13.07.2015 Views

Ecology and Management of Oak Woodlands on Tejon Ranch ...

Ecology and Management of Oak Woodlands on Tejon Ranch ...

Ecology and Management of Oak Woodlands on Tejon Ranch ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Bren School <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Science <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Management</str<strong>on</strong>g>University <str<strong>on</strong>g>of</str<strong>on</strong>g> California, Santa Barbara<str<strong>on</strong>g>Ecology</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Management</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Oak</str<strong>on</strong>g> Woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s <strong>on</strong> Tej<strong>on</strong> <strong>Ranch</strong>Recommendati<strong>on</strong>s for C<strong>on</strong>serving a Valuable California Ecosystem2011 Group Project Final ReportAuthors: Serra Hoagl<str<strong>on</strong>g>and</str<strong>on</strong>g>, Andrew Krieger, Shann<strong>on</strong> Moy, <str<strong>on</strong>g>and</str<strong>on</strong>g> Anders<strong>on</strong> ShepardFaculty Advisor: Frank W. DavisJune 10, 2011i


Page Intenti<strong>on</strong>ally Left Blank


<str<strong>on</strong>g>Ecology</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Management</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Oak</str<strong>on</strong>g> Woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s <strong>on</strong> Tej<strong>on</strong> <strong>Ranch</strong>Recommendati<strong>on</strong>s for C<strong>on</strong>serving a Valuable California EcosystemAs authors <str<strong>on</strong>g>of</str<strong>on</strong>g> this Group Project report, we are proud to archive it <strong>on</strong> the Bren School‘s websitesuch that the results <str<strong>on</strong>g>of</str<strong>on</strong>g> our research are available for all to read. Our signatures <strong>on</strong> the documentsignify our joint resp<strong>on</strong>sibility to fulfill the archiving st<str<strong>on</strong>g>and</str<strong>on</strong>g>ards set by the Bren School <str<strong>on</strong>g>of</str<strong>on</strong>g>Envir<strong>on</strong>mental Science <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Management</str<strong>on</strong>g>._________________________________ANDERSON SHEPARD_________________________________SHANNON MOY_________________________________ANDREW KRIEGER_________________________________SERRA HOAGLANDThe missi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Bren School <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Science <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Management</str<strong>on</strong>g> is to producepr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>als with unrivaled training in envir<strong>on</strong>mental science <str<strong>on</strong>g>and</str<strong>on</strong>g> management who will devotetheir unique skills to the diagnosis, assessment, mitigati<strong>on</strong>, preventi<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> remedy <str<strong>on</strong>g>of</str<strong>on</strong>g> theenvir<strong>on</strong>mental problems <str<strong>on</strong>g>of</str<strong>on</strong>g> today <str<strong>on</strong>g>and</str<strong>on</strong>g> the future. A guiding principle <str<strong>on</strong>g>of</str<strong>on</strong>g> the School is that theanalysis <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental problems requires quantitative training in more than <strong>on</strong>e discipline <str<strong>on</strong>g>and</str<strong>on</strong>g>an awareness <str<strong>on</strong>g>of</str<strong>on</strong>g> the physical, biological, social, political, <str<strong>on</strong>g>and</str<strong>on</strong>g> ec<strong>on</strong>omic c<strong>on</strong>sequences that arisefrom scientific or technological decisi<strong>on</strong>s.The Group Project is required <str<strong>on</strong>g>of</str<strong>on</strong>g> all students in the Master‘s <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Science <str<strong>on</strong>g>and</str<strong>on</strong>g><str<strong>on</strong>g>Management</str<strong>on</strong>g> (MESM) Program. It is a three academic quarter activity in which small groups <str<strong>on</strong>g>of</str<strong>on</strong>g>students c<strong>on</strong>duct focused, interdisciplinary research <strong>on</strong> the scientific, management, <str<strong>on</strong>g>and</str<strong>on</strong>g> policydimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a specific envir<strong>on</strong>mental issue. This Final Group Project Report is authored byMESM students <str<strong>on</strong>g>and</str<strong>on</strong>g> has been reviewed <str<strong>on</strong>g>and</str<strong>on</strong>g> approved by:________________________________FRANK W. DAVIS, PH.D.June 2011


ACKNOWLEDGEMENTSWe would like to thank the following individuals for their support <str<strong>on</strong>g>and</str<strong>on</strong>g> guidance throughout thedurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> our project.Dr. Frank Davis – Faculty Advisor, Bren School <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Science <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Management</str<strong>on</strong>g>Dr. Mike White – Client, C<strong>on</strong>servati<strong>on</strong> Science Director, Tej<strong>on</strong> <strong>Ranch</strong> C<strong>on</strong>servancyTom Mal<strong>on</strong>ey – Client, Executive Director, Tej<strong>on</strong> <strong>Ranch</strong> C<strong>on</strong>servancyDr. Trish Holden – Bren School <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Science <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Management</str<strong>on</strong>g>, UCSBDr. Lee Hannah – Bren School <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Science <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Management</str<strong>on</strong>g>, UCSBDr. Bruce Kendall – Bren School <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Science <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Management</str<strong>on</strong>g>, UCSBDr. Maki Ikegami – Bren School <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Science <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Management</str<strong>on</strong>g>, UCSBDr. Claudia Tyler – Assistant Research Biologist, ICESS, UCSBSoapy Mulholl<str<strong>on</strong>g>and</str<strong>on</strong>g> – Executive Director, Sequoia Riverl<str<strong>on</strong>g>and</str<strong>on</strong>g>s TrustHilary Dustin – C<strong>on</strong>servati<strong>on</strong> Director, Sequoia Riverl<str<strong>on</strong>g>and</str<strong>on</strong>g>s TrustNicole Molinari – PhD C<str<strong>on</strong>g>and</str<strong>on</strong>g>idate, EEMB, UCSBKaren Stalhler – PhD C<str<strong>on</strong>g>and</str<strong>on</strong>g>idate, EEMB, UCSBThomas Reed – PhD C<str<strong>on</strong>g>and</str<strong>on</strong>g>idate, EE, UCSBRusty Brown – UCSB Library Imagery SpecialistDeborah Lupo – UCSB Library Imagery SpecialistDan Gira – More Mesa Preservati<strong>on</strong> Coaliti<strong>on</strong>Dr. Heather Scheck – Santa Barbara County Plant PathologistBob Stafford – Wildlife Biologist, Chimineas <strong>Ranch</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> California Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Fish & GameDavid Clendenen – Resource Ecologist, Wind Wolves Preserve, The Wildl<str<strong>on</strong>g>and</str<strong>on</strong>g>s C<strong>on</strong>servancySheri Spiegal – PhD C<str<strong>on</strong>g>and</str<strong>on</strong>g>idate, Range <str<strong>on</strong>g>Ecology</str<strong>on</strong>g> Lab, UC BerkeleyJennifer Browne – Operati<strong>on</strong>s Manager, Tej<strong>on</strong> <strong>Ranch</strong> C<strong>on</strong>servancyChris A. Niemela – C<strong>on</strong>servati<strong>on</strong> Scientist, Tej<strong>on</strong> <strong>Ranch</strong> C<strong>on</strong>servancyRob Peters<strong>on</strong> – Senior Director <str<strong>on</strong>g>of</str<strong>on</strong>g> L<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Resource Planning, Tej<strong>on</strong> <strong>Ranch</strong> CompanyBiogeography Lab – Bren School <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Science <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Management</str<strong>on</strong>g>, UCSBiv


ABSTRACTIn 2008 the Tej<strong>on</strong> <strong>Ranch</strong> Company <str<strong>on</strong>g>and</str<strong>on</strong>g> a group <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>servati<strong>on</strong> organizati<strong>on</strong>s signed thel<str<strong>on</strong>g>and</str<strong>on</strong>g>mark Tej<strong>on</strong> <strong>Ranch</strong> C<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> L<str<strong>on</strong>g>and</str<strong>on</strong>g> Use Agreement which permanently protected178,000 ecologically valuable acres <strong>on</strong> the <strong>Ranch</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> created the Tej<strong>on</strong> <strong>Ranch</strong> C<strong>on</strong>servancywhose missi<strong>on</strong> is to ―preserve, enhance, <str<strong>on</strong>g>and</str<strong>on</strong>g> restore the native biodiversity <str<strong>on</strong>g>and</str<strong>on</strong>g> ecosystemvalues <str<strong>on</strong>g>of</str<strong>on</strong>g> the Tej<strong>on</strong> <strong>Ranch</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the Tehachapi Range for the benefit <str<strong>on</strong>g>of</str<strong>on</strong>g> California‘s futuregenerati<strong>on</strong>s‖. One <str<strong>on</strong>g>of</str<strong>on</strong>g> the C<strong>on</strong>servancy‘s primary tasks is the creati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>Ranch</strong>-Wide<str<strong>on</strong>g>Management</str<strong>on</strong>g> Plan (RWMP) which will support the C<strong>on</strong>servancy‘s missi<strong>on</strong>. The goal <str<strong>on</strong>g>of</str<strong>on</strong>g> thisproject was to study oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s <strong>on</strong> the ranch <str<strong>on</strong>g>and</str<strong>on</strong>g> make oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g> managementrecommendati<strong>on</strong>s to be included in the RWMP. Through a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> field work, dataanalyses, <str<strong>on</strong>g>and</str<strong>on</strong>g> modeling we characterized the ranch‘s oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s, compared their structure toother California oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s, quantified oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g> populati<strong>on</strong> growth rates, <str<strong>on</strong>g>and</str<strong>on</strong>g>modeled how climate change will influence future distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s. We foundthat blue, valley, <str<strong>on</strong>g>and</str<strong>on</strong>g> black oak populati<strong>on</strong>s are slowly declining <str<strong>on</strong>g>and</str<strong>on</strong>g> predicted that climatechange will result in significant shifts in suitable habitats for blue, valley <str<strong>on</strong>g>and</str<strong>on</strong>g> black oaks. Giventhese threats we recommend that the C<strong>on</strong>servancy employ protective cages around seedlings<str<strong>on</strong>g>and</str<strong>on</strong>g> saplings in areas that are likely to remain climatically suitable over the next 50 years.v


Page Intenti<strong>on</strong>ally Left Blankvi


EXECUTIVE SUMMARYTej<strong>on</strong> <strong>Ranch</strong> is the largest c<strong>on</strong>tiguous private property in California <str<strong>on</strong>g>and</str<strong>on</strong>g> encompasses 270,000acres at the c<strong>on</strong>vergence <str<strong>on</strong>g>of</str<strong>on</strong>g> four major ecoregi<strong>on</strong>s: the Mojave Desert, the Central Valley, theSierra Nevada, <str<strong>on</strong>g>and</str<strong>on</strong>g> the Transverse Ranges. The ranch is home to rare <str<strong>on</strong>g>and</str<strong>on</strong>g> endemic species <str<strong>on</strong>g>and</str<strong>on</strong>g>a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong> communities including extensive foothill <str<strong>on</strong>g>and</str<strong>on</strong>g> m<strong>on</strong>tane oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s,all located within 100 miles <str<strong>on</strong>g>of</str<strong>on</strong>g> Los Angeles.In 2008, the Tej<strong>on</strong> <strong>Ranch</strong> Company, owner <str<strong>on</strong>g>of</str<strong>on</strong>g> Tej<strong>on</strong> <strong>Ranch</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> a coaliti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>servati<strong>on</strong>organizati<strong>on</strong>s signed the l<str<strong>on</strong>g>and</str<strong>on</strong>g>mark Tej<strong>on</strong> <strong>Ranch</strong> C<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> L<str<strong>on</strong>g>and</str<strong>on</strong>g> Use Agreement (theAgreement). Under the Agreement, the Tej<strong>on</strong> <strong>Ranch</strong> Company may develop 30,000 acres <str<strong>on</strong>g>of</str<strong>on</strong>g>Tej<strong>on</strong> <strong>Ranch</strong> unc<strong>on</strong>tested by the c<strong>on</strong>servati<strong>on</strong> organizati<strong>on</strong>s while 178,000 acres <str<strong>on</strong>g>of</str<strong>on</strong>g> the ranchare committed to permanent c<strong>on</strong>servati<strong>on</strong>. In March <str<strong>on</strong>g>of</str<strong>on</strong>g> 2011 an additi<strong>on</strong>al 62,000 c<strong>on</strong>servati<strong>on</strong>acres were secured. The Agreement also established the n<strong>on</strong>-pr<str<strong>on</strong>g>of</str<strong>on</strong>g>it Tej<strong>on</strong> <strong>Ranch</strong> C<strong>on</strong>servancy(the C<strong>on</strong>servancy) whose missi<strong>on</strong> is to ―preserve, enhance, <str<strong>on</strong>g>and</str<strong>on</strong>g> restore the native biodiversity<str<strong>on</strong>g>and</str<strong>on</strong>g> ecological values <str<strong>on</strong>g>of</str<strong>on</strong>g> Tej<strong>on</strong> <strong>Ranch</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the Tehachapi Range for the benefit <str<strong>on</strong>g>of</str<strong>on</strong>g> California‘sfuture generati<strong>on</strong>s‖. In pursuit <str<strong>on</strong>g>of</str<strong>on</strong>g> this missi<strong>on</strong> the C<strong>on</strong>servancy is charged with developing a<strong>Ranch</strong>-Wide <str<strong>on</strong>g>Management</str<strong>on</strong>g> Plan (RWMP) that will employ an adaptive management strategy inorder to enhance c<strong>on</strong>servati<strong>on</strong> values <strong>on</strong> the <strong>Ranch</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> maintain current l<str<strong>on</strong>g>and</str<strong>on</strong>g> uses permittedunder the Agreement such as hunting, cattle grazing, <str<strong>on</strong>g>and</str<strong>on</strong>g> filming. The goal <str<strong>on</strong>g>of</str<strong>on</strong>g> our project is toassess the ecological c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s <strong>on</strong> Tej<strong>on</strong> <strong>Ranch</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> make managementrecommendati<strong>on</strong>s for the RWMP.Our research included three m<strong>on</strong>ths <str<strong>on</strong>g>of</str<strong>on</strong>g> field data collecti<strong>on</strong> during the summer <str<strong>on</strong>g>of</str<strong>on</strong>g> 2010. Groupmembers A. Krieger <str<strong>on</strong>g>and</str<strong>on</strong>g> S. Moy collected tree, understory, <str<strong>on</strong>g>and</str<strong>on</strong>g> soil data in 105 blue, valley, <str<strong>on</strong>g>and</str<strong>on</strong>g>black oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g> plots. These data were used to characterize Tej<strong>on</strong>‘s oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g>were used in other modeling exercises <str<strong>on</strong>g>and</str<strong>on</strong>g> analyses. Table i below lists the primary methodsthat this project employed <str<strong>on</strong>g>and</str<strong>on</strong>g> their associated purposes:Table i - Overview <str<strong>on</strong>g>of</str<strong>on</strong>g> the methods <str<strong>on</strong>g>and</str<strong>on</strong>g> analyses d<strong>on</strong>e in this study.Method/AnalysisPurposeTimber Survey Map Validati<strong>on</strong>Mutual Informati<strong>on</strong> Analysis (MIA)Species Envir<strong>on</strong>mental GradientModeling: HyperNicheMaxEnt ModelingHistorical Photo AnalysisComparative AnalysisQuantify map uncertainty <str<strong>on</strong>g>and</str<strong>on</strong>g> the degree to which the Timber SurveyMap accurately classifies the distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oaks <strong>on</strong> the <strong>Ranch</strong>Stratified r<str<strong>on</strong>g>and</str<strong>on</strong>g>om sampling for selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g> plotsModeled species distributi<strong>on</strong>s by using species importance valuescalculated from relative basal area <str<strong>on</strong>g>and</str<strong>on</strong>g> relative species abundanceClimate suitability forecasting for three focal speciesQuantify change over time (i.e. populati<strong>on</strong> growth rate)Statewide <str<strong>on</strong>g>and</str<strong>on</strong>g> management comparis<strong>on</strong>svii


To learn how to best manage oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s <strong>on</strong> Tej<strong>on</strong> <strong>Ranch</strong>, we addressed five guidingquesti<strong>on</strong>s:What are the current extent, distributi<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s <strong>on</strong> Tej<strong>on</strong><strong>Ranch</strong>?According to a 1980 timber survey map that has the best informati<strong>on</strong> available regarding oakdistributi<strong>on</strong> <strong>on</strong> Tej<strong>on</strong> <strong>Ranch</strong>, 6% <str<strong>on</strong>g>of</str<strong>on</strong>g> the ranch is covered by blue oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>, 7% is coveredby valley oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>, <str<strong>on</strong>g>and</str<strong>on</strong>g> 2% is covered by black oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>. Our plot levelcharacterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> primary vegetati<strong>on</strong> agreed with the much larger timber survey polyg<strong>on</strong>s57.7% <str<strong>on</strong>g>of</str<strong>on</strong>g> the time. Blue, valley, <str<strong>on</strong>g>and</str<strong>on</strong>g> black oaks occupy distinct envir<strong>on</strong>mental locati<strong>on</strong>s <strong>on</strong> theranch. Blue oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s are most dominant at lower elevati<strong>on</strong>s between 500 meters <str<strong>on</strong>g>and</str<strong>on</strong>g> 1000meters <str<strong>on</strong>g>of</str<strong>on</strong>g> elevati<strong>on</strong> while black oaks dominate woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s at elevati<strong>on</strong>s above 1200 meters.Valley oaks at Tej<strong>on</strong> <strong>Ranch</strong> exhibit a bi-modal elevati<strong>on</strong>al distributi<strong>on</strong>, reaching maximumabundance between 400 to 600 meters <str<strong>on</strong>g>and</str<strong>on</strong>g> 1400 to 1800 meters <str<strong>on</strong>g>of</str<strong>on</strong>g> elevati<strong>on</strong>. Tej<strong>on</strong> <strong>Ranch</strong> iswithin the southern extent <str<strong>on</strong>g>of</str<strong>on</strong>g> the ranges <str<strong>on</strong>g>of</str<strong>on</strong>g> blue, valley, <str<strong>on</strong>g>and</str<strong>on</strong>g> black oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s. As a result oakwoodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s <strong>on</strong> the ranch occupy higher elevati<strong>on</strong>s than others throughout California. Blue oak<str<strong>on</strong>g>and</str<strong>on</strong>g> valley oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g> understories are dominated by grasses while black oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>understory is composed <str<strong>on</strong>g>of</str<strong>on</strong>g> a mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> grass <str<strong>on</strong>g>and</str<strong>on</strong>g> shrubs.How do the structures <str<strong>on</strong>g>of</str<strong>on</strong>g> oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s <strong>on</strong> Tej<strong>on</strong> <strong>Ranch</strong> compare to those in the rest <str<strong>on</strong>g>of</str<strong>on</strong>g>California?We compared st<str<strong>on</strong>g>and</str<strong>on</strong>g> basal area <str<strong>on</strong>g>and</str<strong>on</strong>g> tree diameter at breast height (DBH) in our plots to thoserecorded in a statewide sample <str<strong>on</strong>g>of</str<strong>on</strong>g> U.S. Forest Service Inventory <str<strong>on</strong>g>and</str<strong>on</strong>g> Analysis (FIA) plots <str<strong>on</strong>g>and</str<strong>on</strong>g>data reported by Allen-Diaz et al. in chapter 12 <str<strong>on</strong>g>of</str<strong>on</strong>g> Terrestrial Vegetati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> California (Bolsinger1988). Tej<strong>on</strong>‘s oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s, particularly valley oak <str<strong>on</strong>g>and</str<strong>on</strong>g> black oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s are better stockedthan those throughout California. Tej<strong>on</strong> <strong>Ranch</strong>‘s blue, valley, <str<strong>on</strong>g>and</str<strong>on</strong>g> black oak trees also have largerDBHs than those throughout the state.How are the oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s <strong>on</strong> Tej<strong>on</strong> <strong>Ranch</strong> changing over time <str<strong>on</strong>g>and</str<strong>on</strong>g> is there aregenerati<strong>on</strong> problem?We compared archival air photos from 1952 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2009 to determine how the oak populati<strong>on</strong>swere changing over time. The estimated annual populati<strong>on</strong> growth rate for blue oaks rangedfrom 0.996 to 0.999. Populati<strong>on</strong> growth rate ranged from 0.997 to 1.000 for valley <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.998 to1.000 for black oaks. While these growth rates are <strong>on</strong>ly slightly below <strong>on</strong>e, oak populati<strong>on</strong>s willsee a decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> about 9% over the next 50 years at the current rate <str<strong>on</strong>g>of</str<strong>on</strong>g> decline.How do we expect the oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Tej<strong>on</strong> <strong>Ranch</strong> to be impacted by climatechange?Many plant communities are predicted to shift in resp<strong>on</strong>se to climate change <str<strong>on</strong>g>and</str<strong>on</strong>g> oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>sare expected to lose habitat in future climates (Kueppers et al. 2005). We modeled future oakdistributi<strong>on</strong> <strong>on</strong> the ranch with species distributi<strong>on</strong> models using a moderate-high (A2) carb<strong>on</strong>emissi<strong>on</strong> scenario <str<strong>on</strong>g>and</str<strong>on</strong>g> two general circulati<strong>on</strong> models. These climate change models assume ac<strong>on</strong>tinued increase in CO 2 emissi<strong>on</strong>s throughout the 21 st century, <str<strong>on</strong>g>and</str<strong>on</strong>g> predict a 2.5° C to 4.5° Cincrease in temperature over the same time period (Cubasch et al. 2001, Cayan et al. 2008). Forthe state <str<strong>on</strong>g>of</str<strong>on</strong>g> California, <strong>on</strong>e model predicts a slightly wetter future (+ 8% change in annualprecipitati<strong>on</strong>), <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>e predicts a slightly drier future (- 28% change in annual precipitati<strong>on</strong>)(Cayan et al. 2008). We found a general decline in climatic suitability for oaks <strong>on</strong> Tej<strong>on</strong> <strong>Ranch</strong>between now <str<strong>on</strong>g>and</str<strong>on</strong>g> mid-century <str<strong>on</strong>g>and</str<strong>on</strong>g> further reducti<strong>on</strong>s by the end <str<strong>on</strong>g>of</str<strong>on</strong>g> the century. The overalltrend is movement upslope <str<strong>on</strong>g>and</str<strong>on</strong>g> toward north facing aspects. Our results showed similarviii


c<strong>on</strong>clusi<strong>on</strong>s for both models <str<strong>on</strong>g>and</str<strong>on</strong>g> for all species. Of the three species modeled, blue oaks showedthe most significant loss <str<strong>on</strong>g>of</str<strong>on</strong>g> climatically suitable habitat: 71%-80% reducti<strong>on</strong> by mid-century, <str<strong>on</strong>g>and</str<strong>on</strong>g>92%-93% reducti<strong>on</strong> by the end <str<strong>on</strong>g>of</str<strong>on</strong>g> the century. For black oak the models predict a reducti<strong>on</strong> insuitable habitat <str<strong>on</strong>g>of</str<strong>on</strong>g> 61%-78% by mid-century, <str<strong>on</strong>g>and</str<strong>on</strong>g> 90%-100% by the end <str<strong>on</strong>g>of</str<strong>on</strong>g> the century. Valleyoaks are predicted to lose 19%-56% <str<strong>on</strong>g>of</str<strong>on</strong>g> their suitable habitat <strong>on</strong> the <strong>Ranch</strong> by mid-century, <str<strong>on</strong>g>and</str<strong>on</strong>g>78%-94% by the end <str<strong>on</strong>g>of</str<strong>on</strong>g> the century. Despite these drastic reducti<strong>on</strong>s in climatically suitablehabitat, the abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> varied topography <str<strong>on</strong>g>and</str<strong>on</strong>g> microclimates <strong>on</strong> the ranch may provide habitatrefugia for oak species, effectively buffering these populati<strong>on</strong>s from severe habitat loss due toclimate change.How are current l<str<strong>on</strong>g>and</str<strong>on</strong>g> management practices affecting Tej<strong>on</strong>’s oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s?Hunting, fire management, <str<strong>on</strong>g>and</str<strong>on</strong>g> grazing impact oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s <strong>on</strong> the ranch. Depending <strong>on</strong> theintensity, durati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> seas<strong>on</strong>ality <str<strong>on</strong>g>of</str<strong>on</strong>g> grazing, livestock can influence seedling recruitment, bothdirectly by way <str<strong>on</strong>g>of</str<strong>on</strong>g> browsing <str<strong>on</strong>g>and</str<strong>on</strong>g> indirectly by reducing the competiti<strong>on</strong> from annual grasses.Grazing can also alter soil properties including bulk density <str<strong>on</strong>g>and</str<strong>on</strong>g> infiltrati<strong>on</strong> rates. Fire influencesoak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s by altering fuel loads, understory assemblage <str<strong>on</strong>g>and</str<strong>on</strong>g> compositi<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> soilproperties. Hunting impacts oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s by affecting deer, elk, <str<strong>on</strong>g>and</str<strong>on</strong>g> feral pig populati<strong>on</strong>s, <str<strong>on</strong>g>and</str<strong>on</strong>g>the understory community. While our research did not quantify the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> grazing, fire <str<strong>on</strong>g>and</str<strong>on</strong>g>hunting <strong>on</strong> Tej<strong>on</strong> oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s, we recommend the C<strong>on</strong>servancy establish experimental plotsin order to determine how different management regimes impact Tej<strong>on</strong> <strong>Ranch</strong>‘s oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s.<str<strong>on</strong>g>Management</str<strong>on</strong>g> Recommendati<strong>on</strong>sBlue, valley, <str<strong>on</strong>g>and</str<strong>on</strong>g> black oak populati<strong>on</strong>s <strong>on</strong> Tej<strong>on</strong> <strong>Ranch</strong> are all undergoing a slow but significantdecline, threatening losses <str<strong>on</strong>g>of</str<strong>on</strong>g> about 9% over the next 50 years. The most cost effective way tostabilize oak populati<strong>on</strong>s is to deploy small, circular cages around naturally occurring saplings <str<strong>on</strong>g>and</str<strong>on</strong>g>seedlings in order to exclude browsing ungulates. This protecti<strong>on</strong> should allow seedlings <str<strong>on</strong>g>and</str<strong>on</strong>g>saplings to escape the browse layer within roughly five years. If current demographic ratespersist, this process will need to be repeated every five years to stabilize oak populati<strong>on</strong>s.Given that climate change is predicted to influence future oak distributi<strong>on</strong>, we recommend thatthe C<strong>on</strong>servancy target its restorati<strong>on</strong> efforts in areas where suitable oak habitat is projected tobe stable over the next 50 years. Because <str<strong>on</strong>g>of</str<strong>on</strong>g> uncertainties about whether future climate <strong>on</strong> Tej<strong>on</strong><strong>Ranch</strong> will be wetter or dryer, we recommend that managers target restorati<strong>on</strong> efforts in areaswhere both the ‗warmer-wetter‘ climate model <str<strong>on</strong>g>and</str<strong>on</strong>g> ‗warmer-drier‘ climate model used in thisstudy predict to be stable climatically suitable habitat over the next 50 years.In order to stabilize oak populati<strong>on</strong>s, we calculated that managers will have to protect blue oakseedlings or saplings at a density <str<strong>on</strong>g>of</str<strong>on</strong>g> 8.49 trees/ha within the blue oak target area, 0.21 trees/hawithin the valley oak target area, <str<strong>on</strong>g>and</str<strong>on</strong>g> 1.62 within the black oak target area.ix


TABLE OF CONTENTSAcknowledgements ..................................................................................................................................... ivAbstract .......................................................................................................................................................... vExecutive Summary ................................................................................................................................... viiTable <str<strong>on</strong>g>of</str<strong>on</strong>g> C<strong>on</strong>tents ......................................................................................................................................... xList <str<strong>on</strong>g>of</str<strong>on</strong>g> Figures ............................................................................................................................................. xiiList <str<strong>on</strong>g>of</str<strong>on</strong>g> Tables .............................................................................................................................................. xiiiList <str<strong>on</strong>g>of</str<strong>on</strong>g> Boxes .............................................................................................................................................. xiiiProject Significance ...................................................................................................................................... 1Background ................................................................................................................................................... 3<str<strong>on</strong>g>Oak</str<strong>on</strong>g> Woodl<str<strong>on</strong>g>and</str<strong>on</strong>g> Diversity <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Ecology</str<strong>on</strong>g> ................................................................................................ 3Diversity <str<strong>on</strong>g>and</str<strong>on</strong>g> Distributi<strong>on</strong> ................................................................................................................ 3Basic Biology ....................................................................................................................................... 3<str<strong>on</strong>g>Oak</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> Wildlife ............................................................................................................................... 3<str<strong>on</strong>g>Oak</str<strong>on</strong>g> Woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Tej<strong>on</strong> <strong>Ranch</strong> ..................................................................................................... 3Climate Change ................................................................................................................................... 5<str<strong>on</strong>g>Oak</str<strong>on</strong>g> Regenerati<strong>on</strong> ............................................................................................................................... 5Policy ......................................................................................................................................................... 6California <str<strong>on</strong>g>Oak</str<strong>on</strong>g> Woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s Laws <str<strong>on</strong>g>and</str<strong>on</strong>g> Ordinances Applicable to Tej<strong>on</strong> <strong>Ranch</strong> ....................... 6Federal <str<strong>on</strong>g>and</str<strong>on</strong>g> State Laws Relevant to Tej<strong>on</strong> <strong>Ranch</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the <strong>Ranch</strong>-Wide <str<strong>on</strong>g>Management</str<strong>on</strong>g> Plan .. 6Project Introducti<strong>on</strong> ..................................................................................................................................... 9Q1: What is the current extent, distributi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> ecological c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s <strong>on</strong> Tej<strong>on</strong><strong>Ranch</strong>? .......................................................................................................................................................... 13Data Collecti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Map Validati<strong>on</strong> .................................................................................................. 13Species Envir<strong>on</strong>mental Gradient Modeling ...................................................................................... 15Understory Characterizati<strong>on</strong> ................................................................................................................ 18Q2: How do the oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s <strong>on</strong> Tej<strong>on</strong> <strong>Ranch</strong> compare to those in the rest <str<strong>on</strong>g>of</str<strong>on</strong>g> California? .... 21Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Results: Tej<strong>on</strong> vs. statewide oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s ......................................................... 21Valley <str<strong>on</strong>g>Oak</str<strong>on</strong>g> Woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s .................................................................................................................... 21Black <str<strong>on</strong>g>Oak</str<strong>on</strong>g> Woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s ..................................................................................................................... 22Blue <str<strong>on</strong>g>Oak</str<strong>on</strong>g> Woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s ....................................................................................................................... 24x


Q3: How are the oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s <strong>on</strong> Tej<strong>on</strong> <strong>Ranch</strong> changing over time, <str<strong>on</strong>g>and</str<strong>on</strong>g> is there a regenerati<strong>on</strong>problem? .......................................................................................................................................................27Historical Photo Analysis .....................................................................................................................27Methods ..............................................................................................................................................28Results .................................................................................................................................................28Sources <str<strong>on</strong>g>of</str<strong>on</strong>g> Error ................................................................................................................................29Nurse Plants Promote Valley <str<strong>on</strong>g>Oak</str<strong>on</strong>g> Regenerati<strong>on</strong> ..............................................................................30Numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> Seedlings <str<strong>on</strong>g>and</str<strong>on</strong>g> Saplings ....................................................................................................31Q4: How do we expect the oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Tej<strong>on</strong> <strong>Ranch</strong> to be impacted by climate change? .35Significance <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change for oak species .................................................................................35Species-climate Forecasting ..................................................................................................................35Q5: How are current l<str<strong>on</strong>g>and</str<strong>on</strong>g> management practices affecting Tej<strong>on</strong>‘s oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s? .....................43Hunting ....................................................................................................................................................43Grazing ....................................................................................................................................................43Fire ...........................................................................................................................................................44Restorati<strong>on</strong> ..............................................................................................................................................45<str<strong>on</strong>g>Management</str<strong>on</strong>g> Recommendati<strong>on</strong>s ..............................................................................................................47Future Research......................................................................................................................................51Appendix ......................................................................................................................................................53Appendix I – Field Methods <str<strong>on</strong>g>and</str<strong>on</strong>g> Additi<strong>on</strong>al Analyses ....................................................................53Site Selecti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Field Methods ...................................................................................................53Vegetati<strong>on</strong> Plot Methodology .........................................................................................................54Soil Compacti<strong>on</strong> ................................................................................................................................57Understory, Seedlings, <str<strong>on</strong>g>and</str<strong>on</strong>g> Saplings ..............................................................................................58Bolsinger methods ............................................................................................................................60Appendix II: Historical Photo Analysis .............................................................................................61Populati<strong>on</strong> Growth Rate Calculati<strong>on</strong>s ...........................................................................................61Appendix III: Species Distributi<strong>on</strong> Models .......................................................................................63Overview ............................................................................................................................................63Methods ..............................................................................................................................................64State-wide training data comparis<strong>on</strong>: .............................................................................................69Appendix IV: Comparative <str<strong>on</strong>g>Management</str<strong>on</strong>g> Analysis ..........................................................................71General Notes: ..................................................................................................................................71References ....................................................................................................................................................74xi


LIST OF FIGURESFigure i – Locati<strong>on</strong> map. ............................................................................................................................. 9Figure ii – Tej<strong>on</strong> <strong>Ranch</strong> l<str<strong>on</strong>g>and</str<strong>on</strong>g> allocati<strong>on</strong>s. ............................................................................................... 10Figure 1.1 – Vegetati<strong>on</strong> plots map. .......................................................................................................... 13Figure 1.2 – Species envir<strong>on</strong>mental gradient model (1). ...................................................................... 15Figure 1.3 – Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> blue oak. ..................................................................................................... 16Figure 1.4 – Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> black oak .................................................................................................... 16Figure 1.5 – Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> valley oak. .................................................................................................. 17Figure 1.6 – Species envir<strong>on</strong>mental gradient model (2). ...................................................................... 18Figure 1.7 – Blue oak st<str<strong>on</strong>g>and</str<strong>on</strong>g> understory compositi<strong>on</strong> by category. .................................................... 18Figure 1.8 – Valley oak st<str<strong>on</strong>g>and</str<strong>on</strong>g> understory compositi<strong>on</strong> by category. .................................................. 19Figure 1.9 – Black oak st<str<strong>on</strong>g>and</str<strong>on</strong>g> understory compositi<strong>on</strong> by category. ................................................... 19Figure 1.10 – Shrub <str<strong>on</strong>g>and</str<strong>on</strong>g> grass cover <strong>on</strong> black oak plots. ..................................................................... 20Figure 2.1 – Tej<strong>on</strong> vs. State-wide valley oak st<str<strong>on</strong>g>and</str<strong>on</strong>g> basal area. ............................................................ 21Figure 2.2 – Tej<strong>on</strong> valley oak size histogram. ........................................................................................ 22Figure 2.3 – Tej<strong>on</strong> vs. State-wide black oak st<str<strong>on</strong>g>and</str<strong>on</strong>g> basal area. ............................................................. 23Figure 2.4 – Tej<strong>on</strong> black oak size histogram. ......................................................................................... 23Figure 2.5 – Tej<strong>on</strong> vs. State-wide blue oak st<str<strong>on</strong>g>and</str<strong>on</strong>g> basal area. ............................................................... 24Figure 2.6 – Tej<strong>on</strong> blue oak size histogram. .......................................................................................... 25Figure 3.1 – Historical photo analyses overview map. ......................................................................... 27Figure 3.2 – Historical photo analyses example. ................................................................................... 28Figure 3.3 – Scatter plot showing populati<strong>on</strong> growth rates for sample photo st<str<strong>on</strong>g>and</str<strong>on</strong>g>s ..................... 29Figure 3.4 – Rabbit brush valley oak plots understory compositi<strong>on</strong>. ................................................ 30Figure 3.5 – Total abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> blue, black, <str<strong>on</strong>g>and</str<strong>on</strong>g> valley oaks <strong>on</strong> Tej<strong>on</strong> <strong>Ranch</strong>. .............................. 32Figure 3.6 – Tej<strong>on</strong> vs. State-wide relative stocking rates for seedlings <str<strong>on</strong>g>and</str<strong>on</strong>g> saplings ....................... 33Figure 4.1 – Climatic suitability models spatial c<strong>on</strong>gruence ................................................................ 37Figure 4.2 – Predicted range shifts for blue oak due to future climate change. ............................... 39Figure 4.3 – Predicted range shifts for black oak due to future climate change.. ............................ 40Figure 4.4 – Predicted range shifts for valley oak due to future climate change .............................. 41Figure 6.1 – Valley oak c<strong>on</strong>sensus mid-century stable <str<strong>on</strong>g>and</str<strong>on</strong>g> unstable ranges ..................................... 48Figure 6.2 – Blue oak c<strong>on</strong>sensus mid-century stable <str<strong>on</strong>g>and</str<strong>on</strong>g> unstable ranges. ....................................... 49Figure 6.3 – Black oak c<strong>on</strong>sensus mid-century stable <str<strong>on</strong>g>and</str<strong>on</strong>g> unstable ranges ...................................... 50Figure I.1 – Understory transect data sheet. .......................................................................................... 55Figure I.2 – Tree survey data sheet. ......................................................................................................... 56Figure I.3 – Calibrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> penetrometer <str<strong>on</strong>g>and</str<strong>on</strong>g> bulk density measurements ....................................... 57Figure I.4 – Relati<strong>on</strong>ship between percent bare ground <str<strong>on</strong>g>and</str<strong>on</strong>g> penetrometer readings ..................... 58Figure I.5 – Seedling densities as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> shrub cover.. ............................................................. 59Figure I.6 – Sapling densities as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> shrub cover. ................................................................ 60Figure II.1 – Additi<strong>on</strong>al examples <str<strong>on</strong>g>of</str<strong>on</strong>g> historical photo analysis sample plots. .................................. 62Figure III.1 – MaxEnt resp<strong>on</strong>se curves. ................................................................................................. 66Figure III.2 – MaxEnt-modeled climatic suitability for blue oak. ...................................................... 66Figure III.3 – MaxEnt-modeled climatic suitability for black oak ..................................................... 67Figure III.4 – MaxEnt-modeled climatic suitability for valley oak ..................................................... 67Figure III.5 – HyperNiche-modeled distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> valley oak .......................................................... 68Figure III.6 – HyperNiche-modeled distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> blue oak ............................................................ 68Figure III.7 – Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> local vs. state-wide training data for species distributi<strong>on</strong> models .. 70xii


LIST OF TABLESTable i – Overview <str<strong>on</strong>g>of</str<strong>on</strong>g> the methods <str<strong>on</strong>g>and</str<strong>on</strong>g> analyses d<strong>on</strong>e in this study. ................................................ viiTable 1.1 – Total coverage <str<strong>on</strong>g>of</str<strong>on</strong>g> blue, black, <str<strong>on</strong>g>and</str<strong>on</strong>g> valley oak <strong>on</strong> Tej<strong>on</strong> <strong>Ranch</strong>. .....................................14Table 1.2 – Timber survey map validati<strong>on</strong> .............................................................................................14Table 2.1 – Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Tej<strong>on</strong> <strong>Ranch</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> statewide valley oak basal area <str<strong>on</strong>g>and</str<strong>on</strong>g> DBH. ..............22Table 2.2 – Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Tej<strong>on</strong> <strong>Ranch</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> statewide black oak basal area <str<strong>on</strong>g>and</str<strong>on</strong>g> DBH................24Table 2.3 – Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Tej<strong>on</strong> <strong>Ranch</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> statewide blue oak basal area <str<strong>on</strong>g>and</str<strong>on</strong>g> DBH. ................25Table 3.1 – Demographic rates calculated from the historical photo analysis. .................................29Table 3.2 – Density <str<strong>on</strong>g>of</str<strong>on</strong>g> oak seedlings within blue, black, <str<strong>on</strong>g>and</str<strong>on</strong>g> valley oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s .......................31Table 3.3 – Density <str<strong>on</strong>g>of</str<strong>on</strong>g> oak saplings within blue, black, <str<strong>on</strong>g>and</str<strong>on</strong>g> valley oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s .........................32Table 3.4 – Density <str<strong>on</strong>g>of</str<strong>on</strong>g> adult trees in blue valley <str<strong>on</strong>g>and</str<strong>on</strong>g> blak oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s ........................................32Table 4.1 – Selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental predictors for climate modeling. .........................................36Table 4.2 – Blue, black, <str<strong>on</strong>g>and</str<strong>on</strong>g> valley oak resp<strong>on</strong>ses to climate change. ................................................38Table 4.3 – Predicted replacement <str<strong>on</strong>g>of</str<strong>on</strong>g> current oak dominants by future oak dominants. ...............42Table 6.1 – Recommendati<strong>on</strong> specifics for active oak restorati<strong>on</strong> .....................................................51Table I.1 – T-test table for analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> seedling/sapling densities <str<strong>on</strong>g>and</str<strong>on</strong>g> understory compositi<strong>on</strong>. ..58Table III.1 – Envir<strong>on</strong>mental predictor correlati<strong>on</strong> matrices ...............................................................65Table III.2 – Cross-validated AUC results for MaxEnt model runs ..................................................65Table IV.1 – <str<strong>on</strong>g>Oak</str<strong>on</strong>g> woodl<str<strong>on</strong>g>and</str<strong>on</strong>g> specific management practices employed elsewhere in the regi<strong>on</strong>. .71LIST OF BOXESBox 3.1 – Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> stocking rates for oak seedlings <str<strong>on</strong>g>and</str<strong>on</strong>g> saplings between Tej<strong>on</strong> <strong>Ranch</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g>the rest <str<strong>on</strong>g>of</str<strong>on</strong>g> California. ..................................................................................................................................33Box 4.1 – Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> data resoluti<strong>on</strong> <strong>on</strong> predictive modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> species distributi<strong>on</strong> for oaks <strong>on</strong>Tej<strong>on</strong> <strong>Ranch</strong>. ................................................................................................................................................37xiii


Page Intenti<strong>on</strong>ally Left Blankxiv


PROJJECT SIGNIFICANCE<str<strong>on</strong>g>Oak</str<strong>on</strong>g>s cover extensive areas <str<strong>on</strong>g>of</str<strong>on</strong>g> the California l<str<strong>on</strong>g>and</str<strong>on</strong>g>scape from coastal shrubs to foothillwoodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s to m<strong>on</strong>tane forests, but in the past 200 years oak cover has been drastically reduceddue to human development, including more than 1 milli<strong>on</strong> acres <str<strong>on</strong>g>of</str<strong>on</strong>g> oaks lost in the past 50 years(Brussard et al. 2004, Giusti et al. 2005). Today 20 oak species still cover about 17 milli<strong>on</strong> acres<str<strong>on</strong>g>of</str<strong>on</strong>g> the California l<str<strong>on</strong>g>and</str<strong>on</strong>g>scape (Giusti et al. 2005).California‘s oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s face a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> threats. Perhaps the most well studied threat to oakwoodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s is comm<strong>on</strong>ly referred to as the oak ―regenerati<strong>on</strong> problem‖ (Tyler et al. 2006,Griffin 1971, 1976, Bolsinger 1988, Brown & Davis 1991, Whipple et al. 2010). A widespreadlack <str<strong>on</strong>g>of</str<strong>on</strong>g> oak regenerati<strong>on</strong> has been well documented in California (Tyler et al. 2006). However,some research suggests that no regenerati<strong>on</strong> problem exists (Tyler et al. 2006). The extensiveuse <str<strong>on</strong>g>of</str<strong>on</strong>g> oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s for cattle grazing has frequently been cited as the cause <str<strong>on</strong>g>of</str<strong>on</strong>g> theregenerati<strong>on</strong> problem (Giusti et al. 2005). Cattle browse oak seedlings, eat acorns, <str<strong>on</strong>g>and</str<strong>on</strong>g> compactthe soil, making it difficult for seedlings to germinate. According to Mahall et al. (2005) grazingis the most pervasive anthropogenic disturbance in oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s, savannas, <str<strong>on</strong>g>and</str<strong>on</strong>g> grassl<str<strong>on</strong>g>and</str<strong>on</strong>g>s inCalifornia. Another threat to oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s is sudden oak death (Phytopthora ramorum). Suddenoak death was first detected in the San Francisco Bay area in the 1990s <str<strong>on</strong>g>and</str<strong>on</strong>g> has since spread asfar south as Big Sur <str<strong>on</strong>g>and</str<strong>on</strong>g> as far north as Mendocino County. While the pathogen has not beendetected <strong>on</strong> Tej<strong>on</strong> <strong>Ranch</strong>, California Bay Laurel (Umbellularia californica) is a known carrier <str<strong>on</strong>g>of</str<strong>on</strong>g> thedisease <str<strong>on</strong>g>and</str<strong>on</strong>g> is present <strong>on</strong> the <strong>Ranch</strong>, heightening c<strong>on</strong>cerns. Development has historically been athreat to oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s. From 1945 to 1988 it was estimated that 1.2 milli<strong>on</strong> acres <str<strong>on</strong>g>of</str<strong>on</strong>g>hardwoods, primarily blue <str<strong>on</strong>g>and</str<strong>on</strong>g> valley oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s, were lost in California (Bolsinger 1988).Many oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s exist <strong>on</strong> private l<str<strong>on</strong>g>and</str<strong>on</strong>g>s that are well suited for housing or agriculture. In theSan Joaquin Valley it is estimated that 95% <str<strong>on</strong>g>of</str<strong>on</strong>g> riparian oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s have been c<strong>on</strong>verted toagricultural use in the last 100 to 150 years (Kelly et al. 2005).Threats to oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s are currently being addressed by a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> organizati<strong>on</strong>s employinga range <str<strong>on</strong>g>of</str<strong>on</strong>g> strategies. Most sweeping is the California <str<strong>on</strong>g>Oak</str<strong>on</strong>g> C<strong>on</strong>servati<strong>on</strong> Act, a state law thatprotects oaks from development by requiring their replacement if oaks are removed fordevelopment. In additi<strong>on</strong>, 41 counties in California have their own oak protecti<strong>on</strong> ordinances.Private c<strong>on</strong>servancies <str<strong>on</strong>g>and</str<strong>on</strong>g> l<str<strong>on</strong>g>and</str<strong>on</strong>g> trusts have also played an important role in oak c<strong>on</strong>servati<strong>on</strong>.Additi<strong>on</strong>ally, the University <str<strong>on</strong>g>of</str<strong>on</strong>g> California operates the Integrated Hardwood Range<str<strong>on</strong>g>Management</str<strong>on</strong>g> Program whose goal is to c<strong>on</strong>serve hardwood forests in California including oakwoodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s.The Tej<strong>on</strong> <strong>Ranch</strong> C<strong>on</strong>servancy has a unique opportunity to sustainably manage a large,c<strong>on</strong>tiguous block <str<strong>on</strong>g>of</str<strong>on</strong>g> some <str<strong>on</strong>g>of</str<strong>on</strong>g> the most scenic <str<strong>on</strong>g>and</str<strong>on</strong>g> ecologically valuable oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s inCalifornia. The <strong>Ranch</strong> supports roughly 82,000 acres <str<strong>on</strong>g>of</str<strong>on</strong>g> blue oak, valley oak, <str<strong>on</strong>g>and</str<strong>on</strong>g> black oak,cany<strong>on</strong> oak, interior live oak, white oak, <str<strong>on</strong>g>and</str<strong>on</strong>g> mixed oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s (Appelbaum et al. 2010, USFish & Wildlife Service 2009) that are permanently protected under the Tej<strong>on</strong> <strong>Ranch</strong>C<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> L<str<strong>on</strong>g>and</str<strong>on</strong>g> Use Agreement. Tej<strong>on</strong> <strong>Ranch</strong>‘s oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s are particularly valuablebecause <str<strong>on</strong>g>of</str<strong>on</strong>g> their locati<strong>on</strong> at the crossroads <str<strong>on</strong>g>of</str<strong>on</strong>g> the southern Sierra Nevada Mountains <str<strong>on</strong>g>and</str<strong>on</strong>g> the1


California Transverse Ranges making them a waypoint for wildlife migrating between these tworegi<strong>on</strong>s. This c<strong>on</strong>nectivity also has significant climate change adaptati<strong>on</strong> implicati<strong>on</strong>s as it willallow animal species to migrate <str<strong>on</strong>g>and</str<strong>on</strong>g> vegetati<strong>on</strong> communities to shift northward in resp<strong>on</strong>se to awarmer climate.2


BACKGROUNDOAK WOODLAND DIVERSITY AND ECOLOGYDiversity <str<strong>on</strong>g>and</str<strong>on</strong>g> Distributi<strong>on</strong><str<strong>on</strong>g>Oak</str<strong>on</strong>g>s (Quercus spp.) dominate California‘s l<str<strong>on</strong>g>and</str<strong>on</strong>g>scape <str<strong>on</strong>g>and</str<strong>on</strong>g> play an important role in the culture,history, <str<strong>on</strong>g>and</str<strong>on</strong>g> ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> the state (Pavlik 1991, FRAP 2002, Giusti et al. 2005, Kelly et al. 2005).California is home to 20 <str<strong>on</strong>g>of</str<strong>on</strong>g> the 89 known species <str<strong>on</strong>g>of</str<strong>on</strong>g> oak in the US, 7 <str<strong>on</strong>g>of</str<strong>on</strong>g> which are endemic tothe state (Nix<strong>on</strong> 2002). FRAP (2002) estimates that oaks cover at least <strong>on</strong>e-sixth <str<strong>on</strong>g>of</str<strong>on</strong>g> the state(>17 milli<strong>on</strong> acres), in mostly privately owned, low elevati<strong>on</strong> foothill woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s. <str<strong>on</strong>g>Oak</str<strong>on</strong>g> woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>cover has sharply declined over the last century due to the expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> agriculture, rangel<str<strong>on</strong>g>and</str<strong>on</strong>g>s,<str<strong>on</strong>g>and</str<strong>on</strong>g> urban <str<strong>on</strong>g>and</str<strong>on</strong>g> rural development (Bolsinger 1988).Basic BiologyThe oak species in California are generally l<strong>on</strong>g-lived species; some documented to be over 600years old (Pavlik 1991). Seed germinati<strong>on</strong> generally occurs in resp<strong>on</strong>se to fall or winter rains<str<strong>on</strong>g>and</str<strong>on</strong>g>, <strong>on</strong>ce established, many species can take between 20 <str<strong>on</strong>g>and</str<strong>on</strong>g> 30 years to develop their flowering<str<strong>on</strong>g>and</str<strong>on</strong>g> reproductive capacities (Giusti et al. 2005). <str<strong>on</strong>g>Oak</str<strong>on</strong>g>s are wind-pollinated <str<strong>on</strong>g>and</str<strong>on</strong>g> flower in the earlyspring when the new leaves are forming. Depending <strong>on</strong> the species, acorns will mature in theFall <str<strong>on</strong>g>of</str<strong>on</strong>g> the same year (e.g., valley oak, blue oak) or the Fall <str<strong>on</strong>g>of</str<strong>on</strong>g> the sec<strong>on</strong>d year (e.g., black oak).Acorn crops are thought to be quasi-cyclical, <str<strong>on</strong>g>and</str<strong>on</strong>g> timing <str<strong>on</strong>g>of</str<strong>on</strong>g> mast years varies by species (Giustiet al. 2005). <str<strong>on</strong>g>Oak</str<strong>on</strong>g> st<str<strong>on</strong>g>and</str<strong>on</strong>g>s in California vary c<strong>on</strong>siderably in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> tree density <str<strong>on</strong>g>and</str<strong>on</strong>g> canopycover. <str<strong>on</strong>g>Oak</str<strong>on</strong>g> woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s, with 10-60% tree canopy cover <str<strong>on</strong>g>and</str<strong>on</strong>g> grassy ground cover (FRAP 2002,Barbour et al. 2007), grow <strong>on</strong> a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> soil types <str<strong>on</strong>g>and</str<strong>on</strong>g> climates <str<strong>on</strong>g>and</str<strong>on</strong>g> typically occur inelevati<strong>on</strong>al b<str<strong>on</strong>g>and</str<strong>on</strong>g>s below m<strong>on</strong>tane forests (Pavlik 1991).<str<strong>on</strong>g>Oak</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> Wildlife<str<strong>on</strong>g>Oak</str<strong>on</strong>g> woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s provide some <str<strong>on</strong>g>of</str<strong>on</strong>g> the richest wildlife habitat <str<strong>on</strong>g>of</str<strong>on</strong>g> all <str<strong>on</strong>g>of</str<strong>on</strong>g> California‘s vegetati<strong>on</strong>types (Pavlik 1991, Brussard et al. 2004). Of the 632 species <str<strong>on</strong>g>of</str<strong>on</strong>g> terrestrial vertebrates found inthe state, over half <str<strong>on</strong>g>of</str<strong>on</strong>g> them use oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s for cover, reproducti<strong>on</strong>, or forage (Giusti et al.2005). The structural diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s provides diversity in wildlife habitats, <str<strong>on</strong>g>and</str<strong>on</strong>g> theasynchr<strong>on</strong>ous producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> acorns across individuals <str<strong>on</strong>g>and</str<strong>on</strong>g> species provides a food source thatcan last for over four m<strong>on</strong>ths in the fall when grasses <str<strong>on</strong>g>and</str<strong>on</strong>g> other forage are in short supply(Pavlik 1991, Giusti et al. 2005, Koenig et al. 2009). Studies show that the timing <str<strong>on</strong>g>of</str<strong>on</strong>g> a mast crop<str<strong>on</strong>g>of</str<strong>on</strong>g> oak trees is directly correlated to reproductive success <str<strong>on</strong>g>of</str<strong>on</strong>g> a multitude <str<strong>on</strong>g>of</str<strong>on</strong>g> species <str<strong>on</strong>g>of</str<strong>on</strong>g> birds(Pavlik 1991, Koenig et al. 2009). Other studies have shown that in October, a single mule deermay eat as many as 300 acorns per day (Pavlik 1991).<str<strong>on</strong>g>Oak</str<strong>on</strong>g> Woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Tej<strong>on</strong> <strong>Ranch</strong>There are 10 species <str<strong>on</strong>g>and</str<strong>on</strong>g> two recognized inter-specific hybrids <str<strong>on</strong>g>of</str<strong>on</strong>g> oak found <strong>on</strong> Tej<strong>on</strong> <strong>Ranch</strong>(Tej<strong>on</strong> <strong>Ranch</strong> C<strong>on</strong>servancy 2010):Q. agrifolia – coast live oakQ. berberidifolia – scrub oakQ. chrysolepis – cany<strong>on</strong> live oak3


Q. douglasii – blue oakQ. garryana var. breweri – brewer oakQ. john-tuckeri – tucker‘s oakQ. kelloggii – black oakQ. lobata – valley oakQ. wislizeni var. frutescens – interior scrub oakQ. wislizeni var. wislizeni – interior live oakQ. x alvordiana – alvord oakQ. x morehus – oracle oak<str<strong>on</strong>g>Oak</str<strong>on</strong>g> communities studied for this report are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten referred to as ―hardwood rangel<str<strong>on</strong>g>and</str<strong>on</strong>g>s.‖ Theterm ―rangel<str<strong>on</strong>g>and</str<strong>on</strong>g>‖ indicates that livestock grazing is the dominant current or historical l<str<strong>on</strong>g>and</str<strong>on</strong>g> use.Hardwood rangel<str<strong>on</strong>g>and</str<strong>on</strong>g>s encompass all communities <str<strong>on</strong>g>of</str<strong>on</strong>g> hardwood species ranging from sparselypopulated savannahs to densely populated forests. However, for simplicity we will refer to thecommunities studied as ―oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s‖ for the rest <str<strong>on</strong>g>of</str<strong>on</strong>g> this report. The critical ecological rolethat these woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s play in the ecosystem makes their management a top priority. Blue, valley<str<strong>on</strong>g>and</str<strong>on</strong>g> black oak biology <str<strong>on</strong>g>and</str<strong>on</strong>g> ecology is summarized below:Blue <str<strong>on</strong>g>Oak</str<strong>on</strong>g> Woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>sBlue oaks (Q. douglasii) are endemic to California, <str<strong>on</strong>g>and</str<strong>on</strong>g> dominate over half <str<strong>on</strong>g>of</str<strong>on</strong>g> the state‘swoodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s (Pavlik 1991). They generally grow 30 – 40 feet tall with a diameter at breastheight (DBH) <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 – 25 inches (Giusti et al. 2005). Blue oaks are found up to 4,000 feet inelevati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> are the most comm<strong>on</strong> woodl<str<strong>on</strong>g>and</str<strong>on</strong>g> oak species in California. These trees arewinter deciduous but are also facultatively drought-deciduous, meaning that they can droptheir leaves mid-growing seas<strong>on</strong> if drought c<strong>on</strong>diti<strong>on</strong>s become too stressful (Pavlik 1991).This unique adaptati<strong>on</strong> has allowed them to occupy some <str<strong>on</strong>g>of</str<strong>on</strong>g> the hottest <str<strong>on</strong>g>and</str<strong>on</strong>g> driest, n<strong>on</strong>desertclimates in the state. They are adapted to poor soils <str<strong>on</strong>g>and</str<strong>on</strong>g> are comm<strong>on</strong> in foothillsbordering interior valleys. Blue oaks <str<strong>on</strong>g>of</str<strong>on</strong>g>ten form m<strong>on</strong>o-specific woodl<str<strong>on</strong>g>and</str<strong>on</strong>g> st<str<strong>on</strong>g>and</str<strong>on</strong>g>s with sparse,grassy understories (annual bromegrass, wild oats, fiddleneck, <str<strong>on</strong>g>and</str<strong>on</strong>g> foxtail). Associati<strong>on</strong>s withtrees <str<strong>on</strong>g>and</str<strong>on</strong>g> shrubs such as foothill pine, cany<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> interior live oak, juniper, white-leafmanzanita, c<str<strong>on</strong>g>of</str<strong>on</strong>g>feeberry, pois<strong>on</strong> oak, ceanothus, buckbrush, <str<strong>on</strong>g>and</str<strong>on</strong>g> California buckeye are notuncomm<strong>on</strong> (Borchert et al. 1991, Pavlik 1991, Brussard et al. 2004).Valley <str<strong>on</strong>g>Oak</str<strong>on</strong>g> Woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>sAlso endemic to California, valley oaks (Q. lobata) are arguably the largest <str<strong>on</strong>g>of</str<strong>on</strong>g> all the oaks inthe United States. They have been known to grow over 100 feet tall, with a DBH <str<strong>on</strong>g>of</str<strong>on</strong>g> up to 7feet (Pavlik 1991). They typically grow below 2,000 feet in elevati<strong>on</strong>, but they have beenfound up to 6,000 feet when deep soils <str<strong>on</strong>g>and</str<strong>on</strong>g> available water tables allow (Giusti et al. 2005).Valley oaks are phreatophytic, meaning that they get their water from belowground sources<str<strong>on</strong>g>and</str<strong>on</strong>g> are not directly dependent <strong>on</strong> precipitati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> other surface water sources. They do,however, require fairly deep <str<strong>on</strong>g>and</str<strong>on</strong>g> rich soils, <str<strong>on</strong>g>and</str<strong>on</strong>g> are found in riparian areas <str<strong>on</strong>g>and</str<strong>on</strong>g> floodplains,alluvial fans <str<strong>on</strong>g>and</str<strong>on</strong>g> flats, <str<strong>on</strong>g>and</str<strong>on</strong>g> upl<str<strong>on</strong>g>and</str<strong>on</strong>g> terraces <str<strong>on</strong>g>and</str<strong>on</strong>g> plateaus (Giusti et al. 2005). Valley oaks mostcomm<strong>on</strong>ly have very open understories composed <str<strong>on</strong>g>of</str<strong>on</strong>g> annual <str<strong>on</strong>g>and</str<strong>on</strong>g> perennial grasses, butoccasi<strong>on</strong>ally may include shrubs such as pois<strong>on</strong> oak, toy<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> c<str<strong>on</strong>g>of</str<strong>on</strong>g>feeberry (Brussard et al.2004). Valley oaks were <strong>on</strong>ce widely distributed throughout much <str<strong>on</strong>g>of</str<strong>on</strong>g> California, but theirextent has been greatly reduced due to displacement by agriculture <str<strong>on</strong>g>and</str<strong>on</strong>g> urban <str<strong>on</strong>g>and</str<strong>on</strong>g> ruraldevelopment <strong>on</strong> prime lowl<str<strong>on</strong>g>and</str<strong>on</strong>g> real estate (Pavlik 1991, Appelbaum et al. 2010), <str<strong>on</strong>g>and</str<strong>on</strong>g> givenpopulati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> climate change predicati<strong>on</strong>s, their range is anticipated to decrease even moreover the next century (Grivet et al. 2008).4


Black <str<strong>on</strong>g>Oak</str<strong>on</strong>g> Woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>sUnlike valley <str<strong>on</strong>g>and</str<strong>on</strong>g> blue oaks, black oaks (Q. kelloggii) are more <str<strong>on</strong>g>of</str<strong>on</strong>g> an upl<str<strong>on</strong>g>and</str<strong>on</strong>g> species. They aregenerally found <strong>on</strong> well-drained soils between 2,000 feet <str<strong>on</strong>g>and</str<strong>on</strong>g> 6,000 feet in elevati<strong>on</strong>. Theytypically grow 70 – 80 feet tall, with a DBH <str<strong>on</strong>g>of</str<strong>on</strong>g> 24 – 48 inches (Giusti et al. 2005). They areextensive in the state‘s northern ranges <str<strong>on</strong>g>and</str<strong>on</strong>g> in the Sierra Nevada. Although they are foundfrom Oreg<strong>on</strong> to Mexico (Pavlik 1991), the populati<strong>on</strong> in the Tehachapi Mountains is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g>a h<str<strong>on</strong>g>and</str<strong>on</strong>g>ful <str<strong>on</strong>g>of</str<strong>on</strong>g> scattered southern populati<strong>on</strong>s (Giusti et al. 2005). Black oaks are esteemed fortheir beauty, nutritious acorns, wildlife browse capacity, <str<strong>on</strong>g>and</str<strong>on</strong>g> high quality wood.Climate ChangeBlue oaks are found in the foothills <str<strong>on</strong>g>of</str<strong>on</strong>g> the Coastal Ranges <str<strong>on</strong>g>and</str<strong>on</strong>g> western Sierra Nevada Mountains<str<strong>on</strong>g>and</str<strong>on</strong>g> valley oaks are found in the Central Valley. Using regi<strong>on</strong>al <str<strong>on</strong>g>and</str<strong>on</strong>g> global climate models,Kueppers et al. (2005) found that future climate change will likely reduce the area <str<strong>on</strong>g>of</str<strong>on</strong>g> Californiahabitat with climates similar to those in which blue <str<strong>on</strong>g>and</str<strong>on</strong>g> valley oaks are now found. Theypredicted climate related habitat loss to be upwards <str<strong>on</strong>g>of</str<strong>on</strong>g> 59% for blue oaks <str<strong>on</strong>g>and</str<strong>on</strong>g> 54% for valleyoaks if measures are not taken to reduce temperature changes due to greenhouse gas inducedclimate change. While reducti<strong>on</strong>s in climatically suitable habitat have been predicted throughoutthe range <str<strong>on</strong>g>of</str<strong>on</strong>g> valley oak, Sork et al. (2010) found that genetic variati<strong>on</strong> at local <str<strong>on</strong>g>and</str<strong>on</strong>g> regi<strong>on</strong>al scalescan have a large impact <strong>on</strong> the magnitude <str<strong>on</strong>g>and</str<strong>on</strong>g> impact <str<strong>on</strong>g>of</str<strong>on</strong>g> these climate effects. This highlights thevalue <str<strong>on</strong>g>of</str<strong>on</strong>g> local-scale analyses as a means to better underst<str<strong>on</strong>g>and</str<strong>on</strong>g> the spatial variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> speciesresp<strong>on</strong>ses to climate change. Though no specific studies could be found that focused directly <strong>on</strong>the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong> black oaks, it is reas<strong>on</strong>able to assume that a changing climatewould have similar effects <strong>on</strong> black oaks as has been predicted for blue <str<strong>on</strong>g>and</str<strong>on</strong>g> valley oaks.<str<strong>on</strong>g>Oak</str<strong>on</strong>g> Regenerati<strong>on</strong>Regenerati<strong>on</strong> in oak savannas <str<strong>on</strong>g>and</str<strong>on</strong>g> woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s is an issue that has been studied for decades(Griffin 1971, 1976, Bolsinger 1988, Brown & Davis 1991, Whipple et al. 2010). Through fieldexperiments, historical records, <str<strong>on</strong>g>and</str<strong>on</strong>g> spatial analyses, researchers have identified reducedrecruitment <str<strong>on</strong>g>and</str<strong>on</strong>g> skewed size distributi<strong>on</strong>s in valley oak, blue oak, <str<strong>on</strong>g>and</str<strong>on</strong>g> others (Bolsinger 1988,Giusti et al. 2005, Tyler et al. 2006, 2008, Whipple et al. 2010). On Tej<strong>on</strong> <strong>Ranch</strong>, aerialphotography as well as size class studies indicate that regenerati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> valley oak is a c<strong>on</strong>cern(Appelbaum et al. 2010).The primary c<strong>on</strong>trols <strong>on</strong> recruitment are the ability <str<strong>on</strong>g>of</str<strong>on</strong>g> an acorn to successfully germinate, <str<strong>on</strong>g>and</str<strong>on</strong>g>then survive <str<strong>on</strong>g>and</str<strong>on</strong>g> grow bey<strong>on</strong>d the browse height <str<strong>on</strong>g>of</str<strong>on</strong>g> ungulate herbivores. At the seed stage,acorns must survive infecti<strong>on</strong>, desiccati<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> predati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> then become planted deep enoughin the soil <str<strong>on</strong>g>and</str<strong>on</strong>g> in a climatically favorable locati<strong>on</strong> to allow for germinati<strong>on</strong> (Callaway 1992a,Giusti et al. 2005, Tyler et al. 2008). Once emerged, seedlings are exposed to herbivory byinsects, rodents <str<strong>on</strong>g>and</str<strong>on</strong>g> ungulates, competiti<strong>on</strong> for resources with n<strong>on</strong>-native annual grasses, <str<strong>on</strong>g>and</str<strong>on</strong>g>climatic stressors such as drought <str<strong>on</strong>g>and</str<strong>on</strong>g> sub-optimal light c<strong>on</strong>diti<strong>on</strong>s (Callaway 1992b, Gord<strong>on</strong> &Rice 2000, Giusti et al. 2005, Tyler et al. 2008).Explanati<strong>on</strong>s for the regenerati<strong>on</strong> problem have focused <strong>on</strong> seedling competiti<strong>on</strong> with n<strong>on</strong>nativeMediterranean annual grasses, <str<strong>on</strong>g>and</str<strong>on</strong>g> the browsing <str<strong>on</strong>g>of</str<strong>on</strong>g> seedlings <str<strong>on</strong>g>and</str<strong>on</strong>g> saplings by livestock(Giusti et al. 2005). However, oak sapling exclosure experiments have indicated that livestockbrowsing may not be the primary factor (Tyler et al. 2006). These exclosure experiments <str<strong>on</strong>g>and</str<strong>on</strong>g>others <strong>on</strong> oak regenerati<strong>on</strong> are limited in their spatial <str<strong>on</strong>g>and</str<strong>on</strong>g> temporal scope <str<strong>on</strong>g>and</str<strong>on</strong>g> most haveexamined oak st<str<strong>on</strong>g>and</str<strong>on</strong>g> structure (size class) <str<strong>on</strong>g>and</str<strong>on</strong>g> not st<str<strong>on</strong>g>and</str<strong>on</strong>g> demography. Evidence suggests that5


valley oaks are in fact experiencing increased mortality <str<strong>on</strong>g>and</str<strong>on</strong>g> declines in populati<strong>on</strong> (Brown &Davis 1991, Giusti et al. 2005, Tyler et al. 2006, Whipple et al. 2010).POLICYCalifornia <str<strong>on</strong>g>Oak</str<strong>on</strong>g> Woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s Laws <str<strong>on</strong>g>and</str<strong>on</strong>g> Ordinances Applicable to Tej<strong>on</strong> <strong>Ranch</strong>In resp<strong>on</strong>se to growing c<strong>on</strong>cerns about the future <str<strong>on</strong>g>of</str<strong>on</strong>g> oaks in California, governments at the state<str<strong>on</strong>g>and</str<strong>on</strong>g> local levels have resp<strong>on</strong>ded with laws <str<strong>on</strong>g>and</str<strong>on</strong>g> ordinances targeted at slowing <str<strong>on</strong>g>and</str<strong>on</strong>g> ultimatelyreversing the trend <str<strong>on</strong>g>of</str<strong>on</strong>g> rapid oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>versi<strong>on</strong>. The California <str<strong>on</strong>g>Oak</str<strong>on</strong>g> Woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>sC<strong>on</strong>servati<strong>on</strong> Act <str<strong>on</strong>g>of</str<strong>on</strong>g> 2001 established the <str<strong>on</strong>g>Oak</str<strong>on</strong>g> Woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s C<strong>on</strong>servati<strong>on</strong> Fund whose funds areused to incentivize private l<str<strong>on</strong>g>and</str<strong>on</strong>g>owners to c<strong>on</strong>serve oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s. Under the Act, counties canreceive funds from the state to create <str<strong>on</strong>g>and</str<strong>on</strong>g> implement voluntary oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s managementplans. These plans are particularly focused <strong>on</strong> promoting cattle grazing practices c<strong>on</strong>sistent withhealthy oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s (McCreary 2004). In 2004 the state passed Senate Bill 1334 which createdspecific guidelines for the mitigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>versi<strong>on</strong> under the CaliforniaEnvir<strong>on</strong>mental Quality Act (CEQA). Mitigati<strong>on</strong> opti<strong>on</strong>s include purchase <str<strong>on</strong>g>of</str<strong>on</strong>g> oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>c<strong>on</strong>servati<strong>on</strong> easements, planting <str<strong>on</strong>g>and</str<strong>on</strong>g> maintenance <str<strong>on</strong>g>of</str<strong>on</strong>g> oak trees for 7 years, <str<strong>on</strong>g>and</str<strong>on</strong>g> m<strong>on</strong>etaryd<strong>on</strong>ati<strong>on</strong>s to the state <str<strong>on</strong>g>Oak</str<strong>on</strong>g> Woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s C<strong>on</strong>servati<strong>on</strong> Fund.Many California counties have oak ordinances <str<strong>on</strong>g>of</str<strong>on</strong>g> some sort (IHRMP 2010). County oakordinances have a range <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>servati<strong>on</strong> strategies including protecting old large individuals,known as heritage trees, requiring that a certain proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g> canopy remainintact, requiring extensive informati<strong>on</strong> gathering, <str<strong>on</strong>g>and</str<strong>on</strong>g> requiring mitigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> any oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>c<strong>on</strong>versi<strong>on</strong> (Giusti et al. 2005). Kern County, which c<strong>on</strong>tains the majority <str<strong>on</strong>g>of</str<strong>on</strong>g> Tej<strong>on</strong> <strong>Ranch</strong>, hasan oak ordinance that defines oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s as st<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> oak with at least 10% canopy cover.Any development <str<strong>on</strong>g>of</str<strong>on</strong>g> oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s must leave 30% <str<strong>on</strong>g>of</str<strong>on</strong>g> existing oak canopy cover untouched.Development within the drip-line <str<strong>on</strong>g>of</str<strong>on</strong>g> oaks is restricted. The ordinance also includes measures toprotect oak trees that may not comprise oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s, but have a DBH <str<strong>on</strong>g>of</str<strong>on</strong>g> 12 inches or greater.Developers may remove these trees, but they must first provide evidence that leaving the treeintact would impose a significant hardship. The County <str<strong>on</strong>g>of</str<strong>on</strong>g> Los Angeles – in which a small sliver<str<strong>on</strong>g>of</str<strong>on</strong>g> the southern porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Tej<strong>on</strong> <strong>Ranch</strong> is located – has an <str<strong>on</strong>g>Oak</str<strong>on</strong>g> Tree Ordinance that focuses <strong>on</strong>individual oak trees with diameters at breast height <str<strong>on</strong>g>of</str<strong>on</strong>g> at least 8 inches. The ordinance requires apermit from the County for any project that will prune, trim or remove any oak tree <str<strong>on</strong>g>of</str<strong>on</strong>g> adequatesize. The ordinance requires permit applicati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> highly detailed reports for developmentprojects involving oak removal. Presumably many developers would rather find a way to workaround existing oaks rather than invest time <str<strong>on</strong>g>and</str<strong>on</strong>g> m<strong>on</strong>ey into a lengthy permitting process. TheLos Angeles County oak ordinance requires <str<strong>on</strong>g>of</str<strong>on</strong>g>fsite mitigati<strong>on</strong> for removal <str<strong>on</strong>g>of</str<strong>on</strong>g> oaks or paymentinto the county‘s <str<strong>on</strong>g>Oak</str<strong>on</strong>g> Forests Special Fund. For every acre <str<strong>on</strong>g>of</str<strong>on</strong>g> oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g> removed, two acres<str<strong>on</strong>g>of</str<strong>on</strong>g> comparable oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g> are required for mitigati<strong>on</strong>. This mitigati<strong>on</strong> requirement will becritical for the Centennial Development <strong>on</strong> Tej<strong>on</strong> <strong>Ranch</strong>, which lies entirely in Los AngelesCounty.Federal <str<strong>on</strong>g>and</str<strong>on</strong>g> State Laws Relevant to Tej<strong>on</strong> <strong>Ranch</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the <strong>Ranch</strong>-Wide <str<strong>on</strong>g>Management</str<strong>on</strong>g> PlanA number <str<strong>on</strong>g>of</str<strong>on</strong>g> other federal <str<strong>on</strong>g>and</str<strong>on</strong>g> state laws directly affect the development <str<strong>on</strong>g>and</str<strong>on</strong>g> management <str<strong>on</strong>g>of</str<strong>on</strong>g>Tej<strong>on</strong> <strong>Ranch</strong>. One class <str<strong>on</strong>g>of</str<strong>on</strong>g> laws protects wildlife <strong>on</strong> the <strong>Ranch</strong>. These laws include the FederalEndangered Species Act, the California Endangered Species Act, the Bald <str<strong>on</strong>g>and</str<strong>on</strong>g> Golden EagleProtecti<strong>on</strong> Act, the Federal Migratory Bird Treaty Act, <str<strong>on</strong>g>and</str<strong>on</strong>g> the California Native PlantProtecti<strong>on</strong> Act. A number <str<strong>on</strong>g>of</str<strong>on</strong>g> other laws govern surface waters <str<strong>on</strong>g>and</str<strong>on</strong>g> hydrology <strong>on</strong> the <strong>Ranch</strong>. TheFederal Clean Water Act protects wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s, the California Fish <str<strong>on</strong>g>and</str<strong>on</strong>g> Game Code Secti<strong>on</strong> 1600-6


1616 protects natural flows <str<strong>on</strong>g>of</str<strong>on</strong>g> surface waters <strong>on</strong> the <strong>Ranch</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> the California Porter-CologneAct protects surface waters <strong>on</strong> a state level.Tej<strong>on</strong> <strong>Ranch</strong> provides foraging habitat to the endangered California c<strong>on</strong>dor. In order to moveforward with their development plans, the Tej<strong>on</strong> <strong>Ranch</strong> Company had to apply for an IncidentalTake Permit (ITP) issued by the US Fish <str<strong>on</strong>g>and</str<strong>on</strong>g> Wildlife Service (FWS) under secti<strong>on</strong> 10 <str<strong>on</strong>g>of</str<strong>on</strong>g> theEndangered Species Act. In order to qualify for the ITP Tej<strong>on</strong> <strong>Ranch</strong> Company was required t<strong>on</strong>egotiate a Multiple Species Habitat C<strong>on</strong>servati<strong>on</strong> Plan (MSHCP) under which the permanentprotecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>served l<str<strong>on</strong>g>and</str<strong>on</strong>g>s <strong>on</strong> the <strong>Ranch</strong> would count as mitigati<strong>on</strong> for the incidental take<str<strong>on</strong>g>of</str<strong>on</strong>g> endangered species due to development (US Fish & Wildlife Service 2009). In additi<strong>on</strong> to theCalifornia c<strong>on</strong>dor, 26 other listed <str<strong>on</strong>g>and</str<strong>on</strong>g> n<strong>on</strong>-listed species deemed important to the FWS wereincluded in the MSHCP. In additi<strong>on</strong>, the granting <str<strong>on</strong>g>of</str<strong>on</strong>g> an ITP by the FWS requires anEnvir<strong>on</strong>mental Impact Statement (EIS) under the Nati<strong>on</strong>al Envir<strong>on</strong>mental Policy Act (NEPA).Tej<strong>on</strong> <strong>Ranch</strong> also participates in the California Williams<strong>on</strong> Act Program. The Williams<strong>on</strong> Act <str<strong>on</strong>g>of</str<strong>on</strong>g>1965 established incentives for private l<str<strong>on</strong>g>and</str<strong>on</strong>g>owners to c<strong>on</strong>tinue open space l<str<strong>on</strong>g>and</str<strong>on</strong>g> use such asfarming <str<strong>on</strong>g>and</str<strong>on</strong>g> grazing rather than selling their l<str<strong>on</strong>g>and</str<strong>on</strong>g> to developers. Under the Act, privatel<str<strong>on</strong>g>and</str<strong>on</strong>g>owners can enter into c<strong>on</strong>tracts with local governments under which they will enjoy lowerproperty taxes if l<str<strong>on</strong>g>and</str<strong>on</strong>g>owners agree to c<strong>on</strong>tinue open space l<str<strong>on</strong>g>and</str<strong>on</strong>g> use.7


Page Intenti<strong>on</strong>ally Left Blank8


PROJJECT INTRODUCTIONTej<strong>on</strong> <strong>Ranch</strong> is the largest c<strong>on</strong>tiguous private property in California. Located in Kern County,the ranch encompasses 270,000 acres at the c<strong>on</strong>vergence <str<strong>on</strong>g>of</str<strong>on</strong>g> four major ecological regi<strong>on</strong>s: theMojave Desert, the Central Valley, the Sierra Nevada, <str<strong>on</strong>g>and</str<strong>on</strong>g> the Transverse Ranges (Figure i).Tej<strong>on</strong> <strong>Ranch</strong> is home to rare <str<strong>on</strong>g>and</str<strong>on</strong>g> endemic species <str<strong>on</strong>g>and</str<strong>on</strong>g> a wide variety <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong> communitiesranging from San Joaquin grassl<str<strong>on</strong>g>and</str<strong>on</strong>g>s, to foothill oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s, m<strong>on</strong>tane oak <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>iferforest, mixed c<strong>on</strong>ifer forest, chaparral, Joshua tree woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>, desert scrub, <str<strong>on</strong>g>and</str<strong>on</strong>g> desertgrassl<str<strong>on</strong>g>and</str<strong>on</strong>g>s, all located less than 100 miles from Los Angeles.Figure i- Locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Tej<strong>on</strong> <strong>Ranch</strong> at the intersecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> four <str<strong>on</strong>g>of</str<strong>on</strong>g> California’s major ecoregi<strong>on</strong>s: theMojave Desert, the Sierra Nevada Mountains, the Central Valley, <str<strong>on</strong>g>and</str<strong>on</strong>g> the Coastal Ranges.9


In 2008 the Tej<strong>on</strong> <strong>Ranch</strong> Company, owner <str<strong>on</strong>g>of</str<strong>on</strong>g> Tej<strong>on</strong> <strong>Ranch</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> a coaliti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>servati<strong>on</strong>organizati<strong>on</strong>s signed the l<str<strong>on</strong>g>and</str<strong>on</strong>g>mark ―Tej<strong>on</strong> <strong>Ranch</strong> C<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> L<str<strong>on</strong>g>and</str<strong>on</strong>g> Use Agreement‖ (theAgreement). Under the Agreement the Tej<strong>on</strong> <strong>Ranch</strong> Company can develop 30,000 acres <str<strong>on</strong>g>of</str<strong>on</strong>g>Tej<strong>on</strong> <strong>Ranch</strong>, unc<strong>on</strong>tested by the c<strong>on</strong>servati<strong>on</strong> organizati<strong>on</strong>s, while 178,000 acres are becommitted to permanent c<strong>on</strong>servati<strong>on</strong>. In March <str<strong>on</strong>g>of</str<strong>on</strong>g> 2011 an additi<strong>on</strong>al 62,000 were secured forc<strong>on</strong>servati<strong>on</strong> (Figure ii). The Agreement also established the n<strong>on</strong>-pr<str<strong>on</strong>g>of</str<strong>on</strong>g>it Tej<strong>on</strong> <strong>Ranch</strong>C<strong>on</strong>servancy (the C<strong>on</strong>servancy) whose missi<strong>on</strong> is to ―preserve, enhance, <str<strong>on</strong>g>and</str<strong>on</strong>g> restore the nativebiodiversity <str<strong>on</strong>g>and</str<strong>on</strong>g> ecological values <str<strong>on</strong>g>of</str<strong>on</strong>g> Tej<strong>on</strong> <strong>Ranch</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the Tehachapi Range for the benefit <str<strong>on</strong>g>of</str<strong>on</strong>g>California‘s futuregenerati<strong>on</strong>s‖. In pursuit<str<strong>on</strong>g>of</str<strong>on</strong>g> this missi<strong>on</strong> theC<strong>on</strong>servancy mustdevelop a <strong>Ranch</strong>-Wide<str<strong>on</strong>g>Management</str<strong>on</strong>g> Plan(RWMP) that willemploy an adaptivemanagement strategywith the goal <str<strong>on</strong>g>of</str<strong>on</strong>g>―restoring <str<strong>on</strong>g>and</str<strong>on</strong>g>enhancing the naturalvalues <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>servedl<str<strong>on</strong>g>and</str<strong>on</strong>g>s‖ (Tej<strong>on</strong> <strong>Ranch</strong>Company 2009a). Thisproject aims to assessthe c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oakwoodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s <strong>on</strong> the<strong>Ranch</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> makerecommendati<strong>on</strong>s forthe management <str<strong>on</strong>g>of</str<strong>on</strong>g>these systems for the<strong>Ranch</strong>-Wide<str<strong>on</strong>g>Management</str<strong>on</strong>g> Plan.Figure ii - Map <str<strong>on</strong>g>of</str<strong>on</strong>g> Tej<strong>on</strong><strong>Ranch</strong> showing l<str<strong>on</strong>g>and</str<strong>on</strong>g>allocati<strong>on</strong>s as determinedby the Tej<strong>on</strong> <strong>Ranch</strong>C<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> L<str<strong>on</strong>g>and</str<strong>on</strong>g>Use Agreement.10


Tej<strong>on</strong> <strong>Ranch</strong>‘s extensive foothill <str<strong>on</strong>g>and</str<strong>on</strong>g> m<strong>on</strong>tane oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s include blue oak, valley oak, blackoak, interior live oak, cany<strong>on</strong> live oak, <str<strong>on</strong>g>and</str<strong>on</strong>g> brewers oak. Our research focused <strong>on</strong> blue, valley,<str<strong>on</strong>g>and</str<strong>on</strong>g> black oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s because their understories are heavily utilized by ranch‘s cattle grazingoperati<strong>on</strong>s.The goal <str<strong>on</strong>g>of</str<strong>on</strong>g> this project was to assess the ecological c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s <strong>on</strong> Tej<strong>on</strong><strong>Ranch</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> make management recommendati<strong>on</strong>s to the Tej<strong>on</strong> <strong>Ranch</strong> C<strong>on</strong>servancy. To do thiswe addressed five guiding questi<strong>on</strong>s:Chapter 1: What are the current extent, distributi<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s <strong>on</strong>Tej<strong>on</strong> <strong>Ranch</strong>?Chapter 2: How does the structure <str<strong>on</strong>g>of</str<strong>on</strong>g> oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s <strong>on</strong> Tej<strong>on</strong> <strong>Ranch</strong> compare to thestructure <str<strong>on</strong>g>of</str<strong>on</strong>g> oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s in the rest <str<strong>on</strong>g>of</str<strong>on</strong>g> California?Chapter 3: How are oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s <strong>on</strong> Tej<strong>on</strong> <strong>Ranch</strong> changing over time, <str<strong>on</strong>g>and</str<strong>on</strong>g> is there aregenerati<strong>on</strong> problem?Chapter 4: How do we expect oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s <strong>on</strong> Tej<strong>on</strong> <strong>Ranch</strong> to be impacted by climatechange?Chapter 5: How are current l<str<strong>on</strong>g>and</str<strong>on</strong>g> management practices affecting Tej<strong>on</strong>‘s oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s?Project methods included literature review, field data collecti<strong>on</strong> in 105 oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g> vegetati<strong>on</strong>plots, computer modeling, historical air photo analysis, <str<strong>on</strong>g>and</str<strong>on</strong>g> various comparative analyses.11


Page Intenti<strong>on</strong>ally Left Blank12


Q11: : WHAT IISS THE CURRENT EXTENT, , DIISSTRIIBUTIION AND ECOLLOGIICALLCONDIITIION OFF OAK WOODLLANDSS ON TEJJON RANCH??DATA COLLECTION AND MAP VALIDATIONThe best available data regarding the extent <str<strong>on</strong>g>and</str<strong>on</strong>g> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> blue, valley, <str<strong>on</strong>g>and</str<strong>on</strong>g> black oaks <strong>on</strong>Tej<strong>on</strong> <strong>Ranch</strong> is a timber survey c<strong>on</strong>ducted in 1980. The timber survey indicates that 6% <str<strong>on</strong>g>of</str<strong>on</strong>g> the<strong>Ranch</strong> is covered by blue oaks, 7% is covered by valley oaks, <str<strong>on</strong>g>and</str<strong>on</strong>g> 2% is covered by black oaks(Table 1.1). Using the timber survey map <str<strong>on</strong>g>and</str<strong>on</strong>g> a stratified r<str<strong>on</strong>g>and</str<strong>on</strong>g>om sampling scheme, we selectedoak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g> sampling locati<strong>on</strong>s for plot-based surveys <str<strong>on</strong>g>of</str<strong>on</strong>g> current woodl<str<strong>on</strong>g>and</str<strong>on</strong>g> structure <str<strong>on</strong>g>and</str<strong>on</strong>g>compositi<strong>on</strong> (Figure 1.1). For more informati<strong>on</strong> <strong>on</strong> how plot locati<strong>on</strong>s were selected seeAppendix I.Figure 1.1 - Map <str<strong>on</strong>g>of</str<strong>on</strong>g> Tej<strong>on</strong> <strong>Ranch</strong> showing the locati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 105 vegetati<strong>on</strong> plots. White dotsrepresent plots validating the timber survey map; red dots represent plots invalidating thetimber survey map. Also shown are polyg<strong>on</strong>s from the 1980 timber survey mapsindicating the locati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> blue, black, <str<strong>on</strong>g>and</str<strong>on</strong>g> valley oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s.13


DataTable 1.1 - Total coverage <str<strong>on</strong>g>of</str<strong>on</strong>g> blue, black, <str<strong>on</strong>g>and</str<strong>on</strong>g> valley oak <strong>on</strong> Tej<strong>on</strong> <strong>Ranch</strong>.AcresPercent CoverBlue <str<strong>on</strong>g>Oak</str<strong>on</strong>g> 14,234 6%Valley <str<strong>on</strong>g>Oak</str<strong>on</strong>g> 16,886 7%Black <str<strong>on</strong>g>Oak</str<strong>on</strong>g> 4,910 2%Other L<str<strong>on</strong>g>and</str<strong>on</strong>g> Cover 204,542 85%Tej<strong>on</strong> <strong>Ranch</strong>C<strong>on</strong>servati<strong>on</strong> Area240,572 100%We collected tree, understory, <str<strong>on</strong>g>and</str<strong>on</strong>g> soil data in 105 20x30 meter plots. Detailed methods <str<strong>on</strong>g>and</str<strong>on</strong>g>descripti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> these field surveys can be found in Appendix I. The C<strong>on</strong>servancy plans to use anumber <str<strong>on</strong>g>of</str<strong>on</strong>g> our plots to establish a permanent plot network for l<strong>on</strong>g-term m<strong>on</strong>itoring. As asec<strong>on</strong>dary objective we assessed the accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> the timber survey map using our field data. Ourplot level characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> primary vegetati<strong>on</strong> agreed with the much larger timber surveypolyg<strong>on</strong> 57.7% <str<strong>on</strong>g>of</str<strong>on</strong>g> the time (Table 1.2). Due to the mismatch in scale between our plot data <str<strong>on</strong>g>and</str<strong>on</strong>g>the timber survey polyg<strong>on</strong>s, it is unclear whether this discrepancy is due to local heterogeneitywithin timber survey polyg<strong>on</strong>s, or inaccuracies <str<strong>on</strong>g>of</str<strong>on</strong>g> the timber survey. Validati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the timbersurvey at the polyg<strong>on</strong> scale is necessary to determine this. Our plot level validati<strong>on</strong> informsmanagers to not expect every point within timber survey polyg<strong>on</strong>s to match the timber survey‘sdescripti<strong>on</strong>.Table 1.2 – (Top) Matrix comparing primary tree cover <strong>on</strong> Tej<strong>on</strong> <strong>Ranch</strong> as predicted by the 1980 timbersurvey map to field data collected in 2010. (Bottom) Number <str<strong>on</strong>g>of</str<strong>on</strong>g> plots surveyed in 2010 by species. Thetimber survey map polyg<strong>on</strong>s agreed with our plot level characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> primary vegetati<strong>on</strong> at a rate <str<strong>on</strong>g>of</str<strong>on</strong>g>57.7%.C<strong>on</strong>fusi<strong>on</strong> MatrixTimber SurveyBlue Valley Black TotalsBlue 16 8 0 24Valley 12 31 8 51Black 0 17 13 30Totals 28 56 21 105Total Valley <str<strong>on</strong>g>Oak</str<strong>on</strong>g> Blue <str<strong>on</strong>g>Oak</str<strong>on</strong>g> Black <str<strong>on</strong>g>Oak</str<strong>on</strong>g> Timber Survey Map AgreementPlots Plots Plots Plots With Plot Characterizati<strong>on</strong>105 51 24 30 57.7%Note: More detailed methodology for the plot surveys can be found in Appendix I.14


SPECIES ENVIRONMENTAL GRADIENT MODELINGEnvir<strong>on</strong>mental gradient analysis is a st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard ecological method by which the relati<strong>on</strong>shipsbetween species‘ ecological importance <str<strong>on</strong>g>and</str<strong>on</strong>g> envir<strong>on</strong>mental gradients are characterized. Wecalculated a species‘ ecological importance in a plot as the sum <str<strong>on</strong>g>of</str<strong>on</strong>g> relative density <str<strong>on</strong>g>and</str<strong>on</strong>g> relativebasal area <str<strong>on</strong>g>of</str<strong>on</strong>g> adult trees.A number <str<strong>on</strong>g>of</str<strong>on</strong>g> methods have been used to characterize species-envir<strong>on</strong>ment relati<strong>on</strong>ships. Weused direct gradient analysis, which models changes in species importance al<strong>on</strong>g <strong>on</strong>e or moreenvir<strong>on</strong>mental gradient by fitting a functi<strong>on</strong> to sample data where importance <str<strong>on</strong>g>and</str<strong>on</strong>g> theenvir<strong>on</strong>mental factor have been observed. Parametric models use a single functi<strong>on</strong> such as alinear relati<strong>on</strong>ship, a Gaussian relati<strong>on</strong>ship, an exp<strong>on</strong>ential, or a sigmoidal relati<strong>on</strong>ship todescribe how species importance varies al<strong>on</strong>g an envir<strong>on</strong>mental gradient. While these modelshave the advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> being relatively easy to c<strong>on</strong>struct, they are unrealistic as species‘ resp<strong>on</strong>seto envir<strong>on</strong>mental gradients are complex <str<strong>on</strong>g>and</str<strong>on</strong>g> are almost always influenced by multiple factors. Weused a n<strong>on</strong>-parametric model that uses a spline functi<strong>on</strong> to locally smooth the species resp<strong>on</strong>securve. The model also included penalties for over-fitting to ensure parsim<strong>on</strong>ious outputs.Because we expected interacti<strong>on</strong> am<strong>on</strong>g envir<strong>on</strong>mental gradients we used a general multiplicativemodel.A two factor model based up<strong>on</strong> elevati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> solar radiati<strong>on</strong> was used because these twovariables accounted for most <str<strong>on</strong>g>of</str<strong>on</strong>g> the variati<strong>on</strong> in our data <str<strong>on</strong>g>and</str<strong>on</strong>g> are am<strong>on</strong>g the most reliablymodeled envir<strong>on</strong>mental variables (Figure 1.2).Figure 1.2 - Graph showing output <str<strong>on</strong>g>of</str<strong>on</strong>g> two factor model with elevati<strong>on</strong> <strong>on</strong> the x- axis <str<strong>on</strong>g>and</str<strong>on</strong>g> insolati<strong>on</strong> <strong>on</strong>the y- axis. Bright red regi<strong>on</strong>s indicate high species importance. The model indicates that blue oaks(left) are more abundant <strong>on</strong> cooler north-facing slopes at lower, drier elevati<strong>on</strong>s, <str<strong>on</strong>g>and</str<strong>on</strong>g> shift to southfacingslopes at higher, cooler <str<strong>on</strong>g>and</str<strong>on</strong>g> wetter elevati<strong>on</strong>s. Black oaks (center) are found almost exclusivelyabove 1200 meters. Like blue oaks, black oaks are more abundant <strong>on</strong> north-facing slopes at lowerelevati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> south-facing slopes at higher elevati<strong>on</strong>s. Valley oaks (right) exhibit a bi-modaldistributi<strong>on</strong> with high abundance <strong>on</strong> valley floors, <str<strong>on</strong>g>and</str<strong>on</strong>g> flat to south-facing ridge tops above about 1200meters.Blue oaks are most abundant between 400m <str<strong>on</strong>g>and</str<strong>on</strong>g> 1200m <str<strong>on</strong>g>of</str<strong>on</strong>g> elevati<strong>on</strong>, with abundance dropping<str<strong>on</strong>g>of</str<strong>on</strong>g>f sharply above 1200m. According to Allen-Diaz et al. (2007) blue oaks occur at elevati<strong>on</strong>sabove 600 meters mostly in the southern part <str<strong>on</strong>g>of</str<strong>on</strong>g> the blue oak range where the climate is hotter<str<strong>on</strong>g>and</str<strong>on</strong>g> dryer (Figure 1.3). Tej<strong>on</strong> <strong>Ranch</strong> lies at the southern-most extent <str<strong>on</strong>g>of</str<strong>on</strong>g> the blue oak‘s range.15


StatewideElevati<strong>on</strong>(Allen-Diaz)Blue <str<strong>on</strong>g>Oak</str<strong>on</strong>g>150-600m N,up to1500m STej<strong>on</strong>Elevati<strong>on</strong>400-1200mFigure 1.3 – Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> California endemic blue oak.Black oaks <strong>on</strong> Tej<strong>on</strong> <strong>Ranch</strong> exist almost exclusively above 1200 meters <str<strong>on</strong>g>and</str<strong>on</strong>g> are most abundantbetween 1200 <str<strong>on</strong>g>and</str<strong>on</strong>g> 1850 meters <str<strong>on</strong>g>of</str<strong>on</strong>g> elevati<strong>on</strong>. Given that black oaks occur at elevati<strong>on</strong>s as low as60 meters across California, Tej<strong>on</strong> <strong>Ranch</strong>‘s black oak populati<strong>on</strong> occupies relatively highelevati<strong>on</strong>s. Tej<strong>on</strong> <strong>Ranch</strong> lies within the southern porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the black oak range, however blackoak distributi<strong>on</strong> is known to extend significantly further south than Tej<strong>on</strong> <strong>Ranch</strong> into BajaCalifornia (Figure 1.4).StatewideElevati<strong>on</strong>(Allen-Diaz)Black <str<strong>on</strong>g>Oak</str<strong>on</strong>g>60-1800mTej<strong>on</strong>Elevati<strong>on</strong>1300-1750mFigure 1.4 – Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> black oak in California.16


Valley oaks exhibit a bi-modal elevati<strong>on</strong>al distributi<strong>on</strong>, with species abundance greatest in valleyfloors between 400 <str<strong>on</strong>g>and</str<strong>on</strong>g> 800 meters <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong> ridge tops between 1200 <str<strong>on</strong>g>and</str<strong>on</strong>g> 1750 meters (Figure1.5). An example <str<strong>on</strong>g>of</str<strong>on</strong>g> a low elevati<strong>on</strong> riparian valley oak st<str<strong>on</strong>g>and</str<strong>on</strong>g> is located in the Old Headquartersarea <str<strong>on</strong>g>of</str<strong>on</strong>g> the ranch at about 420 meters <str<strong>on</strong>g>of</str<strong>on</strong>g> elevati<strong>on</strong>. The Old Headquarters st<str<strong>on</strong>g>and</str<strong>on</strong>g> has an averagebasal area <str<strong>on</strong>g>of</str<strong>on</strong>g> 31.6 m 2 /ha while the remaining valley oak st<str<strong>on</strong>g>and</str<strong>on</strong>g>s <strong>on</strong> the ranch have an averagebasal area <str<strong>on</strong>g>of</str<strong>on</strong>g> 16.8 m 2 /ha. As with blue <str<strong>on</strong>g>and</str<strong>on</strong>g> black oaks, valley oaks <strong>on</strong> the ranch are within thesouthern-most extent <str<strong>on</strong>g>of</str<strong>on</strong>g> the specie‘s distributi<strong>on</strong> where trees occupy relatively high elevati<strong>on</strong>s inresp<strong>on</strong>se to the hotter, dryer climate.StatewideElevati<strong>on</strong>(Allen-Diaz)Valley <str<strong>on</strong>g>Oak</str<strong>on</strong>g>150-240m N,up to1700m STej<strong>on</strong>Elevati<strong>on</strong>400-700;800-1750mFigure 1.5 – Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> California endemic valley oak.We ran a two-factor model for blue oak species importance based up<strong>on</strong> growing degree days <str<strong>on</strong>g>and</str<strong>on</strong>g>mean annual precipitati<strong>on</strong> (Figure 1.6). The results indicated that blue oaks prefer drierenvir<strong>on</strong>ments. The two factor model for black oak species importance based <strong>on</strong> aridity <str<strong>on</strong>g>and</str<strong>on</strong>g> meanannual precipitati<strong>on</strong> indicates that black oaks prefer wetter envir<strong>on</strong>ments. This is c<strong>on</strong>sistent withour finding that black oaks prefer higher elevati<strong>on</strong>s. We also ran a two factor model for valleyoaks using temperature seas<strong>on</strong>ality <str<strong>on</strong>g>and</str<strong>on</strong>g> aridity. Like our valley oak model based <strong>on</strong> elevati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g>insolati<strong>on</strong> this climate-based model shows a complex, bi-modal distributi<strong>on</strong>.17


Figure 1.6 - Two-factor models for blue, black, <str<strong>on</strong>g>and</str<strong>on</strong>g> valley oaks. Blue oak species importance wasmodeled against growing degree days <str<strong>on</strong>g>and</str<strong>on</strong>g> mean annual precipitati<strong>on</strong> (left). Results indicate that blueoaks prefer drier envir<strong>on</strong>ments. Black oak species importance was modeled against aridity <str<strong>on</strong>g>and</str<strong>on</strong>g> meanannual precipitati<strong>on</strong> (center). These indicate that black oaks prefer wetter envir<strong>on</strong>ments, supportingour finding that black oaks prefer higher elevati<strong>on</strong>s. Valley oak species importance was modeledagainst temperature seas<strong>on</strong>ality <str<strong>on</strong>g>and</str<strong>on</strong>g> aridity (right). Like our valley oak model based <strong>on</strong> elevati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g>insolati<strong>on</strong> this climate-based model shows a complex, bi-modal distributi<strong>on</strong>.UNDERSTORY CHARACTERIZATIONWe c<strong>on</strong>ducted point intercept sampling al<strong>on</strong>g understory transects <str<strong>on</strong>g>and</str<strong>on</strong>g> recorded each plot‘sunderstory compositi<strong>on</strong>. We characterized understory sample points categorically as tree, shrub,forb, grass, bare ground, leaf litter, woody debris, rock, or cow pie. Figure 1.7 shows the relativec<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> understory categories in all blue oak plots. The blue oak understory is dominatedby grass with leaf litter, forb, <str<strong>on</strong>g>and</str<strong>on</strong>g> bare ground also making small c<strong>on</strong>tributi<strong>on</strong>s. According toAllen-Diaz et al. (2007), grass dominated blue oak understories are typical across the blue oakrange.Figure 1.7 – Blue oak st<str<strong>on</strong>g>and</str<strong>on</strong>g> understory compositi<strong>on</strong> by category.The valley oak understory has a compositi<strong>on</strong> similar to the blue oak understory <str<strong>on</strong>g>and</str<strong>on</strong>g> is dominatedby grass (Figure 1.8). Allen-Diaz et al. (2007) reported that grass understories are comm<strong>on</strong> in18


valley oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> that shrub dominated valley oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g> understories ―can be denseal<strong>on</strong>g drainages but very sparse in upl<str<strong>on</strong>g>and</str<strong>on</strong>g>s‖. While shrub cover in valley oak understory wassparse in our original plots, we did survey four additi<strong>on</strong>al valley oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g> plots al<strong>on</strong>g theCott<strong>on</strong>wood drainage whose understories were shrub dominated.Figure 1.8 - Valley oak st<str<strong>on</strong>g>and</str<strong>on</strong>g> understory compositi<strong>on</strong> by category.Figure 1.9 - Black oak st<str<strong>on</strong>g>and</str<strong>on</strong>g> understory compositi<strong>on</strong> by category.Black oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g> understory is dramatically different from valley <str<strong>on</strong>g>and</str<strong>on</strong>g> blue oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>understory. Black oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g> understory is composed <str<strong>on</strong>g>of</str<strong>on</strong>g> 25% shrub cover, 26% grass <str<strong>on</strong>g>and</str<strong>on</strong>g>22% leaf litter (Figure 1.9). Black oak understory ranged from shrub dominated, to mixed grass<str<strong>on</strong>g>and</str<strong>on</strong>g> shrub, to grass dominated (Figure 1.10). The dominant understory shrubs are snowberry,Symphoricarpus mollis, <str<strong>on</strong>g>and</str<strong>on</strong>g> gooseberry, Ribes divaricatum.19


Figure 1.10 – Chart shows shrub <str<strong>on</strong>g>and</str<strong>on</strong>g> grass cover <str<strong>on</strong>g>of</str<strong>on</strong>g> black oak plots. Coverranges from shrub dominated, to mixed shrub <str<strong>on</strong>g>and</str<strong>on</strong>g> grass, to grass dominated.Further analyses <str<strong>on</strong>g>of</str<strong>on</strong>g> the ecological c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Tej<strong>on</strong>‘s oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s can be found in AppendixI.20


Q2: : HOW DO THE OAK WOODLLANDSS ON TEJJON RANCH COMPPARE TOTHOSSE IIN THE RESST OFF CALLIIFFORNIIA??We compared st<str<strong>on</strong>g>and</str<strong>on</strong>g> basal area <str<strong>on</strong>g>and</str<strong>on</strong>g> tree DBH in our plots to those recorded in a statewidesample <str<strong>on</strong>g>of</str<strong>on</strong>g> U.S. Forest Service Inventory <str<strong>on</strong>g>and</str<strong>on</strong>g> Analysis (FIA) plots (Bolsinger 1988) <str<strong>on</strong>g>and</str<strong>on</strong>g> datareported by Allen-Diaz (2007), in order to c<strong>on</strong>textualize the structure <str<strong>on</strong>g>of</str<strong>on</strong>g> Tej<strong>on</strong> <strong>Ranch</strong>‘s oakwoodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s. Because we did not use the original raw data from the FIA survey, or Allen-Diaz etal., we were not able to obtain relevant statistics such as mean <str<strong>on</strong>g>and</str<strong>on</strong>g> st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard deviati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>stocking rates <str<strong>on</strong>g>and</str<strong>on</strong>g> DBH for the statewide data.COMPARISON OF RESULTS: TEJON VS. STATEWIDE OAK WOODLANDSValley <str<strong>on</strong>g>Oak</str<strong>on</strong>g> Woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>sFigure 2.1 shows that Tej<strong>on</strong>‘s valley oaks st<str<strong>on</strong>g>and</str<strong>on</strong>g>s are better stocked than most in the state. Infact 21% <str<strong>on</strong>g>of</str<strong>on</strong>g> the ranch‘s valley oak st<str<strong>on</strong>g>and</str<strong>on</strong>g>s have greater basal area per acre (100 sq. ft./acre) thanany st<str<strong>on</strong>g>and</str<strong>on</strong>g>s in the statewide plots. Tej<strong>on</strong> <strong>Ranch</strong> also has proporti<strong>on</strong>ately more large DBH treesthan are present statewide. According to Allen-Diaz (2007) the largest valley oaks in Californiahave DBH <str<strong>on</strong>g>of</str<strong>on</strong>g> about 2.4 meters (Table 2.1). The largest valley oak we measured <strong>on</strong> Tej<strong>on</strong> <strong>Ranch</strong>was 2.03 meters further suggesting that the ranch‘s oaks are relatively large, however our 2.03meter DBH tree was a significant outlier with the sec<strong>on</strong>d largest valley oak having a DBH <str<strong>on</strong>g>of</str<strong>on</strong>g>1.52 meters (Figure 2.2). Unfortunately neither Allen-Diaz nor Bolsinger report the entiredistributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oak DBHs for direct comparis<strong>on</strong> with Tej<strong>on</strong>‘s distributi<strong>on</strong>.Figure 2.1 - Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> state-wide valley oak st<str<strong>on</strong>g>and</str<strong>on</strong>g>s to st<str<strong>on</strong>g>and</str<strong>on</strong>g>s <strong>on</strong> Tej<strong>on</strong> <strong>Ranch</strong>. Tej<strong>on</strong><strong>Ranch</strong> has greater proporti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> plots in both the highest <str<strong>on</strong>g>and</str<strong>on</strong>g> lowest basal area categories.21


Table 2.1 - Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Tej<strong>on</strong> <strong>Ranch</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> statewide valley oakbasal area <str<strong>on</strong>g>and</str<strong>on</strong>g> DBH.valley oakStatewide(Allen-Diaz et al.)mean basalarea (m 2 /ha)4-17DBHup to 1.2mlargest > 2.4mTej<strong>on</strong> <strong>Ranch</strong> 13.2 (SD=18.3) up to 2.03mFigure 2.2 - Histogram showing the distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> valley oak DBHs <strong>on</strong> Tej<strong>on</strong> <strong>Ranch</strong>. Mean DBH was60.7 cm with a st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard deviati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 36.9 cm.Black <str<strong>on</strong>g>Oak</str<strong>on</strong>g> Woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s(Figure 2.3) shows that black oak st<str<strong>on</strong>g>and</str<strong>on</strong>g>s <strong>on</strong> Tej<strong>on</strong> <strong>Ranch</strong> are also relatively well stockedcompared to those found in all <str<strong>on</strong>g>of</str<strong>on</strong>g> California. Fifty-eight percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the black oak st<str<strong>on</strong>g>and</str<strong>on</strong>g>s at Tej<strong>on</strong>had basal areas above 100 sq ft/acre whereas <strong>on</strong>ly twenty-seven percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the oaks statewidewere in this same category. A significantly larger proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> black oak trees fall into the largestclass <str<strong>on</strong>g>of</str<strong>on</strong>g> DBH <str<strong>on</strong>g>of</str<strong>on</strong>g> 29 centimeters or above, suggesting that the ranch‘s black oaks are relativelylarge compared to those in all <str<strong>on</strong>g>of</str<strong>on</strong>g> California. Allen <str<strong>on</strong>g>and</str<strong>on</strong>g> Diaz report that the largest black oaks inCalifornia have DBH <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.2 meters (Table 2.2), making our largest black oak with a DBH <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.78meters unusually large. The three largest black oaks we measured each with DBH above 1.7meters are outliers, with the smooth distributi<strong>on</strong> ending around 1.2 meters (Figure 2.4). Again<strong>on</strong>ly categorical data were available from Allen-Diaz <str<strong>on</strong>g>and</str<strong>on</strong>g> Bolsinger, making direct comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>our DBH distributi<strong>on</strong> impossible.22


Figure 2.3 - Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> state-wide black oak st<str<strong>on</strong>g>and</str<strong>on</strong>g>s to st<str<strong>on</strong>g>and</str<strong>on</strong>g>s <strong>on</strong> Tej<strong>on</strong> <strong>Ranch</strong>. Black oak st<str<strong>on</strong>g>and</str<strong>on</strong>g>s <strong>on</strong>Tej<strong>on</strong> <strong>Ranch</strong> have higher than average statewide basal area.Figure 2.4 - Histogram showing DBH distributi<strong>on</strong> for black oaks. Mean DBH is 45.7 cm with a st<str<strong>on</strong>g>and</str<strong>on</strong>g>arddeviati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 29.9 cm.23


Table 2.2 - Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Tej<strong>on</strong> <strong>Ranch</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> statewide black oakbasal area <str<strong>on</strong>g>and</str<strong>on</strong>g> DBH.black oakStatewide(Allen-Diaz et al.)mean basalarea (m 2 /ha)DBH11-22 up to 1.2mTej<strong>on</strong> <strong>Ranch</strong> 31.6 (SD=19.7) up to 1.78mBlue <str<strong>on</strong>g>Oak</str<strong>on</strong>g> Woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>sA comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> blue oak stocking rates <strong>on</strong> Tej<strong>on</strong> <strong>Ranch</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> in California also suggests thatblue oak <strong>on</strong> the ranch are slightly better stocked than average across the state (Figure 2.5).Because we did not have access to the original FIA data we could not test the statisticalsignificance <str<strong>on</strong>g>of</str<strong>on</strong>g> the difference. However a comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> statewide blue oak DBH with Tej<strong>on</strong>blue oak DBH str<strong>on</strong>gly suggests that blue oaks <strong>on</strong> Tej<strong>on</strong> <strong>Ranch</strong> are large relative to those in therest <str<strong>on</strong>g>of</str<strong>on</strong>g> the state. Allen-Diaz et al. (2007) report that the largest blue oaks in California have DBH<str<strong>on</strong>g>of</str<strong>on</strong>g> about 1.8 meters while the largest blue oak we measured <strong>on</strong> the ranch had a DBH <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.82meters (Table 2.3). The distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> blue oak DBH is fairly smooth <str<strong>on</strong>g>and</str<strong>on</strong>g> the largest blue oakwas not a significant outlier (Figure 2.6). Altogether these results suggest that Tej<strong>on</strong>‘s blue oakshave roughly average basal area per acre, <str<strong>on</strong>g>and</str<strong>on</strong>g> are <str<strong>on</strong>g>of</str<strong>on</strong>g> moderate size compared to blue oaks acrossCalifornia.Figure 2.5 - Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> state-wide blue oak st<str<strong>on</strong>g>and</str<strong>on</strong>g>s to st<str<strong>on</strong>g>and</str<strong>on</strong>g>s <strong>on</strong> Tej<strong>on</strong> <strong>Ranch</strong>. Blue oak st<str<strong>on</strong>g>and</str<strong>on</strong>g>s <strong>on</strong>Tej<strong>on</strong> <strong>Ranch</strong> have slightly better than average statewide basal area, however because raw statewide datawere not available, we were unable to determine if these differences were statistically significant.24


Figure 2.6 - Histogram showing DBH distributi<strong>on</strong> for blue oaks. Mean DBH is 34.8 cm with a st<str<strong>on</strong>g>and</str<strong>on</strong>g>arddeviati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 18.1 cm.Table 2.3 - Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Tej<strong>on</strong> <strong>Ranch</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> statewide blue oakbasal area <str<strong>on</strong>g>and</str<strong>on</strong>g> DBH.blue oakStatewide(Allen-Diaz et al.)mean basalarea (m 2 /ha)6-11DBHup to .6mlargest > 1.8mTej<strong>on</strong> <strong>Ranch</strong> 7.2 (SD=9.4) up to .8mIn summary Tej<strong>on</strong> <strong>Ranch</strong>‘s blue, valley, <str<strong>on</strong>g>and</str<strong>on</strong>g> black oak populati<strong>on</strong>s are relatively well stocked <str<strong>on</strong>g>and</str<strong>on</strong>g>relatively large as compared to oaks across the state <str<strong>on</strong>g>of</str<strong>on</strong>g> California. These trends are especiallyapparent in the valley <str<strong>on</strong>g>and</str<strong>on</strong>g> black oak populati<strong>on</strong>s. These patterns can likely be explained by thefact that Tej<strong>on</strong> <strong>Ranch</strong> has historically been sheltered from the intense development <str<strong>on</strong>g>and</str<strong>on</strong>g> timberharvest that have reduced oak stocking rates <str<strong>on</strong>g>and</str<strong>on</strong>g> DBH across the rest <str<strong>on</strong>g>of</str<strong>on</strong>g> California.Large oak trees are particularly valuable ecologically as they produce large acorn crops whichc<strong>on</strong>tribute significantly to oak recruitment <str<strong>on</strong>g>and</str<strong>on</strong>g> provide a food source for birds, small mammals,<str<strong>on</strong>g>and</str<strong>on</strong>g> ungulates. Large oaks, especially valley oaks, <str<strong>on</strong>g>of</str<strong>on</strong>g>ten have significant st<str<strong>on</strong>g>and</str<strong>on</strong>g>ing or fallen deadwood which serves as habitat for cavity nesting birds, reptiles, invertebrates, <str<strong>on</strong>g>and</str<strong>on</strong>g> small mammals.We recorded DBH for all st<str<strong>on</strong>g>and</str<strong>on</strong>g>ing dead snags <str<strong>on</strong>g>and</str<strong>on</strong>g> found that st<str<strong>on</strong>g>and</str<strong>on</strong>g>ing dead wood accounted for5.8% <str<strong>on</strong>g>of</str<strong>on</strong>g> all st<str<strong>on</strong>g>and</str<strong>on</strong>g>ing wood by volume.Further comparis<strong>on</strong>s between the oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Tej<strong>on</strong> <strong>Ranch</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> California as a whole canbe found in Box 3.1 <str<strong>on</strong>g>and</str<strong>on</strong>g> Figure III.7.25


Page Intenti<strong>on</strong>ally Left Blank26


Figure 3.2 - Close-up image showing an example <str<strong>on</strong>g>of</str<strong>on</strong>g> the analysis methodology. The upper-left is a currentphoto, <str<strong>on</strong>g>and</str<strong>on</strong>g> the lower-right is the historical photo. Red dots indicate trees that were tracked over time.MethodsThe 1952 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2009 photos were co registered using the spline <str<strong>on</strong>g>and</str<strong>on</strong>g> first order polynomial (affine)transformati<strong>on</strong>s. To calculate mortality, we marked trees in the 1952 image, then projected thosemarks over the 2009 image. Marks <strong>on</strong> the 2009 that did not cover trees were therefore countedas mortality. To calculate recruitment we marked trees in the 2009 image, then projected thosemarks over the 1952 image. Marks in the 1952 image that did not cover trees were thereforecounted as recruitment. With this data we were able to calculate annual recruitment, mortality,<str<strong>on</strong>g>and</str<strong>on</strong>g> populati<strong>on</strong> growth rate. See Appendix II for additi<strong>on</strong>al informati<strong>on</strong> <strong>on</strong> how these rates werecalculated.ResultsResults from this analysis are summarized in Table 3.1 <str<strong>on</strong>g>and</str<strong>on</strong>g> Figure 3.3. Mortality rates between1952 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2009 were low for Tej<strong>on</strong>‘s blue valley <str<strong>on</strong>g>and</str<strong>on</strong>g> black oaks. Assuming that these oaks havelife spans <str<strong>on</strong>g>of</str<strong>on</strong>g> 200 to 300 years, <str<strong>on</strong>g>and</str<strong>on</strong>g> that a populati<strong>on</strong> has an equal number <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals in eachage class, mortality rates for a stable populati<strong>on</strong> should be between 0.5% <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.3%. The lowmortality rates seen in our results may indicate that Tej<strong>on</strong>‘s oaks are relatively young; howeverthis appears inc<strong>on</strong>sistent with the fact that oaks <strong>on</strong> the ranch are relatively large. Recruitment wasslightly less than mortality meaning that oak populati<strong>on</strong>s <strong>on</strong> Tej<strong>on</strong> appear to be in a period <str<strong>on</strong>g>of</str<strong>on</strong>g>slow decline. Populati<strong>on</strong> growth rates even slightly under <strong>on</strong>e can lead to significant populati<strong>on</strong>28


Table 3.3 - Density <str<strong>on</strong>g>of</str<strong>on</strong>g> oak saplings within blue, black, <str<strong>on</strong>g>and</str<strong>on</strong>g> valley oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s.Blue oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s have <strong>on</strong>ly blue oak saplings, black oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s haveblack <str<strong>on</strong>g>and</str<strong>on</strong>g> valley oak saplings, valley oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s have <strong>on</strong>ly valley oak saplings.blue oaksaplings/hablack oaksaplings/havalley oaksaplings/hablue oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s 7.6 0 0black oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s 0.06 8.9 0.6valley oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s 0 0 4.3Table 3.4 - Density <str<strong>on</strong>g>of</str<strong>on</strong>g> adult trees in blue valley <str<strong>on</strong>g>and</str<strong>on</strong>g> blak oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s.Blue oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s had both blue <str<strong>on</strong>g>and</str<strong>on</strong>g> valley oak, valley oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>shad blue, black, <str<strong>on</strong>g>and</str<strong>on</strong>g> valley oaks, black oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s had both black<str<strong>on</strong>g>and</str<strong>on</strong>g> valley oaks.blueoaks/havalleyoaks/hablackoaks/hablue oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s 57.1 0.83 0valley oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s 0.25 30.57 2.7black oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s 0 2.08 129.69Figure 3.5 - Number <str<strong>on</strong>g>of</str<strong>on</strong>g> seedlings, saplings, <str<strong>on</strong>g>and</str<strong>on</strong>g> adult trees for blue, black, <str<strong>on</strong>g>and</str<strong>on</strong>g> valley oaks.32


% area in forest typestocked with seedlings <str<strong>on</strong>g>and</str<strong>on</strong>g>saplingsmean number <str<strong>on</strong>g>of</str<strong>on</strong>g> seedlings& saplings per plotBox 3.1 - Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> stocking rates for oak seedlings <str<strong>on</strong>g>and</str<strong>on</strong>g> saplings between Tej<strong>on</strong><strong>Ranch</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the rest <str<strong>on</strong>g>of</str<strong>on</strong>g> California.Relative stocking rates for blue, black, <str<strong>on</strong>g>and</str<strong>on</strong>g> valley oak seedlings <str<strong>on</strong>g>and</str<strong>on</strong>g> saplings were analyzed forplots <strong>on</strong> Tej<strong>on</strong> <strong>Ranch</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> were compared to data from the 1988 Calif<strong>on</strong>ia-wide study <str<strong>on</strong>g>of</str<strong>on</strong>g>hardwood rangel<str<strong>on</strong>g>and</str<strong>on</strong>g>s d<strong>on</strong>e by Charles Bolsinger (1988). Relative stocking rates for Tej<strong>on</strong> <strong>Ranch</strong>were calculated as mean basal area (cm 2 /plot) <str<strong>on</strong>g>of</str<strong>on</strong>g> seedlings <str<strong>on</strong>g>and</str<strong>on</strong>g> saplings as indicated from the2010 Group Project field data. The Bolsinger study reported data as a percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> are in eachforest type (blue, black, or valley oaks) stocked with seedlings <str<strong>on</strong>g>and</str<strong>on</strong>g> saplings. These two data setsare unfortunately not directly comparable due to their differences in data reporting. However,the relative rank <str<strong>on</strong>g>of</str<strong>on</strong>g> each species compared to the others can be established for each study site.As seen below in Figure 3.6, valley oak seedlings <str<strong>on</strong>g>and</str<strong>on</strong>g> saplings are significantly more present <strong>on</strong>Tej<strong>on</strong> <strong>Ranch</strong> than they are in the rest <str<strong>on</strong>g>of</str<strong>on</strong>g> the state. This is likely due to the fact that valley oak arecomm<strong>on</strong>ly associated with heavily grazed rangel<str<strong>on</strong>g>and</str<strong>on</strong>g>s thus exposing seedlings <str<strong>on</strong>g>and</str<strong>on</strong>g> saplings tointense browsing pressures from cattle. On Tej<strong>on</strong> <strong>Ranch</strong>, there are valley oak populati<strong>on</strong>s thatare found in areas outside <str<strong>on</strong>g>of</str<strong>on</strong>g> the traditi<strong>on</strong>al heavily grazed lowl<str<strong>on</strong>g>and</str<strong>on</strong>g>s. These regi<strong>on</strong>s are stillgrazed, but the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> varied topography <str<strong>on</strong>g>and</str<strong>on</strong>g> a more diverse understory may aid in acorn<str<strong>on</strong>g>and</str<strong>on</strong>g> seedling establishment <str<strong>on</strong>g>and</str<strong>on</strong>g> may provide reduced browsing pressures than are typically foundin valley oak habitats in the rest <str<strong>on</strong>g>of</str<strong>on</strong>g> the state.State-wide Stocking Rates100%80%60%40%20%0%Q. kelloggii Q. lobata Q. douglasiiTej<strong>on</strong> <strong>Ranch</strong> Stocking Rates20151050Q. kelloggii Q. lobata Q. douglasiiFigure 3.6 – Relative stocking rates for seedlings <str<strong>on</strong>g>and</str<strong>on</strong>g> saplings state-wide <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong> Tej<strong>on</strong> <strong>Ranch</strong>.33


Page Intenti<strong>on</strong>ally Left Blank34


Q4: : HOW DO WE EXPPECT THE OAK WOODLLANDSS OFF TEJJON RANCH TOBE IIMPPACTED BY CLLIIMATE CHANGE??SIGNIFICANCE OF CLIMATE CHANGE FOR OAK SPECIESClimate change is a prominent issue in today‘s discussi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>servati<strong>on</strong> biology <str<strong>on</strong>g>and</str<strong>on</strong>g>envir<strong>on</strong>mental management, <str<strong>on</strong>g>and</str<strong>on</strong>g> the Tej<strong>on</strong> <strong>Ranch</strong> C<strong>on</strong>servancy is particularly interested in howclimate change might affect hardwood rangel<str<strong>on</strong>g>and</str<strong>on</strong>g>s <strong>on</strong> the <strong>Ranch</strong>. Species range shifts due toclimate change are comm<strong>on</strong>ly attributed to temperature warming, <str<strong>on</strong>g>and</str<strong>on</strong>g> resulting uphill shifts indistributi<strong>on</strong> have been well documented (Moritz et al. 2008, Walther et al. 2002). However,Crimmins et al. (2011) showed an overall downhill trend in oak species range shifts in Californiaover the past 80 years. Recent climate change in California has led to both warmer <str<strong>on</strong>g>and</str<strong>on</strong>g> wetterc<strong>on</strong>diti<strong>on</strong>s, <str<strong>on</strong>g>and</str<strong>on</strong>g> it appears that changes in climatic water balance may be more important tomost oak species than changes in temperature. This study by Crimmins et al. also dem<strong>on</strong>stratesthe ability <str<strong>on</strong>g>of</str<strong>on</strong>g> oaks to track climate change <strong>on</strong> relatively short time frames (


annual temperature, +8% change in annual precipitati<strong>on</strong>), <str<strong>on</strong>g>and</str<strong>on</strong>g> GFDL predicts a warmer drierclimate (4.4° C increase in mean annual temperature, -26% change in annual precipitati<strong>on</strong>) forCalifornia by the end <str<strong>on</strong>g>of</str<strong>on</strong>g> the century (Cayan et al. 2008). These two climate models were used forthe California State Climate Assessment <str<strong>on</strong>g>and</str<strong>on</strong>g> they do well at bounding the potential climaticchanges the regi<strong>on</strong> is likely to experience over the next century.Many tree species in California have wide ranges <str<strong>on</strong>g>and</str<strong>on</strong>g> high genetic diversity (Buck et al. 1970).Studies <strong>on</strong> the genetic associati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> oaks with regi<strong>on</strong>al climate gradients have shown thatresp<strong>on</strong>ses to climate change can vary greatly across the species‘ range (Sork et al. 2010). Because<str<strong>on</strong>g>of</str<strong>on</strong>g> this populati<strong>on</strong> scale individualistic resp<strong>on</strong>se to climate change, we based our models <strong>on</strong>ly <strong>on</strong>oak occurrence data from the Tehachapi Mountains, <str<strong>on</strong>g>and</str<strong>on</strong>g> not from the entire range <str<strong>on</strong>g>of</str<strong>on</strong>g> thespecies. (More informati<strong>on</strong> <strong>on</strong> the differences between local <str<strong>on</strong>g>and</str<strong>on</strong>g> regi<strong>on</strong>al species distributi<strong>on</strong>modeling can be found in Appendix III).For this analysis, data points from our field study were augmented by oak occurrences fromother data sets to yield 51 blue oak, 32 black oak, <str<strong>on</strong>g>and</str<strong>on</strong>g> 90 valley oak unique occurrences across<str<strong>on</strong>g>and</str<strong>on</strong>g> around Tej<strong>on</strong> <strong>Ranch</strong>. Envir<strong>on</strong>mental data downscaled to a grid cell size <str<strong>on</strong>g>of</str<strong>on</strong>g> 90m (see Box 4.1<strong>on</strong> data resoluti<strong>on</strong>) were derived from North American climate data sets for current, mid-century(30 year average centered <strong>on</strong> 2055), <str<strong>on</strong>g>and</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> century (30 year average centered <strong>on</strong> 2085) (Flint& Flint 2010). Eleven envir<strong>on</strong>mental predictors thought to be important to the distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>oaks <strong>on</strong> Tej<strong>on</strong> <strong>Ranch</strong> were initially selected to model species distributi<strong>on</strong>s, although afterpreliminary model test runs <str<strong>on</strong>g>and</str<strong>on</strong>g> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> correlati<strong>on</strong> matrices these were reduced to the 4 mostinfluential variables (Table 4.1). These envir<strong>on</strong>mental predictors were paired with the oakoccurrence data to generate climate space outputs for blue, black, <str<strong>on</strong>g>and</str<strong>on</strong>g> valley oaks.Table 4.1 - Selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental predictors. Results from the initial runs <str<strong>on</strong>g>of</str<strong>on</strong>g> MaxEnt showed all foursoil variables to c<strong>on</strong>tribute 5° C (gdd5) Growing degre days > 5° C (gdd5)Available soil water holding capacity (awc) ― ―Soil pH (ph) ― ―Soil particle size < 40mm (seive40) ― ―Soil particle size < 4mm (seive4) ― ―Summary statistics (cross-validated AUC scores) indicate that MaxEnt accurately modeled thelocal relati<strong>on</strong>ships between species occurrence <str<strong>on</strong>g>and</str<strong>on</strong>g> climate gradients for all three oak species.The model for black oak was the str<strong>on</strong>gest (AUC = 0.96), followed by valley oak (AUC = 0.87),36


Spatial C<strong>on</strong>gruence (%)<str<strong>on</strong>g>and</str<strong>on</strong>g> then blue oak (AUC = 0.83). Cross-validated AUC scores greater than 0.8 generally indicatean acceptable model. (More informati<strong>on</strong> <strong>on</strong> AUC scores can be found in Appendix III).Box 4.1 - Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> data resoluti<strong>on</strong> <strong>on</strong> predictive modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> species distributi<strong>on</strong> foroaks <strong>on</strong> Tej<strong>on</strong> <strong>Ranch</strong>.FinerResoluti<strong>on</strong>+ -Spatial c<strong>on</strong>gruence (Dice-Sorensen) =CoarserResoluti<strong>on</strong>+ a b- c d100806040200QUDOQUKEQULOLowData Resoluti<strong>on</strong>HighFigure 4.1 - Spatial c<strong>on</strong>gruence <str<strong>on</strong>g>of</str<strong>on</strong>g> MaxEnt climatic suitability modelsbetween two input data spatial resoluti<strong>on</strong>s. (Left = 90m, Right = 270m)A comparative analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> climatic suitability modeling using climate data resolved at twodifferent levels showed an overall difference in spatial c<strong>on</strong>gruence <str<strong>on</strong>g>of</str<strong>on</strong>g> less than 20% (Figure4.1). QUKE dem<strong>on</strong>strated the largest difference in spatial c<strong>on</strong>gruence between the 90mclimate data models <str<strong>on</strong>g>and</str<strong>on</strong>g> the 270m climate data models (QULO = 78.60), <str<strong>on</strong>g>and</str<strong>on</strong>g> QULOdem<strong>on</strong>strated the narrowest divergence (QULO = 86.22). This analysis doesn‘t indicate thatthere is enough <str<strong>on</strong>g>of</str<strong>on</strong>g> a change in spatial distributi<strong>on</strong> between the two data resoluti<strong>on</strong>s to warrantfurther modeling <str<strong>on</strong>g>and</str<strong>on</strong>g> sensitivity analyses. We therefore chose to use the highest-resolved data(90m) for all <str<strong>on</strong>g>of</str<strong>on</strong>g> our analyses, as this data is most likely to capture the envir<strong>on</strong>mental <str<strong>on</strong>g>and</str<strong>on</strong>g>climatic elements that are most significant predictors <str<strong>on</strong>g>of</str<strong>on</strong>g> biological habitat suitability.The results from this analysis show a general decline in climatic suitability for oaks <strong>on</strong> Tej<strong>on</strong><strong>Ranch</strong> between now <str<strong>on</strong>g>and</str<strong>on</strong>g> mid-century, <str<strong>on</strong>g>and</str<strong>on</strong>g> further reducti<strong>on</strong>s by the end <str<strong>on</strong>g>of</str<strong>on</strong>g> the century (Table4.2). The overall trend is movement upslope <str<strong>on</strong>g>and</str<strong>on</strong>g> toward north-facing aspects. These results holdtrue with both GCMs <str<strong>on</strong>g>and</str<strong>on</strong>g> for all species. Of the three species modeled, blue oaks showed themost significant loss <str<strong>on</strong>g>of</str<strong>on</strong>g> climatically suitable habitat (Figure 4.2). By mid-century, blue oaks arepredicted to lose between 70-80% <str<strong>on</strong>g>of</str<strong>on</strong>g> their range <strong>on</strong> the <strong>Ranch</strong>. The percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> stable rangefor the species is predicted to be between 10-16%. By the end <str<strong>on</strong>g>of</str<strong>on</strong>g> the century, this figure maydecrease to less than 2%. These results are more dramatic than those found by (Kueppers et al.37


2005), <str<strong>on</strong>g>and</str<strong>on</strong>g> may warrant a heightened awareness from l<str<strong>on</strong>g>and</str<strong>on</strong>g> managers as to the year to year <str<strong>on</strong>g>and</str<strong>on</strong>g>l<strong>on</strong>g-term viability <str<strong>on</strong>g>and</str<strong>on</strong>g> persistence <str<strong>on</strong>g>of</str<strong>on</strong>g> blue oak populati<strong>on</strong>s <strong>on</strong> the <strong>Ranch</strong>.Table 4.2 - Blue, black, <str<strong>on</strong>g>and</str<strong>on</strong>g> valley oak resp<strong>on</strong>ses to climate change.suitable acresblue oak% <str<strong>on</strong>g>of</str<strong>on</strong>g> ranch% netchange% stablerangecurrent 154,811 57% — —GFDL mid-century 31,120 11% -80% 10%PCM mid-century 44,300 16% -71% 16%GFDL end <str<strong>on</strong>g>of</str<strong>on</strong>g> century 12,646 5% -92% 0.6%PCM end <str<strong>on</strong>g>of</str<strong>on</strong>g> century 10,923 4% -93% 1.4%black oaksuitable acres% <str<strong>on</strong>g>of</str<strong>on</strong>g> ranch% netchange% stablerangecurrent 54,359 20% — —GFDL mid-century 11,733 4% -78% 22%PCM mid-century 20,948 8% -61% 38%GFDL end <str<strong>on</strong>g>of</str<strong>on</strong>g> century 134 0% -100% 0.2%PCM end <str<strong>on</strong>g>of</str<strong>on</strong>g> century 5,572 2% -90% 10.2%valley oaksuitable acres% <str<strong>on</strong>g>of</str<strong>on</strong>g> ranch% netchange% stablerangecurrent 106,449 39% — —GFDL mid-century 47,126 17% -56% 38%PCM mid-century 85,853 31% -19% 74%GFDL end <str<strong>on</strong>g>of</str<strong>on</strong>g> century 6,207 2.3% -94% 3.1%PCM end <str<strong>on</strong>g>of</str<strong>on</strong>g> century 23,255 8.5% -78% 18%Similar results were found for black <str<strong>on</strong>g>and</str<strong>on</strong>g> valley oak (Figures 4.3 <str<strong>on</strong>g>and</str<strong>on</strong>g> 4.4), but nothing as dramaticas the blue oak statistics. Stable range by mid-century is predicted to be between 22-38% forblack oaks, <str<strong>on</strong>g>and</str<strong>on</strong>g> between 38-74% for valley oaks. C<strong>on</strong>trary to the (Kueppers et al. 2005) study,climatic suitability, <str<strong>on</strong>g>and</str<strong>on</strong>g> thus predicted distributi<strong>on</strong>, is expected to remain relatively stable forvalley oaks <strong>on</strong> Tej<strong>on</strong> <strong>Ranch</strong>.Due to the inherent uncertainties in the GCMs <str<strong>on</strong>g>and</str<strong>on</strong>g> the downscaled climate data, there issignificant uncertainty in our model outputs as to where <str<strong>on</strong>g>and</str<strong>on</strong>g> at what magnitude these range shifts38


Figure 4.2 - Predicted range shifts for blue oak due to future climate change. This figure shows four climatesuitability modeling results (MaxEnt): mid-century <str<strong>on</strong>g>and</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> century, for both PCM <str<strong>on</strong>g>and</str<strong>on</strong>g> GFDL generalcirculati<strong>on</strong> models. Maps depict current distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> climatic suitability, future distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> climaticsuitability, <str<strong>on</strong>g>and</str<strong>on</strong>g> distributi<strong>on</strong> overlap. Also depicted are calculated statistics for range shifts (% stable range<str<strong>on</strong>g>and</str<strong>on</strong>g> % change in range).39


Figure 4.3 - Predicted range shifts for black oak due to future climate change. This figure shows four climatesuitability modeling results (MaxEnt): mid-century <str<strong>on</strong>g>and</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> century, for both PCM <str<strong>on</strong>g>and</str<strong>on</strong>g> GFDL generalcirculati<strong>on</strong> models. Maps depict current distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> climatic suitability, future distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> climaticsuitability, <str<strong>on</strong>g>and</str<strong>on</strong>g> distributi<strong>on</strong> overlap. Also depicted are calculated statistics for range shifts (% stable range<str<strong>on</strong>g>and</str<strong>on</strong>g> % change in range).40


Figure 4.4 - Predicted range shifts for valley oak due to future climate change. This figure shows four climatesuitability modeling results (MaxEnt): mid-century <str<strong>on</strong>g>and</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> century, for both PCM <str<strong>on</strong>g>and</str<strong>on</strong>g> GFDL generalcirculati<strong>on</strong> models. Maps depict current distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> climatic suitability, future distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> climaticsuitability, <str<strong>on</strong>g>and</str<strong>on</strong>g> distributi<strong>on</strong> overlap. Also depicted are calculated statistics for range shifts (% stable range<str<strong>on</strong>g>and</str<strong>on</strong>g> % change in range).41


will occur. The general trend remains though, showing a decline in climatic suitability over thenext century for oaks <strong>on</strong> Tej<strong>on</strong> <strong>Ranch</strong>. Fortunately, the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> varied topography <strong>on</strong> Tej<strong>on</strong>may provide refugia for species undergoing shifting climatic suitability. This topography – e.g.deep cany<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> broad ranges <str<strong>on</strong>g>of</str<strong>on</strong>g> elevati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> aspects – may help buffer oak species <strong>on</strong> the<strong>Ranch</strong> from severe habitat loss due to climate change. Such refugia effects can be seen in Figures4.2 - 4.4, as well as Figures III.2 - III.4 in Appendix III, where areas <str<strong>on</strong>g>of</str<strong>on</strong>g> suitable climate arereduced to localized pockets <str<strong>on</strong>g>of</str<strong>on</strong>g> microclimates <str<strong>on</strong>g>and</str<strong>on</strong>g> micro-topography.These models imply replacement <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e oak dominant <strong>on</strong> the <strong>Ranch</strong> by others. This isparticularly true for black oak - by mid-century most <str<strong>on</strong>g>of</str<strong>on</strong>g> the current climatically suitable habitatfor black oak will become habitat predicted to be climatically suitable for both valley <str<strong>on</strong>g>and</str<strong>on</strong>g> blueoaks. Table 4.3 summarizes these replacement statistics. By the end <str<strong>on</strong>g>of</str<strong>on</strong>g> the century, much <str<strong>on</strong>g>of</str<strong>on</strong>g> thecurrent climatically suitable oak habitat becomes unsuitable for any <str<strong>on</strong>g>of</str<strong>on</strong>g> the three oak speciesassessed in this analysis. Other modeling studies suggest that grassl<str<strong>on</strong>g>and</str<strong>on</strong>g> communities are likely toreplace oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s as they become displaced by climate change (Lenihan et al. 2007, Hayhoeet al. 2004). Using the same GCMs <str<strong>on</strong>g>and</str<strong>on</strong>g> emissi<strong>on</strong>s scenarios as this study, Lenihan et al. (2007)report an average loss <str<strong>on</strong>g>of</str<strong>on</strong>g> woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 29% across the state by the end <str<strong>on</strong>g>of</str<strong>on</strong>g> the 21 st century, <str<strong>on</strong>g>and</str<strong>on</strong>g>an average gain in grassl<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 68%. This replacement <str<strong>on</strong>g>of</str<strong>on</strong>g> woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s by grassl<str<strong>on</strong>g>and</str<strong>on</strong>g>s isaccentuated by climate change related alterati<strong>on</strong>s in fire regimes are taken into account.Table 4.3 - Predicted replacement <str<strong>on</strong>g>of</str<strong>on</strong>g> current oak dominants by future oak dominants. Calculati<strong>on</strong>s are forclimatic suitability modeled for each species over two time frames <str<strong>on</strong>g>and</str<strong>on</strong>g> two GCMs. (<str<strong>on</strong>g>Oak</str<strong>on</strong>g> species in thecolumns are predicted to replace those in the rows).dominant oak replacement:mid-centurydominant oak replacement:end <str<strong>on</strong>g>of</str<strong>on</strong>g> centuryblue oak black oak valley oak blue oak black oak valley oakblue oak GFDL — — 4.8% — — —PCM — — 24.5% — — 4.1%black oak GFDL 48.9% — 66.3% 22.7% — 11.1%PCM 70.0% — 94.7% 15.0% — 29.2%valley oak GFDL 3.0% — — 5.4% — —PCM — — — 0.1% 0.1% —Again, our analysis shows that there may be significant range-shifts for oak species <strong>on</strong> Tej<strong>on</strong><strong>Ranch</strong> by mid-century. Climate change is predicted to be a driving force in the future distributi<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> oak resources across the <strong>Ranch</strong>. However, Tej<strong>on</strong>‘s l<str<strong>on</strong>g>and</str<strong>on</strong>g> managers can use these results toidentify species <str<strong>on</strong>g>and</str<strong>on</strong>g> l<str<strong>on</strong>g>and</str<strong>on</strong>g>scapes that are in critical need <str<strong>on</strong>g>of</str<strong>on</strong>g> attenti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> future management.These results can help the C<strong>on</strong>servancy prioritize their management acti<strong>on</strong>s to those relevant forthe future. Additi<strong>on</strong>ally, this analysis helps to inform Tej<strong>on</strong>‘s l<str<strong>on</strong>g>and</str<strong>on</strong>g> managers <strong>on</strong> what to expect<str<strong>on</strong>g>and</str<strong>on</strong>g> what to prepare for within a reas<strong>on</strong>able planning horiz<strong>on</strong>.42


Q5: : HOW ARE CURRENT LLAND MANAGEMENT PPRACTIICESS AFFFFECTIINGTEJJON’ ’SS OAK WOODLLANDSS??Our research identified populati<strong>on</strong> decline <str<strong>on</strong>g>and</str<strong>on</strong>g> climate change as serious threats facing blue,valley, <str<strong>on</strong>g>and</str<strong>on</strong>g> black oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s <strong>on</strong> Tej<strong>on</strong> <strong>Ranch</strong>. For the C<strong>on</strong>servancy to sustainably managethese oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s, staff must underst<str<strong>on</strong>g>and</str<strong>on</strong>g> what opti<strong>on</strong>s are available to influence oakwoodl<str<strong>on</strong>g>and</str<strong>on</strong>g> structure <str<strong>on</strong>g>and</str<strong>on</strong>g> functi<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> what ecological outcomes might result from differentmanagement.Characterizing the relati<strong>on</strong>ships between specific management regimes <str<strong>on</strong>g>and</str<strong>on</strong>g> oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>structure <str<strong>on</strong>g>and</str<strong>on</strong>g> functi<strong>on</strong> was bey<strong>on</strong>d the scope <str<strong>on</strong>g>of</str<strong>on</strong>g> this project, <str<strong>on</strong>g>and</str<strong>on</strong>g> would ideally be accomplishedthrough adaptive management trials <strong>on</strong> Tej<strong>on</strong> <strong>Ranch</strong>. However, current scientific knowledgeabout the ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s provides a fair amount <str<strong>on</strong>g>of</str<strong>on</strong>g> guidance regarding management<str<strong>on</strong>g>of</str<strong>on</strong>g> hunting, grazing, fire, <str<strong>on</strong>g>and</str<strong>on</strong>g> active oak restorati<strong>on</strong>.HUNTINGDeer, elk, feral pigs, bear, bobcat, pr<strong>on</strong>ghorn, turkey, ground squirrels <str<strong>on</strong>g>and</str<strong>on</strong>g> upl<str<strong>on</strong>g>and</str<strong>on</strong>g> game birdssuch as quail are all hunted <strong>on</strong> the ranch. Deer <str<strong>on</strong>g>and</str<strong>on</strong>g> elk are known to browse oak seedlings <str<strong>on</strong>g>and</str<strong>on</strong>g>saplings, as well as eat acorns. Pigs, ground squirrels, <str<strong>on</strong>g>and</str<strong>on</strong>g> game foul are known to eat acorns,<str<strong>on</strong>g>and</str<strong>on</strong>g> pigs can severely damage oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g> understories by overturning the soil with theirtusks usually in search <str<strong>on</strong>g>of</str<strong>on</strong>g> acorns. (Appelbaum et al. 2010). Managers can influence theinteracti<strong>on</strong>s between game species <str<strong>on</strong>g>and</str<strong>on</strong>g> oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s by influencing the populati<strong>on</strong> sizes <str<strong>on</strong>g>of</str<strong>on</strong>g>hunted species.GRAZINGCattle grazing is practiced <strong>on</strong> 90% <str<strong>on</strong>g>of</str<strong>on</strong>g> the ranch <str<strong>on</strong>g>and</str<strong>on</strong>g> influences oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s in two ways: 1)direct browsing <str<strong>on</strong>g>of</str<strong>on</strong>g> oak seedlings, saplings <str<strong>on</strong>g>and</str<strong>on</strong>g> trees <str<strong>on</strong>g>and</str<strong>on</strong>g> 2) browsing <str<strong>on</strong>g>of</str<strong>on</strong>g> oak understory grasses,forbs <str<strong>on</strong>g>and</str<strong>on</strong>g> shrubs (Tej<strong>on</strong> <strong>Ranch</strong> Company & Tej<strong>on</strong> <strong>Ranch</strong> C<strong>on</strong>servancy 2009). Both <str<strong>on</strong>g>of</str<strong>on</strong>g> theseimpact oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>, demography, compositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> structure. Grazing cannegatively <str<strong>on</strong>g>and</str<strong>on</strong>g> positively influence oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> the degree <str<strong>on</strong>g>of</str<strong>on</strong>g> impact depends <strong>on</strong> thegrazing seas<strong>on</strong>ality, durati<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> stocking density as well as the forage productivity.Grazing negatively impacts oak regenerati<strong>on</strong> through acorn c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> can impede oakrecruitment through soil compacti<strong>on</strong> (Swiecki & Bernhardt 1998, Barbour et al. 2007, Trimble& Mendel 1995). Reduced sapling recruitment can be attributed to intense browsing (Swiecki etal. 1993). Research by Hall et al. (Hall et al. 1992) showed that blue oak seedlings had the lowestsurvivorship when heavy grazing occurred during the spring <str<strong>on</strong>g>and</str<strong>on</strong>g> summer seas<strong>on</strong>s.Grazing can positively impact oak regenerati<strong>on</strong> by c<strong>on</strong>trolling annual grasses <str<strong>on</strong>g>and</str<strong>on</strong>g> otherherbaceous plants (Hall et al. 1992, Tyler et al. 2008) that compete with seedlings for soilmoisture. Barbour et al. (Barbour et al. 2007) observed that the mortality <str<strong>on</strong>g>of</str<strong>on</strong>g> valley oak saplingsappears to be related to the competiti<strong>on</strong> from annual grasses. Tyler et al. (Tyler et al. 2008)c<strong>on</strong>cluded that low to moderate grazing had little to no effect <strong>on</strong> oak regenerati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> that43


grazing had a slight positive effect <strong>on</strong> seedling survival in grazed pastures when seedlings wereprotected.Grazing can have a number <str<strong>on</strong>g>of</str<strong>on</strong>g> effects <strong>on</strong> oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g> soils but the most comm<strong>on</strong> are soilcompacti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> reduced infiltrati<strong>on</strong>. Soil compacti<strong>on</strong> reduces infiltrati<strong>on</strong> (Ferrero 1991), makingit more difficult for seedlings to establish <str<strong>on</strong>g>and</str<strong>on</strong>g> roots to access water (Trimble & Mendel 1995);(Clary & Kinney 2002). Dahlgren et al. (1997) c<strong>on</strong>clude that it can take decades for the soil bulkdensity to return to normal after being heavily grazed.In the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> cattle, cover <str<strong>on</strong>g>and</str<strong>on</strong>g> biomass <str<strong>on</strong>g>of</str<strong>on</strong>g> annual grasses increases dramatically (F. Davispers<strong>on</strong>al communicati<strong>on</strong>) <str<strong>on</strong>g>and</str<strong>on</strong>g> the removal <str<strong>on</strong>g>of</str<strong>on</strong>g> cattle in many cases has not improved oakrecruitment (Callaway 1992b, White 1966).Although the difference was not significant, a study by Purcell & Verner (2000) found morenesting birds in n<strong>on</strong>-grazed plots than in grazed plots. However, it was noted that the biggestdifference between the grazed <str<strong>on</strong>g>and</str<strong>on</strong>g> n<strong>on</strong>-grazed plots was the proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> shrub cover, which isimportant habitat for many bird species. In regards to invasive bird species, there were morestarlings in the grazed sites <str<strong>on</strong>g>and</str<strong>on</strong>g> the authors noted the importance <str<strong>on</strong>g>and</str<strong>on</strong>g> lack <str<strong>on</strong>g>of</str<strong>on</strong>g> data <strong>on</strong> thecowbird species in oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g> communities (Purcell & Verner 2000). Also, fewer insectfamilies have been found in moderately grazed sites than in low to n<strong>on</strong>-grazed plots (Allen-Diaz2000). Since grazing reduces understory cover, grazing can indirectly reduce seedling herbivoryfrom small mammals that prefer high herbaceous cover.In blue oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s grazing is thought to increase the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> exotic understory plantsbut also increase understory species richness (Keeley 2002). Further, Keeley et al. (2003) suggestthat removing grazing will not reduce exotic understory species.Most <str<strong>on</strong>g>of</str<strong>on</strong>g> the literature agrees that intense grazing can severely impede oak regenerati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g>recruitment while low to moderate grazing may be beneficial. However, many grazed l<str<strong>on</strong>g>and</str<strong>on</strong>g>scapesare above their cattle carrying capacity (McDougald et al. 2000) <str<strong>on</strong>g>and</str<strong>on</strong>g> therefore precauti<strong>on</strong> shouldbe taken when managing grazing <strong>on</strong> oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s. Although the literature is generally inagreement, the interacti<strong>on</strong> between grazing <str<strong>on</strong>g>and</str<strong>on</strong>g> its impact <strong>on</strong> oaks is highly dependent up<strong>on</strong> thetype <str<strong>on</strong>g>of</str<strong>on</strong>g> oak community, <str<strong>on</strong>g>and</str<strong>on</strong>g> the seas<strong>on</strong>, durati<strong>on</strong>, intensity <str<strong>on</strong>g>and</str<strong>on</strong>g> rotati<strong>on</strong>al pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> livestockgrazing.FIREFire has historically been a large regulating force <strong>on</strong> the envir<strong>on</strong>ment <str<strong>on</strong>g>of</str<strong>on</strong>g> Southern California(Stephens et al. 2007). Igniti<strong>on</strong>s from lightning strikes as well as from Native American l<str<strong>on</strong>g>and</str<strong>on</strong>g>scapemanagement have dominated the l<str<strong>on</strong>g>and</str<strong>on</strong>g>scape <str<strong>on</strong>g>and</str<strong>on</strong>g> played a large role in shaping the envir<strong>on</strong>mentthat is currently present (Stephens et al. 2007). The effects <str<strong>on</strong>g>of</str<strong>on</strong>g> fire <strong>on</strong> oak communities is still atopic <str<strong>on</strong>g>of</str<strong>on</strong>g> much debate with some research finding a large effect <strong>on</strong> mortality, growth <str<strong>on</strong>g>and</str<strong>on</strong>g>recruitment while other findings show the c<strong>on</strong>trary. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> fire <strong>on</strong> oaks is dependent <strong>on</strong>the type <str<strong>on</strong>g>of</str<strong>on</strong>g> oak. Below are descripti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> how blue, valley, <str<strong>on</strong>g>and</str<strong>on</strong>g> black oaks resp<strong>on</strong>d to fire.Blue oak seedlings that survive the initial stress <str<strong>on</strong>g>of</str<strong>on</strong>g> the fire are negatively affected due to retardedgrowth (Swiecki & Bernhardt 2002). Fire does not generate re-growth or stimulate sprouting inthese oaks (Swiecki & Bernhardt 2002), <str<strong>on</strong>g>and</str<strong>on</strong>g> the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> fire <strong>on</strong> seedling recruitment <str<strong>on</strong>g>and</str<strong>on</strong>g>regenerati<strong>on</strong> is largely uncertain. While young trees can stump-sprout readily after fire, older44


trees are unable to re-sprout, making young st<str<strong>on</strong>g>and</str<strong>on</strong>g>s more likely to re-sprout after fire. (Allen-Diaz& Bartolome 1992, Gervais 2006).Mature valley oaks have thick bark which protects the inner sensitive porti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> their trunk(Pavlik 1991). They are relatively fire tolerant <str<strong>on</strong>g>and</str<strong>on</strong>g> the survival <str<strong>on</strong>g>of</str<strong>on</strong>g> this inner tissue is whatdetermines the valley oaks‘ ability to re-sprout <str<strong>on</strong>g>and</str<strong>on</strong>g> rebuild its canopy (Pavlik 1991).Mature black oaks are fire intolerant (Kobziar et al. 2006) likely due to their relatively thin bark(Stephens & Finney 2002). Re-sprouting has been observed in trees that survived the initial firestress (Stephens & Finney 2002), but fire does not appear to increase seedling sprouting (Collinset al. 2007).RESTORATIONActive oak restorati<strong>on</strong> is also an opti<strong>on</strong> for the C<strong>on</strong>servancy. Restorati<strong>on</strong> projects are typicallyinitiated either to mitigate oak loss due to development or to promote oak regenerati<strong>on</strong>. In areas<str<strong>on</strong>g>of</str<strong>on</strong>g> existing oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s protecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> seedlings <str<strong>on</strong>g>and</str<strong>on</strong>g> saplings using small individual cages is aneffective way to recruit oak out <str<strong>on</strong>g>of</str<strong>on</strong>g> the browse layer. Once protected trees exit the browse layercages can be removed. This method has the advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> avoiding the costly <str<strong>on</strong>g>and</str<strong>on</strong>g> timec<strong>on</strong>sumingtask <str<strong>on</strong>g>of</str<strong>on</strong>g> planting acorns, protecting them from small mammals <str<strong>on</strong>g>and</str<strong>on</strong>g> ungulates, <str<strong>on</strong>g>and</str<strong>on</strong>g>possibly irrigating them. Planting acorns or transplanting seedlings <str<strong>on</strong>g>and</str<strong>on</strong>g> saplings becomesnecessary if managers wish to locate restorati<strong>on</strong> in areas lacking existing seedlings <str<strong>on</strong>g>and</str<strong>on</strong>g> saplings.45


Page Intenti<strong>on</strong>ally Left Blank46


MANAGEMENT RECOMMENDATIIONSSThe C<strong>on</strong>servancy is faced with the challenge <str<strong>on</strong>g>of</str<strong>on</strong>g> managing declining blue, valley, <str<strong>on</strong>g>and</str<strong>on</strong>g> black oakpopulati<strong>on</strong>s whose ranges are predicted to shift with climate change. Given the uncertainty <str<strong>on</strong>g>of</str<strong>on</strong>g>future climate predicti<strong>on</strong>s we recommend that C<strong>on</strong>servancy staff <str<strong>on</strong>g>and</str<strong>on</strong>g> managers plan for avariety <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change scenarios <str<strong>on</strong>g>and</str<strong>on</strong>g> employ flexible strategies that can be quickly adjusted asnew informati<strong>on</strong> becomes available.There is a general c<strong>on</strong>sensus am<strong>on</strong>g oak researchers <str<strong>on</strong>g>and</str<strong>on</strong>g> managers that increasing recruitment isthe most effective way to increase oak populati<strong>on</strong> growth. There is widespread evidence thatungulate grazing <str<strong>on</strong>g>and</str<strong>on</strong>g> browsing in oak understories suppresses oak recruitment, <str<strong>on</strong>g>and</str<strong>on</strong>g> if this canbe reversed, oak populati<strong>on</strong> growth rates will increase. Planting acorns is a costly method <str<strong>on</strong>g>of</str<strong>on</strong>g>increasing recruitment as many hundreds <str<strong>on</strong>g>of</str<strong>on</strong>g> acorns may need to be planted in order to yield asingle sapling. Managers can increase the likelihood that a single acorn will produce a sapling,but this method involves protecting acorns, seedlings, <str<strong>on</strong>g>and</str<strong>on</strong>g> saplings from ungulates <str<strong>on</strong>g>and</str<strong>on</strong>g> smallmammals over a l<strong>on</strong>g period <str<strong>on</strong>g>and</str<strong>on</strong>g> may require irrigati<strong>on</strong>. Planting acorns is necessary for oakrestorati<strong>on</strong> in areas lacking existing seedlings <str<strong>on</strong>g>and</str<strong>on</strong>g> saplings. Protecting existing large seedlings<str<strong>on</strong>g>and</str<strong>on</strong>g> saplings is a far more cost effective strategy to increase oak recruitment because protecti<strong>on</strong>from small mammals <str<strong>on</strong>g>and</str<strong>on</strong>g> irrigati<strong>on</strong> are not necessary, established seedlings <str<strong>on</strong>g>and</str<strong>on</strong>g> saplings haverelatively low mortality rates, <str<strong>on</strong>g>and</str<strong>on</strong>g> protected seedlings <str<strong>on</strong>g>and</str<strong>on</strong>g> saplings can exit the browse layerwithin a few years.Our observati<strong>on</strong> that seedlings <str<strong>on</strong>g>and</str<strong>on</strong>g> saplings <strong>on</strong> the ranch are heavily browsed supports the ideathat protecti<strong>on</strong> from ungulate browsing will effectively allow them to grow out <str<strong>on</strong>g>of</str<strong>on</strong>g> the browselayer. The most cost-effective way to protect saplings <str<strong>on</strong>g>and</str<strong>on</strong>g> large seedlings from ungulatebrowsing is with small individual exclosures called vaca cages. Large exclosures can also beeffective but are significantly more expensive.There is less uncertainty about the directi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> future changes in temperaturethan future changes in local precipitati<strong>on</strong>. For this reas<strong>on</strong> we modeled future distributi<strong>on</strong> undera warmer wetter scenario <str<strong>on</strong>g>and</str<strong>on</strong>g> a warmer dryer scenario. By focusing management efforts in areas<str<strong>on</strong>g>of</str<strong>on</strong>g> stable range that are comm<strong>on</strong> to both <str<strong>on</strong>g>of</str<strong>on</strong>g> these scenarios (Figures 6.1 - 6.3), managersincrease the likelihood that restorati<strong>on</strong> efforts will be in areas <str<strong>on</strong>g>of</str<strong>on</strong>g> climatically suitable habitatwhether the future is wetter or dryer.We recommend that oak restorati<strong>on</strong> efforts be focused in areas <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>sensus stable range whereoaks are already present. We recommend focusing <strong>on</strong> areas <str<strong>on</strong>g>of</str<strong>on</strong>g> stable range because they areclimatically suitable today, <str<strong>on</strong>g>and</str<strong>on</strong>g> are expected to remain stable for the next 50 years. We do notsuggest targeting areas <str<strong>on</strong>g>of</str<strong>on</strong>g> 100 year stable range as the different climate models divergesignificantly by the end <str<strong>on</strong>g>of</str<strong>on</strong>g> the century.47


Figure 6.1 – Map showing mid-century stable <str<strong>on</strong>g>and</str<strong>on</strong>g> unstable ranges for valley oak <strong>on</strong> Tej<strong>on</strong> <strong>Ranch</strong>.C<strong>on</strong>sensus output is <str<strong>on</strong>g>of</str<strong>on</strong>g> climatic suitability as predicted by the PCM A2 <str<strong>on</strong>g>and</str<strong>on</strong>g> GFDL A2 climate modelingscenarios.48


Figure 6.2 - Map showing mid-century stable <str<strong>on</strong>g>and</str<strong>on</strong>g> unstable ranges for blue oak <strong>on</strong> Tej<strong>on</strong> <strong>Ranch</strong>.C<strong>on</strong>sensus output is <str<strong>on</strong>g>of</str<strong>on</strong>g> climatic suitability as predicted by the PCM A2 <str<strong>on</strong>g>and</str<strong>on</strong>g> GFDL A2 climate modelingscenarios.49


Figure 6.3 - Map showing mid-century stable <str<strong>on</strong>g>and</str<strong>on</strong>g> unstable ranges for black oak <strong>on</strong> Tej<strong>on</strong> <strong>Ranch</strong>.C<strong>on</strong>sensus output is <str<strong>on</strong>g>of</str<strong>on</strong>g> climatic suitability as predicted by the PCM A2 <str<strong>on</strong>g>and</str<strong>on</strong>g> GFDL A2 climate modelingscenarios.50


Once protected with vaca cages, we estimate most multi-year seedlings <str<strong>on</strong>g>and</str<strong>on</strong>g> saplings will escapethe browse layer within about five years. Five years is a coarse <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>servative estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> howmany vaca cages need to be deployed. Once out <str<strong>on</strong>g>of</str<strong>on</strong>g> the browse layer protective vaca cages can beremoved <str<strong>on</strong>g>and</str<strong>on</strong>g> transferred to other seedlings <str<strong>on</strong>g>and</str<strong>on</strong>g> saplings. In order to bring oak populati<strong>on</strong>growth rates up <str<strong>on</strong>g>and</str<strong>on</strong>g> stabilize oak populati<strong>on</strong> numbers, enough seedlings <str<strong>on</strong>g>and</str<strong>on</strong>g> saplings must beprotected to <str<strong>on</strong>g>of</str<strong>on</strong>g>f-set adult mortality. Assuming that these management acti<strong>on</strong>s take place withinarea <str<strong>on</strong>g>of</str<strong>on</strong>g> overlap between predicted stable range <str<strong>on</strong>g>and</str<strong>on</strong>g> current distributi<strong>on</strong> for all three targetspecies, <str<strong>on</strong>g>and</str<strong>on</strong>g> that 5 years <str<strong>on</strong>g>of</str<strong>on</strong>g> protecti<strong>on</strong> is needed for each sapling, we can estimate the number <str<strong>on</strong>g>of</str<strong>on</strong>g>protected saplings needed to at least balance adult mortality. The C<strong>on</strong>servancy can m<strong>on</strong>itoroutcomes to refine our preliminary estimates listed in Table 6.1.Table 6.1 - Size <str<strong>on</strong>g>of</str<strong>on</strong>g> target restorati<strong>on</strong> areas, current estimated populati<strong>on</strong> sizes, <str<strong>on</strong>g>and</str<strong>on</strong>g>recommended vaca cage densities for blue, valley, <str<strong>on</strong>g>and</str<strong>on</strong>g> black oak. We estimate thatprotecting large seedlings <str<strong>on</strong>g>and</str<strong>on</strong>g> saplings at these densities will halt the decline <str<strong>on</strong>g>of</str<strong>on</strong>g> Tej<strong>on</strong><strong>Ranch</strong>’s oak populati<strong>on</strong>s.targetarea (ha)currentpopulati<strong>on</strong> size5-yearpopulati<strong>on</strong>declinevacacages/hablue oak 369.62 330,492 3,292 8.49valley oak 3299.14 217,857 1,087 0.21black oak 630.38 276,114 1,378 1.62As climate changes, oak species ranges are predicted to shift, creating leading edges <str<strong>on</strong>g>of</str<strong>on</strong>g>distributi<strong>on</strong>s where ranges are exp<str<strong>on</strong>g>and</str<strong>on</strong>g>ing. Because protecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> existing seedlings <str<strong>on</strong>g>and</str<strong>on</strong>g> saplingsmust occur within current species distributi<strong>on</strong>s, this method cannot facilitate expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>leading edges. To anticipate leading edges, managers will need to employ the costly method <str<strong>on</strong>g>of</str<strong>on</strong>g>planting <str<strong>on</strong>g>and</str<strong>on</strong>g> protecting acorns in areas <str<strong>on</strong>g>of</str<strong>on</strong>g> predicted range gain. Because areas <str<strong>on</strong>g>of</str<strong>on</strong>g> predicted rangegain overlap with existing communities, managers will need to c<strong>on</strong>sider where oak planting willbe most successful. For example planting <str<strong>on</strong>g>and</str<strong>on</strong>g> protecting valley oak acorns under a dense oakcanopy will likely be unsuccessful regardless <str<strong>on</strong>g>of</str<strong>on</strong>g> whether it is within predicted valley oak rangegain because valley oak seedlings are shade intolerant. C<strong>on</strong>servancy staff will likely need toidentify where grassl<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> open savannahs overlap with areas <str<strong>on</strong>g>of</str<strong>on</strong>g> predicted range gain <str<strong>on</strong>g>and</str<strong>on</strong>g>c<strong>on</strong>duct planting experiments in these area in order to test model predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> range gain.FUTURE RESEARCHWhile the relati<strong>on</strong>ships between grazing, pig damage, <str<strong>on</strong>g>and</str<strong>on</strong>g> oak regenerati<strong>on</strong> are generally wellunderstood, C<strong>on</strong>servancy staff need to learn more about how impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> grazing <str<strong>on</strong>g>and</str<strong>on</strong>g> pig damagevary across different oak species <str<strong>on</strong>g>and</str<strong>on</strong>g> different envir<strong>on</strong>mental factors such as soil type usingcarefully designed exclosure experiments. Grazing durati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> timing may also play importantroles in the health <str<strong>on</strong>g>of</str<strong>on</strong>g> oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s, <str<strong>on</strong>g>and</str<strong>on</strong>g> rotati<strong>on</strong>al grazing trials may be effective in testingthese relati<strong>on</strong>ships.Staff should also seek to underst<str<strong>on</strong>g>and</str<strong>on</strong>g> specifically what impacts pigs have <strong>on</strong> oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g> health,how widespread these impacts are, <str<strong>on</strong>g>and</str<strong>on</strong>g> where they occur. Time to recovery from pig damage isalso important to underst<str<strong>on</strong>g>and</str<strong>on</strong>g> as anecdotal evidence suggests recovery may take years.51


Because significant new development is possible <strong>on</strong> Tej<strong>on</strong> <strong>Ranch</strong> in the near future, it isimportant for the C<strong>on</strong>servancy to investigate how these developments will impact oakwoodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s. Impacts from development will likely be greatest in directly adjacent oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s<str<strong>on</strong>g>and</str<strong>on</strong>g> may include disease, light polluti<strong>on</strong>, noise polluti<strong>on</strong>, increased introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> invasivespecies, <str<strong>on</strong>g>and</str<strong>on</strong>g> domestic dogs <str<strong>on</strong>g>and</str<strong>on</strong>g> cats.The envir<strong>on</strong>mental gradient models we c<strong>on</strong>structed for valley oaks highlighted an interestingobservati<strong>on</strong> made by other ecologists: valley oaks are most abundant <strong>on</strong> either ridge tops orvalley floors. The fact that these two physical envir<strong>on</strong>ments are so different suggests that theremay be significant genetic differences between populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> valley oaks <strong>on</strong> ridge tops <str<strong>on</strong>g>and</str<strong>on</strong>g> invalley floors. Planting valley oak acorns from valley st<str<strong>on</strong>g>and</str<strong>on</strong>g>s <strong>on</strong> ridge tops, <str<strong>on</strong>g>and</str<strong>on</strong>g> planting acornsfrom ridge top st<str<strong>on</strong>g>and</str<strong>on</strong>g>s in valley floor st<str<strong>on</strong>g>and</str<strong>on</strong>g>s should yield evidence regarding the geneticdifferences <str<strong>on</strong>g>of</str<strong>on</strong>g> these two populati<strong>on</strong>s.52


APPENDIXAPPENDIX I – FIELD METHODS AND ADDITIONAL ANALYSESSite Selecti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Field MethodsSite selecti<strong>on</strong> for vegetati<strong>on</strong> plots was performed using a r<str<strong>on</strong>g>and</str<strong>on</strong>g>om <str<strong>on</strong>g>and</str<strong>on</strong>g> stratified technique.Mutual informati<strong>on</strong> (MI) analysis is a method for grouping samples based <strong>on</strong> their associati<strong>on</strong>swith categorical predictor variables (Davis & Dozier 1990). For this study, an MI analysis wasperformed using 3000 r<str<strong>on</strong>g>and</str<strong>on</strong>g>omly selected blue, black <str<strong>on</strong>g>and</str<strong>on</strong>g> valley oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g> points (asidentified by the <strong>Ranch</strong>-wide timber survey maps), <str<strong>on</strong>g>and</str<strong>on</strong>g> eight envir<strong>on</strong>mental parameters:elevati<strong>on</strong>, growing degree days greater than 5° C, maximum temperature, minimum temperature,mean annual precipitati<strong>on</strong>, insolati<strong>on</strong>, soils, <str<strong>on</strong>g>and</str<strong>on</strong>g> geology (Flint & Flint 2010). Results from thisanalysis <str<strong>on</strong>g>and</str<strong>on</strong>g> from a classificati<strong>on</strong> tree indicate that elevati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> geology are the two mostsignificant envir<strong>on</strong>mental parameters in determining where blue, black, <str<strong>on</strong>g>and</str<strong>on</strong>g> valley oaks grow <strong>on</strong>the <strong>Ranch</strong>. The mutual informati<strong>on</strong> score for ―elevati<strong>on</strong>‖ was 341, <str<strong>on</strong>g>and</str<strong>on</strong>g> the score for ―geology‖was 254. ―Soils‖ had the next highest score with 117. These scores are relatively low, (high MIscores are typically > 1000), but elevati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> geology were n<strong>on</strong>etheless used to stratify ourstudy site selecti<strong>on</strong>. The initial 3000 r<str<strong>on</strong>g>and</str<strong>on</strong>g>om points were narrowed to those within 500 meters <str<strong>on</strong>g>of</str<strong>on</strong>g>access roads, <str<strong>on</strong>g>and</str<strong>on</strong>g> those with close proximity to existing survey points already established <strong>on</strong> the<strong>Ranch</strong>. These restricti<strong>on</strong>s resulted in 254 points.Based <strong>on</strong> the distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s across the ranch, we identified the following ninesite classificati<strong>on</strong>s:alluvium/low elevati<strong>on</strong>alluvium/mid elevati<strong>on</strong>alluvium/high elevati<strong>on</strong>granodiorite/low elevati<strong>on</strong>granodiorite/mid elevati<strong>on</strong>granodiorite/high elevati<strong>on</strong>schist/mid elevati<strong>on</strong>schist/high elevati<strong>on</strong>mica-schist/high elevati<strong>on</strong>.Points were r<str<strong>on</strong>g>and</str<strong>on</strong>g>omly selected from each <str<strong>on</strong>g>of</str<strong>on</strong>g> these strata until between-strata representati<strong>on</strong> wasrelatively equal, <str<strong>on</strong>g>and</str<strong>on</strong>g> the ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> blue vs. black vs. valley oak points was representative <str<strong>on</strong>g>of</str<strong>on</strong>g> theoverall ranch-wide compositi<strong>on</strong> (40%/14%/47%). This list <str<strong>on</strong>g>of</str<strong>on</strong>g> 200 potential sites was used overthe durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the field data collecti<strong>on</strong> period in order to guide site selecti<strong>on</strong>.Inaccessibility, road intersecti<strong>on</strong>s, lack <str<strong>on</strong>g>of</str<strong>on</strong>g> focal oak species or time c<strong>on</strong>straints resulted in <strong>on</strong>ly105 <str<strong>on</strong>g>of</str<strong>on</strong>g> the 200 selected sites actually being surveyed (Figure 1.1). Of these, 24 sites weredominated by blue oak (23%), 30 sites were dominated by black oak (29%), <str<strong>on</strong>g>and</str<strong>on</strong>g> 51 sites weredominated by valley oak (48%) (Table 1.2).53


Vegetati<strong>on</strong> Plot MethodologyPoint-intercept understory vegetati<strong>on</strong> samplingA series <str<strong>on</strong>g>of</str<strong>on</strong>g> three numbers from the set <str<strong>on</strong>g>of</str<strong>on</strong>g> 1, 2, 3 was r<str<strong>on</strong>g>and</str<strong>on</strong>g>omly chosen using a r<str<strong>on</strong>g>and</str<strong>on</strong>g>omnumber chart. These three numbers determined the locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> three perpendiculartransects <strong>on</strong> the western 20m boarder <str<strong>on</strong>g>of</str<strong>on</strong>g> the plot. Using the three r<str<strong>on</strong>g>and</str<strong>on</strong>g>omly selectednumbers <strong>on</strong>e transect was located <strong>on</strong> meter 17, 18, or 19 al<strong>on</strong>g the 20m binding plotedge, <strong>on</strong>e transect was located <strong>on</strong> meter 9, 10, or 11 <strong>on</strong> the <str<strong>on</strong>g>and</str<strong>on</strong>g> a final transect waslocated <strong>on</strong> meter 1, 2 or 3.Each transect located at these three locati<strong>on</strong>s was 30m l<strong>on</strong>g. A point-intercept samplewas taken at each meter mark for the full 30mThe sample was obtained by using a 55cm l<strong>on</strong>g pointing rod which was touchedvertically to the ground at each meter mark. The type <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong>/ground coveringthat touched the rod at the highest point, or closest to the samplers h<str<strong>on</strong>g>and</str<strong>on</strong>g>, was recordedas the vegetati<strong>on</strong> at that point.Categories <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong> available to be recorded were: tree (T), bare ground (B), forb(F), grass (G), rock (R), leaf litter (L), wood (W), <str<strong>on</strong>g>and</str<strong>on</strong>g> shrub(S). If the point fell <strong>on</strong> a cowpie, this was recorded by writing ―cow pie‖ in <strong>on</strong> the record sheet (Figure I.1).General CharacteristicsA plot narrative qualitatively describing the site was recorded al<strong>on</strong>g with a plot sketchcapturing major site characteristics <str<strong>on</strong>g>and</str<strong>on</strong>g> to a lesser extent tree distributi<strong>on</strong> within the plot.The slope <str<strong>on</strong>g>and</str<strong>on</strong>g> aspect <str<strong>on</strong>g>of</str<strong>on</strong>g> the plot were recorded using a clinometer <str<strong>on</strong>g>and</str<strong>on</strong>g> compass,respectively. The dominate slope <str<strong>on</strong>g>of</str<strong>on</strong>g> the plot was measured by having <strong>on</strong>e sampler st<str<strong>on</strong>g>and</str<strong>on</strong>g>at the highest point within the plot <str<strong>on</strong>g>and</str<strong>on</strong>g> a sec<strong>on</strong>d sampler st<str<strong>on</strong>g>and</str<strong>on</strong>g> at the lowest pointwithin the plot. The measurement was made c<strong>on</strong>sistently by the taller sampler lining upthe clinometers measurement at the point that was at their eye level <strong>on</strong> the shortersampler. For example the top <str<strong>on</strong>g>of</str<strong>on</strong>g> the shorter samplers head was exactly at eye level to thetaller sampler so the measurement was made from viewing the clinometer from the tallerpers<strong>on</strong>‘s eye to the top <str<strong>on</strong>g>of</str<strong>on</strong>g> the shorter samplers head. This insured that the slope takenwas c<strong>on</strong>sistently that <str<strong>on</strong>g>of</str<strong>on</strong>g> the ground <str<strong>on</strong>g>and</str<strong>on</strong>g> not influenced by arbitrary head tilting. Theaspect was taken using a compass based <strong>on</strong> the directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the dominant slope <str<strong>on</strong>g>of</str<strong>on</strong>g> theplot. Directi<strong>on</strong>s were based <str<strong>on</strong>g>of</str<strong>on</strong>g>f <str<strong>on</strong>g>of</str<strong>on</strong>g> magnetic north as opposed to true north.A plot photo was taken from the plot origin aimed in a northeastern directi<strong>on</strong>.Soil SamplingThree soil samples were taken. The first sample was taken 5 paces northeast <str<strong>on</strong>g>of</str<strong>on</strong>g> theorigin, the sec<strong>on</strong>d taken 5 paces northeast from the first sample, <str<strong>on</strong>g>and</str<strong>on</strong>g> the third was taken5 paces northeast from the sec<strong>on</strong>d sample.Tree Data Collecti<strong>on</strong> (Figure I.2)Diameter at breast height (DBH)Seedling countsSapling counts/measurementsAluminum tags were nailed to at least <strong>on</strong>e focal oak tree in the plot. Most plots have allthe focal oak trees tagged, however, if there was a shortage <str<strong>on</strong>g>of</str<strong>on</strong>g> time, tags or nails, not allthe trees in the plot received a tag.54


0Transect 1 Transect 2 Transect 3T S F G B L W SM T S F G B L W SM T S F G B L W SM123456789101112131415161718192021222324252627282930TShrub/Tree spp. count Shrub/Tree spp. count Shrub/Tree spp. countFigure I.1 - Understory transect data sheet.55


Seedlings (< 1 cm):Tallest Tree:Saplings (> 1 cm)TreesSpp. basal area height browse Spp. DBH SnagFigure I.2 - Tree survey data sheet.56


Soil Compacti<strong>on</strong>A penetrometer was used to attempt to characterize soil compacti<strong>on</strong>. A penetrometer is a devicethat measures the force required to drive a metal probe into surface soil. Soil compacti<strong>on</strong> isrelevant to infiltrati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> run<str<strong>on</strong>g>of</str<strong>on</strong>g>f <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten linked to cattle grazing intensity.Calculating soil compacti<strong>on</strong> involves time c<strong>on</strong>suming soil collecti<strong>on</strong> so we hoped that ourpenetrometer measurements could be used as proxies for soil compacti<strong>on</strong>.Sheri Spiegal <str<strong>on</strong>g>of</str<strong>on</strong>g> the Bartolome Range <str<strong>on</strong>g>Ecology</str<strong>on</strong>g> Lab at UC Berkeley provided us with soil bulkdensity data from a number <str<strong>on</strong>g>of</str<strong>on</strong>g> plots <strong>on</strong> the Central Valley porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Tej<strong>on</strong> <strong>Ranch</strong>. We tookpenetrometer measurements at the same grassl<str<strong>on</strong>g>and</str<strong>on</strong>g> plots hoping that a calibrati<strong>on</strong> curve could bedeveloped relating the penetrometer measurements to bulk density (Figure I.3).Figure I.3- Calibrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> penetrometer <str<strong>on</strong>g>and</str<strong>on</strong>g> bulk density measurements. We hoped that a calibrati<strong>on</strong>curve could be created whereby our penetrometer measurement could be used as a proxy for soil bulkdensity. No calibrati<strong>on</strong> curve was present.Our results show that no str<strong>on</strong>g relati<strong>on</strong>ship between soil bulk density <str<strong>on</strong>g>and</str<strong>on</strong>g> penetrometermeasurements was found. This is likely because penetrometer measurements were taken <strong>on</strong>ly<strong>on</strong>ce at a single locati<strong>on</strong> within plots <str<strong>on</strong>g>and</str<strong>on</strong>g> bulk density was taken as an average across entire plots.This may indicate that the penetrometer is not an appropriate tool for assessing soil c<strong>on</strong>diti<strong>on</strong>s.Multiple penetrometer readings will need to be taken in a single plot to determine if thepenetrometer can bear useful data.We examined the relati<strong>on</strong>ship between percent bare ground in our plots <str<strong>on</strong>g>and</str<strong>on</strong>g> our penetrometermeasurements to determine if there is a clear trend. Figure I.4 fails to show a str<strong>on</strong>g relati<strong>on</strong>shipbetween percent bare ground <str<strong>on</strong>g>and</str<strong>on</strong>g> penetrometer measurements. Again this likely reflects the factthat penetrometer measurements are taken <strong>on</strong>ly in <strong>on</strong>e place while understory data represents anentire plot.57


Figure I.4 - Relati<strong>on</strong>ship between percent bare ground <str<strong>on</strong>g>and</str<strong>on</strong>g> penetrometer readings. Wehypothesized that there should be a positive correlati<strong>on</strong> between percent bare ground <str<strong>on</strong>g>and</str<strong>on</strong>g>penetrometer readings. The data do not support our hypothesis.Understory, Seedlings, <str<strong>on</strong>g>and</str<strong>on</strong>g> SaplingsWe also investigated the relati<strong>on</strong>ship between understory characteristics <str<strong>on</strong>g>and</str<strong>on</strong>g> the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> oakseedlings <str<strong>on</strong>g>and</str<strong>on</strong>g> saplings. We expected to find bare ground – associated with disturbance <str<strong>on</strong>g>and</str<strong>on</strong>g>grazing – to be negatively associated with seedlings <str<strong>on</strong>g>and</str<strong>on</strong>g> saplings, <str<strong>on</strong>g>and</str<strong>on</strong>g> shrubs – possibly serving asshelters from grazing – to be positively associated with seedlings <str<strong>on</strong>g>and</str<strong>on</strong>g> saplings. Our results wereanalyzed to determine if the mean understory c<strong>on</strong>diti<strong>on</strong>s were statistically different between plotswith seedlings <str<strong>on</strong>g>and</str<strong>on</strong>g> saplings, <str<strong>on</strong>g>and</str<strong>on</strong>g> those without seedlings <str<strong>on</strong>g>and</str<strong>on</strong>g> saplings (Table I.1).Table I.1 - T-test table. We c<strong>on</strong>ducted a number <str<strong>on</strong>g>of</str<strong>on</strong>g> t-tests comparing plots with <str<strong>on</strong>g>and</str<strong>on</strong>g> without seedlings, <str<strong>on</strong>g>and</str<strong>on</strong>g>plots with <str<strong>on</strong>g>and</str<strong>on</strong>g> without saplings to determine if there were significant differences in mean shrub cover <str<strong>on</strong>g>and</str<strong>on</strong>g>bare ground. No t-tests supported our hypothesis that seedling <str<strong>on</strong>g>and</str<strong>on</strong>g> sapling density should be positivelycorrelated with shrub cover <str<strong>on</strong>g>and</str<strong>on</strong>g> negatively correlated with bare ground.Species T-test P- Valuevalley oak seedling presence/absence <str<strong>on</strong>g>and</str<strong>on</strong>g> % bare ground 0.315valley oak seedling presence/absence <str<strong>on</strong>g>and</str<strong>on</strong>g> % shrub cover 0.306black oak seedling presence/absence <str<strong>on</strong>g>and</str<strong>on</strong>g> % bare ground 0.043*black oak seedling presence/absence <str<strong>on</strong>g>and</str<strong>on</strong>g> % shrub cover 0.463black oak sapling presence/absence <str<strong>on</strong>g>and</str<strong>on</strong>g> % shrub cover 0.383blue oak seedling presence/absence <str<strong>on</strong>g>and</str<strong>on</strong>g> % shrub cover 0.057blue oak seedling presence/absence <str<strong>on</strong>g>and</str<strong>on</strong>g> % bare ground 0.40158


T-tests were c<strong>on</strong>ducted to determine if the plots with seedlings had a significantly different meanpercent bare ground c<strong>on</strong>tributi<strong>on</strong> than plots without seedlings. Individual tests were c<strong>on</strong>ductedfor each oak species. Only in black oaks was a significant difference found. This significantdifference was that bare ground was greater in plots with seedlings. In blue <str<strong>on</strong>g>and</str<strong>on</strong>g> valley oaks nosignificant difference was found between plots with <str<strong>on</strong>g>and</str<strong>on</strong>g> without seedlings.It was found that across all species, plots with <str<strong>on</strong>g>and</str<strong>on</strong>g> without saplings did not have significantlydifferent percent bare ground c<strong>on</strong>tributi<strong>on</strong>s.We also examined the relati<strong>on</strong>ship between percent shrub cover <str<strong>on</strong>g>and</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> seedlings for thethree focal species (Figure I.5). We hypothesized that shrub cover would provide grazing refugiaallowing seedlings to develop more easily. For blue oaks, plots with saplings had a marginallysignificantly more shrub cover than plots without saplings. No significant difference was foundfor valley or black oaks. Black oaks showed a weak positive correlati<strong>on</strong> between percent shrubcover <str<strong>on</strong>g>and</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> seedlings, while blue <str<strong>on</strong>g>and</str<strong>on</strong>g> valley oaks showed no significant relati<strong>on</strong>ship.Figure I.5 - Density <str<strong>on</strong>g>of</str<strong>on</strong>g> seedlings for blue, valley, <str<strong>on</strong>g>and</str<strong>on</strong>g> black oak as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> shrub cover. Wehypothesized that shrub cover <str<strong>on</strong>g>and</str<strong>on</strong>g> seedling density would be positively correlated because shrubsshould provide a refuge from grazing. No clear relati<strong>on</strong>ship was present however.We hypothesized that increased shrub cover might also aid in the development <str<strong>on</strong>g>of</str<strong>on</strong>g> saplings(Figure I.6).59


Figure I.6 - Sapling density as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> shrub cover. We hypothesized that sapling density <str<strong>on</strong>g>and</str<strong>on</strong>g> shrubcover would be positively correlated as shrubs should provide a refuge from grazing <str<strong>on</strong>g>and</str<strong>on</strong>g> allow seedling todevelop into saplings. No clear relati<strong>on</strong>ship was present however.Again no str<strong>on</strong>g relati<strong>on</strong>ships can be seen between sapling density <str<strong>on</strong>g>and</str<strong>on</strong>g> shrub cover for the threefocal species.Bolsinger methods<str<strong>on</strong>g>Oak</str<strong>on</strong>g> woodl<str<strong>on</strong>g>and</str<strong>on</strong>g> statistics <strong>on</strong> l<str<strong>on</strong>g>and</str<strong>on</strong>g>s other than Nati<strong>on</strong>al Forests were collected from the ForestInventory Analysis (FIA) Research Work Unit at the Pacific Northwest Research Stati<strong>on</strong>.Informati<strong>on</strong> <strong>on</strong> the oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s <strong>on</strong> Nati<strong>on</strong>al Forest l<str<strong>on</strong>g>and</str<strong>on</strong>g>s was provided by pers<strong>on</strong>nel fromeach forest. Each Nati<strong>on</strong>al Forest inventory involved an aerial photo analysis <str<strong>on</strong>g>and</str<strong>on</strong>g> groundsampling. Ground sampling included five points, where two chains (132ft in length) were laid inan L-shape. ―At each <str<strong>on</strong>g>of</str<strong>on</strong>g> the five points, tree attributes were collected <strong>on</strong> a variable-radius plot,<str<strong>on</strong>g>and</str<strong>on</strong>g> a seedling count was made <strong>on</strong> a fixed-radius plot.‖ Informati<strong>on</strong> collected at each plot wasused to determine per-acre tree volume <str<strong>on</strong>g>and</str<strong>on</strong>g> these values were averaged for each type (species<str<strong>on</strong>g>and</str<strong>on</strong>g> size class).Before doing any comparis<strong>on</strong>s between the two data sets, we c<strong>on</strong>verted the st<str<strong>on</strong>g>and</str<strong>on</strong>g> density (crosssecti<strong>on</strong>al area, CSA) values from Tej<strong>on</strong> <strong>Ranch</strong> into the units that Bolsinger reported. We hadCSA values in cm 2 <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>verted these values into ft 2 /acre.60


APPENDIX II: HISTORICAL PHOTO ANALYSISPopulati<strong>on</strong> Growth Rate Calculati<strong>on</strong>sBy counting trees that died over the 57-year period we obtained a 57-year mortality rate. Wesubtracted the 57-year mortality rate from 1 to get the 57-year survivorship. The 57-yearsurvivorship could then be annualized by calculating the 57 th root (equati<strong>on</strong> 1). Annualrecruitment is then calculated by subtracting annual survivorship from 1 (equati<strong>on</strong> 2)By counting the trees that recruited over the 57 year period we obtained a 57-year recruitmentrate. This also needed to be annualized. To do this we first calculated a populati<strong>on</strong> growth ratetaking into account <strong>on</strong>ly recruitment, not mortality. This rate could be annualized by calculatingthe 57 th root. We then subtracted <strong>on</strong>e to obtain an annual recruitment rate (equati<strong>on</strong>3).Annual populati<strong>on</strong> growth rate is calculated by subtracting annual mortality from annualrecruitment <str<strong>on</strong>g>and</str<strong>on</strong>g> adding <strong>on</strong>e (equati<strong>on</strong> 4).61


Figure II.1 - Additi<strong>on</strong>al examples <str<strong>on</strong>g>of</str<strong>on</strong>g> historical photo analysis sample plots.62


APPENDIX III: SPECIES DISTRIBUTION MODELSOverviewSpecies distributi<strong>on</strong> models, (SDMs), are probabilistic models which statistically relate speciesoccurrence data to the underlying envir<strong>on</strong>mental <str<strong>on</strong>g>and</str<strong>on</strong>g>/or spatial characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> thoseoccurrence locati<strong>on</strong>s (Elith & Leathwick 2009, Elith et al. 2011, Guisan 2000). Also known asbioclimatic models, climate envelopes, ecological niche models, <str<strong>on</strong>g>and</str<strong>on</strong>g> habitat models, SDMs havetheir roots in ecology <str<strong>on</strong>g>and</str<strong>on</strong>g> natural history, as well as in modern statistics <str<strong>on</strong>g>and</str<strong>on</strong>g> informati<strong>on</strong>technology (Elith & Leathwick 2009). The reliability <str<strong>on</strong>g>of</str<strong>on</strong>g> these models has increased significantlyover the past two decades with the rise <str<strong>on</strong>g>of</str<strong>on</strong>g> new <str<strong>on</strong>g>and</str<strong>on</strong>g> powerful statistical techniques <str<strong>on</strong>g>and</str<strong>on</strong>g> GIS tools,<str<strong>on</strong>g>and</str<strong>on</strong>g> the individual uses <str<strong>on</strong>g>and</str<strong>on</strong>g> methods are quite varied (Elith et al. 2011, Guisan 2000). Inc<strong>on</strong>servati<strong>on</strong> science they are used to predict distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> species <str<strong>on</strong>g>and</str<strong>on</strong>g> communities acrossboth space <str<strong>on</strong>g>and</str<strong>on</strong>g> time, to gain insight into ecological <str<strong>on</strong>g>and</str<strong>on</strong>g> evoluti<strong>on</strong>ary processes, <str<strong>on</strong>g>and</str<strong>on</strong>g> to predictpotential effects <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change (Elith & Leathwick 2009, Pears<strong>on</strong> 2007).In correlative SDMs, there are some underlying critical assumpti<strong>on</strong>s. First, it is assumed thatobserved occurrence records accurately reflect the true envir<strong>on</strong>mental space occupied by thespecies (Pears<strong>on</strong> 2007). Sec<strong>on</strong>dly, species are assumed to be at equilibrium with the currentenvir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s (Elith & Leathwick 2009, Pears<strong>on</strong> 2007). This assumpti<strong>on</strong> can easilybe violated when making predicti<strong>on</strong>s for climate change, as current species occurrence recordsare not necessarily representative <str<strong>on</strong>g>of</str<strong>on</strong>g> the novel c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> community assemblages possiblewith climate change. Similarly, biotic interacti<strong>on</strong>s may change in a new climatic c<strong>on</strong>text, as mightgenetic variability, phenotypic plasticity, <str<strong>on</strong>g>and</str<strong>on</strong>g> dispersal pathways (Elith & Leathwick 2009). Modelrobustness <str<strong>on</strong>g>and</str<strong>on</strong>g> viability depends <strong>on</strong> c<strong>on</strong>siderati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> scale, degree <str<strong>on</strong>g>of</str<strong>on</strong>g> model complexity (more isnot necessarily better), <str<strong>on</strong>g>and</str<strong>on</strong>g> most importantly, the quality <str<strong>on</strong>g>and</str<strong>on</strong>g> selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> input data.Another potentially c<strong>on</strong>founding factor to species distributi<strong>on</strong> modeling is the presence/absencec<strong>on</strong>fusi<strong>on</strong> matrix (Pears<strong>on</strong> 2007). In most occasi<strong>on</strong>s, systematic presence/absence biologicalsurvey data for the species or community in questi<strong>on</strong> has not been collected, <str<strong>on</strong>g>and</str<strong>on</strong>g> thus <strong>on</strong>lypresence data is available. Knowing where a species is present does not necessarily mean that <strong>on</strong>eknows where it is absent, <str<strong>on</strong>g>and</str<strong>on</strong>g> when modeling this can lead to false negatives.Maximum entropy (MaxEnt) is a method that makes it possible to model species distributi<strong>on</strong>sfrom presence-<strong>on</strong>ly species records (Phillips et al. 2006). This method seeks the probabilitydistributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> maximum entropy, (or more simply, the most spread-out distributi<strong>on</strong>), which stillis subject to the c<strong>on</strong>straints inputted by known species occurrences <str<strong>on</strong>g>and</str<strong>on</strong>g> envir<strong>on</strong>mental factors(Pears<strong>on</strong> 2007). To put it another way, MaxEnt minimizes entropy between two probabilitydensities: <strong>on</strong>e from the species presence data <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>e from the envir<strong>on</strong>mental parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> thel<str<strong>on</strong>g>and</str<strong>on</strong>g>scape; MaxEnt minimizes entropy in covariate space <str<strong>on</strong>g>and</str<strong>on</strong>g> maximizes entropy in geographicspace (Elith et al. 2011). An important element to the MaxEnt <str<strong>on</strong>g>of</str<strong>on</strong>g> which it is important to beaware is that it runs <strong>on</strong> an exp<strong>on</strong>ential model that can lead to predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> high suitability forareas with envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s that are bey<strong>on</strong>d the range <str<strong>on</strong>g>of</str<strong>on</strong>g> the data used to calibrate themodel (Pears<strong>on</strong> 2007). This extrapolati<strong>on</strong> can lead to false positives when predicting futurescenarios <str<strong>on</strong>g>and</str<strong>on</strong>g> distributi<strong>on</strong>s. N<strong>on</strong>etheless, since its creati<strong>on</strong> in 2004, MaxEnt has been am<strong>on</strong>g thetop performing SDMs available, <str<strong>on</strong>g>and</str<strong>on</strong>g> has been extensively utilized throughout the c<strong>on</strong>servati<strong>on</strong>world <str<strong>on</strong>g>and</str<strong>on</strong>g> bey<strong>on</strong>d (Elith et al. 2006). While it is a powerful model which corrects for many <str<strong>on</strong>g>of</str<strong>on</strong>g> theshortfalls <str<strong>on</strong>g>of</str<strong>on</strong>g> its predecessors, MaxEnt is still <strong>on</strong>ly as good as its data <str<strong>on</strong>g>and</str<strong>on</strong>g> its users.63


Another type <str<strong>on</strong>g>of</str<strong>on</strong>g> correlative SDM is HyperNiche (McCune 2006). This model was describedearlier, <str<strong>on</strong>g>and</str<strong>on</strong>g> works similarly to MaxEnt. However, instead <str<strong>on</strong>g>of</str<strong>on</strong>g> using simple species presence data, ittakes into account the relative importance values <str<strong>on</strong>g>of</str<strong>on</strong>g> each species at each occurrence locati<strong>on</strong>.This yields a distributi<strong>on</strong> output <str<strong>on</strong>g>of</str<strong>on</strong>g> not <strong>on</strong>ly locati<strong>on</strong> but expected abundance as well.MethodsFor this analysis, data points from our field study were augmented by oak occurrences fromother data sets to yield 51 blue oak, 32 black oak, <str<strong>on</strong>g>and</str<strong>on</strong>g> 90 valley oak locati<strong>on</strong>s across <str<strong>on</strong>g>and</str<strong>on</strong>g> aroundTej<strong>on</strong> <strong>Ranch</strong>. Envir<strong>on</strong>mental data downscaled to a grid cell size <str<strong>on</strong>g>of</str<strong>on</strong>g> 90m was derived from NorthAmerican climate data sets for current, mid-century (30 year average centered <strong>on</strong> 2055), <str<strong>on</strong>g>and</str<strong>on</strong>g> end<str<strong>on</strong>g>of</str<strong>on</strong>g> century (30 year average centered <strong>on</strong> 2085) (Flint & Flint 2010). Models were run usingoutputs from the A2 emissi<strong>on</strong>s scenario for two general circulati<strong>on</strong> models (GCMs): the ParallelClimate Model (PCM) <str<strong>on</strong>g>and</str<strong>on</strong>g> the NOAA Geophysical Fluid Dynamics Laboratory (GFDL). Thesetwo models were used for the California Climate Assessment (citati<strong>on</strong>) <str<strong>on</strong>g>and</str<strong>on</strong>g> are widely acceptedas accurate models for the regi<strong>on</strong>. They each predict was a warmer climate in the future, butPCM results ina wetter climate, whereas GFDL results in a drier climate (Cayan et al. 2008). Inthe A2 scenario, CO2 emissi<strong>on</strong>s c<strong>on</strong>tinue to increase from current levels <str<strong>on</strong>g>and</str<strong>on</strong>g> reach 3x preindustriallevel by the end <str<strong>on</strong>g>of</str<strong>on</strong>g> the 21st century (Flint & Flint 2010). The following elevenenvir<strong>on</strong>mental variables were analyzed in a correlati<strong>on</strong> matrix (Table III.1) <str<strong>on</strong>g>and</str<strong>on</strong>g> in preliminaryruns <str<strong>on</strong>g>of</str<strong>on</strong>g> MaxEnt to determine which should be used in the final analysis:minimum temperature (mintemp),maximum temperature (maxtemp),temperature seas<strong>on</strong>ality (tseas),maximum temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> the driest quarter (mtdq),mean annual precipitati<strong>on</strong> (mppt),aridity index (arid),growing degree days > 5° C (gdd5),available soil water holding capacity (awc),soil pH (ph),soil particle size < 40mm (seive40), <str<strong>on</strong>g>and</str<strong>on</strong>g>soil particle size < 4mm (seive4).Results from the initial runs <str<strong>on</strong>g>of</str<strong>on</strong>g> MaxEnt showed all four soil variables to c<strong>on</strong>tribute 5° C (gdd5).Correlati<strong>on</strong> matrices were generated for future climate scenarios as well. Correlati<strong>on</strong> in allvariables decreased with time, but not by a significant amount.64


Table III.1 - Envir<strong>on</strong>mental predictor correlati<strong>on</strong> matrices. Two correlati<strong>on</strong> matrices are shown above: <strong>on</strong>efor 10 envir<strong>on</strong>mental predictors, <str<strong>on</strong>g>and</str<strong>on</strong>g> the other for 6. These matrices, al<strong>on</strong>g with others, were used to identifywhich envir<strong>on</strong>mental predictors showed the highest correlati<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> therefore could be eliminated from themodels. See Table 4.1 for the final set <str<strong>on</strong>g>of</str<strong>on</strong>g> predictors used in the models.Envir<strong>on</strong>mental Parameter Correlati<strong>on</strong> Matricesprecip 1.00aridity 0.88 1.00gdd5 -0.94 -0.85 1.00tesas -0.90 -0.83 0.97 1.00maxt -0.94 -0.83 0.99 0.93 1.00mint -0.75 -0.74 0.84 0.87 0.75 1.00seive40 -0.21 -0.16 0.21 0.26 0.20 0.16 1.00seive4 -0.11 -0.09 0.12 0.18 0.10 0.11 0.95 1.00ph -0.12 -0.10 0.14 0.19 0.12 0.12 0.90 0.93 1.00awc -0.16 -0.13 0.17 0.22 0.15 0.14 0.93 0.87 0.85 1.00precip aridity gdd5 tesas maxt mint seive40 seive4 ph awcgdd5 1.00mppt -0.94 1.00arid -0.85 0.88 1.00mtdq 1.00 -0.94 -0.85 1.00mint 0.84 -0.75 -0.74 0.86 1.00tesas 0.97 -0.90 -0.83 0.98 0.87 1.00gdd5 mppt arid mtdq mint tesasMaxEnt model parameterizati<strong>on</strong> included the use <str<strong>on</strong>g>of</str<strong>on</strong>g> 10,000 background points, 10% <str<strong>on</strong>g>of</str<strong>on</strong>g> samplepoints reserved for r<str<strong>on</strong>g>and</str<strong>on</strong>g>om seed model validati<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> each model ran through 5 replicates toproduce the final output. ―Maximum sensitivity plus specificity‖ threshold was used fordeterminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Presence/Absence. AUC was used as a measure <str<strong>on</strong>g>of</str<strong>on</strong>g> goodness <str<strong>on</strong>g>of</str<strong>on</strong>g> fit (TableIII.2). Figure III.1 shows the resp<strong>on</strong>se curves to <str<strong>on</strong>g>and</str<strong>on</strong>g> percent c<strong>on</strong>tributi<strong>on</strong>s from eachenvir<strong>on</strong>mental predictor for <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> our MaxEnt model runs.Table III.2 - Cross-validated AUC results for MaxEnt model runs. Cross-validated AUC is a measure <str<strong>on</strong>g>of</str<strong>on</strong>g>model’s ability to minimize false positives <str<strong>on</strong>g>and</str<strong>on</strong>g> false negatives. AUC values greater than 0.8 are generallyaccepted as an indicator <str<strong>on</strong>g>of</str<strong>on</strong>g> a good model.species model AUCblue oak 0.83black oak 0.96valley oak 0.8765


Figure III.1 - Envir<strong>on</strong>mental predictor resp<strong>on</strong>se curves <str<strong>on</strong>g>and</str<strong>on</strong>g> the associated percent c<strong>on</strong>tributi<strong>on</strong> from each tothe MaxEnt climatic suitability model for each species <str<strong>on</strong>g>of</str<strong>on</strong>g> oak. Envir<strong>on</strong>mental predictor importance variedgreatly by species.Figures III.2 – III.4 show the current <str<strong>on</strong>g>and</str<strong>on</strong>g> mid-century results from this analysis for each <str<strong>on</strong>g>of</str<strong>on</strong>g> thethree oak species that were modeled.Figure III.2 - MaxEnt-modeled climatic suitability for blue oak for current (left), mid-centuryPCM A2 climate model (center), <str<strong>on</strong>g>and</str<strong>on</strong>g> mid-century GFDL A2 climate model (right).66


Figure III.3 - MaxEnt-modeled climatic suitability for black oak for current (left), mid-centuryPCM A2 climate model (center), <str<strong>on</strong>g>and</str<strong>on</strong>g> mid-century GFDL A2 climate model (right).Figure III.4 - MaxEnt-modeled climatic suitability for valley oak for current (left), mid-centuryPCM A2 climate model (center), <str<strong>on</strong>g>and</str<strong>on</strong>g> mid-century GFDL A2 climate model (right).The same envir<strong>on</strong>mental predictors were input into HyperNiche (Figures III.5 – III.6) al<strong>on</strong>gwith the oak occurrence data <str<strong>on</strong>g>and</str<strong>on</strong>g> species importance values (sum <str<strong>on</strong>g>of</str<strong>on</strong>g> density <str<strong>on</strong>g>and</str<strong>on</strong>g> relativebasal area <str<strong>on</strong>g>of</str<strong>on</strong>g> adult trees) as calculated from our field data. Models are based <strong>on</strong> the A2emissi<strong>on</strong>s scenario, <str<strong>on</strong>g>and</str<strong>on</strong>g> the PCM general circulati<strong>on</strong> model.67


Figure III.5 - Projected distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> valley oak <strong>on</strong> Tej<strong>on</strong> <strong>Ranch</strong> in current (left), midcentury(center), <str<strong>on</strong>g>and</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> century (right). Areas with higher predicted importance valuessignify areas with greater probability <str<strong>on</strong>g>of</str<strong>on</strong>g> higher density presence <str<strong>on</strong>g>of</str<strong>on</strong>g> the species.Figure III.6 - Projected distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> blue oak <strong>on</strong> Tej<strong>on</strong> <strong>Ranch</strong> in current (left), mid-century(center), <str<strong>on</strong>g>and</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> century (right). Areas with higher predicted importance values signify areaswith greater probability <str<strong>on</strong>g>of</str<strong>on</strong>g> higher density presence <str<strong>on</strong>g>of</str<strong>on</strong>g> the species.68


State-wide training data comparis<strong>on</strong>:An analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> current MaxEnt-modeled valley oak distributi<strong>on</strong>s was performed comparingoutputs from a model trained <strong>on</strong> Tej<strong>on</strong> <strong>Ranch</strong> specific occurrence data, to a model trained <strong>on</strong>occurrence data that is California-wide (Figure III.7). The results show the distributi<strong>on</strong> to bemuch narrower for the Tej<strong>on</strong>-specific model than for the CA-wide model. The analyses were run<strong>on</strong> corollary, although not identical sets <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental parameters. These results suggest <strong>on</strong>e<str<strong>on</strong>g>of</str<strong>on</strong>g> two possible things. It could be that oaks <strong>on</strong> Tej<strong>on</strong> <strong>Ranch</strong> are indeed unique, <str<strong>on</strong>g>and</str<strong>on</strong>g> occupying amore narrow envir<strong>on</strong>mental niche there than in the rest <str<strong>on</strong>g>of</str<strong>on</strong>g> California. On the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, thistest could be further verificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the degree to which training data can affect model outputs,thereby reinforcing the single most important assumpti<strong>on</strong> to species distributi<strong>on</strong> modeling: theneed for high quality, unbiased sample points. Whatever the case may be, we feel that the Tej<strong>on</strong>specificmodel is a more accurate tool to use when dealing with the oak resources for this regi<strong>on</strong>.Local models will likely catch more <str<strong>on</strong>g>of</str<strong>on</strong>g> the subtle variati<strong>on</strong>s within species such as seed z<strong>on</strong>es,<str<strong>on</strong>g>and</str<strong>on</strong>g> phenotypic <str<strong>on</strong>g>and</str<strong>on</strong>g> genetic variability.69


Figure III.7 - Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> valley oak species distributi<strong>on</strong> models trained <strong>on</strong> state-wide occurrencedata (color) <str<strong>on</strong>g>and</str<strong>on</strong>g> local Tej<strong>on</strong> <strong>Ranch</strong> occurrence data (hatches). The left panel shows comparativeresults for models which do not include soil characteristics as an envir<strong>on</strong>mental predictor. The rightpanel shows comparative results for models which do include soil characteristics as an envir<strong>on</strong>mentalpredictor. These comparis<strong>on</strong>s highlight the distincti<strong>on</strong>s in envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s determiningsuitable habitat for regi<strong>on</strong>ally different populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> valley oak in California.70


APPENDIX IV: COMPARATIVE MANAGEMENT ANALYSISWe compared Tej<strong>on</strong> <strong>Ranch</strong>‘s management practices to those <str<strong>on</strong>g>of</str<strong>on</strong>g> other organizati<strong>on</strong>s throughoutthe state whose primary missi<strong>on</strong> is oak c<strong>on</strong>servati<strong>on</strong>. Because oak c<strong>on</strong>servati<strong>on</strong> involves a greatdeal <str<strong>on</strong>g>of</str<strong>on</strong>g> learning by doing, it is important for the C<strong>on</strong>servancy to stay abreast <str<strong>on</strong>g>of</str<strong>on</strong>g> whatmanagement practices other c<strong>on</strong>servati<strong>on</strong> organizati<strong>on</strong>s are employing, which practices aresucceeding or failing, <str<strong>on</strong>g>and</str<strong>on</strong>g> why. C<strong>on</strong>servati<strong>on</strong> management trials are time c<strong>on</strong>suming <str<strong>on</strong>g>and</str<strong>on</strong>g> costly,making it crucial for c<strong>on</strong>servati<strong>on</strong> organizati<strong>on</strong>s to learn from each other‘s successes <str<strong>on</strong>g>and</str<strong>on</strong>g> failures.We focused <strong>on</strong> groups whose primary goal was oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>servati<strong>on</strong> because these groupswould provide specific informati<strong>on</strong> that pertained to the Tej<strong>on</strong> <strong>Ranch</strong> C<strong>on</strong>servancy‘s missi<strong>on</strong>.We initially sent out emails to l<str<strong>on</strong>g>and</str<strong>on</strong>g> managers, c<strong>on</strong>servati<strong>on</strong> directors, <str<strong>on</strong>g>and</str<strong>on</strong>g> others who would 1) beinterested in our project, <str<strong>on</strong>g>and</str<strong>on</strong>g> 2) be willing to share informati<strong>on</strong> about their oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>management plan. Some participants resp<strong>on</strong>ded <strong>on</strong>ly via e-mail. We spoke over the ph<strong>on</strong>e <str<strong>on</strong>g>and</str<strong>on</strong>g>briefly in pers<strong>on</strong> with others.Below (Table IV.1) is a summary <str<strong>on</strong>g>of</str<strong>on</strong>g> results from the c<strong>on</strong>versati<strong>on</strong>s we had with individuals from:County <str<strong>on</strong>g>of</str<strong>on</strong>g> Santa Barbara, Chimineas <strong>Ranch</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> Wind Wolves Preserve.Table IV.1 - Current oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g> specific management practices employed <strong>on</strong> four different large-scalemanaged l<str<strong>on</strong>g>and</str<strong>on</strong>g>scapes in south-central California.Area <str<strong>on</strong>g>Oak</str<strong>on</strong>g> Woodl<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Management</str<strong>on</strong>g> Scheme ManagerWind WolvesPreserveActive restorati<strong>on</strong>; periodic grazing; no hunting; notimber harvesting.The Wildl<str<strong>on</strong>g>and</str<strong>on</strong>g>s C<strong>on</strong>servancyChimineas<strong>Ranch</strong>Santa BarbaraCountyTej<strong>on</strong> <strong>Ranch</strong>In the process <str<strong>on</strong>g>of</str<strong>on</strong>g> creating an oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>management plan; currently have rotati<strong>on</strong>al grazing.C<strong>on</strong>trol oak removal; complaint-driven enforcement.Rotati<strong>on</strong>al grazing; major hunting; no timberharvesting; fire suppressi<strong>on</strong>.Chimineas <strong>Ranch</strong> Foundati<strong>on</strong>,CA Dept. <str<strong>on</strong>g>of</str<strong>on</strong>g> Fish & GameSanta Barbara CountyAgriculture Commissi<strong>on</strong>erTej<strong>on</strong> <strong>Ranch</strong> Company,Tej<strong>on</strong> <strong>Ranch</strong> C<strong>on</strong>servancyGeneral Notes:Comments from Santa Barbara County (Plant Pathologist)They are most worried about c<strong>on</strong>trolling the removal <str<strong>on</strong>g>of</str<strong>on</strong>g> oaks, <str<strong>on</strong>g>and</str<strong>on</strong>g> preventing Sudden <str<strong>on</strong>g>Oak</str<strong>on</strong>g> Deathfrom entering the county through nurseries.Comments from Chimineas Biologist (CA Dept Fish <str<strong>on</strong>g>and</str<strong>on</strong>g> Game)The Chimineas <strong>Ranch</strong> is located in southern San Luis Obispo County, east <str<strong>on</strong>g>of</str<strong>on</strong>g> Santa Maria <str<strong>on</strong>g>and</str<strong>on</strong>g> isabout 30,000 acres in size <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>tains about 4,000 acres <str<strong>on</strong>g>of</str<strong>on</strong>g> oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s. The Chimineas<strong>Ranch</strong> is dry <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>ly receives about 10-15 inches <str<strong>on</strong>g>of</str<strong>on</strong>g> rain annually. The Chimineas <strong>Ranch</strong>primarily has blue <str<strong>on</strong>g>and</str<strong>on</strong>g> tucker oak savannas. They have a few small st<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> coast live oak <str<strong>on</strong>g>and</str<strong>on</strong>g>valley oak but these are pretty rare. The Chimineas <strong>Ranch</strong> is currently in the process <str<strong>on</strong>g>of</str<strong>on</strong>g> creatingtheir l<str<strong>on</strong>g>and</str<strong>on</strong>g> management plan which will include a secti<strong>on</strong> <strong>on</strong> oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g> management.71


We asked the Chimineas Biologist questi<strong>on</strong>s c<strong>on</strong>cerning their future management plan <str<strong>on</strong>g>and</str<strong>on</strong>g> thedialogue is below:How does your organizati<strong>on</strong> want to manage the oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s at Chimineas?<str<strong>on</strong>g>Oak</str<strong>on</strong>g> woodl<str<strong>on</strong>g>and</str<strong>on</strong>g> management is just <strong>on</strong>e part <str<strong>on</strong>g>of</str<strong>on</strong>g> their l<str<strong>on</strong>g>and</str<strong>on</strong>g> management plan. Their missi<strong>on</strong> is tomaintain <str<strong>on</strong>g>and</str<strong>on</strong>g> enhance oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s. The Chimineas Biologist reported that they have seendecent blue oak recruitment, especially <strong>on</strong> slopes. The flatter areas <strong>on</strong> the <strong>Ranch</strong> are impacted bygrazing <str<strong>on</strong>g>and</str<strong>on</strong>g> do not have the same levels <str<strong>on</strong>g>of</str<strong>on</strong>g> recruitment. Livestock currently graze <strong>on</strong> the <strong>Ranch</strong><str<strong>on</strong>g>and</str<strong>on</strong>g> have been for last 100 years. Unlike the Tej<strong>on</strong> <strong>Ranch</strong> C<strong>on</strong>servancy, the Chimineas <strong>Ranch</strong>Foundati<strong>on</strong> has the power to remove cattle. However, they did an initial analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> the impacts<str<strong>on</strong>g>of</str<strong>on</strong>g> grazing <strong>on</strong> oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> their results weren‘t very clear.Do you have a particular policy <strong>on</strong> grazing, fire management, downed wood management, hunting, timberharvesting, etc. that may impact the oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s <strong>on</strong> your ranch?There are about 400 cattle that graze the l<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> they use rotati<strong>on</strong>al grazing. These cattle rotatethrough Nati<strong>on</strong>al Forest (10,000-15,000 acres) that is adjacent to their l<str<strong>on</strong>g>and</str<strong>on</strong>g>. Usually forest l<str<strong>on</strong>g>and</str<strong>on</strong>g>sare grazed in spring <str<strong>on</strong>g>and</str<strong>on</strong>g> the cattle are moved to the Chimineas <strong>Ranch</strong> later in the year. Fall <str<strong>on</strong>g>and</str<strong>on</strong>g>winter seas<strong>on</strong>s are when the cattle are <strong>on</strong> the Chimineas <strong>Ranch</strong>, however this may change.Historically this is how it has happened for at least the past 70-80 years. They are c<strong>on</strong>sideringcomparing the Nati<strong>on</strong>al Forest grazing sites to their l<str<strong>on</strong>g>and</str<strong>on</strong>g> to see if they can find any significantimpacts. They have c<strong>on</strong>ducted riparian exclusi<strong>on</strong> projects in the past that included some oakwoodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s. These results can be used to compare am<strong>on</strong>g treatments. As for fire management,they support prescribed burns, but in reality, admit that this is very difficult <str<strong>on</strong>g>and</str<strong>on</strong>g> costly toperform. They would prefer to do burns in the fall <str<strong>on</strong>g>and</str<strong>on</strong>g> hope to work with the Forest Service toburn patches <str<strong>on</strong>g>of</str<strong>on</strong>g> chamise, which has not burned for decades, <str<strong>on</strong>g>and</str<strong>on</strong>g> the oak understory to ensurethat a catastrophic fire will not occur in the future. They have also surveyed for masting events.Some years they do not observe masting <str<strong>on</strong>g>and</str<strong>on</strong>g> other years they did. They mainly observedproducti<strong>on</strong> <strong>on</strong> slopes, not <strong>on</strong> valley floors. Downed wood is left unless it is <strong>on</strong> a fence or in aroad. They do not harvest any timber. They do allow hunting but it is <strong>on</strong> a very small scale,something like 5 people per seas<strong>on</strong>.Is there anything that c<strong>on</strong>cerns you about oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g> management at your ranch?The vegetati<strong>on</strong> matrix is very complex at Chimineas. Dense chamise st<str<strong>on</strong>g>and</str<strong>on</strong>g>s weave through theiroak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> they are very c<strong>on</strong>cerned about a fire coming through, which could devastatetheir oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s. They hope to manage fire through prescribed burns. In reality this may bevery difficult. With prescribed burns they hope to burn some <str<strong>on</strong>g>of</str<strong>on</strong>g> the chamise so that an accidentalburn would not be catastrophic.They believed that oaks seem to be reproducing <strong>on</strong> the ranch. As you move east <str<strong>on</strong>g>of</str<strong>on</strong>g> the ranchthere is a creek <str<strong>on</strong>g>and</str<strong>on</strong>g> everything east <str<strong>on</strong>g>of</str<strong>on</strong>g> that creek has been tilled <str<strong>on</strong>g>and</str<strong>on</strong>g> farmed in the past. Theyd<strong>on</strong>‘t know if there used to be oaks there originally <str<strong>on</strong>g>and</str<strong>on</strong>g> if they should restore them. In the pastthey did not have a lot <str<strong>on</strong>g>of</str<strong>on</strong>g> success during plantings projects. In mid-90s, the California WaterAuthority planted oaks as mitigati<strong>on</strong> for a water pipeline project but 95% <str<strong>on</strong>g>of</str<strong>on</strong>g> plantings failed. Thesuccessful plantings were <strong>on</strong> north facing slopes. They are still unsure why there was such a lowsuccess rate. He said they planted thous<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> oaks for that mitigati<strong>on</strong> project. Lastly, there aresome feral pigs <strong>on</strong> the Chimineas <strong>Ranch</strong>. They are unsure about whether or not it is acompetiti<strong>on</strong> for the seeds or if the real problem is the rooting.72


Comments from Wind Wolves Preserve Resource Ecologist (The Wildl<str<strong>on</strong>g>and</str<strong>on</strong>g>s C<strong>on</strong>servancy)Wind Wolves Preserve (WWP) is located west <str<strong>on</strong>g>of</str<strong>on</strong>g> Tej<strong>on</strong> <strong>Ranch</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> is approximately 95,000 acres.It is the largest n<strong>on</strong>-pr<str<strong>on</strong>g>of</str<strong>on</strong>g>it owned l<str<strong>on</strong>g>and</str<strong>on</strong>g> in the state <str<strong>on</strong>g>and</str<strong>on</strong>g> is managed by The Wildl<str<strong>on</strong>g>and</str<strong>on</strong>g>sC<strong>on</strong>servancy (TWC) whose missi<strong>on</strong> is ―to preserve the beauty <str<strong>on</strong>g>and</str<strong>on</strong>g> biodiversity <str<strong>on</strong>g>of</str<strong>on</strong>g> the earth <str<strong>on</strong>g>and</str<strong>on</strong>g>to provide programs so that children may know the w<strong>on</strong>der <str<strong>on</strong>g>and</str<strong>on</strong>g> joy <str<strong>on</strong>g>of</str<strong>on</strong>g> nature.‖Comments:We allow periodic grazing to reduce fire fuel loads <str<strong>on</strong>g>of</str<strong>on</strong>g> annual grass to minimize oak mortalityresulting from inevitable wildfires. We have an <strong>on</strong>-going restorati<strong>on</strong> program for oaks. Acornsare gathered <strong>on</strong> the Preserve, propagated in a greenhouse <strong>on</strong>-site, then planted, protected withtreeshelters <str<strong>on</strong>g>and</str<strong>on</strong>g> weed mats, <str<strong>on</strong>g>and</str<strong>on</strong>g> irrigated until their crown is above the deer browse line. Nohunting is allowed, except that we actively eradicate any feral pigs that immigrate <strong>on</strong>to thePreserve from neighboring properties. At this time, we are pig-free.The Wildl<str<strong>on</strong>g>and</str<strong>on</strong>g>s C<strong>on</strong>servancy does not allow timber cutting <str<strong>on</strong>g>of</str<strong>on</strong>g> any kind <strong>on</strong> Wind WolvesPreserve. Only dead <str<strong>on</strong>g>and</str<strong>on</strong>g> down wood that blocks roads is cut <str<strong>on</strong>g>and</str<strong>on</strong>g> removed. Otherwise, deadwood is allowed to remain where it fell, as this decaying wood provides an important habitatniche for rodents, amphibians <str<strong>on</strong>g>and</str<strong>on</strong>g> invertebrates. On rare occasi<strong>on</strong>s, large deadfall has beendragged from underneath the canopy <str<strong>on</strong>g>of</str<strong>on</strong>g> heritage trees, so it would not become ladder fuel thatwould kill the tree during a fire.73


REFERENCESALLEN-DIAZ, B., R. STANDIFORD, AND R. JACKSON, 2007. <str<strong>on</strong>g>Oak</str<strong>on</strong>g> Woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> Forests. InTerrestrial Vegetati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> California. Berkeley: University <str<strong>on</strong>g>of</str<strong>on</strong>g> California Press.ALLEN-DIAZ, B., 2000. Cattle grazing effects <strong>on</strong> spring ecosystems in California’s oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g> R.St<str<strong>on</strong>g>and</str<strong>on</strong>g>iford, J. Vreel<str<strong>on</strong>g>and</str<strong>on</strong>g>, <str<strong>on</strong>g>and</str<strong>on</strong>g> B. Tietje (Eds.), Integrated Hardwood Range <str<strong>on</strong>g>Management</str<strong>on</strong>g>Program, University <str<strong>on</strong>g>of</str<strong>on</strong>g> California - Berkeley. Available at:http://danr.ucop.edu/ihrmp/oak87.htm.ALLEN-DIAZ, B., AND J. BARTOLOME, 1992. Survival <str<strong>on</strong>g>of</str<strong>on</strong>g> Quercus douglasii (Fagaceae) seedlingsunder the influence <str<strong>on</strong>g>of</str<strong>on</strong>g> fire <str<strong>on</strong>g>and</str<strong>on</strong>g> grazing. Madr<strong>on</strong>o 39(1): 47-53.APPELBAUM, J., E. BROWN, S. FORSYTH, L. KASHIWASE, AND D. MURRAY, 2010. Development <str<strong>on</strong>g>of</str<strong>on</strong>g>c<strong>on</strong>ceptual models <str<strong>on</strong>g>and</str<strong>on</strong>g> ecological baselines to support the creati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an adaptive management plan forTej<strong>on</strong> <strong>Ranch</strong>, California,BARBOUR, M., T. KEELER-WOLF, AND A. SCHOENHERR, 2007. Terrestrial vegetati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> California3rd ed., Berkeley: University <str<strong>on</strong>g>of</str<strong>on</strong>g> California Press.BOLSINGER, C., 1988. The hardwoods <str<strong>on</strong>g>of</str<strong>on</strong>g> California's timberl<str<strong>on</strong>g>and</str<strong>on</strong>g>s, woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s, <str<strong>on</strong>g>and</str<strong>on</strong>g> savannas, Res. Bull.PNW-RB-148: Portl<str<strong>on</strong>g>and</str<strong>on</strong>g>, OR: U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Forest Service, PacificNorthwest Research Stati<strong>on</strong>.BORCHERT, M., F. DAVIS, AND B. ALLEN-DIAZ, 1991. Envir<strong>on</strong>mental Relati<strong>on</strong>ships <str<strong>on</strong>g>of</str<strong>on</strong>g> Herbs inBlue <str<strong>on</strong>g>Oak</str<strong>on</strong>g> (Quercus douglasii) Woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Central Coastal California. Madr<strong>on</strong>o 38(4):249-266.BROWN, R., AND F. DAVIS, 1991. Historical Mortality <str<strong>on</strong>g>of</str<strong>on</strong>g> Valley <str<strong>on</strong>g>Oak</str<strong>on</strong>g> (Quercus lobata, Nee) in theSanta Ynez Valley, Santa Barbara County, 1938-1989. In R.B. St<str<strong>on</strong>g>and</str<strong>on</strong>g>iford, editor.Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> the symposium <str<strong>on</strong>g>of</str<strong>on</strong>g> oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> hardwood rangel<str<strong>on</strong>g>and</str<strong>on</strong>g>management. pp. 202-207, USDA Forest Service, Davis, CA.BRUSSARD, P., F. DAVIS, J. MEDIEROS, B. PAVLIK, AND D. SADA, 2004. Planning Principles,Uncertainties, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Management</str<strong>on</strong>g> Recommendati<strong>on</strong>s, Report <str<strong>on</strong>g>of</str<strong>on</strong>g> the Science Advisors For thePlacer County Natural Communities C<strong>on</strong>servati<strong>on</strong> Plan <str<strong>on</strong>g>and</str<strong>on</strong>g> Habitat C<strong>on</strong>servati<strong>on</strong> Plan.BUCK, J.M., R. ADAMS, J. CONE, M. CONKLE, W. LIBBY, C. EDEN, AND M. KNIGHT, 1970.California tree seed z<strong>on</strong>es. USDA Forest Service, San Francisco, CA6.CALLAWAY, R., 1992a. Morphological <str<strong>on</strong>g>and</str<strong>on</strong>g> Physiological Resp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g> Three California <str<strong>on</strong>g>Oak</str<strong>on</strong>g>Species to Shade. Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Plant Sciences 153(3): 434-441.CALLAWAY, R., 1992b. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Shrubs <strong>on</strong> Recruitment <str<strong>on</strong>g>of</str<strong>on</strong>g> Quercus Douglasii <str<strong>on</strong>g>and</str<strong>on</strong>g> QuercusLobata in California. <str<strong>on</strong>g>Ecology</str<strong>on</strong>g> 73(6): 2118-2128.CAYAN, D.R., E.P. MAURER, M.D. DETTINGER, M. TYREE, AND K. HAYHOE, 2008. Climatechange scenarios for the California regi<strong>on</strong>. Climatic Change 87: 21-42.74


CLARY, W.P., AND J.W. KINNEY, 2002. Streambank <str<strong>on</strong>g>and</str<strong>on</strong>g> vegetati<strong>on</strong> resp<strong>on</strong>se to simulated cattlegrazing. Wetl<str<strong>on</strong>g>and</str<strong>on</strong>g>s 22: 139-148.COLLINS, B., J. MOGHADDAS, AND S. STEPHENS, 2007. Initial changes in forest structure <str<strong>on</strong>g>and</str<strong>on</strong>g>understory plant communities following fuel reducti<strong>on</strong> activities in a Sierra Nevadamixed c<strong>on</strong>ifer forest. Forest <str<strong>on</strong>g>Ecology</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Management</str<strong>on</strong>g> 239(1-3): 102-111.CRIMMINS, S.M., S.Z. DOBROWSKI, J.A. GREENBERG, J.T. ABATZOGLOU, AND A.R.MYNSBERGE, 2011. Changes in Climatic Water Balance Drive Downhill Shifts in PlantSpecies‘ Optimum Elevati<strong>on</strong>s. Science 331: 324 -327.CUBASCH, U., G. MEEHL, G. BOER, R. STOUFFER, M. DIX, A. NODA, C. SENIOR, S. RAPER, ANDK. YAP, 2001. IPCC Third Assessment Report - Climate Change 2001: The Scientific Basis, Ca.Available at: http://www.grida.no/publicati<strong>on</strong>s/other/ipcc_tar/.DAHLGREN, R., M. SINGER, AND X. HUANG, 1997. <str<strong>on</strong>g>Oak</str<strong>on</strong>g> tree <str<strong>on</strong>g>and</str<strong>on</strong>g> grazing impacts <strong>on</strong> soilproperties <str<strong>on</strong>g>and</str<strong>on</strong>g> nutrients in a California oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>. Biogeochemistry 39(1): 45-64.DAVIS, F., AND J. DOZIER, 1990. Informati<strong>on</strong> Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> a Spatial Database for Ecological L<str<strong>on</strong>g>and</str<strong>on</strong>g>classificati<strong>on</strong>. Photogrammetric Engineering <str<strong>on</strong>g>and</str<strong>on</strong>g> Remote Sensing 56: 605-613.ELITH, J. ET AL., 2006. Novel methods improve predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> species‘ distributi<strong>on</strong>s fromoccurrence data. Ecography 29: 129-151.ELITH, J., AND J.R. LEATHWICK, 2009. Species Distributi<strong>on</strong> Models: Ecological Explanati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g>Predicti<strong>on</strong> Across Space <str<strong>on</strong>g>and</str<strong>on</strong>g> Time. Annu. Rev. Ecol. Evol. Syst. 40: 677-697.ELITH, J., S.J. PHILLIPS, T. HASTIE, M. DUDÍK, Y.E. CHEE, AND C.J. YATES, 2011. A statisticalexplanati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> MaxEnt for ecologists. Diversity <str<strong>on</strong>g>and</str<strong>on</strong>g> Distributi<strong>on</strong>s 17: 43-57.FERRERO, A., 1991. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> compacti<strong>on</strong> simulating cattle trampling <strong>on</strong> soil physicalcharacteristics in woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>. Soil <str<strong>on</strong>g>and</str<strong>on</strong>g> Tillage Research 19: 319-329.FLINT, A., AND L. FLINT, 2010. Downscaling Future Climate Scenarios to Fine Scales forHydrologic <str<strong>on</strong>g>and</str<strong>on</strong>g> Ecologic Modeling <str<strong>on</strong>g>and</str<strong>on</strong>g> Analysis.FRAP, 2002. The Changing California, California Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Forestry <str<strong>on</strong>g>and</str<strong>on</strong>g> Fire Protecti<strong>on</strong>Forest <str<strong>on</strong>g>and</str<strong>on</strong>g> Range Assessment Program, Sacramento, California.GERVAIS, B., 2006. A three-century record <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> blue oak recruitment from theTehachapi Mountains, Southern California, USA. Dendrochr<strong>on</strong>ologia 24(1): 29-37.GIUSTI, G., D. MCCREARY, R. STANDIFORD, S. BARRY, AND UNIVERSITY OF CALIFORNIA,2005. A planner's guide for oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s 2nd ed., <str<strong>on</strong>g>Oak</str<strong>on</strong>g>l<str<strong>on</strong>g>and</str<strong>on</strong>g>, California: University <str<strong>on</strong>g>of</str<strong>on</strong>g>California Agriculture <str<strong>on</strong>g>and</str<strong>on</strong>g> Natural Resources.GORDON, D., AND K. RICE, 2000. Competitive Suppressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Quercus douglasii (Fagaceae)Seedling Emergence <str<strong>on</strong>g>and</str<strong>on</strong>g> Growth. American Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Botany 87(7): 986-994.75


GRIFFIN, J., 1971. <str<strong>on</strong>g>Oak</str<strong>on</strong>g> Regenerati<strong>on</strong> in the Upper Carmel Valley, California. <str<strong>on</strong>g>Ecology</str<strong>on</strong>g> 52(5): 862-868.GRIFFIN, J., 1976. Regenerati<strong>on</strong> in Quercus lobata Savannas, Santa Lucia Mountains, California.American Midl<str<strong>on</strong>g>and</str<strong>on</strong>g> Naturalist 95(2): 422-435.GRIVET, D., V. SORK, R. WESTFALL, AND F. DAVIS, 2008. C<strong>on</strong>serving the evoluti<strong>on</strong>ary potential<str<strong>on</strong>g>of</str<strong>on</strong>g> California valley oak (Quercus lobata Nee): a multivariate genetic approach toc<strong>on</strong>servati<strong>on</strong> planning. Molecular <str<strong>on</strong>g>Ecology</str<strong>on</strong>g> 17(1): 139-156.GUISAN, A., 2000. Predictive habitat distributi<strong>on</strong> models in ecology. Ecological Modelling 135:147-186.HALL, L., M. GEORGE, D. MCCREARY, AND T. ADAMS, 1992. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> cattle grazing <strong>on</strong> blueoak seedling damage <str<strong>on</strong>g>and</str<strong>on</strong>g> survival. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Range <str<strong>on</strong>g>Management</str<strong>on</strong>g> 45(5): 503-506.HAYHOE, K., D. CAYAN, C.B. FIELD, P.C. FRUMHOFF, E.P. MAURER, N.L. MILLER, S.C.MOSER, S.H. SCHNEIDER, K.N. CAHILL, E.E. CLELAND, L. DALE, R. DRAPEK, R.M.HANEMANN, L.S. KALKSTEIN, J. LENIHAN, C.K. LUNCH, R.P. NEILSON, S.C.SHERIDAN, AND J.H. VERVILLE, 2004. Emissi<strong>on</strong>s pathways, climate change, <str<strong>on</strong>g>and</str<strong>on</strong>g>impacts <strong>on</strong> California. Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> the Nati<strong>on</strong>al Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences <str<strong>on</strong>g>of</str<strong>on</strong>g> the UnitedStates <str<strong>on</strong>g>of</str<strong>on</strong>g> America 101: 12422 -12427.IHRMP, 2010. Hardwood rangel<str<strong>on</strong>g>and</str<strong>on</strong>g> policies for California counties. Integrated HardwoodRange <str<strong>on</strong>g>Management</str<strong>on</strong>g> Program, University <str<strong>on</strong>g>of</str<strong>on</strong>g> California - Berkeley. Available at:http://danr.ucop.edu/ihrmp/county/.KEELEY, J., 2002. Native American Impacts <strong>on</strong> Fire Regimes <str<strong>on</strong>g>of</str<strong>on</strong>g> the California Coastal Ranges.Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Biogeography 29(3): 303-320.KEELEY, J., D. LUBIN, AND C. FOTHERINGHAM, 2003. Fire <str<strong>on</strong>g>and</str<strong>on</strong>g> grazing impacts <strong>on</strong> plantdiversity <str<strong>on</strong>g>and</str<strong>on</strong>g> alien invasi<strong>on</strong>s in the southern Sierra Nevada. Ecological Applicati<strong>on</strong>s13(5): 1355-1374.KELLY, P., S. PHILLIPS, AND D. WILLIAMS, 2005. Documenting Ecological Change in Time <str<strong>on</strong>g>and</str<strong>on</strong>g>Space: The San Joaquin Valley <str<strong>on</strong>g>of</str<strong>on</strong>g> California. In Mammalian diversificati<strong>on</strong>. University<str<strong>on</strong>g>of</str<strong>on</strong>g> California Press.KOBZIAR, L., J. MOGHADDAS, AND S. STEPHENS, 2006. Tree mortality patterns followingprescribed fires in a mixed c<strong>on</strong>ifer forest. Can. J. For. Res. 36(12): 3222-3238.KOENIG, W., A. KRAKAUER, W. MONAHAN, J. HAYDOCK, J. KNOPS, AND W. CARMEN, 2009.Mast-producing trees <str<strong>on</strong>g>and</str<strong>on</strong>g> the geographical ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> western scrub-jays. Ecography32(4): 561-570.KUEPPERS, L., M. SNYDER, L. SLOAN, E. ZAVALETA, AND B. FULFROST, 2005. Modeledregi<strong>on</strong>al climate change <str<strong>on</strong>g>and</str<strong>on</strong>g> California endemic oak ranges. Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> the Nati<strong>on</strong>alAcademy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences <str<strong>on</strong>g>of</str<strong>on</strong>g> the United States <str<strong>on</strong>g>of</str<strong>on</strong>g> America 102(45): 16281-16286.76


LENIHAN, J.M., D. BACHELET, R.P. NEILSON, AND R. DRAPEK, 2007. Resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong>distributi<strong>on</strong>, ecosystem productivity, <str<strong>on</strong>g>and</str<strong>on</strong>g> fire to climate change scenarios for California.Climatic Change 87: 215-230.MAHALL, B., F. DAVIS, AND C. TYLER, 2005. Santa Barbara County <str<strong>on</strong>g>Oak</str<strong>on</strong>g> Restorati<strong>on</strong> Program: August1994 - August 2005 Final Report,MCCREARY, D., 2004. <str<strong>on</strong>g>Oak</str<strong>on</strong>g> Woodl<str<strong>on</strong>g>and</str<strong>on</strong>g> C<strong>on</strong>servati<strong>on</strong> Act <str<strong>on</strong>g>of</str<strong>on</strong>g> 2001. Available at:http://escholarship.org/uc/item/87r5z127.MCCUNE, B., 2006. N<strong>on</strong>-parametric habitat models with automatic interacti<strong>on</strong>s. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g>Vegetati<strong>on</strong> Science 17: 819-830.MCDOUGALD, N., W. FROST, J. BARTOLOME, AND R. STANDIFORD, 2000. Establishing livestockcarrying capacity from GIS <str<strong>on</strong>g>and</str<strong>on</strong>g> range science research R. St<str<strong>on</strong>g>and</str<strong>on</strong>g>iford <str<strong>on</strong>g>and</str<strong>on</strong>g> P. Tinnin (Eds.),Integrated Hardwood Range <str<strong>on</strong>g>Management</str<strong>on</strong>g> Program, University <str<strong>on</strong>g>of</str<strong>on</strong>g> California - Berkeley.Available at: http://danr.ucop.edu/ihrmp/oak70.htm.MORITZ, C., J.L. PATTON, C.J. CONROY, J.L. PARRA, G.C. WHITE, AND S.R. BEISSINGER, 2008.Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> a Century <str<strong>on</strong>g>of</str<strong>on</strong>g> Climate Change <strong>on</strong> Small-Mammal Communities in YosemiteNati<strong>on</strong>al Park, USA. Science 322: 261 -264.NAKIC'ENOVIC, N., R. SWART, J. ALCAMO, G. DAVIS, B. DE VRIES, J. FENHANN, S. GAFFIN, K.GREGORY, A. GRUBLER, T. JUNG, AND T. KRAM ET AL, 2000. IPCC Special Report <strong>on</strong>Emissi<strong>on</strong>s Scenarios, Cambridge University Press, UK. Available at:http://www.ipcc.ch/ipccreports/sres/emissi<strong>on</strong>/index.php?idp=0.NIXON, K., 2002. The <str<strong>on</strong>g>Oak</str<strong>on</strong>g> (Quercus) Biodiversity <str<strong>on</strong>g>of</str<strong>on</strong>g> California <str<strong>on</strong>g>and</str<strong>on</strong>g> Adjacent Regi<strong>on</strong>s, USDA ForestService Gen. Tech. Rep. PSW-GTR-184.PAVLIK, B., 1991. <str<strong>on</strong>g>Oak</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> California, Los Olivos, CA: Cachuma Press; California <str<strong>on</strong>g>Oak</str<strong>on</strong>g> Foundati<strong>on</strong>.PEARSON, R., 2007. Species’ Distributi<strong>on</strong> Modeling for C<strong>on</strong>servati<strong>on</strong> Educators <str<strong>on</strong>g>and</str<strong>on</strong>g> Practiti<strong>on</strong>ers, AmericanMuseum <str<strong>on</strong>g>of</str<strong>on</strong>g> Natural History: American Museum <str<strong>on</strong>g>of</str<strong>on</strong>g> Natural History. Available at:http://ncep.amnh.org.PHILLIPS, S.J., R.P. ANDERSON, AND R.E. SCHAPIRE, 2006. Maximum entropy modeling <str<strong>on</strong>g>of</str<strong>on</strong>g>species geographic distributi<strong>on</strong>s. Ecological Modelling 190: 231-259.PURCELL, K., AND J. VERNER, 2000. Grazing in oak woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s: does it affect bird communities? J.Vreel<str<strong>on</strong>g>and</str<strong>on</strong>g>, W. Tietje, <str<strong>on</strong>g>and</str<strong>on</strong>g> P. Tinnin (Eds.), Integrated Hardwood Range <str<strong>on</strong>g>Management</str<strong>on</strong>g>Program, University <str<strong>on</strong>g>of</str<strong>on</strong>g> California - Berkeley. Available at:http://danr.ucop.edu/ihrmp/oak54.htm.SORK, V.L., F.W. DAVIS, R. WESTFALL, A. FLINT, M. IKEGAMI, H. WANG, AND D. GRIVET,2010. Gene movement <str<strong>on</strong>g>and</str<strong>on</strong>g> genetic associati<strong>on</strong> with regi<strong>on</strong>al climate gradients inCalifornia valley oak (Quercus lobata Née) in the face <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change. Molecular<str<strong>on</strong>g>Ecology</str<strong>on</strong>g> 19: 3806-3823.77


STEPHENS, S., AND M. FINNEY, 2002. Prescribed fire mortality <str<strong>on</strong>g>of</str<strong>on</strong>g> Sierra Nevada mixed c<strong>on</strong>ifertree species: effects <str<strong>on</strong>g>of</str<strong>on</strong>g> crown damage <str<strong>on</strong>g>and</str<strong>on</strong>g> forest floor combusti<strong>on</strong>. Forest <str<strong>on</strong>g>Ecology</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g><str<strong>on</strong>g>Management</str<strong>on</strong>g> 162(2-3): 261-271.STEPHENS, S., R. MARTIN, AND N. CLINTON, 2007. Prehistoric fire area <str<strong>on</strong>g>and</str<strong>on</strong>g> emissi<strong>on</strong>s fromCalifornia's forests, woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s, shrubl<str<strong>on</strong>g>and</str<strong>on</strong>g>s, <str<strong>on</strong>g>and</str<strong>on</strong>g> grassl<str<strong>on</strong>g>and</str<strong>on</strong>g>s. Forest <str<strong>on</strong>g>Ecology</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g><str<strong>on</strong>g>Management</str<strong>on</strong>g> 251(3): 205-216.SWIECKI, T., AND E. BERNHARDT, 1998. Underst<str<strong>on</strong>g>and</str<strong>on</strong>g>ing blue oak regenerati<strong>on</strong>. Frem<strong>on</strong>tia 26:19-26.SWIECKI, T., AND E. BERNHARDT, 2002. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> fire <strong>on</strong> naturally occurring blue oak (Quercusdouglasii) saplings, USDA Forest Service Gen. Tech. Rep. PSW-GTR-184.SWIECKI, T., E. BERNHARDT, AND C. DRAKE, 1993. Factors affecting blue oak sapling recruitment <str<strong>on</strong>g>and</str<strong>on</strong>g>regenerati<strong>on</strong>, Strategic Planning Program: California Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Forestry <str<strong>on</strong>g>and</str<strong>on</strong>g> FirePreventi<strong>on</strong>.TEJON RANCH COMPANY, 2009. Tej<strong>on</strong> <strong>Ranch</strong> C<strong>on</strong>servancy. Available at:http://www.tej<strong>on</strong>ranch.com/c<strong>on</strong>servati<strong>on</strong>/c<strong>on</strong>servancy.asp [Accessed May 17, 2010].TEJON RANCH CONSERVANCY, 2010. Science Resources. Available at:http://tej<strong>on</strong>ranchc<strong>on</strong>servancy.org/science/other-resources/ [Accessed May 5, 2010].TRIMBLE, S.W., AND A.C. MENDEL, 1995. The cow as a geomorphic agent -- A critical review.Geomorphology 13: 233-253.TYLER, C., F. DAVIS, AND B. MAHALL, 2008. The relative importance <str<strong>on</strong>g>of</str<strong>on</strong>g> factors affecting agespecificseedling survival <str<strong>on</strong>g>of</str<strong>on</strong>g> two co-occurring oak species in southern California. Forest<str<strong>on</strong>g>Ecology</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Management</str<strong>on</strong>g> 255(7): 3063-3074.TYLER, C., B. KUHN, AND F. DAVIS, 2006. Demography <str<strong>on</strong>g>and</str<strong>on</strong>g> recruitment limitati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> three oakspecies in California. The quarterly review <str<strong>on</strong>g>of</str<strong>on</strong>g> biology 81(2): .US FISH & WILDLIFE SERVICE, 2009. Tehachapi Upl<str<strong>on</strong>g>and</str<strong>on</strong>g>s Multiple Species C<strong>on</strong>servati<strong>on</strong> Plan(draft). Available at:http://www.fws.gov/ventura/endangered/hc<strong>on</strong>servati<strong>on</strong>/hcp/hcfiles/TehachapiUpl<str<strong>on</strong>g>and</str<strong>on</strong>g>/index.html.WALTHER, G., E. POST, P. CONVEY, A. MENZEL, C. PARMESAN, T.J.C. BEEBEE, J. FROMENTIN,O. HOEGH-GULDBERG, AND F. BAIRLEIN, 2002. Ecological resp<strong>on</strong>ses to recent climatechange. Nature 416: 389-395.WHIPPLE, A., R. GROSSINGER, AND F. DAVIS, 2010. Shifting Baselines in a California <str<strong>on</strong>g>Oak</str<strong>on</strong>g>Savanna: Nineteenth Century Data to Inform Restorati<strong>on</strong> Scenarios. Restorati<strong>on</strong><str<strong>on</strong>g>Ecology</str<strong>on</strong>g>.WHITE, K.L., 1966. Structure <str<strong>on</strong>g>and</str<strong>on</strong>g> Compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Foothill Woodl<str<strong>on</strong>g>and</str<strong>on</strong>g> in Central CoastalCalifornia. <str<strong>on</strong>g>Ecology</str<strong>on</strong>g> 47: 229-237.78

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!