13.07.2015 Views

Low Rank ADI Solution of Sylvester Equation via Exact Shifts

Low Rank ADI Solution of Sylvester Equation via Exact Shifts

Low Rank ADI Solution of Sylvester Equation via Exact Shifts

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Similarly from (4.19), (4.20), (4.8) and (4.9) we haveϑ (j)max =( ϑ(1, j − 1)∥ diag ,µ 1 − λ pj= maxkϑ(2, j − 1), . . . , ϑ(k )∥B, j − 1) ∥∥∥∥µ 2 − λ pj µ kB − λ pj‖ϑ(k, j − 1)‖. (4.24)|µ k − λ pj |For the solutions <strong>of</strong> the <strong>Sylvester</strong> equations (3.15) and (3.16), one can obtainthe following bounds⎛‖δX 2 ‖ ≤ κ(S)‖T −1 ∑n 0‖‖δBT ‖‖X‖ ⎝j=1⎛‖δX 3 ‖ ≤ ‖S‖‖T −1 ‖‖S −1 (GδF ∗ + δGF ∗ ∑n 0)T ‖ ⎝|µ qj − λ pj | η (j)max ϑ (j)j=1max⎞⎠ , (4.25)|µ qj − λ pj | η (j)max ϑ (j)⎞⎠max .(4.26)Theorem 4.3 Assume A and B having Jordan canonical decompositions (4.1)and (4.2). Let X be the solution <strong>of</strong> the <strong>Sylvester</strong> equation (2.1) and let X +δXbe the solution <strong>of</strong> the perturbed <strong>Sylvester</strong> equation (3.12). Ifis sufficiently small, thenɛ = max{‖δA‖, ‖δB‖, ‖δG‖, ‖δF ‖}‖δX‖‖X‖ ≤ ( κ(T )‖S‖‖S −1 δA‖ + κ(S)‖T −1 ‖‖δBT ‖+‖S‖‖T −1 ‖ ‖S−1 (GδF ∗ + δGF ∗ ))T ‖γ + O(ɛ 2 ), (4.27)‖X‖where γ = ∑ n 0j=1 |µ qj −λ pj |ϑ (j)max η max, (j) and η max (j) and ϑ (j)max are defined as in (4.23)and (4.24).Pro<strong>of</strong>. From ‖δX‖ ≤ ‖δX 1 ‖ + ‖δX 2 ‖ + ‖δX 3 ‖ + O(ɛ 2 ) using previous bounds(4.22), (4.25) and (4.26) for ‖δX 1 ‖, ‖δX 2 ‖ and ‖δX 3 ‖, respectively we obtainassertion <strong>of</strong> the theorem. ✷Remark 4.1 Again, using ‖AB‖ F ≤ ‖A‖‖B‖ F and ‖AB‖ F ≤ ‖A‖ F ‖B‖ ([45,Theorem II. 3.9.], similarly like in the previous calculations, one can obtainfollowing bound for Frobenius norm23

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!