13.07.2015 Views

Jason Microwave Radiometer performance and on-orbit - Remote ...

Jason Microwave Radiometer performance and on-orbit - Remote ...

Jason Microwave Radiometer performance and on-orbit - Remote ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

202 S. Brown et al.Summary of the JMR cal/val ApproachThe calibrati<strong>on</strong> of JMR is divided into two parts. The first part is the calibrati<strong>on</strong> of theJMR brightness temperatures <str<strong>on</strong>g>and</str<strong>on</strong>g> the removal of any correlati<strong>on</strong> between the physicaltemperature of the hardware <str<strong>on</strong>g>and</str<strong>on</strong>g> the TBs. The sec<strong>on</strong>d part is the validati<strong>on</strong> of the retrievedpath delays. By first calibrating the TBs independently from PD, errors in the PD retrievalthat are related to the sensor calibrati<strong>on</strong> are separated from those related to the geophysicalinversi<strong>on</strong> algorithm.The dynamic range of brightness temperatures that JMR encounters when viewing theEarth ranges from ∼125–150 K (across the three channels) over dry, cloud-free, calm oceansurfaces to ∼300 K over hot near blackbody l<str<strong>on</strong>g>and</str<strong>on</strong>g> surfaces. The calibrati<strong>on</strong> of JMR TBs ismost accurate if compared to reference brightness temperature targets at both ends of the TBrange encountered while viewing the Earth. A vicarious cold reference for each frequency,representing a statistical lower bound <strong>on</strong> brightness temperature, is used to anchor the TBcalibrati<strong>on</strong> at the cold end of the TB range. Hot blackbody targets over the Amaz<strong>on</strong> rainforest are used to anchor the TB calibrati<strong>on</strong> at the hot end of the TB range.Another comp<strong>on</strong>ent of the TB calibrati<strong>on</strong> is removal of any residual correlati<strong>on</strong> of TBwith instrument physical temperatures. The space envir<strong>on</strong>ment can create significant thermalvariati<strong>on</strong>s in the radiometer hardware <str<strong>on</strong>g>and</str<strong>on</strong>g> temperature gradients between the comp<strong>on</strong>entsexposed to the space envir<strong>on</strong>ment <str<strong>on</strong>g>and</str<strong>on</strong>g> the internal comp<strong>on</strong>ents. Accurate c<strong>on</strong>versi<strong>on</strong> fromraw voltage counts to antenna temperature must take into account the temperature dependentloss from the comp<strong>on</strong>ents between the antenna <str<strong>on</strong>g>and</str<strong>on</strong>g> the internal calibrati<strong>on</strong> reference. Ahardware radiative transfer model <str<strong>on</strong>g>and</str<strong>on</strong>g> prelaunch thermal-vacuum testing were initially usedto estimate correcti<strong>on</strong>s for the fr<strong>on</strong>t-end hardware losses in the JMR Level 1a algorithm.Prelaunch testing is not able to duplicate all thermal c<strong>on</strong>diti<strong>on</strong>s that the spacecraft willencounter while in <strong>orbit</strong>. Thus, the fr<strong>on</strong>t-end thermal loss coefficients in Equati<strong>on</strong> 1 areadjusted <strong>on</strong>-<strong>orbit</strong> to remove any residual correlati<strong>on</strong>s between JMR brightness temperature<str<strong>on</strong>g>and</str<strong>on</strong>g> the temperature of various hardware comp<strong>on</strong>ents.The sec<strong>on</strong>d part of the JMR calibrati<strong>on</strong> is the validati<strong>on</strong> of the path delay retrieval.The path delay is validated using collocated TMR path delay values <str<strong>on</strong>g>and</str<strong>on</strong>g> time <str<strong>on</strong>g>and</str<strong>on</strong>g> spacecoincident Radios<strong>on</strong>de Observati<strong>on</strong> (RaOb) derived path delay values. After calibrati<strong>on</strong>there should be no bias between the JMR PDs <str<strong>on</strong>g>and</str<strong>on</strong>g> the TMR <str<strong>on</strong>g>and</str<strong>on</strong>g> RaOb PDs. This willensure altimeter retrievals with minimum uncertainty <str<strong>on</strong>g>and</str<strong>on</strong>g> a c<strong>on</strong>tinuous TMR/JMR data set.It is also essential that there is no scale error in the JMR PD retrieval, since errors that scalewith path delay will cause errors in the ocean height retrieval that are correlated over large(z<strong>on</strong>al) spatial scales.The JMR calibrati<strong>on</strong> is adjusted by changing three sets of coefficients in the calibrati<strong>on</strong>processing algorithms. The off-Earth side lobe fracti<strong>on</strong>s (c-fracti<strong>on</strong>s) are adjusted in theantenna pattern correcti<strong>on</strong> (APC) algorithm (Equati<strong>on</strong> 3). Sec<strong>on</strong>d, the fr<strong>on</strong>t-end loss coefficients,K R <str<strong>on</strong>g>and</str<strong>on</strong>g> K FH , <str<strong>on</strong>g>and</str<strong>on</strong>g> the effective noise diode brightness, the temperature dependencyof T N , are adjusted in the antenna temperature calibrati<strong>on</strong> algorithm (Equati<strong>on</strong> 1). Any remainingbias or scale error in the JMR PD retrieval is adjusted by changing the coefficientsin the path delay retrieval algorithm (Equati<strong>on</strong> 5).Calibrati<strong>on</strong>/Validati<strong>on</strong> Methodology<str<strong>on</strong>g>Jas<strong>on</strong></str<strong>on</strong>g>-1/Topex T<str<strong>on</strong>g>and</str<strong>on</strong>g>em Missi<strong>on</strong>The <str<strong>on</strong>g>Jas<strong>on</strong></str<strong>on</strong>g>-1 satellite was placed in a virtually identical <strong>orbit</strong> with TOPEX/Poseid<strong>on</strong> duringthe calibrati<strong>on</strong> phase of the missi<strong>on</strong>, with <strong>on</strong>ly a 70-sec<strong>on</strong>d displacement. This has affordedunprecedented accuracy in the intercalibrati<strong>on</strong> of the two instruments by removing virtually


204 S. Brown et al.±10Kofafirst guess. The first guess is determined for each frequency by plotting modeledTBs versus SST in dry atmospheric c<strong>on</strong>diti<strong>on</strong>s, then choosing the minimum TB. From thishistogram, a cumulative distributi<strong>on</strong> functi<strong>on</strong> is formed by finding the TB P for which Ppercent of the samples in the histogram are less than or equal to that TB P . In the discretecase, a TB P is found at even increments of 0.1% in P from 3.0%–10%. A third orderpolynomial model of the formTB P = a P0 + a P1 P + a P2 P 2 + a P3 P 3 , (6)is assumed to represent the cumulative distributi<strong>on</strong> functi<strong>on</strong>. The coefficients are found byperforming a least-squares regressi<strong>on</strong> <strong>on</strong> the data between 3% <str<strong>on</strong>g>and</str<strong>on</strong>g> 10%. The vicarious coldreference TB is found by evaluating the resulting functi<strong>on</strong> at a frequency of zero (the a P0term). Therefore, the vicarious cold reference represents the highest TB for which there isa zero probability of observing a lower TB.Given a large modeled data set, a stable vicarious cold calibrati<strong>on</strong> reference temperaturecan be found for each JMR frequency. The accuracy of the vicarious cold referencetemperature is dependent <strong>on</strong> the sea surface emissi<strong>on</strong> model used to create the dataset. Tomitigate model error in using an absolute cold calibrati<strong>on</strong> reference, differences betweenthe vicarious cold reference TBs of adjacent JMR <str<strong>on</strong>g>and</str<strong>on</strong>g> TMR channels were used to calibrateJMR TBs instead of an absolute JMR cold reference. Thus at the cold end, the JMR TBswill be calibrated using TMR as a st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard. This is justified because the TMR TBs are wellcalibrated (Keihm et al. 2000) <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>e goal of the calibrati<strong>on</strong> is to have no bias betweenthe JMR <str<strong>on</strong>g>and</str<strong>on</strong>g> TMR PDs.To find the theoretical difference between the vicarious cold reference at adjacent JMR<str<strong>on</strong>g>and</str<strong>on</strong>g> TMR frequencies, the vicarious cold reference algorithm was applied to the entire dataset of RaOb derived TBs for the three JMR channels <str<strong>on</strong>g>and</str<strong>on</strong>g> three TMR channels. The differenceat adjacent frequencies is the theoretical vicarious cold reference difference. Thisprocess was repeated using the Ellis<strong>on</strong> et al. (1998) <str<strong>on</strong>g>and</str<strong>on</strong>g> Klein <str<strong>on</strong>g>and</str<strong>on</strong>g> Swift (1976) sea waterdielectric models which had minimal impact <strong>on</strong> the cold reference differences. The maximumdeviati<strong>on</strong> of the theoretical cold reference difference found using the other models ascompared to the Stogryn model was under 0.1 K for all frequency pairs. The repeatability ofthe theoretical cold reference difference is determined by finding the cold reference valuesfor 100 r<str<strong>on</strong>g>and</str<strong>on</strong>g>om subsets of the 22,000 profiles, <str<strong>on</strong>g>and</str<strong>on</strong>g> evaluating the st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard deviati<strong>on</strong> ofthe results. Each r<str<strong>on</strong>g>and</str<strong>on</strong>g>om subset c<strong>on</strong>tained approximately 7,800 profiles. The uncertaintyin the cold reference differences is the root-sum-square of the model uncertainty <str<strong>on</strong>g>and</str<strong>on</strong>g> therepeatability. Table 1 c<strong>on</strong>tains the theoretical cold reference differences derived from theRaOb profiles by the method described above. The secti<strong>on</strong> Cold TB Calibrati<strong>on</strong> Resultsdescribes how the JMR TBs are calibrated using the theoretical cold reference differences.TABLE 1 Theoretical Vicarious Cold References TBDifferences Between Adjacent JMR <str<strong>on</strong>g>and</str<strong>on</strong>g> TMR ChannelsCalculated Using the Stogryn Emissivity Model (TheUncertainty is the RSS of the Deviati<strong>on</strong> from the OtherSurface Emissivity Models <str<strong>on</strong>g>and</str<strong>on</strong>g> the Repeatability of the Value.)Theoretical vicarious cold reference TB differencesJMR 18.7–TMR 18.0 1.59 K ± 0.30JMR 23.8–TMR 21.0 3.96 K ± 0.61JMR 34.0–TMR 37.0 −5.61 K ± 0.23


<str<strong>on</strong>g>Jas<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Radiometer</str<strong>on</strong>g> Performance <str<strong>on</strong>g>and</str<strong>on</strong>g> Calibrati<strong>on</strong> 205Hot TB Calibrati<strong>on</strong>—Amaz<strong>on</strong>ian Hot ReferenceSuitable geographic regi<strong>on</strong>s in the Amaz<strong>on</strong> rainforest were selected as hot TB calibrati<strong>on</strong>reference targets. The regi<strong>on</strong>s were selected based <strong>on</strong> the magnitude of the vertically <str<strong>on</strong>g>and</str<strong>on</strong>g>horiz<strong>on</strong>tally polarized TB difference as measured by the SSM/I radiometer at its two windowchannels of 19.35 <str<strong>on</strong>g>and</str<strong>on</strong>g> 37.0 GHz. Two regi<strong>on</strong>s were chosen where the mean differencebetween the vertically <str<strong>on</strong>g>and</str<strong>on</strong>g> horiz<strong>on</strong>tally polarized TBs is approximately 1K. The selecti<strong>on</strong>criteri<strong>on</strong> locates regi<strong>on</strong>s with an optically thick vegetati<strong>on</strong> canopy. In this way, the emissi<strong>on</strong>from the surface is reduced from that of a blackbody <strong>on</strong>ly by the single scattering albedoof the canopy <str<strong>on</strong>g>and</str<strong>on</strong>g> is independent of polarizati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> incidence angle. A method developedby Brown <str<strong>on</strong>g>and</str<strong>on</strong>g> Ruf (2003), is used to determine the predicted JMR reference TB for eachregi<strong>on</strong> from SSM/I observati<strong>on</strong>s. A summary of the method is given in the appendix.Comparis<strong>on</strong>s with Coincident Radios<strong>on</strong>desRadios<strong>on</strong>de profiles were collected from 59 globally distributed open ocean isl<str<strong>on</strong>g>and</str<strong>on</strong>g> launchsites from 15 January 2002 to 15 August 2002 <str<strong>on</strong>g>and</str<strong>on</strong>g> from 6 April 2003 to 3 August 2003. Thesedates corresp<strong>on</strong>d to JMR cycles 1–24 <str<strong>on</strong>g>and</str<strong>on</strong>g> 46–55. Generally, the RaObs were launched twicea day. The path delay derived from each profile’s humidity <str<strong>on</strong>g>and</str<strong>on</strong>g> temperature measurementsare compared directly to the JMR path delay at the closest approach point. The closestapproach points varied from about 4 km to 315 km spatially, <str<strong>on</strong>g>and</str<strong>on</strong>g> from 0–6 h temporally.The large data set allowed for several stringent quality c<strong>on</strong>trol filters. The RaOb profilemust reach 10,000 meters, which will ensure a complete sampling of the humidity <str<strong>on</strong>g>and</str<strong>on</strong>g>temperature profiles. To determine the vapor density at heights above the maximum ballo<strong>on</strong>reading <str<strong>on</strong>g>and</str<strong>on</strong>g> to flag profiles c<strong>on</strong>taminated by thick clouds, an exp<strong>on</strong>ential best-fit of eachabsolute humidity profile (ρ RaOb (z)) was determined using the model,ρ est (z) = ρ 0 e − z H , (7)where ρ est (z) is the water vapor density, ρ 0 is the water vapor density at the surface, z is thealtitude above the surface, <str<strong>on</strong>g>and</str<strong>on</strong>g> H is the water vapor scale height. The surface water vapordensity is determined from the lowest RaOb humidity measurement <str<strong>on</strong>g>and</str<strong>on</strong>g> the scale height isdetermined from a least-squares fit of the RaOb humidity profile. To flag for cloudy data, theexp<strong>on</strong>ential best fit is required to have an r-squared value of greater than 0.7 as comparedto the real profile. The r-squared value is defined as,R 2 = 1 − (ρ RaOb − ρ est )(ρ RaOb − ρ RaOb ) , (8)where the overbars represent the mean. It was observed that <strong>on</strong>ly a small number of outlierprofiles had r-squared values less than 0.7. The closest approach point of the <str<strong>on</strong>g>Jas<strong>on</strong></str<strong>on</strong>g> groundtrack could not be more than 315 km <str<strong>on</strong>g>and</str<strong>on</strong>g> six hours from the ballo<strong>on</strong> launch. Comparis<strong>on</strong>sare also made with varying bounds <strong>on</strong> the closest approach point. The variance in the18.7 GHz brightness temperature of the 10 JMR points surrounding the closest approachpoint could not be more than 10 K. This minimizes l<str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>taminati<strong>on</strong> for points wherethe radial distance from the isl<str<strong>on</strong>g>and</str<strong>on</strong>g> is within JMR’s footprint.The path delay is determined from the radios<strong>on</strong>de absolute humidity <str<strong>on</strong>g>and</str<strong>on</strong>g> temperatureprofiles. The vapor density profile is determined from the dew point <str<strong>on</strong>g>and</str<strong>on</strong>g> temperature profile.


206 S. Brown et al.The vapor-induced path delay is determined using the relati<strong>on</strong>PD = 1.763 ∗ 10 −3 ∫ TOA0ρ vdz, (9)Twhere ρ v is the vapor density [g/m 3 ], T is the air temperature in K , <str<strong>on</strong>g>and</str<strong>on</strong>g> dz is in meters.Equati<strong>on</strong> 9 is based <strong>on</strong> measurements of the wet refractivity comp<strong>on</strong>ent due to water vaporby Boudouris (1963).JMR Brightness Temperature Calibrati<strong>on</strong> ResultsThe JMR brightness temperatures were calibrated in-flight using TMR comparis<strong>on</strong>s, avicarious cold reference, <str<strong>on</strong>g>and</str<strong>on</strong>g> a hot pseudo-blackbody reference. There were noticeable TBcalibrati<strong>on</strong> offsets just after launch <strong>on</strong> the order of 1–4 K. There was also a TB offsetbetween the satellite’s yaw state. The TBs were generally 2 K higher during the fixed yawmode as compared to the sinusoidal yaw mode. The yaw offset was readily identified withthe colocated JMR <str<strong>on</strong>g>and</str<strong>on</strong>g> TMR TB <str<strong>on</strong>g>and</str<strong>on</strong>g> PD data. This is shown in Figure 1.The TB calibrati<strong>on</strong> was corrected by adjusting coefficients included in the Level 1adata processing <str<strong>on</strong>g>and</str<strong>on</strong>g> the Level 1b data processing, which are the antenna temperature calibrati<strong>on</strong><str<strong>on</strong>g>and</str<strong>on</strong>g> the antenna pattern correcti<strong>on</strong>, respectively. The yaw offset, which was due toa dependence of the TBs <strong>on</strong> instrument temperature, was corrected by adjusting fr<strong>on</strong>t-endthermal loss coefficients, specifically K R <str<strong>on</strong>g>and</str<strong>on</strong>g> K FH in Equati<strong>on</strong> 1. These coefficients, includedin the Level 1a data processing, directly affect any correlati<strong>on</strong> between instrumentphysical temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> TB. An initial adjustment was also made to the effective noisediode brightness while tuning K R <str<strong>on</strong>g>and</str<strong>on</strong>g> K FH so that the TBs agreed with the vicarious coldreference. The effective noise diode brightness is changed by adjusting the temperaturedependence of its brightness. These adjustments had a maximum resp<strong>on</strong>se at the coldestTBs <str<strong>on</strong>g>and</str<strong>on</strong>g> minimal affect for the hottest TBs. Further fine tuning of the of TB calibrati<strong>on</strong>,FIGURE 1 Pass averaged JMR–TMR TBs for adjacent channels for JMR cycles 3–21 withthe prelaunch calibrati<strong>on</strong> coefficients. The JMR (dashed line) <str<strong>on</strong>g>and</str<strong>on</strong>g> TMR (solid line) yawtransiti<strong>on</strong>s are included as vertical lines. Notice the 2Koffset between JMR yaw states.


<str<strong>on</strong>g>Jas<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Radiometer</str<strong>on</strong>g> Performance <str<strong>on</strong>g>and</str<strong>on</strong>g> Calibrati<strong>on</strong> 207essentially forcing the TBs to agree with the hot <str<strong>on</strong>g>and</str<strong>on</strong>g> cold references, was performed byadjusting the off-Earth sidelobe fracti<strong>on</strong>s (c-fracti<strong>on</strong>s) in the antenna pattern correcti<strong>on</strong>(APC) algorithm (Equati<strong>on</strong> 3), which is included in the Level 1b processing. Increasingthe c-fracti<strong>on</strong>s corresp<strong>on</strong>ded to an increase in the brightness temperatures at both ends of theTB range. The increase in brightness temperature was greater for the hottest TBs. Once theTBs were within the uncertainty of the theoretical hot <str<strong>on</strong>g>and</str<strong>on</strong>g> cold reference values, furtheradjustments of the c-fracti<strong>on</strong>s were performed until no significant bias was observed in theJMR–TMR PD differences. The path delays were then independently verified using theJMR–RaOb path delay differences.Satellite Yaw State TB BiasIn order for the solar panels to receive the maximum exposure to the sun during allowableranges of solar beta angles, the satellite periodically changes yaw state from a fixed mode,where the s/c yaw angle is fixed, to a sinusoidal mode, where the yaw angle changessinusoidally over time. The beta angle is the angle between the <strong>orbit</strong> plane <str<strong>on</strong>g>and</str<strong>on</strong>g> a line fromthe Earth to the Sun. The satellite is in fixed mode for about 10 days <str<strong>on</strong>g>and</str<strong>on</strong>g> sinusoidal mode forabout 30 days as the beta angle varies over its full range. The temperature variati<strong>on</strong> of theinstrument hardware is stable to about 2 K while the satellite is in either the sinusoidal or fixedyaw mode. During the transiti<strong>on</strong> from <strong>on</strong>e yaw mode to another, the thermal temperatureof the instrument hardware changes by about 13 K over a period of 12–15 hours (Figure 2)<str<strong>on</strong>g>and</str<strong>on</strong>g> temperature gradients develop between the hardware comp<strong>on</strong>ents exposed to the spaceenvir<strong>on</strong>ment <str<strong>on</strong>g>and</str<strong>on</strong>g> the internal comp<strong>on</strong>ents. This complex thermal envir<strong>on</strong>ment could not besimulated during preflight thermal/vacuum testing, leading to a residual correlati<strong>on</strong> betweenJMR–TMR brightness temperature differences <str<strong>on</strong>g>and</str<strong>on</strong>g> instrument temperature. This residualcorrelati<strong>on</strong> was removed by selecting JMR–TMR TB <str<strong>on</strong>g>and</str<strong>on</strong>g> PD differences 12 hours before<str<strong>on</strong>g>and</str<strong>on</strong>g> after a yaw transiti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> adjusting the JMR fr<strong>on</strong>t-end loss coefficients (K R <str<strong>on</strong>g>and</str<strong>on</strong>g> K FH ,in Equati<strong>on</strong> 1) until there were no jumps in the differences.FIGURE 2 Physical temperature of the JMR feedhorn 1 during a yaw transiti<strong>on</strong>. Noticethe temperature is stable to2Kawayfrom the transiti<strong>on</strong>.


208 S. Brown et al.TABLE 2 JMR–TMR Vicarious Cold Reference DifferencesAfter Adjusting the Calibrati<strong>on</strong> CoefficientsJMR–TMR vicarious cold reference TB differences (Cycles 3–20)JMR 18.7–TMR 18.0 1.60 K ± 0.28JMR 23.8–TMR 21.0 4.02 K ± 0.58JMR 34.0–TMR 37.0 −6.09 K ± 0.32Cold TB Calibrati<strong>on</strong> ResultsIt is essential that the JMR TBs are properly calibrated at the low end of the TB spectrumbecause roughly 50% of the open ocean TBs are within 15 K of the cold reference at18.7 <str<strong>on</strong>g>and</str<strong>on</strong>g> 34.0 GHz. The differences between the JMR <str<strong>on</strong>g>and</str<strong>on</strong>g> TMR cold reference TBs atadjacent channels are required to agree with the theoretical cold reference differences, asdiscussed previously. The observed cold reference differences after calibrati<strong>on</strong> are presentedin Table 2. The JMR–TMR cold reference differences in Table 2 represent the average <str<strong>on</strong>g>and</str<strong>on</strong>g>st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard deviati<strong>on</strong> of the differences for cycles 3 through 20. The observed cold referencedifferences agree with those predicted by theory within their respective uncertainties.Since a relative calibrati<strong>on</strong> reference is used for the cold TB calibrati<strong>on</strong>, it is prudent tocheck that the JMR vicarious cold TBs also agree with the absolute theoretical cold referencevalue. The uncertainty of the theoretical cold reference TB is given as the root-sum-squareof the repeatability of the value <str<strong>on</strong>g>and</str<strong>on</strong>g> the deviati<strong>on</strong> of the cold reference TB determined usingthe Stogryn (1971) sea water dielectric model from those using the Ellis<strong>on</strong> et al. (1998) <str<strong>on</strong>g>and</str<strong>on</strong>g>Klein <str<strong>on</strong>g>and</str<strong>on</strong>g> Swift (1976) dielectric models. The maximum deviati<strong>on</strong> of the theoretical coldreference TB using the other models from the cold TB found using the Stogryn model wasabout 0.5 to 0.9 K for the three JMR channels.The JMR vicarious cold TBs were found for JMR cycles 3–21. This is presented inTable 3. The JMR vicarious cold TBs are all within the uncertainty of the absolute vicariouscold reference. The vicarious cold reference TBs can also be used to detect calibrati<strong>on</strong> driftsover time. L<strong>on</strong>g term m<strong>on</strong>itoring of the JMR cold TBs over time scales of years is advisablein order to assess the l<strong>on</strong>g term stability of the instrument calibrati<strong>on</strong>, in general, <str<strong>on</strong>g>and</str<strong>on</strong>g> thenoise diodes, in particular.Hot TB Calibrati<strong>on</strong> ResultsTwo regi<strong>on</strong>s in the Amaz<strong>on</strong> were used as hot calibrati<strong>on</strong> references. Regi<strong>on</strong> 1 is 5 ◦ –10 ◦ S<str<strong>on</strong>g>and</str<strong>on</strong>g> 65 ◦ –74 ◦ W <str<strong>on</strong>g>and</str<strong>on</strong>g> regi<strong>on</strong> 2 is 1 ◦ S–4 ◦ N <str<strong>on</strong>g>and</str<strong>on</strong>g> 53 ◦ –59 ◦ W. Table 4 shows the magnitude ofthe SSM/I-measured vertical <str<strong>on</strong>g>and</str<strong>on</strong>g> horiz<strong>on</strong>tal polarizati<strong>on</strong> TB difference averaged over theTABLE 3 Comparis<strong>on</strong> of the Absolute Vicarious Cold Reference CalculatedUsing the Stogryn Emissivity Model with JMR Vicarious cold TBs for Cycles3–21. (The Uncertainty is the RSS of the Deviati<strong>on</strong> from the Other SurfaceEmissivity Models <str<strong>on</strong>g>and</str<strong>on</strong>g> the Repeatability of the Value.)Absolute theoretical cold JMR vicarious cold TBsreference TBs for cycles 3–2118.7 GHz 125.94 ± 1.00 K 125.50 ± 0.32 K23.8 GHz 135.78 ± 1.03 K 136.01 ± 0.65 K34.0 GHz 148.72 ± 1.13 K 147.51 ± 0.41 K


<str<strong>on</strong>g>Jas<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Radiometer</str<strong>on</strong>g> Performance <str<strong>on</strong>g>and</str<strong>on</strong>g> Calibrati<strong>on</strong> 209TABLE 4 Statistics of the V-pol–H-pol TB Difference from SSM/I Data for Jan.–Sep.2002 Over two Heavily Vegetated Regi<strong>on</strong>s of the Amaz<strong>on</strong> Rainforest (Regi<strong>on</strong> 1 is5 ◦ –10 ◦ S <str<strong>on</strong>g>and</str<strong>on</strong>g> 65 ◦ –74 ◦ W <str<strong>on</strong>g>and</str<strong>on</strong>g> Regi<strong>on</strong> 2 is 1 ◦ S–4 ◦ N <str<strong>on</strong>g>and</str<strong>on</strong>g> 53 ◦ –59 ◦ WAbs(V-pol minus H-pol) TB Regi<strong>on</strong> 1 Regi<strong>on</strong> 219.35 GHz Mean: 0.9198 K Mean: 0.7636 KSt. dev.: 0.6717 K St. dev.: 0.5767 K37.0 GHz Mean: 1.0115 K Mean: 0.8011 KSt. dev.: 0.7258 K St. dev.: 0.5785 Kregi<strong>on</strong>s at 19.35 <str<strong>on</strong>g>and</str<strong>on</strong>g> 37.0 GHz. The small (∼1 K) V-pol minus H-pol TB differences indicatethat the chosen Amaz<strong>on</strong> reference regi<strong>on</strong>s are emitting essentially as black bodies.The SSM/I observati<strong>on</strong>s from F13, F14, <str<strong>on</strong>g>and</str<strong>on</strong>g> F15 platforms were c<strong>on</strong>verted to JMRreference TBs using the methods described in the appendix. Table 5 shows the referenceTBs from all three platforms <str<strong>on</strong>g>and</str<strong>on</strong>g> the average values across the platforms. The averagesin Table 5 represent SSM/I overpass data from 4 February 2001 through 15 August 2001,which corresp<strong>on</strong>ds to the start of JMR cycle 3 through the end of JMR cycle 21. Eachplatform has morning <str<strong>on</strong>g>and</str<strong>on</strong>g> evening local overpass times. The average of all the platformsc<strong>on</strong>sists of six local times (6, 8, 10, 18, 20, 22 LST). A large JMR time series, the cycle 3–21average, was used for comparis<strong>on</strong> to get an adequate sampling of data <str<strong>on</strong>g>and</str<strong>on</strong>g> local overpasstimes. The average calibrated JMR TBs over the same regi<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> same time period arepresented in Table 6. The JMR TBs are within ∼0.5 K for the 23.8 <str<strong>on</strong>g>and</str<strong>on</strong>g> 34.0 GHz channels.The 18.7 GHz hot TBs are 1.6 K lower than the reference, but this has little affect <strong>on</strong> theretrieved path delays since most of the open ocean TBs are near the cold calibrati<strong>on</strong> point.JMR Wet Path Delay Validati<strong>on</strong>Results of Comparis<strong>on</strong> with TMR PDsThe availability of TMR in an identical <strong>orbit</strong>, with <strong>on</strong>ly 70 sec<strong>on</strong>ds of separati<strong>on</strong> from JMR,allows for unprecedented accuracy in the intercalibrati<strong>on</strong> of the JMR <str<strong>on</strong>g>and</str<strong>on</strong>g> TMR path delaymeasurements. TMR has been extensively calibrated against various sources of ground truth<str<strong>on</strong>g>and</str<strong>on</strong>g> has been dem<strong>on</strong>strated to have PD accuracy of 1.1 cm (Keihm et al. 2000). The initialcomparis<strong>on</strong> with TMR showed that JMR was biased 8–12 mm, JMR low. There was alsoa large PD scale error. The path delay bias was approximately 15 mm, JMR low, for dryTABLE 5 JMR Hot TB Calibrati<strong>on</strong> References Derived from SSM/IPlatforms F13, F14, <str<strong>on</strong>g>and</str<strong>on</strong>g> F15 Over Regi<strong>on</strong> 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2 (F13 is at Local Time6 <str<strong>on</strong>g>and</str<strong>on</strong>g> 18, F14 is at 8 <str<strong>on</strong>g>and</str<strong>on</strong>g> 20, <str<strong>on</strong>g>and</str<strong>on</strong>g> F15 is at 10 <str<strong>on</strong>g>and</str<strong>on</strong>g> 22. Data is fromFebruary Through August of 2002, JMR Cycles 3–21.)Nadir hot reference TB (Regi<strong>on</strong> 1/Regi<strong>on</strong> 2) (K)Local time 18.7 GHz 23.8 GHz 34.0 GHz6, 18 285.0/285.6 284.3/284.4 281.0/281.48, 20 286.6/287.1 285.5/285.6 282.8/283.310, 22 287.7/287.8 286.7/286.3 283.4/283.4Average over time 286.6 285.5 282.6<str<strong>on</strong>g>and</str<strong>on</strong>g> regi<strong>on</strong>


210 S. Brown et al.TABLE 6 The Average JMR TBs Over Regi<strong>on</strong>1 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2 in the Amaz<strong>on</strong> Rainforest for JMRCycles 3–21 After Calibrati<strong>on</strong> (Data Representsall Local Times.)JMR hot TBs averaged over time <str<strong>on</strong>g>and</str<strong>on</strong>g> regi<strong>on</strong> (K)18.7 GHz 285.023.8 GHz 285.134.0 GHz 282.0atmospheric c<strong>on</strong>diti<strong>on</strong>s (JMR PDs less than 10 cm). The bias was approximately 5–7 mm,JMR low, for JMR PDs greater than 10 cm. There were also 2 mm jumps between JMRyaw states due to the TB yaw dependent bias. These jumps were readily identified due tothe coaligned <strong>orbit</strong> of JMR with TMR.After the JMR TBs were calibrated as discussed the JMR PDs had almost no biaswith the TMR PDs in wetter c<strong>on</strong>diti<strong>on</strong>s, specifically for PDs greater than 10 cm. Therewas a residual PD scale error of 5 mm for dry atmospheric c<strong>on</strong>diti<strong>on</strong>s. It was realized thatthe lowest JMR PDs were approximately 1–2 cm lower than the lowest TMR PDs. Thelowest JMR PDs were c<strong>on</strong>sistently below 1 cm, which, even under the driest c<strong>on</strong>diti<strong>on</strong>s,is not physically probable. During cal/val, small modificati<strong>on</strong>s were made to the JMR wettroposphere correcti<strong>on</strong> algorithm coefficients to improve comparis<strong>on</strong>s with TMR for thedriest c<strong>on</strong>diti<strong>on</strong>s. As it turned out, the low-end bias was an artifact of an error in the JMRground system processing software which has since been corrected. The differences inretrieved path delays between the prelaunch <str<strong>on</strong>g>and</str<strong>on</strong>g> post-cal/val path delay algorithms are verysmall (∼0.06 cm), <str<strong>on</strong>g>and</str<strong>on</strong>g> nearly c<strong>on</strong>stant over the full range of c<strong>on</strong>diti<strong>on</strong>s encountered.The following results were obtained after the TB calibrati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> correcti<strong>on</strong> of the PDalgorithm processing error. Table 7 presents the average JMR–TMR (collocated, 1-sec<strong>on</strong>d)PD bias over low, medium <str<strong>on</strong>g>and</str<strong>on</strong>g> high PD ranges al<strong>on</strong>g with the RMS of the difference. Thereis a negligible PD bias between calibrated JMR <str<strong>on</strong>g>and</str<strong>on</strong>g> TMR PDs <str<strong>on</strong>g>and</str<strong>on</strong>g> no scale error. Theaverage JMR–TMR PD bias over cycles 3 through 21 is −0.021 cm. Figures 3 <str<strong>on</strong>g>and</str<strong>on</strong>g> 4 showplots of pass averaged JMR–TMR PD biases. Figure 3 is a plot of the PD difference for theentire PD range. JMR <str<strong>on</strong>g>and</str<strong>on</strong>g> TMR yaw transiti<strong>on</strong> times are represented by vertical lines. Itis evident from Figure 3 that there is no offset with yaw state. Figure 4 is a plot of the PDdifference for low, medium <str<strong>on</strong>g>and</str<strong>on</strong>g> high PD values. There is a near zero bias from cycles 3–20over all PD ranges.RaOb Validati<strong>on</strong> ResultsThe JMR PDs were also validated using path delays derived from Radios<strong>on</strong>de profiles ofthe atmosphere. This comparis<strong>on</strong> was d<strong>on</strong>e using JMR cycles 1–24 <str<strong>on</strong>g>and</str<strong>on</strong>g> 46–55. The largerTABLE 7 The Average JMR–TMR 1-Sec<strong>on</strong>d PD Differences AveragedOver Cycles 3–21 for Low, Medium, High, <str<strong>on</strong>g>and</str<strong>on</strong>g> All Path Delay Bins (TheRMS Error is Included.)JMR–TMR PD for cycles 3–21 Mean RMSJMR PD < 10 cm −0.050 cm 0.435 cm10 cm ≥ JMR PD < 20 cm −0.035 cm 0.429 cmJMR PD > 20 cm 0.019 cm 0.575 cmAll PDs −0.021 cm 0.488 cm


<str<strong>on</strong>g>Jas<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Radiometer</str<strong>on</strong>g> Performance <str<strong>on</strong>g>and</str<strong>on</strong>g> Calibrati<strong>on</strong> 211FIGURE 3 Plot of the pass averaged JMR–TMR PD difference versus day of 2002. TheJMR (dashed line) <str<strong>on</strong>g>and</str<strong>on</strong>g> TMR (solid line) yaw transiti<strong>on</strong>s are included as vertical lines. Noticethere is no significant bias with yaw transiti<strong>on</strong>.FIGURE 4 Plot of pass averaged JMR—TMR PD differences versus day of 2002 for low(top), medium (middle), <str<strong>on</strong>g>and</str<strong>on</strong>g> high (bottom) path delay bins. There is no significant scaleerror evident.


212 S. Brown et al.TABLE 8 Mean <str<strong>on</strong>g>and</str<strong>on</strong>g> RMS of the JMR–RaOb PD Differences for Varying WeatherC<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> Spatial <str<strong>on</strong>g>and</str<strong>on</strong>g> Temporal Separati<strong>on</strong>s (There Does not Appear to be a Biaswith Different Cloudy or Windy C<strong>on</strong>diti<strong>on</strong>s.)Spatial Temporal Mean RMSLiquid (µm) Wind (m/s) (km) (hrs) (cm) (cm) SamplesAll Liquid All Wind ≤315 ≤6 0.10 3.05 1722All Liquid All Wind ≤150 ≤3 0.019 2.52 291All Liquid All Wind ≤75 ≤1 0.072 1.84 38300 All Wind ≤315 ≤6 0.14 2.15 5All Liquid 13 ≤315 ≤6 0.71 2.85 49


<str<strong>on</strong>g>Jas<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Radiometer</str<strong>on</strong>g> Performance <str<strong>on</strong>g>and</str<strong>on</strong>g> Calibrati<strong>on</strong> 213TABLE 9 JMR–RaOb PD Differences for Low, Medium, <str<strong>on</strong>g>and</str<strong>on</strong>g> High PD Bins for TwoClosest Approach Separati<strong>on</strong>s (There Does Not Appear to be a Scale Error Present.)Spatial Temporal Mean RMSJMR PD (cm) (km) (hrs) (cm) (cm) SamplesPD < 10 ≤315 ≤6 0.17 1.83 22010 ≤ PD < 25 ≤315 ≤6 −0.15 3.11 627≥25 ≤315 ≤6 0.26 3.22 815PD < 10 ≤200 ≤3 0.41 1.55 5610 ≤ PD < 25 ≤200 ≤3 −0.16 2.52 160≥25 ≤200 ≤3 0.20 2.79 167PDs can be explained by a combinati<strong>on</strong> of correlated <str<strong>on</strong>g>and</str<strong>on</strong>g> uncorrelated sources of error.Error sources that are completely correlated will not affect the RMS differences. Sourcesof error that are completely uncorrelated will c<strong>on</strong>tribute maximally to the RMS difference.Only a fracti<strong>on</strong> of the error from partially correlated sources will affect the RMS difference.The error sources in the retrieved path delay values for each instrument are due to errorin the antenna temperature calibrati<strong>on</strong>, error in the antenna pattern correcti<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> error inthe wet tropospheric path delay retrieval (Equati<strong>on</strong>s 1, 3 <str<strong>on</strong>g>and</str<strong>on</strong>g> 5). The error analysis of theantenna temperature calibrati<strong>on</strong> is adapted from Ruf et al.’s (1995) TMR TA error budget,the error in the antenna pattern correcti<strong>on</strong> from Janssen et al.’s (1995) TMR TB error budget,<str<strong>on</strong>g>and</str<strong>on</strong>g> the error in the wet tropospheric path delay retrieval from Keihm et al.’s (1995) TMRPD error budget.The uncorrelated source of error in the antenna temperature calibrati<strong>on</strong> (T A ) is dueto the stochastic noise of each receiver. The RMS difference between the JMR <str<strong>on</strong>g>and</str<strong>on</strong>g> TMRPDs should be dominated by the stochastic noise of the receivers. The stochastic noise isestimated to be 0.20 K for each JMR channel <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.27 K for each TMR channel (Ruf et al.1995). The JMR stochastic noise value was estimated by finding the RMS of the differenceof adjacent 1-sec<strong>on</strong>d JMR measurements over dry, cloud-free ocean scenes. The error inthe TB (T B ) for each channel due to the stochastic noise (T A ) is estimated by its effectin the APC algorithm. Equati<strong>on</strong>s for determining the magnitude of the error incurred in theAPC algorithm can be found in Janssen et al. (1995). These errors are given in Table 10.The error in the path delay retrieval from the stochastic noise is estimated by the TB error’seffect in the path delay retrieval algorithm. This can be estimated using a simplified globalaverage versi<strong>on</strong> of the retrieval algorithm for both instruments, given as Equati<strong>on</strong> 10. Thecoefficients in equati<strong>on</strong>s 10 a, b are the c 18 , c 23 , <str<strong>on</strong>g>and</str<strong>on</strong>g> c 34 coefficients in Equati<strong>on</strong> 5 for globalaverage values of surface wind speed <str<strong>on</strong>g>and</str<strong>on</strong>g> PD (approximately 7 m/s <str<strong>on</strong>g>and</str<strong>on</strong>g> 15 cm). The RMSTABLE 10 Error in the TBs Due to theStochastic Noise of the ReceiversChannelTB (K)TMR 18.0 0.27JMR 18.7 0.21TMR 21.0 0.27JMR 23.8 0.21TMR 37.0 0.27JMR 34.0 0.22


214 S. Brown et al.difference between the instruments is then the RSS of the PD error for each instrument, asgiven byPD TMR ={(0.48 ∗ E(TB 18.0 )) 2 + (0.73 ∗ E(TB 21.0 )) 2+(0.08 ∗ E(TB 37.0 )) 2 } 1 2 , (10a)PD JMR ={(0.41 ∗ E(TB 18.7 )) 2 + (0.65 ∗ E(TB 23.8 )) 2+(0.19 ∗ E(TB 34.0 )) 2 } 1 2 , (10b)PD JMR−TMR = { PD 2 JMR + PD2 TMR} 12. (10c)The RMS difference between the JMR <str<strong>on</strong>g>and</str<strong>on</strong>g> TMR PDs explained by the stochastic noise ofthe receivers is 0.39 cm. The total RMS difference between the JMR <str<strong>on</strong>g>and</str<strong>on</strong>g> TMR PDs fromcycles 3–20 found earlier is 0.49 cm. The remaining RMS difference between the JMR <str<strong>on</strong>g>and</str<strong>on</strong>g>TMR PDs not explained by the stochastic noise is 0.29 cm, which can be explained by othersources of error.Other sources of error that can c<strong>on</strong>tribute to the RMS difference in the PDs are theuncertainty in the <strong>on</strong>-Earth sidelobe brightness temperature (T E ) <str<strong>on</strong>g>and</str<strong>on</strong>g> the spatial <str<strong>on</strong>g>and</str<strong>on</strong>g>temporal decorrelati<strong>on</strong> between the JMR <str<strong>on</strong>g>and</str<strong>on</strong>g> TMR measurements. The remaining 0.29cm in the RMS difference is divided am<strong>on</strong>g these sources of error. The maximum spatialseparati<strong>on</strong> between the collocated JMR <str<strong>on</strong>g>and</str<strong>on</strong>g> TMR measurements is about 7 km, whichcorresp<strong>on</strong>ds to a decorrelati<strong>on</strong> error of less than 0.1 cm. This was estimated from Figure5, which shows spatial decorrelati<strong>on</strong> of PD. This figure is explained in the next secti<strong>on</strong>.The 70 sec<strong>on</strong>ds of temporal decorrelati<strong>on</strong> between the PD measurements c<strong>on</strong>tributevery little to the RMS difference. The <strong>on</strong>-Earth sidelobe brightness temperatures (T E ) thatFIGURE 5 Plot of the spatial decorrelati<strong>on</strong> of path delay calculated from JMR PD values.


<str<strong>on</strong>g>Jas<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Radiometer</str<strong>on</strong>g> Performance <str<strong>on</strong>g>and</str<strong>on</strong>g> Calibrati<strong>on</strong> 215are used in the APC algorithm (Equati<strong>on</strong> 3) are determined differently for each instrument.The JMR T E value is determined using a quadratic functi<strong>on</strong> of the antenna temperatures,<str<strong>on</strong>g>and</str<strong>on</strong>g> the TMR T E value is determined from a look-up table based <strong>on</strong> frequency<str<strong>on</strong>g>and</str<strong>on</strong>g> latitude. Some of the remaining RMS difference between the PDs can be explainedby the difference in the T E values. Together these sources of error should explain the remaining0.29 cm of RMS difference that is not explained by the stochastic noise of thereceivers.The JMR in-flight calibrati<strong>on</strong> has produced collocated JMR <str<strong>on</strong>g>and</str<strong>on</strong>g> TMR PD measurementsthat have no significant bias or scale error. The RMS difference between the PDmeasurements is largely explained by the stochastic noise of each receiver. Other sources oferror, such as the difference in the <strong>on</strong>-Earth sidelobe brightness <str<strong>on</strong>g>and</str<strong>on</strong>g> the spatial decorrelati<strong>on</strong>between the measurements, have minor c<strong>on</strong>tributi<strong>on</strong>s to the RMS difference. As a whole,the sources of error discussed in this secti<strong>on</strong> should explain the 0.49 cm RMS differencebetween the JMR <str<strong>on</strong>g>and</str<strong>on</strong>g> TMR PD measurements over cycles 3–21.JMR/RaOb Error AnalysisThe uncertainty of the JMR PD retrieval can also be estimated by comparis<strong>on</strong> to coincidentRaOb PDs. The RMS difference between JMR <str<strong>on</strong>g>and</str<strong>on</strong>g> RaOb PDs is a functi<strong>on</strong> of the error inthe RaOb PD measurements, the spatial <str<strong>on</strong>g>and</str<strong>on</strong>g> temporal decorrelati<strong>on</strong> between the two points,<str<strong>on</strong>g>and</str<strong>on</strong>g> the error in the JMR PD retrieval, as described byRMS JMR−RaObPD (dist, time)√= RaOb 2 + JMR 2 + Spatial(dist) 2 + Temporal(time) 2 . (11)The spatial <str<strong>on</strong>g>and</str<strong>on</strong>g> temporal decorrelati<strong>on</strong> terms in Equati<strong>on</strong> 11 can be estimated using statisticsfrom satellite or ground measurements, but the uncertainty in that estimate is unsatisfactoryfor our purposes. For example, a 5% uncertainty in the spatial decorrelati<strong>on</strong> term willcause a 17% uncertainty in the estimate of the JMR PD error. Figure 5 shows a plot of thecumulative spatial decorrelati<strong>on</strong> (RMS PD (dist)) of path delay as a functi<strong>on</strong> of separati<strong>on</strong>distance. This was estimated by forming a data set of path delay differences as a functi<strong>on</strong>of separati<strong>on</strong> from N JMR PD measurements. Then the cumulative spatial decorrelati<strong>on</strong> atdist km is equal to the RMS of the PD differences with spatial separati<strong>on</strong>s from 0 km todist km, shown in Equati<strong>on</strong> 12.Spatial(dist) ∼ = RMS PD (dist)[] 1i=N1 ∑ r=dist21 ∑=[PD i (r 0 ) − PD j (r 0 + r)] 2 . (12)N max( j)i=1r=0A least-squares regressi<strong>on</strong> of the cumulative spatial decorrelati<strong>on</strong> (Equati<strong>on</strong> 12) was fit tothe data. An exp<strong>on</strong>ential functi<strong>on</strong> of the form(RMS PD (dist) = c RMS0 − c RMS1 exp − dist )(13)c RMS2is used, which is reas<strong>on</strong>able because the spatial decorrelati<strong>on</strong> should asymptotically approacha c<strong>on</strong>stant value at large spatial separati<strong>on</strong>s. The least-squares best fit of the spatial


216 S. Brown et al.FIGURE 6 Plot of the JMR–RaOb PD RMS difference versus spatial separati<strong>on</strong> (withminimal temporal separati<strong>on</strong>). A plot of the spatial decorrelati<strong>on</strong> of path delay is includedfor comparis<strong>on</strong>. An exp<strong>on</strong>ential fit is applied to the JMR–RaOb PD RMS difference thathas a c<strong>on</strong>stant offset from the exp<strong>on</strong>ential fit of the spatial decorrelati<strong>on</strong>.decorrelati<strong>on</strong> gives c RMS0 = 3.46, c RMS1 = 3.40, <str<strong>on</strong>g>and</str<strong>on</strong>g> c RMS2 = 322.41. There is a smalloffset from zero, 0.6 mm, which is most likely due to the stochastic noise in the JMR TBmeasurements. We should expect a plot of JMR–RaOb RMS difference (Equati<strong>on</strong> 11) as afuncti<strong>on</strong> of separati<strong>on</strong> distance (with minimal temporal separati<strong>on</strong>) to have a similar shapewith a c<strong>on</strong>stant offset that is equal to the RSS of the remaining error terms. This suggests amore robust way to estimate the JMR PD error term.Figure 6 shows a plot of JMR–RaOb RMS difference versus spatial separati<strong>on</strong> withless than 45 minutes of time separati<strong>on</strong>. The data is grouped by spatial separati<strong>on</strong>s of 50through 315 km in 5 km increments. Each point represents the RMS difference of the datawith separati<strong>on</strong> distances less than or equal to the current increment. For example, the datapoint at 200 km is the RMS difference of all data for which the closest approach point is lessthan or equal to 200 km. Only data with separati<strong>on</strong> distances greater than 40 km are used,because this is the nominal size of the JMR footprint. The l<str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>taminati<strong>on</strong> in the TBvalues causes the RMS PD error to increase dramatically with separati<strong>on</strong> distances less thanthe JMR footprint size. The spatial decorrelati<strong>on</strong> of path delay (from Figure 5) is includedin this plot for comparis<strong>on</strong>.A least-squares fit is found for the JMR–RaOb RMS PD difference using (Equati<strong>on</strong> 13)with c RMS1 = 3.40, <str<strong>on</strong>g>and</str<strong>on</strong>g> c RMS2 = 322.41. This gives c RMS0 = 4.42. The JMR–RaOb RMSPD difference at zero spatial separati<strong>on</strong> (with minimal temporal separati<strong>on</strong>) is 1.02 cm.The uncertainty associated with this value is ±0.1 cm. This was determined by finding thest<str<strong>on</strong>g>and</str<strong>on</strong>g>ard deviati<strong>on</strong> of the residual between the least-squares fit <str<strong>on</strong>g>and</str<strong>on</strong>g> the JMR–RaOb RMSPD difference.


<str<strong>on</strong>g>Jas<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Radiometer</str<strong>on</strong>g> Performance <str<strong>on</strong>g>and</str<strong>on</strong>g> Calibrati<strong>on</strong> 217The uncertainty of the JMR PD can be determined by subtracting the RaOb errorfrom the estimate of RMS PD difference at zero spatial separati<strong>on</strong> (with minimal temporalseparati<strong>on</strong>). The uncertainty in the radios<strong>on</strong>de humidity profile is estimated to be 0.7 cm(Alishouse et al. 1990). This is most likely a c<strong>on</strong>servative estimate, but it will be used becausea higher value will decrease the estimated JMR PD error. Also, this is the radios<strong>on</strong>de errorestimate that was used to determine the uncertainty of the TMR PD measurement, so itwill allow for easy comparis<strong>on</strong>s of the PD uncertainty of the two instruments. Using thisestimate, Equati<strong>on</strong> 11 is used to determine the uncertainty of the JMR PD measurement.The RMS error estimate of 1.02 cm from Figure 6 has error bars of approximately ±0.1cm. Thus the uncertainty of the 1-sec<strong>on</strong>d JMR PD measurement is estimated to be 0.74 cm± 0.15 cm. The uncertainty in the JMR PDs is better than the 1.2 cm missi<strong>on</strong> requrement.Summary <str<strong>on</strong>g>and</str<strong>on</strong>g> C<strong>on</strong>clusi<strong>on</strong>sThe <str<strong>on</strong>g>Jas<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Microwave</str<strong>on</strong>g> <str<strong>on</strong>g>Radiometer</str<strong>on</strong>g> is included <strong>on</strong> the <str<strong>on</strong>g>Jas<strong>on</strong></str<strong>on</strong>g>-1 Ocean Altimetry satellite tomeasure the wet tropospheric path delay of the altimeter signal. Accurate retrieval of thepath delay values requires well-calibrated brightness temperatures <str<strong>on</strong>g>and</str<strong>on</strong>g> a precise inversi<strong>on</strong>algorithm. The JMR TBs are calibrated <strong>on</strong>-<strong>orbit</strong> over the entire dynamic range of theinstrument. The TBs are calibrated at the cold end of the TB range by using a vicariouscold reference, which represents a statistical lower bound <strong>on</strong> brightness temperature. TheTBs are calibrated at the hot end of the TB range using hot reference TBs determined fromSSM/I over heavily vegetated regi<strong>on</strong>s of the Amaz<strong>on</strong> rainforest.The retrieved path delay values are validated using collocated TMR <str<strong>on</strong>g>and</str<strong>on</strong>g> RaOb derivedPD values. There is no significant bias between the JMR <str<strong>on</strong>g>and</str<strong>on</strong>g> TMR PDs <str<strong>on</strong>g>and</str<strong>on</strong>g> no error thatscales with path delay. This is also c<strong>on</strong>firmed independently by the comparis<strong>on</strong> with theRaOb derived PD values. There are no noticeable biases in cloudy or windy c<strong>on</strong>diti<strong>on</strong>sbetween the JMR <str<strong>on</strong>g>and</str<strong>on</strong>g> RaOb PDs <str<strong>on</strong>g>and</str<strong>on</strong>g> no scale errors.The uncertainty of the JMR PD measurement can be estimated in two ways. First, theRMS difference between the JMR <str<strong>on</strong>g>and</str<strong>on</strong>g> TMR PDs is largely explained by the stochastic noiseof the recievers, <str<strong>on</strong>g>and</str<strong>on</strong>g> the remaining difference is explained by the difference in the <strong>on</strong>-Earthsidelobe brightness used in the APC <str<strong>on</strong>g>and</str<strong>on</strong>g> the spatial decorrelati<strong>on</strong> of the measurement. Theuncertainty in the JMR PDs can also be estimated from the RaOb PD comparis<strong>on</strong>s. The RMSdifference between the JMR <str<strong>on</strong>g>and</str<strong>on</strong>g> RaOb PDs is a functi<strong>on</strong> of the RaOb error, JMR error, <str<strong>on</strong>g>and</str<strong>on</strong>g>the spatial <str<strong>on</strong>g>and</str<strong>on</strong>g> temporal decorrelati<strong>on</strong> between them. The RMS difference is extrapolated tozero spatial separati<strong>on</strong> at minimum temporal separati<strong>on</strong>. The error in the RaOb measurementis removed from the remaining RMS difference, leaving <strong>on</strong>ly effects of the JMR PD error.The uncertainty of the JMR PD measurement is estimated to be 0.74 cm ± 0.15.ReferencesAlishouse, J. C., S. A. Snyder, J. V<strong>on</strong>gsathorn, <str<strong>on</strong>g>and</str<strong>on</strong>g> R. R. Ferraro. 1990. Determinati<strong>on</strong> of oceanictotal precipitable water from SSM/I. IEEE Trans. Geosci. Rem. Sensing 28:811–816.Boudouris, G. 1963. On the index of refracti<strong>on</strong> of air, the absorpti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> dispersi<strong>on</strong> of centimeterwaves by gasses. J. Res. Natl. Bur. St<str<strong>on</strong>g>and</str<strong>on</strong>g>. Sect. D. 67: 631–684.Brown, S., <str<strong>on</strong>g>and</str<strong>on</strong>g> C. Ruf. 2003. On-<strong>orbit</strong> microwave blackbody calibrati<strong>on</strong> using regi<strong>on</strong>s of densevegetati<strong>on</strong>. IGARSS 2003 C<strong>on</strong>f. Proc.Brown, S., C. Ruf, <str<strong>on</strong>g>and</str<strong>on</strong>g> S. Keihm. 2002. Brightness temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> path delay correcti<strong>on</strong> for TOPEXmicrowave radiometer yaw state bias. Technical Memo, 8 August 2002.Cruz-Pol, R. C. Ruf, <str<strong>on</strong>g>and</str<strong>on</strong>g> S. Keihm. 1998. Improved 20–32 GHz atmospheric absorpti<strong>on</strong> model. RadioSci. 22(5):1319–1333.Ellis<strong>on</strong> W., A. Balana, G. Delbos, K. Lamkaouchi, L. Eymard, C. Buillou, <str<strong>on</strong>g>and</str<strong>on</strong>g> C. Prigent. 1998. Newpermittivity measurements of seawater. Radio Sci. 33(3):639–648.


218 S. Brown et al.<str<strong>on</strong>g>Jas<strong>on</strong></str<strong>on</strong>g>-1 Project. 2001. AVISO <str<strong>on</strong>g>and</str<strong>on</strong>g> POCAAC User H<str<strong>on</strong>g>and</str<strong>on</strong>g>book, IGDR <str<strong>on</strong>g>and</str<strong>on</strong>g> GDR <str<strong>on</strong>g>Jas<strong>on</strong></str<strong>on</strong>g> Products. Ed.1.0. JPL D-21352 (PODAAC).Janssen, M., C. Ruf, <str<strong>on</strong>g>and</str<strong>on</strong>g> S. Keihm. 1995. TOPEX/Poseid<strong>on</strong> microwave radiometer (TMR): II. antennapattern correcti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> brightness temperature algorithm. IEEE Trans. Geosci. Rem. Sensing33(1):138–146.Keihm S., <str<strong>on</strong>g>and</str<strong>on</strong>g> C. Ruf. 1995. Role of water vapor radiometers for in-flight calibrati<strong>on</strong> of the TOPEXmicrowave radiometer. Mar. Geod. 18:139–156.Keihm, S. J., M. A. Janssen, <str<strong>on</strong>g>and</str<strong>on</strong>g> C. S. Ruf. 1995. TOPEX/Poseid<strong>on</strong> microwave radiometer (TMR): III.Wet troposphere range correcti<strong>on</strong> algorithm <str<strong>on</strong>g>and</str<strong>on</strong>g> pre-launch error budget. IEEE Trans. Geosci.Rem. Sensing 33(1):147–161.Keihm, S. V. Zlotnnicki, <str<strong>on</strong>g>and</str<strong>on</strong>g> C. Ruf. 2000. TOPEX microwave radiometer <str<strong>on</strong>g>performance</str<strong>on</strong>g> evaluati<strong>on</strong>1992–1998. IEEE Trans. Geosci. Rem. Sensing 38(3):1379–1386.Kitiyakara, Ami. 2002. JMR T/V Calibrati<strong>on</strong>. JPL Interoffice Memor<str<strong>on</strong>g>and</str<strong>on</strong>g>um. January 25, 2002.Klein L. A., <str<strong>on</strong>g>and</str<strong>on</strong>g> C. T. Swift. 1976. An improved model for the dielectric c<strong>on</strong>stant of sea water atmicrowave frequencies. IEEE Trans. Ant. Propogat. 25:104–111.Liebe, H. J., G. A. Hufford, <str<strong>on</strong>g>and</str<strong>on</strong>g> M. G. Cott<strong>on</strong>. 1993. Propagati<strong>on</strong> modeling of moist air <str<strong>on</strong>g>and</str<strong>on</strong>g> suspendedwaterlice particles at frequencies below 1000 GHz. AGARD C<strong>on</strong>f. Proc. 542. 3-1-3-10.Menard, Y., <str<strong>on</strong>g>and</str<strong>on</strong>g> B. Haines. 2001. <str<strong>on</strong>g>Jas<strong>on</strong></str<strong>on</strong>g>-1 CALVAL Plan. Reference Project: TP2-J0-PL-974-CN.JPL Document. April 2, 2001.Rosenkranz, P. 1993. Absorpti<strong>on</strong> of microwaves by atmospheric gases. In Atmospheric <strong>Remote</strong> Sensingby <str<strong>on</strong>g>Microwave</str<strong>on</strong>g> Radiometry, Ch. 2. M. Janssen (ed). New York: Wiley.Ruf, C. S. 2000. Detecti<strong>on</strong> of calibrati<strong>on</strong> drifts in spaceborne microwave radiometers using a vicariouscold reference. IEEE Trans. Geosci. <strong>Remote</strong> Sensing 38(1):44–52.Ruf, C., <str<strong>on</strong>g>and</str<strong>on</strong>g> S. Brown. 2002. Topex microwave radiometer 18 GHz drift—Revisited. 29 May 2002Technical memo submitted to <str<strong>on</strong>g>Jas<strong>on</strong></str<strong>on</strong>g>-1 project.Ruf, C., S. Keihm, B. Subramanya, <str<strong>on</strong>g>and</str<strong>on</strong>g> M. Janssen. 1994. TOPEX/Poseid<strong>on</strong> microwave radiometer<str<strong>on</strong>g>performance</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> in-flight calibrati<strong>on</strong>. J. of Geo. Res. 99(C12):24,915–24,926.Ruf, C. S. Keihm, <str<strong>on</strong>g>and</str<strong>on</strong>g> M. Janssen. 1995. TOPEX/Poseid<strong>on</strong> <str<strong>on</strong>g>Microwave</str<strong>on</strong>g> <str<strong>on</strong>g>Radiometer</str<strong>on</strong>g> (TMR): I. Instrumentdescripti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> antenna temperature calibrati<strong>on</strong>. IEEE Trans. Geosci. Rem. Sensing33(1):125–137.Stogryn, A. 1971. Equati<strong>on</strong>s for calculating the dielectric c<strong>on</strong>stant of saline water. IEEE Trans. <strong>on</strong><str<strong>on</strong>g>Microwave</str<strong>on</strong>g> Theory <str<strong>on</strong>g>and</str<strong>on</strong>g> Techniques 733–736.Stum, J., P. Vincent, S. Desai, F. Parisot, <str<strong>on</strong>g>and</str<strong>on</strong>g> S. Coutin-Faye. 2001b. Algorithm definiti<strong>on</strong>, accuracy<str<strong>on</strong>g>and</str<strong>on</strong>g> specificati<strong>on</strong>, Volume 3. CMA <str<strong>on</strong>g>Radiometer</str<strong>on</strong>g> level 1B processing. Reference project: SMM-ST-M2-EA-11004-CN. Issue 3. Update 2. CNES SSALTO document.Stum, J., J. Zigna, S. Desai, A. Kitiyakara, <str<strong>on</strong>g>and</str<strong>on</strong>g> T. Pavlovitch. 2001a. CCI JMR Level 1.0 Processing.Reference project: SMM-ST-M1-EA-11577-CN. Issue 3. Update 0. CNES SSALTO document.F. Ulaby, R. Moore, <str<strong>on</strong>g>and</str<strong>on</strong>g> A. Fung. 1982. <str<strong>on</strong>g>Microwave</str<strong>on</strong>g> remote sensing, active <str<strong>on</strong>g>and</str<strong>on</strong>g> passive. Volume II:Radar remote sensing <str<strong>on</strong>g>and</str<strong>on</strong>g> surface scattering <str<strong>on</strong>g>and</str<strong>on</strong>g> emissi<strong>on</strong> Theory pp. 887–894, Dedham, MA:Artech House.F. Ulaby, R. Moore, <str<strong>on</strong>g>and</str<strong>on</strong>g> A. Fung. 1986. <str<strong>on</strong>g>Microwave</str<strong>on</strong>g> remote sensing, active <str<strong>on</strong>g>and</str<strong>on</strong>g> passive. Volume III:From Theory to Applicati<strong>on</strong>s pp. 1413–1467. Dedham, Massachussetts: Artech House.Westwater, E. 1993. Ground-based microwave remote sensing of meteorological variables. In Atmosphericremote sensing by microwave radiometry, M. Janssen (ed). New York: Wiley.Appendix: Amaz<strong>on</strong>ia Blackbody Reference Model Parameterizati<strong>on</strong>Above 10 GHz for regi<strong>on</strong>s with an optically thick vegetati<strong>on</strong> canopy, the surface brightnesscan be modeled asT B,canopy = (1 − a( f ))T v ,(A.1)where a( f ) is the single scattering albedo <str<strong>on</strong>g>and</str<strong>on</strong>g> T v is the physical temperature of the vegetati<strong>on</strong>(Ulaby et al. 1982). It is reas<strong>on</strong>able to assume that the albedo varies with frequency, since


<str<strong>on</strong>g>Jas<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Radiometer</str<strong>on</strong>g> Performance <str<strong>on</strong>g>and</str<strong>on</strong>g> Calibrati<strong>on</strong> 219the wavelength of the radiati<strong>on</strong> is changing relative to the leaf dimensi<strong>on</strong>s. The apparentbrightness temperature over these regi<strong>on</strong>s can be written as−τ( f ) sec(θ)TB app ( f,θ) = (1 − a( f ))T v e+ TB up ( f,θ) + Ɣ scat ( f )(TB down ( f ))e −τ( f ) sec(θ) , (A.2)where θ is the incidence angle, Ɣ scat ( f ) represents the fracti<strong>on</strong> of downwelling radiati<strong>on</strong>scattered into θ from the canopy, TB down ( f ) represents the hemispherical c<strong>on</strong>tributi<strong>on</strong> of thedownwelling brightness temperature, TB up ( f , θ) is the upwelling atmospheric brightnesstemperature, TB app ( f , θ) is the main beam brightness temperature at the antenna, <str<strong>on</strong>g>and</str<strong>on</strong>g> τ( f )is the zenith optical depth of the atmosphere. The surface c<strong>on</strong>tributi<strong>on</strong> can be estimatedfrom SSM/I brightness temperatures by inverting (A.2) <str<strong>on</strong>g>and</str<strong>on</strong>g> solving for T v . This requiresthat TB UP ( f,θ), τ( f ), TB down ( f ),Ɣ scat ( f ), <str<strong>on</strong>g>and</str<strong>on</strong>g> a( f ) are known for SSM/I frequencies.These variables can be estimated from the SSM/I data in the following way.Statistical inversi<strong>on</strong> methods have been used to retrieve atmospheric parameters suchas vertically integrated path delay <str<strong>on</strong>g>and</str<strong>on</strong>g> liquid water, such as the method used to retrieveJMR PD. A similar method is used to find the upwelling TBs. The upwelling brightnesstemperature at SSM/I frequencies is estimated using a statistical inversi<strong>on</strong> involving the19.35, 22.235, <str<strong>on</strong>g>and</str<strong>on</strong>g> 37.0 GHz SSM/I channels. The upwelling TB is written as a linearcombinati<strong>on</strong> of the lower three channelsTB UP ( f, 53 ◦ ) = c UP0 + c UP1 TB app (19.35, 53 ◦ ) + c UP2 TB app (22.235, 53 ◦ )+ c UP3 TB app (37.0, 53 ◦ ). (A.3)Using an average atmospheric effective radiating temperature over the Amaz<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> theSSM/I upwelling TBs determined from (A.3) (Westwater 1993), the zenith integrated opticaldepth can be determined by(τ( f ) =−ln 1 − TB )UP( f,θ)cos(θ).(A.4)T eff ( f )The hemispherical downwelling comp<strong>on</strong>ent is the downwelling brightness temperaturefrom the atmosphere <str<strong>on</strong>g>and</str<strong>on</strong>g> the cosmic background integrated over solid angle. This can beestimated at each SSM/I frequency from the upwelling TB comp<strong>on</strong>ent byTB down ( f ) = c DN0 + c DN1 TB up ( f, 53 ◦ ).(A.5)The hemispherical downwelling radiati<strong>on</strong> is assumed to be scattered isotropically by thecanopy. In this way, Ɣ scat ( f ) can be written as a( f )/2. It is assumed that the single scatteringalbedo increases linearly <str<strong>on</strong>g>and</str<strong>on</strong>g> m<strong>on</strong>ot<strong>on</strong>ically from 18–40 GHz, which is represented asa( f ) = c ao + c a1 f. (A.6)Once the physical temperature of the canopy is determined, the apparent brightness temperaturesat JMR frequencies <str<strong>on</strong>g>and</str<strong>on</strong>g> incidence can be determined if TB UP ( f,θ), τ( f ), TB down ( f ),Ɣ scat ( f ), <str<strong>on</strong>g>and</str<strong>on</strong>g> a( f ) are known at JMR frequencies <str<strong>on</strong>g>and</str<strong>on</strong>g> nadir incidence. A least-squares regressi<strong>on</strong>is determined which relates TB UP at SSM/I frequencies to JMR frequencies atadjacent channels. Then τ( f ) is determined using Equati<strong>on</strong> (A.4), TB down is determined


220 S. Brown et al.using an equati<strong>on</strong> with the form of Equati<strong>on</strong> (6), <str<strong>on</strong>g>and</str<strong>on</strong>g> Ɣ scat ( f ), <str<strong>on</strong>g>and</str<strong>on</strong>g> a( f ) are determinedusing equati<strong>on</strong> (A.6).To determine the coefficients in the above equati<strong>on</strong>s, radios<strong>on</strong>de data in the vicinity ofthe selected regi<strong>on</strong>s are used to model the apparent TBs, integrated optical depth, effectiveradiating temperature, <str<strong>on</strong>g>and</str<strong>on</strong>g> the upwelling <str<strong>on</strong>g>and</str<strong>on</strong>g> downwelling TBs. RaOb sounding data fromOctober 2001 through September 2002 are used from four stati<strong>on</strong>s in the Amaz<strong>on</strong>.The measured apparent TB data set c<strong>on</strong>sists of measurements from October 2001through September 2002 from the DMSP SSM/I F13, F14, <str<strong>on</strong>g>and</str<strong>on</strong>g> F15 platforms acquiredfrom <strong>Remote</strong> Sensing Systems.The equati<strong>on</strong>s are parameterized using a least-squares optimizati<strong>on</strong> of the modeledradios<strong>on</strong>de database. The dependence of the single scattering albedo <strong>on</strong> frequency, (A.6), isdetermined by solving for a( f ) in (A.2) using average modeled values for the atmosphericTB comp<strong>on</strong>ents with average SSM/I apparent TBs at 19, 22, <str<strong>on</strong>g>and</str<strong>on</strong>g> 37 GHz.Using the paramertizati<strong>on</strong> of the above equati<strong>on</strong>s, average JMR reference TBs for eachchannel <str<strong>on</strong>g>and</str<strong>on</strong>g> each regi<strong>on</strong> were determined from nine m<strong>on</strong>ths of SSM/I data across threeplatforms (F13, F14, <str<strong>on</strong>g>and</str<strong>on</strong>g> F15). Each SSM/I satellite is in a sun-synchr<strong>on</strong>ous <strong>orbit</strong> withmorning <str<strong>on</strong>g>and</str<strong>on</strong>g> evening local overpass times. This provides an adequate representati<strong>on</strong> for thedaily average of the hot reference temperature for JMR cycles 3–21.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!