13.07.2015 Views

Hedging and Optimization Problems in Continuous-Time Financial ...

Hedging and Optimization Problems in Continuous-Time Financial ...

Hedging and Optimization Problems in Continuous-Time Financial ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Hedg<strong>in</strong>g</strong> <strong>and</strong> <strong>Optimization</strong> <strong>Problems</strong> <strong>in</strong>Cont<strong>in</strong>uous-<strong>Time</strong> F<strong>in</strong>ancial Models ∗Huyên PHAMLaboratoire de Probabilités etModèles AléatoiresUMR 7599Université Paris 72 Place Jussieu75251 Paris Cedex 05e-mail : pham@gauss.math.jussieu.fr<strong>and</strong> CREST, Laboratoire de F<strong>in</strong>ance-Assurance.September 1999AbstractThis paper gives an overview of the results <strong>and</strong> developments <strong>in</strong>the area of hedg<strong>in</strong>g cont<strong>in</strong>gent claims <strong>in</strong> an <strong>in</strong>complete market. Westudy three hedg<strong>in</strong>g criteria. We first present the superhedg<strong>in</strong>g approach.We then study the mean-variance criterion <strong>and</strong> f<strong>in</strong>ally, we describethe shortfall risk m<strong>in</strong>imization problem. From a mathematicalviewpo<strong>in</strong>t, these optimization problems lead to nonst<strong>and</strong>ard stochasticcontrol problems <strong>in</strong> PDE <strong>and</strong> new variants of decomposition theorems<strong>in</strong> stochastic analysis.∗ Lecture presented at ISFMA Symposium on Mathematical F<strong>in</strong>ance, Fudan University(August 1999).1


V T = H, a.s., or <strong>in</strong> other words, if H can be written as the sum of a constant<strong>and</strong> a stochastic <strong>in</strong>tegral with respect to S :H = H 0 +∫ T0θ H t dS t . (1.1)We say that the market is complete if every cont<strong>in</strong>gent claim is atta<strong>in</strong>able.However, completeness of the market is a property largely denied byempirical studies on f<strong>in</strong>ancial market, focus<strong>in</strong>g attention of researchers onextensions of the Black-Scholes model : stochastic volatility models, jumpdiffusionmodels. In this case, given an arbitrary cont<strong>in</strong>gent claim H, representation(1.1) is no more possible <strong>and</strong> we say that the market is <strong>in</strong>complete.We mention that there are many others modifications of the Black-Scholes model destroy<strong>in</strong>g the completeness property : These are portfolioconstra<strong>in</strong>ts, transaction costs on trad<strong>in</strong>g, etc ... More generally, we speakof imperfect markets. In this paper, we focus ma<strong>in</strong>ly on the <strong>in</strong>completenesssituation. For a nonatta<strong>in</strong>able cont<strong>in</strong>gent claim, it is then impossible to f<strong>in</strong>da self-f<strong>in</strong>anc<strong>in</strong>g strategy with f<strong>in</strong>al value equal to H. The problem of pric<strong>in</strong>g<strong>and</strong> hedg<strong>in</strong>g can then be formulated as follows : Approximate a cont<strong>in</strong>gentclaim H by the family of term<strong>in</strong>al wealth of self-f<strong>in</strong>anc<strong>in</strong>g strategies. Ofcourse, the approximation depends on the choice of the risk measure <strong>and</strong>leads to various stochastic optimization problems. A first approach is tolook<strong>in</strong>g for trad<strong>in</strong>g strategies with term<strong>in</strong>al value V T larger than H : Inthis case, one (super)hedges the cont<strong>in</strong>gent claim. This idea, <strong>in</strong>troducedby Bensaid, Lesne, Pagès <strong>and</strong> Sche<strong>in</strong>kman (1992), is beh<strong>in</strong>d the concept ofsuperreplication. An alternative approach is to <strong>in</strong>troduce subjective criteriaaccord<strong>in</strong>g to which strategies are chosen. The measure of risk<strong>in</strong>ess bya mean-variance criterion was first proposed by Föllmer <strong>and</strong> Sondermann(1986), <strong>and</strong> consists <strong>in</strong> m<strong>in</strong>imiz<strong>in</strong>g the expected square of the replicationerror between the cont<strong>in</strong>gent claim <strong>and</strong> the term<strong>in</strong>al portfolio wealth. Onedrawback of this approach is the fact that one penalizes both situationswhere the term<strong>in</strong>al wealth is larger or smaller than H. F<strong>in</strong>ally, a third measureof risk<strong>in</strong>ess that circumvents this last po<strong>in</strong>t, is proposed by Föllmer <strong>and</strong>Leukert (1998). It consists <strong>in</strong> m<strong>in</strong>imiz<strong>in</strong>g the expected shortfall (H − V T ) +weighted by some loss function.The paper is organized as follows. Section 2 <strong>in</strong>troduces the model <strong>and</strong>formulates the hedg<strong>in</strong>g problems. Section 3 describes <strong>in</strong> detail the super-3


hedg<strong>in</strong>g approach. In Section 4, we study the mean-variance hedg<strong>in</strong>g criterion<strong>and</strong> the f<strong>in</strong>al Section 5 is devoted to the shortfall risk m<strong>in</strong>imizationproblem.I would like to thank the organizers of the ISFMA symposium on mathematicalf<strong>in</strong>ance at Fudan university, for their <strong>in</strong>vitation, especially RamaCont, J<strong>in</strong>hai Yan, Professors Li Ta-tsien <strong>and</strong> Jiongm<strong>in</strong> Yong.2 <strong>Hedg<strong>in</strong>g</strong> problems2.1 The modelWe consider a f<strong>in</strong>ancial market that operates <strong>in</strong> uncerta<strong>in</strong> conditions describedby a probability space (Ω, F, P ) equipped with a filtration IF ={F t } 0≤t≤T represent<strong>in</strong>g the flow of <strong>in</strong>formation on [0, T ]. For simplicity, weassume that F 0 is trivial <strong>and</strong> F T = F. There are d + 1 assets <strong>in</strong> the market.The 0-th asset is riskless, equal to 1 at any time. The last d assets couldbe risky (typically stocks), <strong>and</strong> their price process is given by an IR d -valuedsemimart<strong>in</strong>gale S.An important notion <strong>in</strong> mathematical f<strong>in</strong>ance is the set of equivalentmart<strong>in</strong>gale measures : We letP = {Q ∼ P : S is a Q − local mart<strong>in</strong>gale}denote the set of probability measures Q on F equivalent to P <strong>and</strong> suchthat S is a local mart<strong>in</strong>gale under Q. We shall assume that :P ≠ ∅. (2.1)This st<strong>and</strong><strong>in</strong>g assumption is related to some k<strong>in</strong>d of no-arbitrage condition<strong>and</strong> we refer to Delbaen <strong>and</strong> Schachermayer (1994) for a general versionof this first fundamental theorem of asset pric<strong>in</strong>g.A trad<strong>in</strong>g portfolio strategy is an IR d -valued predictable process θ, <strong>in</strong>tegrablewith respect to S. We denote θ ∈ L(S) <strong>and</strong> we refer to Jacod (1979)for vector stochastic <strong>in</strong>tegration with respect to a semimart<strong>in</strong>gale. Here θ trepresents the number of shares <strong>in</strong>vested <strong>in</strong> the assets of price S. Givenan <strong>in</strong>itial capital x ∈ IR <strong>and</strong> a trad<strong>in</strong>g strategy θ ∈ L(S), the self-f<strong>in</strong>anced4


wealth process is governed by :∫ tV x,θt = x +0θ u dS u , 0 ≤ t ≤ T.2.2 Formulation of the problemAn (European) cont<strong>in</strong>gent claim is an F T -measurable r<strong>and</strong>om variable. Typicalexamples are call option of exercice price κ on the i-th asset S i , H =(ST i − κ)+ <strong>and</strong> put option of exercice price κ on the i-th asset S i , H =(κ − ST i )+ . More generally, H may depend on the whole history of S up totime T .<strong>Hedg<strong>in</strong>g</strong> of the cont<strong>in</strong>gent claim H <strong>in</strong> the f<strong>in</strong>ancial market described <strong>in</strong>the previous paragraph consists <strong>in</strong> approximat<strong>in</strong>g H by the term<strong>in</strong>al wealthvalues V x,θT. We say that the market is complete if every cont<strong>in</strong>gent claimH can be represented as :∫ TH = V H 0,θ HT= H 0 +0θu H dS u , (2.2)for some H 0 ∈ IR <strong>and</strong> θ ∈ L(S). Completeness property depends on the classof cont<strong>in</strong>gent claims <strong>and</strong> trad<strong>in</strong>g strategies considered <strong>and</strong> one has to precisethe <strong>in</strong>tegrability conditions on H <strong>and</strong> θ. Under the no-arbitrage assumption(2.1), a sufficient condition ensur<strong>in</strong>g the completeness of the market is thatthe set of equivalent mart<strong>in</strong>gale measures P is reduced to a s<strong>in</strong>gleton. Thisresult follows from general results on mart<strong>in</strong>gale representation due to Jacod(1979) <strong>and</strong> is applied for the purpose of f<strong>in</strong>ance theory <strong>in</strong> Harrison <strong>and</strong> Pliska(1981). In this case, one can perfectly hedge (approximate) H by V H 0,θ HT.The <strong>in</strong>itial capital H 0 is a fair price of H <strong>and</strong> θ H is called perfect replicat<strong>in</strong>gstrategy of H. Typical example of complete market is the classical Black-Scholes model.In the general semimart<strong>in</strong>gale model of Section 1, given an arbitraryH, representation (2.2) is no more possible. We say that the market is<strong>in</strong>complete <strong>and</strong> <strong>in</strong> this case the set of equivalent mart<strong>in</strong>gale measures P is<strong>in</strong>f<strong>in</strong>ite. Typical examples of <strong>in</strong>complete markets are stochastic volatilitymodels <strong>and</strong> jump-diffusion models. In such a context, one can no moreperfectly hedge (approximate) H by V x,θT<strong>and</strong> one has to choose a hedg<strong>in</strong>gcriteria. From a mathematical viewpo<strong>in</strong>t, this leads to various stochastic5


optimization problems. In the sequel, we shall study the follow<strong>in</strong>g threehedg<strong>in</strong>g criteria :- Superhedg<strong>in</strong>g approach- Mean-variance hedg<strong>in</strong>g criterion- Shortfall risk m<strong>in</strong>imization3 The superhedg<strong>in</strong>g approachWe are given a nonnegative cont<strong>in</strong>gent claim of the form H = g(S T ), whereg is a cont<strong>in</strong>uous function from IR d <strong>in</strong>to IR + , with l<strong>in</strong>ear growth condition.The <strong>in</strong>tegrability conditions on the trad<strong>in</strong>g strategies are def<strong>in</strong>ed as follows.Given x ≥ 0, we say that a trad<strong>in</strong>g strategy θ ∈ L(S) is admissible, <strong>and</strong> wenote θ ∈ A(x), if V x,θt ≥ 0, for all t <strong>in</strong> [0, T ]. The superhedg<strong>in</strong>g approachconsists <strong>in</strong> look<strong>in</strong>g for an <strong>in</strong>itial capital x ≥ 0 <strong>and</strong> an admissible trad<strong>in</strong>gstrategy θ ∈ A(x), such that :∫ TV x,θT= x +0θ t dS t ≥ H = g(S T ), a.s.In this case, we say that the cont<strong>in</strong>gent claim H is superhedged (dom<strong>in</strong>ated).We def<strong>in</strong>e then the superreplication (superhedg<strong>in</strong>g) cost of H as the least<strong>in</strong>itial capital that allows the superhedg<strong>in</strong>g of H :U 0 = <strong>in</strong>f{x ≥ 0 : ∃θ ∈ A(x), V x,θT≥ g(S T )}.This is a nonst<strong>and</strong>ard stochastic control problem <strong>and</strong> we describe differentmethods for solv<strong>in</strong>g this problem, i.e. calculate U 0 <strong>and</strong> the associatedoptimal control.3.1 Dual approachThe start<strong>in</strong>g po<strong>in</strong>t of the dual approach is to notice that for any Q ∈ P, x ≥0 <strong>and</strong> θ ∈ A(x), the wealth process V x,θ is a nonnegative local mart<strong>in</strong>gale,hence a supermart<strong>in</strong>gale, under Q. It follows that :E Q [V x,θT] ≤ x. (3.1)6


Now, let x ≥ 0 such that there exists θ ∈ A(x) : X x,θT≥ g(S T ). By (3.1),we then have :E Q [g(S T )] ≤ x, ∀ Q ∈ P,<strong>and</strong> so by def<strong>in</strong>ition of the superreplication cost :V 0 := sup E Q [g(S T )] ≤ U 0Q∈PThe dual approach consists <strong>in</strong> study<strong>in</strong>g <strong>and</strong> calculat<strong>in</strong>g V 0 <strong>and</strong> then U 0 .Remark 3.1 Actually, we have the equality V 0 = U 0 . The converse <strong>in</strong>equalityV 0 ≥ U 0 is proved by us<strong>in</strong>g optional decomposition for supermart<strong>in</strong>gales,first proved by El Karoui <strong>and</strong> Quenez (1995) <strong>and</strong> then extended by Kramkov(1996). This theorem states that if V is a supermart<strong>in</strong>gale under any Q ∈P, then V admits a decomposition of the form :∫ tV t = V 0 + θ u dS u − C t , 0 ≤ t ≤ T, (3.2)0where θ ∈ L(S) <strong>and</strong> C is an optional nondecreas<strong>in</strong>g process. Apply<strong>in</strong>g thistheorem to the RCLL version of the process V t = esssup Q∈P E Q [g(S T )|F t ],we deduce from (3.2) for t = T , that g(S T ) ≤ V V 0,θT. By def<strong>in</strong>ition of thesuperreplication cost, this shows that V 0 ≥ U 0 . We mention that we don’tneed the equality <strong>in</strong> the dual approach but only the easy <strong>in</strong>equality V 0 ≤U 0 .Application : Stochastic volatility modelsWe use the dual approach to the computation of V 0 <strong>and</strong> of the superreplicationcost U 0 <strong>in</strong> the context of stochastic volatility models. This applicationis developed <strong>in</strong> Cvitanić, Pham <strong>and</strong> Touzi (1999a), see also Frey <strong>and</strong> S<strong>in</strong>(1999).We consider a st<strong>and</strong>ard stochastic volatility diffusion model :)dS t = S t(µ(t, S t , Y t )dt + σ(t, S t , Y t )dWt1 (3.3)dY t = η(t, S t , Y t )dt + γ(t, S t , Y t )dW 2 t . (3.4)7


Here Y is an exogeneous factor <strong>in</strong>fluenc<strong>in</strong>g the volatility of the stockprice S <strong>and</strong> IF is the augmented filtration generated by the two-dimensionalBrownian motion (W 1 , W 2 ). In this model, we have a parametrization ofequivalent mart<strong>in</strong>gale measures : Consider the processZ ν t = exp(−(exp −∫ t0∫ t0µσ (u, S u, Y u )dWu 1 − 1 2ν u dWu 2 − 1 ∫ t )ν 22udu ,0∫ t0( µσ) 2(u, S u , Y u )du)where ν is an IF -adapted process satisfy<strong>in</strong>g ∫ T0 ν2 udu < ∞. Denote by D theset of processes ν such that E[ZT ν ] = 1. Then one can def<strong>in</strong>e a probabilitymeasure P ν equivalent to P , by dP ν /dP = ZT ν , <strong>and</strong> we have P = {P ν , ν ∈D}. It follows that :V 0 = V (0, S 0 , Y 0 ) := sup E P ν [g(S T )] (≤ U 0 ).ν∈DWe are then led to a more st<strong>and</strong>ard stochastic control problem, by study<strong>in</strong>gthe value function V (t, s, y). Indeed, by usual dynamic programm<strong>in</strong>gpr<strong>in</strong>ciple, one shows that the value function V is a supersolution (<strong>in</strong> theviscosity sense) of the Bellman equation :− ∂V{∂t + <strong>in</strong>f −(η − νγ) ∂Vν∈IR∂y − 1 2 σ2 s 2 ∂2 V∂s 2 − 1 }2 γ2 ∂2 V∂y 2= 0,for all (t, s, y) ∈ [0, T ) × (0, ∞) × IR, <strong>and</strong> satisfies the term<strong>in</strong>al conditionV (T − , s, y) ≥ g(s).We show (formally by send<strong>in</strong>g ν to ±∞ <strong>in</strong> Bellman equation) that :V does not depend on y : V (t, s, y) = V (t, s)so that V is supersolution of :.<strong>in</strong>fy∈IR{− ∂V∂t − 1 }2 σ2 (t, s, y)s 2 ∂2 V∂s 2= 0, (3.5)8


At this po<strong>in</strong>t, the explicit calculation of V depends on the <strong>in</strong>terval of variationof the volatility :[<strong>in</strong>fyσ(t, s, y), sup σ(t, s, y)] = [σ(t, s), ¯σ(t, s)].We shall dist<strong>in</strong>guish two cases.Case 1 : unbounded volatility modely¯σ(t, s) = ∞ <strong>and</strong> σ(t, s) = 0. (3.6)From the Bellman equation <strong>and</strong> the conditions (3.6), we show that :V is concave <strong>in</strong> s <strong>and</strong> V is non<strong>in</strong>creas<strong>in</strong>g <strong>in</strong> tUs<strong>in</strong>g also the term<strong>in</strong>al condition V (T − , s, y) ≥ g(s), this shows that V (0, S 0 )≥ ĝ(S 0 ), where ĝ is the concave envelope of g, i.e. the least concave majorantfunction of g. Moreover, s<strong>in</strong>ce ĝ is concave <strong>and</strong> is a majorant of g, wehave :ĝ(S 0 ) + ĝ ′ −(S 0 )(S T − S 0 ) ≥ ĝ(S T ) ≥ g(S T ),where ĝ ′ − is the left derivative of ĝ. This shows that g(S T ) can be superhedgedfrom an <strong>in</strong>itial capital ĝ(S 0 ) <strong>and</strong> follow<strong>in</strong>g the constant strategyĝ ′ −(S 0 ). We deduce that ĝ(S 0 ) ≥ U 0 ≥ V (0, S 0 ). In conclusion, we obta<strong>in</strong> :U 0 = V (0, S 0 ) = ĝ(S 0 )θ ∗ = ĝ ′ −(S 0 ) (constant : trivial buy-<strong>and</strong>-hold strategy).Case 2 :Paras)Model with bounded volatility (Avellaneda, Lévy <strong>and</strong>¯σ(t, s) < ∞ <strong>and</strong> σ(t, s) ≥ ε > 0.Then there exists an unique smooth solution W to the nonl<strong>in</strong>ear PDE,called Black-Scholes-Barenblatt (BSB <strong>in</strong> short) PDE :9


− ∂W ∂t + 1 (∂2 ¯σ2 (t, s)s 2 2 )W∂s 2+− 1 (∂2 σ2 (t, s)s 2 2 )W∂s 2−= 0, (3.7)W (T, s) = g(s). (3.8)Actually, this Black-Scholes-Barenblatt PDE is the Bellman equation :{<strong>in</strong>f − ∂Vy∈IR ∂t − 1 }2 σ2 (t, s, y)s 2 ∂2 V∂s 2 = 0.By the maximum pr<strong>in</strong>ciple, we deduce that W ≤ V . Moreover, by Itô’sformula <strong>and</strong> us<strong>in</strong>g the fact that W solves the above Bellman equation, wehave :∫ Tg(S T ) = W (T, S T ) ≤ W (0, S 0 ) +0∂W∂s (t, S t)dS t ,<strong>and</strong> then by def<strong>in</strong>ition of the superreplication cost, W (0, S 0 ) ≥ U 0 ≥ V (0, S 0 ).In conclusion, we have that U 0 = W (0, S 0 ) (= V (0, S 0 )) is the unique smoothsolution of the BSB equation (3.7)-(3.8), <strong>and</strong> the optimal control is givenby :θ ∗ t = ∂W∂s (t, S t).Other applicationsBy the dual approach, one can also calculate the superreplication cost <strong>in</strong> :- models with jumps : see Eberle<strong>in</strong> <strong>and</strong> Jacod (1997) <strong>and</strong> Bellamy <strong>and</strong>Jeanblanc (1998),- models with transaction costs : see Cvitanić, Pham <strong>and</strong> Touzi (1999b).3.2 Direct approachSoner <strong>and</strong> Touzi (1998) developed a dynamic programm<strong>in</strong>g pr<strong>in</strong>ciple directlyon the primal problem :U 0 = <strong>in</strong>f{x ≥ 0 : ∃θ ∈ A(x), V x,θT≥ g(S T )},10


<strong>and</strong> derived then an associated Bellman equation for U 0 . This Bellmanequation is actually the PDE (3.5) <strong>in</strong> the case of the stochastic volatilitymodel (3.3)-(3.4). Such a direct approach allows to study superreplication<strong>in</strong> models with gamma constra<strong>in</strong>ts, i.e. constra<strong>in</strong>ts on the sensibility of θwith respect to stock price.3.3 BSDE approachThe superhedg<strong>in</strong>g problem can also be viewed as a problem of f<strong>in</strong>d<strong>in</strong>g atriple (V, θ, C) of adapted processes, with C non<strong>in</strong>creas<strong>in</strong>g, solution of thebackward stochastic differential equation :dV t = θ t dS t − dC tV t = g(S T ).Such a method is studied <strong>in</strong> El Karoui, Peng <strong>and</strong> Quenez (1997), see alsoYong (1999).4 Mean-variance hedg<strong>in</strong>gWe are look<strong>in</strong>g for a strategy θ which m<strong>in</strong>imizes the quadratic error ofreplication between the cont<strong>in</strong>gent claim H ∈ L 2 (P ) <strong>and</strong> the term<strong>in</strong>al wealthV x,θT= x + ∫ T0 θ tdS t :[m<strong>in</strong>imize over θEH − x −∫ T0θ t dS t] 2. (4.1)This is problem of L 2 -projection of a r<strong>and</strong>om variable on a space of stochastic<strong>in</strong>tegrals. In order to ensure the existence of a solution to this quadraticoptimization problem, we need to precise the class of admissible trad<strong>in</strong>gstrategies θ so that the space of stochastic <strong>in</strong>tegrals is closed <strong>in</strong> L 2 (P ).Follow<strong>in</strong>g Delbaen <strong>and</strong> Schachermayer (1996), we <strong>in</strong>troduce the subset P 2of probability measure Q <strong>in</strong> P with square-<strong>in</strong>tegrable density : dQ/dP ∈L 2 (P ), <strong>and</strong> we assume that P 2 is nonempty. We then def<strong>in</strong>e the <strong>in</strong>tegrabilityconditions on the trad<strong>in</strong>g strategies :{Θ 2 =θ ∈ L(S) :∫ T011θ t dS t ∈ L 2 (P ) <strong>and</strong>


∫θdS is a Q − mart<strong>in</strong>gale, ∀Q ∈ P 2}.It is showed <strong>in</strong> Delbaen <strong>and</strong> Schachermayer (1996) that the set G T (Θ 2 ) ={ ∫ T0 θ tdS t : θ ∈ Θ 2 } is closed <strong>in</strong> L 2 (P ) so that for any H ∈ L 2 (P ), theproblemJ 2 (x) = m<strong>in</strong>θ∈Θ 2E[H − x −∫ ] T 2θ t dS t ,0admits a solution. We now focus on the characterization of the solution.4.1 Case S mart<strong>in</strong>gale under PIn this paragraph, we assume that S is a cont<strong>in</strong>uous local mart<strong>in</strong>gale underP . This case was first considered <strong>in</strong> Föllmer <strong>and</strong> Sondermann (1986). Then,given H ∈ L 2 (P ), the Kunita-Watanabe projection theorem provides :∫ TH = E[H] + θt H dS t + R T ,0where θ H ∈ Θ 2 <strong>and</strong> R is a square-<strong>in</strong>tegrable mart<strong>in</strong>gale orthogonal to S. Itfollows immediately that the solution to J 2 (x) is given by :θ ∗ = θ H .ExampleConsider the stochastic volatility model :dS t = S t σ(t, S t , Y t )dW 1 tdY t = η(t, S t , Y t )dt + γ(t, S t , Y t )dW 2 t .Then, the <strong>in</strong>tegr<strong>and</strong> <strong>in</strong> the Kunita-Watanabe projection of H = g(S T ) is :θ H t= ∂V∂s (t, S t),where V (t, s, y) = E[g(S T )|S t = s, Y t = y]. More general applications <strong>and</strong>examples are studied <strong>in</strong> Bouleau <strong>and</strong> Lamberton (1989).12


4.2 Case S semimart<strong>in</strong>galeWe now turn to the general situation where S is a cont<strong>in</strong>uous semimart<strong>in</strong>galeunder P . Recall that there exists a solution θ ∗ (x) ∈ Θ 2 to the problem J 2 (x).Characterization of the solution has been obta<strong>in</strong>ed by Duffie <strong>and</strong> Richardson(1991), Schweizer (1994), Hipp (1993) <strong>and</strong> Pham, Rhe<strong>in</strong>länder <strong>and</strong> Schweizer(1998) under more <strong>and</strong> less restrictive assumptions. The most general resultsare obta<strong>in</strong>ed for the case where S is a cont<strong>in</strong>uous semimart<strong>in</strong>gale,<strong>in</strong>dependently by Gouriéroux, Laurent <strong>and</strong> Pham (1998) (GLP <strong>in</strong> short)<strong>and</strong> Rhe<strong>in</strong>länder <strong>and</strong> Schweizer (1997) (RS <strong>in</strong> short). We present here theapproach of the former authors. Their basic idea is to state an <strong>in</strong>varianceproperty of the space of stochastic <strong>in</strong>tegrals by a change of numéraire, <strong>and</strong>to comb<strong>in</strong>e this change of coord<strong>in</strong>ates with an appropriate change of probabilitymeasure <strong>in</strong> order to transform J 2 (x) <strong>in</strong>to an equivalent L 2 -projectionproblem correspond<strong>in</strong>g to the mart<strong>in</strong>gale case.The suitable change of probability measure <strong>and</strong> change of coord<strong>in</strong>ates usethe so-called variance-optimal mart<strong>in</strong>gale measure <strong>and</strong> hedg<strong>in</strong>g numéraire.Under the st<strong>and</strong><strong>in</strong>g assumption (2.1) <strong>and</strong> the condition that S is cont<strong>in</strong>uous,Delbaen <strong>and</strong> Schachermayer (1996) prove that there exists an uniquesolution ˜P , called variance-optimal mart<strong>in</strong>gale measure, to the problemm<strong>in</strong> EQ∈P 2[ dQdP] 2. (4.2)Moreover, there exists ˜θ ∈ Θ 2 such that˜Z t := E ˜P [ d ˜P]dP ∣ F t] 2= V 1,˜θt ,EP a.s., 0 ≤ t ≤ T, (4.3)[ d ˜PdP<strong>and</strong> ˜θ, called hedg<strong>in</strong>g numéraire, is solution of the optimization problem :[ ]m<strong>in</strong> E V 1,θ 2θ∈ΘT . (4.4)2It follows that the process ˜Z is a strictly positive Q-mart<strong>in</strong>gale for anyQ ∈ P 2 , with <strong>in</strong>itial value 1. We can then associate to each Q ∈ P 2 theprobability measure ˜Q ∼ Q def<strong>in</strong>ed by :d ˜Q=dQ∣ ˜Z t , 0 ≤ t ≤ T. (4.5)Ft13


We denote then by ˜P 2 the set of all elements ˜Q ∼ Q def<strong>in</strong>ed by (4.5) when Qvaries <strong>in</strong> P 2 . In particular, we associate to ˜P ∈ P 2 the probability measure˜˜P ∈ ˜P 2 def<strong>in</strong>ed by the operator ∼ <strong>in</strong> (4.5). Notice that by def<strong>in</strong>ition of ˜Z<strong>in</strong> (4.3), the Radon-Nikodym density of ˜˜P with respect to P can be writtenas :d ˜˜P[ ] 2ddP = E ˜P˜Z2dP T . (4.6)We consider the IR d+1 -valued cont<strong>in</strong>uous process ˜X with ˜X 0 = 1/ ˜Z <strong>and</strong>˜X i = S i / ˜Z, i = 1, . . . , d. As a direct consequence of the fact that S isa cont<strong>in</strong>uous local mart<strong>in</strong>gale under any Q ∈ P 2 <strong>and</strong> Bayes formula, wededuce that the process ˜X is a cont<strong>in</strong>uous local mart<strong>in</strong>gale under any ˜Q∈ ˜P 2 . We denote by ˜Φ 2 the set of all IR d+1 -valued predictable processesφ ˜X-<strong>in</strong>tegrable, such that ∫ T0 φ td ˜X t ∈ L 2 ( ˜˜P ∫ ) <strong>and</strong> φd ˜X is a ˜Q-mart<strong>in</strong>galeunder any ˜Q ∈ ˜P 2 .The follow<strong>in</strong>g result is crucial <strong>in</strong> the method of resolution <strong>in</strong> GLP.Theorem 4.1 Assume that S is cont<strong>in</strong>uous. Let x ∈ IR. Then we have :{ ({}∫ ) }TV x,θT: θ ∈ Θ 2 = ˜Z T x + φ t d ˜X t : φ ∈ ˜Φ 2 . (4.7)Moreover, the relation between θ = (θ 1 , . . . , θ d ) ′ ∈ Θ 2 <strong>and</strong> φ = (φ 0 , . . . , φ d ) ′∈ ˜Φ 2 is given by :0φ 0 = V x,θ − θ ′ S <strong>and</strong> φ i = θ i , i = 1, . . . , d, (4.8)<strong>and</strong>∫θ i = φ i +(x ˜θ i +)φd ˜X − φ ′ ˜X , i = 1, . . . , d. (4.9)Proof. We follow arguments of GLP <strong>and</strong> RS. The proof is ma<strong>in</strong>ly based onItô’s product rule <strong>and</strong> for simplicity we omit the <strong>in</strong>tegrability questions.(1) By Itô’s product rule, we have :( )d S˜Z( )= Sd + 1˜Z 1˜Z dS + d < S, 1˜Z > . (4.10)14


Let θ ∈ Θ 2 . Then we have :∫ ( ) ∫ ( ) ∫θd = θSd +S˜Z1˜Zθ 1˜Z ∫dS +θd < S, 1˜Z > . (4.11)By Itô’s formula, the self-f<strong>in</strong>anc<strong>in</strong>g condition dV x,θ = θdS, <strong>and</strong> by (4.11) weobta<strong>in</strong> :( )Vx,θ( )d = V˜Zx,θ d + 1˜Z 1˜Z θdS + θ ′ d < S, 1˜Z >() ( ) ( )= V x,θ − θ ′ S d + θd 1˜ZS˜Z= φd ˜X, (4.12)with an ˜X-<strong>in</strong>tegrable process φ given by (4.8). Then relation (4.12) showsthat∫( ∫ )V x,θ = x + θdS = ˜Z x + φd ˜X . (4.13)S<strong>in</strong>ce ˜Z T <strong>and</strong> ∫ T0 θ tdS t ∈ L 2 (P ), we have ˜Z ∫ TT 0 φ td ˜X t ∈ L 2 (P ) or equivalentlyby (4.6) ∫ T0 φ td ˜X t ∈ L 2 ( ˜˜P ∫ ). S<strong>in</strong>ce θdS is a Q-mart<strong>in</strong>gale underany Q ∈ P 2 , we deduce by def<strong>in</strong>ition of ˜P 2 <strong>and</strong> (4.13) that ∫ φd ˜X is a ˜Qmart<strong>in</strong>galeunder any ˜Q ∈ ˜P 2 <strong>and</strong> so φ ∈ ˜Φ 2 . Therefore the <strong>in</strong>clusion ⊆ <strong>in</strong>(4.7) is proved.(2) The proof of the converse is very similar. By Itô’s product rule, wehave :d( ˜ZX) = ˜Zd ˜X + ˜Xd ˜Z + d < ˜Z, ˜X > . (4.14)Let φ ∈ ˜Φ 2 . By Itô’s formula, (4.14), (4.3) <strong>and</strong> def<strong>in</strong>ition of ˜X, we have :( ∫ ) ( ∫ )d ˜Z(x + φd ˜X) = x + φd ˜X d ˜Z + ˜Zφd ˜X + φ ′ d < ˜Z, ˜X >( ∫ )= x + φd ˜X d ˜Z + φd( ˜Z ˜X) − φ ˜Xd ˜Z= θdS,with the S-<strong>in</strong>tegrable process θ given by (4.9). We then obta<strong>in</strong> :( ∫ ) ∫˜Z x + φd ˜X = x + θdS. (4.15)15


S<strong>in</strong>ce ∫ T0 φ td ˜X t ∈ L 2 ( ˜˜P ∫ ), we see from (4.6) <strong>and</strong> (4.15) that T0 θ tdS t ∈ L 2 (P ).Moreover, ∫ φd ˜X is a ˜Q-mart<strong>in</strong>gale for any ˜Q ∈ ˜P 2 <strong>and</strong> so ∫ θdS is a Q-mart<strong>in</strong>gale for all Q ∈ P 2 . This shows that θ ∈ Θ 2 <strong>and</strong> so the <strong>in</strong>clusion ⊇<strong>in</strong> (4.7) is proved.✷By (4.6), we have H/ ˜Z T ∈ L 2 ( ˜˜P ) s<strong>in</strong>ce H ∈ L 2 (P ). Moreover, theprocess ˜X is a cont<strong>in</strong>uous local mart<strong>in</strong>gale under ˜˜P ∈ ˜P 2 .apply the Kunita-Watanabe projection <strong>and</strong> obta<strong>in</strong> :[ ] ∫HT˜P= E + ˜φ˜Z TH˜ZT H t d ˜X t + ˜˜LH T , P a.s.0We can thenwhere ˜φ H ∈ ˜Φ 2 <strong>and</strong> ˜˜L is a square <strong>in</strong>tegrable mart<strong>in</strong>gale under ˜˜P orthogonalto ˜X. We have then the follow<strong>in</strong>g characterization result of a solution tothe mean-variance hedg<strong>in</strong>g problem.Theorem 4.2 Assume that S is cont<strong>in</strong>uous. Then for all x ∈ IR, thereexists a unique solution θ ∗ (x) ∈ Θ 2 to problem J 2 (x) given by :∫)(θ ∗ (x)) i = ( ˜φ H ) i +(x ˜θ i + ˜φ H d ˜X − ˜φ H′ ˜X , i = 1, . . . , d.(4.16)The associated value function is given by :J 2 (x) =(E ˜P [H] − x) 2+ E˜PE[ d ˜PdPProof. In view of Theorem 4.1 <strong>and</strong> (4.6), we have :J 2 (x) =E1[ d ˜PdP] 2<strong>in</strong>fφ∈˜Φ 2E˜P] 2[˜˜LH T] 2, x ∈ IR. (4.17)[ ∫ ] T 2− x − φ t d H˜ZT ˜X t . (4.18)0This is an optimization problem as <strong>in</strong> the mart<strong>in</strong>gale case (see Paragraph4.1), <strong>and</strong> therefore the unique solution of (4.18) is given by ˜φ H . The uniquesolution θ ∗ (x) to J 2 (x) is then obta<strong>in</strong>ed via (4.9) from ˜φ H . Moreover, wehave :J 2 (x) =(E˜P[ H˜ZT]− x) 2+ E˜PE[ d ˜PdP16] 2[˜˜LH T] 2, x ∈ IR. (4.19)


By def<strong>in</strong>ition of ˜˜P <strong>in</strong> function of ˜P , we then obta<strong>in</strong> (4.17).✷Remark 4.1 RS prove that H can be decomposed <strong>in</strong>to :∫ TH = E ˜P [H] + ˜θ t H dS t + ˜L H T ,0where ˜θ H ∈ Θ 2 <strong>and</strong> ˜L H is a mart<strong>in</strong>gale under ˜P orthogonal to S. Theyobta<strong>in</strong> then a description of the solution to J 2 (x) <strong>in</strong> feedback form :θt ∗ (x) = ˜θ t H − ˜θ (∫ t )tx + E ˜P [H|F t −] − θu(x)dS ˜Z ∗ u . (4.20)t 0It is also checked <strong>in</strong> RS that the expression given <strong>in</strong> (4.20) co<strong>in</strong>cide with theone given <strong>in</strong> (4.16).Description of the optimal hedg<strong>in</strong>g strategy requires f<strong>in</strong>d<strong>in</strong>g the varianceoptimalmart<strong>in</strong>gale measure <strong>and</strong> the hedg<strong>in</strong>g numéraire. Hipp (1993), Pham,Rhe<strong>in</strong>länder <strong>and</strong> Schweizer (1998) studied the special case where the varianceoptimalmart<strong>in</strong>gale measure co<strong>in</strong>cide with the m<strong>in</strong>imal mart<strong>in</strong>gale measureof Föllmer <strong>and</strong> Schweizer (1991). More general results have been obta<strong>in</strong>ed byLaurent <strong>and</strong> Pham (1999) <strong>in</strong> a multidimensional diffusion model by dynamicprogramm<strong>in</strong>g arguments, with applications to stochastic volatility models;see also <strong>in</strong> this direction the recent works of Heath, Platen <strong>and</strong> Schweizer(1998) <strong>and</strong> Biag<strong>in</strong>i, Guasoni, Pratelli (1999).5 Shortfall risk m<strong>in</strong>imizationThis is an alternative criterion to the extrem approach of superreplication<strong>and</strong> to the symmetrical approach of the mean-variance hedg<strong>in</strong>g criterion.Here one penalizes only situations when :V x,θT≤ H,<strong>and</strong> we want to m<strong>in</strong>imize the expected shortfall (H − V x,θT) + = max(H −, 0) weighted by some loss function l, i.e. l(0) = 0, l is nondecreas<strong>in</strong>gV x,θT<strong>and</strong> convex on IR + .17


Given an <strong>in</strong>itial capital x ≥ 0 <strong>and</strong> a nonnegative cont<strong>in</strong>gent claim H, weconsider the stochastic optimization problem :[]m<strong>in</strong> E l(H − V x,θT ) + (P(x))θ∈A(x)Such a problem has been first studied by Föllmer <strong>and</strong> Leukert (1998a,b)<strong>in</strong> the context of <strong>in</strong>complete semimart<strong>in</strong>gale model. It is studied <strong>in</strong> thecontext of diffusion models by Cvitanić <strong>and</strong> Karatzas (1998), by Cvitanić(1998) for diffusion models with portfolio constra<strong>in</strong>ts. Pham (1999) extendedthis shortfall risk m<strong>in</strong>imization problem to a general framework <strong>in</strong>clud<strong>in</strong>gsemimart<strong>in</strong>gale models with constra<strong>in</strong>ed portfolios, large <strong>in</strong>vestor models,labor <strong>in</strong>come, re<strong>in</strong>surance models.In a first step, notice that by the nondecreas<strong>in</strong>g property of the lossfunction l, we can transform the orig<strong>in</strong>al dynamic control problem <strong>in</strong>to astatic one :[]m<strong>in</strong> E l(H − V x,θT ) + (P(x))θ∈A(x)where= m<strong>in</strong> E [l(H − X)] := J(x) (5.1)X∈C(x)C(x) = {X F T − measurable : 0 ≤ X ≤ H,}<strong>and</strong> ∃θ ∈ A(x), X ≤ V x,θT.Now, from the optional decomposition theorem for supermart<strong>in</strong>galeswhich gives a dual characterization of the superreplication cost (see Remark3.1), we have :∃θ ∈ A(x), X ≤ V x,θT⇐⇒ sup E Q [X] ≤ x. (5.2)Q∈PTherefore the set of constra<strong>in</strong>ts C(x) can be written as :C(x) = {X F T − measurable : 0 ≤ X ≤ H,}<strong>and</strong> sup E Q [X] ≤ xQ∈P. (5.3)We are then amounted to a static convex optimization J(x) with l<strong>in</strong>earconstra<strong>in</strong>ts C(x) given by (5.3).18


The follow<strong>in</strong>g result proves the existence of a solution to the dynamicproblem (P(x)) <strong>and</strong> relates it to the solution of the static problem J(x). Italso provides some qualitative properties of the associated value function.In the sequel, given a nonnegative cont<strong>in</strong>gent claim X, we denote by v 0 (X)= sup Q∈P E Q [X] its superreplication cost.Theorem 5.1 Assume that l(H) ∈ L 1 (P ).(1) For any x ≥ 0, there exists X ∗ (x) ∈ C(x) solution of J(x) <strong>and</strong> H issolution of J(x) for x ≥ v 0 (H). Moreover, if l is strictly convex, any twosuch solutions co<strong>in</strong>cide P a.s.(2) The function J is non<strong>in</strong>creas<strong>in</strong>g <strong>and</strong> convex on [0, ∞), strictly decreas<strong>in</strong>gon [0, v 0 (H)] <strong>and</strong> equal to zero on [v 0 (H), ∞). For any x ∈ [0, v 0 (H)], wehave :sup E Q [X ∗ (x)] = x. (5.4)Q∈PMoreover, if l is strictly convex, then J is strictly convex on [0, v 0 (H)].(3) For any x ≥ 0, there exists θ ∗ (x) ∈ A(x) such that X ∗ (x) ≤ V x,θ∗ (x)T,P a.s., <strong>and</strong> θ ∗ (x) is solution to the dynamic problem (P(x)).Proof. (1) Let x ≥ 0 <strong>and</strong> (X n ) n ∈ C(x) be a m<strong>in</strong>imiz<strong>in</strong>g sequence for theproblem J(x), i.e.lim E[l(H − n→∞ Xn )] = <strong>in</strong>f E[l(H − X)].X∈C(x)S<strong>in</strong>ce X n ≥ 0, then by Lemma A.1.1 of Delbaen <strong>and</strong> Schachermayer (1994),there exists a sequence of F T -measurable r<strong>and</strong>om variables ˆX n ∈ conv(X n , X n+1 ,. . .) such that ˆX n converges almost surely to X ∗ (x) F T -measurable. S<strong>in</strong>ce0 ≤ ˆX n ≤ H, we deduce that 0 ≤ X ∗ (x) ≤ H. By Fatou’s lemma, we havefor all Q ∈ P :E Q [X ∗ (x)] ≤ lim <strong>in</strong>fn→∞ EQ [ ˆXn ] ≤ x,hence X ∗ (x) ∈ C(x). Now, s<strong>in</strong>ce l is convex <strong>and</strong> l(H) ∈ L 1 (P ), we have bythe dom<strong>in</strong>ated convergence theorem :<strong>in</strong>f E[l(H − X)] = lim E[l(H −X∈C(x) n→∞ Xn )]≥ lim E[l(H − ˆX n )]n→∞= E[l(H − X ∗ (x))],19


which proves that X ∗ (x) solves J(x). Now, suppose that x ≥ v 0 (H). ThenH ∈ C(x) <strong>and</strong> is obviously solution to J(x), <strong>and</strong> <strong>in</strong> this case J(x) = 0.Let X 1 <strong>and</strong> X 2 be two solutions of J(x) <strong>and</strong> ε ∈ (0, 1). Set X ε =(1 − ε)X 1 + εX 2 ∈ C(x). By convexity of function l, we have :[] []E [l(H − X ε )] ≤ (1 − ε)E l(H − X 1 ) + ɛE l(H − X 2 ) (5.5)= <strong>in</strong>f E[l(H − X)]. (5.6)X∈C(x)Suppose that P [X 1 ≠ X 2 ] > 0. Then by the strict convexity of l, we shouldhave strict <strong>in</strong>equality <strong>in</strong> (5.5), which is a contradiction with (5.6).(2) Let 0 ≤ x 1 ≤ x 2 . S<strong>in</strong>ce C(x 1 ) ⊂ C(x 2 ), we deduce that J(x 2 ) ≤ J(x 1 )<strong>and</strong> so J is non<strong>in</strong>creas<strong>in</strong>g on [0, ∞). Notice also that (X ∗ (x 1 ) + X ∗ (x 2 ))/2∈ C((x 1 + x 2 )/2). Then, by convexity of function l, we have :( ) x1 + x 2J2≤[ (E l H − X∗ (x 1 ) + X ∗ )](x 2 )2≤ 1 2 E [l(H − X∗ (x 1 ))] + 1 2 E [l(H − X∗ (x 2 ))]= 1 2 J(x 1) + 1 2 J(x 2),which proves the convexity of J on [0, ∞). We have already seen that J(x)= 0 for x ≥ v 0 (H). To end the proof of assertion (2), we now suppose thatv 0 (H) > 0 (otherwise there is noth<strong>in</strong>g else to prove). First, notice that s<strong>in</strong>cel is a nonnegative function, cancell<strong>in</strong>g only on 0, it follows that J(x) = 0if <strong>and</strong> only if X ∗ (x) = H which implies that x ≥ v 0 (H). Therefore, for all0 ≤ x < v 0 (H), we have J(x) > 0. Let us check that J is strictly decreas<strong>in</strong>gon [0, v 0 (H)]. On the contrary, there would exist 0 ≤ x 1 < x 2 < v 0 (H)such that J(x 1 ) = J(x 2 ). Then, there exists α ∈ (0, 1) such that x 2 =αx 1 + (1 − α)v 0 (H). By convexity of function l, we should have :J(x 2 ) ≤ αJ(x 1 ) + (1 − α)J(v 0 (H)) = αJ(x 1 ).S<strong>in</strong>ce J(x 1 ) = J(x 2 ) > 0, this would imply that α > 1, a contradiction. Letus now prove (5.4). On the contrary, we should have 0 ≤ ˜x := sup Q∈P E Q [X ∗ (x)]< x. Then X ∗ (x) ∈ C(˜x) <strong>and</strong> so J(˜x) ≤ E[l(H − X ∗ (x))] = J(x), a contradictionwith the fact that J is strictly decreas<strong>in</strong>g on [0, v 0 (H)]. Let20


0 ≤ x 1 < x 2 ≤ v 0 (H). We have (X ∗ (x 1 ) + X ∗ (x 2 ))/2 ∈ C((x 1 + x 2 )/2).Moreover, s<strong>in</strong>ce 0 < J(x 2 ) < J(x 1 ), we have X ∗ (x 1 ) ≠ X ∗ (x 2 ). Then, bythe strict convexity of function l, we obta<strong>in</strong> :( ) x1 + x 2J2≤E[l(H − X∗ (x 1 ) + X ∗ (x 2 )2)]< 1 2 E [l(H − X∗ (x 1 ))] + 1 2 E [l(H − X∗ (x 2 ))]= 1 2 J(x 1) + 1 2 J(x 2),which proves the strict convexity of J on [0, v 0 (H)].(3) The third assertion follows from (5.1) giv<strong>in</strong>g the relation between thedynamic problem (P(x)) <strong>and</strong> the static problem J(x).✷We provide a quantitative description of X ∗ (x) <strong>and</strong> of θ ∗ (x) solutions ofJ(x) <strong>and</strong> of (P(x)) by adopt<strong>in</strong>g a convex duality approach, which is now ast<strong>and</strong>ard tool <strong>in</strong> f<strong>in</strong>ancial mathematics, see e.g. Karatzas (1998).We assume that the function l ∈ C 1 (0, ∞), the derivative l ′ is strictly<strong>in</strong>creas<strong>in</strong>g with l ′ (0 + ) = 0 <strong>and</strong> l ′ (∞) = ∞. We denote by I = (l ′ ) −1 the<strong>in</strong>verse function of l ′ . Start<strong>in</strong>g from the state-dependent convex function 0 ≤x ≤ H ↦→ l(H − x), we consider its stochastic Fenchel-Legendre transform :˜L(y, ω) = max [−l(H − x) − xy] (5.7)0≤x≤H= −l (H ∧ I(y)) − y (H − I(y)) +, y ≥ 0.We now consider the dual control problem :[ ((D(y)) ˜J(y) = <strong>in</strong>f E ˜L y dQ )]Q∈P dP , ω , y ≥ 0.It is straightforward to see that ˜J is convex on [0, ∞).Our object is to provide a description of the solution to the problem(P(x)) <strong>in</strong> function of a solution to the problem (D(y)) when it exists. Thiscan be viewed as a verification theorem expressed <strong>in</strong> terms of the dual controlproblem. In a Markovian context, this is an alternative to the usualverification theorem of stochastic control problems expressed <strong>in</strong> terms ofthe value function of the primal problem. Notice that, due to the state constra<strong>in</strong>ts,the Bellman equation associated to the dynamic primal problem21


will <strong>in</strong>volve non “classical” boundary conditions, which are delicate from atheoretical <strong>and</strong> numerical viewpo<strong>in</strong>t (see e.g. Flem<strong>in</strong>g <strong>and</strong> Soner 1993).In the sequel, we shall assume that the nonnegative cont<strong>in</strong>gent claim His not equal to zero a.s. <strong>and</strong> that its superreplication cost is f<strong>in</strong>ite. We thenassume that 0 < v 0 (H) < ∞.Theorem 5.2 Assume that l(H) ∈ L 1 (P ) <strong>and</strong> 0 < v 0 (H) < ∞. Supposethat for all y > 0, there exists a solution Q ∗ (y) ∈ P to problem (D(y)).Then :(1) ˜J is differentiable on (0, ∞) with derivative :for all y > 0.[ ( ( )) ]˜J ′ (y) = −E Q∗ (y)H − I y dQ∗ (y), (5.8)dP +(2) Let 0 < x < v 0 (H). Then, there exists ŷ > 0 that atta<strong>in</strong>s the <strong>in</strong>fimum<strong>in</strong> <strong>in</strong>f y>0 { ˜J(y) + xy}, <strong>and</strong> we have :˜J ′ (ŷ) = −x. (5.9)The unique solution of J(x) is then given by :X ∗ (x) =( ( ))H − I ŷ dQ∗ (ŷ).dP +There exists θ ∗ (x) ∈ A(x) such that X ∗ (x) = V x,θ∗ (x)T, P a.s., <strong>and</strong> θ ∗ (x) issolution to (P(x)). Moreover, we have :V x,θ∗ (x)t = E Q∗ (ŷ) [X ∗ (x)| F t ] , 0 ≤ t ≤ T.(3) We have the duality relation :[J(x) = max − ˜J(y)]− xy , ∀x > 0.y≥0Proof. First notice that the maximum <strong>in</strong> (5.7) is atta<strong>in</strong>ed for :χ(y, ω) = (H − I(y)) +, y ≥ 0. (5.10)22


The function ˜L(., ω) is convex, differentiable on (0, ∞) with derivative :˜L ′ (y, ω) = −χ(y, ω), y ≥ 0. (5.11)(1) Let y > 0. Then for all δ > 0, we have :˜J(y + δ) − ˜J(y)δ≤ 1 () ()][˜Lδ E (y + δ) dQ∗ (y)dP , ω − ˜L y dQ∗ (y)dP , ω [ ()]≤ − E Q∗ (y)χ (y + δ) dQ∗ (y)dP , ωwhere we used (5.11) <strong>and</strong> convexity of ˜L(., ω). By Fatou’s lemma, we deducethat :[ ()]˜J(y + δ) − ˜J(y)lim sup≤ −E Q∗ (y)χ y dQ∗ (y)δ↘0 + δdP , ω . (5.12)Similarly, for all δ < 0, y + δ > 0, we have :˜J(y + δ) − ˜J(y)[ ()]≥ −E Q∗ (y)χ (y + δ) dQ∗ (y)δdP , ω .S<strong>in</strong>ce |χ| is bounded by H <strong>and</strong> under the assumption that v 0 (H) < ∞, onecan apply the dom<strong>in</strong>ated convergence theorem to deduce that :lim <strong>in</strong>fδ↗0 −˜J(y + δ) − ˜J(y)δ≥[ ()]−E Q∗ (y)χ y dQ∗ (y)dP , ω . (5.13)Relations (5.12)-(5.13) <strong>and</strong> convexity of the function ˜J imply the differentiabilityof ˜J <strong>and</strong> provide the expression (5.8) of ˜J ′ .(2) The function y ↦→ f x (y) = ˜J(y) + xy is convex on (0, ∞). Let uscheck that :lim f x(y) = ∞, ∀x > 0. (5.14)y→∞Indeed, by not<strong>in</strong>g that ˜L(y, ω) ≥ −l(H), we have ˜J(y) ≥ −E[l(H)]. Wededuce that f x (y) ≥ −E[l(H)] + yx, which proves (5.14). We now checkthat for all 0 < x < v 0 (H), there exists y 0 > 0 such that f x (y 0 ) < 0. Onthe contrary, we should have :E[˜L(y dQdP , ω )]+ xy > 0, ∀y > 0, ∀Q ∈ P,23


<strong>and</strong> then[x > E − 1 (y ˜L y dQ )]dP , ω , ∀y > 0, ∀Q ∈ P.S<strong>in</strong>ce −˜L(ydQ/dP, ω)/y ≥ 0 <strong>and</strong> −˜L(ydQ/dP, ω)/y converges to HdQ/dPas y goes to <strong>in</strong>f<strong>in</strong>ity, we deduce by Fatou’s lemma that :x ≥ E Q [H] , ∀Q ∈ P,<strong>and</strong> then x ≥ v 0 (H), a contradiction. We can then deduce that for all 0 0 <strong>and</strong> s<strong>in</strong>ce ˜J, <strong>and</strong>so f x , is differentiable on (0, ∞), we have f ′ x(ŷ) = 0, i.e. ˜J ′ (ŷ) = −x.Fix some y > 0 <strong>and</strong> let Q be an arbitrary element of P. Denote :Q ε = (1 − ε)Q ∗ (y) + εQ, ε ∈ (0, 1).Obviously, Q ε ∈ P so that by def<strong>in</strong>ition of ˜J, we have :⎡)0 ≤ 1 ˜L(y dQεε E dP⎣, ω − ˜L( )y dQ∗ (y)dP , ω ⎤⎦y⎡)≤1 ˜L(y dQεε E dP⎣, ω − ˜L( )y dQ∗ (y)dP , ω ⎤⎦y[ ( ))]dQ≤ E −dP − dQ∗ (y)χ(y dQεdP dP , ωwhere the third <strong>in</strong>equality from (5.11) <strong>and</strong> the convexity of ˜L. We obta<strong>in</strong>then :)][)]E[χ(y Q dQεdP , ω ≤ E Q∗ (y)χ(y dQεdP , ω . (5.15)By the dom<strong>in</strong>ated convergence theorem <strong>and</strong> Fatou’s lemma applied respectivelyto the R.H.S. <strong>and</strong> the L.H.S. of (5.15), we have :()][ ()]E[χQ y dQ∗ (y)dP , ω ≤ E Q∗ (y)χ y dQ∗ (y)dP , ω .From (5.8) <strong>and</strong> (5.10), this can be written also as :()]sup E[χQ y dQ∗ (y)Q∈PdP , ω ≤ − ˜J ′ (y),24


for all y > 0. By choos<strong>in</strong>g y = ŷ def<strong>in</strong>ed above, we get :()]sup E[χQ ŷ dQ∗ (ŷ)Q∈PdP , ω≤ x, (5.16)( )which proves that X ∗ (x) = χ ŷ dQ∗ (ŷ)dP , ω lies <strong>in</strong> C(x).Moreover, by def<strong>in</strong>ition (5.7) of ˜L <strong>and</strong> by def<strong>in</strong>ition of X ∗ (x), we havefor all X ∈ C(x) :()˜L ŷ dQ∗ (ŷ)dP , ω= −l(H − X ∗ (x)) − ŷ dQ∗ (ŷ)dP X∗ (x) (5.17)≥−l(H − X) − ŷ dQ∗ (ŷ)X. (5.18)dPTak<strong>in</strong>g expectation under P <strong>in</strong> (5.17)-(5.18) <strong>and</strong> us<strong>in</strong>g the facts that :we obta<strong>in</strong> that :E Q∗ (ŷ) [X ∗ (x)] = − ˜J ′ (ŷ) = x, (5.19)E Q∗ (ŷ) [X] ≤ x, (5.20)E [l(H − X ∗ (x))] ≤ E [l(H − X)] ,which proves that X ∗ (x) is solution to problem (S(x)). Relations (5.16)<strong>and</strong> (5.19) show that Q ∗ (ŷ) atta<strong>in</strong>s the supremum <strong>in</strong> sup Q∈P E Q [X ∗ (x)],<strong>and</strong> by Theorem 5.1, this proves that there exists θ ∗ (x) ∈ A(x) such thatX ∗ (x) ≤ V x,θ∗ (x)T, a.s., <strong>and</strong> θ ∗ (x) is solution of the dynamic problem (P(x)).Moreover, s<strong>in</strong>ce the associated wealth process V x,θ∗ (x) is a supermart<strong>in</strong>galeunder Q ∗ (ŷ), we have from (5.8)-(5.9) :x = E Q∗ (ŷ) [X ∗ (x)] ≤ E Q∗ (ŷ) [V x,θ∗ (x)T] ≤ x,which shows that X ∗ (x) = V x,θ∗ (x)T, a.s., <strong>and</strong> that the wealth process V x,θ∗ (x)is a mart<strong>in</strong>gale under Q ∗ (ŷ). The assertion (2) of Theorem 5.2 is then proved.(3) By def<strong>in</strong>ition (5.7) of the function ˜L, we have for all x ≥ 0, y ≥ 0,X ∈ C(x), Q ∈ P :−l(H − X) − y dQ (dP X ≤ ˜L y dQ )dP , ω ,25


hence by tak<strong>in</strong>g expectation under P :[ (−E [l(H − X)] − yx ≤ E ˜L y dQ )]dP , ω ,<strong>and</strong> therefore,[sup − ˜J(y)]− xyy≥0≤ J(x), ∀x ≥ 0. (5.21)For x ≥ v 0 (H), we have J(x) = 0 = − ˜J(0). Fix now 0 < x < v 0 (H). Fromrelations (5.17) <strong>and</strong> (5.19), we have :˜J(ŷ) =[ dQ−E [l(H − X ∗ ](ŷ)(x))] − ŷEdPX∗ (x)= −J(x) − xŷ,which proves that J(x) = − ˜J(ŷ) − xŷ. The proof is ended.✷The description of the optimal hedg<strong>in</strong>g strategy is proceeded <strong>in</strong> two steps.In the first step, one has to solve a dual problem. Notice that <strong>in</strong> a markovianframework, such as the stochastic volatility model described <strong>in</strong> the previoussections, one has a parametrization of the set P <strong>and</strong> so the dual problemleads to a classical stochastic control problem. The optimal hedg<strong>in</strong>g strategyis then obta<strong>in</strong>ed as the (super)replicat<strong>in</strong>g strategy of a modified cont<strong>in</strong>gentclaim, <strong>and</strong> can be computed via the superhedg<strong>in</strong>g approach described <strong>in</strong>Section 3.References[1] Avellaneda M., Lévy A. <strong>and</strong> A. Paras (1995) : “Pric<strong>in</strong>g <strong>and</strong> <strong>Hedg<strong>in</strong>g</strong> DerivativeSecurities with Uncerta<strong>in</strong> Volatilities”, Applied Mathematical F<strong>in</strong>ance, 2, 73-88.[2] Bellamy N. <strong>and</strong> M. Jeanblanc (1998) : “Incompleteness of Markets driven bya Mixed Diffusion”, to appear <strong>in</strong> F<strong>in</strong>ance <strong>and</strong> Stochastics.[3] Bensaid B., Lesne J.P., Pagès H. <strong>and</strong> J. Sche<strong>in</strong>kman (1992) : “DerivativeAsset Pric<strong>in</strong>g with Transaction Costs”, Mathematical F<strong>in</strong>ance, 2, 63-86.26


[4] Biag<strong>in</strong>i F., Guasoni P. <strong>and</strong> M. Pratelli (1999) : “Mean-Variance <strong>Hedg<strong>in</strong>g</strong> forStochastic Volatility Models”, prepr<strong>in</strong>t.[5] Black F. <strong>and</strong> M. Scholes (1973) : “The Pric<strong>in</strong>g of Options <strong>and</strong> CorporateLiabilities” Journal of Political Economy, 81, 637-659.[6] Bouleau N. <strong>and</strong> D. Lamberton (1989): “Residual Risks <strong>and</strong> <strong>Hedg<strong>in</strong>g</strong> Strategies<strong>in</strong> Markovian Markets”, Stochastic Processes <strong>and</strong> their Applications, 33, 131-150.[7] Cvitanić J. (1998) : “M<strong>in</strong>imiz<strong>in</strong>g Expected Loss of <strong>Hedg<strong>in</strong>g</strong> <strong>in</strong> Incomplete <strong>and</strong>Constra<strong>in</strong>ed Markets”, prepr<strong>in</strong>t.[8] Cvitanić J. <strong>and</strong> I. Karatzas (1998) : “On Dynamic Measures of Risk”, toappear <strong>in</strong> F<strong>in</strong>ance <strong>and</strong> Stochastics.[9] Cvitanić J., Pham H. <strong>and</strong> N. Touzi (1999a) : “Superreplication <strong>in</strong> StochasticVolatility Models under Portfolio Constra<strong>in</strong>ts”, Journal of Applied Probability,36, 2.[10] Cvitanić J., Pham H. <strong>and</strong> N. Touzi (1999b) : “A Closed-form Solution to theSuperreplication Problem under Transaction Costs”, F<strong>in</strong>ance <strong>and</strong> Stochastics,1, 35-54.[11] Delbaen F. <strong>and</strong> W. Schachermayer (1994) : “A General Version of the FundamentalTheorem of Asset Pric<strong>in</strong>g”, Mathematische Annalen, 300, 463-520.[12] Delbaen F. <strong>and</strong> W. Schachermayer (1996): “The Variance-Optimal Mart<strong>in</strong>galeMeasure for Cont<strong>in</strong>uous Processes”, Bernoulli, Vol 2, 1, 81-105.[13] Duffie D. <strong>and</strong> H.R. Richardson (1991): “Mean-Variance <strong>Hedg<strong>in</strong>g</strong> <strong>in</strong> Cont<strong>in</strong>uoustime”, Annals of Applied Probability, 1, 1-15.[14] Eberle<strong>in</strong> E. <strong>and</strong> J. Jacod (1997) : “On the Range of Option Prices”, F<strong>in</strong>ance<strong>and</strong> Stochastics, 1, 131-140.[15] El Karoui N. <strong>and</strong> M.C. Quenez (1995) : “Dynamic Programm<strong>in</strong>g <strong>and</strong> Pric<strong>in</strong>gof Cont<strong>in</strong>gent Claims <strong>in</strong> an Incomplete Market”, SIAM Journal on Control<strong>and</strong> <strong>Optimization</strong>, 33, 29-66.[16] El Karoui N., Peng S. <strong>and</strong> M.C. Quenez (1997) : “Backward Stochastic DifferentialEquations <strong>in</strong> F<strong>in</strong>ance”, Mathematical F<strong>in</strong>ance, 7, 1-71.[17] Flem<strong>in</strong>g W. <strong>and</strong> M. Soner (1993) : Controlled Markov Processes <strong>and</strong> ViscositySolutions, Spr<strong>in</strong>ger Verlag.[18] Föllmer H. <strong>and</strong> P. Leukert (1998a) : “Quantile <strong>Hedg<strong>in</strong>g</strong>”, to appear <strong>in</strong> F<strong>in</strong>ance<strong>and</strong> Stochastics.[19] Föllmer H. <strong>and</strong> P. Leukert (1998b) : “Efficient <strong>Hedg<strong>in</strong>g</strong> : Cost Versus ShortfallRisk”, prepr<strong>in</strong>t.[20] Föllmer H. <strong>and</strong> M. Schweizer (1991): “<strong>Hedg<strong>in</strong>g</strong> of Cont<strong>in</strong>gent Claims underIncomplete Information”, Applied Stochastic Analysis, eds. M.H.A. Davis <strong>and</strong>R.J. Elliott, Stochastics Monographs vol.5, Gordon <strong>and</strong> Breach, London/NewYork, 389-414.27


[21] Föllmer H. <strong>and</strong> D. Sondermann (1986): “<strong>Hedg<strong>in</strong>g</strong> of Non-Redundant Cont<strong>in</strong>gentClaims”, In A.Mas-Colell <strong>and</strong> W.Hildebr<strong>and</strong>, Contributions to MathematicalEconomics. Amsterdam: North Holl<strong>and</strong>, 205-223.[22] Frey R. <strong>and</strong> C. S<strong>in</strong> (1999) : “Bounds on European Option Prices underStochastic Volatility”, to appear <strong>in</strong> Mathematical F<strong>in</strong>ance.[23] Gouriéroux C., Laurent J.P. <strong>and</strong> H. Pham (1998): “Mean-Variance <strong>and</strong>Numéraire”, Mathematical F<strong>in</strong>ance, 8, 179-200.[24] Harrison J.M. <strong>and</strong> S.R. Pliska (1981): “Mart<strong>in</strong>gales <strong>and</strong> Stochastic Integrals<strong>in</strong> the Theory of Cont<strong>in</strong>uous Trad<strong>in</strong>g ”, Stochastic Processes <strong>and</strong> their Applications,11, 215-260.[25] Heath D., Platen E. <strong>and</strong> M. Schweizer (1998) : “A Comparison of TwoQuadratic Approaches to <strong>Hedg<strong>in</strong>g</strong> <strong>in</strong> Incomplete Markets”, prepr<strong>in</strong>t, TechnicalUniversity of Berl<strong>in</strong>.[26] Hipp C. (1993): “<strong>Hedg<strong>in</strong>g</strong> General Claims”, Proceed<strong>in</strong>gs of the 3rd AFIRColloqium, Rome, vol. 2, 603-613.[27] Jacod J. (1979) : Calcul Stochastique et Problèmes de Mart<strong>in</strong>gales, Lect.Notes <strong>in</strong> Mathematics, 714, Spr<strong>in</strong>ger Verlag.[28] Karatzas I. <strong>and</strong> S. Shreve (1998) : Methods of Mathematical F<strong>in</strong>ance, Spr<strong>in</strong>gerVerlag.[29] Kramkov D. (1996) : “Optional Decomposition of Supermart<strong>in</strong>gales <strong>and</strong> <strong>Hedg<strong>in</strong>g</strong>Cont<strong>in</strong>gent Claims <strong>in</strong> Incomplete Security Markets”, Probability Theory<strong>and</strong> Related Fields, 105, 459-479.[30] Laurent J.P. <strong>and</strong> H. Pham (1999): “Dynamic Programm<strong>in</strong>g <strong>and</strong> Mean-Variance <strong>Hedg<strong>in</strong>g</strong>”, F<strong>in</strong>ance <strong>and</strong> stochastics, 23, 83-110.[31] Pham H. (1999) : “M<strong>in</strong>imiz<strong>in</strong>g shortfall risk <strong>and</strong> applications to f<strong>in</strong>ance <strong>and</strong><strong>in</strong>surance problems”, prepr<strong>in</strong>t, University of Marne-la-Vallée.[32] Pham H., Rhe<strong>in</strong>länder T. <strong>and</strong> M. Schweizer (1998): “Mean-Variance <strong>Hedg<strong>in</strong>g</strong>for Cont<strong>in</strong>uous Processes : New Proofs <strong>and</strong> Examples”, F<strong>in</strong>ance <strong>and</strong> Stochastics,173-198.[33] Rhe<strong>in</strong>länder T. <strong>and</strong> M. Schweizer (1997): “On L 2 -Projections on a Space ofStochastic Integrals”, Annals of Probability, 25, 1810-1831.[34] Schweizer (1994) : “Approximat<strong>in</strong>g R<strong>and</strong>om Variables by Stochastic Integrals”,Annals of Probability, 22, 1536-1575.[35] Soner M. <strong>and</strong> N. Touzi (1998) : “Superreplication under Gamma Constra<strong>in</strong>ts”,Prepr<strong>in</strong>t.[36] Yong J. (1999) : “European Type Cont<strong>in</strong>gent Claims <strong>in</strong> an Incomplete Marketwith Constra<strong>in</strong>ed Wealth <strong>and</strong> Portfolio”, to appear <strong>in</strong> Mathematical F<strong>in</strong>ance.28

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!