04.12.2012 Views

The indirect effects of increased nutrient inputs on birds in ... - RSPB

The indirect effects of increased nutrient inputs on birds in ... - RSPB

The indirect effects of increased nutrient inputs on birds in ... - RSPB

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>direct</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> <strong>on</strong><br />

<strong>birds</strong> <strong>in</strong> the UK: a review<br />

M.A. MacD<strong>on</strong>ald<br />

<strong>RSPB</strong> Research Report 21<br />

ISBN Number 1 901930 77 7<br />

Royal Society for the Protecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Birds<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Lodge, Sandy, Bedfordshire<br />

October, 2006


Summary<br />

Introducti<strong>on</strong><br />

1. <str<strong>on</strong>g>The</str<strong>on</strong>g> past fifty years have seen decl<strong>in</strong>es <strong>in</strong> a range <str<strong>on</strong>g>of</str<strong>on</strong>g> bird species, notably those<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> farmland habitats, <strong>in</strong> the United K<strong>in</strong>gdom.<br />

2. <str<strong>on</strong>g>The</str<strong>on</strong>g>se decl<strong>in</strong>es have occurred al<strong>on</strong>gside changes <strong>in</strong> human activities that have<br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> anthropogenic <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s to the envir<strong>on</strong>ment.<br />

3. <str<strong>on</strong>g>The</str<strong>on</strong>g> most important anthropogenic sources <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen and phosphorus are<br />

agriculture, sewage and domestic waste, while combusti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuels by<br />

<strong>in</strong>dustry and transport is a major source <str<strong>on</strong>g>of</str<strong>on</strong>g> reactive atmospheric nitrogen.<br />

4. Around 60% <str<strong>on</strong>g>of</str<strong>on</strong>g> human nitrogen producti<strong>on</strong>, and about 80% <str<strong>on</strong>g>of</str<strong>on</strong>g> phosphate use<br />

are associated with fertiliser producti<strong>on</strong> for agriculture.<br />

5. Both nitrogen and phosphorus are essential <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s for plant growth and<br />

str<strong>on</strong>gly <strong>in</strong>fluence the productivity <str<strong>on</strong>g>of</str<strong>on</strong>g> habitats. <str<strong>on</strong>g>The</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>organic fertilisers<br />

has allowed massive <strong>in</strong>creases <strong>in</strong> agricultural producti<strong>on</strong>.<br />

6. While all three major sources <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> polluti<strong>on</strong> (fertiliser, fossil fuel<br />

combusti<strong>on</strong> and sewage effluent) have decl<strong>in</strong>ed over the past two decades,<br />

they still vastly <strong>in</strong>crease the pool <str<strong>on</strong>g>of</str<strong>on</strong>g> available <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s.<br />

7. <str<strong>on</strong>g>The</str<strong>on</strong>g>re is str<strong>on</strong>g evidence that <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> anthropogenic <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s has<br />

altered the vegetati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the United K<strong>in</strong>gdom over the past century, with<br />

species typical <str<strong>on</strong>g>of</str<strong>on</strong>g> high-<str<strong>on</strong>g>nutrient</str<strong>on</strong>g> situati<strong>on</strong>s favoured.<br />

Farmland<br />

Vegetati<strong>on</strong><br />

1. Increased fertiliser use generally reduces plant species richness <strong>in</strong> farm fields.<br />

Management practices associated with or driven by <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> fertiliser use,<br />

notably silage producti<strong>on</strong> and <strong>in</strong>tensive graz<strong>in</strong>g, also reduce plant species<br />

richness.<br />

2. Fertiliser applicati<strong>on</strong> affects sward structure by promot<strong>in</strong>g faster and earlier<br />

spr<strong>in</strong>g growth, lead<strong>in</strong>g to taller, denser swards. In grassland, both cutt<strong>in</strong>g for<br />

i


silage and <strong>in</strong>tensive graz<strong>in</strong>g lead to short (although still dense) and<br />

heterogeneous swards.<br />

3. Silage producti<strong>on</strong> probably has the most radical <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> vegetati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> any<br />

form <str<strong>on</strong>g>of</str<strong>on</strong>g> farmland management, and silage producti<strong>on</strong> has replaced hay<br />

producti<strong>on</strong> over much <str<strong>on</strong>g>of</str<strong>on</strong>g> the UK. Early and frequent cutt<strong>in</strong>g affects sward<br />

structure, and reduce the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> seed set by grass swards.<br />

4. <str<strong>on</strong>g>The</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>organic fertilisers has led to changes <strong>in</strong> landscape c<strong>on</strong>figurati<strong>on</strong><br />

by releas<strong>in</strong>g farmers from the need to graze stock for manure producti<strong>on</strong><br />

and/or to rotate legum<strong>in</strong>ous crops. <str<strong>on</strong>g>The</str<strong>on</strong>g>re has been a loss <str<strong>on</strong>g>of</str<strong>on</strong>g> mixed farm<strong>in</strong>g<br />

landscapes and a polarisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> agriculture <strong>in</strong> the United K<strong>in</strong>gdom towards<br />

arable farm<strong>in</strong>g <strong>in</strong> the south and east, and pastoral farm<strong>in</strong>g <strong>in</strong> the north and<br />

west.<br />

Invertebrates<br />

5. Invertebrates, notably earthworms, may be killed by heavy applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

organic and <strong>in</strong>organic fertiliser, due to toxic amm<strong>on</strong>ia c<strong>on</strong>centrati<strong>on</strong>s, sal<strong>in</strong>ity<br />

and desiccati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> are not usually l<strong>on</strong>g-term.<br />

6. Invertebrate species richness is frequently positively related to plant species<br />

richness, due to <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> opportunities for specialist species. However, the<br />

relati<strong>on</strong>ship does not always hold, nor is <strong>in</strong>vertebrate abundance necessarily<br />

positively related to plant species richness.<br />

7. Plant-eat<strong>in</strong>g <strong>in</strong>vertebrates may be favoured by the <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> nutritive c<strong>on</strong>tent<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> fertilised crops, although there may be shifts <strong>in</strong> community compositi<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>y are also favoured by the <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> shoot growth result<strong>in</strong>g from fertiliser<br />

applicati<strong>on</strong>.<br />

8. <str<strong>on</strong>g>The</str<strong>on</strong>g> reduced root:shoot ratio result<strong>in</strong>g from <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> foliar growth can be<br />

detrimental to soil <strong>in</strong>vertebrates, although <strong>in</strong>vertebrates feed<strong>in</strong>g <strong>on</strong> roots may<br />

benefit from <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> nutritive c<strong>on</strong>tent.<br />

9. Invertebrates that require specific sward structure, even those that eat plants,<br />

will be affected by the changes to sward structure aris<strong>in</strong>g from fertiliser<br />

applicati<strong>on</strong> and associated management practices. Orthoptera (grasshoppers<br />

and crickets) are an example <str<strong>on</strong>g>of</str<strong>on</strong>g> this, as their habitat requirements are poorly<br />

met <strong>in</strong> <strong>in</strong>tensively managed improved grassland.<br />

ii


Birds<br />

10. Invertebrates may be affected by disturbance aris<strong>in</strong>g from graz<strong>in</strong>g and cutt<strong>in</strong>g.<br />

Large <strong>in</strong>sects are disproporti<strong>on</strong>ately affected, as their l<strong>on</strong>ger life cycles and<br />

relatively low recol<strong>on</strong>isati<strong>on</strong> ability mean that they are more likely to<br />

disappear from <strong>in</strong>tensively managed farmland.<br />

11. Intensive graz<strong>in</strong>g, and earlier and more frequent cutt<strong>in</strong>g associated with silage<br />

producti<strong>on</strong> directly remove <strong>in</strong>vertebrates, and also remove much <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

primary productivity.<br />

12. Changes to sward structure probably have the greatest <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> <strong>in</strong>vertebrate<br />

abundance, and these <str<strong>on</strong>g>effects</str<strong>on</strong>g> are most clearly observed <strong>in</strong> grassland under<br />

<strong>in</strong>tensive graz<strong>in</strong>g and/or cutt<strong>in</strong>g regimes.<br />

13. Birds may be affected by fertiliser use via several mechanisms. <str<strong>on</strong>g>The</str<strong>on</strong>g> str<strong>on</strong>gest<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> are seen <strong>in</strong> pastoral landscapes, because fertiliser use has been the ma<strong>in</strong><br />

driver <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat changes <strong>in</strong> grassland, while the shift to autumn-sown cereals<br />

is a more important cause <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat changes <strong>in</strong> arable landscapes.<br />

14. W<strong>in</strong>ter<strong>in</strong>g geese graze preferentially <strong>on</strong> fertilised grass, and management for<br />

these important species <strong>in</strong>cludes fertiliser applicati<strong>on</strong> and graz<strong>in</strong>g.<br />

15. Several species have suffered from reduced abundance and/or availability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

surface-dwell<strong>in</strong>g <strong>in</strong>vertebrates. Species reliant <strong>on</strong> large <strong>in</strong>vertebrates, such as<br />

cirl bunt<strong>in</strong>g and red-backed shrike, are especially sensitive. Loss <str<strong>on</strong>g>of</str<strong>on</strong>g> large<br />

<strong>in</strong>vertebrates is also suggested as a major cause <str<strong>on</strong>g>of</str<strong>on</strong>g> reduced productivity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

breed<strong>in</strong>g waders <strong>in</strong> grassland.<br />

16. Species that feed <strong>on</strong> soil <strong>in</strong>vertebrates may be affected by reduced availability<br />

<strong>in</strong> dense swards. Snipe, starl<strong>in</strong>g and chough are examples <str<strong>on</strong>g>of</str<strong>on</strong>g> these. Although<br />

desiccati<strong>on</strong> also reduces the ability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>birds</strong> to feed <strong>on</strong> soil <strong>in</strong>vertebrates,<br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> crop growth can c<strong>on</strong>tribute to this.<br />

17. Seed resources are also reduced <strong>in</strong> <strong>in</strong>tensive agriculture, and this can affect<br />

several species <str<strong>on</strong>g>of</str<strong>on</strong>g> seed-eat<strong>in</strong>g passer<strong>in</strong>es. <str<strong>on</strong>g>The</str<strong>on</strong>g> loss <str<strong>on</strong>g>of</str<strong>on</strong>g> w<strong>in</strong>ter stubbles due to<br />

more efficient harvest<strong>in</strong>g and autumn-sown cereals is probably the str<strong>on</strong>gest<br />

driver <str<strong>on</strong>g>of</str<strong>on</strong>g> this.<br />

18. More <strong>in</strong>tensive graz<strong>in</strong>g can lead to <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> nest trampl<strong>in</strong>g <strong>in</strong> ground nest<strong>in</strong>g<br />

species such as skylark and lapw<strong>in</strong>g. <str<strong>on</strong>g>The</str<strong>on</strong>g>se species may also suffer higher<br />

iii


predati<strong>on</strong> rates <strong>in</strong> <strong>in</strong>tensively managed fields because sward homogeneity may<br />

make their nests easier to locate.<br />

19. Nest destructi<strong>on</strong> dur<strong>in</strong>g silage cutt<strong>in</strong>g is a major cause <str<strong>on</strong>g>of</str<strong>on</strong>g> reduced productivity<br />

<strong>in</strong> ground nest<strong>in</strong>g <strong>birds</strong> such as wh<strong>in</strong>chat and corncrake.<br />

20. <str<strong>on</strong>g>The</str<strong>on</strong>g> shift to silage producti<strong>on</strong> has probably had the greatest effect <strong>on</strong> bird<br />

populati<strong>on</strong>s <strong>in</strong> farmland, as it operates via three pathways: reduced<br />

<strong>in</strong>vertebrate food due to frequent cutt<strong>in</strong>g; reduced seed resource as it is cut<br />

before sett<strong>in</strong>g seed; destructi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nests.<br />

21. Birds may also have been affected by the polarisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> farm<strong>in</strong>g landscapes.<br />

Species such as starl<strong>in</strong>g and lapw<strong>in</strong>g that prefer the juxtapositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> arable<br />

fields and pasture will have been disadvantaged by this process.<br />

22. Organic farms are generally better for <strong>birds</strong> than c<strong>on</strong>venti<strong>on</strong>al farms, but the<br />

causes <str<strong>on</strong>g>of</str<strong>on</strong>g> this are complex and cannot be simply ascribed to use <str<strong>on</strong>g>of</str<strong>on</strong>g> organic<br />

rather than <strong>in</strong>organic fertiliser.<br />

Aquatic habitats<br />

Vegetati<strong>on</strong><br />

1. Shallow freshwater lakes are especially susceptible to eutrophicati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g>y<br />

tend to exist <strong>in</strong> either a clear-water state dom<strong>in</strong>ated by large plants<br />

(macrophytes), or a turbid-water state dom<strong>in</strong>ated by float<strong>in</strong>g microscopic<br />

plants (phytoplankt<strong>on</strong>).<br />

2. Lakes shift between the states relatively suddenly. Switch<strong>in</strong>g can be triggered<br />

by a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> processes, <strong>in</strong>clud<strong>in</strong>g changes <strong>in</strong> fish community and physical<br />

disturbance <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong>, but the likelihood <str<strong>on</strong>g>of</str<strong>on</strong>g> switch<strong>in</strong>g is str<strong>on</strong>gly<br />

<strong>in</strong>fluenced by <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> levels. Both states are buffered aga<strong>in</strong>st switch<strong>in</strong>g, so<br />

that a clear-water state can persist at high <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> levels, and a turbid-water<br />

state may persist after <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> levels are reduced.<br />

3. Reedswamp vegetati<strong>on</strong> has decl<strong>in</strong>ed across areas <str<strong>on</strong>g>of</str<strong>on</strong>g> western and central<br />

Europe. Although there is some co<strong>in</strong>cidence between reed decl<strong>in</strong>e and<br />

eutrophicati<strong>on</strong>, no cause and effect has been proven. In the Norfolk Broads,<br />

iv


there was a spatial relati<strong>on</strong>ship between water nitrate c<strong>on</strong>centrati<strong>on</strong> and the<br />

decl<strong>in</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> a particular float<strong>in</strong>g form <str<strong>on</strong>g>of</str<strong>on</strong>g> reed, known as hover.<br />

4. Upland lakes <strong>in</strong> the UK are mostly oligotrophic <strong>in</strong> the absence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

anthropogenic <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s. <str<strong>on</strong>g>The</str<strong>on</strong>g>se lakes can be susceptible to m<strong>in</strong>or<br />

<strong>in</strong>creases <strong>in</strong> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> load<strong>in</strong>gs.<br />

5. Estuaries and coastal waters are generally better flushed than freshwater lakes,<br />

and so the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> eutrophicati<strong>on</strong> are generally less persistent. However,<br />

where eutrophicati<strong>on</strong> occurs it typically leads to a decl<strong>in</strong>e <strong>in</strong> rooted plant<br />

communities such as seagrass and eelgrass beds, and their replacement by<br />

macroalgal mats and phytoplankt<strong>on</strong> blooms.<br />

Invertebrates and fish<br />

6. In freshwater, large zooplankt<strong>on</strong> such as cladocerans (water fleas) are<br />

favoured by a clear-water state, as the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> submerged macrophytes<br />

provides shelter from fish that prey <strong>on</strong> such zooplankt<strong>on</strong>.<br />

7. Freshwater <strong>in</strong>vertebrate communities are sensitive to <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g>, with<br />

shifts <strong>in</strong> community compositi<strong>on</strong> frequently driven by changes to substrate<br />

rather than food abundance or availability. Anoxic c<strong>on</strong>diti<strong>on</strong>s also affect both<br />

<strong>in</strong>vertebrates and fish. Molluscs are especially sensitive to eutrophic<br />

c<strong>on</strong>diti<strong>on</strong>s, while annelid worms are favoured.<br />

8. Fish communities both resp<strong>on</strong>d to the stable state <str<strong>on</strong>g>of</str<strong>on</strong>g> fresh water bodies and<br />

buffer stable states form changes, through processes such as disturbance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

sediments and predati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> zooplankt<strong>on</strong>.<br />

9. Eutrophicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> shallow lakes leads to a reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fish diversity, with<br />

roach and bream becom<strong>in</strong>g dom<strong>in</strong>ant at the expense <str<strong>on</strong>g>of</str<strong>on</strong>g> perch, rudd and tench.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> size structure <str<strong>on</strong>g>of</str<strong>on</strong>g> fish communities <strong>in</strong> upland lakes can be altered by<br />

<str<strong>on</strong>g>nutrient</str<strong>on</strong>g> polluti<strong>on</strong>, lead<strong>in</strong>g to fewer but larger <strong>in</strong>dividuals.<br />

10. Immediately adjacent to po<strong>in</strong>t sources <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> polluti<strong>on</strong>, <strong>in</strong>vertebrate<br />

biomass is reduced by extreme c<strong>on</strong>diti<strong>on</strong>s. However, <strong>in</strong> surround<strong>in</strong>g areas it<br />

can be much higher, although the community is very different from low<str<strong>on</strong>g>nutrient</str<strong>on</strong>g><br />

waters.<br />

11. In estuar<strong>in</strong>e and coastal areas, where sewage outfalls are removed, or where<br />

treatment is implemented, <strong>in</strong>vertebrate biomass usually falls, although species<br />

v


Birds<br />

richness <strong>in</strong>creases and species compositi<strong>on</strong> more closely approximates natural<br />

c<strong>on</strong>diti<strong>on</strong>s.<br />

12. In <strong>in</strong>tertidal mudflats, the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> macroalgal mats forces <strong>in</strong>vertebrates<br />

closer to the surface to evade anoxic c<strong>on</strong>diti<strong>on</strong>s. If the mats persist <strong>in</strong>vertebrate<br />

biomass may drop severely.<br />

13. <str<strong>on</strong>g>The</str<strong>on</strong>g> mud-shrimp Corophium volutator and the sandworm Nereis diversicolor<br />

are more tolerant <str<strong>on</strong>g>of</str<strong>on</strong>g> eutrophic c<strong>on</strong>diti<strong>on</strong>s and can provide abundant food<br />

resources to shore<strong>birds</strong>.<br />

14. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>direct</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> eutrophicati<strong>on</strong> can be complex and highly localised <strong>in</strong><br />

aquatic systems, and local changes <strong>in</strong> bird populati<strong>on</strong>s may be affected by<br />

changes at larger scales. Increased <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> load<strong>in</strong>g may be beneficial to <strong>birds</strong><br />

up to a po<strong>in</strong>t at which radical changes to habitat occur.<br />

15. <str<strong>on</strong>g>The</str<strong>on</strong>g> negative <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s <strong>on</strong> <strong>birds</strong> are most c<strong>on</strong>sistent <strong>in</strong> freshwater<br />

lakes, where a shift <strong>in</strong> stable states results <strong>in</strong> a decl<strong>in</strong>e <strong>in</strong> food plants for<br />

herbivorous and omnivorous waterfowl.<br />

16. Eutrophic c<strong>on</strong>diti<strong>on</strong>s also radically change the bottom-dwell<strong>in</strong>g <strong>in</strong>vertebrate<br />

fauna, lead<strong>in</strong>g to a loss <str<strong>on</strong>g>of</str<strong>on</strong>g> sensitive elements such as molluscs. Div<strong>in</strong>g <strong>birds</strong><br />

that feed <strong>on</strong> these <strong>in</strong>vertebrates suffer from reduced food supply.<br />

17. Roach, a fish species tolerant <str<strong>on</strong>g>of</str<strong>on</strong>g> eutrophic c<strong>on</strong>diti<strong>on</strong>s are thought to compete<br />

with tufted duck for food resources <strong>in</strong> Lough Neagh.<br />

18. Fish-eat<strong>in</strong>g <strong>birds</strong> that chase their prey may be negatively affected by<br />

eutrophicati<strong>on</strong>, as water transparency tends to be reduced. Nutrient enrichment<br />

may also alter the size class <str<strong>on</strong>g>of</str<strong>on</strong>g> fish prey, reduc<strong>in</strong>g the abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> suitable<br />

(small) <strong>in</strong>dividuals.<br />

19. Eutrophicati<strong>on</strong> may affect <strong>birds</strong> reliant <strong>on</strong> reedbed by accelerat<strong>in</strong>g seral<br />

successi<strong>on</strong> and by reduc<strong>in</strong>g the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> open water present. Reedbed<br />

decl<strong>in</strong>e <strong>in</strong> Europe has been co<strong>in</strong>cident with eutrophicati<strong>on</strong>, but no causality<br />

has been proven.<br />

20. <str<strong>on</strong>g>The</str<strong>on</strong>g> red-listed bittern may be affected by reduced food supply. One <str<strong>on</strong>g>of</str<strong>on</strong>g> its<br />

major food items <strong>in</strong> Brita<strong>in</strong>, rudd, performs poorly <strong>in</strong> eutrophic c<strong>on</strong>diti<strong>on</strong>s.<br />

vi


21. In north-western Europe, marsh tern decl<strong>in</strong>e has been l<strong>in</strong>ked to eutrophicati<strong>on</strong><br />

because its preferred nest<strong>in</strong>g substrate, water soldier, is sensitive to <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g><br />

<str<strong>on</strong>g>nutrient</str<strong>on</strong>g> load<strong>in</strong>g.<br />

22. Shore<strong>birds</strong> <strong>in</strong> tidal areas generally benefit from anthropogenic <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g>.<br />

Although the <strong>in</strong>vertebrate community compositi<strong>on</strong> may shift radically,<br />

abundance is <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g>. Historically, bird populati<strong>on</strong>s have risen <strong>in</strong> estuaries<br />

where sewage <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> have <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g>, although populati<strong>on</strong> decl<strong>in</strong>es have not<br />

been observed <strong>in</strong> all situati<strong>on</strong>s where <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> have been reduced.<br />

23. Species with specific prey requirements or forag<strong>in</strong>g habits, such as shelduck,<br />

may not benefit from <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g>.<br />

24. In c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> extreme eutrophicati<strong>on</strong>, where extensive macroalgal mats<br />

form, the anoxic c<strong>on</strong>diti<strong>on</strong>s may force the mud-dwell<strong>in</strong>g fauna to the surface,<br />

provid<strong>in</strong>g a short-term flush <str<strong>on</strong>g>of</str<strong>on</strong>g> food. If the mats persist, the food supply will<br />

be reduced <strong>in</strong> the l<strong>on</strong>g term.<br />

25. Div<strong>in</strong>g ducks <strong>in</strong> coastal waters also benefited from the <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> food supplies<br />

around sewage outfalls, and their numbers have decl<strong>in</strong>e where outfalls have<br />

been removed.<br />

Upland moor and lowland heath<br />

Vegetati<strong>on</strong><br />

1. <str<strong>on</strong>g>The</str<strong>on</strong>g>re has been a decl<strong>in</strong>e <strong>in</strong> the extent <str<strong>on</strong>g>of</str<strong>on</strong>g> heather (Calluna vulgaris) cover <strong>in</strong><br />

both heath and moorland <strong>in</strong> the United K<strong>in</strong>gdom <strong>in</strong> recent years. Causes <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

decl<strong>in</strong>e <strong>in</strong>clude afforestati<strong>on</strong>, c<strong>on</strong>versi<strong>on</strong> to farmland, <strong>in</strong>vasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> grasses, and<br />

seral successi<strong>on</strong>.<br />

2. Atmospheric depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen <strong>in</strong>creases the foliar nitrogen c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Calluna and decreases the root:shoot ratio. This <strong>in</strong>creases sensitivity to<br />

desiccati<strong>on</strong>, and dieback has been observed especially dur<strong>in</strong>g w<strong>in</strong>ter droughts<br />

<strong>in</strong> upland moor and lowland heath.<br />

3. Heath beetle outbreaks also cause Calluna dieback, and larval growth<br />

<strong>in</strong>creases with foliar nitrogen c<strong>on</strong>tent. It is suggested that nitrogen depositi<strong>on</strong><br />

<strong>in</strong>creases the probability <str<strong>on</strong>g>of</str<strong>on</strong>g> beetle outbreaks.<br />

vii


4. Calluna is not competitively disadvantaged by <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> nitrogen <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> <strong>in</strong> the<br />

absence <str<strong>on</strong>g>of</str<strong>on</strong>g> disturbance. Dieback result<strong>in</strong>g from heather beetle attacks or<br />

desiccati<strong>on</strong> may cause disturbance sufficient for grasses to <strong>in</strong>vade. Both <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

these mechanisms may be <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> by nitrogen depositi<strong>on</strong>.<br />

5. Graz<strong>in</strong>g disturbance has <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> the cover <str<strong>on</strong>g>of</str<strong>on</strong>g> heather and grass <strong>in</strong> moorland<br />

<strong>in</strong>dependent <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g>. Graz<strong>in</strong>g <strong>in</strong>tensity has <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g><br />

over time <strong>in</strong> upland areas, although the drivers <str<strong>on</strong>g>of</str<strong>on</strong>g> this have mostly been<br />

agricultural subsidy policies. Nitrogen depositi<strong>on</strong> may have facilitated this by<br />

<strong>in</strong>creas<strong>in</strong>g the forage quality <str<strong>on</strong>g>of</str<strong>on</strong>g> moorland, but this is difficult to determ<strong>in</strong>e and<br />

is likely to be a m<strong>in</strong>or c<strong>on</strong>tributor.<br />

6. <str<strong>on</strong>g>The</str<strong>on</strong>g>se mechanisms are also suggested as causes for the loss <str<strong>on</strong>g>of</str<strong>on</strong>g> lowland heath<br />

<strong>in</strong> western Europe. However, lack <str<strong>on</strong>g>of</str<strong>on</strong>g> management is also implicated, so that<br />

successi<strong>on</strong> to scrub and lack <str<strong>on</strong>g>of</str<strong>on</strong>g> burn<strong>in</strong>g have also resulted <strong>in</strong> loss <str<strong>on</strong>g>of</str<strong>on</strong>g> heath.<br />

Invertebrates<br />

Birds<br />

7. Ma<strong>in</strong>tenance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>vertebrate communities <strong>in</strong> moorland requires a mosaic <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

grass and heather <str<strong>on</strong>g>of</str<strong>on</strong>g> vary<strong>in</strong>g ages. Invertebrate biomass is generally lower <strong>in</strong><br />

heather moorland than <strong>in</strong> grass moorland, although wet areas <strong>in</strong> moorland may<br />

support an abundant <strong>in</strong>vertebrate fauna.<br />

8. Plant-eat<strong>in</strong>g <strong>in</strong>vertebrates may be favoured by nitrogen depositi<strong>on</strong> and<br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> nutritive value <str<strong>on</strong>g>of</str<strong>on</strong>g> Calluna. However, <strong>in</strong>tensive graz<strong>in</strong>g will remove<br />

foliage to the detriment <str<strong>on</strong>g>of</str<strong>on</strong>g> these <strong>in</strong>vertebrates.<br />

9. <str<strong>on</strong>g>The</str<strong>on</strong>g> importance <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen depositi<strong>on</strong> <strong>in</strong> driv<strong>in</strong>g changes to bird populati<strong>on</strong>s<br />

<strong>in</strong> the uplands, relative to other causes (such as afforestati<strong>on</strong>, climate change,<br />

land management), is difficult to determ<strong>in</strong>e. <str<strong>on</strong>g>The</str<strong>on</strong>g> evidence for l<strong>in</strong>ks between<br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> nitrogen depositi<strong>on</strong> (and associated processes) and bird populati<strong>on</strong>s<br />

is exam<strong>in</strong>ed.<br />

10. In upland moorland, the shift from heather to grass moorland over a large<br />

scale is likely to be the most important <str<strong>on</strong>g><strong>in</strong>direct</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen depositi<strong>on</strong> <strong>on</strong><br />

viii


irds. For fifteen species there was sufficient evidence <str<strong>on</strong>g>of</str<strong>on</strong>g> such <str<strong>on</strong>g>effects</str<strong>on</strong>g> to<br />

estimate sensitivity to heather loss.<br />

11. Two species (red grouse and merl<strong>in</strong>) are classed as sensitive to heather loss,<br />

because they are str<strong>on</strong>gly associated with mature heather cover for breed<strong>in</strong>g<br />

and forag<strong>in</strong>g.<br />

12. Seven species (black grouse, golden eagle, hen harrier, meadow pipit,<br />

st<strong>on</strong>echat, r<strong>in</strong>g ouzel and twite) are classed as moderately sensitive to heather<br />

loss. <str<strong>on</strong>g>The</str<strong>on</strong>g>se species require a mosaic <str<strong>on</strong>g>of</str<strong>on</strong>g> heather and grass cover, and the <str<strong>on</strong>g>effects</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> heather loss <strong>on</strong> <strong>birds</strong> will depend <strong>on</strong> the extent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>itial heather cover and<br />

its spatial distributi<strong>on</strong>.<br />

13. Six species (golden plover, curlew, snipe, skylark, wh<strong>in</strong>chat, wheatear) are<br />

classed as hav<strong>in</strong>g low sensitivity to heather loss. Some <str<strong>on</strong>g>of</str<strong>on</strong>g> these species are<br />

likely to benefit from the c<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> heather moorland to either grass or<br />

bracken, while for others the structure <str<strong>on</strong>g>of</str<strong>on</strong>g> moorland vegetati<strong>on</strong> is more<br />

important than its floristic compositi<strong>on</strong>.<br />

14. For almost all species, an appropriate mosaic <str<strong>on</strong>g>of</str<strong>on</strong>g> upland habitats is required to<br />

supply suitable resources (eg nest<strong>in</strong>g and forag<strong>in</strong>g sites). In many cases,<br />

vegetati<strong>on</strong> structure is more important than species compositi<strong>on</strong>, and very few<br />

bird species benefit from c<strong>on</strong>t<strong>in</strong>uous heather cover.<br />

ix


Acknowledgments<br />

Ken Smith and Andy Evans co-ord<strong>in</strong>ated the producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this report. Various people<br />

have commented <strong>on</strong> drafts and provided specific comments. <str<strong>on</strong>g>The</str<strong>on</strong>g>y are Ken Smith,<br />

Andy Evans, Will Peach, Richard Bradbury, Murray Grant, James Pearce-Higg<strong>in</strong>s,<br />

and Len Campbell.<br />

x


C<strong>on</strong>tents<br />

Summary i<br />

1. Introducti<strong>on</strong><br />

1.1. Rati<strong>on</strong>ale 1<br />

1.2. Review Structure 1<br />

1.3. A brief descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen and phosphorus 3<br />

1.3.1. Nitrogen 3<br />

1.3.2. Phosphorus 5<br />

1.4. Anthropogenic sources <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen and phosphorus 6<br />

1.4.1. Agriculture 8<br />

1.4.1.1. Organic vs <strong>in</strong>organic fertilisers 9<br />

1.4.2. Atmospheric polluti<strong>on</strong> 10<br />

1.4.3. Po<strong>in</strong>t-source polluti<strong>on</strong> 10<br />

1.5. Transport <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s 10<br />

1.5.1. Loss from agricultural landscapes 10<br />

1.5.2. Transport to aquatic systems by hydrological processes 12<br />

1.5.3. Atmospheric depositi<strong>on</strong> 13<br />

1.5.4. Losses through burn<strong>in</strong>g 14<br />

1.6. Trends <strong>in</strong> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> polluti<strong>on</strong> <strong>in</strong> the UK 14<br />

1.6.1. Fertiliser use 15<br />

1.6.2. Levels <strong>in</strong> aquatic systems 18<br />

1.6.2.1. Classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> water bodies 20<br />

1.6.3. Atmospheric nitrogen 21<br />

1.7. Historical changes to the vegetati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the UK 22<br />

2. Farmland<br />

2.1. Introducti<strong>on</strong> 24<br />

2.2. <str<strong>on</strong>g>The</str<strong>on</strong>g> populati<strong>on</strong> trends <str<strong>on</strong>g>of</str<strong>on</strong>g> farmland <strong>birds</strong> and the possible mechanisms<br />

xi


y which <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> fertilisers may c<strong>on</strong>tribute to these 25<br />

2.2.1. C<strong>on</strong>cordance <str<strong>on</strong>g>of</str<strong>on</strong>g> bird trends with trends <strong>in</strong> the use <str<strong>on</strong>g>of</str<strong>on</strong>g> fertilisers 27<br />

2.2.2. Ways <strong>in</strong> which fertiliser use may affect farmland <strong>birds</strong> 28<br />

2.3. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> fertiliser use <strong>on</strong> vegetati<strong>on</strong> 29<br />

2.3.1. Changes <strong>in</strong> plant species richness and compositi<strong>on</strong> 30<br />

2.3.2. Changes to vegetati<strong>on</strong> structure. 34<br />

2.3.3. Effects <strong>on</strong> management practices. 34<br />

2.3.3.1. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> changes <strong>in</strong> management practices <strong>on</strong> vegetati<strong>on</strong> 36<br />

2.3.3.2. Organic vs n<strong>on</strong>-organic farm<strong>in</strong>g methods<br />

2.4. Effects <strong>on</strong> <strong>in</strong>vertebrates <str<strong>on</strong>g>of</str<strong>on</strong>g> fertiliser use, vegetati<strong>on</strong> changes, and changes<br />

38<br />

to management practices 38<br />

2.4.1. Direct <str<strong>on</strong>g>effects</str<strong>on</strong>g><br />

2.4.2. Changes to plant species compositi<strong>on</strong>, vegetati<strong>on</strong> structure and<br />

39<br />

nutritive value 45<br />

2.4.2.1. Resp<strong>on</strong>ses to plant species richness 45<br />

2.4.2.2. Resp<strong>on</strong>ses to <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> sward height and density 46<br />

2.4.2.3. Resp<strong>on</strong>ses to changes to host plant abundance/biomass 46<br />

2.4.2.4. Resp<strong>on</strong>ses to changes <strong>in</strong> nitrogen c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong> 48<br />

2.4.3. Changes to graz<strong>in</strong>g/mow<strong>in</strong>g regime 48<br />

2.4.3.1. Direct destructi<strong>on</strong> and removal 50<br />

2.4.3.2. Changes to plant species richness and vegetati<strong>on</strong> structure 51<br />

2.4.3.3. Microclimate changes<br />

2.4.4. Loss <str<strong>on</strong>g>of</str<strong>on</strong>g> mixed farm<strong>in</strong>g systems and changes to traditi<strong>on</strong>al crop<br />

52<br />

rotati<strong>on</strong> 52<br />

2.4.5. Organic vs n<strong>on</strong>-organic farm<strong>in</strong>g methods 53<br />

2.4.6. Summary 55<br />

2.5. Evidence for <str<strong>on</strong>g><strong>in</strong>direct</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> fertiliser use <strong>on</strong> <strong>birds</strong> 56<br />

2.5.1. Increased <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> grass (w<strong>in</strong>ter<strong>in</strong>g waterfowl) 56<br />

2.5.2. Changes to abundance/availability <str<strong>on</strong>g>of</str<strong>on</strong>g> epigeal <strong>in</strong>vertebrates 57<br />

2.5.2.1. Cirl bunt<strong>in</strong>g 61<br />

2.5.2.2. Red-backed shrike 62<br />

2.5.2.3. Skylark 62<br />

2.5.3. Changes to abundance/availability <str<strong>on</strong>g>of</str<strong>on</strong>g> soil dwell<strong>in</strong>g <strong>in</strong>vertebrates 63<br />

2.5.3.1. Starl<strong>in</strong>g 64<br />

xii


2.5.3.2. Chough 64<br />

2.5.3.3. Breed<strong>in</strong>g waders 65<br />

2.5.4. Changes to abundance and availability <str<strong>on</strong>g>of</str<strong>on</strong>g> plant food resources 67<br />

2.5.4.1. Turtle dove 68<br />

2.5.4.2. Granivorous passer<strong>in</strong>es<br />

2.5.5. Reduced breed<strong>in</strong>g success due to <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> graz<strong>in</strong>g/cutt<strong>in</strong>g<br />

68<br />

<strong>in</strong>tensity or denser spr<strong>in</strong>g vegetati<strong>on</strong> 69<br />

2.5.5.1. Lapw<strong>in</strong>g 70<br />

2.5.6. Nest/brood destructi<strong>on</strong> due to changes <strong>in</strong> grass cutt<strong>in</strong>g regime 71<br />

2.5.5.2. Wh<strong>in</strong>chat 71<br />

2.5.5.3. Corncrake 72<br />

2.5.7. Changes to landscape c<strong>on</strong>figurati<strong>on</strong> 73<br />

2.5.8. Organic versus c<strong>on</strong>venti<strong>on</strong>al farm<strong>in</strong>g 74<br />

2.5.9. Summary 75<br />

3. Aquatic habitats 77<br />

3.1. Introducti<strong>on</strong> 77<br />

3.2. Birds <str<strong>on</strong>g>of</str<strong>on</strong>g> aquatic habitats <strong>in</strong> the UK 78<br />

3.3. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <strong>in</strong>creases <strong>on</strong> vegetati<strong>on</strong> 81<br />

3.3.1. Rivers and streams 82<br />

3.3.2. Inland stand<strong>in</strong>g water and fens 86<br />

3.3.2.1. Freshwater lakes 86<br />

3.3.2.2. Reedswamps 88<br />

3.3.2.3. Upland lakes 89<br />

3.3.3. Estuaries and coastal waters 89<br />

3.4. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <strong>in</strong>creases <strong>on</strong> bird food items 91<br />

3.4.1. Invertebrates <strong>in</strong> rivers and streams 91<br />

3.4.2. Lowland shallow lakes and fens 92<br />

3.4.2.1. Vegetati<strong>on</strong> 92<br />

3.4.2.2. Invertebrates 95<br />

3.4.2.3. Fish 96<br />

3.4.3. Upland lakes 97<br />

xiii


3.4.4. Estuaries and coastal waters 98<br />

3.4.4.1. Invertebrates <strong>in</strong> <strong>in</strong>tertidal areas 98<br />

3.4.4.2. Invertebrates <strong>in</strong> coastal waters 99<br />

3.5. Indirect <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> aquatic eutrophicati<strong>on</strong> <strong>on</strong> <strong>birds</strong> 99<br />

3.5.1. Rivers and streams 105<br />

3.5.2. Lowland freshwater lakes 105<br />

3.5.2.1. Herbivorous and omnivorous waterfowl 106<br />

3.5.2.2. Benthivorous div<strong>in</strong>g <strong>birds</strong> 108<br />

3.5.2.3. Piscivorous div<strong>in</strong>g <strong>birds</strong> 110<br />

3.5.3. Fens, marshes and reedbed 111<br />

3.5.3.1. Bittern 112<br />

3.5.3.2. Black tern 113<br />

3.5.4. Estuaries and tidal flats 113<br />

3.5.4.1. Shore<strong>birds</strong> (waders and wildfowl) 114<br />

3.5.4.2. Shelduck 117<br />

3.5.4.3. Gulls 117<br />

3.5.5. Coastal waters (div<strong>in</strong>g ducks) 118<br />

3.5.6. Summary 118<br />

4. Upland moorland and lowland heath 120<br />

4.1. Introducti<strong>on</strong> 120<br />

4.2. Bird populati<strong>on</strong> trends <strong>in</strong> moorland and heath 121<br />

4.3. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <strong>in</strong>creases <strong>on</strong> vegetati<strong>on</strong> 125<br />

4.3.1. Upland moorland 127<br />

4.3.2. Lowland heath 133<br />

4.3.3. Summary 135<br />

4.4. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <strong>in</strong>creases <strong>on</strong> <strong>in</strong>vertebrate prey items 136<br />

4.5. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <strong>in</strong>creases <strong>on</strong> <strong>birds</strong> 138<br />

4.5.1. Upland moorland 139<br />

4.5.1.1. Red grouse 140<br />

4.5.1.2. Black grouse 141<br />

4.5.1.3. Golden plover 141<br />

xiv


4.5.1.4. Other waders 145<br />

4.5.1.5. Merl<strong>in</strong> 145<br />

4.5.1.6. Hen harrier 146<br />

4.5.1.7. Other raptors 147<br />

4.5.1.8. Meadow pipit 147<br />

4.5.1.9. Skylark 148<br />

4.5.1.10. R<strong>in</strong>g ouzel 148<br />

4.5.1.11. Other passer<strong>in</strong>es 149<br />

4.5.2. Lowland heath 150<br />

4.5.2.1. Woodlark 150<br />

4.5.3. Summary 150<br />

5. References 153<br />

Appendix 1. Scientific names <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>birds</strong> named <strong>in</strong> the text 200<br />

xv


1. Introducti<strong>on</strong><br />

1.1 Rati<strong>on</strong>ale<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> alterati<strong>on</strong>s to <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> cycles that have accompanied and enabled the post World<br />

War II boom <strong>in</strong> agriculture and <strong>in</strong>dustrializati<strong>on</strong> are caus<strong>in</strong>g l<strong>on</strong>g-term and broadscale<br />

threats to the envir<strong>on</strong>mental health <str<strong>on</strong>g>of</str<strong>on</strong>g> the planet. Post World War Two<br />

populati<strong>on</strong> decl<strong>in</strong>es have been observed <strong>in</strong> a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> bird species <strong>in</strong> the United<br />

K<strong>in</strong>gdom. This period has also seen a massive <strong>in</strong>crease <strong>in</strong> the amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen and<br />

phosphorus released <strong>in</strong>to the envir<strong>on</strong>ment as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> fertilisers<br />

as part <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>tensificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> agriculture, and the <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuel<br />

combusti<strong>on</strong>. Radical changes have been documented <strong>in</strong> many habitats as a result <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

such <strong>in</strong>creases <strong>in</strong> available nitrogen and phosphorus. <str<strong>on</strong>g>The</str<strong>on</strong>g> purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> this review is to<br />

present the evidence for <str<strong>on</strong>g><strong>in</strong>direct</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> phosphorus and nitrogen <strong>on</strong> UK bird<br />

populati<strong>on</strong>s.<br />

Increased productivity <strong>in</strong> resp<strong>on</strong>se to <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen and phosphorus might be<br />

expected to <strong>in</strong>crease the number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>birds</strong>, and <strong>in</strong> fact this is the case <strong>in</strong> many<br />

<strong>in</strong>stances. However, an <strong>in</strong>crease <strong>in</strong> overall bird abundance may be at the expense <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

species that are adapted to oligotrophic habitats or that require specific resources that<br />

are negatively affected by <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> pollti<strong>on</strong>. This review does c<strong>on</strong>sider the positive<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> <strong>on</strong> <strong>birds</strong>, but I place more emphasis <strong>on</strong> negative <str<strong>on</strong>g>effects</str<strong>on</strong>g>, as<br />

bird decl<strong>in</strong>es are <str<strong>on</strong>g>of</str<strong>on</strong>g> particular c<strong>on</strong>cern. I also recognise that <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> may<br />

benefit bird populati<strong>on</strong>s while simultaneously lower<strong>in</strong>g overall envir<strong>on</strong>mental health.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> resp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>birds</strong> to changes <strong>in</strong> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> availability are likely to be complex and<br />

to rely <strong>on</strong> the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s <strong>on</strong> lower trophic levels, as well as the ability <str<strong>on</strong>g>of</str<strong>on</strong>g> bird<br />

populati<strong>on</strong>s to resp<strong>on</strong>d to those <str<strong>on</strong>g>effects</str<strong>on</strong>g> (Furness and Greenwood, 1993).<br />

1.2. Review Structure<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> aims <str<strong>on</strong>g>of</str<strong>on</strong>g> the review are:<br />

1


�� To review current knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen and phosphorus <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g><br />

<strong>on</strong> ecosystems generally.<br />

�� To identify mechanisms by which bird populati<strong>on</strong>s may be affected by <str<strong>on</strong>g>nutrient</str<strong>on</strong>g><br />

polluti<strong>on</strong>.<br />

�� To document observed changes <strong>in</strong> bird populati<strong>on</strong>s result<strong>in</strong>g from <str<strong>on</strong>g>nutrient</str<strong>on</strong>g><br />

polluti<strong>on</strong>.<br />

To achieve this, I will exam<strong>in</strong>e the evidence for <str<strong>on</strong>g><strong>in</strong>direct</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> <strong>in</strong><br />

three major habitats, <strong>in</strong> which I c<strong>on</strong>sider there to be the greatest likelihood and the<br />

best documentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> such <str<strong>on</strong>g>effects</str<strong>on</strong>g>. <str<strong>on</strong>g>The</str<strong>on</strong>g>se are farmland (grassland and arable land),<br />

aquatic habitats (<strong>in</strong>land freshwater and coastal), and heather-dom<strong>in</strong>ated habitats<br />

(lowland heath and upland moor). Each <str<strong>on</strong>g>of</str<strong>on</strong>g> these habitats is dealt with <strong>in</strong> a separate<br />

secti<strong>on</strong>, <strong>in</strong> which I c<strong>on</strong>sider the evidence for changes <strong>in</strong> bird populati<strong>on</strong>s, the impact<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> load<strong>in</strong>g <strong>on</strong> vegetati<strong>on</strong> and food items, and the evidence for <str<strong>on</strong>g><strong>in</strong>direct</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> anthropogenic <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen and phosphorus <strong>on</strong> <strong>birds</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> present review restricts itself to the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> <strong>on</strong> productivity, and<br />

does not c<strong>on</strong>sider other <str<strong>on</strong>g>effects</str<strong>on</strong>g>, which may have important c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> their own.<br />

For example, nitrogen oxides c<strong>on</strong>tribute to greenhouse gas emissi<strong>on</strong>s; nitrates are a<br />

human health issue; and atmospheric depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen can cause acidificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

terrestrial and aquatic habitats. <str<strong>on</strong>g>The</str<strong>on</strong>g>se problems are important, but are bey<strong>on</strong>d the<br />

scope <str<strong>on</strong>g>of</str<strong>on</strong>g> this review, which is already wide-rang<strong>in</strong>g. Similarly, I do not attempt to<br />

describe means <str<strong>on</strong>g>of</str<strong>on</strong>g> reduc<strong>in</strong>g emissi<strong>on</strong>s or mitigat<strong>in</strong>g their <str<strong>on</strong>g>effects</str<strong>on</strong>g>.<br />

In this <strong>in</strong>troductory secti<strong>on</strong>, I present a brief background <strong>on</strong> nitrogen and phosphorus,<br />

describe the means by which humans have <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> their entry to the envir<strong>on</strong>ment,<br />

and document the changes <strong>in</strong> anthropogenic <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> <strong>in</strong> the UK over time. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

<strong>in</strong>formati<strong>on</strong> presented here is <strong>in</strong>tended as background <strong>in</strong>formati<strong>on</strong> for the review. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

nature and cycl<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen and phosphorus, and the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> anthropogenic<br />

<str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g>, <strong>in</strong>clud<strong>in</strong>g many that are bey<strong>on</strong>d the scope <str<strong>on</strong>g>of</str<strong>on</strong>g> this review, are much more<br />

completely discussed <strong>in</strong> other publicati<strong>on</strong>s (Marrs, 1993; Heathwaite et al., 1996;<br />

2


Vitousek et al., 1997; Galloway, 1998; Bennett et al., 2001; NEGTAP, 2001; Dalt<strong>on</strong><br />

and Brand-Hardy, 2003; Biffaward, 2005; Johnst<strong>on</strong> and Daws<strong>on</strong>, 2005).<br />

1.3. A brief descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen and phosphorus<br />

Phosphorus is an important part <str<strong>on</strong>g>of</str<strong>on</strong>g> cell membranes, and is a comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> nucleic<br />

acids. Nitrogen is required for the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> am<strong>in</strong>o acids, prote<strong>in</strong>s and nucleic<br />

acids. <str<strong>on</strong>g>The</str<strong>on</strong>g>se elements are frequently the limit<strong>in</strong>g factors for plant growth. Phosphorus<br />

and nitrogen are both major limit<strong>in</strong>g factors <strong>on</strong> the distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> plant species and<br />

communities.<br />

1.3.1. Nitrogen<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> earth’s atmosphere is approximately 80% nitrogen, <strong>in</strong> the form <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen gas<br />

(N2), which is unavailable to most organisms. Even exclud<strong>in</strong>g nitrogen gas, <strong>on</strong>ly<br />

about 1% <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen present is <strong>in</strong> biologically available (reactive) form (Biffaward,<br />

2005). However, nitrogen is also present <strong>in</strong> other forms, which are l<strong>in</strong>ked by a number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> processes known as the nitrogen cycle (Fig. 1.1).<br />

Biologically available forms <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen are nitrate (NO3 - ), nitrite (NO2 - ), amm<strong>on</strong>ia<br />

(NH3), and amm<strong>on</strong>ium (NH4 + ). Two natural processes transfer nitrogen gas to<br />

biologically available forms: lightn<strong>in</strong>g and biological fixati<strong>on</strong> by microorganisms. In<br />

natural and semi-natural (very low management) ecosystems, plant nitrogen<br />

requirements are met from soil reserves or from atmospheric nitrogen <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g>. Rates <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

nitrogen transformati<strong>on</strong> <strong>in</strong> soils are dependent <strong>on</strong> microbial populati<strong>on</strong>s and a range <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

soil c<strong>on</strong>diti<strong>on</strong>s <strong>in</strong>clud<strong>in</strong>g pH, temperature, aerati<strong>on</strong> and water c<strong>on</strong>tent.<br />

Nitrate is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the ma<strong>in</strong> forms by which plants obta<strong>in</strong> nitrogen, and it is produced by<br />

nitrificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> amm<strong>on</strong>ia to nitrate via nitrite. <str<strong>on</strong>g>The</str<strong>on</strong>g> reverse process, known as<br />

denitrificati<strong>on</strong>, c<strong>on</strong>verts nitrate to nitrogen gas and nitrous oxide. Nitrite, which is<br />

very reactive and is also toxic, usually forms a small proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the nitrogen<br />

comp<strong>on</strong>ent <strong>in</strong> soil.<br />

3


Figure 1.1. Illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the nitrogen cycle<br />

4


Amm<strong>on</strong>ia is produced by volatilisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic nitrogen and by the fixati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

nitrogen gas by bacteria. Amm<strong>on</strong>ia is taken up by plants, released <strong>in</strong>to the atmosphere<br />

as a gas, or is c<strong>on</strong>verted to nitrate (via nitrite) by nitrificati<strong>on</strong>. Amm<strong>on</strong>ia is highly<br />

soluble, oxidises readily to nitrate <strong>in</strong> water, and readily forms amm<strong>on</strong>ium compounds<br />

<strong>in</strong> the atmosphere, whence it may be deposited as a gas or as part <str<strong>on</strong>g>of</str<strong>on</strong>g> amm<strong>on</strong>ium.<br />

compounds <strong>in</strong> ra<strong>in</strong>fall. Other nitrogen forms present <strong>in</strong> the atmosphere, <strong>in</strong> additi<strong>on</strong> to<br />

nitrogen gas, are nitrous oxide, nitric oxide, nitrogen oxide and nitrogen dioxide, the<br />

last two collectively known as nitrogen oxides (NOx). Nitrous oxide is produced<br />

dur<strong>in</strong>g the breakdown <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter. Nitrogen oxides are produced by soil bacteria<br />

and by combusti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fuels.<br />

Nitrogen is also found <strong>in</strong> the soil as a comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> organic material. Microbial<br />

decompositi<strong>on</strong> (m<strong>in</strong>eralisati<strong>on</strong>) <str<strong>on</strong>g>of</str<strong>on</strong>g> organic nitrogen releases <strong>in</strong>organic nitrogen<br />

(amm<strong>on</strong>ia, nitrate and amm<strong>on</strong>ium), which plants can use. M<strong>in</strong>eralisati<strong>on</strong> rates are<br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> by cultivati<strong>on</strong>, dra<strong>in</strong>age, and burn<strong>in</strong>g. Dissolved organic nitrogen has<br />

recently been established as an important comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> the atmospheric nitrogen load<br />

(Cornell et al., 2002).<br />

In aquatic systems, <strong>in</strong>organic nitrogen occurs as nitrate (which generally dom<strong>in</strong>ates),<br />

nitrite and amm<strong>on</strong>ium. Dissolved organic nitrogen can comprise up to 85% <str<strong>on</strong>g>of</str<strong>on</strong>g> total<br />

nitrogen, and is typically 40-50% (Willett et al., 2004); it is released by m<strong>in</strong>eralisati<strong>on</strong><br />

and nitrificati<strong>on</strong> (Heathwaite et al., 1996). Nitrate c<strong>on</strong>centrati<strong>on</strong>s are highest <strong>in</strong> w<strong>in</strong>ter<br />

and spr<strong>in</strong>g due to replenishment from soil-water sources. Nutrients <strong>in</strong> lake systems<br />

may be recycled many times, and depend<strong>in</strong>g <strong>on</strong> the flush<strong>in</strong>g rate may be <strong>in</strong>corporated<br />

<strong>in</strong>to the sediments. <str<strong>on</strong>g>The</str<strong>on</strong>g> anoxic soil c<strong>on</strong>diti<strong>on</strong>s <strong>in</strong> some wetlands h<strong>in</strong>der the<br />

decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic nitrogen and favour denitrificati<strong>on</strong>, thus lead<strong>in</strong>g to loss <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

nitrogen from wetlands (Morris, 1991).<br />

1.3.2. Phosphorus<br />

Phosphorus is an essential element for plant growth. Phosphorus occurs <strong>in</strong> phosphate<br />

(P2O5) bear<strong>in</strong>g rock, and <strong>in</strong> soil via erosi<strong>on</strong>. Phosphorus has low solubility and b<strong>in</strong>ds<br />

5


str<strong>on</strong>gly to soil particles (Johnst<strong>on</strong> and Daws<strong>on</strong>, 2005). Phosphorus occurs <strong>in</strong> soils as<br />

<strong>in</strong>organic phosphate or as part <str<strong>on</strong>g>of</str<strong>on</strong>g> the organic matter. In water, phosphorus occurs as<br />

soluble reactive phosphate (PO4 3- ), which is available to liv<strong>in</strong>g organisms, and bound<br />

to soil particles, which is not biologically available, although it may become so.<br />

Phosphorus is readily precipitated with soil particles <strong>in</strong> the water, but this bound<br />

phosphorus can be released <strong>in</strong>to the water column <strong>in</strong> reduc<strong>in</strong>g c<strong>on</strong>diti<strong>on</strong>s or when<br />

sediments are disturbed (Sharpley et al., 1995). Dissolved organic phosphorus is<br />

released through m<strong>in</strong>eralisati<strong>on</strong> (Heathwaite et al., 1996). <str<strong>on</strong>g>The</str<strong>on</strong>g> phosphorus cycle is<br />

simpler than that <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen (Fig. 1.2).<br />

1.4. Anthropogenic sources <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen and phosphorus<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> major sources <str<strong>on</strong>g>of</str<strong>on</strong>g> anthropogenic <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> are agriculture, sewage and<br />

domestic waste (for both nitrogen and phosphorus), and combusti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuels by<br />

<strong>in</strong>dustry and transport (for nitrogen). Other sources <strong>in</strong>clude the plant<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> legumes as<br />

nitrogen-fix<strong>in</strong>g crops, and the mobilisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen from l<strong>on</strong>g-term nitrogen<br />

storage pools via burn<strong>in</strong>g, land clearance and dra<strong>in</strong>age (Vitousek et al., 1997).<br />

Sources <str<strong>on</strong>g>of</str<strong>on</strong>g> polluti<strong>on</strong> may be described as po<strong>in</strong>t or n<strong>on</strong>-po<strong>in</strong>t (also referred to as<br />

diffuse); these terms are particularly used <strong>in</strong> reference to aquatic systems. Po<strong>in</strong>t<br />

sources have a fixed discharge po<strong>in</strong>t, although the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> polluti<strong>on</strong> may<br />

vary, while n<strong>on</strong>-po<strong>in</strong>t sources follow a range <str<strong>on</strong>g>of</str<strong>on</strong>g> routes to their dest<strong>in</strong>ati<strong>on</strong> (Heathwaite<br />

et al., 1996). Atmospheric sources <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> polluti<strong>on</strong> can also be thought <str<strong>on</strong>g>of</str<strong>on</strong>g> as<br />

diffuse; for example, amm<strong>on</strong>ia is emitted from a number <str<strong>on</strong>g>of</str<strong>on</strong>g> sources over large areas<br />

(Dalt<strong>on</strong> and Brand-Hardy, 2003).<br />

6


Figure 1.2. Illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the phosphorus cycle.<br />

7


1.4.1. Agriculture<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> major anthropogenic <strong>in</strong>put <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s to agricultural land is the direct<br />

applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fertilisers. About five eighths <str<strong>on</strong>g>of</str<strong>on</strong>g> anthropogenic nitrogen producti<strong>on</strong> is<br />

associated with the producti<strong>on</strong> and use <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>organic fertilisers (Dalt<strong>on</strong> and Brand-<br />

Hardy, 2003), and nitrogenous fertilisers are the largest source <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen to<br />

agriculture <strong>in</strong> the UK (Fig. 1.3). M<strong>in</strong>eral fertilisers account for approximately 80% <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

phosphates used worldwide, with the rema<strong>in</strong>der used <strong>in</strong> detergents, animal feeds and<br />

miscellaneous uses. Historically, the ma<strong>in</strong> plant <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s, nitrogen and phosphorus,<br />

were recycled <strong>in</strong> agricultural communities. Food was c<strong>on</strong>sumed close to its place <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

producti<strong>on</strong> and the result<strong>in</strong>g animal and human manures were applied to the same<br />

land. In modern times, <strong>in</strong>organic fertilisers are applied to provide plant <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s that<br />

are naturally lack<strong>in</strong>g or that have been removed by harvest<strong>in</strong>g or graz<strong>in</strong>g, or by<br />

physical processes such as leach<strong>in</strong>g or erosi<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> fertilisers has been<br />

<strong>in</strong>strumental <strong>in</strong> <strong>in</strong>creas<strong>in</strong>g agricultural output, and has enabled the producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

sufficient food for the world’s populati<strong>on</strong>, which might otherwise not have been<br />

possible. For example, <strong>in</strong> the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogenous fertiliser, grass and forage crops<br />

typically yield up to 3 t<strong>on</strong>nes <str<strong>on</strong>g>of</str<strong>on</strong>g> dry matter per hectare, but this <strong>in</strong>creases by about 20<br />

kg <str<strong>on</strong>g>of</str<strong>on</strong>g> dry matter for each kg <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen applied per hectare, up to around 300 kg/ha,<br />

bey<strong>on</strong>d which resp<strong>on</strong>se dim<strong>in</strong>ishes (Raym<strong>on</strong>d et al., 1986).<br />

'000 t<strong>on</strong>nes<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

nitrogen<br />

fertiliser<br />

animal<br />

feedstock<br />

animal<br />

manures<br />

Source<br />

atmospheric<br />

depositi<strong>on</strong><br />

nitrogen<br />

fixati<strong>on</strong><br />

Figure 1.3. Sources <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen to agriculture <strong>in</strong> the UK (Biffaward, 2005).<br />

other<br />

8


Popular <strong>in</strong>organic fertilisers <strong>in</strong>clude anhydrous amm<strong>on</strong>ia, urea, superphosphate, and<br />

diamm<strong>on</strong>ium phosphate, while organic fertiliser is applied as manure or slurry.<br />

Animal feeds may c<strong>on</strong>tribute significantly to the total import <str<strong>on</strong>g>of</str<strong>on</strong>g> phosphorus <strong>in</strong>to<br />

agricultural landscapes (Johnst<strong>on</strong> and Daws<strong>on</strong>, 2005). Fertilisers may be spread over<br />

the soil surface or plowed or drilled <strong>in</strong>to the soil. Agriculture is also a major source <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

amm<strong>on</strong>ia emissi<strong>on</strong>s, with the great majority aris<strong>in</strong>g from livestock wastes. In 2003,<br />

emissi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> amm<strong>on</strong>ia were estimated to be 300 000 t<strong>on</strong>nes, down from a high <str<strong>on</strong>g>of</str<strong>on</strong>g> 343<br />

000 t<strong>on</strong>nes <strong>in</strong> 1991; <str<strong>on</strong>g>of</str<strong>on</strong>g> this almost 90% was from agriculture (DEFRA, 2006a).<br />

Agricultural areas may also receive <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s from diffuse sources when they are<br />

flooded. In these cases, the ultimate source <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s is largely agricultural<br />

fertilisers, but the <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> load<strong>in</strong>g will be <strong>in</strong> additi<strong>on</strong> to any fertilisers applied at the<br />

site.<br />

1.4.1.1. Organic versus <strong>in</strong>organic fertilisers<br />

Fertilisers can be either <strong>in</strong>organic, derived from phosphate m<strong>in</strong><strong>in</strong>g and nitrate<br />

producti<strong>on</strong>, or organic, <strong>in</strong> the form <str<strong>on</strong>g>of</str<strong>on</strong>g> manure or liquid slurry. Organic manures apply<br />

already fixed nitrogen, and thus do not represent a net <strong>in</strong>crease <strong>in</strong> global<br />

anthropogenic nitrogen fixati<strong>on</strong> (Vitousek et al., 1997), although they can still have<br />

important local <str<strong>on</strong>g>effects</str<strong>on</strong>g>. When mixed farm<strong>in</strong>g systems were more prevalent, organic<br />

manures were more comm<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> polarisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> farm<strong>in</strong>g <strong>in</strong>to pastoral or arable<br />

systems has removed sources <str<strong>on</strong>g>of</str<strong>on</strong>g> manure from potential receivers. Use <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>organic<br />

nitrogen suppresses nitrogen-fix<strong>in</strong>g soil bacteria, mak<strong>in</strong>g agriculture <strong>in</strong>creas<strong>in</strong>gly<br />

dependent <strong>on</strong> artificial fertilizer.<br />

Organic manure c<strong>on</strong>ta<strong>in</strong>s available nitrogen <strong>in</strong> the form <str<strong>on</strong>g>of</str<strong>on</strong>g> amm<strong>on</strong>ium nitrate, but also<br />

undigested prote<strong>in</strong>s that release nitrogen slowly for plant uptake (J<strong>on</strong>es and Haggar,<br />

1997). <str<strong>on</strong>g>The</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> organic fertilisers has been suggested as a means <str<strong>on</strong>g>of</str<strong>on</strong>g> reduc<strong>in</strong>g the<br />

<str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> to the envir<strong>on</strong>ment. A study compar<strong>in</strong>g biodynamic, bioorganic and<br />

c<strong>on</strong>venti<strong>on</strong>al farm<strong>in</strong>g <strong>in</strong> Switzerland over 21 years found that while crop yield <strong>in</strong> the<br />

organic systems was 20% lower than c<strong>on</strong>venti<strong>on</strong>al, <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> were 34-51% less<br />

(Mäder et al., 2002). However, excessive m<strong>in</strong>eralisati<strong>on</strong> and loss <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s can be a<br />

problem with organic manures, due to difficulties <strong>in</strong> tailor<strong>in</strong>g the applicati<strong>on</strong>s to the<br />

needs <str<strong>on</strong>g>of</str<strong>on</strong>g> the crop (Stoate et al., 2001; Dalt<strong>on</strong> and Brand-Hardy, 2003). Manure<br />

9


applicati<strong>on</strong> rates are frequently based <strong>on</strong> nitrogen c<strong>on</strong>tent, but this can lead to<br />

excessive phosphorus applicati<strong>on</strong> (Eck and Stewart, 1995).<br />

1.4.2. Atmospheric polluti<strong>on</strong><br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> burn<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuels releases fixed nitrogen to the atmosphere, as well as fix<strong>in</strong>g<br />

atmospheric nitrogen via the combusti<strong>on</strong> process (Campbell and Lee, 1996; Vitousek<br />

et al., 1997). This nitrogen is <strong>in</strong> the form <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen oxides and amm<strong>on</strong>ia. Over 80%<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> nitric oxide emissi<strong>on</strong>s and approximately 40% <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrous oxide emissi<strong>on</strong>s are from<br />

anthropogenic sources (Vitousek et al., 1997); these come mostly from <strong>in</strong>dustry and<br />

motor vehicles. <str<strong>on</strong>g>The</str<strong>on</strong>g> rema<strong>in</strong>der c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> natural emissi<strong>on</strong>s from the soil as a result<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> nitrificati<strong>on</strong>. Emissi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> amm<strong>on</strong>ia from road transport, although relatively small,<br />

are <strong>in</strong>creas<strong>in</strong>g as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>creas<strong>in</strong>g number <str<strong>on</strong>g>of</str<strong>on</strong>g> three way catalysts <strong>in</strong> the vehicle<br />

fleet. Prior to 1950, burn<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> coal for domestic purposes was an important<br />

comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> anthropogenic emissi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> amm<strong>on</strong>ia (Fowler et al., 2004), but now the<br />

major source is livestock farm<strong>in</strong>g, as detailed above. Nitrogen oxides are also released<br />

by soil microbial activity.<br />

1.4.3. Po<strong>in</strong>t-source polluti<strong>on</strong><br />

Domestic sewage and <strong>in</strong>dustrial effluent are the major po<strong>in</strong>t sources <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen and<br />

phosphorus. In England and Wales, liquid effluent discharged to rivers comprises<br />

about 80% <str<strong>on</strong>g>of</str<strong>on</strong>g> domestic and <strong>in</strong>dustrial wastes (Heathwaite et al., 1996). At times these<br />

may form a high proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> river flow. Much <str<strong>on</strong>g>of</str<strong>on</strong>g> the effort and expenditure to<br />

address <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> polluti<strong>on</strong> has aimed to reduce load<strong>in</strong>gs from po<strong>in</strong>t-sources (such as<br />

sewage treatment works), with some success (Johnst<strong>on</strong> and Daws<strong>on</strong>, 2005).<br />

1.5. Transport <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s<br />

1.5.1. Loss from agricultural landscapes<br />

10


In agricultural systems, the major means <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> transport are surface run<str<strong>on</strong>g>of</str<strong>on</strong>g>f, soil<br />

erosi<strong>on</strong> and subsurface flow <strong>in</strong> the case <str<strong>on</strong>g>of</str<strong>on</strong>g> phosphorus, which b<strong>in</strong>ds closely to soil<br />

particles, and leach<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> soluble nitrate (McGechan, 1998). All <str<strong>on</strong>g>of</str<strong>on</strong>g> these processes are<br />

affected by weather and seas<strong>on</strong>. Nitrogen is lost from soil through the producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

nitrogen oxides by denitrificati<strong>on</strong> and the producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> amm<strong>on</strong>ia through<br />

volatilisati<strong>on</strong> (Stoate et al., 2001). Nutrients are also removed when crops are<br />

harvested or via graz<strong>in</strong>g by livestock, and these <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s may be released <strong>in</strong>to the<br />

envir<strong>on</strong>ment elsewhere (for example, via sewage follow<strong>in</strong>g human c<strong>on</strong>sumpti<strong>on</strong>).<br />

Compensat<strong>in</strong>g for these losses has c<strong>on</strong>tributed to the need for fertiliser applicati<strong>on</strong> <strong>in</strong><br />

agricultural land.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen to crops is cost-effective; the <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> crop producti<strong>on</strong><br />

pays more than the fertiliser costs (Gould<strong>in</strong>g, 2000). However, the applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

excessive amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogenous fertiliser creates a surplus and <strong>in</strong>creases the risk <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

loss through leach<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrate and dissolved organic nitrogen. About 33% <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

fertiliser nitrogen applied <strong>in</strong> the UK is lost through leach<strong>in</strong>g (Heathwaite et al., 1996).<br />

Because nitrate is soluble, water movement is effectively translated <strong>in</strong>to nitrate<br />

movement. Nitrate leach<strong>in</strong>g occurs mostly <strong>in</strong> autumn, when the crop is unable to<br />

exploit it fully, and after plough<strong>in</strong>g, when organic nitrogen is m<strong>in</strong>eralised (Bloem et<br />

al., 1994; Stoate et al., 2001). Nitrate from m<strong>in</strong>eralisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic nitrogen can<br />

form a large proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> leached nitrate, particularly at low levels <str<strong>on</strong>g>of</str<strong>on</strong>g> fertiliser<br />

applicati<strong>on</strong>, and thus some leach<strong>in</strong>g will occur regardless <str<strong>on</strong>g>of</str<strong>on</strong>g> fertiliser <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> (Stoate et<br />

al., 2001). <str<strong>on</strong>g>The</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> leach<strong>in</strong>g depends <strong>on</strong> soil type, crop type, time <str<strong>on</strong>g>of</str<strong>on</strong>g> fertiliser<br />

applicati<strong>on</strong> and weather (Gould<strong>in</strong>g, 2000). Grassland also releases nitrogen when<br />

ploughed, with quantities depend<strong>in</strong>g <strong>on</strong> the length <str<strong>on</strong>g>of</str<strong>on</strong>g> ley (Heathwaite et al., 1996).<br />

Phosphorus is transported <strong>in</strong> soluble form (<strong>in</strong>organic orthophosphate and organic<br />

phosphorus compounds and complexes), and as particulate phosphorus. <str<strong>on</strong>g>The</str<strong>on</strong>g> latter<br />

c<strong>on</strong>stitute 75-90% <str<strong>on</strong>g>of</str<strong>on</strong>g> the phosphorus transported from cultivated land, as phosphorus<br />

b<strong>in</strong>ds str<strong>on</strong>gly to soil (Sharpley et al., 1995). In some areas, phosphorus has been<br />

added over a period <str<strong>on</strong>g>of</str<strong>on</strong>g> time at levels exceed<strong>in</strong>g crop uptake, and soils have<br />

accumulated phosphorus, which is then at risk <str<strong>on</strong>g>of</str<strong>on</strong>g> be<strong>in</strong>g lost dur<strong>in</strong>g run<str<strong>on</strong>g>of</str<strong>on</strong>g>f. However,<br />

loss <str<strong>on</strong>g>of</str<strong>on</strong>g> soluble phosphorus can also be important, as it is <strong>in</strong> this form that it is required<br />

by plants, and because the loss <str<strong>on</strong>g>of</str<strong>on</strong>g> small amounts can lead to eutrophicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> water<br />

11


odies (Johnst<strong>on</strong> and Daws<strong>on</strong>, 2005). Phosphorus loss from arable land is typically<br />

0.8-2.0 kg/ha per year, while for improved grassland it is 0.4 kg/ha per year, and for<br />

semi-natural vegetati<strong>on</strong> less than 0.1 kg/ha per year (Marsden et al., 1998).<br />

Balanc<strong>in</strong>g fertiliser use for crops with envir<strong>on</strong>mental goals may be difficult to<br />

achieve. For example, arable farms <strong>in</strong> the Netherlands that took measures to reduce<br />

loss to the envir<strong>on</strong>ment still had average surpluses <str<strong>on</strong>g>of</str<strong>on</strong>g> 117 kg/ha/year <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen, and<br />

14 kg/ha/year <str<strong>on</strong>g>of</str<strong>on</strong>g> phosphorus (Schröder et al., 1996). Organic farm<strong>in</strong>g uses lower<br />

amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s per unit area, but similar amounts per unit <str<strong>on</strong>g>of</str<strong>on</strong>g> producti<strong>on</strong>,<br />

mean<strong>in</strong>g that <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> losses to the envir<strong>on</strong>ment from organic systems may be<br />

comparable to those from c<strong>on</strong>venti<strong>on</strong>al farms for an equivalent agricultural output<br />

(Dalt<strong>on</strong> and Brand-Hardy, 2003).<br />

1.5.2. Transport to aquatic systems by hydrological processes<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> major source <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> polluti<strong>on</strong> to aquatic habitats <strong>in</strong> the UK is agricultural<br />

run<str<strong>on</strong>g>of</str<strong>on</strong>g>f and groundwater flow (McGechan, 1998). In the UK, over 70% <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrates <strong>in</strong><br />

surface and ground water orig<strong>in</strong>ate <strong>in</strong> agricultural land (Dalt<strong>on</strong> and Brand-Hardy,<br />

2003). Dissolved organic nitrogen also reaches aquatic systems predom<strong>in</strong>antly by<br />

hydrological processes, although much <str<strong>on</strong>g>of</str<strong>on</strong>g> this may be stored <strong>in</strong> sediments (Willett et<br />

al., 2004). Similarly, diffuse agricultural polluti<strong>on</strong> <strong>in</strong> the form <str<strong>on</strong>g>of</str<strong>on</strong>g> run<str<strong>on</strong>g>of</str<strong>on</strong>g>f and<br />

subsurface water flow, are the major means <str<strong>on</strong>g>of</str<strong>on</strong>g> transport <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> particulate and<br />

soluble reactive phosphorus (Johnst<strong>on</strong> and Daws<strong>on</strong>, 2005). However, human and<br />

household wastes can c<strong>on</strong>tribute c<strong>on</strong>siderably to phosphorus enter<strong>in</strong>g surface waters<br />

<strong>in</strong> the UK, partly because <str<strong>on</strong>g>of</str<strong>on</strong>g> the phosphorus c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> detergents (Foundati<strong>on</strong> for<br />

Water Research, 2000). Domestic and <strong>in</strong>dustrial wastes rema<strong>in</strong> important, albeit<br />

decreas<strong>in</strong>g, sources <str<strong>on</strong>g>of</str<strong>on</strong>g> organic material to aquatic habitats. Atmospheric sources <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

nitrogen (as described below) can be important for aquatic systems, especially <strong>in</strong><br />

waterbodies with little fluvial <strong>in</strong>put (Sharpley et al., 1995).<br />

Other sources <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s <strong>in</strong> water that can be important locally <strong>in</strong>clude direct<br />

defecati<strong>on</strong> by livestock <strong>in</strong>to streams, discharge from sewage outlets, and release from<br />

sediments due to disturbance (Johnst<strong>on</strong> and Daws<strong>on</strong>, 2005). Organic fertiliser is more<br />

12


likely to cause phosphate polluti<strong>on</strong>, because applicati<strong>on</strong>s at the appropriate rates for<br />

nitrogen will <strong>in</strong>clude more phosphorus than is required by the crop.<br />

In mar<strong>in</strong>e waters, phosphorus is naturally relatively abundant. In additi<strong>on</strong>, coastal<br />

waters receive <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> from run <str<strong>on</strong>g>of</str<strong>on</strong>g>f, aquaculture, sewage discharges and<br />

atmospheric depositi<strong>on</strong> (<str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen); their <str<strong>on</strong>g>effects</str<strong>on</strong>g> are greatest where tidal flush<strong>in</strong>g is<br />

low. Inorganic nitrogen c<strong>on</strong>centrati<strong>on</strong>s <strong>in</strong> coastal waters are largely determ<strong>in</strong>ed by<br />

<str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> from fluvial discharges and m<strong>in</strong>eralisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic nitrogen <strong>in</strong> sediments<br />

(Herbert, 1999). <str<strong>on</strong>g>The</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> phosphate exchange between sediments and the water<br />

column is greater <strong>in</strong> anaerobic c<strong>on</strong>diti<strong>on</strong>s, and thus the anoxic c<strong>on</strong>diti<strong>on</strong>s that can<br />

result from eutrophicati<strong>on</strong> will further <strong>in</strong>crease the soluble phosphorus proporti<strong>on</strong><br />

(Nienhuis, 1993). Phosphorus and nitrogen c<strong>on</strong>centrati<strong>on</strong>s <strong>in</strong> coastal waters receiv<strong>in</strong>g<br />

water from agricultural catchments may be higher <strong>in</strong> w<strong>in</strong>ter, due to <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> run-<str<strong>on</strong>g>of</str<strong>on</strong>g>f,<br />

and to <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> release <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s from soil (Raffaelli et al., 1989).<br />

1.5.3. Atmospheric depositi<strong>on</strong><br />

Depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> atmospheric nitrogen can occur via wet depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrate and<br />

amm<strong>on</strong>ium <strong>in</strong> ra<strong>in</strong> or snow; via dry depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen dioxide, amm<strong>on</strong>ia and<br />

nitric acid; and via “occult” depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cloud or fog droplets (Campbell and Lee,<br />

1996). Wet depositi<strong>on</strong> also <strong>in</strong>cludes a significant comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> dissolved organic<br />

nitrogen (Cornell et al., 2003). While atmospheric c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> amm<strong>on</strong>ia and<br />

ra<strong>in</strong>fall c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> amm<strong>on</strong>ium are highest <strong>in</strong> the south and east <str<strong>on</strong>g>of</str<strong>on</strong>g> Brita<strong>in</strong>,<br />

depositi<strong>on</strong> is highest <strong>in</strong> the north and west, due to higher ra<strong>in</strong>fall. <str<strong>on</strong>g>The</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> wet<br />

depositi<strong>on</strong> is determ<strong>in</strong>ed by the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> ra<strong>in</strong>fall, and is more important <strong>in</strong> locatiosn<br />

removed from the pollutant sources (Bobb<strong>in</strong>k and Heil, 1993). <str<strong>on</strong>g>The</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> dry<br />

depositi<strong>on</strong> is str<strong>on</strong>gly determ<strong>in</strong>ed by the nature <str<strong>on</strong>g>of</str<strong>on</strong>g> the depositi<strong>on</strong> surface, is more<br />

important close to sources, and is highest <strong>in</strong> the south and east <str<strong>on</strong>g>of</str<strong>on</strong>g> Brita<strong>in</strong>.<br />

Atmospheric depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen near farmland can be higher than other areas due<br />

to localised amm<strong>on</strong>ia volatilisati<strong>on</strong> and re-depositi<strong>on</strong>. Oxidised nitrogen persists for a<br />

l<strong>on</strong>ger time <strong>in</strong> the atmosphere, and as a result, a greater proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> it is exported<br />

from the UK.<br />

13


Atmospheric depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen to agricultural landscapes is small compared to<br />

the applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogenous fertilisers. For semi-natural habitats (e.g. upland<br />

moorland and alp<strong>in</strong>e areas) the situati<strong>on</strong> is very different. <str<strong>on</strong>g>The</str<strong>on</strong>g>se areas, cover<strong>in</strong>g<br />

46.3% <str<strong>on</strong>g>of</str<strong>on</strong>g> the land cover <str<strong>on</strong>g>of</str<strong>on</strong>g> the UK, receive a large proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the nitrogen<br />

deposited, <strong>in</strong> excess <str<strong>on</strong>g>of</str<strong>on</strong>g> that which they lose by re-emissi<strong>on</strong> (Fowler et al., 2004). <str<strong>on</strong>g>The</str<strong>on</strong>g>y<br />

are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten naturally <strong>in</strong>fertile, and leach relatively small amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen, which<br />

therefore accumulates <strong>in</strong> the soil. Semi-natural grasslands <strong>in</strong> the Peak District<br />

accumulated up to 89% (<strong>in</strong> calcareous grassland) and up to 38% (<strong>in</strong> acidic grassland)<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> experimental nitrogen depositi<strong>on</strong> treatments (Phoenix et al., 2003).<br />

Atmospheric depositi<strong>on</strong> can also make a c<strong>on</strong>siderable c<strong>on</strong>tributi<strong>on</strong> to the <str<strong>on</strong>g>nutrient</str<strong>on</strong>g><br />

load<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> aquatic systems (Morris, 1991; Paerl et al., 2002). Generally speak<strong>in</strong>g, the<br />

importance <str<strong>on</strong>g>of</str<strong>on</strong>g> atmospheric nitrogen depositi<strong>on</strong> <strong>in</strong>creases with the proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

water budget comprised by ra<strong>in</strong>fall.<br />

1.5.4. Losses through burn<strong>in</strong>g<br />

Fire as a management tool and accidental fire can release <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> process <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

periodic burn<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> upland moor and lowland heath is used as a management tool to<br />

ma<strong>in</strong>ta<strong>in</strong> these disclimax communities, to ma<strong>in</strong>ta<strong>in</strong> their low <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> status and to<br />

improve their utilisati<strong>on</strong> by humans. Burn<strong>in</strong>g removes the stand<strong>in</strong>g crop and some <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the accumulated litter, the amount depend<strong>in</strong>g <strong>on</strong> the severity <str<strong>on</strong>g>of</str<strong>on</strong>g> the burn. Burn<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

lowland heath resulted <strong>in</strong> the loss <str<strong>on</strong>g>of</str<strong>on</strong>g> 95% <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen and 26% <str<strong>on</strong>g>of</str<strong>on</strong>g> phosphorus from<br />

vegetati<strong>on</strong> and litter comb<strong>in</strong>ed (Chapman, 1967). This represented a net loss <str<strong>on</strong>g>of</str<strong>on</strong>g> both<br />

<str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s over a 12 year burn<strong>in</strong>g cycle, with ra<strong>in</strong>fall <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> <strong>in</strong>sufficient to replace the<br />

losses. Older heaths may have replaced the nitrogen and phosphorus lost <strong>in</strong> the<br />

previous fire.<br />

1.6. Trends <strong>in</strong> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> polluti<strong>on</strong> <strong>in</strong> the UK<br />

On a global scale human activities have more than doubled the fixati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen<br />

gas to biologically available forms <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen (Vitousek et al., 1997; Haygarth and<br />

14


Jarvis, 2002). Global anthropogenic emissi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen have been estimated at 140<br />

milli<strong>on</strong> t<strong>on</strong>nes per year (Haygarth and Jarvis, 2002), and 160 milli<strong>on</strong> t<strong>on</strong>nes per year<br />

(Dalt<strong>on</strong> and Brand-Hardy, 2003). <str<strong>on</strong>g>The</str<strong>on</strong>g> pr<strong>in</strong>cipal means by which humans have<br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> biologically available nitrogen are by <strong>in</strong>dustrial fixati<strong>on</strong> for fertilisers,<br />

combusti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuels, and plant<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> legumes as crops. Humans have <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g><br />

the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> biologically available phosphorus by m<strong>in</strong><strong>in</strong>g phosphatic ore reserves<br />

for fertiliser, detergents and other uses, thus <strong>in</strong>tercept<strong>in</strong>g the natural geological and<br />

geomorphological processes by which these reserves would eventually have become<br />

available.<br />

1.6.1. Fertiliser use<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phosphate-based fertiliser began <strong>in</strong> the 1800s and <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> greatly<br />

follow<strong>in</strong>g the <strong>in</strong>dustrial producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> superphosphate <strong>in</strong> 1842 (Johnst<strong>on</strong> and Daws<strong>on</strong>,<br />

2005). Prior to 1860, farmers relied <strong>on</strong> natural biological fixati<strong>on</strong> to provide soil<br />

nitrogen; early <strong>in</strong> the twentieth century, the Haber-Bosch method <str<strong>on</strong>g>of</str<strong>on</strong>g> synthesis<strong>in</strong>g<br />

amm<strong>on</strong>ia was developed (Dalt<strong>on</strong> and Brand-Hardy, 2003). Until the 1950s total<br />

nitrogen applicati<strong>on</strong> was less than that <str<strong>on</strong>g>of</str<strong>on</strong>g> phosphorus, because until phosphorus<br />

deficiency was addressed, plants did not resp<strong>on</strong>d to nitrogen. Indeed, rates <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phosphate per unit area c<strong>on</strong>t<strong>in</strong>ued to be higher than those <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen <strong>in</strong><br />

many areas until at least the 1960s, but the area <str<strong>on</strong>g>of</str<strong>on</strong>g> land dressed with nitrogen was<br />

greater (Yates and Boyd, 1965).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> major trends <strong>in</strong> the use <str<strong>on</strong>g>of</str<strong>on</strong>g> fertilisers <strong>in</strong> the United K<strong>in</strong>gdom from the turn <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

twentieth century have been an <strong>in</strong>crease <strong>in</strong> the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> fertiliser used per hectare<br />

and an <strong>in</strong>crease <strong>in</strong> the area receiv<strong>in</strong>g fertilisers. Phosphate applicati<strong>on</strong> rose sharply<br />

from the 1940s, exceed<strong>in</strong>g 400 000 t<strong>on</strong>nes annually by 1950 and rema<strong>in</strong><strong>in</strong>g fairly<br />

steady follow<strong>in</strong>g this before dropp<strong>in</strong>g slightly <strong>in</strong> the 1990s (Fig 1.4). Total nitrogen<br />

use began to rise sharply from the early 1950s, with the <strong>in</strong>crease steepen<strong>in</strong>g <strong>in</strong> the<br />

1960s, peak<strong>in</strong>g <strong>in</strong> the 1980s before fall<strong>in</strong>g. <str<strong>on</strong>g>The</str<strong>on</strong>g> reducti<strong>on</strong>s <strong>in</strong> phosphorus and nitrogen<br />

applicati<strong>on</strong>s have arisen from an <strong>in</strong>crease <strong>in</strong> set-aside, and more efficient fertiliser use.<br />

15


Figure 1.4. Quantities <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s applied as fertilisers <strong>in</strong> UK agriculture 1913-2000<br />

(data from Rothamsted Research and MAFF; graph orig<strong>in</strong>ally appeared <strong>in</strong> Johnst<strong>on</strong><br />

and Daws<strong>on</strong>, 2005).<br />

Applicati<strong>on</strong> rates <str<strong>on</strong>g>of</str<strong>on</strong>g> fertiliser per hectare vary accord<strong>in</strong>g between crops, with the<br />

highest rates <strong>on</strong> w<strong>in</strong>ter cereals and <strong>on</strong> grassland silage fields, but generally speak<strong>in</strong>g<br />

they also rose sharply post Sec<strong>on</strong>d World War before decl<strong>in</strong><strong>in</strong>g slightly <strong>in</strong> recent<br />

years (Fig. 1.5). In the period 1969-1988 nitrogen applicati<strong>on</strong> rates <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> five-fold<br />

<strong>on</strong> arable fields and three-fold <strong>on</strong> grassland (Chalmers et al., 1990). Phosphate<br />

applicati<strong>on</strong> rates were already quite high <strong>on</strong> cereal crops by the 1940s, while <strong>on</strong><br />

grassland the steepest <strong>in</strong>creases occurred between the 1940s and the 1960s (Yates and<br />

Boyd, 1965; Johnst<strong>on</strong> and Daws<strong>on</strong>, 2005). Applicati<strong>on</strong> rates have decl<strong>in</strong>ed <strong>on</strong> both<br />

arable crops and <strong>on</strong> grassland s<strong>in</strong>ce the 1980s, but the falls have been greatest <strong>on</strong><br />

grassland (British Survey <str<strong>on</strong>g>of</str<strong>on</strong>g> Fertiliser Practice, 2004). <str<strong>on</strong>g>The</str<strong>on</strong>g> grassland nitrogen<br />

applicati<strong>on</strong> rate (England and Wales data <strong>on</strong>ly) was the lowest s<strong>in</strong>ce the mid-1970s.<br />

Changes <strong>in</strong> the proporti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> crops, and their different fertiliser requirements,<br />

account for some <str<strong>on</strong>g>of</str<strong>on</strong>g> the changes <strong>in</strong> applicati<strong>on</strong> rates (British Survey <str<strong>on</strong>g>of</str<strong>on</strong>g> Fertiliser<br />

Practice, 2004).<br />

16


nitrogen applicati<strong>on</strong> rates<br />

(kg/ha)<br />

phosphorus applicati<strong>on</strong> rate<br />

(kg/ha)<br />

200<br />

150<br />

100<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

50<br />

0<br />

tillage<br />

grassland<br />

1983 1987 1991 1995 1999 2003<br />

Year<br />

tillage<br />

grassland<br />

1983 1987 1991 1995 1999 2003<br />

Year<br />

Figure 1.4. Applicati<strong>on</strong> rates <str<strong>on</strong>g>of</str<strong>on</strong>g> (a) nitrogen and (b) phosphorus <strong>on</strong> tillage and <strong>on</strong><br />

grassland <strong>in</strong> Great Brita<strong>in</strong>, 1983-2003 (British Survey <str<strong>on</strong>g>of</str<strong>on</strong>g> Fertiliser Practice,<br />

2004).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> area treated with fertiliser has also <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> s<strong>in</strong>ce the turn <str<strong>on</strong>g>of</str<strong>on</strong>g> the twentieth<br />

century. Fertiliser use was already widespread <strong>on</strong> cereal crops by the 1940s, and by<br />

the 1960s a large majority <str<strong>on</strong>g>of</str<strong>on</strong>g> cereal crops received fertiliser applicati<strong>on</strong>s (Yates and<br />

Boyd, 1965). In 2003 99% <str<strong>on</strong>g>of</str<strong>on</strong>g> w<strong>in</strong>ter wheat <strong>in</strong> Great Brita<strong>in</strong> received nitrogenous<br />

fertiliser and 81% received phosphate (British Survey <str<strong>on</strong>g>of</str<strong>on</strong>g> Fertiliser Practice, 2004).<br />

Grassland area treated was still quite low <strong>in</strong> the 1960s, with proporti<strong>on</strong>s receiv<strong>in</strong>g<br />

(a)<br />

(b)<br />

17


fertiliser <strong>in</strong> England and Wales differ<strong>in</strong>g depend<strong>in</strong>g <strong>on</strong> district, but rang<strong>in</strong>g from 22%<br />

to 62% for nitrogen, and from 20% to 47% for phosphate (Yates and Boyd, 1965). In<br />

2003 <strong>in</strong> Great Brita<strong>in</strong> the proporti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> grassland over 5 years old treated with<br />

fertiliser were 67% for nitrogen and 55% for phosphate (Goodlass et al., 2003).<br />

However, the proporti<strong>on</strong>s for grassland under 5 years were 85% for nitrogen and 69%<br />

for phosphate, and young grass has become much more prevalent <strong>in</strong> the landscape.<br />

Despite the decreases <strong>in</strong> overall fertiliser use and <strong>in</strong> applicati<strong>on</strong> rates over the past two<br />

decades, the applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen and phosphorus to farmland rema<strong>in</strong>s very<br />

widespread and high (averag<strong>in</strong>g around 200 kg/ha for w<strong>in</strong>ter wheat). While fertiliser<br />

applicati<strong>on</strong> may be necessary for pr<str<strong>on</strong>g>of</str<strong>on</strong>g>itable agricultural producti<strong>on</strong>, its use affects the<br />

fertility <str<strong>on</strong>g>of</str<strong>on</strong>g> agricultural areas as well as the likelihood and magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> losses <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s to other habitats.<br />

1.6.2. Levels <strong>in</strong> aquatic systems<br />

Nutrient levels <str<strong>on</strong>g>of</str<strong>on</strong>g> any waterbody have a background level, which is comprised <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

natural soil erosi<strong>on</strong> and leach<strong>in</strong>g, animal excreta and plant residues, and fixati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

atmospheric nitrogen by bacteria; these are determ<strong>in</strong>ed by the natural fertility <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

sources. However, <strong>in</strong> human-altered systems, which effectively comprise the whole <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the UK, <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> levels are additi<strong>on</strong>ally <strong>in</strong>fluenced by heightened c<strong>on</strong>centrati<strong>on</strong>s <strong>in</strong><br />

run<str<strong>on</strong>g>of</str<strong>on</strong>g>f and leachate, plus the <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> levels <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s <strong>in</strong> the soil from fertiliser<br />

applicati<strong>on</strong>s, and direct <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> from domestic waste, human sewage and atmospheric<br />

depositi<strong>on</strong>.<br />

In fresh water, phosphorus (<strong>in</strong> the form <str<strong>on</strong>g>of</str<strong>on</strong>g> phosphate) is usually the limit<strong>in</strong>g <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>/<br />

In mar<strong>in</strong>e envir<strong>on</strong>ments, phosphate is naturally present at higher c<strong>on</strong>centrati<strong>on</strong>s, and<br />

so nitrogen tends to be the limit<strong>in</strong>g <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>; nitrogen-fix<strong>in</strong>g cyanobacteria are<br />

uncomm<strong>on</strong> <strong>in</strong> the sea. In estuaries, phosphorus tends to be the limit<strong>in</strong>g <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> at the<br />

head <str<strong>on</strong>g>of</str<strong>on</strong>g> the estuary, while nitrogen becomes <strong>in</strong>creas<strong>in</strong>gly important closer to the sea.<br />

Nitrogen is present <strong>in</strong> aquatic systems <strong>in</strong> soluble form, usually nitrate, although<br />

amm<strong>on</strong>ia may also be present <strong>in</strong> c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> low oxygen or where there is a large<br />

organic comp<strong>on</strong>ent to the <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> polluti<strong>on</strong>. In some circumstances nitrogen may the<br />

18


limit<strong>in</strong>g <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> (Maberly et al., 2002; G<strong>on</strong>zalez Sagrario et al., 2005). Human <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> phosphorus also typically reduce the nitrogen:phosphorus ratio <strong>in</strong> freshwater,<br />

which leads to the development <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen-fix<strong>in</strong>g cyanobacteria (Harper, 1992).<br />

Both nitrate and phosphate levels <strong>in</strong> UK rivers showed upward trends from the 1930s<br />

and 1940s, when records began to be kept (Heathwaite et al., 1996). Similar trends<br />

have been found for nitrate <strong>in</strong> groundwater and <strong>in</strong> lakes <strong>in</strong> the UK. Over recent<br />

decades nitrate levels <strong>in</strong> rivers have fluctuated but showed no clear trend, while<br />

orthophosphate (<strong>in</strong>organic phosphate) levels have decl<strong>in</strong>ed from a high <strong>in</strong> the 1980s<br />

(Fig. 1.5.). Nitrate levels <strong>in</strong> rivers <strong>in</strong> Brita<strong>in</strong> have not changed markedly s<strong>in</strong>ce the<br />

1970s, and <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong>s <strong>in</strong> some rivers have decl<strong>in</strong>ed follow<strong>in</strong>g tighter<br />

c<strong>on</strong>trols <strong>on</strong> effluent discharges (Green et al., 1990; Foundati<strong>on</strong> for Water Research,<br />

2000). This has led <strong>in</strong> some places to an overall decl<strong>in</strong>e <strong>in</strong> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> polluti<strong>on</strong>, and <strong>in</strong><br />

others to a shift <strong>in</strong> the relative c<strong>on</strong>tributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> po<strong>in</strong>t-source (with a large organic<br />

comp<strong>on</strong>ent) to diffuse (predom<strong>in</strong>antly <strong>in</strong>organic) polluti<strong>on</strong>, with agriculture as the<br />

major source (Johnst<strong>on</strong> and Daws<strong>on</strong>, 2005). Despite success <strong>in</strong> reduc<strong>in</strong>g po<strong>in</strong>t-source<br />

polluti<strong>on</strong>, levels <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen and phosphorus <strong>in</strong> aquatic systems have risen<br />

dramatically <strong>in</strong> many places <strong>in</strong> recent decades (Harper, 1992; Marsden et al., 1998).<br />

Palaeolimnological evidence from shallow coastal lakes <strong>in</strong> Wales, and from shallow<br />

lakes <strong>in</strong> the Norfolk Broads, suggests that eutrophicati<strong>on</strong> has <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> over the last<br />

fifty years <str<strong>on</strong>g>of</str<strong>on</strong>g> the twentieth century as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> agricultural and sewage <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> (Moss,<br />

1980; Haworth et al., 1996).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>re has been a reducti<strong>on</strong> <strong>in</strong> the load<strong>in</strong>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> phosphorus to surface waters from<br />

sewage treatment works, largely due to the reduced use <str<strong>on</strong>g>of</str<strong>on</strong>g> phosphates <strong>in</strong> detergents<br />

(Foundati<strong>on</strong> for Water Research, 2000). In the period 1990-2003, <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

orthophosphates to UK coastal waters fell from 37 920 to 21 000 t<strong>on</strong>nes, before ris<strong>in</strong>g<br />

to 41 660 t<strong>on</strong>nes <strong>in</strong> 2004, and the proporti<strong>on</strong> from direct <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> fell from 58% to 26%<br />

(DEFRA, 2006b) (lower limits). Total nitrogen <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> fell slightly from 321 640<br />

t<strong>on</strong>nes to 286 550 t<strong>on</strong>nes from 1990 to 2004, and the proporti<strong>on</strong> from direct <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> fell<br />

from 37% to 22% (lower limits).<br />

19


mean orthophosphate (g/l)<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

orthophosphates<br />

nitrate<br />

1980 1984 1988 1992 1996 2000 2004<br />

Year<br />

Figure 1.5. Nutrient c<strong>on</strong>centrati<strong>on</strong>s <strong>in</strong> British rivers 1980-2004 (DEFRA<br />

statistics).<br />

1.6.2.1. Classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> water bodies<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> trophic status <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>land stand<strong>in</strong>g waters has been classified by the Organisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Ec<strong>on</strong>omic Co-operati<strong>on</strong> and Development accord<strong>in</strong>g to phosphorus c<strong>on</strong>tent, as<br />

follows (Foundati<strong>on</strong> for Water Research, 2000).<br />

Ultra-oligotrophic<br />

Total P (μg/l)<br />


England eutrophic, compared with 15% <strong>in</strong> Scotland; plus another 940 km 2 <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

eutrophic stand<strong>in</strong>g waters <strong>in</strong> Northern Ireland. Many <str<strong>on</strong>g>of</str<strong>on</strong>g> these waters would be<br />

hypertrophic by the above classificati<strong>on</strong>. Thus it can be seen that eutrophicati<strong>on</strong> is<br />

widespread <strong>in</strong> the United K<strong>in</strong>gdom, although some <str<strong>on</strong>g>of</str<strong>on</strong>g> the waters listed above would<br />

be naturally eutrophic. In recent decades efforts have been made to reduce the<br />

anthropogenic <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> load reach<strong>in</strong>g aquatic systems. As with agriculture, recent<br />

slight decl<strong>in</strong>es <strong>in</strong> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> still leave levels <strong>in</strong> many places much higher than<br />

they would be <strong>in</strong> the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> anthropogenic <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g>.<br />

1.6.3. Atmospheric nitrogen<br />

Annual emissi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> oxidised nitrogen <strong>in</strong> the UK were estimated to have been 312<br />

000 t<strong>on</strong>nes <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen <strong>in</strong> 1900, ris<strong>in</strong>g to a high <str<strong>on</strong>g>of</str<strong>on</strong>g> 787 000 t<strong>on</strong>nes <strong>in</strong> the 1980s, then<br />

fall<strong>in</strong>g to 460 000 t<strong>on</strong>nes by 2000 (Fowler et al., 2004). Annual emissi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> reduced<br />

nitrogen were estimated to be 168 000 t<strong>on</strong>nes <strong>in</strong> 1900, when the major source was<br />

coal combusti<strong>on</strong>, <strong>in</strong>creas<strong>in</strong>g to 263 000 t<strong>on</strong>nes <strong>in</strong> 2000, by which time they were<br />

dom<strong>in</strong>ated by agricultural sources (Fowler et al., 2004). Nitrogen oxide emissi<strong>on</strong>s<br />

have been fall<strong>in</strong>g due to the <strong>in</strong>troducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> catalytic c<strong>on</strong>verters <strong>on</strong> vehicles and<br />

c<strong>on</strong>trols <strong>on</strong> emissi<strong>on</strong>s.<br />

Less nitrogen is deposited <strong>in</strong> the UK annually than is emitted, mean<strong>in</strong>g that the UK is<br />

a net exporter <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen. One estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen depositi<strong>on</strong> claims that about 380<br />

000 t<strong>on</strong>nes (43% nitrogen oxides 57% amm<strong>on</strong>ia) <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen are deposited <strong>in</strong> the UK<br />

(NEGTAP, 2001). Another estimate suggests that depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oxidised nitrogen (wet<br />

depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrate and dry depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen dioxide and nitric acid) <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g><br />

from 66 000 t<strong>on</strong>nes <strong>in</strong> 1900 to 191 000 t<strong>on</strong>nes <strong>in</strong> 2000, while over the same period<br />

depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> reduced nitrogen (wet depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> amm<strong>on</strong>ium and dry depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

amm<strong>on</strong>ia) <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> from 163 000 t<strong>on</strong>nes to 211 000 t<strong>on</strong>nes (Fowler et al., 2004).<br />

Rates <str<strong>on</strong>g>of</str<strong>on</strong>g> atmospheric depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fixed nitrogen rose <strong>in</strong> Europe <strong>in</strong> the two decades to<br />

1995 from 2-6 kg/ha/year to 15-60 kg/ha/year (Pitcairn et al., 1995). <str<strong>on</strong>g>The</str<strong>on</strong>g>se vary<br />

geographically; <strong>in</strong> the UK the highest amounts are <strong>in</strong> areas <str<strong>on</strong>g>of</str<strong>on</strong>g> high ra<strong>in</strong>fall, such as the<br />

Penn<strong>in</strong>es, Lake District and parts <str<strong>on</strong>g>of</str<strong>on</strong>g> Wales, where wet depositi<strong>on</strong> dom<strong>in</strong>ates. <str<strong>on</strong>g>The</str<strong>on</strong>g>se<br />

areas receive up to 80 kg/ha/year <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen, which approaches the amounts applied<br />

21


y farmers to crops. Wet depositi<strong>on</strong> is dom<strong>in</strong>ant <strong>in</strong> these areas. Current rates <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

atmospheric depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen are 5-20 times pre-<strong>in</strong>dustrial levels (Haygarth and<br />

Jarvis, 2002).<br />

1.7 Historical changes to the vegetati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the UK<br />

Anthropogenic <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> would be expected to affect the vegetati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

United K<strong>in</strong>gdom by several pathways. Farm<strong>in</strong>g and graz<strong>in</strong>g are the major land uses <strong>in</strong><br />

Brita<strong>in</strong>, and much <str<strong>on</strong>g>of</str<strong>on</strong>g> this farmland receives fertiliser, as described above. Diffuse and<br />

po<strong>in</strong>t source <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> polluti<strong>on</strong> is transported by hydrological processes to aquatic<br />

habitats. Terrestrial habitats may be subject to fertiliser drift from farmland. And all<br />

habitats receive nitrogen via atmospheric depositi<strong>on</strong>. Increased <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> availability<br />

shifts the balance from below-ground competiti<strong>on</strong> for resources to above-ground<br />

competiti<strong>on</strong> for light and leads to dom<strong>in</strong>ance <str<strong>on</strong>g>of</str<strong>on</strong>g> species with a competitive advantage<br />

at high <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> levels (Penn<strong>in</strong>gs et al., 2005). Indirect <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> fertilisers, notably<br />

shad<strong>in</strong>g from competitive species, may also cause the decl<strong>in</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> some plant species<br />

(Rob<strong>in</strong>s<strong>on</strong> and Sutherland, 2002).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>re is evidence that these <strong>in</strong>creases <strong>in</strong> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> have <strong>in</strong>deed had <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> the<br />

vegetati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the UK. Changes <strong>in</strong> vegetati<strong>on</strong> co-<strong>in</strong>cide with l<strong>on</strong>g term <strong>in</strong>creases <strong>in</strong><br />

<str<strong>on</strong>g>nutrient</str<strong>on</strong>g> (especially nitrogen) <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g>. Agricultural <strong>in</strong>tensificati<strong>on</strong>, <strong>in</strong>clud<strong>in</strong>g the<br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> fertilisers, is suggested as a major cause <str<strong>on</strong>g>of</str<strong>on</strong>g> historical shifts <strong>in</strong> the<br />

flora <str<strong>on</strong>g>of</str<strong>on</strong>g> farmland (Green, 1990; Wils<strong>on</strong>, 1992; Sothert<strong>on</strong> and Self, 2000). Similar<br />

decl<strong>in</strong>es have also been observed <strong>in</strong> Europe s<strong>in</strong>ce the 1940s (Wils<strong>on</strong>, 1999). Flowerrich<br />

farmland habitats <strong>in</strong> Great Brita<strong>in</strong> have largely disappeared, and many plant<br />

species (<strong>in</strong>clud<strong>in</strong>g some previously c<strong>on</strong>sidered weeds) showed range decl<strong>in</strong>es <strong>in</strong> the<br />

1950s and 1960s (Rob<strong>in</strong>s<strong>on</strong> and Sutherland, 2002). <str<strong>on</strong>g>The</str<strong>on</strong>g> BSBI M<strong>on</strong>itor<strong>in</strong>g Scheme<br />

assessed changes <strong>in</strong> the vascular plant record between 1960 and 1987-88 <strong>in</strong> England<br />

and Scotland, and collected basel<strong>in</strong>e data for future studies (Rich and Woodruff,<br />

1996). At least 24% <str<strong>on</strong>g>of</str<strong>on</strong>g> the flora changed significantly <strong>in</strong> England, and 12% <strong>in</strong><br />

Scotland, and species and communities typical <str<strong>on</strong>g>of</str<strong>on</strong>g> low soil fertility were especially<br />

hard hit. Of 179 native species whose UK distributi<strong>on</strong> decl<strong>in</strong>ed, 38% were species <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

calcareous, unimproved or acidic grassland (Rich and Woodruff, 1996).<br />

22


<str<strong>on</strong>g>The</str<strong>on</strong>g> Countryside Survey 2000 exam<strong>in</strong>ed changes <strong>in</strong> cover <str<strong>on</strong>g>of</str<strong>on</strong>g> broad habitats and <strong>in</strong><br />

habitat quality (Ha<strong>in</strong>es-Young et al., 2000). Widespread <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> enrichment from<br />

nitrogen was c<strong>on</strong>sidered to be a major driver <str<strong>on</strong>g>of</str<strong>on</strong>g> changes <strong>in</strong> habitat quality <strong>in</strong> terrestrial<br />

habitats between 1990 and 1998. A repeat <str<strong>on</strong>g>of</str<strong>on</strong>g> a survey <str<strong>on</strong>g>of</str<strong>on</strong>g> British and Irish flora found<br />

that species with high Ellenberg <strong>in</strong>dices (a measure <str<strong>on</strong>g>of</str<strong>on</strong>g> their preference for fertile sites)<br />

were more successful <strong>in</strong> the late twentieth century than they had been <strong>in</strong> the 1950s<br />

(Prest<strong>on</strong> et al., 2002). An exam<strong>in</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the changes <strong>in</strong> abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> vascular plants<br />

<strong>in</strong> Northampt<strong>on</strong>shire from pre-1930s to 1995 showed that species associated with<br />

higher soil nitrogen status generally <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> (McColl<strong>in</strong> et al., 2000). In vegetati<strong>on</strong><br />

types associated with low fertility, changes <strong>in</strong> the distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> vascular plants<br />

between 1978 and 1998 were c<strong>on</strong>sistent with <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> availability and the<br />

resp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g> plant species to soil fertility (Smart et al., 2005). Heather cover <strong>in</strong> the<br />

UK has decl<strong>in</strong>ed, mostly replaced by unimproved grassland or grass moor (Bunce,<br />

1989; Cadbury, 1992); the mechanisms by which <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> polluti<strong>on</strong> may have<br />

c<strong>on</strong>tributed to this are described later.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> documented changes <strong>in</strong> the vegetati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the United K<strong>in</strong>gdom str<strong>on</strong>gly suggest<br />

that <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> availability has had <str<strong>on</strong>g>effects</str<strong>on</strong>g> over a wide scale. <str<strong>on</strong>g>The</str<strong>on</strong>g>se changes<br />

will also be affected by other envir<strong>on</strong>mental factors; climate is <strong>on</strong>e that has also<br />

changed over a similar time scale and could have <str<strong>on</strong>g>effects</str<strong>on</strong>g> over a similar spatial scale.<br />

In farmland, other aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> agricultural <strong>in</strong>tensificati<strong>on</strong>, <strong>in</strong>clud<strong>in</strong>g herbicide use and<br />

simplificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cropp<strong>in</strong>g systems, will also have affected the vegetati<strong>on</strong> (Campbell<br />

et al., 1997; Stoate et al., 2001). Elsewhere, changes to graz<strong>in</strong>g regimes, forest<br />

management, and land dra<strong>in</strong>age will have altered the vegetati<strong>on</strong>. Despite the difficulty<br />

<strong>in</strong> dist<strong>in</strong>guish<strong>in</strong>g the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s from other drivers, I c<strong>on</strong>sider that the<br />

evidence that species favoured by high-<str<strong>on</strong>g>nutrient</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s have generally <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> <strong>in</strong><br />

abundance and distributi<strong>on</strong> over the past century is str<strong>on</strong>g enough to c<strong>on</strong>clude that<br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> availability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s from anthropogenic sources is a major driver <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

changes <strong>in</strong> UK vegetati<strong>on</strong>. In the forthcom<strong>in</strong>g secti<strong>on</strong>s I will describe some <str<strong>on</strong>g>of</str<strong>on</strong>g> these<br />

changes <strong>in</strong> more detail, with particular reference to means by which they could affect<br />

bird populati<strong>on</strong>s <strong>in</strong> a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> habitats.<br />

23


2. Farmland habitats<br />

2.1. Introducti<strong>on</strong><br />

Agriculture is the major land use <strong>in</strong> the United K<strong>in</strong>gdom, and therefore trends <strong>in</strong> the<br />

management <str<strong>on</strong>g>of</str<strong>on</strong>g> farmland can have enormous impacts <strong>on</strong> the landscape and biota,<br />

<strong>in</strong>clud<strong>in</strong>g <strong>birds</strong>. In fact, lowland farmland <strong>birds</strong> as a group have decl<strong>in</strong>ed c<strong>on</strong>siderably<br />

s<strong>in</strong>ce the 1970s, both <strong>in</strong> the UK and across western Europe (Fuller et al., 1995;<br />

Schifferli, 2000; Gregory et al., 2004). <str<strong>on</strong>g>The</str<strong>on</strong>g>se decl<strong>in</strong>es have accompanied large<br />

changes to farm<strong>in</strong>g systems, referred to generally as agricultural <strong>in</strong>tensificati<strong>on</strong>, which<br />

have resulted <strong>in</strong> enormous changes to the landscape and biodiversity <str<strong>on</strong>g>of</str<strong>on</strong>g> the United<br />

K<strong>in</strong>gdom. <str<strong>on</strong>g>The</str<strong>on</strong>g>se changes and the <str<strong>on</strong>g>effects</str<strong>on</strong>g> they have had <strong>on</strong> bird populati<strong>on</strong>s are<br />

discussed at length <strong>in</strong> many publicati<strong>on</strong>s (Chamberla<strong>in</strong> et al., 2000; Fuller, 2000;<br />

Stoate et al., 2001; Rob<strong>in</strong>s<strong>on</strong> and Sutherland, 2002; Shrubb, 2003; Newt<strong>on</strong>, 2004;<br />

Vickery et al., 2001), and do not need to be discussed <strong>in</strong> detail here. As well as<br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>organic fertilisers, they <strong>in</strong>clude: <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> mechanisati<strong>on</strong>; <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g><br />

dra<strong>in</strong>age; <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> pesticides; a switch from spr<strong>in</strong>g-sown to autumn-sown<br />

crops; and a polarisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> farm<strong>in</strong>g with pasture-based farms (<strong>in</strong>clud<strong>in</strong>g dairy<strong>in</strong>g)<br />

becom<strong>in</strong>g c<strong>on</strong>centrated <strong>in</strong> the west and north <str<strong>on</strong>g>of</str<strong>on</strong>g> Brita<strong>in</strong>, and arable farms <strong>in</strong> the east<br />

and south, and a c<strong>on</strong>comitant loss <str<strong>on</strong>g>of</str<strong>on</strong>g> mixed-farm<strong>in</strong>g landscapes. Disentangl<strong>in</strong>g the<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> both organic and <strong>in</strong>organic fertilisers from the overall <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> agricultural<br />

<strong>in</strong>tensificati<strong>on</strong>, while difficult, is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the goals <str<strong>on</strong>g>of</str<strong>on</strong>g> this review.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> historical trends <strong>in</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen- and phosphorus-based fertilisers have been<br />

discussed <strong>in</strong> Secti<strong>on</strong> 1. However, the use <str<strong>on</strong>g>of</str<strong>on</strong>g> fertilisers is also associated with other<br />

changes <strong>in</strong> farm<strong>in</strong>g practices that have also had important <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> the landscape and<br />

biota. <str<strong>on</strong>g>The</str<strong>on</strong>g>se <strong>in</strong>clude the large-scale switch from hay to silage, earlier and more<br />

frequent cutt<strong>in</strong>g, <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> stock rates, reduced mixed-farm<strong>in</strong>g and rotati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g>se<br />

changes, and their <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> flora and fauna, will be described below.<br />

For the purposes <str<strong>on</strong>g>of</str<strong>on</strong>g> this review, farmland c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g>: enclosed arable and horticultural<br />

land; improved grassland; and semi-natural grassland. This c<strong>on</strong>stitutes around 18.5<br />

milli<strong>on</strong> hectares, over 70% <str<strong>on</strong>g>of</str<strong>on</strong>g> the land area <str<strong>on</strong>g>of</str<strong>on</strong>g> the United K<strong>in</strong>gdom, and with<strong>in</strong> this<br />

24


area there is enormous variability due to geography, geology, climate, and cultural<br />

factors. <str<strong>on</strong>g>The</str<strong>on</strong>g> resp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g> some plant species to <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> nitrogen <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> is partly<br />

determ<strong>in</strong>ed by community c<strong>on</strong>text (Penn<strong>in</strong>gs et al., 2005), and thus the direct <str<strong>on</strong>g>effects</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> fertiliser applicati<strong>on</strong>, and the <str<strong>on</strong>g><strong>in</strong>direct</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> aris<strong>in</strong>g from it, may differ between<br />

different types <str<strong>on</strong>g>of</str<strong>on</strong>g> farmland and different geographical areas.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> fertiliser applicati<strong>on</strong> (as well as other agricultural practices) <strong>on</strong> <strong>birds</strong> <strong>in</strong><br />

lowland neutral grasslands have already been the subject <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e review (Vickery et<br />

al., 2001). Another review, <str<strong>on</strong>g>of</str<strong>on</strong>g> lowland farmland <strong>birds</strong>, suggested that there was str<strong>on</strong>g<br />

evidence that <strong>in</strong>creas<strong>in</strong>g fertiliser use was a comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> the decl<strong>in</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> several<br />

species (Anders<strong>on</strong> et al., 2001). <str<strong>on</strong>g>The</str<strong>on</strong>g> current review attempts to synthesise the state <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

knowledge about such <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> all agricultural land <strong>in</strong> the United K<strong>in</strong>gdom.<br />

2.2. <str<strong>on</strong>g>The</str<strong>on</strong>g> populati<strong>on</strong> trends <str<strong>on</strong>g>of</str<strong>on</strong>g> farmland <strong>birds</strong> and the possible mechanisms by<br />

which <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> fertilisers may c<strong>on</strong>tribute to these<br />

Most bird species have been recorded from farmland at some time, but this review<br />

c<strong>on</strong>centrates <strong>on</strong> those for which farmland is a significant habitat for part <str<strong>on</strong>g>of</str<strong>on</strong>g> their life<br />

cycle. A review <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g><strong>in</strong>direct</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> pesticides <strong>on</strong> <strong>birds</strong> <strong>in</strong> lowland farmland<br />

c<strong>on</strong>sidered 42 species, most <str<strong>on</strong>g>of</str<strong>on</strong>g> which bred <strong>on</strong> lowland farmland (Campbell et al.,<br />

1997). <str<strong>on</strong>g>The</str<strong>on</strong>g> current review <strong>in</strong>cludes all agricultural land <strong>in</strong> the UK, and therefore some<br />

species that breed outside lowland farmland, or that <strong>on</strong>ly w<strong>in</strong>ter <strong>in</strong> the UK, also come<br />

with<strong>in</strong> the remit <str<strong>on</strong>g>of</str<strong>on</strong>g> this review. In particular, I c<strong>on</strong>sider the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> w<strong>in</strong>ter<strong>in</strong>g geese<br />

and <strong>on</strong> breed<strong>in</strong>g waders. Table 1 summarises the species subject to review, their<br />

populati<strong>on</strong> trends, and some life history characteristics. While it would be desirable to<br />

systematically determ<strong>in</strong>e the susceptibility <str<strong>on</strong>g>of</str<strong>on</strong>g> all species to the <str<strong>on</strong>g><strong>in</strong>direct</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g>, <strong>in</strong> reality some species have been the subject <str<strong>on</strong>g>of</str<strong>on</strong>g> more<br />

thorough research (these species are likely to be those <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>servati<strong>on</strong> <strong>in</strong>terest), and I<br />

c<strong>on</strong>centrate <strong>on</strong> those species for which the l<strong>in</strong>ks between <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> and bird<br />

populati<strong>on</strong>s can be established.<br />

25


Table 2.1. Birds c<strong>on</strong>sidered for review <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> fertiliser applicati<strong>on</strong> <strong>in</strong><br />

farmland <strong>in</strong> the UK.<br />

Trend 3<br />

Trend 3<br />

Species 1<br />

list<strong>in</strong>g 2<br />

1970-2003 1994-2004 Diet 4<br />

Nest<strong>in</strong>g Migratory<br />

habit status 5<br />

bean goose<br />

p<strong>in</strong>k-footed<br />

amber f n/a w<br />

goose<br />

white-fr<strong>on</strong>ted<br />

amber f n/a w<br />

goose amber f n/a w<br />

greylag goose amber f n/a r + w<br />

brent goose amber f n/a w<br />

grey partridge red -87 -30 f, s, i ground r<br />

quail red s, ei ground s<br />

kestrel amber -26 -19 v hole, ledge r<br />

corncrake red 14 64a s, ei ground<br />

ground<br />

s<br />

oystercatcher amber si (nidifugous)<br />

ground<br />

r + w<br />

golden plover green si (nidifugous)<br />

ground<br />

r + w<br />

lapw<strong>in</strong>g amber -45 -13 ei (nidifugous)<br />

ground<br />

r + w<br />

dunl<strong>in</strong> amber ei (nidifugous)<br />

ground<br />

r + w<br />

snipe amber si (nidifugous)<br />

ground<br />

r + w<br />

curlew amber si<br />

redshank amber ei<br />

(nidifugous) r + w<br />

ground<br />

(nidifugous) r + w<br />

stock dove amber 100 30 s hole r<br />

woodpige<strong>on</strong> green 99 12 f, s shrubs/trees r<br />

collared dove green 100 30 s shrubs/trees r<br />

turtle dove red -80 -45 s shrubs/trees s<br />

green<br />

woodpecker amber 108 34 ei hole r<br />

skylark red -53 -10 ei ground r<br />

barn swallow amber 11 22 ei build<strong>in</strong>gs s<br />

yellow wagtail amber -62 -27 ei ground s<br />

pied wagtail green 58 21 ei ground r<br />

wh<strong>in</strong>chat green -15 s, ei ground s<br />

blackbird green -17 17 si, b shrubs/trees r<br />

fieldfare amber si, b n/a w<br />

s<strong>on</strong>g thrush red -50 14 si, b shrubs/trees r<br />

redw<strong>in</strong>g amber si, b n/a w<br />

mistle thrush amber -37 -2 si, b shrubs/trees r<br />

grasshopper<br />

warbler red 59 ei shrubs/trees s<br />

sedge warbler green -14 15 ei shrubs/trees s<br />

reed warbler green 123 48 ei shrubs/trees s<br />

1 a list <str<strong>on</strong>g>of</str<strong>on</strong>g> scientific names is <strong>in</strong>cluded <strong>in</strong> Appendix 1.<br />

2 <strong>in</strong>dicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>servati<strong>on</strong> c<strong>on</strong>cern (Gregory et al., 2002).<br />

3 populati<strong>on</strong> trends derived from CBC/BBS surveys (Eat<strong>on</strong> et al., 2005): a = 1997-2004, b = 1995-2003.<br />

4 broad diet <strong>in</strong> farmland: b = berries, ei = epigeal and foliar <strong>in</strong>vertebrates, f = foliage, o = omnivorous, s = seeds, si = soil<br />

<strong>in</strong>vertebrates, v = vertebrates.<br />

5 migratory status <strong>in</strong> the UK (species may be <strong>in</strong>cluded <strong>in</strong> more than <strong>on</strong>e category due to partial migrati<strong>on</strong>): r = resident, s =<br />

summer migrant, w = w<strong>in</strong>ter migrant.<br />

Table 2.1. (c<strong>on</strong>t.) Birds c<strong>on</strong>sidered for review <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> fertiliser applicati<strong>on</strong> <strong>in</strong><br />

farmland <strong>in</strong> the UK.<br />

26


Species 1<br />

list<strong>in</strong>g 2<br />

Trend 3<br />

1970-2003<br />

Trend 3<br />

1994-2004 Diet 4<br />

Nest<strong>in</strong>g<br />

habit<br />

Migratory<br />

status 5<br />

red-backed<br />

shrike red decl<strong>in</strong>e ext<strong>in</strong>ct ei shrubs/trees s<br />

magpie green 101 -1 o shrubs/trees r<br />

chough amber o cliffs/ledges r<br />

jackdaw green 89 19 o build<strong>in</strong>gs r<br />

rook green 3 o trees r<br />

carri<strong>on</strong> crow green 78 11 o<br />

trees,<br />

build<strong>in</strong>gs r<br />

raven green 91 o ledges r<br />

starl<strong>in</strong>g red -71 -30 si holes r<br />

house sparrow red -64 -3 s, ei holes r<br />

tree sparrow red -93 48 s, ei holes r<br />

chaff<strong>in</strong>ch green 32 8 s, ei shrubs/trees r<br />

brambl<strong>in</strong>g green s, ei n/a w<br />

greenf<strong>in</strong>ch green 26 37 s, ei shrubs/trees r<br />

goldf<strong>in</strong>ch green 49 28 s, ei shrubs/trees r<br />

l<strong>in</strong>net red -48 -14 s ground r<br />

yellowhammer red -54 -22 s, ei shrubs/trees r<br />

cirl bunt<strong>in</strong>g red 118 54b s, ei shrubs/trees r<br />

reed bunt<strong>in</strong>g red -43 4 s, ei shrubs/trees r<br />

corn bunt<strong>in</strong>g red -89 -24 s, ei shrubs/trees r<br />

1 a list <str<strong>on</strong>g>of</str<strong>on</strong>g> scientific names is <strong>in</strong>cluded <strong>in</strong> Appendix 1.<br />

2 <strong>in</strong>dicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>servati<strong>on</strong> c<strong>on</strong>cern (Gregory et al., 2002).<br />

3 populati<strong>on</strong> trends derived from CBC/BBS surveys (Eat<strong>on</strong> et al., 2005): a = 1997-2004, b = 1995-2003.<br />

4 broad diet <strong>in</strong> farmland: b = berries, ei = epigeal and foliar <strong>in</strong>vertebrates, f = foliage, o = omnivorous, s = seeds, si = soil<br />

<strong>in</strong>vertebrates, v = vertebrates.<br />

5 migratory status <strong>in</strong> the UK (species may be <strong>in</strong>cluded <strong>in</strong> more than <strong>on</strong>e category due to partial migrati<strong>on</strong>): r = resident, s =<br />

summer migrant, w = w<strong>in</strong>ter migrant.<br />

2.2.1. C<strong>on</strong>cordance <str<strong>on</strong>g>of</str<strong>on</strong>g> bird trends with trends <strong>in</strong> the use <str<strong>on</strong>g>of</str<strong>on</strong>g> fertilisers<br />

Populati<strong>on</strong> trends <str<strong>on</strong>g>of</str<strong>on</strong>g> breed<strong>in</strong>g <strong>birds</strong> <strong>in</strong> the United K<strong>in</strong>gdom have been m<strong>on</strong>itored,<br />

<strong>in</strong>itially by the Comm<strong>on</strong> Birds Census (CBC), and more recently by the Breed<strong>in</strong>g<br />

Bird Survey (BBS) (Raven et al., 2005). Because <str<strong>on</strong>g>of</str<strong>on</strong>g> the wide geographical range <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

farmland, populati<strong>on</strong> trends <str<strong>on</strong>g>of</str<strong>on</strong>g> some species, notably those <str<strong>on</strong>g>of</str<strong>on</strong>g> uplands, will not have<br />

the same length <str<strong>on</strong>g>of</str<strong>on</strong>g> records, due to the lack <str<strong>on</strong>g>of</str<strong>on</strong>g> CBC plots <strong>in</strong> these areas. This has been<br />

addressed to some extent <strong>in</strong> the BBS, but it means that some populati<strong>on</strong> trends prior to<br />

1994 are difficult to determ<strong>in</strong>e. This is especially relevant to the present review, as<br />

changes as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> agricultural <strong>in</strong>tensificati<strong>on</strong> (<strong>in</strong>clud<strong>in</strong>g <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> fertiliser use)<br />

may be expected to have occurred primarily <strong>in</strong> the 1970s and 1980s, as was observed<br />

<strong>in</strong> lowland farmland. However, even when the data <strong>on</strong> bird trends are relatively<br />

comprehensive for recent decades, it is still the case that the <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

fertilisers (particularly those based <strong>on</strong> phosphates) pre-dates the widespread bird<br />

m<strong>on</strong>itor<strong>in</strong>g schemes. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, the substantial <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> fertiliser use <strong>on</strong><br />

some bird species may have occurred before m<strong>on</strong>itor<strong>in</strong>g schemes were underway, and<br />

27


the data presented <strong>in</strong> this review may be represent<strong>in</strong>g advanced stages <str<strong>on</strong>g>of</str<strong>on</strong>g> such <str<strong>on</strong>g>effects</str<strong>on</strong>g>.<br />

F<strong>in</strong>ally, bird species may display populati<strong>on</strong> trends that differ regi<strong>on</strong>ally, or between<br />

habitats <strong>in</strong> the same regi<strong>on</strong>, and thus nati<strong>on</strong>al populati<strong>on</strong> trends may not reflect the<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> levels <strong>on</strong> smaller scales.<br />

Many <str<strong>on</strong>g>of</str<strong>on</strong>g> the trends <strong>in</strong> species’ decl<strong>in</strong>es show str<strong>on</strong>g temporal and spatial associati<strong>on</strong><br />

with agricultural <strong>in</strong>tensificati<strong>on</strong>. Many species decl<strong>in</strong>ed most steeply between 1975<br />

and 1980, approximately six years after the greatest rates <str<strong>on</strong>g>of</str<strong>on</strong>g> change <strong>in</strong> agricultural<br />

practices (Chamberla<strong>in</strong> et al., 2000). A higher proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> farmland species <strong>in</strong> the<br />

UK are <strong>in</strong> decl<strong>in</strong>e than are woodland species (Fuller et al., 1995). Decl<strong>in</strong>es have been<br />

recorded both <strong>in</strong> abundances and <strong>in</strong> range (Chamberla<strong>in</strong> and Fuller, 2000). Seven<br />

species showed range decl<strong>in</strong>es <strong>in</strong> lowland farmland <str<strong>on</strong>g>of</str<strong>on</strong>g> over 5% (<strong>on</strong> the scale <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 km<br />

squares) between the late 1960s and the early 1990s: grey partridge, lapw<strong>in</strong>g, turtle<br />

dove, corn bunt<strong>in</strong>g, yellow wagtail, tree sparrow and reed bunt<strong>in</strong>g. Local ext<strong>in</strong>cti<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> these species were more likely <strong>in</strong> landscapes dom<strong>in</strong>ated by grassland, compared<br />

with arable or mixed landscapes, even <strong>in</strong> those species that decreased <strong>in</strong> abundance<br />

more <strong>in</strong> arable landscapes (Chamberla<strong>in</strong> and Fuller, 2001).<br />

2.2.2. Ways <strong>in</strong> which fertiliser use may affect farmland <strong>birds</strong><br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> three major ways <strong>in</strong> which any process can have an impact <strong>on</strong> bird populati<strong>on</strong>s<br />

are: alterati<strong>on</strong>s to nest<strong>in</strong>g success, which affects productivity; alterati<strong>on</strong>s to predati<strong>on</strong><br />

levels, which affects survival; and alterati<strong>on</strong>s to food abundance or availability, which<br />

can affect both survival and productivity. <str<strong>on</strong>g>The</str<strong>on</strong>g> three major resources that <strong>birds</strong> require<br />

over the course <str<strong>on</strong>g>of</str<strong>on</strong>g> the year are w<strong>in</strong>ter food resources, summer food resources (for<br />

adults and chicks), and nest<strong>in</strong>g habitat <strong>in</strong> summer. Ways <strong>in</strong> which <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> fertiliser<br />

use may be expected to <str<strong>on</strong>g><strong>in</strong>direct</str<strong>on</strong>g>ly affect bird populati<strong>on</strong>s are presented schematically<br />

<strong>in</strong> Figure 1.<br />

28


Figure 2.1. Flow diagram illustrat<strong>in</strong>g expected mechanisms for <str<strong>on</strong>g><strong>in</strong>direct</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> <strong>on</strong> <strong>birds</strong> <strong>in</strong> farmland.<br />

Important food sources for farmland <strong>birds</strong> are described <strong>in</strong> detail by Wils<strong>on</strong> et al<br />

(1999). Invertebrate groups that are key food sources for farmland <strong>birds</strong> <strong>in</strong>clude<br />

Orthoptera, Hymenoptera, Arachnida, Coleoptera, Lepidoptera, Hemiptera and<br />

Diptera (Wils<strong>on</strong> et al., 1999). Orthoptera, Coleoptera and Lepidoptera are <str<strong>on</strong>g>of</str<strong>on</strong>g> particular<br />

importance to bird species currently experienc<strong>in</strong>g populati<strong>on</strong> decl<strong>in</strong>es <strong>in</strong> farmland<br />

habitats. Plant species that are important food sources for farmland <strong>birds</strong> <strong>in</strong>clude<br />

cereal crops, Polyg<strong>on</strong>um (knotgrasses and persicarias), Stellaria (chickweeds) and<br />

Chenopodium (goosefoots), Asteraceae, Fabaceae and Brassicaceae (the latter two<br />

<strong>in</strong>clud<strong>in</strong>g crop comp<strong>on</strong>ents) (Wils<strong>on</strong> et al., 1999). Broad nest and food requirements<br />

for farmland <strong>birds</strong> are summarised <strong>in</strong> Table 1. Other more specific food requirements<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> particular species are menti<strong>on</strong>ed <strong>in</strong> the text where appropriate.<br />

2.3. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> fertiliser use <strong>on</strong> vegetati<strong>on</strong><br />

A short background to some <str<strong>on</strong>g>of</str<strong>on</strong>g> the historical trends <strong>in</strong> vegetati<strong>on</strong> <strong>in</strong> the United<br />

K<strong>in</strong>gdom is provided <strong>in</strong> Secti<strong>on</strong> One. <str<strong>on</strong>g>The</str<strong>on</strong>g>re is an extensive literature <strong>on</strong> the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

fertiliser applicati<strong>on</strong>s <strong>on</strong> plant communities, <strong>in</strong>clud<strong>in</strong>g crops, <strong>in</strong> farmland habitats <strong>in</strong><br />

the UK and elsewhere. I do not attempt to comprehensively review the entire<br />

29


literature, but objectively review the results <str<strong>on</strong>g>of</str<strong>on</strong>g> those studies that I c<strong>on</strong>sider are<br />

relevant to the processes by which fertiliser use could ultimately have an impact <strong>on</strong><br />

bird species.<br />

In both grassland and arable land, the purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> fertiliser applicati<strong>on</strong> is to <strong>in</strong>crease<br />

the crop yield, regardless <str<strong>on</strong>g>of</str<strong>on</strong>g> the ultimate use <str<strong>on</strong>g>of</str<strong>on</strong>g> the crop. Applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fertilisers also<br />

<strong>in</strong>creases the nutritive value <str<strong>on</strong>g>of</str<strong>on</strong>g> the crop. Increased above-ground producti<strong>on</strong> can have<br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ound <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> the structure and compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the vegetati<strong>on</strong>, even <strong>in</strong><br />

<strong>in</strong>tensively managed systems, where the goal is to maximise the producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a s<strong>in</strong>gle<br />

crop. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> fertiliser applicati<strong>on</strong>s <strong>on</strong> vegetati<strong>on</strong> are summarised <strong>in</strong><br />

Table 2.<br />

2.3.1. Changes <strong>in</strong> plant species richness and compositi<strong>on</strong><br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen and phosphorus available are primary <strong>in</strong> determ<strong>in</strong><strong>in</strong>g plant<br />

species compositi<strong>on</strong>, and differential resp<strong>on</strong>ses to nitrogen <strong>in</strong> particular are suggested<br />

as major causes <str<strong>on</strong>g>of</str<strong>on</strong>g> the decl<strong>in</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> some arable species and the <strong>in</strong>creases <str<strong>on</strong>g>of</str<strong>on</strong>g> others<br />

(Wils<strong>on</strong>, 1999). With<strong>in</strong> arable fields, plant species that are now uncomm<strong>on</strong> performed<br />

better <strong>in</strong> the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen fertiliser applicati<strong>on</strong>s, although shad<strong>in</strong>g by nitrogenresp<strong>on</strong>sive<br />

w<strong>in</strong>ter cereals may be more important than the reacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-crop plant<br />

species to nitrogen (Wils<strong>on</strong>, 1999). Field marg<strong>in</strong>s have traditi<strong>on</strong>ally been an important<br />

locati<strong>on</strong> for weeds, but fertiliser drift may have <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> the flora <str<strong>on</strong>g>of</str<strong>on</strong>g> field marg<strong>in</strong>s<br />

(Boatman, 1994; Rew et al., 1992; Tsiouris and Marshall, 1998). In arable land <strong>in</strong> the<br />

Netherlands, levels <str<strong>on</strong>g>of</str<strong>on</strong>g> phosphorus and nitrogen were correlated with reduced plant<br />

species richness <strong>in</strong> the field marg<strong>in</strong>s (Kle<strong>in</strong> and Verbeek, 2000). Weed species<br />

richness <strong>in</strong> Czech barley fields was reduced when nitrogenous fertiliser was applied,<br />

and the weed community was affected both directly by the fertiliser and <str<strong>on</strong>g><strong>in</strong>direct</str<strong>on</strong>g>ly by<br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> competiti<strong>on</strong> with the crop (Pyšek and Lepš, 1991). Erect weeds were able to<br />

take advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> nitrogen supply, whereas prostrate weeds were shaded<br />

by the dense cover <str<strong>on</strong>g>of</str<strong>on</strong>g> the crop.<br />

30


Table 2.2. Some <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> fertiliser applicati<strong>on</strong> and associated management practices <strong>on</strong> the vegetati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> farmland.<br />

Habitat Locati<strong>on</strong> Process Effects Possible cause<br />

Strength<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

evidence 1<br />

Reference<br />

nitrogen fertiliser applicati<strong>on</strong>s (n<strong>on</strong>e, 75<br />

shad<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-crop plants by fertilised<br />

kg/ha and 150 kg/ha); uncomm<strong>on</strong> arable 9/14 weed species most abundant where wheat; differential resp<strong>on</strong>ses to <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g><br />

arable fields Southern England species sown<br />

no fertiliser applied<br />

nitrogen 1 Wils<strong>on</strong>, 1999<br />

15/29 weed species more abundant <strong>in</strong> shad<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-crop plants by fertilised<br />

unfertilised patches than <strong>in</strong> paired wheat, differential resp<strong>on</strong>ses to <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g><br />

arable fields Southern England unfertilised patches with<strong>in</strong> arable farms fertilised patches<br />

lower species richness and diversity at<br />

nitrogen 2 Wils<strong>on</strong>, 1999<br />

both levels <str<strong>on</strong>g>of</str<strong>on</strong>g> fertiliser; change <strong>in</strong> species direct <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> fertiliser, and <str<strong>on</strong>g><strong>in</strong>direct</str<strong>on</strong>g><br />

applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogenous fertilisers (0, 70 compositi<strong>on</strong> (also affected by type <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> mediated by competiti<strong>on</strong> with the<br />

barley fields Czechoslovakia or 140 kg/ha)<br />

fertiliser)<br />

<strong>in</strong>verse relati<strong>on</strong>ship between species<br />

richness and both nitrogen and<br />

phosphorus soil c<strong>on</strong>centrati<strong>on</strong>s; <strong>in</strong>verse<br />

crop 2 Pyšek and Lepš, 1991<br />

arable field<br />

spatial relati<strong>on</strong>ships between species relati<strong>on</strong>ship between plant biomass and competitive exclusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> weed species <strong>in</strong><br />

Kle<strong>in</strong> and Verbeek,<br />

marg<strong>in</strong>s Netherlands richness and <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> levels<br />

nitrogen soil c<strong>on</strong>centrati<strong>on</strong><br />

fertile c<strong>on</strong>diti<strong>on</strong>s<br />

community already adapted to fertile<br />

2 2000<br />

field marg<strong>in</strong>s UK fertiliser drift altered botanical compositi<strong>on</strong>.<br />

no effect <strong>in</strong> seedl<strong>in</strong>g establishment<br />

experiment, but dom<strong>in</strong>ance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

c<strong>on</strong>diti<strong>on</strong>s; time frame <str<strong>on</strong>g>of</str<strong>on</strong>g> study 2 Boatman et al., 1994<br />

grassland field<br />

nitrophilous Bromus sterilis <strong>in</strong><br />

Tsiouris and<br />

marg<strong>in</strong>s Gloucester simulated fertiliser drift<br />

established plant competiti<strong>on</strong> experiment competitive resp<strong>on</strong>ses to fertilisati<strong>on</strong> 1 Marshall, 1998<br />

applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>organic fertiliser (0, 100 or forb comp<strong>on</strong>ent reduced by <strong>in</strong>organic<br />

300 kg N/ha/year), farmyard manure (30-42 fertiliser applicati<strong>on</strong> <strong>on</strong>ly; species<br />

grassland field<br />

kg N ha/year) or diluted slurry (27-72 kg richness and abundance ma<strong>in</strong>ta<strong>in</strong>ed <strong>in</strong> slower release <str<strong>on</strong>g>of</str<strong>on</strong>g> N c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> organic<br />

J<strong>on</strong>es and Haggar,<br />

marg<strong>in</strong>s Wales<br />

N/ha/year) over five years<br />

plots treated with organic fertiliser manures and more efficient uptake by plants 2 1997<br />

species richness <strong>in</strong> relati<strong>on</strong> to nitrogen higher species richness at low levels <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

lowland<br />

levels (as a surrogate <str<strong>on</strong>g>of</str<strong>on</strong>g> management nitrogen <strong>in</strong>put, but similar sward competitive exclusi<strong>on</strong>, also <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

grassland Dev<strong>on</strong> and Bucks. <strong>in</strong>tensity)<br />

structure<br />

higher species richness <strong>in</strong> mowed plots;<br />

management 2 Tallow<strong>in</strong> et al., 2005<br />

experimental applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> fertiliser (N, P, various resp<strong>on</strong>ses to fertiliser but lowest<br />

lowland<br />

K and lime) separately or <strong>in</strong> comb<strong>in</strong>ati<strong>on</strong> species richness <strong>in</strong> plots receiv<strong>in</strong>g N, P<br />

Fenner and Palmer,<br />

grassland Hampshire plus different mow<strong>in</strong>g regimes<br />

and K loss <str<strong>on</strong>g>of</str<strong>on</strong>g> poor competitors <strong>in</strong> unmowed plots 1 1998<br />

relati<strong>on</strong>ship between vegetati<strong>on</strong> and no effect <strong>on</strong> total seed head producti<strong>on</strong>;<br />

lowland<br />

management <strong>in</strong>tensity (def<strong>in</strong>ed by nitrogen <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> grass seed head producti<strong>on</strong> <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> productivity <str<strong>on</strong>g>of</str<strong>on</strong>g> grasses <strong>in</strong><br />

grassland Dev<strong>on</strong> and Bucks. <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g>) and sward structure<br />

with management <strong>in</strong>tensity<br />

resp<strong>on</strong>se to fertiliser 2 Atk<strong>in</strong>s<strong>on</strong> et al., 2005<br />

1<br />

I classified the studies <strong>in</strong>to three tiers: 1. Str<strong>on</strong>g evidence, usually based <strong>on</strong> experimental pro<str<strong>on</strong>g>of</str<strong>on</strong>g>; 2. Intermediate evidence, generally an observed relati<strong>on</strong>ship <strong>in</strong> space and time; 3. Weak evidence, a suggested cause<br />

based <strong>on</strong> observed patterns. <str<strong>on</strong>g>The</str<strong>on</strong>g>se levels are not <strong>in</strong>tended as a judgement <strong>on</strong> the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> the research, and I judge the strength <str<strong>on</strong>g>of</str<strong>on</strong>g> evidence for <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> and associated mechanisms, which may not have<br />

been the purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> the study.<br />

31


Table 2.2. (c<strong>on</strong>t.). Some <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> fertiliser applicati<strong>on</strong> and associated management practices <strong>on</strong> the vegetati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> farmland.<br />

Habitat Locati<strong>on</strong> Process Effects Possible cause<br />

Strength<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

evidence 1<br />

Reference<br />

spatial relati<strong>on</strong>ships between species lower species richness at more fertile competitive exclusi<strong>on</strong> by species able to<br />

acid grassland Brita<strong>in</strong><br />

richness and <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> levels<br />

sites<br />

take advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> higher <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> levels 2 Stevens et al., 2002<br />

competitive exclusi<strong>on</strong> by species favoured<br />

Mountford et al.,<br />

hay meadow Somerset applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogenous fertiliser lower species richness<br />

lower species diversity, dom<strong>in</strong>ance by<br />

by fertile soils 1 1993<br />

species diversity <strong>in</strong> relati<strong>on</strong> to rates <str<strong>on</strong>g>of</str<strong>on</strong>g> Lolium perenne, Holcus lanatus and<br />

hay meadow Somerset<br />

fertiliser applicati<strong>on</strong><br />

Rumex acetosa <strong>in</strong>teracti<strong>on</strong>s with graz<strong>in</strong>g 2 Kirkham et al., 1996<br />

subalp<strong>in</strong>e<br />

gradient <str<strong>on</strong>g>of</str<strong>on</strong>g> management <strong>in</strong>tensity (graz<strong>in</strong>g highest species richness <strong>in</strong> lightly grazed,<br />

meadows Switzerland and fertiliser use)<br />

unfertilised meadows competitive balance between species 2 Erhardt, 1985<br />

1<br />

I classified the studies <strong>in</strong>to three tiers: 1. Str<strong>on</strong>g evidence, usually based <strong>on</strong> experimental pro<str<strong>on</strong>g>of</str<strong>on</strong>g>; 2. Intermediate evidence, generally an observed relati<strong>on</strong>ship <strong>in</strong> space and time; 3. Weak evidence, a suggested cause<br />

based <strong>on</strong> observed patterns. <str<strong>on</strong>g>The</str<strong>on</strong>g>se levels are not <strong>in</strong>tended as a judgement <strong>on</strong> the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> the research, and I judge the strength <str<strong>on</strong>g>of</str<strong>on</strong>g> evidence for <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> and associated mechanisms, which may not have<br />

been the purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> the study.<br />

32


High species richness is associated with low soil fertility across a range <str<strong>on</strong>g>of</str<strong>on</strong>g> sem<strong>in</strong>atural<br />

lowland grasslands (Janssens et al., 1998), and phosphorus is c<strong>on</strong>sidered the<br />

key limit<strong>in</strong>g <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <strong>in</strong> semi-natural grassland (Gough and Marrs, 1990; Walker et al.,<br />

2004). Fertiliser additi<strong>on</strong>s can lead to the dom<strong>in</strong>ance <str<strong>on</strong>g>of</str<strong>on</strong>g> grass species such as Lolium<br />

perenne and Holcus lanatus at the expense <str<strong>on</strong>g>of</str<strong>on</strong>g> sedges, rushes and forbs (Mountford et<br />

al., 1993), although <strong>in</strong>teracti<strong>on</strong> with graz<strong>in</strong>g or other disturbance may affect the<br />

impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> fertiliser additi<strong>on</strong> (Kirkham et al., 1996). For example, <strong>in</strong> a Somerset haymeadow,<br />

plots receiv<strong>in</strong>g nitrogen and modest rates <str<strong>on</strong>g>of</str<strong>on</strong>g> phosphorus plus aftermath<br />

graz<strong>in</strong>g ma<strong>in</strong>ta<strong>in</strong>ed dom<strong>in</strong>ance by Lolium perenne, but <strong>in</strong> the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> aftermath<br />

graz<strong>in</strong>g Agrostis can<strong>in</strong>a dom<strong>in</strong>ated similarly fertilised plots (Kirkham et al., 1996). In<br />

Dev<strong>on</strong> and Buck<strong>in</strong>ghamshire grasslands there was a significant <strong>in</strong>verse relati<strong>on</strong>ship<br />

between nitrogen <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> and plant species richness (<str<strong>on</strong>g>of</str<strong>on</strong>g> both grasses and forbs); <strong>on</strong>ly<br />

fields receiv<strong>in</strong>g less than 50 kg/ha <str<strong>on</strong>g>of</str<strong>on</strong>g> fertiliser per year were likely to support more<br />

than 12 higher plant species (Tallow<strong>in</strong> et al., 2005). Cover <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-grasses decreased<br />

with higher nitrogen applicati<strong>on</strong>s. Sown species dom<strong>in</strong>ated young grasslands (less<br />

than 4 years old), and there was a str<strong>on</strong>g relati<strong>on</strong>ship between pasture age and<br />

fertiliser applicati<strong>on</strong>.<br />

In farmland, weed seeds are important as food sources for <strong>birds</strong> and as food sources<br />

for <strong>in</strong>vertebrates that are bird prey items. As harvest<strong>in</strong>g efficiency has <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g>, and<br />

fewer seeds from crops are available for <strong>birds</strong>, weeds become even more important<br />

for <strong>birds</strong>, but these broad-leaved species have decl<strong>in</strong>ed <strong>in</strong> British farmland with<br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> agricultural <strong>in</strong>tensificati<strong>on</strong>. While the use <str<strong>on</strong>g>of</str<strong>on</strong>g> herbicides and other forms <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>in</strong>tensive management are the ma<strong>in</strong> causes <str<strong>on</strong>g>of</str<strong>on</strong>g> the decl<strong>in</strong>e, the applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>organic<br />

fertiliser c<strong>on</strong>tributes to the loss <str<strong>on</strong>g>of</str<strong>on</strong>g> less competitive species, especially forbs, which are<br />

important sources <str<strong>on</strong>g>of</str<strong>on</strong>g> seeds (J<strong>on</strong>es and Haggar, 1997; Tallow<strong>in</strong> et al., 2005). Some<br />

weed species, such as goosefoots, oraches, chickweed and composites probably<br />

benefit from fertiliser applicati<strong>on</strong>s (Wils<strong>on</strong> et al., 1999), although other elements <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

agricultural <strong>in</strong>tensificati<strong>on</strong>, <strong>in</strong>clud<strong>in</strong>g some c<strong>on</strong>nected to fertiliser use, may reduce<br />

their abundance. Creep<strong>in</strong>g thistle (Cirsium arvense), an important food source for<br />

some bird species, is out-competed <strong>in</strong> fertilised ungrazed grasslands, but benefits from<br />

competitive release <strong>in</strong> rabbit-grazed areas, as it is relatively unpalatable (Edwards et<br />

al., 2000).<br />

33


Fertiliser use over time can leave a legacy <str<strong>on</strong>g>of</str<strong>on</strong>g> fertile soil, block<strong>in</strong>g the re-establishment<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> stress-tolerant species, which may h<strong>in</strong>der the restorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> species-rich<br />

communities that prefer low <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> envir<strong>on</strong>ments (Walker et al., 2004; Tallow<strong>in</strong> et<br />

al., 2005). Reducti<strong>on</strong>s <strong>in</strong> soil fertility can be slow, due to c<strong>on</strong>t<strong>in</strong>ued atmospheric <strong>in</strong>put,<br />

and thus reversi<strong>on</strong> to natural grassland communities may take many years, even<br />

though there is a general trend towards <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> species diversity and reduced yield<br />

after the cessati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fertilisati<strong>on</strong> (Walker et al., 2004). A comb<strong>in</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cutt<strong>in</strong>g and<br />

aftermath graz<strong>in</strong>g appears to accelerate the reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> soil fertility and to improve<br />

c<strong>on</strong>diti<strong>on</strong>s for establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> target species.<br />

2.3.2. Changes to vegetati<strong>on</strong> structure<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> apply<strong>in</strong>g fertiliser is to promote crop growth, and thus the natural<br />

result <str<strong>on</strong>g>of</str<strong>on</strong>g> fertiliser applicati<strong>on</strong> is taller and denser vegetati<strong>on</strong>, and frequently earlier<br />

growth. Crop structure is frequently more important to higher trophic levels than<br />

species compositi<strong>on</strong>. Agricultural <strong>in</strong>tensificati<strong>on</strong> has <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> crop density, and<br />

simplified and homogenised sward structure (Wils<strong>on</strong> et al., 2005). Dra<strong>in</strong>age, herbicide<br />

use and other elements <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>tensificati<strong>on</strong> c<strong>on</strong>tribute to these changes, but <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g><br />

fertiliser use is central to the changes to crop structure. Fertiliser applicati<strong>on</strong>s affect<br />

crop structure directly, by <strong>in</strong>creas<strong>in</strong>g growth, and via changes <strong>in</strong> management, which<br />

are described below. Birds may be affected by changed crop structure if it alters: the<br />

degree to which they are c<strong>on</strong>cealed or able to perceive predators; the degree to which<br />

they are exposed to weather extremes; or the availability or abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> food items<br />

(Wils<strong>on</strong> et al., 2005).<br />

2.3.3. Effects <strong>on</strong> management practices<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> <strong>in</strong>creases <strong>in</strong> crop yield as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> fertiliser applicati<strong>on</strong>s (al<strong>on</strong>g with other<br />

factors such as improved crop varieties) have been <strong>in</strong>strumental <strong>in</strong> chang<strong>in</strong>g farmland<br />

management practices <strong>in</strong> the UK, and these changes are documented <strong>in</strong> several<br />

publicati<strong>on</strong>s (O’C<strong>on</strong>nor and Shrubb, 1986; Fuller, 1987; Chamberla<strong>in</strong> et al., 1999;<br />

Fuller, 2000; Anders<strong>on</strong> et al., 2001; D<strong>on</strong>ald et al., 2001).<br />

34


Some <str<strong>on</strong>g>of</str<strong>on</strong>g> the changes associated with agricultural <strong>in</strong>tensificati<strong>on</strong> have been directly<br />

related to the <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> fertilisers <strong>on</strong> arable and grassland. <str<strong>on</strong>g>The</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

nitrogenous fertilisers has removed the need for clover to be grown with<strong>in</strong> rye grass<br />

(Raym<strong>on</strong>d et al., 1986). A similar shift <strong>in</strong> forage compositi<strong>on</strong> has occurred <strong>in</strong> hay<br />

producti<strong>on</strong>. This has released farmers from the need to <strong>in</strong>clude nitrogen-fix<strong>in</strong>g<br />

legumes <strong>in</strong> their rotati<strong>on</strong>s, and also from the need to <strong>in</strong>clude pasture <strong>on</strong> farms as a<br />

food source for herbivores produc<strong>in</strong>g organic fertiliser, thus trigger<strong>in</strong>g a move away<br />

from mixed-farm<strong>in</strong>g systems towards either pasture (<strong>in</strong> the north and west) or arable<br />

(<strong>in</strong> the south and east) (Fuller, 2000; Rob<strong>in</strong>s<strong>on</strong> and Sutherland, 2002). For example,<br />

the proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tilled land <strong>in</strong> Wales fell from 17% to 4% between 1945 and 1992<br />

(Lovegrove et al., 1995).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>re has been a massive shift from hay to silage producti<strong>on</strong> <strong>in</strong> the UK. Silage<br />

producti<strong>on</strong> <strong>in</strong>volves several cuts (generally not more than three) <str<strong>on</strong>g>of</str<strong>on</strong>g> the grass crop<br />

before it has set seed, at approximately 6 week <strong>in</strong>tervals beg<strong>in</strong>n<strong>in</strong>g as early as late<br />

April (English Nature, 2006). Hay producti<strong>on</strong> <strong>in</strong>volves a s<strong>in</strong>gle cut later <strong>in</strong> the seas<strong>on</strong>,<br />

as late as July. Seed set is also undesirable for hay digestibility, but because this<br />

process requires much more moisture reducti<strong>on</strong> <strong>in</strong> the crop, there may be benefits <strong>in</strong><br />

cutt<strong>in</strong>g after some seed set has occurred, or this may be enforced due to weather<br />

c<strong>on</strong>diti<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> shift <strong>in</strong> cutt<strong>in</strong>g methods has been occurr<strong>in</strong>g for over a century<br />

(Wilman, 2002), but there was a particular <strong>in</strong>crease <strong>in</strong> silage producti<strong>on</strong> <strong>in</strong> the 1970s<br />

and early 1980s. Silage comprised about 10% <str<strong>on</strong>g>of</str<strong>on</strong>g> preserved forage <strong>in</strong> 1970, ris<strong>in</strong>g to<br />

70% <strong>in</strong> 1985 (Raym<strong>on</strong>d et al., 1986), and is currently around 90% (Vickery et al.<br />

2001). <str<strong>on</strong>g>The</str<strong>on</strong>g> desire to move from hay to silage producti<strong>on</strong> has been driven by<br />

socioec<strong>on</strong>omic and climatic factors, and has been enabled by <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> mechanisati<strong>on</strong><br />

and improvements <strong>in</strong> ensilage techniques (Wilman, 2002). It might be expected that<br />

artificial fertilisers would be used <strong>in</strong> the producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> silage but not essential <strong>in</strong> the<br />

change from hay to silage producti<strong>on</strong>. However, silage mak<strong>in</strong>g <strong>in</strong>volves high<br />

mach<strong>in</strong>ery, labour and fuel costs, and requires high grass yields to be pr<str<strong>on</strong>g>of</str<strong>on</strong>g>itable.<br />

Successive high yields can normally <strong>on</strong>ly be achieved with the applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> artificial<br />

fertilisers (English Nature, 2006). Silage producti<strong>on</strong> has further <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong><br />

management <str<strong>on</strong>g>of</str<strong>on</strong>g> grassland, due to the earlier cutt<strong>in</strong>g and generally multiple cuts.<br />

35


Increased grass yield has also allowed higher stock<strong>in</strong>g rates <strong>on</strong> grassland, for l<strong>on</strong>ger<br />

periods <str<strong>on</strong>g>of</str<strong>on</strong>g> the year (Stoate, 1996). <str<strong>on</strong>g>The</str<strong>on</strong>g>re has been a large <strong>in</strong>crease <strong>in</strong> sheep numbers<br />

<strong>in</strong> the period 1970-1990 (Fuller and Gough, 1999), although the cattle herd has<br />

decreased (Vickery et al., 2001). In Dev<strong>on</strong> and Buck<strong>in</strong>ghamshire, stock rate was<br />

significantly related to nitrogen fertiliser <strong>in</strong>put (Tallow<strong>in</strong> et al., 2005). Age <str<strong>on</strong>g>of</str<strong>on</strong>g> grass<br />

sward was also related to fertiliser <strong>in</strong>put; swards <strong>in</strong> a majority <str<strong>on</strong>g>of</str<strong>on</strong>g> fields with low or<br />

moderate nitrogen <strong>in</strong>put (


was <strong>in</strong>fluenced by low <strong>in</strong>put fields be<strong>in</strong>g hay meadows, and high <strong>in</strong>put fields hav<strong>in</strong>g<br />

been cut for silage (Tallow<strong>in</strong> et al., 2005). When hay meadows were removed from<br />

analysis, there was no significant relati<strong>on</strong>ship between nitrogen <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> and sward<br />

height, mass or density; stage <str<strong>on</strong>g>of</str<strong>on</strong>g> regrowth was probably the major determ<strong>in</strong>ant <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

these variables.<br />

Even where hay producti<strong>on</strong> has persisted, use <str<strong>on</strong>g>of</str<strong>on</strong>g> fertiliser may have affected<br />

management regimes. In the North Penn<strong>in</strong>es, the durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hay cutt<strong>in</strong>g has reduced<br />

<strong>in</strong> recent years, due to earlier f<strong>in</strong>ish dates (Smith and J<strong>on</strong>es, 1991). This may be due to<br />

climate change and technological improvements, but faster growth <str<strong>on</strong>g>of</str<strong>on</strong>g> fertilised<br />

pastures is likely to have c<strong>on</strong>tributed. If this trend is nati<strong>on</strong>wide, the number <str<strong>on</strong>g>of</str<strong>on</strong>g> fields<br />

with mature grass <strong>in</strong> late summer, and the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> grass sett<strong>in</strong>g seed, is likely to be<br />

reduced by changes to hay mak<strong>in</strong>g as well as the shift towards silage producti<strong>on</strong>.<br />

Another development <strong>in</strong> management that is associated with <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

fertilisers is the exclusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> weed species by competitive crops. Improved grasslands<br />

are relatively young, as they are frequently reseeded, typically with high yield<strong>in</strong>g<br />

grass species, particularly Lolium perenne and other grasses, with relatively few forbs<br />

(Hopk<strong>in</strong>s et al., 1985; Rodwell, 1992; Tallow<strong>in</strong> et al., 2005). Several weed species,<br />

<strong>in</strong>clud<strong>in</strong>g thistles and buttercup, were associated with old grassland, as well as low<br />

<strong>in</strong>tensity management, <strong>in</strong> south-west England (Hopk<strong>in</strong>s et al., 1985). Changes <strong>in</strong><br />

management have also reduced the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> seed that is set <strong>in</strong> farmlands. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

comb<strong>in</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> changes <strong>in</strong> management result<strong>in</strong>g from agricultural <strong>in</strong>tensificati<strong>on</strong><br />

favour certa<strong>in</strong> grass species, notably Poa spp., which are important <strong>in</strong> the diet <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

farmland <strong>birds</strong>; however, <strong>in</strong>creases <strong>in</strong> graz<strong>in</strong>g and <strong>in</strong> cutt<strong>in</strong>g for silage, comb<strong>in</strong>ed with<br />

improved harvest<strong>in</strong>g efficiency, mean that the proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> grasses sett<strong>in</strong>g seed has<br />

reduced (Wils<strong>on</strong> et al., 1999).<br />

2.3.3.2. Organic vs n<strong>on</strong>-organic farm<strong>in</strong>g methods<br />

Some <str<strong>on</strong>g>of</str<strong>on</strong>g> the differences between organic and <strong>in</strong>organic fertilisers are described <strong>in</strong><br />

Secti<strong>on</strong> 1. Organic fertiliser may have different <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> vegetati<strong>on</strong> and higher<br />

trophic levels than <strong>in</strong>organic fertiliser. For example, <strong>in</strong> Welsh grassland field marg<strong>in</strong>s,<br />

applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>organic fertiliser led to a loss <str<strong>on</strong>g>of</str<strong>on</strong>g> the forb comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> the marg<strong>in</strong>,<br />

37


ut organic manure ma<strong>in</strong>ta<strong>in</strong>ed species richness, while still produc<strong>in</strong>g a relatively<br />

high yield and <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>-rich sward (J<strong>on</strong>es and Haggar, 1997). A meta-analysis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

studies <str<strong>on</strong>g>of</str<strong>on</strong>g> organic aga<strong>in</strong>st c<strong>on</strong>venti<strong>on</strong>al farm<strong>in</strong>g systems <strong>in</strong> Europe found that plant<br />

species richness and weed abundance were generally favoured by organic systems<br />

(Bengtss<strong>on</strong> et al., 2005). Soil microbial activity has been observed to be much greater<br />

<strong>in</strong> organic systems compared with c<strong>on</strong>venti<strong>on</strong>al farm<strong>in</strong>g (Mäder et al., 2002).<br />

However, the former are managed <strong>in</strong> several ways apart from fertiliser type that may<br />

be beneficial to biodiversity, such as ma<strong>in</strong>tenance <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-crop habitats, and lack <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

pesticide use. Thus while I touch up<strong>on</strong> <strong>on</strong> the differences between organic and<br />

c<strong>on</strong>venti<strong>on</strong>al farm<strong>in</strong>g systems, I recognise the difficulty <str<strong>on</strong>g>of</str<strong>on</strong>g> dist<strong>in</strong>guish<strong>in</strong>g fertiliser<br />

type from these other management practices.<br />

2.4. Effects <strong>on</strong> <strong>in</strong>vertebrates <str<strong>on</strong>g>of</str<strong>on</strong>g> fertiliser use, vegetati<strong>on</strong> changes, and changes to<br />

management practices<br />

Invertebrates are a vital food source for farmland <strong>birds</strong>, particularly <strong>in</strong> summer, for<br />

both adults and chicks (Moreby, 2004). A review <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>direct</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> pesticide use<br />

<strong>on</strong> <strong>birds</strong> c<strong>on</strong>sidered that <str<strong>on</strong>g>of</str<strong>on</strong>g> 36 farmland bird species, <strong>on</strong>ly eight were not dependent <strong>on</strong><br />

<strong>in</strong>vertebrates at some po<strong>in</strong>t dur<strong>in</strong>g the life cycle (Campbell et al., 1997). It has been<br />

suggested that farmland bird abundance may be l<strong>in</strong>ked to changes <strong>in</strong> farm<strong>in</strong>g practice<br />

at least partly via changes <strong>in</strong> <strong>in</strong>sect abundance (Bent<strong>on</strong> et al., 2002). <str<strong>on</strong>g>The</str<strong>on</strong>g>refore,<br />

changes <strong>in</strong> the abundance and availability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>vertebrates can have significant<br />

impacts <strong>on</strong> <strong>birds</strong>, especially dur<strong>in</strong>g the breed<strong>in</strong>g seas<strong>on</strong>.<br />

Studies <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g term trends <strong>in</strong> <strong>in</strong>sect abundance are relatively few. However, the<br />

Rothamsted Insect Survey documented decreases <strong>in</strong> moth abundance and diversity<br />

between 1933-1950 and 1960-1989 (Woiwod and Thomas, 1993, <strong>in</strong> Sothert<strong>on</strong> and<br />

Self, 2000), and <strong>in</strong> Scotland, <strong>in</strong>sect abundance has been m<strong>on</strong>itored s<strong>in</strong>ce 1972,<br />

show<strong>in</strong>g n<strong>on</strong>-l<strong>in</strong>ear trends over time (Bent<strong>on</strong> et al., 2002). <str<strong>on</strong>g>The</str<strong>on</strong>g> Game C<strong>on</strong>servancy<br />

Trust’s Sussex Study has found decl<strong>in</strong>es <strong>in</strong> <strong>in</strong>vertebrate numbers <strong>in</strong> cereal fields s<strong>in</strong>ce<br />

1970 (Barker, 2004). Not all groups decl<strong>in</strong>ed, but several groups that are important <strong>in</strong><br />

chick diets showed decl<strong>in</strong>es, <strong>in</strong>clud<strong>in</strong>g Araneae (spiders), Lepidoptera (moths and<br />

38


utterflies), Tenthred<strong>in</strong>idae (sawflies), Coleoptera (beetles) (exclud<strong>in</strong>g carabids and<br />

elaterids), Chrysomelidae (leaf beetles) and Curculi<strong>on</strong>idae (weevils) (Barker, 2004).<br />

Such decl<strong>in</strong>es are c<strong>on</strong>sistent with changes due to agricultural <strong>in</strong>tensificati<strong>on</strong>, and it is<br />

possible that <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> fertiliser use has played a role, but the ma<strong>in</strong> path <str<strong>on</strong>g>of</str<strong>on</strong>g> research<br />

has been <strong>in</strong>to the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> pesticide use, which has been another major comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

agricultural <strong>in</strong>tensificati<strong>on</strong> (Campbell et al., 1997). <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> fertiliser<br />

<str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> <strong>on</strong> <strong>in</strong>vertebrates are summarised <strong>in</strong> Table 2.3.<br />

Invertebrate biomass <strong>in</strong>creases <strong>in</strong> some cases where fertiliser is applied, especially<br />

manures and slurry. This is not unexpected, as <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> fertiliser use <strong>in</strong>creases<br />

primary productivity, and the nutritive value <str<strong>on</strong>g>of</str<strong>on</strong>g> foliage, and would be expected to<br />

<strong>in</strong>crease the abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> higher trophic levels. However, high levels <str<strong>on</strong>g>of</str<strong>on</strong>g> fertiliser<br />

applicati<strong>on</strong> are associated with changes <strong>in</strong> vegetati<strong>on</strong> structure and with management<br />

practices that can reduce <strong>in</strong>vertebrate species richness, average body size and even<br />

overall biomass, as described below. Compositi<strong>on</strong>al shift <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>vertebrate communities<br />

may also occur <strong>in</strong> resp<strong>on</strong>se to fertiliser applicati<strong>on</strong>s, as the plant biomass becomes<br />

c<strong>on</strong>centrated <strong>in</strong> the foliage rather than below-ground.<br />

2.4.1. Direct <str<strong>on</strong>g>effects</str<strong>on</strong>g><br />

Invertebrates may be directly affected by the applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fertilisers. Earthworms are<br />

especially resp<strong>on</strong>sive to fertiliser, and may be killed by large volumes <str<strong>on</strong>g>of</str<strong>on</strong>g> fresh slurry<br />

due to high amm<strong>on</strong>ia and salt c<strong>on</strong>centrati<strong>on</strong>s (Curry, 1976; Curry, 1994). Collembola<br />

(spr<strong>in</strong>gtails) may also be killed by heavy applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> slurry (Curry, 1994).<br />

However, <strong>in</strong>termediate applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> fertiliser, especially organic fertiliser, may<br />

<strong>in</strong>crease earthworm numbers and/or biomass. In South Wales grassland (some be<strong>in</strong>g<br />

rehabilitated from opencast m<strong>in</strong><strong>in</strong>g, some undisturbed), while overall earthworm<br />

abundance was not affected by the applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> either manure or <strong>in</strong>organic NPK<br />

fertiliser, surface activity <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> <strong>in</strong> resp<strong>on</strong>se to manure and decreased <strong>in</strong> resp<strong>on</strong>se<br />

39


Table 2.3. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> fertiliser applicati<strong>on</strong> <strong>on</strong> <strong>in</strong>vertebrates <strong>in</strong> farmland<br />

Level <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

removal from<br />

fertiliser use<br />

Effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

fertiliser <strong>on</strong><br />

<strong>in</strong>vertebrates<br />

Mechanism Group Habitat Locati<strong>on</strong> Process Effects Possible cause Strength<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Direct<br />

toxicity<br />

earthworms grassland South<br />

Wales<br />

applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> poultry<br />

manure/<strong>in</strong>organic fertiliser<br />

(approx. 100-150 kg/ha N)<br />

no change <strong>in</strong> abundance;<br />

<strong>in</strong>crease <strong>in</strong> surface activity<br />

with manure, decrease with<br />

<strong>in</strong>organic fertiliser<br />

reducti<strong>on</strong> <strong>in</strong> <strong>on</strong>e surfaceactive<br />

species under <strong>in</strong>organic<br />

fertiliser, possibly due to soil<br />

sal<strong>in</strong>ity<br />

reduced soil moisture due to<br />

fertilisati<strong>on</strong><br />

toxicity (amm<strong>on</strong>ia and salts)<br />

causes <strong>in</strong>itial decl<strong>in</strong>e at high<br />

levels <str<strong>on</strong>g>of</str<strong>on</strong>g> applicati<strong>on</strong>, <strong>in</strong>crease<br />

<strong>in</strong> organic material <strong>in</strong>creases<br />

abundance<br />

evidence 1<br />

Reference<br />

1 Sculli<strong>on</strong> and<br />

Ramshaw, 1987<br />

earthworms grassland Poland NPK applicati<strong>on</strong> (680 kg/ha) decrease <strong>in</strong> biomass <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

earthworms<br />

2 Nowak, 1976<br />

earthworms grassland Ireland experimental applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> absent after applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

1 Curry, 1976<br />

cattle slurry at various rates highest levels, but return to<br />

with vary<strong>in</strong>g reapplicati<strong>on</strong>s pre-applicati<strong>on</strong> abundance 14<br />

m<strong>on</strong>ths later, higher numbers<br />

and/or biomass at<br />

<strong>in</strong>termediate levels<br />

lumbricid<br />

arable Bucks. relati<strong>on</strong>ship to manure lumbricid numbers positively <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> organic material 2 Tucker, 1992<br />

earthworms<br />

applicati<strong>on</strong><br />

related to manure applicati<strong>on</strong><br />

Collembola grassland Ireland applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cattle slurry reducti<strong>on</strong> <strong>in</strong> abundance toxicity (amm<strong>on</strong>ia and salts) 1 Curry, 1994<br />

Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Nutritive Auchenorrhyncha grassland Poland mow<strong>in</strong>g and fertiliser (NPK) <strong>in</strong>itial decl<strong>in</strong>e, then <strong>in</strong>crease nutritive value <str<strong>on</strong>g>of</str<strong>on</strong>g> regrow<strong>in</strong>g 2 Andrzejewska,<br />

fertiliser <strong>on</strong> value<br />

applicati<strong>on</strong><br />

<strong>in</strong> abundance; simpler grass; simplified vegetati<strong>on</strong><br />

1979<br />

vegetati<strong>on</strong><br />

community compositi<strong>on</strong> structure follow<strong>in</strong>g mow<strong>in</strong>g<br />

Tipulidae<br />

grassland western abundance <strong>in</strong> relati<strong>on</strong> to higher abundance where <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> sward productivity 2 McCracken et<br />

(Diptera)<br />

Scotland management<br />

organic fertiliser applied; no<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>organic fertiliser<br />

and <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> c<strong>on</strong>tent<br />

al., 1995<br />

Biomass phytophagous oat-grass Poland applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fertiliser (N, P decl<strong>in</strong>e <strong>in</strong> soil larvae biomass; reducti<strong>on</strong> <strong>in</strong> root biomass and 2 Andrzejewska,<br />

<strong>in</strong>sects<br />

meadow<br />

and K)<br />

<strong>in</strong>crease <strong>in</strong> numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>sects<br />

emerg<strong>in</strong>g<br />

<strong>in</strong>crease <strong>in</strong> turf biomass<br />

1976a<br />

Auchenorrhyncha natural Berks. experimental additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>crease <strong>in</strong> abundance, improved food quality and 1 Prestidge, 1982<br />

meadow<br />

nitrogen (100-1200 kg/ha) decrease <strong>in</strong> diversity (but not more beneficial sward<br />

al<strong>on</strong>e and with other fertiliser total species richness) architecture<br />

Auchenorrhyncha oat-grass Poland applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fertiliser (N, P <strong>in</strong>crease <strong>in</strong> biomass, change <strong>in</strong>crease <strong>in</strong> green plant<br />

2 Andrzejewska,<br />

meadow<br />

and K)<br />

to community structure biomass<br />

1976b<br />

soil dwell<strong>in</strong>g grassland Poland NPK applicati<strong>on</strong> (680 kg/ha) decrease <strong>in</strong> soil-dwell<strong>in</strong>g reduced root biomass 2 Nowak, 1976<br />

larvae<br />

phytophagous <strong>in</strong>sect larvae<br />

all <strong>in</strong>sects grassland Poland abundance <strong>in</strong> fertilised and general <strong>in</strong>crease <strong>in</strong> biomass <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> primary producti<strong>on</strong> 2 Olechowicz,<br />

unfertilised plots<br />

<strong>in</strong>sects<br />

1976<br />

1<br />

I classified the studies <strong>in</strong>to three tiers: 1. Str<strong>on</strong>g evidence, usually based <strong>on</strong> experimental pro<str<strong>on</strong>g>of</str<strong>on</strong>g>; 2. Intermediate evidence, generally an observed relati<strong>on</strong>ship <strong>in</strong> space and time; 3. Weak evidence, a suggested cause<br />

based <strong>on</strong> observed patterns. <str<strong>on</strong>g>The</str<strong>on</strong>g>se levels are not <strong>in</strong>tended as a judgement <strong>on</strong> the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> the research, and I judge the strength <str<strong>on</strong>g>of</str<strong>on</strong>g> evidence for <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> and associated mechanisms, which may not have<br />

been the purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> the study.<br />

40


Table 2.3. (c<strong>on</strong>t.) Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> fertiliser applicati<strong>on</strong> <strong>on</strong> <strong>in</strong>vertebrates <strong>in</strong> farmland<br />

Level <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

removal from<br />

fertiliser use<br />

Effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

fertiliser <strong>on</strong><br />

vegetati<strong>on</strong><br />

Effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

management<br />

associated<br />

with fertiliser<br />

use<br />

Mechanism Group Habitat Locati<strong>on</strong> Process Effects Possible cause Strength<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Plant species<br />

richness<br />

Sward<br />

structure<br />

Lepidoptera;<br />

Araneae;<br />

Carabidae;<br />

Staphyl<strong>in</strong>idae<br />

Satyridae<br />

(Lepidoptera)<br />

Auchenorrhyncha;<br />

Heteroptera;<br />

Coleoptera;<br />

Araneae<br />

surface<br />

<strong>in</strong>vertebrates<br />

arable<br />

field<br />

marg<strong>in</strong>s<br />

arable<br />

field<br />

marg<strong>in</strong>s<br />

Lepidoptera subalp<strong>in</strong>e<br />

meadows<br />

Cambs.<br />

and<br />

Hants.<br />

arable western<br />

England<br />

relati<strong>on</strong>ship between<br />

abundance and species<br />

richness <strong>in</strong> plots sown with<br />

diverse seed mixtures<br />

Hants. relati<strong>on</strong>ship between<br />

abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> 3 species and<br />

habitat variables<br />

abundance and diversity <strong>in</strong><br />

relati<strong>on</strong> to plant species<br />

richness<br />

grassland Hants. experimental applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

fertiliser (N, P, K and lime)<br />

separately or <strong>in</strong> comb<strong>in</strong>ati<strong>on</strong><br />

plus different mow<strong>in</strong>g<br />

regimes<br />

Switzerland<br />

Orthoptera grassland Netherlands<br />

sward<br />

<strong>in</strong>vertebrates<br />

(various groups)<br />

gradient <strong>in</strong> management<br />

<strong>in</strong>tensity (graz<strong>in</strong>g and<br />

fertiliser <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g>)<br />

species richness and<br />

abundance <strong>in</strong> plots to which<br />

different levels <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>organic<br />

nitrogenous fertiliser were<br />

applied (n<strong>on</strong>e, 50 kg/ha/year,<br />

155-400 kg/ha/year)<br />

grassland Ireland various management systems<br />

(graz<strong>in</strong>g and cutt<strong>in</strong>g)<br />

Correlati<strong>on</strong> (+) between<br />

species richness and<br />

abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> carabids and<br />

butterflies <strong>on</strong>ly<br />

positive <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> shelter and<br />

abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> flowers,<br />

<strong>in</strong>clud<strong>in</strong>g bramble and thistle<br />

Correlati<strong>on</strong> (+) between plant<br />

species richness and<br />

abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> Heteroptera,<br />

Auchenorrhyncha, and<br />

Araneae, (and diversity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

phytophagous Coleoptera)<br />

lower species richness <strong>in</strong><br />

mown and <strong>in</strong> fertilised plots;<br />

higher proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phytophages<br />

and lower proporti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> predators/parasitoids<br />

high species richness <strong>in</strong><br />

lightly grazed, unfertilised,<br />

and newly aband<strong>on</strong>ed<br />

meadows; very low <strong>in</strong><br />

<strong>in</strong>tensively managed<br />

meadows<br />

low species richness and<br />

abundance at high levels <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

fertiliser (compared to both<br />

n<strong>on</strong>e and low levels); species<br />

compositi<strong>on</strong> expla<strong>in</strong>ed by<br />

temperature, vegetati<strong>on</strong><br />

biomass, light ext<strong>in</strong>cti<strong>on</strong> and<br />

management <strong>in</strong>tensity<br />

most similar <strong>in</strong>vertebrate<br />

compositi<strong>on</strong> where<br />

management was most similar<br />

<strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> sward height<br />

requirements <str<strong>on</strong>g>of</str<strong>on</strong>g> butterflies<br />

and carabids for particular<br />

host plants<br />

importance <str<strong>on</strong>g>of</str<strong>on</strong>g> stable<br />

microclimate; availability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

nectar resources<br />

more opportunities for<br />

specialist species<br />

<strong>in</strong>crease <strong>in</strong> food for<br />

phytophages <strong>in</strong> fertilised<br />

plots; homogeneous habitat<br />

structure <strong>in</strong> mowed plots<br />

related to plant species<br />

richness and specialisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Lepidoptera fauna<br />

unsuitable habitat created by<br />

dense swards<br />

adaptati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>vertebrate<br />

fauna to short swards<br />

(eurytopy, mobility, short life<br />

cycle, high reproductive rate)<br />

evidence 1<br />

Reference<br />

2 Kirkham et al.,<br />

1999<br />

2 Dover, 1996<br />

2 Asteraki et al.,<br />

2004<br />

1 Fenner and<br />

Palmer, 1998<br />

3 Erhardt, 1985<br />

1 van W<strong>in</strong>gerden<br />

et al., 1992<br />

2 Curry and<br />

O'Neill, 1979<br />

1 I classified the studies <strong>in</strong>to three tiers: 1. Str<strong>on</strong>g evidence, usually based <strong>on</strong> experimental pro<str<strong>on</strong>g>of</str<strong>on</strong>g>; 2. Intermediate evidence, generally an observed relati<strong>on</strong>ship <strong>in</strong> space and time; 3. Weak evidence, a suggested cause<br />

based <strong>on</strong> observed patterns. <str<strong>on</strong>g>The</str<strong>on</strong>g>se levels are not <strong>in</strong>tended as a judgement <strong>on</strong> the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> the research, and I judge the strength <str<strong>on</strong>g>of</str<strong>on</strong>g> evidence for <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> and associated mechanisms, which may not have<br />

been the purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> the study.<br />

41


Table 2.3. (c<strong>on</strong>t.) Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> fertiliser applicati<strong>on</strong> <strong>on</strong> <strong>in</strong>vertebrates <strong>in</strong> farmland<br />

Level <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

removal from<br />

fertiliser use<br />

Effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

management<br />

associated<br />

with fertiliser<br />

use<br />

Mechanism Group Habitat Locati<strong>on</strong> Process Effects Possible cause Strength<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Sward age Auchenorrhyncha;<br />

Heteroptera;<br />

Coleoptera;<br />

Hymenoptera<br />

Intense<br />

graz<strong>in</strong>g<br />

and/or<br />

frequent<br />

mow<strong>in</strong>g<br />

lumbricid<br />

earthworms;<br />

Coleoptera<br />

grassland Germany species richness and<br />

abundance <strong>in</strong> fields <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

different graz<strong>in</strong>g <strong>in</strong>tensity or<br />

time s<strong>in</strong>ce graz<strong>in</strong>g<br />

higher abundance <strong>in</strong> l<strong>on</strong>gterm<br />

ungrazed grassland than<br />

grazed pastures (regardless <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

graz<strong>in</strong>g <strong>in</strong>tensity)<br />

greater primary productivity<br />

and habitat complexity <strong>in</strong><br />

ungrazed grasslands<br />

grassland Bucks. Relati<strong>on</strong>ship with sward age positive relati<strong>on</strong>ship lack <str<strong>on</strong>g>of</str<strong>on</strong>g> physical disrupti<strong>on</strong> <strong>in</strong><br />

old grass fields; positive<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic manure<br />

arthropods grassland Netherlands<br />

total and mean <strong>in</strong>dividual<br />

biomass <strong>in</strong> relati<strong>on</strong> to<br />

nitrogen applicati<strong>on</strong>s (0, 50<br />

and 400 kg N/ha/year) <strong>in</strong><br />

grazed and mown plots<br />

total and mean <strong>in</strong>dividual<br />

biomass decreased with<br />

<strong>in</strong>creas<strong>in</strong>g fertiliser use <strong>in</strong><br />

mown plots; relatively little<br />

change <strong>in</strong> grazed plots (some<br />

evidence <str<strong>on</strong>g>of</str<strong>on</strong>g> an <strong>in</strong>crease <strong>in</strong><br />

mean <strong>in</strong>dividual biomass)<br />

reduced abundance <strong>in</strong> more<br />

<strong>in</strong>tensively managed pastures<br />

various <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> different<br />

species, depend<strong>in</strong>g <strong>on</strong> life<br />

history<br />

decl<strong>in</strong>e <strong>in</strong> abundance when<br />

cut <strong>in</strong> July; less so <strong>in</strong> May<br />

larger average bodyweight <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

carabids <strong>in</strong> unmanaged<br />

grassland<br />

life history characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

large arthropods;<br />

compensatory <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> dung<br />

<strong>in</strong> grazed grasslands<br />

evidence 1<br />

Reference<br />

2 Kruess and<br />

Tscharntke,<br />

2002<br />

2 Tucker, 1992<br />

2 Siepel, 1990<br />

large <strong>in</strong>sects grassland Nether- abundance <strong>in</strong> fertilised, mown<br />

<strong>in</strong>ability to complete life<br />

2 Be<strong>in</strong>tema et al.,<br />

lands and grazed pastures<br />

cycle<br />

1990<br />

phytophagous calcareous Germany abundance <strong>in</strong> relati<strong>on</strong> to<br />

direct removal, ability to<br />

1 Volkl et al.,<br />

<strong>in</strong>sects<br />

grassland<br />

experimental mow<strong>in</strong>g and<br />

recol<strong>on</strong>ise site, microclimate<br />

1993<br />

graz<strong>in</strong>g<br />

changes<br />

Auchenorrhyncha; chalk Beds. Abundance <strong>in</strong> relati<strong>on</strong> to<br />

ability to complete life cycle 2 Morris and<br />

Heteroptera grassland<br />

cutt<strong>in</strong>g regime<br />

Lakhani, 1979<br />

Carabidae lowland Dumfries cutt<strong>in</strong>g and graz<strong>in</strong>g regimes<br />

presence <str<strong>on</strong>g>of</str<strong>on</strong>g> species <strong>in</strong><br />

2 Blake et al.,<br />

(Coleoptera) farmland<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> various <strong>in</strong>tensity compared<br />

unmanaged grassland due to<br />

1996<br />

with <strong>on</strong>e unmanaged<br />

grassland plot<br />

ability to complete life cycle<br />

Carabidae upland northern relati<strong>on</strong>ship between<br />

body size decreased with requirement <str<strong>on</strong>g>of</str<strong>on</strong>g> large species 2 Blake and<br />

(Coleoptera) grassland Brita<strong>in</strong> management <strong>in</strong>tensity <strong>in</strong>creas<strong>in</strong>g management for l<strong>on</strong>ger periods without<br />

Foster, 1998<br />

(<strong>in</strong>clud<strong>in</strong>g fertiliser<br />

applicati<strong>on</strong>) and body size<br />

<strong>in</strong>tensity<br />

disturbance<br />

Auchenorrhyncha; grassland Germany species richness and<br />

lower species richness <strong>in</strong> disrupti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>sects feed<strong>in</strong>g 2 Kruess and<br />

Heteroptera;<br />

abundance <strong>in</strong> fields <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>tensively grazed pasture by graz<strong>in</strong>g cattle<br />

Tscharntke,<br />

Coleoptera;<br />

different graz<strong>in</strong>g <strong>in</strong>tensity or than extensively grazed or<br />

2002<br />

Hymenoptera<br />

time s<strong>in</strong>ce graz<strong>in</strong>g<br />

ungrazed pasture<br />

Curculi<strong>on</strong>idae chalk Beds. Abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> two species <strong>in</strong> <strong>in</strong>crease <strong>in</strong> both species <strong>in</strong>crease <strong>in</strong> flowers and fruit 2 Morris, 1967<br />

(Coleoptera) grassland<br />

resp<strong>on</strong>se to graz<strong>in</strong>g exclusi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> larval food plants<br />

1<br />

I classified the studies <strong>in</strong>to three tiers: 1. Str<strong>on</strong>g evidence, usually based <strong>on</strong> experimental pro<str<strong>on</strong>g>of</str<strong>on</strong>g>; 2. Intermediate evidence, generally an observed relati<strong>on</strong>ship <strong>in</strong> space and time; 3. Weak evidence, a suggested cause<br />

based <strong>on</strong> observed patterns. <str<strong>on</strong>g>The</str<strong>on</strong>g>se levels are not <strong>in</strong>tended as a judgement <strong>on</strong> the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> the research, and I judge the strength <str<strong>on</strong>g>of</str<strong>on</strong>g> evidence for <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> and associated mechanisms, which may not have<br />

been the purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> the study.<br />

42


Table 2.3. (c<strong>on</strong>t.) Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> fertiliser applicati<strong>on</strong> <strong>on</strong> <strong>in</strong>vertebrates <strong>in</strong> farmland<br />

Level <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

removal from<br />

fertiliser use<br />

Effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

management<br />

associated<br />

with fertiliser<br />

use<br />

Mechanism Group Habitat Locati<strong>on</strong> Process Effects Possible cause Strength<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Plant species<br />

compositi<strong>on</strong><br />

and<br />

vegetati<strong>on</strong><br />

structure<br />

Heteroptera;<br />

herbivorous<br />

Coleoptera<br />

Gracillariidae<br />

(Lepidoptera);<br />

Araneae;<br />

Auchenorrhyncha<br />

Carabidae<br />

(Coleoptera)<br />

Tipulidae<br />

(Diptera)<br />

grassland Ox<strong>on</strong>. C<strong>on</strong>trolled graz<strong>in</strong>g (n<strong>on</strong>e,<br />

short-period spr<strong>in</strong>g, shortperiod<br />

autumn, spr<strong>in</strong>g and<br />

autumn, and heavy autumn),<br />

samples taken <strong>in</strong> August over<br />

two years<br />

grassland Ox<strong>on</strong>. C<strong>on</strong>trolled graz<strong>in</strong>g (n<strong>on</strong>e,<br />

short-period spr<strong>in</strong>g, shortperiod<br />

autumn, spr<strong>in</strong>g and<br />

autumn, and heavy autumn),<br />

samples taken <strong>in</strong> August over<br />

two years (Gracillariidae <strong>in</strong><br />

<strong>on</strong>e year <strong>on</strong>ly)<br />

grassland Dumfries experimental cutt<strong>in</strong>g regimes<br />

(uncut, <strong>on</strong>e cut per year, three<br />

cuts per year)<br />

grassland western<br />

Scotland<br />

Microclimate Orthoptera grassland Netherlands<br />

Carabidae<br />

(Coleoptera);<br />

Araneae<br />

arable Switzerland<br />

abundance <strong>in</strong> relati<strong>on</strong> to<br />

habitat characteristics<br />

species richness and<br />

abundance <strong>in</strong> plots to which<br />

different levels <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>organic<br />

nitrogenous fertiliser have<br />

been applied (n<strong>on</strong>e, 50<br />

kg/ha/year or 155-400<br />

kg/ha/year)<br />

abundance <strong>in</strong> paired farms<br />

us<strong>in</strong>g organic and low-<strong>in</strong>put<br />

Integrated Crop Management<br />

(<strong>in</strong>clud<strong>in</strong>g <strong>in</strong>organic<br />

fertilisers)<br />

compositi<strong>on</strong> determ<strong>in</strong>ed by<br />

graz<strong>in</strong>g <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> plant<br />

species richness; abundance<br />

lower under most graz<strong>in</strong>g<br />

treatments <strong>in</strong> <strong>on</strong>e year, but<br />

less clear results <strong>in</strong> other year<br />

compositi<strong>on</strong> determ<strong>in</strong>ed by<br />

sward structure; abundance<br />

severely reduced under all<br />

graz<strong>in</strong>g treatments for spiders<br />

and Gracillariidae, and<br />

Auchenorrhyncha <strong>in</strong> <strong>on</strong>e year<br />

<strong>on</strong>ly<br />

lower diversity <strong>in</strong> cut plots,<br />

but no change <strong>in</strong> abundance<br />

(possible functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sample<br />

method)<br />

higher abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> larvae <strong>in</strong><br />

s<strong>in</strong>gle-cut silage fields<br />

compared with uncut or<br />

multiple cut<br />

reduced species richness and<br />

abundance at high levels <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

fertiliser (compared to n<strong>on</strong>e<br />

and low levels); species<br />

compositi<strong>on</strong> expla<strong>in</strong>ed by<br />

temperature, vegetati<strong>on</strong><br />

biomass, light ext<strong>in</strong>cti<strong>on</strong> and<br />

management <strong>in</strong>tensity<br />

higher abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> spiders<br />

and carabids (<strong>in</strong>clud<strong>in</strong>g large<br />

bodied species sensitive to<br />

agricultural <strong>in</strong>tensificati<strong>on</strong>) <strong>in</strong><br />

organic fields<br />

specialist feeders requir<strong>in</strong>g<br />

plants dependent <strong>on</strong> particular<br />

graz<strong>in</strong>g regimes<br />

structural requirements for<br />

phytophages and predators<br />

habitat requirements <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

various species; <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g><br />

activity <strong>in</strong> cut plots due to<br />

lower prey density<br />

life cycle characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

tipulids<br />

<strong>in</strong>ability <str<strong>on</strong>g>of</str<strong>on</strong>g> slow develop<strong>in</strong>g<br />

species to complete life cycle<br />

at cool ground temperatures<br />

created by dense sward<br />

proximity <str<strong>on</strong>g>of</str<strong>on</strong>g> semi-natural<br />

habitats <strong>on</strong> organic farms;<br />

microclimate <str<strong>on</strong>g>of</str<strong>on</strong>g> denser crops<br />

<strong>on</strong> n<strong>on</strong>-organic farms;<br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> prey abundance<br />

evidence 1<br />

Reference<br />

1 Gibs<strong>on</strong> et al.,<br />

1992<br />

1 Gibs<strong>on</strong> et al.,<br />

1992<br />

1 Haysom et al.,<br />

2004<br />

2 McCracken et<br />

al., 1995<br />

1 van W<strong>in</strong>gerden<br />

et al., 1992<br />

3 Pfiffner and<br />

Luka, 2003<br />

1 I classified the studies <strong>in</strong>to three tiers: 1. Str<strong>on</strong>g evidence, usually based <strong>on</strong> experimental pro<str<strong>on</strong>g>of</str<strong>on</strong>g>; 2. Intermediate evidence, generally an observed relati<strong>on</strong>ship <strong>in</strong> space and time; 3. Weak evidence, a suggested cause<br />

based <strong>on</strong> observed patterns. <str<strong>on</strong>g>The</str<strong>on</strong>g>se levels are not <strong>in</strong>tended as a judgement <strong>on</strong> the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> the research, and I judge the strength <str<strong>on</strong>g>of</str<strong>on</strong>g> evidence for <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> and associated mechanisms, which may not have<br />

been the purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> the study.<br />

43


Table 2.3. (c<strong>on</strong>t.) Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> fertiliser applicati<strong>on</strong> <strong>on</strong> <strong>in</strong>vertebrates <strong>in</strong> farmland<br />

Level <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

removal from<br />

fertiliser use<br />

Effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

management<br />

associated<br />

with fertiliser<br />

use<br />

Mechanism Group Habitat Locati<strong>on</strong> Process Effects Possible cause Strength<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Landscape<br />

c<strong>on</strong>text<br />

Organic vs<br />

c<strong>on</strong>venti<strong>on</strong>al<br />

farm<strong>in</strong>g<br />

Pergidae<br />

(Hymenoptera)<br />

Carabidae<br />

(Coleoptera)<br />

lowland<br />

farmland<br />

southern<br />

England<br />

abundance <strong>in</strong> grass and cereal<br />

crops; performance <str<strong>on</strong>g>of</str<strong>on</strong>g> larvae<br />

<strong>on</strong> various host plants; effect<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cultivati<strong>on</strong> <strong>on</strong> over-w<strong>in</strong>ter<br />

survival<br />

arable Germany relati<strong>on</strong>ship with n<strong>on</strong>-arable<br />

landscape features<br />

Araneae arable Germany abundance and species<br />

richness <strong>in</strong> organic and<br />

c<strong>on</strong>venti<strong>on</strong>al farms; also<br />

related to landscape features<br />

earthworms arable Canada abundance and diversity <strong>in</strong><br />

plots treated with <strong>in</strong>organic<br />

fertiliser or manure over 14<br />

years<br />

Auchenorrhyncha;<br />

Heteroptera;<br />

Coleoptera;<br />

Araneae<br />

nocturnal <strong>in</strong>sects Mixed<br />

and<br />

pastoral<br />

farms<br />

arable western<br />

England<br />

England<br />

and Wales<br />

Araneae arable western<br />

England<br />

earthworms,<br />

Coleoptera,<br />

Araneae<br />

arable Switzerland<br />

abundance <strong>in</strong> organic and<br />

c<strong>on</strong>venti<strong>on</strong>ally-managed plots<br />

abundance and species<br />

richness <strong>on</strong> organic compared<br />

to paired c<strong>on</strong>venti<strong>on</strong>al farms<br />

abundance and species<br />

richness <strong>in</strong> organic and<br />

c<strong>on</strong>venti<strong>on</strong>al farms;<br />

relati<strong>on</strong>ship with understorey<br />

vegetati<strong>on</strong> with<strong>in</strong> crop<br />

comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> abundance<br />

between organic and n<strong>on</strong>organic<br />

farm<strong>in</strong>g systems over<br />

a 21 year study<br />

abundance higher <strong>in</strong> grass<br />

fields; larvae grew better <strong>on</strong><br />

Lolium perenne than cereal<br />

crops; reduced over-w<strong>in</strong>ter<br />

survival <strong>in</strong> cultivated fields<br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> species richness and<br />

abundance (<strong>in</strong>dependent <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

farm management)<br />

higher abundance <strong>on</strong> organic<br />

farms; species richness<br />

positively related to n<strong>on</strong>arable<br />

landscape features<br />

higher abundance and<br />

diversity <strong>in</strong> manure-treated<br />

plots compared to both<br />

untreated plots and plots<br />

treated with <strong>in</strong>organic<br />

fertiliser<br />

higher abundance except for<br />

larval Coleoptera<br />

both measures higher <strong>on</strong><br />

organic farms<br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> abundance <strong>in</strong><br />

organic farms; abundance and<br />

species richness positively<br />

related to understorey density<br />

<strong>in</strong> both farm<strong>in</strong>g types<br />

higher abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> all<br />

groups <strong>in</strong> organic systems<br />

loss <str<strong>on</strong>g>of</str<strong>on</strong>g> grassland <strong>in</strong> arable<br />

landscapes<br />

exchange <str<strong>on</strong>g>of</str<strong>on</strong>g> species that use<br />

multiple habitats dur<strong>in</strong>g life<br />

cycle; <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> species pool<br />

more prey due to organic<br />

applicati<strong>on</strong>s, crop rotati<strong>on</strong>s<br />

and lack <str<strong>on</strong>g>of</str<strong>on</strong>g> pesticide use;<br />

ability to recol<strong>on</strong>ise from<br />

n<strong>on</strong>-arable features<br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> organic material <strong>in</strong><br />

the soil<br />

more diverse plant<br />

community<br />

variety <str<strong>on</strong>g>of</str<strong>on</strong>g> factors associated<br />

with organic farms, <strong>in</strong>clud<strong>in</strong>g<br />

diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> habitats, and lack<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> pesticide and herbicide use<br />

web build<strong>in</strong>g opportunities<br />

and presence <str<strong>on</strong>g>of</str<strong>on</strong>g> prey items;<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic<br />

management practices<br />

more diverse plant<br />

community<br />

evidence 1<br />

Reference<br />

2 Barker et al.,<br />

1999<br />

3 Purtauf et al.,<br />

2005<br />

2 Schmidt et al.,<br />

2005<br />

1 Estevez et al.,<br />

1996<br />

2 Asteraki et al.,<br />

2004<br />

2 Wickramas<strong>in</strong>ghe<br />

et al.,<br />

2004<br />

2 Feber et al.,<br />

1998<br />

2 Mäder et al.,<br />

2002<br />

1 I classified the studies <strong>in</strong>to three tiers: 1. Str<strong>on</strong>g evidence, usually based <strong>on</strong> experimental pro<str<strong>on</strong>g>of</str<strong>on</strong>g>; 2. Intermediate evidence, generally an observed relati<strong>on</strong>ship <strong>in</strong> space and time; 3. Weak evidence, a suggested cause<br />

based <strong>on</strong> observed patterns. <str<strong>on</strong>g>The</str<strong>on</strong>g>se levels are not <strong>in</strong>tended as a judgement <strong>on</strong> the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> the research, and I judge the strength <str<strong>on</strong>g>of</str<strong>on</strong>g> evidence for <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> and associated mechanisms, which may not have<br />

been the purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> the study.<br />

44


to NPK fertiliser (Sculli<strong>on</strong> and Ramshaw, 1987). This is thought to be due to a<br />

decrease <strong>in</strong> <strong>on</strong>e species, Aporrectodea calig<strong>in</strong>osa, c<strong>on</strong>sidered resp<strong>on</strong>sible for the<br />

majority <str<strong>on</strong>g>of</str<strong>on</strong>g> surface cast<strong>in</strong>g, possibly due to soil sal<strong>in</strong>ity. Other groups may also be<br />

directly affected by osmotic salt <str<strong>on</strong>g>effects</str<strong>on</strong>g> follow<strong>in</strong>g fertiliser applicati<strong>on</strong>, especially if<br />

dry c<strong>on</strong>diti<strong>on</strong>s follow applicati<strong>on</strong>. This was suggested as the cause for reduced<br />

numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> Collembola and Acari (ticks and mites) <strong>in</strong> treated cereal fields <strong>in</strong> Sweden<br />

<strong>in</strong> the first year <str<strong>on</strong>g>of</str<strong>on</strong>g> applicati<strong>on</strong> (Andren and Lagerl<str<strong>on</strong>g>of</str<strong>on</strong>g>, 1983). However, numbers <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

these groups were either higher <strong>in</strong> fertilised fields, or showed no difference, the<br />

follow<strong>in</strong>g year, when weather c<strong>on</strong>diti<strong>on</strong>s were more amenable. Soil desiccati<strong>on</strong><br />

associated with <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> plant growth <strong>in</strong> resp<strong>on</strong>se to fertilisati<strong>on</strong> has also been<br />

suggested as a cause <str<strong>on</strong>g>of</str<strong>on</strong>g> the negative resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> earthworms to <strong>in</strong>organic fertilisers<br />

(Nowak, 1976).<br />

2.4.2. Changes to plant species compositi<strong>on</strong>, vegetati<strong>on</strong> structure and nutritive value<br />

2.4.2.1. Resp<strong>on</strong>ses to plant species richness<br />

Invertebrate groups may have higher diversity and/or abundance <strong>in</strong> more diverse plant<br />

communities, probably because <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> opportunities for specialist species<br />

(Curry, 1994; Atk<strong>in</strong>s<strong>on</strong> et al., 2004). For example, <strong>in</strong> field marg<strong>in</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> southern<br />

England, butterfly and predatory beetle species richness and abundance were<br />

positively correlated with plant species richness (Kirkham et al., 1999).<br />

Auchenorrhyncha (leafhoppers, etc.), Heteroptera (true bugs) and Araneae abundance,<br />

and phytophagous Coleoptera diversity, were positively correlated with plant species<br />

richness <strong>in</strong> field marg<strong>in</strong>s <strong>in</strong> western England (Asteraki et al., 2004). In subalp<strong>in</strong>e<br />

Swiss meadows, Lepidoptera species richness showed a str<strong>on</strong>g associati<strong>on</strong> with plant<br />

species richness, and both <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> al<strong>on</strong>g a decreas<strong>in</strong>g gradient <str<strong>on</strong>g>of</str<strong>on</strong>g> fertilisati<strong>on</strong>, from<br />

early aband<strong>on</strong>ed meadow towards <strong>in</strong>tensively grazed meadows (Erhardt, 1985). <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

replacement <str<strong>on</strong>g>of</str<strong>on</strong>g> flower-rich, perennial field boundaries with pernicious annual weed<br />

species, has been suggested as a possible cause for the decl<strong>in</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> some satyrid<br />

butterfly species (Dover, 1996). However, the l<strong>in</strong>k between plant and <strong>in</strong>vertebrate<br />

species richness is not universal, or may be negative. In lowland grassland <strong>in</strong><br />

Hampshire, mow<strong>in</strong>g ma<strong>in</strong>ta<strong>in</strong>ed plant species richness, but the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> taller<br />

plants <strong>in</strong> relatively species-poor unmowed and fertilised plots supported more species<br />

45


<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>vertebrates (Fenner and Palmer, 1998). In German lowland grassland, plant<br />

species richness did not differ between <strong>in</strong>tensively and extensively grazed pasture, but<br />

<strong>in</strong>sect species richness was higher <strong>on</strong> extensively grazed pastures (Kruess and<br />

Tscharntke, 2002).<br />

2.4.2.2. Resp<strong>on</strong>ses to <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> sward height and density<br />

Sward architecture may affect <strong>in</strong>vertebrates more than species compositi<strong>on</strong><br />

(Southwood et al., 1979; Curry, 1994). Sward height rather than floristic compositi<strong>on</strong><br />

<strong>in</strong>fluenced the <strong>in</strong>vertebrate fauna <strong>in</strong> Irish grasslands, with similar treatments (<strong>in</strong> terms<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> effect <strong>on</strong> sward) hav<strong>in</strong>g more similar <strong>in</strong>vertebrate fauna; eurytopic, mobile species<br />

with short life cycles and high reproductive rates were favoured by high graz<strong>in</strong>g and<br />

mow<strong>in</strong>g regimes (Curry and O’Neill, 1979). Sward structure appears to have been<br />

important <strong>in</strong> determ<strong>in</strong><strong>in</strong>g the compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>vertebrate fauna <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental<br />

plots <strong>in</strong> grassland <strong>in</strong> Hampshire (Fenner and Palmer, 1998). Phytophagous<br />

<strong>in</strong>vertebrates formed a greater (and predators and parasitoids a lesser) proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the fauna <strong>in</strong> mowed and fertilised plots. <str<strong>on</strong>g>The</str<strong>on</strong>g> lack <str<strong>on</strong>g>of</str<strong>on</strong>g> predators and parasitoids <strong>in</strong><br />

resp<strong>on</strong>se to sward structure <strong>in</strong> mowed plots would have <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> the percentage <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

phytophages, while <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> plant biomass <strong>in</strong> fertilised plots would have benefited<br />

phytophages, aga<strong>in</strong> <strong>in</strong>creas<strong>in</strong>g their relative comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> the fauna, even though<br />

absolute abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> predators and parasitoids may have been higher <strong>in</strong> these plots.<br />

In dry grasslands <strong>in</strong> the Netherlands, high levels <str<strong>on</strong>g>of</str<strong>on</strong>g> fertiliser applicati<strong>on</strong> decreased the<br />

species richness and abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> Orthoptera (grasshoppers and crickets), with the<br />

change partly attributed to <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> sward density (van W<strong>in</strong>gerden et al., 1992). Slow<br />

develop<strong>in</strong>g species may be unable to complete their life cycle <strong>in</strong> the cooler ground<br />

c<strong>on</strong>diti<strong>on</strong>s created by dense swards. Grasshoppers require low vegetati<strong>on</strong> <strong>in</strong> spr<strong>in</strong>g<br />

and autumn, to <strong>in</strong>crease egg development rate, but more vegetati<strong>on</strong> <strong>in</strong> summer, to<br />

<strong>in</strong>crease survival <str<strong>on</strong>g>of</str<strong>on</strong>g> nymph and imag<strong>in</strong>e stages (van W<strong>in</strong>gerden et al., 1992). <str<strong>on</strong>g>The</str<strong>on</strong>g> fast<br />

growth <str<strong>on</strong>g>of</str<strong>on</strong>g> grass <strong>in</strong> resp<strong>on</strong>se to fertilisers may not provide these. Auchenorrhyncha are<br />

also sensitive to changes <strong>in</strong> sward structure (Curry, 1994).<br />

2.4.2.3. Resp<strong>on</strong>ses to changes to host plant abundance/biomass<br />

Invertebrates may benefit from <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> biomass <str<strong>on</strong>g>of</str<strong>on</strong>g> host plants <strong>in</strong> resp<strong>on</strong>se to<br />

fertiliser additi<strong>on</strong>s. Auchenorrhyncha abundance <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> <strong>in</strong> resp<strong>on</strong>se to<br />

experimental nitrogen additi<strong>on</strong>s to lowland grassland <strong>in</strong> Berkshire, due to <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g><br />

46


food quality and availability <str<strong>on</strong>g>of</str<strong>on</strong>g> liv<strong>in</strong>g area, although diversity decreased and species<br />

compositi<strong>on</strong> changed (Prestidge, 1982). <str<strong>on</strong>g>The</str<strong>on</strong>g> study site was not subject to the<br />

management regimes that are usually <strong>in</strong> place <strong>on</strong> improved grassland: cutt<strong>in</strong>g, graz<strong>in</strong>g<br />

or both. Similar results were recorded <strong>in</strong> Polish meadows, where emergent<br />

Auchenorrhyncha biomass was higher <strong>in</strong> fertilised plots; this was ascribed to an<br />

<strong>in</strong>crease <strong>in</strong> green plant biomass (Andrzejewska, 1976b). Community compositi<strong>on</strong><br />

changed, with species typical <str<strong>on</strong>g>of</str<strong>on</strong>g> simplified habitats more abundant <strong>in</strong> fertilised plots.<br />

Saprophagous Diptera abundance was also greater <strong>in</strong> fertilised fields, because the<br />

greater primary productivity was translated <strong>in</strong>to decompos<strong>in</strong>g material <strong>in</strong> the absence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> graz<strong>in</strong>g or cutt<strong>in</strong>g (Olechowicz, 1976). In Dutch hay meadow <str<strong>on</strong>g>of</str<strong>on</strong>g> differ<strong>in</strong>g ages<br />

post-fertiliser treatment (7, 11, 24 and 29 years), Diptera, Araneae, Hymenoptera and<br />

Coleoptera, were more abundant <strong>in</strong> more recently fertilised plots (Hemerik and<br />

Brussaard, 2002). Abundance and diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> isopods, centipedes and millipedes<br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> over the sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> plots, except that the least recently fertilised plot had<br />

the lowest abundance and diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> almost all groups, which may reflect l<strong>on</strong>g term<br />

oligotrophicati<strong>on</strong> (Berg and Hemerik, 2004).<br />

Fertiliser use may not benefit all <strong>in</strong>vertebrate groups, as the <strong>in</strong>crease <strong>in</strong> plant biomass<br />

is c<strong>on</strong>centrated <strong>in</strong> the above-ground parts <str<strong>on</strong>g>of</str<strong>on</strong>g> the plant. In a Polish meadow, additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

m<strong>in</strong>eral fertiliser (nitrogenous, phosphatic and potassic) led to a decrease <strong>in</strong> root<br />

biomass, and a corresp<strong>on</strong>d<strong>in</strong>g decrease <strong>in</strong> the biomass <str<strong>on</strong>g>of</str<strong>on</strong>g> soil <strong>in</strong>vertebrates<br />

(Coleoptera larvae and Lepidoptera larvae) (Andrzejewska, 1976a). Abundances <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

some other groups (Orthoptera, Auchenorrhyncha, Aphididae [aphids] and aboveground<br />

Lepidoptera larvae) were not greatly different between fertilised and<br />

unfertilised plots, but many more <strong>in</strong>sects emerged from unfertilised plots. Also <strong>in</strong><br />

Poland, soil-dwell<strong>in</strong>g phytophagous <strong>in</strong>sect larvae decreased <strong>in</strong> numbers <strong>in</strong> a fertilised<br />

meadow compared to a c<strong>on</strong>trol, which also had higher root biomass (Nowak, 1976).<br />

C<strong>on</strong>versely, <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> nitrogen <strong>in</strong>put to semi-improved grassland <strong>in</strong> Scotland led to<br />

higher biomass <str<strong>on</strong>g>of</str<strong>on</strong>g> soil microarthropods (Acari [mites] and Collembola) (Cole et al.,<br />

2005).<br />

Species that are host-plant specific will obviously be affected if these host plant<br />

species <strong>in</strong>crease or reduce <strong>in</strong> abundance due to changes associated with fertiliser <strong>in</strong>put<br />

and management practices (Curry, 1994). This has been observed <strong>in</strong> Swiss meadows<br />

47


(di Giulio et al, 2001). In the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> graz<strong>in</strong>g, two species <str<strong>on</strong>g>of</str<strong>on</strong>g> seed weevil <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g><br />

<strong>in</strong> abundance <strong>on</strong> chalk grassland <strong>in</strong> Brita<strong>in</strong>, <strong>in</strong> resp<strong>on</strong>se to <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> abundance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

their larval food plants, Lotus corniculatus and Campanula rotundifolia (Morris,<br />

1967).<br />

2.4.2.4. Resp<strong>on</strong>ses to changes <strong>in</strong> nitrogen c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong><br />

Invertebrate populati<strong>on</strong>s may also be directly affected by the available nitrogen <strong>in</strong><br />

host plants (Curry, 1994). Phytophages are likely to be favoured by the <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g><br />

foliar nitrogen c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> the vegetati<strong>on</strong>. In fertilised grasslands <strong>in</strong> Poland,<br />

Auchenorrhyncha were more abundant post-cutt<strong>in</strong>g (after an <strong>in</strong>itial decl<strong>in</strong>e), due to<br />

the higher nutritive value <str<strong>on</strong>g>of</str<strong>on</strong>g> the regrow<strong>in</strong>g grass, although the community<br />

compositi<strong>on</strong> differed greatly from that <str<strong>on</strong>g>of</str<strong>on</strong>g> semi-natural grasslands (Andrzejewska,<br />

1979). Invertebrate phytophages supplied with nitrogen-rich food had shorter larval<br />

development, larger body size, and <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> fecundity. Root-feed<strong>in</strong>g tipulid<br />

(cranefly) and bibi<strong>on</strong>id (march fly) larvae both <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> <strong>in</strong> grassland where organic<br />

fertilisers were applied, probably due to <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> sward productivity and <str<strong>on</strong>g>nutrient</str<strong>on</strong>g><br />

c<strong>on</strong>tent (D’Arcy-Burt and Blackshaw, 1991; McCracken et al., 1995). Inorganic<br />

fertiliser applicati<strong>on</strong> appears to have no effect <strong>on</strong> tipulid larvae abundance (L<strong>in</strong>zell<br />

and Madge, 1986; McCracken et al., 1995; Paoletti, 1999). Emergent diptera larvae<br />

biomass was higher <strong>in</strong> heavily fertilised Polish meadow plots (Olechowicz, 1976), as<br />

was that <str<strong>on</strong>g>of</str<strong>on</strong>g> Apterygota from the same plots, although Acari decl<strong>in</strong>ed c<strong>on</strong>siderably<br />

(Zyromska-Rudzka, 1976).<br />

2.4.3. Changes to mow<strong>in</strong>g/graz<strong>in</strong>g regime<br />

Increased productivity associated with fertilisers may not <strong>in</strong>crease <strong>in</strong>vertebrate<br />

biomass, or may vary <strong>in</strong> its <str<strong>on</strong>g>effects</str<strong>on</strong>g> between groups, because much <str<strong>on</strong>g>of</str<strong>on</strong>g> the primary<br />

producti<strong>on</strong> is removed from the site through graz<strong>in</strong>g or cutt<strong>in</strong>g. <str<strong>on</strong>g>The</str<strong>on</strong>g>re can be benefits<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> both graz<strong>in</strong>g and cutt<strong>in</strong>g to biodiversity. Regrowth <str<strong>on</strong>g>of</str<strong>on</strong>g> grazed or cut plants provides<br />

young and <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>-rich plant tissue, while selective graz<strong>in</strong>g will lead to structural<br />

heterogeneity. Graz<strong>in</strong>g and mow<strong>in</strong>g may help to ma<strong>in</strong>ta<strong>in</strong> floral diversity. However,<br />

<strong>in</strong>tense graz<strong>in</strong>g or frequent cutt<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> grasslands dom<strong>in</strong>ated by few plant species has<br />

very different <str<strong>on</strong>g>effects</str<strong>on</strong>g>. One <str<strong>on</strong>g>of</str<strong>on</strong>g> the major <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> fertiliser use <strong>on</strong> management<br />

48


practices is the trend towards higher stock<strong>in</strong>g rates, the prep<strong>on</strong>derance <str<strong>on</strong>g>of</str<strong>on</strong>g> ensilage,<br />

and more frequent and earlier cutt<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> silage fields. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> graz<strong>in</strong>g and<br />

cutt<strong>in</strong>g <strong>on</strong> <strong>in</strong>vertebrates <strong>in</strong>clude direct physical disturbance, such as defoliati<strong>on</strong> and<br />

trampl<strong>in</strong>g. Both reduce the size and complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> the habitat that is available to<br />

<strong>in</strong>vertebrates <strong>in</strong> grassland, and also the plant biomass, and tend to lower <strong>in</strong>sect<br />

biomass as well (Curry, 1994). Increased stock<strong>in</strong>g rates may compact soil and reduce<br />

availability <str<strong>on</strong>g>of</str<strong>on</strong>g> soil <strong>in</strong>vertebrates, as well as alter<strong>in</strong>g their populati<strong>on</strong>s (McCracken and<br />

Tallow<strong>in</strong>, 2004; Tallow<strong>in</strong> et al., 2005). In the l<strong>on</strong>g term, graz<strong>in</strong>g and cutt<strong>in</strong>g regimes<br />

may alter the plant species compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pastures, which can have additi<strong>on</strong>al <str<strong>on</strong>g>effects</str<strong>on</strong>g><br />

<strong>on</strong> vegetati<strong>on</strong> structure.<br />

Mow<strong>in</strong>g is similar to graz<strong>in</strong>g <strong>in</strong> that defoliati<strong>on</strong> alters the above-ground biomass, but<br />

it is n<strong>on</strong>-selective and therefore does not result <strong>in</strong> sward heterogeneity. It also does not<br />

result <strong>in</strong> trampl<strong>in</strong>g or compacti<strong>on</strong>, processes that may be beneficial for some aspects<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>vertebrate life histories, such as Orthoptera ovipositi<strong>on</strong> (Curry, 1994). <str<strong>on</strong>g>The</str<strong>on</strong>g>re may<br />

be a temporary flush <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>vertebrates follow<strong>in</strong>g cutt<strong>in</strong>g, but the frequent and early<br />

cutt<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> silage fields leads to a general reducti<strong>on</strong> <strong>in</strong> organic matter and hence soil<br />

<strong>in</strong>vertebrate biomass (Vickery et al. 2001). Silage fields are also <str<strong>on</strong>g>of</str<strong>on</strong>g>ten heavy rolled<br />

early <strong>in</strong> the seas<strong>on</strong>, which leads to a marked decl<strong>in</strong>e <strong>in</strong> leatherjacket numbers<br />

(Clements and Cook, 1996). Improved fields are also likely to be reseeded more<br />

frequently, and therefore are younger <strong>on</strong> average than unimproved fields (Hopk<strong>in</strong>s et<br />

al., 1985; Tallow<strong>in</strong> et al., 2005). Lumbricid earthworm and adult Coleoptera numbers<br />

both showed positive relati<strong>on</strong>ships with grass age <strong>in</strong> southern England farms (Tucker,<br />

1992), while <strong>in</strong> German lowland grasslands, abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>sects was greater <strong>in</strong> l<strong>on</strong>gterm<br />

ungrazed grassland than grazed pastures, probably due to <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> resource<br />

productivity and habitat complexity (Kruess and Tscharntke, 2002). It can be difficult<br />

to dist<strong>in</strong>guish the c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the various comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> agricultural<br />

<strong>in</strong>tensificati<strong>on</strong>, especially when studies use a gradient <str<strong>on</strong>g>of</str<strong>on</strong>g> management <strong>in</strong>tensity. For<br />

example, <strong>in</strong> subalp<strong>in</strong>e Swiss meadows Lepidoptera species richness decreased with<br />

management <strong>in</strong>tensity <strong>in</strong> the form <str<strong>on</strong>g>of</str<strong>on</strong>g> graz<strong>in</strong>g and fertiliser <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> (Erhardt, 1985).<br />

Ultimately both are associated with <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> fertilisers, but the mechanisms<br />

driv<strong>in</strong>g the changes <strong>in</strong> Lepidoptera are not certa<strong>in</strong>.<br />

49


2.4.3.1. Direct destructi<strong>on</strong> and removal<br />

Mow<strong>in</strong>g and graz<strong>in</strong>g can have a direct effect <strong>on</strong> <strong>in</strong>vertebrates, by kill<strong>in</strong>g them or<br />

remov<strong>in</strong>g them from the site. <str<strong>on</strong>g>The</str<strong>on</strong>g> life history characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>vertebrates play<br />

an important role determ<strong>in</strong><strong>in</strong>g the impact. Species reliant <strong>on</strong> the aerial structures <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

plants are the most likely to be affected (Morris, 1967). In calcareous semi-natural<br />

grassland <strong>in</strong> Germany, univolt<strong>in</strong>e phytophagous <strong>in</strong>sect species develop<strong>in</strong>g <strong>in</strong><br />

knapweed (Centaurea scabiosa) seed heads, which grow 80 cm tall, were effectively<br />

removed by mow<strong>in</strong>g (Volkl et al., 1993). By c<strong>on</strong>trast, bivolt<strong>in</strong>e <strong>in</strong>sects, and species<br />

dependent <strong>on</strong> dwarf thistle (Cirsium acaule) seed heads, which <strong>on</strong>ly grow 10 cm tall,<br />

were not directly affected by mow<strong>in</strong>g or graz<strong>in</strong>g. In German lowland grassland,<br />

differences <strong>in</strong> <strong>in</strong>sect species richness could not be attributed to floristic or vegetati<strong>on</strong><br />

changes, and it was suggested that cattle graz<strong>in</strong>g affected trophic <strong>in</strong>teracti<strong>on</strong>s by<br />

disturb<strong>in</strong>g <strong>in</strong>sects feed<strong>in</strong>g <strong>on</strong> pasture (Kruess and Tscharntke, 2002). L<strong>on</strong>g-term<br />

(more than five years) ungrazed grassland did show differences <strong>in</strong> sward height (but<br />

not species richness) that could expla<strong>in</strong> the greater abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>sects <strong>on</strong> such<br />

grasslands compared with grazed pastures.<br />

Increased rates <str<strong>on</strong>g>of</str<strong>on</strong>g> cutt<strong>in</strong>g, or higher stock<strong>in</strong>g rates, <strong>in</strong>crease the possibility that even<br />

<strong>in</strong>vertebrates reliant <strong>on</strong> relatively small grassland plants will be unable to complete<br />

their life cycle. Larger species, with l<strong>on</strong>ger life cycles, are more sensitive to mow<strong>in</strong>g<br />

and <strong>in</strong>tensive graz<strong>in</strong>g, and are therefore replaced by smaller species (Siepel, 1990).<br />

Large <strong>in</strong>sects are less abundant <strong>in</strong> <strong>in</strong>tensively managed grasslands, with high <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

fertilisers (Be<strong>in</strong>tema et al., 1990; Blake et al., 1994; Blake et al., 1996). In northern<br />

Brita<strong>in</strong>, carabid beetles <strong>on</strong> <strong>in</strong>tensively managed grassland (judged by sward age,<br />

fertiliser applicati<strong>on</strong>, graz<strong>in</strong>g and cutt<strong>in</strong>g) were <strong>on</strong> average <strong>on</strong>ly 40% as heavy as<br />

those under the least <strong>in</strong>tensive management (Blake and Foster, 1998). Large beetles<br />

generally breed <strong>in</strong> autumn and are flightless, and are therefore susceptible to the rapid<br />

removal <str<strong>on</strong>g>of</str<strong>on</strong>g> grass by <strong>in</strong>tensive graz<strong>in</strong>g or cutt<strong>in</strong>g (Kegel, 1990, <strong>in</strong> Blake and Foster,<br />

1998), both <str<strong>on</strong>g>of</str<strong>on</strong>g> which are facilitated by the applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fertiliser. While abundances<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> almost all <strong>in</strong>vertebrate groups were higher <strong>in</strong> a cut grass field <strong>in</strong> Berkshire, biomass<br />

was lower (Southwood and van Emden, 1967). However, some surface-layer<br />

<strong>in</strong>vertebrates can recover quickly after an <strong>in</strong>itial dramatic decl<strong>in</strong>e follow<strong>in</strong>g cutt<strong>in</strong>g<br />

(Curry and Tuohy, 1978; O’Neill, 1991, <strong>in</strong> Curry, 1994).<br />

50


In semi-natural grasslands <strong>in</strong> Bedfordshire, cutt<strong>in</strong>g <strong>in</strong> July c<strong>on</strong>sistently reduced the<br />

abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> Auchenorrhyncha and Heteroptera (Morris and Lakhani, 1979), as it<br />

disrupted the development <str<strong>on</strong>g>of</str<strong>on</strong>g> species <strong>in</strong> which adults emerge <strong>in</strong> late summer. Not all<br />

species were equally affected, as some species are typical <str<strong>on</strong>g>of</str<strong>on</strong>g> short grass. Coleoptera <strong>in</strong><br />

the same habitat were much less affected by cutt<strong>in</strong>g, probably because this group is<br />

less vertically stratified with<strong>in</strong> the sward (Morris and Risp<strong>in</strong>, 1987). Disturbance by<br />

cutt<strong>in</strong>g, al<strong>on</strong>g with changes to sward structure, were more important than plant<br />

species compositi<strong>on</strong> <strong>in</strong> determ<strong>in</strong><strong>in</strong>g the abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> Hemiptera <strong>in</strong> Swiss meadows<br />

(di Giulio et al., 2001). Even phytophagous species that might otherwise be expected<br />

to benefit from the applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen to meadows can be negatively affected by<br />

disrupti<strong>on</strong>s to their life cycles (Wils<strong>on</strong> et al., 1999; di Giulio et al., 2001).<br />

2.4.3.2. Changes to plant species richness and vegetati<strong>on</strong> structure<br />

Graz<strong>in</strong>g tends to <strong>in</strong>crease plant species richness while reduc<strong>in</strong>g structural diversity,<br />

and the resp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>vertebrates to graz<strong>in</strong>g depend <strong>on</strong> their biology. In Oxfordshire<br />

grassland, the assemblages <str<strong>on</strong>g>of</str<strong>on</strong>g> groups that <strong>in</strong>clude a high proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> feed<strong>in</strong>g<br />

specialists, such as Gracillariidae (leaf m<strong>in</strong>ers) and herbivorous Coleoptera, were<br />

str<strong>on</strong>gly determ<strong>in</strong>ed by the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> graz<strong>in</strong>g <strong>on</strong> plant species compositi<strong>on</strong> (Gibs<strong>on</strong> et<br />

al., 1992). <str<strong>on</strong>g>The</str<strong>on</strong>g> community compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Auchenorrhyncha, Heteroptera and<br />

Araneae, which require particular sward structures, were determ<strong>in</strong>ed by structural<br />

measures related to graz<strong>in</strong>g. Abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> all groups was lower under at least <strong>on</strong>e<br />

graz<strong>in</strong>g treatment <strong>in</strong> at least <strong>on</strong>e year (<str<strong>on</strong>g>of</str<strong>on</strong>g> two), but the <str<strong>on</strong>g>effects</str<strong>on</strong>g> were str<strong>on</strong>gest for<br />

Araneae and Gracillariidae (which were <strong>on</strong>ly exam<strong>in</strong>ed <strong>in</strong> <strong>on</strong>e year) (Gibs<strong>on</strong> et al.,<br />

1992). Arachnids are <strong>in</strong> decl<strong>in</strong>e <strong>in</strong> farmland, and are affected by the loss <str<strong>on</strong>g>of</str<strong>on</strong>g> diverse<br />

structure that results both from dense swards as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> fertilisati<strong>on</strong>, and <strong>in</strong>tensive<br />

graz<strong>in</strong>g and cutt<strong>in</strong>g regimes (Wils<strong>on</strong> et al., 1999).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> impact <str<strong>on</strong>g>of</str<strong>on</strong>g> cutt<strong>in</strong>g <strong>on</strong> epigeal <strong>in</strong>vertebrates depends <strong>on</strong> the nature and tim<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

cutt<strong>in</strong>g, and their own life history characteristics, and can be difficult to dist<strong>in</strong>guish<br />

from the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> destructi<strong>on</strong> and disturbance described above. In grassland field<br />

marg<strong>in</strong>s <strong>in</strong> Dumfries, carabid diversity was higher <strong>in</strong> plots that were uncut than <strong>in</strong><br />

those that were cut for silage (either <strong>on</strong>ce or three times per year) (Haysom et al.,<br />

2004). Abundance did not differ between the treatments, although this may reflect<br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> activity <str<strong>on</strong>g>of</str<strong>on</strong>g> predatory species <strong>in</strong> short grass where prey density was lower.<br />

51


Silage cutt<strong>in</strong>g regime had a marked effect <strong>on</strong> tipulid larvae abundance <strong>in</strong> western<br />

Scottish pastures, with s<strong>in</strong>gle-cut pastures support<strong>in</strong>g more larvae than either uncut or<br />

multiple-cut pastures (McCracken et al., 1995). This was expla<strong>in</strong>ed with reference to<br />

the life cycle <str<strong>on</strong>g>of</str<strong>on</strong>g> the tipulid, as the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g grass dur<strong>in</strong>g the egg lay<strong>in</strong>g period,<br />

and the lack <str<strong>on</strong>g>of</str<strong>on</strong>g> disturbance follow<strong>in</strong>g the s<strong>in</strong>gle cut favoured ovipositi<strong>on</strong>.<br />

2.4.3.3. Microclimate changes<br />

Mow<strong>in</strong>g and graz<strong>in</strong>g alter microclimate; short swards are less humid and experience<br />

more extreme day/night temperature differences. Populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>sect species not<br />

affected directly by graz<strong>in</strong>g or mow<strong>in</strong>g may <strong>in</strong>crease or decrease <strong>in</strong> resp<strong>on</strong>se to either<br />

depend<strong>in</strong>g <strong>on</strong> their resp<strong>on</strong>se to microclimatic changes (Volkl et al., 1993).<br />

Xerothermophilic bugs benefit from the warm, dry microclimate provided by<br />

heterogeneous vegetati<strong>on</strong> <strong>in</strong> extensively-managed meadows, while the homogeneity<br />

<strong>in</strong>troduced by heavy graz<strong>in</strong>g or frequent cutt<strong>in</strong>g may be detrimental to these species<br />

(di Giulio et al., 2001). Grasshoppers are affected by microclimate changes <strong>in</strong><br />

<strong>in</strong>tensively managed grasslands, as the denser swards aris<strong>in</strong>g from graz<strong>in</strong>g and/or<br />

cutt<strong>in</strong>g result <strong>in</strong> cooler temperatures that do not allow them to complete their life<br />

cycles (van W<strong>in</strong>gerden et al., 1992). Microclimatic <str<strong>on</strong>g>effects</str<strong>on</strong>g> due to denser vegetati<strong>on</strong> <strong>on</strong><br />

n<strong>on</strong>-organic arable farms <strong>in</strong> Switzerland was proposed as an explanati<strong>on</strong> for the<br />

reduced abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> xerothermophilic carabid and lycosid beetles (Pfiffner and<br />

Luka, 2003). Microclimate was c<strong>on</strong>sidered to affect tipulid larvae abundance <strong>in</strong><br />

western Scottish pastures, with l<strong>on</strong>ger and denser swards support<strong>in</strong>g more larvae <strong>in</strong><br />

w<strong>in</strong>ter (McCracken et al., 1995).<br />

2.4.4. Loss <str<strong>on</strong>g>of</str<strong>on</strong>g> mixed farm<strong>in</strong>g systems and changes to traditi<strong>on</strong>al crop rotati<strong>on</strong><br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> polarisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> farm<strong>in</strong>g <strong>in</strong>to arable and pastoral systems can have <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong><br />

<strong>in</strong>vertebrate communities and abundances, although the <str<strong>on</strong>g>effects</str<strong>on</strong>g> are complex and may<br />

be difficult to dist<strong>in</strong>guish. <str<strong>on</strong>g>The</str<strong>on</strong>g> loss <str<strong>on</strong>g>of</str<strong>on</strong>g> mixed farm<strong>in</strong>g landscapes <strong>in</strong> the UK has<br />

c<strong>on</strong>tributed to the decl<strong>in</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> Coleoptera (Wils<strong>on</strong> et al., 1999). Pergidae (sawfly), the<br />

larvae <str<strong>on</strong>g>of</str<strong>on</strong>g> which are important food items for several decl<strong>in</strong><strong>in</strong>g farmland species, are<br />

also affected by the loss <str<strong>on</strong>g>of</str<strong>on</strong>g> mixed farm<strong>in</strong>g systems and the loss <str<strong>on</strong>g>of</str<strong>on</strong>g> traditi<strong>on</strong>al crop<br />

52


otati<strong>on</strong> (Barker et al., 1999), although the reducti<strong>on</strong> <strong>in</strong> under sow<strong>in</strong>g has also affected<br />

this group, as the emerg<strong>in</strong>g larvae are destroyed by plough<strong>in</strong>g or have little food.<br />

In German arable farmland, spider species richness was higher where n<strong>on</strong>-arable<br />

landscape features were present <strong>in</strong> the landscape (Schmidt et al., 2005), and a<br />

literature review found that spider abundance was <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> by agricultural<br />

diversificati<strong>on</strong> <strong>in</strong> 63% <str<strong>on</strong>g>of</str<strong>on</strong>g> studies (Sunderland and Samu, 2000). All but <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> 26<br />

spider species <strong>in</strong> Germany were more abundant <strong>in</strong> perennial habitats (<strong>in</strong>clud<strong>in</strong>g<br />

fertilised hay meadows subject to mow<strong>in</strong>g three times per year) than arable (Schmidt<br />

and Tscharntke, 2005), suggest<strong>in</strong>g that the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> perennial habitats with<strong>in</strong> the<br />

landscape could improve spider populati<strong>on</strong>s at the landscape scale. Parasitoid wasps,<br />

lady<strong>birds</strong> and ground beetles also benefit from landscape diversificati<strong>on</strong> (Purtauf et<br />

al., 2005; Schmidt et al., 2005). <str<strong>on</strong>g>The</str<strong>on</strong>g> <strong>in</strong>crease <strong>in</strong> carabid species richness and<br />

abundance <strong>in</strong> mixed landscapes was <strong>in</strong>dependent <str<strong>on</strong>g>of</str<strong>on</strong>g> any effect <str<strong>on</strong>g>of</str<strong>on</strong>g> organic aga<strong>in</strong>st<br />

c<strong>on</strong>venti<strong>on</strong>al farm<strong>in</strong>g <strong>in</strong> at least <strong>on</strong>e study (Purtauf et al., 2005). This effect was<br />

pr<strong>on</strong>ounced for spr<strong>in</strong>g breeders, which migrate <strong>in</strong>to the fields from surround<strong>in</strong>g<br />

hibernati<strong>on</strong> sites, and the exchange <str<strong>on</strong>g>of</str<strong>on</strong>g> species that use multiple habitats dur<strong>in</strong>g their<br />

life cycle is suggested as <strong>on</strong>e cause for the <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> carabid species richness <strong>in</strong><br />

diverse landscapes (Purtauf et al., 2005). W<strong>in</strong>ter tillage means that <strong>on</strong>ly arthropods<br />

that can tolerate w<strong>in</strong>ter cultivati<strong>on</strong>, or those that can escape to neighbour<strong>in</strong>g areas to<br />

overw<strong>in</strong>ter (opportunities for which are less <strong>in</strong> the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> mixed farm<strong>in</strong>g<br />

systems), can persist (Holland, 2004).<br />

2.4.5. Organic vs n<strong>on</strong>-organic farm<strong>in</strong>g methods<br />

Organic and <strong>in</strong>organic fertilisers may have similar <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g><br />

enrichment, but organic fertilisers provide food for decompos<strong>in</strong>g elements <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

<strong>in</strong>vertebrate community, and the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> <strong>in</strong>vertebrates are more frequently<br />

beneficial (Vickery et al., 2001). Earthworms generally benefit from moderate levels<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>in</strong>eral fertilisers <strong>in</strong> grassland, but at high levels numbers can be depressed<br />

(Edwards and L<str<strong>on</strong>g>of</str<strong>on</strong>g>ty, 1975; Nowak, 1976; Edwards, 1983; Curry, 1994). Where<br />

organic fertiliser is applied, there is a shift <strong>in</strong> compositi<strong>on</strong> (Edwards and L<str<strong>on</strong>g>of</str<strong>on</strong>g>ty, 1982;<br />

Curry, 1994), and <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> behaviour. Applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic manure grassland<br />

encouraged earthworm cast<strong>in</strong>g and burrow<strong>in</strong>g to the surface, while <strong>in</strong>organic fertiliser<br />

53


discouraged these activities (Sculli<strong>on</strong> and Ramshaw, 1987). Adverse chemical<br />

c<strong>on</strong>diti<strong>on</strong>s <strong>in</strong> the soil may <str<strong>on</strong>g>of</str<strong>on</strong>g>fset the <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> food supply associated with <strong>in</strong>organic<br />

fertiliser applicati<strong>on</strong>, while organic applicati<strong>on</strong>s c<strong>on</strong>tribute both directly and <str<strong>on</strong>g><strong>in</strong>direct</str<strong>on</strong>g>ly<br />

to earthworms’ food supply. Most studies have compared organic and n<strong>on</strong>-organic<br />

systems, but a study <strong>in</strong> Canada found that l<strong>on</strong>g-term (14 years) manure applicati<strong>on</strong><br />

improved soil earthworm populati<strong>on</strong>s and density compared to both untreated plots<br />

and plots treated with <strong>in</strong>organic fertiliser (Estevez et al., 1996).<br />

Organic arable farms <strong>in</strong> Germany had higher spider density, which could not be<br />

entirely ascribed to lack <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>secticide use (Schmidt et al., 2005), and may also be due<br />

to greater abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> saprophagous <strong>in</strong>sects, especially Collembola and midges<br />

(Diptera) <strong>in</strong> regimes that use crop rotati<strong>on</strong>s and organic fertilisers. Spread<strong>in</strong>g organic<br />

manure had positive <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> the abundance and diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> carabid faunas <str<strong>on</strong>g>of</str<strong>on</strong>g> arable<br />

land (Hance and Gregoire-Wibo, 1987). In Switzerland, a l<strong>on</strong>g term comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

organic and c<strong>on</strong>venti<strong>on</strong>al farm<strong>in</strong>g found higher biomass and abundance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

earthworms, and abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> carabids, staphyl<strong>in</strong>ids and spiders <strong>in</strong> organic plots<br />

(Mäder et al., 2002). In western England, <strong>in</strong>vertebrate abundance (except for larval<br />

Coleoptera) was higher <strong>in</strong> organically managed field marg<strong>in</strong> plots than <strong>in</strong><br />

c<strong>on</strong>venti<strong>on</strong>ally-managed <strong>on</strong>es (Asteraki et al., 2004). In paired farms <strong>in</strong> southern<br />

England and Wales, nocturnal <strong>in</strong>sect abundance and species richness were<br />

significantly higher <strong>on</strong> organic than c<strong>on</strong>venti<strong>on</strong>ally-managed farms (Wickramas<strong>in</strong>ghe<br />

et al., 2004).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> relatively beneficial nature <str<strong>on</strong>g>of</str<strong>on</strong>g> organic compared with c<strong>on</strong>venti<strong>on</strong>al farm<strong>in</strong>g is not<br />

universal. Farm management was <str<strong>on</strong>g>of</str<strong>on</strong>g> relatively little importance <strong>in</strong> expla<strong>in</strong><strong>in</strong>g species<br />

compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> carabids and butterflies <strong>in</strong> Swedish farms, compared with habitat type<br />

and surround<strong>in</strong>g landscape features (Weibull and Östman, 2003). A meta-analysis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic agriculture <strong>on</strong> biodiversity found that predatory <strong>in</strong>sects and soil<br />

earthworms generally resp<strong>on</strong>ded well to organic farm<strong>in</strong>g systems, but that n<strong>on</strong>predatory<br />

<strong>in</strong>sects did not (Bengtss<strong>on</strong> et al., 2005). At any rate, the benefits <str<strong>on</strong>g>of</str<strong>on</strong>g> organic<br />

farm<strong>in</strong>g for <strong>in</strong>vertebrates may arise from characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> organic farm<strong>in</strong>g such as<br />

lack <str<strong>on</strong>g>of</str<strong>on</strong>g> pesticide and herbicide use and greater landscape and structural diversity<br />

(Pfiffner and Luka, 2003; Wickramas<strong>in</strong>ghe et al., 2004). Despite this, I feel that it is<br />

reas<strong>on</strong>able to c<strong>on</strong>clude that the use <str<strong>on</strong>g>of</str<strong>on</strong>g> organic fertilisers <strong>in</strong> moderate quantities is<br />

54


likely to be more beneficial to the abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> a range <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>vertebrates than either<br />

<strong>in</strong>organic fertilisers or no applicati<strong>on</strong>.<br />

2.4.6. Summary<br />

Few <strong>in</strong>vertebrates suffer direct mortality from the applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fertilisers, although<br />

some soil <strong>in</strong>vertebrates, notably earthworms, are sensitive to heavy applicati<strong>on</strong>s.<br />

Many phytophagous <strong>in</strong>sects are favoured by the <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> growth and nutritive value<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> fertilised crops, although diversity may be reduced if plant species required by<br />

specialist <strong>in</strong>vertebrates are lost. <str<strong>on</strong>g>The</str<strong>on</strong>g> denser growth <str<strong>on</strong>g>of</str<strong>on</strong>g> fertilised crops may have <str<strong>on</strong>g>effects</str<strong>on</strong>g><br />

<strong>on</strong> <strong>in</strong>vertebrates that require bare ground or particular sward structure. Intense graz<strong>in</strong>g<br />

and frequent cutt<strong>in</strong>g directly disturb and remove <strong>in</strong>vertebrates, and the result<strong>in</strong>g sward<br />

structure disadvantages a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> species. Reduced abundance and/or diversity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> phytophagous <strong>in</strong>vertebrates can have <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> higher trophic levels. Changes to<br />

sward structure probably have the most significant <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> most <strong>in</strong>vertebrate<br />

groups, and the role that fertiliser applicati<strong>on</strong>s ultimately plays <strong>in</strong> determ<strong>in</strong><strong>in</strong>g sward<br />

structure is greatest <strong>in</strong> grassland <strong>in</strong> the United K<strong>in</strong>gdom. Table 4 summarises the<br />

resp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g> some important <strong>in</strong>vertebrate groups to fertiliser applicati<strong>on</strong>s.<br />

Table 2.4. Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> fertiliser applicati<strong>on</strong> <strong>on</strong> <strong>in</strong>vertebrate groups<br />

Group Effects<br />

Earthworms high levels <str<strong>on</strong>g>of</str<strong>on</strong>g> organic and <strong>in</strong>organic fertilisers toxic, but positive l<strong>on</strong>g-term<br />

(Lumbricidae) resp<strong>on</strong>se to organic fertiliser<br />

Spiders<br />

favoured by processes that <strong>in</strong>crease prey abundance, but affected by <strong>in</strong>tensive<br />

(Araneae)<br />

Moths and<br />

management that reduces the suitability <str<strong>on</strong>g>of</str<strong>on</strong>g> sward architecture<br />

butterflies<br />

abundance and species richness reduced by loss <str<strong>on</strong>g>of</str<strong>on</strong>g> host plants and changes to<br />

(Lepidoptera) microclimate<br />

Beetles<br />

specialist species disadvantaged by loss <str<strong>on</strong>g>of</str<strong>on</strong>g> host plants; some large species<br />

(Coleoptera) unable to complete life cycle under <strong>in</strong>tensive management<br />

Craneflies<br />

favoured by <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> organic c<strong>on</strong>tent and nutritive value <str<strong>on</strong>g>of</str<strong>on</strong>g> sward (follow<strong>in</strong>g<br />

(Tipulidae: Diptera) applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic fertiliser); sensitive to cutt<strong>in</strong>g regime<br />

Leafhoppers etc. favoured by <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> nutritive value and primary productivity, but specialists<br />

(Auchenorrhyncha) disadvantaged by loss <str<strong>on</strong>g>of</str<strong>on</strong>g> plant species; removed by <strong>in</strong>tensive management<br />

True bugs<br />

favoured by <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> nutritive value and primary productivity, but specialists<br />

(Heteroptera)<br />

Grasshoppers and<br />

disadvantaged by loss <str<strong>on</strong>g>of</str<strong>on</strong>g> plant species; removed by <strong>in</strong>tensive management<br />

crickets<br />

unsuitable habitat caused by growth <str<strong>on</strong>g>of</str<strong>on</strong>g> dense grass sward; <strong>in</strong>ability to complete<br />

(Orthoptera) life cycle due to cutt<strong>in</strong>g regime and microclimate<br />

55


2.5 Evidence for <str<strong>on</strong>g><strong>in</strong>direct</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> fertiliser use <strong>on</strong> <strong>birds</strong><br />

Some bird species can be categorised <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the evidence for their resp<strong>on</strong>ses to<br />

the <str<strong>on</strong>g><strong>in</strong>direct</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> fertilisers. In this secti<strong>on</strong> I provide details <str<strong>on</strong>g>of</str<strong>on</strong>g> ways <strong>in</strong> the which<br />

the processes described above can have impacts <strong>on</strong> bird populati<strong>on</strong>s <strong>in</strong> the UK. More<br />

detail is supplied <strong>on</strong> some bird species under the different mechanisms. This is d<strong>on</strong>e<br />

when (a) I c<strong>on</strong>sider that am<strong>on</strong>g the various ways <strong>in</strong> which fertiliser applicati<strong>on</strong>s may<br />

affect the populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this species, this mechanism is the most important, and (b) I<br />

c<strong>on</strong>sider that this species provides a good example <str<strong>on</strong>g>of</str<strong>on</strong>g> the ways <strong>in</strong> which this<br />

mechanism can affect <strong>birds</strong>, and which thus may be applicable to species with similar<br />

requirements. However, this does not mean that this is the <strong>on</strong>ly way <strong>in</strong> which<br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> fertiliser applicati<strong>on</strong>s can affect populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> this species, and <strong>in</strong> particular<br />

I stress that (unless otherwise stated) this does not necessarily mean that the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> fertiliser applicati<strong>on</strong>s are the major factor affect<strong>in</strong>g the populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> these<br />

species. <str<strong>on</strong>g>The</str<strong>on</strong>g> evidence for <str<strong>on</strong>g><strong>in</strong>direct</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> fertiliser use <strong>on</strong> <strong>birds</strong> is<br />

presented <strong>in</strong> Table 2.5.<br />

2.5.1. Increased <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> grass (w<strong>in</strong>ter<strong>in</strong>g waterfowl)<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> most direct relati<strong>on</strong>ship between fertiliser use and bird populati<strong>on</strong>s c<strong>on</strong>cerns<br />

w<strong>in</strong>ter<strong>in</strong>g waterfowl, particularly geese, which graze <strong>on</strong> grass. As this topic is<br />

thoroughly reviewed elsewhere (Vickery and Gill, 1999), I present <strong>on</strong>ly a brief<br />

summary. W<strong>in</strong>ter<strong>in</strong>g waterfowl are important from a c<strong>on</strong>servati<strong>on</strong> po<strong>in</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> view, but<br />

are also <strong>on</strong> the <strong>in</strong>crease, to the extent that they have become agricultural pests. A<br />

major management issue is how to draw them away from agricultural crops, and <strong>on</strong>e<br />

means <str<strong>on</strong>g>of</str<strong>on</strong>g> do<strong>in</strong>g this is to add fertiliser to grass, as it improves the nutriti<strong>on</strong>al value and<br />

<strong>in</strong>creases forag<strong>in</strong>g by w<strong>in</strong>ter<strong>in</strong>g geese (Vickery and Gill, 1999). Geese also show a<br />

preference for short grass swards, as these have a higher nitrogen c<strong>on</strong>tent than l<strong>on</strong>g<br />

swards, although this can be counteracted by the additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fertiliser (Hassall et al.,<br />

2001). Graz<strong>in</strong>g and cutt<strong>in</strong>g regimes are employed to ma<strong>in</strong>ta<strong>in</strong> short swards for goose<br />

graz<strong>in</strong>g <strong>in</strong> parts <str<strong>on</strong>g>of</str<strong>on</strong>g> Brita<strong>in</strong> (Vickery and Gill, 1999). <str<strong>on</strong>g>The</str<strong>on</strong>g> management <str<strong>on</strong>g>of</str<strong>on</strong>g> grasslands<br />

for wildfowl graz<strong>in</strong>g may lead to some <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g><strong>in</strong>direct</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> <strong>birds</strong> described<br />

56


elow, and as such illustrate potential c<strong>on</strong>flicts c<strong>on</strong>servati<strong>on</strong> efforts. This is not the<br />

forum to discuss those c<strong>on</strong>flicts, and I simply po<strong>in</strong>t out that applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fertiliser<br />

and <strong>in</strong>tensive sward management are generally beneficial to w<strong>in</strong>ter<strong>in</strong>g geese <strong>in</strong> the<br />

United K<strong>in</strong>gdom.<br />

2.5.2. Changes to abundance/availability <str<strong>on</strong>g>of</str<strong>on</strong>g> epigeal <strong>in</strong>vertebrates<br />

A review <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g><strong>in</strong>direct</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> pesticides c<strong>on</strong>cluded that over three quarters <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

farmland bird species exam<strong>in</strong>ed were partly or wholly reliant <strong>on</strong> <strong>in</strong>vertebrate food at<br />

some po<strong>in</strong>t <strong>in</strong> their life cycles (Campbell et al., 1997). Increased plant growth <strong>in</strong><br />

resp<strong>on</strong>se to fertiliser applicati<strong>on</strong>s can <strong>in</strong>crease the abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>vertebrates,<br />

provided the crop is not removed by cutt<strong>in</strong>g for silage or by graz<strong>in</strong>g. For comm<strong>on</strong><br />

<strong>in</strong>vertebrate feeders <strong>in</strong> grassland, there is evidence that nitrogen <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> and graz<strong>in</strong>g<br />

pressure are beneficial <strong>in</strong> w<strong>in</strong>ter, and <strong>in</strong> summer there is a generally negative<br />

relati<strong>on</strong>ship with sward height (Atk<strong>in</strong>s<strong>on</strong> et al., 2004). <str<strong>on</strong>g>The</str<strong>on</strong>g> reas<strong>on</strong>s for this may be<br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> availability <str<strong>on</strong>g>of</str<strong>on</strong>g> food, even if at lower abundances, and better detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

predators (Butler and Gill<strong>in</strong>gs, 2004; Whitt<strong>in</strong>gham and Evans, 2004). Corvids such as<br />

magpie, carri<strong>on</strong> crow and rook are comm<strong>on</strong> <strong>in</strong> grazed fields, probably <strong>in</strong> resp<strong>on</strong>se to<br />

<strong>in</strong>vertebrate availability as well as abundance due to the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> dung (Tucker,<br />

1992). However, foliar <strong>in</strong>vertebrates, which are particularly important to several<br />

passer<strong>in</strong>e species as food for nestl<strong>in</strong>gs, are less abundant <strong>in</strong> more <strong>in</strong>tensively managed<br />

grassland, and this is probably an important mechanism <strong>in</strong> the decl<strong>in</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> these<br />

passer<strong>in</strong>es (Atk<strong>in</strong>s<strong>on</strong> et al., 2004). In Scotland, farmland bird numbers were positively<br />

related to <strong>in</strong>sect abundance, <str<strong>on</strong>g>of</str<strong>on</strong>g>ten that <str<strong>on</strong>g>of</str<strong>on</strong>g> the previous year, suggest<strong>in</strong>g that arthropod<br />

availability may <strong>in</strong>fluence bird populati<strong>on</strong>s via breed<strong>in</strong>g success or over-w<strong>in</strong>ter<br />

survival (Bent<strong>on</strong> et al., 2002).<br />

Species such as yellow wagtail that feed largely <strong>on</strong> <strong>in</strong>vertebrates (Nels<strong>on</strong> et al., 2003),<br />

may have been affected by reduced prey abundance under management regimes such<br />

as silage producti<strong>on</strong>, which reduces their abundance. This species establishes<br />

territories with<strong>in</strong> fields with sparser vegetati<strong>on</strong> and more bare ground (Bradbury and<br />

Bradter, 2004). Other species that feed chicks <strong>on</strong> <strong>in</strong>vertebrates, may have reduced<br />

57


Table 2.5. Indirect <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> fertiliser <strong>in</strong> <strong>birds</strong> <strong>in</strong> farmland habitats.<br />

Habitat Species Locati<strong>on</strong> Process Effects Possible cause Strength <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

evidence 1<br />

Reference<br />

lowland farmland <strong>birds</strong> USA comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic and n<strong>on</strong>- higher abundance and species forag<strong>in</strong>g opportunities due to more 2 Beecher et al.,<br />

farmland<br />

organic farms<br />

richness <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>birds</strong> <strong>on</strong> organic farms;<br />

no species more abundant <strong>on</strong> n<strong>on</strong>organic<br />

farms<br />

uncropped habitat<br />

2002<br />

farmland <strong>birds</strong> England and changes <strong>in</strong> abundance and<br />

local ext<strong>in</strong>cti<strong>on</strong> more likely <strong>in</strong> unsuitability <str<strong>on</strong>g>of</str<strong>on</strong>g> lowland grassland 2 Chamberla<strong>in</strong> and<br />

Wales<br />

occurrence <strong>in</strong> 10 km squares grassland-dom<strong>in</strong>ated landscapes for for several species requir<strong>in</strong>g<br />

Fuller, 2001<br />

between late 1960s and early 1990s seven species, even where<br />

populati<strong>on</strong> changes were lowest<br />

elements <str<strong>on</strong>g>of</str<strong>on</strong>g> arable farms<br />

farmland <strong>birds</strong> England and abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>birds</strong> <strong>on</strong> paired 8 out <str<strong>on</strong>g>of</str<strong>on</strong>g> 18 species more abundant <strong>in</strong> provisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-crop habitat; crop 2 Chamberla<strong>in</strong> et al.,<br />

Wales<br />

organic and c<strong>on</strong>venti<strong>on</strong>al farms <strong>in</strong> organic farm field boundaries <strong>in</strong> at rotati<strong>on</strong>s associated with organic<br />

1999<br />

spr<strong>in</strong>g/summer, autumn and w<strong>in</strong>ter least <strong>on</strong>e seas<strong>on</strong>/year; breed<strong>in</strong>g farm<strong>in</strong>g<br />

over three years<br />

skylark more abundant <strong>on</strong> organic<br />

fields <strong>in</strong> <strong>on</strong>e year<br />

farmland <strong>birds</strong> Bucks. w<strong>in</strong>ter occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>birds</strong> <strong>in</strong> fields <strong>in</strong> grass fields, three species abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>vertebrate food<br />

2 Tucker, 1992<br />

<strong>in</strong> relati<strong>on</strong> to habitat and<br />

positively related to <strong>in</strong>organic items, notably lumbricid earthworms<br />

management variables<br />

fertiliser applicati<strong>on</strong> and four<br />

positively related to frequency <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

manure applicati<strong>on</strong>; <strong>in</strong> cultivated<br />

fields, two species positively related<br />

to frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> manure applicati<strong>on</strong>;<br />

various other relati<strong>on</strong>ships,<br />

<strong>in</strong>clud<strong>in</strong>g some positive and some<br />

negative with graz<strong>in</strong>g<br />

and adult Coleoptera<br />

turtle dove England radio track<strong>in</strong>g and exam<strong>in</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>crease <strong>in</strong> proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> wheat and loss <str<strong>on</strong>g>of</str<strong>on</strong>g> weed seeds due to<br />

3 Browne and<br />

diet<br />

rape seed from 1960s<br />

agricultural <strong>in</strong>tensificati<strong>on</strong><br />

Aebischer, 2003<br />

turtle dove England exam<strong>in</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nest records no decl<strong>in</strong>e <strong>in</strong> success <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>dividual loss <str<strong>on</strong>g>of</str<strong>on</strong>g> weed seeds due to<br />

3 Browne et al.,<br />

attempts; possibly fewer nest<br />

attempts<br />

agricultural <strong>in</strong>tensificati<strong>on</strong><br />

2005<br />

skylark southern England relati<strong>on</strong>ships between<br />

density higher <strong>in</strong> organic fields and <strong>in</strong>sufficient time to nest <strong>in</strong> fast<br />

2 Wils<strong>on</strong> et al., 1997<br />

distributi<strong>on</strong>/breed<strong>in</strong>g success and set aside than <strong>in</strong>tensively managed grow<strong>in</strong>g crops; loss <str<strong>on</strong>g>of</str<strong>on</strong>g> mixed<br />

habitat variables/management fields; no nest<strong>in</strong>g <strong>in</strong> fast-grow<strong>in</strong>g farm<strong>in</strong>g systems to provide variety<br />

broad-leaved crops; predati<strong>on</strong> the<br />

ma<strong>in</strong> cause <str<strong>on</strong>g>of</str<strong>on</strong>g> nest failures, but nests<br />

also destroyed by silage cutt<strong>in</strong>g and<br />

trampl<strong>in</strong>g<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> field types for multiple nest<strong>in</strong>g<br />

1<br />

I classified the studies <strong>in</strong>to three tiers: 1. Str<strong>on</strong>g evidence, usually based <strong>on</strong> experimental pro<str<strong>on</strong>g>of</str<strong>on</strong>g>; 2. Intermediate evidence, generally an observed relati<strong>on</strong>ship <strong>in</strong> space and time; 3. Weak evidence, a suggested cause<br />

based <strong>on</strong> observed patterns. <str<strong>on</strong>g>The</str<strong>on</strong>g>se levels are not <strong>in</strong>tended as a judgement <strong>on</strong> the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> the research, and I judge the strength <str<strong>on</strong>g>of</str<strong>on</strong>g> evidence for <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> and associated mechanisms, which may not have<br />

been the purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> the study.<br />

58


Table 2.5. (c<strong>on</strong>t.) Indirect <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> fertiliser <strong>in</strong> <strong>birds</strong> <strong>in</strong> farmland habitats.<br />

Habitat Species Locati<strong>on</strong> Process Effects Possible cause Strength <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

evidence 1<br />

Reference<br />

lowland lapw<strong>in</strong>g England and reducti<strong>on</strong> <strong>in</strong> mixed farm<strong>in</strong>g reduced forag<strong>in</strong>g efficiency change <strong>in</strong> management 3 Sheld<strong>on</strong> et al.,<br />

farmland<br />

Wales<br />

2004<br />

starl<strong>in</strong>g Ox<strong>on</strong>. field forag<strong>in</strong>g preferences preference for short sward <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> visibility <str<strong>on</strong>g>of</str<strong>on</strong>g> prey and<br />

2 Whitehead et al.,<br />

potential predators, easier soil<br />

prob<strong>in</strong>g<br />

1995<br />

tree sparrow central England loss <str<strong>on</strong>g>of</str<strong>on</strong>g> w<strong>in</strong>ter seed resources, and reduced breed<strong>in</strong>g success and w<strong>in</strong>ter loss <str<strong>on</strong>g>of</str<strong>on</strong>g> mixed farm<strong>in</strong>g landscapes 3 Field and<br />

lack <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>vertebrate food resources<br />

dur<strong>in</strong>g breed<strong>in</strong>g seas<strong>on</strong><br />

survival<br />

Anders<strong>on</strong>, 2004<br />

yellowhammer Ox<strong>on</strong>. and L<strong>in</strong>cs. forag<strong>in</strong>g patch selecti<strong>on</strong> <strong>in</strong> relati<strong>on</strong> patches used for forag<strong>in</strong>g had <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> abundance and<br />

2 Morris et al., 2002<br />

to habitat variables <strong>in</strong> cereal crops sparser vegetati<strong>on</strong>, and more<br />

<strong>in</strong>vertebrates<br />

accessibility <str<strong>on</strong>g>of</str<strong>on</strong>g> food<br />

yellowhammer southern England forag<strong>in</strong>g patch selecti<strong>on</strong> <strong>in</strong> grass marg<strong>in</strong>s with sparse sward selected <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> abundance and<br />

2 Perk<strong>in</strong>s et al., 2002<br />

marg<strong>in</strong>s related to habitat variables<br />

accessibility <str<strong>on</strong>g>of</str<strong>on</strong>g> food<br />

farmland <strong>birds</strong> Dev<strong>on</strong> and Bucks. relati<strong>on</strong>ship between bird<br />

higher occupancy <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>tensively accessibility <str<strong>on</strong>g>of</str<strong>on</strong>g> food 3 Atk<strong>in</strong>s<strong>on</strong> et al.,<br />

occurrence and management managed fields <strong>in</strong> w<strong>in</strong>ter by species<br />

2005<br />

<strong>in</strong>tensity (def<strong>in</strong>ed by nitrogen feed<strong>in</strong>g <strong>on</strong> soil <strong>in</strong>vertebrates; many<br />

<str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g>), sward structure, and seed species avoided fields with tall<br />

and <strong>in</strong>vertebrate food resources swards <strong>in</strong> summer<br />

farmland <strong>birds</strong> western England summer occurrence <strong>in</strong> relati<strong>on</strong> to various resp<strong>on</strong>ses, but generally availability <str<strong>on</strong>g>of</str<strong>on</strong>g> food items 2 Buck<strong>in</strong>gham et al.,<br />

graz<strong>in</strong>g and sward height<br />

decreased frequency with higher<br />

sward height<br />

2004<br />

farmland <strong>birds</strong> southern England w<strong>in</strong>ter occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>birds</strong> <strong>in</strong> fields various relati<strong>on</strong>ships <strong>in</strong>clud<strong>in</strong>g greater prey availability 2 Perk<strong>in</strong>s et al., 2000<br />

<strong>in</strong> relati<strong>on</strong> to habitat and<br />

positive between thrush occurrence<br />

management variables<br />

and bare earth<br />

corn bunt<strong>in</strong>g Sussex nest success <strong>in</strong> relati<strong>on</strong> to habitat negative correlati<strong>on</strong> between <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> predati<strong>on</strong> risk due to<br />

3 Brickle et al., 2000<br />

variables and <strong>in</strong>vertebrate prey <strong>in</strong>vertebrate prey abundance and adults spend<strong>in</strong>g l<strong>on</strong>ger away from<br />

abundance<br />

nest survival<br />

the nest; lack <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>vertebrate food<br />

due to agricultural <strong>in</strong>tensificati<strong>on</strong><br />

yellowhammer western England w<strong>in</strong>ter abundance <strong>in</strong> experimental str<strong>on</strong>g preference for plots with preferences for tall swards and high 1 Buck<strong>in</strong>gham and<br />

and reed<br />

plots (treatment = grass left to go to grass left to set seed, and for seed density<br />

Peach, <strong>in</strong> press<br />

bunt<strong>in</strong>g<br />

seed); grazed or ungrazed<br />

ungrazed plots left to set seed over<br />

(w<strong>in</strong>ter)<br />

grazed<br />

yellow wagtail East Anglia breed<strong>in</strong>g territories <strong>in</strong> relati<strong>on</strong> to territories associated with fields with abundance/accessibility <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

2 Bradbury and<br />

habitat variables<br />

short, sparse swards and high <strong>in</strong>vertebrate prey; need for<br />

Bradter, 2004<br />

proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> bare earth; nests<br />

associated with taller swards with<strong>in</strong><br />

same field<br />

heterogeneous grass sward<br />

1<br />

I classified the studies <strong>in</strong>to three tiers: 1. Str<strong>on</strong>g evidence, usually based <strong>on</strong> experimental pro<str<strong>on</strong>g>of</str<strong>on</strong>g>; 2. Intermediate evidence, generally an observed relati<strong>on</strong>ship <strong>in</strong> space and time; 3. Weak evidence, a suggested cause<br />

based <strong>on</strong> observed patterns. <str<strong>on</strong>g>The</str<strong>on</strong>g>se levels are not <strong>in</strong>tended as a judgement <strong>on</strong> the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> the research, and I judge the strength <str<strong>on</strong>g>of</str<strong>on</strong>g> evidence for <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> and associated mechanisms, which may not have<br />

been the purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> the study.<br />

59


Table 2.5. (c<strong>on</strong>t.) Indirect <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> fertiliser <strong>in</strong> <strong>birds</strong> <strong>in</strong> farmland habitats.<br />

Habitat Species Locati<strong>on</strong> Process Effects Possible cause Strength <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

evidence 1<br />

Reference<br />

lowland chough Calf <str<strong>on</strong>g>of</str<strong>on</strong>g> Man historical populati<strong>on</strong> trends <strong>in</strong> <strong>in</strong>verse relati<strong>on</strong>ship with sheep; rabbit graz<strong>in</strong>g is important <strong>in</strong> the<br />

2 McCanch, 2000<br />

farmland<br />

relati<strong>on</strong> to sheep and rabbit numbers positive relati<strong>on</strong>ship with rabbits creati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> suitable habitat<br />

starl<strong>in</strong>g western England relati<strong>on</strong>ships between occurrence <strong>in</strong> w<strong>in</strong>ter, positive with and nitrogen <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> productivity <strong>in</strong> resp<strong>on</strong>se to 2 Fuller et al., 2003<br />

and management<br />

<str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> but negative with sward<br />

height; <strong>in</strong> summer, negative with<br />

sward height<br />

<str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s; food availability<br />

breed<strong>in</strong>g Netherlands historic <strong>in</strong>creases <strong>in</strong> nitrogen earlier breed<strong>in</strong>g earlier food availability and/or<br />

2 Be<strong>in</strong>tema et al.,<br />

waders<br />

fertiliser applicati<strong>on</strong> (1920-1975)<br />

selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> earlier nesters through<br />

later nest losses<br />

1985<br />

lapw<strong>in</strong>g chicks Scotland sward height <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> forag<strong>in</strong>g success <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> prey detecti<strong>on</strong>, improved 2 Devereux et al.,<br />

and starl<strong>in</strong>g<br />

mobility, predator detecti<strong>on</strong><br />

2004<br />

upland five passer<strong>in</strong>e Switzerland relati<strong>on</strong>ships between abundance all except skylark were more various <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>tensive farm<strong>in</strong>g, 2 Schifferli et al.,<br />

farmland species<br />

and land use and farm<strong>in</strong>g <strong>in</strong>tensity abundant <strong>in</strong> less <strong>in</strong>tensively farmed <strong>in</strong>clud<strong>in</strong>g nest/brood destructi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

1999<br />

(wh<strong>in</strong>chat, tree<br />

landscapes; forag<strong>in</strong>g effort for red- ground nest<strong>in</strong>g wh<strong>in</strong>chat, use <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

pipit,<br />

backed shrikes feed<strong>in</strong>g young was arable land (related to farm<strong>in</strong>g<br />

yellowhammer,<br />

higher <strong>in</strong> more <strong>in</strong>tensively farmed <strong>in</strong>tensity) by skylark, reduced<br />

skylark and red-<br />

landscapes<br />

abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>sect prey for redbacked<br />

shrike)<br />

backed shrike<br />

wh<strong>in</strong>chat Switzerland fledg<strong>in</strong>g success <strong>in</strong> <strong>in</strong>tensively and higher fledg<strong>in</strong>g success <strong>in</strong><br />

lower abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> large<br />

2 Britschgi et al.,<br />

traditi<strong>on</strong>ally managed grassland traditi<strong>on</strong>ally managed grassland <strong>in</strong>vertebrates<br />

2006<br />

red-backed Austria relati<strong>on</strong>ships between abundance abundance most closely related to a accessibility <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>sect prey; nest and 2 Vanh<strong>in</strong>sbergh and<br />

shrike<br />

and habitat variables<br />

mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> grazed grassland and<br />

scrub<br />

perch sites <strong>in</strong> scrub<br />

Evans, 2002<br />

lapw<strong>in</strong>g Peebleshire relati<strong>on</strong>ship between field<br />

decl<strong>in</strong>es <strong>in</strong> numbers over time; loss <str<strong>on</strong>g>of</str<strong>on</strong>g> suitable nest<strong>in</strong>g habitat due 2 Taylor and Grant,<br />

occupancy and land-use; changes preference for nest<strong>in</strong>g <strong>on</strong><br />

to grassland improvement (str<strong>on</strong>gly<br />

2004<br />

over time<br />

unimproved grassland and arable<br />

land over improved grassland<br />

l<strong>in</strong>ked to dra<strong>in</strong>age)<br />

lapw<strong>in</strong>g northern Brita<strong>in</strong> relati<strong>on</strong>ship between occurrence and preference for short sward <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> forag<strong>in</strong>g efficiency and<br />

2 O'Brien, 2002<br />

sward height<br />

predator detecti<strong>on</strong><br />

waders northern England abundance <strong>in</strong> improved and<br />

significantly higher abundances <str<strong>on</strong>g>of</str<strong>on</strong>g> changes <strong>in</strong> plant communities and 2 Ba<strong>in</strong>es, 1988<br />

unimproved fields<br />

snipe, redshank, curlew and lapw<strong>in</strong>g loss <str<strong>on</strong>g>of</str<strong>on</strong>g> heterogeneous swards <strong>in</strong><br />

<strong>in</strong> unimproved fields<br />

improved fields; also dra<strong>in</strong>age and<br />

associated loss <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>vertebrates<br />

kestrel Wales populati<strong>on</strong> related to <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> 10% decl<strong>in</strong>e 1968-72 to 1988-91 loss <str<strong>on</strong>g>of</str<strong>on</strong>g> vole prey due to heavy<br />

3 Shrubb et al., 1997<br />

historical stock<strong>in</strong>g rates<br />

graz<strong>in</strong>g pressure and loss <str<strong>on</strong>g>of</str<strong>on</strong>g> mixed<br />

farm<strong>in</strong>g systems<br />

1<br />

I classified the studies <strong>in</strong>to three tiers: 1. Str<strong>on</strong>g evidence, usually based <strong>on</strong> experimental pro<str<strong>on</strong>g>of</str<strong>on</strong>g>; 2. Intermediate evidence, generally an observed relati<strong>on</strong>ship <strong>in</strong> space and time; 3. Weak evidence, a suggested cause<br />

based <strong>on</strong> observed patterns. <str<strong>on</strong>g>The</str<strong>on</strong>g>se levels are not <strong>in</strong>tended as a judgement <strong>on</strong> the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> the research, and I judge the strength <str<strong>on</strong>g>of</str<strong>on</strong>g> evidence for <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> and associated mechanisms, which may not have<br />

been the purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> the study.<br />

60


eed<strong>in</strong>g success when they are less abundant. Corn bunt<strong>in</strong>g nest survival <strong>in</strong> west<br />

Sussex was negatively correlated with abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> chick-food <strong>in</strong>vertebrates close to<br />

the nest, apparently due to <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> predati<strong>on</strong> rates as the parents spent l<strong>on</strong>ger away<br />

from the nest (Brickle et al., 2000). Availability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>vertebrates may be more<br />

important than abundance, as both yellowhammer and skylark have been found to<br />

forage more <strong>in</strong> areas <str<strong>on</strong>g>of</str<strong>on</strong>g> fields (marg<strong>in</strong>s and traml<strong>in</strong>es) where vegetati<strong>on</strong> is shorter and<br />

sparser (Odderskaer et al., 1997; Wils<strong>on</strong>, 2001; Morris et al., 2002; Perk<strong>in</strong>s et al.,<br />

2002). Yellow wagtail Orthoptera, Hymenoptera and Arachnida, and at a higher level<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> classificati<strong>on</strong>, Araneae, Acrididae (grasshoppers) and Symphyta (sawflies) were<br />

c<strong>on</strong>sidered important comp<strong>on</strong>ents <strong>in</strong> the diet <str<strong>on</strong>g>of</str<strong>on</strong>g> a significantly higher proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

decl<strong>in</strong><strong>in</strong>g than n<strong>on</strong>-decl<strong>in</strong><strong>in</strong>g farmland <strong>birds</strong> <strong>in</strong> northern Europe (Wils<strong>on</strong> et al., 1999).<br />

Large <strong>in</strong>vertebrates appear to suffer disproporti<strong>on</strong>ately <strong>in</strong> <strong>in</strong>tensively managed and<br />

heavily fertilised farmland (Be<strong>in</strong>tema et al., 1990; Blake and Foster, 1998); this has<br />

been implicated <strong>in</strong> the disappearance <str<strong>on</strong>g>of</str<strong>on</strong>g> st<strong>on</strong>echat from Dutch grasslands (Siepel,<br />

1990). <str<strong>on</strong>g>The</str<strong>on</strong>g> evidence presented above suggests that each <str<strong>on</strong>g>of</str<strong>on</strong>g> these groups is<br />

disadvantaged by some mechanism associated with <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> fertilisers.<br />

2.5.2.1. Cirl bunt<strong>in</strong>g<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> cirl bunt<strong>in</strong>g is a red-listed species, hav<strong>in</strong>g suffered a major populati<strong>on</strong> decl<strong>in</strong>e and<br />

range c<strong>on</strong>tracti<strong>on</strong> dur<strong>in</strong>g the twentieth century (Evans, 1997b). In summer, chick<br />

survival is much higher later <strong>in</strong> the seas<strong>on</strong>, c<strong>on</strong>comitant with an <strong>in</strong>crease <strong>in</strong> the<br />

amount <str<strong>on</strong>g>of</str<strong>on</strong>g> Orthoptera <strong>in</strong> the chick diet (Evans et al., 1997). Cirl bunt<strong>in</strong>g have been<br />

affected <str<strong>on</strong>g><strong>in</strong>direct</str<strong>on</strong>g>ly by fertiliser applicati<strong>on</strong>s <strong>in</strong> two ways. First <strong>in</strong> the loss <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Orthopteran prey <strong>in</strong> summer. Grasshoppers like a mosaic <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g and short grass, and<br />

nitrogenous fertilisers lead to uniform, species-poor swards that reduce Orthoptera<br />

numbers (van W<strong>in</strong>gerden et al., 1992), as do high stock<strong>in</strong>g densities (van W<strong>in</strong>gerden<br />

et al., 1991). Cirl bunt<strong>in</strong>g select semi-improved grassland for breed<strong>in</strong>g territories to<br />

<strong>in</strong>crease food items for chicks (Stevens et al., 2002). Sec<strong>on</strong>d, there has been a decl<strong>in</strong>e<br />

<strong>in</strong> the extent <str<strong>on</strong>g>of</str<strong>on</strong>g> w<strong>in</strong>ter stubbles as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> w<strong>in</strong>ter sown cereals and the loss <str<strong>on</strong>g>of</str<strong>on</strong>g> arable<br />

habitats with<strong>in</strong> grassland-dom<strong>in</strong>ated landscapes. Low <strong>in</strong>tensity mixed farm<strong>in</strong>g<br />

provides adequate w<strong>in</strong>ter stubble, and rough grass that harbours <strong>in</strong>vertebrates <strong>in</strong><br />

summer (Evans 1997b; Peach et al., 2001). While there are other causes for the<br />

decl<strong>in</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> cirl bunt<strong>in</strong>g (e.g. more efficient harvest leav<strong>in</strong>g less seed over w<strong>in</strong>ter,<br />

removal <str<strong>on</strong>g>of</str<strong>on</strong>g> hedges), there is str<strong>on</strong>g circumstantial evidence that nitrogenous fertilisers<br />

61


have affected nest productivity and over-w<strong>in</strong>ter survival. This evidence is<br />

strengthened by the fact that the implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> recovery programs, <strong>in</strong>clud<strong>in</strong>g<br />

rough grass field marg<strong>in</strong>s, has seen a recovery <strong>in</strong> the cirl bunt<strong>in</strong>g populati<strong>on</strong> (Peach et<br />

al., 2001).<br />

2.5.2.2. Red-backed shrike<br />

Large <strong>in</strong>sects, especially Coleoptera and Orthoptera, make up the major part <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

red-backed shrike’s diet (van Nieuwenhuyse et al., 1999). <str<strong>on</strong>g>The</str<strong>on</strong>g> decl<strong>in</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> large <strong>in</strong>sects,<br />

which are more sensitive to <strong>in</strong>tensive management (Siepel, 1990; Blake et al., 1996),<br />

<strong>in</strong> resp<strong>on</strong>se to <strong>in</strong>organic fertiliser applicati<strong>on</strong>s is suggested as the major cause <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

decl<strong>in</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> this species <strong>in</strong> Europe (van Nieuwenhuyse et al., 1999). <str<strong>on</strong>g>The</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

pesticides reduces the number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>sects, but Orthoptera are notably sensitive to<br />

fertiliser applicati<strong>on</strong> (van W<strong>in</strong>gerden et al., 1992). In Europe, red-backed shrike<br />

abundance was higher <strong>in</strong> low <strong>in</strong>tensity upland farm<strong>in</strong>g areas (Schifferli et al., 1999).<br />

Ground hunt<strong>in</strong>g <strong>on</strong> freshly-cut meadows and aerial hunt<strong>in</strong>g <strong>on</strong> taller grassland were<br />

important forag<strong>in</strong>g techniques, and forag<strong>in</strong>g distance from the nest was higher <strong>in</strong> more<br />

<strong>in</strong>tensive farmland (Schifferli et al., 1999). Grazed grassland (with some scrubland for<br />

nest and perch sites) provided better habitat than ungrazed grassland <strong>in</strong> Austria<br />

(Vanh<strong>in</strong>sbergh and Evans, 2002). In France, reproductive success was higher <strong>on</strong><br />

unimproved pasture than <strong>on</strong> meadows or fallow land; fertilised grass becomes too<br />

dense for soil surface <strong>in</strong>vertebrates, and so prey items become less abundant and less<br />

available (Lefranc, 1997). This species appears to be disadvantaged by the reducti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> low <strong>in</strong>tensity pastoral agriculture (Bignal and McCracken, 1996), <strong>in</strong> which low or<br />

moderate graz<strong>in</strong>g pressure provides a patchy sward which facilitates forag<strong>in</strong>g<br />

(Vanh<strong>in</strong>sbergh and Evans, 2002), and moderate <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> manure have a positive or<br />

neutral effect <strong>on</strong> <strong>in</strong>sect prey abundance.<br />

2.5.2.3. Skylark<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> skylark is an example <str<strong>on</strong>g>of</str<strong>on</strong>g> a species disadvantaged by changes <strong>in</strong> crop structure due<br />

to agricultural <strong>in</strong>tensificati<strong>on</strong> (D<strong>on</strong>ald et al., 2002; D<strong>on</strong>ald and Morris, 2005). In<br />

arable farmland, crops now grow too tall and dense too early <strong>in</strong> the breed<strong>in</strong>g seas<strong>on</strong>,<br />

and this restricts both nest<strong>in</strong>g opportunities and availability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>vertebrates due to the<br />

lack <str<strong>on</strong>g>of</str<strong>on</strong>g> bare ground (D<strong>on</strong>ald and Morris, 2005). <str<strong>on</strong>g>The</str<strong>on</strong>g> provisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> undrilled patches<br />

with<strong>in</strong> arable fields improved skylark productivity, and this is thought to relate to<br />

62


<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> accessibility <str<strong>on</strong>g>of</str<strong>on</strong>g> prey items, rather than <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> abundance (Morris et al.,<br />

2004). Elsewhere skylark foraged <strong>in</strong> traml<strong>in</strong>es and experimentally unsown plots <strong>in</strong><br />

barley fields more than <strong>in</strong> the ma<strong>in</strong> crop, even though arthropod abundance was<br />

greater <strong>in</strong> the ma<strong>in</strong> crop (Odderskaer et al., 1997). <str<strong>on</strong>g>The</str<strong>on</strong>g> major cause <str<strong>on</strong>g>of</str<strong>on</strong>g> the structural<br />

changes is the switch to autumn-sown cereals, and although <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> fertiliser use<br />

may c<strong>on</strong>tribute to the denser and taller growth, it is probably a relatively m<strong>in</strong>or<br />

comp<strong>on</strong>ent. However, changes <strong>in</strong> grassland crop structure and management result<strong>in</strong>g<br />

from <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> fertiliser use are implicated <strong>in</strong> the decl<strong>in</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> skylark <strong>in</strong> this important<br />

breed<strong>in</strong>g habitat. Nest survival <strong>in</strong> southern England was much lower <strong>in</strong> grassland than<br />

<strong>in</strong> arable, and the cause <str<strong>on</strong>g>of</str<strong>on</strong>g> nest failure differed, be<strong>in</strong>g mostly predati<strong>on</strong> <strong>in</strong> arable land,<br />

but trampl<strong>in</strong>g and agricultural operati<strong>on</strong>s <strong>in</strong> grassland (D<strong>on</strong>ald et al., 2002).<br />

Destructi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nests by silage producti<strong>on</strong> is thought to be a major factor <strong>in</strong> the decl<strong>in</strong>e<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> skylark <strong>in</strong> lowland Brita<strong>in</strong> (D<strong>on</strong>ald and Morris, 2005).<br />

2.5.3. Changes to abundance/availability <str<strong>on</strong>g>of</str<strong>on</strong>g> soil dwell<strong>in</strong>g <strong>in</strong>vertebrates<br />

Increased applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fertiliser to farmland may <strong>in</strong>crease the biomass <str<strong>on</strong>g>of</str<strong>on</strong>g> soil<br />

<strong>in</strong>vertebrates, while at the same time reduc<strong>in</strong>g their availability due to the <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g><br />

density <str<strong>on</strong>g>of</str<strong>on</strong>g> the vegetati<strong>on</strong> <strong>in</strong> spr<strong>in</strong>g. This is especially noticeable <strong>in</strong> grassland, but it<br />

can also happen <strong>in</strong> arable land, although there the major driv<strong>in</strong>g force has been the<br />

development <str<strong>on</strong>g>of</str<strong>on</strong>g> w<strong>in</strong>ter-sown cereals. Dra<strong>in</strong>age is probably the major cause <str<strong>on</strong>g>of</str<strong>on</strong>g> reduced<br />

accessibility to soil <strong>in</strong>vertebrates, but fertiliser applicati<strong>on</strong> can also reduce soil<br />

penetrability <strong>in</strong> grasslands due to denser grass swards, and the desiccat<strong>in</strong>g <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>in</strong><br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> plant growth (Nowak, 1976). Earthworms, which form the major part <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

many bird species’ diets, are sensitive to heavy applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>organic fertilisers <strong>in</strong><br />

the short term (Curry, 1994). Earthworms and tipulid larvae (another important bird<br />

food item) generally benefit from the applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic fertilisers, and the latter<br />

seem to be unaffected by <strong>in</strong>organic fertilisers (McCracken et al., 1995). <str<strong>on</strong>g>The</str<strong>on</strong>g>ir<br />

availability to <strong>birds</strong> may be affected by the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> a dense and/or tall grass<br />

sward, but <strong>in</strong> grasslands <strong>in</strong> the Netherlands black-tailed godwit and lapw<strong>in</strong>g<br />

abundance <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> <strong>in</strong> resp<strong>on</strong>se to management (<strong>in</strong>clud<strong>in</strong>g organic fertiliser) that<br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> earthworm biomass (Brandsma, 2004).<br />

63


Graz<strong>in</strong>g can be beneficial to bird species such as chough, starl<strong>in</strong>g, and lapw<strong>in</strong>g, by<br />

provid<strong>in</strong>g access to soil <strong>in</strong>vertebrates, and by <strong>in</strong>creas<strong>in</strong>g the numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> dungdwell<strong>in</strong>g<br />

<strong>in</strong>vertebrates (Vickery et al., 2001). Mow<strong>in</strong>g to simulate graz<strong>in</strong>g has been<br />

used to create appropriate w<strong>in</strong>ter feed<strong>in</strong>g habitat <strong>in</strong> lowland grassland (Milsom et al.,<br />

1998). It has been suggested that <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> access to earthworms determ<strong>in</strong>es the<br />

selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> short grass <strong>in</strong> grazed meadows by nocturnal forag<strong>in</strong>g woodcock (Duriez<br />

et al., 2005). Forag<strong>in</strong>g behaviour also reflects predati<strong>on</strong> risk and this may expla<strong>in</strong><br />

preferences for short grass swards <strong>in</strong> species such as lapw<strong>in</strong>g and starl<strong>in</strong>g (Devereux<br />

et al., 2004).<br />

2.5.3.1. Starl<strong>in</strong>g<br />

In grassland, starl<strong>in</strong>g show a str<strong>on</strong>g preference for short grass swards (Whitehead et<br />

al., 1995; Devereux et al., 2004). Tipulid larvae are a major prey item for this species,<br />

and this may be the reas<strong>on</strong> for the preference for short swards. Tipulids are relatively<br />

unaffected by grassland improvement, and starl<strong>in</strong>gs are comm<strong>on</strong> <strong>in</strong> improved pasture<br />

(Crick et al., 2002). However, the spread <str<strong>on</strong>g>of</str<strong>on</strong>g> silage producti<strong>on</strong> may have affected<br />

starl<strong>in</strong>g numbers negatively; silage fields are cut frequently, reduc<strong>in</strong>g organic matter<br />

and <strong>in</strong>vertebrate biomass, and are rolled early <strong>in</strong> the seas<strong>on</strong>, which reduces tipulid<br />

numbers (Clements and Cook, 1996). <str<strong>on</strong>g>The</str<strong>on</strong>g> major cause <str<strong>on</strong>g>of</str<strong>on</strong>g> starl<strong>in</strong>g decl<strong>in</strong>e may be the<br />

use <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>secticides and antihelm<strong>in</strong>thics, but fertiliser applicati<strong>on</strong> via the shift to silage<br />

producti<strong>on</strong> is likely to have negative <str<strong>on</strong>g>effects</str<strong>on</strong>g>.<br />

2.5.3.2. Chough<br />

In the United K<strong>in</strong>gdom chough are c<strong>on</strong>f<strong>in</strong>ed to western coasts and cliffs, where they<br />

display a complicated relati<strong>on</strong>ship with grassland management. Choughs feed<br />

predom<strong>in</strong>antly <strong>on</strong> surface-active soil (and dung-associated) <strong>in</strong>vertebrates, and rely <strong>on</strong><br />

appropriate vegetati<strong>on</strong> structure to f<strong>in</strong>d their prey (McCracken and Bignal, 1994).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>y therefore also rely <strong>on</strong> management regimes that ma<strong>in</strong>ta<strong>in</strong> suitable vegetati<strong>on</strong><br />

structure, particularly extensive graz<strong>in</strong>g. On Islay, chough forage preferentially <strong>in</strong><br />

pastures <strong>in</strong> which tall swards grow <strong>in</strong> autumn, encourag<strong>in</strong>g high numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> tipulid<br />

larvae, but which are heavily grazed by stock or geese <strong>in</strong> w<strong>in</strong>ter and spr<strong>in</strong>g, allow<strong>in</strong>g<br />

access to these prey items (Bignal and McCracken, 1996). In north Wales, forag<strong>in</strong>g<br />

choughs selected short swards and m<strong>in</strong>or habitats with elements <str<strong>on</strong>g>of</str<strong>on</strong>g> bare earth<br />

(Johnst<strong>on</strong>e et al., 2002). On the Calf <str<strong>on</strong>g>of</str<strong>on</strong>g> Man, chough abundance was significantly<br />

64


elated to both sheep and rabbit numbers for the period 1969-1994, and a model<br />

comb<strong>in</strong><strong>in</strong>g density <str<strong>on</strong>g>of</str<strong>on</strong>g> both herbivores expla<strong>in</strong>ed c<strong>on</strong>siderably more <str<strong>on</strong>g>of</str<strong>on</strong>g> the variati<strong>on</strong> <strong>in</strong><br />

chough breed<strong>in</strong>g success than models c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g a s<strong>in</strong>gle herbivore as a predictor<br />

variable (McCanch, 2000). <str<strong>on</strong>g>The</str<strong>on</strong>g> complete cessati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> graz<strong>in</strong>g <strong>in</strong> parts <str<strong>on</strong>g>of</str<strong>on</strong>g> Brita<strong>in</strong><br />

co<strong>in</strong>cided with decl<strong>in</strong>es <strong>in</strong> chough populati<strong>on</strong>s (Bullock et al., 1983), and is likely to<br />

be detrimental where it occurs (Johnst<strong>on</strong>e et al., 2002). However, earlier and denser<br />

spr<strong>in</strong>g growth <strong>in</strong> improved pastures, and the prevalence <str<strong>on</strong>g>of</str<strong>on</strong>g> multiple-cut silage, are<br />

likely to reduce abundance and availability <str<strong>on</strong>g>of</str<strong>on</strong>g> prey items for chough. Given the<br />

relati<strong>on</strong>ships that this species shows with grassland vegetati<strong>on</strong> structure and graz<strong>in</strong>g<br />

regime, it seems highly likely that <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> fertiliser use, and the changes <strong>in</strong><br />

management associated with it, have c<strong>on</strong>tributed to the decl<strong>in</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> chough, although<br />

not <strong>in</strong> isolati<strong>on</strong> from other elements <str<strong>on</strong>g>of</str<strong>on</strong>g> agricultural <strong>in</strong>tensificati<strong>on</strong>.<br />

2.5.3.3.Breed<strong>in</strong>g waders<br />

Changes associated with agricultural <strong>in</strong>tensificati<strong>on</strong> have seen significant reducti<strong>on</strong>s<br />

<strong>in</strong> many wader species (Smith, 1983; Wils<strong>on</strong> et al., 2005). Waders rely <strong>on</strong> farmland<br />

for both breed<strong>in</strong>g and forag<strong>in</strong>g habitat, and both <str<strong>on</strong>g>of</str<strong>on</strong>g> these are affected by <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g><br />

fertiliser use. In upland England, abundances <str<strong>on</strong>g>of</str<strong>on</strong>g> snipe, redshank, lapw<strong>in</strong>g and curlew<br />

were significantly lower <strong>in</strong> improved than unimproved grassland (Ba<strong>in</strong>es, 1988).<br />

Nidifugous wader chicks rely heavily <strong>on</strong> carabids at the earliest stages <str<strong>on</strong>g>of</str<strong>on</strong>g> their lives,<br />

and the shift <strong>in</strong> body size <strong>in</strong> carabids <strong>in</strong> <strong>in</strong>tensively managed grasslands may affect<br />

their energy budgets (Be<strong>in</strong>tema et al., 1990; Blake and Foster, 1998). Indeed, the<br />

energy budgets <str<strong>on</strong>g>of</str<strong>on</strong>g> self-feed<strong>in</strong>g chicks may become impossible <strong>in</strong> improved<br />

grasslands, where large <strong>in</strong>vertebrates are lost (Siepel, 1990; Be<strong>in</strong>tema, 1991).<br />

Changes to grassland structure may also affect the ability <str<strong>on</strong>g>of</str<strong>on</strong>g> wader chicks to feed.<br />

Black-tailed godwit chicks feed predom<strong>in</strong>antly <strong>on</strong> <strong>in</strong>vertebrates from relatively tall<br />

vegetati<strong>on</strong>, <strong>in</strong>clud<strong>in</strong>g many fly<strong>in</strong>g <strong>in</strong>sects (Be<strong>in</strong>tema, 1991). Faster growth promoted<br />

by fertilisers may <strong>in</strong>crease the abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> such species, but <strong>in</strong>tense graz<strong>in</strong>g <strong>on</strong><br />

improved pastures will be detrimental, and the use <str<strong>on</strong>g>of</str<strong>on</strong>g> much grassland for silage will<br />

affect the abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>vertebrates <strong>in</strong> the sward.<br />

Historical changes to earlier breed<strong>in</strong>g (as measured by r<strong>in</strong>g<strong>in</strong>g dates <str<strong>on</strong>g>of</str<strong>on</strong>g> chicks) by<br />

waders <strong>in</strong> Dutch meadows have been positively related to historical <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen<br />

<strong>in</strong> fertilisers, which <strong>in</strong> turn allow earlier grass cutt<strong>in</strong>g and cattle graz<strong>in</strong>g (Be<strong>in</strong>tema et<br />

65


al., 1985). Two mechanisms are suggested: earlier availability <str<strong>on</strong>g>of</str<strong>on</strong>g> food resources; and<br />

selecti<strong>on</strong> aga<strong>in</strong>st later nests, which was observed to be the case <strong>in</strong> <strong>on</strong>e spr<strong>in</strong>g seas<strong>on</strong><br />

(Be<strong>in</strong>tema and Müskens, 1987). Both mechanisms have potentially negative <str<strong>on</strong>g>effects</str<strong>on</strong>g>:<br />

earlier lay<strong>in</strong>g <strong>in</strong> resp<strong>on</strong>se to food availability may lead to unfavourable c<strong>on</strong>diti<strong>on</strong>s at<br />

the chick stage; while selecti<strong>on</strong> for earlier nests at the chick stage may lead to<br />

unfavourable c<strong>on</strong>diti<strong>on</strong>s at the lay<strong>in</strong>g stage (Be<strong>in</strong>tema et al., 1985). For example, nest<br />

predati<strong>on</strong> <strong>on</strong> snipe <strong>in</strong> lowland grassland was higher early <strong>in</strong> the breed<strong>in</strong>g seas<strong>on</strong><br />

(Green, 1988).<br />

Be<strong>in</strong>tema et al. (1997) stated that changes <strong>in</strong> wet grassland bird species compositi<strong>on</strong><br />

<strong>in</strong> the Netherlands follow a pattern <strong>in</strong> resp<strong>on</strong>se to fertiliser <strong>in</strong>put. Increases <strong>in</strong> fertiliser<br />

use <strong>in</strong>itially make meadows suitable habitat for a given species, probably by an<br />

<strong>in</strong>crease <strong>in</strong> food resources. Increases <strong>in</strong> fertiliser may improve habitat for the species<br />

up to a po<strong>in</strong>t, but earlier mow<strong>in</strong>g dates and <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> stock<strong>in</strong>g may affect reproductive<br />

output. F<strong>in</strong>ally, <strong>in</strong>tensive management reaches a po<strong>in</strong>t at which the species cannot<br />

reproduce sufficiently to replace its populati<strong>on</strong>, and the populati<strong>on</strong> decl<strong>in</strong>es. In the<br />

Netherlands, and <strong>in</strong> parts <str<strong>on</strong>g>of</str<strong>on</strong>g> Brita<strong>in</strong>, dairy farm<strong>in</strong>g developed <strong>on</strong> wet soils, unsuitable<br />

for crops. Wet c<strong>on</strong>diti<strong>on</strong>s cause slow annual development <str<strong>on</strong>g>of</str<strong>on</strong>g> the sward and therefore<br />

graz<strong>in</strong>g and mow<strong>in</strong>g is late, even where the soil is fertile. But fertilisers (and<br />

dra<strong>in</strong>age) allow early mow<strong>in</strong>g and graz<strong>in</strong>g, affect<strong>in</strong>g nest<strong>in</strong>g success. Although there<br />

is evidence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> chick mortality <strong>in</strong> the Netherlands, due to changes <strong>in</strong><br />

<strong>in</strong>vertebrate community compositi<strong>on</strong> (Siepel, 1990; Be<strong>in</strong>tema, 1991), Be<strong>in</strong>tema et al.<br />

(1997) suggested that a major cause <str<strong>on</strong>g>of</str<strong>on</strong>g> decl<strong>in</strong>e is egg destructi<strong>on</strong> from <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> stock<br />

rates.<br />

Breed<strong>in</strong>g waders <strong>in</strong> Brita<strong>in</strong> have different habitat requirements, and will be affected<br />

differently by changes caused <str<strong>on</strong>g><strong>in</strong>direct</str<strong>on</strong>g>ly by <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> fertiliser <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g>. Snipe feed<br />

largely <strong>on</strong> earthworms, <strong>in</strong>sect larvae and snails, by prob<strong>in</strong>g <strong>in</strong> soil and mud, and the<br />

use <str<strong>on</strong>g>of</str<strong>on</strong>g> feed<strong>in</strong>g sites is affected by the density <str<strong>on</strong>g>of</str<strong>on</strong>g> prey items and the force required to<br />

probe the soil (Green et al., 1990). <str<strong>on</strong>g>The</str<strong>on</strong>g> female <strong>in</strong>cubates al<strong>on</strong>e, and therefore relies <strong>on</strong><br />

suitable forag<strong>in</strong>g habitat near the nest. <str<strong>on</strong>g>The</str<strong>on</strong>g> length <str<strong>on</strong>g>of</str<strong>on</strong>g> the breed<strong>in</strong>g seas<strong>on</strong> is affected<br />

by the soil penetrability (Green, 1988), and the breed<strong>in</strong>g seas<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> snipe <strong>in</strong> the<br />

Netherlands was truncated between the 1940s and 1980s, which has been ascribed to<br />

agricultural improvement (Be<strong>in</strong>tema et al., 1997). Snipe leave their breed<strong>in</strong>g areas<br />

66


when soil penetrability becomes too low (Düttmann and Emmerl<strong>in</strong>g, 2001, <strong>in</strong> Plum,<br />

2005). In English wet grassland, nest failure was high (mostly due to predati<strong>on</strong> and<br />

trampl<strong>in</strong>g), but the number <str<strong>on</strong>g>of</str<strong>on</strong>g> chicks hatched per female was also determ<strong>in</strong>ed by the<br />

durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the breed<strong>in</strong>g seas<strong>on</strong>, which was related to soil penetrability (Green, 1988).<br />

Water levels are the ma<strong>in</strong> determ<strong>in</strong>ant <str<strong>on</strong>g>of</str<strong>on</strong>g> soil penetrability, and dra<strong>in</strong>age <str<strong>on</strong>g>of</str<strong>on</strong>g> wet<br />

grassland is probably the major cause <str<strong>on</strong>g>of</str<strong>on</strong>g> the decl<strong>in</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> snipe (Wils<strong>on</strong> et al., 2004) and<br />

dra<strong>in</strong>age has c<strong>on</strong>sequences for breed<strong>in</strong>g waders generally (Ausden et al., 2003).<br />

However, <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> sward density early <strong>in</strong> the breed<strong>in</strong>g seas<strong>on</strong> as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fertilisers, also decrease prey accessibility, <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> growth c<strong>on</strong>tributes<br />

to soil desiccati<strong>on</strong>.<br />

2.5.4. Changes to abundance and availability <str<strong>on</strong>g>of</str<strong>on</strong>g> plant food resources<br />

Seed food is an important food resource for many species, especially granivorous<br />

passer<strong>in</strong>es, and especially over w<strong>in</strong>ter. Most decl<strong>in</strong><strong>in</strong>g farmland bird species <strong>in</strong><br />

lowland Brita<strong>in</strong> are granivorous dur<strong>in</strong>g w<strong>in</strong>ter, and over-w<strong>in</strong>ter survival is c<strong>on</strong>sidered<br />

a key driver <str<strong>on</strong>g>of</str<strong>on</strong>g> the decl<strong>in</strong>es (Buck<strong>in</strong>gham and Peach, <strong>in</strong> press). Changes to<br />

management associated with <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> fertiliser use c<strong>on</strong>tribute to the reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

seed resources, although there are other factors, particularly the use <str<strong>on</strong>g>of</str<strong>on</strong>g> herbicides, that<br />

may be more important. Higher seed abundance <strong>in</strong> stubble fields was associated with<br />

greater occupancy by l<strong>in</strong>net, corn bunt<strong>in</strong>g, grey partridge, reed bunt<strong>in</strong>g,<br />

yellowhammer and chaff<strong>in</strong>ch (Moorcr<str<strong>on</strong>g>of</str<strong>on</strong>g>t et al., 2002). However, seed density is not<br />

the <strong>on</strong>ly factor affect<strong>in</strong>g w<strong>in</strong>ter forag<strong>in</strong>g by <strong>birds</strong> <strong>in</strong> farmland. <str<strong>on</strong>g>The</str<strong>on</strong>g>re were few<br />

associati<strong>on</strong>s between bird occurrence and food abundance (seeds and <strong>in</strong>vertebrates) <strong>in</strong><br />

Dev<strong>on</strong> and Buck<strong>in</strong>ghamshire grasslands (Atk<strong>in</strong>s<strong>on</strong> et al., 2004). Seed availability and<br />

vegetati<strong>on</strong> structure (and its <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> forag<strong>in</strong>g behaviour) may be as important as<br />

seed abundance (Butler et al., 2005; Wils<strong>on</strong> et al., 2005).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> loss <str<strong>on</strong>g>of</str<strong>on</strong>g> w<strong>in</strong>ter seed food due to the loss <str<strong>on</strong>g>of</str<strong>on</strong>g> stubbles has been associated with the<br />

decl<strong>in</strong>es <strong>in</strong> many farmland <strong>birds</strong> <strong>in</strong> the UK (Chamberla<strong>in</strong> et al., 2000). While I<br />

c<strong>on</strong>sider that the loss <str<strong>on</strong>g>of</str<strong>on</strong>g> w<strong>in</strong>ter stubbles, through <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> w<strong>in</strong>ter sow<strong>in</strong>g and the loss<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> mixed farm<strong>in</strong>g landscapes, is likely to have had the greatest effect <strong>on</strong> farmland bird<br />

populati<strong>on</strong>s via this pathway, there are mechanisms by which <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> fertiliser<br />

67


applicati<strong>on</strong> can c<strong>on</strong>tribute. With<strong>in</strong> grassland, cutt<strong>in</strong>g for silage prevents seed be<strong>in</strong>g<br />

set, which could provide a valuable food source for w<strong>in</strong>ter granivorous <strong>birds</strong><br />

(Buck<strong>in</strong>gham and Peach, <strong>in</strong> press). Reduced botanical diversity associated with<br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> fertilisati<strong>on</strong> may reduce seed availability for species such as l<strong>in</strong>net and turtle<br />

dove (Vickery et al., 2001). However, there were no significant differences <strong>in</strong> the<br />

proporti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> decl<strong>in</strong><strong>in</strong>g farmland bird species for which any plant tax<strong>on</strong> was<br />

c<strong>on</strong>sidered present or important <strong>in</strong> the diet (Wils<strong>on</strong> et al., 1999).<br />

2.5.4.1. Turtle dove<br />

Turtle dove have decl<strong>in</strong>ed <strong>in</strong> the UK by 77% between 1970 and 2001 (Eat<strong>on</strong> et al.,<br />

2004), with decreases <strong>in</strong> range and abundance most notable <strong>in</strong> grassland-dom<strong>in</strong>ated<br />

landscapes (Chamberla<strong>in</strong> and Fuller, 2001). This species is entirely granivorous, and<br />

was recorded feed<strong>in</strong>g primarily at ‘man-made sites’ (spilt gra<strong>in</strong>, gra<strong>in</strong> stores, etc.)<br />

(Browne and Aebischer, 2003). Wheat and rape seeds have grown as a comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the diet, from 5% <strong>in</strong> the 1960s, when weed seeds comprised 90% <str<strong>on</strong>g>of</str<strong>on</strong>g> the diet, to 61%.<br />

Reduced weed abundance, to which applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fertiliser c<strong>on</strong>tributes, is suggested<br />

as a major cause <str<strong>on</strong>g>of</str<strong>on</strong>g> the decl<strong>in</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> turtle dove (Browne and Aebischer, 2003). <str<strong>on</strong>g>The</str<strong>on</strong>g>re<br />

has also been a loss <str<strong>on</strong>g>of</str<strong>on</strong>g> preferred feed<strong>in</strong>g sites such as hayfields and clover leys, the<br />

former through the switch to silage producti<strong>on</strong> and the latter through the use <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>in</strong>organic fertilisers <strong>in</strong> place <str<strong>on</strong>g>of</str<strong>on</strong>g> crop rotati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> loss <str<strong>on</strong>g>of</str<strong>on</strong>g> food resources might be<br />

expected to affect breed<strong>in</strong>g. However, there has been no decl<strong>in</strong>e <strong>in</strong> <strong>in</strong>dividual nest<br />

success, and if breed<strong>in</strong>g productivity is the cause <str<strong>on</strong>g>of</str<strong>on</strong>g> the decl<strong>in</strong>e, then it must be due to<br />

a reducti<strong>on</strong> <strong>in</strong> the number <str<strong>on</strong>g>of</str<strong>on</strong>g> nest attempts, which has <strong>in</strong>deed been documented<br />

(Browne et al., 2005).<br />

2.5.4.2. Granivorous passer<strong>in</strong>es<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>re is a group <str<strong>on</strong>g>of</str<strong>on</strong>g> seed-eat<strong>in</strong>g passer<strong>in</strong>es that are <strong>in</strong> decl<strong>in</strong>e <strong>in</strong> the UK, <strong>in</strong>clud<strong>in</strong>g reed<br />

bunt<strong>in</strong>g, yellowhammer, l<strong>in</strong>net and corn bunt<strong>in</strong>g (Eat<strong>on</strong> et al., 2005). In experimental<br />

plots <strong>on</strong> grassland, yellowhammer and reed bunt<strong>in</strong>g showed a str<strong>on</strong>g preference <strong>in</strong><br />

w<strong>in</strong>ter for grass that had been left to go to seed <strong>in</strong>stead <str<strong>on</strong>g>of</str<strong>on</strong>g> be<strong>in</strong>g cut for a third silage<br />

crop (Buck<strong>in</strong>gham and Peach, <strong>in</strong> press). Of plots left to go to seed, they preferred<br />

ungrazed plots. Many granivorous passer<strong>in</strong>es also take <strong>in</strong>vertebrate food <strong>in</strong> the<br />

breed<strong>in</strong>g seas<strong>on</strong>, especially when feed<strong>in</strong>g chicks, and those that do are more likely to<br />

68


e <strong>in</strong> decl<strong>in</strong>e. <str<strong>on</strong>g>The</str<strong>on</strong>g> decl<strong>in</strong>e <strong>in</strong> chick food (notably sawfly larvae) has been implicated <strong>in</strong><br />

reduced productivity <strong>in</strong> corn bunt<strong>in</strong>g (Barker, 2004).<br />

2.5.5. Reduced breed<strong>in</strong>g success due to <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> graz<strong>in</strong>g/cutt<strong>in</strong>g <strong>in</strong>tensity or denser<br />

spr<strong>in</strong>g vegetati<strong>on</strong><br />

Nest predati<strong>on</strong> may <strong>in</strong>crease <strong>in</strong> homogeneous landscapes, although there are trade<str<strong>on</strong>g>of</str<strong>on</strong>g>fs<br />

between detecti<strong>on</strong> and c<strong>on</strong>cealment (Whitt<strong>in</strong>gham and Evans, 2004). Agricultural<br />

<strong>in</strong>tensificati<strong>on</strong> <strong>in</strong>creases homogeneity at several scales (Bent<strong>on</strong> et al., 2003; Wils<strong>on</strong> et<br />

al., 2005). Nest predati<strong>on</strong> and trampl<strong>in</strong>g has been found to be a major cause <str<strong>on</strong>g>of</str<strong>on</strong>g> nest<br />

failure <strong>in</strong> several ground nest<strong>in</strong>g species, <strong>in</strong>clud<strong>in</strong>g skylark <strong>in</strong> southern England<br />

(Wils<strong>on</strong> et al., 1997), snipe <strong>on</strong> wet grassland <strong>in</strong> southern England (Green, 1988), and<br />

curlew <strong>in</strong> Northern Ireland (Grant et al., 1999). Complete absence <str<strong>on</strong>g>of</str<strong>on</strong>g> graz<strong>in</strong>g can lead<br />

to a deteriorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat for grassland <strong>birds</strong> by allow<strong>in</strong>g grass to grow too tall or<br />

dense (Laiolo et al., 2004), and fertiliser applicati<strong>on</strong> has a similar effect <strong>in</strong> both arable<br />

land and pasture by <strong>in</strong>creas<strong>in</strong>g crop growth <strong>in</strong> spr<strong>in</strong>g. C<strong>on</strong>ceal<strong>in</strong>g vegetati<strong>on</strong> may<br />

<strong>in</strong>crease predati<strong>on</strong> risk <str<strong>on</strong>g>of</str<strong>on</strong>g> adult <strong>birds</strong> from predators that use olfactory detecti<strong>on</strong> and<br />

h<strong>in</strong>der anti-predator behaviour (Wils<strong>on</strong> et al., 2005). Several ground nest<strong>in</strong>g <strong>birds</strong>,<br />

such as lapw<strong>in</strong>g and skylark select short swards, which improves forag<strong>in</strong>g and<br />

predator detecti<strong>on</strong> (Wils<strong>on</strong> et al., 1997; O’Brien, 2002). However, the uniform sward<br />

structure associated with heavy graz<strong>in</strong>g may <strong>in</strong>crease the detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nests by<br />

predators; corvids, comm<strong>on</strong> nest predators, may <strong>in</strong>crease <strong>in</strong> resp<strong>on</strong>se to greater<br />

availability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>vertebrates <strong>in</strong> short swards (Vickery et al., 2001). Magpie and crow<br />

occurrences <strong>in</strong> w<strong>in</strong>ter have both shown positive relati<strong>on</strong>ships to applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>in</strong>organic fertiliser (Tucker, 1992). Increased graz<strong>in</strong>g density may also affect nest<strong>in</strong>g<br />

success <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>birds</strong> that require different vegetati<strong>on</strong> structure for nest<strong>in</strong>g. Redshank <strong>in</strong><br />

salt marshes <strong>in</strong> the Wash were more abundant where moderate graz<strong>in</strong>g created<br />

variable sward density, while <strong>in</strong>tensive sheep graz<strong>in</strong>g created uniform swards<br />

unsuitable for nest<strong>in</strong>g (Norris et al., 1997; Norris et al., 1998). Increased graz<strong>in</strong>g also<br />

<strong>in</strong>creases the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> nest destructi<strong>on</strong> through trampl<strong>in</strong>g, although the type <str<strong>on</strong>g>of</str<strong>on</strong>g> stock and<br />

the tim<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> graz<strong>in</strong>g will determ<strong>in</strong>e the magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the effect.<br />

69


2.5.5.1. Lapw<strong>in</strong>g<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> lapw<strong>in</strong>g populati<strong>on</strong> has been <strong>in</strong> steep decl<strong>in</strong>e s<strong>in</strong>ce the 1980s <strong>in</strong> all areas, but<br />

particularly <strong>in</strong> lowland farmland (Wils<strong>on</strong> et al., 2001; Chamberla<strong>in</strong> and Crick, 2003;<br />

Sheld<strong>on</strong> et al., 2004). <str<strong>on</strong>g>The</str<strong>on</strong>g> causes <str<strong>on</strong>g>of</str<strong>on</strong>g> the decl<strong>in</strong>e are complex, but have been attributed<br />

ma<strong>in</strong>ly to reduced productivity (Galbraith, 1988; Ba<strong>in</strong>es, 1990). Preferred nest<strong>in</strong>g<br />

habitat is arable land (particularly spr<strong>in</strong>g-sown crops) and unimproved grassland<br />

(Galbraith, 1989; Wils<strong>on</strong> et al., 2001; Taylor and Grant, 2004). Lapw<strong>in</strong>gs have<br />

suffered from loss <str<strong>on</strong>g>of</str<strong>on</strong>g> nest<strong>in</strong>g habitat due to changes <strong>in</strong> vegetati<strong>on</strong> structure and <strong>in</strong><br />

landscape-level changes to land use. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> spr<strong>in</strong>g height and density <str<strong>on</strong>g>of</str<strong>on</strong>g> w<strong>in</strong>ter<br />

crops or the enhanced growth <str<strong>on</strong>g>of</str<strong>on</strong>g> improved grassland is detrimental, as nest<strong>in</strong>g<br />

lapw<strong>in</strong>gs depend <strong>on</strong> short swards (O’C<strong>on</strong>nor and Shrubb, 1986; Shrubb and Lack,<br />

1991; Huds<strong>on</strong> et al., 1994; O’Brien, 2002). Forag<strong>in</strong>g chicks also prefer short grass,<br />

probably because it facilitates prey detecti<strong>on</strong>, improves mobility and <strong>in</strong>creases<br />

forag<strong>in</strong>g time by alter<strong>in</strong>g vigilance patterns (Devereux et al., 2004). However,<br />

lapw<strong>in</strong>gs avoid silage grass, and they may have been forced <strong>in</strong>to nest<strong>in</strong>g <strong>in</strong> less<br />

suitable habitat by its spread (Shrubb, 1990). Arable nest<strong>in</strong>g habitat is more suitable<br />

when it is close to pasture, where the chicks are taken to forage (Galbraith, 1988), and<br />

thus this species suffers from the polarisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> landscapes <strong>in</strong>to arable or grassland<br />

(Wils<strong>on</strong> et al., 2001; Sheld<strong>on</strong> et al., 2004).<br />

Lapw<strong>in</strong>gs suffer from nest failure via several routes <str<strong>on</strong>g><strong>in</strong>direct</str<strong>on</strong>g>ly related to fertiliser<br />

applicati<strong>on</strong>. Graz<strong>in</strong>g is beneficial, as it reduces the sward height, although the type <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

graz<strong>in</strong>g is important; lapw<strong>in</strong>gs are more associated with horses or sheep than cattle<br />

(Shrubb and Lack, 1991). However, nest trampl<strong>in</strong>g due to <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> stock<strong>in</strong>g density,<br />

has been suggested as a major cause <str<strong>on</strong>g>of</str<strong>on</strong>g> nest failures (Shrubb, 1990). Nest failure due<br />

to predati<strong>on</strong> was higher <strong>in</strong> Brita<strong>in</strong> <strong>in</strong> the 1990s than <strong>in</strong> the three preced<strong>in</strong>g decades,<br />

and was the greatest cause <str<strong>on</strong>g>of</str<strong>on</strong>g> nest failure <strong>in</strong> that decade <strong>in</strong> arable and mixed farmland<br />

(but not <strong>in</strong> pasture) (Chamberla<strong>in</strong> and Crick, 2003). Lapw<strong>in</strong>g breed<strong>in</strong>g success was<br />

lower <strong>on</strong> improved than unimproved pasture <strong>in</strong> northern England, and the reduced<br />

breed<strong>in</strong>g success was largely accounted for by <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> predati<strong>on</strong> (Ba<strong>in</strong>es, 1989;<br />

Ba<strong>in</strong>es, 1990). On a coastal graz<strong>in</strong>g marsh, graz<strong>in</strong>g <strong>in</strong>tensity was associated with<br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> predati<strong>on</strong> risk, possibly because disturbance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>cubat<strong>in</strong>g <strong>birds</strong> left nests<br />

unattended for l<strong>on</strong>ger (Hart et al., 2002). Corvids and foxes are suggested as major<br />

predators <str<strong>on</strong>g>of</str<strong>on</strong>g> lapw<strong>in</strong>g nests <strong>in</strong> the UK, although fox predati<strong>on</strong> was c<strong>on</strong>sidered<br />

70


‘<strong>in</strong>cidental’ <strong>in</strong> a study <strong>in</strong> North Yorkshire (Seymour et al., 2003), and predati<strong>on</strong><br />

pressure may relate to cycles <str<strong>on</strong>g>of</str<strong>on</strong>g> alternative prey (Be<strong>in</strong>tema and Müskens, 1987).<br />

Predati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> first broods may be a more serious problem due to the loss <str<strong>on</strong>g>of</str<strong>on</strong>g> suitable<br />

nest<strong>in</strong>g habitat later <strong>in</strong> the seas<strong>on</strong>, aga<strong>in</strong> as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> taller and denser vegetati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

<str<strong>on</strong>g><strong>in</strong>direct</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> fertiliser applicati<strong>on</strong> have c<strong>on</strong>tributed to lapw<strong>in</strong>g decl<strong>in</strong>e<br />

<strong>in</strong> the UK via pathways associated with productivity.<br />

2.5.6. Nest/brood destructi<strong>on</strong> due to changes <strong>in</strong> grass cutt<strong>in</strong>g regime<br />

Mow<strong>in</strong>g is a destructive event, which <str<strong>on</strong>g>of</str<strong>on</strong>g>ten takes place over a large area <strong>in</strong> a short<br />

space <str<strong>on</strong>g>of</str<strong>on</strong>g> time. Birds nest<strong>in</strong>g at the time when silage is cut will have their nests<br />

destroyed (Wils<strong>on</strong> et al., 1997). Silage is cut earlier and more frequently than hay,<br />

lead<strong>in</strong>g to more nest and chick destructi<strong>on</strong> (Be<strong>in</strong>tema and Müskens, 1987). Nest<br />

destructi<strong>on</strong> by cutt<strong>in</strong>g for silage may have c<strong>on</strong>tributed to the decl<strong>in</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> yellow wagtail<br />

<strong>in</strong> British upland grassland (Nels<strong>on</strong> et al., 2003). For this species and others with<br />

similar breed<strong>in</strong>g and food preferences, silage cutt<strong>in</strong>g not <strong>on</strong>ly destroys nests, but also<br />

reduces availability <str<strong>on</strong>g>of</str<strong>on</strong>g> foliar <strong>in</strong>vertebrates, which would be expected to reduce<br />

productivity. Some wader species require tussocky areas for nest c<strong>on</strong>cealment while<br />

breed<strong>in</strong>g, but may avoid uniform dense swards, such as those present <strong>in</strong> areas <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

silage producti<strong>on</strong> (Vickery et al., 2001).<br />

2.5.6.1. Wh<strong>in</strong>chat<br />

Wh<strong>in</strong>chats have virtually disappeared from Swiss lowland farmland, suffer<strong>in</strong>g from<br />

high brood losses <strong>in</strong> <strong>in</strong>tensively managed grassland, as the mow<strong>in</strong>g <strong>in</strong>terval is shorter<br />

than the period between nest<strong>in</strong>g and fledg<strong>in</strong>g (Schifferli et al., 1999). Between 1988<br />

and 2002, meadow cultivati<strong>on</strong> changed markedly, with the <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> mow<strong>in</strong>g brought<br />

forward by around 20 days and pastures cut for silage replac<strong>in</strong>g hay meadows (Müller<br />

et al., 2005). Mow<strong>in</strong>g date str<strong>on</strong>gly predicted the proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> successful broods, and<br />

<strong>in</strong> some areas breed<strong>in</strong>g success was too low to compensate for mortality. In additi<strong>on</strong><br />

to nest destructi<strong>on</strong>, wh<strong>in</strong>chat have suffered from a decl<strong>in</strong>e <strong>in</strong> arthopod abundance,<br />

particularly <str<strong>on</strong>g>of</str<strong>on</strong>g> large <strong>in</strong>sects, <strong>in</strong> <strong>in</strong>tensively managed subalp<strong>in</strong>e meadows <strong>in</strong><br />

Switzerland (Britschgi et al., 2006). Fledg<strong>in</strong>g success was lower <strong>in</strong> these <strong>in</strong>tensively<br />

managed meadows, which were mostly silage fields, than <strong>in</strong> traditi<strong>on</strong>ally managed<br />

71


hay meadows, which were cut less frequently and later <strong>in</strong> the seas<strong>on</strong>.Wh<strong>in</strong>chat began<br />

to decl<strong>in</strong>e <strong>in</strong> lowland Brita<strong>in</strong> <strong>in</strong> the first half <str<strong>on</strong>g>of</str<strong>on</strong>g> the twentieth century, and it is now<br />

c<strong>on</strong>sidered a bird typical <str<strong>on</strong>g>of</str<strong>on</strong>g> upland areas (Mead, 2000). It has also disappeared from<br />

lowland Europe <strong>in</strong> the past half century (Müller et al., 2005). Wh<strong>in</strong>chats, al<strong>on</strong>g with<br />

other ground nest<strong>in</strong>g <strong>birds</strong>, have decl<strong>in</strong>ed at sites <strong>in</strong> British pastoral uplands <strong>in</strong> more<br />

recent years, c<strong>on</strong>comitant with improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> most sites (Henders<strong>on</strong> et al., 2004).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> decl<strong>in</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> this species <strong>in</strong> lowland Brita<strong>in</strong> has probably been at least partly caused<br />

by the <str<strong>on</strong>g><strong>in</strong>direct</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> fertiliser applicati<strong>on</strong>, specifically improvement and earlier<br />

cutt<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> grasslands, and it may undergo further decl<strong>in</strong>es <strong>in</strong> upland areas.<br />

2.5.6.2. Corncrake<br />

As early as the 1940s, more rapid and earlier grass cutt<strong>in</strong>g as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> mechanisati<strong>on</strong><br />

were proposed as the causes <str<strong>on</strong>g>of</str<strong>on</strong>g> historical populati<strong>on</strong> decl<strong>in</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> the corncrake (Norris,<br />

1945; Norris, 1947). In the sec<strong>on</strong>d half <str<strong>on</strong>g>of</str<strong>on</strong>g> the twentieth century the <strong>in</strong>troducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

new varieties <str<strong>on</strong>g>of</str<strong>on</strong>g> grass and the <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> fertilisers has advanced cutt<strong>in</strong>g dates<br />

for hay and silage (Green, 1995). This has been compounded by an <strong>in</strong>crease <strong>in</strong> the<br />

proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> land allocated to silage, which may be cut multiple times <strong>in</strong> a summer.<br />

A study <str<strong>on</strong>g>of</str<strong>on</strong>g> site occupancy found that corncrakes c<strong>on</strong>t<strong>in</strong>ued to occupy sites with a<br />

greater area <str<strong>on</strong>g>of</str<strong>on</strong>g> hay meadow, and where silage was not the dom<strong>in</strong>ant method <str<strong>on</strong>g>of</str<strong>on</strong>g> grass<br />

management (Stowe et al., 1993). Corncrake populati<strong>on</strong> density was positively related<br />

to the area <str<strong>on</strong>g>of</str<strong>on</strong>g> tall marshland vegetati<strong>on</strong> <strong>in</strong> spr<strong>in</strong>g, and to area <str<strong>on</strong>g>of</str<strong>on</strong>g> grass taller than 20<br />

cm <strong>in</strong> summer, but <strong>on</strong>ly where the mean date <str<strong>on</strong>g>of</str<strong>on</strong>g> mow<strong>in</strong>g was <strong>in</strong> late July (Green,<br />

1996). <str<strong>on</strong>g>The</str<strong>on</strong>g> mechanism beh<strong>in</strong>d the decrease <strong>in</strong> corncrake populati<strong>on</strong>s is <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> nest<br />

and brood destructi<strong>on</strong> dur<strong>in</strong>g grass cutt<strong>in</strong>g (Green and Stowe, 1993). In the absence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

mow<strong>in</strong>g clutch and brood survival are high (Green et al., 1997), and the decl<strong>in</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

corncrakes has been reversed by a series <str<strong>on</strong>g>of</str<strong>on</strong>g> corncrake-friendly measures, <strong>in</strong>clud<strong>in</strong>g a<br />

delay <strong>in</strong> mow<strong>in</strong>g (Aebischer et al., 2000). Other changes associated with agricultural<br />

<strong>in</strong>tensificati<strong>on</strong> but <strong>in</strong>dependent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> fertiliser use, notably mechanisati<strong>on</strong>, have<br />

been <strong>in</strong>volved <strong>in</strong> the decl<strong>in</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> corncrake. However, enhanced grass growth <strong>in</strong><br />

resp<strong>on</strong>se to <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> fertiliser use has led to <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> nest and chick destructi<strong>on</strong>.<br />

And <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> land used for silage producti<strong>on</strong>, which is ec<strong>on</strong>omically viable when<br />

grass yield is high <strong>in</strong> resp<strong>on</strong>se to fertiliser applicati<strong>on</strong>s, has led to habitat loss. <str<strong>on</strong>g>The</str<strong>on</strong>g>re<br />

rema<strong>in</strong>s the possibility that c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> the w<strong>in</strong>ter<strong>in</strong>g and stag<strong>in</strong>g grounds may also<br />

72


affect corncrake numbers (Green and Gibb<strong>on</strong>s, 2000), but there is very str<strong>on</strong>g<br />

evidence for the causal role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>direct</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> fertiliser use <strong>on</strong> corncrake.<br />

2.5.7. Changes to landscape c<strong>on</strong>figurati<strong>on</strong><br />

Reduced habitat heterogeneity <strong>on</strong> the landscape, between-field and with<strong>in</strong>-field scale<br />

has been suggested as a major c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> agricultural <strong>in</strong>tensificati<strong>on</strong> and a major<br />

cause <str<strong>on</strong>g>of</str<strong>on</strong>g> the decl<strong>in</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> farmland <strong>birds</strong> (Bent<strong>on</strong> et al., 2003). Many ground nesters<br />

require a comb<strong>in</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>ger swards for nest<strong>in</strong>g and short swards for forag<strong>in</strong>g.<br />

Intensive management <str<strong>on</strong>g>of</str<strong>on</strong>g> farmland leads to a homogenous sward, which may be either<br />

taller and denser than previously (<strong>in</strong> early spr<strong>in</strong>g due to <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> growth) or shorter<br />

than previously (after cutt<strong>in</strong>g or heavy graz<strong>in</strong>g). In arable fields, fertiliser applicati<strong>on</strong><br />

encourages a dense crop structure, and modern varieties resp<strong>on</strong>d vigorously to<br />

fertilisers (Stoate et al., 2001). This can reduce the suitability <str<strong>on</strong>g>of</str<strong>on</strong>g> the field for both<br />

nest<strong>in</strong>g and forag<strong>in</strong>g. For example, lapw<strong>in</strong>gs prefer spr<strong>in</strong>g cereals for nest<strong>in</strong>g, but rear<br />

their chicks <strong>on</strong> grassland, and thus require the juxtapositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> these habitats<br />

(Galbraith, 1988). Increased rates <str<strong>on</strong>g>of</str<strong>on</strong>g> local ext<strong>in</strong>cti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> seven red- or amber-listed bird<br />

species <strong>in</strong> grassland-dom<strong>in</strong>ated landscapes suggests that lowland grassland is<br />

suboptimal habitat for <strong>birds</strong>, and the loss <str<strong>on</strong>g>of</str<strong>on</strong>g> arable comp<strong>on</strong>ents has had a negative<br />

impact <strong>on</strong> farmland <strong>birds</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>servati<strong>on</strong> c<strong>on</strong>cern (Chamberla<strong>in</strong> and Fuller, 2001).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> polarisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pastoral and arable farm<strong>in</strong>g, and the loss <str<strong>on</strong>g>of</str<strong>on</strong>g> crop rotati<strong>on</strong>s, which<br />

have occurred as farmers have been able to rely <strong>on</strong> <strong>in</strong>organic fertilisers, have led to a<br />

reducti<strong>on</strong> <strong>in</strong> mixed agriculture <strong>in</strong> Brita<strong>in</strong> (Evans, 1997a). Mixed farm<strong>in</strong>g landscapes<br />

are likely to provide the greatest diversity and abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> seed foods <strong>in</strong> <strong>in</strong>tensive<br />

farm<strong>in</strong>g landscapes, as some plant species require cultivati<strong>on</strong> and others thrive <strong>in</strong><br />

fertilised grasslands and field marg<strong>in</strong>s (Wils<strong>on</strong> et al., 1999). Mixed farm<strong>in</strong>g habitats<br />

can be especially important to <strong>birds</strong> <strong>in</strong> w<strong>in</strong>ter. Some species that are <strong>in</strong>sectivorous <strong>in</strong><br />

the breed<strong>in</strong>g seas<strong>on</strong>, and therefore utilise pastoral systems, switch to seed over w<strong>in</strong>ter,<br />

and utilise arable landscapes (Atk<strong>in</strong>s<strong>on</strong> et al., 2002). Included <strong>in</strong> this group are<br />

st<strong>on</strong>echat, starl<strong>in</strong>g, pied wagtail and meadow pipit. Thus the shift <strong>in</strong> landscapes may<br />

have c<strong>on</strong>tributed to the decl<strong>in</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> farmland bird species <strong>in</strong> Brita<strong>in</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> effect is<br />

difficult to quantify, and as a driver <str<strong>on</strong>g>of</str<strong>on</strong>g> this process, <strong>in</strong>organic fertiliser use probably<br />

73


<strong>on</strong>ly applies to loss <str<strong>on</strong>g>of</str<strong>on</strong>g> pasture (with livestock to provide organic manure) <strong>in</strong> arable<br />

landscapes, and not the loss <str<strong>on</strong>g>of</str<strong>on</strong>g> arable land <strong>in</strong> pastoral landscapes. Mixed farms tend to<br />

use less <strong>in</strong>tensive management practices and ma<strong>in</strong>ta<strong>in</strong> uncropped habitats such as<br />

hedgerows, and this may also play a role <strong>in</strong> determ<strong>in</strong><strong>in</strong>g the distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>birds</strong> <strong>in</strong><br />

British farmland (Atk<strong>in</strong>s<strong>on</strong> et al., 2002). <str<strong>on</strong>g>The</str<strong>on</strong>g> loss <str<strong>on</strong>g>of</str<strong>on</strong>g> mixed farm<strong>in</strong>g systems, and the<br />

variety <str<strong>on</strong>g>of</str<strong>on</strong>g> habitats, has been suggested as c<strong>on</strong>tribut<strong>in</strong>g to the decl<strong>in</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> skylark<br />

(Wils<strong>on</strong> et al., 1997) and starl<strong>in</strong>g (Whitehead, 1994, <strong>in</strong> Anders<strong>on</strong> et al., 2001).<br />

Swallows <strong>in</strong> arable landscapes are thought to have suffered from a loss <str<strong>on</strong>g>of</str<strong>on</strong>g> pasture, as<br />

many <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>sects they feed <strong>on</strong> rely <strong>on</strong> animal dung (Evans, 2001, <strong>in</strong> Anders<strong>on</strong> et al.,<br />

2001).<br />

2.5.8. Organic versus c<strong>on</strong>venti<strong>on</strong>al farm<strong>in</strong>g<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> studies presented above suggest that organic fertilisers are more likely<br />

to be beneficial to <strong>in</strong>vertebrates that are important food items <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>birds</strong> than are<br />

<strong>in</strong>organic fertilisers (Vickery et al., 2001; Wickramas<strong>in</strong>ghe et al., 2004). <str<strong>on</strong>g>The</str<strong>on</strong>g>re is<br />

some evidence that bird populati<strong>on</strong>s <strong>on</strong> organic farms are higher than those <strong>on</strong><br />

c<strong>on</strong>venti<strong>on</strong>al farms, although the differences are not necessarily c<strong>on</strong>sistent between<br />

years and seas<strong>on</strong>s (Chamberla<strong>in</strong> et al., 1999; Bengtss<strong>on</strong> et al., 2005). Skylark density<br />

<strong>in</strong> southern England was higher <strong>in</strong> organically-cropped fields (and set-aside) than <strong>in</strong><br />

<strong>in</strong>tensively cropped fields or grazed pasture (Wils<strong>on</strong> et al., 1997). On maize farms <strong>in</strong><br />

the USA, bird abundance was higher <strong>on</strong> organic fields than paired c<strong>on</strong>venti<strong>on</strong>al farms,<br />

and organic farms held more species (Beecher et al., 2002). No species (<str<strong>on</strong>g>of</str<strong>on</strong>g> 54) was<br />

more abundant <strong>on</strong> n<strong>on</strong>-organic farms. <str<strong>on</strong>g>The</str<strong>on</strong>g> differences between organic and<br />

c<strong>on</strong>venti<strong>on</strong>al farms <strong>in</strong>clude the use <str<strong>on</strong>g>of</str<strong>on</strong>g> fertilisers and herbicides, the nature <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

cultivati<strong>on</strong>, and crop rotati<strong>on</strong>s, and all <str<strong>on</strong>g>of</str<strong>on</strong>g> these may c<strong>on</strong>tribute to organic farms<br />

support<strong>in</strong>g more <strong>birds</strong>. Physical management <str<strong>on</strong>g>of</str<strong>on</strong>g> farms, and the provisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-crop<br />

vegetati<strong>on</strong> <strong>on</strong> organic farms, may be more important <strong>in</strong> determ<strong>in</strong><strong>in</strong>g the abundance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>birds</strong> than the type <str<strong>on</strong>g>of</str<strong>on</strong>g> fertiliser used (Chamberla<strong>in</strong> et al., 1999; Beecher et al., 2002).<br />

Nevertheless, the positive resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> earthworms <strong>in</strong> particular to moderate<br />

applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> farmyard manure should provide <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> food resources for <strong>birds</strong>. In<br />

southern England, the distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> four species (lapw<strong>in</strong>g, starl<strong>in</strong>g, fieldfare and<br />

74


edw<strong>in</strong>g) <strong>in</strong> grass fields <strong>in</strong> w<strong>in</strong>ter was positively related to the frequency <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> farmyard manure (Tucker, 1992). Lapw<strong>in</strong>g and black-headed gull<br />

showed similar relati<strong>on</strong>ships <strong>in</strong> cultivated fields. <str<strong>on</strong>g>The</str<strong>on</strong>g> frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> three<br />

species (starl<strong>in</strong>g, magpie and crow) was higher where <strong>in</strong>organic fertiliser was applied.<br />

Starl<strong>in</strong>g and magpie both feed <strong>on</strong> tipulid larvae, which are not adversely affected by<br />

<strong>in</strong>organic fertilisers.<br />

2.5.9. Summary<br />

A list <str<strong>on</strong>g>of</str<strong>on</strong>g> farmland bird species for which I c<strong>on</strong>sider use <str<strong>on</strong>g>of</str<strong>on</strong>g> fertilisers to have <str<strong>on</strong>g><strong>in</strong>direct</str<strong>on</strong>g>ly<br />

c<strong>on</strong>tributed to the decl<strong>in</strong>e is shown <strong>in</strong> Table 2.6. Birds may be affected by more than<br />

<strong>on</strong>e process associated with fertiliser use, and the proximate causes <str<strong>on</strong>g>of</str<strong>on</strong>g> decl<strong>in</strong>e may be<br />

at more than <strong>on</strong>e remove from the ultimate cause. In additi<strong>on</strong>, more than <strong>on</strong>e<br />

comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> agricultural <strong>in</strong>tensificati<strong>on</strong> can have the same ultimate effect <strong>on</strong> <strong>birds</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> negative <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> fertiliser are most apparent <strong>in</strong> pastoral<br />

landscapes. This is because fertiliser use has driven agricultural <strong>in</strong>tensificati<strong>on</strong> <strong>in</strong> this<br />

habitat, whereas the changes <strong>in</strong> arable farmland have been more str<strong>on</strong>gly affected by<br />

shifts to w<strong>in</strong>ter-sown cereals. Fertiliser use has c<strong>on</strong>tributed to the magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> these<br />

changes, by <strong>in</strong>creas<strong>in</strong>g growth rates and crop yield, but changes <str<strong>on</strong>g>of</str<strong>on</strong>g> this nature would<br />

likely have happened anyway. However, I feel that there is str<strong>on</strong>g evidence for<br />

fertiliser use as <strong>on</strong>e driver <str<strong>on</strong>g>of</str<strong>on</strong>g> decl<strong>in</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> farmland <strong>birds</strong> <strong>in</strong> the United K<strong>in</strong>gdom.<br />

75


Table 2.6. Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> suggested ways <strong>in</strong> which applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fertilisers has <str<strong>on</strong>g><strong>in</strong>direct</str<strong>on</strong>g>ly affected farmland <strong>birds</strong> <strong>in</strong> the United K<strong>in</strong>gdom<br />

Species list<strong>in</strong>g<br />

reduced<br />

abundance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

epigeal/foliar<br />

<strong>in</strong>vertebrates<br />

reduced<br />

abundance/<br />

availability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

soil<br />

<strong>in</strong>vertebrates<br />

Mechanism by which fertiliser use may have <str<strong>on</strong>g><strong>in</strong>direct</str<strong>on</strong>g>ly affected bird species 1<br />

reduced<br />

abundance<br />

availability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

seed food<br />

resources<br />

reduced sward<br />

suitability for<br />

nest<strong>in</strong>g <strong>birds</strong> nest trampl<strong>in</strong>g<br />

nest<br />

destructi<strong>on</strong> by<br />

cutt<strong>in</strong>g for<br />

silage<br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g><br />

predati<strong>on</strong> <strong>in</strong><br />

homogeneous<br />

swards<br />

loss <str<strong>on</strong>g>of</str<strong>on</strong>g> mixed<br />

farm<strong>in</strong>g<br />

landscapes<br />

corncrake red P<br />

lapw<strong>in</strong>g amber C+ P C C C+<br />

snipe amber C C<br />

curlew amber C+ C<br />

redshank amber C+<br />

turtle dove red C<br />

skylark red P- C- P C C C-<br />

barn swallow amber C<br />

yellow wagtail amber C C+ C<br />

wh<strong>in</strong>chat green C+ C+<br />

red-backed shrike red C+<br />

chough amber C+<br />

starl<strong>in</strong>g red C+ C<br />

tree sparrow red C C-<br />

l<strong>in</strong>net red C-<br />

yellowhammer red C C- C<br />

cirl bunt<strong>in</strong>g red P C- C+<br />

reed bunt<strong>in</strong>g red C C- C<br />

corn bunt<strong>in</strong>g red C C- C C<br />

1 P = proven (e.g. by recovery or experimental study), P- = proven, but fertiliser use is sec<strong>on</strong>dary to other cause(s) <str<strong>on</strong>g>of</str<strong>on</strong>g> mechanism, C = correlati<strong>on</strong>, C+ = str<strong>on</strong>g correlati<strong>on</strong>, C-<br />

= correlati<strong>on</strong>, but fertiliser use is sec<strong>on</strong>dary to other cause(s) <str<strong>on</strong>g>of</str<strong>on</strong>g> mechanism<br />

76


3. Aquatic habitats<br />

3.1. Introducti<strong>on</strong><br />

Increased <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> supply to natural ecosystems has been recognised for many years as<br />

a major envir<strong>on</strong>mental problem <strong>in</strong> aquatic ecosystems. Much <str<strong>on</strong>g>of</str<strong>on</strong>g> the discussi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

issue has centred <strong>on</strong> the threat to the natural functi<strong>on</strong><strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> aquatic systems, and ways<br />

to prevent and mitigate this threat. However, while the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> vegetati<strong>on</strong> and some<br />

animal groups are relatively well known, the <str<strong>on</strong>g><strong>in</strong>direct</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> <strong>birds</strong> have not been<br />

addressed <strong>in</strong> a comprehensive way. This review attempts to collate evidence for such<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>in</strong> the United K<strong>in</strong>gdom.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> term eutrophicati<strong>on</strong> was co<strong>in</strong>ed to refer to the elevated nutriti<strong>on</strong>al status <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

waters. <str<strong>on</strong>g>The</str<strong>on</strong>g> Envir<strong>on</strong>ment Agency (2000) def<strong>in</strong>ed eutrophicati<strong>on</strong> as:<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> enrichment <str<strong>on</strong>g>of</str<strong>on</strong>g> water by <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s, stimulat<strong>in</strong>g an array <str<strong>on</strong>g>of</str<strong>on</strong>g> symptomatic<br />

changes <strong>in</strong>clud<strong>in</strong>g <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> algae and/or higher plants, which can<br />

adversely affect the diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> the biological system, the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> the water<br />

and the uses to which the water may be put.<br />

But the Urban Waste Water Directive, def<strong>in</strong>es it as “the enrichment <str<strong>on</strong>g>of</str<strong>on</strong>g> water by<br />

<str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s, especially compounds <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen and/or phosphorus, caus<strong>in</strong>g an<br />

accelerated growth <str<strong>on</strong>g>of</str<strong>on</strong>g> algae and higher forms <str<strong>on</strong>g>of</str<strong>on</strong>g> plant life to produce an undesirable<br />

disturbance to the balance <str<strong>on</strong>g>of</str<strong>on</strong>g> organisms present <strong>in</strong> the water and to the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

water c<strong>on</strong>cerned.” (European Uni<strong>on</strong> Directive 91/271/EEC <strong>on</strong> Urban Waste Water).<br />

Both <str<strong>on</strong>g>of</str<strong>on</strong>g> these def<strong>in</strong>iti<strong>on</strong>s <strong>in</strong>dicate that eutrophicati<strong>on</strong> is usually c<strong>on</strong>sidered <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

its physical manifestati<strong>on</strong>, rather than the actual levels <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s <strong>in</strong> the water and<br />

sediments. Waters have naturally different <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> levels, due to geographical factors,<br />

and may undergo natural eutrophicati<strong>on</strong>. However, eutrophicati<strong>on</strong> as a result <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

human activities with<strong>in</strong> catchments (known as cultural eutrophicati<strong>on</strong>) is the subject<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> this review.<br />

77


<str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <strong>in</strong>creases <strong>on</strong> flora and fauna are documented <strong>in</strong> an enormous<br />

literature (eg Pears<strong>on</strong> and Rosenburg, 1978; Harper, 1992), and I c<strong>on</strong>sider that the<br />

case for extensive cultural eutrophicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aquatic habitats has been made forcefully<br />

by other authors. Some background <strong>in</strong>formati<strong>on</strong> about the sources and transport <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s is <strong>in</strong>cluded <strong>in</strong> Secti<strong>on</strong> One, but an effort to review all the literature <strong>on</strong> all<br />

plant and animal groups would be unwieldy and detract from the ma<strong>in</strong> purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> this<br />

review; to assess the known and potential impacts <strong>on</strong> <strong>birds</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, I <strong>in</strong>clude a<br />

limited number <str<strong>on</strong>g>of</str<strong>on</strong>g> examples <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> eutrophicati<strong>on</strong> <strong>on</strong> habitat, flora and n<strong>on</strong>avian<br />

fauna, particularly where <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> <strong>birds</strong> have also been documented. Other<br />

aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> human activity have also had major <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> the wetland habitats <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

UK; land dra<strong>in</strong>age is <strong>on</strong>e example. This review restricts itself to the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g><br />

<str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g>, and attempts to dist<strong>in</strong>guish such <str<strong>on</strong>g>effects</str<strong>on</strong>g> from others that may be str<strong>on</strong>gly<br />

associated.<br />

3.2. Birds <str<strong>on</strong>g>of</str<strong>on</strong>g> aquatic habitats <strong>in</strong> the UK<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> United K<strong>in</strong>gdom holds <strong>in</strong>ternati<strong>on</strong>ally important populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> waterfowl and<br />

waders, especially over w<strong>in</strong>ter (Kershaw and Cranswick, 2003; Rehfisch et al., 2003;<br />

Collier et al., 2005). <str<strong>on</strong>g>The</str<strong>on</strong>g> comb<strong>in</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> relatively mild climate and high tidal<br />

amplitude provide suitable forag<strong>in</strong>g c<strong>on</strong>diti<strong>on</strong>s <strong>in</strong> estuaries, while species such as<br />

waders and wildfowl also feed extensively <strong>in</strong>land. Wetland habitats <strong>in</strong> the UK are also<br />

important breed<strong>in</strong>g habitats for many species; some species such as reed and sedge<br />

warblers migrate <strong>in</strong> spr<strong>in</strong>g and make use <str<strong>on</strong>g>of</str<strong>on</strong>g> reedbeds that cover large areas <strong>in</strong> parts <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the country. <str<strong>on</strong>g>The</str<strong>on</strong>g> bird species c<strong>on</strong>sidered for review, their c<strong>on</strong>servati<strong>on</strong> status, broad<br />

diets and use <str<strong>on</strong>g>of</str<strong>on</strong>g> aquatic habitats <strong>in</strong> the United K<strong>in</strong>gdom are summarised <strong>in</strong> Table 3.1.<br />

Some species that might be thought <str<strong>on</strong>g>of</str<strong>on</strong>g> as wetland species, such as swans and some<br />

waders, are not <strong>in</strong>cluded, because <strong>in</strong> the UK they predom<strong>in</strong>antly use n<strong>on</strong>-aquatic<br />

habitats, notably wet grassland and upland moor, both <str<strong>on</strong>g>of</str<strong>on</strong>g> which are discussed <strong>in</strong> other<br />

secti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> this review.<br />

78


Table 3.1. List <str<strong>on</strong>g>of</str<strong>on</strong>g> bird species c<strong>on</strong>sidered for review, c<strong>on</strong>servati<strong>on</strong> status,<br />

populati<strong>on</strong> trends, use <str<strong>on</strong>g>of</str<strong>on</strong>g> habitats, diet and migratory status.<br />

Species 1<br />

List<strong>in</strong>g 2<br />

W<strong>in</strong>ter<br />

trend<br />

(l<strong>on</strong>g-<br />

term) 3<br />

W<strong>in</strong>ter<br />

trend<br />

(five-<br />

year) 4<br />

Habitats 5<br />

(breed<strong>in</strong>g)<br />

Habitats 5<br />

(w<strong>in</strong>ter) Diet 6 Migrati<strong>on</strong> 7<br />

red-throated diver amber fl cw f r + w<br />

black-throated<br />

diver amber fl cw f r + w<br />

great northern<br />

diver amber fl cw f, db w<br />

Slav<strong>on</strong>ian grebe amber fl cw f, db r + w<br />

black-necked grebe amber fl e, fl f, db r + w<br />

great-crested grebe green 49 1 fl, r fl, r f r<br />

little grebe green 42 4 fm, fl fm, fl, e f r + w<br />

cormorant amber 67 3 fl, cw fl, cw f r + w<br />

bittern red rb rb f r<br />

grey her<strong>on</strong> green fl, rb, e fl, rb, e f r<br />

mute swan amber 96 30 fl, fm fl, fm, e od r<br />

shelduck amber 8 -59 e e bi r + w<br />

mallard green -32 -23 fl, fm fl, fm, e od r<br />

gadwall amber >1000 82 fl fl od r + w<br />

p<strong>in</strong>tail amber 80 -23 fl, fm fl, fm, e od r + w<br />

shoveler amber 69 -5 fl, fm fl, fm od r + w<br />

wige<strong>on</strong> amber 53 17 fl e, fl od r + w<br />

teal amber 148 6 fl, fm e, cl, fl od r + w<br />

garganey amber n/a n/a fm n/a od s<br />

pochard amber -13 -10 fl fl, e db, p r + w<br />

scaup amber n/a e db w<br />

tufted duck green 36 15 n/a fl db r + w<br />

eider amber cw e, cw db r + w<br />

comm<strong>on</strong> scoter red fl e, cw db r + w<br />

velvet scoter amber n/a cw db w<br />

l<strong>on</strong>g-tailed duck amber n/a cw db w<br />

goldeneye amber 86 -14 fl, r fl, e db r + w<br />

goosander green 43 -20 fl, r fl, e f r + w<br />

red-breasted<br />

merganser green 225 11 fl, cw cw f r + w<br />

water rail amber rb, fm rb, fm ai, f r<br />

spotted crake amber rb, fm n/a p, ai s<br />

moorhen green fl, r, fm fl, r, fm p, ai r<br />

coot green n/a 30 fl, fm fl, fm od r + w<br />

oystercatcher amber 8 -15 e, cl e, cl bi r + w<br />

1 a list <str<strong>on</strong>g>of</str<strong>on</strong>g> scientific names is <strong>in</strong>cluded <strong>in</strong> Appendix 1.<br />

2<br />

<strong>in</strong>dicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>servati<strong>on</strong> c<strong>on</strong>cern (Gregory et al., 2002).<br />

3<br />

populati<strong>on</strong> trends <str<strong>on</strong>g>of</str<strong>on</strong>g> w<strong>in</strong>ter<strong>in</strong>g waterfowl and waders <strong>in</strong> the UK over 25 years (or l<strong>on</strong>gest period for which data are available)<br />

(Eat<strong>on</strong> et al., 2005).<br />

4<br />

populati<strong>on</strong> trends <str<strong>on</strong>g>of</str<strong>on</strong>g> w<strong>in</strong>ter<strong>in</strong>g waterfowl and waders <strong>in</strong> the UK 1998-2003 (Eat<strong>on</strong> et al., 2005).<br />

5<br />

use <str<strong>on</strong>g>of</str<strong>on</strong>g> aquatic habitats <strong>in</strong> the UK: b = beaches/shorel<strong>in</strong>es, cl = coastal lago<strong>on</strong>s, cw = coastal waters, e = estuaries and tidal flats,<br />

fl = freshwater lakes, fm = freshwater marshes, r = rivers, rb = reedbed, sm = saltmarshes.<br />

6<br />

broad diets: ai = aquatic/foliar/aerial <strong>in</strong>vertebrates, bi = benthic <strong>in</strong>vertebrates (by prob<strong>in</strong>g), db = benthic <strong>in</strong>vertebrates (by<br />

div<strong>in</strong>g), f = fish, o = omnivorous, od = omnivorous dabbl<strong>in</strong>g waterfowl, p = plant material.<br />

7<br />

migratory status <strong>in</strong> the UK (species may be <strong>in</strong>cluded <strong>in</strong> more than <strong>on</strong>e category due to partial migrati<strong>on</strong>): p = passage, r =<br />

resident, s = summer migrant, w = w<strong>in</strong>ter migrant.<br />

79


Table 3.1. (c<strong>on</strong>t.). List <str<strong>on</strong>g>of</str<strong>on</strong>g> bird species c<strong>on</strong>sidered for review, c<strong>on</strong>servati<strong>on</strong> status,<br />

populati<strong>on</strong> trends, use <str<strong>on</strong>g>of</str<strong>on</strong>g> habitats, diet and migratory status.<br />

Species 1<br />

List<strong>in</strong>g 2<br />

W<strong>in</strong>ter<br />

trend<br />

(l<strong>on</strong>g-<br />

term) 3<br />

W<strong>in</strong>ter<br />

trend<br />

(five-<br />

year) 4<br />

Habitats 5<br />

(breed<strong>in</strong>g)<br />

Habitats 5<br />

(w<strong>in</strong>ter) Diet 6 Migrati<strong>on</strong> 7<br />

avocet amber >1000 354 e fm, e, sl bi r + w<br />

r<strong>in</strong>ged plover amber -32 -26 cl, e, b cl, e bi r + w<br />

grey plover amber 185 -4 n/a e bi w + p<br />

knot amber 11 -3 n/a e bi w<br />

sanderl<strong>in</strong>g green 7 21 n/a e, b bi w<br />

turnst<strong>on</strong>e amber -17 -30 n/a e bi w<br />

dunl<strong>in</strong> amber -36 -23 e, cl, sm, fl n/a bi r + w<br />

green sandpiper amber n/a e, fm bi s<br />

comm<strong>on</strong> sandpiper green r, fl fl, e bi s + w<br />

redshank amber -2 -1 sm e, sm, fm bi r + w<br />

bar-tailed godwit amber 5 -2 n/a e bi w<br />

black-tailed godwit red 211 74 n/a e bi w + p<br />

curlew amber 5 -17 sm sm, e bi r + w<br />

black-headed gull amber fm, e, sl fm, e, sl o r + w<br />

comm<strong>on</strong> gull amber fm, fl, cw fl, cw o r + w<br />

Mediterranean gull amber cl cw o r + w<br />

herr<strong>in</strong>g gull amber cw, b cw, fl o r + w<br />

lesser black-backed<br />

gull amber b fl o r + w<br />

great black-backed<br />

cw, sm, e,<br />

gull green cw, sm, fm fl o r + w<br />

kittiwake amber cw n/a f, bi s<br />

little tern amber b, fl n/a f s<br />

sandwich tern amber b n/a f s<br />

comm<strong>on</strong> tern green b, sm n/a f s<br />

black tern green fm, sm n/a f, ai p<br />

k<strong>in</strong>gfisher<br />

grasshopper<br />

amber r r f, ai r<br />

warbler red fm, rb n/a ai s<br />

sedge warbler green fm, rb n/a ai s<br />

reed warbler green fm, rb n/a ai s<br />

aquatic warbler red fm, rb n/a ai p<br />

Cetti's warbler green fm, rb fm, rb ai r<br />

bearded tit amber rb rb ai<br />

seeds,<br />

r<br />

reed bunt<strong>in</strong>g red fm, rb fm, rb ai r<br />

1<br />

a list <str<strong>on</strong>g>of</str<strong>on</strong>g> scientific names is <strong>in</strong>cluded <strong>in</strong> Appendix 1.<br />

2<br />

<strong>in</strong>dicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>servati<strong>on</strong> c<strong>on</strong>cern (Gregory et al., 2002).<br />

3<br />

populati<strong>on</strong> trends <str<strong>on</strong>g>of</str<strong>on</strong>g> w<strong>in</strong>ter<strong>in</strong>g waterfowl and waders <strong>in</strong> the UK over 25 years (or l<strong>on</strong>gest period for which data are available)<br />

(Eat<strong>on</strong> et al., 2005).<br />

4<br />

populati<strong>on</strong> trends <str<strong>on</strong>g>of</str<strong>on</strong>g> w<strong>in</strong>ter<strong>in</strong>g waterfowl and waders <strong>in</strong> the UK 1998-2003 (Eat<strong>on</strong> et al., 2005).<br />

5<br />

use <str<strong>on</strong>g>of</str<strong>on</strong>g> aquatic habitats <strong>in</strong> the UK: b = beaches/shorel<strong>in</strong>es, cl = coastal lago<strong>on</strong>s, cw = coastal waters, e = estuaries and tidal flats,<br />

fl = freshwater lakes, fm = freshwater marshes, r = rivers, rb = reedbed, sm = saltmarshes.<br />

6<br />

broad diets: ai = aquatic/foliar/aerial <strong>in</strong>vertebrates, bi = benthic <strong>in</strong>vertebrates (by prob<strong>in</strong>g), db = benthic <strong>in</strong>vertebrates (by<br />

div<strong>in</strong>g), f = fish, o = omnivorous, od = omnivorous dabbl<strong>in</strong>g waterfowl, p = plant material.<br />

7 migratory status <strong>in</strong> the UK (species may be <strong>in</strong>cluded <strong>in</strong> more than <strong>on</strong>e category due to partial migrati<strong>on</strong>): p = passage, r =<br />

resident, s = summer migrant, w = w<strong>in</strong>ter migrant.<br />

80


While waterfowl, waders and other wetland species are the subject <str<strong>on</strong>g>of</str<strong>on</strong>g> several surveys<br />

<strong>in</strong>tended to document changes <strong>in</strong> nati<strong>on</strong>al populati<strong>on</strong>s (Mitchell et al., 2004; Collier et<br />

al., 2005), nati<strong>on</strong>al measures <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong> changes are not necessarily the best way to<br />

document populati<strong>on</strong> changes result<strong>in</strong>g from anthropogenic <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> to aquatic<br />

habitats. <str<strong>on</strong>g>The</str<strong>on</strong>g>se change are likely to operate <strong>on</strong> a much smaller scale than factors<br />

affect<strong>in</strong>g global or British populati<strong>on</strong>s. So, although I <strong>in</strong>clude nati<strong>on</strong>al populati<strong>on</strong><br />

trends for those species where data are available, populati<strong>on</strong> changes <strong>in</strong> limited areas<br />

<strong>in</strong> resp<strong>on</strong>se to measurable or observable changes <strong>in</strong> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> and/or levels are a<br />

more appropriate way <str<strong>on</strong>g>of</str<strong>on</strong>g> exam<strong>in</strong><strong>in</strong>g the <str<strong>on</strong>g><strong>in</strong>direct</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> cultural eutrophicati<strong>on</strong> <strong>on</strong><br />

<strong>birds</strong>. Nati<strong>on</strong>al trends and c<strong>on</strong>servati<strong>on</strong> status <str<strong>on</strong>g>of</str<strong>on</strong>g> species are more likely to be useful<br />

<strong>in</strong> determ<strong>in</strong><strong>in</strong>g the overall c<strong>on</strong>cern that might be felt about a species undergo<strong>in</strong>g a<br />

populati<strong>on</strong> change <strong>in</strong> a specific locati<strong>on</strong>.<br />

Ways <strong>in</strong> which changes to <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> status might be expected to affect <strong>birds</strong> <strong>in</strong> aquatic<br />

habitats are largely through changes <strong>in</strong> food abundance and/or availability, although<br />

there could potentially be impacts <strong>on</strong> nest<strong>in</strong>g resources. Increased primary<br />

productivity due to <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> availability may <strong>in</strong>crease the food resource for<br />

<strong>birds</strong>. However, changes to plant and animal community compositi<strong>on</strong> may positively<br />

or negatively affect food items <str<strong>on</strong>g>of</str<strong>on</strong>g> particular bird species. Extreme eutrophicati<strong>on</strong> can<br />

have massive <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> aquatic systems, which are also expressed <strong>in</strong> bird populati<strong>on</strong>s,<br />

as described below. <str<strong>on</strong>g>The</str<strong>on</strong>g>re are several examples where <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> <strong>on</strong> a local scale<br />

have been reduced, and/or the physical state <str<strong>on</strong>g>of</str<strong>on</strong>g> eutrophicati<strong>on</strong> has disappeared. Thus<br />

this secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the review provides the opportunity to exam<strong>in</strong>e the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> reduced<br />

as well as <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g>, <strong>in</strong> some cases at the same site.<br />

3.3. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <strong>in</strong>creases <strong>on</strong> vegetati<strong>on</strong><br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> most fundamental effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> availability is <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> primary<br />

productivity. Increases <strong>in</strong> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> availability also change the competitive<br />

envir<strong>on</strong>ment for the vegetati<strong>on</strong>, and lead to changes <strong>in</strong> species compositi<strong>on</strong>. Nutrient<br />

status is a major determ<strong>in</strong>ant <str<strong>on</strong>g>of</str<strong>on</strong>g> the type <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong> found at any site even <strong>in</strong> the<br />

absence <str<strong>on</strong>g>of</str<strong>on</strong>g> human <strong>in</strong>fluence. For example, <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> requirements <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>stituent<br />

species play a large part <strong>in</strong> dist<strong>in</strong>guish<strong>in</strong>g the plant assemblages <str<strong>on</strong>g>of</str<strong>on</strong>g> British stand<strong>in</strong>g<br />

81


waters (Palmer et al., 1992). Cultural eutrophicati<strong>on</strong> acts <strong>in</strong> additi<strong>on</strong> to natural spatial<br />

and temporal variati<strong>on</strong> <strong>in</strong> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> levels. While impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <strong>in</strong>creases are<br />

habitat-specific, the general trend is a shift away from macrophyte vegetati<strong>on</strong> towards<br />

dom<strong>in</strong>ance <str<strong>on</strong>g>of</str<strong>on</strong>g> phytoplankt<strong>on</strong> and algae, which are able to exploit the eutrophic<br />

c<strong>on</strong>diti<strong>on</strong>s and to create c<strong>on</strong>diti<strong>on</strong>s favourable for their own persistence. However, the<br />

major changes are usually evident when a threshold is reached, at which po<strong>in</strong>t there is<br />

a radical shift <strong>in</strong> vegetati<strong>on</strong>. This threshold depends <strong>on</strong> factors <strong>in</strong> additi<strong>on</strong> to <str<strong>on</strong>g>nutrient</str<strong>on</strong>g><br />

load<strong>in</strong>g. Because naturally eutrophic c<strong>on</strong>diti<strong>on</strong>s are uncomm<strong>on</strong>, cultural<br />

eutrophicati<strong>on</strong> may not lead to benefits for specialists <str<strong>on</strong>g>of</str<strong>on</strong>g> naturally eutrophic<br />

c<strong>on</strong>diti<strong>on</strong>s, as these will typically have other habitat requirements bey<strong>on</strong>d high<br />

<str<strong>on</strong>g>nutrient</str<strong>on</strong>g> levels. Thus generalist species are more likely to be favoured. Increas<strong>in</strong>g<br />

primary productivity can also have pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ound <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> the oxygen regime <str<strong>on</strong>g>of</str<strong>on</strong>g> a water<br />

body. <str<strong>on</strong>g>The</str<strong>on</strong>g> accumulati<strong>on</strong> and decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> plant material depletes oxygen <strong>in</strong> the<br />

sediments and lower layers <str<strong>on</strong>g>of</str<strong>on</strong>g> water, which may become stratified (Harper, 1992).<br />

Nocturnal anoxia may also occur due to respirati<strong>on</strong> by algae. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

eutrophicati<strong>on</strong> <strong>on</strong> the vegetati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aquatic ecosystems are summarised <strong>in</strong> Table 3.2.<br />

3.3.1 Streams and rivers<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> flush<strong>in</strong>g process <strong>in</strong> rivers and streams should spare fluvial systems the<br />

spectacular <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> eutrophicati<strong>on</strong> seen elsewhere, unless flows are low. In additi<strong>on</strong><br />

to the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> eutrophicati<strong>on</strong>, nitrogen plays a role <strong>in</strong> acidificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fresh water,<br />

and this role, <strong>in</strong>clud<strong>in</strong>g its impact <strong>on</strong> bird species such as dipper and yellow wagtail<br />

has been <strong>in</strong>vestigated (Ormerod and Tyler, 1989; Tyler and Ormerod, 1992).<br />

However, the current review restricts itself to the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> status, and<br />

therefore acidificati<strong>on</strong> is not c<strong>on</strong>sidered. Rivers generally do not develop<br />

phytoplankt<strong>on</strong>, and eutrophic c<strong>on</strong>diti<strong>on</strong>s are more <str<strong>on</strong>g>of</str<strong>on</strong>g>ten <strong>in</strong>dicated by the presence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

filamentous algae (which becomes established more easily <strong>in</strong> c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> slower<br />

flow) and tolerant macrophytes such as Potamoget<strong>on</strong> pect<strong>in</strong>atus (Harper, 1992).<br />

Processes that reduce flow will <strong>in</strong>crease the likelihood <str<strong>on</strong>g>of</str<strong>on</strong>g> changes to vegetati<strong>on</strong> <strong>in</strong><br />

rivers and streams.<br />

82


Table 3.2. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> supply <strong>on</strong> vegetati<strong>on</strong> <strong>in</strong> aquatic habitats<br />

Habitat Subject Locati<strong>on</strong> Process Effects Possible cause Strength<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Shallow lake phytoplankt<strong>on</strong> NW Europe historical decl<strong>in</strong>e <strong>in</strong> external<br />

phosphorus load<strong>in</strong>g over 13 years<br />

vegetati<strong>on</strong> community Netherlands reducti<strong>on</strong> <strong>in</strong> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> to a<br />

lake undergo<strong>in</strong>g restorati<strong>on</strong><br />

decl<strong>in</strong>e <strong>in</strong> biomass <strong>in</strong> some<br />

seas<strong>on</strong>s, with different groups<br />

show<strong>in</strong>g <strong>in</strong>dividual seas<strong>on</strong>al<br />

variati<strong>on</strong><br />

shift from charophyte- to<br />

phytoplankt<strong>on</strong>-dom<strong>in</strong>ated<br />

vegetati<strong>on</strong> and return follow<strong>in</strong>g<br />

restorati<strong>on</strong><br />

vegetati<strong>on</strong> community Netherlands historical changes switch from macrophyte- and<br />

charophyte-dom<strong>in</strong>ated to<br />

phytoplankt<strong>on</strong>-dom<strong>in</strong>ated<br />

community, and recovery when<br />

phosphorus <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> reduced<br />

vegetati<strong>on</strong> community Netherlands reducti<strong>on</strong> <strong>in</strong> phosphorus <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> shift from phytoplankt<strong>on</strong> to<br />

macrophyte dom<strong>in</strong>ati<strong>on</strong><br />

vegetati<strong>on</strong> community Sweden natural shifts <str<strong>on</strong>g>of</str<strong>on</strong>g> stable state clear-water state dom<strong>in</strong>ated by<br />

macrophytes and charophytes;<br />

turbid state dom<strong>in</strong>ated by<br />

phytoplankt<strong>on</strong><br />

vegetati<strong>on</strong> community Norfolk Broads historical changes shift from charophytedom<strong>in</strong>ated<br />

vegetati<strong>on</strong> to algaedom<strong>in</strong>ated<br />

vegetati<strong>on</strong><br />

vegetati<strong>on</strong> community Norfolk Broads experimental additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> P (0-5.3<br />

g/m3) and N (0, 29 and 63 g/m3);<br />

other treatments <strong>in</strong>volv<strong>in</strong>g fish<br />

c<strong>on</strong>trol/additi<strong>on</strong> and vegetati<strong>on</strong><br />

disturbance<br />

no switch to phytoplankt<strong>on</strong>dom<strong>in</strong>ated<br />

state except where<br />

submerged plants physically<br />

removed<br />

reedswamp vegetati<strong>on</strong> Norfolk Broads historical changes reducti<strong>on</strong> <strong>in</strong> distributi<strong>on</strong>,<br />

especially <str<strong>on</strong>g>of</str<strong>on</strong>g> float<strong>in</strong>g reed<br />

(hover)<br />

resp<strong>on</strong>se to reduced<br />

phosphorus load<strong>in</strong>g;<br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> graz<strong>in</strong>g from<br />

zooplankt<strong>on</strong><br />

changes <strong>in</strong> underwater light<br />

availability<br />

switch <str<strong>on</strong>g>of</str<strong>on</strong>g> stable state (as<br />

described <strong>in</strong> ma<strong>in</strong> text)<br />

shift <strong>in</strong> stable state assisted<br />

by reduced <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> load<strong>in</strong>g<br />

buffer<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> stable state<br />

c<strong>on</strong>diti<strong>on</strong> by positive<br />

feedback mechanisms<br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> phosphorus <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g><br />

(mostly from sewage<br />

treatment works); switch <strong>in</strong><br />

stable states<br />

buffer<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> load<strong>in</strong>g<br />

by submerged macrophytes<br />

various causes, <strong>in</strong>clud<strong>in</strong>g<br />

erosi<strong>on</strong>, graz<strong>in</strong>g and<br />

chemical polluti<strong>on</strong><br />

Reference<br />

evidence 1<br />

2 Jeppesen et al., 2005b<br />

2 Coops and Doef, 1996<br />

2 Noordhuis et al., 2002<br />

2 van den Berg et al.,<br />

1997<br />

2 Bl<strong>in</strong>dow et al., 1993<br />

3 Moss, 1980;<br />

Madgwick, 1999<br />

1 Balls et al., 1989<br />

2 Crook et al., 1983<br />

1 I classified the studies <strong>in</strong>to three tiers: 1. Str<strong>on</strong>g evidence, usually based <strong>on</strong> experimental pro<str<strong>on</strong>g>of</str<strong>on</strong>g>; 2. Intermediate evidence, generally an observed relati<strong>on</strong>ship <strong>in</strong> space and time; 3. Weak evidence, a suggested cause<br />

based <strong>on</strong> observed patterns. <str<strong>on</strong>g>The</str<strong>on</strong>g>se levels are not <strong>in</strong>tended as a judgement <strong>on</strong> the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> the research, and I judge the strength <str<strong>on</strong>g>of</str<strong>on</strong>g> evidence for <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> and associated mechanisms, which may not have<br />

been the purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> the study<br />

83


Table 3.2. (c<strong>on</strong>t.) Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> supply <strong>on</strong> vegetati<strong>on</strong> <strong>in</strong> aquatic habitats<br />

Habitat Subject Locati<strong>on</strong> Process Effects Possible cause Strength<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Experimental<br />

p<strong>on</strong>ds<br />

Lakeside<br />

vegetati<strong>on</strong><br />

phytoplankt<strong>on</strong> UK <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> additi<strong>on</strong>s (500 mg/l N and<br />

50 mg/l P every 3 weeks <strong>in</strong><br />

w<strong>in</strong>ter, 170 mg/l N and 17 mg/l P<br />

every 2 weeks <strong>in</strong> summer);<br />

additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fish; warm<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> water<br />

comm<strong>on</strong> reed (Phragmites<br />

australis)<br />

central Europe relati<strong>on</strong>ship between reed dieback<br />

and trophic status<br />

<strong>in</strong>crease <strong>in</strong> phytoplankt<strong>on</strong><br />

biovolume and chlorophyll a<br />

c<strong>on</strong>centrati<strong>on</strong>s <strong>in</strong> resp<strong>on</strong>se to<br />

<str<strong>on</strong>g>nutrient</str<strong>on</strong>g> additi<strong>on</strong>s but no switch<br />

to phytoplankt<strong>on</strong> dom<strong>in</strong>ance<br />

no clear evidence that<br />

eutrophicati<strong>on</strong> is the general<br />

cause <str<strong>on</strong>g>of</str<strong>on</strong>g> reed decl<strong>in</strong>e<br />

Lowland stream vegetati<strong>on</strong> community Denmark historical changes decl<strong>in</strong>e <strong>in</strong> species richness;<br />

Potamoget<strong>on</strong> species adapted to<br />

eutrophic c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g><br />

relative to those adapted to<br />

oligotrophic c<strong>on</strong>diti<strong>on</strong>s<br />

Upland stream vegetati<strong>on</strong> community Germany spatial distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> current<br />

plant species, and comparis<strong>on</strong>s<br />

with previous records<br />

vegetati<strong>on</strong> community France spatial distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> plant<br />

species <strong>in</strong> relati<strong>on</strong> to habitat<br />

variables<br />

decl<strong>in</strong>e <strong>in</strong> abundance and<br />

frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> several polluti<strong>on</strong>sensitive<br />

species, but also some<br />

eutrophic species; loss <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

aquatic vegetati<strong>on</strong> <strong>in</strong> lower<br />

reaches <str<strong>on</strong>g>of</str<strong>on</strong>g> some rivers<br />

lower species richness <strong>in</strong> lower<br />

reaches, where filamentous<br />

algae <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> <strong>in</strong> abundance<br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> primary producti<strong>on</strong><br />

<strong>in</strong> resp<strong>on</strong>se to <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s, but<br />

lack <str<strong>on</strong>g>of</str<strong>on</strong>g> other triggers to<br />

switch state<br />

hypothesised relati<strong>on</strong>ship<br />

between eutrophicati<strong>on</strong> and<br />

culm architecture not present<br />

eutrophicati<strong>on</strong> <strong>in</strong> lakes,<br />

lead<strong>in</strong>g to loss <str<strong>on</strong>g>of</str<strong>on</strong>g> propagules;<br />

turbidity <strong>in</strong> streams; more<br />

frequent disturbance<br />

eutrophicati<strong>on</strong>, but also<br />

channelisati<strong>on</strong>, spread <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

muskrats, and extreme floods<br />

evidence 1<br />

Reference<br />

1 Moss et al., 2003<br />

2 Ostendorp et al., 2001<br />

2 Riis and Sand-Jensen,<br />

2001<br />

3 Schutz, 1995<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> eutrophicati<strong>on</strong> 2 Thiébaut and Muller,<br />

1998<br />

Estuar<strong>in</strong>e green algae NW Europe historical changes large <strong>in</strong>crease <strong>in</strong> algal blooms<br />

s<strong>in</strong>ce 1950s<br />

higher <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> availability 2 Lotze, 2005<br />

red and brown algae NW Europe historical changes decl<strong>in</strong>e <strong>in</strong> abundance and loss <str<strong>on</strong>g>of</str<strong>on</strong>g> eelgrass beds as<br />

2 Lotze, 2005<br />

species richness<br />

substrate<br />

eelgrass NW Europe historical changes loss <str<strong>on</strong>g>of</str<strong>on</strong>g> eulittoral beds s<strong>in</strong>ce higher <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> levels caus<strong>in</strong>g<br />

2 de J<strong>on</strong>ge et al., 1996<br />

1960s<br />

algal blooms, which <strong>in</strong>hibit<br />

eelgrass (also turbidity and<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> mussel fishery)<br />

Upland lake phytoplankt<strong>on</strong> and UK spatial variati<strong>on</strong> and experimental phytoplankt<strong>on</strong> yield limited by <strong>in</strong>ability <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen-fix<strong>in</strong>g 1 Maberly et al., 2002<br />

periphyt<strong>on</strong> growth<br />

additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> P and N<br />

P <strong>in</strong> 20% <str<strong>on</strong>g>of</str<strong>on</strong>g> cases, N <strong>in</strong> 22% and cyanobacteria to live <strong>in</strong><br />

both <strong>in</strong> 58%<br />

upland lakes, lead<strong>in</strong>g to<br />

nitrogen limitati<strong>on</strong><br />

1<br />

I classified the studies <strong>in</strong>to three tiers: 1. Str<strong>on</strong>g evidence, usually based <strong>on</strong> experimental pro<str<strong>on</strong>g>of</str<strong>on</strong>g>; 2. Intermediate evidence, generally an observed relati<strong>on</strong>ship <strong>in</strong> space and time; 3. Weak evidence, a suggested cause<br />

based <strong>on</strong> observed patterns. <str<strong>on</strong>g>The</str<strong>on</strong>g>se levels are not <strong>in</strong>tended as a judgement <strong>on</strong> the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> the research, and I judge the strength <str<strong>on</strong>g>of</str<strong>on</strong>g> evidence for <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> and associated mechanisms, which may not have<br />

been the purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> the study.<br />

84


<str<strong>on</strong>g>The</str<strong>on</strong>g> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the vegetati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> European streams has changed <strong>in</strong> recent<br />

decades, and <strong>on</strong>e cited cause for this change is eutrophicati<strong>on</strong> (Schutz, 1995). In<br />

south-western German streams, comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> current vegetati<strong>on</strong> with previous<br />

herbarium material and records from previous studies showed decreases <strong>in</strong> abundance<br />

and frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> several species over a forty year period, <strong>in</strong>clud<strong>in</strong>g polluti<strong>on</strong> sensitive<br />

species, but also two macrophyte species, Oenanthe aquatica and Butomus umbellatus<br />

typical <str<strong>on</strong>g>of</str<strong>on</strong>g> naturally eutrophic c<strong>on</strong>diti<strong>on</strong>s (Schutz, 1995). Filamentous algae, and the<br />

p<strong>on</strong>dweeds Zannichellia palustris and Potamoget<strong>on</strong> pect<strong>in</strong>atus, <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> <strong>in</strong><br />

abundance, although the last decreased <strong>in</strong> distributi<strong>on</strong>. In the lower reaches <str<strong>on</strong>g>of</str<strong>on</strong>g> some<br />

streams aquatic vegetati<strong>on</strong> almost disappeared, and the temporal co<strong>in</strong>cidence <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

loss and changes <strong>in</strong> vegetati<strong>on</strong> suggest that eutrophicati<strong>on</strong> may be the cause, although<br />

other possibilities are also put forward, <strong>in</strong>clud<strong>in</strong>g channelisati<strong>on</strong>, spread <str<strong>on</strong>g>of</str<strong>on</strong>g> muskrat,<br />

and extreme floods <strong>in</strong> the 1980s (Schutz, 1995). In the Vosges Mounta<strong>in</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> France,<br />

streams with high <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> loads were characterised by low vascular plant species<br />

richness and by the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> filamentous algae (Thiébaut and Muller, 1998).<br />

Similar trends have been described <strong>in</strong> Danish lowland streams, where species richness<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> submerged plants has decl<strong>in</strong>ed severely, particularly am<strong>on</strong>g the Potamoget<strong>on</strong> genus<br />

(Riis and Sand-Jensen, 2001). Potamoget<strong>on</strong> species adapted to eutrophic c<strong>on</strong>diti<strong>on</strong>s<br />

have <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> relative to those typical <str<strong>on</strong>g>of</str<strong>on</strong>g> oligotrophic c<strong>on</strong>diti<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> decl<strong>in</strong>e <strong>in</strong><br />

species richness is partly ascribed to the loss <str<strong>on</strong>g>of</str<strong>on</strong>g> species <strong>in</strong> eutrophic lakes that are part<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the stream system (thus reduc<strong>in</strong>g the source <str<strong>on</strong>g>of</str<strong>on</strong>g> propagules), and <strong>in</strong>creas<strong>in</strong>g turbidity<br />

<strong>in</strong> the streams (itself associated with eutrophicati<strong>on</strong>).<br />

Lowland ditches at the Ouse Washes <strong>in</strong> southern England showed c<strong>on</strong>siderable<br />

<strong>in</strong>crease <strong>in</strong> the mat-form<strong>in</strong>g duckweeds Lemna m<strong>in</strong>or and Spirodela polyrhiza, and<br />

Lemna-dom<strong>in</strong>ated community represented the climax community at high <str<strong>on</strong>g>nutrient</str<strong>on</strong>g><br />

load<strong>in</strong>gs (Cathcart, 2002). Between 1978 and 2002 the aquatic macrophyte<br />

community <str<strong>on</strong>g>of</str<strong>on</strong>g> the Ouse Washes deteriorated significantly. In the Ouse Washes, the<br />

shift from submerged macrophytes to duckweed dom<strong>in</strong>ance <strong>in</strong> ditches was different<br />

from the switch to phytoplankt<strong>on</strong> observed <strong>in</strong> shallow lakes (Cathcart, 2002), which is<br />

described below.<br />

85


3.3.2. Inland stand<strong>in</strong>g water and fens<br />

3.3.2.1 Freshwater lakes<br />

Lowland shallow lakes have received a good deal <str<strong>on</strong>g>of</str<strong>on</strong>g> attenti<strong>on</strong> <strong>in</strong> relati<strong>on</strong> to<br />

eutrophicati<strong>on</strong>, perhaps because they best display some <str<strong>on</strong>g>of</str<strong>on</strong>g> the extreme <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

c<strong>on</strong>diti<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> accepted view is that two alternative stable states can exist: a clearwater<br />

state dom<strong>in</strong>ated by submerged macrophytes and charophytes; and a turbid,<br />

phytoplankt<strong>on</strong>-dom<strong>in</strong>ated state (Bl<strong>in</strong>dow et al., 1993; Scheffer et al., 1993). Moss<br />

(1989, <strong>in</strong> Bl<strong>in</strong>dow et al., 1993) suggested an <strong>in</strong>termediate stable state, where<br />

macrophytes dom<strong>in</strong>ate but charophytes are absent, and phosphorus levels are<br />

<strong>in</strong>termediate. Sp<strong>on</strong>taneous switches between the stable states have been observed <strong>in</strong><br />

many shallow lakes: Lake Veluwemeer <strong>in</strong> the Netherlands (Noordhuis et al., 1997),<br />

where phytoplankt<strong>on</strong> dom<strong>in</strong>ated from the 1960s due to <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> levels, but<br />

which returned to a macrophyte-dom<strong>in</strong>ated state <strong>in</strong> the 1990s follow<strong>in</strong>g a reducti<strong>on</strong> <strong>in</strong><br />

phosphorus <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g>; Lakes Tåkern and Krankesjön <strong>in</strong> Sweden <strong>in</strong> resp<strong>on</strong>se to water<br />

level changes (Bl<strong>in</strong>dow et al., 1993; Hargeby et al., 1994); and Hickl<strong>in</strong>g Broad <strong>in</strong><br />

Norfolk (Armitage et al., 2000). In the last case, the shift to phytoplankt<strong>on</strong> dom<strong>in</strong>ance<br />

<strong>in</strong> the 1970s was attributed to guanotrophicati<strong>on</strong> by black-headed gulls (Irv<strong>in</strong>e et al.,<br />

1993).<br />

Light is a key factor for the presence and abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> submerged macrophytes<br />

(Bl<strong>in</strong>dow et al., 1993). <str<strong>on</strong>g>The</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> macrophytes <strong>in</strong> water improves water clarity<br />

via several mechanisms, which <strong>in</strong>clude reducti<strong>on</strong> <strong>in</strong> re-suspensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sediments,<br />

provisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> refuges for herbivorous plankt<strong>on</strong> aga<strong>in</strong>st fish predators, suppressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

algae due to reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> availability, and release <str<strong>on</strong>g>of</str<strong>on</strong>g> substances toxic to algae<br />

(Scheffer et al., 1993). Phytoplankt<strong>on</strong>-dom<strong>in</strong>ated states are buffered from switch<strong>in</strong>g<br />

back by shad<strong>in</strong>g (due to earlier growth and competiti<strong>on</strong> for resources), turbidity<br />

(affect<strong>in</strong>g the depth at which other plants can grow), <strong>in</strong>hibiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> herbivorous<br />

zooplankt<strong>on</strong>, and promoti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> planktivorous fish. While phosphorus has been<br />

c<strong>on</strong>sidered the most important <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <strong>in</strong> determ<strong>in</strong><strong>in</strong>g the trophic status <str<strong>on</strong>g>of</str<strong>on</strong>g> shallow<br />

lakes, nitrogen may play a far more important role than previously thought (G<strong>on</strong>zález<br />

Sagrario et al., 2005).<br />

86


Nutrient levels play an important role <strong>in</strong> determ<strong>in</strong><strong>in</strong>g which stable state is present <strong>in</strong> a<br />

water body, but many other factors drive the switch from <strong>on</strong>e state to the other<br />

(Phillips et al., 1978; Moss, 1990; Bl<strong>in</strong>dow et al., 1993; Moss et al., 2003). <str<strong>on</strong>g>The</str<strong>on</strong>g>se<br />

<strong>in</strong>clude physical damage to vegetati<strong>on</strong>, changes to fish community, changes to water<br />

level and changes to sal<strong>in</strong>ity. Thus a clear-water state may persist at high levels <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>nutrient</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> <strong>in</strong> the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> triggers, and similarly, a phytoplankt<strong>on</strong>dom<strong>in</strong>ated<br />

state, <strong>on</strong>ce established, may persist at relatively low <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> levels if<br />

c<strong>on</strong>diti<strong>on</strong>s for a switch back are not present. For example, <strong>in</strong> experimental freshwater<br />

p<strong>on</strong>ds, <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> load<strong>in</strong>gs did not lead to a switch to phytoplankt<strong>on</strong><br />

dom<strong>in</strong>ance, although phytoplankt<strong>on</strong> biovolume and chlorophyll a c<strong>on</strong>centrati<strong>on</strong>s did<br />

<strong>in</strong>crease <strong>in</strong> resp<strong>on</strong>se to both <str<strong>on</strong>g>of</str<strong>on</strong>g> these treatments (Moss et al., 2003). In the Norfolk<br />

Broads, experimental additi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> phosphate and amm<strong>on</strong>ium nitrate did not cause a<br />

switch to a phytoplankt<strong>on</strong>-dom<strong>in</strong>ated state, even though <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s were added <strong>in</strong><br />

quantities larger than usually received by nearby lakes that had lost their submerged<br />

plants (Balls et al., 1989). Only where submerged macrophytes were manually<br />

removed did a turbid water state develop <strong>in</strong> resp<strong>on</strong>se to <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> additi<strong>on</strong>s, and it is<br />

suggested that macrophytes str<strong>on</strong>gly buffered the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> load<strong>in</strong>g.<br />

Phosphorus levels may rema<strong>in</strong> high even after <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> have been decreased, due to<br />

<strong>in</strong>ternal remobilisati<strong>on</strong> from the hypolimni<strong>on</strong> and sediments (Moss et al., 2005).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> planktivorous and benthivorous fish <strong>in</strong> lakes can trigger a switch to a<br />

phytoplankt<strong>on</strong>-dom<strong>in</strong>ated state. Experimental enclosures c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g fish <strong>in</strong> two<br />

eutrophic Swedish lakes exhibited the symptoms <str<strong>on</strong>g>of</str<strong>on</strong>g> eutrophicati<strong>on</strong>, <strong>in</strong>clud<strong>in</strong>g high<br />

chlorophyll c<strong>on</strong>centrati<strong>on</strong>s, phytoplankt<strong>on</strong> blooms, low transparency, and high<br />

nitrogen c<strong>on</strong>centrati<strong>on</strong>s when compared with fish-free enclosures (Anderss<strong>on</strong> et al.,<br />

1978). <str<strong>on</strong>g>The</str<strong>on</strong>g> understand<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the complexities <strong>in</strong>volved with vegetati<strong>on</strong> resp<strong>on</strong>ses to<br />

<str<strong>on</strong>g>nutrient</str<strong>on</strong>g> levels has been driven by attempts to restore eutrophic lakes to clear-water<br />

states (Lauridsen et al., 1994; Coops and Doef, 1996; Perrow et al., 1999; Jeppesen et<br />

al., 2005a). This has also led to exam<strong>in</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> levels<br />

c<strong>on</strong>centrat<strong>in</strong>g <strong>on</strong> extreme eutrophicati<strong>on</strong>, with less attenti<strong>on</strong> to <strong>in</strong>cremental <str<strong>on</strong>g>effects</str<strong>on</strong>g> that<br />

may occur even without a switch to a phytoplankt<strong>on</strong>-dom<strong>in</strong>ated state. <str<strong>on</strong>g>The</str<strong>on</strong>g>re is<br />

evidence suggest<strong>in</strong>g that processes other than <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong>s frequently<br />

87


trigger the switch <str<strong>on</strong>g>of</str<strong>on</strong>g> stable state per se. However, the likelihood <str<strong>on</strong>g>of</str<strong>on</strong>g> switch<strong>in</strong>g depends<br />

str<strong>on</strong>gly <strong>on</strong> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> levels, and <strong>in</strong> some cases phytoplankt<strong>on</strong> biomass may resp<strong>on</strong>d<br />

quickly to changes <strong>in</strong> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> levels (Jeppesen et al., 2005b).<br />

3.3.2.2. Reedswamps<br />

Reedswamps dom<strong>in</strong>ated by comm<strong>on</strong> reed Phragmites australis are an important<br />

ecosystem <strong>in</strong> their own right and provide important habitat for many bird species. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

Norfolk Broads is a particularly important regi<strong>on</strong> for reedswamp and has been the<br />

subject <str<strong>on</strong>g>of</str<strong>on</strong>g> several studies. <str<strong>on</strong>g>The</str<strong>on</strong>g> Broads have underg<strong>on</strong>e historical changes to <str<strong>on</strong>g>nutrient</str<strong>on</strong>g><br />

status, with sewage works a major source <str<strong>on</strong>g>of</str<strong>on</strong>g> those <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s (Moss, 1980). <str<strong>on</strong>g>The</str<strong>on</strong>g>re is<br />

some suggesti<strong>on</strong> that <strong>in</strong> the n<strong>in</strong>eteenth century the early stages <str<strong>on</strong>g>of</str<strong>on</strong>g> this process led to<br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> vegetati<strong>on</strong> growth without wide-scale switches to phytoplankt<strong>on</strong>-dom<strong>in</strong>ated<br />

states (Moss et al., 1996). Similar claims have been made for central Europe (Kub<strong>in</strong><br />

and Melzer, 1997). In the sec<strong>on</strong>d half <str<strong>on</strong>g>of</str<strong>on</strong>g> the twentieth century, negative <str<strong>on</strong>g>effects</str<strong>on</strong>g> to<br />

vegetati<strong>on</strong> <strong>in</strong> the Broads have been l<strong>in</strong>ked to <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> status (Moss, 1980;<br />

Crook et al., 1983; Moss, 1983; Madgwick, 1999). <str<strong>on</strong>g>The</str<strong>on</strong>g>se <strong>in</strong>clude the loss <str<strong>on</strong>g>of</str<strong>on</strong>g> reed<br />

swamp, loss <str<strong>on</strong>g>of</str<strong>on</strong>g> submerged macrophytic vegetati<strong>on</strong>, and shifts to phytoplankt<strong>on</strong>dom<strong>in</strong>ated<br />

vegetati<strong>on</strong>, although these changes are also tied up with other factors, such<br />

as fen dra<strong>in</strong>age, physical disturbance and <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> sediment load. Much <str<strong>on</strong>g>of</str<strong>on</strong>g> the reed<br />

that disappeared was a float<strong>in</strong>g growth form, known as hover, and there was a str<strong>on</strong>g<br />

associati<strong>on</strong> between hover loss and nitrate c<strong>on</strong>centrati<strong>on</strong>s <strong>in</strong> the water (Crook et al.,<br />

1983). It has been claimed that <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> nitrogen availability can lead to a top-heavy<br />

growth form due to <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> shoot biomass relative to root and rhizome (Klotzli and<br />

Zust, 1973, <strong>in</strong> Moss et al., 1996), and thus make hover more susceptible to<br />

disturbance <strong>in</strong> other forms such as recreati<strong>on</strong>al boat use.<br />

Reedswamp <strong>in</strong> western and central Europe has underg<strong>on</strong>e a decl<strong>in</strong>e <strong>in</strong> extent, and <strong>in</strong><br />

quality where present (Ostendorp, 1989), which has been co<strong>in</strong>cident with <strong>in</strong>creases <strong>in</strong><br />

cultural eutrophicati<strong>on</strong>, although show<strong>in</strong>g a time lag (Kub<strong>in</strong> and Melzer, 1997). It has<br />

been suggested that eutrophicati<strong>on</strong> has been an important c<strong>on</strong>tributory factor to the<br />

dieback <str<strong>on</strong>g>of</str<strong>on</strong>g> comm<strong>on</strong> reed by alter<strong>in</strong>g the growth form as described above, and also by<br />

reduc<strong>in</strong>g the porosity <str<strong>on</strong>g>of</str<strong>on</strong>g> reed culms <strong>in</strong> the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> high nitrogen levels (Votrubová<br />

and Pechá�ková, 1996, <strong>in</strong> Fogli et al., 2002). However, <strong>in</strong> central European freshwater<br />

88


lakes, where reed dieback has also been documented, Ostendorp et al. (2001)<br />

c<strong>on</strong>cluded that eutrophicati<strong>on</strong> did not affect culm architecture and was not a general<br />

cause <strong>in</strong> reed decl<strong>in</strong>e. Similarly, performance <str<strong>on</strong>g>of</str<strong>on</strong>g> reed populati<strong>on</strong>s <strong>in</strong> the Czech<br />

Republic and the Netherlands could not be related to habitat fertility (Clever<strong>in</strong>g,<br />

1998). Thus eutrophicati<strong>on</strong> is not c<strong>on</strong>sidered to affect reeds directly, but there may be<br />

<str<strong>on</strong>g><strong>in</strong>direct</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g>, as <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> productivity can <strong>in</strong>crease litter accumulati<strong>on</strong>, lead<strong>in</strong>g to<br />

anoxic c<strong>on</strong>diti<strong>on</strong>s and to by-products toxic to reed (van der Putten, 1997). In brackish<br />

c<strong>on</strong>diti<strong>on</strong>s <strong>in</strong> northern Italy, there was no difference <strong>in</strong> soil <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> levels between<br />

healthy and decl<strong>in</strong><strong>in</strong>g reedbeds (Fogli et al., 2002), although this may reflect faster<br />

litter break down <strong>in</strong> warmer temperatures (van der Putten, 1997). While reed dieback<br />

and eutrophicati<strong>on</strong> have co<strong>in</strong>cided <strong>in</strong> Europe, cause has not been proven. Indeed,<br />

despite the associati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> eutrophicati<strong>on</strong> and reed decl<strong>in</strong>e <strong>in</strong> Europe, a major threat<br />

from <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> load<strong>in</strong>g may be more rapid seral successi<strong>on</strong>, which is a cause<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> reedbed loss (Bibby and Lunn, 1982).<br />

3.3.2.3. Upland lakes<br />

Upland lakes <strong>in</strong> Brita<strong>in</strong> are usually naturally oligotrophic. <str<strong>on</strong>g>The</str<strong>on</strong>g>se lakes receive<br />

<str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s from catchment run<str<strong>on</strong>g>of</str<strong>on</strong>g>f, but atmospheric depositi<strong>on</strong> may be relatively more<br />

important, due to their positi<strong>on</strong> <strong>in</strong> high ra<strong>in</strong>fall areas and the relatively poor <str<strong>on</strong>g>nutrient</str<strong>on</strong>g><br />

status <str<strong>on</strong>g>of</str<strong>on</strong>g> soils <strong>in</strong> their catchments. Fertiliser run<str<strong>on</strong>g>of</str<strong>on</strong>g>f from forestry operati<strong>on</strong>s is another<br />

important source <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s, and fish farms <strong>in</strong> some lakes may raise <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> levels.<br />

Phytoplankt<strong>on</strong> biomass <strong>in</strong> fifteen Scottish lochs (mostly high quality waters) was<br />

dependent not <strong>on</strong>ly eutrophicati<strong>on</strong> pressure from the catchment, but also the attributes<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the lochs themselves, such as water depth and flush<strong>in</strong>g rate, that determ<strong>in</strong>e their<br />

sensitivity to <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> (Bailey-Watts, 1998). Even though most Scottish lochs<br />

are c<strong>on</strong>sidered oligotrophic, they are still at risk from the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> eutrophicati<strong>on</strong>,<br />

such as cyanobacterial blooms (Marsden et al., 1998).<br />

3.3.3. Estuaries and coastal waters<br />

Although the vegetati<strong>on</strong> communities are different from those <strong>in</strong> freshwater, the<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> eutrophicati<strong>on</strong> can be similarly spectacular <strong>in</strong> sal<strong>in</strong>e situati<strong>on</strong>s. However,<br />

89


most coastal waters are better flushed than similarly sized lakes, and eutrophicati<strong>on</strong><br />

tends to be short-lived rather than persistent. Nevertheless, <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g><br />

load<strong>in</strong>gs, particularly <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen, can have major <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> estuar<strong>in</strong>e vegetati<strong>on</strong>.<br />

Estuaries are naturally productive habitats, and under natural c<strong>on</strong>diti<strong>on</strong>s <strong>in</strong> north-west<br />

Europe dense mats <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong> can be important feed<strong>in</strong>g areas for <strong>birds</strong> that either<br />

feed directly <strong>on</strong> the vegetati<strong>on</strong> or <strong>on</strong> <strong>in</strong>vertebrates found with<strong>in</strong> the mats (Goss-<br />

Custard and West, 2004). Eutrophicati<strong>on</strong> typically leads to a decl<strong>in</strong>e <strong>in</strong> rooted<br />

phanerogam communities such as seagrass and eelgrass (Zostera spp.) beds, and their<br />

replacement by macroalgae and phytoplankt<strong>on</strong> blooms (Nienhuis, 1993; Herbert,<br />

1999). Densities <str<strong>on</strong>g>of</str<strong>on</strong>g> green macroalgae have <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> <strong>in</strong> the Wadden Sea s<strong>in</strong>ce the late<br />

1950s <strong>in</strong> resp<strong>on</strong>se to enhanced <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> load<strong>in</strong>g (Lotze, 2005). In the same area,<br />

eulittoral eelgrass has decl<strong>in</strong>ed s<strong>in</strong>ce the 1960s, and eutrophicati<strong>on</strong> and algal blooms<br />

(as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> eutrophicati<strong>on</strong>) have been suggested as be<strong>in</strong>g major c<strong>on</strong>tribut<strong>in</strong>g factors<br />

(de J<strong>on</strong>ge and de J<strong>on</strong>g, 1993, <strong>in</strong> Lotze, 2005). In turn, the loss <str<strong>on</strong>g>of</str<strong>on</strong>g> eelgrass beds as<br />

substrate is c<strong>on</strong>sidered to have been a c<strong>on</strong>tribut<strong>in</strong>g factor <strong>in</strong> the decl<strong>in</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> red and<br />

brown algae (Wolff, 2000). Loss <str<strong>on</strong>g>of</str<strong>on</strong>g> seagrass beds has also been observed <strong>in</strong> resp<strong>on</strong>se<br />

to eutrophicati<strong>on</strong> <strong>in</strong> a Portuguese estuary (Cardoso et al., 2005). Attempts to improve<br />

water quality by <strong>in</strong>creas<strong>in</strong>g water replacement <strong>in</strong> two brackish Danish lago<strong>on</strong>s saw a<br />

loss <str<strong>on</strong>g>of</str<strong>on</strong>g> seagrass beds due to changes <strong>in</strong> water level and sal<strong>in</strong>ity (Holm and Clausen, <strong>in</strong><br />

press).<br />

Macroalgal mats have been observed <strong>in</strong> many estuaries; they are a natural<br />

phenomen<strong>on</strong>, but <strong>on</strong>e that is thought to be <strong>on</strong> the <strong>in</strong>crease due to cultural<br />

eutrophicati<strong>on</strong>. Nutrient <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> from sewage effluent discharges <strong>in</strong> the 1970s were<br />

suggested as the cause <str<strong>on</strong>g>of</str<strong>on</strong>g> macroalgae mats found throughout Portsmouth Harbour<br />

(Soulsby et al., 1978) and Langst<strong>on</strong>e Harbour (Tubbs, 1977). Sewage discharge was<br />

c<strong>on</strong>sidered the ma<strong>in</strong> source <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen for nuisance macroalgae <strong>in</strong> Dubl<strong>in</strong> Bay<br />

(Jeffrey et al., 1995). Initially, <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> enrichment <strong>in</strong>creases overall productivity, but<br />

the anoxic c<strong>on</strong>diti<strong>on</strong>s created <strong>in</strong> the water column, al<strong>on</strong>g with the release <str<strong>on</strong>g>of</str<strong>on</strong>g> toxic<br />

sulphides can have major <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> the flora and fauna (Herbert, 1999). Birds<br />

themselves may affect the manifestati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> eutrophicati<strong>on</strong> <strong>in</strong> the vegetati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

estuaries. In Canada, predati<strong>on</strong> by waders <strong>on</strong> the amphipod Corophium volutator,<br />

90


which feeds <strong>on</strong> diatoms and bacteria, resulted <strong>in</strong> substantial <strong>in</strong>creases <strong>in</strong> algal cover<br />

(Hawk<strong>in</strong>s, 1985, <strong>in</strong> Green et al., 1990).<br />

3.4. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <strong>in</strong>creases <strong>on</strong> bird food items<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> <strong>on</strong> bird food items are the most likely pathways for<br />

<str<strong>on</strong>g><strong>in</strong>direct</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> bird populati<strong>on</strong>s. Once aga<strong>in</strong>, although there are differences<br />

between habitats, there is a theme <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> primary productivity and faunal<br />

biomass with <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> load<strong>in</strong>g, and a po<strong>in</strong>t at which there is a community<br />

shift. In the most extreme cases <str<strong>on</strong>g>of</str<strong>on</strong>g> eutrophicati<strong>on</strong>, the <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> primary productivity<br />

leads to high biological oxygen demand, and the result<strong>in</strong>g anoxia and sulphide<br />

c<strong>on</strong>centrati<strong>on</strong>s can lead to mortality am<strong>on</strong>gst aquatic animals. This can happen <strong>in</strong> any<br />

aquatic system, although it is <strong>in</strong>hibited where there is flush<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the system.<br />

However, at <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> levels above normal, but <strong>in</strong> the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> catastrophic anoxia or<br />

toxicity, abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> food items will generally <strong>in</strong>crease. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g><br />

<str<strong>on</strong>g>nutrient</str<strong>on</strong>g> levels <strong>on</strong> <strong>in</strong>vertebrates <strong>in</strong> aquatic systems are summarised <strong>in</strong> Table 3.3.<br />

3.4.1. Invertebrates <strong>in</strong> rivers and streams<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> <strong>in</strong>vertebrate communities <str<strong>on</strong>g>of</str<strong>on</strong>g> rivers and streams are sensitive to <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g>. In<br />

the USA, the macro<strong>in</strong>vertebrate community was homogeneous al<strong>on</strong>g the l<strong>on</strong>gitud<strong>in</strong>al<br />

gradient <str<strong>on</strong>g>of</str<strong>on</strong>g> a stream flow<strong>in</strong>g through agricultural land, despite geomorphological<br />

changes (Del<strong>on</strong>g and Brusven, 1998). Periphyt<strong>on</strong> abundance was high, and functi<strong>on</strong>al<br />

grazers dom<strong>in</strong>ated the community, while many species comm<strong>on</strong> <strong>in</strong> the upper reaches<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> streams <strong>in</strong> the same dra<strong>in</strong>age bas<strong>in</strong> were absent. In a Mediterranean stream with<br />

l<strong>on</strong>gitud<strong>in</strong>al changes <strong>in</strong> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> levels, <strong>in</strong>vertebrate community also varied<br />

l<strong>on</strong>gitud<strong>in</strong>ally, with <strong>in</strong>sects and gastropods dom<strong>in</strong>ant <strong>in</strong> the upper reaches, and<br />

oligochaetes, crustaceans and chir<strong>on</strong>omids <strong>in</strong> the lower and polluted reach (Solim<strong>in</strong>i<br />

et al., 2001). However, despite the change <strong>in</strong> community structure, the shape <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

size structure differed little between reaches, and this has been observed elsewhere<br />

(Bourassa and Mor<strong>in</strong>, 1995). Changes <strong>in</strong> tax<strong>on</strong>omic compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>vertebrate<br />

91


community may be driven by substrate availability as well as food abundance and<br />

availability. Thick periphyt<strong>on</strong> cover <strong>in</strong> experimentally enriched streams <strong>in</strong> Canada<br />

saw a loss <str<strong>on</strong>g>of</str<strong>on</strong>g> filter feeders and chir<strong>on</strong>omids and an <strong>in</strong>crease <strong>in</strong> grazers (snails and<br />

oligochaetes), although overall <strong>in</strong>vertebrate biomass did not change (Bourassa and<br />

Cattaneo, 2000). In lowland Brita<strong>in</strong>, the distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> several mollusc species <strong>in</strong><br />

ditches was <strong>in</strong>fluenced by water <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> levels, even where habitat was apparently<br />

suitable (Wats<strong>on</strong> and Ormerod, 2004; Wats<strong>on</strong> and Ormerod, 2005). <str<strong>on</strong>g>The</str<strong>on</strong>g> resp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

these molluscs to anoxia and <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> sedimentati<strong>on</strong> rates associated with<br />

phytoplankt<strong>on</strong>-dom<strong>in</strong>ated communities were suggested as possible mechanisms for<br />

their absence from some ditches. Slow-flow<strong>in</strong>g dra<strong>in</strong>age ditches share many<br />

characteristics with lakes and fens discussed below.<br />

3.4.2. Lowland shallow lakes and fens<br />

3.4.2.1. Vegetati<strong>on</strong><br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> switch to a phytoplankt<strong>on</strong>-dom<strong>in</strong>ated stable state reduces food availability for<br />

herbivorous <strong>birds</strong> <strong>in</strong> freshwater lakes. Submerged macrophytes and charophytes are<br />

important food items, and these elements <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong> are lost <strong>in</strong> the switch to a<br />

phytoplankt<strong>on</strong>-dom<strong>in</strong>ated state, as described above. Food plants, such as st<strong>on</strong>eworts<br />

(Chara spp.) and p<strong>on</strong>dweeds (Potamoget<strong>on</strong> spp.) have effectively disappeared from<br />

some lakes <strong>in</strong> the Netherlands, Sweden and the United K<strong>in</strong>gdom, as they have<br />

underg<strong>on</strong>e eutrophicati<strong>on</strong>, and returned as lakes have recovered to a clear-water state<br />

(Hargeby et al., 1994; Armitage et al., 2000; Noordhuis et al., 2002). Macrophytes<br />

and charophytes are also important as food and habitat for <strong>in</strong>vertebrates and fish that<br />

<strong>birds</strong> prey up<strong>on</strong>.<br />

92


Table 3.3. Some <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> c<strong>on</strong>tent <strong>on</strong> bird food items <strong>in</strong> aquatic habitats<br />

Habitat Group Locati<strong>on</strong> Process Effects Possible cause Strength<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Estuar<strong>in</strong>e polychaete (Capitella sp.)<br />

epifauna and <strong>in</strong>fauna<br />

(<strong>in</strong>clud<strong>in</strong>g whelks, crabs,<br />

sea anem<strong>on</strong>es)<br />

Australia experimental additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s (and exclusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

shorebird predators)<br />

<strong>in</strong>crease but <strong>on</strong>ly <strong>in</strong> plots<br />

unaffected by macroalgal mats<br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> food resources, but<br />

sensitivity to macroalgal mats<br />

evidence 1<br />

Reference<br />

1 Morris and<br />

Keough, 2003<br />

Netherlands historical eutrophicati<strong>on</strong> decl<strong>in</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> many species anoxia from decay<strong>in</strong>g algal mats 2 Lotze, 2005<br />

pipefish and stickleback Netherlands historical eutrophicati<strong>on</strong> decl<strong>in</strong>e <strong>in</strong> populati<strong>on</strong> loss <str<strong>on</strong>g>of</str<strong>on</strong>g> eelgrass beds due to<br />

eutrophicati<strong>on</strong><br />

2 Lotze, 2005<br />

amphipods and<br />

Netherlands historical eutrophicati<strong>on</strong> and decl<strong>in</strong>e <strong>in</strong> species richness but <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> availability, 2 van Impe, 1985<br />

polychaetes<br />

polluti<strong>on</strong> (1950s to 1980s) <strong>in</strong>crease <strong>in</strong> abundance<br />

loss <str<strong>on</strong>g>of</str<strong>on</strong>g> predators (crabs and fish)<br />

due to polluti<strong>on</strong><br />

gastropod (Hydrobia Portugal eutrophicati<strong>on</strong> followed by decl<strong>in</strong>e <strong>in</strong> biomass and<br />

associati<strong>on</strong> with seagrass beds 2 Cardoso et al.,<br />

ulvae)<br />

restorati<strong>on</strong>; spatial and temporal abundance dur<strong>in</strong>g eutrophic that also recovered follow<strong>in</strong>g<br />

2005<br />

trends <strong>in</strong> abundance<br />

c<strong>on</strong>diti<strong>on</strong>s; recovery follow<strong>in</strong>g<br />

restorati<strong>on</strong><br />

restorati<strong>on</strong><br />

benthic <strong>in</strong>fauna NE England <strong>in</strong>crease <strong>in</strong> sewage effluent from reducti<strong>on</strong> <strong>in</strong> abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> five localised hypoxia 2 Hall et al., 1997<br />

po<strong>in</strong>t source<br />

taxa<br />

fish NE England <strong>in</strong>crease <strong>in</strong> sewage effluent from <strong>in</strong>crease <strong>in</strong> small pelagic fish localised hypoxia, reducti<strong>on</strong> <strong>in</strong> 2 Hall et al., 1997<br />

po<strong>in</strong>t source<br />

abundance, no change <strong>in</strong> benthic<br />

fish abundance, decl<strong>in</strong>e <strong>in</strong><br />

flounder abundance<br />

predati<strong>on</strong> <strong>on</strong> small fish<br />

burrow<strong>in</strong>g crustacean Scotland spatial distributi<strong>on</strong> absent <strong>in</strong> sediments polluted by <strong>in</strong>ability to survive anaerobic 2 McClusky, 1968<br />

(Corophium volutator)<br />

extreme <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> enrichment c<strong>on</strong>diti<strong>on</strong>s<br />

bivalve molluscs(cockles Scotland observati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> movements <strong>in</strong> an upwards <strong>in</strong>to aerated sediments <strong>in</strong>ability to survive anaerobic 2 Perk<strong>in</strong>s and<br />

and tell<strong>in</strong>s)<br />

extremely enriched habitat<br />

c<strong>on</strong>diti<strong>on</strong>s<br />

Abbott, 1972<br />

Freshwater gastropods south-east endangered species distributi<strong>on</strong> <strong>in</strong> two out <str<strong>on</strong>g>of</str<strong>on</strong>g> three species absent resp<strong>on</strong>ses to eutrophic c<strong>on</strong>diti<strong>on</strong>s 2 Wats<strong>on</strong> and<br />

ditch<br />

England relati<strong>on</strong> to habitat variables from ditches with otherwise<br />

suitable habitat where nitrate and<br />

nitrate levels high<br />

Ormerod, 2004a<br />

sphaerid mussel (Pisidium south-east distributi<strong>on</strong> <strong>in</strong> relati<strong>on</strong> to<br />

scarcer at high levels <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen anoxia caused by eutrophicati<strong>on</strong>, 2 Wats<strong>on</strong> and<br />

pseudosphaerium) England envir<strong>on</strong>mental variables<br />

greater sedimentati<strong>on</strong> rates <strong>in</strong><br />

phytoplankt<strong>on</strong> dom<strong>in</strong>ated ditches<br />

Ormerod, 2005<br />

1<br />

I classified the studies <strong>in</strong>to three tiers: 1. Str<strong>on</strong>g evidence, usually based <strong>on</strong> experimental pro<str<strong>on</strong>g>of</str<strong>on</strong>g>; 2. Intermediate evidence, generally an observed relati<strong>on</strong>ship <strong>in</strong> space and time; 3. Weak evidence, a suggested cause<br />

based <strong>on</strong> observed patterns. <str<strong>on</strong>g>The</str<strong>on</strong>g>se levels are not <strong>in</strong>tended as a judgement <strong>on</strong> the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> the research, and I judge the strength <str<strong>on</strong>g>of</str<strong>on</strong>g> evidence for <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> and associated mechanisms, which may not have<br />

been the purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> the study.<br />

93


Table 3.3. (c<strong>on</strong>t.) Some <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> c<strong>on</strong>tent <strong>on</strong> bird food items <strong>in</strong> aquatic habitats<br />

Habitat Group Locati<strong>on</strong> Process Effects Possible cause Strength<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Small p<strong>on</strong>ds emergent <strong>in</strong>sects New York,<br />

USA<br />

Shallow<br />

wetland<br />

macro<strong>in</strong>vertebrates and<br />

small fish<br />

experimental additi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> P and N<br />

(0.056 g/m 3 /year P, or 0.56 g/m 3 /year<br />

P and 12.1g/m 3 /year N)<br />

Florida, USA abundance and species richness <strong>in</strong><br />

relati<strong>on</strong> to <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> gradient<br />

Shallow lake benthic fauna and Sweden abundance <strong>in</strong> enclosures with and<br />

cladocerans<br />

without fish<br />

macro<strong>in</strong>vertebrates Sweden abundance <strong>in</strong> experimental plots with<br />

and without fish excluded<br />

benthic<br />

Sweden abundance over time (natural recovery<br />

macro<strong>in</strong>vertebrates<br />

from eutrophicati<strong>on</strong>)<br />

zebra mussels Netherlands historical changes <strong>in</strong> abundance <strong>in</strong><br />

relati<strong>on</strong> to trophic status<br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> abundance <strong>in</strong> fertilised<br />

p<strong>on</strong>ds<br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> levels;<br />

<strong>in</strong>dependent effect <str<strong>on</strong>g>of</str<strong>on</strong>g> fish<br />

removal<br />

both higher <strong>in</strong> enriched areas <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g><br />

availability, possible<br />

sampl<strong>in</strong>g bias<br />

higher abundance <strong>in</strong> enclosures removed predati<strong>on</strong><br />

without fish<br />

pressure<br />

reducti<strong>on</strong> <strong>in</strong> biomass (but not<br />

abundance) <strong>in</strong> plots with fish<br />

<strong>in</strong>crease <strong>in</strong> biomass and diversity<br />

follow<strong>in</strong>g recovery; shift <strong>in</strong><br />

compositi<strong>on</strong> towards snails and<br />

isopods<br />

decl<strong>in</strong>e <strong>in</strong> populati<strong>on</strong> and recovery<br />

follow<strong>in</strong>g reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phosphorus<br />

<str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g><br />

macro<strong>in</strong>vertebrates Netherlands relati<strong>on</strong>ships with Chara spp biomass positive relati<strong>on</strong>ship for total<br />

macro<strong>in</strong>vertebrate abundance;<br />

macrophytes str<strong>on</strong>gly predicted<br />

<strong>in</strong>vertebrate community compositi<strong>on</strong><br />

zooplankt<strong>on</strong> Denmark historical reducti<strong>on</strong>s <strong>in</strong> external<br />

phosphorus load<strong>in</strong>g over 13 years<br />

fish Denmark historical reducti<strong>on</strong>s <strong>in</strong> external<br />

phosphorus load<strong>in</strong>g over 13 years<br />

fish Norfolk<br />

Broads<br />

fish Norfolk<br />

Broads<br />

cessati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> anthropogenic <str<strong>on</strong>g>nutrient</str<strong>on</strong>g><br />

<str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g><br />

historical changes associated with<br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> phosphorus c<strong>on</strong>centrati<strong>on</strong>s<br />

(ma<strong>in</strong>ly from sewage treatment<br />

works)<br />

<strong>in</strong>crease <strong>in</strong> average body weight <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Daphnia and cladocerans<br />

change <strong>in</strong> community structure<br />

(decrease <strong>in</strong> cypr<strong>in</strong>ids, except rudd,<br />

which <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> al<strong>on</strong>g with pike and<br />

perch)<br />

Reference<br />

evidence 1<br />

1 McCarty, 1997<br />

2 Rader and<br />

Richards<strong>on</strong>, 1994<br />

1 Anderss<strong>on</strong> et al.,<br />

1978<br />

predati<strong>on</strong> pressure 1 Marklund et al.,<br />

2002<br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> plant substrate 2 Hargeby et al.,<br />

and plant food; less bare<br />

sediment<br />

1994<br />

shift <strong>in</strong> stable state to<br />

macrophyte dom<strong>in</strong>ati<strong>on</strong>,<br />

clear water and <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g><br />

food availability<br />

feed<strong>in</strong>g habits <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

c<strong>on</strong>stituent <strong>in</strong>vertebrate<br />

species<br />

reduced predati<strong>on</strong> <strong>on</strong><br />

zooplankt<strong>on</strong> and <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g><br />

graz<strong>in</strong>g <strong>on</strong> phytoplankt<strong>on</strong><br />

improved forag<strong>in</strong>g for<br />

piscivores<br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> fish community changes <strong>in</strong> competitive<br />

envir<strong>on</strong>ment <str<strong>on</strong>g>of</str<strong>on</strong>g> forag<strong>in</strong>g<br />

fish at early life stages<br />

collapse <str<strong>on</strong>g>of</str<strong>on</strong>g> pike fishery, dom<strong>in</strong>ance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

roach and bream<br />

2 Noordhuis et al.,<br />

2002<br />

2 van den Berg et al.,<br />

1997<br />

2 Jeppesen et al.,<br />

2005b<br />

2 Jeppesen et al.,<br />

2005b<br />

2 Peirs<strong>on</strong> et al., 1985<br />

loss <str<strong>on</strong>g>of</str<strong>on</strong>g> water plants 2 Perrow and Jowitt,<br />

1997, Madgwick,<br />

1999<br />

1 I classified the studies <strong>in</strong>to three tiers: 1. Str<strong>on</strong>g evidence, usually based <strong>on</strong> experimental pro<str<strong>on</strong>g>of</str<strong>on</strong>g>; 2. Intermediate evidence, generally an observed relati<strong>on</strong>ship <strong>in</strong> space and time; 3. Weak evidence, a suggested cause<br />

based <strong>on</strong> observed patterns. <str<strong>on</strong>g>The</str<strong>on</strong>g>se levels are not <strong>in</strong>tended as a judgement <strong>on</strong> the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> the research, and I judge the strength <str<strong>on</strong>g>of</str<strong>on</strong>g> evidence for <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> and associated mechanisms, which may not have<br />

been the purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> the study.<br />

94


3.4.2.2. Invertebrates<br />

Invertebrates resp<strong>on</strong>d to <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> status, and <strong>in</strong> the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> a switch <strong>in</strong> stable state,<br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> availability should <strong>in</strong>crease <strong>in</strong>vertebrate biomass. In small p<strong>on</strong>ds<br />

experimental additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phosphorus and nitrogen <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> emergent<br />

<strong>in</strong>sects (McCarty, 1997). However, <strong>on</strong>ce lakes shift to a phytoplankt<strong>on</strong>-dom<strong>in</strong>ated<br />

state, the radical changes to habitat generally lead to a decrease <strong>in</strong> <strong>in</strong>vertebrate<br />

abundance and diversity due to adverse c<strong>on</strong>diti<strong>on</strong>s, such oxygen depleti<strong>on</strong> or loss <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

suitable substrate. <str<strong>on</strong>g>The</str<strong>on</strong>g>re is also a shift <strong>in</strong> community compositi<strong>on</strong> away from sensitive<br />

species towards tolerant species such as annelid worms (Harper, 1992). In Lake<br />

Veluwemeer, zebra mussels, an important bird food item, decl<strong>in</strong>ed from the 1960s,<br />

when algal blooms began to dom<strong>in</strong>ate the lake as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> eutrophicati<strong>on</strong><br />

(Noordhuis et al., 2002). Elsewhere <strong>in</strong> the Netherlands, Chara spp. biomass (an<br />

<strong>in</strong>dicator <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> status) <strong>in</strong> shallow lakes recover<strong>in</strong>g from eutrophicati<strong>on</strong> was a<br />

major determ<strong>in</strong>ant <str<strong>on</strong>g>of</str<strong>on</strong>g> macro<strong>in</strong>vertebrate community compositi<strong>on</strong> (van den Berg,<br />

1997). In Sweden’s Lake Krankesjön, recovery from phytoplankt<strong>on</strong>-dom<strong>in</strong>ated<br />

c<strong>on</strong>diti<strong>on</strong>s saw an <strong>in</strong>crease <strong>in</strong> the biomass and diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> the benthic<br />

macro<strong>in</strong>vertebrate fauna (Hargeby et al., 1994). <str<strong>on</strong>g>The</str<strong>on</strong>g>re was also a shift away from<br />

dom<strong>in</strong>ance by chir<strong>on</strong>omids and oligochaetes towards snails and isopods, which are<br />

associated with macrophyte cover. Invertebrate communities <strong>in</strong> eutrophic lakes <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

Norfolk Broads are very low <strong>in</strong> diversity, typically dom<strong>in</strong>ated by oligochaetes and<br />

some chir<strong>on</strong>omid larvae, with molluscs especially poorly represented (Harper, 1992).<br />

Despite the heightened primary productivity, these lakes do not provide suitable<br />

habitat for much <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>vertebrate fauna typically present <strong>in</strong> such lakes.<br />

In the Florida Everglades, a naturally oligotrophic system, macro<strong>in</strong>vertebrate<br />

(particularly ostracod) and small fish abundance were greater <strong>in</strong> areas enriched by<br />

<str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s from agricultural run<str<strong>on</strong>g>of</str<strong>on</strong>g>f than they were <strong>in</strong> unenriched sloughs, and the<br />

trophic structure did not appear to differ al<strong>on</strong>g a <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> gradient (Rader and<br />

Richards<strong>on</strong>, 1994). However, <strong>in</strong> the same area, Turner et al. (1999) did not record<br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> <strong>in</strong>vertebrate biomass at enriched sites, although fish biomass did <strong>in</strong>crease.<br />

In a eutrophic lake <strong>in</strong> M<strong>in</strong>nesota, USA, benthic macro<strong>in</strong>vertebrates, <strong>in</strong>clud<strong>in</strong>g the<br />

amphipod Hyalella azteca, significantly <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> <strong>in</strong> abundance follow<strong>in</strong>g the return<br />

to a clear water state as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> fish removal (Hans<strong>on</strong> and Butler, 1994).<br />

95


Cladoceran graz<strong>in</strong>g <strong>on</strong> phytoplankt<strong>on</strong> was a major cause <str<strong>on</strong>g>of</str<strong>on</strong>g> improved water clarity.<br />

This process, while not <strong>in</strong>volv<strong>in</strong>g changes to <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> levels, is analogous to that<br />

which can be achieved by oligotrophicati<strong>on</strong>.<br />

3.4.2.3. Fish<br />

Fish are sensitive to the <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> status <str<strong>on</strong>g>of</str<strong>on</strong>g> the water, both directly, as they may be<br />

killed by anoxic c<strong>on</strong>diti<strong>on</strong> and toxic compounds released by algal blooms, and<br />

<str<strong>on</strong>g><strong>in</strong>direct</str<strong>on</strong>g>ly, through changes <strong>in</strong> habitat and prey (Harper, 1992). Fish may also affect<br />

aquatic vegetati<strong>on</strong>, the magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> which varies greatly depend<strong>in</strong>g <strong>on</strong> the fish<br />

species (Williams et al., 2002). Removal <str<strong>on</strong>g>of</str<strong>on</strong>g> fish reduces predati<strong>on</strong> pressure <strong>on</strong><br />

zooplankt<strong>on</strong>, and can thus <strong>in</strong>crease cladoceran graz<strong>in</strong>g <strong>on</strong> phytoplankt<strong>on</strong>, improve<br />

water clarity and promote growth <str<strong>on</strong>g>of</str<strong>on</strong>g> submerged macrophytes, and it is used as a<br />

management tool <strong>in</strong> lake restorati<strong>on</strong> (Hans<strong>on</strong> and Butler, 1994). Fish have been<br />

shown to reduce the abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> benthic fauna as well as that <str<strong>on</strong>g>of</str<strong>on</strong>g> large cladocerans<br />

(Anderss<strong>on</strong> et al., 1978).<br />

Roach are favoured <strong>in</strong> phytoplankt<strong>on</strong>-dom<strong>in</strong>ated lakes as it is able to feed <strong>on</strong> bluegreen<br />

algae (Bl<strong>in</strong>dow et al., 1993). Cypr<strong>in</strong>ids <strong>in</strong> general benefit from water turbidity,<br />

as it decreases predati<strong>on</strong> pressure and they are less hampered as they use tactile<br />

orientati<strong>on</strong>. However, rudd appear to do poorly compared with roach, possibly due to<br />

their need for submerged macrophytes as spawn<strong>in</strong>g substrate (Noble, 2003) and<br />

because they graze <strong>on</strong> submerged macrophytes (van D<strong>on</strong>k et al., 1994; Garcia-<br />

Berthou and Moreno-Amich, 2000).<br />

One result <str<strong>on</strong>g>of</str<strong>on</strong>g> accelerated eutrophicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> shallow lakes is a reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fish<br />

diversity, with roach and bream becom<strong>in</strong>g dom<strong>in</strong>ant at the expense <str<strong>on</strong>g>of</str<strong>on</strong>g> perch, rudd and<br />

tench (Leach et al., 1977). Fish populati<strong>on</strong>s <strong>in</strong> shallow lakes <strong>in</strong> the Norfolk Broads are<br />

affected by eutrophicati<strong>on</strong> (Moss et al., 1996). Alderfen Broad, a shallow lake<br />

suffer<strong>in</strong>g from eutrophicati<strong>on</strong>, was isolated from its major anthropogenic source <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>nutrient</str<strong>on</strong>g>-rich water, and showed an <strong>in</strong>crease <strong>in</strong> fish diversity, although not total<br />

species richness, reflect<strong>in</strong>g lower dom<strong>in</strong>ance <str<strong>on</strong>g>of</str<strong>on</strong>g> roach (Peirs<strong>on</strong> et al., 1985). This was<br />

ascribed to <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> recruitment success <str<strong>on</strong>g>of</str<strong>on</strong>g> larvae and fry <str<strong>on</strong>g>of</str<strong>on</strong>g> fish other than roach. In<br />

turn, it is suggested that the competitive advantage that forag<strong>in</strong>g roach have <strong>in</strong> the<br />

96


early life stages decreases with <strong>in</strong>creas<strong>in</strong>g submerged macrophyte abundance. Rudd<br />

(al<strong>on</strong>g with pike and perch) also <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> with oligotrophicati<strong>on</strong> <strong>in</strong> Danish shallow<br />

lakes, while other cypr<strong>in</strong>ids decl<strong>in</strong>ed (Jeppesen et al., 2005b). Total zooplankt<strong>on</strong><br />

biomass rema<strong>in</strong>ed steady but average body mass <str<strong>on</strong>g>of</str<strong>on</strong>g> Daphnia and cladocerans<br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g>, <strong>in</strong>dicat<strong>in</strong>g that piscivorous fish were reduc<strong>in</strong>g the predati<strong>on</strong> pressure from<br />

zooplanktivorous cypr<strong>in</strong>ids.<br />

Fish affect the state <str<strong>on</strong>g>of</str<strong>on</strong>g> shallow lakes through predati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> planktivorous zooplankt<strong>on</strong><br />

(Irv<strong>in</strong>e et al, 1989; Bl<strong>in</strong>dow et al., 1993; Perrow et al., 1999). This predati<strong>on</strong> is more<br />

efficient <strong>in</strong> the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> submerged macrophytes, and can result <strong>in</strong> the establishment<br />

or persistent <str<strong>on</strong>g>of</str<strong>on</strong>g> a turbid-water state. Fish also reduce macro<strong>in</strong>vertebrate biomass, even<br />

when fish density is low (Marklund et al., 2002). Cypr<strong>in</strong>ids also cause sediment<br />

suspensi<strong>on</strong> through their forag<strong>in</strong>g behaviour, thus ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g water <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> status<br />

and reduc<strong>in</strong>g light availability for macrophytes. Submerged macrophytes can <strong>in</strong>hibit<br />

the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> cypr<strong>in</strong>ids and ma<strong>in</strong>ta<strong>in</strong> water clarity by prevent<strong>in</strong>g access to the lake<br />

bottom, favour<strong>in</strong>g piscivorous fish, and harbour<strong>in</strong>g zooplankt<strong>on</strong> (Bl<strong>in</strong>dow et al., 1993;<br />

Scheffer et al., 1993).<br />

3.4.3. Upland lakes<br />

Upland lakes, which are mostly naturally oligotrophic, are susceptible to the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g>, which may affect <strong>in</strong>vertebrate and fish communities. Trout<br />

lakes, trout spawn<strong>in</strong>g is adversely affected by fertiliser run<str<strong>on</strong>g>of</str<strong>on</strong>g>f (which may be<br />

predom<strong>in</strong>antly from forestry operati<strong>on</strong>s), which changes the size structure <str<strong>on</strong>g>of</str<strong>on</strong>g> the trout<br />

populati<strong>on</strong>s, result<strong>in</strong>g <strong>in</strong> fewer and larger fish, while fish-eat<strong>in</strong>g <strong>birds</strong> such as divers<br />

require abundant small fish. In additi<strong>on</strong>, where fish farms are present, wild trout may<br />

c<strong>on</strong>sume food pellets <strong>in</strong>tended for farmed fish, aga<strong>in</strong> <strong>in</strong>creas<strong>in</strong>g <strong>in</strong> size and reduc<strong>in</strong>g<br />

the availability <str<strong>on</strong>g>of</str<strong>on</strong>g> suitable prey for fish-eat<strong>in</strong>g <strong>birds</strong>. Availability <str<strong>on</strong>g>of</str<strong>on</strong>g> fish prey may also<br />

be affected by reduced water clarity <strong>in</strong> upland lakes as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g>.<br />

97


3.4.4. Estuaries and coastal waters<br />

3.4.4.1. Invertebrates <strong>in</strong> <strong>in</strong>tertidal areas<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>re is evidence that polluti<strong>on</strong>, particularly sewage discharge po<strong>in</strong>ts, while<br />

damag<strong>in</strong>g to the <strong>in</strong>tegrity <str<strong>on</strong>g>of</str<strong>on</strong>g> the envir<strong>on</strong>ment as a whole, may <strong>in</strong>crease the populati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> polluti<strong>on</strong> <strong>in</strong>dicator species, which can be valuable food sources for <strong>birds</strong>. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

eutrophicati<strong>on</strong>, especially from sewage po<strong>in</strong>t sources, <strong>on</strong> benthic communities are<br />

well documented (eg Crema et al., 1991; Green et al., 1990). In the Wadden Sea,<br />

eutrophicati<strong>on</strong> has led to an <strong>in</strong>crease <strong>in</strong> mass blooms <str<strong>on</strong>g>of</str<strong>on</strong>g> green algae, with c<strong>on</strong>sequent<br />

mass mortality <str<strong>on</strong>g>of</str<strong>on</strong>g> epifauna and <strong>in</strong>fauna due to the anoxic c<strong>on</strong>diti<strong>on</strong>s result<strong>in</strong>g when<br />

algal mats decay (Lotze, 2005). However, there is evidence from elsewhere that<br />

eutrophicati<strong>on</strong> has led to an <strong>in</strong>crease <strong>in</strong> the <strong>in</strong>fauna (especially polychaetes) <str<strong>on</strong>g>of</str<strong>on</strong>g> mud<br />

and sand flats. In a Portuguese estuary, eutrophicati<strong>on</strong> saw the replacement <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

seagrass beds and the decl<strong>in</strong>e <strong>in</strong> abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> the gastropod Hydrobia ulvae (Cardoso<br />

et al., 2005). Sites where sewage outfalls are removed, or where treatment is<br />

implemented, generally show a decrease <strong>in</strong> <strong>in</strong>vertebrate biomass, although species<br />

richness <strong>in</strong>creases and species compositi<strong>on</strong> changes to more closely approximate n<strong>on</strong>polluted<br />

sites (Green et al., 1990).<br />

Changes <strong>in</strong> the abundance and availability <str<strong>on</strong>g>of</str<strong>on</strong>g> bird prey items <strong>in</strong> resp<strong>on</strong>se to extreme<br />

<str<strong>on</strong>g>nutrient</str<strong>on</strong>g> polluti<strong>on</strong> have been observed <strong>in</strong> <strong>in</strong>tertidal habitats <strong>in</strong> Scotland (Pounder,<br />

1976). In the Clyde estuary, anaerobic c<strong>on</strong>diti<strong>on</strong>s led to the c<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic<br />

matter to sulphur compounds, lead<strong>in</strong>g to cockles (Cerastoderma edule) and tell<strong>in</strong>s<br />

(Macoma balthica), mov<strong>in</strong>g upward <strong>in</strong>to more aerated surface sediments (Perk<strong>in</strong>s and<br />

Abbott, 1972). <str<strong>on</strong>g>The</str<strong>on</strong>g>se shellfish are important food items for waders, especially<br />

oystercatchers, which would then have a temporarily <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> food supply but<br />

potentially a l<strong>on</strong>ger-term loss <strong>in</strong> food supply. <str<strong>on</strong>g>The</str<strong>on</strong>g> amphipod Corophium volutator, an<br />

important food item for many shore<strong>birds</strong>, is <strong>in</strong>tolerant <str<strong>on</strong>g>of</str<strong>on</strong>g> the macroalgal mats that<br />

occur <strong>in</strong> resp<strong>on</strong>se to eutrophicati<strong>on</strong> (Pounder, 1976), although it decl<strong>in</strong>ed <strong>in</strong><br />

abundance <strong>in</strong> the Clyde estuary follow<strong>in</strong>g the reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sewage and <strong>in</strong>dustrial<br />

wastes (Furness et al., 1986). This species and the polychaete Nereis diversicolor may<br />

be most affected by the oxygen status <str<strong>on</strong>g>of</str<strong>on</strong>g> sediments, as they seem otherwise to be<br />

favoured by anthropogenic <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> (Green et al., 1990). Experimental<br />

98


additi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen and phosphorus to plots <strong>in</strong> tidal mudflats <strong>in</strong> Australia resulted <strong>in</strong><br />

<strong>in</strong>creases <strong>in</strong> the polychaete Capitella sp., but <strong>on</strong>ly <strong>in</strong> plots unaffected by macroalgae<br />

(Morris and Keough, 2003).<br />

3.4.4.2. Invertebrates <strong>in</strong> coastal waters<br />

Benthic filter feeders c<strong>on</strong>trol eutrophicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> estuar<strong>in</strong>e waters to some extent by<br />

deposit<strong>in</strong>g organic material from the water column <strong>on</strong>to the bottom sediments, and<br />

accelerat<strong>in</strong>g the regenerati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s from this deposited organic matter<br />

(Nienhuis, 1993). If eutrophicati<strong>on</strong> causes organic matter to build up <strong>on</strong> the sediments<br />

faster than the process <str<strong>on</strong>g>of</str<strong>on</strong>g> aerobic m<strong>in</strong>eralisati<strong>on</strong>, anaerobic c<strong>on</strong>diti<strong>on</strong>s will develop<br />

and lead to the death <str<strong>on</strong>g>of</str<strong>on</strong>g> the benthic fauna. In the Tyne estuary, reducti<strong>on</strong>s <strong>in</strong> the<br />

abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> benthic <strong>in</strong>fauna were observed close to a sewage output follow<strong>in</strong>g an<br />

<strong>in</strong>crease <strong>in</strong> sewage output (Hall et al., 1997). However, some benthic <strong>in</strong>vertebrates,<br />

notably annelids, are abundant close to sources <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> polluti<strong>on</strong> (Green et al.,<br />

1990), while others, notably molluscs are less abundant close to sewage outfalls (Rees<br />

et al., 1992). Experimental additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s has also changed the species<br />

compositi<strong>on</strong> and reduced its diversity, <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>vertebrate fauna <strong>in</strong> coastal waters<br />

(Eleftheriou et al., 1982).<br />

3.5. Indirect <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> aquatic eutrophicati<strong>on</strong> <strong>on</strong> <strong>birds</strong><br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>re is evidence for both positive and negative <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> aquatic eutrophicati<strong>on</strong> <strong>on</strong><br />

<strong>birds</strong>. One possible, albeit unusual, effect is that <str<strong>on</strong>g>of</str<strong>on</strong>g> toxicity from algal blooms<br />

(stimulated by eutrophicati<strong>on</strong>), which were the cause <str<strong>on</strong>g>of</str<strong>on</strong>g> kittiwake mortality <strong>in</strong><br />

northeast England (Couls<strong>on</strong> and Strowger, 1999). But most <str<strong>on</strong>g><strong>in</strong>direct</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> operate at<br />

<strong>on</strong>e or more further removes from the cause, via the food cha<strong>in</strong> or habitat change.<br />

Increased productivity may lead to greater food availability. For example, tree<br />

swallows <strong>in</strong> North America fed more frequently <strong>on</strong> p<strong>on</strong>ds with added <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s,<br />

because <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>crease <strong>in</strong> emergent <strong>in</strong>sects <strong>in</strong> such p<strong>on</strong>ds (McCarty, 1997). In fact,<br />

the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> load<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> aquatic systems are likely to be positive for<br />

<strong>birds</strong> as l<strong>on</strong>g as (a) there are no major shifts <strong>in</strong> the structure or compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat,<br />

flora or fauna; or (b) such changes as occur are compensated by, for example, an<br />

99


alternative food source. Birds are most likely to be negatively affected by changes to<br />

food supply, although <strong>in</strong> some cases there is evidence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> nest<strong>in</strong>g sites. As<br />

the follow<strong>in</strong>g descripti<strong>on</strong>s will show, most negative <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> eutrophicati<strong>on</strong> <strong>on</strong> <strong>birds</strong><br />

occur when there is a major shift <strong>in</strong> habitat, particularly towards the dom<strong>in</strong>ance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

phytoplankt<strong>on</strong>, but even <strong>in</strong> that event there may be circumstances where <strong>birds</strong> can<br />

exploit the situati<strong>on</strong>. Figure 3.1 illustrates the most comm<strong>on</strong>ly observed patterns<br />

between <strong>birds</strong> and <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> levels <strong>in</strong> aquatic habitats.<br />

bird use <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat<br />

major habitat shift (eg shift to phytoplankt<strong>on</strong> dom<strong>in</strong>ance)<br />

<str<strong>on</strong>g>nutrient</str<strong>on</strong>g> levels<br />

Figure 3.1. Typical <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> levels <strong>on</strong> <strong>birds</strong> <strong>in</strong> aquatic habitats.<br />

I present the evidence for <str<strong>on</strong>g><strong>in</strong>direct</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> cultural eutrophicati<strong>on</strong> <strong>on</strong> <strong>birds</strong> <strong>in</strong> various<br />

habitats. Where appropriate I also present more detailed descripti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> ways <strong>in</strong> which<br />

anthropogenic <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> (or their removal) have affected, or could potentially<br />

affect, species or groups <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>birds</strong>. However, I stress that this does not necessarily<br />

mean that the <str<strong>on</strong>g><strong>in</strong>direct</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> eutrophicati<strong>on</strong> are the major drivers <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong><br />

change for these species, and the <str<strong>on</strong>g>effects</str<strong>on</strong>g> may well be locality-specific, even with<strong>in</strong> the<br />

same habitat. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>direct</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> cultural eutrophicati<strong>on</strong> <strong>on</strong> <strong>birds</strong> are summarised<br />

<strong>in</strong> Table 3.4.<br />

100


Table 3.4. Indirect <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <strong>in</strong>creases and decreases <strong>on</strong> <strong>birds</strong> <strong>in</strong> aquatic habitats<br />

Habitat Group Locati<strong>on</strong> Process Effects Possible cause Strength<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Small p<strong>on</strong>ds tree swallows USA experimental additi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s <strong>in</strong>crease <strong>in</strong> forag<strong>in</strong>g at high fertiliser<br />

levels<br />

Shallow<br />

waterfowl Netherlands recovery from eutrophicati<strong>on</strong> recovery <str<strong>on</strong>g>of</str<strong>on</strong>g> bird numbers, especially<br />

lake/marsh<br />

div<strong>in</strong>g ducks and l<strong>on</strong>g-necked<br />

waterfowl; str<strong>on</strong>g relati<strong>on</strong>ships<br />

between bird abundance and food<br />

items (Chara spp. and zebra mussels)<br />

<strong>birds</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> open water Sweden multiple regressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> species species richness related positively to<br />

richness/abundance <strong>on</strong> envir<strong>on</strong>mental nitrogen (plus shore development and<br />

factors<br />

pH), density related positively to<br />

phosphorus (plus area <str<strong>on</strong>g>of</str<strong>on</strong>g> fen)<br />

black-throated diver Sweden multiple regressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> abundance <strong>on</strong> negative relati<strong>on</strong>ship with chlorophyll<br />

envir<strong>on</strong>mental factors<br />

a and phosphorus<br />

coot Netherlands temporal relati<strong>on</strong>ship between coot coot removed around 70% <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

graz<strong>in</strong>g, macrophyte biomass and lake macrophyte biomass, without<br />

restorati<strong>on</strong><br />

affect<strong>in</strong>g lake restorati<strong>on</strong><br />

waterfowl USA restorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> clear-water state by fish<br />

removal<br />

<strong>in</strong>crease <strong>in</strong> emergent<br />

<strong>in</strong>sects<br />

recovery <str<strong>on</strong>g>of</str<strong>on</strong>g> food items due<br />

to reducti<strong>on</strong> <strong>in</strong> phosphorus<br />

<str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g><br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> productivity<br />

(authors c<strong>on</strong>sidered<br />

relati<strong>on</strong>ship with nitrogen<br />

possibly spurious)<br />

uncerta<strong>in</strong>, no relati<strong>on</strong>ship<br />

with water transparency<br />

replacement by<br />

macrophyte species able to<br />

take up <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s from<br />

water column, thus<br />

reduc<strong>in</strong>g <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> load<strong>in</strong>g<br />

<strong>in</strong>crease <strong>in</strong> waterfowl numbers <strong>in</strong>crease <strong>in</strong> food items<br />

(macrophytes and<br />

macro<strong>in</strong>vertebrates);<br />

reduced competiti<strong>on</strong> for<br />

food from fish<br />

waterfowl Sweden recovery from eutrophicati<strong>on</strong> marked <strong>in</strong>crease <strong>in</strong> coot and mute<br />

swan numbers; less marked <strong>in</strong>crease<br />

<strong>in</strong> dabbl<strong>in</strong>g ducks<br />

all <strong>birds</strong> Florida, USA <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> gradient higher total abundance at enriched<br />

sites; no trend <strong>in</strong> species richness;<br />

shift <strong>in</strong> species compositi<strong>on</strong> (some<br />

species <strong>on</strong>ly present at low <str<strong>on</strong>g>nutrient</str<strong>on</strong>g><br />

sites)<br />

<strong>in</strong>crease <strong>in</strong> macrophyte and<br />

charophyte food for <strong>birds</strong><br />

and <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>vertebrate prey<br />

items<br />

greater food availability,<br />

but loss <str<strong>on</strong>g>of</str<strong>on</strong>g> some habitat<br />

features<br />

Reference<br />

evidence 1<br />

1 McCarty, 1997<br />

2 Noordhuis et al.,<br />

2002<br />

3 Nilss<strong>on</strong> and<br />

Nilss<strong>on</strong>, 1978<br />

2 Nilss<strong>on</strong> and<br />

Nilss<strong>on</strong>, 1978<br />

2 Van D<strong>on</strong>k et al.,<br />

1994<br />

2 Hans<strong>on</strong> and Butler,<br />

1994<br />

2 Hargeby et al.,<br />

1994<br />

2 Crozier and<br />

Gawlik, 2002<br />

1 I classified the studies <strong>in</strong>to three tiers: 1. Str<strong>on</strong>g evidence, usually based <strong>on</strong> experimental pro<str<strong>on</strong>g>of</str<strong>on</strong>g>; 2. Intermediate evidence, generally an observed relati<strong>on</strong>ship <strong>in</strong> space and time; 3. Weak evidence, a suggested cause<br />

based <strong>on</strong> observed patterns. <str<strong>on</strong>g>The</str<strong>on</strong>g>se levels are not <strong>in</strong>tended as a judgement <strong>on</strong> the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> the research, and I judge the strength <str<strong>on</strong>g>of</str<strong>on</strong>g> evidence for <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> and associated mechanisms, which may not have<br />

been the purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> the study.<br />

101


Table 3.4. (c<strong>on</strong>t.) Indirect <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <strong>in</strong>creases and decreases <strong>on</strong> <strong>birds</strong> <strong>in</strong> aquatic habitats<br />

Habitat Group Locati<strong>on</strong> Process Effects Possible cause Strength<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Freshwater<br />

lake<br />

stag<strong>in</strong>g waterfowl<br />

(autumn)<br />

Sweden historical eutrophicati<strong>on</strong> (<strong>in</strong> 1970s and<br />

1980s) and recovery (<strong>in</strong> 1990s)<br />

all <strong>birds</strong> Florida, USA relati<strong>on</strong>ship between bird<br />

abundance/species richness and<br />

habitat variables<br />

divers Sweden distributi<strong>on</strong> <strong>in</strong> relati<strong>on</strong> to habitat<br />

variables<br />

tufted duck Northern<br />

Ireland<br />

historical trends <strong>in</strong> w<strong>in</strong>ter<strong>in</strong>g<br />

populati<strong>on</strong> <strong>in</strong> relati<strong>on</strong> to roach<br />

populati<strong>on</strong>s; exam<strong>in</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> diet<br />

ducks Alaska, USA abundance and species richness<br />

related to lake variables<br />

comm<strong>on</strong> scoter Ireland breed<strong>in</strong>g success <strong>on</strong> two lakes, <strong>on</strong>e<br />

clear water, <strong>on</strong>e eutrophic<br />

most species present at high numbers<br />

before eutrophicati<strong>on</strong> peak, then<br />

absent or at low numbers, before<br />

recover<strong>in</strong>g follow<strong>in</strong>g lake restorati<strong>on</strong><br />

positive correlati<strong>on</strong> between<br />

abundance and <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> measures;<br />

species richness positively related to<br />

lake area and phosphorus levels<br />

black-throated diver preferred more<br />

transparent lakes (also relati<strong>on</strong>ships<br />

with shorel<strong>in</strong>e development and perch<br />

density), red-throated diver sensitive<br />

to acidificati<strong>on</strong> (also positive<br />

relati<strong>on</strong>ship with lake surface area)<br />

decl<strong>in</strong>e <strong>in</strong> tufted duck populati<strong>on</strong>, then<br />

<strong>in</strong>crease as roach populati<strong>on</strong>s<br />

dropped; large overlap <strong>in</strong> diet<br />

nitrite and phosphate c<strong>on</strong>centrati<strong>on</strong>s<br />

both <strong>in</strong>cluded as positive variables <strong>in</strong><br />

multiple regressi<strong>on</strong>; amm<strong>on</strong>ia<br />

c<strong>on</strong>centrati<strong>on</strong> negative for duck<br />

species richness; nitrate c<strong>on</strong>centrati<strong>on</strong><br />

negative for species richness<br />

no fledged young <strong>on</strong> eutrophic lake,<br />

0.53 and 2.2 per pair <strong>on</strong> secti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

other lakes; molluscs and mayfly<br />

larvae more abundant <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong> clear lake<br />

lack <str<strong>on</strong>g>of</str<strong>on</strong>g> food resources<br />

(submerged macrophytes,<br />

<strong>in</strong>vertebrates and some<br />

fish)<br />

evidence 1<br />

Reference<br />

2 Anderss<strong>on</strong> and<br />

Nilss<strong>on</strong>, 1999<br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> productivity 2 Hoyer and<br />

Canfield, 1994<br />

prey abundance and<br />

availability<br />

2 Erikss<strong>on</strong> and<br />

Sundberg, 1991<br />

competiti<strong>on</strong> for food 2 W<strong>in</strong>field et al.,<br />

1992; W<strong>in</strong>field and<br />

W<strong>in</strong>field, 1994<br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> productivity <strong>in</strong><br />

resp<strong>on</strong>se to <str<strong>on</strong>g>nutrient</str<strong>on</strong>g><br />

c<strong>on</strong>centrati<strong>on</strong>s lead<strong>in</strong>g to<br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> food resources<br />

2 Murphy et al.,<br />

1984<br />

lack <str<strong>on</strong>g>of</str<strong>on</strong>g> food for duckl<strong>in</strong>gs 2 Partridge and<br />

Smith, 1988<br />

div<strong>in</strong>g ducks Ireland historical populati<strong>on</strong> trends three species feed<strong>in</strong>g <strong>on</strong><br />

eutrophicati<strong>on</strong>-sensitive chir<strong>on</strong>omid<br />

larvae decl<strong>in</strong><strong>in</strong>g, <strong>on</strong>e species feed<strong>in</strong>g<br />

<strong>on</strong> tolerant chir<strong>on</strong>omid larvae steady<br />

food abundance 2 Allen et al., 2004<br />

comm<strong>on</strong> scoter Lough Erne historical populati<strong>on</strong> trends <strong>in</strong> relati<strong>on</strong> populati<strong>on</strong> reduced from 150 breed<strong>in</strong>g loss <str<strong>on</strong>g>of</str<strong>on</strong>g> food items for<br />

2 Partridge and<br />

to eutrophicati<strong>on</strong><br />

pairs (1967) to almost n<strong>on</strong>e (1995) duckl<strong>in</strong>gs<br />

Smith, 1988<br />

pursuit divers Sweden test <str<strong>on</strong>g>of</str<strong>on</strong>g> model predicti<strong>on</strong>s positive relati<strong>on</strong>ship for both black- improved prey<br />

2 Erikss<strong>on</strong>, 1985<br />

throated diver and goosander for lakes<br />

with high "prey detectability <strong>in</strong>dex"<br />

detectability<br />

1<br />

I classified the studies <strong>in</strong>to three tiers: 1. Str<strong>on</strong>g evidence, usually based <strong>on</strong> experimental pro<str<strong>on</strong>g>of</str<strong>on</strong>g>; 2. Intermediate evidence, generally an observed relati<strong>on</strong>ship <strong>in</strong> space and time; 3. Weak evidence, a suggested cause<br />

based <strong>on</strong> observed patterns. <str<strong>on</strong>g>The</str<strong>on</strong>g>se levels are not <strong>in</strong>tended as a judgement <strong>on</strong> the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> the research, and I judge the strength <str<strong>on</strong>g>of</str<strong>on</strong>g> evidence for <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> and associated mechanisms, which may not have<br />

been the purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> the study.<br />

102


Table 3.4. (c<strong>on</strong>t.) Indirect <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <strong>in</strong>creases and decreases <strong>on</strong> <strong>birds</strong> <strong>in</strong> aquatic habitats<br />

Habitat Group Locati<strong>on</strong> Process Effects Possible cause Strength<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Canal<br />

Estuar<strong>in</strong>e/tidal<br />

flats and<br />

coastal water<br />

tufted duck and<br />

pochard<br />

Manchester spatial distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> forag<strong>in</strong>g <strong>in</strong><br />

relati<strong>on</strong> to site characteristics<br />

<strong>in</strong>tertidal <strong>birds</strong> Netherlands historical eutrophicati<strong>on</strong> and polluti<strong>on</strong><br />

(between 1950s and 1980s)<br />

shore<strong>birds</strong> Portugal abundance <strong>in</strong> relati<strong>on</strong> to habitat<br />

variables<br />

shore<strong>birds</strong> Portugal distributi<strong>on</strong> <strong>in</strong> relati<strong>on</strong> to habitat<br />

variables<br />

shore<strong>birds</strong> Scotland historical changes <strong>in</strong> w<strong>in</strong>ter<strong>in</strong>g<br />

populati<strong>on</strong>s <strong>in</strong> relati<strong>on</strong> to <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g><br />

<str<strong>on</strong>g>nutrient</str<strong>on</strong>g> load<strong>in</strong>g and greater extent <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

macroalgal mats<br />

shore<strong>birds</strong> Netherlands distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> forag<strong>in</strong>g <strong>birds</strong> <strong>in</strong><br />

relati<strong>on</strong> to exist<strong>in</strong>g algal mats and<br />

experimentally moved mats<br />

shore<strong>birds</strong> Firth <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Forth<br />

reducti<strong>on</strong> <strong>in</strong> effluent <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> between<br />

the 1970s and 1980s<br />

shore<strong>birds</strong> Scotland changes <strong>in</strong> populati<strong>on</strong>s before and<br />

after reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sewage and<br />

<strong>in</strong>dustrial effluent<br />

forag<strong>in</strong>g <strong>in</strong> areas with high total<br />

benthic organic c<strong>on</strong>tent<br />

<strong>in</strong>crease <strong>in</strong> mean spr<strong>in</strong>g/summer<br />

numbers for 8 out <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 species (7 by<br />

over 100%), 1 species steady, 1<br />

species decl<strong>in</strong>ed<br />

positive relati<strong>on</strong>ship for black-backed<br />

gull (with presence <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-treated<br />

sewage discharges) and for grey<br />

plover (with presence <str<strong>on</strong>g>of</str<strong>on</strong>g> sewage<br />

discharge po<strong>in</strong>ts); both species also<br />

showed relati<strong>on</strong>ship with other<br />

variables<br />

negative relati<strong>on</strong>ship for three species<br />

with distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> macroalgal mats,<br />

but positive (or no) relati<strong>on</strong>ship with<br />

feed<strong>in</strong>g behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> those <strong>birds</strong><br />

feed<strong>in</strong>g <strong>on</strong> mats<br />

<strong>in</strong>creases <strong>in</strong> six (<str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>in</strong>e) species, four<br />

aga<strong>in</strong>st nati<strong>on</strong>al trends; decl<strong>in</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

shelduck<br />

preference for newly placed algal<br />

mats, but not for exist<strong>in</strong>g mats<br />

high abundance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

oligochaetes and other<br />

polluti<strong>on</strong>-tolerant<br />

<strong>in</strong>vertebrates<br />

evidence 1<br />

Reference<br />

3 Marsden and<br />

Bellamy, 2000<br />

<strong>in</strong>crease <strong>in</strong> food items 2 van Impe, 1985<br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> productivity 2 Rosa et al., 2003<br />

no decrease <strong>in</strong> prey<br />

abundance <strong>in</strong> prey<br />

abundance <strong>in</strong> macroalgal<br />

mats, decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>birds</strong> <strong>in</strong><br />

these areas not expla<strong>in</strong>ed<br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> overall<br />

productivity <str<strong>on</strong>g>of</str<strong>on</strong>g> estuary<br />

movement <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment<br />

fauna to avoid anoxic<br />

c<strong>on</strong>diti<strong>on</strong>s below mats,<br />

then depleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> food<br />

resource<br />

reducti<strong>on</strong>s <strong>in</strong> both groups reducti<strong>on</strong> <strong>in</strong> food<br />

abundance for wildfowl;<br />

other factors for waders<br />

decl<strong>in</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> three species (dunl<strong>in</strong>,<br />

redshank, lapw<strong>in</strong>g), but not <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

oystercatcher and curlew<br />

decl<strong>in</strong><strong>in</strong>g species feed<br />

predom<strong>in</strong>antly <strong>on</strong> prey that<br />

also decl<strong>in</strong>ed follow<strong>in</strong>g<br />

reducti<strong>on</strong> <strong>in</strong> effluent<br />

2 Cabral et al., 1999<br />

2 Raffaelli et al.,<br />

1989.<br />

1 Metzmacher and<br />

Reise, 1994<br />

2 Bryant, 1987<br />

2 Furness et al., 1986<br />

1 I classified the studies <strong>in</strong>to three tiers: 1. Str<strong>on</strong>g evidence, usually based <strong>on</strong> experimental pro<str<strong>on</strong>g>of</str<strong>on</strong>g>; 2. Intermediate evidence, generally an observed relati<strong>on</strong>ship <strong>in</strong> space and time; 3. Weak evidence, a suggested cause<br />

based <strong>on</strong> observed patterns. <str<strong>on</strong>g>The</str<strong>on</strong>g>se levels are not <strong>in</strong>tended as a judgement <strong>on</strong> the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> the research, and I judge the strength <str<strong>on</strong>g>of</str<strong>on</strong>g> evidence for <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> and associated mechanisms, which may not have<br />

been the purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> the study<br />

103


Table 3.4. (c<strong>on</strong>t.) Indirect <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <strong>in</strong>creases and decreases <strong>on</strong> <strong>birds</strong> <strong>in</strong> aquatic habitats<br />

Habitat Group Locati<strong>on</strong> Process Effects Possible cause Strength<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Estuar<strong>in</strong>e/tidal<br />

flats and<br />

coastal water<br />

gulls Tyne estuary implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sewage treatment over 90% decrease <strong>in</strong> two species; no<br />

change <strong>in</strong> two species; significant<br />

<strong>in</strong>crease <strong>in</strong> two species<br />

species reliant <strong>on</strong> sewage<br />

outfalls decl<strong>in</strong>ed, but <strong>on</strong>e<br />

species fed at a new<br />

locati<strong>on</strong> with<strong>in</strong> the estuary;<br />

other species mostly fed<br />

outside the area<br />

evidence 1<br />

Reference<br />

2 Raven and<br />

Couls<strong>on</strong>, 2001<br />

shelduck Firth <str<strong>on</strong>g>of</str<strong>on</strong>g> spatial distributi<strong>on</strong> <strong>in</strong> relati<strong>on</strong> to positive relati<strong>on</strong>ship food abundance 2 Bryant and Leng,<br />

Forth Hydrobia ulvae<br />

1976<br />

light-bellied brent L<strong>in</strong>disfarne changes <strong>in</strong> populati<strong>on</strong> and distributi<strong>on</strong> geese moved to nearby Zostera beds Zostera is the preferred<br />

3 Clausen and<br />

goose<br />

(England)<br />

when local <strong>on</strong>es were depleted; where food source<br />

Percival, 1998<br />

and<br />

this was not possible they shifted food<br />

Denmark<br />

source or left the area<br />

Open<br />

purple sandpiper and Hartlepool historical changes <strong>in</strong> bird populati<strong>on</strong>s no decl<strong>in</strong>e <strong>in</strong> turnst<strong>on</strong>e and no greater rapid dispersal <str<strong>on</strong>g>of</str<strong>on</strong>g> polluti<strong>on</strong> 2 Eat<strong>on</strong>, 2000a<br />

coastl<strong>in</strong>es<br />

turnst<strong>on</strong>e<br />

<strong>in</strong> relati<strong>on</strong> to <strong>in</strong>troducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sewage<br />

treatment<br />

decl<strong>in</strong>e <strong>in</strong> purple sandpipers<br />

(decl<strong>in</strong><strong>in</strong>g nati<strong>on</strong>ally)<br />

prior to sewage treatment;<br />

<strong>in</strong>sufficient time to detect<br />

changes<br />

Coastal waters seaducks Firth <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>troducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sewage treatment two species decl<strong>in</strong>ed and changed loss <str<strong>on</strong>g>of</str<strong>on</strong>g> direct food items<br />

2 Campbell, 1984<br />

Forth<br />

distributi<strong>on</strong> <strong>in</strong> resp<strong>on</strong>se to treatment, from outflows, and loss <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

three species showed unclear patterns food items depend<strong>in</strong>g <strong>on</strong><br />

sewage outflows<br />

seaducks Firth <str<strong>on</strong>g>of</str<strong>on</strong>g> spatial distributi<strong>on</strong> <strong>in</strong> relati<strong>on</strong> to c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> goldeneye and scaup <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> benthic<br />

2 Campbell, 1978<br />

Forth sewage outfalls<br />

near outfalls<br />

<strong>in</strong>vertebrate populati<strong>on</strong>s<br />

and gra<strong>in</strong> husks <strong>in</strong> the<br />

water column<br />

1<br />

I classified the studies <strong>in</strong>to three tiers: 1. Str<strong>on</strong>g evidence, usually based <strong>on</strong> experimental pro<str<strong>on</strong>g>of</str<strong>on</strong>g>; 2. Intermediate evidence, generally an observed relati<strong>on</strong>ship <strong>in</strong> space and time; 3. Weak evidence, a suggested cause<br />

based <strong>on</strong> observed patterns. <str<strong>on</strong>g>The</str<strong>on</strong>g>se levels are not <strong>in</strong>tended as a judgement <strong>on</strong> the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> the research, and I judge the strength <str<strong>on</strong>g>of</str<strong>on</strong>g> evidence for <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> and associated mechanisms, which may not have<br />

been the purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> the study.<br />

104


3.5.1. Rivers and streams<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat change <strong>on</strong> <strong>birds</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fast flow<strong>in</strong>g streams has largely c<strong>on</strong>centrated<br />

<strong>on</strong> acidificati<strong>on</strong>, and the present review does not discuss this issue. In slower flow<strong>in</strong>g<br />

river<strong>in</strong>e habitats, the <str<strong>on</strong>g><strong>in</strong>direct</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> eutrophicati<strong>on</strong> <strong>on</strong> <strong>birds</strong> (at least for those <strong>birds</strong><br />

for which there is evidence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g>) are likely to be similar to those <strong>in</strong> lowland<br />

shallow lakes and fens, as described below.<br />

3.5.2. Lowland freshwater lakes<br />

Increased <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> load<strong>in</strong>g <strong>in</strong> freshwaters can be beneficial to <strong>birds</strong>. In fifteen Alaskan<br />

freshwater lakes, nitrate and phosphate c<strong>on</strong>centrati<strong>on</strong>s were positively related to duck<br />

species richness and abundance (Murphy et al., 1984). In a slow mov<strong>in</strong>g river system,<br />

the Manchester Ship Canal, feed<strong>in</strong>g behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> w<strong>in</strong>ter<strong>in</strong>g pochard and tufted duck<br />

was c<strong>on</strong>centrated <strong>in</strong> areas with high benthic organic carb<strong>on</strong> result<strong>in</strong>g from sewage<br />

release (Marsden and Bellamy, 2000). <str<strong>on</strong>g>The</str<strong>on</strong>g>se areas hold high densities <str<strong>on</strong>g>of</str<strong>on</strong>g> oligochaetes<br />

and other polluti<strong>on</strong>-tolerant <strong>in</strong>vertebrates. In eleven Swedish shallow lakes, waterbird<br />

density was positively related to chlorophyll a and phosphorus c<strong>on</strong>centrati<strong>on</strong>s, while<br />

species richness was positively related to degree <str<strong>on</strong>g>of</str<strong>on</strong>g> shore development, area <str<strong>on</strong>g>of</str<strong>on</strong>g> fen<br />

and nitrogen c<strong>on</strong>centrati<strong>on</strong> (Nilss<strong>on</strong> and Nilss<strong>on</strong>, 1978). Despite these relati<strong>on</strong>ships,<br />

there appeared to be no <strong>in</strong>crease <strong>in</strong> waterbird species richness <strong>in</strong> culturally eutrophic<br />

lakes; the relati<strong>on</strong>ship with <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> levels <strong>on</strong>ly held for lakes with naturally high<br />

<str<strong>on</strong>g>nutrient</str<strong>on</strong>g> levels. Mild eutrophicati<strong>on</strong> has been l<strong>in</strong>ked with <strong>in</strong>creases <strong>in</strong> some species,<br />

such as moorhen and whooper swan <strong>in</strong> F<strong>in</strong>land, <strong>in</strong> resp<strong>on</strong>se to <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> aquatic<br />

vegetati<strong>on</strong>, and <str<strong>on</strong>g>of</str<strong>on</strong>g> piscivorous <strong>birds</strong> such as great-crested grebe elsewhere <strong>in</strong> Europe<br />

(Harper, 1992). <str<strong>on</strong>g>The</str<strong>on</strong>g> major proximate cause <str<strong>on</strong>g>of</str<strong>on</strong>g> waterbird decl<strong>in</strong>e follow<strong>in</strong>g <str<strong>on</strong>g>nutrient</str<strong>on</strong>g><br />

<strong>in</strong>creases <strong>in</strong> freshwater lakes is likely to be the loss <str<strong>on</strong>g>of</str<strong>on</strong>g> food items, both plant and<br />

<strong>in</strong>vertebrate, when there is a shift to a turbid-water, phytoplankt<strong>on</strong>-dom<strong>in</strong>ated state.<br />

Increases <strong>in</strong> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> <strong>in</strong> the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> shift <strong>in</strong> stable-state are more likely to be<br />

beneficial to <strong>birds</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> freshwater lakes, although <strong>in</strong> naturally oligotrophic lakes,<br />

piscivores may be affected by m<strong>in</strong>or changes <strong>in</strong> transparency or shifts <strong>in</strong> fish size<br />

structure aris<strong>in</strong>g from relatively small changes <strong>in</strong> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> load<strong>in</strong>g.<br />

105


3.5.2.1. Herbivorous and omnivorous waterfowl<br />

Submerged macrophytes and charophytes form an important part <str<strong>on</strong>g>of</str<strong>on</strong>g> the diet <str<strong>on</strong>g>of</str<strong>on</strong>g> many<br />

water<strong>birds</strong>, even those thought <str<strong>on</strong>g>of</str<strong>on</strong>g> as typically carnivorous. In w<strong>in</strong>ter, p<strong>on</strong>dweeds<br />

(Potamoget<strong>on</strong> spp.) and wild celery (Vallisneria americana), al<strong>on</strong>g with oligochaetes,<br />

form important parts <str<strong>on</strong>g>of</str<strong>on</strong>g> the diets <str<strong>on</strong>g>of</str<strong>on</strong>g> scaup and goldeneye <strong>in</strong> North America (J<strong>on</strong>es and<br />

Drobney, 1986). When shallow lakes shift to phytoplankt<strong>on</strong>-dom<strong>in</strong>ated states these<br />

food resources are lost to waterfowl, with c<strong>on</strong>sequences for their populati<strong>on</strong>s. Most<br />

studies relat<strong>in</strong>g bird numbers to eutrophicati<strong>on</strong> have c<strong>on</strong>cerned the results <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

restorati<strong>on</strong> efforts and historical changes to bird numbers, plus spatial and/or temporal<br />

relati<strong>on</strong>ships with food resources. For example, anthropogenic restorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

freshwater lake to a clear-water state <strong>in</strong> the USA, although achieved by fish removal<br />

rather than reducti<strong>on</strong>s <strong>in</strong> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g>, saw the recovery <str<strong>on</strong>g>of</str<strong>on</strong>g> macrophyte and<br />

macro<strong>in</strong>vertebrate populati<strong>on</strong>s, <strong>in</strong>clud<strong>in</strong>g an amphipod that is the preferred food <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

migrat<strong>in</strong>g lesser scaup <strong>in</strong> North America (Hans<strong>on</strong> and Butler, 1994). Lesser scaup,<br />

al<strong>on</strong>g with herbivorous waterfowl, recovered str<strong>on</strong>gly follow<strong>in</strong>g lake restorati<strong>on</strong>.<br />

In Lake Veluwemeer, a Dutch shallow lake, bird populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> several waterfowl<br />

species, some <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>servati<strong>on</strong> importance, decl<strong>in</strong>ed when their food items<br />

(macrophytes, charophytes and zebra mussels) decl<strong>in</strong>ed <strong>in</strong> resp<strong>on</strong>se to eutrophicati<strong>on</strong><br />

dat<strong>in</strong>g from the 1960s (Noordhuis et al., 2002). Follow<strong>in</strong>g an improvement <strong>in</strong> its<br />

trophic status, water<strong>birds</strong> returned to the lake <strong>in</strong> large numbers. Abundances <str<strong>on</strong>g>of</str<strong>on</strong>g> eight<br />

species (Bewick’s swan, mute swan, pochard, tufted duck, coot, gadwall, red-crested<br />

pochard and p<strong>in</strong>tail) were significantly positively related to abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> their<br />

primary food sources, which <strong>in</strong>cluded p<strong>on</strong>dweeds and filamentous macro-algae as<br />

well as mussels and charophytes. Short-necked, n<strong>on</strong>-div<strong>in</strong>g waterfowl did not show<br />

the same <strong>in</strong>crease <strong>in</strong> numbers follow<strong>in</strong>g lake recovery. In all cases except gadwall,<br />

Chara biomass was the most important predictor <str<strong>on</strong>g>of</str<strong>on</strong>g> abundance; however, this was<br />

also correlated with zebra mussel abundance. Macrophyte decl<strong>in</strong>e has been l<strong>in</strong>ked<br />

with the disappearance <str<strong>on</strong>g>of</str<strong>on</strong>g> mute swan, coot, teal and gadwall from Loch Leven<br />

(All<strong>in</strong>s<strong>on</strong> and Newt<strong>on</strong>, 1974 <strong>in</strong> Harper, 1992). In Hickl<strong>in</strong>g Broad, Norfolk, swan,<br />

pochard and tufted duck all decl<strong>in</strong>ed follow<strong>in</strong>g the loss <str<strong>on</strong>g>of</str<strong>on</strong>g> Hickl<strong>in</strong>g Broad’s<br />

submerged aquatic flora <strong>in</strong> resp<strong>on</strong>se to eutrophicati<strong>on</strong> (Harper, 1992). Sp<strong>on</strong>taneous<br />

106


ecovery to a clear-water state with abundant charophyte beds provided a food<br />

resource for herbivorous and omnivorous waterfowl (Armitage et al., 2000),<br />

Historical eutrophicati<strong>on</strong> and recovery has also been associated with bird abundance<br />

<strong>in</strong> Lake R<strong>in</strong>gsjön, Sweden (Anderss<strong>on</strong> and Nilss<strong>on</strong>, 1999). This moderately deep<br />

(mean depth 3 m, maximum depth 17 m) lake is an important stag<strong>in</strong>g area <strong>in</strong> autumn<br />

for migrat<strong>in</strong>g waterfowl. Eutrophicati<strong>on</strong> <strong>in</strong> the 1970s saw a large reducti<strong>on</strong> <strong>in</strong> stag<strong>in</strong>g<br />

waterfowl populati<strong>on</strong>s. At the beg<strong>in</strong>n<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the 1980s, a programme to reduce <str<strong>on</strong>g>nutrient</str<strong>on</strong>g><br />

<str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> was <strong>in</strong>itiated, and <strong>in</strong> 1989-1990 cypr<strong>in</strong>id fish reducti<strong>on</strong> was implemented, as<br />

their behaviour can help to ma<strong>in</strong>ta<strong>in</strong> the phytoplankt<strong>on</strong>-dom<strong>in</strong>ated state. Follow<strong>in</strong>g<br />

oligotrophicati<strong>on</strong>, bird numbers <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> aga<strong>in</strong>. This trend is evident for herbivores<br />

(mute swan, whooper swan and coot), omnivores (teal, wige<strong>on</strong> and others),<br />

benthivores (tufted duck, pochard and goldeneye), and <strong>on</strong>e piscivore (goosander),<br />

while two other piscivores either showed no trend (great-crested grebe) or a general<br />

<strong>in</strong>crease from the 1980s (cormorant). For most species, the changes at Lake R<strong>in</strong>gsjön<br />

did not mirror regi<strong>on</strong>al populati<strong>on</strong> changes, and thus were probably related to changes<br />

<strong>in</strong> food resources <strong>in</strong> the lake (Anderss<strong>on</strong> and Nilss<strong>on</strong>, 1999). While numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> most<br />

waterfowl species have recovered follow<strong>in</strong>g restorati<strong>on</strong>, <strong>in</strong> most cases abundance is<br />

less than that <str<strong>on</strong>g>of</str<strong>on</strong>g> the late 1960s. It is possible that bird numbers <strong>in</strong> the late 1960s had<br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> follow<strong>in</strong>g enrichment prior to a shift to a phytoplankt<strong>on</strong>-dom<strong>in</strong>ated state. A<br />

similar phenomen<strong>on</strong> has been observed <strong>in</strong> Lake Krankesjön, where bird numbers have<br />

mirrored the spatial <strong>in</strong>crease <strong>in</strong> p<strong>on</strong>dweed and st<strong>on</strong>eworts follow<strong>in</strong>g recovery from<br />

eutrophic c<strong>on</strong>diti<strong>on</strong>s (Hargeby et al., 1994). <str<strong>on</strong>g>The</str<strong>on</strong>g> <strong>in</strong>crease <strong>in</strong> bird numbers was most<br />

marked for the predom<strong>in</strong>antly herbivorous coot and mute swan, but dabbl<strong>in</strong>g ducks<br />

also <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> <strong>in</strong> abundance. <str<strong>on</strong>g>The</str<strong>on</strong>g> <strong>in</strong>crease <strong>in</strong> dabbl<strong>in</strong>g ducks probably reflects an<br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> availability <str<strong>on</strong>g>of</str<strong>on</strong>g> food, both plant and <strong>in</strong>vertebrate, as the macro<strong>in</strong>vertebrate<br />

biomass and diversity <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> follow<strong>in</strong>g recovery from eutrophicati<strong>on</strong> (Hargeby et<br />

al., 1994).<br />

Herbivory by <strong>birds</strong> has been c<strong>on</strong>sidered to have the potential to halt the restorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

lakes to clear-water states by remov<strong>in</strong>g macrophytes. However, although coot<br />

c<strong>on</strong>sumed large quantities <str<strong>on</strong>g>of</str<strong>on</strong>g> submerged macrophytes <strong>in</strong> Lake Zwemlust, the lake’s<br />

recovery was not affected (Van D<strong>on</strong>k et al., 1994). Coot graz<strong>in</strong>g over w<strong>in</strong>ter may<br />

107


have altered the compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the macrophyte community, by remov<strong>in</strong>g Elodea<br />

nuttallii, which does not form dormant buds, and thus promot<strong>in</strong>g Ceratophyllum<br />

demersum, which does (and which may also lower the <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> load<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the water,<br />

as it ma<strong>in</strong>ly takes up <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s from water). In Swedish eutrophic lakes, the risk <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

reducti<strong>on</strong> <strong>in</strong> submerged vegetati<strong>on</strong> due to waterfowl herbivory was c<strong>on</strong>sidered to be<br />

low (Marklund et al., 2002).<br />

3.5.2.2. Benthivorous div<strong>in</strong>g <strong>birds</strong><br />

Benthivorous div<strong>in</strong>g <strong>birds</strong> may be negatively affected by eutrophicati<strong>on</strong> due to a<br />

reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>vertebrate food items such as molluscs, which disappear <strong>in</strong> resp<strong>on</strong>se to<br />

changes to substrate, and by the availability <str<strong>on</strong>g>of</str<strong>on</strong>g> prey that is present as water becomes<br />

turbid. A return to a clear-water state <strong>in</strong>creases macro<strong>in</strong>vertebrate biomass and<br />

diversity, and improves water transparency, and populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> div<strong>in</strong>g ducks generally<br />

<strong>in</strong>crease follow<strong>in</strong>g lake restorati<strong>on</strong> (Hans<strong>on</strong> and Butler, 1994). Where such restorati<strong>on</strong><br />

does not reduce <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> levels <strong>birds</strong> are likely to benefit from <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> primary<br />

productivity compared to that <strong>in</strong> oligotrophic lakes with similarly clear water.<br />

Eutrophicati<strong>on</strong> has been suggested as the ultimate cause <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong> decl<strong>in</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

some div<strong>in</strong>g ducks <strong>in</strong> Irish freshwater lakes. <str<strong>on</strong>g>The</str<strong>on</strong>g> breed<strong>in</strong>g populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> comm<strong>on</strong><br />

scoter <strong>on</strong> Lough Erne fell from 152 pairs <strong>in</strong> 1967 to practically n<strong>on</strong>e <strong>in</strong> 1995<br />

(Underhill et al., 1998), while phosphorus c<strong>on</strong>centrati<strong>on</strong>s <strong>in</strong> the lake doubled between<br />

1974 and 1997 (Zhou et al., 2000). Tufted duck and red-breasted merganser numbers<br />

also fell between the 1960s and 1980s (Partridge and Smith, 1988). In a study <strong>in</strong> the<br />

1980s, no young were fledged <strong>on</strong> lower Lough Erne, while young were fledged from<br />

mesotrophic Lough C<strong>on</strong>n/Cull<strong>in</strong> (Partridge and Smith, 1988). Mollusc and mayfly<br />

abundance was significantly higher <strong>in</strong> the transparent waters <str<strong>on</strong>g>of</str<strong>on</strong>g> Lough C<strong>on</strong>n/Cull<strong>in</strong>,<br />

and submerged p<strong>on</strong>dweed beds were a favoured feed<strong>in</strong>g area. Freshwater mussels<br />

tend to be sensitive to shifts <strong>in</strong> stable state <strong>in</strong> lakes, and species that feed <strong>on</strong> them,<br />

such as pochard and tufted duck (Werner et al., 2005), are likely to be affected by the<br />

loss <str<strong>on</strong>g>of</str<strong>on</strong>g> food resources. While nest predati<strong>on</strong> (by m<strong>in</strong>k) was a possible cause <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

reduced productivity, lack <str<strong>on</strong>g>of</str<strong>on</strong>g> food for duckl<strong>in</strong>gs <strong>on</strong> Lough Erne was c<strong>on</strong>sidered the<br />

most likely cause <str<strong>on</strong>g>of</str<strong>on</strong>g> the differences observed (Partridge and Smith, 1988).<br />

108


Changes to food resources have also been suggested as a major cause <str<strong>on</strong>g>of</str<strong>on</strong>g> the decl<strong>in</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

w<strong>in</strong>ter<strong>in</strong>g div<strong>in</strong>g ducks <strong>on</strong> Lough Neagh, a eutrophic water body. Chir<strong>on</strong>omid larvae<br />

are a major food source for div<strong>in</strong>g ducks, and three species that forage <strong>on</strong> similar size<br />

classes (pochard, tufted duck and goldeneye) are <strong>in</strong> decl<strong>in</strong>e (Allen et al., 2004).<br />

Populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> scaup, which feeds <strong>on</strong> larger chir<strong>on</strong>omids that are more tolerant <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

eutrophic c<strong>on</strong>diti<strong>on</strong>s, have rema<strong>in</strong>ed steady. However, there may be further<br />

explanati<strong>on</strong>s for the decl<strong>in</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> tufted duck. Numbers fell <strong>in</strong> resp<strong>on</strong>se to the<br />

<strong>in</strong>troducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> roach <strong>in</strong> the 1980s, and then recovered follow<strong>in</strong>g c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> the roach<br />

populati<strong>on</strong> (W<strong>in</strong>field et al., 1992; W<strong>in</strong>field and W<strong>in</strong>field, 1994). Great-crested grebe,<br />

which feed <strong>on</strong> young roach, showed the opposite trend. Roach generally benefit from<br />

eutrophicati<strong>on</strong>, and have a diet that overlaps with that <str<strong>on</strong>g>of</str<strong>on</strong>g> tufted duck more closely<br />

than do those <str<strong>on</strong>g>of</str<strong>on</strong>g> other fish species, as they take a large proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> molluscs, which<br />

form an important part <str<strong>on</strong>g>of</str<strong>on</strong>g> the diet <str<strong>on</strong>g>of</str<strong>on</strong>g> tufted duck (W<strong>in</strong>field and W<strong>in</strong>field, 1994).<br />

Competiti<strong>on</strong> from fish may be more important than the loss <str<strong>on</strong>g>of</str<strong>on</strong>g> food abundance or<br />

availability for tufted duck. Comm<strong>on</strong> scoter also feed <strong>on</strong> molluscs, and it is possible<br />

that competiti<strong>on</strong> with roach for food may c<strong>on</strong>tribute to the decl<strong>in</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> this species <strong>in</strong><br />

freshwater lakes generally (W<strong>in</strong>field and W<strong>in</strong>field, 1994), or <strong>in</strong>deed <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>birds</strong> feed<strong>in</strong>g<br />

<strong>on</strong> molluscs <strong>in</strong> eutrophic waters (c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g roach) generally.<br />

Local c<strong>on</strong>diti<strong>on</strong>s <strong>in</strong> aquatic habitats may exert a str<strong>on</strong>g <strong>in</strong>fluence over the <str<strong>on</strong>g><strong>in</strong>direct</str<strong>on</strong>g><br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> eutrophicati<strong>on</strong> <strong>on</strong> bird populati<strong>on</strong>s, and species may show different<br />

resp<strong>on</strong>ses <strong>in</strong> different circumstances. For example, nati<strong>on</strong>ally significant populati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> tufted duck (and pochard) overw<strong>in</strong>ter <strong>in</strong> the eutrophic Manchester Ship Canal,<br />

where they c<strong>on</strong>centrate their feed<strong>in</strong>g <strong>in</strong> areas with high total benthic organic carb<strong>on</strong><br />

(Marsden and Bellamy, 2000). Improvements to the overall ecological status <str<strong>on</strong>g>of</str<strong>on</strong>g> this<br />

site may well reduce the populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> these species, although other bird species,<br />

such as goosander and goldeneye may be expected to benefit from improved water<br />

clarity and greater diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> food sources. <str<strong>on</strong>g>The</str<strong>on</strong>g> physical characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> Lough<br />

Neagh help to determ<strong>in</strong>e the <str<strong>on</strong>g>effects</str<strong>on</strong>g> that eutrophicati<strong>on</strong> has <strong>on</strong> div<strong>in</strong>g ducks via the<br />

food supply, and there may be no universal pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> (populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> all four<br />

species are <strong>in</strong>creas<strong>in</strong>g globally).<br />

109


3.5.2.3. Piscivorous div<strong>in</strong>g <strong>birds</strong><br />

Birds that actively pursue fish, such as divers, will be affected both by water<br />

transparency and by populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> suitable prey. Transparency <strong>in</strong> lakes <strong>in</strong>dicates<br />

lower productivity, but this may be <str<strong>on</strong>g>of</str<strong>on</strong>g>fset by higher detectability <str<strong>on</strong>g>of</str<strong>on</strong>g> prey. Pursuit<br />

divers may benefit from lower fish density <strong>in</strong> oligotrophic lakes, as transparency<br />

<strong>in</strong>creases due to reduced predati<strong>on</strong> <strong>on</strong> zooplankt<strong>on</strong> and thus changes <strong>in</strong> the<br />

phytoplankt<strong>on</strong> community (Erikss<strong>on</strong>, 1985). Divers are typical <str<strong>on</strong>g>of</str<strong>on</strong>g> low-<str<strong>on</strong>g>nutrient</str<strong>on</strong>g> lakes,<br />

and <strong>in</strong> Brita<strong>in</strong> breed<strong>in</strong>g is restricted to upland lakes. Lake occupancy <str<strong>on</strong>g>of</str<strong>on</strong>g> breed<strong>in</strong>g<br />

black-throated diver <strong>in</strong> Scotland was associated with a high abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> small<br />

salm<strong>on</strong>id fish, the major food items <str<strong>on</strong>g>of</str<strong>on</strong>g> adults and well-grown chicks (Jacks<strong>on</strong>, 2005).<br />

Diver productivity (chicks fledged) was lower <strong>on</strong> lakes without small fish (m<strong>in</strong>nows<br />

and/or sticklebacks), where adults fed chicks <strong>on</strong> aquatic <strong>in</strong>sect larvae. Lake occupancy<br />

was predicted by a water chemistry pr<strong>in</strong>ciple comp<strong>on</strong>ent, which <strong>in</strong> turn was weakly<br />

related to water transparency (Jacks<strong>on</strong>, 2005). <str<strong>on</strong>g>The</str<strong>on</strong>g> results suggest that divers <strong>in</strong><br />

Scotland prefer lakes with abundant and easily-hunted small salm<strong>on</strong>ids. Brown trout<br />

growth is retarded <strong>in</strong> low <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s (and also at low water temperatures);<br />

thus fish tend to rema<strong>in</strong> small (and appropriate diver prey), and abundant, because no<br />

brown trout <strong>in</strong>dividuals become large enough o prey <strong>on</strong> smaller <strong>in</strong>dividuals. Increased<br />

<str<strong>on</strong>g>nutrient</str<strong>on</strong>g> load<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> oligotrophic lakes may affect prey for divers by <strong>in</strong>creas<strong>in</strong>g<br />

<strong>in</strong>dividual fish body size and by <strong>in</strong>creas<strong>in</strong>g piscivory by large fish. Nutrient load<strong>in</strong>g<br />

may also reduce water transparency, reduc<strong>in</strong>g the ability <str<strong>on</strong>g>of</str<strong>on</strong>g> divers to catch prey, while<br />

high <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> levels can <strong>in</strong>terfere with brown trout spawn<strong>in</strong>g, which may also reduce<br />

prey items.<br />

Elsewhere <strong>in</strong> Europe, black-throated diver may feed <strong>on</strong> different fish prey; perch and<br />

cypr<strong>in</strong>ids are the ma<strong>in</strong> prey <strong>in</strong> Swedish lakes (Erikss<strong>on</strong> and Sundberg, 1991). In<br />

eleven Swedish shallow lakes, black-throated diver abundance showed a negative<br />

relati<strong>on</strong>ship with <strong>in</strong>dicators <str<strong>on</strong>g>of</str<strong>on</strong>g> lake productivity (chlorophyll a and phosphorus<br />

c<strong>on</strong>centrati<strong>on</strong>s), although no relati<strong>on</strong>ship with water transparency (Nilss<strong>on</strong> and<br />

Nilss<strong>on</strong>, 1978). However, <strong>in</strong> two other studies <strong>in</strong> Sweden black-throated diver<br />

preferred more transparent lakes (Erikss<strong>on</strong>, 1985; Erikss<strong>on</strong> and Sundberg, 1991). Redthroated<br />

diver did not show such relati<strong>on</strong>ships, possibly because they feed <strong>on</strong> pelagic<br />

fish rather than bottom-dwellers (Erikss<strong>on</strong> and Sundberg, 1991). However, the lakes<br />

110


<strong>in</strong> questi<strong>on</strong> were oligotrophic, and <strong>in</strong>creases <strong>in</strong> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> may change water<br />

transparency sufficiently to affect red-throated diver forag<strong>in</strong>g.<br />

Sawbilled ducks are also pursuit divers, and as such may be <str<strong>on</strong>g><strong>in</strong>direct</str<strong>on</strong>g>ly affected by the<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> <strong>on</strong> prey abundance and availability (Erikss<strong>on</strong>, 1985).<br />

However, these <strong>birds</strong> also forage by prob<strong>in</strong>g lake and river bottoms to locate hid<strong>in</strong>g<br />

fish (Sjöberg, 1985), and thus may be less affected by water transparency. In<br />

Denmark, goosander abundance and div<strong>in</strong>g behaviour were greater <strong>on</strong> hypertrophic<br />

Lake Sjaelsø than <strong>on</strong> eutrophic Lake Esrom (Woollhead, 1986), suggest<strong>in</strong>g that<br />

greater abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> prey was more important.<br />

3.5.3. Fens, marshes and reedbed<br />

Marsh, fen and reedbed are important habitats for several bird species, such as marsh<br />

harrier, water rail, Cetti’s warbler, and bearded tit. As described above, eutrophicati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> fresh waters has co<strong>in</strong>cided with reed dieback <strong>in</strong> Europe, and this has been l<strong>in</strong>ked to<br />

bird populati<strong>on</strong>s; for example, the decl<strong>in</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> great reed warbler <strong>in</strong> the Netherlands due<br />

to reduced nest<strong>in</strong>g opportunities (Graveland, 1998). However, causality has not been<br />

c<strong>on</strong>clusively proven, although it will be <strong>in</strong>terest<strong>in</strong>g to see whether such a c<strong>on</strong>necti<strong>on</strong><br />

can be made <strong>in</strong> the future.<br />

Eutrophicati<strong>on</strong> may be reduc<strong>in</strong>g the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> marsh, fen and reedbed habitat by two<br />

other mechanisms, neither <str<strong>on</strong>g>of</str<strong>on</strong>g> which necessarily relies <strong>on</strong> a switch to a phytoplankt<strong>on</strong>dom<strong>in</strong>ated<br />

stable state. <str<strong>on</strong>g>The</str<strong>on</strong>g> first is an <strong>in</strong>crease <strong>in</strong> the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> seral successi<strong>on</strong> to scrub<br />

and woodland and the desiccati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> swamps and fens (Bibby and Lunn, 1982). <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

sec<strong>on</strong>d is a decrease <strong>in</strong> the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> open water due to <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> primary<br />

productivity <str<strong>on</strong>g>of</str<strong>on</strong>g> macrophytes and the spread <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong>, similar to that seen <strong>in</strong> the<br />

Everglades <str<strong>on</strong>g>of</str<strong>on</strong>g> Florida (Crozier and Gawlik, 2002). In this oligotrophic wetland, bird<br />

abundance generally <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> with <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> enrichment, although there was also a<br />

shift <strong>in</strong> species compositi<strong>on</strong>. Increases <strong>in</strong> food resources, and changes to habitat<br />

structure (typically the replacement <str<strong>on</strong>g>of</str<strong>on</strong>g> sawgrass marshes and open sloughs with dense<br />

stands <str<strong>on</strong>g>of</str<strong>on</strong>g> Typha spp. and little open water) were suggested as the ma<strong>in</strong> mechanisms<br />

111


eh<strong>in</strong>d the changes <strong>in</strong> bird numbers (Crozier and Gawlik, 2002). Enriched sites had<br />

more rails and bitterns, which prefer heavily vegetated areas, while species that<br />

require open water (eg pied-billed grebe and some raptor species) were more comm<strong>on</strong><br />

at n<strong>on</strong>-enriched sites. Piscivores such as wood stork, great egret and great blue her<strong>on</strong><br />

were more abundant at enriched sites. Although enrichment reduced the extent <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

open water, fish were more abundant <strong>in</strong> the open water that rema<strong>in</strong>ed (Rader and<br />

Richards<strong>on</strong>, 1994; Turner et al., 1999). Other species, such as killdeer and blacknecked<br />

stilt were <strong>on</strong>ly recorded <strong>in</strong> n<strong>on</strong>-enriched areas. <str<strong>on</strong>g>The</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> open water is<br />

important for many reedbed bird species (Bibby and Lunn, 1982), even for those that<br />

do not use it directly. If a switch to a phytoplankt<strong>on</strong>-dom<strong>in</strong>ated state does occur <strong>in</strong><br />

fens and swamps, then there would be expected to be change to the trophic structure<br />

similar to that observed <strong>in</strong> shallow lakes and described above.<br />

3.5.3.1. Bittern<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> red-listed bittern has suffered loss <str<strong>on</strong>g>of</str<strong>on</strong>g> its required habitat, extensive wet reedbed<br />

and reed fr<strong>in</strong>ged by open water. This has occurred due to dra<strong>in</strong>age, direct clearance<br />

and seral successi<strong>on</strong> (Bibby and Lunn, 1982; Tyler et al., 1998; Gilbert et al., 2005).<br />

Loss <str<strong>on</strong>g>of</str<strong>on</strong>g> reedbed habitat, specifically hover <strong>in</strong> the Norfolk Broads, has previously been<br />

attributed to the weaken<strong>in</strong>g <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrates <strong>on</strong> reed stems (Crook et al., 1983),<br />

although this is <strong>in</strong> dispute (Ostendorp et al., 2001). However, eutrophicati<strong>on</strong> can have<br />

negative impacts <strong>on</strong> bitterns via another pathway. In Brita<strong>in</strong> bittern feed largely <strong>on</strong><br />

fish, particularly eel and rudd, and eutrophicati<strong>on</strong> can potentially reduce the<br />

abundance and availability <str<strong>on</strong>g>of</str<strong>on</strong>g> rudd (Gilbert et al., 2003; Noble, 2003). <str<strong>on</strong>g>The</str<strong>on</strong>g> shift from<br />

a macrophyte-dom<strong>in</strong>ated to a phytoplankt<strong>on</strong>-dom<strong>in</strong>ated plant community can lead to<br />

direct fish kills due to hypoxia <strong>in</strong> extreme cases. In additi<strong>on</strong>, rudd appear to be<br />

disadvantaged by eutrophic c<strong>on</strong>diti<strong>on</strong>s, possibly due to their need for aquatic<br />

macrophytes as spawn<strong>in</strong>g substrate (Noble, 2003; Jeppesen et al., 2005b), while other<br />

cypr<strong>in</strong>ids that are less suitable prey, such as roach, have less specific requirements.<br />

Given that eel populati<strong>on</strong>s <strong>in</strong> the UK are threatened by other processes, <strong>in</strong>clud<strong>in</strong>g<br />

habitat c<strong>on</strong>nectivity (Self, 2005), rudd may assume <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> importance <strong>in</strong> the diet <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

bitterns at some sites. In any event, water turbidity associated with eutrophicati<strong>on</strong>, is<br />

presumed to have <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> forag<strong>in</strong>g efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> bitterns. Both reduced abundance<br />

and reduced forag<strong>in</strong>g efficiency may affect the ability <str<strong>on</strong>g>of</str<strong>on</strong>g> bittern to successfully raise<br />

112


oods, and chick starvati<strong>on</strong> is the most frequent cause <str<strong>on</strong>g>of</str<strong>on</strong>g> nest failure (Puglisi and<br />

Bretagnolle, 2005). Thus, while eutrophicati<strong>on</strong> may not be the major factor <strong>in</strong><br />

determ<strong>in</strong><strong>in</strong>g abundance and distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this species, and management unrelated to<br />

<str<strong>on</strong>g>nutrient</str<strong>on</strong>g> status also affects fish prey (Noble et al., 2004), it is likely to be important at<br />

the local scale.<br />

3.5.3.2. Black tern<br />

Eutrophicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> marshlands has had an impact <strong>on</strong> black tern populati<strong>on</strong>s (which<br />

decl<strong>in</strong>ed by 90% <strong>in</strong> the period 1950-2005) <strong>in</strong> the Netherlands, via two mechanisms<br />

(van der W<strong>in</strong>den, 2005). <str<strong>on</strong>g>The</str<strong>on</strong>g> first is the lack <str<strong>on</strong>g>of</str<strong>on</strong>g> nest<strong>in</strong>g substrates, as the preferred<br />

species, water soldier (Stratiotes aloides) has decl<strong>in</strong>ed <strong>in</strong> resp<strong>on</strong>se to eutrophicati<strong>on</strong><br />

(Barendregt et al., 1990, <strong>in</strong> van der W<strong>in</strong>den, 2005). Nymphaeids have replaced water<br />

soldier <strong>in</strong> many places, but provide unsuitable nest<strong>in</strong>g habitat (van der W<strong>in</strong>den et al.,<br />

2004). <str<strong>on</strong>g>The</str<strong>on</strong>g> other mechanism is the loss <str<strong>on</strong>g>of</str<strong>on</strong>g> diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> food items to feed chicks. Fish<br />

provide essential calcium, and their populati<strong>on</strong>s are most affected by water acidity<br />

(Be<strong>in</strong>tema, 1997). However, fish may require excessive effort to catch, and large<br />

<strong>in</strong>sects (notably water beetles) are also a major food item for chicks. Provisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

breed<strong>in</strong>g rafts has addressed the problem <str<strong>on</strong>g>of</str<strong>on</strong>g> nest<strong>in</strong>g, and the populati<strong>on</strong> has stabilised<br />

(van der W<strong>in</strong>den, 2005). This species effectively disappeared from the UK as a<br />

regular breeder <strong>in</strong> the n<strong>in</strong>eteenth century, and the cause <str<strong>on</strong>g>of</str<strong>on</strong>g> this is unknown.<br />

Nevertheless, it provides an example <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> eutrophicati<strong>on</strong> <strong>on</strong> nest<strong>in</strong>g<br />

habitat, and its return to Brita<strong>in</strong> may be affected by eutrophic c<strong>on</strong>diti<strong>on</strong>s.<br />

3.5.4. Estuaries and tidal flats<br />

British estuaries and are important c<strong>on</strong>servati<strong>on</strong> areas, particularly for shore<strong>birds</strong> and<br />

wildfowl <strong>in</strong> w<strong>in</strong>ter and dur<strong>in</strong>g migrati<strong>on</strong> (Collier et al., 2005). <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic<br />

<str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> to estuaries <strong>on</strong> w<strong>in</strong>ter<strong>in</strong>g <strong>birds</strong> <strong>in</strong> estuaries <strong>in</strong> Brita<strong>in</strong> have been reviewed<br />

(Green et al., 1990), as have the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> reduced organic and <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> <strong>on</strong><br />

<strong>birds</strong> <strong>in</strong> estuaries and coastal waters <strong>in</strong> England and Wales (Burt<strong>on</strong> et al., 2004). <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> to coastal systems depend <strong>on</strong> the time that such <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g><br />

rema<strong>in</strong> <strong>in</strong> the system. In estuaries this may be c<strong>on</strong>siderable, but water currents <strong>on</strong><br />

113


open coastl<strong>in</strong>es cause the rapid dispersal <str<strong>on</strong>g>of</str<strong>on</strong>g> sewage, which may expla<strong>in</strong> the apparent<br />

lack <str<strong>on</strong>g>of</str<strong>on</strong>g> effect <strong>on</strong> <strong>birds</strong> <strong>in</strong> some estuaries and coastal ecosystems (Eat<strong>on</strong>, 2000a).<br />

Effects <strong>on</strong> the food cha<strong>in</strong> <strong>in</strong> such envir<strong>on</strong>ments may be very localised, and bird<br />

populati<strong>on</strong>s may be affected by processes elsewhere. W<strong>in</strong>ter<strong>in</strong>g brent geese fed<br />

preferentially <strong>on</strong> Zostera at L<strong>in</strong>disfarne, northern England and <strong>in</strong> Denmark, and where<br />

this food source decl<strong>in</strong>ed (<strong>in</strong> some places due to eutrophicati<strong>on</strong>) they either shifted to<br />

alternative food sources nearby or moved away. (Clausen and Percival, 1998).<br />

Important food items for <strong>birds</strong> <strong>on</strong> <strong>in</strong>tertidal flats <strong>in</strong>clude the gastropod Hydrobia<br />

ulvae, the cockle Cerastoderma edule, the polychaete Nereis diversicolor, the mussel<br />

Mytilus edulis, the amphipod Corophium volutator and the clam Macoma balthica,<br />

and several studies have found spatial associati<strong>on</strong>s between shore<strong>birds</strong> and abundance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> prey species (Green et al., 1990). Some <str<strong>on</strong>g>of</str<strong>on</strong>g> these prey items are negatively affected<br />

by eutrophicati<strong>on</strong>, especially at extreme <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> load<strong>in</strong>gs, but overall <strong>in</strong>vertebrate<br />

abundance is likely to be greater, and <strong>birds</strong> that are able to be flexible <strong>in</strong> prey choice<br />

should benefit.<br />

3.5.4.1. Shore<strong>birds</strong> (waders and wildfowl)<br />

Sewage outflows improve food availability for <strong>in</strong>tertidal waders and other shore<strong>birds</strong>,<br />

and historical <strong>in</strong>creases <strong>in</strong> sewage <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> to estuaries and tidal waters have generally<br />

resulted <strong>in</strong> <strong>in</strong>creases <strong>in</strong> bird populati<strong>on</strong>s. In Langst<strong>on</strong>e Harbour, sewage effluent <strong>in</strong>put<br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> from the 1950s to the 1970s, as did the extent <str<strong>on</strong>g>of</str<strong>on</strong>g> mats <str<strong>on</strong>g>of</str<strong>on</strong>g> the macroalgae<br />

Entermorpha and Ulva, and eelgrass (Zostera) beds (Tubbs, 1977). In the same<br />

period w<strong>in</strong>ter numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> oystercatcher, grey plover, black-tailed godwit, bar-tailed<br />

godwit, knot, dunl<strong>in</strong>, dark-bellied brent goose, teal and wige<strong>on</strong> <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g>, while<br />

numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> shelduck, redshank and possibly curlew decl<strong>in</strong>ed. Brent goose and<br />

possibly wige<strong>on</strong> would have benefited from extra graz<strong>in</strong>g <strong>on</strong> Enteromorpha and<br />

Zostera, and although a reducti<strong>on</strong> <strong>in</strong> <strong>in</strong>vertebrate density may have been expected,<br />

most shore<strong>birds</strong> did <strong>in</strong>deed forage <strong>on</strong> these (Tubbs, 1977). Under the mats Capitella<br />

capitata was the ma<strong>in</strong> <strong>in</strong>vertebrate surviv<strong>in</strong>g, but with<strong>in</strong> the mats Hydrobia,<br />

Gammarus locusta (amphipod), Nereis diversicolor and comm<strong>on</strong> shore crab<br />

(Carc<strong>in</strong>us maenus) were present.<br />

114


In the Wadden Sea, the biomass <str<strong>on</strong>g>of</str<strong>on</strong>g> benthic organisms more than doubled between the<br />

1970s and 1990s as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> eutrophicati<strong>on</strong>, to the benefit <str<strong>on</strong>g>of</str<strong>on</strong>g> many species, such as<br />

eiders and oystercatchers (Melt<str<strong>on</strong>g>of</str<strong>on</strong>g>te et al., 1994). However, changes due to<br />

eutrophicati<strong>on</strong>, particularly the loss <str<strong>on</strong>g>of</str<strong>on</strong>g> eelgrass beds, but also changed benthos<br />

communities and anaerobic sediments were c<strong>on</strong>sidered to have c<strong>on</strong>tributed to the<br />

decl<strong>in</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> some species. In the Scheldt estuary <str<strong>on</strong>g>of</str<strong>on</strong>g> the Netherlands, ecological<br />

deteriorati<strong>on</strong> (<strong>in</strong>clud<strong>in</strong>g polluti<strong>on</strong> other than <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s) between the 1950s and 1980s<br />

probably led to a greater food supply for <strong>in</strong>tertidal <strong>birds</strong>; species richness <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

macrobenthic community (polychaetes, amphipods, decapods and molluscs) fell, but<br />

numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> polychaetes and amphipods <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> (van Impe, 1985). Over the same<br />

period, several <strong>in</strong>tertidal bird species (oystercatcher, grey plover, bar-tailed godwit,<br />

redshank, spotted redshank, avocet and black-headed gull) doubled their mean<br />

spr<strong>in</strong>g/summer abundance. Curlew <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> to a lesser extent, while the comm<strong>on</strong><br />

sandpiper rema<strong>in</strong>ed stable, and <strong>on</strong>ly r<strong>in</strong>ged plover decl<strong>in</strong>ed. In the Ythan estuary <strong>in</strong><br />

Scotland, phosphorus and nitrogen load<strong>in</strong>gs <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> between 1966-67 and 1980-84<br />

(Raffaelli et al., 1989). Despite the <strong>in</strong>ability <str<strong>on</strong>g>of</str<strong>on</strong>g> the amphipod Corophium volutator<br />

(<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the ma<strong>in</strong> prey items <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>birds</strong> <strong>in</strong> the estuary) to tolerate the macroalgal mats<br />

that developed, w<strong>in</strong>ter populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> six bird species <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> over the period, four<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> them (mute swan, curlew, redshank and dunl<strong>in</strong>) c<strong>on</strong>trary to nati<strong>on</strong>al trends: <strong>on</strong>ly<br />

shelduck populati<strong>on</strong>s decl<strong>in</strong>ed. An overall <strong>in</strong>crease <strong>in</strong> productivity, and <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>in</strong>vertebrates able to tolerate macroalgal mats, such as the polychaete Capitella<br />

capitata, was suggested as the reas<strong>on</strong> for the observed <strong>in</strong>creases (Raffaelli et al.,<br />

1989).<br />

Removal <str<strong>on</strong>g>of</str<strong>on</strong>g> sewage discharges or improvement to sewage treatment is expected to<br />

reduce shorebird populati<strong>on</strong>s, although this has not been observed everywhere (Eat<strong>on</strong><br />

2000b; Burt<strong>on</strong> et al., 2004). In the latter study, spatial changes <strong>in</strong> biological oxygen<br />

demand <strong>in</strong> several British estuaries were not related to waterbird numbers, although at<br />

the four sites with greatest reducti<strong>on</strong>s, a significantly higher proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> species<br />

decl<strong>in</strong>ed follow<strong>in</strong>g improvements. <str<strong>on</strong>g>The</str<strong>on</strong>g> lack <str<strong>on</strong>g>of</str<strong>on</strong>g> change <strong>in</strong> bird populati<strong>on</strong>s may be due<br />

to difficulties <strong>in</strong> determ<strong>in</strong><strong>in</strong>g changes at an appropriate scale, or because <strong>in</strong>sufficient<br />

time had elapsed to discern changes (Burt<strong>on</strong> et al., 2004).<br />

115


Elsewhere reduced anthropogenic <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> have had measurable impacts <strong>on</strong> bird<br />

populati<strong>on</strong>s. In the Clyde estuary w<strong>in</strong>ter numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> dunl<strong>in</strong>, redshank and lapw<strong>in</strong>g<br />

decl<strong>in</strong>ed c<strong>on</strong>siderably follow<strong>in</strong>g the reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sewage and <strong>in</strong>dustrial effluent <strong>in</strong> the<br />

1970s (Furness et al., 1986). <str<strong>on</strong>g>The</str<strong>on</strong>g>se species fed predom<strong>in</strong>antly <strong>on</strong> the amphipod<br />

Corophium volutator and the polychaete Nereis diversicolor, and loss <str<strong>on</strong>g>of</str<strong>on</strong>g> food items,<br />

or competiti<strong>on</strong> for food from <strong>in</strong>creas<strong>in</strong>g fish populati<strong>on</strong>s <strong>in</strong> the re-oxygenated waters<br />

are suggested as the cause <str<strong>on</strong>g>of</str<strong>on</strong>g> their decl<strong>in</strong>es, which were not c<strong>on</strong>sistent with nati<strong>on</strong>al<br />

trends. Both food items are abundant <strong>in</strong> eutrophic c<strong>on</strong>diti<strong>on</strong>s, although Corophium<br />

volutator is sensitive to the macroalgal mats; it may be that no (or few) such mats<br />

were present <strong>in</strong> the Clyde estuary dur<strong>in</strong>g the period <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> enrichment. In<br />

Portugal, a study <str<strong>on</strong>g>of</str<strong>on</strong>g> the wader community <str<strong>on</strong>g>of</str<strong>on</strong>g> an <strong>in</strong>creas<strong>in</strong>gly urbanised estuary found<br />

the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> sewage discharge po<strong>in</strong>ts to be positively related to grey plover<br />

abundance, and the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> untreated sewage po<strong>in</strong>ts to be positively related to<br />

black-backed gull abundance (Rosa et al., 2003). Abundances <str<strong>on</strong>g>of</str<strong>on</strong>g> other species,<br />

<strong>in</strong>clud<strong>in</strong>g avocet, black-tailed godwit and comm<strong>on</strong> sandpiper were not related to the<br />

presence <str<strong>on</strong>g>of</str<strong>on</strong>g> sewage po<strong>in</strong>ts. Wildfowl and waders <strong>in</strong> the Forth estuary between the<br />

1970s and 1980s also showed large decl<strong>in</strong>es, attributed largely to reducti<strong>on</strong>s <strong>in</strong><br />

effluent <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> (Bryant, 1987).<br />

While eutrophicati<strong>on</strong> may provide more food resources for many bird species, <strong>in</strong><br />

situati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> extreme eutrophicati<strong>on</strong> those food resources may be lost. Where<br />

macroalgal mats develop <strong>on</strong> tidal flats they may reduce the abundance or availability<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>vertebrate food items. In tidal flats <strong>in</strong> Portugal macroalgal biomass was positively<br />

related to prey density and biomass (Cabral et al., 1999). However, macroalgal<br />

coverage was negatively related to the distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dunl<strong>in</strong>, r<strong>in</strong>ged plover and grey<br />

plover (but not Kentish plover), although other variables were also identified <strong>in</strong> the<br />

multiple regressi<strong>on</strong>, notably a negative relati<strong>on</strong>ship with gull abundance for all<br />

species except for grey plover. <str<strong>on</strong>g>The</str<strong>on</strong>g> answer may lie <strong>in</strong> the effect over time <strong>on</strong> the<br />

abundance and availability <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment fauna. On tidal flats <strong>in</strong> the Wadden Sea <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

Netherlands, few forag<strong>in</strong>g <strong>birds</strong> were observed <strong>in</strong> an area covered by green algal mats,<br />

but when algal mats were manually transferred to areas <str<strong>on</strong>g>of</str<strong>on</strong>g> bare mud dunl<strong>in</strong>, r<strong>in</strong>ged<br />

plover and black-headed gull were attracted to them (Metzmacher and Reise, 1994).<br />

This is expla<strong>in</strong>ed by the movement <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment fauna mov<strong>in</strong>g upwards to avoid<br />

116


anoxic c<strong>on</strong>diti<strong>on</strong>s, while at l<strong>on</strong>g-established mats this source <str<strong>on</strong>g>of</str<strong>on</strong>g> food had already been<br />

depleted. <str<strong>on</strong>g>The</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> algal mats may provide a short-term flush <str<strong>on</strong>g>of</str<strong>on</strong>g> food, due to<br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> availability, but if the mats persist then the food source will become<br />

exhausted. Thus <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> polluti<strong>on</strong> may have complex <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> bird abundance,<br />

reduc<strong>in</strong>g the abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> some important food items (Pounder, 1976), but <strong>in</strong>itially<br />

<strong>in</strong>creas<strong>in</strong>g abundance and availability <str<strong>on</strong>g>of</str<strong>on</strong>g> alternative food items before anoxic<br />

c<strong>on</strong>diti<strong>on</strong>s remove this alternative food source. Ephemeral algal mats will be<br />

attractive to <strong>birds</strong> provided there is sufficient opportunity for recol<strong>on</strong>isati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>in</strong>vertebrates between periods <str<strong>on</strong>g>of</str<strong>on</strong>g> coverage by algal mats (Metzmacher and Reise,<br />

1994).<br />

3.5.4.2. Shelduck<br />

Shelduck is <strong>on</strong>e species typical <str<strong>on</strong>g>of</str<strong>on</strong>g> tidal waters for which there is evidence for<br />

sensitivity to the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> eutrophicati<strong>on</strong>, although follow<strong>in</strong>g improvement to waste<br />

discharges <strong>in</strong> British estuaries, they decl<strong>in</strong>ed at more sites than they <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> at<br />

(Burt<strong>on</strong> et al., 2004). Nevertheless, they appear to be less able to exploit food<br />

resources where macroalgal mats are prevalent. <str<strong>on</strong>g>The</str<strong>on</strong>g> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> shelduck <strong>in</strong><br />

several estuaries has been found to be positively related to Hydrobia ulvae abundance<br />

(Bryant and Leng, 1976; Green et al., 1990), which <strong>in</strong> turn is negatively affected by<br />

eutrophicati<strong>on</strong>, specifically macroalgal mat blooms (Lillebø et al., 1999; Cardoso et<br />

al., 2005). Shelduck do not appear to able to exploit the flush <str<strong>on</strong>g>of</str<strong>on</strong>g> food created by the<br />

movement <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>fauna to the surface, and avoided feed<strong>in</strong>g <strong>on</strong> macroalgal mats <strong>in</strong><br />

Langst<strong>on</strong>e Harbour, perhaps because they do not take alternative prey or because it<br />

h<strong>in</strong>ders their forag<strong>in</strong>g method (Tubbs, 1977; Raffaelli et al., 1989). British estuaries<br />

are important w<strong>in</strong>ter<strong>in</strong>g locati<strong>on</strong>s for shelduck <strong>in</strong> Europe, and so reduced <str<strong>on</strong>g>nutrient</str<strong>on</strong>g><br />

load<strong>in</strong>gs ought to improve their food supply (Bryant and Leng, 1976).<br />

3.5.4.3. Gulls<br />

Gulls were <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the major beneficiaries <str<strong>on</strong>g>of</str<strong>on</strong>g> sewage outflows <strong>in</strong>to British estuaries<br />

(Raven and Couls<strong>on</strong>, 2001). In the Tyne estuary, gull numbers (except for those <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

kittiwake) were expected to drop follow<strong>in</strong>g the implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sewage treatment.<br />

Two species, comm<strong>on</strong> gull and great black-backed gulls decl<strong>in</strong>ed by over 90%<br />

between 1969-70 and 1993-94, but numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> herr<strong>in</strong>g gull and black-headed gull did<br />

117


not change significantly, and those <str<strong>on</strong>g>of</str<strong>on</strong>g> lesser black-backed gull and kittiwake rose<br />

dramatically (Raven and Couls<strong>on</strong>, 2001). Black-headed gull appeared to have located<br />

an alternative food source with<strong>in</strong> the estuary, while the other species that did not<br />

decl<strong>in</strong>e significantly fed predom<strong>in</strong>antly outside the estuary.<br />

3.5.5. Coastal waters (div<strong>in</strong>g ducks)<br />

Waterfowl, notably div<strong>in</strong>g ducks, have been observed to be associated with sewage<br />

outfalls at various sites <strong>in</strong> Scotland, and have decl<strong>in</strong>ed where sewage outfalls have<br />

been closed (Pounder, 1976; Fox and Salm<strong>on</strong>, 1988). In the 1970s, two species <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

div<strong>in</strong>g duck (scaup and goldeneye) <strong>in</strong> the Firth <str<strong>on</strong>g>of</str<strong>on</strong>g> Forth were distributed <strong>in</strong> a manner<br />

that suggested that they were exploit<strong>in</strong>g food resources (<strong>in</strong>vertebrates and gra<strong>in</strong>) from<br />

sewage outfalls (Campbell, 1978). Both species showed decl<strong>in</strong>es <strong>in</strong> numbers, as well<br />

as changes <strong>in</strong> distributi<strong>on</strong>, follow<strong>in</strong>g the <strong>in</strong>troducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sewage treatment <strong>in</strong> the late<br />

1970s, that were c<strong>on</strong>sistent with changes <strong>in</strong> food abundance as a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

changes <strong>in</strong> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> levels. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> three other species (eider, comm<strong>on</strong> scoter<br />

and l<strong>on</strong>g-tailed duck) were less clear (Campbell, 1984).<br />

3.5.6. Summary<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>direct</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> eutrophicati<strong>on</strong> <strong>on</strong> <strong>birds</strong> depend str<strong>on</strong>gly <strong>on</strong> habitat type and<br />

locality. Some general trends <str<strong>on</strong>g>of</str<strong>on</strong>g> resp<strong>on</strong>ses by bird populati<strong>on</strong>s to <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g><br />

load<strong>in</strong>g are <strong>in</strong>cluded <strong>in</strong> Table 3.5. <str<strong>on</strong>g>The</str<strong>on</strong>g> most c<strong>on</strong>sistently negative <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> <strong>birds</strong><br />

occur <strong>in</strong> freshwater lakes, where eutrophicati<strong>on</strong> leads to a shift <strong>in</strong> stable state to<br />

phytoplankt<strong>on</strong> dom<strong>in</strong>ance and turbid water. In such circumstances food supplies for a<br />

range <str<strong>on</strong>g>of</str<strong>on</strong>g> water<strong>birds</strong> are drastically reduced, and historical censuses have shown str<strong>on</strong>g<br />

relati<strong>on</strong>ships between the trophic status <str<strong>on</strong>g>of</str<strong>on</strong>g> lakes and bird populati<strong>on</strong>s. In naturally<br />

oligotrophic lakes, pursuit piscivores may be affected by relatively m<strong>in</strong>or <strong>in</strong>creases <strong>in</strong><br />

<str<strong>on</strong>g>nutrient</str<strong>on</strong>g> status, as these may reduce water transparency and alter size distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

prey species.<br />

118


Shore<strong>birds</strong> generally benefit from <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> to tidal areas, as the <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g><br />

productivity provides food resources, even though the <strong>in</strong>vertebrate community<br />

compositi<strong>on</strong> may differ. <str<strong>on</strong>g>The</str<strong>on</strong>g> excepti<strong>on</strong>s are where there is extended eutrophicati<strong>on</strong>,<br />

such that macroalgal mats persist and the <strong>in</strong>fauna decl<strong>in</strong>es, and some species that are<br />

unable to adjust forag<strong>in</strong>g techniques and food preferences. Reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

anthropogenic <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> is likely to reduce shorebird populati<strong>on</strong>s, at least locally,<br />

and this has been observed at some sites where sewage treatment has occurred.<br />

Similar trends have been observed <strong>in</strong> div<strong>in</strong>g ducks <str<strong>on</strong>g>of</str<strong>on</strong>g> coastal waters where sewage<br />

outfalls have been closed.<br />

Table 3.5. General trends <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <strong>in</strong>creases <strong>on</strong> bird populati<strong>on</strong>s <strong>in</strong><br />

aquatic habitats.<br />

Group Resp<strong>on</strong>se Typical species<br />

dabbl<strong>in</strong>g herbivorous and decl<strong>in</strong>e due to loss <str<strong>on</strong>g>of</str<strong>on</strong>g> food mute swan, coot, wige<strong>on</strong>, p<strong>in</strong>tail<br />

omnivorous waterfowl resources <strong>in</strong> phytoplankt<strong>on</strong>dom<strong>in</strong>ated<br />

state<br />

div<strong>in</strong>g benthivores (fresh decl<strong>in</strong>e due to loss <str<strong>on</strong>g>of</str<strong>on</strong>g> food goldeneye, pochard, tufted duck,<br />

waters)<br />

resources and reduced water<br />

transparency <strong>in</strong> turbid water<br />

c<strong>on</strong>diti<strong>on</strong>s<br />

scoters<br />

div<strong>in</strong>g benthivores (coastal <strong>in</strong>crease due to greater food scaup, goldeneye<br />

waters)<br />

availability<br />

pursuit divers (oligotrophic decl<strong>in</strong>e due to reduced water red-throated diver, black-throated<br />

lakes)<br />

transparency and changes to fish<br />

size distributi<strong>on</strong><br />

diver<br />

pursuit divers (mesotrophic possible <strong>in</strong>crease due to <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> goosander, red-breasted<br />

lakes)<br />

prey abundance<br />

merganser, great-crested grebe<br />

reedbed specialists decl<strong>in</strong>e due to loss <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat and bittern, other possibilities <strong>in</strong>clude<br />

reduced food resources<br />

bearded tit and water rail<br />

shore<strong>birds</strong> (waders and <strong>in</strong>crease due to greater food oystercatcher, dunl<strong>in</strong>, grey plover,<br />

wildfowl)<br />

availability, except where knot, redshank (and other waders),<br />

macroalgal mats are persistent; w<strong>in</strong>ter<strong>in</strong>g geese; shelduck<br />

specialist feeders may decl<strong>in</strong>e (decl<strong>in</strong>e)<br />

gulls <strong>in</strong>crease due to greater food comm<strong>on</strong> gull, great black-backed<br />

availability<br />

gull<br />

119


4. Upland moorland and lowland heath<br />

4.1. Introducti<strong>on</strong><br />

Upland moorland and lowland heath are both important habitats, from aesthetic,<br />

c<strong>on</strong>servati<strong>on</strong> and ec<strong>on</strong>omic po<strong>in</strong>ts <str<strong>on</strong>g>of</str<strong>on</strong>g> view. Both are dist<strong>in</strong>guished by ericaceous dwarf<br />

shrubs, particularly heather Calluna vulgaris (henceforth referred to as Calluna),<br />

although grass-dom<strong>in</strong>ated plant communities also occur <strong>in</strong> heathland and moorland<br />

(Thomps<strong>on</strong> et al., 1995). Both habitat types share other similarities, <strong>in</strong>clud<strong>in</strong>g a<br />

requirement for regular vegetati<strong>on</strong> disturbance either at <strong>in</strong>termediate <strong>in</strong>tervals (typically<br />

by fire) or at low <strong>in</strong>tensity <strong>on</strong> a c<strong>on</strong>t<strong>in</strong>ual basis (typically by graz<strong>in</strong>g) for their<br />

ma<strong>in</strong>tenance, and distributi<strong>on</strong> <strong>on</strong> predom<strong>in</strong>antly low <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> soils. Upland moorland<br />

occurs <strong>in</strong> the subm<strong>on</strong>tane z<strong>on</strong>e, above enclosed agricultural land. <str<strong>on</strong>g>The</str<strong>on</strong>g> lower altitude<br />

boundary varies geographically but typically occurs at around 300-400 m asl, although it<br />

can occur at much lower altitudes than this <strong>in</strong> the far north, while lowland heathland<br />

occurs below the subm<strong>on</strong>tane z<strong>on</strong>e (Thomps<strong>on</strong> et al., 1995). Upland moorland is a largescale<br />

mosaic <str<strong>on</strong>g>of</str<strong>on</strong>g> heather moorland, dom<strong>in</strong>ated by Calluna, and grass moorland, dom<strong>in</strong>ated<br />

by Agrostis spp. Festuca spp. or Nardus stricta. It <strong>in</strong>cludes large areas <str<strong>on</strong>g>of</str<strong>on</strong>g> blanket bog,<br />

whilst marshy grassland and bracken are also present depend<strong>in</strong>g <strong>on</strong> geography and<br />

management. A c<strong>on</strong>siderable amount <str<strong>on</strong>g>of</str<strong>on</strong>g> upland moorland is managed for grouse, and is<br />

rotati<strong>on</strong>ally burned <strong>in</strong> patches to provide young shoot as food and older plants as cover<br />

(Brown and Ba<strong>in</strong>bridge, 1995). Lowland heath similarly forms a mosaic <str<strong>on</strong>g>of</str<strong>on</strong>g> Callunadom<strong>in</strong>ated<br />

vegetati<strong>on</strong> and grassland, typically dom<strong>in</strong>ated by Deschampsia flexuosa and<br />

Mol<strong>in</strong>ia caerulea. It has little ec<strong>on</strong>omic use except for low <strong>in</strong>tensity graz<strong>in</strong>g and<br />

recreati<strong>on</strong>.<br />

Calluna is a seral dom<strong>in</strong>ant, pass<strong>in</strong>g through four phases <strong>in</strong> most circumstances <strong>in</strong> which<br />

it grows: pi<strong>on</strong>eer, where it col<strong>on</strong>ises and is associated with other species; build<strong>in</strong>g, the<br />

phase <str<strong>on</strong>g>of</str<strong>on</strong>g> maximum growth, where it forms a dense canopy and excludes other species;<br />

mature, where the canopy becomes uneven and signs <str<strong>on</strong>g>of</str<strong>on</strong>g> gaps appear; and degenerate,<br />

120


when plants beg<strong>in</strong> to die back and gaps become obvious (Gim<strong>in</strong>gham, 1995). Heathland<br />

and moorland occur naturally where c<strong>on</strong>diti<strong>on</strong>s are too severe for trees and tall shrubs,<br />

but the greatest part <str<strong>on</strong>g>of</str<strong>on</strong>g> these habitats present today is <str<strong>on</strong>g>of</str<strong>on</strong>g> anthropogenic orig<strong>in</strong> (Heil and<br />

Aerts, 1993). Human management, particularly graz<strong>in</strong>g and burn<strong>in</strong>g, plays a large part <strong>in</strong><br />

the ma<strong>in</strong>tenance <str<strong>on</strong>g>of</str<strong>on</strong>g> heath and moorland communities. Moderate graz<strong>in</strong>g will ma<strong>in</strong>ta<strong>in</strong><br />

heather <strong>in</strong> its productive phase, while stimulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> regenerati<strong>on</strong> by appropriate fire<br />

management will virtually by-pass the pi<strong>on</strong>eer phase (Gim<strong>in</strong>gham, 1995).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>re has been a decl<strong>in</strong>e <strong>in</strong> the extent <str<strong>on</strong>g>of</str<strong>on</strong>g> lowland heath <strong>in</strong> Europe, some <str<strong>on</strong>g>of</str<strong>on</strong>g> which has<br />

been the result <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>versi<strong>on</strong> to forestry and agriculture, but also due to transiti<strong>on</strong> to<br />

grassland, scrub and woodland (Bunce, 1989; Aerts and Heil, 1993). A similar decl<strong>in</strong>e<br />

has occurred <strong>in</strong> the UK (Rose et al., 1999; Smart et al., 2003). <str<strong>on</strong>g>The</str<strong>on</strong>g> decl<strong>in</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> traditi<strong>on</strong>al<br />

management practices, such as woodcutt<strong>in</strong>g, burn<strong>in</strong>g and turf-stripp<strong>in</strong>g, has been<br />

suggested as a further cause for the transiti<strong>on</strong> (Diem<strong>on</strong>t and Heil, 1984), al<strong>on</strong>g with<br />

nitrogen depositi<strong>on</strong>, which will be discussed below. Upland moorland has also<br />

experienced a decl<strong>in</strong>e <strong>in</strong> the cover <str<strong>on</strong>g>of</str<strong>on</strong>g> heather <strong>in</strong> many areas, due to afforestati<strong>on</strong>,<br />

c<strong>on</strong>versi<strong>on</strong> to grassland, from <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> graz<strong>in</strong>g levels and agricultural improvements,<br />

bracken encroachment and poor burn<strong>in</strong>g management (Miles, 1988; Cadbury, 1992;<br />

Bardgett et al., 1995; Gim<strong>in</strong>gham, 1995; Mackey et al., 1998; Fuller and Gough, 1999;<br />

Ha<strong>in</strong>es-Young et al., 2000). In England and Wales, the land area covered by heather fell<br />

from 631,400 to 509,800 hectares between 1947 and 1980 (Thomps<strong>on</strong> et al., 1995). In<br />

Scotland, heather cover decl<strong>in</strong>ed by 23% (over 300 000 ha) <strong>in</strong> the period 1947-1988, over<br />

half <str<strong>on</strong>g>of</str<strong>on</strong>g> which was attrbiuted to afforestati<strong>on</strong> (Mackey et al., 1998). Causes <str<strong>on</strong>g>of</str<strong>on</strong>g> the decl<strong>in</strong>e<br />

are varied but <strong>in</strong>clude overgraz<strong>in</strong>g (lead<strong>in</strong>g to <strong>in</strong>vasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> grasses), afforestati<strong>on</strong> (the<br />

cause <str<strong>on</strong>g>of</str<strong>on</strong>g> over half the heather loss <strong>in</strong> Scotland), c<strong>on</strong>versi<strong>on</strong> to farmland, and successi<strong>on</strong> to<br />

scrub.<br />

4.2. Bird populati<strong>on</strong> trends <strong>in</strong> moorland and heath<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>re has been c<strong>on</strong>siderable debate about what c<strong>on</strong>stitutes the avifauna <str<strong>on</strong>g>of</str<strong>on</strong>g> the uplands<br />

and several publicati<strong>on</strong>s have attempted to compile lists depend<strong>in</strong>g <strong>on</strong> various criteria<br />

121


(Thomps<strong>on</strong> et al., 1988; Ratcliffe, 1990; Stillman and Brown, 1998; Beest<strong>on</strong>, 2005).<br />

Most <str<strong>on</strong>g>of</str<strong>on</strong>g> these lists <strong>in</strong>clude species typical <str<strong>on</strong>g>of</str<strong>on</strong>g> upland habitats other than moorland, and<br />

therefore I c<strong>on</strong>sider that the list <str<strong>on</strong>g>of</str<strong>on</strong>g> 40 species typical <str<strong>on</strong>g>of</str<strong>on</strong>g> upland heather moorland<br />

compiled by Thomps<strong>on</strong> et al (1995) is the most appropriate for the current review. From<br />

this list I c<strong>on</strong>centrate <strong>on</strong> species for which there is evidence l<strong>in</strong>k<strong>in</strong>g atmospheric<br />

depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen to populati<strong>on</strong> changes, and/or mechanisms by which populati<strong>on</strong><br />

changes could occur. However, <strong>in</strong> do<strong>in</strong>g this it is important to note that there are many<br />

potential drivers <str<strong>on</strong>g>of</str<strong>on</strong>g> changes <strong>in</strong> populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> upland bird species, notably those related to<br />

changes to climate and land management. Although the relative importance <str<strong>on</strong>g>of</str<strong>on</strong>g> these<br />

different causes is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten unknown, the evidence available from exist<strong>in</strong>g studies tends to<br />

<strong>in</strong>dicate that factors associated with land management and climate change are likely to be<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> greatest importance <strong>in</strong> determ<strong>in</strong><strong>in</strong>g changes <strong>in</strong> bird abundance <strong>on</strong> moorlands (Huds<strong>on</strong><br />

1992; Etheridge et al., 1997; Fuller and Gough, 1999; Thirgood et al., 2000; Tharme et<br />

al., 2001, Callad<strong>in</strong>e et al., 2002, Amar and Redpath 2005; Beale et al., 2006, Pearce-<br />

Higg<strong>in</strong>s and Grant, 2006), although few/no studies have attempted to assess <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> nitrogen depositi<strong>on</strong> directly.<br />

Despite the debates about which species are <strong>in</strong>cluded <strong>in</strong> a list <str<strong>on</strong>g>of</str<strong>on</strong>g> upland bird species, it is<br />

undeniable that the British uplands support <strong>in</strong>ternati<strong>on</strong>ally important populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>birds</strong>,<br />

and many <str<strong>on</strong>g>of</str<strong>on</strong>g> these use heather moorland either for breed<strong>in</strong>g or feed<strong>in</strong>g (Ratcliffe and<br />

Thomps<strong>on</strong>, 1988; Thomps<strong>on</strong> et al., 1995). <str<strong>on</strong>g>The</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> moorland by bird species is<br />

summarised <strong>in</strong> Table 4.1, al<strong>on</strong>g with populati<strong>on</strong> trends for some species. Populati<strong>on</strong><br />

trends <str<strong>on</strong>g>of</str<strong>on</strong>g> upland breed<strong>in</strong>g <strong>birds</strong> are generally less well known than are those for lowland<br />

<strong>birds</strong>, largely because <str<strong>on</strong>g>of</str<strong>on</strong>g> the extremely low coverage <str<strong>on</strong>g>of</str<strong>on</strong>g> upland areas <strong>in</strong> the CBC and the<br />

fact that they rema<strong>in</strong> under-represented <strong>in</strong> the BBS. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, where nati<strong>on</strong>al populati<strong>on</strong><br />

trends from these sources are presented for species that occur <strong>in</strong> both upland and lowland<br />

habitats the trends cannot be assumed to be representative <str<strong>on</strong>g>of</str<strong>on</strong>g> those for the moorland<br />

comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> the populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> that species, and may <strong>in</strong> fact be highly unrepresentative<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> it. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, the most reliable evidence for populati<strong>on</strong> changes generally come from<br />

repeat surveys, some <str<strong>on</strong>g>of</str<strong>on</strong>g> which are nati<strong>on</strong>al surveys with representative coverage, such as<br />

black grouse nati<strong>on</strong>al surveys (Sim et al., unpubl. data), but most <str<strong>on</strong>g>of</str<strong>on</strong>g> which are derived<br />

122


Table 4.1. Bird species c<strong>on</strong>sidered typical <str<strong>on</strong>g>of</str<strong>on</strong>g> upland moorland or lowland heath<br />

and c<strong>on</strong>sidered for review <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen depositi<strong>on</strong><br />

Species 1 List<strong>in</strong>g 2<br />

white-fr<strong>on</strong>ted<br />

goose<br />

L<strong>on</strong>g term<br />

trend (1970-<br />

2003) 3<br />

10-year trend<br />

(1994-2004) 4<br />

Use <str<strong>on</strong>g>of</str<strong>on</strong>g> moorland 5 Migrant<br />

status 6<br />

amber feed<strong>in</strong>g habitat w n/a<br />

Nest<strong>in</strong>g habit<br />

teal amber major breed<strong>in</strong>g habitat r + w ground<br />

red grouse amber -4 c<strong>on</strong>f<strong>in</strong>ed r ground<br />

black grouse red decl<strong>in</strong>e -22 a major breed<strong>in</strong>g habitat r ground<br />

red kite amber feed<strong>in</strong>g habitat r tree<br />

hen harrier red 44 b breed ma<strong>in</strong>ly <strong>on</strong><br />

moorland<br />

r ground<br />

buzzard green feed<strong>in</strong>g habitat r tree/cliff<br />

goshawk green feed<strong>in</strong>g habitat r tree<br />

golden eagle amber feed<strong>in</strong>g habitat r tree/cliff<br />

kestrel amber -26 a<br />

-19 feed<strong>in</strong>g habitat r hole/ledge<br />

merl<strong>in</strong> amber breed ma<strong>in</strong>ly <strong>on</strong><br />

moorland<br />

r ground<br />

peregr<strong>in</strong>e amber feed<strong>in</strong>g habitat r cliff<br />

oystercatcher amber locally important<br />

breed<strong>in</strong>g habitat<br />

r + w ground<br />

golden plover green breed ma<strong>in</strong>ly <strong>on</strong><br />

moorland<br />

lapw<strong>in</strong>g amber -45 a -13 locally important<br />

breed<strong>in</strong>g habitat<br />

r + w ground<br />

r + s ground<br />

dunl<strong>in</strong> amber major breed<strong>in</strong>g habitat r + w ground<br />

snipe amber locally important<br />

breed<strong>in</strong>g habitat<br />

r + w ground<br />

whimbrel amber major breed<strong>in</strong>g habitat s + p ground<br />

curlew amber -46 a -34 major breed<strong>in</strong>g habitat r + w ground<br />

redshank amber locally important<br />

breed<strong>in</strong>g habitat<br />

r + w ground<br />

greenshank green major breed<strong>in</strong>g habitat s +w + p ground<br />

1<br />

a full list <str<strong>on</strong>g>of</str<strong>on</strong>g> scientific names is <strong>in</strong>cluded <strong>in</strong> Appendix 1.<br />

2<br />

<strong>in</strong>dicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>servati<strong>on</strong> c<strong>on</strong>cern (Gregory et al., 2002).<br />

3<br />

populati<strong>on</strong> trends based <strong>on</strong> CBC/BBS or <strong>in</strong>dividual surveys (b-d) (Eat<strong>on</strong> et al., 2005). a = may be unrepresentative, b = 1970-<br />

2000, c = 1981-2004, d = 1970-1997<br />

4<br />

populati<strong>on</strong> trends based <strong>on</strong> BBS or <strong>in</strong>dividual surveys (a-e) (Eat<strong>on</strong> et al., 2005). a = 1995/6-2005 (Sim et al., unpub.data), b =<br />

1998-2004, c = 1995-2000, d = 1992-2004, e = 1986-1997<br />

5<br />

use <str<strong>on</strong>g>of</str<strong>on</strong>g> moorland as described by Thomps<strong>on</strong> et al. (1995).<br />

6<br />

migratory status <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>birds</strong>. r = resident, w = w<strong>in</strong>ter visitor, s = summer visitor, p = passage. Birds may have several list<strong>in</strong>gs, as<br />

migrati<strong>on</strong> may be partial. For example, many passer<strong>in</strong>es leave moorland <strong>in</strong> w<strong>in</strong>ter, while wader populati<strong>on</strong>s <strong>in</strong> the UK are<br />

boosted <strong>in</strong> w<strong>in</strong>ter by migrants.<br />

123


Table 4.1. (c<strong>on</strong>t.) Bird species c<strong>on</strong>sidered typical <str<strong>on</strong>g>of</str<strong>on</strong>g> upland moorland or lowland<br />

heath and c<strong>on</strong>sidered for review <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen depositi<strong>on</strong><br />

Species 1 List<strong>in</strong>g 2<br />

L<strong>on</strong>g term<br />

trend (1970-<br />

2003) 3<br />

10-year trend<br />

(1994-2004) 4<br />

Use <str<strong>on</strong>g>of</str<strong>on</strong>g> moorland 5 Migrant<br />

status 6<br />

Nest<strong>in</strong>g habit<br />

Arctic skua green major breed<strong>in</strong>g habitat s ground<br />

great skua amber major breed<strong>in</strong>g habitat s ground<br />

comm<strong>on</strong> gull amber major breed<strong>in</strong>g habitat r + w ground<br />

cuckoo amber -44 a -19 major breed<strong>in</strong>g habitat s parasitic<br />

short-eared<br />

owl<br />

amber major breed<strong>in</strong>g habitat r + w ground<br />

skylark red -53 -10 major breed<strong>in</strong>g habitat r + s ground<br />

meadow pipit amber -32 a -2 major breed<strong>in</strong>g habitat r + s ground<br />

wren green 68 14 locally important<br />

breed<strong>in</strong>g habitat<br />

r scrub/shrubs<br />

wh<strong>in</strong>chat green -15 major breed<strong>in</strong>g habitat s ground<br />

st<strong>on</strong>echat amber 135 major breed<strong>in</strong>g habitat r ground/shrubs<br />

wheatear green 7 locally important<br />

s ground<br />

breed<strong>in</strong>g habitat<br />

cavities<br />

r<strong>in</strong>g ouzel red major breed<strong>in</strong>g habitat s ground<br />

grasshopper red 59 locally important<br />

s scrub/shrubs<br />

warbler<br />

breed<strong>in</strong>g habitat<br />

whitethroat green -5 39 locally important<br />

breed<strong>in</strong>g habitat<br />

willow warbler amber -45 a 0 locally important<br />

breed<strong>in</strong>g habitat<br />

s scrub/shrubs<br />

s scrub/shrubs<br />

carri<strong>on</strong> crow green 78 11 feed<strong>in</strong>g habitat r trees/ledges<br />

raven green 91 feed<strong>in</strong>g habitat r ledges<br />

twite red locally important<br />

breed<strong>in</strong>g habitat<br />

r +w + s ground<br />

st<strong>on</strong>e curlew red -15 b 54 c lowland heath species s ground<br />

Dartford<br />

warbler<br />

amber lowland heath species r low shrubs<br />

nightjar red 114 c 32 d lowland heath species s ground<br />

woodlark red 704 d 544 e lowland heath species r + p ground<br />

1<br />

a full list <str<strong>on</strong>g>of</str<strong>on</strong>g> scientific names is <strong>in</strong>cluded <strong>in</strong> Appendix 1.<br />

2<br />

<strong>in</strong>dicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>servati<strong>on</strong> c<strong>on</strong>cern (Gregory et al., 2002).<br />

3<br />

populati<strong>on</strong> trends based <strong>on</strong> CBC/BBS or <strong>in</strong>dividual surveys (b-d) (Eat<strong>on</strong> et al., 2005). a = may be unrepresentative, b = 1970-<br />

2000, c = 1981-2004, d = 1970-1997<br />

4<br />

populati<strong>on</strong> trends based <strong>on</strong> BBS or <strong>in</strong>dividual surveys (a-e) (Eat<strong>on</strong> et al., 2005). a = 1995/6-2005 (Sim et al., unpub.data), b =<br />

1998-2004, c = 1995-2000, d = 1992-2004, e = 1986-1997<br />

5<br />

use <str<strong>on</strong>g>of</str<strong>on</strong>g> moorland as described by Thomps<strong>on</strong> et al. (1995).<br />

6<br />

migratory status <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>birds</strong>. r = resident, w = w<strong>in</strong>ter visitor, s = summer visitor, p = passage. Birds may have several list<strong>in</strong>gs, as<br />

migrati<strong>on</strong> may be partial. For example, many passer<strong>in</strong>es leave moorland <strong>in</strong> w<strong>in</strong>ter, while wader populati<strong>on</strong>s <strong>in</strong> the UK are<br />

boosted <strong>in</strong> w<strong>in</strong>ter by migrants.<br />

124


from selected sites (Hancock and Avery, 1998; Fuller et al., 2002; Sim et al., 2005). Resurveys<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a range <str<strong>on</strong>g>of</str<strong>on</strong>g> upland areas (<strong>in</strong>clud<strong>in</strong>g a mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> upland habitats <strong>in</strong> additi<strong>on</strong> to<br />

heather moorland) found decl<strong>in</strong>es <strong>in</strong> some species, particularly waders, but <strong>in</strong>creases <strong>in</strong><br />

others, with geographical variati<strong>on</strong> <strong>in</strong> populati<strong>on</strong> trends (Sim et al., 2005). While lowland<br />

heath is used by a number <str<strong>on</strong>g>of</str<strong>on</strong>g> species, four species <str<strong>on</strong>g>of</str<strong>on</strong>g> high c<strong>on</strong>servati<strong>on</strong> c<strong>on</strong>cern are<br />

closely associated with the habitat: Dartford warbler, st<strong>on</strong>e-curlew, woodlark and<br />

nightjar. Populati<strong>on</strong> trends and life history characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> these species are also<br />

<strong>in</strong>cluded <strong>in</strong> Table 4.1.<br />

4.3 Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <strong>in</strong>creases <strong>on</strong> vegetati<strong>on</strong><br />

In upland moorland, atmospheric depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen, particularly wet depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

amm<strong>on</strong>ium and nitrate, is the major source <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g>. This source <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen is<br />

also important for other naturally low-<str<strong>on</strong>g>nutrient</str<strong>on</strong>g> vegetati<strong>on</strong> types <strong>in</strong> upland areas, <strong>in</strong>clud<strong>in</strong>g<br />

ombrotrophic mires and unimproved grassland (Carroll et al., 2003; Tomassen et al.,<br />

2004). Increased levels <str<strong>on</strong>g>of</str<strong>on</strong>g> depositi<strong>on</strong> may have impacts <strong>on</strong> all <str<strong>on</strong>g>of</str<strong>on</strong>g> these vegetati<strong>on</strong> types,<br />

and has also been implicated <strong>in</strong> the decl<strong>in</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>tane moss heaths (Ratcliffe and<br />

Thomps<strong>on</strong>, 1988; Pearce and van der Wal, 2002). Atmospheric depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen is<br />

also important as a <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> source for lowland heath, but dry depositi<strong>on</strong>, especially <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

amm<strong>on</strong>ia, dom<strong>in</strong>ates these areas (Carroll et al., 1999); Lowland heaths receive additi<strong>on</strong>al<br />

amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s from sources such as fertiliser drift. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g><br />

levels <strong>on</strong> Calluna-dom<strong>in</strong>ated vegetati<strong>on</strong> are summarised <strong>in</strong> Table 4.2. Much <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

understand<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> levels to Calluna-dom<strong>in</strong>ated ecosystems has<br />

arisen from attempts to restore the vegetati<strong>on</strong> <strong>in</strong> the face <str<strong>on</strong>g>of</str<strong>on</strong>g> shifts towards grassland and<br />

scrub. <str<strong>on</strong>g>The</str<strong>on</strong>g>re is evidence <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen <strong>on</strong> Calluna relevant to both upland<br />

moor and lowland heath. Calluna foliar nitrogen c<strong>on</strong>centrati<strong>on</strong>s <strong>in</strong> the UK show spatial<br />

relati<strong>on</strong>ships with levels <str<strong>on</strong>g>of</str<strong>on</strong>g> atmospheric nitrogen depositi<strong>on</strong> (Pitcairn et al., 1995). Shoot<br />

growth is stimulated by the additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen both <strong>in</strong> moorland and lowland heath<br />

(Power et al., 1995; Uren et al., 1997; Power et al., 1998a; Carroll et al., 1999), although<br />

the marked <strong>in</strong>creases <strong>in</strong> shoot growth may not persist, possibly due to a shift to limitati<strong>on</strong><br />

125


y other <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s (Carroll et al., 1999). Additi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen are reta<strong>in</strong>ed predom<strong>in</strong>antly<br />

<strong>in</strong> vegetati<strong>on</strong> and litter at lower levels <str<strong>on</strong>g>of</str<strong>on</strong>g> applicati<strong>on</strong> (40 kg N/ha/year), but at higher<br />

levels (80 and 120 kg N/ha/year) c<strong>on</strong>siderable quantities <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen accumulate <strong>in</strong> the<br />

soil (Pilk<strong>in</strong>gt<strong>on</strong> et al., 2005). Management <str<strong>on</strong>g>of</str<strong>on</strong>g> heath and moor by graz<strong>in</strong>g, turf cutt<strong>in</strong>g, and<br />

especially burn<strong>in</strong>g, is important to ma<strong>in</strong>ta<strong>in</strong> low soil <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> status by export<strong>in</strong>g<br />

accumulated <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s (Barker et al., 2004).<br />

Increased nitrogen c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> heather leaves leads to higher sensitivity to w<strong>in</strong>ter<br />

desiccat<strong>in</strong>g c<strong>on</strong>diti<strong>on</strong>s, although this was <strong>in</strong>itially thought to be sensitivity to frost (Heil,<br />

1984, <strong>in</strong> de Smidt, 1995; Power et al., 1998b). In upland moorland, additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen<br />

improved Calluna frost hard<strong>in</strong>ess <strong>in</strong> the first 4-5 years, but late w<strong>in</strong>ter brown<strong>in</strong>g was<br />

subsequently observed <strong>in</strong> fertilised plots, lead<strong>in</strong>g to gaps <strong>in</strong> the canopy (Lee and Caporn,<br />

1998). As healthy shoots were not more sensitive to frost, a possible cause for the w<strong>in</strong>ter<br />

brown<strong>in</strong>g may be sensitivity to w<strong>in</strong>ter and early spr<strong>in</strong>g desiccat<strong>in</strong>g c<strong>on</strong>diti<strong>on</strong>s (Carroll et<br />

al., 1999). Similar late w<strong>in</strong>ter/early spr<strong>in</strong>g sensitivity to drought was observed <strong>in</strong> Dutch<br />

lowland heath (van der Eerden et al., 1991). Summer drought has also caused dieback <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Calluna <strong>in</strong> lowland heath, and water stress was greatest <strong>in</strong> nitrogen-rich c<strong>on</strong>diti<strong>on</strong>s,<br />

because <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> root biomass <strong>in</strong> the topsoil and <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> water demand from the<br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> Calluna biomass (Berdowski et al., 1985, <strong>in</strong> Berdowski, 1993). <str<strong>on</strong>g>The</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

compet<strong>in</strong>g grass species may exacerbate the problem by slow<strong>in</strong>g the movement <str<strong>on</strong>g>of</str<strong>on</strong>g> water<br />

to deeper soil layers. In Scottish acid moorland, Calluna foliar nitrogen c<strong>on</strong>centrati<strong>on</strong>s<br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> with both dry depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen (<str<strong>on</strong>g>of</str<strong>on</strong>g> amm<strong>on</strong>ia) and wet depositi<strong>on</strong> (<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

amm<strong>on</strong>ium), whereas several other species, <strong>in</strong>clud<strong>in</strong>g important grass competitors,<br />

resp<strong>on</strong>ded <strong>on</strong>ly to wet depositi<strong>on</strong> (Leith et al., 2001). Autumn and w<strong>in</strong>ter water loss rates<br />

for Calluna <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> with amm<strong>on</strong>ia applicati<strong>on</strong>s. Susceptibility to drought is c<strong>on</strong>sidered<br />

more likely than reduced frost hard<strong>in</strong>ess to be the cause <str<strong>on</strong>g>of</str<strong>on</strong>g> loss <str<strong>on</strong>g>of</str<strong>on</strong>g> Calluna <strong>in</strong> areas <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

heightened nitrogen depositi<strong>on</strong> (Sheppard and Leith, 2002). A decrease <strong>in</strong> the root to<br />

shoot ratio observed <strong>in</strong> Calluna subjected to experimental applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen may<br />

expla<strong>in</strong> this sensitivity (van der Eerden et al., 1991).<br />

126


In additi<strong>on</strong> to its <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> drought sensitivity, additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> low levels <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen to<br />

Calluna <strong>in</strong> lowland British heath <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> larval growth rates and adult weights <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

heather beetles (Lochmaea suturalis) (Power et al., 1998b). Similar <str<strong>on</strong>g>effects</str<strong>on</strong>g> were observed<br />

<strong>in</strong> the Netherlands (Brunst<strong>in</strong>g and Heil, 1985; van der Eerden, 1991). Heather beetles<br />

feed m<strong>on</strong>ophagously <strong>on</strong> Calluna and dur<strong>in</strong>g outbreaks form high populati<strong>on</strong> densities<br />

that can have severe impacts <strong>on</strong> Calluna foliage and canopy cover, water transport <strong>in</strong> the<br />

xylem, and the ability to store carbohydrates <strong>in</strong> the f<strong>in</strong>e roots (Berdowski, 1993).<br />

Physiological c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> leaf damage seem to be a more important cause <str<strong>on</strong>g>of</str<strong>on</strong>g> heather<br />

dieback than defoliati<strong>on</strong> (Pakeman et al., 2004). Increased nitrogen uptake by heather<br />

<strong>in</strong>creases the nutritive value <str<strong>on</strong>g>of</str<strong>on</strong>g> its leaves, and this means that heather beetle can build up<br />

dense populati<strong>on</strong>s more quickly (de Smidt, 1995), although decreased bryophyte cover <strong>in</strong><br />

resp<strong>on</strong>se to fertiliser can reduce egg and pupal survival (Berdowski, 1993). Improved<br />

<strong>in</strong>sect performance <strong>in</strong> resp<strong>on</strong>se to <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> foliar nitrogen c<strong>on</strong>tent has the potential to<br />

<strong>in</strong>crease <strong>in</strong>sect damage and c<strong>on</strong>tribute gaps <strong>in</strong> Calluna canopy (Brunst<strong>in</strong>g and Heil,<br />

1985).<br />

4.3.1. Upland moorland<br />

Atmospheric depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen has been implicated as a major cause <str<strong>on</strong>g>of</str<strong>on</strong>g> the shift<br />

from Calluna-dom<strong>in</strong>ated to grass-dom<strong>in</strong>ated moors. However, <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> levels<br />

al<strong>on</strong>e generally do not lead to the decl<strong>in</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> Calluna, and are <strong>in</strong> fact unlikely to be the<br />

ma<strong>in</strong> factors driv<strong>in</strong>g the c<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> heather to grass <strong>on</strong> moorlands. <str<strong>on</strong>g>The</str<strong>on</strong>g> <strong>in</strong>teracti<strong>on</strong><br />

between <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> levels and disturbance, particularly graz<strong>in</strong>g, may be<br />

important. Nevertheless, some moorland elements are directly affected by nitrogen levels.<br />

Bryophytes are especially sensitive to <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> atmospheric nitrogen depositi<strong>on</strong>, and the<br />

loss <str<strong>on</strong>g>of</str<strong>on</strong>g> these elements from upland moors may lead to <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> leach<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen<br />

from the soil (Carroll et al., 2003; Curtis et al., 2005). Fertilised plots <strong>in</strong> Wales lost moss<br />

and lichen cover over a period <str<strong>on</strong>g>of</str<strong>on</strong>g> several years (Lee and Caporn, 1998). Bryophytes may<br />

also be negatively affected by <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> shad<strong>in</strong>g from shrub species that grow taller and<br />

denser <strong>in</strong> resp<strong>on</strong>se to <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> nitrogen depositi<strong>on</strong>. Applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fertiliser can change<br />

127


Table 4.2. Some <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> <strong>on</strong> the vegetati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> lowland heath and upland moor<br />

Habitat Group Locati<strong>on</strong> Process Effects Possible cause Strength<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

evidence 1<br />

Reference<br />

Lowland cryptogams Netherlands applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogenous loss <str<strong>on</strong>g>of</str<strong>on</strong>g> lichens and bryophytes, direct effect <str<strong>on</strong>g>of</str<strong>on</strong>g> fertiliser <strong>on</strong><br />

1 de Smidt, 1995<br />

heath<br />

fertilisers<br />

then <strong>in</strong>crease <strong>in</strong> grasses and<br />

other <strong>in</strong>vasive species<br />

cryptogams<br />

Calluna and<br />

Deschampsia<br />

flexuosa<br />

Calluna and<br />

Festuca ov<strong>in</strong>a<br />

Calluna, Erica and<br />

Mol<strong>in</strong>ia caerulea<br />

Calluna vulgaris<br />

and heather beetle<br />

Calluna, grasses<br />

and heather beetle<br />

Netherlands experimental additi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> N (10<br />

or 50 kg/ha/year); other<br />

treatments (soil type, water<strong>in</strong>g)<br />

Netherlands experimental additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> N (up<br />

to 28 kg/ha) and P <strong>on</strong> heathland<br />

plots over 11 years<br />

Netherlands experimental additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> N (0-20<br />

g/m2/year), P (0-4 g/m2/year)<br />

and K (0-20 g/m2/year)<br />

D. flexuosa reduced C. vulgaris<br />

yields when grown together, but<br />

no extra <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N additi<strong>on</strong><br />

replacement <str<strong>on</strong>g>of</str<strong>on</strong>g> Calluna by<br />

Festuca at the highest rate <str<strong>on</strong>g>of</str<strong>on</strong>g> N<br />

applicati<strong>on</strong>, no effect <str<strong>on</strong>g>of</str<strong>on</strong>g> P<br />

when grown together, Calluna<br />

out-competed Mol<strong>in</strong>ia; Erica<br />

out-competed Mol<strong>in</strong>ia <strong>in</strong> all but<br />

the highest <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> treatment<br />

additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen does not<br />

alter competitive balance<br />

competitive balance, also attack<br />

by heather beetle<br />

superior competitive ability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Calluna and Erica for light<br />

1 Britt<strong>on</strong> et al.,<br />

2003<br />

1 Heil and<br />

Diem<strong>on</strong>t, 1983<br />

1 Aerts et al., 1990<br />

Netherlands experimental additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> N faster growth <str<strong>on</strong>g>of</str<strong>on</strong>g> larvae <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> foliage 1 Brunst<strong>in</strong>g and<br />

Heil, 1985<br />

Netherlands experimental additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

amm<strong>on</strong>ium and amm<strong>on</strong>ia<br />

(applicati<strong>on</strong>s ranged from 0-240<br />

�g/m 3 <str<strong>on</strong>g>of</str<strong>on</strong>g> N)<br />

Calluna vulgaris East Anglia changes to vegetati<strong>on</strong> <strong>in</strong> 11<br />

heath sites 1983-1991<br />

larval growth <str<strong>on</strong>g>of</str<strong>on</strong>g> heather beetle<br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> with N additi<strong>on</strong>;<br />

Calluna drought sensitivity<br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> with N additi<strong>on</strong><br />

variety <str<strong>on</strong>g>of</str<strong>on</strong>g> changes, rang<strong>in</strong>g from<br />

c<strong>on</strong>t<strong>in</strong>ued Calluna dom<strong>in</strong>ance to<br />

<strong>in</strong>vasi<strong>on</strong> by grasses<br />

foliar nitrogen c<strong>on</strong>tent; possibly<br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> transpirati<strong>on</strong> and<br />

decreased root:shoot ratio<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g>, such as frost<br />

sensitivity, herbivory and<br />

competitive balance; most sites<br />

were unmanaged for this period<br />

1 van der Eerden et<br />

al., 1991<br />

3 Marrs, 1993<br />

1<br />

I classified the studies <strong>in</strong>to three tiers: 1. Str<strong>on</strong>g evidence, usually based <strong>on</strong> experimental pro<str<strong>on</strong>g>of</str<strong>on</strong>g>; 2. Intermediate evidence, generally an observed relati<strong>on</strong>ship <strong>in</strong> space and time; 3. Weak evidence, a suggested cause<br />

based <strong>on</strong> observed patterns. <str<strong>on</strong>g>The</str<strong>on</strong>g>se levels are not <strong>in</strong>tended as a judgement <strong>on</strong> the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> the research, and I judge the strength <str<strong>on</strong>g>of</str<strong>on</strong>g> evidence for <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> and associated mechanisms, which may not have<br />

been the purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> the study.<br />

128


Table 4.2. (c<strong>on</strong>t.) Some <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> <strong>on</strong> the vegetati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> lowland heath and upland moor<br />

Habitat Group Locati<strong>on</strong> Process Effects Possible cause Strength<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

evidence 1<br />

Reference<br />

Lowland Betula spp. Dorset experimental additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> P (0, 1, seed availability the greatest greater ability <str<strong>on</strong>g>of</str<strong>on</strong>g> Betula to use 1 Mann<strong>in</strong>g et al.,<br />

heath<br />

2 or 3 additi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 17.6 kg/ha); limitati<strong>on</strong> to seedl<strong>in</strong>g density; P <strong>in</strong>organic P<br />

2004<br />

manipulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> seed availability additi<strong>on</strong>s and disturbance also<br />

and disturbance<br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> seedl<strong>in</strong>g density<br />

Calluna vulgaris Surrey experimental additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> above-ground growth <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> productivity with<br />

1 Power et al.,<br />

nitrogen (7.7 or 15.4 kg/ha/year) and litter producti<strong>on</strong> even at low <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s; <strong>in</strong>sufficient<br />

1998a<br />

to Calluna plots over 7 years levels <str<strong>on</strong>g>of</str<strong>on</strong>g> N additi<strong>on</strong>; no shift <strong>in</strong><br />

vegetati<strong>on</strong> compositi<strong>on</strong><br />

time for changes to take place<br />

Upland<br />

moor<br />

Calluna vulgaris Surrey management by mow<strong>in</strong>g or<br />

burn<strong>in</strong>g; applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 0 or 30<br />

kg N/ha/year<br />

Calluna vulgaris Brita<strong>in</strong> spatial relati<strong>on</strong>ship between<br />

foliar N c<strong>on</strong>centrati<strong>on</strong>s and rates<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> atmospheric N depositi<strong>on</strong><br />

lower positive effect <str<strong>on</strong>g>of</str<strong>on</strong>g> N <strong>on</strong><br />

shoot growth with <strong>in</strong>tensive<br />

management; Deschampsia<br />

<strong>in</strong>vasi<strong>on</strong> greater with N additi<strong>on</strong><br />

generally l<strong>in</strong>ear positive<br />

relati<strong>on</strong>ship<br />

greater export <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s <strong>in</strong><br />

<strong>in</strong>tensively managed plots;<br />

competitive advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> grasses<br />

<strong>in</strong> disturbed and fertilised plots<br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> uptake <str<strong>on</strong>g>of</str<strong>on</strong>g> available<br />

nitrogen<br />

1 Barker et al.,<br />

2004<br />

2 Pitcairn et al.,<br />

1995<br />

Calluna vulgaris Wales experimental additi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> N (0-<br />

20 g/m 2 stimulated growth and improved<br />

/year) over 9 years frost hard<strong>in</strong>ess for first 4 years,<br />

then w<strong>in</strong>ter brown<strong>in</strong>g <strong>in</strong> plots<br />

receiv<strong>in</strong>g > 8 g/m 2 <strong>in</strong>ability to ma<strong>in</strong>ta<strong>in</strong> foliar water 1 Lee and Caporn,<br />

c<strong>on</strong>tent under w<strong>in</strong>ter desiccat<strong>in</strong>g<br />

1998<br />

/year; loss <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

moss and lichen understorey<br />

c<strong>on</strong>diti<strong>on</strong>s<br />

1<br />

I classified the studies <strong>in</strong>to three tiers: 1. Str<strong>on</strong>g evidence, usually based <strong>on</strong> experimental pro<str<strong>on</strong>g>of</str<strong>on</strong>g>; 2. Intermediate evidence, generally an observed relati<strong>on</strong>ship <strong>in</strong> space and time; 3. Weak evidence, a suggested cause<br />

based <strong>on</strong> observed patterns. <str<strong>on</strong>g>The</str<strong>on</strong>g>se levels are not <strong>in</strong>tended as a judgement <strong>on</strong> the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> the research, and I judge the strength <str<strong>on</strong>g>of</str<strong>on</strong>g> evidence for <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> and associated mechanisms, which may not have<br />

been the purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> the study.<br />

129


Table 4.2. (c<strong>on</strong>t.) Some <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> <strong>on</strong> the vegetati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> lowland heath and upland moor<br />

Habitat Group Locati<strong>on</strong> Process Effects Possible cause Strength<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

evidence 1<br />

Reference<br />

Upland Calluna and NE Scotland graz<strong>in</strong>g exclusi<strong>on</strong> and additi<strong>on</strong> effect (+) <str<strong>on</strong>g>of</str<strong>on</strong>g> fenc<strong>in</strong>g <strong>on</strong> Calluna lack <str<strong>on</strong>g>of</str<strong>on</strong>g> direct negative <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 Al<strong>on</strong>so et al.,<br />

moor<br />

grasses<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> fertiliser (7.5 g/m/year N, 2.5 height and growth, marg<strong>in</strong>al fertiliser <strong>on</strong> Calluna<br />

2001<br />

g/m/year P, 5 g/m/year K) effect (+) <str<strong>on</strong>g>of</str<strong>on</strong>g> fertiliser <strong>on</strong> height,<br />

<strong>in</strong>teractive effect (+) <strong>on</strong> growth;<br />

generally positive <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

fenc<strong>in</strong>g <strong>on</strong> grasses (see text)<br />

Calluna and NE Scotland graz<strong>in</strong>g exclusi<strong>on</strong> and additi<strong>on</strong> effect (-) <str<strong>on</strong>g>of</str<strong>on</strong>g> graz<strong>in</strong>g <strong>on</strong> Calluna improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> Calluna as<br />

1 Hartley and<br />

grasses<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> fertiliser (75 kg/ha/year N, cover, and <strong>in</strong>teracti<strong>on</strong> (-) with N forage, and ability <str<strong>on</strong>g>of</str<strong>on</strong>g> grasses to<br />

Mitchell, 2005<br />

12.5 kg/ha/year P, 25 kg/ha/year additi<strong>on</strong>, (no <strong>in</strong>dependent effect <strong>in</strong>vade where heather canopy is<br />

K)<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> N); <strong>in</strong>crease <strong>in</strong> grass cover <strong>in</strong><br />

resp<strong>on</strong>se to N additi<strong>on</strong>, species<br />

determ<strong>in</strong>ed by graz<strong>in</strong>g<br />

disturbed<br />

Calluna and<br />

grasses<br />

seven species,<br />

<strong>in</strong>clud<strong>in</strong>g Calluna,<br />

Mol<strong>in</strong>ia caerulea<br />

and Deschampsia<br />

flexuosa<br />

NE Scotland graz<strong>in</strong>g exclusi<strong>on</strong> and fertiliser<br />

additi<strong>on</strong> (75 kg/ha/year N, 12.5<br />

kg/ha/year P, 25 kg/ha/year K)<br />

SE Scotland experimental additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

nitrogen as amm<strong>on</strong>ia (0-128 kg<br />

N/ha/year) and amm<strong>on</strong>ium (4-48<br />

kg N/ha/year)<br />

Nardus stricta acquired <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s<br />

faster than Calluna <strong>in</strong> pots, but<br />

<strong>on</strong>ly favoured <strong>in</strong> grazed plots<br />

foliar N <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> with<br />

amm<strong>on</strong>ium for all species, but<br />

with amm<strong>on</strong>ia for <strong>on</strong>ly two<br />

species (<strong>in</strong>clud<strong>in</strong>g Calluna);<br />

Calluna autumn/w<strong>in</strong>ter water<br />

loss <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> with amm<strong>on</strong>ia<br />

(compared with amm<strong>on</strong>ium)<br />

ability <str<strong>on</strong>g>of</str<strong>on</strong>g> Calluna to close<br />

canopy <strong>in</strong> the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> graz<strong>in</strong>g<br />

biological differences between<br />

plant species<br />

1 Hartley, 1997<br />

1 Leith et al., 2001<br />

1<br />

I classified the studies <strong>in</strong>to three tiers: 1. Str<strong>on</strong>g evidence, usually based <strong>on</strong> experimental pro<str<strong>on</strong>g>of</str<strong>on</strong>g>; 2. Intermediate evidence, generally an observed relati<strong>on</strong>ship <strong>in</strong> space and time; 3. Weak evidence, a suggested cause<br />

based <strong>on</strong> observed patterns. <str<strong>on</strong>g>The</str<strong>on</strong>g>se levels are not <strong>in</strong>tended as a judgement <strong>on</strong> the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> the research, and I judge the strength <str<strong>on</strong>g>of</str<strong>on</strong>g> evidence for <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> and associated mechanisms, which may not have<br />

been the purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> the study.<br />

130


the species compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moors by suppress<strong>in</strong>g herbs at the expense <str<strong>on</strong>g>of</str<strong>on</strong>g> tall grow<strong>in</strong>g<br />

grasses (Schellberg et al., 1999).<br />

Moorland is <strong>in</strong> a dynamic balance between heather, grass, scrub and woodland, and<br />

graz<strong>in</strong>g is vital to ma<strong>in</strong>ta<strong>in</strong> this balance (Miles, 1988). However, sheep numbers<br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> markedly <strong>in</strong> most upland regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Brita<strong>in</strong> <strong>in</strong> the 1970s and 1980s (Fuller and<br />

Gough, 1999), and this has co<strong>in</strong>cided with changes <strong>in</strong> the cover <str<strong>on</strong>g>of</str<strong>on</strong>g> heather and grass <strong>in</strong><br />

the uplands. Red deer (Cervus elephus) have also <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> <strong>in</strong> the Scottish highlands<br />

(Clutt<strong>on</strong>-Brock et al., 2004). <str<strong>on</strong>g>The</str<strong>on</strong>g> successi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> heather moorland to grassland (dom<strong>in</strong>ated<br />

by species such as Deschampsia flexuosa, Nardus stricta and Mol<strong>in</strong>ia caerulea) under<br />

c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> heavy graz<strong>in</strong>g has been well documented and much <str<strong>on</strong>g>of</str<strong>on</strong>g> the evidence is<br />

summarised <strong>in</strong> Thomps<strong>on</strong> et al. (1995). Increased graz<strong>in</strong>g pressure by sheep is the likely<br />

ma<strong>in</strong> cause <str<strong>on</strong>g>of</str<strong>on</strong>g> the l<strong>on</strong>g-term loss <str<strong>on</strong>g>of</str<strong>on</strong>g> heather moorland <strong>in</strong> the northern Peak District (over<br />

<strong>on</strong>e third lost 1913-1976) (Anders<strong>on</strong> and Yalden, 1981). More widely across the UK,<br />

<strong>in</strong>creases <strong>in</strong> sheep numbers are generally c<strong>on</strong>sidered as the ma<strong>in</strong> cause <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>versi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> heather to grass-dom<strong>in</strong>ated moorland, although this is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten <strong>in</strong> comb<strong>in</strong>ati<strong>on</strong> with<br />

<strong>in</strong>appropriate management regimes (Bardgett et al., 1995, Thomps<strong>on</strong> et al. 1995, Mackey<br />

et al. 1998). In north-east Scotland, a stock<strong>in</strong>g rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 2.7 sheep/ha was estimated to cause<br />

heather decl<strong>in</strong>e given average heather growth <str<strong>on</strong>g>of</str<strong>on</strong>g> 4.7 cm/year, although the potential<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> cattle graz<strong>in</strong>g were c<strong>on</strong>sidered more substantial (Welch, 1984). Sheep graze<br />

grasses <strong>in</strong> preference to Calluna, and so at low to <strong>in</strong>termediate graz<strong>in</strong>g levels heather<br />

cover <strong>in</strong>creases. However, at high levels <str<strong>on</strong>g>of</str<strong>on</strong>g> graz<strong>in</strong>g Calluna will be grazed, and the<br />

disturbance <str<strong>on</strong>g>of</str<strong>on</strong>g> the heather canopy allows grasses to <strong>in</strong>vade. Increased stock<strong>in</strong>g rates have<br />

probably not been driven by <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> nitrogen depositi<strong>on</strong>, but rather by agricultural<br />

fund<strong>in</strong>g mechanisms. Nitrogen depositi<strong>on</strong> may have facilitated <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> graz<strong>in</strong>g to some<br />

extent, by <strong>in</strong>creas<strong>in</strong>g the nutritive value <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong>, but the importance <str<strong>on</strong>g>of</str<strong>on</strong>g> this, while<br />

very difficult to determ<strong>in</strong>e, is likely to have been small.<br />

In moorland and heathland, Calluna is usually a more effective competitor than grasses,<br />

even at high <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> levels (Al<strong>on</strong>so et al., 2001), although the f<strong>in</strong>d<strong>in</strong>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> some studies<br />

do not c<strong>on</strong>cur with this (van der Eerden et al., 1991). While graz<strong>in</strong>g has <strong>in</strong>dependent<br />

131


<str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> heather cover, <strong>in</strong>teracti<strong>on</strong>s with fertiliser applicati<strong>on</strong>s have been observed. In<br />

Aberdeenshire, Nardus stricta acquired fertiliser <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s faster than Calluna <strong>in</strong> pots, but<br />

fertiliser additi<strong>on</strong> <strong>in</strong> the field (which <strong>in</strong>cluded phosphorus and potassium as well as<br />

nitrogen) <strong>on</strong>ly favoured Nardus stricta <strong>in</strong> unfenced areas. This is possibly because <strong>in</strong> the<br />

absence <str<strong>on</strong>g>of</str<strong>on</strong>g> graz<strong>in</strong>g Calluna was able to close its canopy and exclude the shade-<strong>in</strong>tolerant<br />

grass (Hartley, 1997). Exclusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> graz<strong>in</strong>g had a greater (positive) impact <strong>on</strong> the<br />

performance <str<strong>on</strong>g>of</str<strong>on</strong>g> Calluna and grasses (except for the unpalatable Nardus stricta) than did<br />

the additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s, although Deschampsia cespitosa resp<strong>on</strong>ded positively to<br />

fertiliser additi<strong>on</strong>, and D. cespitosa (height) and Calluna (growth) both showed positive<br />

<strong>in</strong>teracti<strong>on</strong>s between fertiliser and exclusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> graz<strong>in</strong>g (Al<strong>on</strong>so et al., 2001). Exclud<strong>in</strong>g<br />

graz<strong>in</strong>g significantly benefited Calluna, while Calluna cover decl<strong>in</strong>ed <strong>on</strong> grazed plots,<br />

even where they were unfertilised (Hartley and Mitchell, 2005). However, fertiliser<br />

applicati<strong>on</strong> <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> graz<strong>in</strong>g <strong>on</strong> Calluna, which may be <strong>in</strong>fluenced by its<br />

proximity to grass patches (Palmer et al., 2003). In the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> graz<strong>in</strong>g, <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g><br />

nitrogen did not lead to a loss <str<strong>on</strong>g>of</str<strong>on</strong>g> Calluna cover, even after six years <str<strong>on</strong>g>of</str<strong>on</strong>g> fertiliser additi<strong>on</strong>,<br />

but there was a marg<strong>in</strong>ally significant (p=0.05) fertiliser/fenc<strong>in</strong>g <strong>in</strong>teracti<strong>on</strong>; Calluna<br />

cover decl<strong>in</strong>ed by over 40% <strong>on</strong> grazed plots with nitrogen added, but under 20% <strong>in</strong><br />

grazed plots without nitrogen added (Hartley and Mitchell, 2005). Grass cover <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g><br />

with nitrogen additi<strong>on</strong>, although which species <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> was determ<strong>in</strong>ed by whether or<br />

not the plot was grazed. Invasi<strong>on</strong> by bracken has also caused loss <str<strong>on</strong>g>of</str<strong>on</strong>g> heather moorland,<br />

and some studies have suggested that nitrogen availability mediates competiti<strong>on</strong> between<br />

bracken and Calluna (Anders<strong>on</strong> and Hether<strong>in</strong>gt<strong>on</strong>, 1999; Werkman and Callaghan, 1996,<br />

<strong>in</strong> Bobb<strong>in</strong>k et al., 2003), possibly through <strong>in</strong>teracti<strong>on</strong>s with water availability (Gord<strong>on</strong> et<br />

al., 1999).<br />

Heather beetle outbreaks can also significantly affect heather cover. A survey <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

extent <str<strong>on</strong>g>of</str<strong>on</strong>g> heather beetle damage <strong>in</strong> Scotland <strong>in</strong> 1997-2001 found that 5.4-10.4% <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

heather was affected, and that not all heather recovered (Pakeman et al., 2004).<br />

Nevertheless, the evidence suggests that the major threat to Calluna moorland <strong>in</strong> the<br />

British uplands is <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> graz<strong>in</strong>g <strong>in</strong>tensity, although <strong>in</strong>appropriate burn<strong>in</strong>g regimes<br />

exacerbate the problem. Burn<strong>in</strong>g has the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> export<strong>in</strong>g <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s from moorland (and<br />

132


lowland heath) vegetati<strong>on</strong>. Graz<strong>in</strong>g has <strong>in</strong>dependent negative <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> heather cover,<br />

while Calluna is able to out-compete grass species <strong>in</strong> the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> graz<strong>in</strong>g, even at high<br />

<str<strong>on</strong>g>nutrient</str<strong>on</strong>g> levels. Nevertheless, significant <strong>in</strong>teracti<strong>on</strong>s between <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> levels and graz<strong>in</strong>g,<br />

suggest<strong>in</strong>g that <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> nitrogen depositi<strong>on</strong> exacerbates the problem <str<strong>on</strong>g>of</str<strong>on</strong>g> heather loss due<br />

to graz<strong>in</strong>g, even though the major cause <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> stock<strong>in</strong>g densities has been<br />

agricultural subsidies. Nitrogen depositi<strong>on</strong> may improve the forage value <str<strong>on</strong>g>of</str<strong>on</strong>g> Calluna, and<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> moorland grasses, which can lead to <strong>in</strong>cidental graz<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> nearby Calluna (Palmer et<br />

al., 2003).<br />

4.3.2. Lowland heath<br />

Lowland heath has been decl<strong>in</strong><strong>in</strong>g <strong>in</strong> northwest Europe s<strong>in</strong>ce at least the late 1970s (de<br />

Smidt, 1995). Invasi<strong>on</strong> by grasses (Deschampsia flexuosa <strong>in</strong> dry heaths and Mol<strong>in</strong>ia<br />

caerulea <strong>in</strong> wet heaths) able to out-compete Calluna at heightened nitrogen levels has<br />

been blamed for the changes; critical nitrogen loads to cause a shift from lowland heath<br />

to grassland have been determ<strong>in</strong>ed to be <strong>in</strong> the range <str<strong>on</strong>g>of</str<strong>on</strong>g> 15-22 kg/ha/y (Heil and Bobb<strong>in</strong>k,<br />

1993). Cryptogams disappeared from Dutch lowland heath <strong>in</strong> experimentally fertilised<br />

plots prior to an <strong>in</strong>crease <strong>in</strong> grasses, <strong>in</strong>dicat<strong>in</strong>g a direct effect <str<strong>on</strong>g>of</str<strong>on</strong>g> fertilisers <strong>on</strong> these taxa<br />

(de Smidt, 1995). However, there have been some c<strong>on</strong>tradictory results from experiments<br />

designed to test the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> additi<strong>on</strong>s. In the Netherlands, additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen<br />

over 11 years saw a dramatic replacement <str<strong>on</strong>g>of</str<strong>on</strong>g> Calluna by Festuca ov<strong>in</strong>a, which was<br />

facilitated <strong>in</strong> fertilised plots <str<strong>on</strong>g>of</str<strong>on</strong>g> mature Calluna by a heather beetle attack (Heil and<br />

Diem<strong>on</strong>t, 1983). C<strong>on</strong>versely, while Calluna yield was reduced when grown with D.<br />

flexuosa <strong>in</strong> experimental pots, additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen did not additi<strong>on</strong>ally affect competiti<strong>on</strong><br />

between the species (Britt<strong>on</strong> et al., 2003). Calluna was found to be competitively superior<br />

to Mol<strong>in</strong>ia caerulea at a range <str<strong>on</strong>g>of</str<strong>on</strong>g> levels <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> applicati<strong>on</strong>, due to its light<br />

<strong>in</strong>tercepti<strong>on</strong> capacity, suggest<strong>in</strong>g that the start<strong>in</strong>g situati<strong>on</strong> played an important role <strong>in</strong><br />

allow<strong>in</strong>g Mol<strong>in</strong>ia to displace Calluna (Aerts et al., 1990). In wet heaths grasses are<br />

competitively favoured over Erica tetralix at heightened levels <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen applicati<strong>on</strong><br />

(Aerts, 1993).<br />

133


Increased nitrogen availability stimulates both Calluna and grasses (Heil and Brugg<strong>in</strong>k,<br />

1987); the latter are <strong>on</strong>ly competitively superior <strong>in</strong> the early stages <str<strong>on</strong>g>of</str<strong>on</strong>g> heath development<br />

before a dense heather canopy has developed (Berdowski and Zeil<strong>in</strong>ga, 1987; Aerts et al.,<br />

1990; Aerts, 1993). Thus other processes that open the canopy, <strong>in</strong>clud<strong>in</strong>g heather beetle<br />

attacks, drought or frost, <strong>in</strong>crease the <strong>in</strong>vasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> heath by grasses (Barker et al., 2004).<br />

However, these processes can be facilitated by <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> availability, as heather<br />

beetle graz<strong>in</strong>g is affected by the nutriti<strong>on</strong>al value <str<strong>on</strong>g>of</str<strong>on</strong>g> Calluna, its sole food plant (Crawley,<br />

1983, <strong>in</strong> Bobb<strong>in</strong>k et al., 1998), which <strong>in</strong> turn is <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> by additi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen (as<br />

described above), which can <strong>in</strong>crease the frequency, and severity <str<strong>on</strong>g>of</str<strong>on</strong>g> outbreaks (Bobb<strong>in</strong>k<br />

et al., 1998). Outbreaks <str<strong>on</strong>g>of</str<strong>on</strong>g> heather beetles can cause large gaps to open up, allow<strong>in</strong>g<br />

<strong>in</strong>vasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> other species (Berdowski and Zeil<strong>in</strong>ga, 1987). Heather beetles also <strong>in</strong>crease<br />

<str<strong>on</strong>g>nutrient</str<strong>on</strong>g> availability, by reduc<strong>in</strong>g competiti<strong>on</strong> from Calluna for resources, and by the<br />

additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s from heather beetle larval faeces and Calluna decompositi<strong>on</strong>.<br />

In c<strong>on</strong>trast to the c<strong>on</strong>cerns about <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> graz<strong>in</strong>g <strong>in</strong>tensity <strong>on</strong> heather moorland,<br />

reduced management <strong>in</strong>tensity <strong>in</strong> the forms <str<strong>on</strong>g>of</str<strong>on</strong>g> graz<strong>in</strong>g and burn<strong>in</strong>g may be more <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

threat to lowland heath (Barker et al., 2004). In the Breckland <str<strong>on</strong>g>of</str<strong>on</strong>g> East Anglia, a selecti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> heathlands showed a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> changes over the period 1983-1991, from c<strong>on</strong>t<strong>in</strong>ued<br />

Calluna dom<strong>in</strong>ance, to almost complete replacement by grasses (Marrs, 1993).<br />

Heightened nitrogen <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> were suggested as a possible cause <str<strong>on</strong>g>of</str<strong>on</strong>g> the shifts, via such<br />

mechanisms as susceptibility to frost, <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> herbivory, and changes <strong>in</strong> competitive<br />

balance, but it was noted that the sites had largely been unmanaged over much <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

period, and there was no evidence for nitrogen depositi<strong>on</strong> as the major causal factor. In<br />

the Netherlands free rang<strong>in</strong>g cattle graz<strong>in</strong>g restricted grass <strong>in</strong>vasi<strong>on</strong>, and led to a recovery<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Calluna <strong>in</strong> grass-dom<strong>in</strong>ated heaths, although not <strong>on</strong> all soil types (Bokdam and<br />

Gleichman, 2000).<br />

Transiti<strong>on</strong> to scrub and woodland has received less attenti<strong>on</strong> <strong>in</strong> the literature, but these<br />

habitats also displace lowland heath (Mitchell et al., 1997, 1999). In Dorset, the area <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

heathland decl<strong>in</strong>ed, and fragmentati<strong>on</strong> <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g>, between 1987 and 1996, which was<br />

134


attributed largely to successi<strong>on</strong> to scrub and woody vegetati<strong>on</strong> (Rose et al., 1999).<br />

Experimental additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phosphorus <strong>in</strong> Dorset heathland was positively related to Betula<br />

spp. seedl<strong>in</strong>g densities, although Betula seed availability was the s<strong>in</strong>gle greatest limit<strong>in</strong>g<br />

factor <strong>on</strong> seedl<strong>in</strong>g density (Mann<strong>in</strong>g et al., 2004). Phosphorus is limit<strong>in</strong>g <strong>in</strong> these soils,<br />

and atmospheric nitrogen depositi<strong>on</strong> may have played less <str<strong>on</strong>g>of</str<strong>on</strong>g> a role <strong>in</strong> the loss <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

heathland than changes to management, specifically reducti<strong>on</strong>s <strong>in</strong> graz<strong>in</strong>g and burn<strong>in</strong>g<br />

(Rose et al., 1999).<br />

4.3.3. Summary<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> major effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> nitrogen levels <strong>in</strong> both moorland and lowland heath is a<br />

shift from Calluna-dom<strong>in</strong>ated vegetati<strong>on</strong> to vegetati<strong>on</strong> dom<strong>in</strong>ated by gram<strong>in</strong>oids,<br />

although this is unlikely to happen <strong>on</strong> upland moorlands <strong>in</strong> the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> at least<br />

moderate graz<strong>in</strong>g pressure. Management regime and nitrogen <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> are critical <strong>in</strong><br />

determ<strong>in</strong><strong>in</strong>g the magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the changes. <str<strong>on</strong>g>The</str<strong>on</strong>g> changes <strong>in</strong> vegetati<strong>on</strong> compositi<strong>on</strong> occur<br />

because <str<strong>on</strong>g>of</str<strong>on</strong>g> the shift <strong>in</strong> the competitive balance between Calluna and other species, <strong>in</strong><br />

which nitrogen levels play an important role, although this is <strong>in</strong> c<strong>on</strong>juncti<strong>on</strong> with other<br />

factors that cause the heather canopy to break up. Applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen <strong>in</strong> the absence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> other disturbance does not lead to the replacement <str<strong>on</strong>g>of</str<strong>on</strong>g> Calluna by grasses, but foliar<br />

nitrogen c<strong>on</strong>tent helps to determ<strong>in</strong>e the frequency and severity <str<strong>on</strong>g>of</str<strong>on</strong>g> heather beetle attacks,<br />

while heather dieback, apparently due to drought sensitivity, is also heightened by<br />

atmospheric nitrogen depositi<strong>on</strong>. Both <str<strong>on</strong>g>of</str<strong>on</strong>g> these mechanisms for the break up <str<strong>on</strong>g>of</str<strong>on</strong>g> heather<br />

canopy can be directly related to nitrogen depositi<strong>on</strong>; an <strong>in</strong>c<strong>on</strong>trovertible relati<strong>on</strong>ship<br />

with the third, and potentially most important, mechanism cannot be established. This is<br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> graz<strong>in</strong>g pressure, which has been cited as the major cause for the loss <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Calluna cover. Graz<strong>in</strong>g has <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> heath and moorland vegetati<strong>on</strong> <strong>in</strong>dependent <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> fertiliser, and stock<strong>in</strong>g rates are likely to have <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> <strong>in</strong> these habitats<br />

regardless <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> status <str<strong>on</strong>g>of</str<strong>on</strong>g> soils, as fund<strong>in</strong>g mechanisms have been the major<br />

driver <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> graz<strong>in</strong>g <strong>in</strong>tensity. <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> primary productivity and nutritive<br />

value <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong> result<strong>in</strong>g from atmospheric nitrogen depositi<strong>on</strong> may have enabled<br />

135


higher stock<strong>in</strong>g rates than would otherwise have been possible, and the break up <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

heather canopy as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> heavy graz<strong>in</strong>g could have allowed for further <strong>in</strong>creases <strong>in</strong><br />

stock<strong>in</strong>g rates. However, its c<strong>on</strong>tributi<strong>on</strong> is practically impossible to determ<strong>in</strong>e, and is<br />

likely to have been small.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> mechanisms described above are likely to be major c<strong>on</strong>tributors to loss or change <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

upland moorland habitat <strong>in</strong> the United K<strong>in</strong>gdom. In lowland heath, despite a c<strong>on</strong>siderable<br />

body <str<strong>on</strong>g>of</str<strong>on</strong>g> work from lowland heath, particularly <strong>in</strong> the Netherlands (Aerts and Heil, 1993),<br />

atmospheric depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen appears to be less important <strong>in</strong> driv<strong>in</strong>g the loss <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

habitat, at least <strong>in</strong> the UK. This is not to say that nitrogen depositi<strong>on</strong> is not a threat to<br />

lowland heath; rather that there are other processes that currently threaten to a greater<br />

extent, such as successi<strong>on</strong> to scrub and woodland, and land clearance, notably for urban<br />

uses. One <str<strong>on</strong>g>of</str<strong>on</strong>g> the major problems presented by <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> soil <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> c<strong>on</strong>tent has been its<br />

role as an obstacle to the recreati<strong>on</strong> or restorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> lowland heath habitats (Smith et al.,<br />

1991; Pywell et al., 1994).<br />

4.4 Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <strong>in</strong>creases <strong>on</strong> <strong>in</strong>vertebrate prey items<br />

Studies <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>vertebrates <strong>in</strong> Calluna-dom<strong>in</strong>ated habitats have tended to exam<strong>in</strong>e the<br />

<strong>in</strong>vertebrate community for its own <strong>in</strong>tr<strong>in</strong>sic and c<strong>on</strong>servati<strong>on</strong> value, rather than as food<br />

items for <strong>birds</strong>, although this has been addressed <strong>in</strong> a recent review (Buchanan et al., <strong>in</strong><br />

press). Although moorland <strong>birds</strong> take a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>vertebrate taxa, relatively few<br />

appear to be taken widely, with Diptera (particularly Tipulidae) and Coleoptera<br />

(particularly Carabidae, Curculi<strong>on</strong>idae and Elateridae) be<strong>in</strong>g the most important. I present<br />

some background <strong>in</strong>formati<strong>on</strong> <strong>on</strong> <strong>in</strong>vertebrate communities <strong>in</strong> heath and moorland, both<br />

heather- and grass-dom<strong>in</strong>ated, but there is <strong>in</strong>sufficient <strong>in</strong>formati<strong>on</strong> available to<br />

systematically pursue c<strong>on</strong>necti<strong>on</strong>s between <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> levels, these communities and bird<br />

populati<strong>on</strong>s.<br />

136


<str<strong>on</strong>g>The</str<strong>on</strong>g> ma<strong>in</strong>tenance <str<strong>on</strong>g>of</str<strong>on</strong>g> high <strong>in</strong>vertebrate species diversity <strong>on</strong> moorland has been shown to<br />

benefit from a mosaic <str<strong>on</strong>g>of</str<strong>on</strong>g> Calluna ages (Gim<strong>in</strong>gham, 1985; McFerran et al., 1995;<br />

Haysom and Couls<strong>on</strong>, 1998; Dennis, 2003), and <str<strong>on</strong>g>of</str<strong>on</strong>g> heather-grass proximity (Couls<strong>on</strong> and<br />

Butterfield, 1985). Carabid beetle communities reflect vegetati<strong>on</strong> development (Gardner,<br />

1991), and carabid abundance is greatest <strong>in</strong> the pi<strong>on</strong>eer and degenerate stages <str<strong>on</strong>g>of</str<strong>on</strong>g> Calluna<br />

development (Gim<strong>in</strong>gham, 1985). In four <strong>in</strong>vertebrate communities associated with<br />

moorland <strong>in</strong> northern England, worms comprised 24-92% <str<strong>on</strong>g>of</str<strong>on</strong>g> the stand<strong>in</strong>g crop, while<br />

Lepidoptera and Diptera formed important proporti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the stand<strong>in</strong>g crop <strong>in</strong> the various<br />

communities (Couls<strong>on</strong> and Butterfield, 1985; Couls<strong>on</strong>, 1988). At a site <strong>in</strong> the Penn<strong>in</strong>es,<br />

spider abundance was lower <strong>in</strong> Calluna/Eriophorum-dom<strong>in</strong>ated moorland than <strong>in</strong> either<br />

Festuca/Nardus rough grassland or Juncus squarrosus sedgeland, although it was higher<br />

than <strong>in</strong> heavily grazed calcareous grassland (Cherrett, 1964). Across eight habitats spider<br />

abundance was significantly correlated with the abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> other arthropods. An<br />

<strong>in</strong>crease <strong>in</strong> grass cover <strong>in</strong> areas otherwise dom<strong>in</strong>ated by c<strong>on</strong>t<strong>in</strong>uous heather cover is<br />

likely to <strong>in</strong>crease <strong>in</strong>vertebrate food supplies for <strong>birds</strong> (Buchanan et al., <strong>in</strong> press), although<br />

wet areas with<strong>in</strong> moorland, which provide grouse, waders and <strong>in</strong>sectivorous passer<strong>in</strong>es<br />

with abundant <strong>in</strong>vertebrate food <strong>in</strong> spr<strong>in</strong>g (Fuller and Gough, 1999). Invertebrate<br />

abundance and diversity are str<strong>on</strong>gly affected by soil type and moisture c<strong>on</strong>tent<br />

(Buchanan et al., <strong>in</strong> press), and these elements may be more important than the overly<strong>in</strong>g<br />

vegetati<strong>on</strong> (which may itself be partly determ<strong>in</strong>ed by soil characteristics).<br />

Increased nitrogen c<strong>on</strong>tent is likely to <strong>in</strong>crease abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> phytophagous <strong>in</strong>vertebrates<br />

<strong>in</strong> heather, and this was observed <strong>in</strong> Hemiptera follow<strong>in</strong>g experimental fertiliser additi<strong>on</strong><br />

to plots <strong>on</strong> Scottish moorlands (Hartley et al., 2003), and Hemiptera species richness was<br />

higher <strong>in</strong> grass moor than heather moor <strong>in</strong> British uplands (Littlewood et al., 2006).<br />

Several groups <str<strong>on</strong>g>of</str<strong>on</strong>g> phytophagous <strong>in</strong>sect have their greatest abundance <strong>in</strong> the pi<strong>on</strong>eer or<br />

build<strong>in</strong>g stages, and management such as graz<strong>in</strong>g and/or burn<strong>in</strong>g that promotes<br />

regenerati<strong>on</strong> should ma<strong>in</strong>ta<strong>in</strong> higher <strong>in</strong>vertebrate density with<strong>in</strong> heather (Gim<strong>in</strong>gham,<br />

1985). By c<strong>on</strong>trast, some groups are more abundant <strong>in</strong> mature heather; <strong>in</strong> northern<br />

Brita<strong>in</strong>, Lepidoptera larval abundance and diversity were positively related to Calluna<br />

height, due to the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> uncomm<strong>on</strong> moth species <strong>on</strong> taller Calluna, and a change <strong>in</strong><br />

137


the c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> comm<strong>on</strong> species to the community <strong>in</strong> different height z<strong>on</strong>es (Haysom<br />

and Couls<strong>on</strong>, 1998).<br />

Graz<strong>in</strong>g has <str<strong>on</strong>g><strong>in</strong>direct</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> the arthropod fauna <str<strong>on</strong>g>of</str<strong>on</strong>g> the uplands by modify<strong>in</strong>g the<br />

vegetati<strong>on</strong> structure (Dennis, 2003). High <strong>in</strong>tensity graz<strong>in</strong>g removes more above ground<br />

foliage, and reduced graz<strong>in</strong>g <strong>in</strong>tensity is likely to <strong>in</strong>crease phytophagous <strong>in</strong>vertebrates<br />

and spiders (Couls<strong>on</strong>, 1988). For example, <strong>in</strong>vertebrate abundance was lower <strong>in</strong> heavily<br />

grazed rather than lightly grazed moorland <strong>in</strong> Scotland and northern England (Ba<strong>in</strong>es,<br />

1996). In the Graz<strong>in</strong>g and Upland Bird (GRUB) project <strong>in</strong> Scotland, foliar spiders,<br />

hemipterans and beetles all <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> <strong>in</strong> abundance under reduced stock<strong>in</strong>g densities, but<br />

tipulid larvae decreased (Dennis et al., 2005). Additi<strong>on</strong>ally, sheep dung supports some<br />

<strong>in</strong>vertebrates, notably Diptera and some beetles, that would not be present <strong>in</strong> its absence,<br />

and which can be locally very abundant (Couls<strong>on</strong>, 1988). However, these studies were<br />

c<strong>on</strong>ducted <strong>in</strong> areas <str<strong>on</strong>g>of</str<strong>on</strong>g> gram<strong>in</strong>oid-dom<strong>in</strong>ated moorland, where the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> graz<strong>in</strong>g,<br />

particularly <strong>in</strong> relati<strong>on</strong> to the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>crease <strong>in</strong> height and density <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong>, are<br />

likely to be very different from those observed <strong>on</strong> heather moorland. Here was no shift<br />

from grass to heather moorland <strong>on</strong> any <str<strong>on</strong>g>of</str<strong>on</strong>g> the graz<strong>in</strong>g treatments <strong>in</strong> the GRUB project<br />

(Dennis et al., 2005).<br />

One <strong>in</strong>vertebrate species for which there is str<strong>on</strong>g evidence for the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen<br />

depositi<strong>on</strong>, growth rates and populati<strong>on</strong> density is the heather beetle (Berdowski, 1993).<br />

While research has largely c<strong>on</strong>centrated <strong>on</strong> the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> outbreaks <strong>on</strong> Calluna, these<br />

beetles may be an important food source for <strong>birds</strong>, the availability <str<strong>on</strong>g>of</str<strong>on</strong>g> which is mediated<br />

by <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> levels.<br />

4.5. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <strong>in</strong>creases <strong>on</strong> <strong>birds</strong><br />

From the review <str<strong>on</strong>g>of</str<strong>on</strong>g> studies <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen depositi<strong>on</strong> <strong>on</strong> upland moorland and<br />

lowland heath vegetati<strong>on</strong> presented above, it appears that the major threat to <strong>birds</strong> is<br />

likely to be habitat change aris<strong>in</strong>g from shifts <strong>in</strong> vegetati<strong>on</strong> cover. <str<strong>on</strong>g>The</str<strong>on</strong>g> likelihood <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>birds</strong><br />

138


e<strong>in</strong>g negatively affected by such changes will therefore be determ<strong>in</strong>ed by how reliant<br />

they are <strong>on</strong> the heather comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> moorland or heath. However, due to the nature <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

both vegetati<strong>on</strong> types, form<strong>in</strong>g spatial and temporal mosaics, the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> <strong>birds</strong> may be<br />

complex and subtle, as most bird species do not favour complete Calluna cover, but<br />

prefer mosaics <str<strong>on</strong>g>of</str<strong>on</strong>g> vary<strong>in</strong>g compositi<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> a shift from heather to<br />

grass cover <strong>on</strong> breed<strong>in</strong>g <strong>birds</strong> will vary between different sites accord<strong>in</strong>g to the <strong>in</strong>itial<br />

vegetati<strong>on</strong> compositi<strong>on</strong> <strong>on</strong> the site. One <str<strong>on</strong>g>of</str<strong>on</strong>g> the difficulties <strong>in</strong> discern<strong>in</strong>g habitat<br />

preferences is that studies have frequently exam<strong>in</strong>ed these at larger scales and at<br />

relatively coarse resoluti<strong>on</strong>, so that relati<strong>on</strong>ships may be found between bird abundances<br />

and heather moorland, where a f<strong>in</strong>er-scale analysis may f<strong>in</strong>d that the <strong>birds</strong> are us<strong>in</strong>g other<br />

vegetati<strong>on</strong> comp<strong>on</strong>ents with<strong>in</strong> the moorland. A recent study <str<strong>on</strong>g>of</str<strong>on</strong>g> bird-habitat relati<strong>on</strong>ships<br />

<strong>in</strong> northern Brita<strong>in</strong> has exam<strong>in</strong>ed the vegetati<strong>on</strong> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>in</strong> f<strong>in</strong>e detail and also attempted<br />

to disentangle these <str<strong>on</strong>g>effects</str<strong>on</strong>g> from other site and management <str<strong>on</strong>g>effects</str<strong>on</strong>g> that may be<br />

c<strong>on</strong>founded with the vegetati<strong>on</strong> c<strong>on</strong>diti<strong>on</strong> (Pearce-Higg<strong>in</strong>s and Grant, 2006). I review the<br />

evidence for reliance <strong>on</strong> moorland and heath vegetati<strong>on</strong> and suggest ways <strong>in</strong> which<br />

species have been, or could possibly be <strong>in</strong> the future, affected by habitat loss/change.<br />

4.5.1. Upland moorland<br />

Changes to bird populati<strong>on</strong>s and communities <strong>in</strong> the uplands may be driven by several<br />

processes, <strong>in</strong>clud<strong>in</strong>g afforestati<strong>on</strong> and seral successi<strong>on</strong> to scrub (Gill<strong>in</strong>gs et al., 1998),<br />

climate change, and changes <strong>in</strong> moorland management (e.g. game shoot<strong>in</strong>g and graz<strong>in</strong>g<br />

regimes). As already <strong>in</strong>dicated (see 4.2) some <str<strong>on</strong>g>of</str<strong>on</strong>g> these at least are likely to be more<br />

important than the <str<strong>on</strong>g>effects</str<strong>on</strong>g> aris<strong>in</strong>g from <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g>. This is for a number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

reas<strong>on</strong>s but foremost am<strong>on</strong>gst them is the fact that they may: (i) cause an actual loss <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the moorland area (e.g. afforestati<strong>on</strong>); (ii) affect predati<strong>on</strong> rates, and hence productivity<br />

and survival <str<strong>on</strong>g>of</str<strong>on</strong>g> moorland <strong>birds</strong> (e.g. game management); and (iii) are likely to be<br />

resp<strong>on</strong>sible for greater changes <strong>in</strong> the compositi<strong>on</strong> and structure <str<strong>on</strong>g>of</str<strong>on</strong>g> the moorland<br />

vegetati<strong>on</strong> (e.g. graz<strong>in</strong>g regimes). <str<strong>on</strong>g>The</str<strong>on</strong>g> greatest potential threat to moorland <strong>birds</strong> from<br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> atmospheric depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen (when comb<strong>in</strong>ed with relatively <strong>in</strong>tense<br />

139


graz<strong>in</strong>g) is likely to be the change <strong>in</strong> habitat as Calluna-dom<strong>in</strong>ated moor shifts to grass<br />

moor. Bird species that rely <strong>on</strong> Calluna-dom<strong>in</strong>ated moor will be negatively affected by<br />

such changes, whereas species that prefer grass moor, or that have no str<strong>on</strong>g preference,<br />

should be unaffected. Many species require a mosaic <str<strong>on</strong>g>of</str<strong>on</strong>g> Calluna and gram<strong>in</strong>oid<br />

vegetati<strong>on</strong>; the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat loss <strong>on</strong> these species will depend <strong>on</strong> the <strong>in</strong>itial quantities<br />

and spatial distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the different vegetati<strong>on</strong>-types they require. In the current<br />

review, I c<strong>on</strong>centrate <strong>on</strong> the potential <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Calluna loss and changes to the<br />

c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Calluna and gram<strong>in</strong>oid vegetati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> evidence for the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> loss<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Calluna-moorland <strong>on</strong> <strong>birds</strong> is summarised <strong>in</strong> Table 4.3. Below I deal with some <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

ma<strong>in</strong> bird species that breed <strong>on</strong> UK moorlands and assess the extent to which they may<br />

be affected by the c<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> heather to grass cover.<br />

4.5.1.1. Red grouse<br />

Only <strong>on</strong>e species is c<strong>on</strong>sidered to be c<strong>on</strong>f<strong>in</strong>ed to heather moorland: red grouse<br />

(Thomps<strong>on</strong> et al., 1995). Red grouse feed extensively <strong>on</strong> Calluna shoots and this forms<br />

the ma<strong>in</strong> staple <str<strong>on</strong>g>of</str<strong>on</strong>g> the diet for <strong>birds</strong> that are more than a week or two old, so that the<br />

requirement for heather is clear. Nitrogenous fertiliser may improve the nutritive value <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

heather and benefit red grouse (Cadbury, 1992). Young heather shoots are preferred and<br />

disturbance (particularly fire) that stimulates heather regrowth without replac<strong>in</strong>g it with<br />

gram<strong>in</strong>oids will also be beneficial. <str<strong>on</strong>g>The</str<strong>on</strong>g>re is some evidence that the species does benefit<br />

from some heterogeneity <strong>in</strong> the sward, but although Calluna m<strong>on</strong>ocultures may not be<br />

optimal, high cover values (e.g. 50 – 70 %) clearly are (Pearce-Higg<strong>in</strong>s and Grant, 2006).<br />

However, where loss <str<strong>on</strong>g>of</str<strong>on</strong>g> heather cover occurs, habitat will become less suitable. In the<br />

northern Peak District, l<strong>on</strong>g-term loss <str<strong>on</strong>g>of</str<strong>on</strong>g> heather moorland attributed to <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> graz<strong>in</strong>g<br />

pressure was c<strong>on</strong>current with the reducti<strong>on</strong> <strong>in</strong> red grouse stocks <strong>in</strong> the area (based <strong>on</strong><br />

game bags) (Anders<strong>on</strong> and Yalden, 1981). In Scotland, l<strong>on</strong>g-term decl<strong>in</strong>es <strong>in</strong> red grouse<br />

(as measured by grouse bags) over the period 1913-1990 were attributed largely to the<br />

loss <str<strong>on</strong>g>of</str<strong>on</strong>g> heather cover, which decl<strong>in</strong>ed by 48% between 1948 and 1988 (Thirgood et al.,<br />

2000). Red grouse is the species most likely to suffer negative <str<strong>on</strong>g>effects</str<strong>on</strong>g> from loss <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

heather cover.<br />

140


4.5.1.2. Black grouse<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> red-listed black grouse is a bird <str<strong>on</strong>g>of</str<strong>on</strong>g> woodland and moorland fr<strong>in</strong>ges for which there is<br />

evidence <str<strong>on</strong>g>of</str<strong>on</strong>g> detrimental <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> high graz<strong>in</strong>g pressure (Ba<strong>in</strong>es, 1996, Callad<strong>in</strong>e et al.,<br />

2002). Two mechanisms suggested for the negative <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> graz<strong>in</strong>g were the reduced<br />

vegetati<strong>on</strong> height and cover to protect nest<strong>in</strong>g <strong>birds</strong> from predati<strong>on</strong>, and reduced<br />

<strong>in</strong>vertebrate abundance <strong>on</strong> heavily grazed moors. Additi<strong>on</strong>ally, adult black grouse rely <strong>on</strong><br />

Calluna as a staple food, particularly from autumn to late w<strong>in</strong>ter (Picozzi and Hepburn<br />

1986, Beest<strong>on</strong> et al., 2005), whilst tall heather may provide suitable nest<strong>in</strong>g sites<br />

(Cayford et al., 1989). However, despite the importance <str<strong>on</strong>g>of</str<strong>on</strong>g> the availability <str<strong>on</strong>g>of</str<strong>on</strong>g> Calluna to<br />

black grouse, they require access to other vegetati<strong>on</strong>-types <str<strong>on</strong>g>of</str<strong>on</strong>g> open ground habitats, and<br />

both Vacc<strong>in</strong>ium myrtillus dom<strong>in</strong>ated areas and wet, grassy, habitats may be critical for<br />

broods (Grant and Daws<strong>on</strong>, 2005). Overall, <strong>on</strong> open ground habitats, mosaics <str<strong>on</strong>g>of</str<strong>on</strong>g> dwarf<br />

shrub and gram<strong>in</strong>oid dom<strong>in</strong>ated vegetati<strong>on</strong> may provide the most suitable c<strong>on</strong>diti<strong>on</strong>s<br />

(Pearce-Higg<strong>in</strong>s et al., 2005). On grass-dom<strong>in</strong>ated moorland <strong>in</strong> northern England,<br />

reducti<strong>on</strong>s <strong>in</strong> graz<strong>in</strong>g pressure resulted <strong>in</strong> <strong>in</strong>itial <strong>in</strong>creases <strong>in</strong> grouse densities, but these<br />

were not susta<strong>in</strong>ed and densities began to decl<strong>in</strong>e five to seven years after the graz<strong>in</strong>g<br />

reducti<strong>on</strong> (Callad<strong>in</strong>e et al., 2002, Warren et al., 2003). Nitrogen <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> per se are unlikely<br />

to have a major effect <strong>on</strong> black grouse populati<strong>on</strong>s.<br />

4.5.1.3. Golden plover<br />

Moorland is the major breed<strong>in</strong>g habitat <str<strong>on</strong>g>of</str<strong>on</strong>g> golden plover (Thomps<strong>on</strong> et al., 1995), and <strong>in</strong><br />

northern British moorland, golden plover abundance was positively associated with the<br />

cover <str<strong>on</strong>g>of</str<strong>on</strong>g> short (0–15 cm) dwarf shrubs (<strong>in</strong>clud<strong>in</strong>g heather, crowberry and bilberry), but<br />

not with taller height categories <str<strong>on</strong>g>of</str<strong>on</strong>g> this vegetati<strong>on</strong>-type (Pearce-Higg<strong>in</strong>s and Grant, 2006).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>refore, this probably reflects a str<strong>on</strong>ger dependence <strong>on</strong> an appropriate vegetati<strong>on</strong><br />

structure rather than <strong>on</strong> dwarf shrubs themselves, whilst crowberry and bilberry can<br />

replace heather under <strong>in</strong>termediate graz<strong>in</strong>g regimes. Golden plover were also found to be<br />

more abundant <strong>on</strong> grouse moors than n<strong>on</strong>-grouse moors <strong>in</strong><br />

141


Table 4.3. Some <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> spatial or temporal variati<strong>on</strong> <strong>in</strong> upland moorland vegetati<strong>on</strong> <strong>on</strong> <strong>birds</strong><br />

Group Locati<strong>on</strong> Process Effects Possible cause Strength <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

n<strong>in</strong>e moorland<br />

bird species<br />

upland<br />

breed<strong>in</strong>g <strong>birds</strong><br />

meadow pipit<br />

and red grouse<br />

eight bird<br />

species<br />

northern<br />

Brita<strong>in</strong><br />

south<br />

Penn<strong>in</strong>es<br />

northern<br />

Brita<strong>in</strong><br />

south<br />

Penn<strong>in</strong>es<br />

relati<strong>on</strong>ships between bird abundance<br />

and vegetati<strong>on</strong> variables (account<strong>in</strong>g for<br />

c<strong>on</strong>found<strong>in</strong>g site and management<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g>)<br />

relati<strong>on</strong>ships between breed<strong>in</strong>g<br />

abundances and habitat variables<br />

relati<strong>on</strong>ship between habitat variables<br />

and abundances <str<strong>on</strong>g>of</str<strong>on</strong>g> meadow pipit and red<br />

grouse <strong>on</strong> grouse moors<br />

relati<strong>on</strong>ship between habitat variables<br />

and breed<strong>in</strong>g abundances <str<strong>on</strong>g>of</str<strong>on</strong>g> golden<br />

plover, dunl<strong>in</strong>, redshank, curlew, r<strong>in</strong>g<br />

ouzel, twite, short-eared owl and merl<strong>in</strong><br />

relati<strong>on</strong>ships detected for eight species,<br />

notably positive relati<strong>on</strong>ships with heather for<br />

red grouse and st<strong>on</strong>echat<br />

relati<strong>on</strong>ships with altitude and/or slope for<br />

several wader species; merl<strong>in</strong>, short-eared owl<br />

and red grouse associated with heather<br />

moorland, wh<strong>in</strong>chat with bracken, dunl<strong>in</strong> and<br />

golden plover with blanket bog, merl<strong>in</strong> and<br />

curlew with tall heather<br />

meadow pipit abundance negatively related to<br />

Calluna cover and muirburn, positively related<br />

to grass cover; red grouse abundance<br />

<strong>in</strong>fluenced by regi<strong>on</strong>al locati<strong>on</strong> and altitude<br />

various relati<strong>on</strong>ships, <strong>in</strong>clud<strong>in</strong>g: positive for<br />

Calluna cover and twite, r<strong>in</strong>g ouzel and<br />

merl<strong>in</strong>; negative for Calluna cover and dunl<strong>in</strong><br />

and curlew; positive for Eriophorum cover and<br />

dunl<strong>in</strong>, redshank and golden plover; positive<br />

for Pteridium cover and merl<strong>in</strong> and twite<br />

various preferences for<br />

vegetati<strong>on</strong> and structural<br />

features<br />

evidence 1<br />

Reference<br />

2 Pearce-Higg<strong>in</strong>s<br />

and Grant, 2006<br />

habitat preferences 2 Stillman and<br />

Brown, 1994<br />

habitat preferences <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

meadow pipits with<strong>in</strong><br />

grouse moors; moors were<br />

managed for red grouse<br />

various preferences for<br />

vegetati<strong>on</strong> and<br />

topographical features<br />

2 Smith et al., 2001<br />

2 Haworth and<br />

Thomps<strong>on</strong>, 1990<br />

eight bird eastern relati<strong>on</strong>ships between topography and five species related to site topography; six various preferences for<br />

2 Brown and<br />

species Scotland vegetati<strong>on</strong> variables and bird abundance species related to habitat compositi<strong>on</strong><br />

vegetati<strong>on</strong> and structural<br />

features<br />

Stillman, 1993<br />

1<br />

I classified the studies <strong>in</strong>to three tiers: 1. Str<strong>on</strong>g evidence, usually based <strong>on</strong> experimental pro<str<strong>on</strong>g>of</str<strong>on</strong>g>; 2. Intermediate evidence, generally an observed relati<strong>on</strong>ship <strong>in</strong> space and time; 3. Weak evidence, a suggested cause<br />

based <strong>on</strong> observed patterns. <str<strong>on</strong>g>The</str<strong>on</strong>g>se levels are not <strong>in</strong>tended as a judgement <strong>on</strong> the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> the research, and I judge the strength <str<strong>on</strong>g>of</str<strong>on</strong>g> evidence for <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> and associated mechanisms, which may not have<br />

been the purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> the study<br />

142


Table 4.3. (c<strong>on</strong>t.) Some <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> spatial or temporal variati<strong>on</strong> <strong>in</strong> upland moorland vegetati<strong>on</strong> <strong>on</strong> <strong>birds</strong><br />

Group Locati<strong>on</strong> Process Effects Possible cause Strength <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

red grouse Peak District historical changes <strong>in</strong> game bags (1930s- grouse numbers more than halved; <strong>on</strong>e<br />

1970s), sheep numbers (1930-1976) and third loss <str<strong>on</strong>g>of</str<strong>on</strong>g> heather; trebl<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> sheep<br />

heather moorland cover (1913-1976)<br />

numbers<br />

hen harrier Orkney hunt<strong>in</strong>g patterns <strong>in</strong> a decl<strong>in</strong><strong>in</strong>g populati<strong>on</strong> male hunt<strong>in</strong>g positively related to<br />

amount <str<strong>on</strong>g>of</str<strong>on</strong>g> unmanaged grass; female<br />

hunt<strong>in</strong>g negatively related to prevalence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> both managed grass heather cover and<br />

to vegetati<strong>on</strong> height<br />

meadow pipit British<br />

uplands<br />

red grouse south<br />

Scotland<br />

relati<strong>on</strong>ship between breed<strong>in</strong>g abundance and<br />

vegetati<strong>on</strong> variables<br />

historical changes <strong>in</strong> abundance (measured by<br />

game bags), raptor abundance and heather<br />

cover<br />

n<strong>on</strong>-l<strong>in</strong>ear relati<strong>on</strong>ships with heather<br />

cover and with grass cover<br />

grouse bags decl<strong>in</strong>ed with heather loss<br />

while raptor numbers were low, but<br />

decl<strong>in</strong>ed further as raptor numbers<br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g><br />

r<strong>in</strong>g ouzel Tayside breed<strong>in</strong>g biology nests were placed <strong>in</strong> tall heather <strong>on</strong> steep<br />

slopes, but home ranges c<strong>on</strong>ta<strong>in</strong>ed more<br />

grass moor than heather<br />

r<strong>in</strong>g ouzel south-east<br />

Scotland<br />

changes <strong>in</strong> site occupancy between 1952-85<br />

and 1998-2000, related to changes<br />

topographical and habitat variables<br />

sites more likely to have rema<strong>in</strong>ed<br />

occupied at higher altitudes and with<br />

greater heather cover<br />

evidence 1<br />

Reference<br />

loss <str<strong>on</strong>g>of</str<strong>on</strong>g> red grouse habitat 3 Anders<strong>on</strong> and<br />

Yalden, 1981<br />

populati<strong>on</strong> decl<strong>in</strong>e driven<br />

by loss <str<strong>on</strong>g>of</str<strong>on</strong>g> rough grass<br />

habitat due to <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g><br />

graz<strong>in</strong>g <strong>in</strong>tensity<br />

requirement for habitat<br />

mosaic<br />

l<strong>on</strong>g-term decl<strong>in</strong>es related<br />

to habitat loss, but<br />

subsequently high<br />

predati<strong>on</strong> kept grouse<br />

numbers low<br />

requires grass-heather<br />

mosaic for nest<strong>in</strong>g and<br />

forag<strong>in</strong>g<br />

heather loss may prevent<br />

otherwise suitable breed<strong>in</strong>g<br />

sites from be<strong>in</strong>g occupied<br />

2 Amar and<br />

Redpath, 2005<br />

2 Vanh<strong>in</strong>sbergh and<br />

Chamberla<strong>in</strong>,<br />

2001<br />

2 Thirgood et al.,<br />

2000<br />

2 Burfield, 2002<br />

2 Sim et al., <strong>in</strong> prep.<br />

1<br />

I classified the studies <strong>in</strong>to three tiers: 1. Str<strong>on</strong>g evidence, usually based <strong>on</strong> experimental pro<str<strong>on</strong>g>of</str<strong>on</strong>g>; 2. Intermediate evidence, generally an observed relati<strong>on</strong>ship <strong>in</strong> space and time; 3. Weak evidence, a suggested cause<br />

based <strong>on</strong> observed patterns. <str<strong>on</strong>g>The</str<strong>on</strong>g>se levels are not <strong>in</strong>tended as a judgement <strong>on</strong> the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> the research, and I judge the strength <str<strong>on</strong>g>of</str<strong>on</strong>g> evidence for <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> and associated mechanisms, which may not have<br />

been the purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> the study.<br />

143


northern Brita<strong>in</strong>, but grouse moors had less tall heather (and no greater cover <str<strong>on</strong>g>of</str<strong>on</strong>g> heath)<br />

(Tharme et al., 2001). This reflects the benefits <strong>on</strong> Calluna-dom<strong>in</strong>ated moorland <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

muirburn management or the c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> predators, or a comb<strong>in</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> both, to golden<br />

plovers. Other studies have not found associati<strong>on</strong>s between golden plover abundance and<br />

heather cover, and blanket-bog may be preferred to either heather or grass moorland<br />

(Brown, 1993). An exam<strong>in</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental features associated with the breed<strong>in</strong>g<br />

distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this species <strong>in</strong> the south Penn<strong>in</strong>es identified crowberry (Empetrum) as a<br />

str<strong>on</strong>g predictor, with Vacc<strong>in</strong>ium-Calluna and Calluna-Eriophorum cover as less<br />

important predictors, and no significant predictive value <str<strong>on</strong>g>of</str<strong>on</strong>g> Calluna moorland (Haworth<br />

and Thomps<strong>on</strong>, 1990). Elsewhere, no relati<strong>on</strong>ship between golden plover abundance and<br />

heather moor cover was found <strong>in</strong> the south Penn<strong>in</strong>es (Stillman and Brown, 1994),<br />

although a negative associati<strong>on</strong> with grass cover was found <strong>in</strong> the Grampians (where<br />

altitude appeared to be the best predictor) (Brown and Stillman, 1993). In the south<br />

Penn<strong>in</strong>es, golden plover chicks occupied home ranges c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g more cott<strong>on</strong> grass and<br />

bare peat, but less heather and grassland, than was available generally (Pearce-Higg<strong>in</strong>s<br />

and Yalden, 2004). Tipulid adults and larvae form a major part <str<strong>on</strong>g>of</str<strong>on</strong>g> the diet <str<strong>on</strong>g>of</str<strong>on</strong>g> golden<br />

plover chicks, and exploitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this food resource was positively correlated with the<br />

use <str<strong>on</strong>g>of</str<strong>on</strong>g> cott<strong>on</strong> grass and peat areas. Breed<strong>in</strong>g adults may use different habitats for feed<strong>in</strong>g<br />

chicks and for nest placement, with c<strong>on</strong>cealment be<strong>in</strong>g important when nest<strong>in</strong>g, and food<br />

availability when chicks have hatched (Whitt<strong>in</strong>gham, 1996, <strong>in</strong> Fuller and Gough, 1999),<br />

Overall, <strong>on</strong> moorland vegetati<strong>on</strong>, structure is probably the key determ<strong>in</strong>ant <str<strong>on</strong>g>of</str<strong>on</strong>g> golden<br />

plover distributi<strong>on</strong>. Golden plover may require a mosaic <str<strong>on</strong>g>of</str<strong>on</strong>g> blanket-bog, gram<strong>in</strong>oids and<br />

heath cover, but Calluna-dom<strong>in</strong>ated heath is not preferred to other dwarf shrubs (Pearce-<br />

Higg<strong>in</strong>s and Grant, 2006). At least <strong>in</strong> the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> muirburn management, golden<br />

plover appear most likely to benefit from the c<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>t<strong>in</strong>uous heather cover to<br />

such habitat mosaics. This suggests that <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> nitrogen depositi<strong>on</strong> would have<br />

detrimental <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> the species <strong>on</strong>ly if it were caus<strong>in</strong>g wholesale c<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> heather<br />

to gram<strong>in</strong>oid cover.<br />

144


4.5.1.4.Other waders<br />

Resurveys <str<strong>on</strong>g>of</str<strong>on</strong>g> upland areas <strong>in</strong> the early 2000s found that breed<strong>in</strong>g wader populati<strong>on</strong>s<br />

(especially those <str<strong>on</strong>g>of</str<strong>on</strong>g> dunl<strong>in</strong>, curlew and lapw<strong>in</strong>g) had shown widespread, although not<br />

ubiquitous, decl<strong>in</strong>es (Sim et al., 2005). Possible reas<strong>on</strong>s suggested for these decl<strong>in</strong>es were<br />

afforestati<strong>on</strong>, <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> graz<strong>in</strong>g pressure from sheep and red deer, and decl<strong>in</strong>es <strong>in</strong> grouse<br />

moor management. Curlew breed<strong>in</strong>g <strong>on</strong> moorland may use grass habitats <strong>on</strong> marg<strong>in</strong>al<br />

farmland adjacent to moors due to <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> <strong>in</strong>vertebrate prey (earthworms and tipulid<br />

larvae) for adult <strong>birds</strong> (Robs<strong>on</strong> et al., 2002). Topography (particularly the presence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

high plateaus) was a str<strong>on</strong>g predictor <str<strong>on</strong>g>of</str<strong>on</strong>g> the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> breed<strong>in</strong>g dunl<strong>in</strong>, redshank and<br />

curlew (and golden plover) <strong>in</strong> the south Penn<strong>in</strong>es; Eriophorum cover was also a str<strong>on</strong>g<br />

predictor for the first two (Haworth and Thomps<strong>on</strong>, 1990). Also <strong>in</strong> the south Penn<strong>in</strong>es,<br />

dunl<strong>in</strong> abundance was negatively related to heather cover, while curlew and snipe<br />

abundance <strong>in</strong> this area and <strong>in</strong> the Grampians showed no relati<strong>on</strong>ship with heather cover<br />

(Stillman and Brown, 1994). Another study <strong>in</strong> the Grampians found no significant<br />

relati<strong>on</strong>ships for snipe, while curlew abundance was negatively associated with bog cover<br />

(and with high altitude) (Brown and Stillman, 1993). Heterogeneous vegetati<strong>on</strong> structure<br />

appears to favour many wader species, and this was found to be the case for curlew and<br />

snipe <strong>in</strong> northern Brita<strong>in</strong> (Pearce-Higg<strong>in</strong>s and Grant, 2006). <str<strong>on</strong>g>The</str<strong>on</strong>g>re appears to be little<br />

evidence for str<strong>on</strong>g dependence <strong>on</strong> heather cover for waders <strong>in</strong> upland Brita<strong>in</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> loss<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> heterogeneous swards, which could occur as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> changes <strong>in</strong> graz<strong>in</strong>g pressure or<br />

<strong>on</strong> some moors through decl<strong>in</strong>es <strong>in</strong> muirburn, is likely to be more important than loss <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

heather cover for these species.<br />

4.5.1.5. Merl<strong>in</strong><br />

Merl<strong>in</strong>, hen harrier and short-eared owl all breed predom<strong>in</strong>antly <strong>on</strong> heather moorland<br />

(Thomps<strong>on</strong> et al., 1995). <str<strong>on</strong>g>The</str<strong>on</strong>g> wide-rang<strong>in</strong>g nature <str<strong>on</strong>g>of</str<strong>on</strong>g> these species can cause difficulties<br />

<strong>in</strong> quantify<strong>in</strong>g their associati<strong>on</strong>s with different moorland vegetati<strong>on</strong>-types. However, <strong>in</strong><br />

Wales, the south Penn<strong>in</strong>es and Northumberland, Calluna cover (also Pteridium cover <strong>in</strong><br />

the south Penn<strong>in</strong>es) was a str<strong>on</strong>g predictor <str<strong>on</strong>g>of</str<strong>on</strong>g> merl<strong>in</strong> breed<strong>in</strong>g abundance (Bibby, 1986;<br />

Newt<strong>on</strong> et al., 1986; Haworth and Thomps<strong>on</strong>, 1990). C<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> heather moorland to<br />

grass moorland due to sheep graz<strong>in</strong>g was suggested as a possible c<strong>on</strong>tribut<strong>in</strong>g factor to<br />

145


the decl<strong>in</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> merl<strong>in</strong> <strong>in</strong> the Peak District, but not a crucial <strong>on</strong>e, as organochlor<strong>in</strong>e<br />

pesticides were c<strong>on</strong>sidered to be the most important factor (Newt<strong>on</strong> et al., 1981). Merl<strong>in</strong><br />

populati<strong>on</strong>s may be artificially low <strong>in</strong> suitable habitat due to persecuti<strong>on</strong> (Rebecca et al.,<br />

1992). Given the str<strong>on</strong>g associati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this species with heather moorland for breed<strong>in</strong>g, it<br />

seems likely that a loss <str<strong>on</strong>g>of</str<strong>on</strong>g> heather cover could be detrimental, and <strong>in</strong>deed this has been<br />

asserted (Cadbury, 1992). However, many <str<strong>on</strong>g>of</str<strong>on</strong>g> the studies have been broad-scale, and the<br />

ma<strong>in</strong> prey <str<strong>on</strong>g>of</str<strong>on</strong>g> merl<strong>in</strong> <strong>on</strong> moorlands is likely to be passer<strong>in</strong>e <strong>birds</strong>, species <str<strong>on</strong>g>of</str<strong>on</strong>g> which tend to<br />

either prefer n<strong>on</strong>-heather comp<strong>on</strong>ents or show no preference (see below). Thus it is likely<br />

that a mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> tall heather (for nest<strong>in</strong>g) and grass-heather mosaic (for forag<strong>in</strong>g) will be<br />

most suitable for merl<strong>in</strong>. Once aga<strong>in</strong>, the <strong>in</strong>itial compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moorland vegetati<strong>on</strong> will<br />

determ<strong>in</strong>e the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> heather loss <strong>on</strong> merl<strong>in</strong> populati<strong>on</strong>s.<br />

4.5.1.6. Hen harrier<br />

Persecuti<strong>on</strong> by humans, <strong>in</strong> an attempt to reduce harrier predati<strong>on</strong> <strong>on</strong> grouse, is a major<br />

determ<strong>in</strong>ant <str<strong>on</strong>g>of</str<strong>on</strong>g> the distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hen harrier (Etheridge et al., 1997). Nevertheless,<br />

heather moorland is str<strong>on</strong>gly preferred as nest<strong>in</strong>g habitat; while young c<strong>on</strong>ifer plantati<strong>on</strong>s<br />

are used for nest<strong>in</strong>g, as they mature they become unsuitable for both nest<strong>in</strong>g and hunt<strong>in</strong>g<br />

(Madders, 2003). However, harrier populati<strong>on</strong>s and breed<strong>in</strong>g productivity decl<strong>in</strong>ed <strong>in</strong><br />

Orkney between the 1970s and 1990s <strong>in</strong> the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> persecuti<strong>on</strong> (Meek et al., 1998).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> loss <str<strong>on</strong>g>of</str<strong>on</strong>g> rough grassland at the moorland edge, due to agricultural improvement and<br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> graz<strong>in</strong>g pressure, lead<strong>in</strong>g to a reduced food supply, is suggested as the most<br />

likely cause for the decl<strong>in</strong>e (Amar and Redpath, 2005). Hen harrier are likely to be<br />

affected by loss <str<strong>on</strong>g>of</str<strong>on</strong>g> heather cover as tall heather is selected for nest<strong>in</strong>g (Redpath et al.,<br />

1998). It may also be affected if prey abundance (<strong>in</strong>clud<strong>in</strong>g meadow pipit, red grouse<br />

chicks and small mammals) is reduced due to changes <strong>in</strong> habitat, although meadow pipit<br />

and vole abundance are likely to <strong>in</strong>crease <strong>in</strong> grass-dom<strong>in</strong>ated habitats. Hen harrier are<br />

most abundant <strong>in</strong> areas and years where meadow pipit and small mammal abundance are<br />

greatest (Redpath and Thirgood, 1999). As with merl<strong>in</strong>, <strong>in</strong>itial heather cover will<br />

determ<strong>in</strong>e the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> heather loss; it is likely to have a negative effect if it removes<br />

suitable nest<strong>in</strong>g habitat and habitat mosaics where prey is most abundant, but an <strong>in</strong>crease<br />

<strong>in</strong> grass moorland will be beneficial if it occurs where heather cover predom<strong>in</strong>ates.<br />

146


4.5.1.7. Other raptors<br />

Golden eagle are str<strong>on</strong>gly associated with moorland, as are short-eared owl, and several<br />

other raptors such as goshawk, buzzard, red kite, peregr<strong>in</strong>e and kestrel also make use <str<strong>on</strong>g>of</str<strong>on</strong>g> it<br />

as feed<strong>in</strong>g habitat. However, it is difficult to establish whether they have any particular<br />

preference for heather- rather than grass-dom<strong>in</strong>ated moorland, and as such there is no<br />

evidence that loss <str<strong>on</strong>g>of</str<strong>on</strong>g> heather cover will have negative <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> these raptors.<br />

4.5.1.8. Meadow pipit<br />

Meadow pipit is the most abundant breed<strong>in</strong>g bird <strong>on</strong> upland moorland, and is an<br />

important prey item for many predatory bird species <str<strong>on</strong>g>of</str<strong>on</strong>g> the uplands (Vanh<strong>in</strong>sbergh and<br />

Chamberla<strong>in</strong>, 2001). A series <str<strong>on</strong>g>of</str<strong>on</strong>g> studies has found that it generally shows a preference for<br />

mixed grass and heather moorland. On heather-dom<strong>in</strong>ated grouse moors <strong>in</strong> northern<br />

Brita<strong>in</strong>, meadow pipit abundance was positively related to grass cover, and negatively<br />

related to muirburn and Calluna cover (Smith et al., 2001), while <strong>in</strong> the Grampians, its<br />

str<strong>on</strong>gest relati<strong>on</strong>ship was with altitude (negative), and it showed no significant<br />

preference for broad vegetati<strong>on</strong> categories (Brown and Stillman, 1993). A more detailed<br />

study, <strong>in</strong>corporat<strong>in</strong>g f<strong>in</strong>er resoluti<strong>on</strong> vegetati<strong>on</strong> data, found that meadow pipit was most<br />

abundant <strong>in</strong> gram<strong>in</strong>oid-heather mixes, but where gram<strong>in</strong>oids were more abundant than<br />

heather (Pearce-Higg<strong>in</strong>s and Grant, 2006). In <strong>on</strong>e study <strong>in</strong> the south Penn<strong>in</strong>es it was<br />

positively associated with heather moor cover (Stillman and Brown, 1994). Exam<strong>in</strong>ati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> habitat preferences us<strong>in</strong>g BBS data c<strong>on</strong>cluded that meadow pipit showed n<strong>on</strong>-l<strong>in</strong>ear<br />

relati<strong>on</strong>ships with both heather and grass cover, suggest<strong>in</strong>g that dom<strong>in</strong>ance <str<strong>on</strong>g>of</str<strong>on</strong>g> either<br />

habitat is likely to be detrimental (Vanh<strong>in</strong>sbergh and Chamberla<strong>in</strong>, 2001). Meadow pipit<br />

should benefit from graz<strong>in</strong>g that is sufficient to fragment heather without remov<strong>in</strong>g it<br />

entirely (Pearce-Higg<strong>in</strong>s and Grant, 2002; Dennis et al., 2005). <str<strong>on</strong>g>The</str<strong>on</strong>g> level <str<strong>on</strong>g>of</str<strong>on</strong>g> graz<strong>in</strong>g that<br />

will achieve this will vary from site to site, depend<strong>in</strong>g <strong>on</strong> the <strong>in</strong>itial vegetati<strong>on</strong> cover. In<br />

the northern Penn<strong>in</strong>es, meadow pipit nests were positi<strong>on</strong>ed <strong>on</strong> the <strong>in</strong>terface between<br />

blanket bog and alluvial grassland, allow<strong>in</strong>g them to exploit cranefly emergence for their<br />

first broods and grassland <strong>in</strong>vertebrates for the sec<strong>on</strong>d brood (Couls<strong>on</strong> and Whittaker<br />

1978, <strong>in</strong> Huds<strong>on</strong>, 1988), and selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> grassland for food resources (tipulids,<br />

147


Coleoptera and Diptera) has been noted elsewhere (Smith et al., 2001). <str<strong>on</strong>g>The</str<strong>on</strong>g> meadow<br />

pipit, therefore, would <strong>in</strong>itially benefit from the loss <str<strong>on</strong>g>of</str<strong>on</strong>g> heather cover and its replacement<br />

with grass, <strong>in</strong> areas where heather cover is currently dom<strong>in</strong>ant. However, bey<strong>on</strong>d a<br />

certa<strong>in</strong> proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> grass cover (40-60% by <strong>on</strong>e estimate (Vanh<strong>in</strong>sbergh and<br />

Chamberla<strong>in</strong>, 2001) and 60-70% by another (Pearce-Higg<strong>in</strong>s and Grant, 2002), loss <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

heather would be detrimental.<br />

4.5.1.9. Skylark<br />

Moorland is a major breed<strong>in</strong>g habitat for the red-listed skylark (Thomps<strong>on</strong> et al., 1995;<br />

Chamberla<strong>in</strong>, 2001), but this species shows positive associati<strong>on</strong>s with grass cover and<br />

graz<strong>in</strong>g <strong>in</strong>tensity <strong>in</strong> the British uplands (Brown and Stillman, 1993; Pearce-Higg<strong>in</strong>s and<br />

Grant, 2002; Dennis et al., 2005; Pearce-Higg<strong>in</strong>s and Grant, 2006). Resurveys <str<strong>on</strong>g>of</str<strong>on</strong>g> upland<br />

areas found decl<strong>in</strong>es <strong>in</strong> some areas, but not the very large decl<strong>in</strong>es seen <strong>on</strong> lowland<br />

farmland (Sim et al., 2005), and it appears that graz<strong>in</strong>g and loss <str<strong>on</strong>g>of</str<strong>on</strong>g> heather cover would<br />

be beneficial to skylarks.<br />

4.5.1.10. R<strong>in</strong>g ouzel<br />

R<strong>in</strong>g ouzel have decl<strong>in</strong>ed markedly <strong>in</strong> the UK and are now a species <str<strong>on</strong>g>of</str<strong>on</strong>g> high c<strong>on</strong>servati<strong>on</strong><br />

c<strong>on</strong>cern (Gibb<strong>on</strong>s et al., 1993, Gregory et al., 2002). Moorland provides their major<br />

breed<strong>in</strong>g habitat (Thomps<strong>on</strong> et al., 1995). At a broad scale, r<strong>in</strong>g ouzel breed<strong>in</strong>g<br />

abundance was positively related to Calluna cover, Pteridium cover and Mol<strong>in</strong>ia cover <strong>in</strong><br />

the south Penn<strong>in</strong>es (Haworth and Thomps<strong>on</strong>, 1990), while <strong>in</strong> Scotland, r<strong>in</strong>g ouzel<br />

abundance was positively related to heather/smooth grass mosaic, and negatively with<br />

improved pasture (Buchanan et al., 2003). However, as with many wader species, r<strong>in</strong>g<br />

ouzel forage to a large extent <strong>on</strong> the <strong>in</strong>vertebrates <str<strong>on</strong>g>of</str<strong>on</strong>g> adjacent grassland (Burfield, 2002)<br />

Studies <strong>in</strong> Tayside found that although ouzels selected tall heather <strong>on</strong> steep slopes for<br />

nest<strong>in</strong>g, they selected short grass areas (usually with<strong>in</strong> 500 m <str<strong>on</strong>g>of</str<strong>on</strong>g> their nests) for forag<strong>in</strong>g,<br />

and dur<strong>in</strong>g the nestl<strong>in</strong>g period their home ranges c<strong>on</strong>ta<strong>in</strong>ed greater amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> grass moor<br />

and grazed pasture than heather moor, relative to the availability <str<strong>on</strong>g>of</str<strong>on</strong>g> these habitats with<strong>in</strong><br />

the study area (Burfield, 2002). Similarly, an associati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> r<strong>in</strong>g ouzel with pasture <strong>in</strong> the<br />

south Penn<strong>in</strong>es may have reflected the availability <str<strong>on</strong>g>of</str<strong>on</strong>g> abundant soil <strong>in</strong>vertebrates close to<br />

148


nest sites located <strong>in</strong> heather or bracken cover (Haworth and Thomps<strong>on</strong>, 1990). However,<br />

there are some <strong>in</strong>dicati<strong>on</strong>s that heather loss may be l<strong>in</strong>ked to decl<strong>in</strong>es. Across Scotland<br />

greatest decl<strong>in</strong>es occurred where the extent <str<strong>on</strong>g>of</str<strong>on</strong>g> smooth grass-heather mosaics was <strong>in</strong>itially<br />

highest, such habitats be<strong>in</strong>g particularly vulnerable to heather loss from graz<strong>in</strong>g<br />

(Buchanan et al., 2002, Clarke et al., 1995). Furthermore, historical breed<strong>in</strong>g sites <strong>in</strong> the<br />

Moorfoot Hills, southern Scotland, were more likely to have rema<strong>in</strong>ed occupied <strong>in</strong>1998-<br />

2000 where current heather cover was greatest, imply<strong>in</strong>g a possible associati<strong>on</strong> between<br />

heather loss and decl<strong>in</strong>es (Sim et al., <strong>in</strong> press). <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, heather-grass mixes appear to<br />

provide suitable breed<strong>in</strong>g habitat for r<strong>in</strong>g ouzels, but extensive heather loss may be<br />

detrimental, and so <strong>in</strong> some situati<strong>on</strong>s N depositi<strong>on</strong> could be a c<strong>on</strong>tributory factor <strong>in</strong><br />

caus<strong>in</strong>g decl<strong>in</strong>es.<br />

4.5.1.11. Other passer<strong>in</strong>es<br />

Resurveys <str<strong>on</strong>g>of</str<strong>on</strong>g> upland areas found significant decl<strong>in</strong>es <strong>in</strong> twite <strong>in</strong> some study areas, general<br />

<strong>in</strong>creases <strong>in</strong> st<strong>on</strong>echat and raven, and <strong>in</strong>c<strong>on</strong>sistent changes <strong>in</strong> other passer<strong>in</strong>es (Sim et al.,<br />

2005). Heather moorland was c<strong>on</strong>sidered a major breed<strong>in</strong>g habitat for wh<strong>in</strong>chat and<br />

st<strong>on</strong>echat, and locally important breed<strong>in</strong>g habitat for twite (Thomps<strong>on</strong> et al., 1995).<br />

Although twite nest and roost predom<strong>in</strong>antly <strong>in</strong> heather moor, they require seed rich hay<br />

meadows and pastures nearby (Orford, 1973). In the South Penn<strong>in</strong>es, Calluna cover and<br />

Pteridium cover were str<strong>on</strong>g predictors <str<strong>on</strong>g>of</str<strong>on</strong>g> twite breed<strong>in</strong>g abundance (Haworth and<br />

Thomps<strong>on</strong>, 1990). In the same area, breed<strong>in</strong>g twite were associated with moorland edge<br />

at relatively low altitude; breed<strong>in</strong>g performance was better for <strong>birds</strong> nest<strong>in</strong>g <strong>in</strong> heatherdom<strong>in</strong>ated<br />

moorland, compared with grass-dom<strong>in</strong>ated or other moorland (Brown et al.,<br />

1995). It appears that twite require tall heather at the moorland edge, rather than us<strong>in</strong>g a<br />

grass-heather mosaic with<strong>in</strong> moorland. Wh<strong>in</strong>chat, which have decl<strong>in</strong>ed from much <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

lowland Brita<strong>in</strong> due to agricultural improvement, are positively associated with bracken<br />

<strong>in</strong> the uplands (Brown and Stillman, 1993; Stillman and Brown, 1994; Allen, 1995;<br />

Pearce-Higg<strong>in</strong>s and Grant, 2006). In British upland moorland, st<strong>on</strong>echat abundance<br />

showed a str<strong>on</strong>g positive associati<strong>on</strong> with heather cover, although relati<strong>on</strong>ships with other<br />

vegetati<strong>on</strong> variables <strong>in</strong>dicate that abundance was greatest where there was some<br />

heterogeneity with<strong>in</strong> a heather-dom<strong>in</strong>ated sward (Pearce-Higg<strong>in</strong>s and Grant, 2006).<br />

149


Another passer<strong>in</strong>e typical <str<strong>on</strong>g>of</str<strong>on</strong>g> the uplands, wheatear, showed no associati<strong>on</strong> with<br />

vegetati<strong>on</strong> <strong>in</strong> two studies (Stillman and Brown, 1994; Pearce-Higg<strong>in</strong>s and Grant, 2006),<br />

and was positively associated with grass/bracken cover <strong>in</strong> a third (Brown and Stillman,<br />

1993). Of the species c<strong>on</strong>sidered here, st<strong>on</strong>echat and twite are most likely to be sensitive<br />

to the loss <str<strong>on</strong>g>of</str<strong>on</strong>g> heather moorland.<br />

4.5.2. Lowland heath<br />

Loss <str<strong>on</strong>g>of</str<strong>on</strong>g> lowland heath is likely to be detrimental to bird species that rely <strong>on</strong> this habitat<br />

(Liley and Clarke, 2003). However, while <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> soil fertility may make restorati<strong>on</strong> or<br />

creati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> heathland more difficult (Pywell et al., 1994; Barker et al., 2004; Allis<strong>on</strong> and<br />

Ausden, 2006), and has the potential to c<strong>on</strong>tribute to heathland loss there are many other<br />

threats to this habitat <strong>in</strong> the UK. <str<strong>on</strong>g>The</str<strong>on</strong>g>se <strong>in</strong>clude changed management regimes, habitat<br />

destructi<strong>on</strong> and ecological successi<strong>on</strong> (Bunce, 1989). In additi<strong>on</strong>, I c<strong>on</strong>sider that <strong>birds</strong> are<br />

not the best <strong>in</strong>dicator <str<strong>on</strong>g>of</str<strong>on</strong>g> the overall health <str<strong>on</strong>g>of</str<strong>on</strong>g> lowland heath. All <str<strong>on</strong>g>of</str<strong>on</strong>g> the bird species that<br />

are traditi<strong>on</strong>ally thought <str<strong>on</strong>g>of</str<strong>on</strong>g> as typical <str<strong>on</strong>g>of</str<strong>on</strong>g> lowland heath are <strong>in</strong>creas<strong>in</strong>g, largely due to<br />

factors outside <str<strong>on</strong>g>of</str<strong>on</strong>g> heathland habitat itself, and/or because <str<strong>on</strong>g>of</str<strong>on</strong>g> targeted and <strong>in</strong>tensive<br />

management programs. St<strong>on</strong>e-curlew are <strong>in</strong>tensively managed <strong>in</strong> two small areas;<br />

woodlark and nightjar populati<strong>on</strong>s have <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> markedly, which is related to the<br />

presence <str<strong>on</strong>g>of</str<strong>on</strong>g> early-stage plantati<strong>on</strong>s and associated bare ground, although <strong>in</strong>tensive<br />

restorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> heath habitat also c<strong>on</strong>tributes (Scott et al., 1998; Wott<strong>on</strong> and Gill<strong>in</strong>gs,<br />

2000; Eat<strong>on</strong> et al., 2005); milder w<strong>in</strong>ters have favoured Dartford’s warbler <strong>in</strong> recent years<br />

(Gibb<strong>on</strong>s and Wott<strong>on</strong>, 1996).<br />

4.5.2.1. Woodlark<br />

In the UK woodlark are found predom<strong>in</strong>antly <strong>in</strong> young c<strong>on</strong>ifer plantati<strong>on</strong>s and <strong>in</strong><br />

heathland (Sitters et al., 1996). Numbers have fluctuated over the past century, ris<strong>in</strong>g<br />

from a low <str<strong>on</strong>g>of</str<strong>on</strong>g> approximately 250 pairs <strong>in</strong> 1986 to over 1400 pairs <strong>in</strong> 1997 (Wott<strong>on</strong> and<br />

Gill<strong>in</strong>gs, 2000). Reduced graz<strong>in</strong>g pressure due to less <strong>in</strong>tensive management (but also<br />

follow<strong>in</strong>g the <strong>in</strong>troducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> myxomatosis) probably affected woodlark (and st<strong>on</strong>e-<br />

150


curlew) populati<strong>on</strong>s, as they prefer short swards for feed<strong>in</strong>g (Fuller and Gough, 1999).<br />

Recent milder w<strong>in</strong>ters are likely to have favoured woodlark, although successi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

heathland to scrub, and reducti<strong>on</strong>s <strong>in</strong> graz<strong>in</strong>g pressure from rabbits and stock are<br />

suggested as major causes <str<strong>on</strong>g>of</str<strong>on</strong>g> the l<strong>on</strong>g-term decl<strong>in</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the species (Sitters et al., 1996).<br />

Loss <str<strong>on</strong>g>of</str<strong>on</strong>g> lowland heath to grassland is likely to be detrimental to this species, but<br />

plantati<strong>on</strong> programs may have more <str<strong>on</strong>g>of</str<strong>on</strong>g> an effect <strong>on</strong> this species than changes to habitat<br />

result<strong>in</strong>g from nitrogen depositi<strong>on</strong>.<br />

4.5.3. Summary<br />

Loss <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat, through a shift towards grass-dom<strong>in</strong>ated landscapes is likely to be the<br />

major <str<strong>on</strong>g><strong>in</strong>direct</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> nitrogen depositi<strong>on</strong> <strong>on</strong> the <strong>birds</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> upland moorland. I<br />

have identified some major mechanisms by which nitrogen depositi<strong>on</strong> could be the cause<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> such habitat loss, although a causal l<strong>in</strong>k between nitrogen depositi<strong>on</strong> and graz<strong>in</strong>g<br />

<strong>in</strong>tensity has not been def<strong>in</strong>itively established. In additi<strong>on</strong>, most <strong>birds</strong> typical <str<strong>on</strong>g>of</str<strong>on</strong>g> upland<br />

moorland benefit from some degree <str<strong>on</strong>g>of</str<strong>on</strong>g> grass cover with<strong>in</strong> heather moorland, or show no<br />

particular preferences for heather cover per se. Table 4.4 summarises the likely <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

heather cover <strong>on</strong> upland <strong>birds</strong> for those species where I c<strong>on</strong>sider there was sufficient<br />

evidence to make an <strong>in</strong>formed estimate. Two species (red grouse and st<strong>on</strong>echat) are<br />

identified as hav<strong>in</strong>g high sensitivity to heather loss, because they are heavily reliant <strong>on</strong><br />

this habitat. Six species (curlew, snipe, golden plover, skylark, wheatear and wh<strong>in</strong>chat)<br />

are listed as hav<strong>in</strong>g low sensitivity. <str<strong>on</strong>g>The</str<strong>on</strong>g> rema<strong>in</strong><strong>in</strong>g seven species (black grouse, golden<br />

eagle, hen harrier, merl<strong>in</strong>, meadow pipit, r<strong>in</strong>g ouzel and twite) are listed as <strong>in</strong>termediate.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>se are species for which a mosaic <str<strong>on</strong>g>of</str<strong>on</strong>g> heather and grass moorland has been identified<br />

as the most suitable habitat <strong>in</strong> at least <strong>on</strong>e study <str<strong>on</strong>g>of</str<strong>on</strong>g> upland areas. <str<strong>on</strong>g>The</str<strong>on</strong>g>se species may or<br />

may not benefit from the loss <str<strong>on</strong>g>of</str<strong>on</strong>g> heather cover, depend<strong>in</strong>g <strong>on</strong> the habitat c<strong>on</strong>figurati<strong>on</strong><br />

present, and their l<strong>on</strong>g-term resp<strong>on</strong>ses to shifts <strong>in</strong> moorland habitat are likely to be<br />

complicated. It is important to stress that sensitivity to heather loss does not mean that<br />

this will necessarily be a limit<strong>in</strong>g factor for bird populati<strong>on</strong>s; other factors such as w<strong>in</strong>ter<br />

severity and persecuti<strong>on</strong> may well more str<strong>on</strong>gly drive populati<strong>on</strong> changes. In lowland<br />

151


heath, I c<strong>on</strong>sider that while nitrogen depositi<strong>on</strong> may negatively affect the habitat, it is<br />

difficult to establish l<strong>in</strong>ks between nitrogen depositi<strong>on</strong> and bird populati<strong>on</strong>s <strong>in</strong> the United<br />

K<strong>in</strong>gdom.<br />

Table 4.4. Predicted <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> loss <str<strong>on</strong>g>of</str<strong>on</strong>g> heather cover to moorland <strong>birds</strong><br />

Species Category 1<br />

Sensitivity Likely reacti<strong>on</strong> to loss <str<strong>on</strong>g>of</str<strong>on</strong>g> heather cover<br />

loss <str<strong>on</strong>g>of</str<strong>on</strong>g> heather food resource; loss <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

red grouse c<strong>on</strong>f<strong>in</strong>ed to heather moorland high nest<strong>in</strong>g habitat<br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> predati<strong>on</strong> and loss <str<strong>on</strong>g>of</str<strong>on</strong>g> food<br />

black grouse major breed<strong>in</strong>g habitat moderate resource<br />

hen harrier breed ma<strong>in</strong>ly <strong>on</strong> moorland moderate loss <str<strong>on</strong>g>of</str<strong>on</strong>g> nest<strong>in</strong>g habitat and prey items<br />

golden eagle feed<strong>in</strong>g habitat moderate loss <str<strong>on</strong>g>of</str<strong>on</strong>g> nest<strong>in</strong>g habitat and prey items<br />

merl<strong>in</strong> breed ma<strong>in</strong>ly <strong>on</strong> moorland moderate loss <str<strong>on</strong>g>of</str<strong>on</strong>g> nest<strong>in</strong>g habitat and prey items<br />

golden plover breed ma<strong>in</strong>ly <strong>on</strong> moorland low str<strong>on</strong>g <str<strong>on</strong>g>effects</str<strong>on</strong>g> unlikely<br />

locally important breed<strong>in</strong>g<br />

snipe habitat low str<strong>on</strong>g <str<strong>on</strong>g>effects</str<strong>on</strong>g> unlikely<br />

curlew major breed<strong>in</strong>g habitat low str<strong>on</strong>g <str<strong>on</strong>g>effects</str<strong>on</strong>g> unlikely<br />

probable benefit from <strong>in</strong>crease <strong>in</strong> grass<br />

skylark major breed<strong>in</strong>g habitat low cover<br />

meadow pipit major breed<strong>in</strong>g habitat moderate loss <str<strong>on</strong>g>of</str<strong>on</strong>g> appropriate mosaic <str<strong>on</strong>g>of</str<strong>on</strong>g> habitats<br />

wh<strong>in</strong>chat major breed<strong>in</strong>g habitat low<br />

st<strong>on</strong>echat major breed<strong>in</strong>g habitat high<br />

wheatear<br />

locally important breed<strong>in</strong>g<br />

habitat low<br />

r<strong>in</strong>g ouzel major breed<strong>in</strong>g habitat moderate<br />

locally important breed<strong>in</strong>g<br />

probable benefit from <strong>in</strong>crease <strong>in</strong> bracken<br />

cover<br />

loss <str<strong>on</strong>g>of</str<strong>on</strong>g> nest<strong>in</strong>g sites and appropriate<br />

mosaic <str<strong>on</strong>g>of</str<strong>on</strong>g> habitats<br />

probable benefit from <strong>in</strong>crease <strong>in</strong> bracken<br />

or grass cover<br />

loss <str<strong>on</strong>g>of</str<strong>on</strong>g> appropriate mosaic <str<strong>on</strong>g>of</str<strong>on</strong>g> habitats;<br />

loss <str<strong>on</strong>g>of</str<strong>on</strong>g> nest<strong>in</strong>g habitat<br />

loss <str<strong>on</strong>g>of</str<strong>on</strong>g> appropriate mosaic <str<strong>on</strong>g>of</str<strong>on</strong>g> habitats;<br />

twite habitat moderate loss <str<strong>on</strong>g>of</str<strong>on</strong>g> nest<strong>in</strong>g habitat<br />

1<br />

Use <str<strong>on</strong>g>of</str<strong>on</strong>g> heather moorland as described by Thomps<strong>on</strong> et al. (1995).<br />

152


5. References<br />

Aebischer, N.J., Green, R.E., & Evans, A.D. (2000). From science to recovery: four case<br />

studies <str<strong>on</strong>g>of</str<strong>on</strong>g> how research has been translated <strong>in</strong>to c<strong>on</strong>servati<strong>on</strong> acti<strong>on</strong> <strong>in</strong> the UK. In<br />

Ecology and c<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> lowland farmland <strong>birds</strong> (eds N.J. Aebischer, A.D.<br />

Evans, P.V. Grice & J.A. Vickery), pp. 43-54. British Ornithologists Uni<strong>on</strong>,<br />

Tr<strong>in</strong>g.<br />

Aerts, R., Berendse, F. de Caluwe, H., H., & Schmitz, M. (1990) Competiti<strong>on</strong> <strong>in</strong><br />

heathland al<strong>on</strong>g an experimental gradient <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> availability. Oikos, 57, 310-<br />

318.<br />

Aerts, R. & Heil, G.W. (1993) Heathlands: patterns and processes <strong>in</strong> a chang<strong>in</strong>g<br />

envir<strong>on</strong>ment Kluwer, Dordrecht.<br />

Aerts, R. (1993). Competiti<strong>on</strong> between dom<strong>in</strong>ant plant species <strong>in</strong> heathlands. In<br />

Heathlands: patterns and processes <strong>in</strong> a chang<strong>in</strong>g envir<strong>on</strong>ment (eds R. Aerts &<br />

G.W. Heil), pp. 125-151. Kluwer Academic Publishers, L<strong>on</strong>d<strong>on</strong>.<br />

Allen, D.S. (1995). Habitat selecti<strong>on</strong> by wh<strong>in</strong>chats: a case for bracken <strong>in</strong> the uplands? In<br />

Heaths and moorland: cultural landscapes (eds D.B.A. Thomps<strong>on</strong>, A.J. Hester &<br />

M.B. Usher), pp. 200-205. Scottish Natural Heritage, Ed<strong>in</strong>burgh.<br />

Allen, D., Mell<strong>on</strong>, C., Enlander, I., & Wats<strong>on</strong>, G. (2004) Lough Neagh div<strong>in</strong>g ducks:<br />

recent changes <strong>in</strong> w<strong>in</strong>ter<strong>in</strong>g populati<strong>on</strong>s. Irish Birds, 7, 327-336.<br />

All<strong>in</strong>s<strong>on</strong>, A. & Newt<strong>on</strong>, I. (1974) Waterfowl at Loch Leven, K<strong>in</strong>ross. Proceed<strong>in</strong>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

Royal Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Ed<strong>in</strong>burgh, 74B, 365-381.<br />

Allis<strong>on</strong>, M. & Ausden, M. (2006) Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> remov<strong>in</strong>g the litter and humic layers <strong>on</strong><br />

heathland establishment follow<strong>in</strong>g plantati<strong>on</strong> removal. Biological C<strong>on</strong>servati<strong>on</strong>,<br />

127, 177-182.<br />

Al<strong>on</strong>so, I., Hartley, S.E., & Thurlow, M. (2001) Competiti<strong>on</strong> between heather and<br />

grasses <strong>on</strong> Scottish moorlands: <strong>in</strong>teract<strong>in</strong>g <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> enrichment and<br />

graz<strong>in</strong>g regime. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Vegetati<strong>on</strong> Science, 12, 249-260.<br />

Amar, A. & Redpath, S. (2005) Habitat use by hen harriers Circus cyaneus <strong>on</strong> Orkney:<br />

implicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> land-use change for this decl<strong>in</strong><strong>in</strong>g populati<strong>on</strong>. Ibis, 147, 37-47.<br />

153


Anders<strong>on</strong>, P. & Yalden, D.W. (1981) Increased sheep numbers and the loss <str<strong>on</strong>g>of</str<strong>on</strong>g> heather<br />

moorland <strong>in</strong> the Peak District, England. Biological C<strong>on</strong>servati<strong>on</strong>, 20, 195-213.<br />

Anders<strong>on</strong>, J.M. & Hether<strong>in</strong>gt<strong>on</strong>, S.L. (1999) Temperature, nitrogen availability and<br />

mixture <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> the decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> heather [Calluna vulgaris (L.) Hull] and<br />

bracken [Pteridium aquil<strong>in</strong>um (L.) Kuhn] litters. Functi<strong>on</strong>al Ecology, 13, 116-<br />

124.<br />

Anders<strong>on</strong>, G.Q.A., Bradbury, R.B., & Evans, A.D. (2001). Evidence for the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

agricultural <strong>in</strong>tensificati<strong>on</strong> <strong>on</strong> wild bird populati<strong>on</strong>s <strong>in</strong> the UK. <strong>RSPB</strong>, Sandy.<br />

Anderss<strong>on</strong>, G., Berggren, H., Cr<strong>on</strong>berg, C., & Gel<strong>in</strong>, C. (1978) Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> planktivorous<br />

and benthivorous fish <strong>on</strong> organisms and water chemistry <strong>in</strong> eutrophic lakes.<br />

Hydrobiologia, 59, 9-15.<br />

Anderss<strong>on</strong>, G. & Nilss<strong>on</strong>, L. (1999) Autumn waterfowl abundance <strong>in</strong> Lake R<strong>in</strong>gsjön,<br />

1968-1996. Hydrobiologia, 404, 41-51.<br />

Andren, O. & Lagerl<str<strong>on</strong>g>of</str<strong>on</strong>g>, J. (1983) Soil fauna (microarthropods, enchytraeids, nematodes)<br />

<strong>in</strong> Swedish agricultural cropp<strong>in</strong>g systems. Acta Agriculturae Scand<strong>in</strong>avica, 33,<br />

33-52.<br />

Andrzejewka, L. (1976a) <str<strong>on</strong>g>The</str<strong>on</strong>g> <strong>in</strong>fluence <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>in</strong>eral fertilizati<strong>on</strong> <strong>on</strong> the meadow<br />

phytophagous fauna. Polish Ecological Studies, 2, 93-109.<br />

Andrzejewka, L. (1976b) <str<strong>on</strong>g>The</str<strong>on</strong>g> <strong>in</strong>fluence <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>in</strong>eral fertilizati<strong>on</strong> <strong>on</strong> the Auchenorrhyncha<br />

(Homoptera) fauna. Polish Ecological Studies, 2, 111-128.<br />

Andrzejewka, L. (1979) Herbivorous fauna and its role <strong>in</strong> the ec<strong>on</strong>omy <str<strong>on</strong>g>of</str<strong>on</strong>g> grassland<br />

ecosystems I. Herbivores <strong>in</strong> natural and managed meadows. Polish Ecological<br />

Studies, 5, 5-44.<br />

Armitage, M.J.S., Holloway, S.J., & Rehfisch, M.M. (2000). M<strong>on</strong>itor<strong>in</strong>g the use made <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Chara <strong>in</strong>termedia beds by waterfowl <strong>on</strong> Hickl<strong>in</strong>g Broad dur<strong>in</strong>g the 1999/2000<br />

w<strong>in</strong>ter. BTO, <str<strong>on</strong>g>The</str<strong>on</strong>g>tford.<br />

Asteraki, E.J., Hart, B.J., Ings, T.C., & Manley, W.J. (2004) Factors affect<strong>in</strong>g the plant<br />

and <strong>in</strong>vertebrate diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> arable field marg<strong>in</strong>s. Agriculture, Ecosystems and<br />

Envir<strong>on</strong>ment, 102, 219-231.<br />

Atk<strong>in</strong>s<strong>on</strong>, P.W., Fuller, R.J., & Vickery, J.A. (2002) Large-scale patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> summer and<br />

w<strong>in</strong>ter bird distributi<strong>on</strong> <strong>in</strong> relati<strong>on</strong> to farmland type <strong>in</strong> England and Wales.<br />

154


Ecography, 25, 466-480.<br />

Atk<strong>in</strong>s<strong>on</strong>, P.W., Buck<strong>in</strong>gham, D., & Morris, A.J. (2004) What factors determ<strong>in</strong>e where<br />

<strong>in</strong>vertebrate-feed<strong>in</strong>g <strong>birds</strong> forage <strong>in</strong> dry agricultural grasslands? Ibis, 146 (Suppl.<br />

2), 99-107.<br />

Atk<strong>in</strong>s<strong>on</strong>, P.W., Fuller, R.J., Vickery, A., C<strong>on</strong>way, G.J., Tallow<strong>in</strong>, J.R.B., Smith, R.E.N.,<br />

Haysom, K.A., Ings, T.C., Asteraki, E.J., & Brown, V.K. (2005) Influence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

agricultural management, sward structure and food resources <strong>on</strong> grassland field<br />

use by <strong>birds</strong> <strong>in</strong> lowland England. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology, 42, 932-942.<br />

Ausden, M., Rowlands, A., Sutherland, W.J., & James, R. (2003) Diet <str<strong>on</strong>g>of</str<strong>on</strong>g> breed<strong>in</strong>g<br />

lapw<strong>in</strong>g Vanellus vanellus and redshank Tr<strong>in</strong>ga totanus <strong>on</strong> coastal graz<strong>in</strong>g marsh<br />

and implicati<strong>on</strong>s for habitat management. Bird Study, 50, 285-293.<br />

Bailey-Watts, A.E. (1998) <str<strong>on</strong>g>The</str<strong>on</strong>g> phytoplankt<strong>on</strong> ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> the larger Scottish lochs.<br />

Botanical Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Scotland, 50, 63-92.<br />

Ba<strong>in</strong>es, D. (1988) <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> upland, marg<strong>in</strong>al grasslands <strong>on</strong> the<br />

distributi<strong>on</strong> and density <str<strong>on</strong>g>of</str<strong>on</strong>g> breed<strong>in</strong>g wad<strong>in</strong>g <strong>birds</strong> (Charadriiformes) <strong>in</strong> northern<br />

England. Biological C<strong>on</strong>servati<strong>on</strong>, 45, 221-236.<br />

Ba<strong>in</strong>es, D. (1989) <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> upland, marg<strong>in</strong>al grasslands <strong>on</strong> the<br />

breed<strong>in</strong>g success <str<strong>on</strong>g>of</str<strong>on</strong>g> lapw<strong>in</strong>gs Vanellus vanellus and other waders. Ibis, 131, 497-<br />

506.<br />

Ba<strong>in</strong>es, D. (1990) <str<strong>on</strong>g>The</str<strong>on</strong>g> roles <str<strong>on</strong>g>of</str<strong>on</strong>g> predati<strong>on</strong>, food and agricultural practice <strong>in</strong> determ<strong>in</strong><strong>in</strong>g<br />

the breed<strong>in</strong>g success <str<strong>on</strong>g>of</str<strong>on</strong>g> the lapw<strong>in</strong>g (Vanellus vanellus) <strong>on</strong> upland grasslands.<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Animal Ecology, 59, 915-929.<br />

Ba<strong>in</strong>es, D. (1996) <str<strong>on</strong>g>The</str<strong>on</strong>g> implicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> graz<strong>in</strong>g and predator management <strong>on</strong> the habitats<br />

and breed<strong>in</strong>g success <str<strong>on</strong>g>of</str<strong>on</strong>g> black grouse Tetrao tetrix. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology,<br />

33, 54-62.<br />

Balls, H., Moss, B., & Irv<strong>in</strong>e, K. (1989) <str<strong>on</strong>g>The</str<strong>on</strong>g> loss <str<strong>on</strong>g>of</str<strong>on</strong>g> submerged plants with eutrophicati<strong>on</strong><br />

I. Experimental design, water chemistry, aquatic plant and phytoplankt<strong>on</strong> biomass<br />

<strong>in</strong> experiments carried out <strong>in</strong> p<strong>on</strong>ds <strong>in</strong> the Norfolk Broadland. Freshwater<br />

Biology, 22, 71-87.<br />

Bardgett, R.D., Marsden, J.H., & Howard, D.C. (1995) <str<strong>on</strong>g>The</str<strong>on</strong>g> extent and c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

heather <strong>on</strong> moorland <strong>in</strong> the uplands <str<strong>on</strong>g>of</str<strong>on</strong>g> England and Wales. Biological<br />

155


C<strong>on</strong>servati<strong>on</strong>, 71, 155-161.<br />

Barendregt, A., Wassen, M.J., & van Leerdam, A. (1990) Niveller<strong>in</strong>g van de verland<strong>in</strong>g,<br />

een gevolg van de varenader<strong>in</strong>gen <strong>in</strong> hydrologie en beheer. Landschap, 7, 17-32.<br />

Barker, A.M., Brown, N.J., & Reynolds, C.J.M. (1999) Do host-plant requirements and<br />

mortality from soil cultivati<strong>on</strong> determ<strong>in</strong>e the distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gram<strong>in</strong>ivorous<br />

sawflies <strong>on</strong> farmland? Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology, 36, 271-282.<br />

Barker, C.G., Power, S.A., Bell, J.N.B., & Orme, C.D.L. (2004) Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat<br />

management <strong>on</strong> heathland resp<strong>on</strong>se to atmospheric nitrogen depositi<strong>on</strong>.<br />

Biological C<strong>on</strong>servati<strong>on</strong>, 120, 41-52.<br />

Barker, A.M. (2004). Insects as food for farmland <strong>birds</strong> - is there a problem? In Insect<br />

and bird <strong>in</strong>teracti<strong>on</strong>s (eds H. van Emden & M. Rothschild), pp. 37-50. Intercept,<br />

Andover, Hampshire.<br />

Beale, C.M., Burfield, I.J., Sim, I.M.W., Rebecca, G.W., Pearce-Higg<strong>in</strong>s, J.W., & Grant,<br />

M.C. (2006) Climate change may account for the decl<strong>in</strong>e <strong>in</strong> British r<strong>in</strong>g ouzels<br />

Turdus torquatus. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Animal Ecology, 75, 826-835.<br />

Beecher, N.A., Johns<strong>on</strong>, R.J., Brandle, J.R., Case, R.M., & Young, L.J. (2002)<br />

Agroecology <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>birds</strong> <strong>in</strong> organic and n<strong>on</strong>organic farmland. C<strong>on</strong>servati<strong>on</strong> Biology,<br />

16, 1620-1631.<br />

Beest<strong>on</strong>, R. (<strong>in</strong> prep.). Update <str<strong>on</strong>g>of</str<strong>on</strong>g> the Uplands Habitat Area – Base l<strong>in</strong>e <strong>in</strong>formati<strong>on</strong>.<br />

<strong>RSPB</strong>, Sandy.<br />

Beest<strong>on</strong>, R. Ba<strong>in</strong>es, D., & Richards<strong>on</strong>, M. (2005) Seas<strong>on</strong>al and between-sex differences<br />

<strong>in</strong> diet <str<strong>on</strong>g>of</str<strong>on</strong>g> black grouse Tetrao tetrix. Bird Study, 52, 276-281.<br />

Be<strong>in</strong>tema, A.J., Be<strong>in</strong>tema-Hietbr<strong>in</strong>k, R.J., & Müskens, G.J.D.M. (1985) A shift <strong>in</strong> the<br />

tim<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> breed<strong>in</strong>g <strong>in</strong> meadow <strong>birds</strong>. Ardea, 73, 83-89.<br />

Be<strong>in</strong>tema, A.J. & Müskens, G.J.D.M. (1987) Nest<strong>in</strong>g success <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>birds</strong> breed<strong>in</strong>g <strong>in</strong> Dutch<br />

agricultural grasslands. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology, 24, 743-758.<br />

Be<strong>in</strong>tema, A.J., Thissen, J.B., Tensen, D., & Visser, G.H. (1990) Feed<strong>in</strong>g ecology <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Charadriiform chicks <strong>in</strong> agricultural grassland. Ardea, 79, 31-44.<br />

Be<strong>in</strong>tema, A.J. (1991) Insect fauna and grassland <strong>birds</strong>. In Birds and pastoral agriculture<br />

<strong>in</strong> Europe. Proceed<strong>in</strong>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the sec<strong>on</strong>d European Forum <strong>on</strong> <strong>birds</strong> and pastoralism<br />

(eds D.J. Curtis, E.M. Bignal & M.A. Curtis), pp. 97-101. Scottish Chough Study<br />

156


Group, Port Er<strong>in</strong>, Isle <str<strong>on</strong>g>of</str<strong>on</strong>g> Man.<br />

Be<strong>in</strong>tema, A.J. (1997) European black terns (Chlid<strong>on</strong>ias niger) <strong>in</strong> trouble: examples <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

dietary problems. Col<strong>on</strong>ial Water<strong>birds</strong>, 20, 558-565.<br />

Be<strong>in</strong>tema, A.J., Dunn, E., & Stroud, D.A. (1997). Birds and wet grasslands. In Farm<strong>in</strong>g<br />

and <strong>birds</strong> <strong>in</strong> Europe (eds D. Pa<strong>in</strong> & M.W. Pienkowski), pp. 269-296. Academic<br />

Press, L<strong>on</strong>d<strong>on</strong>.<br />

Bengtss<strong>on</strong>, J., Ahnström, J., & Weibull, A.C. (2005) <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic agriculture <strong>on</strong><br />

biodiversity and abundance: a meta-analysis. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology, 42,<br />

261-269.<br />

Bennett, E.M., Carpenter, S.R., & Caroco, N.F. (2001) Human impact <strong>on</strong> erodable<br />

phosphorus and eutrophicati<strong>on</strong>: a global perspective. BioScience, 51, 227-234.<br />

Bent<strong>on</strong>, T.G., Bryant, D.M., Cole, L., & Crick, H.Q.P. (2002) L<strong>in</strong>k<strong>in</strong>g agricultural<br />

practice to <strong>in</strong>sect and bird populati<strong>on</strong>s: a historical study over three decades.<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology, 39, 673-687.<br />

Bent<strong>on</strong>, T.G., Vickery, J.A., & Wils<strong>on</strong>, J.D. (2003) Farmland biodiversity: is habitat<br />

heterogeneity the key? Trends <strong>in</strong> Ecology and Evoluti<strong>on</strong>, 18, 182-188.<br />

Berdowski, J.J.N., Schildwacht, P.M., & Zeil<strong>in</strong>ga, R. (1985). Waterschaarste bekeken<br />

door de hejdeplant. In Water op de heide (eds W.H. Diem<strong>on</strong>t & J. Bokdam), pp.<br />

27-40. Sticht<strong>in</strong>g Studiedag Heidebeheer Ede.<br />

Berdowski, J.J.N. & Zeil<strong>in</strong>ga, R. (1987) Transiti<strong>on</strong> from heathland to grassland:<br />

damag<strong>in</strong>g <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the heather beetle. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology, 75, 159-175.<br />

Berdowski, J.J.M. (1993). <str<strong>on</strong>g>The</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> external stress and disturbance factors <strong>on</strong><br />

Calluna-dom<strong>in</strong>ated heathland vegetati<strong>on</strong>. In Heathlands: patterns and processes<br />

<strong>in</strong> a chang<strong>in</strong>g envir<strong>on</strong>ment (eds R. Aerts & G.W. Heil), pp. 85-124. Kluwer<br />

Academic Publishers, L<strong>on</strong>d<strong>on</strong>.<br />

Berg, M.P. & Hemerik, L. (2004) Sec<strong>on</strong>dary successi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> terrestrial isopod, centipede<br />

and millipede communities <strong>in</strong> grasslands under restorati<strong>on</strong>. Biology and Fertility<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Soils, 40, 163-170.<br />

Bibby, C.J. & Lunn, J. (1982) C<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> reed beds and their avifauna <strong>in</strong> England<br />

and Wales. Biological C<strong>on</strong>servati<strong>on</strong>, 23, 167-186.<br />

Bibby, C.J. (1986) Merl<strong>in</strong>s <strong>in</strong> Wales: site occupancy and breed<strong>in</strong>g <strong>in</strong> relati<strong>on</strong> to<br />

157


vegetati<strong>on</strong>. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology, 23, 1-12.<br />

Biffaward (2005). Nitrogen UK. Biffaward.<br />

Bignal, E. & McCracken, D. (1996) Low-<strong>in</strong>tensity farm<strong>in</strong>g systems <strong>in</strong> the c<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the countryside. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology, 33, 413-424.<br />

Blake, S., Foster, G.N., Eyre, M.D., & Luff, M.L. (1994) Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat type and<br />

grassland management practices <strong>on</strong> the body size distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> carabid beetles.<br />

Pedobiologia, 38, 502-512.<br />

Blake, S., Foster, G.N., Fisher, G.E.J., & Ligertwood, G.L. (1996) Effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

management practices <strong>on</strong> the carabid faunas <str<strong>on</strong>g>of</str<strong>on</strong>g> newly established wildflower<br />

meadows <strong>in</strong> southern Scotland. Annales Zoologici Fennici, 33, 139-147.<br />

Blake, S. & Foster, G.N. (1998). <str<strong>on</strong>g>The</str<strong>on</strong>g> <strong>in</strong>fluence <str<strong>on</strong>g>of</str<strong>on</strong>g> grassland management <strong>on</strong> body size <strong>in</strong><br />

Carabidae (ground beetles) and its bear<strong>in</strong>g <strong>on</strong> the c<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> wad<strong>in</strong>g <strong>birds</strong>. In<br />

European wet grasslands: biodiversity, management and restorati<strong>on</strong> (eds Joyce,<br />

C.B. & Wade, P.M.), pp. 163-169. John Wiley & S<strong>on</strong>s Ltd.<br />

Bl<strong>in</strong>dow, I., Anderss<strong>on</strong>, G., Hargeby, A., & Johanss<strong>on</strong>, S. (1993) L<strong>on</strong>g-term pattern <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

alternative stable states <strong>in</strong> two shallow eutrophic lakes. Freshwater Biology, 30,<br />

159-167.<br />

Bloem, J., Lebb<strong>in</strong>k, G., Zwart, K.B., Bouwman, L.A., Burgers, S.L.G.E., De Vos, J.A., &<br />

De Ruiter, P.C. (1994). Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> microorganisms, microbivores and nitrogen<br />

m<strong>in</strong>eralizati<strong>on</strong> <strong>in</strong> w<strong>in</strong>ter wheat fields under c<strong>on</strong>venti<strong>on</strong>al and <strong>in</strong>tegrated<br />

management. Agriculture Ecosystems and Envir<strong>on</strong>ment, 59, 129-143.<br />

Boatman, N.D., Rew, L.J., <str<strong>on</strong>g>The</str<strong>on</strong>g>aker, A.J., & Froud-Williams, R.J. (1994). <str<strong>on</strong>g>The</str<strong>on</strong>g> impact <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

nitrogen fertilizers <strong>on</strong> field marg<strong>in</strong> flora. In BCPC M<strong>on</strong>ograph No. 58. Field<br />

marg<strong>in</strong>s: <strong>in</strong>tegrat<strong>in</strong>g agriculture and c<strong>on</strong>servati<strong>on</strong> (ed N.D. Boatman), pp. 209-<br />

214.<br />

Bobb<strong>in</strong>k, R. & Heil, G.W. (1993). Atmospheric depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sulphur and nitrogen <strong>in</strong><br />

heathland ecosystems. In Heathlands: patterns and processes <strong>in</strong> a chang<strong>in</strong>g<br />

envir<strong>on</strong>ment (eds R. Aerts & G.W. Heil), pp. 25-50. Kluwer Academic<br />

Publishers, L<strong>on</strong>d<strong>on</strong>.<br />

Bobb<strong>in</strong>k, R., Hornung, M., & Roel<str<strong>on</strong>g>of</str<strong>on</strong>g>s, J.G.M. (1998) <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> air-borne nitrogen<br />

pollutants <strong>on</strong> species diversity <strong>in</strong> natural and semi-natural European vegetati<strong>on</strong>.<br />

158


Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology, 86, 717-738.<br />

Bobb<strong>in</strong>k, R., Ashmore, M., Braun, S., Flückiger, W., & Van den Wyngaert, I.J.J. (2003).<br />

Empirical nitrogen critical loads for natural and semi-natural ecosystems: 2002<br />

update. In Empirical Critical Loads for Nitrogen (eds B. Achermann & R.<br />

Bobb<strong>in</strong>k). Swiss Agency for the Envir<strong>on</strong>ment, Forests and the Landscape, Berne.<br />

Bokdam, J. & Gleichman, J.M. (2000) Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> graz<strong>in</strong>g by free-rang<strong>in</strong>g cattle <strong>on</strong><br />

vegetati<strong>on</strong> dynamics <strong>in</strong> a c<strong>on</strong>t<strong>in</strong>ental north-west European heathland. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Applied Ecology, 37, 415-431.<br />

Bourassa, N. & Mor<strong>in</strong>, A. (1995) Relati<strong>on</strong>ships between size structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>vertebrate<br />

assemblages and trophy and substrate compositi<strong>on</strong> <strong>in</strong> streams. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

North American Benthological Society, 14, 393-403.<br />

Bourassa, N. & Cattaneo, A. (2000) Resp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g> a lake outlet community to light and<br />

<str<strong>on</strong>g>nutrient</str<strong>on</strong>g> manipulati<strong>on</strong>: <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> periphyt<strong>on</strong> and <strong>in</strong>vertebrate biomass and<br />

compositi<strong>on</strong>. Freshwater Biology, 44, 629-639.<br />

Bradbury, R.B. & Bradter, U. (2004) Habitat associati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> yellow wagtails Motacilla<br />

flava flavissima <strong>on</strong> lowland wet grassland. Ibis, 146, 241-246.<br />

Brandsma, O.H. (2004) <str<strong>on</strong>g>The</str<strong>on</strong>g> importance <str<strong>on</strong>g>of</str<strong>on</strong>g> fertilisati<strong>on</strong> for the food supply <str<strong>on</strong>g>of</str<strong>on</strong>g> grassland<br />

<strong>birds</strong>. Wader Study Group Bullet<strong>in</strong>, 103, 17-18.<br />

Brickle, N.W., Harper, D.G.C., Aebischer, N.J., & Cockayne, S.H. (2000) Effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

agricultural <strong>in</strong>tensificati<strong>on</strong> <strong>on</strong> the breed<strong>in</strong>g success <str<strong>on</strong>g>of</str<strong>on</strong>g> corn bunt<strong>in</strong>gs Milaria<br />

calandra. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology, 37, 742-755.<br />

British Survey <str<strong>on</strong>g>of</str<strong>on</strong>g> Fertiliser Practice (2004). British survey <str<strong>on</strong>g>of</str<strong>on</strong>g> fertiliser practice: fertiliser<br />

use <strong>on</strong> farm crops, 2003. DEFRA, SEERAD.<br />

Britschgi, A., Spaar, R., & Arlettaz, R. (2006) Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> grassland farm<strong>in</strong>g <strong>in</strong>tensificati<strong>on</strong><br />

<strong>on</strong> the breed<strong>in</strong>g ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> an <strong>in</strong>dicator <strong>in</strong>sectivorous passer<strong>in</strong>e, the wh<strong>in</strong>chat<br />

Saxicola rubetra: for overall Alp<strong>in</strong>e meadowland management. Biological<br />

C<strong>on</strong>servati<strong>on</strong>, 130, 193-205.<br />

Britt<strong>on</strong>, A., Marrs, R., Pakeman, R., & Carey, P. (2003) <str<strong>on</strong>g>The</str<strong>on</strong>g> <strong>in</strong>fluence <str<strong>on</strong>g>of</str<strong>on</strong>g> soil-type,<br />

drought and nitrogen additi<strong>on</strong> <strong>on</strong> <strong>in</strong>teracti<strong>on</strong>s between Calluna vulgaris and<br />

Deschampsia flexuosa: implicati<strong>on</strong>s for heathland regenerati<strong>on</strong>. Plant Ecology,<br />

166, 93-105.<br />

159


Brown, A.F. (1993) <str<strong>on</strong>g>The</str<strong>on</strong>g> status <str<strong>on</strong>g>of</str<strong>on</strong>g> golden plover Pluvialis apricaria <strong>in</strong> the south Penn<strong>in</strong>es.<br />

Bird Study, 40, 196-202.<br />

Brown, A.F. & Stillman, R.A. (1993) Bird-habitat associati<strong>on</strong>s <strong>in</strong> the eastern Highlands<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Scotland. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology, 30, 31-42.<br />

Brown, A.F. & Ba<strong>in</strong>bridge, I.P. (1995). Grouse moors and upland breed<strong>in</strong>g <strong>birds</strong>. In<br />

Heaths and moorland: cultural landscapes (eds D.B.A. Thomps<strong>on</strong>, A.J. Hester &<br />

M.B. Usher), pp. 51-66. Scottish Natural Heritage, Ed<strong>in</strong>burgh.<br />

Brown, A.F., Cric, H.Q.P., and Stillman, R.A. (1995) <str<strong>on</strong>g>The</str<strong>on</strong>g> distributi<strong>on</strong>, numbers and<br />

breed<strong>in</strong>g ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> twite Acanthis flavirostris <strong>in</strong> the South Penn<strong>in</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> England.<br />

Bird Study 42, 107-121.<br />

Browne, S.J. & Aebischer, N.J. (2003) Habitat use, forag<strong>in</strong>g ecology and diet <str<strong>on</strong>g>of</str<strong>on</strong>g> turtle<br />

doves Streptopelia turtur <strong>in</strong> Brita<strong>in</strong>. Ibis, 145, 572-582.<br />

Browne, S.J., Aebischer, N.J., & Crick, H.Q.P. (2005) Breed<strong>in</strong>g ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> turtle doves<br />

Streptopelia turtur <strong>in</strong> Brita<strong>in</strong> dur<strong>in</strong>g the period 1941-2000: an analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> BTO<br />

nest record cards. Bird Study, 52, 1-9.<br />

Brunst<strong>in</strong>g, A.M.H. & Heil, G.W. (1985) <str<strong>on</strong>g>The</str<strong>on</strong>g> role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s <strong>in</strong> the <strong>in</strong>teracti<strong>on</strong>s between<br />

a herbivorous beetle and some compet<strong>in</strong>g plant species <strong>in</strong> heathlands. Oikos, 44,<br />

23-26.<br />

Bryant, D.M. & Leng, J. (1976) Feed<strong>in</strong>g distributi<strong>on</strong> and behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> shelduck <strong>in</strong><br />

relati<strong>on</strong> to food supply. Wildfowl, 26, 20-30.<br />

Bryant, D.M. (1987) Wad<strong>in</strong>g <strong>birds</strong> and wildfowl <str<strong>on</strong>g>of</str<strong>on</strong>g> the estuary and Firth <str<strong>on</strong>g>of</str<strong>on</strong>g> Forth.<br />

Proceed<strong>in</strong>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the Royal Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Ed<strong>in</strong>burgh, 93B, 509-527.<br />

Buchanan, G.M., Pearce-Higg<strong>in</strong>s, J.W., Wott<strong>on</strong>, S.R., Grant, M.C. & Whitfield, D.P.<br />

(2003) Correlates <str<strong>on</strong>g>of</str<strong>on</strong>g> the change <strong>in</strong> r<strong>in</strong>g ouzel Turdus torquatus abundance <strong>in</strong><br />

Scotland from 1988-91 to 1999. Bird Study, 50, 97-105.<br />

Buchanan, G.M., Grant, M.C., Sanders<strong>on</strong>, R.A., & Pearce-Higg<strong>in</strong>s, J.W. (<strong>in</strong> press) <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>vertebrate taxa to moorland bird diets and the potential<br />

implicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> land-use management. Ibis.<br />

Buck<strong>in</strong>gham, D.L., Atk<strong>in</strong>s<strong>on</strong>, P.W., & Rook, A.J. (2004) Test<strong>in</strong>g soluti<strong>on</strong>s <strong>in</strong> grassdom<strong>in</strong>ated<br />

landscapes: a review <str<strong>on</strong>g>of</str<strong>on</strong>g> current research. Ibis, 146 (Suppl. 2), 164-171.<br />

Buck<strong>in</strong>gham, D.L. & Peach, W.J. (<strong>in</strong> press) Leav<strong>in</strong>g f<strong>in</strong>al-cut grass silage <strong>in</strong> situ<br />

160


overw<strong>in</strong>ter as a seed resource for decl<strong>in</strong><strong>in</strong>g farmland <strong>birds</strong>. Biodiversity and<br />

C<strong>on</strong>servati<strong>on</strong>.<br />

Bullock, I.D., Drewett, D.R., & Mickleburgh, S.P. (1983) <str<strong>on</strong>g>The</str<strong>on</strong>g> chough <strong>in</strong> Brita<strong>in</strong> and<br />

Ireland. British Birds, 76, 377-401.<br />

Bunce, R.G.H., ed. (1989) Heather <strong>in</strong> England and Wales. HMSO Publicati<strong>on</strong>s, L<strong>on</strong>d<strong>on</strong>.<br />

Burfield, I.J. (2002) <str<strong>on</strong>g>The</str<strong>on</strong>g> breed<strong>in</strong>g ecology and c<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the r<strong>in</strong>g ouzel Turdus<br />

torquatus <strong>in</strong> Brita<strong>in</strong>. PhD, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Cambridge.<br />

Burt<strong>on</strong>, N.H.K., J<strong>on</strong>es, T.E., Aust<strong>in</strong>, G.E., Watt, G.A., Rehfisch, M.M., & Hutch<strong>in</strong>s, C.J.<br />

(2004). Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> reducti<strong>on</strong>s <strong>in</strong> organic and <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> load<strong>in</strong>g <strong>on</strong> bird populati<strong>on</strong>s<br />

<strong>in</strong> estuaries and coastal waters <str<strong>on</strong>g>of</str<strong>on</strong>g> England and Wales. Phase 2 report. Report by<br />

the BTO for English Nature, Peterborough.<br />

Butler, S.J. & Gill<strong>in</strong>gs, S. (2004) Quantify<strong>in</strong>g the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat structure <strong>on</strong> prey<br />

detectability and accessibility to farmland <strong>birds</strong>. Ibis, 146 (Suppl. 2), 123-130.<br />

Butler, S., Whitt<strong>in</strong>gham, M.J., Qu<strong>in</strong>n, J.L., & Cresswell, W. (2005) Quantify<strong>in</strong>g the<br />

<strong>in</strong>teracti<strong>on</strong> between food density and habitat structure <strong>in</strong> determ<strong>in</strong><strong>in</strong>g patch<br />

selecti<strong>on</strong>. Animal Behaviour, 69, 337-343.<br />

Cabral, J.A., Pardal, M.A., Lopes, R.J., Murias, T., & Marques, J.C. (1999) <str<strong>on</strong>g>The</str<strong>on</strong>g> impact <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

macroalgal blooms <strong>on</strong> the use <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>tertidal area and feed<strong>in</strong>g behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

waders (Charadrii) <strong>in</strong> the M<strong>on</strong>dego estuary (west Portugal). Acta Oecologia, 20,<br />

417-427.<br />

Cadbury, C.J. (1992). Graz<strong>in</strong>g and other management <str<strong>on</strong>g>of</str<strong>on</strong>g> upland vegetati<strong>on</strong>: a review with<br />

special reference to <strong>birds</strong>. Unpublished report, <strong>RSPB</strong>, Sandy.<br />

Callad<strong>in</strong>e, J., Ba<strong>in</strong>es, D., & Warren, P. (2002) Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> reduced graz<strong>in</strong>g <strong>on</strong> populati<strong>on</strong><br />

density and breed<strong>in</strong>g success <str<strong>on</strong>g>of</str<strong>on</strong>g> black grouse <strong>in</strong> northern England. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Applied Ecology, 39, 772-780.<br />

Campbell, L.H. (1978) Patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> distributi<strong>on</strong> and behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> flocks <str<strong>on</strong>g>of</str<strong>on</strong>g> seaducks<br />

w<strong>in</strong>ter<strong>in</strong>g at Leith and Musselburgh, Scotland. Biological C<strong>on</strong>servati<strong>on</strong>, 14, 111-<br />

124.<br />

Campbell, L.H. (1984) <str<strong>on</strong>g>The</str<strong>on</strong>g> impact <str<strong>on</strong>g>of</str<strong>on</strong>g> changes <strong>in</strong> sewage treatment <strong>on</strong> seaducks w<strong>in</strong>ter<strong>in</strong>g<br />

<strong>in</strong> the Firth <str<strong>on</strong>g>of</str<strong>on</strong>g> Forth. Biological C<strong>on</strong>servati<strong>on</strong>, 28, 173-180.<br />

Campbell, G.W. & Lee, D.S. (1996) Atmospheric depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sulphur and nitrogen<br />

161


species <strong>in</strong> the UK. Freshwater Biology, 36, 151-167.<br />

Campbell, L.H., Avery, M.I., D<strong>on</strong>ald, P., A.D., E., Green, R.E., & Wils<strong>on</strong>, J.D. (1997). A<br />

review <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g><strong>in</strong>direct</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> pesticides <strong>on</strong> <strong>birds</strong>. JNCC.<br />

Cardoso, P.G., Brandão, A., Pardal, M.A., Rafaelli, D., & Marques, J.C. (2005)<br />

Resilience <str<strong>on</strong>g>of</str<strong>on</strong>g> Hydrobia ulvae populati<strong>on</strong>s to anthropogenic and natural<br />

disturbances. Mar<strong>in</strong>e Ecology Progress Series, 289, 191-199.<br />

Carroll, J.A., Caporn, S.J.M., Cawley, L., Read, D.J., & Lee, J.A. (1999) <str<strong>on</strong>g>The</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> atmospheric nitrogen <strong>on</strong> Calluna vulgaris <strong>in</strong> upland<br />

Brita<strong>in</strong>. New Phytologist, 141, 423-431.<br />

Carroll, J.A., Caporn, S.J.M., Johns<strong>on</strong>, D., Morecr<str<strong>on</strong>g>of</str<strong>on</strong>g>t, M.D., & Lee, J.A. (2003) <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

<strong>in</strong>teracti<strong>on</strong>s between plant growth, vegetati<strong>on</strong> structure and soil processes <strong>in</strong> sem<strong>in</strong>atural<br />

acidic and calcareous grasslands receiv<strong>in</strong>g l<strong>on</strong>g-term <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> simulated<br />

pollutant nitrogen depositi<strong>on</strong>. Envir<strong>on</strong>mental Polluti<strong>on</strong>, 121, 363-376.<br />

Cathcart, R. (2002). Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> load<strong>in</strong>g <strong>on</strong> the ditch flora <str<strong>on</strong>g>of</str<strong>on</strong>g> the Ouse Washes:<br />

current impacts and potential mitigati<strong>on</strong>. <strong>RSPB</strong>, Sandy.<br />

Cayford, J.T., Tyler, G., & Mac<strong>in</strong>tosh-Williams, L. (1989) <str<strong>on</strong>g>The</str<strong>on</strong>g> ecology and management<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> black grouse <strong>in</strong> c<strong>on</strong>ifer forest <strong>in</strong> Wales. Unpublished report, <strong>RSPB</strong>, Sandy.<br />

Chalmers, A.G., Kershaw, C.D., & Leech, P.K. (1990) Fertiliser use <strong>on</strong> farm crops <strong>in</strong><br />

Great Brita<strong>in</strong>: results from the survey <str<strong>on</strong>g>of</str<strong>on</strong>g> fertiliser practice, 1969-1988. Outlook <strong>on</strong><br />

Agriculture, 19, 269-278.<br />

Chamberla<strong>in</strong>, D.E., Fuller, R.J., Shrubb, M., Bunce, R.G.H., Duckworth, J.C.,<br />

Garthwaite, D.G., Impey, A.J., & Hart, A.D.M. (1999). <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> agricultural<br />

management <strong>on</strong> farmland <strong>birds</strong>. BTO, <str<strong>on</strong>g>The</str<strong>on</strong>g>tford.<br />

Chamberla<strong>in</strong>, D.E. & Fuller, R.W. (2000) Local ext<strong>in</strong>cti<strong>on</strong>s and changes <strong>in</strong> species<br />

richness <str<strong>on</strong>g>of</str<strong>on</strong>g> lowland farmland <strong>birds</strong> <strong>in</strong> England and Wales <strong>in</strong> relati<strong>on</strong> to recent<br />

changes <strong>in</strong> agricultural land-use. Agriculture, Ecosystems and Envir<strong>on</strong>ment, 78, 1-<br />

17.<br />

Chamberla<strong>in</strong>, D.E., Fuller, R.J., Bunce, R.G.H., Duckworth, J.C., & Shrubb, M. (2000)<br />

Changes <strong>in</strong> the abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> farmland <strong>birds</strong> <strong>in</strong> relati<strong>on</strong> to the tim<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

agricultural <strong>in</strong>tensificati<strong>on</strong> <strong>in</strong> England and Wales. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology, 37,<br />

771-778.<br />

162


Chamberla<strong>in</strong>, D.E. & Fuller, R.J. (2001) C<strong>on</strong>trast<strong>in</strong>g patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> change <strong>in</strong> the distributi<strong>on</strong><br />

and abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> farmland <strong>birds</strong> <strong>in</strong> relati<strong>on</strong> to farm<strong>in</strong>g system <strong>in</strong> lowland Brita<strong>in</strong>.<br />

Global Ecology and Biogeography, 10, 399-409.<br />

Chamberla<strong>in</strong>, D.E. & Crick, H.P. (2003) Temporal and spatial associati<strong>on</strong>s <strong>in</strong> aspects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

reproductive performance <str<strong>on</strong>g>of</str<strong>on</strong>g> lapw<strong>in</strong>gs Vanellus vanellus <strong>in</strong> the United K<strong>in</strong>gdom,<br />

1962-99. Ardea, 91, 183-196.<br />

Chapman, S.B. (1967) Nutrient budgets for a dry heath ecosystem <strong>in</strong> the south <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

England. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology, 55, 677-689.<br />

Cherrett, J.M. (1964) <str<strong>on</strong>g>The</str<strong>on</strong>g> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> spiders <strong>on</strong> the Moor House Nati<strong>on</strong>al Nature<br />

Reserve, Westmorland. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Animal Ecology, 33, 27-48.<br />

Clarke, J.T., Welch, D., & Gord<strong>on</strong>, I.J. (1995) <str<strong>on</strong>g>The</str<strong>on</strong>g> <strong>in</strong>fluence <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong> pattern <strong>on</strong> the<br />

graz<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> heather moorland by red deer and sheep. II. <str<strong>on</strong>g>The</str<strong>on</strong>g> impact <strong>on</strong> heather.<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology, 32, 177-186.<br />

Clausen, P. & Percival, S.M. (1998) Changes <strong>in</strong> distributi<strong>on</strong> and habitat use <str<strong>on</strong>g>of</str<strong>on</strong>g> Svalbard<br />

light-bellied brent geese Branta bernicla hrota, 1980-1995: driven by Zostera<br />

availability? Skrifter - Norsk Polar<strong>in</strong>stitutt, 200, 245-268.<br />

Clements, R.O. & Cook, R. (1996) Pest damage to established grass <strong>in</strong> the UK.<br />

Agricultural Zoology Reviews, 7, 157-179.<br />

Clever<strong>in</strong>g, O.A. (1998) An <strong>in</strong>vestigati<strong>on</strong> <strong>in</strong>to the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen <strong>on</strong> growth and<br />

morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> stable and die-back populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Phragmites australis. Aquatic<br />

Botany, 60, 11-25.<br />

Clutt<strong>on</strong>-Brock, T.H., Couls<strong>on</strong>, T., & Milner, J.M. (2004) Red deer stocks <strong>in</strong> the<br />

Highlands <str<strong>on</strong>g>of</str<strong>on</strong>g> Scotland. Nature, 429, 261-262.<br />

Cole, L., Buckland, S.M., & Bardgett, R.D. (2005) Relat<strong>in</strong>g microarthropod community<br />

structure and diversity to soil fertility manipulati<strong>on</strong>s <strong>in</strong> temperate grassland. Soil<br />

Biology and Biochemistry, 37, 1707-1717.<br />

Collier, M.P., Banks, A.N., Aust<strong>in</strong>, G.E., Girl<strong>in</strong>g, T., Hearn, R.D., & Musgrove, A.J.<br />

(2005). <str<strong>on</strong>g>The</str<strong>on</strong>g> Wetland Bird Survey 2003/04: Wildfowl and Wader Counts.<br />

BTO/WWT/<strong>RSPB</strong>/JNCC, <str<strong>on</strong>g>The</str<strong>on</strong>g>tford.<br />

Coops, H. & Doef, R.W. (1996) Submerged vegetati<strong>on</strong> development <strong>in</strong> two shallow,<br />

eutrophic lakes. Hydrobiologia, 340, 115-120.<br />

163


Cornell, S., Randell, A. & Jickells, T. (2002) Atmospheric <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> dissolved organic<br />

nitrogen to the oceans. Nature, 376, 243 - 246<br />

Cornell, S.E., Jickells, T.D., Cape, J.N., Rowland, A.P., & Duce, R.A. (2003) Organic<br />

nitrogen depositi<strong>on</strong> <strong>on</strong> land and coastal envir<strong>on</strong>ments: a review <str<strong>on</strong>g>of</str<strong>on</strong>g> methods and<br />

data. Atmospheric Envir<strong>on</strong>ment, 37, 2173-2191.<br />

Couls<strong>on</strong>, J.C. & Whitaker, J.B. (1978) Ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> moorland animals. In Producti<strong>on</strong><br />

ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> British moors and m<strong>on</strong>tane grasslands (eds O.W. Heil & D.F.<br />

Perk<strong>in</strong>s). Spr<strong>in</strong>ger Verlag, Berl<strong>in</strong>.<br />

Couls<strong>on</strong>, J.C. & Butterfield, J.E.L. (1985) <str<strong>on</strong>g>The</str<strong>on</strong>g> <strong>in</strong>vertebrate communities <str<strong>on</strong>g>of</str<strong>on</strong>g> peat and<br />

grasslands <strong>in</strong> the north <str<strong>on</strong>g>of</str<strong>on</strong>g> England and some c<strong>on</strong>servati<strong>on</strong> implicati<strong>on</strong>s. Biological<br />

C<strong>on</strong>servati<strong>on</strong>, 34, 197-225.<br />

Couls<strong>on</strong>, J.C. (1988). <str<strong>on</strong>g>The</str<strong>on</strong>g> structure and importance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>vertebrate communities <strong>on</strong><br />

peatlands and moorlands, and <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental and management changes.<br />

In Ecological change <strong>in</strong> the uplands (eds M.B. Usher & D.B.A. Thomps<strong>on</strong>), pp.<br />

365-380. Blackwell Science.<br />

Couls<strong>on</strong>, J.C. & Strowger, J. (1999) <str<strong>on</strong>g>The</str<strong>on</strong>g> annual mortality rate <str<strong>on</strong>g>of</str<strong>on</strong>g> black-legged kittiwakes<br />

<strong>in</strong> NE England from 1954 to 1998 and a recent excepti<strong>on</strong>ally high mortality.<br />

Water<strong>birds</strong>, 22, 3-13.<br />

Crawley, M.J. (1983) Herbivory - the dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> animal/plant <strong>in</strong>teracti<strong>on</strong>s Blackwell<br />

Science, Oxford.<br />

Crema, R., Castelli, A., & Prevedelli, D. (1991) L<strong>on</strong>g term eutrophicati<strong>on</strong> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong><br />

macr<str<strong>on</strong>g>of</str<strong>on</strong>g>aunal communities <strong>in</strong> northern Adriatic Sea. Mar<strong>in</strong>e Polluti<strong>on</strong> Bullet<strong>in</strong>, 22,<br />

503-508.<br />

Crick, H.Q.P., Rob<strong>in</strong>s<strong>on</strong>, R.A., Applet<strong>on</strong>, G.F., Clark, N.A., & Rickard, A.D. (2002).<br />

Investigati<strong>on</strong> <strong>in</strong>to the causes <str<strong>on</strong>g>of</str<strong>on</strong>g> the decl<strong>in</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> starl<strong>in</strong>gs and house sparrows <strong>in</strong><br />

Great Brita<strong>in</strong>. BTO, <str<strong>on</strong>g>The</str<strong>on</strong>g>tford.<br />

Crook, C.F., Boar, R.R., & Moss, B. (1983). <str<strong>on</strong>g>The</str<strong>on</strong>g> decl<strong>in</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the reedswamp <strong>in</strong> the Norfolk<br />

Broadland: causes, c<strong>on</strong>sequences and soluti<strong>on</strong>s. Broads Authority, Norwich.<br />

Crozier, G.E. & Gawlik, D.E. (2002) Avian resp<strong>on</strong>se to <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> enrichment <strong>in</strong> an<br />

oligotrophic wetland, the Florida Everglades. C<strong>on</strong>dor, 104, 631-642.<br />

Curry, J.P. (1976) Some <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> animal manures <strong>on</strong> earthworms <strong>in</strong> grassland.<br />

164


Pedobiologia, 6, 425-438.<br />

Curry, J.P. & Tuohy, C. (1978) Studies <strong>on</strong> the epigeal microarthropod fauna <str<strong>on</strong>g>of</str<strong>on</strong>g> grassland<br />

swards managed for silage producti<strong>on</strong>. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology, 15, 727-741.<br />

Curry, J.P. & O'Neill, N. (1979) A comparative study <str<strong>on</strong>g>of</str<strong>on</strong>g> the arthropod communities <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

various swards us<strong>in</strong>g the D-vac sucti<strong>on</strong> sampl<strong>in</strong>g technique. Proceed<strong>in</strong>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

Royal Irish Academy, 79B, 247-258.<br />

Curry, J.P. (1994) Grassland <strong>in</strong>vertebrates Chapman and Hall, L<strong>on</strong>d<strong>on</strong>.<br />

Curtis, C.J., Emmett, B.A., Grant, H., Kernan, M., Reynolds, B., & Shilland, E. (2005)<br />

Nitrogen saturati<strong>on</strong> <strong>in</strong> UK moorlands: the critical role <str<strong>on</strong>g>of</str<strong>on</strong>g> bryophytes and lichens<br />

<strong>in</strong> determ<strong>in</strong><strong>in</strong>g retenti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> atmospheric N depositi<strong>on</strong>. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied<br />

Ecology, 42, 507-517.<br />

D'Arcy-Burt, S. & Blackshaw, R.P. (1991) Bibi<strong>on</strong>ids (Diptera: Bibi<strong>on</strong>idae) <strong>in</strong> agricultural<br />

land: a review <str<strong>on</strong>g>of</str<strong>on</strong>g> damage, benefits, natural enemies and c<strong>on</strong>trol. Annals <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Applied Biology, 118, 695-708.<br />

Dalt<strong>on</strong>, H. & Brand-Hardy, R. (2003) Nitrogen: the essential public enemy. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Applied Ecology, 40, 771-781.<br />

de J<strong>on</strong>ge, V.N. & de J<strong>on</strong>g, D.J. (1993) Role <str<strong>on</strong>g>of</str<strong>on</strong>g> tide, light and fisheries <strong>in</strong> the decl<strong>in</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Zostera mar<strong>in</strong>a L. <strong>in</strong> the Dutch Wadden Sea. Netherlands Institute for Sea<br />

Research Publicati<strong>on</strong> Series, 20, 161-176.<br />

de Smidt, J.T. (1995). <str<strong>on</strong>g>The</str<strong>on</strong>g> imm<strong>in</strong>ent destructi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> northwest European heaths due to<br />

atmospheric nitrogen depositi<strong>on</strong>. In Heaths and moorland: cultural landscapes<br />

(eds D.B.A. Thomps<strong>on</strong>, A.J. Hester & M.B. Usher), pp. 206-217. Scottish Natural<br />

Heritage, Ed<strong>in</strong>burgh.<br />

DEFRA (Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>ment, Food and Rural Affairs) (2006a) UK amm<strong>on</strong>ia<br />

emissi<strong>on</strong> by source 1990-2003. Retrieved 20 October, 2006. Website:<br />

http://statistics.defra.gov.uk/esg/publicati<strong>on</strong>s/auk/2005/chart14-9.xls<br />

DEFRA (Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>ment, Food and Rural Affairs) (2006b) e-Digest<br />

Statistics about: Coastal and mar<strong>in</strong>e waters. Table 11: Annual estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> total<br />

United K<strong>in</strong>gdom <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> (direct and river<strong>in</strong>e) to coastal waters around the United<br />

K<strong>in</strong>gdom: 1990-2004. Retrieved 20 October, 2006. Website:<br />

http://www.defra.gov.uk/envir<strong>on</strong>ment/statistics/coastwaters/download/xls/cwtb11.<br />

165


xls<br />

Del<strong>on</strong>g, M.D. & Brusven, M.A. (1998) Macro<strong>in</strong>vertebrate community structure al<strong>on</strong>g the<br />

l<strong>on</strong>gitud<strong>in</strong>al gradient <str<strong>on</strong>g>of</str<strong>on</strong>g> an agriculturally impacted stream. Envir<strong>on</strong>mental<br />

Management, 22, 445-457.<br />

Dennis, P. (2003) Sensitivity <str<strong>on</strong>g>of</str<strong>on</strong>g> upland arthropod diversity to livestock graz<strong>in</strong>g,<br />

vegetati<strong>on</strong> structure and landform. Food, Agriculture and Envir<strong>on</strong>ment, 1, 301-<br />

307.<br />

Dennis, P., Elst<strong>on</strong>, D., Evans, D., Evans, S., Gord<strong>on</strong>, I., Grant, M., Kunaver, A.,<br />

Marquiss, M., Mayes, B., McCracken, D., Pakeman, R., Pearce-Higg<strong>in</strong>s, J.,<br />

Redpath, S., Skartveit, J., Stephen, L., Bent<strong>on</strong>, T., & Bryant, D. (2005). Effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

graz<strong>in</strong>g management <strong>on</strong> upland bird populati<strong>on</strong>s: disentangl<strong>in</strong>g habitat structure<br />

and arthropod food supply at appropriate spatial scales (GRUB). SEERAD.<br />

Devereux, C.L., McKeever, C.U., Bent<strong>on</strong>, T.G., & Whitt<strong>in</strong>gham, M.J. (2004) <str<strong>on</strong>g>The</str<strong>on</strong>g> effect<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> sward height and dra<strong>in</strong>age <strong>on</strong> comm<strong>on</strong> starl<strong>in</strong>gs Sturnus vulgaris and northern<br />

lapw<strong>in</strong>gs Vanellus vanellus forag<strong>in</strong>g <strong>in</strong> grassland habitats. Ibis, 146 (Suppl. 2),<br />

115-122.<br />

di Giulio, M., Edwards, P.J., & Meister, E. (2001) Enhanc<strong>in</strong>g <strong>in</strong>sect diversity <strong>in</strong><br />

agricultural grasslands: the roles <str<strong>on</strong>g>of</str<strong>on</strong>g> management and landscape structure. Journal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology, 38, 310-319.<br />

Diem<strong>on</strong>t, W.H. & Heil, G.W. (1984) Some l<strong>on</strong>g-term observati<strong>on</strong>s <strong>on</strong> cyclical and seral<br />

processes <strong>in</strong> Dutch heathlands. Biological C<strong>on</strong>servati<strong>on</strong>, 30, 283-290.<br />

D<strong>on</strong>ald, P.F., Green, R.E., & Heath, M.F. (2001) Agricultural <strong>in</strong>tensificati<strong>on</strong> and the<br />

collapse <str<strong>on</strong>g>of</str<strong>on</strong>g> Europe's farmland bird populati<strong>on</strong>s. Proceed<strong>in</strong>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the Royal Society<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> L<strong>on</strong>d<strong>on</strong>, 268, 25-29.<br />

D<strong>on</strong>ald, P.F., Evans, A.D., Muirhead, L.B., Buck<strong>in</strong>gham, D.L., Kirby, W.B., & Schmitt,<br />

S.I.A. (2002) Survival rates, causes <str<strong>on</strong>g>of</str<strong>on</strong>g> failure and productivity <str<strong>on</strong>g>of</str<strong>on</strong>g> skylark Alauda<br />

arvensis nests <strong>on</strong> lowland farmland. Ibis, 144, 652-664.<br />

D<strong>on</strong>ald, P.F. & Morris, A.J. (2005) Sav<strong>in</strong>g the skylark: new soluti<strong>on</strong>s for a decl<strong>in</strong><strong>in</strong>g<br />

farmland bird. British Birds, 98, 570-578.<br />

Dover, J.W. (1996) Factors affect<strong>in</strong>g the distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> satyrid butterflies <strong>on</strong> arable<br />

farmland. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology, 33, 723-734.<br />

166


Duriez, O., Ferr, , Y., B<strong>in</strong>et, F., Corda, E., Gossmann, F., & Fritz, H. (2005) Habitat<br />

selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Eurasian woodcock <strong>in</strong> w<strong>in</strong>ter <strong>in</strong> relati<strong>on</strong> to earthworms<br />

availability. Biological C<strong>on</strong>servati<strong>on</strong>, 122, 479-490.<br />

Düttmann, H. & Emmerl<strong>in</strong>g, R. (2001) Grünland-versauerung als bes<strong>on</strong>deres problem<br />

des wiesenvogelschutzes auf entwässterten moorböden. Natur und Landschaft,<br />

76, 262-269.<br />

Eat<strong>on</strong>, M.A. (2000a) Determ<strong>in</strong>ants <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat and site use by turnst<strong>on</strong>es and purple<br />

sandpipers <strong>in</strong> northeast England, and possible <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the removal <str<strong>on</strong>g>of</str<strong>on</strong>g> coastal<br />

<str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s. PhD, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Durham.<br />

Eat<strong>on</strong>, M.A. (2000b). Studies <strong>on</strong> purple sandpiper and turnst<strong>on</strong>es at Hartlepool, 1999-<br />

2000: have recent changes <strong>in</strong> the treatment and discharge <str<strong>on</strong>g>of</str<strong>on</strong>g> sewage had an<br />

impact? Unpublished report.<br />

Eat<strong>on</strong>, M.A., Noble, D.G., Hearn, R.D., Grive, P.V., Gregory, R.D., Wott<strong>on</strong>, S., Ratcliffe,<br />

N., Hilt<strong>on</strong>, G.M., Rehfisch, M.M., Crick, H.Q.P., & Hughes, J. (2005). <str<strong>on</strong>g>The</str<strong>on</strong>g> state<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the UK's <strong>birds</strong> 2004. BTO, <strong>RSPB</strong>, WWT, CCW, EN, EHS and SNH., Sandy.<br />

Eck, H.V. & Stewart, B.A. (1995). Manure. In Envir<strong>on</strong>mental aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> soil amendments<br />

(ed J.E. Rechcigl), pp. 169-198. Lewis Publish<strong>in</strong>g, Boca Rat<strong>on</strong>, Florida.<br />

Edwards, C.A. & L<str<strong>on</strong>g>of</str<strong>on</strong>g>ty, J.R. (1975). <str<strong>on</strong>g>The</str<strong>on</strong>g> <strong>in</strong>vertebrate fauna <str<strong>on</strong>g>of</str<strong>on</strong>g> the Park Grass Plots I.<br />

Soil fauna. Rothamsted Experimental Stati<strong>on</strong>.<br />

Edwards, C.A. & L<str<strong>on</strong>g>of</str<strong>on</strong>g>ty, J.R. (1982) Nitrogenous fertilizers and earthworm populati<strong>on</strong>s <strong>in</strong><br />

agricultural soils. Soil Biology and Biochemistry, 14, 515-521.<br />

Edwards, C.A. (1983). Earthworm ecology <strong>in</strong> cultivated soils. In Earthworm Ecology<br />

from Darw<strong>in</strong> to Vermiculture (ed J.E. Satchell), pp. 123-138. Chapman and Hall,<br />

L<strong>on</strong>d<strong>on</strong>.<br />

Edwards, G.R., Bourdot, G.W., & Crawley, M.J. (2000) Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> herbivory,<br />

competiti<strong>on</strong> and soil fertility <strong>on</strong> the abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> Cirsium arvense <strong>in</strong> acid<br />

grassland. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology, 37, 321-334.<br />

Eleftheriou, A., Moore, D.C., Basford, D.J., & Roberts<strong>on</strong>, M.R. (1982) Underwater<br />

experiments <strong>on</strong> the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> sewage sludge <strong>on</strong> a mar<strong>in</strong>e ecosystem. Netherlands<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Sea Research, 16, 465-473.<br />

English Nature (2006) Lowland Grassland Management Handbook Chapter 6 . Retrieved<br />

167


20 October, 2006. Website: http://www.english-<br />

nature.org.uk/pubs/Handbooks/images/low06.pdf).<br />

Envir<strong>on</strong>ment Agency (2000). Aquatic eutrophicati<strong>on</strong> <strong>in</strong> England and Wales: a<br />

management strategy. Envir<strong>on</strong>ment Agency, Bristol.<br />

Erhardt, A. (1985) Diurnal Lepidoptera: sensitive <strong>in</strong>dicators <str<strong>on</strong>g>of</str<strong>on</strong>g> cultivated and aband<strong>on</strong>ed<br />

grassland. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology, 22, 849-861.<br />

Eriks<strong>on</strong>, M.O.G. (1985) Prey detectability for fish-eat<strong>in</strong>g <strong>birds</strong> <strong>in</strong> relati<strong>on</strong> to fish density<br />

and water transparency. Ornis Scand<strong>in</strong>avica, 16, 1-7.<br />

Eriks<strong>on</strong>, M.O.G. & Sundberg, P. (1991) <str<strong>on</strong>g>The</str<strong>on</strong>g> choice <str<strong>on</strong>g>of</str<strong>on</strong>g> fish<strong>in</strong>g lakes by the red-throated<br />

diver Gavia stellata and black-throated diver G. arctica dur<strong>in</strong>g the breed<strong>in</strong>g<br />

seas<strong>on</strong> <strong>in</strong> south-west Sweden. Bird Study, 38, 135-144.<br />

Estevez, B., N'Dayegamiye, A., & Coderre, D. (1996) <str<strong>on</strong>g>The</str<strong>on</strong>g> effect <strong>on</strong> earthworm<br />

abundance and selected soil properties after 14 years <str<strong>on</strong>g>of</str<strong>on</strong>g> solid cattle manure and<br />

NPKMg fertilizer applicati<strong>on</strong>. Canadian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Soil Science, 76, 351-355.<br />

Etheridge, B., Summers, R.W., & Green, R.E. (1997) <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> illegal kill<strong>in</strong>g and<br />

destructi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nests by humans <strong>on</strong> the populati<strong>on</strong>s dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> hen harrier Circus<br />

cyaneus <strong>in</strong> Scotland. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology, 34, 1081-1105.<br />

Evans, A.D., Smith, K.W., Buck<strong>in</strong>gham, D.L., & Evans, J. (1997) Seas<strong>on</strong>al variati<strong>on</strong> <strong>in</strong><br />

breed<strong>in</strong>g performance and nestl<strong>in</strong>g diet <str<strong>on</strong>g>of</str<strong>on</strong>g> cirl bunt<strong>in</strong>gs Emberiza cirlus <strong>in</strong><br />

England. Bird Study, 44, 66-79.<br />

Evans, A.D. (1997a). <str<strong>on</strong>g>The</str<strong>on</strong>g> importance <str<strong>on</strong>g>of</str<strong>on</strong>g> mixed farm<strong>in</strong>g for seed-eat<strong>in</strong>g <strong>birds</strong> <strong>in</strong> the UK.<br />

In Farm<strong>in</strong>g and <strong>birds</strong> <strong>in</strong> Europe (eds D. Pa<strong>in</strong> & M.W. Pienkowski), pp. 331-357.<br />

Academic Press, L<strong>on</strong>d<strong>on</strong>.<br />

Evans, A.D. (1997b) Cirl bunt<strong>in</strong>gs <strong>in</strong> Brita<strong>in</strong>. British Birds, 90, 267-282.<br />

Evans, K.L. (2001) <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> agriculture <strong>on</strong> swallows. PhD, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxford.<br />

Feber, R.E., Bell, J., Johns<strong>on</strong>, P.J., Firbank, L.G., & Macd<strong>on</strong>ald, D.W. (1998) <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> organic farm<strong>in</strong>g <strong>on</strong> surface-active spider (Araneae) assemblages <strong>in</strong> wheat <strong>in</strong><br />

southern England, UK. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Arachnology, 26, 190-202.<br />

Fenner, M. & Palmer, L. (1998) Grassland management to promote diversity: creati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a patchy sward by mow<strong>in</strong>g and fertiliser regimes. Field Studies, 9, 313-324.<br />

Field, R.H. & Anders<strong>on</strong>, G.Q.A. (2004) Habitat use by breed<strong>in</strong>g tree sparrows Passer<br />

168


m<strong>on</strong>tanus. Ibis, 146 (Suppl. 2), 60-68.<br />

Fogli, S., Marches<strong>in</strong>i, R., & Gerdol, R. (2002) Reed (Phragmites australis) decl<strong>in</strong>e <strong>in</strong> a<br />

brackish wetland <strong>in</strong> Italy. Mar<strong>in</strong>e Envir<strong>on</strong>mental Research, 53, 465-479.<br />

Foundati<strong>on</strong> for Water Research. (2000). Eutrophicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> freshwaters: a review <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

current knowledge. Report by Foundati<strong>on</strong> for Water Research., Marlow,<br />

Buck<strong>in</strong>ghamshire.<br />

Fowler, D., O’D<strong>on</strong>oghue, M., Muller, J.B.A., Smith, R.I., Dragosits, U., Skiba, U.,<br />

Sutt<strong>on</strong>, M.A., & Brimblecombe, P. (2004) A chr<strong>on</strong>ology <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen depositi<strong>on</strong> <strong>in</strong><br />

the UK between 1900 and 2000. Water Air and Soil Polluti<strong>on</strong> Focus, 4, 9-23.<br />

Fox, A.D. & Salm<strong>on</strong>, D.G. (1988) Changes <strong>in</strong> n<strong>on</strong>-breed<strong>in</strong>g distributi<strong>on</strong> and habitat <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

pochard Aythya fer<strong>in</strong>a <strong>in</strong> Brita<strong>in</strong>. Biological C<strong>on</strong>servati<strong>on</strong>, 46, 303-316.<br />

Fuller, R.M. (1987) <str<strong>on</strong>g>The</str<strong>on</strong>g> chang<strong>in</strong>g extent and c<strong>on</strong>servati<strong>on</strong> <strong>in</strong>terest <str<strong>on</strong>g>of</str<strong>on</strong>g> lowland grasslands<br />

<strong>in</strong> England and Wales: a review <str<strong>on</strong>g>of</str<strong>on</strong>g> grassland surveys 1930-84. Biological<br />

C<strong>on</strong>servati<strong>on</strong>, 40, 281-300.<br />

Fuller, R.J., Gregory, R.D., Gibb<strong>on</strong>s, D.W., Marchant, J.H., Wils<strong>on</strong>, J.D., Baillie, S.R., &<br />

Carter, N. (1995) Populati<strong>on</strong> decl<strong>in</strong>es and range c<strong>on</strong>tracti<strong>on</strong>s am<strong>on</strong>g lowland<br />

farmland <strong>birds</strong> <strong>in</strong> Brita<strong>in</strong>. C<strong>on</strong>servati<strong>on</strong> Biology, 9, 1425-1441.<br />

Fuller, R.J. & Gough, S. (1999) Chang<strong>in</strong>g patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> sheep stock<strong>in</strong>g <strong>in</strong> Brita<strong>in</strong> and<br />

implicati<strong>on</strong>s for bird populati<strong>on</strong>s. Biological C<strong>on</strong>servati<strong>on</strong>, 91, 73-89.<br />

Fuller, R.J. (2000). Relati<strong>on</strong>ship between recent changes <strong>in</strong> lowland British agriculture<br />

and farmland bird populati<strong>on</strong>s: an overview. In Ecology and c<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

lowland farmland <strong>birds</strong> (eds N.J. Aebischer, A.D. Evans, P.V. Grice & J.A.<br />

Vickery), pp. 5-16. British Ornithologists Uni<strong>on</strong>, Tr<strong>in</strong>g.<br />

Fuller, R.J., Ward, E., Hird, D., & Brown, A.F. (2002) Decl<strong>in</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> ground-nest<strong>in</strong>g <strong>birds</strong><br />

<strong>in</strong> two areas <str<strong>on</strong>g>of</str<strong>on</strong>g> upland farmland <strong>in</strong> the south Penn<strong>in</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> England. Bird Study, 49,<br />

146-152.<br />

Fuller, R.J., Atk<strong>in</strong>s<strong>on</strong>, P.W., Asteraki, E.J., C<strong>on</strong>way, G.J., Goodyear, J., Haysom, K.,<br />

Ings, T., Smith, R.E.N., Tallow<strong>in</strong>, J.R., & Vickery, J.A. (2003). Changes <strong>in</strong><br />

lowland grassland management: <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> <strong>in</strong>vertebrates and <strong>birds</strong>. DEFRA,<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>tford.<br />

Furness, R.W., Galbraith, H., Gibs<strong>on</strong>, I.P., & Metcalfe, N.B. (1986) Recent changes <strong>in</strong><br />

169


numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> waders <strong>on</strong> the Clyde estuary, and their significance for c<strong>on</strong>servati<strong>on</strong>.<br />

Proceed<strong>in</strong>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the Royal Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Ed<strong>in</strong>burgh, 90B, 171-184.<br />

Furness, R.W. & Greenwood, J.J.D., eds. (1993) Birds as m<strong>on</strong>itors <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental<br />

change. Chapman and Hall, L<strong>on</strong>d<strong>on</strong>.<br />

Galbraith, H. (1988) Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> agriculture <strong>on</strong> the breed<strong>in</strong>g ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> lapw<strong>in</strong>gs Vanellus<br />

vanellus. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology, 25, 487-503.<br />

Galbraith, H. (1989) <str<strong>on</strong>g>The</str<strong>on</strong>g> diet <str<strong>on</strong>g>of</str<strong>on</strong>g> lapw<strong>in</strong>g Vanellus vanellus chicks <strong>on</strong> Scottish farmland.<br />

Ibis, 131, 80-84.<br />

Galloway, J.N. (1998) <str<strong>on</strong>g>The</str<strong>on</strong>g> global nitrogen cycle: changes and c<strong>on</strong>sequences.<br />

Envir<strong>on</strong>mental Polluti<strong>on</strong>, 102, 15-24.<br />

Garcia-Berthou, E. & Moreno-Amich, R. (2001) Rudd (Scard<strong>in</strong>ius erythrophthalmus)<br />

<strong>in</strong>troduced to the Iberian pen<strong>in</strong>sula: feed<strong>in</strong>g ecology <strong>in</strong> Lake Banyoles.<br />

Hydrobiologia, 436, 159-164.<br />

Gardner, S.M. (1991) Ground beetle (Coleoptera: Carabidae) communities <strong>on</strong> upland<br />

heath and their associati<strong>on</strong> with heathland flora. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Biogeography, 18,<br />

281-289.<br />

Gibb<strong>on</strong>s, D.W., Reid, J.B., & Chapman, R.A. (1993) <str<strong>on</strong>g>The</str<strong>on</strong>g> New Atlas <str<strong>on</strong>g>of</str<strong>on</strong>g> Breed<strong>in</strong>g Birds <strong>in</strong><br />

Brita<strong>in</strong> and Ireland: 1988-1991. Poyser, L<strong>on</strong>d<strong>on</strong>.<br />

Gibb<strong>on</strong>s, D.W. & Wott<strong>on</strong>, S. (1996) <str<strong>on</strong>g>The</str<strong>on</strong>g> Dartford warbler <strong>in</strong> the United K<strong>in</strong>gdom <strong>in</strong><br />

1994. British Birds, 89, 203-212.<br />

Gibs<strong>on</strong>, C.W.D., Brown, V.K., Losito, L., & McGav<strong>in</strong>, G.C. (1992) <str<strong>on</strong>g>The</str<strong>on</strong>g> resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>in</strong>vertebrate assemblies to graz<strong>in</strong>g. Ecography, 15, 166-176.<br />

Gilbert, G., Tyler, G., & Smith, K.W. (2003) Nestl<strong>in</strong>g diet and fish preference <str<strong>on</strong>g>of</str<strong>on</strong>g> bitterns<br />

Botaurus stellaris <strong>in</strong> Brita<strong>in</strong>. Ardea, 91, 35-44.<br />

Gilbert, G., Tyler, G.A., Dunn, C.J., & Smith, K.W. (2005) Nest<strong>in</strong>g habitat selecti<strong>on</strong> by<br />

bitterns Botaurus stellaris <strong>in</strong> Brita<strong>in</strong> and the implicati<strong>on</strong>s for wetland<br />

management. Biological C<strong>on</strong>servati<strong>on</strong>, 124, 547-553.<br />

Gill<strong>in</strong>gs, S., Fuller, R.J., & Henders<strong>on</strong>, A.C.B. (1998) Avian community compositi<strong>on</strong> and<br />

patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> bird distributi<strong>on</strong> with<strong>in</strong> birch-heath mosaics <strong>in</strong> north-east Scotland.<br />

Ornis Fennica, 75, 27-37.<br />

Gim<strong>in</strong>gham, C.H. (1985) Age-related <strong>in</strong>teracti<strong>on</strong>s between Calluna vulgaris and<br />

170


phytophagous <strong>in</strong>sects. Oikos, 44, 12-16.<br />

Gim<strong>in</strong>gham, C.H. (1995). Heaths and moorland: an overview <str<strong>on</strong>g>of</str<strong>on</strong>g> ecological change. In<br />

Heaths and moorland: cultural landscapes (eds D.B.A. Thomps<strong>on</strong>, A.J. Hester &<br />

M.B. Usher), pp. 9-19. Scottish Natural Heritage, Ed<strong>in</strong>burgh.<br />

G<strong>on</strong>zález Sagrario, M.A., Jeppesen, E., Gomà, J., Søndergaard, M., Jensen, J.P.,<br />

Lauridsen, T., & Landkildehus, F. (2005) Does high nitrogen load<strong>in</strong>g prevent<br />

clear-water c<strong>on</strong>diti<strong>on</strong>s <strong>in</strong> shallow lakes at moderately high phosphorus<br />

c<strong>on</strong>centrati<strong>on</strong>s? Freshwater Biology, 50, 27-41.<br />

Goodlass, G., Wilsh<strong>in</strong>, S., & All<strong>in</strong>, R. (2003). <str<strong>on</strong>g>The</str<strong>on</strong>g> British Survey <str<strong>on</strong>g>of</str<strong>on</strong>g> Fertiliser Practice<br />

Fertiliser use <strong>on</strong> farm crops for crop year 2002. DEFRA, L<strong>on</strong>d<strong>on</strong>.<br />

Gord<strong>on</strong>, C., Wood<strong>in</strong>, S.J., Alexander, I.J., & Mull<strong>in</strong>s, C.E. (1999) Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g><br />

temperature, drought and nitrogen supply <strong>on</strong> two upland perennials <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trast<strong>in</strong>g<br />

functi<strong>on</strong>al type: Calluna vulgaris and Pteridium aquilium. New Phytologist, 142,<br />

243-258.<br />

Goss-Custard, J.D. & West, A.D. (2004). Case study: an example <str<strong>on</strong>g>of</str<strong>on</strong>g> the k<strong>in</strong>d <str<strong>on</strong>g>of</str<strong>on</strong>g> study<br />

now needed for <strong>in</strong>sectivorous <strong>birds</strong> - populati<strong>on</strong> level implicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> variati<strong>on</strong>s <strong>in</strong><br />

prey availability and quality <strong>in</strong> shore<strong>birds</strong>: what we see is not necessarily what<br />

they get. In Insect and bird <strong>in</strong>teracti<strong>on</strong>s (eds H. van Emden & M. Rothschild), pp.<br />

3-20. Intercept, Andover, Hampshire.<br />

Gough, M.W. & Marrs, R.H. (1990) A comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> soil fertility between semi-natural<br />

and agricultural plant communities: implicati<strong>on</strong>s for the creati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> species-rich<br />

grassland <strong>on</strong> aband<strong>on</strong>ed agricultural land. Biological C<strong>on</strong>servati<strong>on</strong>, 51, 83-96.<br />

Gould<strong>in</strong>g, K.W.T. (2000) Nitrate leach<strong>in</strong>g from arable and horticultural land. Soil Use<br />

and Management, 16, 145-151.<br />

Grant, M.C., Orsman, C., East<strong>on</strong>, J., Lodge, C., Smith, M., Thomps<strong>on</strong>, G., Rodwell, S., &<br />

Moore, N. (1999) Breed<strong>in</strong>g success and causes <str<strong>on</strong>g>of</str<strong>on</strong>g> breed<strong>in</strong>g failure <str<strong>on</strong>g>of</str<strong>on</strong>g> curlew<br />

Numenius arquata <strong>in</strong> Northern Ireland. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology, 36, 59-74.<br />

Grant, M.C. & Daws<strong>on</strong>, R. (2005) Black grouse habitat requirements <strong>in</strong> forested<br />

envir<strong>on</strong>ments: implicati<strong>on</strong>s for c<strong>on</strong>servati<strong>on</strong> management. Proceed<strong>in</strong>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the 3 rd<br />

Internati<strong>on</strong>al Black Grouse C<strong>on</strong>ference, 105-119.<br />

Graveland, J. (1998) Reed die-back, water level management and the decl<strong>in</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the great<br />

171


eed warbler Acrocephalus arund<strong>in</strong>aceus <strong>in</strong> the Netherlands. Ardea, 86, 187-201.<br />

Green, B.H. (1990) Agricultural <strong>in</strong>tensificati<strong>on</strong> and the loss <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat, species and<br />

amenity <strong>in</strong> British grasslands: a review <str<strong>on</strong>g>of</str<strong>on</strong>g> historical change and assessment <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

future prospects. Grass and Forage Science, 45, 365-372.<br />

Green, P.T., Hill, D.A., & Clark, N.A. (1990). <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> to estuaries<br />

<strong>on</strong> overw<strong>in</strong>ter<strong>in</strong>g bird populati<strong>on</strong>s and communities. BTO, <str<strong>on</strong>g>The</str<strong>on</strong>g>tford.<br />

Green, R.E. (1988) Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental factors <strong>on</strong> the tim<strong>in</strong>g and success <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

breed<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> comm<strong>on</strong> snipe Gall<strong>in</strong>ago gall<strong>in</strong>ago (Aves: Scolopacidae). Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Applied Ecology, 25, 79-93.<br />

Green, R.E., Hir<strong>on</strong>s, G.J.M., & Cresswell, B.H. (1990) Forag<strong>in</strong>g habitats <str<strong>on</strong>g>of</str<strong>on</strong>g> the female<br />

comm<strong>on</strong> snipe Gall<strong>in</strong>ago gall<strong>in</strong>ago dur<strong>in</strong>g the <strong>in</strong>cubati<strong>on</strong> period. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Applied Ecology, 27, 325-335.<br />

Green, R.E. & Stowe, T.J. (1993) <str<strong>on</strong>g>The</str<strong>on</strong>g> decl<strong>in</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the corncrake Crex crex <strong>in</strong> Brita<strong>in</strong> and<br />

Ireland <strong>in</strong> relati<strong>on</strong> to habitat change. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology, 30, 689-695.<br />

Green, R.E. (1995) <str<strong>on</strong>g>The</str<strong>on</strong>g> decl<strong>in</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the corncrake Crex crex <strong>in</strong> Brita<strong>in</strong> c<strong>on</strong>t<strong>in</strong>ues. Bird<br />

Study, 42, 66-75.<br />

Green, R.E. (1996) Factors affect<strong>in</strong>g the populati<strong>on</strong> density <str<strong>on</strong>g>of</str<strong>on</strong>g> the corncrake Crex crex <strong>in</strong><br />

Brita<strong>in</strong> and Ireland. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology, 33, 237-248.<br />

Green, R.E., Tyler, G.A., Stowe, T.J., & Newt<strong>on</strong>, A.V. (1997) A simulati<strong>on</strong> model <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> mow<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> agricultural grassland <strong>on</strong> the breed<strong>in</strong>g success <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

corncrake (Crex crex). Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Zoology, 243, 81-115.<br />

Green, R.E. & Gibb<strong>on</strong>s, D.W. (2000) <str<strong>on</strong>g>The</str<strong>on</strong>g> status <str<strong>on</strong>g>of</str<strong>on</strong>g> the corncrake Crex crex <strong>in</strong> Brita<strong>in</strong> <strong>in</strong><br />

1998. Bird Study, 47, 129-137.<br />

Gregory, R.D., Wilk<strong>in</strong>s<strong>on</strong>, N.I., Noble, D.G., Rob<strong>in</strong>s<strong>on</strong>, J.A., Brown, A.F., Hughes, J.,<br />

Procter, D.A., Gibb<strong>on</strong>s, D.W., & Galbraith, C.A. (2002) <str<strong>on</strong>g>The</str<strong>on</strong>g> populati<strong>on</strong> status <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>birds</strong> <strong>in</strong> the United K<strong>in</strong>gdom, Channel Islands and Isle <str<strong>on</strong>g>of</str<strong>on</strong>g> Man: an analysis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

c<strong>on</strong>servati<strong>on</strong> c<strong>on</strong>cern 2002-2007. British Birds, 95, 410-450.<br />

Gregory, R.D., Noble, D.G., & Custance, J. (2004) <str<strong>on</strong>g>The</str<strong>on</strong>g> state <str<strong>on</strong>g>of</str<strong>on</strong>g> play <str<strong>on</strong>g>of</str<strong>on</strong>g> farmland <strong>birds</strong>:<br />

populati<strong>on</strong> trends and c<strong>on</strong>servati<strong>on</strong> status <str<strong>on</strong>g>of</str<strong>on</strong>g> lowland farmland <strong>birds</strong> <strong>in</strong> the United<br />

K<strong>in</strong>gdom. Ibis, 146 (Suppl. 2), 1-13.<br />

Ha<strong>in</strong>es-Young, R.H., Barr, C.J., Black, H.I.J. , Briggs, D.J. Bunce, R.G.H., Clarke, R.T.,<br />

172


Cooper, A., Daws<strong>on</strong>, F.H., Firbank, L.G., Fuller, R.M., Furse, M.T., Gillespie,<br />

M.K., Hill, R., Hornung, M., Howard, D.C., McCann, T., Morecr<str<strong>on</strong>g>of</str<strong>on</strong>g>t, M.D., Petit,<br />

S., Sier, A.R.J., Smart, S.M., Smith, G.M., Stott, A.P.S., R.C., & Watk<strong>in</strong>s, J.W.<br />

(2000). Account<strong>in</strong>g for nature: assess<strong>in</strong>g habitats <strong>in</strong> the UK countryside (CS2000<br />

Ma<strong>in</strong> Report). DETR, L<strong>on</strong>d<strong>on</strong>.<br />

Hall, J.A., Frid, C.L.J., & Gill, M.E. (1997) <str<strong>on</strong>g>The</str<strong>on</strong>g> resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> estuar<strong>in</strong>e fish and benthos to<br />

an <strong>in</strong>creas<strong>in</strong>g discharge <str<strong>on</strong>g>of</str<strong>on</strong>g> sewage effluent. Mar<strong>in</strong>e Polluti<strong>on</strong> Bullet<strong>in</strong>, 34, 527-<br />

535.<br />

Hance, T. & Gregoire-Wibo, C. (1987) Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> agricultural practices <strong>on</strong> carabid<br />

populati<strong>on</strong>s. Acta Phytopathologica Entomologica Hungarica, 22, 147-160.<br />

Hancock, M. & Avery, M.I. (1998) Changes <strong>in</strong> breed<strong>in</strong>g bird populati<strong>on</strong>s <strong>in</strong> peatlands<br />

and young forestry <strong>in</strong> north east Sutherland and Caithness, between 1988 and<br />

1995. Scottish Birds, 19, 195-205.<br />

Hans<strong>on</strong>, M.A. & Butler, M.G. (1994) Resp<strong>on</strong>ses to food web manipulati<strong>on</strong> <strong>in</strong> a shallow<br />

waterfowl lake. Hydrobiologia, 279-/280, 457-466.<br />

Hargeby, A., Anderss<strong>on</strong>, G., Bl<strong>in</strong>dow, I., & Johanss<strong>on</strong>, S. (1994) Trophic web structure<br />

<strong>in</strong> a shallow eutrophic lake dur<strong>in</strong>g a dom<strong>in</strong>ance shift from phytoplankt<strong>on</strong> to<br />

submerged macrophytes. Hydrobiologia, 279/280, 83-90.<br />

Harper, D. (1992) Eutrophicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> freshwaters Chapman and Hall, Bury St Edmunds.<br />

Hart, J.D., Milsom, T.P., Baxter, A., Kelly, P.F., &Park<strong>in</strong>, W.F. (2002) <str<strong>on</strong>g>The</str<strong>on</strong>g> impact <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

livestock <strong>on</strong> lapw<strong>in</strong>g Vanellus vanellus breed<strong>in</strong>g densities and performance <strong>on</strong><br />

coastal graz<strong>in</strong>g marsh. Bird Study, 49, 67-78.<br />

Hartley, S.E. (1997) <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> graz<strong>in</strong>g and <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>puts</str<strong>on</strong>g> <strong>on</strong> grass-heather<br />

competiti<strong>on</strong>. Botanical Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Scotland, 49, 315-324.<br />

Hartley, S.E., Gardners, S.M., & Mitchell, R.J. (2003) Indirect <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> graz<strong>in</strong>g and<br />

<str<strong>on</strong>g>nutrient</str<strong>on</strong>g> additi<strong>on</strong> <strong>on</strong> the hemipteran community <str<strong>on</strong>g>of</str<strong>on</strong>g> heather moorlands. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Applied Ecology, 40, 793-803.<br />

Hartley, S.E. & Mitchell, R.J. (2005) Manipulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s and graz<strong>in</strong>g levels <strong>on</strong><br />

heather moorland: changes <strong>in</strong> Calluna dom<strong>in</strong>ance and c<strong>on</strong>sequences for<br />

community compositi<strong>on</strong>. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology, 93, 990-1004.<br />

Hassall, M., Ridd<strong>in</strong>gt<strong>on</strong>, R., & Held<strong>on</strong>, A. (2001) Forag<strong>in</strong>g behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> brent geese,<br />

173


Branta b bernicla, <strong>on</strong> grasslands: <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> sward length and nitrogen c<strong>on</strong>tent.<br />

Oecologia, 127, 97-104.<br />

Hawk<strong>in</strong>s, C.M. (1985) Populati<strong>on</strong> carb<strong>on</strong> budgets and the importance <str<strong>on</strong>g>of</str<strong>on</strong>g> the amphipod<br />

Corophium volutator <strong>in</strong> the carb<strong>on</strong> transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> a Cumberland Bas<strong>in</strong> mudflat, upper<br />

Bay <str<strong>on</strong>g>of</str<strong>on</strong>g> Fundy, Canada. Netherlands Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Sea Research, 19, 165-176.<br />

Haworth, P.F. & Thomps<strong>on</strong>, D.B.A. (1990) Factors associated with the breed<strong>in</strong>g<br />

distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> upland <strong>birds</strong> <strong>in</strong> the south Penn<strong>in</strong>es, England. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied<br />

Ecology, 27, 562-577.<br />

Haworth, E.Y., P<strong>in</strong>der, L.C.V., Lishman, J.P., & Duigan, C.A. (1996) <str<strong>on</strong>g>The</str<strong>on</strong>g> Anglesey<br />

lakes, Wales, UK - a palaeolimnological study <str<strong>on</strong>g>of</str<strong>on</strong>g> the eutrophicati<strong>on</strong> and nature<br />

c<strong>on</strong>servati<strong>on</strong> status. Aquatic C<strong>on</strong>servati<strong>on</strong>: Mar<strong>in</strong>e and Freshwater Ecosystems,<br />

6, 61-80.<br />

Haygarth, P.M. & Jarvis, S.C. (2002) Agriculture, Hydrology and Water Quality CAB<br />

Internati<strong>on</strong>al.<br />

Haysom, K.A. & Couls<strong>on</strong>, J.C. (1998) <str<strong>on</strong>g>The</str<strong>on</strong>g> Lepidoptera fauna associated with Calluna<br />

vulgaris: <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> plant architecture <strong>on</strong> abundance and diversity. Ecological<br />

Entomology, 23, 377-385.<br />

Haysom, K.A., McCracken, D.I., Foster, G.N., & Sothert<strong>on</strong>, N.W. (2004) Develop<strong>in</strong>g<br />

grassland c<strong>on</strong>servati<strong>on</strong> headlands: resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> carabid assemblage to different<br />

cutt<strong>in</strong>g regimes <strong>in</strong> a silage field edge. Agriculture, Ecosystems and Envir<strong>on</strong>ment,<br />

102, 263-277.<br />

Heathwaite, A.L., Johnes, P.J., & Peters, N.E. (1996) Trends <strong>in</strong> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s. Hydrological<br />

Processes, 10, 263-293.<br />

Heil, G.W. & Diem<strong>on</strong>t, W.H. (1983) Raised <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> levels change heathland <strong>in</strong>to<br />

grassland. Vegetatio, 53, 113-120.<br />

Heil, G.W. (1984) Nutrients and the species compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> heath. PhD, University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Utrecht.<br />

Heil, G.W. & Brugg<strong>in</strong>k, M. (1987) Competiti<strong>on</strong> for <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s between Calluna vulgaris<br />

(L.) Hull and Mol<strong>in</strong>ia caerulea (L.) Moench. Oecologia, 73, 105-107.<br />

Heil, G.W. & Aerts, R. (1993). General <strong>in</strong>troducti<strong>on</strong>. In Heathlands: patterns and<br />

processes <strong>in</strong> a chang<strong>in</strong>g envir<strong>on</strong>ment (eds R. Aerts & G.W. Heil), pp. 1-24.<br />

174


Kluwer Academic Publishers, L<strong>on</strong>d<strong>on</strong>.<br />

Heil, G.W. & Bobb<strong>in</strong>k, R. (1993). Impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> atmospheric nitrogen depositi<strong>on</strong> <strong>on</strong> dry<br />

heathlands. In Heathlands: patterns and processes <strong>in</strong> a chang<strong>in</strong>g envir<strong>on</strong>ment<br />

(eds R. Aerts & G.W. Heil), pp. 181-200. Kluwer Academic Publishers, L<strong>on</strong>d<strong>on</strong>.<br />

Hemerik, L. & Brussaard, L. (2002) Diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> soil macro-<strong>in</strong>vertebrates <strong>in</strong> grasslands<br />

under restorati<strong>on</strong> successi<strong>on</strong>. European Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Soil Biology, 38, 145-150.<br />

Henders<strong>on</strong>, I.G., Fuller, R.J., C<strong>on</strong>way, G.J., & Gough, S.J. (2004) Evidence for decl<strong>in</strong>es<br />

<strong>in</strong> populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> grassland-associated <strong>birds</strong> <strong>in</strong> marg<strong>in</strong>al upland areas <str<strong>on</strong>g>of</str<strong>on</strong>g> Brita<strong>in</strong>.<br />

Bird Study, 51, 12-19.<br />

Herbert, R.A. (1999) Nitrogen cycl<strong>in</strong>g <strong>in</strong> coastal mar<strong>in</strong>e ecosystems. FEMS Microbiology<br />

Reviews, 23, 563-590.<br />

Holland, J.M. (2004) <str<strong>on</strong>g>The</str<strong>on</strong>g> impact <str<strong>on</strong>g>of</str<strong>on</strong>g> agriculture and some soluti<strong>on</strong>s for arthropods and<br />

<strong>birds</strong>. In Insect and bird <strong>in</strong>teracti<strong>on</strong>s (eds van Emden, H. & Rothschild, M.), pp<br />

51-73. Intercept Ltd, Andover.<br />

Holm, T.E. & Clausen, P. (<strong>in</strong> press) Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> water level management <strong>on</strong> autumn<br />

stag<strong>in</strong>g waterbird and macrophyte diversity <strong>in</strong> three Danish coastal lago<strong>on</strong>s.<br />

Biodiversity and C<strong>on</strong>servati<strong>on</strong>.<br />

Hopk<strong>in</strong>s, A., Matk<strong>in</strong>, E.A., Ellis, J.A., & Peel, S. (1985) Southwest England grassland<br />

survey 1983 1. Age structure and sward compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> permanent and arable<br />

grassland and their relati<strong>on</strong> to manageability, fertilizer nitrogen and other<br />

management features. Grass and Forage Science, 40, 349-359.<br />

Hoyer, M.V. & Canfield, D.E. (1994) Bird abundance and species richness <strong>on</strong> Florida<br />

lakes: <strong>in</strong>fluence <str<strong>on</strong>g>of</str<strong>on</strong>g> trophic status, lake morphology, and aquatic macrophytes.<br />

Hydrobiologia, 197/200, 107-119.<br />

Huds<strong>on</strong>, P.J. (1988). Spatial variati<strong>on</strong>s, patterns and management opti<strong>on</strong>s <strong>in</strong> upland bird<br />

communities. In Ecological change <strong>in</strong> the uplands (eds M.B. Usher & D.B.A.<br />

Thomps<strong>on</strong>), pp. 381-397. Blackwell Science.<br />

Huds<strong>on</strong>, R., Tucker, G.M., & Fuller, R.J. (1994). Lapw<strong>in</strong>g Vanellus vanellus populati<strong>on</strong>s<br />

<strong>in</strong> relati<strong>on</strong> to agricultural change: a review. In <str<strong>on</strong>g>The</str<strong>on</strong>g> ecology, c<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

lapw<strong>in</strong>gs Vanellus vanellus (eds G.M. Tucker, S.M. Davies & R.J. Fuller), pp. 1-<br />

33. Jo<strong>in</strong>t Nature C<strong>on</strong>servati<strong>on</strong> Committee, Peterborough.<br />

175


Irv<strong>in</strong>e, K., Moss, B., Bales, M., & Snook, D. (1993) <str<strong>on</strong>g>The</str<strong>on</strong>g> chang<strong>in</strong>g ecosystem <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

shallow brackish lake, Hickl<strong>in</strong>g Broad, Norfolk, UK I. Trophic relati<strong>on</strong>ships with<br />

special reference to the role <str<strong>on</strong>g>of</str<strong>on</strong>g> Neomysis <strong>in</strong>teger. Freshwater Biology, 29, 119-<br />

139.<br />

Jacks<strong>on</strong>, D.B. (2005) Envir<strong>on</strong>mental correlates <str<strong>on</strong>g>of</str<strong>on</strong>g> lake occupancy and chick survival <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

black-throated divers Gavia arctica <strong>in</strong> Scotland. Bird Study, 52, 225-236.<br />

Janssens, F., Peeters, A., Tallow<strong>in</strong>, J.R.B., Bakker, J.P., Bekker, R.M., Fillat, F., &<br />

Oomes, M.J.M. (1998) Relati<strong>on</strong>ship between soil chemical factors and grassland<br />

diversity. Plant and Soil, 202, 69-78.<br />

Jeffrey, D.W., Brennan, M.T., Jenn<strong>in</strong>gs, E., Madden, B., & Wils<strong>on</strong>, J.G. (1995) Nutrient<br />

sources for <strong>in</strong>-shore nuisance macroalgae - the Dubl<strong>in</strong> Bay case. Ophelia, 42,<br />

147-161.<br />

Jeppesen, E., Søndergaard, M., Jensen, J.P., Havens, K.E., Anneville, O., Carvalho, L.,<br />

Coveney, M.F., Deneke, R., Dokulil, M.T., Foy, R., Gerdeaux, D., Hampt<strong>on</strong>, S.E.,<br />

Hilt, S., Kangur, K., Köhler, J., Lammens, E.H.H.R., Lauridsen, T.L., Manca, M.,<br />

Miracle, M.R., Moss, B., Nõges, P., Perss<strong>on</strong>, G., Phillips, G., Portielje, R., Romo,<br />

S., Schelske, C.L., Straile, D., Tatrai, I., Willén, E., & W<strong>in</strong>der, M. (2005a) Lake<br />

resp<strong>on</strong>ses to reduced <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> load<strong>in</strong>g - an analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>temporary l<strong>on</strong>g-term<br />

data from 35 case studies. Freshwater Biology, 50, 1747-1771.<br />

Jeppesen, E., Jensen, J.P., S<strong>on</strong>dergaard, M., & Lauridsen, T.L. (2005b) Resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> fish<br />

and plankt<strong>on</strong> to <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> load<strong>in</strong>g reducti<strong>on</strong> <strong>in</strong> eight shallow Danish lakes with<br />

special emphasis <strong>on</strong> seas<strong>on</strong>al dynamics. Freshwater Biology, 50, 1616-1627.<br />

Johnst<strong>on</strong>, A.E. & Daws<strong>on</strong>, C.J. (2005). Phosphorus <strong>in</strong> agriculture and <strong>in</strong> relati<strong>on</strong> to water<br />

quality. Agricultural Industries C<strong>on</strong>federati<strong>on</strong>.<br />

Johnst<strong>on</strong>e, I., Whitehead, S., & Lamacraft, D. (2002) <str<strong>on</strong>g>The</str<strong>on</strong>g> importance <str<strong>on</strong>g>of</str<strong>on</strong>g> grazed habitat<br />

for forag<strong>in</strong>g choughs Pyrrhocorax pyrrhocorax, and its implicati<strong>on</strong> for agrienvir<strong>on</strong>ment<br />

schemes. Aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Biology, 67, 59-74.<br />

J<strong>on</strong>es, J.J. & Drobney, R.D. (1986) W<strong>in</strong>ter feed<strong>in</strong>g ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> scaup and comm<strong>on</strong> eider<br />

<strong>in</strong> Michigan. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Wildlife Management, 50, 446-452.<br />

J<strong>on</strong>es, D. & Haggar, R.J. (1997) Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen and organic manures <strong>on</strong> yield,<br />

botanical compositi<strong>on</strong> and herbage quality <str<strong>on</strong>g>of</str<strong>on</strong>g> two c<strong>on</strong>trast<strong>in</strong>g grassland field<br />

176


marg<strong>in</strong>s. Biological Agriculture and Horticulture, 14, 107-123.<br />

Kegel, B. (1990). Diurnal activity <str<strong>on</strong>g>of</str<strong>on</strong>g> carabid beetles liv<strong>in</strong>g <strong>on</strong> arable land. In <str<strong>on</strong>g>The</str<strong>on</strong>g> role <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

ground beetles <strong>in</strong> ecological and envir<strong>on</strong>mental studies (ed N.E. Stork), pp. pp<br />

65-76. Intercept, Andover.<br />

Kershaw, M. & Cranswick, P.A. (2003) Numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> w<strong>in</strong>ter<strong>in</strong>g water<strong>birds</strong> <strong>in</strong> Great<br />

Brita<strong>in</strong>, 1994/1995-1998/1999: I Wildfowl and selected water<strong>birds</strong>. Biological<br />

C<strong>on</strong>servati<strong>on</strong>, 111, 91-104.<br />

Kirkham, F.W., Mountford, J.O., & Wilk<strong>in</strong>s, R.J. (1996) <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen,<br />

potassium and phosphorus additi<strong>on</strong> <strong>on</strong> the vegetati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a Somerset peat moor<br />

under cutt<strong>in</strong>g management. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology, 33, 1013-1029.<br />

Kirkham, F.W., Sherwood, A.J., Oakley, J.N., & Fielder, A.G. (1999) Botanical<br />

compositi<strong>on</strong> and <strong>in</strong>vertebrate populati<strong>on</strong>s <strong>in</strong> sown grass and wildflower marg<strong>in</strong>s.<br />

Aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Biology, 54, 291-298.<br />

Kle<strong>in</strong>, D. & Verbeek, M. (2000) Factors affect<strong>in</strong>g the species compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> arable field<br />

boundaries. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology, 37, 256-266.<br />

Klotzli, F. & Zust, S. (1973) C<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> reed-beds <strong>in</strong> Switzerland. Polskie Archivum<br />

Hydrobiologie, 20, 229-235.<br />

Kruess, A. & Tscharntke, T. (2002) C<strong>on</strong>trast<strong>in</strong>g resp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g> plant and <strong>in</strong>sect diversity to<br />

variati<strong>on</strong> <strong>in</strong> graz<strong>in</strong>g <strong>in</strong>tensity. Biological C<strong>on</strong>servati<strong>on</strong>, 106, 293-302.<br />

Kub<strong>in</strong>, P. & Melzer, A. (1997) Chr<strong>on</strong>ological relati<strong>on</strong>ship between eutrophicati<strong>on</strong> and<br />

reed decl<strong>in</strong>e <strong>in</strong> three lakes <str<strong>on</strong>g>of</str<strong>on</strong>g> southern Germany. Folia Geobotanica and<br />

Phytotax<strong>on</strong>omica, 32, 15-23.<br />

Laiolo, P., D<strong>on</strong>dero, F., Ciliento, E., & Rolando, A. (2004) C<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> pastoral<br />

aband<strong>on</strong>ment for the structure and diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> the alp<strong>in</strong>e avifauna. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Applied Ecology, 41, 294-304.<br />

Lauridsen, T.L., Jeppesen, E., & S<strong>on</strong>dergaard, M. (1994) Col<strong>on</strong>izati<strong>on</strong> and successi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

submerged macrophytes <strong>in</strong> shallow Lake Vaeng dur<strong>in</strong>g the 1st 5 years follow<strong>in</strong>g<br />

fish manipulati<strong>on</strong>. Hydrobiologia, 276, 233-242.<br />

Leach, J.M., Johns<strong>on</strong>, M.G., Kelso, J.R.M., Hartmann, J., Numann, W., & Entz, B.<br />

(1977) Resp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g> percid fishes and their habitat to eutrophicati<strong>on</strong>. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the Fisheries Research Board <str<strong>on</strong>g>of</str<strong>on</strong>g> Canada, 34, 1964-1971.<br />

177


Lee, J.A. & Caporn, S.J.M. (1998) Ecological <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> atmospheric reactive nitrogen<br />

depositi<strong>on</strong> <strong>on</strong> semi-natural terrestrial ecosystems. New Phytologist, 139, 127-134.<br />

Lefranc, N. (1997). Shrikes and the farmed landscape <strong>in</strong> France. In Farm<strong>in</strong>g and <strong>birds</strong> <strong>in</strong><br />

Europe (eds D. Pa<strong>in</strong> & M.W. Pienkowski), pp. 236-268. Academic Press,<br />

L<strong>on</strong>d<strong>on</strong>.<br />

Leith, I.D., Sheppard, L.J., Pitcairn, C.E.R., Cape, J.N., Hill, P.W., Kennedy, V.H., Tang,<br />

Y.S., Smith, R.I., & Fowler, D. (2001) Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> wet N<br />

depositi<strong>on</strong> (NH4Cl) and dry N depositi<strong>on</strong> (NH3) <strong>on</strong> UK moorland species. Water, Air<br />

and Soil Polluti<strong>on</strong>, 130, 1043-1048.<br />

Liley, D. & Clarke, R.T. (2003) <str<strong>on</strong>g>The</str<strong>on</strong>g> impact <str<strong>on</strong>g>of</str<strong>on</strong>g> urban development and human<br />

disturbance <strong>on</strong> the numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> nightjar Caprimulgus europaeus <strong>on</strong> heathlands <strong>in</strong><br />

Dorset, England. Biological C<strong>on</strong>servati<strong>on</strong>, 114, 219-230.<br />

Lillebø, A.I., Neto, J.M., Fl<strong>in</strong>dt, M.R., Marques, J.C., & Pardal, M.A. (2004) Phosphorus<br />

dynamics <strong>in</strong> a temperate <strong>in</strong>tertidal estuary. Estuar<strong>in</strong>e Coastal and Shelf Science,<br />

61, 101-109.<br />

L<strong>in</strong>zell, B.S. & Madge, D.S. (1986) Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> pesticides and fertilizer <strong>on</strong> <strong>in</strong>vertebrate<br />

populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> grass and wheat plots <strong>in</strong> Kent <strong>in</strong> relati<strong>on</strong> to productivity and yield.<br />

Grass and Forage Science, 41, 159-174.<br />

Littlewood, N.A., Pakeman, R.J., & Wood<strong>in</strong>, S.J. (2006) <str<strong>on</strong>g>The</str<strong>on</strong>g> resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> plant and <strong>in</strong>sect<br />

assemblages to the loss <str<strong>on</strong>g>of</str<strong>on</strong>g> Calluna vulgaris from upland vegetati<strong>on</strong>. Biological<br />

C<strong>on</strong>servati<strong>on</strong>, 128, 335-345.<br />

Lotze, H.K. (2005) Radical changes <strong>in</strong> the Wadden Sea fauna and flora over the past<br />

2000 years. Helgoland Mar<strong>in</strong>e Research, 59, 71-83.<br />

Lovegrove, R., Shrubb, M., & Williams, I. (1995). Silent fields: the current status <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

farmland <strong>birds</strong> <strong>in</strong> Wales. <strong>RSPB</strong>, Newtown, Wales.<br />

Maberly, S.C., K<strong>in</strong>g, L., Dent, M.M., J<strong>on</strong>es, R.I., & Gibs<strong>on</strong>, C.E. (2002) Nutrient<br />

limitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phytoplankt<strong>on</strong> and periphyt<strong>on</strong> growth <strong>in</strong> upland lakes. Freshwater<br />

Biology, 47, 2136-2152.<br />

Mackey, E.C., Shewry, M.C. and Tudor, G.J., 1998. Land cover change: Scotland from<br />

the 1940s to the 1980s. Scottish Natural Heritage, Ed<strong>in</strong>burgh.<br />

Madders, M. (2003) Hen harrier Circus cyaneus forag<strong>in</strong>g activity <strong>in</strong> relati<strong>on</strong> to habitat<br />

178


and prey: <strong>in</strong> west Scotland, the bird foraged <strong>in</strong> accordance with the distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

prey and vegetati<strong>on</strong> <strong>in</strong> associati<strong>on</strong> with early-growth c<strong>on</strong>ifer forests. Bird Study,<br />

50, 55-60.<br />

Madgwick, F.J. (1999) Restor<strong>in</strong>g <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>-enriched shallow lakes: <strong>in</strong>tegrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> theory<br />

and practice <strong>in</strong> the Norfolk Broads, UK. Hydrobiologia, 408/409, 1-12.<br />

Mann<strong>in</strong>g, P., Putwa<strong>in</strong>, P.D., & Webb, N.R. (2004) Identify<strong>in</strong>g and modell<strong>in</strong>g the<br />

determ<strong>in</strong>ants <str<strong>on</strong>g>of</str<strong>on</strong>g> woody plant <strong>in</strong>vasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> lowland heath. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology, 92,<br />

868-881.<br />

Marklund, O., Sandsten, H., Hanss<strong>on</strong>, L.-A., & Bl<strong>in</strong>dow, I. (2002) Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> waterfowl<br />

and fish <strong>on</strong> submerged vegetati<strong>on</strong> and macro<strong>in</strong>vertebrates. Freshwater Biology,<br />

47, 2049-2059.<br />

Marrs, R.H. (1993) Soil fertility and nature c<strong>on</strong>servati<strong>on</strong> <strong>in</strong> Europe – theoretical<br />

c<strong>on</strong>siderati<strong>on</strong>s and practical management soluti<strong>on</strong>s. Advances <strong>in</strong> Ecological<br />

Research, 24, 241-300.<br />

Marrs, R.H. (1993) An assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> change <strong>in</strong> Calluna heathlands <strong>in</strong> Breckland, eastern<br />

England, between 1983 and 1991. Biological C<strong>on</strong>servati<strong>on</strong>, 65, 133-139.<br />

Marsden, M.W., Morris<strong>on</strong>, D., Virtue, A., Ridgway, I., Park, R.A., & Dobs<strong>on</strong>, J.E.<br />

(1998) Diffuse agricultural polluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Scottish waters. In Diffuse polluti<strong>on</strong> and<br />

agriculture II, pp. 1-22, Ed<strong>in</strong>burgh.<br />

Marsden, S.J. & Bellamy, G.S. (2000) Microhabitat characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> feed<strong>in</strong>g sites used<br />

by div<strong>in</strong>g duck Aythya w<strong>in</strong>ter<strong>in</strong>g <strong>on</strong> the grossly polluted Manchester Ship Canal,<br />

UK. Envir<strong>on</strong>mental C<strong>on</strong>servati<strong>on</strong>, 27, 278-283.<br />

Mäder, P., Fließbach, A., Dubois, D., Gunst, L., Fried, P., & Niggli, U. (2002) Soil<br />

fertility and biodiversity <strong>in</strong> organic farm<strong>in</strong>g. Science, 296, 1694-1697.<br />

McCanch, N. (2000) <str<strong>on</strong>g>The</str<strong>on</strong>g> relati<strong>on</strong>ship between red-billed chough Pyrrhocorax<br />

pyrrhocorax (L.) breed<strong>in</strong>g populati<strong>on</strong>s and graz<strong>in</strong>g pressure <strong>on</strong> the Calf <str<strong>on</strong>g>of</str<strong>on</strong>g> Man.<br />

Bird Study, 47, 295-303.<br />

McCarty, J.P. (1997) Aquatic community characteristics <strong>in</strong>fluence the forag<strong>in</strong>g patterns<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> tree swallows. C<strong>on</strong>dor, 99, 210-213.<br />

McClusky, D.S. (1968) Some <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> sal<strong>in</strong>ity <strong>on</strong> the distributi<strong>on</strong> and abundance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Corophium volutator <strong>in</strong> the Ythan. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> the Mar<strong>in</strong>e Biology Associati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

179


the UK, 48, 443-454.<br />

McColl<strong>in</strong>, D., Moore, L., & Sparks, T. (2000) <str<strong>on</strong>g>The</str<strong>on</strong>g> flora <str<strong>on</strong>g>of</str<strong>on</strong>g> a cultural landscape:<br />

envir<strong>on</strong>mental determ<strong>in</strong>ants <str<strong>on</strong>g>of</str<strong>on</strong>g> change revealed us<strong>in</strong>g archival sources. Biological<br />

C<strong>on</strong>servati<strong>on</strong>, 92, 249-263.<br />

McCracken, D.I. & Foster, G.N. (1994) Invertebrates, cow-dung and the availability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

potential food for the chough (Pyrrhocorax pyrrhocorax) <strong>on</strong> pastures <strong>in</strong> northwest<br />

Islay. Envir<strong>on</strong>mental C<strong>on</strong>servati<strong>on</strong>, 21, 262-266.<br />

McCracken, D.I., Foster, G.N., & Kelly, A. (1995) Factors affect<strong>in</strong>g the size <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

leatherjacket (Diptera: Tipulidae) populati<strong>on</strong>s <strong>in</strong> pastures <strong>in</strong> the west <str<strong>on</strong>g>of</str<strong>on</strong>g> Scotland.<br />

Applied Soil Ecology, 2, 203-213.<br />

McCracken, D.I. & Tallow<strong>in</strong>, J.R. (2004) Swards and structure: the <strong>in</strong>teracti<strong>on</strong>s between<br />

farm<strong>in</strong>g practices and bird food resources <strong>in</strong> lowland grasslands. Ibis, 146 (Suppl.<br />

2), 108-114.<br />

McFerran, D.M., McAdam, J.H., & M<strong>on</strong>tgomery, W.I. (1995) <str<strong>on</strong>g>The</str<strong>on</strong>g> impact <str<strong>on</strong>g>of</str<strong>on</strong>g> burn<strong>in</strong>g and<br />

graz<strong>in</strong>g <strong>on</strong> heathland plants and <strong>in</strong>vertebrates <strong>in</strong> Country Antrim. Biology and<br />

Envir<strong>on</strong>ment: Proceed<strong>in</strong>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the Royal Irish Academy, 95B, 1-17.<br />

McGechan, M. (1998) Transport <str<strong>on</strong>g>of</str<strong>on</strong>g> pollutants to watercourses from agricultural land. In<br />

Diffuse polluti<strong>on</strong> and agriculture II, pp. 39-50, Ed<strong>in</strong>burgh.<br />

Mead, C. (2000) <str<strong>on</strong>g>The</str<strong>on</strong>g> state <str<strong>on</strong>g>of</str<strong>on</strong>g> the nati<strong>on</strong>'s <strong>birds</strong> Whittet Books, Stowmarket.<br />

Meek, E.R., Rebecca, G.W., Ribbands, B., & Fairclough, K. (1998) Orkney hen harriers:<br />

a major populati<strong>on</strong> decl<strong>in</strong>e <strong>in</strong> the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> persecuti<strong>on</strong>. Scottish Birds, 19, 290-<br />

298.<br />

Melt<str<strong>on</strong>g>of</str<strong>on</strong>g>te, H., Blew, J., Frikke, J., Rösner, H.U., & Smit, C.J. (1994). Numbers and<br />

distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> water<strong>birds</strong> <strong>in</strong> the Wadden Sea: Results and analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> 36<br />

simultaneous counts <strong>in</strong> the Dutch-German-Danish Wadden Sea 1980-1991.<br />

Comm<strong>on</strong> Secretariat for the Cooperati<strong>on</strong> <strong>on</strong> the Protecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Wadden Sea.<br />

Metzmacher, K. & Reise, K. (1994) Experimental <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> tidal flat epistructures <strong>on</strong><br />

forag<strong>in</strong>g <strong>birds</strong> <strong>in</strong> the Wadden Sea. Ophelia, 6, 217-225.<br />

Miles, J. (1988). Vegetati<strong>on</strong> and soil changes <strong>in</strong> the uplands. In Ecological change <strong>in</strong> the<br />

uplands (eds M.B. Usher & D.B.A. Thomps<strong>on</strong>), pp. 57-70. Blackwell Science.<br />

Miljøstyrelsen (1984). <str<strong>on</strong>g>The</str<strong>on</strong>g> NPO Report. Nati<strong>on</strong>al Agency <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Protecti<strong>on</strong>.,<br />

180


Copenhagen.<br />

Milsom, T.P., Ennis, D.C., Haskell, D.J., Langt<strong>on</strong>, S.D., & McKay, H.V. (1998) Design<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> grassland feed<strong>in</strong>g areas for waders dur<strong>in</strong>g w<strong>in</strong>ter: the relative importance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

sward, landscape factors and human disturbance. Biological C<strong>on</strong>servati<strong>on</strong>, 84,<br />

119-129.<br />

Mitchell, R.J., Marrs, R.H., le Duc, M.G., & Auld, M.H.D. (1997) A study <str<strong>on</strong>g>of</str<strong>on</strong>g> successi<strong>on</strong><br />

<strong>on</strong> lowland heaths <strong>in</strong> Dorset, southern England: changes <strong>in</strong> vegetati<strong>on</strong> and soil<br />

chemical properties. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology, 34, 1426-1444.<br />

Mitchell, R.J., Marrs, R.H., le Duc, M.G., & Auld, M.H.D. (1999) A study <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

restorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> heathland <strong>on</strong> successi<strong>on</strong>al sites: changes <strong>in</strong> vegetati<strong>on</strong> and soil<br />

chemical properties. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology, 36, 770-783.<br />

Mitchell, P.I., Newt<strong>on</strong>, S.F., Ratcliffe, N., & Dunn, T. (2004) Seabird Populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Brita<strong>in</strong> and Ireland T & A.D. Poyser, L<strong>on</strong>d<strong>on</strong>.<br />

Moorcr<str<strong>on</strong>g>of</str<strong>on</strong>g>t, D., Whitt<strong>in</strong>gham, M.J., Bradbury, R.B., & Wils<strong>on</strong>, J.D. (2002) <str<strong>on</strong>g>The</str<strong>on</strong>g> selecti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> stubble fields by w<strong>in</strong>ter<strong>in</strong>g granivorous <strong>birds</strong> reflects vegetati<strong>on</strong> cover and food<br />

abundance. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology, 39, 535-547.<br />

Moreby, S.J. (2004) Birds <str<strong>on</strong>g>of</str<strong>on</strong>g> lowland arable farmland: the importance and identificati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>vertebrate density <strong>in</strong> the diet <str<strong>on</strong>g>of</str<strong>on</strong>g> chicks. In Insect and bird <strong>in</strong>teracti<strong>on</strong>s (eds<br />

H. van Emden & M. Rothschild), pp. 21-35. Intercept, Andover, Hampshire.<br />

Morris, A.J., Bradbury, R.B., & Wils<strong>on</strong>, J.D. (2002) Determ<strong>in</strong>ants <str<strong>on</strong>g>of</str<strong>on</strong>g> patch selecti<strong>on</strong> by<br />

yellowhammers Emberiza citr<strong>in</strong>ella forag<strong>in</strong>g <strong>in</strong> cereal crops. Aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied<br />

Biology, 67, 43-50.<br />

Morris, A.J., Holland, J.M., Smith, B., & J<strong>on</strong>es, N.E. (2004) Susta<strong>in</strong>able Arable Farm<strong>in</strong>g<br />

For an Improved Envir<strong>on</strong>ment (SAFFIE): Manag<strong>in</strong>g w<strong>in</strong>ter wheat sward structure<br />

for skylarks Alauda arvensis. Ibis, 146, 155-162.<br />

Morris, J.T. (1991) Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen load<strong>in</strong>g <strong>on</strong> wetland ecosystems with particular<br />

reference to atmospheric depositi<strong>on</strong>. Annual Review <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology and Systematics,<br />

22, 257-279.<br />

Morris, L. & Keough, M.J. (2003) Test<strong>in</strong>g the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> additi<strong>on</strong>s <strong>on</strong> mudflat<br />

macro<strong>in</strong>faunal assemblages <strong>in</strong> the presence and absence <str<strong>on</strong>g>of</str<strong>on</strong>g> shorebird predators.<br />

Mar<strong>in</strong>e and Freshwater Research, 54, 859-874.<br />

181


Morris, M.G. (1967) Differences between the <strong>in</strong>vertebrate faunas <str<strong>on</strong>g>of</str<strong>on</strong>g> grazed and ungrazed<br />

chalk grassland 1. Resp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g> some phytophagous <strong>in</strong>sects to cessati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

graz<strong>in</strong>g. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology, 4, 459-474.<br />

Morris, M.G. & Lakhani, K.H. (1979) Resp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g> grassland <strong>in</strong>vertebrates to<br />

management by cutt<strong>in</strong>g I. Species diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> Hemiptera. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied<br />

Ecology, 18, 763-772.<br />

Morris, M.G. & Risp<strong>in</strong>, W.E. (1987) Abundance and diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> the coleopterous fauna<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a calcareous grassland under different cutt<strong>in</strong>g regimes. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied<br />

Ecology, 24, 451-465.<br />

Moss, B. (1980) Further studies <strong>on</strong> the palaeolimnology and changes <strong>in</strong> the phosphorus<br />

budgets <str<strong>on</strong>g>of</str<strong>on</strong>g> Bart<strong>on</strong> Broad, Norfolk. Freshwater Biology, 10, 261-279.<br />

Moss, B. (1983) <str<strong>on</strong>g>The</str<strong>on</strong>g> Norfolk Broadland: experiments <strong>in</strong> the restorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a complex<br />

wetland. Biological Review, 58, 521-561.<br />

Moss, B. (1989). Water polluti<strong>on</strong> and the management <str<strong>on</strong>g>of</str<strong>on</strong>g> ecosystems: a case study <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

science and scientists. In Towards a more exact ecology (eds P.J. Grubb & J.B.<br />

Whittaker), pp. 401-422. Blackwell, Oxford.<br />

Moss, B. (1990) Eng<strong>in</strong>eer<strong>in</strong>g and biological approaches to the restorati<strong>on</strong> from<br />

eutrophicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> shallow lakes <strong>in</strong> which aquatic plant communities are important<br />

comp<strong>on</strong>ents. Hydrobiologia, 200/201, 367-377.<br />

Moss, B., Johnes, P., & Phillips, G. (1996) <str<strong>on</strong>g>The</str<strong>on</strong>g> m<strong>on</strong>itor<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> ecological quality and the<br />

classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> stand<strong>in</strong>g waters <strong>in</strong> temperate regi<strong>on</strong>s: a review and proposal<br />

based <strong>on</strong> a worked scheme for British waters. Biological Review, 71, 301-339.<br />

Moss, B., McKee, D., Atk<strong>in</strong>s<strong>on</strong>, D., Coll<strong>in</strong>gs, S.E., Eat<strong>on</strong>, J.W., Gill, A.B., Harvey, K.,<br />

Heyes, T., & Wils<strong>on</strong>, D. (2003) How important is climate? Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> warm<strong>in</strong>g,<br />

<str<strong>on</strong>g>nutrient</str<strong>on</strong>g> additi<strong>on</strong> and fish <strong>on</strong> phytoplankt<strong>on</strong> <strong>in</strong> shallow lake microcosms. Journal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology, 40, 782-792.<br />

Moss, B., Barker, T., Stephen, D., Williams, A.E., Balayla, D.J., Beklioglu, M., &<br />

Carvalho, L. (2005) C<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> reduced <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> load<strong>in</strong>g <strong>on</strong> a lake system <strong>in</strong><br />

a lowland catchment: deviati<strong>on</strong>s from the norm? Freshwater Biology, 50, 1687-<br />

1705.<br />

Mountford, J.O., Lakhani, K.H., & Kirkham, F.W. (1993) Experimental assessment <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

182


the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen additi<strong>on</strong> under hay-cutt<strong>in</strong>g and aftermath graz<strong>in</strong>g <strong>on</strong> the<br />

vegetati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> meadows <strong>on</strong> a Somerset peat moor. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology, 30,<br />

321-332.<br />

Murphy, S.M., Kessel, B., & V<strong>in</strong><strong>in</strong>g, L.J. (1984) Waterfowl populati<strong>on</strong>s and limnologic<br />

characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> taiga p<strong>on</strong>ds. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Wildlife Management, 48, 1156-1163.<br />

Müller, M., Spaar, R., Schifferli, L., & Jenni, L. (2005) Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> changes <strong>in</strong> farm<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

subalp<strong>in</strong>e meadows <strong>on</strong> a grassland bird, the wh<strong>in</strong>chat (Saxicola rubetra). Journal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Ornithology, 146, 14-23.<br />

NEGTAP (Nati<strong>on</strong>al Expert Group <strong>on</strong> Transboundary Air Polluti<strong>on</strong>). (2001).<br />

Transboundary air polluti<strong>on</strong>: acidificati<strong>on</strong> eutrophicati<strong>on</strong> and ground-level oz<strong>on</strong>e<br />

<strong>in</strong> the UK. Report prepared <strong>on</strong> behalf <str<strong>on</strong>g>of</str<strong>on</strong>g> DEFRA and the devolved<br />

adm<strong>in</strong>istrati<strong>on</strong>s.<br />

Nels<strong>on</strong>, S.H., Court, I., Vickery, J.A., Watts, P.N., & Bradbury, R.B. (2003) <str<strong>on</strong>g>The</str<strong>on</strong>g> status<br />

and ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> the yellow wagtail <strong>in</strong> Brita<strong>in</strong>. British Wildlife, 14, 270-274.<br />

Newt<strong>on</strong>, I., Robs<strong>on</strong>, J.E., & Yalden, D.W. (1981) Decl<strong>in</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the merl<strong>in</strong> <strong>in</strong> the Peak<br />

District. Bird Study, 28, 225-234.<br />

Newt<strong>on</strong>, I., Meek, E., & Little, B. (1986) Populati<strong>on</strong> and breed<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> Northumbrian<br />

merl<strong>in</strong>s. British Birds, 79, 155-170.<br />

Newt<strong>on</strong>, I. (2004) <str<strong>on</strong>g>The</str<strong>on</strong>g> recent decl<strong>in</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> farmland bird populati<strong>on</strong>s <strong>in</strong> Brita<strong>in</strong>: an<br />

appraisal <str<strong>on</strong>g>of</str<strong>on</strong>g> causal factors and c<strong>on</strong>servati<strong>on</strong> acti<strong>on</strong>s. Ibis, 146, 579-600.<br />

Nienhuis, P.H. (1993) Nutrient cycl<strong>in</strong>g and foodwebs <strong>in</strong> Dutch estuaries. Hydrobiologia,<br />

265, 15-44.<br />

Nilss<strong>on</strong>, S.G. & Nilss<strong>on</strong>, I.N. (1978) Breed<strong>in</strong>g bird community densities and species<br />

richness <strong>in</strong> lakes. Oikos, 31, 214-221.<br />

Noble, R.A.A. (2003) <str<strong>on</strong>g>The</str<strong>on</strong>g> factors affect<strong>in</strong>g the availability <str<strong>on</strong>g>of</str<strong>on</strong>g> fish to bitterns (Botaurus<br />

stellaris (L.)): implicati<strong>on</strong>s for the management <str<strong>on</strong>g>of</str<strong>on</strong>g> reedbeds. PhD, University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Hull.<br />

Noble, R.A.A., Harvey, J.P., & Cowx, I.G. (2004) Can management <str<strong>on</strong>g>of</str<strong>on</strong>g> freshwater fish<br />

populati<strong>on</strong>s be used to protect and enhance the c<strong>on</strong>servati<strong>on</strong> status <str<strong>on</strong>g>of</str<strong>on</strong>g> a rare, fisheat<strong>in</strong>g<br />

bird, the bittern, Botaurus stellaris, <strong>in</strong> the UK? Fisheries Management and<br />

Ecology, 11, 291-302.<br />

183


Noordhuis, R., van der Molen, D.T., & van den Berg, M.S. (2002) Resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

herbivorous water-<strong>birds</strong> to the return <str<strong>on</strong>g>of</str<strong>on</strong>g> Chara <strong>in</strong> Lake Veluwemeer, the<br />

Netherlands. Aquatic Botany, 72, 349-367.<br />

Norris, C.A. (1945) Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> a report <strong>on</strong> the distributi<strong>on</strong> and status <str<strong>on</strong>g>of</str<strong>on</strong>g> the corncrake<br />

(Crex crex). British Birds, 38, 142-148.<br />

Norris, C.A. (1947) Report <strong>on</strong> the distributi<strong>on</strong> and status <str<strong>on</strong>g>of</str<strong>on</strong>g> the corncrake. British Birds,<br />

40, 226-244.<br />

Norris, K., Cook, T., O'Dowd, B., & Durd<strong>in</strong>, C. (1997) <str<strong>on</strong>g>The</str<strong>on</strong>g> density <str<strong>on</strong>g>of</str<strong>on</strong>g> redshank Tr<strong>in</strong>ga<br />

totanus breed<strong>in</strong>g <strong>on</strong> the saltmarshes <str<strong>on</strong>g>of</str<strong>on</strong>g> the Wash <strong>in</strong> relati<strong>on</strong> to habitat and its<br />

graz<strong>in</strong>g management. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology, 34, 994-1013.<br />

Norris, K., Br<strong>in</strong>dley, E., Cook, T., Babbs, S., Brown, C.S., & Yaxley, R. (1998) Is the<br />

density <str<strong>on</strong>g>of</str<strong>on</strong>g> redshank Tr<strong>in</strong>ga totanus nest<strong>in</strong>g <strong>on</strong> saltmarshes <strong>in</strong> Great Brita<strong>in</strong><br />

decl<strong>in</strong><strong>in</strong>g due to changes <strong>in</strong> graz<strong>in</strong>g management? Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology,<br />

35, 621-634.<br />

Nowak, E. (1976) <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> fertilizati<strong>on</strong> <strong>on</strong> earthworms and other soil macr<str<strong>on</strong>g>of</str<strong>on</strong>g>auna.<br />

Polish Ecological Studies, 2, 195-207.<br />

O'Brien, M. (2002) <str<strong>on</strong>g>The</str<strong>on</strong>g> relati<strong>on</strong>ship between field occupancy rates by breed<strong>in</strong>g lapw<strong>in</strong>g<br />

and habitat management <strong>on</strong> upland farmland <strong>in</strong> northern Brita<strong>in</strong>. Aspects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Applied Biology, 67, 85-92.<br />

O'C<strong>on</strong>nor, R.J. & Shrubb, M. (1986) Farm<strong>in</strong>g and <strong>birds</strong> Cambridge University Press,<br />

Cambridge.<br />

O'Neill, N. (1991) Studies <strong>on</strong> the epigeal arthropod fauna at Grange, Co. Meath. M. Agr.<br />

Sci., University <str<strong>on</strong>g>of</str<strong>on</strong>g> Ireland.<br />

Odderskaer, P., Prang, A., Poulsen, J.G., Andersen, P.N., & Elmegaard, N. (1997)<br />

Skylark (Alauda arvensis) utilisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> micro-habitats <strong>in</strong> spr<strong>in</strong>g barley fields.<br />

Agriculture, Ecosystems and Envir<strong>on</strong>ment, 62, 21-29.<br />

Olechowicz, E. (1976) <str<strong>on</strong>g>The</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>in</strong>eral fertilizati<strong>on</strong> <strong>on</strong> <strong>in</strong>sect community <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

herbage <strong>in</strong> a meadow. Polish Ecological Studies, 2, 129-136.<br />

Orford, N. (1973) Breed<strong>in</strong>g distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> twite <strong>in</strong> central Brita<strong>in</strong>. Bird Study, 20, 51-62.<br />

Ormerod, S.J. & Tyler, S.J. (1989) L<strong>on</strong>g-term change <strong>in</strong> the suitability <str<strong>on</strong>g>of</str<strong>on</strong>g> Welsh streams<br />

for Dippers C<strong>in</strong>clus c<strong>in</strong>clus as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> acidificati<strong>on</strong> and recovery: a modell<strong>in</strong>g<br />

184


study. Envir<strong>on</strong>mental Polluti<strong>on</strong>, 62, 171-182.<br />

Ostendorp, W. (1989) ‘Die-back’ <str<strong>on</strong>g>of</str<strong>on</strong>g> reeds <strong>in</strong> Europe – a critical review <str<strong>on</strong>g>of</str<strong>on</strong>g> the literature.<br />

Aquatic Botany, 35, 5-26.<br />

Ostendorp, W., Tiedge, E., & Hille, S. (2001) Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> eutrophicati<strong>on</strong> <strong>on</strong> culm<br />

architecture <str<strong>on</strong>g>of</str<strong>on</strong>g> lakeshore Phragmites reeds. Aquatic Botany, 69, 177-193.<br />

Paerl, H.W., Dennis, R.L., & Whitall, D.R. (2002) Atmospheric depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen:<br />

implicati<strong>on</strong>s for <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> over-enrichment <str<strong>on</strong>g>of</str<strong>on</strong>g> coastal waters. Estuaries, 25, 677-<br />

693.<br />

Pakeman, R., Stolte, A., & Malcolm, A. (2004). Heather outbreaks <strong>in</strong> Scotland. Scottish<br />

Executive Envir<strong>on</strong>ment Group.<br />

Palmer, M.A., Bell, S.L., & Butterfield, I. (1992) A botanical classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> stand<strong>in</strong>g<br />

waters <strong>in</strong> Brita<strong>in</strong>: applicati<strong>on</strong>s for c<strong>on</strong>servati<strong>on</strong> and m<strong>on</strong>itor<strong>in</strong>g. Aquatic<br />

C<strong>on</strong>servati<strong>on</strong>: Mar<strong>in</strong>e and Freshwater Ecosystems, 2, 125-143.<br />

Palmer, S.C.F., Hester, A.J., Elst<strong>on</strong>, D.A., Gord<strong>on</strong>, I.J., & Hartley, S.E. (2003) <str<strong>on</strong>g>The</str<strong>on</strong>g> perils<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> hav<strong>in</strong>g tasty neighbours: graz<strong>in</strong>g impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> large herbivores at vegetati<strong>on</strong><br />

boundaries. Ecology, 84, 2877-2890.<br />

Paoletti, M.G. (1999) <str<strong>on</strong>g>The</str<strong>on</strong>g> role <str<strong>on</strong>g>of</str<strong>on</strong>g> earthworms for assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> susta<strong>in</strong>ability and as<br />

bio<strong>in</strong>dicators. Agriculture, Ecosystems and Envir<strong>on</strong>ment, 74, 137-155.<br />

Partridge, J.K. & Smith, K.W. (1988). Comm<strong>on</strong> scoter: the Lough Erne decl<strong>in</strong>e <strong>in</strong> an all-<br />

Ireland c<strong>on</strong>text. DoE (Northern Ireland).<br />

Peach, W.J., Lovett, L.J., Wott<strong>on</strong>, S.R., & Jeffs, C. (2001) Countryside stewardship<br />

delivers cirl bunt<strong>in</strong>gs (Emberiza cirlus) <strong>in</strong> Dev<strong>on</strong>, UK. Biological C<strong>on</strong>servati<strong>on</strong>,<br />

101, 361-373.<br />

Pearce, I.S.K. & van der Wal, R. (2002) Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen depositi<strong>on</strong> <strong>on</strong> growth and<br />

survival <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>tane Racomitrium lanug<strong>in</strong>osum heath. Biological C<strong>on</strong>servati<strong>on</strong>,<br />

104, 83-89.<br />

Pearce-Higg<strong>in</strong>s, J.W. & Grant, M.C. (2002) <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> graz<strong>in</strong>g-related variati<strong>on</strong> <strong>in</strong><br />

habitat <strong>on</strong> the distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moorland skylarks Alauda arvensis and meadow<br />

pipits Anthus pratensis. Aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Biology, 67, 155-164.<br />

Pearce-Higg<strong>in</strong>s, J.W. & Yalden, D.W. (2004) Habitat selecti<strong>on</strong>, diet, arthropod<br />

availability and growth <str<strong>on</strong>g>of</str<strong>on</strong>g> a moorland wader: the ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> European golden<br />

185


plover Pluvialis apricaria chicks. Ibis, 146, 335-346.<br />

Pearce-Higg<strong>in</strong>s, J.W., Grant, M.C., & Rob<strong>in</strong>s<strong>on</strong>, M. (2005) Correlates <str<strong>on</strong>g>of</str<strong>on</strong>g> black grouse<br />

decl<strong>in</strong>e. Proceed<strong>in</strong>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the 3 rd Internati<strong>on</strong>al Black Grouse C<strong>on</strong>ference, 120-128.<br />

Pearce-Higg<strong>in</strong>s, J.W. & Grant, M.C. (2006) Relati<strong>on</strong>ships between bird abundance and<br />

the compositi<strong>on</strong> and structure <str<strong>on</strong>g>of</str<strong>on</strong>g> moorland vegetati<strong>on</strong>. Bird Study, 53, 112-125.<br />

Pears<strong>on</strong>, T.H. & Rosenberg, R. (1978) Macrobenthic successi<strong>on</strong> <strong>in</strong> relati<strong>on</strong> to organic<br />

enrichment and polluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the mar<strong>in</strong>e envir<strong>on</strong>ment. Oceanography and Mar<strong>in</strong>e<br />

Biology: An Annual Review, 16, 229-311.<br />

Peirs<strong>on</strong>, G., Cryer, M., W<strong>in</strong>field, I.J., & Townsend, C.R. (1985) <str<strong>on</strong>g>The</str<strong>on</strong>g> impact <str<strong>on</strong>g>of</str<strong>on</strong>g> reduced<br />

<str<strong>on</strong>g>nutrient</str<strong>on</strong>g> load<strong>in</strong>g <strong>on</strong> the fish community <str<strong>on</strong>g>of</str<strong>on</strong>g> a small isolated lake, Alderfen Broad.<br />

In Proceed<strong>in</strong>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the 4th British Freshwater Fisheries C<strong>on</strong>ference, pp. 167-175,<br />

Liverpool.<br />

Penn<strong>in</strong>gs, S.C., Clark, C.M., Clel, , E.E., Coll<strong>in</strong>s, S.L., Gough, L., Gross, K.L.,<br />

Milchunas, D.G., & Sud<strong>in</strong>g, K.N. (2005) Do <strong>in</strong>dividual plant species show<br />

predictable resp<strong>on</strong>ses to nitrogen additi<strong>on</strong> across multiple experiments? Oikos,<br />

110, 547-555.<br />

Perk<strong>in</strong>s, E.J. & Abbott, D.J. (1972) Nutrient enrichment and sand flat fauna. Mar<strong>in</strong>e<br />

Polluti<strong>on</strong> Bullet<strong>in</strong>, 3, 70-72.<br />

Perk<strong>in</strong>s, A.J., Whitt<strong>in</strong>gham, M.J., Bradbury, R.B., Wils<strong>on</strong>, J.D., Morris, A.J., & Barnett,<br />

P.R. (2000) Habitat characteristics affect<strong>in</strong>g use <str<strong>on</strong>g>of</str<strong>on</strong>g> lowland agricultural grassland<br />

by <strong>birds</strong> <strong>in</strong> w<strong>in</strong>ter. Biological C<strong>on</strong>servati<strong>on</strong>, 95, 279-294.<br />

Perk<strong>in</strong>s, A.J., Whitt<strong>in</strong>gham, M.J., Morris, A.J., & Bradbury, R.B. (2002) Use <str<strong>on</strong>g>of</str<strong>on</strong>g> field<br />

marg<strong>in</strong>s by forag<strong>in</strong>g yellowhammers Emberiza citr<strong>in</strong>ella. Agriculture, Ecosystems<br />

and Envir<strong>on</strong>ment, 93, 413-420.<br />

Perrow, M.R. & Jowitt, A.J.D. (1997). Factors affect<strong>in</strong>g water plant recovery - the<br />

<strong>in</strong>fluence <str<strong>on</strong>g>of</str<strong>on</strong>g> macrophytes <strong>on</strong> the structure and functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fish communities. In<br />

Restorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Norfolk Broads. F<strong>in</strong>al report (Life 92-3/UK/031 and Broads<br />

Authority BARS 14) (eds F.J. Madgwick & G.L. Phillips).<br />

Perrow, M.R., Jowitt, A.J.D., Stansfield, J.H., & Phillips, G.L. (1999) <str<strong>on</strong>g>The</str<strong>on</strong>g> practical<br />

importance <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>teracti<strong>on</strong>s between fish, zooplankt<strong>on</strong> and macrophytes <strong>in</strong><br />

shallow lake restorati<strong>on</strong>. Hydrobiologia, 396, 199-210.<br />

186


Pfiffner, L. & Luka, H. (2003) Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> low-<strong>in</strong>put farm<strong>in</strong>g systems <strong>on</strong> carabids and<br />

epigeal spiders - a paired farm approach. Basic and Applied Ecology, 4, 117-127.<br />

Phillips, G.L., Em<strong>in</strong>s<strong>on</strong>, D., & Moss, B. (1978) A mechanism to account for macrophyte<br />

decl<strong>in</strong>e <strong>in</strong> progressively eutrophicated water. Aquatic Botany, 4, 103-126.<br />

Phoenix, G.K., Booth, R.E., Leake, J.R., Read, D.J., Grime, J.P., & Lee, J.A. (2003)<br />

Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> enhanced nitrogen depositi<strong>on</strong> and phosphorus limitati<strong>on</strong> <strong>on</strong> nitrogen<br />

budgets <str<strong>on</strong>g>of</str<strong>on</strong>g> semi-natural grasslands. Global Change Biology, 9, 1309-1321.<br />

Picozzi, N. & Hepburn, L.V. (1986) A study <str<strong>on</strong>g>of</str<strong>on</strong>g> black grouse <strong>in</strong> north-east Scotland.<br />

Proceed<strong>in</strong>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> III Internati<strong>on</strong>al Grouse Symposium, 462-481.<br />

Pilk<strong>in</strong>gt<strong>on</strong>, M.G., Caporn, S.J.M., Carroll, J.A., Cresswell, N., Lee, J.A., Reynolds, B., &<br />

Emmett, B.A. (2005) Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>creased</str<strong>on</strong>g> atmospheric nitrogen depositi<strong>on</strong> <strong>on</strong> an<br />

upland moor: nitrogen budgets and <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> accumulati<strong>on</strong>. Envir<strong>on</strong>mental<br />

Polluti<strong>on</strong>, 138, 473-484.<br />

Pitcairn, C.E.R., Fowler, D., & Grace, J. (1995) Depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fixed atmospheric nitrogen<br />

and foliar nitrogen c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> bryophytes and Calluna vulgaris. Envir<strong>on</strong>mental<br />

Polluti<strong>on</strong>, 88, 193-205.<br />

Plum, N. (2005) Terrestrial <strong>in</strong>vertebrates <strong>in</strong> flooded grassland: a literature review.<br />

Wetlands, 25, 721-737.<br />

Pounder, B. (1976) Waterfowl at effluent discharges <strong>in</strong> Scottish coastal waters. Scottish<br />

Birds, 9, 5-36.<br />

Power, S.A., Ashmore, M.R., Cous<strong>in</strong>s, D.A., & A<strong>in</strong>sworth, N. (1995) L<strong>on</strong>g term <str<strong>on</strong>g>effects</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> enhanced nitrogen depositi<strong>on</strong> <strong>on</strong> a lowland dry heath <strong>in</strong> southern Brita<strong>in</strong>.<br />

Water, Ail and Soil Polluti<strong>on</strong>, 85, 1701-1706.<br />

Power, S.A., Ashmore, M.R., & Cous<strong>in</strong>s, D.A. (1998a) Impacts and fate <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

experimentally enhanced nitrogen depositi<strong>on</strong> <strong>on</strong> a British lowland heath.<br />

Envir<strong>on</strong>mental Polluti<strong>on</strong>, 102, 27-34.<br />

Power, S.A., Ashmore, M.R., Cous<strong>in</strong>s, D.A., & Sheppard, L.J. (1998b) Effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

nitrogen additi<strong>on</strong> <strong>on</strong> the stress sensitivity <str<strong>on</strong>g>of</str<strong>on</strong>g> Calluna vulgaris. New Phytologist,<br />

138, 663-673.<br />

Prestidge, R.A. (1982) <str<strong>on</strong>g>The</str<strong>on</strong>g> <strong>in</strong>fluence <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogenous fertilizer <strong>on</strong> the grassland<br />

Auchenorrhyncha (Homoptera). Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology, 19, 735-749.<br />

187


Prest<strong>on</strong>, C.D., Pearman, D.A., & D<strong>in</strong>es, T.D. (2002) New atlas <str<strong>on</strong>g>of</str<strong>on</strong>g> the British and Irish<br />

flora Oxford University Press.<br />

Puglisi, L. & Bretagnolle, V. (2005) Breed<strong>in</strong>g biology <str<strong>on</strong>g>of</str<strong>on</strong>g> the great bittern. Water<strong>birds</strong>,<br />

28, 392-398.<br />

Purtauf, T., Roschewitz, I., Dauber, J., Thies, C., Tscharntke, T., & Wolters, V. (2005)<br />

Landscape c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> organic and c<strong>on</strong>venti<strong>on</strong>al farms: <strong>in</strong>fluences <strong>on</strong> carabid<br />

beetle diversity. Agriculture, Ecosystems and Envir<strong>on</strong>ment, 108, 165-174.<br />

Pywell, R.F., N.R., W., & P.D., P. (1994) Soil fertility and its implicati<strong>on</strong>s for the<br />

restorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> heathland <strong>on</strong> farmland <strong>in</strong> southern Brita<strong>in</strong>. Biological C<strong>on</strong>servati<strong>on</strong>,<br />

70, 169-181.<br />

Pyšek, P. & Lepš, J. (1991) Resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> a weed community to nitrogen fertilizati<strong>on</strong>: a<br />

multivariate analysis. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Vegetati<strong>on</strong> Science, 2, 237-244.<br />

Rader, R.B. & Richards<strong>on</strong>, C.J. (1994) Resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> macro<strong>in</strong>vertebrates and small fish to<br />

<str<strong>on</strong>g>nutrient</str<strong>on</strong>g> enrichment <strong>in</strong> the northern Everglades. Wetlands, 14, 134-146.<br />

Raffaelli, D., Hull, S.C., & Milne, H. (1989) L<strong>on</strong>g-term changes <strong>in</strong> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s, weed mats<br />

and shore<strong>birds</strong> <strong>in</strong> an estuar<strong>in</strong>e system. Carol<strong>in</strong>a Biology Readers, 30, 259-270.<br />

Raffaelli, D., Hull, S.C., & Milne, H. (1989) L<strong>on</strong>g-term changes <strong>in</strong> <str<strong>on</strong>g>nutrient</str<strong>on</strong>g>s, weed mats<br />

and shore<strong>birds</strong> <strong>in</strong> an estuar<strong>in</strong>e system. Carol<strong>in</strong>a Biology Readers, 30, 259-270.<br />

Ratcliffe, D.A. & Thomps<strong>on</strong>, D.B.A. (1988). <str<strong>on</strong>g>The</str<strong>on</strong>g> British uplands: their ecological<br />

character and <strong>in</strong>ternati<strong>on</strong>al significance. In Ecological change <strong>in</strong> the uplands (eds<br />

M.B. Usher & D.B.A. Thomps<strong>on</strong>), pp. 9-36. Blackwell Science.<br />

Ratcliffe, D.A. (1990) Birdlife <str<strong>on</strong>g>of</str<strong>on</strong>g> mounta<strong>in</strong> and upland Cambridge University Press,<br />

Cambridge.<br />

Raven, S.J. & Couls<strong>on</strong>, J.C. (2001) Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> clean<strong>in</strong>g a tidal river <str<strong>on</strong>g>of</str<strong>on</strong>g> sewage <strong>on</strong> gull<br />

numbers: a before-and-after study <str<strong>on</strong>g>of</str<strong>on</strong>g> the River Tyne, northeast England. Bird<br />

Study, 48, 48-58.<br />

Raven, M.J., Noble, D.G., & Baillie, S.R. (2005). <str<strong>on</strong>g>The</str<strong>on</strong>g> breed<strong>in</strong>g bird survey 2004. BTO,<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>tford.<br />

Raym<strong>on</strong>d, W.F., Sheppers<strong>on</strong>, G., & Waltham, R. (1986) Forage c<strong>on</strong>servati<strong>on</strong> and<br />

feed<strong>in</strong>g (4th Editi<strong>on</strong>) Farm<strong>in</strong>g Press, Ipswich.<br />

Rebecca, G.W., Cosnette, B.L., Hardey, J.J.C., & Payne, A.G. (1992) Status, distributi<strong>on</strong><br />

188


and breed<strong>in</strong>g biology <str<strong>on</strong>g>of</str<strong>on</strong>g> the merl<strong>in</strong> <strong>in</strong> north-east Scotland, 1980-1989. Scottish<br />

Birds, 16, 165-183.<br />

Redpath, S.M., Madders, M., D<strong>on</strong>nelly, E., Anders<strong>on</strong>, B., Thirgood, S.J. Mart<strong>in</strong>, A., &<br />

Mcleod, D. (1998) Nest site selecti<strong>on</strong> by hen harriers <strong>in</strong> Scotland. Bird Study, 45,<br />

51-61.<br />

Redpath, S.M. & Thirgood, S.J. (1999) Numerical and functi<strong>on</strong>al resp<strong>on</strong>ses <strong>in</strong> generalist<br />

predators: hen harriers and peregr<strong>in</strong>es <strong>on</strong> Scottish grouse moors. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Animal Ecology, 68, 879-892.<br />

Rees, H.L., Rowlatt, S.M., Lambert, M.A., Lees, R.G., & Limpenny, D.S. (1992) Spatial<br />

and temporal trends <strong>in</strong> the benthos and sediments <strong>in</strong> relati<strong>on</strong> to sewage sludge<br />

disposal <str<strong>on</strong>g>of</str<strong>on</strong>g>f the northeast coast <str<strong>on</strong>g>of</str<strong>on</strong>g> England. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Mar<strong>in</strong>e Science, 49, 55-64.<br />

Rehfisch, M.M., Aust<strong>in</strong>, G.E., Armitage, M.J.S., Atk<strong>in</strong>s<strong>on</strong>, P.W., Holloway, S.J.,<br />

Musgrove, A.J., & Pollitt, M.S. (2003) Numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> w<strong>in</strong>ter<strong>in</strong>g water<strong>birds</strong> <strong>in</strong> Great<br />

Brita<strong>in</strong> and the Isle <str<strong>on</strong>g>of</str<strong>on</strong>g> Man (1994/1995-1998/1999): II Coastal waders<br />

(Charadrii). Biological C<strong>on</strong>servati<strong>on</strong>, 112, 329-341.<br />

Rew, L., <str<strong>on</strong>g>The</str<strong>on</strong>g>aker, A.J., Froud-Williams, R.J., & Boatman, N.D. (1992) Nitrogen fertiliser<br />

misplacement and field boundaries. Aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Biology, 30, 203-206.<br />

Rich, T.C.G. & Woodruff, E.R. (1996) Changes <strong>in</strong> the vascular plant floras <str<strong>on</strong>g>of</str<strong>on</strong>g> England<br />

and Scotland between 1930-1960 and 1987-1988: the BSBI m<strong>on</strong>itor<strong>in</strong>g scheme.<br />

Biological C<strong>on</strong>servati<strong>on</strong>, 75, 217-229.<br />

Riis, T., & Sand-Jensen, K. (2001) Historical changes <strong>in</strong> species compositi<strong>on</strong> and<br />

richness accompany<strong>in</strong>g perturbati<strong>on</strong> and eutrophicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Danish lowland<br />

streams over 100 years. Freshwater Biology, 46, 269-280.<br />

Rob<strong>in</strong>s<strong>on</strong>, R.A. & Sutherland, W.J. (2002) Post-war changes <strong>in</strong> arable farm<strong>in</strong>g and<br />

biodiversity <strong>in</strong> Great Brita<strong>in</strong>. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology, 39, 157-176.<br />

Robs<strong>on</strong>, G., Percival, S.M., & Brown, A.F. (2002) <str<strong>on</strong>g>The</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> marg<strong>in</strong>al farmland by<br />

curlew Numenius arquata breed<strong>in</strong>g <strong>on</strong> upland moors. Aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Biology,<br />

67, 75-84.<br />

Rodwell, J.S. (1992) British plant communities, vol. 3. Grasslands and m<strong>on</strong>tane<br />

communities Cambridge University Press, Cambridge.<br />

Rosa, S., Palmeirim, J.M., & Moreira, F. (2003) Factors affect<strong>in</strong>g waterbird abundance<br />

189


and species richness <strong>in</strong> an <strong>in</strong>creas<strong>in</strong>gly urbanized area <str<strong>on</strong>g>of</str<strong>on</strong>g> the Tagus estuary <strong>in</strong><br />

Portugal. Water<strong>birds</strong>, 26, 226-232.<br />

Rose, R.J., Webb, N.R., Clarke, R.T., & Traynor, C.H. (1999) Changes <strong>on</strong> the heathlands<br />

<strong>in</strong> Dorset, England, between 1987 and 1996. Biological C<strong>on</strong>servati<strong>on</strong>, 93, 117-<br />

125.<br />

Scheffer, M., Hosper, S.H., Meijer, M.-L., Moss, B., & Jeppesen, E. (1993) Alternative<br />

equilibria <strong>in</strong> shallow lakes. Trends <strong>in</strong> Ecology and Evoluti<strong>on</strong>, 8, 275-279.<br />

Schellberg, J., Moseler, B.M., Kuhbauch, W., & Rademacher, I.F. (1999) L<strong>on</strong>g-term<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> fertilizer <strong>on</strong> soil <str<strong>on</strong>g>nutrient</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong>, yield, forage quality and<br />

floristic compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a hay meadow <strong>in</strong> the Eifel mounta<strong>in</strong>s, Germany. Grass<br />

and Forage Science, 54, 195-207.<br />

Schifferli, L., Fuller, R.J., & Muller, M. (1999) Distributi<strong>on</strong> and habitat use <str<strong>on</strong>g>of</str<strong>on</strong>g> bird<br />

species breed<strong>in</strong>g <strong>on</strong> Swiss farmland <strong>in</strong> relati<strong>on</strong> to agricultural <strong>in</strong>tensificati<strong>on</strong>.<br />

Vogelwelt, 120 (Suppl.), 151-161.<br />

Schifferli, L. (2000). Changes <strong>in</strong> agriculture and the status <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>birds</strong> breed<strong>in</strong>g <strong>in</strong> European<br />

farmland. In Ecology and c<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> lowland farmland <strong>birds</strong> (eds N.J.<br />

Aebischer, A.D. Evans, P.V. Grice & J.A. Vickery), pp. 17-25. British<br />

Ornithologists Uni<strong>on</strong>, Tr<strong>in</strong>g.<br />

Schmidt, M.H. & Tscharntke, T. (2005) <str<strong>on</strong>g>The</str<strong>on</strong>g> role <str<strong>on</strong>g>of</str<strong>on</strong>g> perennial habitats for central<br />

European spiders. Agriculture, Ecosystems and Envir<strong>on</strong>ment, 105, 235-242.<br />

Schmidt, M.H., Roschewitz, I., Thies, C., & Tscharntke, T. (2005) Differential <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

landscape and management <strong>on</strong> diversity and density <str<strong>on</strong>g>of</str<strong>on</strong>g> ground-dwell<strong>in</strong>g farm<br />

spiders. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology, 42, 281-287.<br />

Schröder, J.J., van Asperen, P., van D<strong>on</strong>gen, G.J.M., & Wijnauds, F.G. (1996) Nutrient<br />

surpluses <strong>on</strong> <strong>in</strong>tegrated arable farms. European Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Agr<strong>on</strong>omy, 5, 181-191.<br />

Schutz, W. (1995) Vegetati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> runn<strong>in</strong>g waters <strong>in</strong> southwestern Germany - prist<strong>in</strong>e<br />

c<strong>on</strong>diti<strong>on</strong>s and human impact. Acta Botanica Gallica, 142, 571-584.<br />

Scott, G.W., Jard<strong>in</strong>e, D.C., Hills, G., & Sweeney, B. (1998) Changes <strong>in</strong> Nightjar<br />

Caprimulgus europaeus populati<strong>on</strong>s <strong>in</strong> upland forests <strong>in</strong> Yorkshire. Bird Study,<br />

45, 219-225.<br />

Sculli<strong>on</strong>, J. & Ramshaw, J.A. (1987) Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> manurial treatments <strong>on</strong> earthworm<br />

190


activity <strong>in</strong> grassland. Biological Agriculture and Horticulture, 4, 271-281.<br />

Self, M. (2005) A review <str<strong>on</strong>g>of</str<strong>on</strong>g> management for fish and bitterns, Botaurus stellaris, <strong>in</strong><br />

wetland reserves. Fisheries Management and Ecology, 12, 387-394.<br />

Seymour, A.S., Harris, S., Ralst<strong>on</strong>, C., & White, P.C.L. (2003) Factors <strong>in</strong>fluenc<strong>in</strong>g the<br />

nest<strong>in</strong>g success <str<strong>on</strong>g>of</str<strong>on</strong>g> lapw<strong>in</strong>g Vanellus vanellus and behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> red fox Vulpes<br />

vulpes <strong>in</strong> lapw<strong>in</strong>g nest<strong>in</strong>g sites. Bird Study, 50, 39-46.<br />

Sharpley, A.N., Hedley, M.J., Sibbesen, E., Hillbricht-Ilkowska, A., House, W.A., &<br />

Ryszkowski, L. (1995). Phosphorus transfers from terrestrial to aquatic systems.<br />

In Phosphorus <strong>in</strong> the global envir<strong>on</strong>ment (ed H. Tiessen), pp. 171-199. John<br />

Wiley & S<strong>on</strong>s Ltd, Chichester.<br />

Sheld<strong>on</strong>, R., Bolt<strong>on</strong>, M., Gill<strong>in</strong>gs, S., & Wils<strong>on</strong>, A. (2004) C<strong>on</strong>servati<strong>on</strong> management <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

lapw<strong>in</strong>g Vanellus vanellus <strong>on</strong> lowland arable farmland <strong>in</strong> the UK. Ibis, 146<br />

(Suppl. 2), 41-49.<br />

Sheppard, L.J. & Leith, I.D. (2002) Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> NH3 fumigati<strong>on</strong> <strong>on</strong> the frost hard<strong>in</strong>ess <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Calluna - does N depositi<strong>on</strong> <strong>in</strong>crease w<strong>in</strong>ter damage by frost? Phyt<strong>on</strong>-Annales Rei<br />

Botanicae, 42, 183-190.<br />

Shrubb, M. (1990) Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> agricultural change <strong>on</strong> nest<strong>in</strong>g lapw<strong>in</strong>gs Vanellus vanellus<br />

<strong>in</strong> England and Wales. Bird Study, 37, 115-127.<br />

Shrubb, M. & Lack, P.C. (1991) <str<strong>on</strong>g>The</str<strong>on</strong>g> numbers and distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Lapw<strong>in</strong>gs V. vanellus<br />

nest<strong>in</strong>g <strong>in</strong> England and Wales <strong>in</strong> 1987. Bird Study, 38, 20-37.<br />

Shrubb, M., Williams, I.T., & Lovegrove, R.R. (1997) <str<strong>on</strong>g>The</str<strong>on</strong>g> impact <str<strong>on</strong>g>of</str<strong>on</strong>g> changes <strong>in</strong> farm<strong>in</strong>g<br />

and land uses <strong>on</strong> bird populati<strong>on</strong>s <strong>in</strong> Wales. Welsh Birds, 4, 4-26.<br />

Shrubb, M. (2003) Birds, scythes and comb<strong>in</strong>es Cambridge University Press, Cambridge.<br />

Siepel, H. & van de Bund, C.F. (1988) <str<strong>on</strong>g>The</str<strong>on</strong>g> <strong>in</strong>fluence <str<strong>on</strong>g>of</str<strong>on</strong>g> management practises <strong>on</strong> the<br />

microarthropod community <str<strong>on</strong>g>of</str<strong>on</strong>g> grassland. Pedobiologia, 31, 339-354.<br />

Siepel, H. (1990) <str<strong>on</strong>g>The</str<strong>on</strong>g> <strong>in</strong>fluence <str<strong>on</strong>g>of</str<strong>on</strong>g> management <strong>on</strong> food size <strong>in</strong> the menu <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>sectivorous<br />

animals. Proceed<strong>in</strong>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the Secti<strong>on</strong> Experimental and Applied Entomology <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

Netherlands Entomological Society, 1, 69-74.<br />

Sim, I.M.W., Gregory, R.D., Hancock, M.H., & Brown, A.F. (2005) Recent changes <strong>in</strong><br />

the abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> British upland breed<strong>in</strong>g <strong>birds</strong>. Bird Study, 52, 261-275.<br />

Sim, I.M.W., Burfield, I.J., Grant, M.C., Pearce-Higg<strong>in</strong>s, J.W., & Brooke, M.de L. (<strong>in</strong><br />

191


prep.) <str<strong>on</strong>g>The</str<strong>on</strong>g> role <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat compositi<strong>on</strong> <strong>in</strong> determ<strong>in</strong><strong>in</strong>g breed<strong>in</strong>g site occupancy <strong>in</strong> a<br />

decl<strong>in</strong><strong>in</strong>g r<strong>in</strong>g ouzel Turdus torquatus populati<strong>on</strong>.<br />

Sitters, H.P., Fuller, R.J., Hoblyn, R.A., Wright, M.T., Cowie, N., & Bowden, C.G.R.<br />

(1996) <str<strong>on</strong>g>The</str<strong>on</strong>g> woodlark Lullula arborea <strong>in</strong> Brita<strong>in</strong>: populati<strong>on</strong> trends, distributi<strong>on</strong><br />

and habitat occupancy. Bird Study, 43, 172-187.<br />

Sjöberg, K. (1985) Forag<strong>in</strong>g activity patterns <strong>in</strong> the goosander (Mergus merganser) and<br />

the red-breasted merganser (Mergus serrator) <strong>in</strong> relati<strong>on</strong> to patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> activity <strong>in</strong><br />

their major prey species. Oecologia, 67, 35-39.<br />

Smart, S.M., Roberts<strong>on</strong>, J.C., Shield, E.J., & van de Poll, H.M. (2003) Locat<strong>in</strong>g<br />

eutrophicati<strong>on</strong> <str<strong>on</strong>g>effects</str<strong>on</strong>g> across British vegetati<strong>on</strong> between 1990 and 1998. Global<br />

Change Biology, 9, 1763-1774.<br />

Smart, S.M., Bunce, R.G.H., Marrs, R., LeDuc, M., Firbank, L.G., Maskell, L.C., Scott,<br />

W.A., Thomps<strong>on</strong>, K., & Walker, K.J. (2005) Large-scale changes <strong>in</strong> the<br />

abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> comm<strong>on</strong> higher plant species across Brita<strong>in</strong> between 1978, 1990<br />

and 1998 as a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> human activity: tests <str<strong>on</strong>g>of</str<strong>on</strong>g> hypothesised changes <strong>in</strong><br />

trait representati<strong>on</strong>. Biological C<strong>on</strong>servati<strong>on</strong>, 124, 355-371.<br />

Smith, K.W. (1983) <str<strong>on</strong>g>The</str<strong>on</strong>g> status and distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> waders breed<strong>in</strong>g <strong>on</strong> wet lowland<br />

grasslands <strong>in</strong> England and Wales. Bird Study, 30, 177-192.<br />

Smith, R.E.N., Webb, N.R., & Clark, R.T. (1991) <str<strong>on</strong>g>The</str<strong>on</strong>g> establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> heathland <strong>on</strong> old<br />

fields <strong>in</strong> Dorset, England. Biological C<strong>on</strong>servati<strong>on</strong>, 57, 221-234.<br />

Smith, R.S. & J<strong>on</strong>es, L. (1991) <str<strong>on</strong>g>The</str<strong>on</strong>g> phenology <str<strong>on</strong>g>of</str<strong>on</strong>g> mesotrophic grassland <strong>in</strong> the Penn<strong>in</strong>e<br />

Dales, northern England: historic hay cutt<strong>in</strong>g dates, vegetati<strong>on</strong> variati<strong>on</strong> and plant<br />

species phenologies. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology, 28, 42-59.<br />

Smith, A.A., Redpath, S.M., Campbell, S.T., & Thirgood, S.J. (2001) Meadow pipits, red<br />

grouse and the habitat characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> managed grouse moors. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Applied Ecology, 38, 390-400.<br />

Solim<strong>in</strong>i, A.G., Benvenuti, A., d'Olimpio, R., de Cicco, M., & Carch<strong>in</strong>i, G. (2001) Size<br />

structure <str<strong>on</strong>g>of</str<strong>on</strong>g> benthic <strong>in</strong>vertebrate assemblages <strong>in</strong> a Mediterranean river. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the North American Benthological Society, 20, 421-431.<br />

Sothert<strong>on</strong>, N.W. & Self, M.J. (2000). Changes <strong>in</strong> plant and arthropod biodiversity <strong>on</strong><br />

lowland farmland: an overview. In Ecology and c<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> lowland farmland<br />

192


irds (eds N.J. Aebischer, A.D. Evans, P.V. Grice & J.A. Vickery), pp. 26-35.<br />

British Ornithologists Uni<strong>on</strong>, Tr<strong>in</strong>g.<br />

Soulsby, P.G., Lowthi<strong>on</strong>, D., & Houst<strong>on</strong>, M. (1978) Observati<strong>on</strong>s <strong>on</strong> the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

sewage discharged <strong>in</strong>to a tidal harbour. Mar<strong>in</strong>e Polluti<strong>on</strong> Bullet<strong>in</strong>, 9, 242-245.<br />

Southwood, T.R.E. & van Emden, H.F. (1967) A comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the fauna <str<strong>on</strong>g>of</str<strong>on</strong>g> cut and<br />

uncut grasslands. Zeitschrift fur angewandte Entomologie, 60, 188-198.<br />

Southwood, T.R.E., Brown, V.K., & Reader, P.M. (1979) <str<strong>on</strong>g>The</str<strong>on</strong>g> relati<strong>on</strong>ships <str<strong>on</strong>g>of</str<strong>on</strong>g> plant and<br />

<strong>in</strong>sect diversities <strong>in</strong> successi<strong>on</strong>. Biological Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> the L<strong>in</strong>nean Society, 12,<br />

327-348.<br />

Stevens, D.K., D<strong>on</strong>ald, P.F., Evans, A.D., Buck<strong>in</strong>gham, D.L., & Evans, J. (2002)<br />

Territory distributi<strong>on</strong> and forag<strong>in</strong>g patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> cirl bunt<strong>in</strong>gs Emberiza cirlus<br />

breed<strong>in</strong>g <strong>in</strong> the UK. Biological C<strong>on</strong>servati<strong>on</strong>, 107, 307-313.<br />

Stillman, R.A. & Brown, A.F. (1994) Populati<strong>on</strong> sizes and habitat associati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> upland<br />

breed<strong>in</strong>g <strong>birds</strong> <strong>in</strong> the south Penn<strong>in</strong>es, England. Biological C<strong>on</strong>servati<strong>on</strong> 69, 307-<br />

314.<br />

Stillman, R.A. & Brown, A.F. (1998) Pattern <strong>in</strong> the distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Brita<strong>in</strong>'s upland<br />

breed<strong>in</strong>g <strong>birds</strong>. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Biogeography, 25, 73-82.<br />

Stoate, C. (1996) <str<strong>on</strong>g>The</str<strong>on</strong>g> chang<strong>in</strong>g face <str<strong>on</strong>g>of</str<strong>on</strong>g> lowland farm<strong>in</strong>g and wildlife part 2 1945-1995.<br />

British Wildlife, 7, 162-172.<br />

Stoate, C., Boatman, N.D., Borralho, R.J., Carvalho, C.R., de Snoo, G.R., & Eden, P.<br />

(2001) Ecological impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> arable <strong>in</strong>tensificati<strong>on</strong> <strong>in</strong> Europe. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Envir<strong>on</strong>mental Management, 63, 337-365.<br />

Stowe, T.J., Newt<strong>on</strong>, A.V., Green, R.E., & Mayes, E. (1993) <str<strong>on</strong>g>The</str<strong>on</strong>g> decl<strong>in</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the corncrake<br />

Crex crex <strong>in</strong> Brita<strong>in</strong> and Ireland <strong>in</strong> relati<strong>on</strong> to habitat. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology,<br />

30, 53-62.<br />

Sunderl, , K., & Samu, F. (2000) Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> agricultural diversificati<strong>on</strong> <strong>on</strong> the abundance,<br />

distributi<strong>on</strong>, and pest c<strong>on</strong>trol potential <str<strong>on</strong>g>of</str<strong>on</strong>g> spiders: a review. Entomologia<br />

Experimentalis et Applicata, 95, 1-13.<br />

Tallow<strong>in</strong>, J.R.B., Smith, R.E.N., Goodyear, J., & Vickery, J.A. (2005) Spatial and<br />

structural uniformity <str<strong>on</strong>g>of</str<strong>on</strong>g> lowland agricultural grassland <strong>in</strong> England: a c<strong>on</strong>text for<br />

low biodiversity. Grass and Forage Science, 60, 225-236.<br />

193


Taylor, I.R. & Grant, M.C. (2004) L<strong>on</strong>g-term trends <strong>in</strong> the abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> breed<strong>in</strong>g<br />

lapw<strong>in</strong>g Vanellus vanellus <strong>in</strong> relati<strong>on</strong> to land-use change <strong>on</strong> upland farmland <strong>in</strong><br />

southern Scotland. Bird Study, 51, 133-142.<br />

Tharme, A.P., Green, R.E., Ba<strong>in</strong>es, D., Ba<strong>in</strong>bridge, I.P., & O'Brien, M. (2001) <str<strong>on</strong>g>The</str<strong>on</strong>g> effect<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> management for red grouse shoot<strong>in</strong>g <strong>on</strong> the populati<strong>on</strong> density <str<strong>on</strong>g>of</str<strong>on</strong>g> breed<strong>in</strong>g<br />

<strong>birds</strong> <strong>on</strong> heather-dom<strong>in</strong>ated moorland. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology, 38, 439-457.<br />

Thiebaut, G. & Muller, S. (1998) <str<strong>on</strong>g>The</str<strong>on</strong>g> impact <str<strong>on</strong>g>of</str<strong>on</strong>g> eutrophicati<strong>on</strong> <strong>on</strong> aquatic macrophyte<br />

diversity <strong>in</strong> weakly m<strong>in</strong>eralized streams <strong>in</strong> the northern Vosges mounta<strong>in</strong>s (NE<br />

France). Biodiversity and C<strong>on</strong>servati<strong>on</strong>, 7, 1051-1068.<br />

Thirgood, S.J., Redpath, S.M., Hayd<strong>on</strong>, D.T., Rothery, P., Newt<strong>on</strong>, I., & Huds<strong>on</strong>, P.J.<br />

(2000) Habitat loss and raptor predati<strong>on</strong>: disentangl<strong>in</strong>g l<strong>on</strong>g- and short-term<br />

causes <str<strong>on</strong>g>of</str<strong>on</strong>g> red grouse decl<strong>in</strong>es. Proceed<strong>in</strong>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the Royal Society B: Biological<br />

Sciences, 267, 651-656.<br />

Thomps<strong>on</strong>, D.B.A., MacD<strong>on</strong>ald, A.J., Marsden, J.H., & Galbraith, C.A. (1995) Upland<br />

heather moorland <strong>in</strong> Great Brita<strong>in</strong>: a review <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>ternati<strong>on</strong>al importance,<br />

vegetati<strong>on</strong> change and some objectives for nature c<strong>on</strong>servati<strong>on</strong>. Biological<br />

C<strong>on</strong>servati<strong>on</strong>, 71, 163-178.<br />

Tomassen, H.B.M., Smolders, A.J.P., Limpens, J., Lamers, L.P.M., & Roel<str<strong>on</strong>g>of</str<strong>on</strong>g>s, J.G.M.<br />

(2004) Expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>vasive species <strong>on</strong> ombrotrophic bogs: desiccati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> high<br />

N depositi<strong>on</strong>? Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology, 41,139-150.<br />

Tsiouris, S. & Marshall, E.J.P. (1998) Observati<strong>on</strong>s <strong>on</strong> patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> granular fertilizer<br />

depositi<strong>on</strong> beside hedges and its likely <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> the botanical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

field marg<strong>in</strong>s. Annals <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Biology, 132, 115-127.<br />

Tubbs, C.R. (1977) Wildfowl and waders <strong>in</strong> Langst<strong>on</strong>e Harbour. British Birds, 70, 177-<br />

199.<br />

Tucker, G.M. (1992) Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> agricultural practices <strong>on</strong> field use by <strong>in</strong>vertebrate-feed<strong>in</strong>g<br />

<strong>birds</strong> <strong>in</strong> w<strong>in</strong>ter. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology, 29, 779-790.<br />

Turner, A.M., Trexler, J.C., Jordan, C.F., Slack, S.J., Geddes, P., Chick, J.H., & L<str<strong>on</strong>g>of</str<strong>on</strong>g>tus,<br />

W.F. (1999) Target<strong>in</strong>g ecosystem features for c<strong>on</strong>servati<strong>on</strong>: stand<strong>in</strong>g crops <strong>in</strong> the<br />

Florida Everglades. C<strong>on</strong>servati<strong>on</strong> Biology, 13, 898-911.<br />

Tyler, S.J. & Ormerod, S.J. (1992) A review <str<strong>on</strong>g>of</str<strong>on</strong>g> the likely causal pathways relat<strong>in</strong>g the<br />

194


educed density <str<strong>on</strong>g>of</str<strong>on</strong>g> breed<strong>in</strong>g dippers C<strong>in</strong>clus c<strong>in</strong>clus to the acidificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> upland<br />

streams. Envir<strong>on</strong>mental Polluti<strong>on</strong>, 78, 49-55.<br />

Tyler, G.A., Smith, K.W., & Burges, D.J. (1998) Reedbed management and breed<strong>in</strong>g<br />

bitterns Botaurus stellaris <strong>in</strong> the UK. Biological C<strong>on</strong>servati<strong>on</strong>, 86, 257-266.<br />

Underhill, M.C., Gitt<strong>in</strong>gs, T., Callaghan, D.A., Hughes, B., Kirby, J.S., & Delany, S.<br />

(1998) Status and distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> breed<strong>in</strong>g comm<strong>on</strong> scoters Melanitta nigra nigra<br />

<strong>in</strong> Brita<strong>in</strong> and Ireland <strong>in</strong> 1995. Bird Study, 45, 146-156.<br />

Uren, S.C., A<strong>in</strong>sworth, N., Power, S.A., Cous<strong>in</strong>s, D.A., Huxedurp, L.M., & Ashmore,<br />

M.A. (1997) L<strong>on</strong>g-term <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> amm<strong>on</strong>ium sulphate <strong>on</strong> Calluna vulgaris.<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology, 34, 208-216.<br />

van den Berg, M.S., Coops, H., Noordhuis, R., van Schie, J., & Sim<strong>on</strong>s, J. (1997)<br />

Macro<strong>in</strong>vertebrate communities <strong>in</strong> relati<strong>on</strong> to submerged vegetati<strong>on</strong> <strong>in</strong> two Chara<br />

dom<strong>in</strong>ated lakes. Hydrobiologia, 342, 143-150.<br />

van der Eerden, L.J., Dueck, T.A., Berdowski, J.J.M., Greven, H., & van Dobben, H.F.<br />

(1991) Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> NH3 and (NH4)2SO4 <strong>on</strong> heathland vegetati<strong>on</strong>. Acta Botanica<br />

Neerlandica, 40, 281-297.<br />

van der Putten, W.H. (1997) Die-back <str<strong>on</strong>g>of</str<strong>on</strong>g> Phragmites australis <strong>in</strong> European wetlands: an<br />

overview <str<strong>on</strong>g>of</str<strong>on</strong>g> the European Research Programme <strong>on</strong> Reed Die-Back and<br />

Progressi<strong>on</strong> (1993-1994). Aquatic Botany, 59, 263-275.<br />

van der W<strong>in</strong>den, J., A.J., B., & Heemskerk, L. (2004) Habitat-related black tern<br />

Chlid<strong>on</strong>ias niger breed<strong>in</strong>g success <strong>in</strong> the Netherlands. Ardea, 92, 53-61.<br />

van der W<strong>in</strong>den, J. (2005) Black tern Chlid<strong>on</strong>ias niger c<strong>on</strong>servati<strong>on</strong> <strong>in</strong> <str<strong>on</strong>g>The</str<strong>on</strong>g> Netherlands -<br />

a review. Vogelwelt, 126, 187-193.<br />

van D<strong>on</strong>k, E., De Deckere, E., Kle<strong>in</strong> Breteler, J., & Meulemans, T. (1994) Herbivory by<br />

waterfowl and fish <strong>on</strong> macrophytes <strong>in</strong> a biomanipulated lake: <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> l<strong>on</strong>g-term<br />

recovery. Verhandlungen Internati<strong>on</strong>ale Vere<strong>in</strong>gung Limnologie, 25, 2139-2143.<br />

van Impe, J. (1985) Estuar<strong>in</strong>e polluti<strong>on</strong> as a probable cause <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>crease <str<strong>on</strong>g>of</str<strong>on</strong>g> estuar<strong>in</strong>e <strong>birds</strong>.<br />

Mar<strong>in</strong>e Polluti<strong>on</strong> Bullet<strong>in</strong>, 16, 271-276.<br />

van Nieuwenhuyse, D., Nollet, F., & Evans, A. (1999) <str<strong>on</strong>g>The</str<strong>on</strong>g> ecology and c<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the red-backed shrike Lanius collurio breed<strong>in</strong>g <strong>in</strong> Europe. Aves, 36, 179-192.<br />

van W<strong>in</strong>gerden, W.K.R.E., Musters, J.C.M., Kleukers, R.M.J.C., B<strong>on</strong>gers, W., & van<br />

195


Biezen, J.B. (1991) <str<strong>on</strong>g>The</str<strong>on</strong>g> <strong>in</strong>fluence <str<strong>on</strong>g>of</str<strong>on</strong>g> cattle graz<strong>in</strong>g <strong>in</strong>tensity <strong>on</strong> grasshopper<br />

abundance (Orthoptera: Acrididae). Proceed<strong>in</strong>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> Experimental and Applied<br />

Entomology, 2, 28-34.<br />

van W<strong>in</strong>gerden, W.K.R.E., van Kreveld, A.R., & B<strong>on</strong>gers, W. (1992) Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> species<br />

compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> grasshoppers (Orth, Acrididae) <strong>in</strong> natural and fertilised grasslands.<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Entomology, 113, 138-152.<br />

Vanh<strong>in</strong>sbergh, D.P. & Chamberla<strong>in</strong>, D.E. (2001) Habitat associati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> breed<strong>in</strong>g<br />

meadow pipits Anthus pratensis <strong>in</strong> the British uplands. Bird Study, 48, 159-172.<br />

Vanh<strong>in</strong>sbergh, D. & Evans, A. (2002) Habitat associati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the red-backed shrike<br />

(Lanius collurio) <strong>in</strong> Car<strong>in</strong>thia, Austria. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Ornithology, 143, 405-415.<br />

Vickery, J.A. & Gill, J.A. (1999) Manag<strong>in</strong>g grassland for wild geese <strong>in</strong> Brita<strong>in</strong>: a review.<br />

Biological C<strong>on</strong>servati<strong>on</strong>, 89, 93-106.<br />

Vickery, J.A., Tallow<strong>in</strong>, J.R., Feber, R.E., Asteraki, E.J., Atk<strong>in</strong>s<strong>on</strong>, P.W., Fuller, R.J., &<br />

Brown, V.K. (2001) <str<strong>on</strong>g>The</str<strong>on</strong>g> management <str<strong>on</strong>g>of</str<strong>on</strong>g> lowland neutral grasslands <strong>in</strong> Brita<strong>in</strong>:<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> agricultural practices <strong>on</strong> <strong>birds</strong> and their food resources. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Applied Ecology, 38, 647-664.<br />

Vitousek, P.M., Aber, J.D., Howarth, R.W., Likens, G.E., Mats<strong>on</strong>, P.A., Sch<strong>in</strong>dler, D.W.,<br />

Schles<strong>in</strong>ger, W.H., & Tilman, D.G. (1997) Human alterati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the global<br />

nitrogen cycle: sources and c<strong>on</strong>sequences. Ecological Applicati<strong>on</strong>s, 7, 737-750.<br />

Volkl, W., Zwolfer, H., Romstock-Volkl, M., & Schmelzer, C. (1993) Habitat<br />

management <strong>in</strong> calcareous grassland: <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> the <strong>in</strong>sect community develop<strong>in</strong>g<br />

<strong>in</strong> flower heads <str<strong>on</strong>g>of</str<strong>on</strong>g> Cynarea. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology, 30, 307-315.<br />

Votrubová, O. & Pechá�ková, A. (1996) Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen over-supply <strong>on</strong> root structure<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> comm<strong>on</strong> reed. Folia Geobotanica et Phytotax<strong>on</strong>omica, 31, 119-125.<br />

Walker, K.J., Stevens, P.A., Stevens, D.P., Mountford, J.O., Manchester, S.J., & Pywell,<br />

R.F. (2004) <str<strong>on</strong>g>The</str<strong>on</strong>g> restorati<strong>on</strong> and re-creati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> species-rich lowland grassland <strong>on</strong><br />

land formerly managed for <strong>in</strong>tensive agriculture <strong>in</strong> the UK. Biological<br />

C<strong>on</strong>servati<strong>on</strong>, 119, 1-18.<br />

Warren, P., Ba<strong>in</strong>es, D., & Henders<strong>on</strong>, C. (2003) Cutt<strong>in</strong>g trials to enhance brood rear<strong>in</strong>g<br />

habitats for black grouse <strong>in</strong> northern England. Proceed<strong>in</strong>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the European<br />

C<strong>on</strong>ference: Black Grouse – Endangered Species <str<strong>on</strong>g>of</str<strong>on</strong>g> Europe, 81-86.<br />

196


Wats<strong>on</strong>, A.M. & Ormerod, S.J. (2004) <str<strong>on</strong>g>The</str<strong>on</strong>g> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> three uncomm<strong>on</strong> freshwater<br />

gastropods <strong>in</strong> the dra<strong>in</strong>age ditches <str<strong>on</strong>g>of</str<strong>on</strong>g> British graz<strong>in</strong>g marshes. Biological<br />

C<strong>on</strong>servati<strong>on</strong>, 118, 455-466.<br />

Wats<strong>on</strong>, A.M. & Ormerod, S.J. (2005) <str<strong>on</strong>g>The</str<strong>on</strong>g> distributi<strong>on</strong> and c<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> threatened<br />

Sphaeriidae <strong>on</strong> British graz<strong>in</strong>g marshland. Biodiversity and C<strong>on</strong>servati<strong>on</strong>, 14,<br />

2207-2220.<br />

Weibull, A.C. & Ostman, O. (2003) Species compositi<strong>on</strong> <strong>in</strong> agroecosystems: the effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

landscape, habitat, and farm management. Basic and Applied Ecology, 4, 349-<br />

361.<br />

Welch, D. (1984) Studies <strong>in</strong> the graz<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> heather moorland <strong>in</strong> north-east Scotland.<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology, 21, 197-207.<br />

Werkman, B.R. & Callaghan, T.V. (1996). Resp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g> bracken and heather to<br />

enhanced nitrogen availability; implicati<strong>on</strong>s for the critical loads approach. In<br />

Nitrogen depositi<strong>on</strong> and acidificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> natural and semi-natural ecosystems<br />

(<str<strong>on</strong>g>The</str<strong>on</strong>g> MacAulay Land Use Research Institute).<br />

Werner, S., Mortl, M., Bauer, H.G., & Rothhaupt, K.O. (2005) Str<strong>on</strong>g impact <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

w<strong>in</strong>ter<strong>in</strong>g water<strong>birds</strong> <strong>on</strong> zebra mussel (Dreissena polymorpha) populati<strong>on</strong>s at<br />

Lake C<strong>on</strong>stance, Germany. Freshwater Biology, 50, 1412-1426.<br />

Whitehead, S.C. (1994) Forag<strong>in</strong>g behaviour and habitat use <strong>in</strong> the European starl<strong>in</strong>g<br />

Sturnus vulgaris <strong>in</strong> an agricultural envir<strong>on</strong>ment. PhD, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxford.<br />

Whitehead, S.C., Wright, J., & Cott<strong>on</strong>, P.A. (1995) W<strong>in</strong>ter field use by the European<br />

starl<strong>in</strong>g Sturnus vulgaris: habitat preferences and the availability <str<strong>on</strong>g>of</str<strong>on</strong>g> prey. Journal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Avian Biology, 26, 193-202.<br />

Whitt<strong>in</strong>gham, M. (1996) <str<strong>on</strong>g>The</str<strong>on</strong>g> habitat requirements <str<strong>on</strong>g>of</str<strong>on</strong>g> breed<strong>in</strong>g golden plover. PhD,<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Sunderland.<br />

Whitt<strong>in</strong>gham, M.J. & Evans, K.L. (2004) A review <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat structure <strong>on</strong><br />

predati<strong>on</strong> risk <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>birds</strong> <strong>in</strong> agricultural landscapes. Ibis, 146 (Suppl. 2), 210-220.<br />

Wickramas<strong>in</strong>ghe, L.P., Harris, S., J<strong>on</strong>es, G., & Vaughan Jenn<strong>in</strong>gs, N. (2004) Abundance<br />

and species richness <str<strong>on</strong>g>of</str<strong>on</strong>g> nocturnal <strong>in</strong>sects <strong>on</strong> organic and c<strong>on</strong>venti<strong>on</strong>al farms:<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> agricultural <strong>in</strong>tensificati<strong>on</strong> <strong>on</strong> bat forag<strong>in</strong>g. C<strong>on</strong>servati<strong>on</strong> Biology, 18,<br />

1283-1292.<br />

197


Willett, V.B., Reynolds, B.A., Stevens, P.A., Ormerod, S.J., & J<strong>on</strong>es, D.L. (2004)<br />

Dissolved organic nitrogen regulati<strong>on</strong> <strong>in</strong> freshwaters. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental<br />

Quality, 33, 201-209.<br />

Williams, A.E., Moss, B., & Eat<strong>on</strong>, J. (2002) Fish <strong>in</strong>duced macrophyte loss <strong>in</strong> shallow<br />

lakes: top-down and bottom-up processes <strong>in</strong> mesocosm experiments. Freshwater<br />

Biology, 47, 2216-2232.<br />

Wilman, D. (2002) <str<strong>on</strong>g>The</str<strong>on</strong>g> history <str<strong>on</strong>g>of</str<strong>on</strong>g> silage mak<strong>in</strong>g <strong>in</strong> the UK. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> the Royal<br />

Agricultural Society <str<strong>on</strong>g>of</str<strong>on</strong>g> England, 163, 62-71.<br />

Wils<strong>on</strong>, A.M., Ausden, M., & Milsom, T.P. (2004) Changes <strong>in</strong> breed<strong>in</strong>g wader<br />

populati<strong>on</strong>s <strong>on</strong> lowland wet grasslands <strong>in</strong> England and Wales: causes and<br />

potential soluti<strong>on</strong>s. Ibis, 146 (Suppl. 2), 32-40.<br />

Wils<strong>on</strong>, A.M., Vickery, J.A., Brown, A., Langst<strong>on</strong>, R.H.W., Smallshire, D., Wott<strong>on</strong>, S.,<br />

& Vanh<strong>in</strong>sbergh, D. (2005) Changes <strong>in</strong> the numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> breed<strong>in</strong>g waders <strong>on</strong><br />

lowland wet grasslands <strong>in</strong> England and Wales between 1982 and 2002. Bird<br />

Study, 52, 55-69.<br />

Wils<strong>on</strong>, J.D., Evans, J., Browne, S.J., & K<strong>in</strong>g, J.R. (1997) Territory distributi<strong>on</strong> and<br />

breed<strong>in</strong>g success <str<strong>on</strong>g>of</str<strong>on</strong>g> skylarks Alauda arvensis <strong>on</strong> organic and <strong>in</strong>tensive farmland<br />

<strong>in</strong> southern England. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology, 34, 1462-1478.<br />

Wils<strong>on</strong>, J.D., Morris, A.J., Arroyo, B.E., Clark, S.C., & Bradbury, R.B. (1999) A review<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the abundance and diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>vertebrate and plant foods <str<strong>on</strong>g>of</str<strong>on</strong>g> granivorous<br />

<strong>birds</strong> <strong>in</strong> northern Europe <strong>in</strong> relati<strong>on</strong> to agricultural change. Agriculture,<br />

Ecosystems and Envir<strong>on</strong>ment, 75, 13-30.<br />

Wils<strong>on</strong>, J.D. (2001). Forag<strong>in</strong>g habitat selecti<strong>on</strong> by skylarks Alauda arvensis <strong>on</strong> lowland<br />

farmland dur<strong>in</strong>g the nestl<strong>in</strong>g period. In <str<strong>on</strong>g>The</str<strong>on</strong>g> ecology and c<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> skylarks<br />

Alauda arvensis (eds P.F. D<strong>on</strong>ald & J.A. Vickery), pp. 91-101. <strong>RSPB</strong>, Sandy.<br />

Wils<strong>on</strong>, P.J. (1992) Brita<strong>in</strong>'s arable weeds. British Wildlife, 3, 149-161.<br />

Wils<strong>on</strong>, P.J. (1999) <str<strong>on</strong>g>The</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen <strong>on</strong> populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> rare arable plants <strong>in</strong> Brita<strong>in</strong>.<br />

Aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Biology, 54, 93-100.<br />

W<strong>in</strong>field, I.J., W<strong>in</strong>field, J.K., & Tob<strong>in</strong>, C.M. (1992) Interacti<strong>on</strong>s between the roach<br />

Rutilus rutilus and waterfowl populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Lough Neagh, Northern Ireland.<br />

Envir<strong>on</strong>mental Biology <str<strong>on</strong>g>of</str<strong>on</strong>g> Fishes, 33, 207-214.<br />

198


W<strong>in</strong>field, D.K. & W<strong>in</strong>field, I.J. (1994) Possible competitive <strong>in</strong>teracti<strong>on</strong>s between<br />

overw<strong>in</strong>ter<strong>in</strong>g tufted duck (Aythya fuligula (L.)) and fish populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Lough<br />

Neagh, Northern Ireland: evidence from diet studies. Hydrobiologia, 279/280,<br />

377-386.<br />

Woiwod, I.P. & Thomas, J.A. (1993). <str<strong>on</strong>g>The</str<strong>on</strong>g> ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> butterflies and moths at the<br />

landscape scale. In Landscape ecology <strong>in</strong> Brita<strong>in</strong> (ed R. Ha<strong>in</strong>es-Young), pp. 76-<br />

92. IALE (UK)/University <str<strong>on</strong>g>of</str<strong>on</strong>g> Nott<strong>in</strong>gham.<br />

Wolff, W.J. (2000) Causes <str<strong>on</strong>g>of</str<strong>on</strong>g> extirpati<strong>on</strong>s <strong>in</strong> the Wadden Sea, an estuar<strong>in</strong>e area <strong>in</strong> the<br />

Netherlands. C<strong>on</strong>servati<strong>on</strong> Biology, 14, 876-885.<br />

Woollhead, J. (1986). Ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> bird communities <strong>in</strong> eutrophicated lakes <strong>in</strong> northern<br />

Zealand, Denmark, with special emphasis <strong>on</strong> fish-eat<strong>in</strong>g <strong>birds</strong>. University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Copenhagen.<br />

Wott<strong>on</strong>, S.R. & Gill<strong>in</strong>gs, S. (2000) <str<strong>on</strong>g>The</str<strong>on</strong>g> status <str<strong>on</strong>g>of</str<strong>on</strong>g> breed<strong>in</strong>g woodlarks Lullula arborea <strong>in</strong><br />

Brita<strong>in</strong> <strong>in</strong> 1997. Bird Study, 47, 212-224.<br />

Yates, F. & Boyd, D.A. (1965) Two decades <str<strong>on</strong>g>of</str<strong>on</strong>g> surveys <str<strong>on</strong>g>of</str<strong>on</strong>g> fertilizer practice. Outlook <strong>on</strong><br />

Agriculture, 5, 203-210.<br />

Zhou, Q., Gibs<strong>on</strong>, C.E., & Foy, R.H. (2000) L<strong>on</strong>g-term changes <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen and<br />

phosphorus load<strong>in</strong>gs to a large lake <strong>in</strong> north-west Ireland. Water Research, 34,<br />

922-926.<br />

Zyromska-Rudzka, H. (1976) <str<strong>on</strong>g>The</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>in</strong>eral fertilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a meadow <strong>on</strong> the<br />

oribatid mites and other soil mes<str<strong>on</strong>g>of</str<strong>on</strong>g>auna. Polish Ecological Studies, 2, 157-182.<br />

199


Appendix 1. Scientific names <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>birds</strong> named <strong>in</strong> the text.<br />

Anatidae Cygnus olor mute swan<br />

Cygnus cygnus whooper swan<br />

Cygnus columbianus Bewick’s swan<br />

Anser brachyrhynchus bean goose<br />

Anser albifr<strong>on</strong>s white-fr<strong>on</strong>ted goose<br />

Anser anser greylag goose<br />

Branta bernicla brent goose<br />

Tadorna tadorna shelduck<br />

Anas penelope wige<strong>on</strong><br />

Anas strepera gadwall<br />

Anas crecca teal<br />

Anas platyrhynchos mallard<br />

Anas acuta p<strong>in</strong>tail<br />

Anas querquedula garganey<br />

Anas clypeata shoveler<br />

Netta ruf<strong>in</strong>a red-crested pochard<br />

Aythya fer<strong>in</strong>a pochard<br />

Aythya fuligula tufted duck<br />

Aythya marila scaup<br />

Aythya aff<strong>in</strong>is lesser scaup<br />

Somateria mollissima eider<br />

Clangula hyemalis l<strong>on</strong>g-tailed duck<br />

Melanitta nigra comm<strong>on</strong> scoter<br />

Melanitta fusca velvet scoter<br />

Bucephala clangula goldeneye<br />

Mergus serrator red-breasted merganser<br />

Mergus merganser goosander<br />

Tetra<strong>on</strong>idae Lagopus lagopus red grouse<br />

Tetrao tetrix black grouse<br />

200


Phasianidae Perdix perdix grey partridge<br />

Coturnix coturnix quail<br />

Gaviidae Gavia stellata red-throated diver<br />

Gavia arctica black-throated diver<br />

Gavia immer great northern diver<br />

Podicipedidae Podilymbus podiceps pied-billed grebe<br />

Tachybaptus ruficollis little grebe<br />

Podiceps cristatus great-crested grebe<br />

Podiceps auritus Slav<strong>on</strong>ian grebe<br />

Podiceps nigricollis black-necked grebe<br />

Phalacrocoracidae Phalacrocorax carbo cormorant<br />

Ardeidae Botauris stellaris bittern<br />

Ardea alba great egret<br />

Ardea c<strong>in</strong>erea grey her<strong>on</strong><br />

Ardea herodias great blue her<strong>on</strong><br />

Cic<strong>on</strong>idae Mycteria americana wood stork<br />

Acciptridae Milvus milvus red kite<br />

Circus aerug<strong>in</strong>osus marsh harrier<br />

Circus cyaneus hen harrier<br />

Accipiter gentilis goshawk<br />

Buteo buteo buzzard<br />

Aquila chrysaetos golden eagle<br />

Falc<strong>on</strong>idae Falco t<strong>in</strong>n<strong>in</strong>culus kestrel<br />

Falco columbiarus merl<strong>in</strong><br />

Falco peregr<strong>in</strong>us peregr<strong>in</strong>e falc<strong>on</strong><br />

Rallidae Rallus aquaticus water rail<br />

Porzana porzana spotted crake<br />

Gall<strong>in</strong>ula chloropus moorhen<br />

Crex crex corncrake<br />

Fulica atra coot<br />

Haemotopodidae Haemotopus ostralegus oystercatcher<br />

201


Recurvirostridae Himantopus mexicanus black-necked stilt<br />

Recurvirostra avosetta avocet<br />

Burh<strong>in</strong>idae Burh<strong>in</strong>us oedicnemus st<strong>on</strong>e curlew<br />

Charadriidae Charadrius hiaticula r<strong>in</strong>ged plover<br />

Charadrius ociferous killdeer<br />

Charadrius alexandr<strong>in</strong>us Kentish plover<br />

Pluvialis apricaria golden plover<br />

Pluvialis squatarola grey plover<br />

Vanellus vanellus lapw<strong>in</strong>g<br />

Scolopacidae Calidris canutus knot<br />

Calidris alba sanderl<strong>in</strong>g<br />

Calidris maritima purple sandpiper<br />

Calidris alp<strong>in</strong>a dunl<strong>in</strong><br />

Gall<strong>in</strong>ago gall<strong>in</strong>ago snipe<br />

Limosa limosa black-tailed godwit<br />

Limosa lapp<strong>on</strong>ica bar-tailed godwit<br />

Numenius phaeopus whimbrel<br />

Numenius arquata curlew<br />

Tr<strong>in</strong>ga erythropus spotted redshank<br />

Tr<strong>in</strong>ga totanus redshank<br />

Tr<strong>in</strong>ga nebularia greenshank<br />

Tr<strong>in</strong>ga ochropus green sandpiper<br />

Actitis hypoleucos comm<strong>on</strong> sandpiper<br />

Arenaria <strong>in</strong>terpres turnst<strong>on</strong>e<br />

Stercorariidae Stercorarius parasiticus Arctic skua<br />

Stercorarius skua great skua<br />

Laridae Larus melanocephalus Mediterranean gull<br />

Larus ridibundus black-headed gull<br />

Larus canus comm<strong>on</strong> gull<br />

Larus fuscus lesser black-backed gull<br />

Larus argentatus herr<strong>in</strong>g gull<br />

202


Larus mar<strong>in</strong>us great black-backed gull<br />

Rissa tridactyla kittiwake<br />

Sternidae Sternula albifr<strong>on</strong>s little tern<br />

Chlid<strong>on</strong>ias niger black tern<br />

Sterna sandvicencis sandwich tern<br />

Sterna hirundo comm<strong>on</strong> tern<br />

Columbidae Columba palumbus woodpige<strong>on</strong><br />

Streptotelia decaocto collared dove<br />

Streptotelia turtur turtle dove<br />

Cuculidae Cuculus canorus cuckoo<br />

Tyt<strong>on</strong>idae Asio flammeus short-eared owl<br />

Caprimulgidae Caprimulgus europaeus nightjar<br />

Alced<strong>in</strong>idae Alcedo atthis k<strong>in</strong>gfisher<br />

Picidae Picus viridus green woodpecker<br />

Alaudidae Lullula arborea woodlark<br />

Alauda arvensis skylark<br />

Hirund<strong>in</strong>idae Tachic<strong>in</strong>eta bicolor tree swallow<br />

Hirundo rustica barn swallow<br />

Motacillidae Anthus trivialis tree pipit<br />

Anthus pratensis meadow pipit<br />

Motacilla flava yellow wagtail<br />

Motacilla alba pied wagtail<br />

C<strong>in</strong>clidae C<strong>in</strong>clus c<strong>in</strong>clus dipper<br />

Troglodytidae Troglodytes troglodytes wren<br />

Turdidae Saxicola rubetra wh<strong>in</strong>chat<br />

Saxicola torquatus st<strong>on</strong>echat<br />

Oenanthe oenanthe wheatear<br />

Turdus torquatus r<strong>in</strong>g ouzel<br />

Turdus merula blackbird<br />

Turdus pilaris fieldfare<br />

Turdus philomelos s<strong>on</strong>g thrush<br />

203


Turdus iliacus redw<strong>in</strong>g<br />

Turdus viscivorus mistle thrush<br />

Sylviidae Cettia cetti Cetti’s warbler<br />

Locustella naevia grasshopper warbler<br />

Acrocephalus paludicola aquatic warbler<br />

Acrocephalus schoenobaenus sedge warbler<br />

Acrocephalus scirpaceus reed warbler<br />

Sylvia communis whitethroat<br />

Sylvia undata Dartford warbler<br />

Phylloscopus trochilus willow warbler<br />

Timaliidae Panurus biarmicus bearded tit<br />

Laniidae Lanius collurio red-backed shrike<br />

Corvidae Pica pica magpie<br />

Pyrrhocorax pyrrhocorax chough<br />

Corvus m<strong>on</strong>edula jackdaw<br />

Corvus frugilegus rook<br />

Corvus cor<strong>on</strong>e carri<strong>on</strong> crow<br />

Corvus corax raven<br />

Sturnidae Sturnus vulgaris starl<strong>in</strong>g<br />

Passeridae Passer domesticus house sparrow<br />

Passer m<strong>on</strong>tanus tree sparrow<br />

Fr<strong>in</strong>gillidae Fr<strong>in</strong>gilla coelebs chaff<strong>in</strong>ch<br />

Fr<strong>in</strong>gilla m<strong>on</strong>tifr<strong>in</strong>gilla brambl<strong>in</strong>g<br />

Carduelis chloris greenf<strong>in</strong>ch<br />

Carduelis carduelis goldf<strong>in</strong>ch<br />

Carduelis cannab<strong>in</strong>a l<strong>in</strong>net<br />

Carduelis flavirostris twite<br />

Emberizidae Emberiza citr<strong>in</strong>ella yellowhammer<br />

Emberiza cirlus cirl bunt<strong>in</strong>g<br />

Emberiza schoeniclus reed bunt<strong>in</strong>g<br />

Emberiza calandra corn bunt<strong>in</strong>g<br />

204

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!