e at zero = no difference between pre & post test values.245


___________________________________________________________Chapter 9Table 45 Association <strong>of</strong> each cont<strong>in</strong>uous basel<strong>in</strong>e covariate and compliancewith Post Treatment Quadriceps CSACO VARIATE Pearson’s r P valueAge -0.323 0.008*BMI 0.272 0.027*Duration <strong>of</strong> symptoms -0.020 0.871Basel<strong>in</strong>e isometric strength 0.496 0.0001*Basel<strong>in</strong>e isok<strong>in</strong>etic strength 0.491 0.0001*Basel<strong>in</strong>e <strong>quadriceps</strong> fatigue -0.116 0.353Basel<strong>in</strong>e <strong>quadriceps</strong> CSA 0.952 0.0001*Basel<strong>in</strong>e pa<strong>in</strong> 0.085 0.140Basel<strong>in</strong>e Kujala score 0.075 0.550Basel<strong>in</strong>e steps 0.016 0.900Basel<strong>in</strong>e knee flexion -0.028 0.882Compliance (number <strong>of</strong> treatments) 0.128 0.323* = statistically significantTable 46 Association <strong>of</strong> dichotomous basel<strong>in</strong>e covariates.CO VARIATE t value p valueTreatment <strong>group</strong> (RESTIM / EMPI) -0.761 0.449Gender (Male / Female) 5.845 0.0001*Dom<strong>in</strong>ant side (Right / Left) -1.075 0.286Affected side (Right /Left/ Bilateral) 1.072 0.348 †Test side (Right / Left) -0.601 0.550* = statistically significant† = analysed us<strong>in</strong>g one way ANOVA246


___________________________________________________________Chapter 9A stepwise multiple regression analysis was next performed to reveal <strong>the</strong> variable thatbest predicted <strong>the</strong> post treatment CSA was pre treatment CSA (Table 47). Theadjusted R 2 for this model was 0.883 <strong>in</strong>dicat<strong>in</strong>g that 88% <strong>of</strong> <strong>the</strong> variance <strong>of</strong> <strong>the</strong> posttreatment CSA could be predicted pre treatment CSA. There were no effects on <strong>the</strong>model from any o<strong>the</strong>r variables.In order to check <strong>the</strong> fit <strong>of</strong> <strong>the</strong> l<strong>in</strong>ear regression model, <strong>the</strong> normality <strong>of</strong> <strong>the</strong> residualstatistics were analysed visually by histograms and scatterplots (see appendices) andtested formally by <strong>the</strong> Durb<strong>in</strong>-Watson test. For post treatment CSA model, <strong>the</strong> datawere normally distributed with no obvious trends when plotted aga<strong>in</strong>st covariates andeach outcome variable.Table 47 Multiple Regression Analysis Model Summaryfor Post treatment Quadriceps CSAmodel R R 2 Adjusted R 2 B t Durb<strong>in</strong>- PWatsonmodel 1CSA 10.941 0.885 0.8830.941 21.522 2.064 0.0001Legend: CSA 1 = basel<strong>in</strong>e <strong>quadriceps</strong> cross sectional areaB = unstandardised coefficient247


___________________________________________________________Chapter 99.5.11.4 Treatment Effect SizeEstimates <strong>of</strong> treatment effect size can be used to determ<strong>in</strong>e if <strong>the</strong> effect <strong>of</strong> a treatmentis likely to be large enough to be cl<strong>in</strong>ically worthwhile. The significant differenceswith<strong>in</strong> and between <strong>the</strong> <strong>group</strong>s after treatment permitted such a calculation for <strong>the</strong>effects on <strong>quadriceps</strong> CSA. The with<strong>in</strong> treatment effect size for RESTIM wascalculated as follows 308;311 :(post CSA X - pre CSA X)--------------------------------------preCSA SD(17.69 – 17.11) (= 0.58)------------------------ ------------4.24 4 .24 = 0.13The figure <strong>of</strong> 0.13 is below <strong>the</strong> figure cited by Hopk<strong>in</strong>s (0.24) needed to <strong>in</strong>dicate aworthwhile effect 311 . Therefore <strong>the</strong> with<strong>in</strong> <strong>group</strong> statistically significant difference (p =0.021) for RESTIM determ<strong>in</strong>ed by <strong>the</strong> ‘t’ tests should be <strong>in</strong>terpreted with caution.248


___________________________________________________________Chapter 9Sometimes it is preferable to report <strong>the</strong> change or differences <strong>in</strong> outcome measuresover <strong>the</strong> treatment period. This was calculated with <strong>the</strong> follow<strong>in</strong>g formula 308;311 :(mean change CSA RESTIM – mean change CSA EMPI)_________________________________pooled SD <strong>of</strong> RESTIM & EMPI (averaged)(+0.58 – -0.181) (= 0.76)------------------------ -------------4.37 4 .37 = 0.17The differences between pre and post CSA values for RESTIM were 0.582 cm 2 . ForEMPI <strong>the</strong>se were -0.181 cm 2 (<strong>in</strong>dicat<strong>in</strong>g a decrease <strong>in</strong> CSA). The SD fraction figure <strong>of</strong>0.17 is less than <strong>the</strong> figure <strong>of</strong> 0.20 cited by Hopk<strong>in</strong>s, <strong>in</strong>dicat<strong>in</strong>g that <strong>the</strong> effect size isvery small and not worth consider<strong>in</strong>g. This illustrates <strong>the</strong> usefulness <strong>of</strong> calculat<strong>in</strong>g <strong>the</strong>effect size because <strong>the</strong> <strong>in</strong>dependent ‘t’ test revealed a between <strong>group</strong> significance (p= 0.023).9.5.12 Gender effects.Analyses were also carried out to assess whe<strong>the</strong>r <strong>the</strong> EMS had a greater effect onmale or female patients. Although some anecdotal evidence has been cited that EMSwas more effective <strong>in</strong> males than females 175 , previous studies had <strong>in</strong>dicated that <strong>the</strong>rewere no greater benefits <strong>of</strong> EMS for males than females 112 . In contrast, Soo et al. 121found that men displayed greater strength improvements than women (47.7%249


___________________________________________________________Chapter 9compared with 8.1%), although <strong>the</strong>ir results may be expla<strong>in</strong>ed by small sample sizesra<strong>the</strong>r than a real gender difference. The only reason proposed <strong>in</strong> <strong>the</strong>ory for genderdifferences was <strong>the</strong> greater amount <strong>of</strong> subcutaneous fat <strong>in</strong> females. This was notmeasured <strong>in</strong> <strong>the</strong> Ma<strong>in</strong> study, although <strong>the</strong> ultrasound scans did reveal a higher CSAmeasure and hence a greater <strong>muscle</strong> mass for males.The ‘t’ tests to analyse <strong>the</strong> dichotomous variable <strong>of</strong> gender were significant for <strong>the</strong>basel<strong>in</strong>e covariates <strong>of</strong> isometric and isok<strong>in</strong>etic strength and <strong>quadriceps</strong> CSA .However <strong>the</strong> variable, when added, did not add to <strong>the</strong> multiple regression model.Therefore, it could be concluded that <strong>the</strong> EMS devices used <strong>in</strong> this study were notmore effective <strong>in</strong> males than females.The follow<strong>in</strong>g Tables (48, 49, 50 and 51) display <strong>the</strong> raw data values pre and posttreatment for both <strong>group</strong>s for all outcome measures. Results are also tabulated forwith<strong>in</strong> <strong>group</strong> and between <strong>group</strong> differences for parametric and non parametric data.250


___________________________________________________________Chapter 9Table 48 Means ± SD or Medians (IQR), pre and post <strong>stimulation</strong> data.Raw scores and mean percentage changesRESTIMPre-stim Post-stim Mean Change Mean % P value ✝<strong>in</strong> raw score change frombasel<strong>in</strong>eIsometric strength 107.6 ± 30.8 118.1 ± 37.4 10.5 ± 15.9 9.7% ✝0.0001*(Nm)Isok<strong>in</strong>etic strength 104.2 ± 35.3 108.1 ± 36.8 3.9 ± 17.6 3.7% ✝0.191(Nm)PAIN (po<strong>in</strong>ts) 3 (2-5) 2 (0-4) -1(-3 - 0) -33% 0.004*STEPS (No.) 16 (9 -24) 27 (16 -46) 6 (0 -21) 68.7% 0.0001*FLEXION (degrees) 104 ± 27 119 ± 29 15.5 ± 29.4 15% ✝0.003*KUJALA (po<strong>in</strong>ts) 72 ± 12.9 78 ± 14.6 6 ± 12.1 7.8% ✝0.007*CSA (cm 2 ) 17.11 ± 4.24 17.69 ± 4.29 0.58 ± 1.38 3.3% ✝0.021*EMPIPre-stim Post-stim Mean Change Mean % P value ✝<strong>in</strong> raw score change frombasel<strong>in</strong>eIsometric strength 117.8 ± 43.5 120.9 ± 39.9 3.1 ± 17.6 2.8% ✝0.291(Nm)Isok<strong>in</strong>etic strength 110.5 ± 44 119.1 ± 47.7 8.6 ± 18.7 7.8% ✝0.008*(Nm)PAIN (po<strong>in</strong>ts) 3 (1-4) 2 (1-4) -1(-2 - 0) -33% 0.047*STEPS (No.) 13 (7-60) 28(11-60) 8(0-36) 115% 0.0001*FLEXION (degrees) 97 ± 30 109 ± 29 12 ± 18.5 12.9% ✝0.0001*KUJALA (po<strong>in</strong>ts) 69.3 ± 14.5 77.1 ± 15 7.8 ± 10.7 11.1% ✝0.001*CSA (cm 2 ) 18.70 ± 4.51 18.52 ± 4.61 -0.18 ± 1.27 -0.97% ✝0.422Legend : * = Statistically significant (P < 0.05)✝ = Paired t test = Wilcoxon ranked signs testNm = Newton metres CSA = Cross sectional AreaTable 49. Quadriceps fatigue data. Means ±SD for normalised slopes251


___________________________________________________________Chapter 9RESTIMPre-stim Post-stim Mean Change <strong>in</strong> Mean % change P value *raw score from basel<strong>in</strong>eVMO (%/s) -0.085 ± 0.13 -0.094 ± 0.12 -0.009 -10.6 0.740VL (%/s) -0.056 ± 0.08 -0.078 ± 0.09 -0.022 -39.3 0.140RF (%/s) -0.071 ± 0.14 -0.072 ± 0.10 -0.001 -1.41 0.968Quads total (%/s) -0.071 ± 0.07 -0.081 ± 0.09 -0.010 -14.1 0.352EMPIPre-stim Post-stim Mean Change <strong>in</strong> Mean % change P value *raw score from basel<strong>in</strong>eVMO (%/s) -0.086 ± 0.13 -0.070 ± 0.12 0.016 18.6 0.588VL (%/s) -0.082 ± 0.17 -0.073 ± 0.09 0.009 10.9 0.778RF (%/s) -0.052 ± 0.08 -0.084 ± 0.12 -0.032 -61.5 0.107Quads total (%/s) -0.072 ± -0.08 -0.075 ± 0.08 -0.003 -8.5 0.874Legend: VMO = Vastus Medialis ObliqueVL = Vastus LateralisRF = Rectus FemorisQuads total = VMO/VL/RF comb<strong>in</strong>ed* = paired t testTable 50. Between <strong>group</strong> analysis. Independent ‘t’ tests for normalised data252


___________________________________________________________Chapter 9VARIABLE t value p valueIsometric post treatment strength 1.870 0.066Isok<strong>in</strong>etic post treatment strength -1.119 0.267Quadriceps post treatment fatigue -0.355 0.724Flexion post treatment 0.449 0.654Kujala Score post treatment -0.772 0.443Quadriceps CSA post treatment -2.329 0.023 ** = statistically significantTable 51. Between <strong>group</strong> analysis. Mann Whitney U tests for non-normalised dataVARIABLE Z value p valuePa<strong>in</strong> post treatment -1.153 0.249Steps post treatment -0.493 0.562Table 52. Power sample calculation from <strong>the</strong> Ma<strong>in</strong> studyOutcomeIsometricIsok<strong>in</strong>eticFatigueObserveddifferencepowerSD 80% 85% 90%7.3 (Nm) 17 83 95 1114.7 (Nm) 18 232 265 3110.01 (%/s) 0.085 516 594 695253


___________________________________________________________Chapter 99.6 DiscussionThis <strong>the</strong>sis has provided a logical progression from test<strong>in</strong>g outcome measureprotocols <strong>the</strong>n <strong>in</strong>stigat<strong>in</strong>g a Pilot study, to conduct<strong>in</strong>g a suitably powered, doublebl<strong>in</strong>d, randomised trial compar<strong>in</strong>g <strong>the</strong> efficacy <strong>of</strong> two different patterns <strong>of</strong> EMS on <strong>the</strong><strong>quadriceps</strong> <strong>of</strong> patients with PFPS. Efficacy was measured us<strong>in</strong>g outcome measuresfor <strong>muscle</strong> strength, fatigue, cross sectional area, knee pa<strong>in</strong> and function. The nullhypo<strong>the</strong>sis for this <strong>the</strong>sis was that <strong>the</strong>re would be no significant differences between<strong>the</strong> two EMS protocols. Due to <strong>the</strong> lack <strong>of</strong> significant between <strong>group</strong> differences <strong>in</strong> allbut one measure, <strong>the</strong> null hypo<strong>the</strong>sis was accepted.The discussion will address <strong>the</strong> issues surround<strong>in</strong>g <strong>the</strong> basel<strong>in</strong>e data and treatmentcompliance, with <strong>the</strong> subsequent separate sections discuss<strong>in</strong>g <strong>the</strong> with<strong>in</strong> andbetween <strong>group</strong> differences for each <strong>of</strong> <strong>the</strong> outcome measures. This section will f<strong>in</strong>ishwith <strong>the</strong> limitations <strong>of</strong> <strong>the</strong> present study and recommendations for future research.9.6.1 Basel<strong>in</strong>e DataA correlational analysis was performed (Table 21) on pre treatment outcomes <strong>in</strong> orderto assess if <strong>the</strong>re were any relationships between physical and physiologicalmeasures <strong>in</strong> <strong>the</strong> total <strong>group</strong> <strong>of</strong> 74 patients with PFPS. Table 21 shows thatrelationships did exist between some <strong>of</strong> <strong>the</strong>se aspects prior to treatment. There werehighly significant associations at basel<strong>in</strong>e between isometric and isok<strong>in</strong>etic strength (p= 0.0001), between <strong>the</strong> cl<strong>in</strong>ical tests <strong>of</strong> knee flexion and steps (p = 0.0001) andbetween <strong>the</strong> subjective assessments <strong>of</strong> pa<strong>in</strong> and <strong>the</strong> Kujala score (p = 0.0001).254


___________________________________________________________Chapter 9These associations provided a useful cross check for <strong>the</strong> outcome measures ra<strong>the</strong>rthan a formal assessment <strong>of</strong> concurrent validity, and provided an <strong>in</strong>dication that <strong>the</strong>ywere appropriate for what <strong>the</strong>y proposed to measure. The values for BMI, duration <strong>of</strong>PFPS symptoms and <strong>the</strong> affected side (left, right or bilateral) (Tables 19 & 20) wereconsistent with previous studies on PFPS 212;305;312 . There was a lack <strong>of</strong> associationbetween duration <strong>of</strong> symptoms and <strong>the</strong> o<strong>the</strong>r outcome measures that questions <strong>the</strong>common cl<strong>in</strong>ical perception that <strong>the</strong> longer a patient had <strong>the</strong>ir PFPS <strong>the</strong> worse <strong>the</strong>irstrength, pa<strong>in</strong> and function.The only demographic variable to differ from <strong>the</strong> literature was <strong>the</strong> patient’s age. Thereason for this was <strong>the</strong> variety <strong>of</strong> age range limitations imposed by o<strong>the</strong>r authors. Forexample, Clark et al.’s age limits were 16 -40 years 312 , Natri et al.’s were 15 - 50years 305 , and Yates and Grana were 11-48 years 313 , compared to <strong>the</strong> Ma<strong>in</strong> studycriterion <strong>of</strong> 18 - 60 years. This contributed to <strong>the</strong> Ma<strong>in</strong> study hav<strong>in</strong>g a heterogenouspopulation as opposed to a homogenous sample (usually young athletes) that tended,<strong>in</strong> o<strong>the</strong>r studies, to skew parameters such as age and BMI 46 . As mentioned <strong>in</strong>Chapter 2.3. almost all previous demographic data on PFPS arose from sport cl<strong>in</strong>icsor athlete based databases, with a paucity <strong>of</strong> <strong>in</strong>formation from <strong>the</strong> general population;this <strong>the</strong>sis has been able redress this imbalance and provide some <strong>in</strong>sight <strong>in</strong>to this<strong>group</strong>. The lack <strong>of</strong> an athlete-skewed patient sample has had <strong>the</strong> advantage <strong>of</strong> be<strong>in</strong>gmore representative <strong>of</strong> <strong>the</strong> typical population <strong>of</strong> outpatients visit<strong>in</strong>g NHS orthopaedicand physio<strong>the</strong>rapy cl<strong>in</strong>ics. The results are more generalisable to <strong>the</strong> population <strong>of</strong>PFPS at large with consequently less threat to external validity.255


___________________________________________________________Chapter 99.6.2 Treatment CompliancePatient’s compliance with treatment is not commonly considered <strong>in</strong> <strong>the</strong> literature onphysio<strong>the</strong>rapy exercise regimes. Yet with so much emphasis placed on exerciseprogrammes and home treatment protocols, as <strong>in</strong> <strong>the</strong> Ma<strong>in</strong> study, compliance isnecessary for an appropriate evaluation <strong>of</strong> patients with patell<strong>of</strong>emoral disorders 313 .Indeed, decisions concern<strong>in</strong>g <strong>the</strong> surgical or non-surgical options for PFPS may becompromised without patient co-operation. In a succ<strong>in</strong>ct emphasis <strong>of</strong> this importantissue, Grelsamer and McConnell stated: “Without patient compliance progress is slowor non existent” 50 .The problems associated with <strong>the</strong> use <strong>of</strong> patient diaries are well known anddocumented for o<strong>the</strong>r knee pathologies such as osteoarthritis 292 . The Ma<strong>in</strong> study’scomb<strong>in</strong>ation <strong>of</strong> patient’s self report<strong>in</strong>g compliance diaries and an <strong>in</strong>built devicecompliance monitor was devised so that one could provide confirmation <strong>of</strong> <strong>the</strong> o<strong>the</strong>r.Unfortunately unforeseen technical problems ru<strong>in</strong>ed this opportunity and all analysiswas based on self report<strong>in</strong>g diaries.In <strong>the</strong> Ma<strong>in</strong> study, a fully compliant protocol <strong>of</strong> 42 treatment sessions was onlyachieved by 14 patients overall. This means only 20% <strong>of</strong> <strong>the</strong> patient population werefully compliant with <strong>the</strong> treatment programme. If patients who achieved 41 or 40treatment sessions were also <strong>in</strong>cluded and described as fully compliant this is stillonly 32%, leav<strong>in</strong>g 68% classified as partially or non-compliant. The mean figure <strong>of</strong> 35(±6.5) treatment sessions for both <strong>group</strong>s was <strong>the</strong>refore less than <strong>the</strong> full compliancerate. Similarly poor compliance rates by PFPS patients dur<strong>in</strong>g an active exercise256


___________________________________________________________Chapter 9regime were noted by Yates and Grana 313 and Blond and Hansen 45 . On <strong>the</strong> o<strong>the</strong>rhand, high compliance rates <strong>of</strong> at least 90% have been noted study<strong>in</strong>g o<strong>the</strong>r kneepathologies such as osteoarthritis us<strong>in</strong>g EMS 115 or active exercise 314 and anteriorcruciate ligament repair 179 . These comparisons suggest that <strong>the</strong> poor compliance rate<strong>in</strong> <strong>the</strong> Ma<strong>in</strong> study may have been due to patient personality associated with PFPSra<strong>the</strong>r that any difficulty with us<strong>in</strong>g EMS as an alternative form <strong>of</strong> <strong>the</strong>rapeuticexercise.The use <strong>of</strong> multiple regression analysis <strong>in</strong>clud<strong>in</strong>g compliance <strong>in</strong> <strong>the</strong> model allowedanalysis <strong>of</strong> all completed patients irrespective <strong>of</strong> <strong>the</strong>ir compliance rate. The resultsshowed that <strong>the</strong> only post treatment outcome measure affected by patient compliancewas isok<strong>in</strong>etic strength. Although this had a statistically significant value <strong>of</strong> p = 0.035,<strong>the</strong> adjusted R 2was 0.057, <strong>in</strong>dicat<strong>in</strong>g that only 5.7% <strong>of</strong> <strong>the</strong> variance could beaccounted for by <strong>the</strong> compliance rate. It is possible to conclude <strong>the</strong>n that <strong>the</strong>treatment compliance rate <strong>in</strong> <strong>the</strong> Ma<strong>in</strong> study had little <strong>in</strong>fluence on any <strong>of</strong> <strong>the</strong> posttreatment outcome measures.The high non-compliance rate has serious implications for <strong>the</strong> study’s results. Firstly,it is possible that <strong>the</strong> different RESTIM and EMPI <strong>stimulation</strong> patterns were not given<strong>the</strong> opportunity to take effect because patients were not us<strong>in</strong>g <strong>the</strong> devices for longenough. Therefore, <strong>the</strong> lack <strong>of</strong> compliance may have affected <strong>the</strong> predicted outcomesbetween <strong>the</strong> different <strong>stimulation</strong> patterns. One <strong>of</strong> <strong>the</strong> premises for this <strong>the</strong>sis was <strong>the</strong><strong>in</strong>corporation <strong>of</strong> <strong>the</strong> mixed frequency pattern that <strong>in</strong>cluded a low frequency (


___________________________________________________________Chapter 9than higher frequencies to <strong>in</strong>duce a change <strong>in</strong> <strong>muscle</strong> performance. In o<strong>the</strong>r words,<strong>the</strong> RESTIM low frequency component was never given <strong>the</strong> opportunity to have itsphysiological effect because it was never used for long enough. Therefore, <strong>the</strong> lack <strong>of</strong>compliance and <strong>the</strong> result<strong>in</strong>g <strong>in</strong>termittent nature <strong>of</strong> treatment may not have favouredthis type <strong>of</strong> adaptation.Secondly, <strong>the</strong> significant with<strong>in</strong> <strong>group</strong> improvements may <strong>in</strong>dicate that <strong>the</strong> patients didnot need to comply fully to achieve a good outcome and raises <strong>the</strong> question <strong>of</strong>whe<strong>the</strong>r <strong>the</strong> results were <strong>in</strong> response to treatment or due to a placebo effect. With <strong>the</strong>lack <strong>of</strong> a placebo control <strong>group</strong> <strong>in</strong> this study (for reasons discussed later <strong>in</strong> section9.7.) it is not possible to rule out <strong>the</strong> placebo effect as a reason for <strong>the</strong> generalimprovement for both <strong>group</strong>s. Oldham et al. 115compared a patterned mixedfrequency and uniform frequency EMS with a placebo device <strong>in</strong> osteoarthritic kneepatients. They found that <strong>the</strong> placebo device caused similar improvements <strong>in</strong> <strong>muscle</strong>strength, and <strong>in</strong> functional tests such as mean velocity <strong>of</strong> walk<strong>in</strong>g and stride lengthcompared to uniform fixed frequency EMS. They attributed this, <strong>in</strong> part, to <strong>the</strong> close<strong>in</strong>terest taken <strong>in</strong> <strong>the</strong> patients, who had been on an 18 months wait<strong>in</strong>g list for kneeoperations, by <strong>the</strong> treat<strong>in</strong>g <strong>the</strong>rapists. The effect <strong>of</strong> such contact <strong>in</strong> a <strong>group</strong> <strong>of</strong> patientswho had <strong>the</strong>ir PFPS condition for an average <strong>of</strong> 2 years cannot be discounted whenconsider<strong>in</strong>g <strong>the</strong> results from this study.258


___________________________________________________________Chapter 99.6.3 Changes <strong>in</strong> Muscle StrengthEMS used <strong>in</strong> a rehabilitation programme for various knee pathologies has beenthought to m<strong>in</strong>imise 131 , improve 129 or have no effect 130 on <strong>quadriceps</strong> strength asmeasured by isometric or isok<strong>in</strong>etic torque. However, Morrissey stated that one <strong>of</strong> <strong>the</strong>major limitations <strong>of</strong> study<strong>in</strong>g strength changes <strong>of</strong> <strong>the</strong> <strong>quadriceps</strong> after EMS was <strong>the</strong>effect <strong>of</strong> jo<strong>in</strong>t pa<strong>in</strong> on <strong>the</strong> ability <strong>of</strong> <strong>the</strong> patient dur<strong>in</strong>g test<strong>in</strong>g to produce a maximalcontraction 175 . Hsieh et al. 212 noted that 19 from 58 PFPS patients (33%) had ‘test<strong>in</strong>duced pa<strong>in</strong>’ dur<strong>in</strong>g OKC isometric tests or OKC isok<strong>in</strong>etic tests at 60 0 /s. Theyconcluded that OKC isok<strong>in</strong>etic tests were not totally safe for PFPS patients and thatOKC isometric tests should avoid a maximal <strong>quadriceps</strong> contraction.Awareness <strong>of</strong> <strong>the</strong>se problems led to this <strong>the</strong>sis be<strong>in</strong>g <strong>the</strong> first to thoroughly test CKCisometric and isok<strong>in</strong>etic methods <strong>of</strong> assess<strong>in</strong>g lower limb torque and <strong>the</strong>n adopt aCKC protocol to provide an assessment <strong>of</strong> <strong>muscle</strong> strength. As fully expla<strong>in</strong>ed <strong>in</strong>Chapter 4 and Chapter 9.3.2, <strong>the</strong>se CKC test<strong>in</strong>g procedures have been advocated forpatients with PFPS due to a lessen<strong>in</strong>g <strong>of</strong> <strong>the</strong> patell<strong>of</strong>emoral jo<strong>in</strong>t reaction force andpatell<strong>of</strong>emoral stress 222 . The fact that no patient ei<strong>the</strong>r dur<strong>in</strong>g <strong>the</strong> reliability test<strong>in</strong>g <strong>in</strong>Chapter 4, dur<strong>in</strong>g <strong>the</strong> Pilot study <strong>in</strong> Chapter 8 or <strong>the</strong> Ma<strong>in</strong> study <strong>in</strong> this Chaptercompla<strong>in</strong>ed <strong>of</strong> an <strong>in</strong>crease <strong>in</strong> patell<strong>of</strong>emoral pa<strong>in</strong> also confirmed <strong>the</strong> safety <strong>of</strong> thisprocedure.The isometric and isok<strong>in</strong>etic tests <strong>in</strong> <strong>the</strong> Ma<strong>in</strong> study showed evidence that bothRESTIM and EMPI devices could significantly improve <strong>muscle</strong> strength <strong>in</strong> patientswith PFPS. RESTIM isometric values improved from 107.6Nm to 118.1Nm (9.7%)259


___________________________________________________________Chapter 9with EMPI improv<strong>in</strong>g from 117.8Nm to 120.9Nm (2.8%). Whereas RESTIM isok<strong>in</strong>eticvalues improved from 104.2Nm to 108.1Nm (3.7%) with EMPI improv<strong>in</strong>g from110.5Nm to 119.1Nm (7.8%) (Table 48). It is <strong>in</strong>terest<strong>in</strong>g to note that <strong>the</strong> resultsobta<strong>in</strong>ed from isometric assessment were not directly comparable to isok<strong>in</strong>eticassessment. The reasons for this are discussed later <strong>in</strong> this section.Compar<strong>in</strong>g <strong>the</strong> absolute torque values with previous PFPS studies that only usedOKC protocols is difficult, as it has been observed recently that lower limb CKCtorque values are lower than <strong>the</strong> equivalent OKC torque values 315 . Fur<strong>the</strong>rmore, <strong>the</strong>reis a paucity <strong>of</strong> studies that have observed <strong>the</strong> effect <strong>of</strong> EMS on <strong>muscle</strong> strength <strong>in</strong>patients with PFPS. Williams 143 , Johnson et al. 144 and Horodyski and Sharp 145 allfailed to provide raw data and/or adequate statistical analysis to elucidate <strong>the</strong>observed substantial strength improvements after us<strong>in</strong>g EMS.A more robust study by Werner et al. 30 found modest OKC improvements <strong>of</strong> 5.9% at60 0 /s and 6.1% at 180 0 /s after 40Hz EMS on PFPS patients that are similar to those<strong>in</strong> <strong>the</strong> Ma<strong>in</strong> study that tested <strong>in</strong> CKC at 90 0 /s.It is difficult to expla<strong>in</strong> why a RESTIM improvement <strong>in</strong> isometric strength was notcomplimented by an isok<strong>in</strong>etic improvement, and why <strong>the</strong> converse was true forEMPI. Never<strong>the</strong>less, several reasons can be proposed for this f<strong>in</strong>d<strong>in</strong>g.Firstly, some <strong>of</strong> <strong>the</strong> contradictions may be expla<strong>in</strong>ed by <strong>the</strong> difference <strong>in</strong> dynamicsbetween <strong>the</strong> isometric and isok<strong>in</strong>etic tests. The ability to activate a <strong>muscle</strong> maximallyus<strong>in</strong>g a voluntary contraction was assessed us<strong>in</strong>g a twitch <strong>in</strong>terpolation technique 140 .For <strong>the</strong> <strong>quadriceps</strong> <strong>in</strong> particular, this technique is <strong>of</strong> cl<strong>in</strong>ical relevance because <strong>the</strong>260


___________________________________________________________Chapter 9capability <strong>of</strong> full muscular activation <strong>in</strong> different knee pathologies <strong>in</strong>clud<strong>in</strong>g PFPS canbe markedly reduced 241;316 . The twitch <strong>in</strong>terpolation technique was used to overcomecentral fatigue <strong>in</strong> isometric test<strong>in</strong>g but was not feasible with isok<strong>in</strong>etic test<strong>in</strong>g.Therefore, it is possible that <strong>the</strong> isometric tests registered extension torque that wasnearer to a true maximal value because <strong>of</strong> <strong>the</strong> exclusion <strong>of</strong> central fatigue as a factor<strong>in</strong> <strong>muscle</strong> performance.Secondly, RESTIM was designed with a ‘doublet’ <strong>in</strong> <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> <strong>the</strong> pattern(see Figure 31). This was <strong>in</strong>cluded <strong>in</strong> light <strong>of</strong> work, especially on fatigued <strong>muscle</strong>,which showed that <strong>in</strong>clud<strong>in</strong>g a ‘doublet’ as part <strong>of</strong> a constant frequency pattern couldaugment peak force and average force (force/time <strong>in</strong>tegral) production 208;317 , whils<strong>the</strong>lp<strong>in</strong>g to reduce <strong>the</strong> number <strong>of</strong> impulses <strong>in</strong> <strong>the</strong> <strong>stimulation</strong> pattern required toproduce this force. For example, <strong>the</strong> use <strong>of</strong> a ‘doublet’ as part <strong>of</strong> RESTIM’s mixedfrequency pattern with a 10 on, 50 <strong>of</strong>f duty cycle, ensured that <strong>the</strong> number <strong>of</strong>impulses delivered was 90 / m<strong>in</strong>. On <strong>the</strong> o<strong>the</strong>r hand, EMPI with 35 Hz constantfrequency and <strong>the</strong> same duty cycle delivered 350 impulses / m<strong>in</strong>. This would haveresulted <strong>in</strong> EMPI patients receiv<strong>in</strong>g a greater number <strong>of</strong> impulses per hour thanRESTIM. If, as believed by some authors, <strong>the</strong> number <strong>of</strong> impulses is important <strong>in</strong>optimal force generation 96 , <strong>the</strong>n RESTIM would be at a disadvantage and <strong>the</strong>isok<strong>in</strong>etic results favour<strong>in</strong>g EMPI may provide a more accurate picture <strong>of</strong> <strong>the</strong>changes.On <strong>the</strong> o<strong>the</strong>r hand, it has recently been found that <strong>the</strong> ‘doublet’ augments force <strong>in</strong> a<strong>muscle</strong> by us<strong>in</strong>g <strong>the</strong> first impulse to take up <strong>the</strong> slack and stiffen <strong>the</strong> <strong>muscle</strong> before261


___________________________________________________________Chapter 9deliver<strong>in</strong>g <strong>the</strong> second impulse 207 . Therefore, assess<strong>in</strong>g <strong>the</strong> leg with a dynamiccontraction such as isok<strong>in</strong>etic extension may not have reflected <strong>the</strong> physiologicalimprovement from <strong>the</strong> ‘doublet’ as much as isometric assessment at a fixed kneeflexion angle. Indeed, it is now known that a decrease <strong>in</strong> force augmentation isassociated with deliver<strong>in</strong>g ‘doublets’ with dynamic as opposed to isometriccontractions 318 . Therefore, <strong>the</strong> isometric measurement <strong>in</strong> this study may have been atruer reflection than <strong>the</strong> isok<strong>in</strong>etic <strong>of</strong> <strong>muscle</strong> strength improvement.9.6.4 Changes <strong>in</strong> Muscle FatigueDiscuss<strong>in</strong>g <strong>the</strong> <strong>muscle</strong> fatigue results <strong>in</strong> <strong>the</strong> context <strong>of</strong> previous studies on <strong>the</strong><strong>quadriceps</strong> is difficult as no o<strong>the</strong>r previous studies have assessed this aspect aftertreat<strong>in</strong>g PFPS with EMS. All o<strong>the</strong>r published studies assess<strong>in</strong>g EMS on PFPS haveused uniform frequencies <strong>of</strong> 35Hz or higher 30;143-145 and so may not have attempted tomeasure fatigue as, presumably, <strong>the</strong> authors did not even consider this aspect <strong>of</strong><strong>muscle</strong> performance. Oldham et al. 115 produced <strong>the</strong> only o<strong>the</strong>r study so far to analysesimultaneous patterned mixed frequency patterns <strong>of</strong> EMS on <strong>the</strong> <strong>quadriceps</strong> andmeasure fatigue. Us<strong>in</strong>g a susta<strong>in</strong>ed time to fall to 90% MVIC as a measure <strong>of</strong><strong>quadriceps</strong> fatigue, <strong>the</strong>y noted that <strong>the</strong> largest improvement <strong>in</strong> fatigue resistance was<strong>in</strong> <strong>the</strong> patterned EMS <strong>group</strong>. These positive results were not reflected <strong>in</strong> <strong>the</strong> Ma<strong>in</strong>study. The difference <strong>in</strong> assess<strong>in</strong>g fatigue between <strong>the</strong> two studies probably expla<strong>in</strong>sthis discrepancy. Quadriceps <strong>muscle</strong> fatigue was measured <strong>in</strong> <strong>the</strong> Ma<strong>in</strong> study by <strong>the</strong>EMG methods recommended by Basmajian and DeLuca 296 and by Roy 297 , <strong>in</strong> which262


___________________________________________________________Chapter 9<strong>the</strong> EMG signal is submitted to fast Fourier transformation to obta<strong>in</strong> a power densityspectrum. The two different approaches cited above measure different aspects <strong>of</strong> <strong>the</strong>fatigue process and it is possible that <strong>the</strong> less sophisticated approach adopted byOldham et al. 115 may have detected differences <strong>in</strong> <strong>the</strong> Ma<strong>in</strong> study. Conversely, <strong>the</strong>Ma<strong>in</strong> study results may truly reflect <strong>the</strong> fact that fatigue characteristics rema<strong>in</strong>edunaffected by both <strong>stimulation</strong> patterns.The rationale for us<strong>in</strong>g a mixed frequency pattern <strong>of</strong> EMS like RESTIM was that anyimprovement <strong>in</strong> <strong>muscle</strong> strength, <strong>in</strong>duced by <strong>the</strong> ‘doublet’ and <strong>the</strong> high frequencycomponents would not be at <strong>the</strong> expense <strong>of</strong> an <strong>in</strong>crease <strong>in</strong> <strong>muscle</strong> fatigue, due to <strong>the</strong>simultaneous contribution from <strong>the</strong> low frequency component. In <strong>the</strong>ory, <strong>the</strong> lowfrequency background component should have been able to preserve and <strong>in</strong>deedimprove <strong>the</strong> fatigue characteristics <strong>of</strong> <strong>the</strong> <strong>muscle</strong> thus counterbalanc<strong>in</strong>g <strong>the</strong> o<strong>the</strong>r highfrequency components. However, <strong>the</strong>re were no significant pre and post treatmentdifferences <strong>in</strong> <strong>the</strong> fatigue slopes between <strong>the</strong> <strong>group</strong>s <strong>in</strong> any <strong>of</strong> <strong>the</strong> <strong>muscle</strong>s <strong>in</strong>dividuallyor as a comb<strong>in</strong>ed <strong>quadriceps</strong> total. There may be several reasons for <strong>the</strong>se f<strong>in</strong>d<strong>in</strong>gs.Firstly, <strong>the</strong> background low frequency <strong>of</strong> 2.5Hz <strong>in</strong> <strong>the</strong> RESTIM pattern may bequestionable <strong>in</strong> light <strong>of</strong> recent work that has found that <strong>the</strong> effects <strong>of</strong> 2.5Hz <strong>stimulation</strong>was less pr<strong>of</strong>ound than us<strong>in</strong>g 10Hz <strong>stimulation</strong> <strong>in</strong> terms <strong>of</strong> conversion to type I fatigueresistant phenotypes and contractile speed 194 and enzyme activity 319 . Karba et al. 31also proposed this explanation after <strong>the</strong>ir experiments on <strong>the</strong> human VL <strong>muscle</strong>. Theirobserved 15% <strong>in</strong>crease <strong>in</strong> speed <strong>of</strong> contraction but with unchanged fatigue rates<strong>in</strong>dicated <strong>in</strong> <strong>the</strong>ir op<strong>in</strong>ion that <strong>the</strong> VL was undergo<strong>in</strong>g transformation to type IIa fast-263


___________________________________________________________Chapter 9fatigue-resistant <strong>muscle</strong> ra<strong>the</strong>r than wholly to type I or type IIb. It is possible,<strong>the</strong>refore, that <strong>the</strong> effect <strong>of</strong> <strong>the</strong> 2.5Hz <strong>stimulation</strong> <strong>of</strong> <strong>the</strong> RESTIM on fatigue resistancewas less pr<strong>of</strong>ound than 10Hz, result<strong>in</strong>g <strong>in</strong> no improvement. Secondly, <strong>the</strong>re has beensome controversy amongst experts that, <strong>in</strong> a complete <strong>in</strong>version <strong>of</strong> <strong>the</strong> acceptedposition, frequencies close to 35Hz (as <strong>in</strong> <strong>the</strong> EMPI) may be beneficial for improv<strong>in</strong>gfatigue rates <strong>of</strong> <strong>muscle</strong> (Goldsp<strong>in</strong>k, personal communication). Although thiscontroversial explanation has not yet been proven <strong>in</strong> full experimental circumstances,it may expla<strong>in</strong> <strong>the</strong> ability <strong>of</strong> <strong>the</strong> EMPI to improve strength while preserv<strong>in</strong>g fatigueresistance to <strong>the</strong> same extent as RESTIM.Thirdly, <strong>the</strong> contradictions between <strong>the</strong> Ma<strong>in</strong> study and animal studies <strong>in</strong> terms <strong>of</strong> <strong>the</strong>physiological effects on <strong>muscle</strong> are probably due to <strong>the</strong> difference <strong>in</strong> method <strong>of</strong>delivery <strong>of</strong> EMS to <strong>the</strong> <strong>muscle</strong>. Many studies on animals have shown powerful andirrefutable evidence <strong>of</strong> <strong>the</strong> effect <strong>of</strong> EMS on every molecular system <strong>of</strong> <strong>the</strong> <strong>muscle</strong> 96 ,particularly <strong>the</strong> effect <strong>of</strong> chronic low frequency EMS on fatigue resistance. Oneimportant feature noted by this study was <strong>the</strong> contrast between <strong>the</strong> benefits <strong>of</strong> EMS <strong>in</strong>previous animal species studies and <strong>the</strong> less impressive results <strong>in</strong> humans. This hasalso been recognised by o<strong>the</strong>r authors <strong>in</strong> this field 190;320 . Lieber 321 has <strong>of</strong>fered a series<strong>of</strong> reasons for <strong>the</strong>se discrepancies. Firstly, animal studies usually used electrodesthat were surgically implanted whereas almost all human studies usedtranscutaneous <strong>stimulation</strong> with surface electrodes. Secondly, <strong>the</strong> use <strong>of</strong> 24 hourscont<strong>in</strong>uous <strong>stimulation</strong> <strong>in</strong> animals ensured greater doses <strong>of</strong> <strong>stimulation</strong> delivered to<strong>the</strong> animal <strong>muscle</strong>. The same amount <strong>of</strong> <strong>stimulation</strong> <strong>in</strong> humans was cl<strong>in</strong>ically264


___________________________________________________________Chapter 9unacceptable and almost certa<strong>in</strong>ly unfeasible. Thirdly, <strong>the</strong>re were differences <strong>in</strong> <strong>the</strong>conditions <strong>of</strong> <strong>stimulation</strong>. Human <strong>stimulation</strong> was usually delivered isometrically both<strong>in</strong> <strong>the</strong> research and cl<strong>in</strong>ical sett<strong>in</strong>g (as <strong>in</strong> <strong>the</strong> Ma<strong>in</strong> study), whilst animals were allowedfree movement <strong>in</strong> <strong>the</strong> cage dur<strong>in</strong>g <strong>stimulation</strong>. This altered <strong>the</strong> ability <strong>of</strong> <strong>the</strong> EMS toatta<strong>in</strong> maximum <strong>muscle</strong> tension dur<strong>in</strong>g its delivery to <strong>the</strong> <strong>muscle</strong>.Therefore, <strong>the</strong> sett<strong>in</strong>g and delivery to human patients <strong>in</strong> <strong>the</strong> Ma<strong>in</strong> study were probably<strong>in</strong>sufficient to allow <strong>the</strong> low frequency EMS to take effect. When this is coupled withpoor treatment compliance, <strong>the</strong>n it is possible that <strong>the</strong> amount <strong>of</strong> low frequency<strong>stimulation</strong> <strong>the</strong> <strong>quadriceps</strong> received was <strong>in</strong>sufficient for RESTIM to have an effecttowards a greater adaptation to resist fatigue.9.6.5 Changes <strong>in</strong> Pa<strong>in</strong>The statistically significant with<strong>in</strong> <strong>group</strong> improvements for RESTIM (p = 0.004, 35%)and EMPI (p = 0.047, 20.6%) appear impressive (Table 48), yet <strong>the</strong>re were nostatistically significant differences between <strong>the</strong> <strong>group</strong>s (p>0.05) (Table 51).Fur<strong>the</strong>rmore, <strong>the</strong> raw data from <strong>the</strong> VAS reveals an improvement (i.e. a decrease <strong>in</strong>score) <strong>of</strong> -1.2 for RESTIM and -0.7 for EMPI, allow<strong>in</strong>g <strong>the</strong> percentage improvementsto exaggerate <strong>the</strong> raw improvements. As <strong>the</strong>re are no subdivisions between <strong>in</strong>tegerson <strong>the</strong> 10cm VAS, <strong>the</strong> accepted practice is to ‘round <strong>of</strong>f’ numbers to <strong>the</strong> nearest<strong>in</strong>teger. Follow<strong>in</strong>g this practice, <strong>the</strong> figures <strong>of</strong> -1.2 and -0.7 can be rounded <strong>of</strong>f to -1for both RESTIM and EMPI i.e. <strong>the</strong> same decrease <strong>in</strong> pa<strong>in</strong> for both <strong>group</strong>s. There is265


___________________________________________________________Chapter 9no op<strong>in</strong>ion as to how cl<strong>in</strong>ically important a change <strong>of</strong> one po<strong>in</strong>t is on a visual analoguescale and this one po<strong>in</strong>t difference may be cl<strong>in</strong>ically mean<strong>in</strong>gless.Comparison with previous studies was hampered by differences <strong>in</strong> methods used toassess pa<strong>in</strong>. For example, <strong>the</strong> lack <strong>of</strong> between <strong>group</strong> significance was similar to <strong>the</strong>Oldham et al 115comparison <strong>of</strong> different patterns <strong>of</strong> EMS for <strong>the</strong> <strong>quadriceps</strong> onosteoarthritic knees, but pa<strong>in</strong> was assessed solely by a component <strong>of</strong> <strong>the</strong> Nott<strong>in</strong>ghamHealth Pr<strong>of</strong>ile. Gould et al. 158 found an EMS <strong>group</strong> to be significantly superior to acontrol <strong>group</strong> (P < 0.01) over a two weeks period, but <strong>the</strong>y assessed acute pa<strong>in</strong> reliefpost menisectomy by monitor<strong>in</strong>g analgesic medication requirements. Haug andWood 181 also noted a decrease <strong>in</strong> analgesia medication post knee arthroplasty and a“sense <strong>of</strong> pa<strong>in</strong> relief” <strong>in</strong> <strong>the</strong>ir EMS <strong>group</strong> who also received cont<strong>in</strong>uous passivemotion. The closest patient <strong>group</strong> to <strong>the</strong> Ma<strong>in</strong> study was <strong>the</strong> ‘chondromalacia patellae’<strong>group</strong> <strong>in</strong> <strong>the</strong> uncontrolled study by Johnson et al 144 . Here too <strong>the</strong>re was a decrease <strong>in</strong>pa<strong>in</strong> rang<strong>in</strong>g from 60% for <strong>the</strong> mildly affected <strong>group</strong> to 84% <strong>in</strong> <strong>the</strong> severely affected<strong>group</strong>, but <strong>the</strong> method <strong>of</strong> pa<strong>in</strong> measurement was not described.A reduction <strong>in</strong> patell<strong>of</strong>emoral pa<strong>in</strong> accompany<strong>in</strong>g an improvement <strong>in</strong> knee functionhas been previously noted 322 . A common explanation for pa<strong>in</strong> relief is that animprovement <strong>in</strong> <strong>quadriceps</strong> strength provides stability <strong>of</strong> <strong>the</strong> patella resum<strong>in</strong>g normalpatellar track<strong>in</strong>g dur<strong>in</strong>g knee extension and flexion thus result<strong>in</strong>g <strong>in</strong> pa<strong>in</strong> reduction 222 .Optimis<strong>in</strong>g patellar position has been cited as an important factor <strong>in</strong> significantlyreduc<strong>in</strong>g patellar symptoms. The correction to normal function and movement putsless stress on <strong>the</strong> pa<strong>in</strong> sensitive patellar ret<strong>in</strong>aculum and o<strong>the</strong>r peripatellar tissues266


___________________________________________________________Chapter 9with a result<strong>in</strong>g improvement <strong>in</strong> knee stability 50 . The Ma<strong>in</strong> study provided somesupport<strong>in</strong>g evidence for this <strong>the</strong>ory. Not only were <strong>the</strong>re improvements <strong>in</strong> pa<strong>in</strong> and<strong>muscle</strong> strength, but <strong>the</strong>re were also correlations between <strong>the</strong> pre to post treatmentchange <strong>in</strong> <strong>the</strong> VAS and those <strong>in</strong> flexion, steps, <strong>the</strong> Kujala score and isometric strength(Table 21).Us<strong>in</strong>g EMS provides a method <strong>of</strong> improv<strong>in</strong>g patell<strong>of</strong>emoral pa<strong>in</strong> via an improvement<strong>in</strong> <strong>muscle</strong> function, particularly when <strong>in</strong>hibition h<strong>in</strong>ders exercise and efficient voluntarymotor activation 323 . Yet s<strong>in</strong>ce 1979, Eriksson and Haggmark 147broached <strong>the</strong>possibility that some <strong>of</strong> <strong>the</strong> positive effects on <strong>the</strong> <strong>quadriceps</strong> <strong>muscle</strong> from <strong>the</strong>iranterior cruciate ligament case study could have resulted purely from pa<strong>in</strong> reliefacquired directly from <strong>the</strong> EMS device. S<strong>in</strong>ce <strong>the</strong>n o<strong>the</strong>r studies have discussed thispossibility <strong>in</strong> both acute and chronic knee pathologies 131;158 . Morrissey’s review 175implied that EMS could br<strong>in</strong>g about pa<strong>in</strong> relief ei<strong>the</strong>r from a correction <strong>of</strong> <strong>quadriceps</strong><strong>muscle</strong> imbalance or by block<strong>in</strong>g pa<strong>in</strong> signals as <strong>the</strong> EMS <strong>of</strong>fered an alternativesensory stimulus via <strong>the</strong> pa<strong>in</strong> gate <strong>the</strong>ory. It is possible, <strong>the</strong>refore, that <strong>the</strong> frequency<strong>of</strong> <strong>the</strong> RESTIM and EMPI <strong>stimulation</strong> currents could have provided pa<strong>in</strong> relief viaperipheral and central mechanisms similar to transcutaneous <strong>electrical</strong> nerve<strong>stimulation</strong> (TENS) or <strong>in</strong>terferential current. Both stimulators operated at frequenciessimilar to TENS and <strong>the</strong> improvement <strong>in</strong> strength and function could have resulted <strong>in</strong>pa<strong>in</strong> relief facilitat<strong>in</strong>g <strong>muscle</strong> contraction ra<strong>the</strong>r than a result <strong>of</strong> improved <strong>muscle</strong>strength per se.267


___________________________________________________________Chapter 9However, some authors have suggested that TENS and <strong>in</strong>terferential <strong>the</strong>rapy onlyhave an analgesic effect when <strong>the</strong> patients receive <strong>the</strong> <strong>stimulation</strong> and this rapidlydissipates when <strong>the</strong> treatment session stops 324;325 . As all patients <strong>in</strong> <strong>the</strong> Ma<strong>in</strong> studywere assessed at least several hours after complet<strong>in</strong>g <strong>the</strong> treatment programme itseems more likely that <strong>the</strong> pa<strong>in</strong> improvement was due to a carry over effect from <strong>the</strong>EMS ra<strong>the</strong>r than a TENS effect. Therefore, <strong>the</strong> less transient pa<strong>in</strong> relief was probablydue to improved strength and function. This may be <strong>the</strong> reason that all previousstudies <strong>in</strong>volv<strong>in</strong>g EMS on PFPS that have noted an improvement <strong>in</strong> function or<strong>muscle</strong> strength or pa<strong>in</strong> relief have not enterta<strong>in</strong>ed <strong>the</strong> possibility <strong>of</strong> a TENS effect.Despite this, a recent review on EMS, albeit on osteoarthritis <strong>of</strong> <strong>the</strong> knee, recognisesthat this aspect warrants fur<strong>the</strong>r <strong>in</strong>vestigation 326 .9.6.6 Changes <strong>in</strong> Cl<strong>in</strong>ical TestsCl<strong>in</strong>ical tests were <strong>in</strong>cluded to assess <strong>the</strong> effect <strong>of</strong> EMS on knee function. The stepsand flexion tests replicated <strong>the</strong> typical signs and symptoms reported by patients withPFPS such as pa<strong>in</strong> on ascend<strong>in</strong>g and descend<strong>in</strong>g stairs, squatt<strong>in</strong>g and prolongedsitt<strong>in</strong>g. McConnell 89stated that <strong>the</strong>se tests form part <strong>of</strong> a dynamic evaluation <strong>of</strong><strong>muscle</strong> action, symptomology and treatment effectiveness and advocated <strong>the</strong>m forpatell<strong>of</strong>emoral jo<strong>in</strong>t evaluation. Similar tests have been used <strong>in</strong> recent studies <strong>of</strong>PFPS by Witvrouw et al. 284 who noted that two different exercise regimes improvedasymptomatic knee flexion and <strong>the</strong> number <strong>of</strong> asymptomatic steps. In <strong>the</strong> Ma<strong>in</strong> study,<strong>the</strong> strong correlation (r = 0.675, p = 0.0001) between post treatment flexion and post268


___________________________________________________________Chapter 9treatment steps provided some concurrent validity to <strong>the</strong> tests and <strong>in</strong>dicated that onlyone <strong>of</strong> <strong>the</strong>se functional outcome measures may be needed <strong>in</strong> future studies.9.6.6.1 StepsSeveral studies have used ascend<strong>in</strong>g and descend<strong>in</strong>g steps as a measure <strong>of</strong>functional activity when <strong>in</strong>vestigat<strong>in</strong>g PFPS 10;72;327 . Only one previous study alsoassessed a step up and step down to assess a treatment regime 284 . Witvrouw et al. 284had similar results to <strong>the</strong> Ma<strong>in</strong> study <strong>in</strong> that both step up and step down tests showedsignificant with<strong>in</strong> <strong>group</strong> improvements over a 5 week tra<strong>in</strong><strong>in</strong>g period, but no between<strong>group</strong> differences. They attributed this to an association between strength, functionand pa<strong>in</strong>. The 68.7% improvement for RESTIM and 115% for EMPI were highlysignificant (p < 0.0001). This improvement could be expla<strong>in</strong>ed by correspond<strong>in</strong>gimprovements <strong>in</strong> strength and pa<strong>in</strong> as both <strong>the</strong>se factors would ease <strong>the</strong> step up anddown activity considerably. The patient would <strong>the</strong>n feel more able to perform <strong>the</strong> taskbecause ei<strong>the</strong>r <strong>the</strong>y felt stronger or <strong>the</strong>y felt less pa<strong>in</strong>. Evidence from <strong>the</strong> Ma<strong>in</strong> studypo<strong>in</strong>ted to <strong>the</strong> latter as <strong>the</strong>re was a correlation between post treatment steps anddecreased pa<strong>in</strong> (r = -0.373, p = 0.001), but no association with <strong>in</strong>creased strength. Itis difficult to expla<strong>in</strong> why a greater than 68% <strong>in</strong>crease <strong>in</strong> <strong>the</strong> step test wasaccompanied by a less than 10% <strong>in</strong>crease <strong>in</strong> isok<strong>in</strong>etic and isometric <strong>muscle</strong>strength, especially when o<strong>the</strong>r authors stated clearly <strong>the</strong> importance <strong>of</strong> <strong>muscle</strong>strength for function. An explanation may lie <strong>in</strong> a careful analysis <strong>of</strong> Witrouw et al’sresults 284 . These revealed that CKC test<strong>in</strong>g at 60 0 /s only resulted <strong>in</strong> between a 5 –269


___________________________________________________________Chapter 910% strength <strong>in</strong>crease, with at least 100% improvement <strong>in</strong> steps. In o<strong>the</strong>r words, <strong>the</strong>ytoo had a functional <strong>in</strong>crease far <strong>in</strong> excess <strong>of</strong> a strength <strong>in</strong>crease. It is likely that <strong>in</strong> <strong>the</strong>Ma<strong>in</strong> study an accompany<strong>in</strong>g 33% improvement <strong>in</strong> pa<strong>in</strong> may have had a morepr<strong>of</strong>ound effect than <strong>the</strong> 10% ga<strong>in</strong> <strong>in</strong> <strong>muscle</strong> strength. Strength, it seems, was lessrelevant than pa<strong>in</strong> <strong>in</strong> improv<strong>in</strong>g <strong>the</strong> steps test.9.6.6.2 FlexionThe mean range <strong>of</strong> motion for <strong>the</strong> knee prior to treatment was 104 0 for RESTIM and97 0 for EMPI with both improv<strong>in</strong>g to 119 0 and 109 0 respectively (Table 48). Theseranges were less than <strong>the</strong> excepted standard range <strong>of</strong> motion <strong>of</strong> 135 0 with <strong>the</strong> caveatthat <strong>the</strong> standard measurement was calculated with <strong>the</strong> subjects <strong>in</strong> sup<strong>in</strong>e 328 . TheMa<strong>in</strong> study used a weight bear<strong>in</strong>g knee flexion assessment as this is more functionaland relevant test for patients with PFPS 230 . The difference <strong>in</strong> test<strong>in</strong>g positions wouldexpla<strong>in</strong> discrepancies <strong>in</strong> <strong>the</strong> pre treatment figures <strong>of</strong> 100 0 recorded for 79 patients <strong>in</strong>this study and those <strong>of</strong> 137 0 noted for 99 runners with anterior knee pa<strong>in</strong> tested <strong>in</strong>sup<strong>in</strong>e 8 . The Ma<strong>in</strong> study showed a significant knee flexion improvement with<strong>in</strong> both<strong>group</strong>s that <strong>in</strong> <strong>the</strong>ory could be due to a concomitant improvement <strong>in</strong> pa<strong>in</strong>, or <strong>muscle</strong>strength. The patient may have felt less discomfort on knee flexion or felt strongerand began to use <strong>the</strong> knee better <strong>in</strong> functional everyday circumstances, result<strong>in</strong>g <strong>in</strong>greater range <strong>of</strong> motion and better stretch <strong>of</strong> <strong>the</strong> <strong>quadriceps</strong> and o<strong>the</strong>r knee tissues.The results showed strong correlations between pa<strong>in</strong> score and flexion, but not with270


___________________________________________________________Chapter 9strength <strong>in</strong>dicat<strong>in</strong>g that (as with <strong>the</strong> <strong>in</strong>crease <strong>in</strong> steps) <strong>the</strong> <strong>in</strong>crease <strong>in</strong> flexion is likelyto be expla<strong>in</strong>ed by a decrease <strong>in</strong> pa<strong>in</strong> ra<strong>the</strong>r than <strong>in</strong>crease <strong>in</strong> strength.In <strong>the</strong> cl<strong>in</strong>ical sett<strong>in</strong>g exercises to <strong>in</strong>crease flexibility <strong>of</strong> <strong>the</strong> knee tissues and <strong>the</strong><strong>quadriceps</strong> are regularly prescribed. This was not done <strong>in</strong> <strong>the</strong> Ma<strong>in</strong> study for tworeasons. Firstly, add<strong>in</strong>g a second exercise regime to <strong>the</strong> EMS programme may haveproved too time consum<strong>in</strong>g, complicated and even unacceptable for some patients.Secondly, <strong>the</strong> <strong>in</strong>troduction <strong>of</strong> a stretch<strong>in</strong>g regime to <strong>the</strong> <strong>quadriceps</strong> would have hadimportant physiological implications to <strong>the</strong> study. Animal studies have <strong>in</strong>dicated that<strong>the</strong>re may be some use <strong>in</strong> add<strong>in</strong>g passive stretch<strong>in</strong>g to an EMS regime 146 . If passivestretch could possibly have <strong>in</strong>fluenced <strong>the</strong> outcome, <strong>the</strong>n it was important to elim<strong>in</strong>atethis as a confound<strong>in</strong>g variable <strong>in</strong> this study. Never<strong>the</strong>less, <strong>the</strong> concept <strong>of</strong> comb<strong>in</strong><strong>in</strong>gpassive stretch and EMS rema<strong>in</strong>s an important consideration for future studies.9.6.7 Changes <strong>in</strong> Kujala questionnaireThe improvement <strong>in</strong> Kujala score had high with<strong>in</strong> <strong>group</strong>s statistical significance(RESTIM: 6 po<strong>in</strong>ts, 7.8%, p = 0.007; EMPI: 7.8 po<strong>in</strong>ts, 11.1% p = 0.001) (Table 48),but no between <strong>group</strong>s differences (Table 50). The raw difference <strong>of</strong> 1.8 po<strong>in</strong>tsbetween <strong>the</strong> <strong>group</strong>s is unlikely to be cl<strong>in</strong>ically significant, unlike <strong>the</strong> largerimprovements seen with<strong>in</strong> <strong>group</strong>s. The concomitant improvements <strong>in</strong> <strong>muscle</strong>strength, pa<strong>in</strong>, steps, knee flexion and Kujala score for both <strong>group</strong>s was not surpris<strong>in</strong>gas <strong>the</strong> Kujala score has been used <strong>in</strong> previous studies on PFPS as a representation<strong>of</strong> ‘functionality’ 281 . Indeed <strong>the</strong> improvements between pre and post treatment Kujala271


___________________________________________________________Chapter 9score were significantly associated with improvements <strong>in</strong> isok<strong>in</strong>etic and isometricstrength, steps, flexion and pa<strong>in</strong>.In <strong>the</strong>ory <strong>the</strong> improved <strong>muscle</strong> performance would have provided patellar stability andprobably helped <strong>the</strong> patient to perform better many <strong>of</strong> <strong>the</strong> functional tasks described<strong>in</strong> <strong>the</strong> questionnaire such as stair climb<strong>in</strong>g and descend<strong>in</strong>g, prolonged walk<strong>in</strong>g, lift<strong>in</strong>gand squatt<strong>in</strong>g. Similarly, an improvement <strong>in</strong> pa<strong>in</strong> recorded by <strong>the</strong> VAS was reflected<strong>in</strong> <strong>the</strong> questions about generalised pa<strong>in</strong> at night, day or dur<strong>in</strong>g any activities 283;284 .Witvrouw et al. 284 recorded similar Kujala results <strong>in</strong> <strong>the</strong>ir comparison <strong>of</strong> OKC and CKCexercise <strong>group</strong>s, with significant with<strong>in</strong> <strong>group</strong> but no between <strong>group</strong> differences. Theyalso noted <strong>the</strong> ‘important’ associations between <strong>muscle</strong> strength <strong>in</strong>creases,improvement <strong>in</strong> functionality and a decrease <strong>in</strong> pa<strong>in</strong>.9.6.8 Changes <strong>in</strong> Quadriceps Cross Sectional AreaThis was <strong>the</strong> only outcome measure that revealed a significant difference between<strong>the</strong> RESTIM and EMPI <strong>group</strong>s. This was contrary to <strong>the</strong> Pilot study results, <strong>in</strong> Chapter8, and to a previous study that had used patterned EMS on patients with osteoarthritis<strong>of</strong> <strong>the</strong> knee 292 . The different results between <strong>the</strong> study by Howe 292 and this study mayhave been due to slight differences <strong>in</strong> scann<strong>in</strong>g techniques. The difference from <strong>the</strong>Pilot study is probably due to a smaller sample size caus<strong>in</strong>g a statistical type ll error.S<strong>in</strong>ger 323 used CT scans pre and post high frequency EMS on <strong>the</strong> <strong>quadriceps</strong> <strong>of</strong> 15males with a variety <strong>of</strong> unspecified knee conditions and found a mean non-significantimprovement <strong>of</strong> 2.72% (p > 0.05). However, this was accompanied by a significant272


___________________________________________________________Chapter 922% improvement (p< 0.001) <strong>in</strong> mean force production <strong>of</strong> <strong>the</strong> <strong>quadriceps</strong>. Hehypo<strong>the</strong>sised <strong>the</strong>n 323 and discussed <strong>in</strong> a later paper 329 that EMS could improveneuromuscular efficiency (as seen <strong>in</strong> <strong>the</strong> <strong>in</strong>crease <strong>in</strong> force) ra<strong>the</strong>r than have ahypertrophic <strong>in</strong>fluence (as seen <strong>in</strong> <strong>the</strong> unchanged <strong>quadriceps</strong> CSA). The concept <strong>of</strong>neural adaptation dur<strong>in</strong>g EMS to expla<strong>in</strong> strength changes <strong>in</strong> <strong>the</strong> absence <strong>of</strong>morphological changes <strong>in</strong> <strong>the</strong> <strong>muscle</strong> has also been discussed previously 330 .Only one o<strong>the</strong>r study has used an acceptable method <strong>of</strong> measur<strong>in</strong>g <strong>quadriceps</strong> CSAbefore and after treat<strong>in</strong>g PFPS with EMS. Werner et al. 30 used CT scann<strong>in</strong>g andalthough <strong>the</strong>y described a 6% improvement <strong>of</strong> <strong>the</strong> VMO relative to <strong>the</strong> VL after 40Hz<strong>stimulation</strong> <strong>the</strong> raw data and statistics were not presented, nor an explanation how<strong>the</strong>y managed to dist<strong>in</strong>guish <strong>the</strong> VMO from <strong>the</strong> vastus medialis <strong>in</strong> <strong>the</strong>ir calculations.Differences <strong>in</strong> CSA between RESTIM and EMPI <strong>in</strong> <strong>the</strong> Ma<strong>in</strong> study could have beendue to variations <strong>in</strong> treatment time or <strong>the</strong> amount <strong>of</strong> <strong>muscle</strong> targetted by each EMSregime. However, data from <strong>the</strong> compliance diaries <strong>in</strong>dicated that <strong>the</strong>re were nodifferences between <strong>the</strong> <strong>group</strong>s <strong>in</strong> <strong>the</strong> number <strong>of</strong> treatments applied (RESTIM = 35 ±6.5 : EMPI 35 ± 6.5) and <strong>the</strong> multiple regressional analysis confirmed that compliancewas not a predictor variable. Fur<strong>the</strong>rmore, <strong>in</strong> order to standardise <strong>the</strong> muscularcontraction dur<strong>in</strong>g treatment, all patients were <strong>in</strong>structed to set <strong>the</strong> amplitude <strong>of</strong> eachdevice to <strong>the</strong> highest possible for a strong, yet comfortable contraction. This wasestimated after pre pilot work on healthy subjects to be about 20% <strong>of</strong> a maximumvoluntary isometric contraction irrespective <strong>of</strong> <strong>the</strong> EMS device used. This is close to<strong>the</strong> 25% <strong>of</strong> MVIC atta<strong>in</strong>ed by Lieber and Kelly 190 .273


___________________________________________________________Chapter 9The statistically significant result between <strong>the</strong> <strong>group</strong>s may be <strong>in</strong>terpreted as RESTIMhav<strong>in</strong>g an effect on <strong>muscle</strong> size that was cl<strong>in</strong>ically worthwhile. RESTIM CSA<strong>in</strong>creased by 0.582cm 2 , whereas EMPI CSA decreased by 0.181 cm 2 . However,caution should be exercised when <strong>in</strong>terpret<strong>in</strong>g <strong>the</strong>se results. In Chapter 7.4.1 <strong>the</strong>SDD for <strong>quadriceps</strong> CSA was calculated as 0.80cm 2 , which is <strong>the</strong> value neededbefore declar<strong>in</strong>g that <strong>the</strong>re was a worthwhile change <strong>in</strong> CSA. Therefore, although<strong>the</strong>re is a statistically significant difference between <strong>the</strong> RESTIM and EMPI regimes,(p = 0.023) and with<strong>in</strong> RESTIM (p = 0.021) <strong>the</strong>se figures are smaller than <strong>the</strong>measurement error <strong>in</strong>curred when us<strong>in</strong>g an ultrasound scann<strong>in</strong>g technique. As such<strong>the</strong> results may simply be due to limitations <strong>in</strong> <strong>the</strong> measurement technique.9.7 Limitations <strong>of</strong> and recommendations from <strong>the</strong> studyThe major limitation that should be considered for this Ma<strong>in</strong> study was <strong>the</strong> lack <strong>of</strong> acontrol <strong>group</strong>. This limitation has also been acknowledged <strong>in</strong> previous studiescompar<strong>in</strong>g two or more types <strong>of</strong> EMS (after ACL repair) 142;179 or exercise programmeson PFPS patients 284;331 . Witvrouw et al. 284 , for example, performed a randomisedprospective study <strong>of</strong> two exercise regimes on PFPS. They did not use a control <strong>group</strong>for two reasons. Firstly, it was considered unethical to withhold treatment from <strong>the</strong>sepatients. Secondly, due to <strong>the</strong> chronicity <strong>of</strong> <strong>the</strong> patients’ condition (mean duration 65weeks) <strong>the</strong>y believed it was improbable that any significant natural improvementwould have occurred dur<strong>in</strong>g <strong>the</strong> timescale <strong>of</strong> <strong>the</strong> study. They were, <strong>the</strong>refore,“relatively certa<strong>in</strong>” that <strong>the</strong> significant improvements resulted from <strong>the</strong> exercise274


___________________________________________________________Chapter 9programmes. A similar rationale had been used earlier by Thomeé 331 . He believedtime was not a major reason for patient’s improvement based on <strong>the</strong> observation that<strong>the</strong> patients had received no treatment without relief <strong>of</strong> symptoms for an average <strong>of</strong>32 weeks prior to his study. In <strong>the</strong> Ma<strong>in</strong> study, <strong>the</strong> mean duration <strong>in</strong> <strong>the</strong> patients’condition prior to treatment was even longer at 112 weeks for both <strong>group</strong>s comb<strong>in</strong>ed.Fur<strong>the</strong>rmore, patients were referred from <strong>the</strong> cl<strong>in</strong>ical sett<strong>in</strong>gs <strong>of</strong> orthopaedic cl<strong>in</strong>icsand general practice and so <strong>the</strong>re were ethical considerations when withhold<strong>in</strong>gtreatment from a patient who was referred for treatment, albeit <strong>in</strong> a researchenvironment. One alternative would have been to use <strong>the</strong> patients contralateral limbas an <strong>in</strong>ternal control. However, o<strong>the</strong>r researchers <strong>in</strong> <strong>the</strong> field <strong>of</strong> EMS have advisedaga<strong>in</strong>st this method due to <strong>the</strong> possibility <strong>of</strong> a bilateral tra<strong>in</strong><strong>in</strong>g affect <strong>of</strong> <strong>the</strong> EMSillustrat<strong>in</strong>g <strong>the</strong> phenomenon <strong>of</strong> cross transfer with<strong>in</strong> <strong>the</strong> nervous system affect<strong>in</strong>g bothmotoneurone pools 323 .All o<strong>the</strong>r aspects <strong>of</strong> <strong>the</strong> trial were controlled as rigorously as possible by adopt<strong>in</strong>g <strong>the</strong>gold standard RCT approach, ensur<strong>in</strong>g that it was adequately powered and <strong>the</strong>validity and reliability <strong>of</strong> <strong>the</strong> outcome measures <strong>in</strong>volved. Fur<strong>the</strong>rmore, <strong>the</strong>heterogenous nature <strong>of</strong> <strong>the</strong> patient sample supports <strong>the</strong> external validity <strong>of</strong> <strong>the</strong> trialresults. The results were, <strong>the</strong>refore, considered valid and should be <strong>in</strong>terpreted assuch.275


___________________________________________________________Chapter 99.8 ConclusionThis <strong>the</strong>sis has attempted a logical progression <strong>of</strong> demonstrat<strong>in</strong>g reliable outcometest<strong>in</strong>g, <strong>the</strong>n conduct<strong>in</strong>g a Pilot study prior to <strong>in</strong>stigat<strong>in</strong>g a well powered, robust andrigorous double bl<strong>in</strong>ded, randomised trial.The aim was to compare <strong>the</strong> effect <strong>of</strong> a mixed frequency pattern <strong>of</strong> EMS conta<strong>in</strong><strong>in</strong>g adoublet, high and a low frequency components with a uniform pattern conta<strong>in</strong><strong>in</strong>g afixed frequency <strong>of</strong> 35Hz us<strong>in</strong>g a commercially available EMS device.After successfully conduct<strong>in</strong>g reliability studies and a Pilot study, <strong>the</strong> Ma<strong>in</strong> studydeveloped <strong>the</strong> protocol fur<strong>the</strong>r with 80 patients. This showed that deliver<strong>in</strong>g asimultaneous mixed frequency pattern <strong>of</strong> EMS or a uniform frequency EMS pattern to<strong>the</strong> human <strong>quadriceps</strong> resulted <strong>in</strong> similar outcomes for patients with PFPS.The results, <strong>the</strong>refore, did not permit <strong>the</strong> rejection <strong>of</strong> <strong>the</strong> null hypo<strong>the</strong>sis.It would appear that <strong>the</strong> effects <strong>of</strong> both types <strong>of</strong> <strong>stimulation</strong> are similar, be<strong>in</strong>g no betternor worse than any o<strong>the</strong>r documented approach to this cl<strong>in</strong>ical problem. F<strong>in</strong>d<strong>in</strong>g amore effective evidence based approach to treatment rema<strong>in</strong>s a challenge to allhealth pr<strong>of</strong>essionals <strong>in</strong>volved <strong>in</strong> <strong>the</strong> management <strong>of</strong> patients with this condition.276


___________________________________________________________Chapter 99.9 Thesis OverviewAn overview <strong>of</strong> <strong>the</strong> <strong>the</strong>sis allows fur<strong>the</strong>r analysis and discussion <strong>of</strong> <strong>the</strong> problems thatmay have impacted on <strong>the</strong> results <strong>of</strong> <strong>the</strong> Ma<strong>in</strong> study. It is only by highlight<strong>in</strong>g <strong>the</strong>seissues now that studies on EMS and PFPS can be helped and guided <strong>in</strong> <strong>the</strong> future.9.9.1 Inclusion and Exclusion CriteriaAll patients <strong>in</strong> <strong>the</strong> Pilot study and <strong>the</strong> Ma<strong>in</strong> study referred from ei<strong>the</strong>r orthopaedic orrheumatology cl<strong>in</strong>ics were hav<strong>in</strong>g been diagnosed with PFPS. It is commonly written(and <strong>the</strong>refore commonly accepted) that <strong>the</strong> aetiology <strong>of</strong> PFPS is ‘multifactorial’. Thisis stated <strong>in</strong> this <strong>the</strong>sis <strong>in</strong> section 2.3. What is less clear from texts us<strong>in</strong>g thisdescription is whe<strong>the</strong>r <strong>the</strong> patients are multifactorial or unifactorial. In o<strong>the</strong>r words,although <strong>the</strong> condition is multifactorial <strong>the</strong> patients may only have one <strong>of</strong> <strong>the</strong>aetiological features <strong>of</strong> this condition. The cause <strong>of</strong> <strong>the</strong> patellar problem can be dueto one major factor, but <strong>the</strong> problem itself can vary from patient to patient. Thepremise beh<strong>in</strong>d <strong>the</strong> cl<strong>in</strong>ical exam<strong>in</strong>ation and gait analysis was to ensure that patientswhose condition could be attributed, for example, to abnormal foot and anklepronation or tightness <strong>of</strong> <strong>the</strong> hamstr<strong>in</strong>g <strong>muscle</strong>s or referred pa<strong>in</strong> from <strong>the</strong> lumbarsp<strong>in</strong>e or hip jo<strong>in</strong>t were not treated with a <strong>quadriceps</strong> streng<strong>the</strong>n<strong>in</strong>g programme <strong>of</strong>EMS when <strong>the</strong> source <strong>of</strong> <strong>the</strong> problem was aris<strong>in</strong>g from an identifiable causeelsewhere <strong>in</strong> <strong>the</strong> body. From <strong>the</strong> results <strong>in</strong> Chapters 4 and 5 (that support <strong>the</strong> strongevidence from <strong>the</strong> literature) patients with PFPS exhibited weakened <strong>quadriceps</strong><strong>muscle</strong>s and <strong>the</strong> absence <strong>of</strong> any abnormal cl<strong>in</strong>ical f<strong>in</strong>d<strong>in</strong>g means that <strong>the</strong> patients277


___________________________________________________________Chapter 9were be<strong>in</strong>g treated appropriately with a EMS <strong>muscle</strong> streng<strong>the</strong>n<strong>in</strong>g regime for <strong>the</strong>cause <strong>of</strong> <strong>the</strong>ir PFPS. Care should be taken to ensure that patients with multifactorialaetiology are properly screened to enable an appropriate rehabilitation regime to takeplace. Screen<strong>in</strong>g methods need not be expensive, and a thorough exam<strong>in</strong>ation by anexperienced cl<strong>in</strong>ician is sufficient to ensure that patients with unifactorial pathology,such as <strong>quadriceps</strong> weakness, are treated with <strong>the</strong> appropriate regime.9.9.2 Sample SizeThe sample size for <strong>the</strong> Ma<strong>in</strong> study was calculated from <strong>the</strong> Pilot study data <strong>of</strong> 14patients. Despite us<strong>in</strong>g <strong>the</strong> same cl<strong>in</strong>ical condition, diagnosed <strong>in</strong> <strong>the</strong> same cl<strong>in</strong>ics, <strong>the</strong>same outcome measures, and <strong>the</strong> same treatment modality (albeit with a differentcomparative control EMS device as stated <strong>in</strong> section 8.10) <strong>the</strong> Ma<strong>in</strong> study wasconsiderably underpowered (see Table 52). Reasons for this may be that <strong>the</strong> Pilotstudy had a patient sample with 2 males and 12 females. As it is well documentedthat females exhibit weaker <strong>quadriceps</strong> than males, <strong>the</strong> Pilot study values for<strong>quadriceps</strong> isometric and isok<strong>in</strong>etic strength were lower than <strong>the</strong> Ma<strong>in</strong> study. Forexample, <strong>the</strong> mean isometric pre treatment value <strong>in</strong> <strong>the</strong> Pilot study was 66.2Nm, butwas 107Nm <strong>in</strong> <strong>the</strong> Ma<strong>in</strong> study. It is likely that <strong>the</strong> disparity <strong>in</strong> gender distribution hadan effect on <strong>the</strong> power calculation for <strong>the</strong> Ma<strong>in</strong> study. Therefore, care should be takenthat data taken from pilot studies preced<strong>in</strong>g larger trials to perform power calculationsare performed on a similar gender mix anticipated <strong>in</strong> <strong>the</strong> larger study. A pilot study is278


___________________________________________________________Chapter 9<strong>of</strong>ten prone to rapid recruitment <strong>in</strong> an understandable attempt to ga<strong>the</strong>r <strong>in</strong>formationquickly and this <strong>the</strong>sis has elucidated <strong>the</strong> problem <strong>of</strong> an imbalanced mix <strong>of</strong> gender.9.9.3 AutocorrelationMultiple regression models were <strong>in</strong>troduced <strong>in</strong>to <strong>the</strong> Ma<strong>in</strong> study to check for variablessuch as compliance which may have had an effect on <strong>the</strong> o<strong>the</strong>r variables. However,<strong>the</strong>re are some limitations to us<strong>in</strong>g modell<strong>in</strong>g <strong>in</strong> this way that concern autocorrelationor co-l<strong>in</strong>earity. In this study many <strong>of</strong> <strong>the</strong> co-variates were highly correlated with eacho<strong>the</strong>r as observed <strong>in</strong> <strong>the</strong> correlation matrices (Table 21). For example isometricstrength and isok<strong>in</strong>etic strength could be said to have an <strong>in</strong>built correlation because<strong>the</strong>y are perform<strong>in</strong>g a very similar evaluation i.e. <strong>quadriceps</strong> <strong>muscle</strong> strength.Unfortunately, if two highly correlated co-variates are <strong>in</strong> a model, <strong>the</strong>n it is difficult todetect both effects <strong>in</strong>dependently and it is possible to pick up a variable because iscorrelated ra<strong>the</strong>r than because it is causal. Also, <strong>the</strong>re is a chance that one <strong>of</strong> <strong>the</strong>mwill be missed because it is be<strong>in</strong>g masked by its autocorrelated covariate. Therefore,<strong>the</strong> model may not be <strong>the</strong> <strong>the</strong>oretically or causally correct one.These problems are described as ‘co-l<strong>in</strong>earity’ or ‘autocorrelation’ and are based on<strong>the</strong> same phenomenon. In this study, histograms and scatterplots were created andanalysed and a Durb<strong>in</strong>-Watson statistic produced to evaluate <strong>the</strong> possibility <strong>of</strong> nonnormallydistributed data. Therefore, researchers <strong>of</strong> future studies that perform similaroutcome measures should be aware <strong>of</strong> <strong>the</strong>se limitations <strong>of</strong> multiple regressionmodell<strong>in</strong>g and <strong>the</strong> methods to check for <strong>the</strong>ir existence.279


___________________________________________________________Chapter 99.9.4 ComplianceAs with all pragmatic cl<strong>in</strong>ical trials, and <strong>in</strong>deed all aspects <strong>of</strong> physio<strong>the</strong>rapyrehabilitation, compliance <strong>of</strong> <strong>the</strong> patient is extremely important. Full compliance with<strong>the</strong> treatment programme was only achieved by a m<strong>in</strong>ority although this was spreadevenly between <strong>the</strong> two <strong>group</strong>s. The reasons for this lack <strong>of</strong> compliance are not easyto expla<strong>in</strong>. Compared to o<strong>the</strong>r home treatment based programmes, <strong>the</strong> Ma<strong>in</strong> studyprotocol was not complex and <strong>in</strong> many ways represented a ‘best-case-scenario’ forhome treatment i.e. it was applied <strong>in</strong> ly<strong>in</strong>g or sitt<strong>in</strong>g and <strong>the</strong> device controlled all<strong>stimulation</strong> parameters except <strong>in</strong>tensity. It is possible that apply<strong>in</strong>g treatmenteveryday was problematic for some patients and that a programme <strong>of</strong> <strong>stimulation</strong> onalternate days may <strong>in</strong> future lead to improved compliance. Due to <strong>the</strong> <strong>in</strong>structionsgiven to <strong>the</strong> patients at <strong>the</strong> outset <strong>of</strong> treatment, it was presumed that <strong>the</strong>y used <strong>the</strong>highest comfortable <strong>in</strong>tensity <strong>of</strong> <strong>stimulation</strong> over <strong>the</strong> treatment period. However, dueto <strong>the</strong> s<strong>of</strong>tware failures already reported <strong>in</strong> Chapter 9, <strong>the</strong> output <strong>in</strong>tensity could notbe monitored. Consequently, it is possible that some patients found even <strong>the</strong> lowerlevels <strong>of</strong> current output uncomfortable with <strong>the</strong> result that <strong>the</strong>ir <strong>quadriceps</strong> contractionwas m<strong>in</strong>or with a m<strong>in</strong>imal effect on <strong>the</strong> <strong>muscle</strong>. It is <strong>the</strong>refore imperative that newerversions <strong>of</strong> EMS devices have some form <strong>of</strong> reliable <strong>in</strong>built compliance monitor sothat <strong>the</strong>se important aspects can be evaluated correctly with proper data.280


___________________________________________________________Chapter 99.9.5 Reasons for No Differences between GroupsDespite patients <strong>in</strong> both <strong>group</strong>s improv<strong>in</strong>g <strong>in</strong> almost every outcome measure, <strong>the</strong>current <strong>in</strong>vestigation reported <strong>in</strong> this <strong>the</strong>sis found no differences between <strong>the</strong> two<strong>group</strong>s except for <strong>quadriceps</strong> CSA, which could be deemed cl<strong>in</strong>ically <strong>in</strong>significant.The reasons for this may be expla<strong>in</strong>ed to some extent by <strong>the</strong> issues cited <strong>in</strong> <strong>the</strong>paragraphs above. Sample size and patient compliance are difficult aspects <strong>of</strong> anycl<strong>in</strong>ical trial when patient volunteer recruitment is achieved <strong>in</strong> a cl<strong>in</strong>ical sett<strong>in</strong>g ando<strong>the</strong>r aspects <strong>of</strong> a patient’s condition may affect <strong>the</strong>ir ability to comply with treatment.If <strong>the</strong>se aspects are not taken <strong>in</strong>to account <strong>the</strong>n it may be erroneously concluded that<strong>the</strong>re were no differences between <strong>group</strong>s. Never<strong>the</strong>less, pragmatic cl<strong>in</strong>ical trials forman important aspect <strong>of</strong> physio<strong>the</strong>rapy research and it behoves <strong>the</strong> researcher to beboth aware and wary <strong>of</strong> <strong>the</strong> problems encountered by and highlighted <strong>in</strong> this <strong>the</strong>sis.281


_________________________________________________________ReferencesREFERENCES282


__________________________________________________________References10 REFERENCES1 James SL. Chondromalacia <strong>of</strong> <strong>the</strong> patella <strong>in</strong> <strong>the</strong> adolescent. In: Kennedy JC,editor. The <strong>in</strong>jured adolescent knee. Baltimore: Williams and Wilk<strong>in</strong>s Co., 1979:205-251.2 Dye SF, Staubli HU, Bierdert RM, Vaupel GL. The mosaic <strong>of</strong> pathophysiologycaus<strong>in</strong>g patell<strong>of</strong>emoral pa<strong>in</strong>: <strong>the</strong>rapeutic implications. Operative Techniques <strong>in</strong>Sports Medic<strong>in</strong>e 1999; 7(2):46-54.3 Tria AJ, Palumbo RC, Alicea JA. Comprehensive care for patell<strong>of</strong>emoral pa<strong>in</strong>.Orthop Cl<strong>in</strong>ic N Am 1992; 23(4):545-553.4 Sanchis-Alfonso V, Rosello-Sastre E, Mart<strong>in</strong>ez-Sanjuan V. Pathogenesis <strong>of</strong>anterior knee pa<strong>in</strong> syndrome and functional patell<strong>of</strong>emoral <strong>in</strong>stability <strong>in</strong> <strong>the</strong> activeyoung. Am J Knee Surg 1999; 12(1):29-40.5 Kasim N, Fulkerson JP. Resection <strong>of</strong> cl<strong>in</strong>ically localized segments <strong>of</strong> pa<strong>in</strong>fulret<strong>in</strong>aculum <strong>in</strong> <strong>the</strong> treatment <strong>of</strong> selected patients with anterior knee pa<strong>in</strong>. Am JSports Med 2000; 28(6):811-814.6 Schneider U, Breusch SJ, Thomsen M, Wenz W, Graf J, Niethard FU. A newconcept <strong>in</strong> <strong>the</strong> tyreatment <strong>of</strong> anterior knee pa<strong>in</strong>: patellar hypertension syndrome.Orthopedics 2000; 23(6):581-586.7 Fisher RL. Conservative treatment <strong>of</strong> patell<strong>of</strong>emoral pa<strong>in</strong>. Orthop Cl<strong>in</strong>ic N Am1986; 17(2):269-272.8 Duffey MJ, Mart<strong>in</strong> DF, Cannon DW, Craven T, Messier SP. Etiological factorsassociated with anterior knee pa<strong>in</strong> <strong>in</strong> distance runners. Med Sci Sport Exerc2000; 32(11):1825-1832.9 Bennett JG, Stauber WT. Evaluation and treatment <strong>of</strong> anterior knee pa<strong>in</strong> us<strong>in</strong>geccentric exercise. Med Sci Sport Exerc 1986; 18(5):526-530.10 Souza DR, Gross MT. Comparison <strong>of</strong> Vastus Medialis Obliquus:Vastus Lateralis<strong>muscle</strong> <strong>in</strong>tergrated electromyographic ratios between healthy subjects andpatients with patell<strong>of</strong>emoral pa<strong>in</strong>. Phys Ther 1991; 71(4):310-320.283


__________________________________________________________References11 Powers CM, Landel R, Perry J. Tim<strong>in</strong>g and <strong>in</strong>tensity <strong>of</strong> vastus <strong>muscle</strong> activitydur<strong>in</strong>g functional activities <strong>in</strong> subjects with and without patell<strong>of</strong>emoral pa<strong>in</strong>. PhysTher 1996; 76(9):946-955.12 Nimon G, Murray D, Sandow MJ, Goodfellow J. Natural history <strong>of</strong> anterior kneepa<strong>in</strong>: A 14 to 20 year follow-up <strong>of</strong> nonoperative management. J Pediatr Orthop1998; 18(1):118-122.13 Kannus P, Natri A, Paakkala T, Jarv<strong>in</strong>en M. An outcome study <strong>of</strong> chronicpatell<strong>of</strong>emoral pa<strong>in</strong> syndrome: seven-year follow up <strong>of</strong> patients <strong>in</strong> a randomized,controlled trial. J Bone Jo<strong>in</strong>t Surg (Am) 1999; 81-A(3):355-363.14 Kannus P, Niittymaki S. Which factors predict outcome <strong>in</strong> <strong>the</strong> nonoperativetreatment <strong>of</strong> patell<strong>of</strong>emoral pa<strong>in</strong> syndrome? a prospective follow-up study. MedSci Sport Exerc 1993; 26(3):289-296.15 Kannus P, Natri A, Niittymaki S, Jarv<strong>in</strong>en M. Effect <strong>of</strong> <strong>in</strong>traarticularglycosam<strong>in</strong>glycan polysulfate treatment <strong>of</strong> patell<strong>of</strong>emoral pa<strong>in</strong> syndrome.Arthritis Rheum 1992; 35(9):1053-1061.16 Dye SF, Vaupel GL. The pathophysiology <strong>of</strong> patell<strong>of</strong>emoral pa<strong>in</strong>. Sports MedArthrosc Rev 1994; 2(3):203-210.17 Trimble MH, Enoka RM. Mechanisms underly<strong>in</strong>g <strong>the</strong> tra<strong>in</strong><strong>in</strong>g effects associatedwith neuromuscular <strong>electrical</strong> <strong>stimulation</strong>. Phys Ther 1991; 71(4):273-282.18 Howe TE, Petterson T, Smith G, Tallis R, Oldham JA. Electro<strong>the</strong>rapy for<strong>muscle</strong>s: time for a new start? Cl<strong>in</strong> Rehabil 1993; 7:73-77.19 H<strong>of</strong>f HB. Galvani and <strong>the</strong> pre-Galvanian electrophysiologists. Ann Sci 1936;1:889-891.20 Salmons S, Vrbová G. The <strong>in</strong>fluence <strong>of</strong> activity <strong>of</strong> skeletal <strong>muscle</strong> to <strong>in</strong>creaseduse. J Physiol 1969; 201:535-549.21 Kidd GJ, Oldham JA. An electro<strong>the</strong>rapy based on <strong>the</strong> natural sequence <strong>of</strong> motorunit action potentials: a laboratory trial. Cl<strong>in</strong> Rehabil 1988; 2:125-138.22 Laycock J, Green RJ. Interferential <strong>the</strong>rapy <strong>in</strong> <strong>the</strong> treatment <strong>of</strong> <strong>in</strong>cont<strong>in</strong>ence.Physio<strong>the</strong>rapy 1988; 74(4):161-168.284


__________________________________________________________References23 Kwende MMN, Jarvis JC, Salmons S. The <strong>in</strong>put output relations <strong>of</strong> skeletal<strong>muscle</strong>. Proc Royal Soc London 1995; 261(1361):193-210.24 Armstrong CA, Oldham JA. Development <strong>of</strong> an optimised <strong>electrical</strong> <strong>stimulation</strong>regimen to maximise force output <strong>of</strong> <strong>the</strong> human first dorsal <strong>in</strong>terosseus (FDI)<strong>muscle</strong>. J Hand Surg 1999.25 Denslow JS. Double discharges <strong>in</strong> human motor units. J Physiol 1948;11(209):215.26 Williams JGP, Street M. Sequential faradism <strong>in</strong> <strong>quadriceps</strong> rehabilitation.Physio<strong>the</strong>rapy 1976; 62(8):252-254.27 Devereaux MD, Lachmann S. Patell<strong>of</strong>emoral arthralgia <strong>in</strong> athletes attend<strong>in</strong>g asports <strong>in</strong>jury cl<strong>in</strong>ic. Brit J Sports Med 1984; 18(1):18-21.28 Garrick JG. Anterior knee pa<strong>in</strong>. Phys Sportsmed 1989; 17(1):75-84.29 Woodall W, Welsh J. A biomechanical basis for rehabilitation programs <strong>in</strong>volv<strong>in</strong>g<strong>the</strong> patell<strong>of</strong>emoral jo<strong>in</strong>t. J Orthop Sports Phys Ther 1990; 11(11):535-542.30 Werner S, Arvidsson H, Arvidsson I, Eriksson E. Electrical <strong>stimulation</strong> <strong>of</strong> vastusmedialis and stretch<strong>in</strong>g <strong>of</strong> lateral thigh <strong>muscle</strong>s <strong>in</strong> patients with patello-femoralsymptoms. Knee Surg Sports Traumatol Arthroscopy 1993; 1(2):85-92.31 Karba R, Stefanovska A, Dordevic S. Human skeletal <strong>muscle</strong>: phasic type <strong>of</strong><strong>electrical</strong> <strong>stimulation</strong> <strong>in</strong>creases its contractile speed. Ann Biomed Eng 1990;18(5):479-490.32 Selkowitz DM. Improvement <strong>in</strong> isometric strength <strong>of</strong> <strong>the</strong> <strong>quadriceps</strong> femoris<strong>muscle</strong> after tra<strong>in</strong><strong>in</strong>g with <strong>electrical</strong> <strong>stimulation</strong>. Phys Ther 1985; 65(2):186-196.33 Fulkerson JP. Disorders <strong>of</strong> <strong>the</strong> patell<strong>of</strong>emoral jo<strong>in</strong>t. 3rd ed. Baltimore: Williams &Wilk<strong>in</strong>s, 1997.34 Dye SF. An evolutionary perspective <strong>of</strong> <strong>the</strong> knee. J Bone Jo<strong>in</strong>t Surg (Am) 1987;69(7):976-983.35 Goodfellow J, Hungerford DS, Z<strong>in</strong>del M. Patell<strong>of</strong>emoral jo<strong>in</strong>t mechanics andpathology.I. J Bone Jo<strong>in</strong>t Surg (Br) 1976; 58B(3):287-299.285


__________________________________________________________References36 Malek MM, Mang<strong>in</strong>e RE. Patell<strong>of</strong>emoral pa<strong>in</strong> syndromes: a comprehensive andconservative approach. J Orthop Sports Phys Ther 1981; 2(3):108-116.37 Ireland ML. Patell<strong>of</strong>emoral disorders <strong>in</strong> runners and bicyclists. Annals <strong>of</strong> SportsMedic<strong>in</strong>e 1987; 3(2):77-84.38 Bourne H, Hazel WA, Scott SG, Sim FH. Anterior Knee Pa<strong>in</strong>. Mayo Cl<strong>in</strong> Proc1988; 63(May):482-491.39 Arno S. The A angle: a quantitive measurement <strong>of</strong> patella alignment andrealignment. J Orthop Sports Phys Ther 1990; 12(6):237-242.40 Reilly DT, Martens W. Experimental analysis <strong>of</strong> <strong>the</strong> <strong>quadriceps</strong> <strong>muscle</strong> force andpatell<strong>of</strong>emoral jo<strong>in</strong>t reaction force for various activites. Acta Orthop Scand 1972;43:126-137.41 Fulkerson JP. The etiology <strong>of</strong> patell<strong>of</strong>emoral pa<strong>in</strong> <strong>in</strong> young active patients. Cl<strong>in</strong>Orthop Rel Res 1983; 179(129):133.42 W<strong>in</strong>ter DA. Energy generation and absoprtion at <strong>the</strong> ankle and knee dur<strong>in</strong>gfast,natural and slow cadences. Cl<strong>in</strong> Orthop Rel Res 1983; 175:147-154.43 Jacobson KE, Flandry FC. Diagnosis <strong>of</strong> anterior knee pa<strong>in</strong>. Cl<strong>in</strong> Sports Med1989; 8(2):179-195.44 Pevsner DN, Johnson JRG, Blaz<strong>in</strong>a ME. The patell<strong>of</strong>emoral jo<strong>in</strong>t and itsimplications <strong>in</strong> <strong>the</strong> rehabilitation <strong>of</strong> <strong>the</strong> knee. Phys Ther 1979; 59(7):869-874.45 Blond L, Hansen L. Patell<strong>of</strong>emoral pa<strong>in</strong> syndrome <strong>in</strong> athletes: a 5.7 yearretrospective follow-up study <strong>of</strong> 250 athletes. Acta Orthop Belg 1998; 64(4):393-400.46 Witvrouw E, Lysens R, Bellemans J, Cambier D, Vanderstraeten G. Intr<strong>in</strong>sic riskfactors for <strong>the</strong> development <strong>of</strong> anterior knee pa<strong>in</strong> <strong>in</strong> an athletic population. Am JSports Med 2000; 28(4):480-489.47 Milgrom C, F<strong>in</strong>estone A, Eldad A, Shlamkovitch N. Patell<strong>of</strong>emoral pa<strong>in</strong> causedby overactivity. J Bone Jo<strong>in</strong>t Surg (Am) 1991; 73A(7):1041-1043.286


__________________________________________________________References48 Bentley G, Dowd G. Current concepts <strong>of</strong> etiology and treatment <strong>of</strong>chondromalacia patellae. Cl<strong>in</strong> Orthop Rel Res 1984; 189:209-228.49 Grelsamer RP, Newton PM. Patell<strong>of</strong>emoral imag<strong>in</strong>g. Sports Med Arthrosc Rev1994; 2(3):226-236.50 Grelsamer RP, McConnell J. The patella. A team approach. 1 ed. Gai<strong>the</strong>rsburg:Aspen Publishers Inc., 1998.51 Casscells SW. The arthroscope <strong>in</strong> <strong>the</strong> diagnosis <strong>of</strong> disorders <strong>of</strong> <strong>the</strong>patell<strong>of</strong>emoral jo<strong>in</strong>t. Cl<strong>in</strong> Orthop Rel Res 1979; 144:45-54.52 L<strong>in</strong>dberg U, Lysholm J, Gillquist J. The correlation between arthroscopic f<strong>in</strong>d<strong>in</strong>gsand <strong>the</strong> patell<strong>of</strong>emoral pa<strong>in</strong> syndrome. Arthroscopy 1986; 2(2):103-107.53 Rad<strong>in</strong> EL. Anterior knee pa<strong>in</strong>.The need for a specific diagnosis, stop call<strong>in</strong>g itchondromalacia! Orthop Rev 1985; XIV(3):128-134.54 Post WR. History and physical exam<strong>in</strong>ation. In: Fulkerson JP, editor. Disorders<strong>of</strong> <strong>the</strong> patell<strong>of</strong>emoral,jo<strong>in</strong>t. Baltimore: Williams & Wilk<strong>in</strong>s, 1997: 39-71.55 Powers CM, Maffucci R, Hampton S. Rearfoot posture <strong>in</strong> subjects withpatell<strong>of</strong>emoral pa<strong>in</strong>. J Orthop Sports Phys Ther 1995; 22(4):155-160.56 Dillon PZ, Updyke WF, Allen WC. Gait analysis with reference tochondromalacia patellae. J Orthop Sports Phys Ther 1983; 5(3):127-131.57 Callaghan MJ, Baltzopoulos V. Gait analysis <strong>in</strong> patients with anterior knee pa<strong>in</strong>.Cl<strong>in</strong> Biomech 1994; 9(2):79-84.58 Jernick S, Heifitz NM. An <strong>in</strong>vestigation <strong>in</strong>to <strong>the</strong> relationship between footpronation to chondromalacia patellae. In: R<strong>in</strong>aldi R.R, Salsia M.L, editors. SportsMedic<strong>in</strong>e ' 79. Mt.Kisco, NY: Futura Publish<strong>in</strong>g Co., 1979: 1-31.59 Turner MS, Smillie IS. The effect <strong>of</strong> tibial torsion on <strong>the</strong> pathology <strong>of</strong> <strong>the</strong> knee. JBone Jo<strong>in</strong>t Surg (Br) 1981; 63(3):396-398.60 Eng JJ, Pierrynowski MR. Evaluation <strong>of</strong> s<strong>of</strong>t foot orthotics <strong>in</strong> <strong>the</strong> treatment <strong>of</strong>patell<strong>of</strong>emoral pa<strong>in</strong> syndrome. Phys Ther 1993; 73(2):62-70.287


__________________________________________________________References61 Kramer J, Handfield T, Keifer G, Forwell L, Birm<strong>in</strong>gham TB. Comparisons <strong>of</strong>weight bear<strong>in</strong>g and non weight bear<strong>in</strong>g tests <strong>of</strong> knee jo<strong>in</strong>t proprioceptionperformed by patients with PFPS and asymptomatic. Cl<strong>in</strong> J Sport Med 1997;7(2):113-118.62 Prymka M, Schmidt K, Jerosch J. Proprioception <strong>in</strong> patients suffer<strong>in</strong>g fromchondropathia patellae. Int J Sports Med 1998; 19(S 60).63 Callaghan MJ, Selfe J, Bagley P, Oldham JA. The effect patellar tap<strong>in</strong>g on kneejo<strong>in</strong>t proprioception. J Athl Tra<strong>in</strong> 2002; 37(1):19-24.64 Boucher JP, K<strong>in</strong>g MA, Lefebvre R, Pep<strong>in</strong> A. Quadriceps femoris <strong>muscle</strong> activity<strong>in</strong> patell<strong>of</strong>emoral pa<strong>in</strong> syndrome. Am J Sports Med 1992; 20(5):527-532.65 Cerny K. Vastus medialis oblique/vastus lateralis <strong>muscle</strong> activity for selectedexercises <strong>in</strong> persons with and without patell<strong>of</strong>emoral pa<strong>in</strong> syndrome. Phys Ther1995; 75(8):672-683.66 Miller JP, Sedory D, Croce RV. Vastus medialis obliquus and vastus lateralisactivity <strong>in</strong> patients with and without patell<strong>of</strong>emoral pa<strong>in</strong> syndrome. J SportRehabil 1997; 6:1-10.67 Mariani PP, Caruso I. An electromyographic <strong>in</strong>vestigation <strong>of</strong> subluxation <strong>of</strong> <strong>the</strong>patella. J Bone Jo<strong>in</strong>t Surg (Br) 1979; 61-B(2):169-171.68 Witvrouw E, Sneyers C, Lysens R, Victor J, Bellemans J. Reflex response times<strong>of</strong> response times <strong>of</strong> vastus medialis oblique and vastus lateralis <strong>in</strong> normalsubjects and <strong>in</strong> subjects with patell<strong>of</strong>emoral pa<strong>in</strong> syndrome. J Orthop SportsPhys Ther 1996; 24(3):160-165.69 Moller BN, Jurik AG, Tidemand-Dal C, Krebs B, Aaris K. The <strong>quadriceps</strong> function<strong>in</strong> patell<strong>of</strong>emoral disorders. Arch Orthop Trauma Surg 1987; 106:195-198.70 Voight ML, Weider DL. Comparative reflex response times <strong>of</strong> vastus medialisobliquus and vastus lateralis <strong>in</strong> normal subjects and subjects with extensormechanism dysfunction. Am J Sports Med 1991; 19(2):131-137.71 Karst GM, Willett GM. Onset tim<strong>in</strong>g <strong>of</strong> electromyographic activity <strong>in</strong> <strong>the</strong> vastusmedialis oblique and vastus lateralis <strong>muscle</strong> <strong>in</strong> subjects with and withoutpatell<strong>of</strong>emoral pa<strong>in</strong> syndrome. Phys Ther 1995; 75(9):813-823.288


__________________________________________________________References72 Sheehy P, Burdett RG, Irrgang JJ, Vanswear<strong>in</strong>gen J. An electromyographicstudy <strong>of</strong> vastus medialis oblique and vastus lateralis activity while ascend<strong>in</strong>g anddescend<strong>in</strong>g steps. J Orthop Sports Phys Ther 1998; 27(6):423-429.73 Dvir Z, Shklar A, Halper<strong>in</strong> N, Rob<strong>in</strong>son D, Weissman I, Ben-Shoshan I.Concentric and eccentric torque variations <strong>of</strong> <strong>the</strong> <strong>quadriceps</strong> femoris <strong>in</strong>patell<strong>of</strong>emoral pa<strong>in</strong> syndrome. Cl<strong>in</strong> Biomech 1990; 5(2):68-72.74 Werner S. An evaluation <strong>of</strong> knee extensor and knee flexor torques and EMGs <strong>in</strong>patients with patell<strong>of</strong>emoral pa<strong>in</strong> syndrome <strong>in</strong> comparison with matched controls.Knee Surg Sports Traumatol Arthroscopy 1995; 3:89-94.75 Kettelkamp DB. Current concepts review: management <strong>of</strong> patellar malalignment.J Bone Jo<strong>in</strong>t Surg (Am) 1981; 63(A):1344-1347.76 Doucette SA, Goble EM. The effect <strong>of</strong> exercise on patellar track<strong>in</strong>g <strong>in</strong> lateralcompression syndrome. Am J Sports Med 1992; 20(4):434-440.77 Ste<strong>in</strong>er ME, Grana WA. The young athletes knee: recent advantages. Cl<strong>in</strong>Sports Med 1988; 7(3):527-546.78 Lieb FJ, Perry J. Quadriceps function. An electromyographic study underisometric conditions. J Bone Jo<strong>in</strong>t Surg (Am) 1971; 53-A(4):749-758.79 Lieb FJ, Perry J. Quadriceps function. An anatomical and mechanical studyus<strong>in</strong>g amputated limbs. J Bone Jo<strong>in</strong>t Surg (Am) 1968; 50(A)(8):1535-1548.80 Brownste<strong>in</strong> BA, Lamb RL, Mang<strong>in</strong>e RE. Quadriceps torque and <strong>in</strong>tegratedelectromyography. J Orthop Sports Phys Ther 1985; 6:309-314.81 Williams P, Warwick R. Gray's Anatomy. 36th ed. Ed<strong>in</strong>burgh: ChurchillLiv<strong>in</strong>gstone, 1980.82 Javadpour SM, F<strong>in</strong>egan PJ, O'Brien M. The anatomy <strong>of</strong> <strong>the</strong> extensor mechanismand its cl<strong>in</strong>ical relevance. Cl<strong>in</strong> J Sport Med 1991; 1(4):229-235.83 Thiranagama R. Nerve supply <strong>of</strong> <strong>the</strong> human vastus medialis <strong>muscle</strong>. J Anat1990; 170:193-198.289


__________________________________________________________References84 Grab<strong>in</strong>er MD, Koh TJ, Miller JP. Fatigue rates <strong>of</strong> vastus medialis oblique andvastus lateralis dur<strong>in</strong>g static and dynamic knee extension. J Orthop Res 1991;9(3):391-397.85 Steidler A. K<strong>in</strong>esiology <strong>of</strong> <strong>the</strong> human body under normal and pathologicalconditions. Spr<strong>in</strong>gfield (IL): Charles C. Thomas, 1973.86 Rivera JE. Open versus closed k<strong>in</strong>etic cha<strong>in</strong> rehabilitation <strong>of</strong> <strong>the</strong> lower extremity:a functional and biomechanical analysis. J Sport Rehabil 1994; 3:154-167.87 Yack HJ, Coll<strong>in</strong>s CE, Whieldon TJ. Comparison <strong>of</strong> closed and open k<strong>in</strong>etic cha<strong>in</strong>exercise <strong>in</strong> <strong>the</strong> anterior cruciate ligament deficient knee. Am J Sports Med 1993;21(1):49-54.88 Beard DJ, Dodd CAF, Trundle H, Simpson HARW. Proprioceptive enhancementfor anterior cruciate ligament deficiency: a prospective randomised trial for twophysio<strong>the</strong>rapy regimes. J Bone Jo<strong>in</strong>t Surg (Br) 1994; 76-B(4):654-659.89 McConnell J. The management <strong>of</strong> chondromalacia patellae: a long term solution.Austr J Physio<strong>the</strong>r 1986; 32(4):215-223.90 Westfall DC, Worrell TW. Anterior knee pa<strong>in</strong> syndrome: role <strong>of</strong> vastus medialisoblique. J Sport Rehabil 1992; 1:317-325.91 Cohen ZA, Roglic H, Grelsamer RP, Henry JH, Lev<strong>in</strong>e WN, Mow VC et al.Patell<strong>of</strong>emoral stresses dur<strong>in</strong>g open and closed k<strong>in</strong>etic cha<strong>in</strong> exercises. Am JSports Med 2001; 29(4):480-487.92 Pette D, Vrbová G. Adaptation <strong>of</strong> mammalian skeletal <strong>muscle</strong> fibers to chronic<strong>electrical</strong> <strong>stimulation</strong>. Rev Physiol Biochem Pharmacol 1992; 120:115-202.93 Pette D. Plasticity <strong>in</strong> skeletal, cardiac and smooth <strong>muscle</strong>. Historicalperspectives: plasticity <strong>of</strong> mammalian skeletal <strong>muscle</strong>. J Appl Physiol 2001;90:1119-1124.94 Brown JMC, Henriksson J, Salmons S. Restoration <strong>of</strong> fast <strong>muscle</strong> characteristicsfollow<strong>in</strong>g cessation <strong>of</strong> chronic <strong>stimulation</strong>: physiological, histochemical andmetabolic changes dur<strong>in</strong>g slow to fast transformation. Proc Royal Soc London1989; B 235:321-346.290


__________________________________________________________References95 Thoma H, Girsch W, Holle J, Mayr W. Technology and long term application <strong>of</strong>an ep<strong>in</strong>eural electrode. ASAIO Transactions 1989; 35(3):490-494.96 Salmons S. Exercise, <strong>stimulation</strong> and type transformation <strong>of</strong> skeletal <strong>muscle</strong>. IntJ Sports Med 1994; 15(3):136-141.97 Kots YM. Electro<strong>stimulation</strong>. Symposium on electro<strong>stimulation</strong> <strong>of</strong> skeletal<strong>muscle</strong>s. Concordia University: Canadian-Soviet Exchange Symposium, 1977:6-15.98 Currier DP, Lehman J, Lightfoot P. Electrical <strong>stimulation</strong> <strong>in</strong> exercise <strong>of</strong> <strong>the</strong><strong>quadriceps</strong> femoris <strong>muscle</strong>. Phys Ther 1979; 59(12):1508-1512.99 Halbach WJ, Straus D. Comparison <strong>of</strong> electro-myo <strong>stimulation</strong> to isok<strong>in</strong>etictra<strong>in</strong><strong>in</strong>g <strong>in</strong> <strong>in</strong>creas<strong>in</strong>g power <strong>of</strong> <strong>the</strong> knee extensor mechanism. J Orthop SportsPhys Ther 1980; 2(1):20-24.100 Kramer JF, Semple JE. Comparison <strong>of</strong> selected streng<strong>the</strong>n<strong>in</strong>g techniques fornormal <strong>quadriceps</strong>. Physio<strong>the</strong>r Canada 1983; 35(6):300-304.101 Laughman RK, Youdas JW, Garrett TR, Chao EY. Strength changes <strong>in</strong> <strong>the</strong>normal <strong>quadriceps</strong> femoris as a result <strong>of</strong> <strong>electrical</strong> <strong>stimulation</strong>. Phys Ther 1983;63(4):494-499.102 McMiken DF, Todd-Smith M, Thomson C. Streng<strong>the</strong>n<strong>in</strong>g <strong>of</strong> <strong>the</strong> human<strong>quadriceps</strong> <strong>muscle</strong>s by cutaneous <strong>electrical</strong> <strong>stimulation</strong>. Scan J Rehab Med1983; 15(1):25-28.103 Mohr T, Carlson B, Sultentic C, Landry R. Comparison <strong>of</strong> isometric exercise andhigh volt galvanic <strong>stimulation</strong> on <strong>quadriceps</strong> femoris <strong>muscle</strong> strength. Phys Ther1985; 65(5):606-612.104 Hartsell HD. Electrical simulation and isometric exercise effects on selected<strong>quadriceps</strong> parameters. J Orthop Sports Phys Ther 1986; 8(4):203-209.105 Nobbs LA, Rhodes EC. The effect <strong>of</strong> <strong>stimulation</strong> and isok<strong>in</strong>etic exercise onmuscular power <strong>of</strong> <strong>the</strong> <strong>quadriceps</strong> femoris. J Orthop Sports Phys Ther 1986;8(5):260.291


__________________________________________________________References106 Wolf SL, Ariel GB, Saar D, Penny MA, Railey P. The effect <strong>of</strong> <strong>muscle</strong> <strong>stimulation</strong>dur<strong>in</strong>g resistive tra<strong>in</strong><strong>in</strong>g on performance parameters. Am J Sports Med 1986;14(1):18-23.107 Kubiak RJ, Whitman KM, Johnston RM. Changes <strong>in</strong> <strong>quadriceps</strong> femoris <strong>muscle</strong>strength us<strong>in</strong>g isometric exercise versus <strong>electrical</strong> <strong>stimulation</strong>. J Orthop SportsPhys Ther 1987; 8(11):537-541.108 Venable MP, Coll<strong>in</strong>s MA, O'Bryant HS, Denegar CR, Sedivec MJ, Alon G. Effect<strong>of</strong> supplemental <strong>electrical</strong> <strong>stimulation</strong> on <strong>the</strong> development <strong>of</strong> strength, verticaljump performance and power. J Appl Sport Sci Res 1991; 5(3):139-143.109 Caggiano E, Emrey T, Shirley S, Craik RL. Effects <strong>of</strong> <strong>electrical</strong> <strong>stimulation</strong> onvoluntary contraction for streng<strong>the</strong>n<strong>in</strong>g <strong>the</strong> <strong>quadriceps</strong> femoris <strong>muscle</strong>s <strong>in</strong> anaged male population. J Orthop Sports Phys Ther 1994; 20(1):22-28.110 Convery A, Racer B, Rohland R, Shannon J, Sorg J. The effects <strong>of</strong> <strong>electrical</strong><strong>stimulation</strong> and electromyographic bi<strong>of</strong>eedback on <strong>muscle</strong> performance outputwith tra<strong>in</strong><strong>in</strong>g <strong>of</strong> <strong>the</strong> <strong>quadriceps</strong> <strong>muscle</strong>. Isok<strong>in</strong> Exer Sci 1994; 4(3):122-127.111 Romero JA, Sanford TL, Schroeder RV, Fahey TD. The effects <strong>of</strong> <strong>electrical</strong><strong>stimulation</strong> <strong>of</strong> normal <strong>quadriceps</strong> on strength and girth. Med Sci Sport Exerc1982; 14(3):194-197.112 Fahey TD, Harvey M, Schroeder RV, Ferguson F. Influence <strong>of</strong> sex differencesand knee jo<strong>in</strong>t position on <strong>electrical</strong> <strong>stimulation</strong>-modulated strength <strong>in</strong>creases.Med Sci Sport Exerc 1985; 17(1):144-147.113 Stefanovska A, Vodovnik L. Changes <strong>in</strong> <strong>muscle</strong> force follow<strong>in</strong>g <strong>electrical</strong><strong>stimulation</strong>. Dependence on <strong>stimulation</strong> waveform and frequency. Scan J RehabMed 1985; 17(3):141-146.114 Lai SL, De Dom<strong>in</strong>ico G, Strauss GR. The effect <strong>of</strong> different electro-motor<strong>stimulation</strong> tra<strong>in</strong><strong>in</strong>g <strong>in</strong>tensities on strength improvement. Austr J Physio<strong>the</strong>r1988; 3:151-164.115 Oldham JA, Howe TE, Petterson T, Smith GP, Tallis RC. Electro<strong>the</strong>rapeuticrehabilitation <strong>of</strong> <strong>the</strong> <strong>quadriceps</strong> <strong>in</strong> elderly osteoarthritic patients: a double bl<strong>in</strong>dassessment <strong>of</strong> patterned neuromuscular <strong>stimulation</strong>. Cl<strong>in</strong> Rehabil 1995; 9:10-20.292


__________________________________________________________References116 Grimby G, Wigerstad-Loss<strong>in</strong>g I. Comparison <strong>of</strong> high and low frequency <strong>muscle</strong>stimulators. Arch Phys Med Rehabil 1989; 70:835-838.117 Balogan JA, Onilari OO, Akeju OA, Marzouk DK. High voltage <strong>electrical</strong><strong>stimulation</strong> on human skeletal <strong>muscle</strong>. Arch Phys Med Rehabil 1993; 74(9):910-916.118 Eriksson E, Haggmark T, Kiessl<strong>in</strong>g KH, Karlsson J. Effect <strong>of</strong> <strong>electrical</strong> simulationon human skeletal <strong>muscle</strong>. Int J Sports Med 1981; 2(1):18-22.119 Obajuluwa VA. Effect <strong>of</strong> <strong>electrical</strong> <strong>stimulation</strong> for 10 weeks on <strong>quadriceps</strong>femoris <strong>muscle</strong> strength and thigh circumference <strong>in</strong> healthy young men.Physio<strong>the</strong>r Theory Pract 1991; 7(3):191-197.120 St.Pierre D, Taylor AW, Lavoie M, Sellers W, Kots YM. Effects <strong>of</strong> 2500Hzs<strong>in</strong>usoidal current on fibre area and strength <strong>of</strong> <strong>the</strong> <strong>quadriceps</strong> femoris. J SportsMed 1986; 26:60-66.121 Soo CL, Currier DP, Threkeld AJ. Augment<strong>in</strong>g voluntary torque <strong>of</strong> healthy<strong>muscle</strong> by optimisation <strong>of</strong> <strong>electrical</strong> <strong>stimulation</strong>. Phys Ther 1988; 68(3):333-337.122 Delitto A, Brown M, Strube MJ, Rose SJ, Lehman RC. Electrical <strong>stimulation</strong> <strong>of</strong><strong>quadriceps</strong> femoris <strong>in</strong> an elite weight lifter: a s<strong>in</strong>gle case experiment. Int J SportsMed 1989; 10(3):187-191.123 Thériault R, Thériault G, Simoneau JA. Human skeletal <strong>muscle</strong> adaptation <strong>in</strong>response to chronic low frequency <strong>electrical</strong> <strong>stimulation</strong>. J Appl Physiol 1994;77(4):1885-1889.124 Burkett LN, Phillips WT, Alvar B, Bartelt L, Stone W. The effect <strong>of</strong> <strong>electrical</strong><strong>stimulation</strong> comb<strong>in</strong>ed with dynamic strength tra<strong>in</strong><strong>in</strong>g on healthy <strong>in</strong>dividuals.Isok<strong>in</strong> Exer Sci 1998; 7:101-106.125 Zakaria D, Hartsell HD. Efficacy <strong>of</strong> <strong>electrical</strong> <strong>stimulation</strong> dur<strong>in</strong>g protectedimmobilisation follow<strong>in</strong>g ACL surgery. Physio<strong>the</strong>r Canada 1993; 45(2):89-93.126 Strojnik V. The effects <strong>of</strong> superimposed <strong>electrical</strong> <strong>stimulation</strong> <strong>of</strong> <strong>the</strong> <strong>quadriceps</strong><strong>muscle</strong>s on performance <strong>in</strong> different motor tasks. J Sports Med Phys Fitness1998; 38(3):194-200.293


__________________________________________________________References127 Maffiuletti NA, Cometti G, Amiridis IG, Mart<strong>in</strong> A, Pousson M, Chatard J-C. Theeffects <strong>of</strong> eletromyo<strong>stimulation</strong> tra<strong>in</strong><strong>in</strong>g and basketball practice on <strong>muscle</strong>strength and jump<strong>in</strong>g ability. Int J Sports Med 2000; 21:437-443.128 Lopez-Guajardo A, Su<strong>the</strong>rland H, Jarvis JC, Salmons S. Induction <strong>of</strong> a fatigueresistant phenotype <strong>in</strong> rabbit fast <strong>muscle</strong> by small daily amounts <strong>of</strong> <strong>stimulation</strong>. JAppl Physiol 2001; 90:1909-1918.129 Delitto A, Rose S, McKowen JM, Lehman RC, Thomas JA, Shively RA. Electrical<strong>stimulation</strong> versus voluntary exercise <strong>in</strong> streng<strong>the</strong>n<strong>in</strong>g thigh musculature afteranterior cruciate ligament surgery. Phys Ther 1988; 68(5):660-663.130 La<strong>in</strong>ey CG, Walmsley RP, Andrew GM. Effectiveness exercise alone versusexercise plus <strong>electrical</strong> <strong>stimulation</strong> <strong>in</strong> streng<strong>the</strong>n<strong>in</strong>g <strong>the</strong> <strong>quadriceps</strong> <strong>muscle</strong>.Physio<strong>the</strong>r Canada 1983; 35(1):5-11.131 Morrissey MC, Brewster CE, Shields CL, Brown M. The effects <strong>of</strong> <strong>electrical</strong><strong>stimulation</strong> on <strong>the</strong> <strong>quadriceps</strong> dur<strong>in</strong>g post operative knee immobilisation. Am JSports Med 1985; 13(1):40-45.132 Wigerstad-Loss<strong>in</strong>g I, Grimby G, Jonsson T, Morelli B, Peterson L, Renström P.Effects <strong>of</strong> <strong>electrical</strong> <strong>muscle</strong> <strong>stimulation</strong> comb<strong>in</strong>ed with voluntary contractionsafter knee ligament surgery. Med Sci Sport Exerc 1988; 20(1):93-98.133 Sisk TD, Stralka SW, Deer<strong>in</strong>g MB, Griff<strong>in</strong> JW. Effect <strong>of</strong> <strong>electrical</strong> <strong>stimulation</strong> on<strong>quadriceps</strong> strength after reconstructive surgery <strong>of</strong> <strong>the</strong> ACL. Am J Sports Med1987; 15(3):215-219.134 Delitto A, McKowen JM, McCarthy JA, Shively RA, Rose SJ. Electrically elicitedco contraction <strong>of</strong> thigh musculature after anterior cruciate ligament surgery. PhysTher 1988; 68(1):45-50.135 Snyder-Mackler L, Lad<strong>in</strong> Z, Schepsis AA, Young JC. Electrical <strong>stimulation</strong> <strong>of</strong> <strong>the</strong>thigh <strong>muscle</strong>s after reconstruction <strong>of</strong> <strong>the</strong> anterior cruciate ligament. J Bone Jo<strong>in</strong>tSurg (Am) 1991; 73(A)(7):1025-1036.136 Draper V, Ballard L. Electrical <strong>stimulation</strong> versus electromyographic bi<strong>of</strong>eedback<strong>in</strong> <strong>the</strong> recovery <strong>of</strong> <strong>quadriceps</strong> femoris <strong>muscle</strong> follow<strong>in</strong>g anterior cruciate surgery.Phys Ther 1991; 71(6):455-464.294


__________________________________________________________References137 Selkowitz DM. High frequency <strong>electrical</strong> <strong>stimulation</strong> <strong>in</strong> <strong>muscle</strong> streng<strong>the</strong>n<strong>in</strong>g. AmJ Sports Med 1989; 17(1):103-111.138 Sharp RL. Effects <strong>of</strong> <strong>electrical</strong> simulation on subjects with patell<strong>of</strong>emoral pa<strong>in</strong>syndrome. Med Sci Sport Exerc 1995; 27(5 Suppl):255 abstract number.139 Lieber RL, Silva PD, Daniel DM. Equal effectiveness <strong>of</strong> <strong>electrical</strong> and volitionalstrength tra<strong>in</strong><strong>in</strong>g for <strong>quadriceps</strong> femoris <strong>muscle</strong>s after anterior cruciate ligamentsurgery. J Orthop Res 1996; 14(1):131-138.140 Belanger AY, McComas AJ. Extent <strong>of</strong> motor unit activity dur<strong>in</strong>g effort. J ApplPhysiol 1981; 51(5):1131-1135.141 Ru<strong>the</strong>rford OM, Jones DA, Newham DJ. Cl<strong>in</strong>ical and experimental application <strong>of</strong><strong>the</strong> percutaneous twitch superimposition technique for <strong>the</strong> study <strong>of</strong> human<strong>muscle</strong> activation. Journal <strong>of</strong> Neurology,Neurosurgery and Psychiatry 1986;49:1288-1291.142 Snyder-Mackler L, Delitto A, Bailey SL, Stralka SW. Strength <strong>of</strong> <strong>the</strong> <strong>quadriceps</strong>femoris <strong>muscle</strong> and functional recovery after reconstruction <strong>of</strong> <strong>the</strong> anteriorcruciate ligament.. J Bone Jo<strong>in</strong>t Surg (Am) 1995; 77(A)(8):1166-1173.143 Williams JGP. Vastus medialis re-education <strong>in</strong> <strong>the</strong> management <strong>of</strong>chondromalacia patellae. Med Aspects <strong>of</strong> Sport 1974;(?ch2):19-24.144 Johnson DH, Thurston P, Ashcr<strong>of</strong>t PJ. The russian technique for faradism <strong>in</strong> <strong>the</strong>treatment <strong>of</strong> chondromalacia patellae. Physio<strong>the</strong>r Canada 1977; 29(5):1-4.145 Horodyski MB, Sharp RL. Effects <strong>of</strong> <strong>electrical</strong> <strong>stimulation</strong> on subjects withpatell<strong>of</strong>emoral pa<strong>in</strong>. Med Sci Sport Exerc 1995; 225.146 Goldsp<strong>in</strong>k DF, Goldsp<strong>in</strong>k G. The role <strong>of</strong> passive stretch <strong>in</strong> retard<strong>in</strong>g <strong>muscle</strong>atrophy. In: Nix WA, Vrbová G, editors. Electrical <strong>stimulation</strong> and neuromusculardisorders. Berl<strong>in</strong>: Spr<strong>in</strong>ger-Verlag, 1986: 91-100.147 Eriksson E, Haggmark T. Comparison <strong>of</strong> isometric <strong>muscle</strong> tra<strong>in</strong><strong>in</strong>g and <strong>electrical</strong><strong>stimulation</strong> supplement<strong>in</strong>g isometric <strong>muscle</strong> tra<strong>in</strong><strong>in</strong>g <strong>in</strong> <strong>the</strong> recovery after majorknee ligament surgery. Am J Sports Med 1979; 7(3):169-171.148 Perez M, Lucia A, Rivero J-LL, Serrano AL, Calbet J-AL, Delgado MA et al.Effects <strong>of</strong> transcutaneous short term <strong>electrical</strong> <strong>stimulation</strong> on M.vastus lateralis295


__________________________________________________________Referencescharacteristics <strong>of</strong> healthy young men. Pflügers Archiv -European Journal <strong>of</strong>Physiology 2002; 443(5):866-874.149 Gibson JNA, Morrison WL, Scrimgeour CM, Smith K, Stoward PJ, Rennie MJ.Effects <strong>of</strong> <strong>the</strong>rapeutic percutaneous <strong>electrical</strong> <strong>stimulation</strong> <strong>of</strong> atrophic human<strong>quadriceps</strong> on <strong>muscle</strong> composition, prote<strong>in</strong> syn<strong>the</strong>sis and contractile properties.Eur J Cl<strong>in</strong> Invest 1989; 19:206-212.150 Gibson JNA, Smith K, Rennie MJ. Prevention <strong>of</strong> disuse <strong>muscle</strong> atrophy bymeans <strong>of</strong> <strong>electrical</strong> <strong>stimulation</strong>:ma<strong>in</strong>tenance <strong>of</strong> prote<strong>in</strong> syn<strong>the</strong>sis. Lancet1988;(October 1):767-770.151 V<strong>in</strong>ge O, Edvardsen L, Jensen F, Jensen FG, Wernerman J, Kehlet H. Effect <strong>of</strong>transcutaneous <strong>electrical</strong> <strong>muscle</strong> <strong>stimulation</strong> on post operative <strong>muscle</strong> mass andprote<strong>in</strong> syn<strong>the</strong>sis. Br J Surg 1996; 83:360-363.152 Stanish WD, Valiant GA, Bonen A, Belcastro AN. The effects <strong>of</strong> immobilisationand <strong>of</strong> <strong>electrical</strong> <strong>stimulation</strong> on <strong>muscle</strong> glycogen and my<strong>of</strong>ibrillar ATPase. Can JAppl Spt Sci 1982; 7(4):267-271.153 Arvidsson I, Arvidsson H, Eriksson E, Jansson E. Prevention <strong>of</strong> <strong>quadriceps</strong>wast<strong>in</strong>g after immobilisation: an evaluation <strong>of</strong> <strong>the</strong> effect <strong>of</strong> <strong>electrical</strong> <strong>stimulation</strong>.Orthopedics 1986; 9(11):1519-1528.154 Mart<strong>in</strong> TP, Gundersen LA, Blev<strong>in</strong>s FT, Coutts RD. The <strong>in</strong>fluence <strong>of</strong> functional<strong>electrical</strong> <strong>stimulation</strong> on <strong>the</strong> properties <strong>of</strong> vastus lateralis fibres follow<strong>in</strong>g totalknee replacement. Scan J Rehab Med 1991; 23:207-210.155 Nitz AJ, Dobner JJ. High <strong>in</strong>tensity <strong>electrical</strong> <strong>stimulation</strong> effect on thighmusculature dur<strong>in</strong>g immobilisation follow<strong>in</strong>g knee spra<strong>in</strong>. Phys Ther 1987;67(2):219-222.156 Willoughby DS, Simpson S. Supplemental EMS and dynamic weight tra<strong>in</strong><strong>in</strong>g:effects on knee extensor strength and vertical jump <strong>of</strong> female college track &field athletes. J Strength and Cond Res 1998; 12(3):131-137.157 Nicholas JJ, Taylor FH, Buck<strong>in</strong>gham RB, Ottenello D. Measurement <strong>of</strong> <strong>the</strong>circumference <strong>of</strong> <strong>the</strong> knee with an ord<strong>in</strong>ary tape measure. Ann Rheum Disease1976; 35(3):282-284.296


__________________________________________________________References158 Gould N, Donnermeyer D, Gammon GG, Pope M, Ashikaga T. Transcutaneous<strong>muscle</strong> <strong>stimulation</strong> to retard disuse atrophy after open menisectomy. Cl<strong>in</strong> OrthopRel Res 1983; 178:190-197.159 Williams RA, Morrisey MC, Brewster CE. The effect <strong>of</strong> <strong>electrical</strong> <strong>stimulation</strong> on<strong>quadriceps</strong> strength and thigh circumference <strong>in</strong> menisectomy patients. J OrthopSports Phys Ther 1986; 8(3):143-146.160 Godfrey CM, Jayawardena H, Quance TA, Welsh P. Comparison <strong>of</strong> electro<strong>stimulation</strong>and isometric exercise <strong>in</strong> streng<strong>the</strong>n<strong>in</strong>g <strong>the</strong> <strong>quadriceps</strong> <strong>muscle</strong>.Physio<strong>the</strong>r Canada 1979; 31(5):265-267.161 Quittan M, Wies<strong>in</strong>ger GF, Strum B, Puig S, Mayr W, Sochor A et al.Improvement <strong>of</strong> thigh <strong>muscle</strong>s by neuromuscular <strong>electrical</strong> <strong>stimulation</strong> <strong>in</strong> patientswith refractory heart failure: a s<strong>in</strong>gle bl<strong>in</strong>d,randomised, controlled trial. Am JPhys Med Rehab 2001; 80(3):206-217.162 Moreno-Aranda J, Seireg A. Electrical parameters for over <strong>the</strong> sk<strong>in</strong> <strong>muscle</strong><strong>stimulation</strong>. J Biomech 1981; 14(9):579-585.163 Delitto A, Rose S. Comparative comfort <strong>of</strong> three waveforms used <strong>in</strong> <strong>electrical</strong>lyelicit<strong>in</strong>g <strong>quadriceps</strong> femoris <strong>muscle</strong> contractions. Phys Ther 1986; 66(11):1704-1707.164 Lake DA. Neuromuscular <strong>electrical</strong> <strong>stimulation</strong>: an overview and its application <strong>in</strong><strong>the</strong> treatment <strong>of</strong> sports <strong>in</strong>juries. Sports Med 1992; 13(5):320-336.165 McLoda TA, Carmack JA. Optimal burst duration dur<strong>in</strong>g a facilitated <strong>quadriceps</strong>femoris contraction. J Athl Tra<strong>in</strong> 2000; 35(2):145-150.166 Oldham JA, Stanley JK. Rehabilitation <strong>of</strong> atrophied <strong>muscle</strong> <strong>in</strong> <strong>the</strong> arthritic hand:a comparison <strong>of</strong> two methods <strong>of</strong> <strong>electrical</strong> <strong>stimulation</strong>. J Hand Surg 1989;14(3):294-298.167 Jarvis JC, Mayne CN, Salmons S. Basic studies on skeletal <strong>muscle</strong> for cardiacassistance. J Card Surg 1991; 6(1(suppl)):204.168 Packman-Braun R. Relationship between functional <strong>electrical</strong> <strong>stimulation</strong> dutycycle and fatigue <strong>in</strong> wrist extensor <strong>muscle</strong>s. Phys Ther 1988; 68:51.297


__________________________________________________________References169 Barclay CJ. Effect <strong>of</strong> fatigue on rate <strong>of</strong> isometric force development <strong>in</strong> mousefast and slow twitch <strong>muscle</strong>s. Am J Physiol 1992; 263:1065.170 B<strong>in</strong>der-Macleod SA, Snyder-Mackler L. Muscle fatigue: cl<strong>in</strong>ical implications forfatigue assessment and neuromuscular <strong>electrical</strong> <strong>stimulation</strong>. Phys Ther 1993;73(12):902.171 Matsunaga T, Shimada Y, Sato K. Muscle fatigue from <strong>in</strong>termittent <strong>stimulation</strong>with low and high frequency <strong>electrical</strong> pulses. Arch Phys Med Rehabil 1999;80:48-53.172 Snyder-Mackler L, Cellucci M, Magno J, Marchand M, Lyon J. Effect <strong>of</strong> dutycycle <strong>of</strong> portable neuromuscular <strong>electrical</strong> stimulator on strength <strong>of</strong> non dom<strong>in</strong>anttriceps. Phys Ther 1988; 68(5):833.173 Baker LL, Cole K, Hart J, Smith D, Wong T, McNeal DR. Effects <strong>of</strong> duty cycleand frequency on <strong>muscle</strong> fatigue dur<strong>in</strong>g isometric <strong>electrical</strong>ly stimulated<strong>quadriceps</strong> contractions. Phys Ther 1988; 68(5):835.174 Cox AM, Mendryk SW, Kramer JF. Effect <strong>of</strong> electrode placement and rest<strong>in</strong>terval between contractions on isometric knee extension torque <strong>in</strong>duced by<strong>electrical</strong> <strong>stimulation</strong> at 100Hz. Physio<strong>the</strong>r Canada 1986; 38:20-27.175 Morrissey MC. Electromyo<strong>stimulation</strong> from a cl<strong>in</strong>ical perspective. A Review.Sports Med 1988; 6:29-41.176 Noel G, Belanger AY. Relationship between <strong>the</strong> force <strong>of</strong> maximum voluntarycontractions and tetanic force produced by <strong>electrical</strong> <strong>stimulation</strong> <strong>of</strong> <strong>the</strong><strong>quadriceps</strong> femoris. Physio<strong>the</strong>r Canada 1987; 39:377-383.177 Currier DP, Mann R. Muscle strength development by <strong>electrical</strong> <strong>stimulation</strong> <strong>in</strong>healthy <strong>in</strong>dividuals. Phys Ther 1983; 63:915-921.178 S<strong>in</strong>acore DR, Delitto A, K<strong>in</strong>g DS, Rose SJ. Type II fiber activation with <strong>electrical</strong><strong>stimulation</strong>: a prelim<strong>in</strong>ary report. Phys Ther 1990; 70(7):416-422.179 Snyder-Mackler L, Delitto A, Stralka SW, Bailey SL. Use <strong>of</strong> <strong>electrical</strong> <strong>stimulation</strong>to enhance recovery <strong>of</strong> <strong>quadriceps</strong> femoris <strong>muscle</strong> force production <strong>in</strong> patientsfollow<strong>in</strong>g anterior cruciate ligament reconstruction. Phys Ther 1994; 74(10):901-907.298


__________________________________________________________References180 Bohannon RW. Effect <strong>of</strong> <strong>electrical</strong> <strong>stimulation</strong> to <strong>the</strong> vastus medialis <strong>muscle</strong> <strong>in</strong> apatient with chronically dislocat<strong>in</strong>g patella. Phys Ther 1983; 63(9):1445-1447.181 Haug J, Wood LT. Efficacy <strong>of</strong> neuromuscular <strong>stimulation</strong> <strong>of</strong> <strong>the</strong> <strong>quadriceps</strong>femoris dur<strong>in</strong>g cont<strong>in</strong>uous passive motion follow<strong>in</strong>g total knee arthroplasty. ArchPhys Med Rehabil 1988; 69(June):423-424.182 Pette D. Skeletal <strong>muscle</strong> adaptation <strong>in</strong> response to chronic <strong>stimulation</strong>. In: NixWA, editor. Electrical <strong>stimulation</strong> and neuromuscular disorders. Berl<strong>in</strong>: Spr<strong>in</strong>ger-Verlag, 1986: 12-20.183 Jarvis JC. Power production and work<strong>in</strong>g capacity <strong>of</strong> rabbit tibialis anterior<strong>muscle</strong>s after chronic <strong>electrical</strong> <strong>stimulation</strong> at 10Hz. J Physiol 1993; 470:157.184 Pette D, Muller W, Leisner E, Vrbová G. Time dependent effects <strong>in</strong> contractileproperties, fiber population,myos<strong>in</strong> light cha<strong>in</strong>s and enzymes <strong>of</strong> energymetabolism <strong>in</strong> <strong>in</strong>termittently and cont<strong>in</strong>uously stimulated fast twitch <strong>muscle</strong>s <strong>of</strong><strong>the</strong> rabbit. Pluggers Arch Ges Physiol 1976; 364:103-112.185 Salmons S, Hendricksson J. The adaptive response <strong>of</strong> skeletal <strong>muscle</strong> to<strong>in</strong>creased use. Muscle Nerve 1981; 4:94-105.186 Al-Amood WS, Buller AJ, Pope R. Long term <strong>stimulation</strong> <strong>of</strong> cat fast twitchskeletal <strong>muscle</strong>. Nature, London 1973; 51(5):1131-1135.187 Pette D, Smith ME, Staude HW, Vrbová G. Effects <strong>of</strong> long term <strong>stimulation</strong> onsome contractile and mechanical characteristics <strong>of</strong> fast <strong>muscle</strong>. Pflugers ArchGes Physiol 1973; 338:257-272.188 Salmons S, Sreter FA. Significance <strong>of</strong> impulse activity <strong>in</strong> <strong>the</strong> transformation <strong>of</strong>skeletal <strong>muscle</strong> fiber type. Nature, London 1976; 263:30-34.189 Kernell D, Eerbeek O, Verhey BA, Donselaar Y. Effects <strong>of</strong> physiological amounts<strong>of</strong> high and low rate chronic <strong>stimulation</strong> on fast twitch <strong>muscle</strong> <strong>of</strong> <strong>the</strong> cat h<strong>in</strong>dlimb.I.Speed and force related properties. J Neurophysiol 1987; 58:598-613.190 Lieber RL, Kelly MJ. Torque history <strong>of</strong> <strong>electrical</strong>ly stimulated human <strong>quadriceps</strong>:implications for <strong>stimulation</strong> <strong>the</strong>rapy. J Orthop Res 1993; 11(1):131-141.191 De Luca CJ. The use <strong>of</strong> surface electromyography <strong>in</strong> biomechanics. J ApplBiomech 1997; 13:135-163.299


__________________________________________________________References192 Dudley GA. Is <strong>electrical</strong> <strong>stimulation</strong> applicable to improve strength and power <strong>in</strong>normal humans? Med Sci Sport Exerc 1996; 41:71-81.193 Su<strong>the</strong>rland H, Jarvis JC, Kwende MMN, Gilroy SJ, Salmons S. The dose relatedresponse <strong>of</strong> rabbit fast <strong>muscle</strong> to long term low frequency <strong>stimulation</strong>. MuscleNerve 1998; 21(12):1632-1646.194 Jarvis JC, Su<strong>the</strong>rland H, Mayne CN, Gilroy SJ, Salmons S. Induction <strong>of</strong> a fastoxidative phenotype by chronic <strong>muscle</strong> <strong>stimulation</strong>: mechanical and biochemicalstudies. Am J Physiol 1996; 270(Cell Physiol.39):C306-C312.195 Ferguson AS, Stone HE, Roessmann U, Burke M, Mortimer JT. Muscleplasticity: comparison <strong>of</strong> a 30Hz burst with 10Hz cont<strong>in</strong>uous <strong>stimulation</strong>. J ApplPhysiol 1989; 66(3):1143-1151.196 Williams NS, Hallan RI, Koeze TH, Watk<strong>in</strong>s ES. Construction <strong>of</strong> a neorectumand neoanal sph<strong>in</strong>cter follow<strong>in</strong>g previous protocolectomy. Br J Surg 1989;76(11):1191-1194.197 Salmons S. The response <strong>of</strong> skeletal <strong>muscle</strong> to different patterns <strong>of</strong> use - somenew developments and concepts. In: Pette D, editor. Plasticity <strong>of</strong> <strong>muscle</strong>. Berl<strong>in</strong>:De Guyter, 1980: 387-401.198 Dayh<strong>of</strong>f JE, Gerste<strong>in</strong> GL. Favored patterns <strong>in</strong> spike tra<strong>in</strong>s II. Application. JNeurophysiol 1983; 49(6):1349-1363.199 Lamb SE, Oldham JA, Morse RE, Grimley-Evans J. Neuromuscular <strong>stimulation</strong><strong>of</strong> <strong>the</strong> <strong>quadriceps</strong> <strong>muscle</strong> after hip fracture: a randomized, controlled trial. ArchPhys Med Rehabil 2002; (<strong>in</strong> press).200 Zajac FE, Young JL. Properties <strong>of</strong> stimulus tra<strong>in</strong>s produc<strong>in</strong>g maximum tensiontime area per pulse from s<strong>in</strong>gle motor units <strong>in</strong> medial gastrocnemius <strong>of</strong> <strong>the</strong> cat. JNeurophysiol 1980; 43(5):1206-1220.201 Bawa P, Calancie B. Repetitive doublets <strong>in</strong> human flexor carpi radialis <strong>muscle</strong>. JPhysiol 1983; 339:123-132.202 B<strong>in</strong>der-Macleod SA, Baadt S. Identification <strong>of</strong> optimal <strong>in</strong>terpulse <strong>in</strong>tervals (IPI)patterns for activation <strong>of</strong> fatigued human <strong>quadriceps</strong> femoris <strong>muscle</strong>. Society forNeurosciences Abstracts 1992; 18:1557.300


__________________________________________________________References203 Garland SJ, Griff<strong>in</strong> L. Motor unit discharges: statistical anomaly or functionalentity? Can J Appl Physiol 1999; 24(2):113-130.204 Marsden CD, Meadows JC, Merton PA. Muscular wisdom that m<strong>in</strong>imises fatiguedur<strong>in</strong>g prolonged effort <strong>in</strong> man:peak rates <strong>of</strong> motor neuron discharge andslow<strong>in</strong>g <strong>of</strong> discharge dur<strong>in</strong>g fatigue. In: Desmedt JE, editor. Advances <strong>in</strong>neurology. New York: Raven Press, 1983: 169-221.205 Burke RE, Rudom<strong>in</strong> P, Zajac FE. Catch property <strong>in</strong> s<strong>in</strong>gle mammilian motorunits. Science 1970; 168:122-124.206 Burke RE, Rudom<strong>in</strong> P, Zajac FE. The effect <strong>of</strong> activation history <strong>in</strong> tensionproduction by <strong>in</strong>dividual <strong>muscle</strong> units. Bra<strong>in</strong> Research 1976; 109:515-529.207 B<strong>in</strong>der-Macleod SA, Scott WB. Comparison <strong>of</strong> fatigue produced by various<strong>electrical</strong> <strong>stimulation</strong> tra<strong>in</strong>s. Acta Physiologica Scand<strong>in</strong>avica 2001; 172:195-203.208 Karu ZZ, Durfee WK, Barzilia AM. Reduc<strong>in</strong>g <strong>muscle</strong> fatigue <strong>in</strong> FES applicationsby stimulat<strong>in</strong>g with N-let pulse tra<strong>in</strong>s. IEEE Trans Biomed Eng 1995; 42(8):809-817.209 B<strong>in</strong>der-Macleod SA, Guer<strong>in</strong> T. Preservation <strong>of</strong> force output through progressivereduction <strong>of</strong> <strong>stimulation</strong> frequency <strong>in</strong> human <strong>quadriceps</strong> femoris. Phys Ther1990; 70(10):619-625.210 Goldsp<strong>in</strong>k G. The bra<strong>in</strong>s beh<strong>in</strong>d <strong>the</strong> brawn. New Scientist 1992; Aug.:28-33.211 Werner S, Eriksson E. Isok<strong>in</strong>etic <strong>quadriceps</strong> tra<strong>in</strong><strong>in</strong>g <strong>in</strong> patients withpatell<strong>of</strong>emoral pa<strong>in</strong> syndrome. Knee Surg Sports Traumatol Arthroscopy 1993;1(3/4):162-168.212 Hsieh LF, Guu CS, Liou HJ, Kung HC. Isok<strong>in</strong>etic and isometric test<strong>in</strong>g <strong>of</strong> kneemusculature <strong>in</strong> young female patients with patell<strong>of</strong>emoral pa<strong>in</strong> syndrome. JFormosan Med Assoc 1992; 91(2):199-205.213 Feir<strong>in</strong>g DC, Ellenbecker TS, Derscheid GL. Test re-test reliability <strong>of</strong> <strong>the</strong> Biodexisok<strong>in</strong>etic dynamometer. J Orthop Sports Phys Ther 1990; 11(7):298-300.214 Bohannon RW, Smith MB. Intrasession reliability <strong>of</strong> angle specific kneeextension torque measurements with gravity corrections. J Orthop Sports PhysTher 1989; 11:155-157.301


__________________________________________________________References215 Hard<strong>in</strong>g B, Black T, Bruulsema A, Maxwell B, Stratford P. Relaiability <strong>of</strong> areciprocal test protocol performed on <strong>the</strong> K<strong>in</strong>etic Communicator: an isok<strong>in</strong>etictest for knee extensor and flexor strength. J Orthop Sports Phys Ther 1988;10:218-223.216 Palmitier RA, An KN, Scott SG, Chao EYS. K<strong>in</strong>etic cha<strong>in</strong> exercise <strong>in</strong> kneerehabilitation. Sports Med 1991; 11(6):402-413.217 Escamilla RF, Fleisig G, Zheng N, Barrent<strong>in</strong>e SW, Wilk KE, Andrews JR.Biomechanics <strong>of</strong> <strong>the</strong> knee dur<strong>in</strong>g closed k<strong>in</strong>etic cha<strong>in</strong> and open k<strong>in</strong>etic cha<strong>in</strong>exercises. Med Sci Sport Exerc 1998; 30(4):556-569.218 Suter E, Herzog W, De Souza K, Bray RC. Inhibition <strong>of</strong> <strong>the</strong> <strong>quadriceps</strong> <strong>muscle</strong>s<strong>in</strong> patients with anterior knee pa<strong>in</strong>. J Appl Biomech 1998; 14:360-373.219 Bynum EB, Barrack RL, Alexander AH. Open versus closed k<strong>in</strong>etic cha<strong>in</strong> afteranterior cruciate ligament reconstruction. Am J Sports Med 1995; 23(4):401-406.220 Wilk KE, Escamilla RF, Fleisig GS, Barrent<strong>in</strong>e SW, Andrews JR, Boyd ML. Acomparison <strong>of</strong> tibi<strong>of</strong>emoral jo<strong>in</strong>t forces and electromyographic activity dur<strong>in</strong>gopen and closed k<strong>in</strong>etic cha<strong>in</strong> exercises. Am J Sports Med 1996; 24(4):518-527.221 Nisell R, Ericson M. Patellar forces dur<strong>in</strong>g isok<strong>in</strong>etic knee extension. Cl<strong>in</strong>Biomech 1992; 7(2):104-108.222 Ste<strong>in</strong>kamp LA, Dill<strong>in</strong>gham MF, Markel MD, Hill JA, Kaufman KR. Biomechanicalconsiderations <strong>in</strong> patell<strong>of</strong>emoral jo<strong>in</strong>t rehabilitation. Am J Sports Med 1993;21(3):438-444.223 Ste<strong>in</strong>e HA, Brosky T, Re<strong>in</strong>k<strong>in</strong>g MF, Nyland J, Mason MB. A comparison <strong>of</strong>closed k<strong>in</strong>etic cha<strong>in</strong> and isok<strong>in</strong>etic jo<strong>in</strong>t isolation exercise <strong>in</strong> patients withpatell<strong>of</strong>emoral pa<strong>in</strong>. J Orthop Sports Phys Ther 1996; 24(3):136-141.224 Snyder-Mackler L. Scientific rationale and physiological basis for <strong>the</strong> use <strong>of</strong>closed k<strong>in</strong>etic cha<strong>in</strong> exercise <strong>in</strong> <strong>the</strong> lower extremity. J Sport Rehabil 1996; 5:2-12.225 Prentice WE. Rehabilitation Techniques <strong>in</strong> Sports Medic<strong>in</strong>e. 3rd ed. Boston:McGraw-Hill, 1999.302


__________________________________________________________References226 Lafree J, Moz<strong>in</strong>go A, Worrell T. Comparison <strong>of</strong> open k<strong>in</strong>etic cha<strong>in</strong> knee and hipextension to closed k<strong>in</strong>etic cha<strong>in</strong> leg press performance. J Sport Rehabil 1995;4(99):107.227 Dvir Z. An isok<strong>in</strong>etic study <strong>of</strong> comb<strong>in</strong>ed activity <strong>of</strong> hip and knee extensors. Cl<strong>in</strong>Biomech 1996; 11(3):135-138.228 Lev<strong>in</strong>e D, Kle<strong>in</strong> A, Morrissey M. Reliability <strong>of</strong> isok<strong>in</strong>etic concentric closedk<strong>in</strong>ematic cha<strong>in</strong> test<strong>in</strong>g <strong>of</strong> <strong>the</strong> hip and knee extensors. Isok<strong>in</strong> Exer Sci 1991;1(3):146-152.229 Dvir Z. Isok<strong>in</strong>etics. Muscle test<strong>in</strong>g, <strong>in</strong>terpretation and cl<strong>in</strong>ical applications. 1st ed.London: Churchill Liv<strong>in</strong>gstone, 1995.230 Wilk KE, Davies GJ, Mang<strong>in</strong>e RE, Malone TR. Patell<strong>of</strong>emoral disorders: aclassification system and cl<strong>in</strong>ical guidel<strong>in</strong>es for non operative rehabilitation. JOrthop Sports Phys Ther 1998; 28(5):307-322.231 Arendt-Neilsen L, Gantchev N, S<strong>in</strong>kjaer T. The <strong>in</strong>fluence <strong>of</strong> <strong>muscle</strong> length onfibre conduction velocity and development <strong>of</strong> <strong>muscle</strong> fatigue. Electroenceph Cl<strong>in</strong>Neurophysiol 1992; 85:166-172.232 Gerrits HL, De Hann A, Hopman AT, van de Woude LH, Jones DA, Sargeant AJ.Contractile properties <strong>of</strong> <strong>the</strong> <strong>quadriceps</strong> <strong>muscle</strong>s <strong>in</strong> <strong>in</strong>dividuals with sp<strong>in</strong>al cord<strong>in</strong>jury. Muscle Nerve 1999; 22(9):1249-1256.233 Bland MJ, Altman DG. Statistical methods for assess<strong>in</strong>g agreement between twomethods <strong>of</strong> cl<strong>in</strong>ical measurement. Lancet 1986; Feb 8th(1(8476)):307-310.234 Cesarelli M, Bifulco P, Bracale M. Quadriceps <strong>muscle</strong>s activation <strong>in</strong> anteriorknee pa<strong>in</strong> dur<strong>in</strong>g isok<strong>in</strong>etic exercise. Med Eng Phys 1999; 21:469-478.235 Cesarelli M, Bifulco P, Bracale M. Study <strong>of</strong> <strong>the</strong> control strategy <strong>of</strong> <strong>the</strong> <strong>quadriceps</strong><strong>muscle</strong>s <strong>in</strong> anterior knee pa<strong>in</strong>. IEEE Trans Rehabil Eng 2000; 8(3):330-341.236 Wilk KE, Johnson RD, Lev<strong>in</strong>e B. Comparison <strong>of</strong> <strong>the</strong> knee extensor and flexor<strong>group</strong> strength us<strong>in</strong>g <strong>the</strong> Biodex, Cybex and Lido isok<strong>in</strong>etic dynamometer. PhysTher 1988; 68(5):792.237 Johnson J, Siegel D. Reliability <strong>of</strong> an isok<strong>in</strong>etic movement <strong>of</strong> <strong>the</strong> knee extensors.The Research Quarterly 1975; 49(1):88-90.303


__________________________________________________________References238 Kues JM, Rothste<strong>in</strong> JM, Lamb RL. Obta<strong>in</strong><strong>in</strong>g reliable measurements <strong>of</strong> kneeextensor torque produced dur<strong>in</strong>g maximal voluntary contractions: anexperimental <strong>in</strong>vestigation. Phys Ther 1992; 72(7):492-504.239 Gill KP, Callaghan MJ. Intratester and <strong>in</strong>tertester reproducibility <strong>of</strong> <strong>the</strong> lumbarmotion monitor as a measure <strong>of</strong> range, velocity and acceleration <strong>in</strong> <strong>the</strong>thoracolumbar sp<strong>in</strong>e. Cl<strong>in</strong> Biomech 1996; 11(7):418-421.240 Dvir Z, Halper<strong>in</strong> N, Shklar A, Rob<strong>in</strong>son D. Quadriceps function andpatell<strong>of</strong>emoral pa<strong>in</strong> syndrome.Part1.Pa<strong>in</strong> provocation dur<strong>in</strong>g concentric andeccentric isok<strong>in</strong>etic activity. Isok<strong>in</strong> Exer Sci 1991; 1(1):26-30.241 Doxey GE, Eisenman P. The <strong>in</strong>fluence <strong>of</strong> patell<strong>of</strong>emoral pa<strong>in</strong> onelectromyographical activity dur<strong>in</strong>g submaximal contractions. J Orthop SportsPhys Ther 1987; 9(6):211-216.242 Callaghan MJ, Oldham JA. A critical review <strong>of</strong> <strong>electrical</strong> <strong>stimulation</strong> <strong>of</strong> <strong>the</strong><strong>quadriceps</strong> <strong>muscle</strong>s. Crit Rev Phys Rehabil Med 1997; 9(3&4):301-314.243 Edwards RHT. Human <strong>muscle</strong> function and fatigue. In: McComas AJ, editor.Skeletal Muscle Form and Function. Champaign, Ill: Human K<strong>in</strong>etics Publishers,1996: 229.244 L<strong>in</strong>deman E, Spaans F, Reulen JPH, Leffers P, Drukker J. Surface EMG <strong>of</strong>proximal leg <strong>muscle</strong>s <strong>in</strong> neuromuscular patients and <strong>in</strong> healthy controls.Relations to force and fatigue. J Electromyogr K<strong>in</strong>esiol 1999; 9:299-307.245 Piper H. Electrophysiologie Menschlicher Muskeln (Electrophysiology <strong>of</strong> human<strong>muscle</strong>). Berl<strong>in</strong>: Spr<strong>in</strong>ger-Verlag, 1912.246 De Luca CJ. Use <strong>of</strong> surface EMG signal for performance evaluation <strong>of</strong> back<strong>muscle</strong>s. Muscle Nerve 1993; 16(Feb):210-216.247 Stulen FB. Frequency parameters <strong>of</strong> <strong>the</strong> myo<strong>electrical</strong> signal as a measure <strong>of</strong><strong>muscle</strong> conduction velocity. IEEE Trans Biomed Eng 1981; 28(515):523.248 De Luca CJ. Myo<strong>electrical</strong> manifestations <strong>of</strong> localised <strong>muscle</strong> fatigue <strong>in</strong> humans.Crit Rev Biomedical Eng<strong>in</strong>eer<strong>in</strong>g 1985; 11:251-279.249 Ferdjallah M, Wertsch JJ. Anatomical and technical considerations <strong>in</strong> surfaceelectromyography. Phys Med Rehabil Cl<strong>in</strong> N Am 1998; 9(4):925-931.304


__________________________________________________________References250 Merletti RT, Knaflitz M, De Luca CJ. Myoeletric manifestations <strong>of</strong> fatigue <strong>in</strong>voluntary and <strong>electrical</strong>ly elicited contractions. J Appl Physiol 1990; 69:1810-1820.251 Redfern M. Functional <strong>muscle</strong>: Effects on electromyographic output. In:Soderberg GL, editor. Selected topics <strong>in</strong> surface electromyography for use <strong>in</strong> <strong>the</strong>occupational sett<strong>in</strong>g: Expert perspectives. U.S Department <strong>of</strong> Health and HumanServices, NIOSH, 1992: 104-119.252 Roy SH, Casavant DA. Lumbar <strong>muscle</strong> fatigue and chronic low back pa<strong>in</strong>. Sp<strong>in</strong>e1989; 14:992-1001.253 Gogia P, Sabbahi M. Change <strong>in</strong> <strong>the</strong> fatigue characteristics <strong>of</strong> cervical parasp<strong>in</strong>al<strong>muscle</strong>s with posture. Sp<strong>in</strong>e 1991; 16:1135-1140.254 Davis BA, Krivickas LS, Maniar RM, Newandee DA, Fe<strong>in</strong>berg JH. The reliability<strong>of</strong> monopolar and bipolar f<strong>in</strong>e wire electromyography measurement <strong>of</strong> <strong>muscle</strong>fatigue. Med Sci Sport Exerc 1998; 30(8):1328-1335.255 Kollmitzer J, Ebenbichler GR, Kopf A. Reliability <strong>of</strong> surface electromyographymeasurements. Cl<strong>in</strong> Neurophysiol 1999; 110:725-734.256 Bell DG. The <strong>in</strong>fluence <strong>of</strong> air temperature on <strong>the</strong> EMG / force relationship <strong>of</strong> <strong>the</strong><strong>quadriceps</strong>. Eur J Appl Physiol 1993; 67:256-260.257 Arendt-Neilsen L, Mills KR. Muscle fibre conduction velocity, mean powerfrequency, mean EMG voltage and force dur<strong>in</strong>g submaximal fatigu<strong>in</strong>gcontractions <strong>of</strong> <strong>the</strong> human <strong>quadriceps</strong>. Eur J Appl Physiol 1988; 58:20-25.258 Bierdermann HJ, Shanks G, Forrest W, Inglis J. Power spectrum analyses <strong>of</strong>EMG activity: Discrim<strong>in</strong>ation <strong>in</strong> <strong>the</strong> differential assessment <strong>of</strong> patients withchronic low back pa<strong>in</strong>. Sp<strong>in</strong>e 1991; 26(10):1179-1184.259 Mannion AF, Dolan P. Relationship between myoelectric and mechanicalmanifestations <strong>of</strong> fatigue <strong>in</strong> <strong>the</strong> <strong>quadriceps</strong> femoris <strong>muscle</strong> <strong>group</strong>. Eur J ApplPhysiol 1996; 74:411-419.260 Rice MA, Bennett JG, Ruhl<strong>in</strong>g RO. Comparison <strong>of</strong> two exercises on VMO andVL EMG activity and force production. Isok<strong>in</strong> Exer Sci 1995; 5:61-67.305


__________________________________________________________References261 Clarys JP, Cabri J. Electromyography and <strong>the</strong> study <strong>of</strong> sports movements.Areview. J Sports Sci 1993; 11(379):448.262 Turker KS. Electromyography: some methodological problems and issues. PhysTher 1993; 73(10):698-710.263 Yang JF, W<strong>in</strong>ter DA. Electromyography reliability <strong>in</strong> maximal and submaximalisometric contractions. Arch Phys Med Rehabil 1983; 64:417-420.264 Soderberg GL, Knutson LM. A guide for use and <strong>in</strong>terpretation <strong>of</strong> k<strong>in</strong>esiologicelectromyographic data. Phys Ther 2000; 80(5):485-498.265 Shrout PE, Fleiss JL. Intraclass correlations: Uses <strong>in</strong> assess<strong>in</strong>g rater reliability.Psych Bull 1979; 86(2):420-428.266 Rank<strong>in</strong> G, Stokes M. Reliability <strong>of</strong> assessment tools <strong>in</strong> rehabilitation: anillustration <strong>of</strong> appropriate statistical analyses. Cl<strong>in</strong> Rehabil 1998; 12:187-199.267 Bartko JJ. The <strong>in</strong>traclass correlation co-efficient as a measure <strong>of</strong> reliability.Psychol Rep 1966; 19:3-11.268 Bruton A, Conway J, Holgate S. Reliability: what is it and how is it measured?Physio<strong>the</strong>rapy 2000; 86(2):94-99.269 Callaghan MJ, McCarthy C, Al-Omar A, Oldham JA. The reproducibility <strong>of</strong> multijo<strong>in</strong>t isok<strong>in</strong>etic and isometric assessments <strong>in</strong> a healthy and patient population.Cl<strong>in</strong> Biomech 2000; 15(9):678-683.270 Ng JFK, Richardson CA. Reliability <strong>of</strong> electromyographic power spectrumanalysis <strong>of</strong> back <strong>muscle</strong> endurance <strong>in</strong> healthy subjects. Arch Phys Med Rehabil1996; 77:259-264.271 Merletti RT, Fiorito A, LoConte LR, Cisarti C. Repeatability <strong>of</strong> <strong>electrical</strong>ly evokedEMG signals <strong>in</strong> <strong>the</strong> human vastus medialis <strong>muscle</strong>. Muscle Nerve 1998; 21(2feb):184-193.272 Cornwall M, Krock L, Wagner L. Muscle fatigue and recovery follow<strong>in</strong>galternat<strong>in</strong>g isometric contractions at different levels <strong>of</strong> force. Aviation Space andEnvironmental Medic<strong>in</strong>e 1994;309-314.306


__________________________________________________________References273 Rodriquez A, Agre J. Electrophysiologic study <strong>of</strong> <strong>the</strong> <strong>quadriceps</strong> <strong>muscle</strong> dur<strong>in</strong>gfatigu<strong>in</strong>g exercise and recovery: a comparison <strong>of</strong> symptomatic andasymptomatic postpolio patients and controls. Arch Phys Med Rehabil 1991;72:993-997.274 De Luca CJ. Surface electromyography: Detection and record<strong>in</strong>g. Delsys.com .1996. 7-12-2000.Ref Type: Electronic Citation275 Ng JFK, Richardson CA, Kippers V, Parnianpour M, Bui BH. Cl<strong>in</strong>ical applications<strong>of</strong> power spectral analysis <strong>of</strong> electromyographic <strong>in</strong>vestigations <strong>in</strong> <strong>muscle</strong>function. Manual Therapy 1996; 2:99-103.276 Mannion AF, Dolan P. Electromyographic median frequency changes dur<strong>in</strong>gisometric contraction <strong>of</strong> <strong>the</strong> back extensors to fatigue. Sp<strong>in</strong>e 1994; 19(11):1223-1229.277 Waterfield J, Sim J. Cl<strong>in</strong>ical assessment <strong>of</strong> pa<strong>in</strong> by <strong>the</strong> visual analogue scale. BrJ Ther Rehabil 1996; 3(2):94-97.278 Price DD, McGrath PA, Rafii A, Buck<strong>in</strong>gham B. The validation <strong>of</strong> visual analoguescales as ratio scale measures for chronic and experimental pa<strong>in</strong>. Pa<strong>in</strong> 1983;17:45-56.279 Scott J, Huskisson EC. Graphic representation <strong>of</strong> pa<strong>in</strong>. Pa<strong>in</strong> 1976; 2:175-184.280 Flandry F, Hunt JP, Terry GC, Hughston JC. Analysis <strong>of</strong> subjective kneecompla<strong>in</strong>ts us<strong>in</strong>g visual analog scales. Am J Sports Med 1991; 19(2):112-118.281 Timm KE. Randomised controlled trial <strong>of</strong> Protonics on patellar pa<strong>in</strong>, position,andfunction. Med Sci Sport Exerc 1997; 30(5):665-670.282 Thomeé R, Renström P, Karlsson J, Grimby G. Patell<strong>of</strong>emoral pa<strong>in</strong> syndrome <strong>in</strong>young women. I. Scand J Med Sci Sports 1995; 5(237):244.283 Kujala UM, Jaakkola LH, Kosk<strong>in</strong>en SK, Taimela S, Hurme M, Nelimarkka O.Scor<strong>in</strong>g <strong>of</strong> patell<strong>of</strong>emoral problems. Arthroscopy 1993; 9(2):159-163.284 Witvrouw E, Lysens R, Bellemans J, Peers K, Vanderstraeten G. Open versusclosed k<strong>in</strong>etic cha<strong>in</strong> exercises for patell<strong>of</strong>emoral pa<strong>in</strong>. Am J Sports Med 2000;28(5):687-694.307


__________________________________________________________References285 Bennell K, Bartam S, Crossley K, Green S. Outcome measures <strong>in</strong> patell<strong>of</strong>emoralpa<strong>in</strong> syndrome: test retest reliability and <strong>in</strong>ter-relationships. Physical Therapy <strong>in</strong>Sport 2000; 1:32-41.286 Powers CM, Perry J, Hsu A, Hislop HJ. Are patell<strong>of</strong>emoral pa<strong>in</strong> and <strong>quadriceps</strong>femoris <strong>muscle</strong> torque associated with locomotor function? Phys Ther 1997;77(10):1063-1078.287 Young A, Hughes I, Round JM, Edwards RHT. The effect <strong>of</strong> knee <strong>in</strong>jury on <strong>the</strong>number <strong>of</strong> <strong>muscle</strong> fibres <strong>in</strong> <strong>the</strong> human <strong>quadriceps</strong> femoris. Cl<strong>in</strong> Sci 1982;62(227):234.288 Doxey GE. Assess<strong>in</strong>g <strong>quadriceps</strong> femoris <strong>muscle</strong> bulk with girth measurements<strong>in</strong> subjects with patell<strong>of</strong>emoral pa<strong>in</strong>. J Orthop Sports Phys Ther 1987; 9(5):177-183.289 Stokes M. Reliability and repeatability <strong>of</strong> methods for measur<strong>in</strong>g <strong>muscle</strong> <strong>in</strong>physio<strong>the</strong>rapy. Physio<strong>the</strong>rapy Practice 1985; 1:71-76.290 Dons B, Bollerup PK, Bonde-Peterson F, Hacke S. The effect <strong>of</strong> weight lift<strong>in</strong>gexercise related to <strong>muscle</strong> fiber composition and <strong>muscle</strong> cross sectional area <strong>in</strong>humans. Eur J Appl Physiol 1979; 40:95-106.291 Walton JM, Roberts N, Whitehouse GH. Measurement <strong>of</strong> <strong>the</strong> <strong>quadriceps</strong> femoris<strong>muscle</strong> us<strong>in</strong>g magnetic resonance and ultrasound imag<strong>in</strong>g. Brit J Sports Med1997; 31(1):59-64.292 Howe TE. Evaluation <strong>of</strong> <strong>muscle</strong> performance measures used to assesselectro<strong>the</strong>rapeutic rehabilitation <strong>of</strong> <strong>the</strong> <strong>quadriceps</strong>. University <strong>of</strong> Manchester,1994.293 Koumantakis GA, Arnall F, Cooper RG, Oldham JA. Parasp<strong>in</strong>al <strong>muscle</strong> EMGfatigue test<strong>in</strong>g with two methods <strong>in</strong> healthy volunteers. Reliability <strong>in</strong> <strong>the</strong> context<strong>of</strong> cl<strong>in</strong>ical applications. Cl<strong>in</strong> Biomech 2001; 16:263-266.294 Bentley G. Anterior Knee Pa<strong>in</strong>:diagnosis and management. J R Coll Surg Ed<strong>in</strong>b1989; 34(suppl):2-3.295 Jones DA, Ru<strong>the</strong>rford OM, Oldham JA. A comparison <strong>of</strong> two patterns <strong>of</strong> chronic<strong>stimulation</strong> on <strong>the</strong> contractile properties and fatigue resistance characteristics <strong>of</strong>human hand <strong>muscle</strong>s. J Physiol 1987; 390:131.308


__________________________________________________________References296 Basmajian JV, De Luca CJ. Muscles Alive. Their function revealed byelectromyography. 5th ed. Baltimore: Williams & Wilk<strong>in</strong>s, 1987.297 Roy SH, Emley M, Buijs RJC. Spectral electromyographic assessment <strong>of</strong> back<strong>muscle</strong>s <strong>in</strong> patients with low back pa<strong>in</strong> undergo<strong>in</strong>g rehabilitation. Sp<strong>in</strong>e 1995;20(1):38-48.298 Gogia PP, Braatz JH, Rose SJ, Norton BJ. Reliability and validity <strong>of</strong> goniometricmeasurements at <strong>the</strong> knee. Phys Ther 1987; 67(2):192-195.299 Ru<strong>the</strong>rford OM, Jones DA. Contractile properties and fatigability <strong>of</strong> <strong>the</strong> humanadductor pollicis and first dorsal <strong>in</strong>terosseous: a comparison <strong>of</strong> <strong>the</strong> effects <strong>of</strong> twochronic <strong>stimulation</strong> patterns. J Neurol Sci 1988; 85:319-331.300 Jeyaseelan SM. A pilot evaluation <strong>of</strong> a new pattern <strong>of</strong> <strong>electrical</strong> <strong>muscle</strong><strong>stimulation</strong> as a treatment for genu<strong>in</strong>e stress <strong>in</strong>cont<strong>in</strong>ence: a randomised, doublebl<strong>in</strong>d, controlled trial. University <strong>of</strong> Manchester, 1999.301 Callaghan MJ, Oldham JA. The role <strong>of</strong> <strong>quadriceps</strong> exercise <strong>in</strong> <strong>the</strong> treatment <strong>of</strong>patell<strong>of</strong>emoral pa<strong>in</strong>. Sports Med 1996; 21(5):384-391.302 Kasman GS, Cram JR, Wolf SL. Knee dysfunction. In: Kasman GS, Cram JR,Wolf SL, editors. Cl<strong>in</strong>ical applications <strong>in</strong> surface electromyography.Gai<strong>the</strong>rsburg: Aspen Publishers Inc., 1998: 363-389.303 Vaata<strong>in</strong>en U, Nurmi H, Airaks<strong>in</strong>en O. Muscle spectral analysis <strong>in</strong> anterior kneepa<strong>in</strong>. Hungarian Review <strong>of</strong> Sports Medic<strong>in</strong>e 1991; 32(4):281-285.304 Shelton GL, Thigpen LK. Rehabilitation <strong>of</strong> patell<strong>of</strong>emoral dysfunction: a review <strong>of</strong><strong>the</strong> literature. J Orthop Sports Phys Ther 1991; 14(6):243-249.305 Natri A, Kannus P, Jarv<strong>in</strong>en M. Which factors predict <strong>the</strong> long term outcome <strong>in</strong>chronic patell<strong>of</strong>emoral pa<strong>in</strong> syndrome? A 7-yr prospective follow-up study. MedSci Sport Exerc 1998; 30(11):1572-1577.306 Altman DG. Practical statistics for medical research. 1st ed. London: ChapmanHall, 1991.307 Thomas JR, Nelson JK. Research methods <strong>in</strong> physical activity. 2nd ed.Champaign, ILL: Human K<strong>in</strong>etics, 1995.309


__________________________________________________________References308 Sim J, Wright C. Research <strong>in</strong> Health Care. 1st ed. Cheltenham, UK: StanleyThornes Ltd., 2000.309 Herbert RD. How to estimate treatment effects from reports <strong>of</strong> cl<strong>in</strong>ical trials. 1;Cont<strong>in</strong>uous outcomes. Austr J Physio<strong>the</strong>r 200; 46:229-235.310 Polgar S, Thomas SA. Introduction to Research <strong>in</strong> Health Sciences. 4th ed.Sydney: Churchill Liv<strong>in</strong>gstone, 2000.311 Hopk<strong>in</strong>s WG. A New View <strong>of</strong> Statistics.http://www.sportsci.org/resource/stats/effect.html . 12-10-2000. 7-12-2000.Ref Type: Electronic Citation312 Clark DI, Down<strong>in</strong>g N, Mitchell J, Coulson L, Syzpryt EP, Doherty M.Physio<strong>the</strong>rapy for anterior knee pa<strong>in</strong>: a randomised controlled trial. Ann RheumDisease 2000; 59:700-704.313 Yates C, Grana WA. Patell<strong>of</strong>emoral pa<strong>in</strong> - a prospective study. Orthopedics1986; 9(5):663-667.314 Callaghan MJ, Oldham JA, Hunt J. An evaluation <strong>of</strong> exercise regimes forpatients with osteoarthritis <strong>of</strong> <strong>the</strong> knee: a s<strong>in</strong>gle-bl<strong>in</strong>d randomised controlled trial.Cl<strong>in</strong> Rehabil 1995; 9(3):213-218.315 Callaghan MJ, McCarthy C, Al-Omar A. Compar<strong>in</strong>g open and closed k<strong>in</strong>eticcha<strong>in</strong> isok<strong>in</strong>etic assessments. Isok<strong>in</strong> Exer Sci 2001; (<strong>in</strong> press).316 Becker R, Awiszus F. Physiological alterations <strong>of</strong> maximal voluntary <strong>quadriceps</strong>activation by changes <strong>of</strong> knee jo<strong>in</strong>t angle. Muscle Nerve 2001; 24(5):667-672.317 Bigland-Ritchie B, Zijdew<strong>in</strong>d I, Thomas CK. Muscle fatigue <strong>in</strong>duced by<strong>stimulation</strong> with and without doublets. Muscle Nerve 2000; 23:1348-1355.318 B<strong>in</strong>der-Macleod SA, Lee SCK. Catchlike property <strong>of</strong> human <strong>muscle</strong> dur<strong>in</strong>gisovelocity movements. J Appl Physiol 1996; 80(6):2051-2059.319 Mayne CN, Su<strong>the</strong>rland H, Jarvis JC, Gilroy SJ, Salmons S. Induction <strong>of</strong> a fastoxidative phenotype by chronic <strong>muscle</strong> <strong>stimulation</strong>:histochemical and metabolicstudies. Am J Physiol 1996; 270(Cell Physiol.39):C313-C320.310


__________________________________________________________References320 Lieber RL. Comparison between animal and human studies <strong>of</strong> skeletal <strong>muscle</strong>adaptation to chronic <strong>stimulation</strong>. Cl<strong>in</strong> Orthop Rel Res 1988;(233):19-24.321 Lieber RL. Skeletal <strong>muscle</strong> adaptability III: Muscle properties follow<strong>in</strong>g chronic<strong>stimulation</strong>. Dev Med Child Neurol 1986; 28:662-670.322 Zappala FG, Taffel CB, Scuderi GR. Rehabilitation <strong>of</strong> patell<strong>of</strong>emoral disorders.Orthop Cl<strong>in</strong>ic N Am 1992; 23(4):555-566.323 S<strong>in</strong>ger KP. The <strong>in</strong>fluence <strong>of</strong> unilateral <strong>electrical</strong> <strong>muscle</strong> <strong>stimulation</strong> on motor unitactivity patterns <strong>in</strong> atrophic human <strong>quadriceps</strong>. Austr J Physio<strong>the</strong>r 1986;32(1):31-37.324 Holcomb WR. A practical guide to <strong>electrical</strong> <strong>the</strong>rapy. J Sport Rehabil 1997;6:272-282.325 Johnson MI. The mystique <strong>of</strong> <strong>in</strong>terferential currents when used to manage pa<strong>in</strong>.Physio<strong>the</strong>rapy 1999; 85(6):294-297.326 Marks R, Ungar M, Ghassemi M. Electrical <strong>muscle</strong> <strong>stimulation</strong> for osteoarthritis<strong>of</strong> <strong>the</strong> knee: Biological basis and systematic review. NZ Journal <strong>of</strong> Physio<strong>the</strong>rapy2000; 28(3):6-20.327 Gilleard W, McConnell J, Parsons D. The effect <strong>of</strong> patellar tap<strong>in</strong>g on <strong>the</strong> onset <strong>of</strong>vastus medialis obliquus and vastus lateralis <strong>muscle</strong> activity <strong>in</strong> persons withpatell<strong>of</strong>emoral pa<strong>in</strong>. Phys Ther 1998; 78(1):25-32.328 American Academy <strong>of</strong> Orthopaedic Surgeons. Jo<strong>in</strong>t Motion. Method <strong>of</strong>measur<strong>in</strong>g and record<strong>in</strong>g. 9th ed. New York: Churchill Liv<strong>in</strong>gstone, 1978.329 Lloyd T, De Dom<strong>in</strong>ico G, Strauss GR, S<strong>in</strong>ger KP. A review <strong>of</strong> <strong>the</strong> use <strong>of</strong>electromotor <strong>stimulation</strong> <strong>in</strong> human <strong>muscle</strong>s. Austr J Physio<strong>the</strong>r 1986; 32(1):18-30.330 Ha<strong>in</strong>aut K, Duchateau J. Neuromuscular <strong>electrical</strong> <strong>stimulation</strong> and voluntaryexercise. Sports Med 1992; 14(2):100-113.331 Thomeé R. A comprehensive treatment approach for patell<strong>of</strong>emoral pa<strong>in</strong>syndrome <strong>in</strong> young women. Phys Ther 1997; 77(12):1690-1703.311


__________________________________________________________ReferencesAPPENDICES312


__________________________________________________________Appendices11 APPENDICESCONSENT FORMVERSION 02:Issue date 22/10/99Centre for Rehabilitation Science, Manchester Royal Infirmary Oxford Road M13 9WLProject Number: CT97/13Title <strong>of</strong> project: Evaluation <strong>of</strong> a new electro<strong>the</strong>rapyFor <strong>quadriceps</strong> rehabilitation <strong>in</strong> patients with patell<strong>of</strong>emoral pa<strong>in</strong> syndrome (PFPS)Name <strong>of</strong> <strong>in</strong>vestigators: Mr M.J.CallaghanPr<strong>of</strong>. J.A. OldhamPatient identification number for this trial:1. I confirm that I have read and understand <strong>the</strong> <strong>in</strong>formation sheetdated 22/10/99 version 2 for <strong>the</strong> above trial and have had <strong>the</strong>opportunity to ask questions.please <strong>in</strong>itial boxes:2. I understand that my participation is voluntary and I am free towithdraw at any time without giv<strong>in</strong>g any reason, without mymedical care or legal rights be<strong>in</strong>g affected.3. I understand that sections <strong>of</strong> any <strong>of</strong> my medical notes may beLooked at by responsible <strong>in</strong>dividuals at Smith & Nephew or fromRegulatory authorities where it is relevant to my tak<strong>in</strong>g part <strong>in</strong>research. I give permission for <strong>the</strong>se <strong>in</strong>dividuals to have accessto my records.4. I agree to take part <strong>in</strong> <strong>the</strong> above trial.5. I agree to my GP be<strong>in</strong>g told <strong>of</strong> my tak<strong>in</strong>g part <strong>in</strong> this study (delete): yes no______________________ __________ __________________Name <strong>of</strong> patient (pr<strong>in</strong>t) Date Signature________________________ ___________ ____________________Investigator (pr<strong>in</strong>t) Date Signature____________________ _ ___________ ____________________Name <strong>of</strong> person tak<strong>in</strong>g consent Date Signature If not <strong>in</strong>vestigator (pr<strong>in</strong>t)313


__________________________________________________________AppendicesCENTRE FOR REHABILITATION SCIENCEMANCHESTER ROYAL INFIRMARYOXFORD ROADMANCHESTER M13 9WLEnglandEVALUATION OF A NEW ELECTROTHERAPY FOR QUADRICEPSREHABILITATION IN PATIENTS WITH PATELLOFEMORAL PAIN SYNDROMEPATIENT INFORMATION SHEET Version 2(Issue date 22/10/99)Please read carefully and feel free to ask us for some more <strong>in</strong>formation or expla<strong>in</strong>someth<strong>in</strong>g you do not understand.Aims <strong>of</strong> <strong>the</strong> studyWe would like you to consider tak<strong>in</strong>g part <strong>in</strong> a research study to look at <strong>the</strong> best form<strong>of</strong> electro<strong>the</strong>rapy treatment for your knee condition.Methods <strong>of</strong> <strong>the</strong> studyTreatment will <strong>in</strong>volve <strong>electrical</strong> <strong>stimulation</strong> <strong>of</strong> <strong>the</strong> thigh <strong>muscle</strong> <strong>in</strong> your affected leg.You will be randomly assigned to one <strong>of</strong> <strong>the</strong> follow<strong>in</strong>g <strong>group</strong>s that will each receive adifferent pattern <strong>of</strong> <strong>stimulation</strong>.New pattern <strong>of</strong> <strong>stimulation</strong>.Conventional pattern <strong>of</strong> <strong>stimulation</strong>Once assigned to one <strong>of</strong> <strong>the</strong>se <strong>group</strong>s you will take a <strong>muscle</strong> stimulator home and willhave to use it for up to one hour every day for six weeks as <strong>in</strong>structed. Dur<strong>in</strong>g thisone hour <strong>stimulation</strong> you will need to sit down and read <strong>the</strong> paper or watch television.You leg will feel t<strong>in</strong>gly and will 'jiggle' up and down at regular <strong>in</strong>tervals. This is anunusual sensation and it may be difficult to walk whilst receiv<strong>in</strong>g treatment. We willask you to keep a diary <strong>of</strong> your compliance with <strong>the</strong> <strong>stimulation</strong>.314


__________________________________________________________AppendicesIn addition everyone participat<strong>in</strong>g <strong>in</strong> <strong>the</strong> trial will take part <strong>in</strong> a number <strong>of</strong>assessments. These will be undertaken on a number <strong>of</strong> separate occasions. 3assessments will be made before you receive treatment that will be approximatelyone week apart. After 6 weeks <strong>of</strong> treatment, you will be assessed aga<strong>in</strong> to look forimprovements <strong>in</strong> your condition. This may be followed by ano<strong>the</strong>r assessment 3months later. All <strong>of</strong> <strong>the</strong>se assessments will take place at <strong>the</strong> Centre for RehabilitationScience, Manchester Royal Infirmary.We will be assess<strong>in</strong>g <strong>the</strong> follow<strong>in</strong>g on each <strong>of</strong> <strong>the</strong>se occasions:The strength and stam<strong>in</strong>a <strong>of</strong> your thigh <strong>muscle</strong>s.Any pa<strong>in</strong> you may be experienc<strong>in</strong>g <strong>in</strong> your knee jo<strong>in</strong>t.Your ability to climb stairs and squat.We will also ask you a few questions about your knee <strong>in</strong> general.In addition at <strong>the</strong> <strong>in</strong>itial assessment, <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g and end <strong>of</strong> <strong>the</strong> six weeks<strong>stimulation</strong> period and three months (if appropriate) after <strong>the</strong> <strong>stimulation</strong> period we willneed to take an ultrasound scan <strong>of</strong> your thigh to assess <strong>the</strong> size <strong>of</strong> <strong>the</strong> <strong>muscle</strong>. Thistechnique is <strong>the</strong> same as that used for scann<strong>in</strong>g babies <strong>in</strong> <strong>the</strong> womb. You will receivea specific appo<strong>in</strong>tment time call<strong>in</strong>g you <strong>in</strong> for <strong>the</strong>se tests.All <strong>of</strong> <strong>the</strong>se tests are very safe and will be expla<strong>in</strong>ed and demonstrated to you beforeyou have a go.Effects/Benefits from participat<strong>in</strong>g <strong>in</strong> <strong>the</strong> studyElectrical Muscle Stimulators (EMS) are used to relax <strong>muscle</strong> spasm, prevent <strong>muscle</strong>wastage, <strong>in</strong>crease local blood flow and to ma<strong>in</strong>ta<strong>in</strong> or <strong>in</strong>crease a patient's range <strong>of</strong>motion. In a small number <strong>of</strong> cases patients have experienced sk<strong>in</strong> irritation andburns beneath <strong>the</strong> electrodes when us<strong>in</strong>g EMS devices. Although <strong>the</strong>se irritations canusually be reduced by mov<strong>in</strong>g <strong>the</strong> electrodes it is vital that you <strong>in</strong>form Mr MichaelCallaghan, Pr<strong>of</strong>essor Jackie Oldham or Clare Depledge immediately if youexperience any <strong>of</strong> <strong>the</strong>se effects. If you have any worries or questions about tak<strong>in</strong>gpart <strong>in</strong> this study after read<strong>in</strong>g <strong>the</strong>se please do not hesitate to ask us for help or more<strong>in</strong>formation.We can only guess what <strong>the</strong> effect <strong>stimulation</strong> <strong>of</strong> your thigh <strong>muscle</strong> will have.315


__________________________________________________________AppendicesRespect <strong>of</strong> confidentialityAny <strong>in</strong>formation you give us and any results we collect from you will be keptconfidential. Our records will refer to you as a number ra<strong>the</strong>r than your nameso no one can l<strong>in</strong>k your results to you. Anyth<strong>in</strong>g you tell us will be treated with <strong>the</strong>strictest confidence.Reimbursement for participat<strong>in</strong>g <strong>in</strong> <strong>the</strong> studyWe will make sure you are not out <strong>of</strong> pocket by participat<strong>in</strong>g <strong>in</strong> <strong>the</strong> trial and will refundany <strong>of</strong> your travell<strong>in</strong>g expenses.Your rightsThe decision to take part <strong>in</strong> this study is up to you and you can change your m<strong>in</strong>dabout tak<strong>in</strong>g part without giv<strong>in</strong>g a reason at any time without affect<strong>in</strong>g your case andtreatment <strong>in</strong> <strong>the</strong> future. We are also happy to discuss any queries at any stage <strong>of</strong> <strong>the</strong>trial.Our rightsWe reta<strong>in</strong> <strong>the</strong> right to withdraw you from <strong>the</strong> trial at any po<strong>in</strong>t if we th<strong>in</strong>k it appropriateto do so.Contact Names, Addresses and Telephone Numbers:Michael Callaghan, Pr<strong>of</strong>. Jackie Oldham or Clare DepledgeCentre for Rehabilitation ScienceManchester Royal Infirmary Oxford RoadManchester M13 9WLTel: 0161-276-6672316


__________________________________________________________AppendicesKUJALA PFPS SCOREFor each question circle <strong>the</strong> letter which corresponds to your most recent kneesymptoms1. LIMPA None 5B Slight or periodical 3C Constant 02. SUPPORTA Full support without pa<strong>in</strong> 5B Pa<strong>in</strong>ful 3C Weight bear<strong>in</strong>g impossible 03. WALKINGA Unlimited 5B More than 1 1 / 2 miles 3C Up to 1 mile 2D Unable to do 04. STAIRSA No difficulty 10B Slight pa<strong>in</strong> when go<strong>in</strong>g down 8C Pa<strong>in</strong> on go<strong>in</strong>g up and down 5D Unable to do 05. SQUATTINGA No difficulty 5B Repeated squatt<strong>in</strong>g pa<strong>in</strong>ful 4C Pa<strong>in</strong>ful each time 3D Possible with partial weight bear<strong>in</strong>g 2E Unable to do 07. JUMPINGA No difficulty 10B Slight difficulty 7C Constant pa<strong>in</strong> 2D Unable to do 0317


__________________________________________________________Appendices8. PROLONGED SITTING WITH KNEES BENTA No difficulty 10B Pa<strong>in</strong> after exercise 8C Constant pa<strong>in</strong> 6D Pa<strong>in</strong> forces knees to straighten temporarily 4E Unable to do 09. PAINA None 10B Slight and occasional 8C Interferes with sleep 6D Occasionally severe 3E Constant and severe 010. SWELLINGA None 10B After severe exertion 8C After daily activities 6D Every even<strong>in</strong>g 4E Constant 011. ABNORMAL PAINFUL KNEECAP MOVEMENTSA None 10B Occasionally <strong>in</strong> sports activities 8C Occasionally <strong>in</strong> daily activities 6D At least one documented dislocation 4E More than 2 dislocations 012. ATROPHY OF THE THIGHA None 5B Slight 3C Severe 013. FLEXION DEFICIENCYA None 5B Slight 3C Severe 0Total Score: / 100Adapted from Kujala et al. Scor<strong>in</strong>g <strong>of</strong> patell<strong>of</strong>emoral disorders.Arthroscopy 1993;9(2):159-163318


__________________________________________________________AppendicesTypical graph <strong>of</strong> patient with normal gait parameters <strong>in</strong>cluded <strong>in</strong> Ma<strong>in</strong> study319


__________________________________________________________AppendicesRaw data <strong>of</strong> <strong>the</strong> graph on previous page320


__________________________________________________________AppendicesTypical graph <strong>of</strong> a patient excluded due to abnormal gait parameters.321


__________________________________________________________AppendicesRaw data <strong>of</strong> excluded patient on previous page322


__________________________________________________________AppendicesHISTOGRAMS AND SCATTERPLOTS OF OUTCOME MEASURES(Isometric strength on page 215)20Isok<strong>in</strong>etic strengthFrequency10Std. Dev = 1.08Mean = .060N = 74.00-2.50 -1.50 -.50-2.00 -1.00 0.00.501.50 2.50 3.501.00 2.00 3.00Regression Standardised Residual4Isok<strong>in</strong>etic strengthRegression Standardised Residual3210-1-2-3-3-2-101234Regression Standardised Predicted Value323


__________________________________________________________Appendices12Quadriceps fatigue10864Frequency202.502.252.001.751.501.251.00.75.50.250.00-.25-.50-.75-1.00-1.25-1.50-1.75-2.00-2.25Std. Dev = .98Mean = .02N = 73.00Regression Standardized Residual3Quadriceps fatigueRegression Standardised Residual210-1-2-3-4-3-2-10123Regression Standardised Predicted Value324


__________________________________________________________Appendices20Pa<strong>in</strong>Frequency10Std. Dev = .97Mean = .030N = 73.00-2.00-1.50-1.00-.500.00.501.001.502.002.50Regression Standardised Residual3Pa<strong>in</strong>Regression Standardised Residual210-1-2-3-2-101234Regression Standardised Predicted Value325


__________________________________________________________Appendices12Steps108Frequency642Std. Dev = 1.00Mean = .010N = 74.00-2.00 -1.50 -1.00 -.50 0.00 .50 1.00 1.50 2.00-1.75 -1.25 -.75 -.25 .25 .75 1.25 1.75Regression Standardised Residual3StepsRegression Standardised Residual210-1-2-3-3-2-10123Regression Standardised Predicted Value326


__________________________________________________________Appendices30Flexion20Frequency10Std. Dev = 1.00Mean = .010N = 74.00-3.00 -2.00 -1.00-2.50 -1.50-.500.00.501.001.502.00Regression Standardised Residual3FlexionRegression Standardised Residual210-1-2-3-3-2-10123Regression Standardised Predicted Value327


__________________________________________________________Appendices12Kujala Questionnaire108Frequency6420Std. Dev = .96Mean = -.02N = 73.00-1.25-1.50-1.75-2.00-2.25-2.50-2.75Regression Standardised Residual21.751.501.251.00.75.50.250.00-.25-.50-.75-1.00Kujala QuestionnaireRegression Standardised Residual10-1-2-3-3-2-1012Regression Standardised Predicted Value328

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!