13.07.2015 Views

Palaeoproterozoic to Mesoproterozoic Geology of North Queensland

Palaeoproterozoic to Mesoproterozoic Geology of North Queensland

Palaeoproterozoic to Mesoproterozoic Geology of North Queensland

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Australian GovernmentGeoscience Australia<strong>Palaeoproterozoic</strong> <strong>to</strong><strong>Mesoproterozoic</strong> <strong>Geology</strong> <strong>of</strong> <strong>North</strong><strong>Queensland</strong>Ian Withnall (GSQ)Narelle Neumann, Lex Lambeck (GA)Townsville, 3 June 2009


Deep crustalseismic transectsMT ISAINLIERBB BURDEKIN BASINGCSP GRAVEYARD CK SUBPROVINCECCSP CAMEL CK SUBPROVINCETP THALANGA PROVINCECRP CAPE RIVER PROVINCEBP BARNARD PROVINCECOENINLIERYAMBOHODGKINSONINLIERBASINBPCRPGEORGETOWNINLIER TP CCSPGCSPBBCRPTPDRUMMONDBASININTRODUCTION• George<strong>to</strong>wn Inlier (along with CoenInlier) contains the most easterlyProterozoic outcrops in Australia• Important <strong>to</strong> an understanding <strong>of</strong>the evolution <strong>of</strong> the continent andpossible configurations <strong>of</strong> Rodinia(e.g. SWEAT vs AUSWUS)• Most models for the evolution <strong>of</strong>the <strong>North</strong> Australian Cra<strong>to</strong>nassume George<strong>to</strong>wn <strong>to</strong> be a part <strong>of</strong>it really explaining how it fits• Betts et al. (2002) inferred that theeastern margin <strong>of</strong> the <strong>North</strong>Australian Cra<strong>to</strong>n was ocean-facingprior <strong>to</strong> the <strong>Mesoproterozoic</strong>(~1600-1500Ma) orogenesis, whichthey postulated was related <strong>to</strong> awest dipping subduction zone andcontinental collision due <strong>to</strong> docking<strong>of</strong> the <strong>North</strong> American Cra<strong>to</strong>n at~1540Ma during formation <strong>of</strong>Rodinia.• Boger & Hansen (2004) speculatedthat the metamorphic evolution <strong>of</strong>George<strong>to</strong>wn and some othercharacteristics suggest it wasaccreted <strong>to</strong> the NAC during theconstruction <strong>of</strong> Rodinia, rather thanhaving always been part <strong>of</strong> it.


Tasman LineCOENINLIERDeep crustalseismic transectsYAMBOINLIERHODGKINSONBASINGEORGETOWNINLIERMT ISAINLIERTasman Line


Structural Elements – George<strong>to</strong>wn-Charters Towers regionOld Tasman LineTasman Line (Lynd Fault)Proterozoic fold beltPalaeozoic fold belts


50 kmSurface <strong>Geology</strong> – George<strong>to</strong>wn region


Proterozoic Stratigraphic Units – George<strong>to</strong>wn region50 km


Proterozoic Stratigraphic Units - Solid <strong>Geology</strong> – George<strong>to</strong>wn region50 km


<strong>Palaeoproterozoic</strong>-<strong>Mesoproterozoic</strong> Stratigraphy – George<strong>to</strong>wn regionCroydonVolc GroupYarman FmMalacura FmLanglovaleGroupLangdon River MdstRobertsonRiver SGpCandlow FmHeliman FmTownley FmLane Ck FmCorbett FmDead Horse MetabsltDaniel Creek FmBernecker Ck FmEtheridge GroupCobbold Metadoleriteamphibolitebiotite gneissEinasleigh MetamorphicsJuntalaMetsCassidy CkMetsorthogneisscalc-silicate gneissleucogneiss


Bernecker Creek Formation• Calcareous/dolomitic sands<strong>to</strong>ne & silts<strong>to</strong>ne• Abundant evidence <strong>of</strong> current activity – shallow water orturbidites??• MDA ~1844 Ma• major Archaean- earliest <strong>Palaeoproterozoic</strong> component(70%)


Bernecker Creek Formation• Calcareous/dolomitic sands<strong>to</strong>ne & silts<strong>to</strong>ne• Abundant evidence <strong>of</strong> current activity – shallow water orturbidites??• MDA ~1844 Ma• Major Archaean- earliest <strong>Palaeoproterozoic</strong> component(70%)201816Bernecker Creek Formation2007169002All; n=7314Number12108mda = 1844 ± 11 MaRelative probability64201500 1700 1900 2100 2300 2500 2700 2900Age (Ma)


Daniel Creek Formation• Very fine sands<strong>to</strong>ne and silts<strong>to</strong>ne/muds<strong>to</strong>ne; locallycalcareous with concretions• Turbidites or shallow water??• MDA ~1695 Ma• major Archaean- earliest <strong>Palaeoproterozoic</strong> component(76%)


Daniel Creek Formation• Very fine sands<strong>to</strong>ne and silts<strong>to</strong>ne/muds<strong>to</strong>ne; locallycalcareous with concretions• Turbidites or shallow water??• MDA ~1695 Ma• Major Archaean- earliest <strong>Palaeoproterozoic</strong> component(76%)201816Daniel Creek Formation2007169003All; n=81Number141210864mda = 1695 ± 13 MaRelative probability201500 1700 1900 2100 2300 2500 2700 2900Age (Ma)


Dead Horse Metabasalt• Aphyric tholeiitic metabasalt, local pillows andhyaloclastite; minor muds<strong>to</strong>ne• Submarine emplacement• Magmatic age 1663±13Ma (Mike Baker, PhD, 2007)


Dead Horse Metabasalt• Aphyric tholeiitic metabasalt, local pillows andhyaloclastite; minor muds<strong>to</strong>ne• Submarine emplacement• Magmatic age 1663±13Ma (Mike Baker, PhD, 2007)


Corbett Formation• Predominantly muds<strong>to</strong>ne, rare sands<strong>to</strong>ne• Deep waterMDA ~1785 Mamajor Archaean- earliest <strong>Palaeoproterozoic</strong> component(48%)


Corbett Formation• Predominantly muds<strong>to</strong>ne, rare sands<strong>to</strong>ne• Deep water• MDA ~1785 Ma• Major Archaean- earliest <strong>Palaeoproterozoic</strong> component(48%)201816Corbett Formation2007169004All; n=7314Number12108mda = 1785 ± 11 MaRelative probability64201500 1700 1900 2100 2300 2500 2700 2900Age (Ma)


Lane Creek Formation• Muds<strong>to</strong>ne and silts<strong>to</strong>ne, commonly carbonaceous;minor fine-grained sands<strong>to</strong>ne; rare limes<strong>to</strong>ne• Deep water• MDA ~1786 Ma• major Archaean- earliest <strong>Palaeoproterozoic</strong> component(30%)


Lane Creek Formation• Muds<strong>to</strong>ne and silts<strong>to</strong>ne, commonly carbonaceous;minor fine-grained sands<strong>to</strong>ne; rare limes<strong>to</strong>ne• Deep water• MDA ~1786 Ma• Diminishing Archaean- earliest <strong>Palaeoproterozoic</strong>component (30%)1412MDA = 1786 ± 6 MaLane Creek FormationIWGT550All; n=84Number10864Relative probability201700 1900 2100 2300 2500 2700 2900 3100207/206 Age


Cobbold Metadolerite• Mostly sills <strong>of</strong> metadolerite and metagabbro• Restricted <strong>to</strong> units up <strong>to</strong> & including Lane Creek Formation


Cobbold Metadolerite• Mostly sills <strong>of</strong> metadolerite and metagabbro• Restricted <strong>to</strong> units up <strong>to</strong> & including Lane Creek Formation• Magmatic age 1656±2Ma for (leucogabbro intruding LaneCreek Formation)


Cobbold Metadolerite• Mostly sills <strong>of</strong> metadolerite and metagabbro• Restricted <strong>to</strong> units up <strong>to</strong> & including Lane Creek Formation• Magmatic age 1656±2Ma for (leucogabbro intruding LaneCreek Formation)


Townley Formation• Muds<strong>to</strong>ne, silts<strong>to</strong>ne, locally carbonaceous; minor finegrainedsands<strong>to</strong>ne, commonly with rip-up clasts• Deep water?• MDA ~1649 Ma• Diminished Archaean- earliest <strong>Palaeoproterozoic</strong>component (27%)• Contact with Lane Creek Formation unremarkable


Townley Formation• Muds<strong>to</strong>ne, silts<strong>to</strong>ne, locally carbonaceous; minor finegrainedsands<strong>to</strong>ne, commonly with rip-up clasts• Deep water?• MDA ~1649 Ma• Diminishing Archaean- earliest <strong>Palaeoproterozoic</strong>component (27%)• Contact with Lane Creek Formation unremarkable; noobvious unconformity201816Townley Formation2007169005All; n=6614Number12108mda = 1649 ± 5 MaRelative probability64201500 1700 1900 2100 2300 2500 2700 2900Age (Ma)


Heliman Formation• Muds<strong>to</strong>ne and silts<strong>to</strong>ne, locally carbonaceous; abundantsiliceous silts<strong>to</strong>ne and fine-grained sands<strong>to</strong>ne, commonlywith mudclasts• Deep water???• MDA ~1655 Ma• Minor Archaean- earliest <strong>Palaeoproterozoic</strong> component (8%)


Heliman Formation• Muds<strong>to</strong>ne and silts<strong>to</strong>ne, locally carbonaceous; abundantsiliceous silts<strong>to</strong>ne and fine-grained sands<strong>to</strong>ne, commonlywith mudclasts• Deep water???• MDA ~1655 Ma• Minor Archaean- earliest <strong>Palaeoproterozoic</strong> component (8%)201816mda = 1655 ± 3 MaHeliman Formation2007169006All; n=7714Number121086Relative probability4201500 1700 1900 2100 2300 2500 2700 2900Age (Ma)


Candlow Formation• Muds<strong>to</strong>ne, silts<strong>to</strong>ne, commonly carbonaceous - up <strong>to</strong> 10% TOC –and pyritic; abundant mudclast sands<strong>to</strong>ne• Local gypsum moulds & rare stroma<strong>to</strong>lites• Conflicting interpretationsDeep water (Lambeck)Shallow water, possibly lacustrine (Draper)


Langdon River Muds<strong>to</strong>ne• Laminated muds<strong>to</strong>ne, commonly carbonaceous and pyritic (redgreyin outcrop)• Probably deep water• Sampled for SHRIMP MDA, but data not available


<strong>Palaeoproterozoic</strong>-<strong>Mesoproterozoic</strong> Stratigraphy – George<strong>to</strong>wn regionCroydonVolc GroupYarman FmMalacura FmLanglovaleGroupLangdon River MdstRobertsonRiver SGpCandlow FmHeliman FmTownley FmLane Ck FmCorbett FmDead Horse MetabsltDaniel Creek FmBernecker Ck FmEtheridge GroupCobbold Metadoleriteamphibolitebiotite gneissEinasleigh MetamorphicsJuntalaMetsCassidy CkMetsorthogneisscalc-silicate gneissleucogneiss


Proterozoic Stratigraphic Units - Solid <strong>Geology</strong> – George<strong>to</strong>wn region50 km


Langlovale Group• Malacura Sands<strong>to</strong>ne (dominantly feldspathic sands<strong>to</strong>ne – shallowmarine or proximal turbidite?)• Yarman Formation (dominantly muds<strong>to</strong>ne with sandy intervals(distal <strong>to</strong> proximal turbidite – prodelta?)• Unconformable on Etheridge Group and overlain by CroydonVolcanic Group• MDA~1625Ma• Very minor Archaean- earliest <strong>Palaeoproterozoic</strong> component (1%)Malacura Sands<strong>to</strong>neYarman Formation


Langlovale Group• Malacura Sands<strong>to</strong>ne (dominantly feldspathic sands<strong>to</strong>ne – shallowmarine or proximal turbidite?)• Yarman Formation (dominantly muds<strong>to</strong>ne with sandy intervals(distal <strong>to</strong> proximal turbidite – prodelta?)• Unconformable on Etheridge Group and overlain by CroydonVolcanic Group• MDA~1625Ma• Very minor Archaean- earliest <strong>Palaeoproterozoic</strong> component (1%)


Langlovale Group• Malacura Sands<strong>to</strong>ne (dominantly feldspathic sands<strong>to</strong>ne – shallowmarine or proximal turbidite?)• Yarman Formation (dominantly muds<strong>to</strong>ne with sandy intervals(distal <strong>to</strong> proximal turbidite – prodelta?)• Unconformable on Etheridge Group and overlain by CroydonVolcanic Group• MDA ~1625Ma• Very minor Archaean- earliest <strong>Palaeoproterozoic</strong> component (1%)• Intruded by 1550Ma Esmeralda Supersuite201816mda = 1625 ± 5 MaMalacura Sands<strong>to</strong>ne2007169009All; n=73Number141210864Relative probability201500 1700 1900 2100 2300 2500 2700 2900Age (Ma)Yarman Formation


<strong>Palaeoproterozoic</strong>-<strong>Mesoproterozoic</strong> Stratigraphy – George<strong>to</strong>wn regionCroydonVolc GroupYarman FmMalacura FmLanglovaleGroupLangdon River MdstRobertsonRiver SGpCandlow FmHeliman FmTownley FmLane Ck FmCorbett FmDead Horse MetabsltDaniel Creek FmBernecker Ck FmEtheridge GroupCobbold Metadoleriteamphibolitebiotite gneissEinasleigh MetamorphicsJuntalaMetsCassidy CkMetsorthogneisscalc-silicate gneissleucogneiss


Proterozoic Stratigraphic Units - Solid <strong>Geology</strong> – George<strong>to</strong>wn region50 km


Croydon Volcanic Group• Dominated by almost flat-lying sheets <strong>of</strong> felsic ignimbrite• Undeformed and unmetamorphosed• Intruded by comagmatic granites <strong>of</strong> the Esmeralda Supersuite• Both granites and volcanics contain abundant graphitic enclaves– presumably derived from the Etheridge Group at depth• Geochemically peraluminous and reduced – S-types or I-typesmodified by assimilation?• Conventional U-Pb zircon age <strong>of</strong> 1552Ma


Proterozoic Stratigraphic Units - Solid <strong>Geology</strong> – George<strong>to</strong>wn regionInorunie Basin50 km


Inorunie Group• Unconformably overlies the Croydon Volcanic Group• Largely quartzose, micaceous fluviatile sands<strong>to</strong>ne• Undeformed and unmetamorphosed• Only age constraints are relationships with Croydon VolcanicGroup and overlying Permian volcanic rocks – could beNeoproterozoic <strong>to</strong> early Palaeozoic


<strong>Palaeoproterozoic</strong>-<strong>Mesoproterozoic</strong> Stratigraphy – George<strong>to</strong>wn regionCroydonVolc GroupYarman FmMalacura FmEsmeraldaSupersuiteLanglovaleGroupForsaythSupersuiteLangdon River MdstRobertsonRiver SGpCandlow FmHeliman FmGreenschistTownley FmLane Ck FmCorbett FmDead Horse MetabsltDaniel Creek FmBernecker Ck FmEtheridge GroupCobbold MetadoleriteAmphibolite -granulitebiotite gneissamphiboliteEinasleigh MetamorphicsAmphiboliteJuntalaMetsCassidy CkMetsorthogneisscalc-silicate gneissleucogneiss


Proterozoic Stratigraphic Units - Solid <strong>Geology</strong> – George<strong>to</strong>wn region


Migmatitic graniteBiotite gneissEinasleigh Metamorphics• Psammopelitic gneisses (biotite & calc-silicate types); common mafics; rareleucogneiss (feldspathic psammite?) –> migmatite and anatectic granite• Previously correlated with lower part <strong>of</strong> Etheridge Group – gradationalboundary - may be partly true, but geochemistry and zircons suggestprovenance differences• Upper amphibolite <strong>to</strong> transitional granulite metamorphismCalc-silicate gneissLeucogneissLeucogneiss


Einasleigh Metamorphics• Psammopelitic gneisses (biotite & calc-silicate types); common mafics; rareleucogneiss (feldspathic psammite?) –> migmatite and anatectic granite• Previously correlated with lower part <strong>of</strong> Etheridge Group – gradationalboundary - may be partly true, but geochemistry and zircons suggestprovenance differences• Upper amphibolite <strong>to</strong> transitional granulite metamorphism• Age constraints‣ 1700Ma SHRIMP on detrital zircons in leucogneiss (epiclastic sediments froma felsic igneous source – Black & others, 2005)Complex provenance forleucogneiss in the western areaRelatively simple zircon populations in leucogneiss in theLyndhurst area suggesting a 1565Ma metamorphic even<strong>to</strong>verprinting a single ca 1700Ma igneous provenance


Einasleigh Metamorphics• Psammopelitic gneisses (biotite & calc-silicate types); common mafics; rareleucogneiss (feldspathic psammite?) –> migmatite and anatectic granite• Previously correlated with lower part <strong>of</strong> Etheridge Group – gradationalboundary - may be partly true, but geochemistry and zircons suggestprovenance differences• Upper amphibolite <strong>to</strong> transitional granulite metamorphism• Age constraints‣ 1700Ma SHRIMP on detrital zircons in leucogneiss (epiclastic sediments froma felsic igneous source – Black & others, 2005)‣ ~1690Ma SHRIMP on zircons from gneissic granite gives minimum age~1675Ma SHRIMP on zircons from amphiboliteintruding 1695Ma granite gneiss


Einasleigh Metamorphics• Psammopelitic gneisses (biotite & calc-silicate types); common mafics; rareleucogneiss (feldspathic psammite?)• Previously correlated with lower part <strong>of</strong> Etheridge Group – gradationalboundary - may be partly true, but geochemistry and zircons suggestprovenance differences• Upper amphibolite <strong>to</strong> transitional granulite metamorphism• Age constraints‣ 1700Ma SHRIMP on detrital zircons in leucogneiss (epiclastic sediments froma felsic igneous source – Black & others, 2005)‣ ~1690Ma SHRIMP on zircons from trondhjemitic gneissic granite‣ ~1675Ma SHRIMP on zircons from amphibolite intruding 1695Ma granitegneiss


Einasleigh Metamorphics• Psammopelitic gneisses (biotite & calc-silicate types); common mafics; rareleucogneiss (feldspathic psammite?)• Previously correlated with lower part <strong>of</strong> Etheridge Group – gradationalboundary - may be partly true, but geochemistry and zircons suggestprovenance differences• Upper amphibolite <strong>to</strong> transitional granulite metamorphism• Age constraints‣ 1700Ma SHRIMP on detrital zircons in leucogneiss (epiclastic sedimentsfrom a felsic igneous source – Black & others, 2005)‣ ~1690Ma SHRIMP on zircons from trondhjemitic gneissic granite‣ ~1675Ma SHRIMP on zircons from amphibolite intruding 1695Ma granitegneiss‣ Detrital ages <strong>of</strong> both biotite and calc-silicate paragneisses, have beenobtained, but need more interpretation - spread <strong>of</strong> ages between ~1670 and3240 Ma, with no big groups – some clusters between 1700 and 1900 Ma and2300 and 2600


Proterozoic solid geology – George<strong>to</strong>wn region, showing grani<strong>to</strong>idsForsayth Forsayth Batholith BatholithMigmatitic grani<strong>to</strong>idEsmeralda Esmeralda SupersuiteSupersuiteForest HomeTrondhjemite


<strong>Mesoproterozoic</strong> Grani<strong>to</strong>ids• Forest Home Supersuite –– biotite trondhjemite –– no magmatic zircon butxenocrysts with cores ~1650Ma• Migmatitic (nebulitic) grani<strong>to</strong>ids with abundant restite in the EinasleighMetamorphics – SHRIMP ages <strong>of</strong> ~1560Ma• Lighthouse Supersuite – irregular gneissic <strong>to</strong> pegmatitic leucogranite – U-Pbmulti-grain TIMS ages ~1560Ma• Forsayth Supersuite – locally deformed, peraluminous S-type granitesdominated by grey porphyritic muscovite-biotite granite – U-Pb multi-grainTIMS ages ~1550Ma• Esmeralda Supersuite – undeformed peraluminous S-type (or I-type graniteswith significant assimilation) granite intruding and comagmatic with theCroydon Volcanic Group


Proterozoic structural domains & solid geology – George<strong>to</strong>wn regionEINASLEIGH SUBPROVINCEGILBERT FOLD BELTSAVANNAHPROVINCECROYDON PROVINCECLARAVILLE PROVINCE


Deformation & metamorphismGilbert Fold beltRegional studies have suggested the following eventsD1• mainly E-W folds with strong cleavage/foliation• dominant regional structures;• lower greenschist <strong>to</strong> amphibolite metamorphism• usually thought <strong>to</strong> be ~1590Ma, based on SHRIMP dates from Dargalong areafarther north.D2• approx N-S folds superimposed on E-W structures,• restricted <strong>to</strong> E half <strong>of</strong> outcrop area;• multiple mesoscopic fabrics;• most workers have associated D2 with peak amphibolite facies metamorphismand emplacement <strong>of</strong> Forsayth Supersuite (S-type anatectic granites) andcommon metamorphic zircon growth at 1550-1560MaD3 - E-W folds, restricted <strong>to</strong> central part <strong>of</strong> areaLater open folds, possibly early Palaeozoic


Robertson River areaDeformation & metamorphismHowever, detailed microstructural (FIA analysis <strong>of</strong> porphyroblasts) & CHIMEdating <strong>of</strong> monazite from the Robertson River area give a somewhat differentpicture (Cihan & others, JCU)Porphyroblasts containing FIA1 <strong>to</strong> FIA3, overgrew a S1/S2 matrix foliationFIA1 and FIA2 related <strong>to</strong> early N-S shortening associated with monazite dated at1625±15 MaFIA3 related <strong>to</strong> E-W shortening associated with monazite dated at 1586±6 MaThermobarometry indicates pressure increased progressively <strong>to</strong> 6-7kb duringFA1 <strong>to</strong> FA3S3 – a flat lying fabric associated with matrix monazite dated at 1564±8 MaProbably related <strong>to</strong> decompression and exhumationFIA4 related <strong>to</strong> NW-SE shortening associated with monazite dated at 1542±8 MaAssociated with lower pressure-high temperature metamorphism at 3-4kbS4 younger fabric associated with with monazite dated at 1512±5 Ma


Einasleigh MetamorphicsStructural his<strong>to</strong>ry not well constrainedDeformation & metamorphismMultiple foliations, including an early composite layer-parallel foliation, on whichare superimposed broadly E-W and N-S regional foldsExtensive migmatite terrains grading in<strong>to</strong> anatectic granite with SHRIMP zirconpopulations <strong>of</strong> ~1560Ma (magmatic?) and 1568, 1595 and 1617Ma inheritanceMetamorphic zircons at 1552Ma in amphibolite and mafic granulite and ~1560Main leucogneiss and paragneiss; inferred <strong>to</strong> date D2/M2Work by Quin<strong>to</strong>n Hills (Monash) suggests that 1675Ma amphibolite postdates amigmatitic layering – amphibolite at Einasleigh also appears <strong>to</strong> postdate and earlyfoliationTherefore Einasleigh Metamorphics or part there<strong>of</strong> may be basement <strong>to</strong> the res<strong>to</strong>f the Etheridge Group


Deformation & metamorphismLanglovale Group (Savannah or Kowanyama Province?)• Unconformable on Etheridge Group – truncates major E-W folds• Open folding with E-W shortening (D2 in Etheridge Group?), but no cleavage• Unconformably overlain by Croydon Volcanic Group and intruded by EsmeraldaSupersuite• Not metamorphosed (except contact metamorphism by Esmeralda Supersuite)• Relationships and zircon MDA indicate older than 1550Ma and younger than1625Ma• Tentatively considered part <strong>of</strong> Savannah Province (best developed in CoenInlier), but could be Kowanyama Province that lies in subsurface betweenGeorge<strong>to</strong>wn & Mt IsaCroydon Province• Not metamorphosed• Dominated by almost flat-lying sheets <strong>of</strong> felsic ignimbrite


Deformation & metamorphismReconciling the regional analysis and SHRIMP dating with the JCU detailed studiesis difficult, but allowing for the statistics for the CHIME dates being somewhatrubbery, the following is a possibility• Possible metamorphic and deformation pre-1675Ma (post 1690Ma?) in theEinasleigh Metamorphics• D1 - N-S shortening at ~1620Ma• D2 – E-W shortening at ~1590Mamedium P-T metamorphism• Uplift and retrogressive metamorphism sometime between 1590 and 1560Ma• D3 - NW-SE shortening and low pressure-high temperature metamorphism at1560-1550Ma, associated with main metamorphic zircon growth andemplacement <strong>of</strong> Forsayth Batholith and Croydon Volcanic Group and EsmeraldaSuite• D4 – possibly 1510Ma• Subsequent Palaeozoic events


<strong>Palaeoproterozoic</strong>-<strong>Mesoproterozoic</strong> Stratigraphy – George<strong>to</strong>wn regionCroydon VolcGroupYarman FmMalacura Fm~1786Ma~1785MaEsmeraldaSupersuiteLangdon River MdstRobertsonRiver SGp1663±13MaCandlow FmLanglovaleGroup ~1625MaHeliman FmTownley FmLane Ck FmCorbett FmDead Horse MetabsltDaniel Creek FmBernecker Ck FmD3 1550-1560Ma~1655Ma~1550Ma~1650MaCobbold Metadolerite1656±2Mabiotite gneissEtheridgeGroupForsaythSupersuiteD1/D2 1620-1590Maamphibolite1675±3MaEinasleigh Metamorphics~1550-1560MaMagmatic ageMax dep ageJuntalaMetsCassidy CkMets~1695Ma~1845Ma1685-1695Maorthogneisscalc-silicate gneissleucogneiss~1705Ma


Deep crustalseismic transectsTasman LineCOENINLIERYAMBO HODGKINSONINLIER BASINOther ProterozoicInliers – northernGeorge<strong>to</strong>wn(Dargalong)GEORGETOWNINLIERMT ISAINLIERTasman Line


Other Proterozoic Inliers – northern George<strong>to</strong>wn (Dargalong)Dargalong Metamorphic GroupFig Tree GraniteMcDevitt MetamorphicsLane Creek Formation


Other Proterozoic Inliers – northern George<strong>to</strong>wn (Dargalong)•McDevitt Metamorphics– Laminated <strong>to</strong> thin-bedded metapelites & subordinate meta-sands<strong>to</strong>ne,quartzite & mafic sills– No iso<strong>to</strong>pic constraints, but lithologically like Corbett and Lane CreekFormations in the Etheridge Group– Intruded by Fig Tree Hill Granite (part <strong>of</strong> Forsayth Supersuite)•Dargalong Metamorphic Group– Migmatitic gneiss, augen gneiss, amphibolite, schist, quartzite and minorcalc-silicate gneiss– Iso<strong>to</strong>pic constraints• Mylonitised granodioritic <strong>to</strong> <strong>to</strong>nalitic gneisses; 1586±5Ma and 1580±4Ma(Blewett et al., 1998)Note that these are orthogneisses and ages probably reflect anatexis andpeak <strong>of</strong> metamorphism – therefore original age <strong>of</strong> paragneisses is stillunknown


Tasman LineCOENINLIEROther ProterozoicInliers – YamboDeep crustalseismic transectsYAMBOINLIERHODGKINSONBASINGEORGETOWNINLIERMT ISAINLIERTasman Line


Other Proterozoic Inliers – YamboOswald SchistSaraga SchistChuka QuartziteChelmsford GneissPombete GneissArkara GneissPalmerville FaultHodgkinson Province


Other Proterozoic Inliers – Yambo•Yambo Metamorphic Group– Divided in<strong>to</strong> 13 metamorphic units– High-grade metasedimentary and meta-igneous rocks– Sedimentary pro<strong>to</strong>liths inferred <strong>to</strong> be fine-grained siliciclastic rocks– Iso<strong>to</strong>pic constraints (Blewett et al., 1998)• Mafic granulite – zoned zircon with an age <strong>of</strong> 1586±4Ma interpreted <strong>to</strong> bean igneous age• Sericite-garnet gneiss – igneous zircon modified by metamorphismgives an age <strong>of</strong> 1585±6Ma• Granodioritic gneiss; rims at 1576±5Ma and cores at 1581±8Ma and1636±13Ma• Mylonitic granitic gneiss with a complex spectrum <strong>of</strong> zircon ages; rimsat 1579±4Ma (metamorphic age) and youngest group <strong>of</strong> cores 1642±7MaNote again that these are orthogneisses and ages probably reflect anatexisand peak <strong>of</strong> metamorphism – therefore original age <strong>of</strong> paragneisses isstill unknown


COENINLIEROther ProterozoicInliers – CoenTasman LineDeep crustalseismic transectsYAMBOINLIERHODGKINSONBASINGEORGETOWNINLIERMT ISAINLIERTasman Line


Other Proterozoic Inliers – Coen•Newberry Metamorphic Group– Divided in<strong>to</strong> 3 named units– High-grade metasedimentary and meta-igneous rockssimilar <strong>to</strong> Yambo Metamorphic Group– Sedimentary pro<strong>to</strong>liths uncertain– Iso<strong>to</strong>pic constraints (Blewett et al., 1998)• Felsic gneisses; ages <strong>of</strong> 1564±12Ma and 1561±15Maare probably metamorphic ages• Cores in one sample yield an age <strong>of</strong> 1638±9Ma•Coen Metamorphic Group– Divided in<strong>to</strong> 4 metamorphic units– Schist, gneiss and lesser quartzite; lacks orthogneissand mafic rocks <strong>of</strong> Newberry and Yambo MetamorphicGroups– Iso<strong>to</strong>pic constraints (OZCHRON)• Feldspathic gneiss has zircons with zoned igneousrims <strong>of</strong> 1554±4Ma (possibly in situ partial melting)with cores at ~1585, ~1700 and 1770Ma


Other Proterozoic Inliers – Coen•Holroyd Group– Divided in<strong>to</strong> 5 named units– Fine <strong>to</strong> medium-grained clastic sediments becomingmore pelitic <strong>to</strong> east– Some mafic rocks with MORB-like geochemistry– Iso<strong>to</strong>pic constraints (OZCHRON)• Laminated slate has a MDA <strong>of</strong> 1560±22Ma with a widerange <strong>of</strong> older ages up <strong>to</strong> ~3300Ma• Phyllite has a MDA <strong>of</strong> 1550±10Ma with other agegroups at ~1593, ~1639 1696 and ~1750Ma• Zircon rims in a gneiss sample have an age <strong>of</strong>1430±10Ma•Edward River Metamorphic Group– Divided in<strong>to</strong> 5 named units– Similar siliciclastic sedimentary rocks <strong>to</strong> Holroyd Group– No iso<strong>to</strong>pic constraints•Sef<strong>to</strong>n Metamorphics– Schist, quartzite, phyllite, greens<strong>to</strong>ne, marble, calcsilicatesand irons<strong>to</strong>ne– MDA zircon age <strong>of</strong> ~1200Ma – probably Neoproterozoic <strong>to</strong>Cambrian


Correlations between InliersEtheridge Province – deposited between 1700and ~1620Ma; with multiple deformation eventsaccompanied by metamorphism from 1620 <strong>to</strong>1550Ma•Forsayth SubprovinceEtheridge Group (including EinasleighMetamorphics & McDevitt Metamorphics)•Yambo SubprovinceDargalong, Yambo, Newberry & CoenMetamorphic GroupsSavannah Province – MDA <strong>of</strong> ~1550-1560Ma sounconformable on Etheridge Province; possiblemetamorphism around 1430Ma and in Silurian-DevonianHolroyd & Edward River MetamorphicGroupsLanglovale Group (deposited in interval 1625-1550Ma) may be part <strong>of</strong> the Savannah Provinceor could be Kowanyama Province (unknownrocks in subsurface between Mt Isa andGeorge<strong>to</strong>wn)


Correlating George<strong>to</strong>wn and Mt Isa Successions?????????LanglovaleGroupUpperEtheridgeLowerEtheridge


Correlating George<strong>to</strong>wn and Mt Isa Successionsε N d• Deposited after ~1625 Ma-1-2• Dominated by Proterozoicdetrital agesPrimitivesignature• Deposited after ~1655 Ma-3• Dominated by Proterozoicdetrital agesMDA 1658Ma-1Toole Ck-2-5-5KuridalaMDA 1670MaMt NornaLlewellyn CkEvolvedsignature-4-8-8-8• Deposited between ~1700 Maand ~1660 Ma• Dominated by Archaeanearliest<strong>Palaeoproterozoic</strong>detrital ages


Correlating George<strong>to</strong>wn and Mt Isa Successions10080MountMountIsaIsaInlierInlierLeichhardt Superbasin 100Leichhardt SuperbasinMount Mount Isa Isa Inlier Inlier7 samples;7 samples;n=466n=466EasternEasternSuccessionSuccessionlowstandlowstand66samples;samples;n=419n=41980Number6040Relative probabilityNumber6040Relative probability2020020George<strong>to</strong>wn Inlierlower Etheridge Group3 samples; n=227060George<strong>to</strong>wn InlierUpper upper Etheridge Group3 samples; n=216 n=21650Number1510Relative probabilityNumber4030Relative probability2051001500 1700 1900 2100 2300 2500 2700 2900Age (Ma)01500 1700 1900 2100 2300 2500 2700 2900Age (Ma)


Correlating George<strong>to</strong>wn and Mt Isa SuccessionsMaximum depositional ages for the Etheridge Group are similar <strong>to</strong> those <strong>of</strong>the Soldiers Cap and Mt Isa Groups and deformation events appear <strong>to</strong>correlate BUT ……•The provenance <strong>of</strong> the lower Etheridge Group is very different <strong>to</strong> any Mt IsaInlier Proterozoic sediments.•The provenance <strong>of</strong> the upper Etheridge Group is similar <strong>to</strong> Mount Isa Inlier,but requires an E-W event between ~1660 and 1640 Ma <strong>to</strong> bring these terranes<strong>to</strong>gether.Other differences between George<strong>to</strong>wn and Mt Isa:•Normal geothermal gradient (clockwise P-T-t with superimposed high templowpressure event) vs dominantly high geothermal gradient (anti-clockwiseP-T-t) (e.g. Boger & Hansen, 2004; Cihan et al., 2006; Rubenach 1992)•Intensity <strong>of</strong> N-S folding decreases westwards <strong>to</strong>wards Mt Isa•E-W vs N-S directed structural grain (e.g. O’Dea et al., 1997)•S-type vs I- and A-type magmatism at ~1555 Ma (e.g. Black & McCulloch, 1990;Wyborn et al., 1992)•Any rigorous geodynamic model needs <strong>to</strong> take these differences in<strong>to</strong>account

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!