03.12.2012 Views

Glucocorticoids have a role in renal cortical ... - Renal Physiology

Glucocorticoids have a role in renal cortical ... - Renal Physiology

Glucocorticoids have a role in renal cortical ... - Renal Physiology

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Glucocorticoids</strong> <strong>have</strong> a <strong>role</strong> <strong>in</strong> <strong>renal</strong> <strong>cortical</strong> expression of<br />

the SNAT3 glutam<strong>in</strong>e transporter dur<strong>in</strong>g chronic<br />

metabolic acidosis<br />

Anne M. Kar<strong>in</strong>ch, Cheng-Mao L<strong>in</strong>, Q<strong>in</strong>gHe Meng, M<strong>in</strong>g Pan and Wiley W. Souba<br />

Am J Physiol <strong>Renal</strong> Physiol 292:F448-F455, 2007. First published 5 September 2006;<br />

doi: 10.1152/ajp<strong>renal</strong>.00168.2006<br />

You might f<strong>in</strong>d this additional <strong>in</strong>fo useful...<br />

This article cites 48 articles, 24 of which you can access for free at:<br />

http://ajp<strong>renal</strong>.physiology.org/content/292/1/F448.full#ref-list-1<br />

This article has been cited by 3 other HighWire-hosted articles:<br />

http://ajp<strong>renal</strong>.physiology.org/content/292/1/F448#cited-by<br />

Updated <strong>in</strong>formation and services <strong>in</strong>clud<strong>in</strong>g high resolution figures, can be found at:<br />

http://ajp<strong>renal</strong>.physiology.org/content/292/1/F448.full<br />

Additional material and <strong>in</strong>formation about American Journal of <strong>Physiology</strong> - <strong>Renal</strong> <strong>Physiology</strong> can be<br />

found at:<br />

http://www.the-aps.org/publications/ajp<strong>renal</strong><br />

This <strong>in</strong>formation is current as of December 3, 2012.<br />

American Journal of <strong>Physiology</strong> - <strong>Renal</strong> <strong>Physiology</strong> publishes orig<strong>in</strong>al manuscripts on a broad range of subjects<br />

relat<strong>in</strong>g to the kidney, ur<strong>in</strong>ary tract, and their respective cells and vasculature, as well as to the control of body fluid<br />

volume and composition. It is published 12 times a year (monthly) by the American Physiological Society, 9650<br />

Rockville Pike, Bethesda MD 20814-3991. Copyright © 2007 the American Physiological Society. ISSN:<br />

0363-6127, ESSN: 1522-1466. Visit our website at http://www.the-aps.org/.<br />

Downloaded from<br />

http://ajp<strong>renal</strong>.physiology.org/<br />

by guest on December 3, 2012


Am J Physiol <strong>Renal</strong> Physiol 292: F448–F455, 2007.<br />

First published September 5, 2006; doi:10.1152/ajp<strong>renal</strong>.00168.2006.<br />

<strong>Glucocorticoids</strong> <strong>have</strong> a <strong>role</strong> <strong>in</strong> <strong>renal</strong> <strong>cortical</strong> expression of the SNAT3<br />

glutam<strong>in</strong>e transporter dur<strong>in</strong>g chronic metabolic acidosis<br />

Anne M. Kar<strong>in</strong>ch, Cheng-Mao L<strong>in</strong>, Q<strong>in</strong>gHe Meng, M<strong>in</strong>g Pan, and Wiley W. Souba<br />

Department of Surgery, Milton S. Hershey Medical Center, The Pennsylvania<br />

State University College of Medic<strong>in</strong>e, Hershey, Pennsylvania<br />

Submitted 15 May 2006; accepted <strong>in</strong> f<strong>in</strong>al form 27 August 2006<br />

Kar<strong>in</strong>ch AM, L<strong>in</strong> C-M, Meng QH, Pan M, Souba WW. <strong>Glucocorticoids</strong><br />

<strong>have</strong> a <strong>role</strong> <strong>in</strong> <strong>renal</strong> <strong>cortical</strong> expression of the SNAT3<br />

glutam<strong>in</strong>e transporter dur<strong>in</strong>g chronic metabolic acidosis. Am J Physiol<br />

<strong>Renal</strong> Physiol 292: F448–F455, 2007. First published September 5,<br />

2006; doi:10.1152/ajp<strong>renal</strong>.00168.2006.—<strong>Glucocorticoids</strong> are <strong>in</strong>volved<br />

<strong>in</strong> many aspects of regulation of acid-base homeostasis,<br />

<strong>in</strong>clud<strong>in</strong>g the stimulation of <strong>renal</strong> ammoniagenesis dur<strong>in</strong>g chronic<br />

metabolic acidosis. Plasma glutam<strong>in</strong>e is the pr<strong>in</strong>cipal substrate for<br />

ammoniagenesis under these conditions. Expression of the System N<br />

glutam<strong>in</strong>e transporter SNAT3 is <strong>in</strong>creased <strong>in</strong> the <strong>renal</strong> proximal<br />

tubules dur<strong>in</strong>g acidosis. In vivo studies <strong>in</strong> rats us<strong>in</strong>g 1) sham and<br />

ad<strong>renal</strong>ectomized rats, 2) the glucocorticoid receptor antagonist<br />

RU486, and 3) dexamethasone treatment demonstrated <strong>in</strong>volvement<br />

of glucocorticoids <strong>in</strong> regulation of SNAT3 expression. Ad<strong>renal</strong>ectomy<br />

attenuated the acidosis-<strong>in</strong>duced <strong>in</strong>crease <strong>in</strong> <strong>renal</strong> <strong>cortical</strong> SNAT3 mRNA<br />

�40%, and treatment with dexamethasone (1 mg�kg�1�day�1 sc) partially<br />

reversed this effect. RU486 also blunted the acidosis-<strong>in</strong>duced<br />

<strong>in</strong>crease <strong>in</strong> SNAT3 expression �50%. Chronic dexamethasone treatment<br />

(0.1 mg�kg�1�day�1 sc, 6 days) of normal rats slightly <strong>in</strong>creased SNAT3<br />

expression. In all cases, <strong>renal</strong> glutam<strong>in</strong>e arteriovenous difference mirrored<br />

SNAT3 expression and activity <strong>in</strong> the proximal tubules, suggest<strong>in</strong>g<br />

that SNAT3 regulates glutam<strong>in</strong>e uptake dur<strong>in</strong>g acidosis. These studies<br />

<strong>in</strong>dicate that glucocorticoids regulate acid-base homeostasis dur<strong>in</strong>g metabolic<br />

acidosis <strong>in</strong> part by regulat<strong>in</strong>g expression of the System N transporter<br />

SNAT3.<br />

dexamethasone; System N expression; ammonium chloride acidosis;<br />

RU486<br />

THE KIDNEY PLAYS A VITAL ROLE <strong>in</strong> ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g acid-base homeostasis<br />

dur<strong>in</strong>g chronic metabolic acidosis. Under acidotic<br />

conditions, a number of adaptive changes occur throughout the<br />

kidney, act<strong>in</strong>g <strong>in</strong> concert to reduce the acid load and restore<br />

acid-base balance. The <strong>renal</strong> proximal convoluted tubule is the<br />

site of remarkable coord<strong>in</strong>ated changes that result <strong>in</strong> <strong>in</strong>creased<br />

ammoniagenesis that is susta<strong>in</strong>ed for the duration of acidosis<br />

(16, 30). These changes <strong>in</strong>clude enhanced uptake and metabolism<br />

of glutam<strong>in</strong>e, the pr<strong>in</strong>cipal substrate for <strong>renal</strong> ammoniagenesis<br />

dur<strong>in</strong>g acidosis (39). Asymmetric secretion from the<br />

proximal tubule of ammonium ions <strong>in</strong>to the ur<strong>in</strong>e and bicarbonate<br />

ions <strong>in</strong>to the blood functions to return acid-base balance<br />

toward normal. Ammonium and bicarbonate ions are both<br />

products of glutam<strong>in</strong>e metabolism, a s<strong>in</strong>gle molecule of glutam<strong>in</strong>e<br />

produc<strong>in</strong>g two ammonium and two bicarbonate ions.<br />

Under normal conditions, the kidney releases low levels of<br />

glutam<strong>in</strong>e <strong>in</strong>to the blood whereas dur<strong>in</strong>g acidosis �40% of the<br />

glutam<strong>in</strong>e presented to the kidney <strong>in</strong> the blood is extracted (36,<br />

Address for repr<strong>in</strong>t requests and other correspondence: W. W. Souba,<br />

College of Medic<strong>in</strong>e, Ohio State University, 254 Meil<strong>in</strong>g Hall, 370 West 9th<br />

Ave., Columbus, OH 43210 (e-mail: chip.souba@osumc.edu).<br />

F448<br />

38), so that the kidney becomes the body’s pr<strong>in</strong>cipal consumer<br />

of glutam<strong>in</strong>e.<br />

Studies us<strong>in</strong>g ad<strong>renal</strong>ectomized (ADX) rats suggest that<br />

glucocorticoids are <strong>in</strong>volved <strong>in</strong> acid-base homeostasis dur<strong>in</strong>g<br />

metabolic acidosis. This observation is consistent with elevated<br />

plasma corticosterone concentration dur<strong>in</strong>g acidosis <strong>in</strong> rats (28,<br />

42). ADX rats that are challenged with an acid load <strong>have</strong> a<br />

reduced ability to <strong>in</strong>crease <strong>renal</strong> ammoniagenesis (33, 46).<br />

Dur<strong>in</strong>g metabolic acidosis, the kidneys of these animals cannot<br />

<strong>in</strong>crease glutam<strong>in</strong>e uptake from the blood or <strong>in</strong>crease glutam<strong>in</strong>e<br />

metabolism to the same degree as ad<strong>renal</strong>-<strong>in</strong>tact rats<br />

(46). Glucocorticoid treatment of ADX rats before <strong>in</strong>duction of<br />

acidosis partially restores their ability to extract glutam<strong>in</strong>e<br />

from the blood (46). <strong>Glucocorticoids</strong> also <strong>in</strong>crease ammonia<br />

excretion <strong>in</strong> the <strong>in</strong>tact animal (19) and ammonia production by<br />

perfused kidneys (44). These studies suggest that glucocorticoids<br />

play a direct or <strong>in</strong>direct <strong>role</strong> <strong>in</strong> regulation of acidosis<strong>in</strong>duced<br />

glutam<strong>in</strong>e metabolism.<br />

We reported that the acidosis-<strong>in</strong>duced <strong>in</strong>crease <strong>in</strong> <strong>renal</strong><br />

glutam<strong>in</strong>e uptake is accomplished by <strong>in</strong>creased expression of<br />

the System N transporter <strong>in</strong> the proximal convoluted tubule of<br />

acidotic rats (23). This observation was recently confirmed by<br />

others (37). The System N transporter, previously known as<br />

SN1, has been renamed SNAT3 <strong>in</strong> recognition of its identity as<br />

a member of the SCL38 gene family of sodium-coupled neutral<br />

am<strong>in</strong>o acid transporters (25). SNAT3 is located <strong>in</strong> the basolateral<br />

membrane of proximal tubule epithelial cells (37) and<br />

transports one glutam<strong>in</strong>e molecule and one sodium ion <strong>in</strong><br />

exchange for one proton (7, 10). The transporter mediates<br />

glutam<strong>in</strong>e flux <strong>in</strong> both directions, depend<strong>in</strong>g on substrate<br />

gradients (7) and is associated with an uncoupled proton<br />

conductance that can serve to m<strong>in</strong>imize the proton flux produced<br />

by a transport-coupled proton antiport (7, 10).<br />

We hypothesized that glucocorticoids enhance ammoniagenesis<br />

dur<strong>in</strong>g metabolic acidosis <strong>in</strong> part by regulation of<br />

expression of the SNAT3 transporter. We studied regulation of<br />

<strong>renal</strong> <strong>cortical</strong> SNAT3 expression by glucocorticoids dur<strong>in</strong>g<br />

chronic metabolic acidosis <strong>in</strong> vivo us<strong>in</strong>g normal and ADX rats<br />

and the glucocorticoid receptor antagonist RU486. Data from<br />

our studies suggest that glucocorticoids ma<strong>in</strong>ta<strong>in</strong> acid-base<br />

homeostasis, <strong>in</strong> part, by alter<strong>in</strong>g <strong>renal</strong> glutam<strong>in</strong>e uptake via<br />

regulation of expression of the SNAT3 transporter.<br />

MATERIALS AND METHODS<br />

Animals. Animals were treated <strong>in</strong> accordance with regulations of<br />

the Institutional Animal Use and Care Committee. Male Sprague-<br />

The costs of publication of this article were defrayed <strong>in</strong> part by the payment<br />

of page charges. The article must therefore be hereby marked “advertisement”<br />

<strong>in</strong> accordance with 18 U.S.C. Section 1734 solely to <strong>in</strong>dicate this fact.<br />

0363-6127/07 $8.00 Copyright © 2007 the American Physiological Society http://www.ajp<strong>renal</strong>.org<br />

Downloaded from<br />

http://ajp<strong>renal</strong>.physiology.org/<br />

by guest on December 3, 2012


GLUCOCORTICOIDS AND RENAL SNAT3 EXPRESSION<br />

Dawley rats (Charles River, Wilm<strong>in</strong>gton, MA), weigh<strong>in</strong>g 250–300 g,<br />

were ma<strong>in</strong>ta<strong>in</strong>ed <strong>in</strong> a 12:12-h light-dark cycle with unrestricted access<br />

to rat chow and water or water conta<strong>in</strong><strong>in</strong>g 1.5% NH4Cl. Metabolic<br />

acidosis was ma<strong>in</strong>ta<strong>in</strong>ed for vary<strong>in</strong>g lengths of time, up to 6 days.<br />

ADX (bilateral) rats and sham-operated controls purchased from<br />

Charles River were used for some experiments. Both sham and ADX<br />

rats were ma<strong>in</strong>ta<strong>in</strong>ed on 0.9% sal<strong>in</strong>e substituted for their dr<strong>in</strong>k<strong>in</strong>g<br />

water before experimentation. We followed a modification of the<br />

protocol of Welbourne and colleagues (46) that adjusts the NH4Cl<br />

concentration because ADX rats dr<strong>in</strong>k approximately twice the volume<br />

that <strong>in</strong>tact rats dr<strong>in</strong>k. ADX rats were given 0.6% NH4Cl <strong>in</strong> sal<strong>in</strong>e,<br />

and sham acidotic rats were given 1.2% NH4Cl <strong>in</strong> sal<strong>in</strong>e so that they<br />

consumed approximately equal acid loads. ADX rats were exposed to<br />

acidosis for only 2 days because of significant mortality <strong>in</strong> acidotic<br />

ADX rats after 3 days. For some experiments, normal rats were<br />

treated acutely (5 mg/kg sc, once) or chronically (100 �g/rat sc, once<br />

a day for up to 6 days) with dexamethasone. The body weight of<br />

control rats <strong>in</strong>creased steadily dur<strong>in</strong>g the experimental period (259 �<br />

4gatday 0, 295 � 4gatday 6), whereas the body weight of<br />

chronically treated rats decreased for the first 3 days and then<br />

stabilized (255 � 3atday 0, 240 � 4gatday 6).<br />

Rats were killed after anesthesia with ketam<strong>in</strong>e/acepromaz<strong>in</strong>e/<br />

xylaz<strong>in</strong>e (80:1:12 mg/kg body wt). The kidneys were removed, and<br />

the <strong>renal</strong> cortex was immediately dissected out and processed for<br />

RNA isolation or membrane preparation. At the time of death, blood<br />

was drawn from the descend<strong>in</strong>g aorta and the <strong>renal</strong> ve<strong>in</strong> for measurement<br />

of blood gases, pH, and plasma glutam<strong>in</strong>e concentration.<br />

Measurement of blood gases, pH, and glutam<strong>in</strong>e concentration.<br />

Arterial blood pH and PCO2 were measured us<strong>in</strong>g an IL BG3 bloodgas<br />

mach<strong>in</strong>e (model 1420, Instrumentation Laboratory, Lex<strong>in</strong>gton,<br />

�<br />

MA). Blood HCO3 concentration was automatically calculated from<br />

the measured pH and PCO2. Plasma glutam<strong>in</strong>e levels were measured <strong>in</strong><br />

triplicate by a modified spectrophotometric assay us<strong>in</strong>g a colorimetric<br />

assay kit (Boer<strong>in</strong>ger Mannheim, Mannheim, Germany) adapted to a<br />

96-well plate format with a microplate spectrophotometer. Glutam<strong>in</strong>e<br />

arteriovenous (AV) difference was calculated as (arterial � <strong>renal</strong><br />

ve<strong>in</strong>) plasma glutam<strong>in</strong>e concentration.<br />

Kidney dissection. Kidney dissection was carried out under approximately<br />

threefold magnification. The decapsulated kidney was first cut<br />

lengthwise <strong>in</strong>to two symmetrical halves. For dissection of the cortex,<br />

a th<strong>in</strong> slice (1.5–2 mm thick) was first cut from the curved outer<br />

surface. Additional cortex was dissected us<strong>in</strong>g f<strong>in</strong>e scissors by trimm<strong>in</strong>g<br />

away the outer 1.5–2 mm, us<strong>in</strong>g the visible arcuate arteries as a<br />

guide to the junction of the cortex and medulla.<br />

Northern blot analysis. Total RNA was isolated from the <strong>renal</strong><br />

cortex us<strong>in</strong>g the Totally RNA system (Ambion, Aust<strong>in</strong>, TX) or from<br />

cultured cells us<strong>in</strong>g an RNeasy M<strong>in</strong>i kit (Qiagen, Valencia, CA). RNA<br />

was separated on a 1% formaldehyde gel, transferred to nylon membrane<br />

(Genescreen, New England Nuclear), and hybridized with a<br />

SNAT3-specific oligonucleotide probe. The SNAT3 oligonucleotide<br />

sequence was 5�-GTGCAGAAGGCTTCAGCAGTGTCAGGTTGG-<br />

3�. The oligonucleotide was radioactively 3�-end labeled us<strong>in</strong>g term<strong>in</strong>al<br />

transferase and �-[ 32P]dATP. For quantification of SNAT3<br />

mRNA, autoradiographs were scanned us<strong>in</strong>g a laser densitometer<br />

(Dynamic Biosystems). Glyceraldehyde-3 phosphate dehydrogenase<br />

(GAPDH) and �-act<strong>in</strong> were both found to be unsuitable for RNA<br />

load<strong>in</strong>g normalization because acidosis <strong>in</strong>creased mRNA levels of<br />

both. The 18S ribosomal RNA subunit was therefore used for normalization.<br />

Isolation of <strong>cortical</strong> basolateral membrane vesicles. Basolateral<br />

membrane vesicles (BLMV) were isolated from <strong>renal</strong> cortex by<br />

Percoll density gradient centrifugation as previously described (23).<br />

Vesicles were resuspended <strong>in</strong> <strong>in</strong>travesicular buffer [100 mM KCl, 100<br />

mM mannitol, 12 mM Tris/HEPES, pH 7.5, 0.1 mM phenylmethylsulfonyl<br />

fluoride, 1 �g/ml pepstat<strong>in</strong> A, 2 ml/l protease cocktail stock<br />

(Sigma P2714, Sigma, St. Louis, MO) to a concentration of �1<br />

mg/ml]. Prote<strong>in</strong> was measured us<strong>in</strong>g the Bradford assay with BSA as<br />

AJP-<strong>Renal</strong> Physiol • VOL 292 • JANUARY 2007 • www.ajp<strong>renal</strong>.org<br />

F449<br />

a standard. BLMV were prepared at the same time from all groups to<br />

be compared <strong>in</strong> a specific experiment to m<strong>in</strong>imize variation among the<br />

preparations. <strong>Renal</strong> cortices from two to five animals were pooled for<br />

each BLMV preparation. Vesicle relative enrichment was estimated<br />

us<strong>in</strong>g ouaba<strong>in</strong>-<strong>in</strong>hibitable ATPase activity <strong>in</strong> BLMV compared with<br />

the homogenate (14). The relative enrichment did not vary significantly<br />

among preparations for the RU486 experiments (control 16 �<br />

2-, acidosis 27 � 9-, acidosis�RU486 18 � 3-fold <strong>in</strong>crease over<br />

homogenate; P � 0.3, ANOVA) or the chronic dexamethasone<br />

experiments (control 17 � 3-, dexamethasone 14 � 3-fold <strong>in</strong>crease<br />

over homogenate; P � 0.5, t-test). Vesicles frozen <strong>in</strong> liquid nitrogen<br />

were used for glutam<strong>in</strong>e transport assays.<br />

Glutam<strong>in</strong>e transport. For transport studies <strong>in</strong> <strong>renal</strong> <strong>cortical</strong> BLMV,<br />

Na � -dependent glutam<strong>in</strong>e uptake was measured at room temperature<br />

us<strong>in</strong>g a rapid mix<strong>in</strong>g/filtration technique described previously (23).<br />

Basolateral glutam<strong>in</strong>e transport was measured <strong>in</strong> cells grown to tight<br />

confluence on Transwell plates. Follow<strong>in</strong>g treatment, transport was<br />

measured <strong>in</strong> chol<strong>in</strong>e chloride or NaCl uptake buffer (<strong>in</strong> mM: 137 NaCl<br />

or chol<strong>in</strong>e Cl, 10 HEPES/Tris, pH 7.4, 4.7 KCl, 1.2 MgSO4, 1.2<br />

KH2PO4, 2.5 CaCl2) conta<strong>in</strong><strong>in</strong>g L-[ 3 H]glutam<strong>in</strong>e (4 �Ci/ml) and 50<br />

�M unlabeled L-glutam<strong>in</strong>e. Uptake was term<strong>in</strong>ated after 5 m<strong>in</strong> by<br />

wash<strong>in</strong>g with ice-cold NaCl uptake buffer without [ 3 H]glutam<strong>in</strong>e. Part<br />

of the cell lysate was counted <strong>in</strong> a TopCount sc<strong>in</strong>tillation spectrophotometer<br />

(Packard, Meriden, CT), and part was used for prote<strong>in</strong><br />

determ<strong>in</strong>ation. The rate of glutam<strong>in</strong>e transport was l<strong>in</strong>ear at 5 m<strong>in</strong> and<br />

was expressed as nanomoles per milligram prote<strong>in</strong> per m<strong>in</strong>ute. Where<br />

<strong>in</strong>dicated, 5 mM histid<strong>in</strong>e was added to the uptake buffer to allow<br />

identification of SNAT3-mediated transport <strong>in</strong> BLMV and GR101<br />

cells.<br />

Western blot analysis. Equal amounts of <strong>cortical</strong> BLMV (10 �g)<br />

were separated by SDS-PAGE on precast polyacrylamide gels (ISC<br />

BioExpress, Kaysville, UT) and transferred to polyv<strong>in</strong>ylidene difluoride<br />

membranes (Millipore, Bedford, MA). Blots were <strong>in</strong>cubated with<br />

a polyclonal antibody raised aga<strong>in</strong>st a SNAT3-GST fusion prote<strong>in</strong><br />

conta<strong>in</strong><strong>in</strong>g the NH2-term<strong>in</strong>al 71 am<strong>in</strong>o acids of SNAT3 followed by a<br />

horseradish peroxidase-conjugated goat anti-rabbit antibody (Rockland<br />

Immunochemicals, Gilbertsville, PA). SNAT3 prote<strong>in</strong> was detected<br />

by enhanced chemilum<strong>in</strong>escence (Upstate, Lake Placid, NY)<br />

follow<strong>in</strong>g the manufacturer’s <strong>in</strong>structions.<br />

Clon<strong>in</strong>g of the rat SNAT3 promoter. A rat genomic library (Clontech,<br />

Mounta<strong>in</strong> View, CA) was screened us<strong>in</strong>g a SNAT3-specific<br />

probe. One positive plaque was identified and isolated by limit<strong>in</strong>g<br />

dilution. The purified phage conta<strong>in</strong>ed an <strong>in</strong>sert of �12 kb, all of<br />

which represent a genomic sequence from the SNAT3 gene, based on<br />

comparison with the published rat genomic sequence (GenBank<br />

NW_047801.1). A 3.7-kb XhoI restriction fragment of the rat genomic<br />

clone that conta<strong>in</strong>s �2.4 kb of the 5�-flank<strong>in</strong>g sequence, exon I<br />

(untranslated) and �1.3 kb of <strong>in</strong>tron 1 was subcloned <strong>in</strong>to Bluescript<br />

and sequenced (Molecular Genetics Core Facility at the Pennsylvania<br />

State University College of Medic<strong>in</strong>e). The Transcription Factor<br />

Search program TFSearch (Yutaka Akiyama: “TFSEARCH: Search<strong>in</strong>g<br />

Transcription Factor B<strong>in</strong>d<strong>in</strong>g Sites”; http://www.rwcp.or.jp/<br />

papia/) was used to identify potential transcription factor b<strong>in</strong>d<strong>in</strong>g sites<br />

<strong>in</strong> the 5�-flank<strong>in</strong>g region. A series of SNAT3 promoter fragments<br />

(5�-boundaries �2,414 �815, �132, �78 with a common 3� boundary<br />

at �20 with respect to the published rat SNAT3 cDNA sequence,<br />

GenBank AF273025) was amplified by PCR us<strong>in</strong>g the cloned phage<br />

DNA as a template and cloned <strong>in</strong>to the multiple clon<strong>in</strong>g site of the<br />

pCAT3-Basic reporter vector (Promega, Madison, WI). Reporter<br />

constructs were verified by sequenc<strong>in</strong>g by the Molecular Genetics<br />

Core Facility.<br />

Cell culture. LLC-PK1-GR101 (GR101) cells are porc<strong>in</strong>e epitheliallike<br />

LLC-PK1 cells that express rat glucocorticoid receptors (41).<br />

GR101 were grown <strong>in</strong> low-glucose DMEM (Invitrogen, Carlsbad,<br />

CA) conta<strong>in</strong><strong>in</strong>g 800 ng/ml hygromyc<strong>in</strong> B (Calbiochem, La Jolla, CA)<br />

to ma<strong>in</strong>ta<strong>in</strong> glucocorticoid receptor expression. These cells were<br />

generously provided by Dr. S. R. Price of Emory University.<br />

Downloaded from<br />

http://ajp<strong>renal</strong>.physiology.org/<br />

by guest on December 3, 2012


F450 GLUCOCORTICOIDS AND RENAL SNAT3 EXPRESSION<br />

Transient transfection. GR101 cells were transiently transfected<br />

us<strong>in</strong>g Lipofect<strong>in</strong> (Invitrogen) follow<strong>in</strong>g the manufacturer’s protocol.<br />

After cotransfection with pCAT.SNAT3 constructs (1 �g) and<br />

pSV40-�-Gal (1 �g, Promega), cells were treated with control or<br />

dexamethasone (0.01 or 0.1 �M) medium and harvested after 48 h.<br />

The dexamethasone-responsive plasmid pGREtkCAT was used as a<br />

positive control for glucocorticoid responsiveness. This plasmid conta<strong>in</strong>s<br />

two <strong>in</strong>verted repeats of a glucocorticoid response element sequence<br />

followed by the thymid<strong>in</strong>e k<strong>in</strong>ase promoter that drives expression<br />

of the chloramphenicol acetyl transferase (CAT) gene.<br />

pGREtkCAT was provided by Dr. S. S. Simons, Jr., of National<br />

Institute of Diabetes and Digestive and Kidney Diseases, National<br />

Institutes of Health. CAT and �-galactosidase assays were carried out<br />

as described <strong>in</strong> the Promega protocols.<br />

Statistics. Data were analyzed us<strong>in</strong>g a t-test, paired t-test, or<br />

one-way analysis of variance followed by Bonferroni or Dunnett<br />

posttests for multiple comparisons, as appropriate.<br />

RESULTS<br />

ADX rats are less able than sham-operated rats to ma<strong>in</strong>ta<strong>in</strong><br />

acid-base homeostasis dur<strong>in</strong>g chronic metabolic acidosis. Five<br />

groups of rats were studied: 1) sham-operated, 2) ADX, 3)<br />

2-day acidotic sham-operated, 4) 2-day acidotic ADX, and 5)<br />

2-day acidotic ADX pretreated for 2 days and throughout<br />

acidosis with the synthetic glucocorticoid dexamethasone (1<br />

mg�kg �1 �day �1 sc). Table 1 shows the arterial (systemic) pH<br />

and bicarbonate concentration and <strong>renal</strong> glutam<strong>in</strong>e AV difference<br />

<strong>in</strong> each group of rats. The effect of ad<strong>renal</strong>ectomy on the<br />

acid-base status and <strong>renal</strong> glutam<strong>in</strong>e AV difference of normal<br />

and acidotic rats was similar to that previously reported (11,<br />

30, 46). After 2 days of <strong>in</strong>gest<strong>in</strong>g ammonium chloride, both<br />

sham and ADX rats became acidotic, but ADX rats were more<br />

severely acidotic than sham rats. Chronic acidosis also <strong>in</strong>creased<br />

glutam<strong>in</strong>e AV difference <strong>in</strong> both sham and ADX rats,<br />

but the <strong>in</strong>crease was significantly attenuated <strong>in</strong> ADX rats.<br />

Dexamethasone treatment improved the ability of acidotic<br />

ADX rats to compensate for the acid load, as <strong>in</strong>dicated by<br />

<strong>in</strong>creased blood pH and serum bicarbonate concentration. In<br />

addition, glutam<strong>in</strong>e AV difference <strong>in</strong> these rats reverted toward<br />

the level <strong>in</strong> acidotic sham rats.<br />

Plasma glutam<strong>in</strong>e concentration is altered by ad<strong>renal</strong>ectomy,<br />

metabolic acidosis, and dexamethasone. Figure 1 shows<br />

the arterial plasma glutam<strong>in</strong>e concentration of all animal<br />

groups <strong>in</strong> the studies presented <strong>in</strong> Figs. 1-3. Acidosis decreases<br />

Table 1. Selected blood parameters from sham-operated<br />

and ad<strong>renal</strong>ectomized rats<br />

Blood pH<br />

Blood<br />

Bicarbonate,<br />

mM<br />

<strong>Renal</strong><br />

Glutam<strong>in</strong>e AV<br />

Difference, mmol/l<br />

Sham 7.38�0.01 25.0�0.5 �0.026�0.009<br />

ADX 7.29�0.02 22.3�0.6 �0.030�0.014<br />

Sham�acidosis 7.22�0.02 a 16.9�0.4 a 0.173�0.020 a<br />

ADX�acidosis 7.17�0.02 a 14.9�0.5 ab 0.070�0.009 ac<br />

ADX�acidosis�Dex 7.30�0.02 d 20.4�0.8 d 0.138�0.015 e<br />

Values are means � SE; n � 12–27 animals/group. ADX, ad<strong>renal</strong>ectomized.<br />

Animals were treated as described <strong>in</strong> MATERIALS AND METHODS. Dexamethasone<br />

(Dex) concentration was 1 mg�kg �1 �day �1 . pH and bicarbonate<br />

values are from arterial blood. Glutam<strong>in</strong>e <strong>renal</strong> arteriovenous (AV) difference<br />

is (arterial � <strong>renal</strong> ve<strong>in</strong>) plasma glutam<strong>in</strong>e concentration. a P � 0.001 vs. sham.<br />

b P � 0.05 vs. sham�acidosis. c P � 0.001 vs. sham�acidosis. d P � 0.001 vs.<br />

ADX�acidosis. e P � 0.01 vs. ADX�acidosis (ANOVA).<br />

AJP-<strong>Renal</strong> Physiol • VOL 292 • JANUARY 2007 • www.ajp<strong>renal</strong>.org<br />

Fig. 1. Effect of ad<strong>renal</strong>ectomy, acidosis, and dexamethasone on plasma<br />

glutam<strong>in</strong>e concentration. Plasma glutam<strong>in</strong>e concentration was measured <strong>in</strong><br />

arterial (aorta) and <strong>renal</strong> venous blood as described <strong>in</strong> MATERIALS AND METH-<br />

ODS. ADX, ad<strong>renal</strong>ectomized; Dex, dexamethasone treatment. The experimental<br />

groups and numbers of animals are the same <strong>in</strong> Figs. 1–3. Values are<br />

means � SE. a P � 0.05 vs. sham. b P � 0.01 vs. control. c P � 0.01 vs.<br />

ADX�acidosis�Dex. d P � 0.001 vs. sham�acidosis.<br />

(Fig. 1, A and B) and dexamethasone <strong>in</strong>creases (Fig. 1, A and<br />

C) plasma glutam<strong>in</strong>e concentration. The decl<strong>in</strong>e <strong>in</strong> plasma<br />

glutam<strong>in</strong>e dur<strong>in</strong>g acidosis is pr<strong>in</strong>cipally the result of greatly<br />

enhanced <strong>renal</strong> glutam<strong>in</strong>e utilization for ammoniagenesis.<br />

Plasma glutam<strong>in</strong>e <strong>in</strong>creases <strong>in</strong> animals treated with dexamethasone,<br />

reflect<strong>in</strong>g <strong>in</strong>creased glutam<strong>in</strong>e synthetase (GS) activity<br />

<strong>in</strong> muscle and lung (1, 27) and <strong>in</strong>creased proteolysis, pr<strong>in</strong>cipally<br />

<strong>in</strong> muscle (17). Treatment of acidotic rats with the<br />

glucocorticoid receptor antagonist RU486 did not alter systemic<br />

glutam<strong>in</strong>e concentration (Fig. 1B).<br />

Ad<strong>renal</strong>ectomy attenuates the acidosis-<strong>in</strong>duced <strong>in</strong>crease <strong>in</strong><br />

<strong>renal</strong> <strong>cortical</strong> SNAT3 mRNA and decreases <strong>renal</strong> glutam<strong>in</strong>e AV<br />

difference. Northern blot analysis was used to measure the<br />

relative levels of <strong>renal</strong> <strong>cortical</strong> SNAT3 mRNA <strong>in</strong> the same five<br />

groups as above and <strong>in</strong> ADX rats treated with dexamethasone<br />

(Fig. 2A). Metabolic acidosis significantly <strong>in</strong>creased SNAT3<br />

mRNA <strong>in</strong> both sham and ADX rats compared with sham and<br />

ADX rats not exposed to acidosis (P � 0.001 for both).<br />

However, ad<strong>renal</strong>ectomy blunted the acidosis-<strong>in</strong>duced <strong>in</strong>crease<br />

<strong>in</strong> SNAT3 mRNA (sham�acidosis 20.6 � 4.1 vs.<br />

ADX�acidosis 11.9 � 1.4 arbitrary units, P � 0.05) and<br />

dexamethasone partially reversed the effect of ad<strong>renal</strong>ectomy<br />

(15.9 � 3.4 arbitrary units). Glutam<strong>in</strong>e AV difference <strong>in</strong> these<br />

groups followed a similar pattern of response (Fig. 1B). Metabolic<br />

acidosis significantly <strong>in</strong>creased glutam<strong>in</strong>e AV difference<br />

<strong>in</strong> both sham and ADX rats compared with nonacidotic sham<br />

and ADX rats (sham P � 0.001; ADX P � 0.01). In ADX rats,<br />

acidosis-<strong>in</strong>duced glutam<strong>in</strong>e AV difference is attenuated compared<br />

with ad<strong>renal</strong>-<strong>in</strong>tact animals (sham�acidosis 0.16 � 0.03<br />

mmol/l vs. ADX�acidosis 0.08 � 0.01 mmol/l, P � 0.05).<br />

Downloaded from<br />

http://ajp<strong>renal</strong>.physiology.org/<br />

by guest on December 3, 2012


Fig. 2. Effect of ad<strong>renal</strong>ectomy on <strong>renal</strong> <strong>cortical</strong> System N glutam<strong>in</strong>e transporter<br />

(SNAT3) mRNA expression (A) and <strong>renal</strong> glutam<strong>in</strong>e arteriovenous<br />

(AV) difference (B) <strong>in</strong> rats. Sham and ADX rats were treated as <strong>in</strong>dicated.<br />

Metabolic acidosis was <strong>in</strong>duced by addition of NH4Cl to the dr<strong>in</strong>k<strong>in</strong>g water for<br />

2 days. Dexamethasone treatment (1 mg�kg �1 �day �1 sc) was started 2 days<br />

before acidosis and cont<strong>in</strong>ued dur<strong>in</strong>g acidosis. A: Northern blots were hybridized<br />

as described <strong>in</strong> MATERIALS AND METHODS and relative SNAT3 mRNA,<br />

normalized to 18S ribosomal RNA, determ<strong>in</strong>ed us<strong>in</strong>g laser densitometry; n �<br />

11–23 rats/group. B: glutam<strong>in</strong>e AV difference was calculated as (arterial �<br />

<strong>renal</strong> venous) plasma glutam<strong>in</strong>e concentration; n � 11–20 rats/group. Values<br />

are means � SE. a P � 0.05 vs. sham�acidosis. b P � 0.001 vs. sham. c P �<br />

0.001 vs. ADX. d P � 0.01 vs. ADX (ANOVA with Bonferroni posttest).<br />

Dexamethasone partially reversed the repressive effect of ad<strong>renal</strong>ectomy<br />

(0.11 � 0.02 mmol/l). There was a trend for<br />

dexamethasone to <strong>in</strong>crease SNAT3 and glutam<strong>in</strong>e AV difference<br />

<strong>in</strong> ADX rats, although the <strong>in</strong>crease did not reach statistical<br />

significance. We reported that, <strong>in</strong> normal rats, <strong>in</strong>creased <strong>renal</strong><br />

glutam<strong>in</strong>e uptake dur<strong>in</strong>g chronic metabolic acidosis rats is<br />

associated with <strong>in</strong>creased expression of the System N transporter<br />

SNAT3 <strong>in</strong> <strong>renal</strong> proximal tubules (23). Figure 2 suggests<br />

that this association also occurs <strong>in</strong> ADX rats. We <strong>have</strong> used<br />

<strong>renal</strong> AV difference (arterial � <strong>renal</strong> venous glutam<strong>in</strong>e plasma<br />

concentration) as a broad <strong>in</strong>dicator of glutam<strong>in</strong>e uptake, while<br />

recogniz<strong>in</strong>g that this approach has limitations (see DISCUSSION).<br />

Inhibition of glucocorticoid activity depresses the acidosis<strong>in</strong>duced<br />

<strong>in</strong>crease <strong>in</strong> <strong>cortical</strong> SNAT3 expression and <strong>renal</strong><br />

glutam<strong>in</strong>e AV difference. The glucocorticoid antagonist RU486<br />

was used to further explore a <strong>role</strong> for glucocorticoids <strong>in</strong><br />

regulat<strong>in</strong>g <strong>renal</strong> <strong>cortical</strong> SNAT3 expression and <strong>renal</strong> glutam<strong>in</strong>e<br />

uptake. Rats were exposed to metabolic acidosis for 6<br />

days with or without adm<strong>in</strong>istration of RU486 (12.5 mg/kg sc,<br />

twice/day). Control rats were <strong>in</strong>jected with vehicle (ethanol).<br />

BLMV isolated from control, acidotic, and RU486-treated<br />

GLUCOCORTICOIDS AND RENAL SNAT3 EXPRESSION<br />

AJP-<strong>Renal</strong> Physiol • VOL 292 • JANUARY 2007 • www.ajp<strong>renal</strong>.org<br />

F451<br />

acidotic rats were used to measure SNAT3-mediated glutam<strong>in</strong>e<br />

transport and for Western blot analysis. Acidosis <strong>in</strong>creased<br />

SNAT3 expression and glutam<strong>in</strong>e transport <strong>in</strong> BLMV (Fig. 3,<br />

A–C). RU486 treatment significantly attenuated acidosis<strong>in</strong>duced<br />

<strong>renal</strong> <strong>cortical</strong> SNAT3 mRNA (acidosis 1.0 � 0.08<br />

vs. acidosis�RU486, 0.5 � 0.1 arbitrary units, P � 0.05)<br />

(Fig. 3A), SNAT3 prote<strong>in</strong> (acidosis 4.05 � 0.75 vs.<br />

acidosis�RU486, 1.88 � 0.19 arbitrary units, P � 0.05)<br />

(Fig. 3B), and SNAT3-dependent transport <strong>in</strong> BLMV (acidosis<br />

409 � 20 pmol�mg �1 �m<strong>in</strong> �1 vs. acidosis�RU486,<br />

214 � 74 pmol�mg �1 �m<strong>in</strong> �1 , P � 0.05, repeated measures<br />

ANOVA) (Fig. 3C). <strong>Renal</strong> glutam<strong>in</strong>e AV difference was<br />

blunted but not significantly decreased by RU486 (acidosis<br />

0.24 � 0.02 mmol/l vs. acidosis�RU486, 0.18 � 0.03<br />

mmol/l) (Fig. 3D). Treatment of normal rats with RU486 did<br />

not affect SNAT3 mRNA or glutam<strong>in</strong>e AV difference (not<br />

shown).<br />

Chronic glucocorticoid treatment <strong>in</strong>creases <strong>renal</strong> <strong>cortical</strong><br />

SNAT3 expression. To obta<strong>in</strong> more direct evidence of a <strong>role</strong> for<br />

glucocorticoids <strong>in</strong> SNAT3 expression <strong>in</strong> the <strong>renal</strong> cortex, we<br />

treated normal rats with dexamethasone, acutely (5 mg/kg sc<br />

for 1–6 h) or chronically (100 �g/day sc for 1–6 days). Acute<br />

treatment with dexamethasone did not <strong>in</strong>crease <strong>renal</strong> <strong>cortical</strong><br />

SNAT3 mRNA. In chronically treated animals, SNAT3 mRNA<br />

<strong>in</strong>creased slowly to approximately twofold at day 3 (P � 0.05)<br />

and rema<strong>in</strong>ed at that level at day 6 (P � 0.001) (Fig. 4A).<br />

SNAT3 prote<strong>in</strong> and SNAT3-mediated glutam<strong>in</strong>e transport exhibited<br />

a small but not statistically significantly <strong>in</strong>crease (Fig.<br />

4, B and C). Glutam<strong>in</strong>e AV difference was modestly <strong>in</strong>creased<br />

at day 6 (�0.02 � 0.01 mmol/l control vs. 0.02 � 0.01 mmol/l<br />

day 6, P � 0.03, t-test). Dexamethasone stimulation of <strong>renal</strong><br />

GS activity <strong>in</strong> the dexamethasone-treated rats would tend to<br />

decrease apparent AV difference (see DISCUSSION), thus m<strong>in</strong>imiz<strong>in</strong>g<br />

the apparent <strong>in</strong>crease <strong>in</strong> glutam<strong>in</strong>e uptake.<br />

Dexamethasone <strong>in</strong>creases SNAT3 mRNA and SNAT3-mediated<br />

glutam<strong>in</strong>e transport but does not activate the SNAT3<br />

promoter <strong>in</strong> <strong>renal</strong> epithelial cells. SNAT3 mRNA and<br />

SNAT3-mediated basolateral glutam<strong>in</strong>e transport (control<br />

214 � 88 nmol�mg �1 �m<strong>in</strong> �1 , dexamethasone, 558 � 96<br />

nmol�mg �1 �m<strong>in</strong> �1 ) are <strong>in</strong>creased 50 (P � 0.01) and 250%<br />

(P � 0.01), respectively, by 0.01 �M dexamethasone treatment<br />

of glucocorticoid-responsive GR101 cells <strong>in</strong> culture<br />

(Fig. 5A). GR101 cells are porc<strong>in</strong>e epithelial-like LLC-PK1<br />

cells that express rat glucocorticoid receptors (41). To determ<strong>in</strong>e<br />

whether glucocorticoids <strong>in</strong>creased SNAT3 expression via<br />

<strong>in</strong>creased transcription of the SNAT3 gene, we cloned and<br />

sequenced 2.4 kb of the 5�-flank<strong>in</strong>g region of the rat SNAT3<br />

gene from a rat genomic library. Analysis of the 5�-flank<strong>in</strong>g<br />

sequence us<strong>in</strong>g the TFSearch program identified a number of<br />

potential glucocorticoid response elements. The promoter conta<strong>in</strong>s<br />

no TATA or CCAAT box sequences, but a GC-rich<br />

region conta<strong>in</strong><strong>in</strong>g three potential SP1 sites is present, �100<br />

bases upstream from the 5�-end of exon I. A series of pCAT<br />

reporter vectors conta<strong>in</strong><strong>in</strong>g up to 2.4 kb of SNAT3 5�-flank<strong>in</strong>g<br />

sequence was used to transiently transfect GR101 cells. The<br />

transfected cells were <strong>in</strong>cubated <strong>in</strong> the presence or absence of<br />

0.01 or 0.1 �M dexamethasone for 48 h. Data from 0.01 and<br />

0.1 �M dexamethasone were comb<strong>in</strong>ed because there was no<br />

difference between them. The promoterless expression vector<br />

pCAT3-Basic showed negligible CAT activity, whereas the<br />

pCAT.SNAT3 vector conta<strong>in</strong><strong>in</strong>g the longest promoter segment<br />

Downloaded from<br />

http://ajp<strong>renal</strong>.physiology.org/<br />

by guest on December 3, 2012


F452 GLUCOCORTICOIDS AND RENAL SNAT3 EXPRESSION<br />

Fig. 3. Effect of glucocorticoid <strong>in</strong>hibition on<br />

<strong>renal</strong> <strong>cortical</strong> SNAT3 mRNA (A), SNAT3<br />

basolateral membrane vesicle (BLMV) prote<strong>in</strong><br />

(B), SNAT3-mediated glutam<strong>in</strong>e transport<br />

(C), and <strong>renal</strong> glutam<strong>in</strong>e AV difference<br />

(D) <strong>in</strong> rats. Rats were exposed to NH4Cl<br />

acidosis for 6 days <strong>in</strong> the presence or absence<br />

of the glucocorticoid receptor antagonist<br />

RU486 (12.5 mg/kg twice a day). A: relative<br />

SNAT3 mRNA was determ<strong>in</strong>ed us<strong>in</strong>g Northern<br />

blot analysis; n � 8–12 rats/group. B:<br />

relative SNAT3 prote<strong>in</strong> was measured by<br />

Western blot analysis <strong>in</strong> isolated <strong>renal</strong> <strong>cortical</strong><br />

BLMV; n � 8 vesicle preparations/group.<br />

C: SNAT3-mediated glutam<strong>in</strong>e transport was<br />

measured <strong>in</strong> the same vesicles as <strong>in</strong> B. D:<br />

glutam<strong>in</strong>e AV difference was calculated as<br />

(arterial � <strong>renal</strong> venous) glutam<strong>in</strong>e concentration;<br />

n � 8–20 rats/group. Values are<br />

means � SE. Detailed procedures are described<br />

<strong>in</strong> MATERIALS AND METHODS. a P �<br />

0.001 vs. control. b P � 0.05 vs. acidosis<br />

(ANOVA).<br />

tested (�2.4 kb) exhibited a 15-fold <strong>in</strong>crease <strong>in</strong> basal activity,<br />

<strong>in</strong>dicat<strong>in</strong>g that this 5�-flank<strong>in</strong>g region of the SNAT3 promoter<br />

conta<strong>in</strong>s a functional promoter. The active promoter constructs<br />

did not, however, respond to dexamethasone treatment (Fig.<br />

5B). The pCAT.SNAT3 vector conta<strong>in</strong><strong>in</strong>g only the proximal 78<br />

bases of the flank<strong>in</strong>g region was transcriptionally <strong>in</strong>active,<br />

presumably because three Sp1 b<strong>in</strong>d<strong>in</strong>g sites between �101 and<br />

�78 are absent from this construct. Glucocorticoid responsive-<br />

Fig. 4. Effect of chronic dexamethasone treatment<br />

on <strong>renal</strong> <strong>cortical</strong> SNAT3 mRNA (A), SNAT3<br />

BLMV prote<strong>in</strong> (B), SNAT3-mediated glutam<strong>in</strong>e<br />

transport (C), and <strong>renal</strong> glutam<strong>in</strong>e AV difference<br />

(D) <strong>in</strong> rats. Rats were treated with dexamethasone<br />

(0.1 mg/day sc) for 1–6 days as <strong>in</strong>dicated. A: relative<br />

SNAT3 mRNA was determ<strong>in</strong>ed us<strong>in</strong>g Northern<br />

blot analysis; n � 9–11 rats/group. B: relative<br />

SNAT3 prote<strong>in</strong> was measured by Western blot analysis<br />

<strong>in</strong> isolated <strong>renal</strong> <strong>cortical</strong> BLMV; n � 5 vesicle<br />

preparations/group. C: SNAT3-mediated glutam<strong>in</strong>e<br />

transport was measured <strong>in</strong> the same vesicles as <strong>in</strong> B.<br />

D: glutam<strong>in</strong>e AV difference was calculated as (arterial<br />

� <strong>renal</strong> venous) plasma glutam<strong>in</strong>e concentration.<br />

Values are means � SE; n ��20 rats/group.<br />

Detailed procedures are described <strong>in</strong> MATERIALS AND<br />

METHODS. a P � 0.05 vs. control. b P � 0.001 vs.<br />

control [ANOVA (A) with Dunnett’s posttest; t-test<br />

(D)].<br />

AJP-<strong>Renal</strong> Physiol • VOL 292 • JANUARY 2007 • www.ajp<strong>renal</strong>.org<br />

ness of the GR101 cells was verified by transfection with the<br />

dexamethasone-responsive pGREtkCAT plasmid that conta<strong>in</strong>s<br />

two <strong>in</strong>verted glucocorticoid response elements followed by the<br />

thymid<strong>in</strong>e k<strong>in</strong>ase promoter. CAT activity of pGREtkCAT<br />

<strong>in</strong>creased approximately fivefold <strong>in</strong> response to 100 nM dexamethasone.<br />

The SNAT3 promoter constructs used <strong>in</strong> these<br />

studies (except the <strong>in</strong>active �78-bp construct) are activated by<br />

<strong>in</strong>cubation <strong>in</strong> acidic medium. CAT activity of the constructs<br />

Downloaded from<br />

http://ajp<strong>renal</strong>.physiology.org/<br />

by guest on December 3, 2012


Fig. 5. Dexamethasone <strong>in</strong>creases SNAT3 expression and transport activity <strong>in</strong><br />

GR101 cells but does not activate the SNAT3 promoter <strong>in</strong> transiently transfected<br />

cells. A: GR101 cells were grown on regular culture dishes (RNA<br />

isolation) or Transwell plates (transport) with or without 0.01 �M dexamethasone<br />

for 48 h. SNAT3 mRNA was determ<strong>in</strong>ed from Northern blot analysis<br />

and SNAT3-mediated transport measured as described <strong>in</strong> MATERIALS AND<br />

METHODS. Values are means � SE from 4–6 separate experiments carried out<br />

<strong>in</strong> duplicate or triplicate. a P � 0.01. B: GR101 cells were transiently transfected<br />

with pCAT vectors carry<strong>in</strong>g SNAT3 promoter fragments of various<br />

lengths and with the glucocorticoid-responsive plasmid pGREtkCAT, as <strong>in</strong>dicated.<br />

Cells were <strong>in</strong>cubated with or without dexamethasone (0.1 or 0.01 �M)<br />

for 48 h. Data were normalized for transfection efficiency by cotransfection<br />

with pSV-�-Gal. Normalized chloramphenicol acetyl transferase (CAT) activity<br />

is expressed relative to the control �2,414 SNAT3 promoter construct<br />

(100%). Transfection and CAT and �-galactosidase activity assays were<br />

carried out as described <strong>in</strong> MATERIALS AND METHODS. Values are means � SE<br />

of 6 separate experiments with triplicate or duplicate determ<strong>in</strong>ations.<br />

<strong>in</strong>creases approximately twofold <strong>in</strong> GR101 and LLC-PK1 cells<br />

<strong>in</strong> response to acidosis (not shown).<br />

DISCUSSION<br />

The plasma concentration of glucocorticoids is <strong>in</strong>creased <strong>in</strong><br />

response to metabolic acidosis (28, 42), result<strong>in</strong>g <strong>in</strong> activation<br />

or suppression of a variety of activities or pathways that act <strong>in</strong><br />

concert to ma<strong>in</strong>ta<strong>in</strong> blood pH with<strong>in</strong> strict limits. Early studies<br />

us<strong>in</strong>g ADX dogs and rats identified the kidneys as an important<br />

site of glucocorticoid action dur<strong>in</strong>g metabolic acidosis. Of<br />

particular <strong>in</strong>terest to us was the defect <strong>in</strong> <strong>renal</strong> glutam<strong>in</strong>e<br />

uptake and <strong>in</strong>duction of ammoniagenesis exhibited by ADX<br />

animals (11, 18, 33, 46). Dur<strong>in</strong>g acidosis, SNAT3 transporter<br />

expression and SNAT3-mediated glutam<strong>in</strong>e transport activity<br />

are <strong>in</strong>duced <strong>in</strong> the proximal tubules (23, 37), the site of<br />

<strong>in</strong>creased glutam<strong>in</strong>e metabolism and ammoniagenesis (16, 35).<br />

We hypothesized that glucocorticoids regulate acid-base homeostasis<br />

dur<strong>in</strong>g acidosis, <strong>in</strong> part, by <strong>in</strong>creas<strong>in</strong>g glutam<strong>in</strong>e<br />

availability for ammoniagenesis through upregulation of<br />

SNAT3 transporter expression.<br />

GLUCOCORTICOIDS AND RENAL SNAT3 EXPRESSION<br />

AJP-<strong>Renal</strong> Physiol • VOL 292 • JANUARY 2007 • www.ajp<strong>renal</strong>.org<br />

F453<br />

In our studies us<strong>in</strong>g sham-operated and ADX rats, <strong>renal</strong><br />

<strong>cortical</strong> SNAT3 mRNA was <strong>in</strong>creased by metabolic acidosis <strong>in</strong><br />

sham animals. This response was attenuated <strong>in</strong> ADX animals,<br />

and treatment of ADX animals with dexamethasone partially<br />

reversed the effect of ad<strong>renal</strong>ectomy (Fig. 1A), suggest<strong>in</strong>g that<br />

glucocorticoids <strong>have</strong> a <strong>role</strong> <strong>in</strong> acidosis-<strong>in</strong>duced activation of<br />

SNAT3 expression. The observation that the glucocorticoid<br />

receptor antagonist RU486 also blunts the acidosis-<strong>in</strong>duced<br />

<strong>in</strong>crease <strong>in</strong> SNAT3 expression (Fig. 2) provides additional<br />

evidence of glucocorticoid <strong>in</strong>volvement. Dexamethasone also<br />

<strong>in</strong>creased SNAT3 expression <strong>in</strong> the absence of acidosis, although<br />

the <strong>in</strong>crease was much smaller than that <strong>in</strong>duced by<br />

acidosis. In all the <strong>in</strong> vivo studies reported here, <strong>renal</strong> glutam<strong>in</strong>e<br />

AV difference mirrored SNAT3 expression, re<strong>in</strong>forc<strong>in</strong>g<br />

the suggestion that glutam<strong>in</strong>e uptake and expression of SNAT3<br />

<strong>in</strong> the <strong>renal</strong> cortex are l<strong>in</strong>ked. These results are consistent with<br />

previous observations that glucocorticoids play a <strong>role</strong> <strong>in</strong> acidbase<br />

homeostasis <strong>in</strong> part via regulation of <strong>renal</strong> glutam<strong>in</strong>e<br />

utilization (33, 46).<br />

We <strong>have</strong> used <strong>renal</strong> AV difference as a broad <strong>in</strong>dicator of<br />

glutam<strong>in</strong>e uptake. AV difference is a net measurement that is<br />

a function of arterial glutam<strong>in</strong>e concentration, <strong>renal</strong> GS activity,<br />

and <strong>renal</strong> blood flow. 1) Figure 1 shows the arterial<br />

glutam<strong>in</strong>e concentration <strong>in</strong> all experimental groups. 2) GS is<br />

present <strong>in</strong> the outer medulla of the kidney (35). GS activity,<br />

mRNA, and prote<strong>in</strong> <strong>in</strong> the kidney are unchanged (8, 35, 47) by<br />

chronic acidosis so that the impact of <strong>renal</strong> glutam<strong>in</strong>e synthesis<br />

on AV difference <strong>in</strong> acidotic rats is negligible. <strong>Glucocorticoids</strong><br />

<strong>in</strong>crease GS activity and gene expression <strong>in</strong> muscle and lung<br />

(1). In the kidney, glucocorticoids <strong>have</strong> no effect (1) or modestly<br />

<strong>in</strong>crease (26, 43) GS activity. The effect of <strong>in</strong>creased GS<br />

activity would be to <strong>in</strong>crease the <strong>renal</strong> venous concentration of<br />

glutam<strong>in</strong>e, thus decreas<strong>in</strong>g the apparent glutam<strong>in</strong>e uptake <strong>in</strong><br />

those groups treated with dexamethasone. 3) <strong>Renal</strong> blood flow<br />

or glomerular filtration rate either is not altered (15, 24, 32) or<br />

is <strong>in</strong>creased (45, 46) by metabolic acidosis. Welbourne and<br />

colleagues (45, 46) reported that <strong>renal</strong> plasma flow <strong>in</strong> ADX and<br />

acidotic ADX rats decreased compared with normal animals<br />

and <strong>in</strong>creased <strong>in</strong> acidotic rats and <strong>in</strong> ADX rats supplemented<br />

with glucocorticoid. They studied experimental groups similar<br />

to ours and observed a pattern of <strong>renal</strong> glutam<strong>in</strong>e AV differences<br />

<strong>in</strong> these groups the same as that shown <strong>in</strong> Fig. 2, except<br />

for their ADX�acidosis�glucocorticoid group, where the AV<br />

difference recovered to or above the sham acidosis level,<br />

whereas we observe only partial recovery. This difference may<br />

result from the use of different glucocorticoids and doses <strong>in</strong> our<br />

studies. In those studies, the pattern of glutam<strong>in</strong>e extraction<br />

(<strong>renal</strong> plasma flow � AV difference) and AV difference for<br />

each group was the same, suggest<strong>in</strong>g that, <strong>in</strong> these experimental<br />

conditions, AV difference broadly reflects glutam<strong>in</strong>e extraction.<br />

ADX animals are deficient <strong>in</strong> both glucocorticoids and<br />

m<strong>in</strong>eralocorticoids. Both glucocorticoids and m<strong>in</strong>eralocorticoids<br />

act <strong>in</strong> the kidney to <strong>in</strong>crease elim<strong>in</strong>ation of protons <strong>in</strong> the<br />

ur<strong>in</strong>e of acidotic animals, but their sites and mechanisms of<br />

action differ. <strong>Glucocorticoids</strong> <strong>in</strong>crease acid excretion <strong>in</strong> the<br />

form of ammonia excretion <strong>in</strong> response to an acid load with<br />

little effect on ur<strong>in</strong>e acidification, whereas m<strong>in</strong>eralocorticoids<br />

<strong>in</strong>crease acid secretion and acidify the ur<strong>in</strong>e with a limited<br />

effect on ammoniagenesis (20, 48). Glucocorticoid receptors<br />

are enriched <strong>in</strong> the proximal tubule, whereas m<strong>in</strong>eralocorticoid<br />

Downloaded from<br />

http://ajp<strong>renal</strong>.physiology.org/<br />

by guest on December 3, 2012


F454 GLUCOCORTICOIDS AND RENAL SNAT3 EXPRESSION<br />

receptors are enriched <strong>in</strong> more distal regions (12, 29, 34). The<br />

differential distribution of these receptors is consistent with the<br />

restriction of ammoniagenesis <strong>in</strong>duction to the proximal tubules.<br />

In addition, other acidosis-regulated transporters demonstrate<br />

a <strong>role</strong> for glucocorticoids, but not m<strong>in</strong>eralocorticoids,<br />

<strong>in</strong> the response to acidosis (2, 5, 13). For these reasons, we<br />

<strong>have</strong> focused on glucocorticoid regulation of SNAT3 expression<br />

<strong>in</strong> the studies reported here. However, a <strong>role</strong> for m<strong>in</strong>eralocorticoids<br />

is not excluded.<br />

The studies presented here provide some <strong>in</strong>sight <strong>in</strong>to the<br />

mechanism(s) by which glucocorticoids regulate SNAT3 expression.<br />

The effects of H � and glucocorticoids cannot be<br />

separated <strong>in</strong> normal rats <strong>in</strong> vivo because the plasma concentration<br />

of glucocorticoids <strong>in</strong>creases <strong>in</strong> response to acidosis (28,<br />

42). Experiments us<strong>in</strong>g ADX rats provide <strong>in</strong>sight <strong>in</strong>to the<br />

relative <strong>role</strong>s of glucocorticoids and H � <strong>in</strong> regulat<strong>in</strong>g <strong>cortical</strong><br />

SNAT3 expression. A comparison of Figs. 2A, 3A, and 4A<br />

shows that expression of SNAT3 mRNA is more strongly<br />

<strong>in</strong>duced by H � than by dexamethasone <strong>in</strong> both ADX and<br />

ad<strong>renal</strong>-<strong>in</strong>tact rats. Figure 2A demonstrates that the <strong>role</strong> of<br />

glucocorticoids <strong>in</strong> regulat<strong>in</strong>g SNAT3 expression is not permissive<br />

because SNAT3 mRNA is <strong>in</strong>duced by acidosis <strong>in</strong> ADX<br />

rats that lack endogenous glucocorticoids. The data <strong>in</strong> Fig. 2A<br />

also suggest that, for SNAT3 mRNA, the <strong>in</strong>ductive effects of<br />

H � and glucocorticoids may be additive. There is no evidence<br />

of synergistic <strong>in</strong>teraction between H � and glucocorticoids <strong>in</strong><br />

the <strong>in</strong>duction of SNAT3 expression.<br />

The ability of RU486 to partially block the stimulation of<br />

SNAT3 expression by acidosis suggests the <strong>in</strong>volvement of the<br />

glucocorticoid receptor <strong>in</strong> the regulation of SNAT3 gene transcription.<br />

Dexamethasone treatment <strong>in</strong>creased SNAT3 mRNA<br />

<strong>in</strong> control, ADX, and acidotic ADX rats (Figs. 2A and 4A),<br />

although to a lesser degree than chronic acidosis. The 5�flank<strong>in</strong>g<br />

region of the SNAT3 gene conta<strong>in</strong>s several potential<br />

glucocorticoid response elements that could be <strong>in</strong>volved <strong>in</strong><br />

glucocorticoid activation of SNAT3 transcription. However,<br />

transcriptionally active reporter expression vectors conta<strong>in</strong><strong>in</strong>g<br />

up to 2.4 kb of the SNAT3 5�-flank<strong>in</strong>g sequence did not<br />

respond to dexamethasone treatment when transiently transfected<br />

<strong>in</strong>to glucocorticoid-responsive GR101 cells (Fig. 5B).<br />

The lack of response suggests that glucocorticoids do not<br />

regulate SNAT3 directly by b<strong>in</strong>d<strong>in</strong>g of the activated glucocorticoid<br />

receptor to a response element with<strong>in</strong> the promoter, but<br />

<strong>in</strong>directly perhaps by <strong>in</strong>teraction with or <strong>in</strong>duction of an unknown<br />

factor or by message stabilization. It is also possible<br />

that an essential glucocorticoid-regulatory element lies outside<br />

the cloned 2.4 kb of promoter used for transfection.<br />

In addition to SNAT3, expression of a number of enzymes<br />

and transporters important <strong>in</strong> the response to acid-base imbalance<br />

is regulated <strong>in</strong> the kidney by both H � and glucocorticoids<br />

(3, 4, 21, 31). In some cases, for example, the gluconeogenic<br />

enzyme phosphoenolpyruvate carboxyk<strong>in</strong>ase and the Na � /H �<br />

antiporter NHE3, the mechanism of glucocorticoid action has<br />

been elucidated <strong>in</strong> considerable detail and has proven to be<br />

very complex. Both acidosis and glucocorticoids regulate<br />

phosphoenolpyruvate carboxyk<strong>in</strong>ase transcription through<br />

complex <strong>in</strong>teractions of nuclear factors with two <strong>in</strong>dependent<br />

doma<strong>in</strong>s <strong>in</strong> the promoter (9). Regulation of NHE3 <strong>in</strong>volves<br />

both transcription and transcription-<strong>in</strong>dependent mechanisms<br />

(traffick<strong>in</strong>g, phosphorylation) that differ <strong>in</strong> acute and chronic<br />

acidosis (6, 22, 40). Regulatory mechanisms for other acidosis-<br />

and glucocorticoid-regulated transporters <strong>have</strong> yet to be elucidated.<br />

The studies reported here demonstrate that glucocorticoids,<br />

<strong>in</strong> addition to H � , directly or <strong>in</strong>directly regulate expression of<br />

the SNAT3 transporter dur<strong>in</strong>g chronic metabolic acidosis. In<br />

addition, the close association between SNAT3 expression and<br />

<strong>renal</strong> glutam<strong>in</strong>e uptake as reflected by AV difference under a<br />

number of experimental conditions makes a strong argument<br />

for a central <strong>role</strong> for SNAT3 <strong>in</strong> the adaptive ammoniagenic<br />

response to acidosis. When rats are chronically exposed to<br />

metabolic acidosis, a series of compensatory adaptations occur<br />

<strong>in</strong> the kidney so that blood pH and bicarbonate concentration<br />

are restored to normal values with<strong>in</strong> 7 days despite cont<strong>in</strong>ued<br />

acid <strong>in</strong>gestion (30). Ammoniagenesis, however, rema<strong>in</strong>s elevated<br />

despite the normalization of acid-base status, suggest<strong>in</strong>g<br />

that factors other than H � are responsible for ma<strong>in</strong>tenance of<br />

activation of adaptive processes, <strong>in</strong>clud<strong>in</strong>g SNAT3 upregulation<br />

and <strong>renal</strong> glutam<strong>in</strong>e uptake. Blood glucocorticoids, <strong>in</strong><br />

contrast, rema<strong>in</strong> elevated dur<strong>in</strong>g acidosis (28, 42). Because of<br />

their widespread actions, glucocorticoids may be important <strong>in</strong><br />

orchestrat<strong>in</strong>g the systemic and <strong>renal</strong> response to metabolic<br />

acidosis and <strong>in</strong> ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g activation of key homeostatic<br />

activities.<br />

REFERENCES<br />

AJP-<strong>Renal</strong> Physiol • VOL 292 • JANUARY 2007 • www.ajp<strong>renal</strong>.org<br />

1. Abcouwer SF, Bode BP, Souba WW. <strong>Glucocorticoids</strong> regulate rat<br />

glutam<strong>in</strong>e synthetase expression <strong>in</strong> a tissue-specific manner. J Surg Res<br />

59: 59–65, 1995.<br />

2. Ali R, Amlal H, Burnham CE, Soleimani M. <strong>Glucocorticoids</strong> enhance<br />

the expression of the basolateral Na � :HCO 3 � cotransporter <strong>in</strong> <strong>renal</strong> proximal<br />

tubules. Kidney Int 57: 1063–1071, 2000.<br />

3. Ambuhl PM, Zajicek HK, Wang H, Puttaparthi K, Levi M. Regulation<br />

of <strong>renal</strong> phosphate transport by acute and chronic metabolic acidosis <strong>in</strong> the<br />

rat. Kidney Int 53: 1288–1298, 1998.<br />

4. Attmane-Elakeb A, Mount DB, Sibella V, Vernimmen C, Hebert SC,<br />

Bichara M. Stimulation by <strong>in</strong> vivo and <strong>in</strong> vitro metabolic acidosis of<br />

expression of rBSC-1, the Na � -K � (NH 4 � )-2Cl � cotransporter of the rat<br />

medullary thick ascend<strong>in</strong>g limb. J Biol Chem 273: 33681–33691, 1998.<br />

5. Attmane-Elakeb A, Sibella V, Vernimmen C, Belenfant X, Hebert SC,<br />

Bichara M. Regulation by glucocorticoids of expression and activity of<br />

rBSC1, the Na � -K � (NH 4 � )-2Cl � cotransporter of medullary thick ascend<strong>in</strong>g<br />

limb. J Biol Chem 275: 33548–33553, 2000.<br />

6. Bobulescu I, Dwarakanath V, Zou L, Zhang J, Baum M, Moe O.<br />

<strong>Glucocorticoids</strong> acutely <strong>in</strong>crease cell surface Na � /H � exchanger-3<br />

(NHE3) by activation of NHE3 exocytosis. Am J Physiol <strong>Renal</strong> Physiol<br />

289: F685–F691, 2005.<br />

7. Broer A, Albers A, Setiawan I, Edwards RH, Chaudry FA, Lang F,<br />

Wagner CA, Broer S. Regulation of the glutam<strong>in</strong>e transporter SN1 by<br />

extracellular pH and <strong>in</strong>tracellular sodium ions. J Physiol 5391: 3–14,<br />

2002.<br />

8. Burch HB, Choi S, McCarthy WZ, Wong PY, Lowry OH. The location<br />

of glutam<strong>in</strong>e synthase with<strong>in</strong> the rat and rabbit nephron. Biochem Biophys<br />

Res Commun 82: 498–505, 1978.<br />

9. Cassuto H, Olswang Y, He<strong>in</strong>emann S, Sabbagh K, Hanson RW,<br />

Reshef L. The transcriptional regulation of phosphoenolpyruvate carboxyk<strong>in</strong>ase<br />

gene <strong>in</strong> the kidney requires the HNF-1 b<strong>in</strong>d<strong>in</strong>g site of the gene.<br />

Gene 318: 177–184, 2003.<br />

10. Chaudhry FA, Krizaj D, Larsson P, Reimer RJ, Wreden C, Copenhagen<br />

D, Kavanaugh M, Edwards RH. Coupled and uncoupled proton<br />

movement by am<strong>in</strong>o acid transport system N. EMBO J 20: 7041–7051,<br />

2001.<br />

11. Dubrovsky A, Nair R, Byers M, Lev<strong>in</strong>e D. <strong>Renal</strong> net acid excretion <strong>in</strong><br />

the ad<strong>renal</strong>ectomized rat. Kidney Int 19: 516–528, 1981.<br />

12. Escoubet B, Coureau C, Blot-Chabaud m Bonvalet J, Farman N.<br />

Corticosteroid receptor mRNA expression is unaffected by corticosteroids<br />

<strong>in</strong> rat kidney, heart, and colon. Am J Physiol Cell Physiol 270: C1343–<br />

C1353, 1996.<br />

13. Freiberg JM, K<strong>in</strong>sella J, Sacktor B. <strong>Glucocorticoids</strong> <strong>in</strong>crease the<br />

Na � -H � exchange and decrease the Na � gradient-dependent phosphate-<br />

Downloaded from<br />

http://ajp<strong>renal</strong>.physiology.org/<br />

by guest on December 3, 2012


uptake systems <strong>in</strong> <strong>renal</strong> brush border membrane vesicles. Proc Natl Acad<br />

Sci USA 79: 4932–4936, 1982.<br />

14. Fujita M, Matsui H, Nagano K, Nakao M. Asymmetric distribution of<br />

ouaba<strong>in</strong>-sensitive ATPase activity <strong>in</strong> rat <strong>in</strong>test<strong>in</strong>al membrane. Biochim<br />

Biophys Acta 233: 404–408, 1971.<br />

15. Goldste<strong>in</strong> L. <strong>Renal</strong> substrate utilization <strong>in</strong> normal and acidotic rats. Am J<br />

Physiol <strong>Renal</strong> Fluid Electrolyte Physiol 253: F351–F357, 1987.<br />

16. Good DW, Burg MB. Ammonia production by the <strong>in</strong>dividual segments of<br />

the rat nephron. J Cl<strong>in</strong> Invest 73: 602–610, 1984.<br />

17. Hasselgren P. <strong>Glucocorticoids</strong> and muscle catabolism. Curr Op<strong>in</strong> Cl<strong>in</strong><br />

Nutr Metab Care 2: 201–205, 1999.<br />

18. Hughey RP, Rank<strong>in</strong> BB, Curthoys NP. Acute acidosis and <strong>renal</strong> arteriovenous<br />

differences of glutam<strong>in</strong>e <strong>in</strong> normal and ad<strong>renal</strong>ectomized rats.<br />

Am J Physiol <strong>Renal</strong> Fluid Electrolyte Physiol 238: F199–F204, 1980.<br />

19. Hulter HN, Licht JH, Bonner EL, Glynn RD, Sebastian A. Effects of<br />

glucocorticoid steroids on <strong>renal</strong> and systemic acid-base metabolism. Am J<br />

Physiol <strong>Renal</strong> Fluid Electrolyte Physiol 239: F30–F43, 1980.<br />

20. Hulter HN, Sigala JF, Sebastian A. Effects of dexamethasone on <strong>renal</strong><br />

and systemic acid-base metabolism. Kidney Int 20: 43–49, 1981.<br />

21. Imai E, M<strong>in</strong>er JN, Mitchell JA, Yamamoto KR, Granner DK. Glucocorticoid<br />

receptor-cAMP response element-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> <strong>in</strong>teraction<br />

and the response of the phosphoenolpyruvate carboxyk<strong>in</strong>ase gene to<br />

glucocorticoids. J Biol Chem 268: 5353–5356, 1993.<br />

22. Kandasamy RA, Orlowski J. Genomic organization and glucocorticoid<br />

transcriptional activation of the rat Na � /H � exchanger Nhe3 gene. J Biol<br />

Chem 271: 10551–10559, 1996.<br />

23. Kar<strong>in</strong>ch AM, L<strong>in</strong> CM, Wolfgang CL, Pan M, Souba WW. Regulation<br />

of expression of the SN1 glutam<strong>in</strong>e transporter dur<strong>in</strong>g <strong>renal</strong> adaptation to<br />

chronic metabolic acidosis. Am J Physiol <strong>Renal</strong> Physiol 283: F1011–<br />

F1019, 2002.<br />

24. Lowry M, Hall D, Hall M, Brosnan J. <strong>Renal</strong> metabolism of am<strong>in</strong>o acids<br />

<strong>in</strong> vivo; studies on ser<strong>in</strong>e and glyc<strong>in</strong>e fluxes. Am J Physiol <strong>Renal</strong> Fluid<br />

Electrolyte Physiol 252: F304–F309, 1987.<br />

25. MacKenzie B, Erickson JD. Sodium-coupled neutral am<strong>in</strong>o acid (System<br />

N/A) transporters of the SLC38 gene family. Pflügers Arch 447: 784–795,<br />

2004.<br />

26. Magnuson SR, Young AP. Mur<strong>in</strong>e glutam<strong>in</strong>e synthetase: clon<strong>in</strong>g, developmental<br />

regulation, and glucocorticoid <strong>in</strong>ducibility. Dev Biol 130: 536–<br />

542, 1988.<br />

27. Max SR, Mill J, Mearow K, Konagaya M, Konagaya Y, Thomas JW,<br />

Banner C, Vitkovic L. Dexamethasone regulates glutam<strong>in</strong>e synthetase<br />

expression <strong>in</strong> rat skeletal muscles. Am J Physiol Endocr<strong>in</strong>ol Metab 255:<br />

E397–E403, 1988.<br />

28. May R, Kelly R, Mitch W. Metabolic acidosis stimulates prote<strong>in</strong> degradation<br />

<strong>in</strong> rat muscle by a glucocorticoid-dependent mechanism. J Cl<strong>in</strong><br />

Invest 77: 614–621, 1986.<br />

29. Mish<strong>in</strong>a T, Scholer DW, Edelman IS. Glucocorticoid receptors <strong>in</strong> rat<br />

kidney <strong>cortical</strong> tubules enriched <strong>in</strong> proximal and distal segments. Am J<br />

Physiol <strong>Renal</strong> Fluid Electrolyte Physiol 240: F38–F45, 1981.<br />

30. Parry DM, Brosnan JT. Glutam<strong>in</strong>e metabolism <strong>in</strong> the kidney dur<strong>in</strong>g<br />

<strong>in</strong>duction of, and recovery from, metabolic acidosis <strong>in</strong> the rat. Biochem J<br />

174: 387–396, 1978.<br />

31. Preisig PA, Alpern RJ. Chronic metabolic acidosis causes an adaptation<br />

<strong>in</strong> the apical membrane Na/H antiporter and basolateral Na(HCO3)3<br />

symporter <strong>in</strong> the rat proximal tubule. J Cl<strong>in</strong> Invest 82: 1445–1453, 1988.<br />

GLUCOCORTICOIDS AND RENAL SNAT3 EXPRESSION<br />

AJP-<strong>Renal</strong> Physiol • VOL 292 • JANUARY 2007 • www.ajp<strong>renal</strong>.org<br />

F455<br />

32. Rizzo M, Capasso G, Bleich M, Pica A, Grimaldi D, B<strong>in</strong>dels RJ,<br />

Greger R. Effect of chronic metabolic acidosis on calb<strong>in</strong>d<strong>in</strong> expression<br />

along the rat distal tubule. J Am Soc Nephrol 11: 203–210, 2000.<br />

33. Sartorius OW, Calhoon D, Pitts RF. The capacity of the ad<strong>renal</strong>ectomized<br />

rat to secrete hydrogen and ammonium ions. Endocr<strong>in</strong>ology 51:<br />

444–450, 1952.<br />

34. Scholer DW, Mish<strong>in</strong>a T, Edelman IS. Distribution of aldosterone receptors<br />

<strong>in</strong> rat kidney <strong>cortical</strong> tubules enriched <strong>in</strong> proximal and distal segments.<br />

Am J Physiol <strong>Renal</strong> Fluid Electrolyte Physiol 237: F360–F366,<br />

1979.<br />

35. Schoolwerth AC, deBoer PAJ, Moorman AFM, Lamers WH. Changes<br />

<strong>in</strong> mRNAs for enzymes of glutam<strong>in</strong>e metabolism <strong>in</strong> kidney and liver<br />

dur<strong>in</strong>g ammonium chloride acidosis. Am J Physiol <strong>Renal</strong> Fluid Electrolyte<br />

Physiol 267: F400–F406, 1994.<br />

36. Shalhoub R, Webber W, Glabman S, Canessa-Fischer M, Kle<strong>in</strong> J,<br />

deHaas J, Pitts RF. Extraction of am<strong>in</strong>o acids from and their addition to<br />

<strong>renal</strong> blood plasma. Am J Physiol 204: 181–186, 1963.<br />

37. Solbu TT, Boulland Jl Zah<strong>in</strong> W, Bredahl MKL, Amiry-Moghaddam<br />

M, Storm-Mathieson J, Roberg BA, Chaudhry FA. Induction and<br />

target<strong>in</strong>g of the glutam<strong>in</strong>e transporter SN1 to the basolateral membranes of<br />

<strong>cortical</strong> kidney tubule cells dur<strong>in</strong>g chronic metabolic acidosis suggest a<br />

<strong>role</strong> <strong>in</strong> pH regulation. J Am Soc Nephrol 16: 869–877, 2005.<br />

38. Squires EJ, Hall DE, Brosnan JT. Arteriovenous differences for am<strong>in</strong>o<br />

acids and lactate across kidneys of normal and acidotic rats. Biochem J<br />

160: 125–128, 1976.<br />

39. Tamarappoo BK, Joshi S, Welbourne TC. Interorgan glutam<strong>in</strong>e flow<br />

regulation <strong>in</strong> metabolic acidosis. M<strong>in</strong>er Electrolyte Metab 16: 322–330,<br />

1990.<br />

40. Wang D, Sun H, Lang F, Yun C. Activation of NHE3 by dexamethasone<br />

requires phosphorylation of NHE3 at Ser663 by SGK1. Am J Physiol Cell<br />

Physiol 289: C802–C810, 2005.<br />

41. Wang X, Jurkovitz C, Price SR. Regulation of branched-cha<strong>in</strong> ketoacid<br />

dehydrogenase flux by extracellular pH and glucocorticoids. Am J Physiol<br />

Cell Physiol 272: C2031–C2036, 1997.<br />

42. Welbourne TC. Acidosis activation of the pituitary-ad<strong>renal</strong>-<strong>renal</strong> glutam<strong>in</strong>ase<br />

I axis. Endocr<strong>in</strong>ology 99: 1071–1079, 1976.<br />

43. Welbourne TC. Glucocorticoid regulation of <strong>renal</strong> glutamate metabolism.<br />

Contrib Nephrol 92: 52–56, 1991.<br />

44. Welbourne TC. Influence of ad<strong>renal</strong> glands on pathways of <strong>renal</strong> glutam<strong>in</strong>e<br />

utilization and ammonia production. Am J Physiol 226: 555–559,<br />

1974.<br />

45. Welbourne TC. Role of glucocorticoids <strong>in</strong> regulat<strong>in</strong>g <strong>in</strong>terorgan glutam<strong>in</strong>e<br />

flow dur<strong>in</strong>g chronic metabolic acidosis. Metabolism 37: 520–525,<br />

1988.<br />

46. Welbourne TC, Givens G, Joshi S. <strong>Renal</strong> ammoniagenic response to<br />

chronic acid load<strong>in</strong>g: <strong>role</strong> of glucocorticoids. Am J Physiol <strong>Renal</strong> Fluid<br />

Electrolyte Physiol 254: F134–F138, 1988.<br />

47. Welbourne TC, Phromphetcharat V, Givens G, Joshi S. Regulation of<br />

<strong>in</strong>terorganal glutam<strong>in</strong>e flow <strong>in</strong> metabolic acidosis. Am J Physiol Endocr<strong>in</strong>ol<br />

Metab 250: E457–E463, 1986.<br />

48. Wilcox CS, Cemerikic DA, Giebisch G. Differential effects of acute<br />

m<strong>in</strong>eralo- and glucocorticosteroid adm<strong>in</strong>istration on <strong>renal</strong> acid elim<strong>in</strong>ation.<br />

Kidney Int 21: 546–556, 1982.<br />

Downloaded from<br />

http://ajp<strong>renal</strong>.physiology.org/ by guest on December 3, 2012

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!