13.07.2015 Views

The effective secondary electron yield in the space-charge limited ...

The effective secondary electron yield in the space-charge limited ...

The effective secondary electron yield in the space-charge limited ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

I.V. Tsvetkov, T. Tanabe / Journal of Nuclear Materials 258±263 (1998) 927±933 931Fig. 4. E€ective <strong>electron</strong> <strong>yield</strong> d e for W, Mo, C and Be aga<strong>in</strong>st E p . T e ˆ 30 eV, n 0 ˆ 10 18 m 3 .of plasma density (Figs. 4 and 6). That is because <strong>the</strong>gyro-radius of high-energy <strong>electron</strong>s is close to <strong>the</strong>sheath thickness and <strong>electron</strong>s easily escape from anoblique magnetic ®eld. Even if <strong>the</strong> magnetic ®eld wasparallel to <strong>the</strong> surface, d e would not be zero ow<strong>in</strong>g tohigher re¯ection.Below a primary <strong>electron</strong> energy E p ˆ 4 keV <strong>the</strong><strong>secondary</strong> <strong>electron</strong> <strong>yield</strong> is nearly <strong>the</strong> same for a sheaththickness d ˆ 10k D as for d ˆ 5k D , as shown <strong>in</strong> Fig. 7.Above 4 keV, d e is smaller for d ˆ 10k D . For d ˆ 5k D<strong>the</strong> <strong>secondary</strong> <strong>electron</strong> <strong>yield</strong> <strong>in</strong>creases above 4 keV andfor d ˆ 10k D above 16 keV, because <strong>the</strong> energy has to beFig. 5. Contribution of <strong>the</strong> re¯ected <strong>electron</strong>s on <strong>the</strong> e€ective <strong>electron</strong> <strong>yield</strong> as a function of E p . T e ˆ 30 eV, n 0 ˆ 10 18 m 3 .


932 I.V. Tsvetkov, T. Tanabe / Journal of Nuclear Materials 258±263 (1998) 927±933Fig. 6. E€ective <strong>electron</strong> <strong>yield</strong> d e for W, Mo, C and Be aga<strong>in</strong>st E p . T e ˆ 30 eV, n 0 ˆ 10 19 m 3 .raised four times to <strong>in</strong>crease gyration radius twice from5k D to 10k D .Hence for low primary <strong>electron</strong> energy (below 4 keV)d e is <strong>in</strong>dependent of <strong>the</strong> sheath thickness, whereas forhigh primary <strong>electron</strong> energy d e is <strong>in</strong>dependent of <strong>the</strong>potential distribution <strong>in</strong> <strong>the</strong> sheath.It should be mentioned that <strong>the</strong> electric ®eld just <strong>in</strong>front of <strong>the</strong> surface dom<strong>in</strong>ates <strong>the</strong> e€ective <strong>secondary</strong><strong>electron</strong> <strong>yield</strong> <strong>in</strong> <strong>the</strong> present simulation. This was con-®rmed by an additional calculation us<strong>in</strong>g <strong>the</strong> electric®eld E…x† ˆ E 0 …x=d† 1=3 for <strong>the</strong> Child±Langmuir <strong>space</strong>limitation [9] which has similar electric ®eld to presentSCLC regime for x < k D :Fig. 7. E€ective <strong>electron</strong> <strong>yield</strong> d e for W aga<strong>in</strong>st E p for <strong>the</strong> sheath thickness d ˆ 5k D and d ˆ 10k D . T e ˆ 30 eV, n 0 ˆ 10 18 m 3 .


I.V. Tsvetkov, T. Tanabe / Journal of Nuclear Materials 258±263 (1998) 927±933 9336. ConclusionsFor lower primary energy <strong>in</strong>cidence, <strong>the</strong> e€ective<strong>secondary</strong> <strong>electron</strong> <strong>yield</strong> is substantially suppressed <strong>in</strong><strong>the</strong> SCLC regime because of <strong>the</strong> signi®cant reduction of<strong>the</strong> low energy <strong>secondary</strong> <strong>electron</strong>s (below 4 keV) ow<strong>in</strong>gto <strong>the</strong>ir direct return to <strong>the</strong> surface by <strong>the</strong> gyration.Accord<strong>in</strong>gly <strong>the</strong> energy distribution of <strong>the</strong> emitted<strong>electron</strong>s is shifted to higher energy direction.For higher primary energy <strong>in</strong>cidence, <strong>the</strong> <strong>yield</strong> isdom<strong>in</strong>ated by <strong>the</strong> re¯ected <strong>electron</strong>s which have ra<strong>the</strong>rhigh energy and are less <strong>in</strong>¯uenced on <strong>the</strong> obliquemagnetic ®eld. <strong>The</strong>refore <strong>the</strong> <strong>yield</strong> becomes <strong>in</strong>dependentof <strong>the</strong> potential distribution <strong>in</strong> <strong>the</strong> sheath. In o<strong>the</strong>rwords, <strong>the</strong> population of higher energy <strong>electron</strong> is notreduced and <strong>the</strong> number of <strong>electron</strong>s com<strong>in</strong>g back to <strong>the</strong>plasma with energy above 4 keV would be enhanced.Such enhancement of high energy <strong>electron</strong> emissionwould <strong>in</strong>crease <strong>the</strong> sheath potential result<strong>in</strong>g <strong>in</strong> <strong>the</strong> <strong>in</strong>creaseof both energy ¯ux to <strong>the</strong> surface and sputter<strong>in</strong>g<strong>yield</strong>. This e€ect seems very important for high-Z materialsbecause of <strong>the</strong>ir high re¯ection coecients.S<strong>in</strong>ce <strong>the</strong> re¯ection coecient of low-Z materials isgenerally small, <strong>the</strong> e€ect of <strong>the</strong> emitted <strong>electron</strong> doesnot seem important. However, because <strong>the</strong> <strong>secondary</strong><strong>electron</strong> <strong>yield</strong> for Be and C <strong>in</strong>creases above 4 keV, <strong>the</strong>enhancement of high energy <strong>electron</strong> emission could beobserved for higher energy <strong>in</strong>cidence. Never<strong>the</strong>less <strong>the</strong>absolute value d e for low-Z materials is much smallerthan 1 and <strong>the</strong> appearance of <strong>the</strong> SCLC regime is unlikely.In conclusion <strong>the</strong> e€ect of <strong>the</strong> <strong>secondary</strong> <strong>electron</strong>emission on <strong>the</strong> boundary plasma should be very importantfor high-Z materials but not for low-Z materials.In <strong>the</strong> present work we did not consider <strong>the</strong> <strong>in</strong>¯uenceof <strong>the</strong> high energy <strong>electron</strong> emission on <strong>the</strong> potentialdistribution <strong>in</strong> <strong>the</strong> sheath for simplicity. To developmore realistic self-consistent model it must be taken <strong>in</strong>toaccount.References[1] T. Tanabe, Suppl. J. Nucl. Fusion 5 (1994) 129.[2] N. Noda, V. Philipps, R. Neu, J. Nucl. Mater. 241±243(1997) 227.[3] G.D. Hobbs, J.A. Wesson, Plasma Phys. 9 (1967) 85.[4] R. Kollath, <strong>in</strong>: S. Flugge (Ed.), Handbuch der Physik, vol.21, Spr<strong>in</strong>ger, Berl<strong>in</strong>, 1956, p. 232.[5] J. Kawata, K. Nishimura, A. Harada, K. Ohya, Radiat.E€e. Def. Solids 142 (1996) 607.[6] E.W. Thomas, Atomic and Plasma±materials InteractionData for Fusion, vol. 1, 1991, p. 79.[7] E.J. Sternglass, Phys. Rev. 95 (1954) 345.[8] I.M. Bronshte<strong>in</strong>, R.B. Segal, Sov. Phys. ± Solid State 1(1959) 1142.[9] I. Langmuir, Phys. Rev. 33 (1929) 954.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!