13.07.2015 Views

Low Rank ADI Solution of Sylvester Equation via Exact Shifts

Low Rank ADI Solution of Sylvester Equation via Exact Shifts

Low Rank ADI Solution of Sylvester Equation via Exact Shifts

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Neglecting the second order terms and subtracting the unperturbed <strong>Sylvester</strong>equation from the perturbed one yieldA δX − δX B ≈ G δF ∗ + δG F ∗ − δA X + X δB. (3.13)Note that we can approximate the solution δX <strong>of</strong> (3.13) by δX ≈ δX 1 +δX 2 +δX 3 , whereA δX 1 − δX 1 B = −δA X, (3.14)A δX 2 − δX 2 B = −Xδ B, (3.15)A δX 3 − δX 3 B = (G δF ∗ + δG F ∗ ). (3.16)For (3.14), we again choose parameterseither α i = λ i for i = 1, . . . , m, or β j = µ j for j = 1, . . . , n,to get⎛∑n 0δX 1 = S ⎝ (µ j − λ j )ˆΦj=1(j) ˆΨ(j)⎞⎠ T −1 , n 0 = min{m, n}, (3.17)whereˆΦ (j) = diagandˆΨ (j) = XT diagDefineand( )σ(1, j − 1)j−1σ(m, j − 1), . . . , S −1 ∏ λ i − λ sδA, σ(i, j − 1) =λ 1 − µ j λ m − µ j s=1λ i − µ s( )τ(1, j − 1)j−1τ(n, j − 1)∏ µ i − µ s, . . . , , τ(i, j − 1) = .µ 1 − λ j µ n − λ j s=1µ i − λ s( )σ(1, j − 1) σ(m, j − 1)∆ Φ (j) = diag, . . . , , (3.18)λ 1 − µ j λ m − µ j( )τ(1, j − 1) τ(n, j − 1)∆ Ψ (j) = diag, . . . , , (3.19)µ 1 − λ j µ n − λ jσ (j)max = ‖∆ Φ (j)‖ = max|σ(i, j − 1)|i |λ i − µ j |, τ (j)max = ‖∆ Ψ (j)‖ = max|τ(i, j − 1)|.i |µ i − λ j |(3.20)11

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!