13.07.2015 Views

Fretting Fatigue of Slot-dovetails in Turbo-generator Rotor

Fretting Fatigue of Slot-dovetails in Turbo-generator Rotor

Fretting Fatigue of Slot-dovetails in Turbo-generator Rotor

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Frett<strong>in</strong>g</strong> <strong>Fatigue</strong> <strong>of</strong> <strong>Slot</strong>-<strong>dovetails</strong> <strong>in</strong> <strong>Turbo</strong>-<strong>generator</strong> <strong>Rotor</strong>(From O&M Issues Discussed <strong>in</strong> Recent EPRI Meet<strong>in</strong>gs)H. ItoToshiba Corporation1-1-1, Shibaura, M<strong>in</strong>ato-Ku, Tokyo, 105-8001 JapanAbstract-This paper describes the frett<strong>in</strong>g fatigue <strong>of</strong> slot<strong>dovetails</strong><strong>in</strong> turbo-<strong>generator</strong> rotor <strong>in</strong>clud<strong>in</strong>g typical examples andrepairs <strong>of</strong> frett<strong>in</strong>g fatigue cracks, results <strong>of</strong> frett<strong>in</strong>g fatigue tests,factors affect<strong>in</strong>g frett<strong>in</strong>g fatigue strength, frett<strong>in</strong>g fatiguepreventive technologies, and UT <strong>in</strong>spection methods.I INTRODUCTIONIn the ‘70s, two 660 MW turbo-<strong>generator</strong>s <strong>in</strong> Europeexperienced shaft crack<strong>in</strong>g due to frett<strong>in</strong>g fatigue <strong>of</strong> the slot<strong>dovetails</strong>.The authors started the basic study <strong>of</strong> frett<strong>in</strong>gfatigue <strong>of</strong> the shaft slot-<strong>dovetails</strong> <strong>in</strong> the late ‘70s. Inspectionresults showed that <strong>generator</strong> shafts, manufactured by theauthors, also cracked <strong>in</strong> the slot-<strong>dovetails</strong>. High-speed fatiguetest equipment was <strong>in</strong>troduced to perform comprehensivefrett<strong>in</strong>g fatigue tests simulat<strong>in</strong>g actual mach<strong>in</strong>es. The authorssucceeded <strong>in</strong> quantitatively def<strong>in</strong><strong>in</strong>g dom<strong>in</strong>ant factors affect<strong>in</strong>gfrett<strong>in</strong>g fatigue strength <strong>of</strong> slot-<strong>dovetails</strong> <strong>of</strong> turbo-<strong>generator</strong>rotor.A frett<strong>in</strong>g fatigue preventive technology was established forthe slot-<strong>dovetails</strong> based on the test results and review. Anondestructive <strong>in</strong>spection technology us<strong>in</strong>g UT was alsodeveloped. The frett<strong>in</strong>g fatigue preventive technology hasadopted <strong>in</strong> the new mach<strong>in</strong>es as a standard design application.It is also used <strong>in</strong> the <strong>in</strong>stalled mach<strong>in</strong>es as refurbishment. Themach<strong>in</strong>es with applied by these technologies are successfullyoperat<strong>in</strong>g for more than 20 years s<strong>in</strong>ce application.This paper <strong>in</strong>troduces examples and repairs <strong>of</strong> slot-dovetailfrett<strong>in</strong>g fatigue cracks, results <strong>of</strong> frett<strong>in</strong>g fatigue tests, factorsaffect<strong>in</strong>g frett<strong>in</strong>g fatigue strength, frett<strong>in</strong>g fatigue preventivetechnologies, UT <strong>in</strong>spection technology, and application <strong>of</strong>frett<strong>in</strong>g fatigue preventive technology to the <strong>in</strong>stalled mach<strong>in</strong>es.IIEXPERIENCES OF INSPECTION, CRACKED ROTOR SLOT-DOVETAIL AND REPAIRFig. 1 shows experience <strong>of</strong> <strong>in</strong>spections and observed crackedslot-<strong>dovetails</strong> s<strong>in</strong>ce 1979 by year. N<strong>in</strong>e out <strong>of</strong> 601 <strong>in</strong>spectedrotors were found to have cracks. Table 1 shows operat<strong>in</strong>ghistory, description <strong>of</strong> cracks and repairs, and countermeasures.As a severe example, mach<strong>in</strong>e A* is described below <strong>in</strong> detail<strong>in</strong>clud<strong>in</strong>g crack pr<strong>of</strong>ile, repair and countermeasure.Number <strong>of</strong> Inspected <strong>Rotor</strong>Unit4035302520151050■ ; Cracked <strong>Rotor</strong> <strong>Slot</strong>-dovetail1980 1985 1990 1995 2000Inspection YearFig. 1 Experience <strong>of</strong> Inspection and Cracked <strong>Rotor</strong> <strong>Slot</strong>-dovetailYear <strong>of</strong>InspectionTable 1. Experiences <strong>of</strong> Cracked <strong>Rotor</strong> <strong>Slot</strong>-dovetailOut-put(MW)Year <strong>in</strong>serviceA 1981 220 1963B 1982 350 1972C 1982 250 1971D 1982 500 1968E 1983 600 1973F 1987 350 1972G 1990 500 1973A* 1990 220 1963H 1991 375 1973Description <strong>of</strong> Crack<strong>in</strong>gCrack size: L10 x D3.2 mmCrack position: About the core centerNo. <strong>of</strong> cracks: 1Wedge hardness: Equal to shaftOperation hours: 100,000hNo. <strong>of</strong> starts and stops: 766Crack size (max.): L3.5 x D0.98 mmCrack position: About the core centerNo. <strong>of</strong> cracks: 10Wedge hardness: Harder than shaftCrack size: L2.5 mmCrack position: About the core centerNo. <strong>of</strong> cracks: 1Crack size (max.): L6.6 x 1.5 mmNo. cracks: 55Wedge hardness: Equal to or harder than shaftCrack size: L4.5 x D1.4 mmNo. <strong>of</strong> cracks: 9Wedge hardness: Equal to shaftCrack size: L4.0 mmNo. <strong>of</strong> cracks: 3Wedge hardness: Shaft is harderCrack size: L4.0 mmNo. <strong>of</strong> cracks: 28Wedge hardness: Shaft is harderCrack size: L23 x D8.5 mmNo. <strong>of</strong> cracks: 2Crack size: L5.5 mmNo. <strong>of</strong> cracks: 3Repair / ModificationGr<strong>in</strong>d <strong>of</strong>f cracks.Increase corner radius at wedge shoulder.Replace with wedges <strong>of</strong> a lower hardness.Gr<strong>in</strong>d <strong>of</strong>f cracks.Increase corner radius at wedge shoulder.Replace with wedges <strong>of</strong> a lower hardness.Clear<strong>in</strong>g <strong>of</strong> Crack<strong>in</strong>g with Gra<strong>in</strong>der.Make taper with radius at end <strong>of</strong> wedgeshoulder.Gr<strong>in</strong>d <strong>of</strong>f cracks.Increase corner radius at wedge shoulder.Replace with wedges <strong>of</strong> a lower hardness.Gr<strong>in</strong>d <strong>of</strong>f cracks.Increase corner radius at wedge shoulder.Replace with wedges <strong>of</strong> a lower hardness.Gr<strong>in</strong>d <strong>of</strong>f cracks.Increase corner radius at wedge shoulder.Replace with wedges <strong>of</strong> a lower hardness.Gr<strong>in</strong>d <strong>of</strong>f cracks.Increase corner radius at wedge shoulder.Gr<strong>in</strong>d <strong>of</strong>f cracks.Replace with alum<strong>in</strong>um alloy wedges.Change wedge length and arrangement.Gr<strong>in</strong>d <strong>of</strong>f cracks.Increase corner radius at wedge shoulder.Two cracks were observed at the core center <strong>of</strong> the slots bythe pole on the jo<strong>in</strong>t <strong>of</strong> steel wedges. A larger one measured 23mm <strong>in</strong> length and 8.5 mm <strong>in</strong> depth. Fig. 2 shows the crack <strong>in</strong>detail. The cracks were ground <strong>of</strong>f to suitable shapes to preventstress concentration and the surface was smoothly f<strong>in</strong>ished (Fig.3). Wedges were bridged over the ground <strong>of</strong>f area. The wedgematerial was changed from steel to alum<strong>in</strong>um alloy.Concentration <strong>of</strong> contact pressure was avoided by <strong>in</strong>creas<strong>in</strong>g thecorner radius on the area where the wedge edge contacts the slot<strong>dovetails</strong>. The unit is runn<strong>in</strong>g for 10 years s<strong>in</strong>ce then withoutproblems.1


108.585Crack<strong>in</strong>gequipment. The specimen is made <strong>of</strong> Ni-Cr-Mo-V steel, which isthe same as the shaft material. The pad is made <strong>of</strong> S55C(quenched and tempered) (AISI-1055), which is the same as thematerial <strong>of</strong> steel wedge. Table 2 and 3 show chemistry andmechanical properties <strong>of</strong> materials <strong>of</strong> specimen and pad,respectively.Fig 2. Detailed Cracked <strong>Rotor</strong> <strong>Slot</strong>-dovetail <strong>of</strong> A* Unit(10)(16)Fig. 4 Schematic Illustration <strong>of</strong> <strong>Frett<strong>in</strong>g</strong> <strong>Fatigue</strong> Test MethodFig 3.Repair and Correction for A* UnitIII EXPERIMENTAL STUDIES<strong>Frett<strong>in</strong>g</strong> fatigue <strong>of</strong> turb<strong>in</strong>e and turbo-<strong>generator</strong> rotors havebeen studied by many researchers for many years. Areas <strong>of</strong>concern are blade roots and coupl<strong>in</strong>g-to-shaft shr<strong>in</strong>kage fit. Theconventional frett<strong>in</strong>g fatigue tests used only one pad andadjacent wedges such as <strong>in</strong> the slot-<strong>dovetails</strong> <strong>of</strong> a turbo<strong>generator</strong>shaft were not simulated.We developed a high-speed fatigue test<strong>in</strong>g equipment<strong>in</strong>corporat<strong>in</strong>g two double-pads that simulate actual arrangements<strong>of</strong> wedges <strong>in</strong> slot-<strong>dovetails</strong>. We quantitatively evaluated factorsaffect<strong>in</strong>g frett<strong>in</strong>g fatigue strength <strong>of</strong> slot-<strong>dovetails</strong>. Theevaluated factors <strong>in</strong>cluded proximity effect <strong>of</strong> pads (wedges),contact pressure, relative slippage (wedge length), pad (wedge)materials (hardness, Young’s modulus, rigidity) and repeatedstress (shaft bend<strong>in</strong>g stress).We studied the frett<strong>in</strong>g fatigue preventive measures andfatigue life evaluation method for slot-<strong>dovetails</strong> based on the testresults and review.Test Equipment and MethodFig. 4 shows a schematic test arrangement <strong>of</strong> the frett<strong>in</strong>gfatigue test<strong>in</strong>g system. Fig. 4-(a) and 4-(b) are conventionaltest<strong>in</strong>g systems. Fig. 4-(c) is the double-pad type test system,which is newly devised to def<strong>in</strong>e the proximity effects <strong>of</strong>wedges. Fig. 5 shows a specimen and a pad. Fig. 6 illustratesthe test<strong>in</strong>g equipment. Fig. 7 is a photograph <strong>of</strong> the testFig. 5 Specimen and PadFig. 6 <strong>Frett<strong>in</strong>g</strong> <strong>Fatigue</strong> Test Equipment2


SpecimenPadFig. 8 Specimen and Pad for Pad Materials Effect TestFig. 7 Photograph <strong>of</strong> Setup <strong>of</strong> <strong>Frett<strong>in</strong>g</strong> <strong>Fatigue</strong> Test<strong>in</strong>gTable 2 Chemical Composition <strong>of</strong> Specimen and PadC Si Mn P S Ni Cr Mo VSpeci 0.24 0.10 0.32 0.00 0.00 3.71 1.60 0.27 0.12men7 5Pad 0.56 0.21 0.75 0.01 0.01 - - - -Table 3 Mechanical Properties <strong>of</strong> Specimen and PadReduction0.2% pro<strong>of</strong> Tensile ElongationHardness<strong>of</strong> areastress MPa stress MPa %Hv (1.0kg)%Specimen 790 895 25.3 71.3 269Pad 634(*) 811 19.5 39.6 265(*) Yield stress<strong>Frett<strong>in</strong>g</strong> fatigue tests were conducted <strong>in</strong> the atmospheric air atroom temperature with load control <strong>of</strong> pulsat<strong>in</strong>g tension at 15Hz. Pad clearance C was 0.25 and 4 mm and <strong>in</strong>f<strong>in</strong>ity (s<strong>in</strong>glepad). Nom<strong>in</strong>al contact pressure was 50, 100 and 200(equivalentto actual mach<strong>in</strong>es) MPa. Relative slippage <strong>of</strong> the pad edge was5 to 6 µm (equivalent to actual mach<strong>in</strong>es).<strong>Fatigue</strong> tests to evaluate the effect <strong>of</strong> pad materials wereconducted us<strong>in</strong>g the specimens and pads shown <strong>in</strong> Fig. 8 and thetest<strong>in</strong>g equipment shown <strong>in</strong> Fig. 9. The specimen materials wereNi-Cr-Mo-V steels or the same as the above specimens. The padmaterials tested were 5 each ferrous and nonferrous materials asshown <strong>in</strong> Table 4.<strong>Fatigue</strong> tests were conducted <strong>in</strong> the atmospheric air at roomtemperature with load control <strong>of</strong> pulsat<strong>in</strong>g tension at 100 Hz.Nom<strong>in</strong>al contact pressure was 200 MPa constant.Fig. 9 Test Equipment for Pad Materials Effect TestTable 4 Mechanical Properties <strong>of</strong> Pads for Pad Materials Effect TestContact pad σ 0.2 σ u δ ϕ E σ wfHvμmaterial MPa MPa % % GPa MPa3.5NiCrMoV-QT 790 895 25.3 71.3 269 205 0.7 753.5NiCrMoV-Q 1103 1660 13.7 46.4 403 207 0.7 80S55C-QT 561 933 21.5 45 255 201 0.68 75S25C-N 231 430 27.7 58.1 195 201 0.7 90SUS304 247 663 69.9 81 200 190 0.7 80Cu-Be-Ni 507 760 15.5 31.5 239 130 0.55 100Cu-Cr 380 450 26 51.2 150 120 0.65 130Cu 245 264 30 85 102 110 0.65 140A2024-T351 296 477 13.7 17.2 141 75 0.7 130Ti-6Al-4V 941 1035 15 35.5 365 115 0.68 100σ 0.2 = 0.2% pro<strong>of</strong> Hv = Hardness σ u = UTS E = Young’s modulusδ =Elongation μ = Coefficient <strong>of</strong> friction ϕ = Reduction <strong>of</strong> areaσ wf = <strong>Frett<strong>in</strong>g</strong> fatigue limit (amplitude at 2x10 7 )Experimental Results and ReviewFig. 10 shows the effect <strong>of</strong> pad-to-pad clearance on S-N curve.“N” represents the number <strong>of</strong> repetitions at the <strong>in</strong>itiation <strong>of</strong> a3


crack. Fig. 11 <strong>in</strong>dicates the relationship between pad-to-padclearance and frett<strong>in</strong>g fatigue limit. As Fig. 11 shows, fatiguelimit decreases sharply with the decreas<strong>in</strong>g pad-to-pad clearance.<strong>Frett<strong>in</strong>g</strong> fatigue limit by s<strong>in</strong>gle pad was 40 MPa, which is 1/8.8<strong>of</strong> the ord<strong>in</strong>ary fatigue limit <strong>of</strong> 350 MPa. Fig. 12 shows the<strong>in</strong>itiation and the propagation <strong>of</strong> cracks. A number <strong>of</strong> smallcracks(A) were observed on the pad edges at the <strong>in</strong>itial stage <strong>of</strong>fatigue. Along with the <strong>in</strong>crease <strong>in</strong> the number <strong>of</strong> repetitions, thepad edges were worn out, and then the major cracks(B) <strong>in</strong>itiatedand propagated at the <strong>in</strong>side <strong>of</strong> the pad edges.C=0.25mm, σa=15MpaFig. 12 <strong>Frett<strong>in</strong>g</strong> <strong>Fatigue</strong> Cracks Observed <strong>in</strong> SpecimenFig. 13 shows the effect <strong>of</strong> contact pressure on S-N curve.Fig. 14 <strong>in</strong>dicates the relationship between frett<strong>in</strong>g fatigue limitand contact pressure. For the contact pressure up to 100 MPa,frett<strong>in</strong>g fatigue limit decreases rapidly with <strong>in</strong>creas<strong>in</strong>g contactpressure but for the contact pressure above 100 MPa, decrease <strong>in</strong>frett<strong>in</strong>g fatigue limit is very small.Fig. 10 Effect <strong>of</strong> Pad-to-Pad Clearance on S-N CurvesFig. 13 Effect <strong>of</strong> Contact Pressure on S-N CurvesFig. 11 Relationship between Pad-to-Pad Clearance and <strong>Frett<strong>in</strong>g</strong> <strong>Fatigue</strong> Limit4


Fig. 14 Relationship between Contact Pressure and <strong>Frett<strong>in</strong>g</strong> <strong>Fatigue</strong> LimitFig. 16 Effect <strong>of</strong> Pad Materials (Ferrous) on S-N CurvesFig. 15 illustrates the effect <strong>of</strong> pad contact length on S-Ncurve. <strong>Frett<strong>in</strong>g</strong> fatigue life decreases with <strong>in</strong>creas<strong>in</strong>g contactlength.Fig. 17 Effect <strong>of</strong> Pad Materials (Non-Ferrous) on S-N CurvesFig. 15 Effect <strong>of</strong> Contact Length <strong>of</strong> Pad on S-N CurvesFigs. 16 and 17 show the result <strong>of</strong> frett<strong>in</strong>g fatigue tests <strong>of</strong>various pad materials. Fig. 18 shows the relationship betweenfrett<strong>in</strong>g fatigue limit and hardness <strong>of</strong> pad materials. Generally,frett<strong>in</strong>g fatigue limit decreases rapidly with <strong>in</strong>creas<strong>in</strong>g hardness<strong>of</strong> pad materials. In the high hardness region, however, padmaterials <strong>of</strong> the same hardness do not have an identical frett<strong>in</strong>gfatigue limit. Young’s modulus seems to be another factorsaffect<strong>in</strong>g frett<strong>in</strong>g fatigue limit <strong>in</strong> addition to hardness.Fig. 18 Relationship Between <strong>Frett<strong>in</strong>g</strong> <strong>Fatigue</strong> Limit and Pad Hardness5


IV IMPROVEMENTS IN DESIGN AND PRODUCTION<strong>Frett<strong>in</strong>g</strong> fatigue preventive technologies have beenestablished based on the results and review <strong>of</strong> the extensivefrett<strong>in</strong>g fatigue tests simulat<strong>in</strong>g actual mach<strong>in</strong>es as described <strong>in</strong>Chapter III. The preventive technologies are summarized below.(1) <strong>Frett<strong>in</strong>g</strong> fatigue strength decreases rapidly with decreas<strong>in</strong>gpad-to-pad clearance. As a countermeasure, the area <strong>of</strong> thewedge edge that contacts slot-<strong>dovetails</strong> was tapered topractically <strong>in</strong>crease the wedge-to-wedge clearance and thecorner radius <strong>of</strong> the wedge edge was enlarged to prevent theconcentration <strong>of</strong> contact pressure.(2) <strong>Fatigue</strong> life decreases with <strong>in</strong>creas<strong>in</strong>g wedge contact length.As a countermeasure, several different wedge lengths <strong>in</strong> usewere unified <strong>in</strong>to the shortest length. Furthermore, longwedges <strong>of</strong> a whole length or several split lengths wereadopted with wedge jo<strong>in</strong>ts to avoid meet<strong>in</strong>g the rotor corecenter.(3) <strong>Fatigue</strong> life decreases with <strong>in</strong>creas<strong>in</strong>g hardness, rigidity andYoung’ modulus <strong>of</strong> the wedge. As a countermeasure, wedgematerials <strong>of</strong> a lower hardness than shaft materials wereselected when us<strong>in</strong>g ferrous wedges. Analysis <strong>of</strong> ma<strong>in</strong> fluxdistribution <strong>in</strong>dicated that no operational problem occurswhen us<strong>in</strong>g nonmagnetic wedges <strong>in</strong> the slot by the pole. Inview <strong>of</strong> this f<strong>in</strong>d<strong>in</strong>g, alum<strong>in</strong>um alloy wedges may be used <strong>in</strong>all slots <strong>in</strong> some cases.Residual stress <strong>in</strong> the shaft is one <strong>of</strong> the known factorsaffect<strong>in</strong>g <strong>in</strong>itiation and propagation <strong>of</strong> frett<strong>in</strong>g fatigue cracks <strong>in</strong>the slot-<strong>dovetails</strong>. Residual stress orig<strong>in</strong>ates at the stage <strong>of</strong>shaft forg<strong>in</strong>g production and <strong>in</strong> the process <strong>of</strong> slots mak<strong>in</strong>g.The former is controlled to a level <strong>of</strong> several kg/mm2 or belowby improv<strong>in</strong>g steel mak<strong>in</strong>g process <strong>in</strong> the shaft forg<strong>in</strong>gproduction or by stress reliev<strong>in</strong>g anneal<strong>in</strong>g after steel mak<strong>in</strong>g.For the latter, thickness <strong>of</strong> the residual stress layer is controlledat several tens µm or less by us<strong>in</strong>g carbide cutter and improv<strong>in</strong>gthe slots mak<strong>in</strong>g process.V INSPECTION AND REFURBISHMENTInspection<strong>Frett<strong>in</strong>g</strong> fatigue cracks <strong>in</strong> the slot-<strong>dovetails</strong> are easily detectedby magnetic particle or eddy current <strong>in</strong>spection when thewedges are removed. When the wedges are <strong>in</strong> place <strong>in</strong>to slots,ultrasonic tests are used but test<strong>in</strong>g accuracy with standardprobes is <strong>of</strong>ten <strong>in</strong>sufficient because <strong>of</strong> the short distancebetween the rotor surface (<strong>in</strong>spection surface) and the crack and<strong>in</strong>cl<strong>in</strong>ation <strong>of</strong> slot-<strong>dovetails</strong> relative to the rotor surface.We developed a special probe featur<strong>in</strong>g an optimum angle <strong>of</strong>refraction and frequency. Model teeth simulat<strong>in</strong>g actual shaftteeth were prepared and artificially flaws to confirm theaccuracy <strong>of</strong> detection. It was confirmed that the probe detects am<strong>in</strong>imum <strong>of</strong> 1.0mm deep defect. Fig. 19 shows the special probeand the test us<strong>in</strong>g the model slot-dovetail.We recommend UT <strong>in</strong>spection <strong>of</strong> slot-<strong>dovetails</strong> at majoroutage (with the rotor taken out). 361 turbo-<strong>generator</strong> rotors ,asreta<strong>in</strong><strong>in</strong>g r<strong>in</strong>gs and wedges <strong>in</strong>stalled, have been <strong>in</strong>spected by UT<strong>in</strong>spection at site so far.Fig. 19 UT Probe for Shaft-DovetailRefurbishmentPermanent countermeasures aga<strong>in</strong>st frett<strong>in</strong>g fatigue crack<strong>in</strong>g<strong>in</strong>troduced <strong>in</strong> Chapter IV were applied to approximately 150<strong>in</strong>stalled <strong>generator</strong>s so far. No crack event is reported, <strong>in</strong> thefollow-up research, s<strong>in</strong>ce early 1990s when the refurbishmentwas almost completed. This means that the validity <strong>of</strong>prevention measures has been confirmed.VI CONCLUSIONIn the 1970s, it was reported that <strong>generator</strong> shafts werecracked due to frett<strong>in</strong>g fatigue <strong>in</strong> the slot-<strong>dovetails</strong>. We studiedthe countermeasures and have developed frett<strong>in</strong>g fatiguepreventive technologies and UT <strong>in</strong>spection technology. Thesetechnologies were applied to new and exist<strong>in</strong>g mach<strong>in</strong>es as astandard design application and refurbishment. The mach<strong>in</strong>esare runn<strong>in</strong>g for more than 20 years successfully s<strong>in</strong>ce then.Thermal power turbo-<strong>generator</strong>s are, however, runn<strong>in</strong>g under<strong>in</strong>creas<strong>in</strong>gly diverse and severe operat<strong>in</strong>g conditions <strong>in</strong> recentyears. It is not rare that units are operated over the orig<strong>in</strong>aldesign conditions. <strong>Frett<strong>in</strong>g</strong> fatigue life <strong>of</strong> slot-<strong>dovetails</strong> may beaffected also by operat<strong>in</strong>g conditions. We will keep close contactwith users to prevent fatigue damage and contribute to stablepower supply.6

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!