13.07.2015 Views

EU-SICHERHEITSDATENBLATT Wachsdestillat (VGO) ABSCHNITT ...

EU-SICHERHEITSDATENBLATT Wachsdestillat (VGO) ABSCHNITT ...

EU-SICHERHEITSDATENBLATT Wachsdestillat (VGO) ABSCHNITT ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>EU</strong>-<strong>SICHERHEITSDATENBLATT</strong>gemäß Verordnung (EG) Nr. 1907/2006 und Verordnung (<strong>EU</strong>) Nr. 453/2010 (REACH)<strong>Wachsdestillat</strong> (<strong>VGO</strong>)Materialnummer W055Bearbeitet: 08.06.2012Version: 4Sprache: de-DEGedruckt: 14.06.2012Seite: 2 von 12Einstufung gemäß Richtlinie 67/548/EWG:Carc. Cat. 2; R45 Kann Krebs erzeugen.Repr. Cat. 3; R63 Kann das Kind im Mutterleib möglicherweise schädigen.Xn; R20 Gesundheitsschädlich beim Einatmen.Xn; R48/21 Gesundheitsschädlich: Gefahr ernster Gesundheitsschäden bei längerer Exposition durchBerührung mit der Haut.R66Wiederholter Kontakt kann zu spröder oder rissiger Haut führen.N; R50-53 Sehr giftig für Wasserorganismen, kann in Gewässern längerfristig schädliche Wirkungen haben.2.2 KennzeichnungselementeKennzeichnung (CLP)SignalwortGefahrGefahrenhinweise H332 Gesundheitsschädlich bei Einatmen.H350 Kann Krebs erzeugen.H361 Kann vermutlich die Fruchtbarkeit beeinträchtigen oder das Kind im Mutterleibschädigen.H373 Kann die Organe schädigen bei längerer oder wiederholter Exposition.H410 Sehr giftig für Wasserorganismen mit langfristiger Wirkung.<strong>EU</strong>H066 Wiederholter Kontakt kann zu spröder oder rissiger Haut führen.Sicherheitshinweise P201 Vor Gebrauch besondere Anweisungen einholen.P260 Dampf nicht einatmen.P273 Freisetzung in die Umwelt vermeiden.P281 Vorgeschriebene persönliche Schutzausrüstung verwenden.P308+P313P501Kennzeichnung (67/548/EWG oder 1999/45/EG)T NBEI Exposition oder falls betroffen: Ärztlichen Rat einholen/ärztliche Hilfehinzuziehen.Inhalt/Behälter der nationalen/lokalen Problemabfallentsorgung zuführen.umweltgefährlichentfälltR-Sätze: R 45 Kann Krebs erzeugen.R 20 Gesundheitsschädlich beim Einatmen.R 48/21 Gesundheitsschädlich: Gefahr ernster Gesundheitsschäden bei längererExposition durch Berührung mit der Haut.R 50/53 Sehr giftig für Wasserorganismen, kann in Gewässern längerfristig schädlicheWirkungen haben.R 63 Kann das Kind im Mutterleib möglicherweise schädigen.R 66 Wiederholter Kontakt kann zu spröder oder rissiger Haut führen.gedruckt von Eni Deutschland... mit Qualisys SUMDAT


<strong>EU</strong>-<strong>SICHERHEITSDATENBLATT</strong>gemäß Verordnung (EG) Nr. 1907/2006 und Verordnung (<strong>EU</strong>) Nr. 453/2010 (REACH)<strong>Wachsdestillat</strong> (<strong>VGO</strong>)Materialnummer W055Bearbeitet: 08.06.2012Version: 4Sprache: de-DEGedruckt: 14.06.2012Seite: 3 von 12S-Sätze: S 53 Exposition vermeiden - vor Gebrauch besondere Anweisungen einholen.S 23 Gas/Rauch/Dampf/Aerosol nicht einatmen.S 24 Berührung mit der Haut vermeiden.S 36/37 Bei der Arbeit geeignete Schutzhandschuhe und Schutzkleidung tragen.S 45 Bei Unfall oder Unwohlsein sofort Arzt hinzuziehen (wenn möglich, dieses Etikettvorzeigen).S 51 Nur in gut gelüfteten Bereichen verwenden.S 61 Freisetzung in die Umwelt vermeiden. Besondere Anweisungeneinholen/Sicherheitsdatenblatt zu Rate ziehen.Besondere KennzeichnungHinweistext für Etiketten Nur für industrielle und gewerbliche Verwendung.2.3 Sonstige GefahrenProdukt kann Schwefelwasserstoff freisetzen.3.1 Stoffe<strong>ABSCHNITT</strong> 3: Zusammensetzung / Angaben zu BestandteilenChemische Charakterisierung (Stoff):Destillate (Erdöl), Erdölrückstände Vakuum; Heizöl schwerCAS-Nummer: 68955-27-1EINECS-Nummer: 273-263-4<strong>EU</strong>-Identifikationsnummer: 649-034-00-3Zusätzliche Hinweise: Enthält Benzo[a]pyren und Schwefelwasserstoff jeweils < 0,1%.4.1 Beschreibung der Erste-Hilfe-MaßnahmenAllgemeine Hinweise:Nach Einatmen:Nach Hautkontakt:Nach Augenkontakt:Nach Verschlucken:<strong>ABSCHNITT</strong> 4: Erste-Hilfe-MaßnahmenErsthelfer: Auf Selbstschutz achten!Betroffenen an die frische Luft bringen, beengende Kleidung lockern und ruhig lagern. BeiGefahr von Bewusstlosigkeit Lagerung und Transport in stabiler Seitenlage. Sofort Arzthinzuziehen.Beschmutzte, getränkte Kleidung sofort ausziehen.Bei Berührung mit der Haut sofort mit viel Wasser abspülen.Bei Hautreaktionen Arzt aufsuchen.Sofort bei geöffnetem Lidspalt 10 bis 15 Minuten mit fließendem Wasser spülen. AnschließendAugenarzt konsultieren.Kein Erbrechen herbeiführen. Aspirationsgefahr! Sofort Arzt hinzuziehen.Bei Erbrechen zumindest Kopf in Seitenlage bringen. Atemwege freihalten.4.2 Wichtigste akute oder verzögert auftretende Symptome und WirkungenNach Einatmen:Inhalation grösserer Mengen verursacht: Koordinationsstörungen, Rausch, Kopfschmerzen,Brechreiz.Bei längerer Exposition: Schwindel, Bewusstlosigkeit und Atemstillstand möglich.Nach Hautkontakt: Wiederholter Kontakt kann zu spröder oder rissiger Haut führen.4.3 Hinweise auf ärztliche Soforthilfe oder SpezialbehandlungBei Verschlucken bzw. Erbrechen Gefahr des Eindringens in die Lunge.Symptomatische Behandlung.gedruckt von Eni Deutschland... mit Qualisys SUMDAT


<strong>EU</strong>-<strong>SICHERHEITSDATENBLATT</strong>gemäß Verordnung (EG) Nr. 1907/2006 und Verordnung (<strong>EU</strong>) Nr. 453/2010 (REACH)<strong>Wachsdestillat</strong> (<strong>VGO</strong>)Materialnummer W055Bearbeitet: 08.06.2012Version: 4Sprache: de-DEGedruckt: 14.06.2012Seite: 4 von 125.1 LöschmittelGeeignete Löschmittel:<strong>ABSCHNITT</strong> 5: Maßnahmen zur BrandbekämpfungSchaum, Trockenlöschmittel, ABC-Pulver, Wassersprühstrahl, Kohlendioxid.Aus Sicherheitsgründen ungeeignete Löschmittel:scharfer Wasserstrahl5.2 Besondere vom Stoff oder Gemisch ausgehende GefahrenBrennbar. Produkt kann Schwefelwasserstoff freisetzen.Im Brandfall können entstehen: Stickoxide (NOx), Schwefeloxide, Kohlenmonoxid undKohlendioxid.5.3 Hinweise für die BrandbekämpfungBesondere Schutzausrüstung bei der Brandbekämpfung:Umgebungsluftunabhängiges Atemschutzgerät tragen.Zusätzliche Hinweise:Gefährdete Behälter mit Sprühwasser kühlen. Explosions- und Brandgase nicht einatmen.Kontaminiertes Löschwasser getrennt sammeln. Löschwasser nicht in Kanalisation, Erdreichoder Gewässer gelangen lassen.<strong>ABSCHNITT</strong> 6: Maßnahmen bei unbeabsichtigter Freisetzung6.1 Personenbezogene Vorsichtsmaßnahmen, Schutzausrüstungen und in Notfällenanzuwendende Verfahren6.2 UmweltschutzmaßnahmenPersonen in Sicherheit bringen. Ungeschützte Personen fernhalten.Berührung mit der Haut vermeiden. Geeignete Schutzkleidung tragen.Für ausreichende Lüftung sorgen.Nicht in das Grundwasser, in Gewässer oder in die Kanalisation gelangen lassen. BeiFreisetzung zuständige Behörden benachrichtigen.6.3 Methoden und Material für Rückhaltung und ReinigungZusätzliche Hinweise:Flächenmäßige Ausdehnung verhindern (z.B. durch Eindämmen oder Ölsperren).Mit unbrennbarem, flüssigkeitsbindendem Material (z.B. Sand/Erde/Kieselgur/Vermiculit)aufnehmen und vorschriftsmäßig entsorgen. Nachreinigen. Nicht mit Wasser oder wäßrigenReinigungsmitteln wegspülen.6.4 Verweis auf andere AbschnitteBesondere Rutschgefahr durch auslaufendes/verschüttetes Produkt.Siehe ergänzend Kapitel 8 und 13.<strong>ABSCHNITT</strong> 7: Handhabung und Lagerung7.1 Schutzmaßnahmen zur sicheren HandhabungHinweise zum sicheren UmgangFür gute Be- und Entlüftung von Lager und Arbeitsplatz sorgen.Ölnebelbildung vermeiden. Dämpfe nicht einatmen. Berührung mit der Haut vermeiden.Hinweise zum Brand- und Explosionsschutz:Von Zündquellen fernhalten - Nicht rauchen.7.2 Bedingungen zur sicheren Lagerung unter Berücksichtigung von UnverträglichkeitenAnforderungen an Lagerräume und Behälter:Nur Behälter verwenden, die speziell für das Produkt zugelassen sind.Behälter dicht geschlossen an einem gut gelüfteten Ort aufbewahren.Geeignetes Material: Stahlgedruckt von Eni Deutschland... mit Qualisys SUMDAT


<strong>EU</strong>-<strong>SICHERHEITSDATENBLATT</strong>gemäß Verordnung (EG) Nr. 1907/2006 und Verordnung (<strong>EU</strong>) Nr. 453/2010 (REACH)<strong>Wachsdestillat</strong> (<strong>VGO</strong>)Materialnummer W055Bearbeitet: 08.06.2012Version: 4Sprache: de-DEGedruckt: 14.06.2012Seite: 5 von 12ZusammenlagerungshinweiseNicht zusammen mit Oxidationsmitteln lagern.Nicht mit brandfördernden und selbstentzündlichen Stoffen sowie leichtentzündlichenFeststoffen zusammen lagern. Von Nahrungsmitteln und Getränken fernhalten.Lagerklasse:7.3 Spezifische Endanwendungen6.1 C Brennbare, akut toxische Kat. 3 / giftige oder chronisch wirkende GefahrstoffeEinsatzstoff für die Mineralöl-Raffination<strong>ABSCHNITT</strong> 8: Begrenzung und Überwachung derExposition/Persönliche Schutzausrüstungen8.1 Zu überwachende ParameterCAS-Nr. Bezeichnung Art Grenzwert7783-06-4 Schwefelwasserstoff Deutschland: AGW Langzeit 7,1 mg/m³; 5 ppmDeutschland: AGW Kurzzeit14,2 mg/m³; 10 ppmDNEL/DMELPNECAngabe zu Heavy Fuel Oil Components:DNEL Kurzzeit, Arbeiter, inhalativ: 4700 mg/m³/15 minDNEL Langzeit, Arbeiter, dermal: 0,065 mg/kg/8hDNEL Langzeit, Arbeiter, inhalativ: 0,12 mg/m³/8hDNEL Langzeit, Verbraucher, oral: 0,015 mg/kg/24hAngabe zu Heavy Fuel Oil Components:PNEC Säugetiere: 66,7 mg/kg8.2 Begrenzung und Überwachung der ExpositionNur in gut gelüfteten Bereichen verwenden.Der Stoff sollte nur in geschlossenen Anlagen oder Systemen gehandhabt werden.Begrenzung und Überwachung der Exposition am ArbeitsplatzAtemschutz:Bei Überschreitung der Arbeitsplatzgrenzwerte (AGW) ist ein Atemschutzgerät zu tragen.Kombinationsfilter/Filter Typ ABEK-P gemäß EN 14387 benutzen.Umgebungsluftunabhängiges Atemschutzgerät bei unklaren Verhältnissen undSauerstoffgehalten unter 17% verwenden.Handschutz: Schutzhandschuhe gemäß EN 374.Handschuhmaterial: Nitrilkautschuk.Durchbruchzeit (maximale Tragedauer): > 480 min.Die Angaben des Herstellers der Schutzhandschuhe zu Durchlässigkeiten undDurchbruchzeiten sind zu beachten.Augenschutz: Dicht schließende Schutzbrille gemäß EN 166.Bei erhöhter Gefährdung zusätzlich GesichtsschutzschildKörperschutz:Bei der Arbeit geeignete Schutzkleidung und Sicherheitsschuhe tragen.Schutz- und Hygienemaßnahmen:Bei der Arbeit nicht essen, trinken oder rauchen.Beschmutzte, getränkte Kleidung sofort ausziehen.Vor den Pausen und bei Arbeitsende Hände waschen.Nach der Arbeit gründliche Hautreinigung und Hautpflege.gedruckt von Eni Deutschland... mit Qualisys SUMDAT


<strong>EU</strong>-<strong>SICHERHEITSDATENBLATT</strong>gemäß Verordnung (EG) Nr. 1907/2006 und Verordnung (<strong>EU</strong>) Nr. 453/2010 (REACH)<strong>Wachsdestillat</strong> (<strong>VGO</strong>)Materialnummer W055Bearbeitet: 08.06.2012Version: 4Sprache: de-DEGedruckt: 14.06.2012Seite: 6 von 12<strong>ABSCHNITT</strong> 9: Physikalische und chemische Eigenschaften9.1 Angaben zu den grundlegenden physikalischen und chemischen EigenschaftenForm:FarbeGeruch:flüssig, viskosdunkelrot bis braunmineralölartigSiedepunkt / Siedebereich > 300 °C (DIN 51751)Flammpunkt / Flammbereich: > 101 °C (DIN 51758)Zündtemperatur 220 - 300 °CExplosionsgrenzen:UEG (untere Explosionsgrenze): 0,60 Vol-%OEG (obere Explosionsgrenze): 6,50 Vol-%Dichte: bei 15 °C: 0,84-1,20 g/mL (ISO 3675)Wasserlöslichkeit:Viskosität, kinematisch:bei 20 °C: praktisch unlöslichbei 40 °C: 132,6 mm²/s9.2 Sonstige AngabenGehalt an Schwefel: ca. 2 Gew.-%10.1 Reaktivitätsiehe 10.3<strong>ABSCHNITT</strong> 10: Stabilität und Reaktivität10.2 Chemische StabilitätDas Produkt ist unter normalen Lagerbedingungen stabil.10.3 Möglichkeit gefährlicher ReaktionenBei starker Erhitzung: Mit Luft Bildung explosionsfähiger Gemische möglich.10.4 Zu vermeidende Bedingungen10.5 Unverträgliche MaterialienVor Hitze schützen. Von Zündquellen fernhalten.starke Oxidationsmittel10.6 Gefährliche ZersetzungsprodukteProdukt kann Schwefelwasserstoff freisetzen.Im Brandfall können entstehen: Stickoxide (NOx), Schwefeloxide, Kohlenmonoxid undKohlendioxid.<strong>ABSCHNITT</strong> 11: Toxikologische Angaben11.1 Angaben zu toxikologischen WirkungenAkute Toxizität:LD50 Ratte, oral (Fuel oil, residual):> 5000 mg/kg bw (<strong>EU</strong> B.1)LD50 Ratte, oral (Gas oils (petroleum)):> 5000 mg/kg bw (<strong>EU</strong> B.1)LC50 Ratte, inhalativ (Clarified oils (petroleum), catalytic cracked): 4,1-4,5 mg/L/4h (EPA OTS 798.1150)LD50 Ratte, dermal (Fuel oil, residual):> 2000 mg/kg bw (<strong>EU</strong> B.3)gedruckt von Eni Deutschland... mit Qualisys SUMDAT


<strong>EU</strong>-<strong>SICHERHEITSDATENBLATT</strong>gemäß Verordnung (EG) Nr. 1907/2006 und Verordnung (<strong>EU</strong>) Nr. 453/2010 (REACH)<strong>Wachsdestillat</strong> (<strong>VGO</strong>)Materialnummer W055Bearbeitet: 08.06.2012Version: 4Sprache: de-DEGedruckt: 14.06.2012Seite: 7 von 12Toxikologische WirkungenSonstige Angaben:SymptomeAkute Toxizität (oral): Aufgrund der verfügbaren Daten sind die Einstufungskriterien nicht erfüllt.Bei Verschlucken bzw. Erbrechen Gefahr des Eindringens in die Lunge.Akute Toxizität (dermal): Aufgrund der verfügbaren Daten sind die Einstufungskriterien nichterfüllt.Akute Toxizität (inhalativ): Acute Tox. 4; H332. Gesundheitsschädlich bei Einatmen.Ätzung/Reizung der Haut: Aufgrund der verfügbaren Daten sind die Einstufungskriterien nichterfüllt. Spezifische Symptome im Tierversuch (Kaninchen): schwach reizend (<strong>EU</strong> Method B.4 )Kann Reizungen hervorrufen.Augenschädigung/-reizung: Aufgrund der verfügbaren Daten sind die Einstufungskriterien nichterfüllt. Spezifische Symptome im Tierversuch (Kaninchen): nicht reizend (<strong>EU</strong> Method B.5 )Sensibilisierung der Atemwege: Fehlende Daten. Nicht zu erwartenSensibilisierung der Haut: Aufgrund der verfügbaren Daten sind die Einstufungskriterien nichterfüllt. Sensibilisierung: Spezifische Symptome im Tierversuch (Kaninchen): negativKeimzellmutagenität/Genotoxizität: Fehlende Daten. Keine übereinstimmenden Beweise dermutagenen Wirkung in einer Reihe von in vivo und in vitro-Tests.Karzinogenität: Carc. 1B; H350. Kann Krebs erzeugen. Hinweise auf mögliche kanzerogeneWirkung im Tierversuch vorhanden.Reproduktionstoxizität: Repr. 2; H361. Entwicklungsschädigung: Kann vermutlich dieFruchtbarkeit beeinträchtigen oder das Kind im Mutterleib schädigen.Wirkungen auf und über die Muttermilch: Fehlende Daten.Spezifische Zielorgan-Toxizität (einmalige Exposition): Fehlende Daten.Spezifische Zielorgan-Toxizität (wiederholte Exposition): STOT RE 2; H373. DermaleExposition: Kann die Organe schädigen bei längerer oder wiederholter Exposition.NOAEL Ratte, dermal 1,1 - 125 mg/kg bw/dAspirationsgefahr: Fehlende Daten.Das Produkt enthält polyzyklische aromatische Kohlenwasserstoffe, von denen sich einige imTierversuch als krebserzeugend erwiesen haben.Angabe zu Schwefelwasserstoff: Sehr giftig beim Einatmen.Geruchsschwelle: 0,01 ppm.50-100 ppm (1 h): Reizwirkung der Atemwege, Augenreizungen200-300 ppm (1 h): Starke Reizung der Atemwege.500-700 ppm (15 min.): Schwindel, Kopfschmerzen, Übelkeit. Bewusstlosigkeit undAtemstillstand nach 30-60 min.Nach Einatmen:Inhalation grösserer Mengen verursacht: Koordinationsstörungen, Rausch, Kopfschmerzen,Brechreiz.Bei längerer Exposition: Schwindel, Bewusstlosigkeit und Atemstillstand möglich.Nach Hautkontakt: Wiederholter Kontakt kann zu spröder oder rissiger Haut führen.gedruckt von Eni Deutschland... mit Qualisys SUMDAT


<strong>EU</strong>-<strong>SICHERHEITSDATENBLATT</strong>gemäß Verordnung (EG) Nr. 1907/2006 und Verordnung (<strong>EU</strong>) Nr. 453/2010 (REACH)<strong>Wachsdestillat</strong> (<strong>VGO</strong>)Materialnummer W055Bearbeitet: 08.06.2012Version: 4Sprache: de-DEGedruckt: 14.06.2012Seite: 8 von 1212.1 ToxizitätAquatische Toxizität:<strong>ABSCHNITT</strong> 12: Umweltbezogene AngabenSehr giftig für Wasserorganismen, kann in Gewässern längerfristig schädliche Wirkungen haben.Angabe zu Heavy Fuel Oil Components:Algentoxizität:Pseudokirchneriella subcapitata (Grünalge):ErL50: 1,5-22 mg/L/72h. (OEDC 201, based on: Wachstumrate)(Quelle: EMBSI 2008 k/l)EbL50: 0-1,3 mg/L/72h. (OEDC 201, based on: biomass)(Quelle: EMBSI 2008 l)NOEL: 3 mg/L/72h. (OEDC 201, based on: Wachstumrate) (Quelle: Shell 1997b)NOEL: 1 mg/L/72h. (OEDC 201, based on: biomass) (Quelle: EMBSI 2008 l)Daphnientoxizität:EL50 Daphnia magna (Großer Wasserfloh): 2-10 mg/L/48h. (OEDC 202, based on: Mobilität)(Quelle: EMBSI 2008 f/g)Fischtoxizität:NOEL Oncorhynchus mykiss (Regenbogenforelle): 0,1 mg/L/28d. (Methode: QSAR modelleddata) (Quelle: Redman et al. 2010b)Wassergefährdungsklasse: 3 = stark wassergefährdend12.2. Persistenz und AbbaubarkeitSonstige Hinweise:Das Produkt ist biologisch nicht leicht abbaubar.Angabe zu Heavy Fuel Oil Components:Verteilung in der Umwelt nach Berechnungsmodell (PETRORISK):Luft: 4,55 %Wasser: 0,01 %Boden: 67,81 %Sediment:27,63 %Sediment, suspendiert: < 0,1 %Biota: < 0,1 %Aerosol: < 0,1 %Verhalten in Kläranlagen:Angabe zu Heavy Fuel Oil Components:LL50 Bakterien Tetrahymena pyriformis: > 1000 mg/L/72 h (QSAR modelled data) (based on:Wachstumsinhibierung)NOEL Bakterien Tetrahymena pyriformis: 14,91 mg/L/72 h (QSAR modelled data) (based on:Wachstumsinhibierung)Quelle: Redman et al. 2010 b12.3 BioakkumulationspotenzialBiokonzentrationsfaktor (BCF)Keine Daten verfügbar12.4 Mobilität im BodenKeine Daten verfügbar12.5 Ergebnisse der PBT- und vPvB-BeurteilungDieser Stoff erfüllt nicht die PBT-/vPvB-Kriterien der REACH-Verordnung, Annex XIII.gedruckt von Eni Deutschland... mit Qualisys SUMDAT


<strong>EU</strong>-<strong>SICHERHEITSDATENBLATT</strong>gemäß Verordnung (EG) Nr. 1907/2006 und Verordnung (<strong>EU</strong>) Nr. 453/2010 (REACH)<strong>Wachsdestillat</strong> (<strong>VGO</strong>)Materialnummer W055Bearbeitet: 08.06.2012Version: 4Sprache: de-DEGedruckt: 14.06.2012Seite: 9 von 1212.6 Andere schädliche WirkungenAllgemeine Hinweise:Angabe zu Heavy Fuel Oil Components:Terrestrische Toxizität, akute und subchronische Vogeltoxizität:NOAEL Anas platyrhynchos: 20 g/kg/22w (OECD 206)Quelle: Stubblefield, et al., (1995)Nicht in das Grundwasser, in Gewässer oder in die Kanalisation gelangen lassen.13.1 Verfahren der AbfallbehandlungProdukt<strong>ABSCHNITT</strong> 13: Hinweise zur EntsorgungAbfallschlüsselnummer 13 08 99* = Ölabfälle a. n. g.* = Die Entsorgung ist nachweispflichtig.Empfehlung:Entsorgung gemäß Kreislaufwirtschafts- und Abfallgesetz (KrW-/AbfG)Übergabe an zugelassenes Entsorgungsunternehmen.Weitere AngabenBeförderung im Kesselwagen.Sorgfältig und möglichst vollständig entleeren. Ein Eintrag in die Umwelt ist zu vermeiden.14.1 UN-Nummer3082<strong>ABSCHNITT</strong> 14: Angaben zum Transport14.2 Ordnungsgemäße UN-VersandbezeichnungADR/RID, ADN:IMDG, IATA:14.3 TransportgefahrenklassenUN 3082, UMWELTGEFÄHRDENDER STOFF, FLÜSSIG, N.A.G. (Destillate (Erdöl),Erdölrückstände Vakuum; Heizöl schwer)UN 3082, ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. (Distillates(petroleum), petroleum residues vacuum; Heavy Fuel oil)ADR/RID, ADN: Klasse 9, Code: M6IMDG: Class 9, Code -IATA: Class 914.4 VerpackungsgruppeIII14.5 UmweltgefahrenMeeresschadstoff - IMDG:Meeresschadstoff - ADN:JaJagedruckt von Eni Deutschland... mit Qualisys SUMDAT


<strong>EU</strong>-<strong>SICHERHEITSDATENBLATT</strong>gemäß Verordnung (EG) Nr. 1907/2006 und Verordnung (<strong>EU</strong>) Nr. 453/2010 (REACH)<strong>Wachsdestillat</strong> (<strong>VGO</strong>)Materialnummer W055Bearbeitet: 08.06.2012Version: 4Sprache: de-DEGedruckt: 14.06.2012Seite: 10 von 1214.6 Besondere Vorsichtsmaßnahmen für den VerwenderLandtransport (ADR/RID)Warntafel: ADR/RID: Gefahrnummer 90, UN-Nummer 3082Gefahrzettel 9Sondervorschriften 274 335 601Begrenzte Mengen5 LEQE1Verpackung: AnweisungenP001 IBC03 LP01 R001Verpackung: Sondervorschriften PP1Sondervorschriften für die Zusammenpackung MP19Ortsbewegliche Tanks: AnweisungenOrtsbewegliche Tanks: SondervorschriftenTankcodierungTunnelbeschränkungscode:Binnenschiffstransport (ADN)Gefahrzettel 9T4TP1 TP29LGBVESondervorschriften 274 335 601Begrenzte Mengen5 LEQE1Beförderung zugelassenTAusrüstung erforderlichPPSeeschiffstransport (IMDG)EmS:F-A, S-FSondervorschriften 274, 335Begrenzte Mengen5 LEQE1Verpackung: AnweisungenP001, LP01Verpackung: VorschriftenPP1IBC: AnweisungenIBC03IBC: Vorschriften -Tankanweisungen: IMO -Tankanweisungen: UNT4Tankanweisungen VorschriftenTP2, TP29Stowage and segregation Category A.Properties and observations -Lufttransport (IATA)HazardEQPassenger Ltd.Qty.:Passenger:Cargo:Special ProvisioningERGMiscellaneousE1Pack.Instr. Y964 - Max.Qty. 30 kg GPack.Instr. 964 - Max.Qty. 450 LPack.Instr. 964 - Max.Qty. 450 LA97 A1589L14.7 Massengutbeförderung gemäß Anhang II des MARPOL-Übereinkommens 73/78 und gemäßIBC-CodeKeine Daten verfügbargedruckt von Eni Deutschland... mit Qualisys SUMDAT


<strong>EU</strong>-<strong>SICHERHEITSDATENBLATT</strong>gemäß Verordnung (EG) Nr. 1907/2006 und Verordnung (<strong>EU</strong>) Nr. 453/2010 (REACH)<strong>Wachsdestillat</strong> (<strong>VGO</strong>)Materialnummer W055Bearbeitet: 08.06.2012Version: 4Sprache: de-DEGedruckt: 14.06.2012Seite: 11 von 12<strong>ABSCHNITT</strong> 15: Rechtsvorschriften15.1 Vorschriften zu Sicherheit, Gesundheits- und Umweltschutz/spezifischeRechtsvorschriften für den Stoff oder das GemischNationale Vorschriften - DeutschlandLagerklasse:6.1 C Brennbare, akut toxische Kat. 3 / giftige oder chronisch wirkende GefahrstoffeWassergefährdungsklasse: 3 = stark wassergefährdendStörfallverordnung:Nr. 9aHinweise zur Beschäftigungsbeschränkung:Beschäftigungsbeschränkungen für Jugendliche beachten.Beschäftigungsbeschränkungen für werdende und stillende Mütter beachten.Nationale Vorschriften - GroßbritannienDG-EA-Code (Hazchem):•3ZNationale Vorschriften - USAGefahrbewertungssysteme13 0NFPA Hazard Rating:Health: 3 (Serious)Fire: 1 (Slight)Reactivity: 0 (Minimal)15.2 StoffsicherheitsbeurteilungHMIS Version III Rating:Health: 3 (Serious) - Chronic effectsFlammability: 1 (Slight)Physical Hazard: 0 (Minimal)Personal Protection: X = Consult your supervisorHEALTH * 3FLAMMABILITY 1PHYSICAL HAZARD 0Eine Stoffsicherheitsbeurteilung wurde für folgende Stoffe in diesem Gemisch durchgeführt:Heavy Fuel Oil ComponentsXWeitere Informationen<strong>ABSCHNITT</strong> 16: Sonstige AngabenWortlaut der H-Sätze unter Abschnitt 2 und 3:H332 = Gesundheitsschädlich bei Einatmen.H350 = Kann Krebs erzeugen.H361 = Kann vermutlich die Fruchtbarkeit beeinträchtigen oder das Kind im Mutterleibschädigen.H373 = Kann die Organe schädigen bei längerer oder wiederholter Exposition.H410 = Sehr giftig für Wasserorganismen mit langfristiger Wirkung.<strong>EU</strong>H066 = Wiederholter Kontakt kann zu spröder oder rissiger Haut führen.Wortlaut der R-Sätze unter Abschnitt 2 und 3:R 45 = Kann Krebs erzeugen.R 20 = Gesundheitsschädlich beim Einatmen.R 48/21 = Gesundheitsschädlich: Gefahr ernster Gesundheitsschäden bei längerer Expositiondurch Berührung mit der Haut.R 50/53 = Sehr giftig für Wasserorganismen, kann in Gewässern längerfristig schädlicheWirkungen haben.R 63 = Kann das Kind im Mutterleib möglicherweise schädigen.R 66 = Wiederholter Kontakt kann zu spröder oder rissiger Haut führen.gedruckt von Eni Deutschland... mit Qualisys SUMDAT


<strong>EU</strong>-<strong>SICHERHEITSDATENBLATT</strong>gemäß Verordnung (EG) Nr. 1907/2006 und Verordnung (<strong>EU</strong>) Nr. 453/2010 (REACH)<strong>Wachsdestillat</strong> (<strong>VGO</strong>)Materialnummer W055Bearbeitet: 08.06.2012Version: 4Sprache: de-DEGedruckt: 14.06.2012Seite: 12 von 12Literatur:CONCAWE (Madouplein 1, B-1030 Brussels, Belgium):- Heavy fuel oils, Chemical Safety Report Part B, 08/2010- Heavy fuel oils, Dossier No. 98/109DGMK:- Bericht 400-1: Mineralölprodukte. Erste-Hilfe-Maßnahmen, medizinisch-toxikologische Datenund Fachinformationen für Ärzte- Bericht 538: MineralölprodukteHommel: Merkblatt 120Mineralölwirtschaftsverband (MWV):- Merkblatt über Vorsichtsmaßnahmen beim Umgang mit flüssigen Mineralölen undSchmierfettenGrund der letzten Änderungen:Änderung in Abschnitt 7: LagerklasseAllgemeine Überarbeitung nach StoffsicherheitsberichtAngelegt: 18.06.2008Datenblatt ausstellender BereichAnsprechpartner:siehe Kapitel 1, Auskunft gebender Bereich.Die Angaben in diesem Datenblatt sind nach bestem Wissen zusammengestellt und entsprechen dem Stand derKenntnis zum Überarbeitungsdatum. Sie sichern jedoch nicht die Einhaltung bestimmter Eigenschaften im Sinneder Rechtsverbindlichkeit zu.gedruckt von Eni Deutschland... mit Qualisys SUMDAT


Heavy Fuel Oil Components9. EXPOSURE ASSESSMENTTable 9.1. Identified Use Description and Exposure Scenario Number KeyIU Category Identified UseNameSector ESNumberSectorof Use(SU)ProductCategory(PC)ProcessCategory(PROC)1 Heavy FuelOilComponents2 Heavy FuelOilComponents3 Heavy FuelOilComponents4 Heavy FuelOilComponents5 Heavy FuelOilComponents6 Heavy FuelOilComponents7 Heavy FuelOilComponents8 Heavy FuelOilComponents01 –Manufacture ofSubstance01b – Use ofSubstance asIntermediate01a –Distribution ofSubstance02 –Formulation &(Re)packing ofSubstancesand Mixtures03a – Uses inCoatings:Industrial03b – Uses inCoatings:Professional12a – Use as aFuel: Industrial12b – Use as aFuel:ProfessionalIndustrial ES9.1.1Industrial ES9.2.1Industrial ES9.3.1Industrial ES9.4.1Industrial ES9.5.1Professional ES9.6.1Industrial ES9.7.1Professional ES9.8.13, 8, 9 NA 1, 2, 3, 8a,8b, 153, 8, 9 NA 1, 2, 3, 8a,8b, 153 NA 1, 2, 3, 8a,8b, 153, 10 NA 1, 2, 3, 8a,8b, 153 NA 1, 2, 3, 8a,8b, 1522 NA 1, 2, 3, 8a,8b, 153 NA 1, 2, 3, 8a,8b, 1622 NA 1, 2, 3, 8a,8b, 162010-08-10 CSR 117ArticleCategory(AC)EnvironmentalReleaseCategory(ERC)SpecificEnvironmentalReleaseCategory(SpERC)NA 1, 4 ESVOCSpERC 1.1.v1NA 6a ESVOCSpERC 6.1a.v1NA 1, 2, 3, 4, 5, 6a,6b, 6c, 6d, 7ESVOCSpERC 1.1b.v1NA 2 ESVOCSpERC 2.2.v1NA 4 ESVOCSpERC 4.3a.v1NA 8a, 8d ESVOCSpERC 8.3b.v1NA 7 ESVOCSpERC7.12a.v1NA 9a, 9b ESVOCSpERC9.12b.v1


Heavy Fuel Oil Components9 Heavy FuelOilComponents15 – Use inRoad andConstructionApplications:ProfessionalProfessional ES9.9.122 NA 8a, 8b NA 8d, 8f ESVOCSpERC 8.15.v12010-08-10 CSR 118


Heavy Fuel Oil ComponentsThe process of mapping uses and characterising risks has often identified a series of supportingmeasures that may further contribute to the management of exposure. The measures are identified inblue text in the Appendices contained in section 10. These measures are not contained within theExposure Scenarios (ES) as they do not need to be implemented in order to achieve satisfactoryexposure control. However, they are identified within the CSA in order that stakeholders are able tobenefit from access to other exposure control information that has been obtained during the processof CSA/ES development.2010-08-10 CSR 119


Heavy Fuel Oil Components9.1. Manufacture of Heavy Fuel Oil – Industrial9.1.1. Exposure ScenarioSection 1 Exposure Scenario Title Heavy Fuel OilTitleManufacture of SubstanceUse DescriptorSector(s) of Use 3, 8, 9Process Categories 1, 2, 3, 8a, 8b, 15Further information on the mapping and allocation ofPROC codes is contained in Table 9.1Environmental Release Categories 1, 4Specific Environmental Release Category ESVOC SpERC 1.1.v1Processes, tasks, activities coveredManufacture of the substance or use as a process chemical or extraction agent within closed orcontained systems. Includes incidental exposures during recycling/ recovery, material transfers,storage, sampling, associated laboratory activities, maintenance and loading (including marinevessel/barge, road/rail car and bulk container).Assessment MethodSee Section 3.Section 2 Operational conditions and risk management measuresSection 2.1 Control of worker exposureProduct characteristicsPhysical form of product Liquid, vapour pressure 20°C above ambientConditions affecting temperature). OC7. Assumes a good basic standard of occupationalexposurehygiene is implemented G1.Contributing Scenarios Specific Risk Management Measures and Operating ConditionsGeneral measures(carcinogens) G18CS15 General exposures(closed systems).Consider technical advances and process upgrades (includingautomation) for the elimination of releases. Minimise exposure usingmeasures such as closed systems, dedicated facilities and suitablegeneral / local exhaust ventilation. Drain down systems and clear transferlines prior to breaking containment. Clean / flush equipment, wherepossible, prior to maintenance.Where there is potential for exposure: Restrict access to authorisedpersons; provide specific activity training to operators to minimiseexposures; wear suitable gloves and coveralls to prevent skincontamination; wear respiratory protection when its use is identified forcertain contributing scenarios; clear up spills immediately and dispose ofwastes safely. Ensure safe systems of work or equivalent arrangementsare in place to manage risks. Regularly inspect, test and maintain allcontrol measures. Consider the need for risk based health surveillance.G20Handle substance within a closed system E47. Wear chemically resistantgloves (tested to EN374) in combination with ‘basic’ employee training2010-08-10 CSR 120


Heavy Fuel Oil ComponentsCS2 Process sampling.+OC9 OutdoorPPE16.Sample via a closed loop or other system to avoid exposure E8. Avoidcarrying out activities involving exposure for more than 15 minutes OC26.Wear chemically resistant gloves (tested to EN374) in combination with‘basic’ employee training PPE16.CS85 Bulk product storage. Store substance within a closed system E84. Avoid carrying out activitiesinvolving exposure for more than 4 hours OC28. Wear chemicallyresistant gloves (tested to EN374) in combination with ‘basic’ employeetraining PPE16.CS36 Laboratory activitiesCS510 Marine vessel/barge(un)loadingCS511 Road tanker/RailcarloadingCS39 Equipment cleaningand maintenanceHandle within a fume cupboard or implement suitable equivalent methodsto minimise exposure E12. Wear suitable gloves tested to EN374 PPE15.Avoid carrying out activities involving exposure for more than 4 hoursOC28. Transfer via enclosed lines E52. Clear transfer lines prior to decouplingE39. Retain drain downs in sealed storage pending disposal orfor subsequent recycle ENVT4. Wear chemically resistant gloves (testedto EN374) in combination with ‘basic’ employee training PPE16.Ensure material transfers are under containment or extract ventilationE66. Wear chemically resistant gloves (tested to EN374) in combinationwith ‘basic’ employee training PPE16.Drain down and flush system prior to equipment break-in or maintenanceE55. Wear chemically resistant gloves (tested to EN374) in combinationwith specific activity training PPE17. Retain drain downs in sealed storagepending disposal or for subsequent recycle ENVT4.Additional information on the basis for the allocation of the identified OCs and RMMs iscontained in Appendices 2 to 3Section 2.2 Control of environmental exposureProduct characteristicsSubstance is complex UVCB [PrC3]. Predominantly hydrophobic [PrC4a].Amounts usedFraction of <strong>EU</strong> tonnage used in region 0.1Regional use tonnage (tonnes/year) 1.1e7Fraction of Regional tonnage used locally5.2e-2Annual site tonnage (tonnes/year) 6.0e5Maximum daily site tonnage (kg/day) 2.0e6Frequency and duration of useContinuous release [FD2].Emission days (days/year) 300Environmental factors not influenced by risk managementLocal freshwater dilution factor 10Local marine water dilution factor 100Other given operational conditions affecting environmental exposureRelease fraction to air from process (initial release prior to RMM)1.0e-4Release fraction to wastewater from process (initial release prior to 3.0e-6RMM)Release fraction to soil from process (initial release prior to RMM) 0.0001Technical conditions and measures at process level (source) to prevent releaseCommon practices vary across sites thus conservative process release estimates used [TCS1].Technical onsite conditions and measures to reduce or limit discharges, air emissions andreleases to soilRisk from environmental exposure is driven by humans via indirect exposure [TCR1j].Onsite wastewater treatment required [TCR13]. Prevent discharge of undissolved substance to orrecover from onsite wastewater [TRC14].Treat air emission to provide a typical removal efficiency of (%) 90Treat onsite wastewater (prior to receiving water discharge) to provide 85.92010-08-10 CSR 121


Heavy Fuel Oil Componentsthe required removal efficiency (%)If discharging to domestic sewage treatment plant, provide the required 0.0onsite wastewater removal efficiency of (%)Organisation measures to prevent/limit release from siteDo not apply industrial sludge to natural soils [OMS2]. Sludge should be incinerated, contained orreclaimed [OMS3].Conditions and measures related to municipal sewage treatment plantEstimated substance removal from wastewater via domestic sewage 88.8treatment (%)Total efficiency of removal from wastewater after onsite and offsite 88.8(domestic treatment plant) RMMs (%)Maximum allowable site tonnage (M Safe ) based on release following total 2.3e6wastewater treatment removal (kg/d)Assumed domestic sewage treatment plant flow (m 3 /d) 10000Conditions and measures related to external treatment of waste for disposalDuring manufacturing no waste of the substance is generated to treat [ETW4].Conditions and measures related to external recovery of wasteDuring manufacturing no waste of the substance is generated to recover [ERW2].Additional information on the basis for the allocation of the indentified OCs and RMMs iscontained in PETRORISK file in IUCLID Section 13.Section 3 Exposure Estimation3.1. HealthThe ECETOC TRA tool has been used to estimate workplace exposures unless otherwise indicated.G21.3.2. EnvironmentThe Hydrocarbon Block Method has been used to calculate environmental exposure with the Petroriskmodel [EE2].Section 4 Guidance to check compliance with the Exposure Scenario4.1. HealthPredicted exposures are not expected to exceed the DN(M)EL when the Risk ManagementMeasures/Operational Conditions outlined in Section 2 are implemented. G22.Where other Risk Management Measures/Operational Conditions are adopted, then users shouldensure that risks are managed to at least equivalent levels. G23.Available hazard data do not enable the derivation of a DNEL for carcinogenic effects. G33. Availablehazard data do not support the need for a DNEL to be established for other health effects. G36. RiskManagement Measures are based on qualitative risk characterisation. G37.4.2. EnvironmentGuidance is based on assumed operating conditions which may not be applicable to all sites; thus,scaling may be necessary to define appropriate site-specific risk management measures [DSU1].Required removal efficiency for wastewater can be achieved using onsite/offsite technologies, eitheralone or in combination [DSU2]. Required removal efficiency for air can be achieved using onsitetechnologies, either alone or in combination [DSU3]. Further details on scaling and controltechnologies are provided in SpERC factsheet (http://cefic.org/en/reach-for-industries-libraries.html)[DSU4]. Scaled assessments for <strong>EU</strong> refineries have been performed using site-specific data and areattached in PETRORISK file in IUCLID Section 13 – “Site-Specific Production” worksheet [DSU6]. Forrefinery sites where scaling revealed a condition of unsafe use (i.e., RCRs > 1), a site-specificchemical safety assessment was required [DSU8]. Consequently a Tier 2 assessment was performedin an attempt to refine conservative exposure assumptions and improve risk estimates. The Tier 2analysis demonstrates that no refineries have RCRs>1 (see Appendix 4 and PETRORISK file inIUCLID section 13 – "Tier 2 Site Specific Production worksheet").2010-08-10 CSR 122


Heavy Fuel Oil Components9.1.2. Exposure Estimation9.1.2.1. Human HealthSee Appendix 2.a and 2.b.9.1.2.2. EnvironmentSee PETRORISK file in IUCLID Section 13 – “LocalCSR” worksheet2010-08-10 CSR 123


Heavy Fuel Oil Components9.2. Use of Heavy Fuel Oil as Intermediate – Industrial9.2.1. Exposure ScenarioSection 1 Exposure Scenario Title Heavy Fuel OilTitleUse as Substance as IntermediateUse DescriptorSector(s) of Use 3, 8, 9Process Categories 1, 2, 3, 8a, 8b, 15Further information on the mapping and allocation ofPROC codes is contained in Table 9.1Environmental Release Categories6aSpecific Environmental Release Category ESVOC SpERC 6.1a.v1Processes, tasks, activities coveredUse of substance as an intermediate within closed or contained systems. Includes incidentalexposures during recycling/ recovery, material transfers, storage, sampling, associated laboratoryactivities, maintenance and loading (including marine vessel/barge, road/rail car and bulk container).Assessment MethodSee Section 3.Section 2 Operational conditions and risk management measuresSection 2.1 Control of worker exposureProduct characteristicsPhysical form of product Liquid, vapour pressure 20°C above ambientConditions affecting temperature). OC7. Assumes a good basic standard of occupationalexposurehygiene is implemented G1.Contributing Scenarios Specific Risk Management Measures and Operating ConditionsGeneral measures(carcinogens) G18CS15 General exposures(closed systems).Consider technical advances and process upgrades (includingautomation) for the elimination of releases. Minimise exposure usingmeasures such as closed systems, dedicated facilities and suitablegeneral / local exhaust ventilation. Drain down systems and clear transferlines prior to breaking containment. Clean / flush equipment, wherepossible, prior to maintenance.Where there is potential for exposure: Restrict access to authorisedpersons; provide specific activity training to operators to minimiseexposures; wear suitable gloves and coveralls to prevent skincontamination; wear respiratory protection when its use is identified forcertain contributing scenarios; clear up spills immediately and dispose ofwastes safely. Ensure safe systems of work or equivalent arrangementsare in place to manage risks. Regularly inspect, test and maintain allcontrol measures. Consider the need for risk based health surveillance.G20Handle substance within a closed system E47. Wear chemically resistantgloves (tested to EN374) in combination with ‘basic’ employee trainingPPE16.2010-08-10 CSR 124


Heavy Fuel Oil ComponentsCS15 General exposures(closed systems). + CS2Process sampling. +OC9OutdoorHandle substance within a closed system E47. Sample via a closed loopor other system to avoid exposure E8. Avoid carrying out activitiesinvolving exposure for more than 15 minutes OC26. Wear chemicallyresistant gloves (tested to EN374) in combination with ‘basic’ employeetraining PPE16.CS85 Bulk product storage. Store substance within a closed system E84. Avoid carrying out activitiesinvolving exposure for more than 4 hours OC28. Wear chemicallyresistant gloves (tested to EN374) in combination with ‘basic’ employeetraining PPE16.CS36 Laboratory activitiesCS510 Marine vessel/barge(un)loadingCS511 Road tanker/RailcarloadingCS39 Equipment cleaningand maintenanceHandle within a fume cupboard or implement suitable equivalent methodsto minimise exposure E12. Wear suitable gloves tested to EN374 PPE15.Avoid carrying out activities involving exposure for more than 4 hoursOC28. Transfer via enclosed lines E52. Clear transfer lines prior to decouplingE39. Retain drain downs in sealed storage pending disposal orfor subsequent recycle ENVT4. Wear chemically resistant gloves (testedto EN374) in combination with ‘basic’ employee training PPE16.Avoid carrying out activities involving exposure for more than 1 hourOC27, or: G9 Ensure material transfers are under containment or extractventilation E66. Wear chemically resistant gloves (tested to EN374) incombination with ‘basic’ employee training PPE16.Drain down and flush system prior to equipment break-in or maintenanceE55. Wear chemically resistant gloves (tested to EN374) in combinationwith specific activity training PPE17. Retain drain downs in sealed storagepending disposal or for subsequent recycle ENVT4.Additional information on the basis for the allocation of the identified OCs and RMMs iscontained in Appendices 2 to 3Section 2.2 Control of environmental exposureProduct characteristicsSubstance is complex UVCB [PrC3]. Predominantly hydrophobic [PrC4a].Amounts usedFraction of <strong>EU</strong> tonnage used in region 0.1Regional use tonnage (tonnes/year) 1.3e5Fraction of Regional tonnage used locally1.2e-1Annual site tonnage (tonnes/year) 1.5e4Maximum daily site tonnage (kg/day) 5.0e4Frequency and duration of useContinuous release [FD2].Emission days (days/year) 300Environmental factors not influenced by risk managementLocal freshwater dilution factor 10Local marine water dilution factor 100Other given operational conditions affecting environmental exposureRelease fraction to air from process (initial release prior to RMM)1.0e-5Release fraction to wastewater from process (initial release prior to 1.0e-5RMM)Release fraction to soil from process (initial release prior to RMM) 0.001Technical conditions and measures at process level (source) to prevent releaseCommon practices vary across sites thus conservative process release estimates used [TCS1].Technical onsite conditions and measures to reduce or limit discharges, air emissions andreleases to soilRisk from environmental exposure is driven by freshwater sediment [TCR1b]. If discharging todomestic sewage treatment plant, no onsite wastewater treatment required [TCR9]. Prevent dischargeof undissolved substance to or recover from onsite wastewater [TRC14].Treat air emission to provide a typical removal efficiency of (%) 80Treat onsite wastewater (prior to receiving water discharge) to provide 54.02010-08-10 CSR 125


Heavy Fuel Oil Componentsthe required removal efficiency (%)If discharging to domestic sewage treatment plant, provide the required 0onsite wastewater removal efficiency of (%)Organisation measures to prevent/limit release from siteDo not apply industrial sludge to natural soils [OMS2]. Sludge should be incinerated, contained orreclaimed [OMS3].Conditions and measures related to municipal sewage treatment plantEstimated substance removal from wastewater via domestic sewage 88.8treatment (%)Total efficiency of removal from wastewater after onsite and offsite 88.8(domestic treatment plant) RMMs (%)Maximum allowable site tonnage (M Safe ) based on release following total 1.9e5wastewater treatment removal (kg/d)Assumed domestic sewage treatment plant flow (m 3 /d) 2000Conditions and measures related to external treatment of waste for disposalThis substance is consumed during use and no waste of the substance is generated to treat [ETW5].Conditions and measures related to external recovery of wasteThis substance is consumed during use and no waste of the substance is generated to recover[ERW3].Additional information on the basis for the allocation of the indentified OCs and RMMs iscontained in PETRORISK file in IUCLID Section 13Section 3 Exposure Estimation3.1. HealthThe ECETOC TRA tool has been used to estimate workplace exposures unless otherwise indicated.G21.3.2. EnvironmentThe Hydrocarbon Block Method has been used to calculate environmental exposure with the Petroriskmodel [EE2].Section 4 Guidance to check compliance with the Exposure Scenario4.1. HealthPredicted exposures are not expected to exceed the DN(M)EL when the Risk ManagementMeasures/Operational Conditions outlined in Section 2 are implemented. G22.Where other Risk Management Measures/Operational Conditions are adopted, then users shouldensure that risks are managed to at least equivalent levels. G23.Available hazard data do not enable the derivation of a DNEL for carcinogenic effects. G33. Availablehazard data do not support the need for a DNEL to be established for other health effects. G36. RiskManagement Measures are based on qualitative risk characterisation. G37.4.2. EnvironmentGuidance is based on assumed operating conditions which may not be applicable to all sites; thus,scaling may be necessary to define appropriate site-specific risk management measures [DSU1].Required removal efficiency for wastewater can be achieved using onsite/offsite technologies, eitheralone or in combination [DSU2]. Required removal efficiency for air can be achieved using onsitetechnologies, either alone or in combination [DSU3]. Further details on scaling and controltechnologies are provided in SpERC factsheet (http://cefic.org/en/reach-for-industries-libraries.html)9.2.2. Exposure Estimation9.2.2.1. Human HealthSee Appendix 2.a and 2.b.9.2.2.2. EnvironmentSee PETRORISK file in IUCLID Section 13 – “LocalCSR” worksheet2010-08-10 CSR 126


Heavy Fuel Oil Components9.3. Distribution of Heavy Fuel Oil – Industrial9.3.1. Exposure ScenarioSection 1 Exposure Scenario Title Heavy Fuel OilTitleDistribution of SubstanceUse DescriptorSector(s) of Use 3Process Categories 1, 2, 3, 8a, 8b, 15Further information on the mapping and allocation ofPROC codes is contained in Table 9.1Environmental Release Categories 1, 2, 3, 4, 5, 6a, 6b, 6c, 6d, 7Specific Environmental Release Category ESVOC SpERC 1.1b.v1Processes, tasks, activities coveredBulk loading (including marine vessel/barge, rail/road car and IBC loading) of substance within closedor contained systems, including incidental exposures during its sampling, storage, unloading,maintenance and associated laboratory activities.Assessment MethodSee Section 3.Section 2 Operational conditions and risk management measuresSection 2.1 Control of worker exposureProduct characteristicsPhysical form of product LiquidVapour pressure (kPa) Liquid, vapour pressure


Heavy Fuel Oil Componentsclosed loop or other system to avoid exposure E8. Wear chemicallyresistant gloves (tested to EN374) in combination with ‘basic’ employeetraining PPE16.CS85 Bulk product storage. Store substance within a closed system E84. Avoid carrying out activitiesinvolving exposure for more than 4 hours OC28. Wear chemicallyresistant gloves (tested to EN374) in combination with ‘basic’ employeetraining PPE16.CS137 Product sampling Sample via a closed loop or other system to avoid exposure E8. Avoidcarrying out activities involving exposure for more than 15 minutes OC26.Wear chemically resistant gloves (tested to EN374) in combination with‘basic’ employee training PPE16.CS36 Laboratory activities Handle within a fume cupboard or implement suitable equivalent methodsCS510_Marinevessel/barge (un)loadingCS511 Road tanker/RailcarloadingCS39 Equipment cleaningand maintenanceto minimise exposure E12. Wear suitable gloves tested to EN374 PPE15.Avoid carrying out activities involving exposure for more than 4 hoursOC28. Transfer via enclosed lines E52. Clear transfer lines prior to decouplingE39. Retain drain downs in sealed storage pending disposal orfor subsequent recycle ENVT4. Wear chemically resistant gloves (testedto EN374) in combination with ‘basic’ employee training PPE16.Ensure material transfers are under containment or extract ventilationE66. Wear chemically resistant gloves (tested to EN374) in combinationwith ‘basic’ employee training PPE16.Drain down and flush system prior to equipment break-in or maintenanceE55. Wear chemically resistant gloves (tested to EN374) in combinationwith specific activity training PPE17. Retain drain downs in sealed storagepending disposal or for subsequent recycle ENVT4.Additional information on the basis for the allocation of the identified OCs and RMMs iscontained in Appendices 2 to 3Section 2.2 Control of environmental exposureProduct characteristicsSubstance is complex UVCB [PrC3]. Predominantly hydrophobic [PrC4a].Amounts usedFraction of <strong>EU</strong> tonnage used in region 0.1Regional use tonnage (tonnes/year) 1.1e7Fraction of Regional tonnage used locally2.0e-3Annual site tonnage (tonnes/year) 2.3e4Maximum daily site tonnage (kg/day) 7.7e4Frequency and duration of useContinuous release [FD2].Emission days (days/year) 300Environmental factors not influenced by risk managementLocal freshwater dilution factor 10Local marine water dilution factor 100Other given operational conditions affecting environmental exposureRelease fraction to air from process (initial release prior to RMM)1.0e-4Release fraction to wastewater from process (initial release prior to 1.0e-7RMM)Release fraction to soil from process (initial release prior to RMM) 0.00001Technical conditions and measures at process level (source) to prevent releaseCommon practices vary across sites thus conservative process release estimates used [TCS1].Technical onsite conditions and measures to reduce or limit discharges, air emissions andreleases to soilRisk from environmental exposure is driven by humans via indirect exposure [TCR1j].No wastewater treatment required [TCR6].Treat air emission to provide a typical removal efficiency of (%) 90Treat onsite wastewater (prior to receiving water discharge) to provide 02010-08-10 CSR 128


Heavy Fuel Oil Componentsthe required removal efficiency (%)If discharging to domestic sewage treatment plant, provide the required 0onsite wastewater removal efficiency of (%)Organisation measures to prevent/limit release from siteDo not apply industrial sludge to natural soils [OMS2]. Sludge should be incinerated, contained orreclaimed [OMS3].Conditions and measures related to municipal sewage treatment plantEstimated substance removal from wastewater via domestic sewage 88.8treatment (%)Total efficiency of removal from wastewater after onsite and offsite 88.8(domestic treatment plant) RMMs (%)Maximum allowable site tonnage (M Safe ) based on release following total 3.8e5wastewater treatment removal (kg/d)Assumed domestic sewage treatment plant flow (m 3 /d) 2000Conditions and measures related to external treatment of waste for disposalExternal treatment and disposal of waste should comply with applicable regulations [ETW3].Conditions and measures related to external recovery of wasteExternal recovery and recycling of waste should comply with applicable regulations [ERW1].Additional information on the basis for the allocation of the indentified OCs and RMMs iscontained in PETRORISK file in IUCLID Section 13Section 3 Exposure Estimation3.1. HealthThe ECETOC TRA tool has been used to estimate workplace exposures unless otherwise indicated.G21.3.2. EnvironmentThe Hydrocarbon Block Method has been used to calculate environmental exposure with thePETRORISK model [EE2].Section 4 Guidance to check compliance with the Exposure Scenario4.1. HealthPredicted exposures are not expected to exceed the DN(M)EL when the Risk ManagementMeasures/Operational Conditions outlined in Section 2 are implemented. G22.Where other Risk Management Measures/Operational Conditions are adopted, then users shouldensure that risks are managed to at least equivalent levels. G23.Available hazard data do not enable the derivation of a DNEL for carcinogenic effects. G33. Availablehazard data do not support the need for a DNEL to be established for other health effects. G36. RiskManagement Measures are based on qualitative risk characterisation. G37.4.2. EnvironmentGuidance is based on assumed operating conditions which may not be applicable to all sites; thus,scaling may be necessary to define appropriate site-specific risk management measures [DSU1].Required removal efficiency for wastewater can be achieved using onsite/offsite technologies, eitheralone or in combination [DSU2]. Required removal efficiency for air can be achieved using onsitetechnologies, either alone or in combination [DSU3]. Further details on scaling and controltechnologies are provided in SpERC factsheet (http://cefic.org/en/reach-for-industries-libraries.html)[DSU4].9.3.2. Exposure Estimation9.3.2.1. Human HealthSee Appendix 2.a and 2.b.9.3.2.2. EnvironmentSee PETRORISK file in IUCLID Section 13 – “LocalCSR” worksheet2010-08-10 CSR 129


Heavy Fuel Oil Components9.4. Formulation & (Re)packing of Heavy Fuel Oil – Industrial9.4.1. Exposure ScenarioSection 1 Exposure Scenario Title Heavy Fuel OilTitleFormulation & (Re)packing of Substances and MixturesUse DescriptorSector(s) of Use 3, 10Process Categories 1, 2, 3, 8a, 8b, 15Further information on the mapping and allocation ofPROC codes is contained in Table 9.1Environmental Release Categories 2Specific Environmental Release Category ESVOC SpERC 2.2.v1Processes, tasks, activities coveredFormulation of the substance and its mixtures in batch or continuous operations within closed orcontained systems, including incidental exposures during storage, materials transfers, mixing,maintenance, sampling and associated laboratory activities.Assessment MethodSee Section 3.Section 2 Operational conditions and risk management measuresSection 2.1 Control of worker exposureProduct characteristicsPhysical form of product LiquidVapour pressure (kPa) Liquid, vapour pressure


Heavy Fuel Oil Components(closed systems). or other system to avoid exposure E8. Avoid carrying out activitiesinvolving exposure for more than 4 hours OC28. Wear chemicallyresistant gloves (tested to EN374) in combination with ‘basic’ employeetraining PPE16.CS85 Bulk product storage. Store substance within a closed system E84. Avoid carrying out activitiesinvolving exposure for more than 4 hours OC28. Wear chemicallyresistant gloves (tested to EN374) in combination with ‘basic’ employeetraining PPE16.CS137 Product sampling Sample via a closed loop or other system to avoid exposure E8. Avoidcarrying out activities involving exposure for more than 15 minutes OC26.Wear chemically resistant gloves (tested to EN374) in combination with‘basic’ employee training PPE16.CS36 Laboratory activities Handle within a fume cupboard or implement suitable equivalent methodsCS510 Marine vessel/barge(un)loadingCS511 Road tanker/RailcarloadingCS8 Drum/batch transfersCS39 Equipment cleaningand maintenanceto minimise exposure E12. Wear suitable gloves tested to EN374 PPE15.Transfer via enclosed lines E52 Avoid carrying out activities involvingexposure for more than 4 hours OC28..Clear transfer lines prior to decouplingE39. Retain drain downs in sealed storage pending disposal orfor subsequent recycle ENVT4. Wear chemically resistant gloves (testedto EN374) in combination with ‘basic’ employee training PPE16.Ensure material transfers are under containment or extract ventilationE66. Wear chemically resistant gloves (tested to EN374) in combinationwith ‘basic’ employee training PPE16.Ensure material transfers are under containment or extract ventilationE66. Provide a general ventilation (not less than 3 to 5 air changes perhour) E11, or G9; Ensure operation is undertaken outdoors. E69. Avoidcarrying out activities involving exposure for more than 1 hour OC27.Wear chemically resistant gloves (tested to EN374) in combination with‘basic’ employee training PPE16.Drain down and flush system prior to equipment break-in or maintenanceE55. Wear chemically resistant gloves (tested to EN374) in combinationwith specific activity training PPE17. Retain drain downs in sealed storagepending disposal or for subsequent recycle ENVT4.Additional information on the basis for the allocation of the identified OCs and RMMs iscontained in Appendices 2 to 3Section 2.2 Control of environmental exposureProduct characteristicsSubstance is complex UVCB [PrC3]. Predominantly hydrophobic [PrC4a].Amounts usedFraction of <strong>EU</strong> tonnage used in region 0.1Regional use tonnage (tonnes/year) 1.1e7Fraction of Regional tonnage used locally2.6e-3Annual site tonnage (tonnes/year) 3.0e4Maximum daily site tonnage (kg/day) 1.0e5Frequency and duration of useContinuous release [FD2].Emission days (days/year) 300Environmental factors not influenced by risk managementLocal freshwater dilution factor 10Local marine water dilution factor 100Other given operational conditions affecting environmental exposureRelease fraction to air from process (after typical onsite RMMs, 2.2e-3consistent with <strong>EU</strong> Solvent Emissions Directive requirements)Release fraction to wastewater from process (initial release prior to 5.0e-6RMM)Release fraction to soil from process (initial release prior to RMM) 0.0001Technical conditions and measures at process level (source) to prevent release2010-08-10 CSR 131


Heavy Fuel Oil ComponentsCommon practices vary across sites thus conservative process release estimates used [TCS1].Technical onsite conditions and measures to reduce or limit discharges, air emissions andreleases to soilRisk from environmental exposure is driven by humans via indirect exposure [TCR1j].If discharging to domestic sewage treatment plant, no onsite wastewater treatment required [TCR9].Prevent discharge of undissolved substance to or recover from onsite wastewater [TRC14].Treat air emission to provide a typical removal efficiency of (%) 0Treat onsite wastewater (prior to receiving water discharge) to provide 54.0the required removal efficiency (%)If discharging to domestic sewage treatment plant, provide the required 0onsite wastewater removal efficiency of (%)Organisation measures to prevent/limit release from siteDo not apply industrial sludge to natural soils [OMS2]. Sludge should be incinerated, contained orreclaimed [OMS3].Conditions and measures related to municipal sewage treatment plantEstimated substance removal from wastewater via domestic sewage 88.8treatment (%)Total efficiency of removal from wastewater after onsite and offsite 88.8(domestic treatment plant) RMMs (%)Maximum allowable site tonnage (M Safe ) based on release following total 1.1e5wastewater treatment removal (kg/d)Assumed domestic sewage treatment plant flow (m 3 /d) 2000Conditions and measures related to external treatment of waste for disposalExternal treatment and disposal of waste should comply with applicable regulations [ETW3].Conditions and measures related to external recovery of wasteExternal recovery and recycling of waste should comply with applicable regulations [ERW1].Additional information on the basis for the allocation of the indentified OCs and RMMs iscontained in PETRORISK file in IUCLID Section 13Section 3 Exposure Estimation3.1. HealthThe ECETOC TRA tool has been used to estimate workplace exposures unless otherwise indicated.G21.3.2. EnvironmentThe Hydrocarbon Block Method has been used to calculate environmental exposure with thePETRORISK model [EE2].Section 4 Guidance to check compliance with the Exposure Scenario4.1. HealthPredicted exposures are not expected to exceed the DN(M)EL when the Risk ManagementMeasures/Operational Conditions outlined in Section 2 are implemented. G22.Where other Risk Management Measures/Operational Conditions are adopted, then users shouldensure that risks are managed to at least equivalent levels. G23.Available hazard data do not enable the derivation of a DNEL for carcinogenic effects. G33. Availablehazard data do not support the need for a DNEL to be established for other health effects. G36. RiskManagement Measures are based on qualitative risk characterisation. G37.4.2. EnvironmentGuidance is based on assumed operating conditions which may not be applicable to all sites; thus,scaling may be necessary to define appropriate site-specific risk management measures [DSU1].Required removal efficiency for wastewater can be achieved using onsite/offsite technologies, eitheralone or in combination [DSU2]. Required removal efficiency for air can be achieved using onsitetechnologies, either alone or in combination [DSU3]. Further details on scaling and controltechnologies are provided in SpERC factsheet (http://cefic.org/en/reach-for-industries-libraries.html)[DSU4].2010-08-10 CSR 132


Heavy Fuel Oil Components9.4.2. Exposure Estimation9.4.2.1. Human HealthSee Appendix 2.a and 2.b.9.4.2.2. EnvironmentSee PETRORISK file in IUCLID Section 13 – “LocalCSR” worksheet2010-08-10 CSR 133


Heavy Fuel Oil Components9.5. Uses of Heavy Fuel Oil in Coatings – Industrial9.5.1. Exposure ScenarioSection 1 Exposure Scenario Title Heavy Fuel OilTitleUses in CoatingsUse DescriptorSector(s) of Use 3Process Categories 1, 2, 3, 8a, 8b, 15Further information on the mapping and allocation ofPROC codes is contained in Table 9.1Environmental Release Categories 4Specific Environmental Release Category ESVOC SpERC 4.3a.v1Processes, tasks, activities coveredCovers the use in coatings (paints, inks, adhesives, etc) within closed or contained systems includingincidental exposures during use (including materials receipt, storage, preparation and transfer frombulk and semi-bulk, application activities and film formation) and equipment cleaning, maintenanceand associated laboratory activities.Assessment MethodSee Section 3.Section 2 Operational conditions and risk management measuresSection 2.1 Control of worker exposureProduct characteristicsPhysical form of product LiquidVapour pressure (kPa) Liquid, vapour pressure


Heavy Fuel Oil Componentscontrolled ventilation (10 to 15 air changes per hour) E40. Wearchemically resistant gloves (tested to EN374) in combination with ‘basic’employee training PPE16.CS3 Material transfers Provide a good standard of controlled ventilation (10 to 15 air changesper hour) E40. Wear chemically resistant gloves (tested to EN374) incombination with ‘basic’ employee training PPE16. Ensure materialtransfers are under containment or extract ventilation E66.CS36 Laboratory activities. Handle within a fume cupboard or implement suitable equivalent methodsCS39 Equipment cleaningand maintenanceCS67 Storage.to minimise exposure E12. Wear suitable gloves tested to EN374 PPE15.Drain down and flush system prior to equipment break-in or maintenanceE55. Wear chemically resistant gloves (tested to EN374) in combinationwith specific activity training PPE17. Retain drain downs in sealed storagepending disposal or for subsequent recycle ENVT4.Store substance within a closed system E84. Wear chemically resistantgloves (tested to EN374) in combination with ‘basic’ employee trainingPPE16.Additional information on the basis for the allocation of the identified OCs and RMMs iscontained in Appendices 2 to 3Section 2.2 Control of environmental exposureProduct characteristicsSubstance is complex UVCB [PrC3]. Predominantly hydrophobic [PrC4a].Amounts usedFraction of <strong>EU</strong> tonnage used in region 0.1Regional use tonnage (tonnes/year) 1.0e2Fraction of Regional tonnage used locally 1Annual site tonnage (tonnes/year) 1.0e2Maximum daily site tonnage (kg/day) 5.0e3Frequency and duration of useContinuous release [FD2].Emission days (days/year) 20Environmental factors not influenced by risk managementLocal freshwater dilution factor 10Local marine water dilution factor 100Other given operational conditions affecting environmental exposureRelease fraction to air from process (initial release prior to RMM) 0.98Release fraction to wastewater from process (initial release prior to 2.0e-5RMM)Release fraction to soil from process (initial release prior to RMM) 0Technical conditions and measures at process level (source) to prevent releaseCommon practices vary across sites thus conservative process release estimates used [TCS1].Technical onsite conditions and measures to reduce or limit discharges, air emissions andreleases to soilRisk from environmental exposure is driven by humans via indirect exposure [TCR1j].No wastewater treatment required [TCR6]. Prevent discharge of undissolved substance to or recoverfrom onsite wastewater [TRC14].Treat air emission to provide a typical removal efficiency of (%) 90Treat onsite wastewater (prior to receiving water discharge) to provide 0the required removal efficiency (%)If discharging to domestic sewage treatment plant, provide the required 0onsite wastewater removal efficiency of (%)Organisation measures to prevent/limit release from siteDo not apply industrial sludge to natural soils [OMS2]. Sludge should be incinerated, contained orreclaimed [OMS3].Conditions and measures related to municipal sewage treatment plant2010-08-10 CSR 135


Heavy Fuel Oil ComponentsEstimated substance removal from wastewater via domestic sewage 88.8treatment (%)Total efficiency of removal from wastewater after onsite and offsite 88.8(domestic treatment plant) RMMs (%)Maximum allowable site tonnage (M Safe ) based on release following total 1.1e5wastewater treatment removal (kg/d)Assumed domestic sewage treatment plant flow (m 3 /d) 2000Conditions and measures related to external treatment of waste for disposalExternal treatment and disposal of waste should comply with applicable regulations [ETW3].Conditions and measures related to external recovery of wasteExternal recovery and recycling of waste should comply with applicable regulations [ERW1].Additional information on the basis for the allocation of the indentified OCs and RMMs iscontained in PETRORISK file in IUCLID Section 13Section 3 Exposure Estimation3.1. HealthThe ECETOC TRA tool has been used to estimate workplace exposures unless otherwise indicated.G21.3.2. EnvironmentThe Hydrocarbon Block Method has been used to calculate environmental exposure with thePETRORISK model [EE2].Section 4 Guidance to check compliance with the Exposure Scenario4.1. HealthPredicted exposures are not expected to exceed the DN(M)EL when the Risk ManagementMeasures/Operational Conditions outlined in Section 2 are implemented. G22.Where other Risk Management Measures/Operational Conditions are adopted, then users shouldensure that risks are managed to at least equivalent levels. G23.Available hazard data do not enable the derivation of a DNEL for carcinogenic effects. G33. Availablehazard data do not support the need for a DNEL to be established for other health effects. G36. RiskManagement Measures are based on qualitative risk characterisation. G37.4.2. EnvironmentGuidance is based on assumed operating conditions which may not be applicable to all sites; thus,scaling may be necessary to define appropriate site-specific risk management measures [DSU1].Required removal efficiency for wastewater can be achieved using onsite/offsite technologies, eitheralone or in combination [DSU2]. Required removal efficiency for air can be achieved using onsitetechnologies, either alone or in combination [DSU3]. Further details on scaling and controltechnologies are provided in SpERC factsheet (http://cefic.org/en/reach-for-industries-libraries.html)[DSU4].9.5.2. Exposure Estimation9.5.2.1. Human HealthSee Appendix 2.a and 2.b.9.5.2.2. EnvironmentSee PETRORISK file in IUCLID Section 13 – “LocalCSR” worksheet2010-08-10 CSR 136


Heavy Fuel Oil Components9.6. Uses of Heavy Fuel Oil in Coatings – Professional9.6.1. Exposure ScenarioSection 1 Exposure Scenario Title Heavy Fuel OilTitleUses in CoatingsUse DescriptorSector(s) of Use 22Process Categories 1, 2, 3, 8a, 8b, 15Further information on the mapping and allocation ofPROC codes is contained in Table 9.1Environmental Release Categories8a, 8dSpecific Environmental Release Category ESVOC SpERC 8.3b.v1Processes, tasks, activities coveredCovers the use in coatings (paints, inks, adhesives, etc) within closed or contained systems includingincidental exposures during use (including materials receipt, storage, preparation and transfer frombulk and semi-bulk, application activities and film formation) and equipment cleaning, maintenanceand associated laboratory activities.Assessment MethodSee Section 3.Section 2 Operational conditions and risk management measuresSection 2.1 Control of worker exposureProduct characteristicsPhysical form of product LiquidVapour pressure (kPa) Liquid, vapour pressure


Heavy Fuel Oil Componentsemissions occur E54.CS3 Material transfers Ensure material transfers are under containment or extract ventilationE66 Avoid carrying out activities involving exposure for more than 15minutes OC26. Limit the substance content in the product to 1 % OC16.Wear chemically resistant gloves (tested to EN374) in combination withintensive management supervision controls PPE18.CS36 Laboratory activities. Handle within a fume cupboard or implement suitable equivalent methodsCS39 Equipment cleaningand maintenanceCS67 Storage.to minimise exposure. E12.Drain down and flush system prior to equipment break-in or maintenanceE55 Retain drain down in sealed storage pending disposal or forsubsequent recycle ENVT4. Deal with spills immediately. C&H13. Avoidcarrying out activities involving exposure for more than 15 minutes OC26.Limit the substance content in the product to 1 % OC16. Wear chemicallyresistant gloves (tested to EN374) in combination with intensivemanagement supervision controls PPE18. Retain drain downs in sealedstorage pending disposal or for subsequent recycle ENVT4.Wear chemically resistant gloves (tested to EN374) in combination with‘basic’ employee training PPE16. Store substance within a closed system.E84Additional information on the basis for the allocation of the identified OCs and RMMs iscontained in Appendices 2 to 3Section 2.2 Control of environmental exposureProduct characteristicsSubstance is complex UVCB [PrC3]. Predominantly hydrophobic [PrC4a].Amounts usedFraction of <strong>EU</strong> tonnage used in region 0.1Regional use tonnage (tonnes/year) 1.0e2Fraction of Regional tonnage used locally5.0e-4Annual site tonnage (tonnes/year)5.0e-2Maximum daily site tonnage (kg/day)1.4e-1Frequency and duration of useContinuous release [FD2].Emission days (days/year) 365Environmental factors not influenced by risk managementLocal freshwater dilution factor 10Local marine water dilution factor 100Other given operational conditions affecting environmental exposureRelease fraction to air from wide dispersive use (regional only) 0.98Release fraction to wastewater from wide dispersive use 0.01Release fraction to soil from wide dispersive use (regional only) 0.01Technical conditions and measures at process level (source) to prevent releaseCommon practices vary across sites thus conservative process release estimates used [TCS1].Technical onsite conditions and measures to reduce or limit discharges, air emissions andreleases to soilRisk from environmental exposure is driven by humans via indirect exposure [TCR1j].No wastewater treatment required [TCR6].Treat air emission to provide a typical removal efficiency of (%) N/ATreat onsite wastewater (prior to receiving water discharge) to provide 0the required removal efficiency (%)If discharging to domestic sewage treatment plant, provide the required 0onsite wastewater removal efficiency of (%)Organisation measures to prevent/limit release from siteDo not apply industrial sludge to natural soils [OMS2]. Sludge should be incinerated, contained or2010-08-10 CSR 138


Heavy Fuel Oil Componentsreclaimed [OMS3].Conditions and measures related to municipal sewage treatment plantEstimated substance removal from wastewater via domestic sewage 88.8treatment (%)Total efficiency of removal from wastewater after onsite and offsite 88.8(domestic treatment plant) RMMs (%)Maximum allowable site tonnage (M Safe ) based on release following total 7.0e-1wastewater treatment removal (kg/d)Assumed domestic sewage treatment plant flow (m 3 /d) 2000Conditions and measures related to external treatment of waste for disposalExternal treatment and disposal of waste should comply with applicable regulations [ETW3].Conditions and measures related to external recovery of wasteExternal recovery and recycling of waste should comply with applicable regulations [ERW1].Additional information on the basis for the allocation of the indentified OCs and RMMs iscontained in PETRORISK file in IUCLID Section 13Section 3 Exposure Estimation3.1. HealthThe ECETOC TRA tool has been used to estimate workplace exposures unless otherwise indicated.G21.3.2. EnvironmentThe Hydrocarbon Block Method has been used to calculate environmental exposure with the Petroriskmodel [EE2].Section 4 Guidance to check compliance with the Exposure Scenario4.1. HealthPredicted exposures are not expected to exceed the DN(M)EL when the Risk ManagementMeasures/Operational Conditions outlined in Section 2 are implemented. G22.Where other Risk Management Measures/Operational Conditions are adopted, then users shouldensure that risks are managed to at least equivalent levels. G23.Available hazard data do not enable the derivation of a DNEL for carcinogenic effects. G33. Availablehazard data do not support the need for a DNEL to be established for other health effects. G36. RiskManagement Measures are based on qualitative risk characterisation. G37.4.2. EnvironmentGuidance is based on assumed operating conditions which may not be applicable to all sites; thus,scaling may be necessary to define appropriate site-specific risk management measures [DSU1].Required removal efficiency for wastewater can be achieved using onsite/offsite technologies, eitheralone or in combination [DSU2]. Required removal efficiency for air can be achieved using onsitetechnologies, either alone or in combination [DSU3]. Further details on scaling and controltechnologies are provided in SpERC factsheet (http://cefic.org/en/reach-for-industries-libraries.html)[DSU4].9.6.2. Exposure Estimation9.6.2.1. Human HealthSee Appendix 2.a and 2.b.9.6.2.2. EnvironmentSee PETRORISK file in IUCLID Section 13 – “LocalCSR” worksheet2010-08-10 CSR 139


Heavy Fuel Oil Components9.7. Use of Heavy Fuel Oil as a Fuel – Industrial9.7.1. Exposure ScenarioSection 1 Exposure Scenario Title Heavy Fuel OilTitleUse as a FuelUse DescriptorSector(s) of Use 3Process Categories 1, 2, 3, 8a, 8b, 16Further information on the mapping and allocation ofPROC codes is contained in Table 9.1Environmental Release Categories 7Specific Environmental Release Category ESVOC SpERC 7.12a.v1Processes, tasks, activities coveredCovers the use as a fuel (or fuel additives and additive components) within closed or containedsystems, including incidental exposures during activities associated with its transfer, use, equipmentmaintenance and handling of waste.Assessment MethodSee Section 3.Section 2 Operational conditions and risk management measuresSection 2.1 Control of worker exposureProduct characteristicsPhysical form of product LiquidVapour pressure (kPa) Liquid, vapour pressure


Heavy Fuel Oil Components(closed systems). + CS137Product sampling.CS502 Bulk closedunloading + OC9 OutdoorCS8 Drum/batch transfersCS 117 Operation of solidsfiltering equipmentor other system to avoid exposure E8. Avoid carrying out activitiesinvolving exposure for more than 1 hour OC27. Provide a good standardof controlled ventilation (10 to 15 air changes per hour) E40. Wearchemically resistant gloves (tested to EN374) in combination with ‘basic’employee training PPE16.Transfer via enclosed lines E52. Avoid carrying out activities involvingexposure for more than 4 hours OC28. Wear chemically resistant gloves(tested to EN374) in combination with ‘basic’ employee training PPE16.Ensure material transfers are under containment or extract ventilationE66. , or (G9): Provide a good standard of general ventilation (not lessthan 3 to 5 air changes per hour) E11.Avoid carrying out activities involving exposure for more than 1 hourOC27. Wear chemically resistant gloves (tested to EN374) in combinationwith ‘basic’ employee training PPE16.Provide a good standard of general ventilation (not less than 3 to 5 airchanges per hour) E11. Avoid carrying out activities involving exposurefor more than 4 hours OC28. Wear chemically resistant gloves (tested toEN374) in combination with ‘basic’ employee training PPE16.CS85 Bulk product storage. Store substance within a closed system E84. Provide a good standard ofgeneral ventilation (not less than 3 to 5 air changes per hour) E11. Avoidcarrying out activities involving exposure for more than 4 hours OC28.Wear chemically resistant gloves (tested to EN374) in combination with‘basic’ employee training PPE16.GEST_12I Use as a fuel.CS 107 (closed system)CS39 Equipment cleaningand maintenanceWear chemically resistant gloves (tested to EN374) in combination with‘basic’ employee training PPE16.Drain down and flush system prior to equipment break-in or maintenanceE55. Wear chemically resistant gloves (tested to EN374) in combinationwith specific activity training PPE17. Retain drain downs in sealed storagepending disposal or for subsequent recycle ENVT4.Additional information on the basis for the allocation of the identified OCs and RMMs iscontained in Appendices 2 to 3Section 2.2 Control of environmental exposureProduct characteristicsSubstance is complex UVCB [PrC3]. Predominantly hydrophobic [PrC4a].Amounts usedFraction of <strong>EU</strong> tonnage used in region 0.1Regional use tonnage (tonnes/year) 1.1e7Fraction of Regional tonnage used locally1.4e-1Annual site tonnage (tonnes/year) 1.5e6Maximum daily site tonnage (kg/day) 5.0e6Frequency and duration of useContinuous release [FD2].Emission days (days/year) 300Environmental factors not influenced by risk managementLocal freshwater dilution factor 10Local marine water dilution factor 100Other given operational conditions affecting environmental exposureRelease fraction to air from process (initial release prior to RMM)7.0e-4Release fraction to wastewater from process (initial release prior to 4.4e-7RMM)Release fraction to soil from process (initial release prior to RMM) 0Technical conditions and measures at process level (source) to prevent releaseCommon practices vary across sites thus conservative process release estimates used [TCS1].Technical onsite conditions and measures to reduce or limit discharges, air emissions andreleases to soil2010-08-10 CSR 141


Heavy Fuel Oil ComponentsRisk from environmental exposure is driven by freshwater sediment [TCR1b].Additional onsite wastewater treatment required [TCR13]. Prevent discharge of undissolved substanceto or recover from onsite wastewater [TRC14].Treat air emission to provide a typical removal efficiency of (%) 95Treat onsite wastewater (prior to receiving water discharge) to provide 87.7the required removal efficiency (%)If discharging to domestic sewage treatment plant, provide the required 0onsite wastewater removal efficiency of (%)Organisation measures to prevent/limit release from siteDo not apply industrial sludge to natural soils [OMS2]. Sludge should be incinerated, contained orreclaimed [OMS3].Conditions and measures related to municipal sewage treatment plantEstimated substance removal from wastewater via domestic sewage 88.8treatment (%)Total efficiency of removal from wastewater after onsite and offsite 88.8(domestic treatment plant) RMMs (%)Maximum allowable site tonnage (M Safe ) based on release following total 5.2e6wastewater treatment removal (kg/d)Assumed domestic sewage treatment plant flow (m 3 /d) 2000Conditions and measures related to external treatment of waste for disposalCombustion emissions limited by required exhaust emission controls [ETW1]. Combustion emissionsconsidered in regional exposure assessment [ETW2].Conditions and measures related to external recovery of wasteThis substance is consumed during use and no waste of the substance is generated to recover[ERW3].Additional information on the basis for the allocation of the indentified OCs and RMMs iscontained in PETRORISK file in IUCLID Section 13Section 3 Exposure Estimation3.1. Health3.2. EnvironmentThe Hydrocarbon Block Method has been used to calculate environmental exposure with thePETRORISK model [EE2].Section 4 Guidance to check compliance with the Exposure Scenario4.1. HealthPredicted exposures are not expected to exceed the DN(M)EL when the Risk ManagementMeasures/Operational Conditions outlined in Section 2 are implemented. G22.Where other Risk Management Measures/Operational Conditions are adopted, then users shouldensure that risks are managed to at least equivalent levels. G23.Available hazard data do not enable the derivation of a DNEL for carcinogenic effects. G33. Availablehazard data do not support the need for a DNEL to be established for other health effects. G36. RiskManagement Measures are based on qualitative risk characterisation. G37.4.2. EnvironmentGuidance is based on assumed operating conditions which may not be applicable to all sites; thus,scaling may be necessary to define appropriate site-specific risk management measures [DSU1].Required removal efficiency for wastewater can be achieved using onsite/offsite technologies, eitheralone or in combination [DSU2]. Required removal efficiency for air can be achieved using onsitetechnologies, either alone or in combination [DSU3]. Further details on scaling and controltechnologies are provided in SpERC factsheet (http://cefic.org/en/reach-for-industries-libraries.html)[DSU4].2010-08-10 CSR 142


Heavy Fuel Oil Components9.7.2. Exposure Estimation9.7.2.1. Human HealthSee Appendix 2.a and 2.b.9.7.2.2. EnvironmentSee PETRORISK file in IUCLID Section 13 – “LocalCSR” worksheet2010-08-10 CSR 143


Heavy Fuel Oil Components9.8. Use of Heavy Fuel Oil as a Fuel – Professional9.8.1. Exposure ScenarioSection 1 Exposure Scenario Title Heavy Fuel OilTitleUse as a FuelUse DescriptorSector(s) of Use 22Process Categories 1, 2, 3, 8a, 8b, 16Further information on the mapping and allocation ofPROC codes is contained in Table 9.1Environmental Release Categories9a, 9bSpecific Environmental Release Category ESVOC SpERC 9.12b.v1Processes, tasks, activities coveredCovers the use as a fuel (or fuel additives and additive components) within closed or containedsystems, including incidental exposures during activities associated with its transfer, use, equipmentmaintenance and handling of waste.Assessment MethodSee Section 3.Section 2 Operational conditions and risk management measuresSection 2.1 Control of worker exposureProduct characteristicsPhysical form of product LiquidVapour pressure (kPa) Liquid, vapour pressure


Heavy Fuel Oil ComponentsCS15 General exposures(closed systems).CS502 Bulk closedunloadingCS8 Drum/batch transfersCS507 RefuellingGEST_12I Use as a fuel.CS 107 (closed system)CS39 Equipment cleaningand maintenanceHandle substance within a closed system E47. Sample via a closed loopor other system to avoid exposure E8. Avoid carrying out activitiesinvolving exposure for more than 1 hour OC27. Provide a good standardof controlled ventilation (10 to 15 air changes per hour) E40. Wearchemically resistant gloves (tested to EN374) in combination with ‘basic’employee training PPE16.Provide a good standard of controlled ventilation (10 to 15 air changesper hour) E40. Wear chemically resistant gloves (tested to EN374) incombination with ‘basic’ employee training PPE16. Avoid carrying outactivities involving exposure for more than 1 hour OC27. , or G9: Ensurematerial transfers are under containment or extract ventilation E66.Provide a good standard of controlled ventilation (10 to 15 air changesper hour) E40. Wear chemically resistant gloves (tested to EN374) incombination with ‘basic’ employee training PPE16.Avoid carrying out activities involving exposure for more than 1 hourOC27. , or G9: Ensure material transfers are under containment or extractventilation E66.Ensure material transfers are under containment or extract ventilationE66. Wear chemically resistant gloves (tested to EN374) in combinationwith ‘basic’ employee training PPE16. Avoid carrying out activitiesinvolving exposure for more than 1 hour OC27.Wear chemically resistant gloves (tested to EN374) in combination with‘basic’ employee training PPE16.Provide a good standard of general ventilation (not less than 3 to 5 airchanges per hour) E11. Wear chemically resistant gloves (tested toEN374) in combination with specific activity training PPE17. Drain downsystem prior to equipment break-in or maintenance E65. Retain draindowns in sealed storage pending disposal or for subsequent recycleENVT4. Clear spills immediately C&H13.Additional information on the basis for the allocation of the identified OCs and RMMs iscontained in Appendices 2 to 3Section 2.2 Control of environmental exposureProduct characteristicsSubstance is complex UVCB [PrC3]. Predominantly hydrophobic [PrC4a].Amounts usedFraction of <strong>EU</strong> tonnage used in region 0.1Regional use tonnage (tonnes/year) 3.3e5Fraction of Regional tonnage used locally5.0e-4Annual site tonnage (tonnes/year) 1.7e2Maximum daily site tonnage (kg/day) 4.6e2Frequency and duration of useContinuous release [FD2].Emission days (days/year) 365Environmental factors not influenced by risk managementLocal freshwater dilution factor 10Local marine water dilution factor 100Other given operational conditions affecting environmental exposureRelease fraction to air from wide dispersive use (regional only)1.0e-4Release fraction to wastewater from wide dispersive use 0.00001Release fraction to soil from wide dispersive use (regional only) 0.00001Technical conditions and measures at process level (source) to prevent releaseCommon practices vary across sites thus conservative process release estimates used [TCS1].Technical onsite conditions and measures to reduce or limit discharges, air emissions andreleases to soilRisk from environmental exposure is driven by humans via indirect exposure [TCR1j].2010-08-10 CSR 145


Heavy Fuel Oil ComponentsNo wastewater treatment required [TCR6].Treat air emission to provide a typical removal efficiency of (%) N/ATreat onsite wastewater (prior to receiving water discharge) to provide 0the required removal efficiency (%)If discharging to domestic sewage treatment plant, provide the required 0onsite wastewater removal efficiency of (%)Organisation measures to prevent/limit release from siteDo not apply industrial sludge to natural soils [OMS2]. Sludge should be incinerated, contained orreclaimed [OMS3].Conditions and measures related to municipal sewage treatment plantEstimated substance removal from wastewater via domestic sewage 88.8treatment (%)Total efficiency of removal from wastewater after onsite and offsite 88.8(domestic treatment plant) RMMs (%)Maximum allowable site tonnage (M Safe ) based on release following total 2.3e3wastewater treatment removal (kg/d)Assumed domestic sewage treatment plant flow (m 3 /d) 2000Conditions and measures related to external treatment of waste for disposalCombustion emissions limited by required exhaust emission controls [ETW1]. Combustion emissionsconsidered in regional exposure assessment [ETW2].Conditions and measures related to external recovery of wasteThis substance is consumed during use and no waste of the substance is generated to recover[ERW3].Additional information on the basis for the allocation of the indentified OCs and RMMs iscontained in PETRORISK file in IUCLID Section 13.Section 3 Exposure Estimation3.1. HealthThe ECETOC TRA tool has been used to estimate workplace exposures unless otherwise indicated.G21.3.2. EnvironmentThe Hydrocarbon Block Method has been used to calculate environmental exposure with the Petroriskmodel [EE2].Section 4 Guidance to check compliance with the Exposure Scenario4.1. HealthPredicted exposures are not expected to exceed the DN(M)EL when the Risk ManagementMeasures/Operational Conditions outlined in Section 2 are implemented. G22.Where other Risk Management Measures/Operational Conditions are adopted, then users shouldensure that risks are managed to at least equivalent levels. G23.Available hazard data do not enable the derivation of a DNEL for carcinogenic effects. G33. Availablehazard data do not support the need for a DNEL to be established for other health effects. G36. RiskManagement Measures are based on qualitative risk characterisation. G37.4.2. EnvironmentGuidance is based on assumed operating conditions which may not be applicable to all sites; thus,scaling may be necessary to define appropriate site-specific risk management measures [DSU1].Required removal efficiency for wastewater can be achieved using onsite/offsite technologies, eitheralone or in combination [DSU2]. Required removal efficiency for air can be achieved using onsitetechnologies, either alone or in combination [DSU3]. Further details on scaling and controltechnologies are provided in SpERC factsheet (http://cefic.org/en/reach-for-industries-libraries.html)[DSU4].2010-08-10 CSR 146


Heavy Fuel Oil Components9.8.2. Exposure Estimation9.8.2.1. Human HealthSee Appendix 2.a and 2.b.9.8.2.2. EnvironmentSee PETRORISK file in IUCLID Section 13 – “LocalCSR” worksheet2010-08-10 CSR 147


Heavy Fuel Oil Components9.9. Use of Heavy Fuel Oil in Road and Construction Applications– Professional9.9.1. Exposure ScenarioSection 1 Exposure Scenario Title Heavy Fuel OilsTitleUse in Road and Construction ApplicationsUse DescriptorSector(s) of Use 22Process Categories8a, 8bFurther information on the mapping and allocation ofPROC codes is contained in Table 9.1Environmental Release Categories8d, 8fSpecific Environmental Release Category ESVOC SpERC 8.15.v1Processes, tasks, activities coveredCovers the use of surface coatings and binders within closed or contained systems, includingincidental exposures during material transfers and filling operations.Assessment MethodSee Section 3.Section 2 Operational conditions and risk management measuresSection 2.1 Control of worker exposureProduct characteristicsPhysical form of product LiquidVapour pressure (kPa) Liquid, vapour pressure 20°C above ambientConditions affecting temperature). OC7. Assumes a good basic standard of occupationalexposurehygiene is implemented G1.Contributing Scenarios Specific Risk Management Measures and Operating ConditionsGeneral measures(carcinogens) G18CS3 Material transfersCS39 Equipment cleaningConsider technical advances and process upgrades (includingautomation) for the elimination of releases. Minimise exposure usingmeasures such as closed systems, dedicated facilities and suitablegeneral / local exhaust ventilation. Drain down systems and clear transferlines prior to breaking containment. Clean / flush equipment, wherepossible, prior to maintenance.Where there is potential for exposure: Restrict access to authorisedpersons; provide specific activity training to operators to minimiseexposures; wear suitable gloves and coveralls to prevent skincontamination; wear respiratory protection when its use is identified forcertain contributing scenarios; clear up spills immediately and dispose ofwastes safely. Ensure safe systems of work or equivalent arrangementsare in place to manage risks. Regularly inspect, test and maintain allcontrol measures. Consider the need for risk based health surveillance.G20Ensure material transfers are under containment or extract ventilationE66 Avoid carrying out activities involving exposure for more than 15minutes OC26. Limit the substance content in the product to 1 % OC16.Wear chemically resistant gloves (tested to EN374) in combination withintensive management supervision controls PPE18.Drain down and flush system prior to equipment break-in or maintenance2010-08-10 CSR 148


Heavy Fuel Oil Componentsand maintenanceE55 Retain drain down in sealed storage pending disposal or forsubsequent recycle ENVT4. Deal with spills immediately. C&H13. Avoidcarrying out activities involving exposure for more than 15 minutes OC26.Limit the substance content in the product to 1 % OC16. Wear chemicallyresistant gloves (tested to EN374) in combination with intensivemanagement supervision controls PPE18. Retain drain downs in sealedstorage pending disposal or for subsequent recycle ENVT4.Additional information on the basis for the allocation of the identified OCs and RMMs iscontained in Appendices 2 to 3Section 2.2 Control of environmental exposureProduct characteristicsSubstance is complex UVCB [PrC3]. Predominantly hydrophobic [PrC4a].Amounts usedFraction of <strong>EU</strong> tonnage used in region 0.1Regional use tonnage (tonnes/year) 2.2e4Fraction of Regional tonnage used locally5.0e-4Annual site tonnage (tonnes/year) 1.1e1Maximum daily site tonnage (kg/day) 3.0e1Frequency and duration of useContinuous release [FD2].Emission days (days/year) 365Environmental factors not influenced by risk managementLocal freshwater dilution factor 10Local marine water dilution factor 100Other given operational conditions affecting environmental exposureRelease fraction to air from wide dispersive use (regional only) 0.95Release fraction to wastewater from wide dispersive use 0.01Release fraction to soil from wide dispersive use (regional only) 0.04Technical conditions and measures at process level (source) to prevent releaseCommon practices vary across sites thus conservative process release estimates used [TCS1].Technical onsite conditions and measures to reduce or limit discharges, air emissions andreleases to soilRisk from environmental exposure is driven by humans via indirect exposure [TCR1j].If discharging to domestic sewage treatment plant, no onsite wastewater treatment required [TCR9].Treat air emission to provide a typical removal efficiency of (%) N/ATreat onsite wastewater (prior to receiving water discharge) to provide 30.2the required removal efficiency (%)If discharging to domestic sewage treatment plant, provide the required 0onsite wastewater removal efficiency of (%)Organisation measures to prevent/limit release from siteDo not apply industrial sludge to natural soils [OMS2]. Sludge should be incinerated, contained orreclaimed [OMS3].Conditions and measures related to municipal sewage treatment plantEstimated substance removal from wastewater via domestic sewage 88.8treatment (%)Total efficiency of removal from wastewater after onsite and offsite 88.8(domestic treatment plant) RMMs (%)Maximum allowable site tonnage (M Safe ) based on release following total 1.1e2wastewater treatment removal (kg/d)Assumed domestic sewage treatment plant flow (m 3 /d) 2000Conditions and measures related to external treatment of waste for disposalExternal treatment and disposal of waste should comply with applicable regulations [ETW3].Conditions and measures related to external recovery of waste2010-08-10 CSR 149


Heavy Fuel Oil ComponentsExternal recovery and recycling of waste should comply with applicable regulations [ERW1].Additional information on the basis for the allocation of the indentified OCs and RMMs iscontained in PETRORISK file in IUCLID Section 13Section 3 Exposure Estimation3.1. HealthThe ECETOC TRA tool has been used to estimate workplace exposures unless otherwise indicated.G21.3.2. EnvironmentThe Hydrocarbon Block Method has been used to calculate environmental exposure with the Petroriskmodel [EE2].Section 4 Guidance to check compliance with the Exposure Scenario4.1. HealthPredicted exposures are not expected to exceed the DN(M)EL when the Risk ManagementMeasures/Operational Conditions outlined in Section 2 are implemented. G22.Where other Risk Management Measures/Operational Conditions are adopted, then users shouldensure that risks are managed to at least equivalent levels. G23.Available hazard data do not enable the derivation of a DNEL for carcinogenic effects. G33. Availablehazard data do not support the need for a DNEL to be established for other health effects. G36. RiskManagement Measures are based on qualitative risk characterisation. G37.4.2. EnvironmentGuidance is based on assumed operating conditions which may not be applicable to all sites; thus,scaling may be necessary to define appropriate site-specific risk management measures [DSU1].Required removal efficiency for wastewater can be achieved using onsite/offsite technologies, eitheralone or in combination [DSU2]. Required removal efficiency for air can be achieved using onsitetechnologies, either alone or in combination [DSU3]. Further details on scaling and controltechnologies are provided in SpERC factsheet (http://cefic.org/en/reach-for-industries-libraries.html)[DSU4].9.9.2. Exposure Estimation9.9.2.1. Human HealthSee Appendix 2.a and 2.b.9.9.2.2. EnvironmentSee PETRORISK file in IUCLID Section 13 – “LocalCSR” worksheet2010-08-10 CSR 150


Heavy Fuel Oil Components9.10. Regional Environment Exposure EstimationSee PETRORISK file in IUCLID Section 13 – “RegionalCSR” worksheet2010-08-10 CSR 151


Heavy Fuel Oil Components10. RISK CHARACTERISATION10.1. Manufacture of Heavy Fuel Oil – Industrial10.1.1. Human HealthSee Appendix 3.a and 3.b.10.1.2. EnvironmentSee PETRORISK file in IUCLID Section 13 – “LocalCSR” worksheet10.2. Use of Heavy Fuel Oil as Intermediate – Industrial10.2.1. Human HealthSee Appendix 3.a and 3.b.10.2.2. EnvironmentSee PETRORISK file in IUCLID Section 13 – “LocalCSR” worksheet10.3. Distribution of Heavy Fuel Oil – Industrial10.3.1. Human HealthSee Appendix 3.a and 3.b.10.3.2. EnvironmentSee PETRORISK file in IUCLID Section 13 – “LocalCSR” worksheet10.4. Formulation & (Re)packing of Heavy Fuel Oil – Industrial10.4.1. Human HealthSee Appendix 3.a and 3.b.10.4.2. EnvironmentSee PETRORISK file in IUCLID Section 13 – “LocalCSR” worksheet10.5. Uses of Heavy Fuel Oil in Coatings – Industrial10.5.1. Human HealthSee Appendix 3.a and 3.b.10.5.2. EnvironmentSee PETRORISK file in IUCLID Section 13 – “LocalCSR” worksheet10.6. Uses of Heavy Fuel Oil in Coatings – Professional10.6.1. Human HealthSee Appendix 3.a and 3.b.10.6.2. EnvironmentSee PETRORISK file in IUCLID Section 13 – “LocalCSR” worksheet2010-08-10 CSR 152


Heavy Fuel Oil Components10.7. Uses of Heavy Fuel Oil as a Fuel – Industrial10.7.1. Human HealthSee Appendix 3.a and 3.b.10.7.2. EnvironmentSee PETRORISK file in IUCLID Section 13 – “LocalCSR” worksheet10.8. Uses of Heavy Fuel Oil as a Fuel – Professional10.8.1. Human HealthSee Appendix 3.a and 3.b.10.8.2. EnvironmentSee PETRORISK file in IUCLID Section 13 – “LocalCSR” worksheet10.9. Uses of Heavy Fuel Oil in Road and ConstructionApplications – Professional10.9.1. Human HealthSee Appendix 3.a and 3.b.10.9.2. EnvironmentSee PETRORISK file in IUCLID Section 13 – “LocalCSR” worksheet10.10. Overall exposure (combined for all relevantemission/release sources)10.10.1. Human health (combined for all exposure routes)See Appendix 3.a & 3.b.10.10.2. Environment (combined for all exposure routes)Combined exposures can be calculated with information provided on the individual exposurescenarios presented in section 9. However, it is unclear how to define risk management measuresresulting from this analysis.10.11. Regional EnvironmentSee PETRORISK file in IUCLID Section 13 – “RegionalCSR” worksheet2010-08-10 CSR 153


Heavy Fuel Oil ComponentsREFERENCESAPI (1987). Comprehensive Analytical Analysis of API generic petroleum streams. [as cited in API,2004]. American Petroleum Institute (Washington, D.C., USA). API (2004). Robust Summary ofinformation on substance group Heavy Fuel Oils. Data submitted under US RTK HPV programme andpublished online.ARCO (1986a). Acute oral toxicity study n rats administered F-73-01. Testing laboratory: UBTL (UtahBiomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City, UT 84108, USA. Report no.:60607. Owner company: ARCO (Atlantic Richfield Company), 515 South Flower Street, Los Angeles,CA 90092, USA. Study number: ATX-85-0149. Report date: 1986-10-24.ARCO (1986b). Acute oral toxicity study in rats administered test article F-74-01. Testing laboratory:UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City, UT 84108, USA.Report no.: 60608. Owner company: ARCO (Atlantic Richfield Company), 515 South Flower Street,Los Angles, CA 90092, USA. Study number: ATX-85-0154. Report date: 1987-10-24.ARCO (1986c). Acute inhalation toxicity study in rats administered F-73-01. Testing laboratory:Bio/dynamic Inc., Mettlers Road, East Millstone, NJ 08873, USA. Report no.: 85-7868. Ownercompany: ARCO (Atlantic Richfield Company), 515 South Flower Street, Los Angles, CA 90092,USA. Study number: ATX-85-0178. Report date: 1986-09-12.ARCO (1986d). Primary dermal irritation study in rabbits administered test article F-73-01. Testinglaboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City, UT 84108,USA. Report no.: 60577. Owner company: ARCO (Atlantic Richfield Company), 515 South FlowerStreet, Los Angles, CA 90092, USA. Study number: ATX-85-0151. Report date: 1986-12-18.ARCO (1986e). Primary dermal irritation study in rabbits administered F-74-01. Testing laboratory:UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City, UT 84108, USA.Report no.: 60578. Owner company: ARCO (Atlantic Richfield Company), 515 South Flower Street,Los Angles, CA 90092, USA. Study number: ATX-85-0156. Report date: 1986-12-18.ARCO (1986f). Primary eye irritation study in rabbits administered test article F-73-01. Testinglaboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City, UT 84108,USA. Report no.: 60592. Owner company: ARCO (Atlantic Richfield Company), 515 South FlowerStreet, Los Angles, CA 90092, USA. Study number: ATX-85-0152. Report date: 1986-12-18.ARCO (1986g). Primary eye irritation study in rabbits administered test article F-74-01. Testinglaboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City, UT 84108,USA. Report no.: 60593. Owner company: ARCO (Atlantic Richfield Company), 515 South FlowerStreet, Los Angles, CA 90092, USA. Study number: ATX-85-0157. Report date: 1986-12-18.ARCO (1986h). Dermal sensitisation study in albino guinea pigs with test article F-73-01. Testinglaboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City, UT 84108,USA. Report no.: 60622. Owner company: ARCO (Atlantic Richfield Company), 515 South FlowerStreet, Los Angles, CA 90092, USA. Study number: ATX-85-0153. Report date: 1986-12-30.ARCO (1986i). Dermal sensitisation study in albino guinea pigs with test article F-74-01. Testinglaboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City, UT 84108,USA. Report no.: 60623. Owner company: ARCO (Atlantic Richfield Company), 515 South FlowerStreet, Los Angles, CA 90092, USA. Study number: ATX-85-0158. Report date: 1986-12-30.ARCO (1987a). Acute inhalation toxicity study in rats administered F-74-01. Testing laboratory:Bio/dynamic Inc., Mettlers Road, East Millstone, NJ 08873, USA. Report no.: 85-7869A. Ownercompany: ARCO (Atlantic Richfield Company), 515 South Flower Street, Los Angles, CA 90092,USA. Study number: ATX-85-0179. Report date: 1987-01-12.ARCO (1987b). Acute dermal toxicity study in rabbits administered F-74-01. Testing laboratory: UBTL(Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City, UT 84108, USA. Report2010-08-10 CSR 154


Heavy Fuel Oil Componentsno.: 60563. Owner company: ARCO (Atlantic Richfield Company), 515 South Flower Street, LosAngles, CA 90092, USA. Study number: ATX-85-0155. Report date: 1987-01-20.ARCO (1987c). Acute dermal toxicity study in rabbits administered F-73-01. Testing laboratory: UBTL(Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City, UT 84108, USA. Reportno.: 60562. Owner company: ARCO (Atlantic Richfield Company), 515 South Flower Street, LosAngles, CA 90092, USA. Study number: ATX-85-0150. Report date: 1987-01-22.ARCO (1987d). Acute dermal toxicity study in rabbits administered F-73-01. Testing laboratory: UBTL(Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City, UT 84108, USA. Reportno.: 61394. Owner company: ARCO (Atlantic Richfield Company), 515 South Flower Street, LosAngles, CA 90092, USA. Study number: ATX-86-0001. Report date: 1987-01-20.ARCO (1987e). Acute dermal toxicity study in rabbits administered with test article F-92-01. Testinglaboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City, UT 84108,USA. Report no.: 62870. Owner company: ARCO (Atlantic Richfield Company), 515 South FlowerStreet, Los Angles, CA 90092, USA. Study number: ATX-86-0085. Report date: 1987-09-16.ARCO (1987f). Primary dermal irritation study in rabbits administered test article F-92-01. Testinglaboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City, UT 84108,USA. Report no.: 62871. Owner company: ARCO (Atlantic Richfield Company), 515 South FlowerStreet, Los Angles, CA 90092, USA. Study number: ATX-89-0086. Report date: 1987-05-12.ARCO (1987g). Twenty-eight (28) day dermal toxicity study in rats on test article F-73-01. Testinglaboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City, UT 84108,USA. Report no.: 61541. Owner company: ARCO (Atlantic Richfield Company), 515 South FlowerStreet, Los Angles, CA 90092, USA. Study number: ATX-86-007. Report date: 1987-08-17.ARCO (1987h). Twenty-eight (28) day dermal toxicity study in rats on test article F-74-01. Testinglaboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City, UT 84108,USA. Report no.: 61536. Owner company: ARCO (Atlantic Richfield Company), 515 South FlowerStreet, Los Angles, CA 90092, USA. Study number: ATX-86-0008. Report date: 1987-01-15.ARCO (1988a). Primary eye irritation study in albino rabbits with F-92-01. Testing laboratory: UBTL(Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City, UT 84108, USA. Reportno.: 62872. Owner company: ARCO (Atlantic Richfield Company), 515 South Flower Street, LosAngles, CA 90092, USA. Study number: ATX-86-0087. Report date: 1988-03-31.ARCO (1988b). Dermal sensitisation study in albino guinea pigs with test article F-92-01. Testinglaboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City, UT 84108,USA. Report no.: 62873. Owner company: ARCO (Atlantic Richfield Company), 515 South FlowerStreet, Los Angles, CA 90092, USA. Study number: ATX-86-0088. Report date: 1988-03-31.ARCO (1988c). Twenty-eight (28) day dermal toxicity study in rats on test article F-92-01. Testinglaboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City, UT 84108,USA. Report no.: 62939. Owner company: ARCO (Atlantic Richfield Company), 515 South FlowerStreet, Los Angles, CA 90092, USA. Study number: ATX-86-0090. Report date: 1988-05-20.ARCO (1989a). Acute oral toxicity study in rats administered test article F-109-01 (Fluid Unit FreshFeed). Testing laboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt LakeCity, UT 84108, USA. Report no.: 65028. Owner company: ARCO (Atlantic Richfield Company), 515South Flower Street, Los Angles, CA 90092, USA. Study number: ATX-88-0214. Report date: 1988-09-13.ARCO (1989b). Acute dermal toxicity study (limit test) in rabbits administered test article F-97-01.Testing laboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City,UT 84108, USA. Report no.: 64834. Owner company: ARCO (Atlantic Richfield Company), 515 SouthFlower Street, Los Angles, CA 90092, USA. Study number: ATX-88-0087. Report date: 1989-11-22.ARCO (1989c). Acute dermal toxicity study in rabbits administered test article F-109-01. Testinglaboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City, UT 84108,USA. Report no.: 65039. Owner company: ARCO (Atlantic Richfield Company), 515 South Flower2010-08-10 CSR 155


Heavy Fuel Oil ComponentsStreet, Los Angles, CA 90092, USA. Study number: ATX-88-0215. Report date: 1989-08-18.ARCO (1989d). Primary dermal irritation study in rabbits administered test article F-98-01. Testinglaboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City, UT 84108,USA. Report no.: 65054. Owner company: ARCO (Atlantic Richfield Company), 515 South FlowerStreet, Los Angles, CA 90092, USA. Study number: ATX-88-0096. Report date: 1989-08-24.ARCO (1989e). Primary dermal irritation study in rabbits with test article F-97-01. Testing laboratory:UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City, UT 84108, USA.Report no.: 64782. Owner company: ARCO (Atlantic Richfield Company), 515 South Flower Street,Los Angles, CA 90092, USA. Study number: ATX-88-0089. Report date: 1989-08-24.ARCO (1989f). Primary dermal irritation study in rabbits with test article F-109-01. Testing laboratory:UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City, UT 84108, USA.Report no.: 65063. Owner company: ARCO (Atlantic Richfield Company), 515 South Flower Street,Los Angles, CA 90092, USA. Study number: ATX-88-0217. Report date: 1989-08-24.ARCO (1989g). Primary eye irritation study in rabbits administered test article F-98-01. Testinglaboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City, UT 84108,USA. Report no.: 65042. Owner company: ARCO (Atlantic Richfield Company), 515 South FlowerStreet, Los Angles, CA 90092, USA. Study number: ATX-88-0095. Report date: 1989-02-16.ARCO (1989h). Primary eye irritation study in albino rabbits administered F-97-01. Testing laboratory:UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City, UT 84108, USA.Report no.: 64831. Owner company: ARCO (Atlantic Richfield Company), 515 South Flower Street,Los Angles, CA 90092, USA. Study number: ATX-88-0088. Report date: 1989-11-27.ARCO (1989i). Primary eye irritation study in albino rabbits administered F-109-01. Testinglaboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City, UT 84108,USA. Report no.: 65051. Owner company: ARCO (Atlantic Richfield Company), 515 South FlowerStreet, Los Angles, CA 90092, USA. Study number: ATX-88-0216. Report date: 1989-08-25.ARCO (1989j). Dermal sensitisation study in albino guinea pigs administered test article F-98-01.Testing laboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City,UT 84108, USA. Report no.: 65066. Owner company: ARCO (Atlantic Richfield Company), 515 SouthFlower Street, Los Angles, CA 90092, USA. Study number: ATX-88-0097. Report date: 1989-10-31.ARCO (1989k). Dermal sensitisation study in albino guinea pigs administered test article F-97-01.Testing laboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City,UT 84108, USA. Report no.: 64838. Owner company: ARCO (Atlantic Richfield Company), 515 SouthFlower Street, Los Angles, CA 90092, USA. Study number: ATX-88-0090. Report date: 1989-10-31.ARCO (1989l). Dermal sensitisation study in albino guinea pigs administered test article F-109-01.Testing laboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City,UT 84108, USA. Report no.: 65075. Owner company: ARCO (Atlantic Richfield Company), 515 SouthFlower Street, Los Angles, CA 90092, USA. Study number: ATX-88-0218. Report date: 1989-10-31.ARCO (1989m). Developmental toxicity study in rats administered ARCO test article F-115-01dermally. Testing laboratory: Argus Research Laboratories Inc, 935 Horsham Road, Horsham, PA19044, USA. Report no.: 1001-001. Owner company: ARCO (Atlantic Richfield Company), 515 SouthFlower Street, Los Angles, CA 90092, USA. Study number: ATX-89-0050. Report date: 1989-02-27.ARCO (1990a). Acute oral toxicity screen in rats administered test article F-113-01. Testinglaboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City, UT 84108,USA. Report no.: 65281-2. Owner company: ARCO (Atlantic Richfield Company), 515 South FlowerStreet, Los Angles, CA 90092, USA. Study number: ATX-89-0031. Report date: 1990-02-19.ARCO (1990b). Acute dermal toxicity study (limit test) in rabbits administered test article F-113-01.Testing laboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City,UT 84108, USA. Report no.: 65293. Owner company: ARCO (Atlantic Richfield Company), 515 SouthFlower Street, Los Angles, CA 90092, USA. Study number: ATX-89-0032. Report date: 1990-04-10.2010-08-10 CSR 156


Heavy Fuel Oil ComponentsARCO (1990c). Acute dermal toxicity study (limit test) in rabbits administered test article F-115-01.Testing laboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City,UT 84108, USA. Report no.: 65528. Owner company: ARCO (Atlantic Richfield Company), 515 SouthFlower Street, Los Angles, CA 90092, USA. Study number: ATX-89-0072. Report date: 1990-09-04.ARCO (1990d). Primary dermal irritation study in rabbits administered test article F-113-01. Testinglaboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City, UT 84108,USA. Report no.: 65288. Owner company: ARCO (Atlantic Richfield Company), 515 South FlowerStreet, Los Angles, CA 90092, USA. Study number: ATX-89-0034. Report date: 1990-02-19.ARCO (1990e). Primary dermal irritation study in rabbits administered test article F-115-01. Testinglaboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City, UT 84108,USA. Report no.: 65540. Owner company: ARCO (Atlantic Richfield Company), 515 South FlowerStreet, Los Angles, CA 90092, USA. Study number: ATX-89-0074. Report date: 1990-09-07.ARCO (1990f). Primary eye irritation study in rabbits administered test article F-113-01. Testinglaboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City, UT 84108,USA. Report no.: 65298. Owner company: ARCO (Atlantic Richfield Company), 515 South FlowerStreet, Los Angles, CA 90092, USA. Study number: ATX-89-0033. Report date: 1990-04-10.ARCO (1990g). Primary eye irritation study in rabbits administered test article F-115-01. Testinglaboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City, UT 84108,USA. Report no.: 65534. Owner company: ARCO (Atlantic Richfield Company), 515 South FlowerStreet, Los Angles, CA 90092, USA. Study number: ATX-89-0073. Report date: 1990-09-10.ARCO (1990h). Dermal sensitisation study in albino guinea pigs administered test article F-113-01.Testing laboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City,UT 84108, USA. Report no.: 65303. Owner company: ARCO (Atlantic Richfield Company), 515 SouthFlower Street, Los Angles, CA 90092, USA. Study number: ATX-89-0035. Report date: 1989-03-27.ARCO (1990i). Dermal sensitisation study in albino guinea pigs administered test article F-115-01.Testing laboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City,UT 84108, USA. Report no.: 65546. Owner company: ARCO (Atlantic Richfield Company), 515 SouthFlower Street, Los Angles, CA 90092, USA. Study number: ATX-89-0075. Report date: 1990-09-10.ARCO (1990j). Twenty-eight (28) day dermal toxicity study in rats administered test article F-97-01.Testing laboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City,UT 84108, USA. Report no.: 64708. Owner company: ARCO (Atlantic Richfield Company), 515 SouthFlower Street, Los Angles, CA 90092, USA. Study number: ATX-88-0092. Report date: 1990-10-03.ARCO (1991a). Primary eye irritation study in rabbits administered test article F-132. Testinglaboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City, UT 84108,USA. Report no.: 65833. Owner company: ARCO (Atlantic Richfield Company), 515 South FlowerStreet, Los Angles, CA 90092, USA. Study number: ATX-90-0061. Report date: 1991-09-27.ARCO (1991b). Primary eye irritation study in rabbits administered test article F-128. Testinglaboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City, UT 84108,USA. Report no.: 65829. Owner company: ARCO (Atlantic Richfield Company), 515 South FlowerStreet, Los Angles, CA 90092, USA. Study number: ATX-90-0029. Report date: 1991-09-27.ARCO (1991c). Primary eye irritation study in rabbits administered test article F-129. Testinglaboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City, UT 84108,USA. Report no.: 65830. Owner company: ARCO (Atlantic Richfield Company), 515 South FlowerStreet, Los Angles, CA 90092, USA. Study number: ATX-90-0037. Report date: 1991-09-27.ARCO (1992a). Acute oral toxicity study (limit test) in rats administered test article F-132. Testinglaboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City, UT 84108,USA. Report no.: 65892. Owner company: ARCO (Atlantic Richfield Company), 515 South FlowerStreet, Los Angles, CA 90092, USA. Study number: ATX-90-0059. Report date: 1992-07-09.ARCO (1992aa). Twenty-eight (28) day dermal toxicity study in rats administered test article F-128.Testing laboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City,2010-08-10 CSR 157


Heavy Fuel Oil ComponentsUT 84108, USA. Report no.: 65861. Owner company: ARCO (Atlantic Richfield Company), 515 SouthFlower Street, Los Angles, CA 90092, USA. Study number: ATX-90-0034. Report date: 1992-06-30.ARCO (1992ab). Twenty-eight (28) day dermal toxicity study in rats administered test article F-129.Testing laboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City,UT 84108, USA. Report no.: 65862. Owner company: ARCO (Atlantic Richfield Company), 515 SouthFlower Street, Los Angles, CA 90092, USA. Study number: ATX-90-0042. Report date: 1992-07-13.ARCO (1992ac). Twenty-eight (28) day dermal toxicity study in rats administered test article L-23-01.Testing laboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City,UT 84108, USA. Report no.: 65862. Owner company: ARCO (Atlantic Richfield Company), 515 SouthFlower Street, Los Angles, CA 90092, USA. Study number: ATX-88-0176. Report date: 1992-11-18.ARCO (1992ad). Twenty-eight (28) day dermal toxicity study in rats administered test article F-136.Testing laboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City,UT 84108, USA. Report no.: 65898. Owner company: ARCO (Atlantic Richfield Company), 515 SouthFlower Street, Los Angles, CA 90092, USA. Study number: ATX-90-0098. Report date: 1992-08-04.ARCO (1992ae). Twenty-eight day dermal toxicity study in rats administered test article F-109-01.Testing laboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City,UT 84108, USA. Report no.: 65095. Owner company: ARCO (Atlantic Richfield Company), 515 SouthFlower Street, Los Angles, CA 90092, USA. Study number: ATX-88-0220. Report date: 1992-11-18.ARCO (1992af). Screening test for reproductive toxicity of F-179 administered percutaneously to Crl:CD-BR VAF/Plus male rats. Testing laboratory: Argus Research Laboratories Inc, 935 HorshamRoad, Horsham, PA 19044, USA. Report no.: 1001-02. Owner company: ARCO (Atlantic RichfieldCompany), 515 South Flower Street, Los Angles, CA 90092, USA. Study number: ATX-91-0040.Report date: 1992-03-13.ARCO (1992ag). Screening test for reproductive toxicity of F-179 administered percutaneously to Crl:CD-BR VAF/Plus female rats. Testing laboratory: Argus Research Laboratories Inc, 935 HorshamRoad, Horsham, PA 19044, USA. Report no.: 1001-03. Owner company: ARCO (Atlantic RichfieldCompany), 515 South Flower Street, Los Angles, CA 90092, USA. Study number: ATX-91-0041.Report date: 1992-03-09.ARCO (1992b). Acute oral toxicity study in rats administered test article F-128. Testing laboratory:UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City, UT 84108, USA.Report no.: 65815. Owner company: ARCO (Atlantic Richfield Company), 515 South Flower Street,Los Angles, CA 90092, USA. Study number: ATX-90-0027. Report date: 1992-07-08.ARCO (1992c). Acute oral toxicity study (limit test) in rats administered test article F-129. Testinglaboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City, UT 84108,USA. Report no.: 65816. Owner company: ARCO (Atlantic Richfield Company), 515 South FlowerStreet, Los Angles, CA 90092, USA. Study number: ATX-90-0035. Report date: 1992-07-08.ARCO (1992d). Acute oral toxicity study in rats administered test article F-134. Testing laboratory:UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City, UT 84108, USA.Report no.: 658979. Owner company: ARCO (Atlantic Richfield Company), 515 South Flower Street,Los Angles, CA 90092, USA. Study number: ATX-90-0075. Report date: 1992-05-20.ARCO (1992e). Acute oral toxicity study (limit test) in rats administered test article F-115-01. Testinglaboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City, UT 84108,USA. Report no.: 65522. Owner company: ARCO (Atlantic Richfield Company), 515 South FlowerStreet, Los Angles, CA 90092, USA. Study number: ATX-89-0071. Report date: 1992-03-11.ARCO (1992f). Approximate lethal dose (ALD) study in rats administered test article F-115-01.Testing laboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City,UT 84108, USA. Report no.: 65811. Owner company: ARCO (Atlantic Richfield Company), 515 SouthFlower Street, Los Angles, CA 90092, USA. Study number: ATX-90-0171. Report date: 1992-03-11.ARCO (1992g). Acute oral toxicity study (limit test) in rats administered test article F-97-01. Testinglaboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City, UT 84108,2010-08-10 CSR 158


Heavy Fuel Oil ComponentsUSA. Report no.: 64707. Owner company: ARCO (Atlantic Richfield Company), 515 South FlowerStreet, Los Angles, CA 90092, USA. Study number: ATX-88-0086. Report date: 1989-11-22.ARCO (1992h). Acute oral toxicity study in rats administered test article F-136. Testing laboratory:UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City, UT 84108, USA.Report no.: 65981. Owner company: ARCO (Atlantic Richfield Company), 515 South Flower Street,Los Angles, CA 90092, USA. Study number: ATX-90-0091. Report date: 1992-05-20.ARCO (1992i). Acute dermal toxicity study (limit test) in rabbits administered test article F-132.Testing laboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City,UT 84108, USA. Report no.: 65893. Owner company: ARCO (Atlantic Richfield Company), 515 SouthFlower Street, Los Angles, CA 90092, USA. Study number: ATX-90-0060. Report date: 1992-03-23.ARCO (1992j). Acute dermal toxicity study (limit test) in rabbits administered test article F-128.Testing laboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City,UT 84108, USA. Report no.: 65822. Owner company: ARCO (Atlantic Richfield Company), 515 SouthFlower Street, Los Angles, CA 90092, USA. Study number: ATX-90-0028. Report date: 1992-03-23.ARCO (1992k). Acute dermal toxicity study (limit test) in rabbits administered test article F-129.Testing laboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City,UT 84108, USA. Report no.: 65823. Owner company: ARCO (Atlantic Richfield Company), 515 SouthFlower Street, Los Angles, CA 90092, USA. Study number: ATX-90-0036. Report date: 1992-03-23.ARCO (1992l). Acute dermal toxicity study (limit test) in rabbits administered test article F-134.Testing laboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City,UT 84108, USA. Report no.: 65987. Owner company: ARCO (Atlantic Richfield Company), 515 SouthFlower Street, Los Angles, CA 90092, USA. Study number: ATX-90-0076. Report date: 1992-05-20.ARCO (1992m). Acute dermal toxicity study (limit test) in rabbits administered test article F-136.Testing laboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City,UT 84108, USA. Report no.: 65989. Owner company: ARCO (Atlantic Richfield Company), 515 SouthFlower Street, Los Angles, CA 90092, USA. Study number: ATX-90-0092. Report date: 1992-05-20.ARCO (1992n). Primary dermal irritation study in rabbits administered test article F-132. Testinglaboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City, UT 84108,USA. Report no.: 65841. Owner company: ARCO (Atlantic Richfield Company), 515 South FlowerStreet, Los Angles, CA 90092, USA. Study number: ATX-90-0062. Report date: 1992-07-08.ARCO (1992o). Primary dermal irritation study in rabbits administered test article F-128. Testinglaboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City, UT 84108,USA. Report no.: 65837. Owner company: ARCO (Atlantic Richfield Company), 515 South FlowerStreet, Los Angles, CA 90092, USA. Study number: ATX-90-0030. Report date: 1992-07-07.ARCO (1992p). Primary dermal irritation study in rabbits administered test article F-129. Testinglaboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City, UT 84108,USA. Report no.: 65838. Owner company: ARCO (Atlantic Richfield Company), 515 South FlowerStreet, Los Angles, CA 90092, USA. Study number: ATX-90-0038. Report date: 1992-07-07.ARCO (1992q). Primary dermal irritation study in rabbits administered test article F-134. Testinglaboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City, UT 84108,USA. Report no.: 66003. Owner company: ARCO (Atlantic Richfield Company), 515 South FlowerStreet, Los Angles, CA 90092, USA. Study number: ATX-90-0078. Report date: 1992-04-23.ARCO (1992r). Primary dermal irritation study in rabbits administered test article F-136. Testinglaboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City, UT 84108,USA. Report no.: 66005. Owner company: ARCO (Atlantic Richfield Company), 515 South FlowerStreet, Los Angles, CA 90092, USA. Study number: ATX-90-0094. Report date: 1992-04-23.ARCO (1992s). Primary eye irritation study in rabbits administered test article F-134. Testinglaboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City, UT 84108,USA. Report no.: 65995. Owner company: ARCO (Atlantic Richfield Company), 515 South FlowerStreet, Los Angles, CA 90092, USA. Study number: ATX-90-0077. Report date: 1992-04-28.2010-08-10 CSR 159


Heavy Fuel Oil ComponentsARCO (1992t). Primary eye irritation study in rabbits administered test article F-136. Testinglaboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City, UT 84108,USA. Report no.: 65997. Owner company: ARCO (Atlantic Richfield Company), 515 South FlowerStreet, Los Angles, CA 90092, USA. Study number: ATX-90-0093. Report date: 1992-04-28.ARCO (1992u). Dermal sensitization study in albino guinea pigs administered test article F-132.Testing laboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City,UT 84108, USA. Report no.: 65849. Owner company: ARCO (Atlantic Richfield Company), 515 SouthFlower Street, Los Angles, CA 90092, USA. Study number: ATX-90-0063. Report date: 1992-04-01.ARCO (1992v). Dermal sensitisation study in albino guinea pigs administered test article F-128.Testing laboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City,UT 84108, USA. Report no.: 65845. Owner company: ARCO (Atlantic Richfield Company), 515 SouthFlower Street, Los Angles, CA 90092, USA. Study number: ATX-90-0031. Report date: 1992-04-01.ARCO (1992w). Dermal sensitisation study in albino guinea pigs administered test article F-129.Testing laboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City,UT 84108, USA. Report no.: 65846. Owner company: ARCO (Atlantic Richfield Company), 515 SouthFlower Street, Los Angles, CA 90092, USA. Study number: ATX-90-0039. Report date: 1992-04-01.ARCO (1992x). Dermal sensitisation study in albino guinea pigs administered test article F-134.Testing laboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City,UT 84108, USA. Report no.: 66011. Owner company: ARCO (Atlantic Richfield Company), 515 SouthFlower Street, Los Angles, CA 90092, USA. Study number: ATX-90-0079. Report date: 1992-03-10.ARCO (1992y). Dermal sensitisation study in albino guinea pigs with test article F-136. Testinglaboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City, UT 84108,USA. Report no.: 66013. Owner company: ARCO (Atlantic Richfield Company), 515 South FlowerStreet, Los Angles, CA 90092, USA. Study number: ATX-90-0095. Report date: 1992-03-18.ARCO (1992z). Twenty-eight day dermal toxicity study in rats administered test article F-132. Testinglaboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City, UT 84108,USA. Report no.: 65894. Owner company: ARCO (Atlantic Richfield Company), 515 South FlowerStreet, Los Angles, CA 90092, USA. Study number: ATX-90-0066. Report date: 1992-11-23.ARCO (1993a). Twenty-eight (28) day dermal toxicity study in rats administered test article F-115-01.Testing laboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City,UT 84108, USA. Report no.: 65508. Owner company: ARCO (Atlantic Richfield Company), 515 SouthFlower Street, Los Angles, CA 90092, USA. Study number: ATX-89-0077. Report date: 1993-02-24.ARCO (1993b). Ninety (90) day dermal toxicity study in rats administered test article F-179. Testinglaboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City, UT 84108,USA. Report no.: 66152. Owner company: ARCO (Atlantic Richfield Company), 515 South FlowerStreet, Los Angles, CA 90092, USA. Study number: ATX-91-0012. Report date: 1993-02-04.ARCO (1993c). Twenty-eight (28) day dermal toxicity study in rats administered test article F-113-01.Testing laboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City,UT 84108, USA. Report no.: 65367. Owner company: ARCO (Atlantic Richfield Company), 515 SouthFlower Street, Los Angles, CA 90092, USA. Study number: ATX-89-0011. Report date: 1993-02-20.ARCO (1993d). Developmental toxicity (embryo-fetal toxicity and teratogenic potential) study of F-196administered percutaneously to Crl: CD BR VAF/Plus presumed pregnant rats. Testing laboratory:Argus Research Laboratories Inc, 935 Horsham Road, Horsham, PA 19044, USA. Report no.: 1001-006. Owner company: ARCO (Atlantic Richfield Company), 515 South Flower Street, Los Angles, CA90092, USA. Study number: ATX-92-0012. Report date: 1993-12-13.ARCO (1993e). Developmental toxicity (embryo-fetal toxicity and teratogenic potential) study of F-197administered percutaneously to Crl: CDBR VAF/Plus presumed pregnant rats. Testing laboratory:Argus Research Laboratories Inc, 935 Horsham Road, Horsham, PA 19044, USA. Report no.: 1001-009. Owner company: ARCO (Atlantic Richfield Company), 515 South Flower Street, Los Angles, CA90092, USA. Study number: ATX-92-0154. Report date: 1993-12-13.2010-08-10 CSR 160


Heavy Fuel Oil ComponentsARCO (1994a). Acute inhalation toxicity study (limit test) in rats administered F-115. Testinglaboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City, UT 84108,USA. Report no.: 66756. Owner company: ARCO (Atlantic Richfield Company), 515 South FlowerStreet, Los Angles, CA 90092, USA. Study number: ATX-89-0076. Report date: 1994-02-15.ARCO (1994b). Acute inhalation toxicity study in rats administered F-109. Testing laboratory: IITResearch Institute, 10 West 35th Street, Chicago, IL 60616, USA. Report no.: L0829. Ownercompany: ARCO (Atlantic Richfield Company), 515 South Flower Street, Los Angles, CA 90092,USA. Study number: ATX-88-0219. Report date: 1994-04-11.ARCO (1994c). Twenty-eight (28) day dermal toxicity study in rats administered test article F-113-01.Testing laboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City,UT 84108, USA. Report no.: 65367R. Owner company: ARCO (Atlantic Richfield Company), 515South Flower Street, Los Angles, CA 90092, USA. Study number: ATX-93-0173. Report date: 1994-03-03.ARCO (1994d). Ninety (90) day dermal toxicity study in rats administered test article F-239. Testinglaboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 Wakara Way, Salt Lake City, UT 84108,USA. Report no.: 66558. Owner company: ARCO (Atlantic Richfield Company), 515 South FlowerStreet, Los Angles, CA 90092, USA. Study number: ATX-91-0260. Report date: 1994-01-29.ARCO (1994e). A developmental toxicity screen in female rats administered F-228 dermally duringgestation days 0 to 20. Testing laboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 WakaraWay, Salt Lake City, UT 84108, USA. Report no.: 66479. Owner company: ARCO (Atlantic RichfieldCompany), 515 South Flower Street, Los Angles, CA 90092, USA. Study number: ATX-91-0267.Report date: 1994-03-01.ARCO (1994f). A developmental toxicity screen in female rats administered F-225 dermally duringgestation days 0 to 20. Testing laboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 WakaraWay, Salt Lake City, UT 84108, USA. Report no.: 66477. Owner company: ARCO (Atlantic RichfieldCompany), 515 South Flower Street, Los Angles, CA 90092, USA. Study number: ATX-91-0264.Report date: 1994-03-01.ARCO (1994g). A developmental toxicity screen in female rats administered F-276 dermally duringgestation days -7 to 20. Testing laboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502Wakara Way, Salt Lake City, UT 84108, USA. Report no.: 67007. Owner company: ARCO (AtlanticRichfield Company), 515 South Flower Street, Los Angles, CA 90092, USA. Study number: ATX-93-0073. Report date: 1994-03-03.ARCO (1994h). A developmental toxicity screen in female rats administered F-227 dermally duringgestation days 0 to 20. Testing laboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 WakaraWay, Salt Lake City, UT 84108, USA. Report no.: 66478. Owner company: ARCO (Atlantic RichfieldCompany), 515 South Flower Street, Los Angles, CA 90092, USA. Study number: ATX-91-0266.Report date: 1994-03-02.ARCO (1994i). A developmental toxicity screen in female rats administered F-196 dermally duringgestation days -7 to 20. Testing laboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502Wakara Way, Salt Lake City, UT 84108, USA. Report no.: 66356. Owner company: ARCO (AtlanticRichfield Company), 515 South Flower Street, Los Angles, CA 90092, USA. Study number: ATX-91-0130. Report date: 1994-02-28.ARCO (1994j). A developmental toxicity screen in female rats administered F-201 dermally duringgestation days -7 to 20. Testing laboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502Wakara Way, Salt Lake City, UT 84108, USA. Report no.: 66360. Owner company: ARCO (AtlanticRichfield Company), 515 South Flower Street, Los Angles, CA 90092, USA. Study number: ATX-91-0135. Report date: 1994-03-01.ARCO (1994k). A developmental toxicity screen in female rats administered F-222 dermally duringgestation days 0 to 20. Testing laboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 WakaraWay, Salt Lake City, UT 84108, USA. Report no.: 66473. Owner company: ARCO (Atlantic RichfieldCompany), 515 South Flower Street, Los Angles, CA 90092, USA. Study number: ATX-91-0269.2010-08-10 CSR 161


Heavy Fuel Oil ComponentsReport date: 1994-02-28.ARCO (1994l). A developmental toxicity screen in female rats administered F-221 dermally duringgestation days 0 to 20. Testing laboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 WakaraWay, Salt Lake City, UT 84108, USA. Report no.: 66473. Owner company: ARCO (Atlantic RichfieldCompany), 515 South Flower Street, Los Angles, CA 90092, USA. Study number: ATX-91-0269.Report date: 1994-02-28.ARCO (1994m). A developmental toxicity screen in female rats administered F-179 dermally duringgestation days -7 to 20. Testing laboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502Wakara Way, Salt Lake City, UT 84108, USA. Report no.: 66349. Owner company: ARCO (AtlanticRichfield Company), 515 South Flower Street, Los Angles, CA 90092, USA. Study number: ATX-91-0155. Report date: 1994-02-23.ARCO (1994n). A developmental toxicity screen in female rats administered F-229 dermally duringgestation days 0 to 20. Testing laboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 WakaraWay, Salt Lake City, UT 84108, USA. Report no.: 66480. Owner company: ARCO (Atlantic RichfieldCompany), 515 South Flower Street, Los Angles, CA 90092, USA. Study number: ATX-91-0268.Report date: 1994-03-02.ARCO (1994o). A developmental toxicity screen in female rats administered F-274 dermally duringgestation days 0 to 20. Testing laboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 WakaraWay, Salt Lake City, UT 84108, USA. Report no.: 67005. Owner company: ARCO (Atlantic RichfieldCompany), 515 South Flower Street, Los Angles, CA 90092, USA. Study number: ATX-93-0069.Report date: 1994-03-03.ARCO (1994p). A developmental toxicity screen in female rats administered F-221 dermally duringgestation days 0 to 20. Testing laboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 WakaraWay, Salt Lake City, UT 84108, USA. Report no.: 66473. Owner company: ARCO (Atlantic RichfieldCompany), 515 South Flower Street, Los Angles, CA 90092, USA. Study number: ATX-91-0269.Report date: 1994-02-23.ARCO (1994q). A developmental toxicity screen in female rats administered F-275 dermally duringgestation days 0 to 20. Testing laboratory: UBTL (Utah Biomedical Test Laboratory) Inc., 502 WakaraWay, Salt Lake City, UT 84108, USA. Report no.: 67006. Owner company: ARCO (Atlantic RichfieldCompany), 515 South Flower Street, Los Angles, CA 90092, USA. Study number: ATX-93-0071.Report date: 1994-03-03.American Petroleum Institute (1982). Acute toxicity studies of catalytic cracked clarified oil, APISample 81-15. Testing laboratory: Hazleton Raltech, PO Box 7545, Madison, WI 53707, USA. Ownercompany: American Petroleum Institute, 2101 L Street, Northwest, Washington, DC 20037, USA.Study number: Report No. 30-31854. Report date: 1982-08-09.American Petroleum Institute (1985a). Mutagenicity evaluation studies of catalytic cracked clarified oil,API Sample 81-15, in the rat bone marrow cytogenetic assay and in the mouse lymphoma forwardmutation assay. Testing laboratory: Litton Bionetics Inc., 5516 Nicholson Lane, Kensington, Maryland20895, USA. Owner company: American Petroleum Institute, 2101 L Street, Northwest, Washington,DC 20037, USA. Study number: 32-30534. Report date: 1985-02-07.American Petroleum Institute (1985b). CHO/HGPRT mammalian cell forward gene mutation assay.Testing laboratory: Pharmakon Research International Inc., Waverly, PA 18471, USA. Ownercompany: American Petroleum Institute, 2101 L Street, Northwest, Washington, DC 20037, USA.Study number: 32-32118. Report date: 1985-06-06.American Petroleum Institute (1985c). Sister chromatid exchange (SCE) assay in Chinese hamsterovary (CHO) cells. Catalytic cracked clarified oil, API Sample 81-15, CAS No. 64741-62-4. Testinglaboratory: Microbiological Associates Inc., 5221 River Road, Bethesda, MD 20816, USA. Ownercompany: American Petroleum Institute, 2101 L Street, Northwest, Washington, DC 20037, USA.Study number: 32-32750. Report date: 1985-11-08.American Petroleum Institute (1985d). In-vivo sister chromatid exchange (SCE) assay. Catalyticcracked clarified oil, API Sample 81-15, CAS No. 64741-62-4. Testing laboratory: Microbiological2010-08-10 CSR 162


Heavy Fuel Oil ComponentsAssociates Inc., 5221 River Road, Bethesda, MD 20816, USA. Owner company: American PetroleumInstitute, 2101 L Street, Northwest, Washington, DC 20037, USA. Study number: 32-32754. Reportdate: 1985-11-25.American Petroleum Institute (1985e). An evaluation of the potential of RO-1, 81-15 and PS8-76D5-SAT to induce unscheduled DNA synthesis (UDS) in the in-vivo/in-vitro hepatocyte DNA repair assay.Testing laboratory: SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA. Ownercompany: American Petroleum Institute, 2101 L Street, Northwest, Washington, DC 20037, USA.Study number: 32-32406. Report date: 1985-06-20.American Petroleum Institute (1986a). Salmonella/mammalian microsome plate incorporationmutagenicity assay (Ames test). Testing laboratory: Microbiological Associates Inc., 5221 River Road,Bethesda, MD 20816, USA. Owner company: American Petroleum Institute, 2101 L Street,Northwest, Washington, DC 20037, USA. Study number: 33-30599. Report date: 1986-03-04.American Petroleum Institute (1986b). Morphological transformation of BALB/3T3 mouse embryocells. Catalytic cracked clarified oil, API Sample 81-15, CAS No. 64741-62-4. Testing laboratory:Microbiological Associates Inc., 5221 River Road, Bethesda, MD 20816, USA. Owner company:American Petroleum Institute, 2101 L Street, Northwest, Washington, DC 20037, USA. Study number:32-326738. Report date: 1986-08-25.American Petroleum Institute (1989a). Lifetime dermal carcinogenesis bioassay of refinery streams inC3H/HeJ mice (AP-135R). Testing laboratory: Primate Research Institute, New Mexico StateUniversity, Holloman Air Force Base, NM 88330, USA. Owner company: American PetroleumInstitute, 2101 L Street, Northwest, Washington, DC 20037, USA. Study number: 36-31364. Reportdate: 1989-01-30.American Petroleum Institute (1989b). Short-term dermal tumorigenesis study of selected petroleumhydrocarbons in male CD-1 mice: initiation and promotion phases. Testing laboratory: IIT ResearchInstitute, Life Sciences Research, 10 West 35th Street, Chicago, IL 60616, USA. Owner company:American Petroleum Institute, 2101 L Street, Northwest, Washington, DC 20037, USA. Study number:Report No. 36-32643. Report date: 1999-11-29.Bingham, E, Trosset, RP and Warshawsky, D (1980). Carcinogenic potential of petroleumhydrocarbons. Journal of Environmental Pathology and Toxicology 3, 483-563.Brack W, Altenburger R, Kuster E, Meissner B, Wenzel K-D, Schüürmann G. (2003). Identification oftoxic products of anthracene photomodification in simulated sunlight. Environmental Toxicology andChemistry 22:2228-2237.Chaineau, C. H., Morel, J. L. and Oudot, J. (1997). Phytotoxicity and plant uptake of fuelhydrocarbons. Journal of Environmental Quality 26(6): 1478-1483. Testing laboratory: Laboratory ofSoil and Environmental Sciences, EMSAIA-INRA/INPL B. P., Vandoeuvre-lés-Nancy, France.CONCAWE (1985) Health aspects of petroleum fuels - potential hazards and precautions forindividual classes of fuels. Report No. 85/51. Brussels: CONCAWE.CONCAWE (1989). Review of the toxicity of catalytically cracked clarified oil. Report no.: Report No.89/56. Owner company: CONCAWE, Brussels.CONCAWE (1992). Ecotoxicological testing of petroleum products: test methodology. Report No.92/56, CONCAWE, Brussels, Belgium.CONCAWE (1994) The use of the dimethyl sulphoxide (DMSO) extract by the IP 346 method as anindicator of the carcinogenicity of lubricant base oils and distillate aromatic extracts. CONCAWEreport No. 94/51, February 1994, Brussels.CONCAWE (1996). Environmental risk assessment of petroleum substances: the hydrocarbon blockmethod. Report no. 96/52, CONCAWE, Brussels, Belgium.CONCAWE (1998). Heavy Fuel Oils - Product dossier no. 98/109. CONCAWE, Brussels, Belgium.2010-08-10 CSR 163


Heavy Fuel Oil ComponentsCONCAWE (2010a). Compilation of selected physico-chemical properties of petroleum substances.Owner company: CONCAWE, Brussels, Belgium. Study number: 6/10.CONCAWE (2010b) An Evaluation of the Persistence, Bioaccumulation and Toxicity of PetroleumHydrocarbons. Owner company: CONCAWE (Brussels, Belgium).DiToro, D.M., McGrath J.A., Hansen D.J. (2000). Technical basis for narcotic chemicals andpolycyclic aromatic hydrocarbon criteria. I. Water and Tissue. Environ. Toxicol. Chem. 19, 1951-1970.EC (2003). 2nd Edition of the Technical Guidance Document in support of Commission Directive93/67/EEC on Risk Assessment of new notified substances, Commission Regulation (EC) No1488/94 on Risk Assessment for existing substances and Directive 98/8/EC of the EuropeanParliament and of the Council concerning the placing of biocidal products on the market. Office forthe Official Publications of the European Communities, Luxembourg.ECHA (2008) Guidance on information requirements and chemical safety assessment. Chapter R. 7c:Endpoint specific guidance, Section R. 7.12: Guidance on Toxicokinetics. European ChemicalsAgency, May 2008EMBSI (2008a). Fish acute toxicity test. Final Report. Testing laboratory: ExxonMobil BiomedicalSciences, Inc. Laboratory Operations 1545 Route 22 East. P. O. Box 971, Annandale, New Jersey,USA. Owner company: CONCAWE. Study number: 0791158. Report date: 2008-07-31.EMBSI (2008b). Fish acute toxicity test. Final Report. Testing laboratory: ExxonMobil BiomedicalSciences, Inc. Laboratory Operations 1545 Route 22 East. P. O. Box 971, Annandale, New Jersey,USA. Owner company: CONCAWE. Study number: 0791058. Report date: 2008-07-31.EMBSI (2008c). Fish acute toxicity test. Final Report. Testing laboratory: ExxonMobil BiomedicalSciences, Inc. Laboratory Operations 1545 Route 22 East. P. O. Box 971, Annandale, New Jersey,USA. Owner company: CONCAWE. Study number: 0791358. Report date: 2008-07-31.EMBSI (2008d). Fish acute toxicity test. Final Report. Testing laboratory: ExxonMobil BiomedicalSciences, Inc. Laboratory Operations 1545 Route 22 East. P. O. Box 971, Annandale, New Jersey,USA. Owner company: CONCAWE. Study number: 0790958. Report date: 2008-07-31.EMBSI (2008e). Daphnia sp. Acute Immobilization Test. Final Report. Testing laboratory: ExxonMobilBiomedical Sciences, Inc. Laboratory Operations 1545 Route 22 East. P. O. Box 971, Annandale,New Jersey, USA. Owner company: CONCAWE. Study number: 0790942. Report date: 2008-07-31.EMBSI (2008f). Daphnia sp. Acute Immobilization Test. Final Report. Testing laboratory: ExxonMobilBiomedical Sciences, Inc. Laboratory Operations 1545 Route 22 East. P. O. Box 971, Annandale,New Jersey, USA. Owner company: CONCAWE. Study number: 0791042. Report date: 2008-07-31.EMBSI (2008g). Daphnia sp. Acute Immobilization Test. Final Report. Testing laboratory: ExxonMobilBiomedical Sciences, Inc. Laboratory Operations 1545 Route 22 East. P. O. Box 971, Annandale,New Jersey, USA. Owner company: CONCAWE. Study number: 0791142. Report date: 2008-07-31.EMBSI (2008h). Daphnia sp. Acute Immobilization Test. Final Report. Testing laboratory: ExxonMobilBiomedical Sciences, Inc. Laboratory Operations 1545 Route 22 East. P. O. Box 971, Annandale,New Jersey, USA. Owner company: CONCAWE. Study number: 0791342. Report date: 2008-07-31.EMBSI (2008i). Daphnia sp. Acute Immobilization Test. Final Report. Testing laboratory: ExxonMobilBiomedical Sciences, Inc. Laboratory Operations 1545 Route 22 East. P. O. Box 971, Annandale,New Jersey 08801-0971. Owner company: CONCAWE. Study number: 0791342. Report date: 2008-07-31.EMBSI (2008j). Alga, growth inhibition test. Final Report. Testing laboratory: ExxonMobil BiomedicalSciences, Inc. Laboratory Operations 1545 Route 22 East. P. O. Box 971, Annandale, New Jersey,USA. Owner company: CONCAWE. Study number: 0791367. Report date: 2008-07-31.EMBSI (2008k). Alga, growth inhibition test. Final Report. Testing laboratory: ExxonMobil BiomedicalSciences, Inc. Laboratory Operations 1545 Route 22 East. P. O. Box 971, Annandale, New Jersey,2010-08-10 CSR 164


Heavy Fuel Oil ComponentsUSA. Owner company: CONCAWE. Study number: 0791067. Report date: 2008-07-31.EMBSI (2008l). Alga, growth inhibition test. Final Report. Testing laboratory: ExxonMobil BiomedicalSciences, Inc. Laboratory Operations 1545 Route 22 East. P. O. Box 971, Annandale, New Jersey,USA. Owner company: CONCAWE. Study number: 0790967. Report date: 2008-07-31.Emergencies Science Division (ESD) (1990). Experimental data [as cited by Environment Canada].Environment Canada, Ottawa, On, 1990-1999.Environmental Emergencies Technology Division (EETD) (1988). Experimental data [as cited in BalticCarrier report, Appendix VII, and in Environment Canada report]. Environment Canada, Ottawa, On,1983-1989.EPA (2004). Substance registry system (SRS) Data base [as cited in API, 2004]. U.S. EnvironmentalProtection Agency http://iaspub.epa.gov/sor_internet/registry/substreg/home/overview/home.doEuropean Chemical Substances Information System (ESIS) (2000). IUCLID Dataset, Residues(petroleum), atm. tower (CAS No. 64741–45–3). Original source not stated. European ChemicalsBureau, Web version URL: http: //ecb. jrc. it/.Exxon Biomedical Sciences Inc. (1992). Carcinogenicity of heavy fuel oils. Owner company: Exxon,in-house company data.Feuston, M.H., Hamilton, C.E. and Mackerer, C.R. (1997). Systemic and developmental toxicity ofdermally applied syntower bottoms. Fund Appl Toxicol 35, 166-176.Feuston, M.H., Low, L.K., Hamilton, C.E. and Mackerer, C.R. (1994). Correlation of systemic anddevelopmental toxicities with chemical component classes of refinery streams. Fundamental andApplied Toxicology, 22:622-630.Fox, M.A and Olive. S. (1979). Photooxidation of anthracene on atmospheric particulate matter.Science 205:582-583.Fritsche W and Hofrichter M, (2000), Aerobic degradation by microorganisms. In: Rehm, H.-J., Reed,G. (Eds.) Biotechnology - Vol. 11b: Environmental Processes. Wiley-VCH, Weinheim, New York, pp.145-167.Girling, A. E., Makarian R.K., Bennett D. (1992). Aquatic toxicity testing of oil products - somerecommendations. Chemosphere 24(10), 1469-1472.Gould, E. (1959). Mechanism and Structure. in Organic Chemistry. Testing laboratory: na. Report no.:na. Owner company: Holt, Reinhart and Winston, New York, NY, USA. Study number: na.Grau, C. R., Roudybush, T., Dobbs, J., and Wathen, J. (1977). Altered yolk structure and reducedhatchability of eggs from birds fed single doses of petroleum oils. Science. 195, 779-781.Harris, J.C. (1982). Rate of hydrolysis. Handbook of Chemical Property Estimation Methods,Environmental Behaviour of Organic Chemicals, Chapter 7. Lyman, Reehl and Rosenblatt, eds,McGraw-Hill Book Co., New York. Owner company: McGraw-Hill, New York.Hoberman, AM, Christian, MS, Lovre, S, Roth, R and Koschier, F. (1995). Developmental toxicitystudy of clarified slurry oil (CSO) in the rat. Fund Appl Pharmacol, 28, 34-40. Testing laboratory:Argus Research Laboratories Inc., Horsham, PA.Huang, X-D., Krylov, S.N., Ren, L., McConkey, B.J., Dixon, D.G., Greenberg, B.M. (1997).Mechanistic quantitative structure-activity relationship model for the photoinduced toxicity of polycyclicaromatic hydrocarbons: II. An empirical model for the toxicity of 16 polycyclic aromatic hydrocarbonsto the duckweed Lemna gibba L. G-3. Environmental Toxicology and Chemistry. 16:2296-2303.International Agency for Research on Cancer (IARC) (1989). Occupational exposures in petroleumrefining: crude oil and major petroleum fuels. Monographs on the evaluation of the carcinogenic risksof chemicals to humans. Vol 45, IARC, Lyon.2010-08-10 CSR 165


Heavy Fuel Oil ComponentsKachholz, T., Rehm, H. (1977) Degradation of long chain alkanes by bacilli. I. Development andproduct formation by bacilli degrading alkanes in the presence of other carbon sources, AppliedMicrobiology and Biotechnology, 4(2): 101-110.Mackay, D. (1991).Multimedia Environmental Models. The Fugacity Approach, Lewis Publishers,Boca Raton, USA.Mackay, D. and Zagorski, W. (1982). Studies of water-in-oil emulsions [as cited in Baltic Carrier reportAppendix VII, and Environment Canada database]. Manuscript Report EE-34, Environment Canada,Ottawa, ON, 100p.Mallakin, A., Dixon, D.G., Greenberg, B.M.. (2000). Pathway of anthracene modificaton undersimulated solar radiation. Chemosphere. 40:1435-1441.McCarthy, L., Mackay, D., Smith, A.D., Ozburn, G.W., Dixon, D.G. (1991). Interpreting aquatic toxicityQSARs: The significance of toxicant body residues at the pharmacologic endpoint in: The Science ofthe Total Environment. Nrigu, J.O. (ed) 515-525. Elsevier, Amsterdam, The Netherlands.McConkey, B.J., Duxbury, C.L., Dixon, D.G., Greenberg, B.M.. (1997). Toxicity of a PAHphotooxidation product to the bacteria Photobacterium phosphoreum and the duckweed Lemnagibba: Effects of phenanthrene and its primary photoproduct, phenanthrenequinone. EnvironmentalToxicology and Chemistry. 16:892-899.McCullough, J. P. (1985). TSCA 8(e) Notification by Mobil Research & Development Corp. Ownercompany: Mobil Research & Development Corp.McGrath, J.A., Parkerton T.F., Di Toro D.M. (2004). Application of the narcosis target lipid model toalgal toxicity and deriving predicted no effect concentrations. Environ. Toxicol. Chem. 23, 2503-2517.McKee, R. H. et al. (1990). Estimation of epidermal carcinogenic potency. Fund. Appl. Toxicol., vol.15, pp. 320-328.Mobil (1986a). A modified Ames pre-incubation mutagenesis assay for determination of specificmutagenicity of the DMSO extract of heavy vacuum gas oil. Testing laboratory: Mobil Oil Corporation,Environmental and Health Sciences Laboratory, Pennington-Rocky Hill Road, Pennington, NJ 08534,USA. Report no.: MSHSL 52261. Owner company: Mobil Oil Corporation, Environmental and HealthSciences Laboratory, Pennington-Rocky Hill Road, Pennington, NJ 08534, USA. Study number:52261. Report date: 1986-01-02.Mobil (1986b). Micronucleus assay of bone marrow and peripheral red blood cells in rats treated viadermal administration of heavy coker gas oil. Testing laboratory: Mobil Oil Corporation, Environmentaland Health Sciences Laboratory, PO Box 1029, Princeton, NJ 08540, USA. Report no.: 50392. Ownercompany: Mobil Oil Corporation, Environmental and Health Sciences Laboratory, PO Box 1029,Princeton, NJ 08540, USA. Report date: 1986-02-18.Mobil (1987a). Micronucleus assay of bone marrow red blood cells from rats treated via dermaladministration of heavy vacuum gas oil. Testing laboratory: Mobil Oil Corporation, Environmental andHealth Sciences Laboratory, PO Box 1029, Princeton, NJ 08540, USA. Report no.: 61591. Ownercompany: Mobil Oil Corporation, Environmental and Health Sciences Laboratory, PO Box 1029,Princeton, NJ 08540, USA. Report date: 1987-06-15.Mobil (1987b). A Static 96-hour Acute Toxicity Study of Process Oil to Selenastrum capricornutum.Testing laboratory: Mobil Environmental and Health Science Laboratory. Pennington, NJ., USA.Owner company: Mobil. Study number: 60133. Report date: 1987-05-04.Mobil (1988a). Consolidated acute test report on v/breaker HGO. Testing laboratory: Mobil OilCorporation, Environmental and Health Sciences Laboratory, PO Box 1029, Princeton, NJ 08540,USA. Owner company: Mobil Oil Corporation, Environmental and Health Sciences Laboratory, POBox 1029, Princeton, NJ 08540, USA. Study number: MEHSL 62496. Report date: 1988-06-27.Mobil (1988b). Consolidated acute test report on vis gas oil-VIBRA. Testing laboratory: Mobil OilCorporation, Environmental and Health Sciences Laboratory, PO Box 1029, Princeton, NJ 08540,2010-08-10 CSR 166


Heavy Fuel Oil ComponentsUSA. Owner company: Mobil Oil Corporation, Environmental and Health Sciences Laboratory, POBox 1029, Princeton, NJ 08540, USA. Study number: MEHSL 62500. Report date: 1988-06-27.Mobil (1988c). Consolidated acute test report on vis gas oil - vibra. Testing laboratory: Mobil OilCorporation, Environmental and Health Sciences Laboratory, PO Box 1029, Princeton, NJ 08540,USA. Owner company: Mobil Oil Corporation, Environmental and Health Sciences Laboratory, POBox 1029, Princeton, NJ 08540, USA. Study number: MEHSL 62501. Report date: 1988-06-27.Mobil (1988d). Consolidated acute test report on heavy vacuum gas oil. Testing laboratory: Mobil OilCorporation, Environmental and Health Sciences Laboratory, PO Box 1029, Princeton, NJ 08540,USA. Owner company: Mobil Oil Corporation, Environmental and Health Sciences Laboratory, POBox 1029, Princeton, NJ 08540, USA. Study number: MEHSL 62443. Report date: 1988-06-13.Mobil (1988e). Consolidated acute test report on v/breaker HGO. Testing laboratory: Mobil OilCorporation, Environmental and Health Sciences Laboratory, PO Box 1029, Princeton, NJ 08540,USA. Owner company: Mobil Oil Corporation, Environmental and Health Sciences Laboratory, POBox 1029, Princeton, NJ 08540, USA. Study number: MEHSL 62497. Report date: 1988-06-27.Mobil (1988f). Consolidated acute test report on heavy vacuum gas oil. Testing laboratory: Mobil OilCorporation, Environmental and Health Sciences Laboratory, PO Box 1029, Princeton, NJ 08540,USA. Owner company: Mobil Oil Corporation, Environmental and Health Sciences Laboratory, POBox 1029, Princeton, NJ 08540, USA. Study number: MEHSL 62445. Report date: 1988-06-13.Mobil (1988g). Consolidated acute test report on v/breaker HGO. Testing laboratory: Mobil OilCorporation, Environmental and Health Sciences Laboratory, PO Box 1029, Princeton, NJ 08540,USA. Owner company: Mobil Oil Corporation, Environmental and Health Sciences Laboratory, POBox 1029, Princeton, NJ 08540, USA. Study number: MEHSL 62499. Report date: 1988-06-27.Mobil (1988h). Consolidated acute test report on vis gas oil - VIBRA. Testing laboratory: Mobil OilCorporation, Environmental and Health Sciences Laboratory, PO Box 1029, Princeton, NJ 08540,USA. Owner company: Mobil Oil Corporation, Environmental and Health Sciences Laboratory, POBox 1029, Princeton, NJ 08540, USA. Study number: MEHSL 62503. Report date: 1988-06-27.Mobil (1988i). Consolidated acute test report on heavy vacuum gas oil. Testing laboratory: Mobil OilCorporation, Environmental and Health Sciences Laboratory, PO Box 1029, Princeton, NJ 08540,USA. Owner company: Mobil Oil Corporation, Environmental and Health Sciences Laboratory, POBox 1029, Princeton, NJ 08540, USA. Study number: MEHSL 62444. Report date: 1988-06-13.Mobil (1988j). Consolidated acute test report on vis breaker heavy gas oil. Testing laboratory: MobilOil Corporation, Environmental and Health Sciences Laboratory, PO Box 1029, Princeton, NJ 08540,USA. Owner company: Mobil Oil Corporation, Environmental and Health Sciences Laboratory, POBox 1029, Princeton, NJ 08540, USA. Study number: MEHSL 62498. Report date: 1988-06-27.Mobil (1988k). Consolidated acute test report on vis gas oil-vibra. Testing laboratory: Mobil OilCorporation, Environmental and Health Sciences Laboratory, PO Box 1029, Princeton, NJ 08540,USA. Owner company: Mobil Oil Corporation, Environmental and Health Sciences Laboratory, POBox 1029, Princeton, NJ 08540, USA. Study number: MEHSL 62502. Report date: 1988-06-27.Mobil (1989). Micronucleus assay of bone marrow red blood cells from rats treated via dermaladministration of syntower bottoms. Testing laboratory: Mobil Oil Corporation, Environmental andHealth Sciences Laboratory, PO Box 1029, Princeton, NJ 08540, USA. Report no.: 62711. Ownercompany: Mobil Oil Corporation, Environmental and Health Sciences Laboratory, PO Box 1029,Princeton, NJ 08540, USA. Report date: 1989-03-09.Mobil (1990a). Micronucleus assay of bone marrow red blood cells from rats treated via dermaladministration of visbreaker mittelol. Testing laboratory: Mobil Oil Corporation, Environmental andHealth Sciences Laboratory, PO Box 1029, Princeton, NJ 08540, USA. Report no.: 63238. Ownercompany: Mobil Oil Corporation, Environmental and Health Sciences Laboratory, PO Box 1029,Princeton, NJ 08540, USA. Report date: 1990-01-29.Mobil (1990b). Micronucleus assay of bone marrow red blood cells from rats treated via dermaladministration of heavy atmospheric gas oil. Testing laboratory: Mobil Oil Corporation, Environmental2010-08-10 CSR 167


Heavy Fuel Oil Componentsand Health Sciences Laboratory, Pennington-Rocky Hill Road, Pennington, NJ 08534, USA. Reportno.: 64147. Owner company: Mobil Oil Corporation, Environmental and Health Sciences Laboratory,Pennington-Rocky Hill Road, Pennington, NJ 08534, USA. Report date: 1991-03-29.Mobil (1991). Micronucleus assay of bone marrow red blood cells from rats treated via dermaladministration of heavy coker gas oil. Testing laboratory: Mobil Oil Corporation, Environmental andHealth Sciences Laboratory, Pennington-Rocky Hill Road, Pennington, NJ 08534, USA. Report no.:64185. Owner company: Mobil Oil Corporation, Environmental and Health Sciences Laboratory,Pennington-Rocky Hill Road, Pennington, NJ 08534, USA. Report date: 1991-01-30.Mobil (1992a). Consolidated acute test report on V. B. Mittelol. Testing laboratory: Mobil OilCorporation, Environmental and Health Sciences Laboratory, Pennington-Rocky Hill Road,Pennington, NJ 08534, USA. Owner company: Mobil Oil Corporation, Environmental and HealthSciences Laboratory, Pennington-Rocky Hill Road, Pennington, NJ 08534, USA. Study number:MEHSL 64635. Report date: 1992-10-05.Mobil (1992b). Consolidated acute test report on v. b. mittelol. Testing laboratory: Mobil OilCorporation, Environmental and Health Sciences Laboratory, Pennington-Rocky Hill Road,Pennington, NJ 08534, USA. Owner company: Mobil Oil Corporation, Environmental and HealthSciences Laboratory, Pennington-Rocky Hill Road, Pennington, NJ 08534, USA. Study number:MEHSL 64636. Report date: 1992-10-05.Mobil (1992c). Consolidated acute test report on v. b. mittelol. Testing laboratory: Mobil OilCorporation, Environmental and Health Sciences Laboratory, Pennington-Rocky Hill Road,Pennington, NJ 08534, USA. Owner company: Mobil Oil Corporation, Environmental and HealthSciences Laboratory, Pennington-Rocky Hill Road, Pennington, NJ 08534, USA. Study number:MEHSL 64638. Report date: 1992-10-05.Mobil (1992d). Consolidated acute test report on vis-breaker Mittelol. Testing laboratory: Mobil OilCorporation, Environmental and Health Sciences Laboratory, Pennington-Rocky Hill Road,Pennington, NJ 08534, USA. Owner company: Mobil Oil Corporation, Environmental and HealthSciences Laboratory, Pennington-Rocky Hill Road, Pennington, NJ 08534, USA. Study number:EHSL 64637. Report date: 1992-10-05.Neely, W.B. and Blau, G.E. (1985). Hydrolysis. Environmental Exposure from Chemicals, Vol. 1, pp.157-173. CRC Press, Boca Raton, FL, USA.Nikolaou K, Masclet P, Mouvier G. (1984). Sources and chemical reactivity of polynuclear aromatichydrocarbons in the atmosphere - a critical review. Science of the Total Environment. 32:103-132.Niper (1993). Analyses of ARCO petroleum stream samples [as cited in API dossier]. NationalInstitute for Petroleum and Energy Research (Bartlesville, Oklahoma).OCIMF (1989). The flammability hazards associated with the handling, storage, and carriage ofresidual fuel oil [cited in CONCAWE, 1998]. London: Oil Companies International Marine Forum.Plant Research International (2008). Assessment of chronic effects of 1,3,5-trimethylbenzene(mesitylene) and n-undecane on plants. Reports 204 and 205. Owner company: CONCAWE.Potter, T. L. and Simmons, K. E. (1998). Composition of Petroleum Mixtures. Total PetroleumHydrocarbon Criteria Working Group Series (TPHCWG), Volume 2.Prince, R.C., Walters, C.C. (2006). Biodegradation of Oil Hydrocarbons and Its Implications forSource Identification. In: Wang Z, Stout SA, (Eds.) Oil Spill Environmental Forensics Academic Press.p 349-379.Przygoda,, R.T., McKee, R.H., Amoruso, M.A. and Freeman, J.J. (1999). Assessment of the utility ofthe micronucleus test for petroleum-derived materials. Mutation Research 438, 145-153.The Petroleum HPV Testing Group (2004). HIGH PRODUCTION VOLUME (HPV) CHEMICALCHALLENGE PROGRAM - TEST PLAN HEAVY FUEL OILS CATEGORY.2010-08-10 CSR 168


Heavy Fuel Oil ComponentsRedman, et al. (2010a). PETRORISK Model. Testing laboratory: Hydroqual Inc., Mahwah, NJ, USA.Owner company: CONCAWE.Redman, et al. (2010b). Aquatic Toxicity Predictions Obtained Using the PETROTOX Model forpetroleum substances. CONCAWE, Brussels, Belgium.Redman, et al. (2010c). PETRORISK Users Guide, HydroQual, Inc., for Conservation of Clean Airand Water in Europe (CONCAWE).Rocke, T. E., Yuill, T. M., Hinsdill, R. D. (1984). Oil and related toxicant effects on mallard immunedefenses. Environmental Research, 33, 343-352.Shell (1997a). Light fuel oil: Acute toxicity of water accommodated fractions to Oncorhynchus mykiss,Daphnia magna and Raphidocelis subcapitata. Testing laboratory: Sittingbourne Research Centre,Shell Research Ltd. Sittingbourne, Kent, U. K. Report no.: OP.97.47001. Owner company: ShellResearch and Technology Centre, Thornton, U. K. Report date: 1997-02-17.Shell (1997b). Heavy fuel oil: Acute toxicity of water accommodated fractions to Oncorhynchusmykiss, Daphnia magna and Raphidocelis subcapitata. Testing laboratory: Sittingbourne ResearchCentre, Shell Research Ltd. Sittingbourne, Kent, U. K. Report no.: OP.97.47002. Owner company:Shell Research and Technology Centre, Thornton, U. K. Report date: 1997-02-17.Stubblefield, W. A., Hancock, G. A., Prince, H. H. and Ringer, R. K. (1995). Effects of naturallyweathered EXXON VALDEZ crude oil on mallard reproduction. Environmental Toxicology andChemistry, Vol. 14, No. 11 pp. 1951-1960. Report date: 1995-05-10.Szaro, R. C. (1979). Bunker C fuel oil reduces Mallard egg hatchability. Bull. Environ. Contam.Toxicol., 22, 731-732. Testing laboratory: U. S. Fish and Wildlife Service, Patuxent Wildlife ResearchCenter.Van der Meer, J.R., de Vos, W.M., Harayama, S., Zehnder, A.J.B. (1992). Molecular mechanisms ofgenetic adaptation to xenobiotic compounds. Microbiological Reviews. 56:677-694.Volkering, F., Breure, A.M. (2003) Biodegradation and general aspects of bioavailability. In PAHs: Anecotoxicological perspective, Douben PET (Ed.). Wiley, West Sussex, UK, pp. 81-96.2010-08-10 CSR 169


Heavy Fuel Oil ComponentsCrude oil (Petroleum, CAS Registry Number (CAS RN) 8002-05-9) is a complex combinationof hydrocarbons extracted in its natural state from the ground. It consists predominantly ofaliphatic, alicyclic and aromatic hydrocarbons, but may also contain small amounts ofnitrogen, oxygen and sulphur compounds. It is used as a feedstock for petroleum refiningoperations, which separates and converts it into fractions (streams). Petroleum refinerystreams are used in a variety of applications, with the major proportion being used in theproduction of hydrocarbon transport fuels.Due to their method of production, and complex composition, it is not possible to characterisepetroleum substances in terms of their exact chemical composition, molecular formula orstructure. They are grouped together according to the process by which they are beingmanufactured and basic physical-chemical properties. Similar conversion and/or separationprocesses will result in streams of broadly similar composition. The resulting groups ofpetroleum substances have been used by the European Commission for the purposes ofcompiling Annex 1 to the Existing Substances Regulation (published in the Official JournalL84 on 5 April 1993), Annex XVII of REACH and Annex VI of CLP. The groups have alsobeen used during discussions on <strong>EU</strong> harmonised classification and labelling and for someendpoints (particularly carcinogenicity) harmonised ‘group’ classifications have been appliedto individual petroleum substances and are listed in both Annex 1 to 67/548/EC and Annex VIto CLP. In the USA, petroleum substances have also been grouped in categories for thepurposes of the High Production Volume (HPV) Chemicals programme. The approach isbroadly similar to that used in Europe, and has been accepted by the US EPA.This category justification has been prepared in accordance with the REACH TechnicalGuidance Document (May 2007) prepared under RIP 3.3.Heavy Fuel Oil components constitute one of a number of groups of substances produced atrefineries from petroleum feedstocks. Production and uses of Heavy Fuel Oils components(referred to as HFOs) are defined as:"Streams obtained as either distillates or residues from distillation and crackingprocesses and containing saturated, aromatic and olefinic hydrocarbons, > C8 and boilingrange is 150- >750°C.The HFOs category includes both finished products and the primary refinery streams fromwhich they are blended. Members of the HFOs category are a diverse group of substancesencompassing hydrocarbons with a wide range of molecular weights. In addition to aromatic,aliphatic and alicyclic hydrocarbons, they can contain heterocyclic compounds containingsulphur, nitrogen and oxygen and organo-metallic compounds derived from their presence inthe original crude oil. The finished HFO are products that consist primarily of the residuum ofthe refining processes, blended with similar lower viscosity fractions to meet marketingspecification limits. Such specifications include ASTM D-396 (1992), BS 2869 for inland fuels(1988), ISO 8217 for marine fuels (ISO 1996), CSR 500 (2000) and CIMAC requirements forresidual fuels for diesel engines (CIMAC 1990)Commercially available HFOs are produced within the refinery using components fromvarious refinery distillation and cracking processes, the most common of which are:2010-08-10 CSR Appendix 1


Heavy Fuel Oil Components• : the residue from the atmospheric distillation of crude oil.• : the residue from the vacuum distillation of crude oil.• : the residue from thermal crackingprocesses.• : a heavy fraction from a catalytic cracking.• : a middle distillate fraction from thermalcracker or visbreaker units.• : a heavy gas oil fraction (vacuum distillate) from the vacuumcolumn.• : a middle distillate fraction from the catalytic cracking unit.• : a heavier middle distillate fraction from the atmospheric column.The category is formed on the principle that the ‘HFOs’ substances are produced to aphysical-chemical and technical specification and present similar health, safety andenvironmental hazards.1.2 Category MembersThis category comprises 36 UVCBs (substances of Unknown or Variable compositions,Complex reaction products and Biological materials), each with a unique CAS RN; seeappendix 1. The EINECS (European Inventory of Existing Commercial chemical Substances)definition associated with each CAS RN generally includes, inter alia, reference to mainhydrocarbon types, boiling point and carbon number ranges, and the final processing step. Ingeneral the individual substances are all produced in quantities of greater than 1,000t/aThe members of this category are shown in Appendix 1, and are identical to those listed inREACH Annex XVII.Included in the category are some petroleum substances for which the EINECS entry is notaccompanied with a description providing information on the carbon number range and/or theboiling range. Some definitions answer specification for HFO (such as viscosity). In practice,however, these substances show carbon number ranges and boiling ranges similar to othermembers of the category and within the category domain definition. Consequently they havebeen grouped for the purposes of REACH Annex XVII together with the more specific HFOstype of substances.1.3 Purity / ImpuritiesFrom a regulatory perspective, the category members are recognised as UVCB substancesderived from the refining of crude oil (petroleum). Such chemical substances cannot berepresented by simple or unique chemical structures or molecular formulae. As such, theycontain constituents but do not contain impurities.1.4. Category OrderThe category described consists of UVCB substances and a category order is therefore notrelevant.2. Category jus tificationHeavy Fuel Oils components are products produced in a refinery comprising the residues anddistillates from various refinery distillation and cracking processes. They are viscous liquids2010-08-10 CSR Appendix 1


Heavy Fuel Oil Componentswith a characteristic odour and require heating for storage and combustion. Heavy fuel oilsare used in medium to large industrial plants, marine applications and power stations incombustion equipment such as boilers, furnaces and diesel engines.The complex and variable composition of UVCB substances means that it is not possible todefine precisely their physical-chemical, toxicological and environmental properties, but theywill fall into a range, defined by the properties, and amounts present, of hydrocarbon refinerystreams. To take account of the variable composition, hazard properties are determined usinga ‘worst case’ approach, except where specified.The category approach has been applied to all relevant physical-chemical, toxicological andecotoxicological endpoints listed in column 1 of Annexes VII, VIII, IX and X of the REACHRegulation. Where a specific endpoint is not considered applicable to substances in thiscategory a justification is provided.3. Data template and conclus ions per endpointfor clas s ification and labelling, PBT/vPvB anddos e des criptor‣ Heavy Fuel Oil components are produced to meet a technical performance specification.Typical values / ranges are given in Table 1.Table 1: Typical physical-chemical endpoint data for heavy fuel oil category 7.1 State of thesubstance at 20 o Cand101,3 kPaYesViscous liquid7.2 Melting point No < 30°C7.3Boiling point Yes 150 - > 750 o CHFOs are viscous liquids at normaltemperature and pressure and areusually heated to improve flowcharacteristics during distributionand useIt is not possible to define a singleboiling point for a UVCBsubstance. Range based oncategory domain (EN 3016, ASTMD97)It is not possible to define a singleboiling point for a UVCBsubstance. Range based oncategory domain (EN 15199,ASTM D 1160)7.4 Absolute density Yes 840 – 1200 kg/m 3 It is not possible to define a singlerelative density for a UVCBsubstance; (EN ISO 12185, ASTMD 4052 and/or EN ISO 3675,ASTM D 1298)7.5 Vapour pressure Yes0.02-0.79 kPa at120°C and Mw330-500Range based on category domain(ASTM D 2878, where 1 torr equalsto 133.3 Pa)1 In accordance with Annexes VII to X of REACH2010-08-10 CSR Appendix 1


Heavy Fuel Oil Components 7.6 Surface tension No7.7 Water solubility No7.8 Partition coefficientn-octanol/waterYes0.06-0.86 kPa at150°C and Mw350-420Not applicable –see commentNot applicable– seecommentNot applicable –see comment7.9 Flash-point Yes > 60°C7.10 Flammability Yes Non flammable7.11 Explosiveproperties7.12 Self-ignitiontemperature7.13 OxidisingpropertiesNoYesNo7.14 Granulometry NoNot applicable –see comment220-550°CNot applicable –see commentNot applicable –see commentIn accordance with Column 2 ofREACH Annex VII, data on surfacetension are not required as, basedon structural considerations,surface activity is not expected orpredicted, and surface activity isnot a desired property of thematerial.Substance is a hydrocarbon UVCB.Standard tests for water solubilityare intended for single substancesand are not appropriate for thiscomplex substance.Substance is a hydrocarbon UVCB.Standard tests for partition coefficientare intended for singlesubstances and are not appropriatefor this complex substance.Single values for the category orindividual UVCB members are notapplicable.In accordance with Section 1 ofREACH Annex XI, the study doesnot need to be conducted. Thesubstance is a viscous liquid atambient conditions. It is fullyliquefied at 30°C. It is moreappropriate to assess theflammability of such substances byreference to the flash point of theliquid form (Section 7.9).In accordance with Column 2 ofREACH Annex VII, the explosiveproperties studies (required insection R.7.11) does not need tobe conducted because there are nochemical groups associated withexplosive properties present in themolecule.Range based on category domain(ASTM E 659)In accordance with Column 2 ofREACH Annex VII, the oxidisingproperties studies (required insection R.7.13) does not need tobe conducted because thesubstance is incapable of reactingexothermically with combustiblematerials, on the basis of thechemical structure of theconstituents.According to Technical Guidanceon Information Requirements /CSA, section R.7.1.14.1(Information requirements ongranulometry), a study does notneed to be conducted if thesubstance is marketed or used in a2010-08-10 CSR Appendix 1


Heavy Fuel Oil Components 7.15 Stability in organicsolvents7.16 DissociationconstantNoNo7.17 Viscosity Yes‣ Not applicable –see commentNot applicable –see comment> 2 mm²/s at 100°C; > 7 mm²/s at 40°Cnon solid or non granular form. Inaccordance with Column 2 ofREACH Annex VII the study doesnot need to be conducted.In accordance with Section 1 ofREACH Annex XI, the stability inorganic solvents study (required inSection 7.15) does not need to beconducted because the stability ofthe substance is not considered tobe critical.In accordance with REACHChapter R.7A Endpoint SpecificGuidance, specifically R.7.1.17.1Information Requirements onDissociation Constant, if thesubstance cannot dissociate due toa lack of relevant functional groups,the dissociation constant is notrequired. As petroleumhydrocarbons do not containfunctional groups subject todissociation, data for this endpointis not neededThe kinematic viscosity determinedusing test method EN ISO 3104,ASTM D 445 at 100 °CToxicological data do not exist for all CAS RN in the category HFOs. Data on individual CASRN have been used to ‘read across’ to other substances in the category and in some cases(as indicated) the category value has been assigned based on the known presence of keyhazardous constituents. Unless specified, a ‘worst case’ approach has been applied. Table 2summarises the data availableTable 2: Toxicological endpoint Category values for heavy fuel oil category8.1.1 In vivo skinirritation8.2.1 In vivo eyeirritation8.4 Mutagenicity8.4.1 In vitro genemutation study inbacteria8.4.2 In vitrocytogenicity study inmammalian cellsYes Not irritant Based on key study test dataYes Not irritant Based on key study test dataYesNoNo evidence ofsensitisationNot applicable– see commentBased on key study test dataBacterial mutation studies havebeen shown to be unreliable forpredicting the effects of petroleumhydrocarbonsYes Ambiguous Based on key study test data2010-08-10 CSR Appendix 1


Heavy Fuel Oil Components8.4.3 In vitro genemutation study inmammalian cellsYesNot applicable– see commentNo dataIn vivo cytogenicity Yes Negative Based on key study test dataIn vivo genemutation8.5 Acute toxicityYes Negative Based on key study test dataNot mutagenicMost mutagenicity studies arenegative.8.5.1 By oral route Yes > 5000 mg/kg Based on key study test data8.5.2 By inhalation Yes 4.1 mg/l Based on key study test data8.5.3 By dermalrouteYes > 2 000 mg/kg Based on key study test data8.6 Repeated dose toxicity8.6.1 Short-termrepeated doseYestoxicity study(28 days)8.6.2 Sub-chronictoxicity study (90-day)8.7 Reproductive toxicity8.7.1 Screening forreproductive/developmentaltoxicity(OECD 421 or 422)8.7.2 Pre-nataldevelopmentalToxicity Study8.7.3 Twogenerationreproductive toxicitystudy8.8 Toxicokinetics8.8.1Assessment ofthe toxicokineticbehaviour of thesubstance8.9 Carcinogenicity8.9.1 CarcinogenicitystudyYesYesNoYesNoRat dermalNOAEL 1mg/kg/dayBased on key study test data - 28day rat dermalDermal ratNOAEL1.1mg/kg/day Based on key study test data - 90day rat dermal.LOAEL(reproductivetoxicity): 1mg/kg/dayNot applicable– see commentNot applicable– see commentNot applicable– seecommentsBased on key study test dataSee screening dataSee screening dataSubstances in this category areUVCBs; hence it is not possible toapply standard methodology forassessing absorption, distributionand metabolism. Relevant data foruse in risk assessment areavailable for key constituents.Yes Carcinogenic Based on key study test data‣ Many of the standard test methods for environmental endpoints are not suitable forassessing the hazards of complex UVCB petroleum substances. Hence it has beennecessary to develop alternative methodologies e.g. use of water accommodated fractions,2010-08-10 CSR Appendix 1


Heavy Fuel Oil Componentswhich are more suitable for predicting the hazard properties of complex petroleumsubstances, for classification purposes.A number of environmental endpoints are not relevant to the overall UVCB petroleumsubstance. The type, concentration, and physical-chemical properties of individual chemicalconstituents present will influence the environmental distribution and fate of categorymembers. Hence, an alternative strategy, based on the ‘Hydrocarbon Block Method’, hasbeen developed for assessing the environmental risk related to the constituents present inUVCB petroleum substances (European Chemicals Bureau, Technical Guidance Documenton Risk Assessment, Part II, 2003).Eco-toxicological data are not available for all members of the category HFOs. For thepurposes of hazard endpoint evaluation, data on individual CAS Registry Numbers have beenused to ‘read across’ to other substances in the category. Unless specified, in all cases a‘worst case’ approach has been applied to identify a category value, with some beingassigned on the basis of data available for constituents. Table 3 summarises the dataavailable. Eco-toxicological endpoint Category values for Heavy Fuel Oil product9.1 Aquatic toxicity9.1.1 Short-term toxicitytesting on invertebrates(preferred species Daphnia)9.1.2 Growth inhibition studyaquatic plants (algaepreferred)YesYesEL50 48h (Daphniamagna)ErL50 72h(Selenastrumcapricornutum)lNOEL Based on key study. Testmaterial was a wateraccommodated fractionBased on key study. Testmaterial was a wateraccommodated fraction9.1.3 Short-term toxicitytesting on fish.YesLL50 96h(Pimephalespromelas)= Based on key study. Testmaterial was a wateraccommodated fractionLL50 >1000 mg/l9.1.4 Activated sludgerespiration inhibition testing9.1.5 Long-term toxicitytesting on invertebrates(preferred species Daphnia)9.1.6 Long-term toxicitytesting on fish.NoYesNOEL 14.91 mg/lCalculated values byQSAR modelNOEL 0.27 mg/lCalculated value byQSARBased on key studyresulting fromPETROTOX computermodel.Based on key studyresulting fromPETROTOX computermodel9.1.6.1 Fish early-life stage(FELS) toxicity test9.1.6.2 Fish short-termtoxicity test on embryo andsac-fry stagesYesNOEL 0.1 mg/lCalculated value byQSARBased on key studyresulting fromPETROTOX computermodel9.1.6.3 Fish, juvenile growthtest9.2 Degradation9.2.1 Biotic2010-08-10 CSR Appendix 1


Heavy Fuel Oil Components9.2.1.1 Readybiodegradability9.2.1.2 Simulation testing onultimate degradation insurface water9.2.1.3 Soil simulation testing(for substances with a highpotential for adsorption tosoil)9.2.1.4 Sediment simulationtesting (for substances with ahigh potential for adsorptionto sediment)9.2.1 Abiotic9.2.2.1 Abiotic hydrolysis as afunction of pH.9.2.3 Identification ofdegradation productsYesNoNoNoNoNoNot applicable – seecommentsNot applicable – seecommentsNot applicable – seecommentsNot applicable – seecommentsNot applicable – seecommentsNot applicable – seecommentsSubstance is ahydrocarbon UVCB.Standard tests for thisendpoint are intended forsingle substances and arenot appropriate for thiscomplex substanceSubstance is ahydrocarbon UVCB.Standard tests for thisendpoint are intended forsingle substances and arenot appropriate for thiscomplex substanceSubstance is ahydrocarbon UVCB.Standard tests for thisendpoint are intended forsingle substances and arenot appropriate for thiscomplex substanceSubstance is ahydrocarbon UVCB.Standard tests for thisendpoint are intended forsingle substances and arenot appropriate for thiscomplex substanceThe available data andavailable weight ofevidence demonstratethat HFOs are resistant tohydrolysis because theylack a functional groupthat is hydrolyticallyreactive. Further testing isnot required under AnnexXI, section 1.2Substance is ahydrocarbon UVCB.Standard tests for thisendpoint are intended forsingle substances and arenot appropriate for thiscomplex substance.9.3 Fate and behaviour in the Environment9.3.1 Adsorption/desorptionscreening9.3.2 Bioaccumulation inaquatic species, preferablyfishNoNoNot applicable – seecommentsNot applicable – seecommentsSubstance is ahydrocarbon UVCB.Standard tests for thisendpoint are intended forsingle substances and arenot appropriate for thiscomplex substance.Substance is ahydrocarbon UVCB.Standard tests for thisendpoint are intended forsingle substances and arenot appropriate for this2010-08-10 CSR Appendix 1


Heavy Fuel Oil Componentscomplex substance.9.3.3 Further information onadsorption/desorption.NoNot applicable – seecommentsSubstance is ahydrocarbon UVCB.Standard tests for thisendpoint are intended forsingle substances and arenot appropriate for thiscomplex substance.9.3.4 Further information onthe environmental fate andbehaviour of the substanceand/or degradation productsNoNot applicable – seecommentsSubstance is ahydrocarbon UVCB.Standard tests for thisendpoint are intended forsingle substances and arenot appropriate for thiscomplex substance.9.4 Effects on terrestrial organisms9.4.1Short-term toxicity toinvertebrates9.4.2 Effects on soil microorganisms9.4.3 Short-term toxicity toplants9.4.4 Long-term toxicitytesting on invertebrates9.4.6 Long-term toxicitytesting on plants9.5.1 Long-term toxicity tosediment organismsNoNoNoNoNoNoNot applicable – seecommentsNot applicable – seecommentsNot applicable – seecommentsNot applicable – seecommentsNot applicable – seecommentsNot applicable – seecommentsSubstance is ahydrocarbon UVCB.Standard tests for thisendpoint are intended forsingle substances and arenot appropriate for thiscomplex substance.Substance is ahydrocarbon UVCB.Standard tests for thisendpoint are intended forsingle substances and arenot appropriate for thiscomplex substance.Substance is ahydrocarbon UVCB.Standard tests for thisendpoint are intended forsingle substances and arenot appropriate for thiscomplex substance.Substance is ahydrocarbon UVCB.Standard tests for thisendpoint are intended forsingle substances and arenot appropriate for thiscomplex substance.Substance is ahydrocarbon UVCB.Standard tests for thisendpoint are intended forsingle substances and arenot appropriate for thiscomplex substance.Substance is ahydrocarbon UVCB.Standard tests for thisendpoint are intended forsingle substances and arenot appropriate for this2010-08-10 CSR Appendix 1


Heavy Fuel Oil Components9.6.1 Long-term orreproductive toxicity to birdsNoOral NOAEL 22weeks (Anasplatyrhynchos)20,000 mg/kg dietcomplex substance.Read across from crudeoil. Based on key study.4. Conclus ion per endpoint for C&L, PBT/vPvBand dos e des criptorThe hazard classification of category members with respect to physical-chemical properties isas follows:• No classificationThe hazard classification of category members with respect to toxicological properties is asfollows:• ‘Harmful by inhalation’ R20• ‘Possible risk of harm to the unborn child’ – Category 3 (R63)• ‘Harmful: danger of serious damage to health by prolonged exposure in contactwith skin’ (R48/21)• ‘May cause cancer’ – category 2 (R45)• ‘Repeated exposure may cause skin dryness or cracking’ (R66)The hazard classification of category members with respect to ecotoxicological properties isas follows:• ‘Very toxic to aquatic organisms. May cause long-term adverse effects in theaquatic environment’ (R50/53)(Note: numbered in accordance with relevant CSR section)An evaluation of representative hydrocarbon structures indicates some structures meet thePersistent (P) or very Persistent (vP) criteria (see CONCAWE, 2010b).An evaluation of representative hydrocarbon structures indicates no structures meet the veryBioaccumulative (vB) criterion but some structures meet the Bioaccumulative (B) criterion(see CONCAWE, 2010b).For representative hydrocarbons structures that were found to meet the P and B criteria, atoxicity evaluation was performed (see CONCAWE, 2010b). No structures relevant topetroleum substances were found to meet the toxicity criterion except anthracene which hasbeen confirmed as a PBT substance.2010-08-10 CSR Appendix 1


Heavy Fuel Oil ComponentsAnthracene is not present in this substance at greater than 0.1% (CONCAWE, 2010b). Noother representative hydrocarbon structures were found to meet the PBT / vPvB criteria.Emission Characterisation is not required because the substance does not fulfil the PBT /vPvB criteria (see CONCAWE, 2010b).oooooooooooAcute oral LD 50 > 5000 mg/kgAcute Inhalation LC 50 = 4.1 mg/lAcute dermal LD 50 > 2000 mg/kgSub-chronic repeat dose dermal : NOAEL =1.1 mg/kgReproductive toxicity LOAEL =1 mg/kg/dayAcute aquatic invertebrate EL50 2 mg/lAcute aquatic algae ErL50 0.75 mg/lAcute aquatic fish LL50 79 mg/lLong-term invertebrate NOEL 0.27 mg/lLong-term fish NOEL 0.1 mg/lReproductive toxicity bird NOAEL 20,000 mg/kg dietThe data available for a range of Heavy Fuel Oil components have been reviewed against theREACH data requirements for high tonnage (greater than 1,000t/a) chemicals. The categoryjustification developed is considered applicable to all 36 UVCB substances identified inappendix 1 to this document and covers all endpoints. Using a ‘worst case’ approach,applicable values have been identified for the category and these can be used as the startingpoint for the derivation of classification and labelling proposals and DNEL and PNEC valuesrequired under REACH.2010-08-10 CSR Appendix 1


Heavy Fuel Oil ComponentsNote: Highlighted entries indicate CAS# for which tox/ecotox data are available. 64741-45-3 265-045-2 A complex residuum from the atmospheric distillationof crude oil. It consists of hydrocarbons havingcarbon numbers predominantly greater than C20and boiling above approximately 350°C (662°F).This stream is likely to contain 5 wt. % or more of 4-to 6-membered condensed ring aromatichydrocarbons.64741-57-7 265-058-3 A complex combination of hydrocarbons producedby the vacuum distillation of the residuum fromatmospheric distillation of crude oil. It consists ofhydrocarbons having carbon numbers predominantlyin the range of C20 through C50 and boiling in therange of approximately 350°C to 600°C (662°F to1112°F). This stream is likely to contain 5 wt. % ormore of 4- to 6-membered condensed ring aromatichydrocarbons.64741-61-3 265-063-0 A complex combination of hydrocarbons producedby the distillation of products from a catalyticcracking process. It consists of hydrocarbons havingcarbon numbers predominantly in the range of C15through C35 and boiling in the range ofapproximately 260°C to 500°C (500°F to 932°F).This stream is likely to contain 5 wt. % or more of 4-to 6-membered condensed ring aromatichydrocarbons.64741-62-4 265-064-6 A complex combination of hydrocarbons producedas the residual fraction from distillation of theproducts from a catalytic cracking process. Itconsists of hydrocarbons having carbon numberspredominantly greater than C20 and boiling aboveapproximately 350°C (662°F). This stream is likelyto contain 5 wt. % or more of 4- to 6-memberedcondensed ring aromatic hydrocarbons.64741-67-9 265-069-3 A complex combination of hydrocarbons producedas the residual fraction from distillation of the productfrom a catalytic reforming process. It consists ofpredominantly aromatic hydrocarbons having carbonnumbers predominantly in the range of C10 throughC25 and boiling in the range of approximately 160°Cto 400°C (320°F to 725°F). This stream is likely tocontain 5 wt. % or more of 4- or 6-memberedcondensed ring aromatic hydrocarbons.64741-75-9 265-076-1 A complex combination of hydrocarbons producedas the residual fraction from distillation of theproducts of a hydrocracking process. It consists ofhydrocarbons having carbon numbers predominantlygreater than C20 and boiling above approximately350°C (662°F).64741-80-6 265-081-9 A complex combination of hydrocarbons producedas the residual fraction from distillation of the productfrom a thermal cracking process. It consistspredominantly of unsaturated hydrocarbons havingcarbon numbers predominantly greater than C20and boiling above approximately 350°C (662°F).This stream is likely to contain 5 wt. % or more of 4-to 6-membered condensed ring aromatichydrocarbons.64741-81-7 265-082-4 A complex combination of hydrocarbons from thedistillation of the products from a thermal crackingprocess. It consists predominantly of unsaturatedhydrocarbons having carbon numbers predominantlyin the range of C15 through C36 and boiling in therange of approximately 260°C to 480°C (500°F to896°F). This stream is likely to contain 5 wt. % ormore of 4- to 6-membered condensed ring aromatichydrocarbons.64742-59-2 265-162-9 A complex combination of hydrocarbons obtained by2010-08-10 CSR Appendix 1


Heavy Fuel Oil Components 64742-78-5 265-181-2 64742-86-5 265-189-6 68333-22-2 269-777-3 68333-26-6 269-782-0 68333-27-7 269-783-6 68333-28-8 269-784-1 treating a petroleum fraction with hydrogen in thepresence of a catalyst. It consists of hydrocarbonshaving carbon numbers predominantly in the rangeof C13 through C50 and boiling in the range ofapproximately 230°C to 600°C (446°F to 1112°F).This stream is likely to contain 5 wt. % or more of 4-to 6- membered condensed ring aromatichydrocarbons.A complex combination of hydrocarbons obtained bytreating an atmospheric tower residuum withhydrogen in the presence of a catalyst underconditions primarily to remove organic sulphurcompounds. It consists of hydrocarbons havingcarbon numbers predominantly greater than C20and boiling above approximately 350°C (662°F).This stream is likely to contain 5 wt. % or more of 4-to 6-membered condensed ring aromatichydrocarbons.A complex combination of hydrocarbons obtainedfrom a catalytic hydrodesulphurization process. Itconsists of hydrocarbons having carbon numberspredominantly in the range of C20 through C50 andboiling in the range of approximately 350°C to 600°C(662°F to 1112°F). This stream is likely to contain 5wt. % or more of 4- to 6-membered condensed ringaromatic hydrocarbons.A complex residuum from atmospheric distillation ofcrude oil. It consists of hydrocarbons having carbonnumbers predominantly greater than C11 and boilingabove approximately 200°C (392°F). This stream islikely to contain 5 wt.% or more of 4- to 6-memberedcondensed ring aromatic hydrocarbons.A complex combination of hydrocarbons obtained bytreating catalytic cracked clarified oil with hydrogento convert organic sulphur to hydrogen sulphidewhich is removed. It consists of hydrocarbonshaving carbon numbers predominantly greater thanC20 and boiling above approximately 350°C (662°F).This stream is likely to contain 5 wt. % or more of 4-to 6-membered condensed ring aromatichydrocarbons.A complex combination of hydrocarbons obtained bytreating intermediate catalytic cracked distillates withhydrogen to convert organic sulphur to hydrogensulphide which is removed. It consists ofhydrocarbons having carbon numbers predominantlyin the range of C11 through C30 and boiling in therange of approximately 205°C to 450°C (401°F to842°F). It contains a relatively large proportion oftricyclic aromatic hydrocarbons.A complex combination of hydrocarbons obtained bytreatment of heavy catalytic cracked distillates withhydrogen to convert organic sulphur to hydrogensulphide which is removed. It consists ofhydrocarbons having carbon numbers predominantlyin the range of C15 through C35 and boiling in therange of approximately 260°C to 500°C (500°F to932°F). This stream is likely to contain 5 wt. % ormore of 4- to 6-membered condensed ring aromatichydrocarbons.68476-32-4 270-674-0 No EC number description available in ESIS68476-33-5 270-675-6 The liquid product from various refinery streams,usually residues. The composition is complex andvaries with the source of the crude oil.68478-13-7 270-792-2 68478-17-1 270-796-4 A complex residuum from the distillation of catalyticreformer fractionator residue. It boils approximatelyabove 399°C (750°F).A complex combination of hydrocarbons producedas the residual fraction from the distillation of heavycoker gas oil and vacuum gas oil. It predominantly2010-08-10 CSR Appendix 1


Heavy Fuel Oil Components 68512-61-8 270-983-0 68512-62-9 270-984-6 consists of hydrocarbons having carbon numberspredominantly greater than C13 and boiling aboveapproximately 230°C (446°F).A complex combination of hydrocarbons producedas the residual fraction from the distillation of heavycoker gas oil and light vacuum gas oil. It consistspredominantly of hydrocarbons having carbonnumbers predominantly greater than C13 and boilingabove approximately 230°C(446°F).A complex residuum from the vacuum distillation ofthe residuum from the atmospheric distillation ofcrude oil. It consists of hydrocarbons having carbonnumbers predominantly greater than C13 and boilingabove approximately 230°C (446°F).68553-00-4 271-384-7 A distillate oil having a minimum viscosity of 900SUS at 37.7°C (100°F) to a maximum of 9000 SUSat 37.7°C (100°F).68607-30-7 271-763-7 68783-08-4 272-184-2 68783-13-1 272-187-9 68955-27-1 273-263-4 70592-76-6 274-683-0 70592-77-7 274-684-6 70592-78-8 274-685-1 85117-03-9 285-555-9 A low-sulphur complex combination of hydrocarbonsproduced as the residual fraction from the toppingplant distillation of crude oil. It is the residuum afterthe straight-run gasoline cut, kerosene cut and gasoil cut have been removed.A complex combination of hydrocarbons obtained bythe distillation of crude oil. It consists ofhydrocarbons having carbon numbers predominantlyin the range of C7 through C35 and boiling in therange of approximately 121°C to 510°C (250°F to950°F).A very complex combination of hydrocarbonsproduced as the residual fraction from the distillationof vacuum residuum and the products from a thermalcracking process. It consists predominantly ofhydrocarbons having carbon numbers predominantlygreater than C20 and boiling above approximately350°C (662°F). This stream is likely to contain 5 wt.% or more of 4- to 6-membered condensed ringaromatic hydrocarbons.A complex combination of hydrocarbons producedby the vacuum distillation of the residuum from theatmospheric distillation of crude oil.A complex combination of hydrocarbons producedby the vacuum distillation of the residuum fromatmospheric distillation of crude oil. It consists ofhydrocarbons having carbon numbers predominantlyin the range of C14 through C42 and boiling in therange of approximately 250°C to 545°C (482°F to1013°F). This stream is likely to contain 5 wt.% ormore of 4- to 6-membered condensed ring aromatichydrocarbons.A complex combination of hydrocarbons producedby the vacuum distillation of the residuum fromatmospheric distillation of crude oil. It consists ofhydrocarbons having carbon numbers predominantlyin the range of C11 through C35 and boiling in therange of approximately 250°C to 545°C (482°F to1013°F).A complex combination of hydrocarbons producedby the vacuum distillation of the residuum fromatmospheric distillation of crude oil. It consists ofhydrocarbons having carbon numbers predominantlyin the range of C15 through C50 and boiling in therange of approximately 270°C to 600°C (518°F to1112°F). This stream is likely to contain 5 wt.% ormore of 4- to 6-membered condensed ring aromatichydrocarbons.A complex combination of hydrocarbons obtained byhydrodesulphurization of heavy coker distillatestocks. It consists predominantly of hydrocarbonshaving carbon numbers predominantly in the rangeC18 to C44 and boiling in the range of approximately304°C to 548°C (579°F to 1018° F). Likely tocontain 5% or more of 4- to 6- memberedcondensed ring aromatic hydrocarbons.2010-08-10 CSR Appendix 1


Heavy Fuel Oil Components 90669-76-4 292-658-2 92045-14-2 295-396-7 92061-97-7 295-511-0 92201-59-7 295-990-6 93821-66-0 298-754-0 101316-57-8 309-863-0 A complex residuum from the vacuum distillation ofthe residuum from atmospheric distillation of crudeoil. It consists predominantly of hydrocarbonshaving carbon numbers predominantly greater thanC24 and boiling above approximately 390°C (734°F).A complex combination of hydrocarbons obtained bythe distillation of crude petroleum. It consistspredominantly of aliphatic, aromatic andcycloaliphatic hydrocarbons having carbon numberspredominantly higher than C25 and boiling aboveapproximately 400°C (752°F).A complex combination of hydrocarbons producedas the residual fraction from the distillation of theproducts from a catalytic cracking process. Itconsists predominantly of hydrocarbons havingcarbon numbers predominantly greater than C11and boiling above approximately 200°C (392°F).A complex combination of hydrocarbons producedby the distillation of products from a catalyticcracking process which has been used as a heattransfer fluid. It consists predominantly ofhydrocarbons boiling in the range of approximately220°C to 450°C (428°F to 842°F). This stream islikely to contain organic sulphur compounds.A complex combination of hydrocarbons, sulphurcompounds and metal-containing organiccompounds obtained as the residue from refineryfractionation cracking processes. It produces afinished oil with a viscosity above 2cSt. at 100°C.A complex combination of hydrocarbons obtained bytreating a petroleum stock with hydrogen. It consistspredominantly of hydrocarbons having carbonnumbers predominantly in the range of C9 throughC25 and boiling in the range of approximately 150°Cto 400°C (302°F to 752°F).2010-08-10 CSR Appendix 1


Heavy Fuel Oil Components2010-08-10 CSR Appendix 2


Heavy Fuel Oil Components2010-08-10 CSR Appendix 2


Heavy Fuel Oil ComponentsReference Value0.12 Reference Value 0.06 Inhalation(inhalation, mg/m3) =(dermal) =DNEL inmg/kg/dmg/m3Table 1: Mapping Uses in the Supply Chain Table 2: Characterising the Risk - ChemicalSafety Assessment - Evaluation of Safe UseUse DescriptorTier 1 assumptions andInhalationDermaladjustments where required Exposure ExposureTRA Predicted TRA PredictedShort TitleTypicalInhalation Dermal ExposureExposure (mg/kg/d)Contributing Contributing Mapped Typical MappedSector of use [SU](mg/m3)Scenarios Scenario Ref: Operating RMMsNo ModifiersLEV Yes / No andConditionsProcess Category DurationNo Modifiersadjustments to Tier(PROC)Temperature(aerosol basis)1 predictionES1 - Manufacture of Substance (Petrochemical manufacture / feedstock - use as Intermediate; Process Chemical; Extraction agent) - industrialES1-W1 Industrial: SU3 SU8SU9 Industrial: SU3 SU8 SU9 Industrial: SU3 SU8SU9 Industrial: SU3 SU8SU9 Industrial: SU3 SU8SU9 Industrial: SU3 SU8 SU9 Industrial: SU3 SU8SU9 Industrial: SU3 SU8 SU9 ES1 - Use as an intermediate - industrialES1-W1 Industrial: SU3 SU8 SU9


Industrial: SU3 SU8SU9 Industrial: SU3 SU8SU9 Industrial: SU3 SU8SU9 Industrial: SU3 SU8SU9Industrial: SU3 SU8SU9 Industrial: SU3 SU8SU9 Industrial: SU3 SU8 SU9 ES2 - Distribution of substance - industrialES2-W1 Industrial: SU3 Industrial: SU3 Industrial: SU3 Industrial: SU3


Industrial: SU3 Industrial: SU3 Industrial: SU3 SU8SU9 Industrial: SU3 SU8SU9 Industrial: SU3 SU8 SU9 ES3 - Formulation and Re-packing of substances and mixtures - industriali ES3-W1 Industrial: SU3 Industrial: SU3 Industrial: SU3 Industrial: SU3 Industrial: SU3 Industrial: SU3 Industrial: SU3 SU8SU9


Industrial: SU3 SU8SU9 Industrial: SU3 Industrial: SU3 SU8 SU9 ES6 - Uses in Coatings - IndustrialES6-W1 Industrial: SU3 ES6-W2 Industrial: SU3 ES6-W3 Industrial: SU3 Industrial: SU3 Industrial: SU3 Industrial: SU3 ES7 - Uses in Coatings - ProfessionalES7-W1 Professional: SU22 ES7-W2 Professional: SU22 ES7-W3 Professional: SU22 Professional: SU22 Professional: SU22 Professional: SU22 ES8 - Uses in Road and Construction - Professional Professional: SU22 Professional: SU22 ES4 - Use as a fuel (industrial)


ES4-W1 Industrial: SU3 Industrial: SU3 Industrial: SU3 ES4-W4 Industrial: SU3 Industrial: SU3 Industrial:SU3 Industrial: SU3 ES4-W8 Industrial: SU3 Industrial: SU3 SU8 SU9 ES5 - Use as a fuel (professional)ES5-W1 Professional: SU22 ES5-W2 Professional: SU22


ES5-W3 Professional: SU22 ES5-W4 Professional: SU22 ES5-W5 Professional: SU22 Professional: SU22 ES5-W7 Professional: SU22 Professional: SU22 Professional: SU22


Heavy Fuel Oil ComponentsThere is a difference of at least a factor of 30 between the short-term (when expressed over 15minutes) and the long term DNELs (when expressed over 8 hours)), i.e. the long-term DNEL is lowerby at least 30x. In these circumstances a quantitative assessment of short-term exposure assessmenthas not be undertaken based on the following rationale:- For any single short term (ST) event to adversely influence the implementation of the long term(LT) reference value (DNEL when available) in the CSA, then the single ST exposure must be~30x greater than the LT DNEL. Where the ST exposure might be repeated during the course ofan activity, then the contribution made by the ST exposures to the LT average would clearly begreater. Hence, provided daily average exposures are controlled to within the LT reference value,then this will also account for any potential risks arising from ST exposure.The R45 risk phrase (may cause cancer) relates to the strength of evidence to indicate that thesubstance may cause cancer in humans. When a carcinogenic substance is considered a thresholdcarcinogen and/or if appropriate dose-response data from epidemiological and/or animal studies areavailable, it may be possible to derive a DMEL which should then be used in quantitative riskcharacterisation to define the appropriate RMMs... However, when a carcinogenic substance isconsidered a non-threshold carcinogen and/or if appropriate dose-response data from epidemiologicaland/or animal studies are not available, it is not possible to derive a DMEL, and hence a qualitativeapproach to the CSA will be required.This general qualitative CSA approach aims to reduce/avoid exposure or incidents with the substanceconsistent with the expectations of Directive 2004/37/EC. The general philosophy is twofold:1. that the uses of any R45 substance are limited to suitably equipped industrial or professionalsettings and will only be supported in circumstances where exposure potential is limited (PROCs1, 2, 3, 8a (maintenance only), 8b, 9, 15, and 16) and will not cover those situations whereexposure to the substance might be expected to be significant (such as PROCs 7, 11, 17, 18,etc). This limitation on use is consistent with the current expectations of Directive 2004/37/EC.2. That a stringent set of RMMs will be applied. Firstly, exposures should be controlled to at least thelevels that represent an acceptable level of risk (i.e. represent a RCR of


Heavy Fuel Oil ComponentsExposures should be controlled to at least the levels that represent an acceptable level of risk suchthat the implementation of the chosen RMMs will ensure that the likelihood of an event occurring dueto the substance hazard is negligible, and the risk is considered to be controlled to a level of noconcern.For skin defatting a qualitative risk characterisation has been conducted. Handling and storage riskmanagement measures that are generally identified for skin defatting risks are outlined in Appendix3.b. A review of these RMMs indicates that if the user complies with the following generic statement,risks due to skin defatting are considered to be controlled. For any substance, classified as R66,these measures should be communicated via the safety data sheet by use of the following phrase:• PPE20: If repeated and/or prolonged skin exposure to the substance is likely, then wearsuitable gloves tested to EN374 and provide employee skin care programmes2010-08-10 CSR Appendix 3


Heavy Fuel Oil Components2010-08-10 CSR Appendix 3


Heavy Fuel Oil Components2010-08-10 CSR Appendix 3


Heavy Fuel Oil ComponentsReference Value0.12 Reference Value 0.06 Inhalation 0.12(inhalation, mg/m3) =(dermal) =DNEL inmg/kg/dmg/m3Table 1: Mapping Uses in the Supply Chain Table 2: Characterising the Risk - Chemical Safety Assessment - Evaluation of Safe UseRisk Management MeasuresUse DescriptorTier 1 assumptions andInhalation Exposure Dermal Exposureadjustments where requiredSemi-quantitative RMMs Qualitative assessmentShort TitleTypicalContributing Contributing MappedSector of use [SU]Scenarios Scenario Ref: OperatingConditionsTRA Predicted TRA LEV TRA Duration TRA Location Non TRA based Non TRA based Predicted TRA Predicted TRAInhalation efficiency (%) Modifier Concentration Modifier: Modifier: modifier type Inhalation Dermal ConcentrationExposureModifierExposure Exposure ModifierTypical Mapped(mg/m3)(> 4 hrs = 1, 1-4Indoors = 1 Specify as a Free Text (e.g.(mg/kg/d)RMMshrs = 0.6, 15 >25% = 1 Outdoors = 0.7 total (%) RPE, Substance Modified>25% = 1LEV Yes / No andProcess Category DurationNo Modifiersmins - 1 hr = 5-25% = 0.6properties) (mg/m3) No Modifiers 5-25% = 0.6adjustments to Tier(PROC)Temperature(aerosol basis)0.2, < 15 mins = 1-5% = 0.21-5% = 0.21 prediction0.1)


Industrial: SU3 SU8SU9 Industrial: SU3 SU8SU9 Industrial: SU3 SU8SU9 Industrial: SU3 SU8SU9Industrial: SU3 SU8SU9 Industrial: SU3 SU8SU9 Industrial: SU3 SU8 SU9 ES2 - Distribution of substance - industrialES2-W1 Industrial: SU3 Industrial: SU3 Industrial: SU3 Industrial: SU3


Industrial: SU3 Industrial: SU3 Industrial: SU3 SU8SU9 Industrial: SU3 SU8SU9 Industrial: SU3 SU8 SU9 ES3 - Formulation and Re-packing of substances and mixtures - industriali ES3-W1 Industrial: SU3 Industrial: SU3 Industrial: SU3 Industrial: SU3 Industrial: SU3 Industrial: SU3 Industrial: SU3 SU8SU9


Industrial: SU3 SU8SU9 Industrial: SU3 Industrial: SU3 SU8 SU9 ES6 - Uses in Coatings - IndustrialES6-W1 Industrial: SU3 ES6-W2 Industrial: SU3 ES6-W3 Industrial: SU3 Industrial: SU3 Industrial: SU3 Industrial: SU3 ES7 - Uses in Coatings - ProfessionalES7-W1 Professional: SU22 ES7-W2 Professional: SU22 ES7-W3 Professional: SU22 Professional: SU22 Professional: SU22 Professional: SU22 ES8 - Uses in Road and Construction - Professional Professional: SU22 Professional:SU22 ES4 - Use as a fuel (industrial)


ES4-W1 Industrial: SU3 Industrial: SU3 Industrial: SU3 ES4-W4 Industrial: SU3 Industrial: SU3 Industrial:SU3 Industrial: SU3 ES4-W8 Industrial: SU3 Industrial: SU3 SU8 SU9 ES5 - Use as a fuel (professional)ES5-W1 Professional: SU22 ES5-W2 Professional: SU22


ES5-W3 Professional: SU22 ES5-W4 Professional: SU22 ES5-W5 Professional: SU22 Professional: SU22 ES5-W7 Professional: SU22 Professional: SU22 Professional: SU22


Heavy Fuel Oil ComponentsA quantitative assessment of short term exposure has not been undertaken as there is a difference ofat least a factor of 30 between the short term (when expressed over 15 minutes) and the long termDNEL (when expressed over 8 hours) DNELs.In the case of carcinogens (substances classified as R45), comprehensive <strong>EU</strong> legislation alreadyexists that establishes a framework of expectations that can be used as the basis for applying aqualitative approach for any CSA. Specifically Directive 2004/37/EC of the European Parliament andthe Council of 29 April 2004 on the protection of workers from the risks related to exposure tocarcinogens or mutagens at work (Sixth individual Directive within the meaning of Article 16(1) ofCouncil Directive 89/391/EEC) sets out the minimum requirements for protecting workers who may beexposed to carcinogens and mutagens during work activities Preventive measures must be taken forthe protection of the health and safety of workers exposed to carcinogens or mutagens. Theimplementation of following RMMs, which build from the existing legal provisions, is intended toensure that the likelihood of cancer occurring is minimised.For the cancer hazard a qualitative risk characterisation has been conducted consistent with theconsiderations and risk management measures identified in the Table below. Cancer(R45)• Liquid R45 /H350• S23: Do not breathegas/fumes/vapour/spray• S24: Avoid contact withskin• S51: Use only in wellventilatedareas• S36/37: Wear suitableprotective clothing andgloves.• S45: In case of accidentor if you feel unwell, seekmedical adviceimmediately (show thelabel where possible).• S53: Avoid exposure –obtain special instructionsbefore use.Prevention:• P201: Obtain specialinstructions before use.• P202: Do not handle until allsafety precautions have beenread and understood.• P260: Do not breathedust/fume/gas/mist/vapours/spray.• P281: Use personal protectiveequipment as required.Response:• P308 + P313: If exposed or• Implement good standardsof occupational hygiene• Consider technical advancesand process upgrades• Minimise exposure usingmeasures such as closedsystems• Management/supervision tocheck that the RMMs inplace are being usedcorrectly and OCs followed• Restrict access toauthorised persons;• Provide specific activitytraining• Regularly inspect, test andmaintain all controlmeasures• Consider the need for riskbased health surveillance- Not supported unlessmarketed in a mannerconsistent with Article 56 ofREACH2010-08-10 CSR Appendix 3


Heavy Fuel Oil Components concerned: Get medicaladvice/attention.Storage:• P405: Store locked up.Disposal:• P501 : Dispose ofcontents/container to.... inaccordance with local/regional/national/internationalregulations (to be specified)For any substance, classified as R45, these risk management measures will be communicated via theExposure Scenario by use of the following phrases:For every exposure scenario, the following general phrase will be includedConsider technical advances and process upgrades (including automation) for the elimination ofreleases. Minimise exposure using measures such as closed systems, dedicated facilities andsuitable general / local exhaust ventilation. Drain down systems and clear transfer lines prior tobreaking containment. Clean / flush equipment, where possible, prior to maintenance.Where there is potential for exposure: Restrict access to authorised persons; provide specific activitytraining to operators to minimise exposures; wear suitable gloves and coveralls to prevent skincontamination; wear respiratory protection when its use is identified for certain contributing scenarios;clear up spills immediately and dispose of wastes safely.Ensure safe systems of work or equivalent arrangements are in place to manage risks. Regularlyinspect, test and maintain all control measures.Consider the need for risk based health surveillance. G20.In addition the following specific phrases will also be applied, where the identified contributingscenarios are relevant within any Exposure ScenarioCS2 Process samplingSample via a closed loop or other system to avoidCS14 Bulk transfers (incl. CS501)And related phrases such as CS6,CS8.CS15 General exposures (closedsystems)And related phrases…CS507 RefuellingCS36 Laboratory activitiesCS5 Equipment maintenanceCS39 Equipment cleaning andmaintenanceexposure. E8.Ensure material transfers are under containment or extractventilation. E66.Handle substance within a closed system. E47.Ensure material transfers are under containment or extractventilation. E66.Handle within a fume cupboard or implement suitableequivalent methods to minimise exposure. E12.Drain down and flush system prior to equipment break-in ormaintenance. E55;Drain down system prior to equipment break-in ormaintenance. E65.Retain drain downs in sealed storage pending disposal or2010-08-10 CSR Appendix 3


Heavy Fuel Oil Componentsfor subsequent recycle. ENVT4.Clear spills immediately. C&H13.CS67 Storage Store substance within a closed system. E84.The implementation of relevant RMMs will ensure that the likelihood of an event occurring due to thesubstance hazard of skin defatting is negligible and the risk is considered to be controlled to a level ofno concern.For skin defatting a qualitative risk characterisation has been conducted consistent with theconsiderations and risk management measures identified in the Table below. Skindefatting(R66)• Liquid R66 /<strong>EU</strong>H066RepeatedexposuremaycauseskindrynessorcrackingNo designated S andP phrases areassigned, though thefollowing phrase maybe appropriate: S24Avoid contact withskinResponse:• P280: Wearprotectivegloves/protectiveclothing/eyeprotection/face protection.• P281: Usepersonalprotectiveequipment asrequired.• Implementation of basic standards ofoccupational hygiene;• Avoid repeated and/or prolongedskin contact with product;• Wear gloves (tested to EN374) ifhand contamination likely, wash offany skin contamination promptly;• Avoid splashes and spills;• Avoidance of contact withcontaminated tools and objects;• Clean up contamination/spills;• Regular cleaning of equipment andwork area;• Management/supervision to checkthat the RMMs in place are beingused correctly and OCs followed;• Training for staff on good practice toprevent / minimise exposures and toreport any skin effects that maydevelop;• Good standard of personal hygiene.For any substance, classified as R66, these measures should be communicated via the safety datasheet by use of the following phrase:• PPE20: If repeated and/or prolonged skin exposure to the substance is likely, then wearsuitable gloves tested to EN374 and provide employee skin care programmes2010-08-10 CSR Appendix 3


Heavy Fuel Oil Components2010-08-10 CSR Appendix 4


Heavy Fuel Oil ComponentsThe Petrorisk model has been applied to assess the risks of Heavy Fuel Oil (HFO) manufacture in theframework of REACH. The model first calculates the risk characterization ratios (RCRs) for a genericrefinery scenario and then scales these results to characterize risks for specific refineries using sitespecificdata.To develop initial exposure estimates, the Sector Specific Environmental Release Category (SpERC)for the manufacturing generic exposure scenario is used. This SpERC provides a number of keydefault parameters such as the site tonnage, release fraction to wastewater, wastewater flow and thereceiving water dilution factor that are required inputs for generic exposure calculations.Since HFO is a complex substances (i.e. UVCB), assumptions must also be invoked regarding thecomposition of the substance and associated emissions. Substance composition is characterizedbased on analysis of multiple HFO samples using two-dimensional gas chromatography. Theseanalytical results are used to determine a typical HFO composition that is defined in terms of theweight percent of various structural classes and carbon numbers, i.e. hydrocarbon blocks. Tosimulate the HFO substance composition this distribution is then mapped to a library of 1500representative hydrocarbon structures that are included in the Petrorisk model. The composition ofHFO wastewater emissions is then estimated from the simulated substance composition by applyingRaoult's Law. This ensures that the water solubility of the representative hydrocarbons is taken intoaccount in emissions estimation.Given the SpERC site tonnage and wastewater release fraction coupled with the simulatedwastewater composition described above, wastewater emissions of each HFO structure aredetermined. The corresponding predicted wastewater influent concentrations are then calculated bydividing the structure-specific emission by the generic wastewater treatment flow. These predictedinfluent concentrations are then reduced by the structure-specific wastewater treatment removal thatis obtained using the SimpleTreat model. The resulting predicted effluent concentrations for eachHFO structure is then used to calculate surface or marine water concentrations by dividing by thedefault dilution factor. Sediment concentrations are calculated from predicted water concentrationsusing equilibrium partitioning theory. Risks associated with concentrations of each structure ineffluent, water and sediment are then calculated using an additive toxicity model. The effectconcentrations for each structure are calculated using the target lipid model that is incorporated intoPetrorisk. Finally, risks associated with specific refineries are determined by scaling the genericrefinery scenario results.The first step in scaling generic results to a specific refinery is to estimate the concentration of HFOassociated hydrocarbons in the refinery effluent. This is accomplished by multiplying sitemeasurements of total petroleum hydrocarbons (TPH) in refinery effluent by the ratio of HFOproduction to crude throughput.where i refers to refinery iPH HFO,i = TPH Effluent,i x P HFO,i / T Crude,i (1)To calculate a refinery specific RCR for wastewater treatment plant microbes, the following equationis applied:RCR WWTP,i = RCR WWTP,generic x P HFO,i / P HFO,generic (2)where RCR WWTP,generic and P HFO,generic are the predicted risk characterization ratio and total effluentconcentration of HFO associated hydrocarbons obtained from the generic refinery scenario describedabove.To calculate a refinery specific RCR for surface/marine waters or sediments, the site-specific dilutionfactor must also be incorporated into scaling:2010-08-10 CSR Appendix 4


Heavy Fuel Oil ComponentsRCR Water,i = RCR Water,generic x P HFO,i / P HFO,generic x DF HFO,generic / DF HFO,i (3)RCR Sediment,i = RCR Sediment,generic x P HFO,i / P HFO,generic x DF HFO,generic / DF HFO,i (4)The above procedure has been applied to assess the environmental risk of 117 European refineriesthat manufacture HFO. Results indicate that only 8 refineries exhibited RCRs for at least onecompartment greater than one (Table 1). Consequently a Tier II assessment was performed in anattempt to refine conservative exposure assumptions and improve risk estimates.7.02 8.00 0.19 0.218.15 0.16 0.1811.01 11.02 15.02 0.25 0.2824.02 0.50 0.5727.02 A critical assumption in the site specific scaling approach is the estimation of HFO constituents inrefinery effluent based on site-specific HFO production and crude throughput volumes and effluentTPH data (Eqn 1). This equation has been applied to all the major marketed petroleum substances inan attempt to develop a general allocation of refinery effluent TPH to each substance. Since otherpetroleum substances share some of the same hydrocarbon blocks that comprise HFO and areproduced in higher volume, manufacture of these substances are also expected to contribute HFOrelated blocks to refinery effluent (Table 2). If the percentage of HFO blocks that comprise eachsubstance is weighted by the percentage that the substance contributes to the effluent TPH, thepercentage of HFO blocks in a generic refinery effluent can be calculated. If the contribution for eachsubstance is summed the total percentage of HFO blocks is predicted to be 51.6% (Table 2). Thus,using the approach incorporated into Petrorisk approximately half of the TPH in effluent is predicted tobe attributable to HFO related blocks. 26.2 1.7 0.5 7.5 39.8 3.2 0.5 87.2 0.5 1.1 52.4 0.6 39.2 66.0 27.6 0.4 82.1 0.4 2.7 60.8 1.8 6.4 0.0 0.0 16 100.0 17.1Total 51.6To determine how predictions compare with actual TPH composition in <strong>EU</strong> refinery effluents, an2010-08-10 CSR Appendix 4


Heavy Fuel Oil Componentsanalysis of the Effluent Speciation Project (ESP) that was carried out by CONCAWE in 2008 and2009 (CONCAWE Report 3/10, in press) has been performed. In this project, 111 effluent samplesfrom 105 refineries were analysed by 2d-GC to obtain an impression of the hydrocarbon speciationacross <strong>EU</strong> refineries. Table 3 provides a statistical summary by receiving water type of the measuredTPH concentrations as well as the % contribution from HFO related blocks.Effluent Speciation ProjectReceivingmediumFresh waterMarineExternalWWTPParameterTPH(mg/l)HFOBlocks%Median 0.14 17Average 2.85 1295 %-tile 9.46 16Median 0.16 18Average 1.73 1495 %-tile 6.86 15Median 3.51 14Average 9.34 495 %-tile 16.76 10This analysis indicates that the actual contribution of HFO blocks to TPH ranges from 4 to 18% incontrast the much higher predictions obtained via the scaling approach presented in Table 2.Consequently, the scaling approach overestimates the amount of HFO blocks in refinery effluent by atleast a factor of 2.9 (i.e. 51.6/18). Given the conservatism introduced by the assumptions used toestimate effluent speciation in the Petrorisk model, estimated RCRs obtained for the eight refineriesranging from 1.08 to 2.20 (Table 1) can be refined by dividing by 2.9. The revised RCRs are providedin Table 4. Results indicate all refineries have RCRs below one indicating no unacceptable risks. 7.02 0.48 0.548.00 0.44 0.19 0.218.15 0.37 0.16 0.1811.01 0.66 0.7411.02 0.39 0.4415.02 0.59 0.25 0.2824.02 0.48 0.25 0.5727.02 0.39 0.442010-08-10 CSR Appendix 4


Heavy Fuel Oil Components2010-08-10 CSR Appendix 5


An Evaluation of the Persistence, Bioaccumulation andToxicityof Petroleum HydrocarbonsReport Prepared for CONCAWEBrussels, BelgiumbyMark Lampi a , Miriam Léon Paumen b , Tom Parkerton aa ExxonMobil Biomedical Sciences, Inc., Annandale NJ, USAb ExxonMobil Petroleum and Chemical, Machelen, BelgiumMarch 2010


Executive SummaryIn order to comply with the European Union’s Registration, Evaluation and Authorisationof Chemicals (REACH) legislation requirements to perform a persistence,bioaccumulation and toxicity (PBT) assessment on complex petroleum substances, asystematic review of the persistence and bioaccumulation properties of petroleumhydrocarbons was conducted. Those substances deemed potentially to meet thepersistence and bioaccumulation criteria were subsequently assessed for toxicity.Consistent with REACH technical guidance and Annex XIII criteria, petroleumhydrocarbons were evaluated using the hydrocarbon block method. Measured data andmodel predictions were evaluated for representative structures associated with each blockto develop an evidence-based conclusion regarding PBT properties.The results of this analysis indicate that higher carbon number blocks tend to fulfill thepersistence criterion while lighter carbon number blocks sometimes met thebioaccumulative criterion. None of the hydrocarbon blocks were found to meet the verybioaccumulative criterion. Selected hydrocarbon blocks, namely C16-C18 di-naphthenichydrocarbons and C16-C22 poly-naphthenic hydrocarbons were found potentially tofulfill persistence and bioaccumulation criteria. However, these blocks will not fulfill thetoxicity criteria as they are not soluble enough to pose a chronic aquatic hazard and donot exhibit health hazard classifications. Therefore, this analysis shows that none of thehydrocarbon blocks that comprise complex petroleum substances meet the vPvB/PBTcriteria. As part of the TC-NES WG on PBTs, two unique hydrocarbons, namelyanthracene and o-terphenyl, were found to present a PBT concern. However, theseindividual substances are not expected to be present in petroleum substances in sufficientquantity to impact PBT decision-making.ii


Table of ContentsExecutive Summary ............................................................................................................ iiTable of Contents ............................................................................................................... iii1.0 Introduction ................................................................................................................... 42.0 Outline of Assessment Approach for Complex Petroleum Substances ........................ 53.0 Persistence Assessment of Petroleum Hydrocarbon Blocks ......................................... 73.1 Normal Paraffins ....................................................................................................... 73.2 Iso-paraffins .............................................................................................................. 93.3 Mono-Naphthenic hydrocarbons ............................................................................ 123.4 Di-Naphthenic hydrocarbons .................................................................................. 143.5 Poly-Naphthenic hydrocarbons ............................................................................... 163.6 Mono-Aromatics ..................................................................................................... 183.7 Naphthenic Mono-Aromatics.................................................................................. 203.8 Di-Aromatics........................................................................................................... 223.9 Naphthenic Di-Aromatics ....................................................................................... 243.10 Poly-Aromatics ..................................................................................................... 254.0 Bioaccumulation Assessment of Petroleum Hydrocarbon Blocks ............................. 284.1 Normal Paraffins ..................................................................................................... 304.2 Iso-paraffins ............................................................................................................ 324.3 Mono-Naphthenic hydrocarbons ............................................................................ 364.4 Di-Naphthenic hydrocarbons .................................................................................. 384.5 Poly-Naphthenic hydrocarbons ............................................................................... 414.6 Mono-Aromatics ..................................................................................................... 434.7 Naphthenic Mono-Aromatics.................................................................................. 464.8 Di-Aromatics........................................................................................................... 484.9 Naphthenic Di-Aromatics ....................................................................................... 524.10 Poly-Aromatics ..................................................................................................... 555.0 Summary of Persistence and Bioaccumulation Assessment ....................................... 636.0 Toxicity Assessment of HBs meeting P and B criteria ............................................... 647.0 Conclusions ................................................................................................................. 608.0 References ................................................................................................................... 619.0 Appendices...................................................................................................................65iii


1.0 IntroductionREACH requires that a PBT/vPvB assessment be performed for all substances for whicha Chemical Safety Assessment (CSA) must be conducted. This generally translates to allsubstances manufactured or imported in amounts above 10 tonnes per year that are notexempted from registration. The objective of the PBT/vPvB assessment is to determine ina stepwise manner if a substance fulfils the criteria specified in Annex XIII of theregulation. This document describes the rationale and data used to complete thisassessment for complex petroleum substances comprised of hydrocarbons. For complexsubstances, this assessment must be applied to all constituents that are present at greaterthan 0.1% (<strong>EU</strong> 2006).Due to the complex nature and variability in composition, most petroleum substances areUVCBs (Substances of Unknown or Variable composition, Complex reaction products orBiological materials). These substances are composed of a mixture of many uniquehydrocarbons that each exhibit different properties relevant to environmental assessment.Current risk assessment methods that have been developed for substances with uniqueproperties are not directly applicable to complex petroleum substances. To address thisgap, CONCAWE developed the hydrocarbon block (HCB) method as a framework toperform the environmental assessment for complex petroleum substances. The HCBmethod has been incorporated in the REACH endpoint specific guidance (c.f. Appendixto section R.7.13), and will be applied to fulfill the requirements of the REACHregulation (ECHA 2008a). The HCB method resolves complex petroleum substances intopseudo-components (‘blocks’) that are defined by representative hydrocarbon structuresthat exhibit similar physical and chemical properties. The representative structures havebeen chosen to cover the degree of complexity that is typically found in petroleumsubstances as summarised in the “CONCAWE library” (Appendix 1). However, some ofthe representative structures were selected based on availability of the compound, ratherthan whether completely representative of typical petroleum hydrocarbons. This is thecase for several of the more conservative structures (e.g. highly branched). For thepurpose of this PBT assessment, all of the available data is presented. However, selectstructures were not used to assess the PBT properties of a particular hydrocarbon block(e.g. anthracene, o-terphenyl).4


2.0 Outline of PBT/vPvB Assessment Approach for ComplexPetroleum SubstancesThe Persistence, Bioaccumulation and Toxicity (PBT/vPvB) assessment for petroleumsubstances is also performed by applying HCB principles. Due to limited solubility andvariable biodegradability of these complex mixtures, petroleum substances will often notmeet the stringent pass criteria for ready biodegradability. Thus, based on an initialscreening assessment, most petroleum substances should be regarded as persistent andhence, further evaluation is required to determine if they meet REACH Annex XIII vPvBor PBT criteria. To accomplish this objective, the P and B properties of representativestructures for a given HCB are assessed, in order to develop a weight of evidence fordeciding if vPvB or PB criteria are or are not fulfilled. This approach is consistent withthe strategy discussed in REACH guidance Chapter R11 for PBT assessment of complexsubstances (ECHA 2008b).PBT/vPvB properties of representative structures have been evaluated using thefollowing HCB scheme:C# n-P i-P MN DiN PolyN MoAr NMAr DiAr NDiAr PolyAr5 `678910…Where the abbreviations at the top of each row denote the ten main hydrocarbon classesthat are found in petroleum products:n-P = normal-paraffins (straight chain alkanes)i-P = iso-paraffins (branched chain alkanes)Mo-N = mono-naphthenic hydrocarbons consisting of saturated one ring cyclic alkanesDiN = di-naphthenic hydrocarbons consisting of saturated two ring cyclic alkanesPolyN = poly-naphthenic hydrocarbons consisting of saturated three or more ring cyclicalkanesMoAr = mono-aromatics consisting of one ring aromaticsNMAr = naphthenic-mono-aromatics consisting of one ring aromatics with one or moresaturated ringsDiAr = di-aromatics consisting of two ring aromaticsNDiAr = naphthenic-di-aromatics consisting of two ring aromatics with one or moresaturated rings5


PolyAr = poly-aromatics consisting of three or more ring aromatics that may includesaturated ringsNote that for certain HCBs, none of the possible structures may exist, e.g. there are no C5aromatics.The strategy to assess PBT/vPvB properties of HCBs consists of the following steps:• QSAR models are applied to compute predictions of primary biodegradation halflives(P) and fish bioconcentration factors (B) for the CONCAWE library ofrepresentative structures (Appendix 1) as recommended by the REACH PBTguidance (R.11). Two modules from EPISuite v4.00 were used to screen forpersistence and bioaccumulative properties, BioHCwin and BCFBAF.• Where available for hydrocarbons, experimental primary biodegradation half-lives inun-acclimated freshwater or marine water as well as aqueous or dietarybioaccumulation test data are compiled and compared to model predictions. Inaddition, other relevant lab and field bioaccumulation studies are also considered toassess the potential of petroleum hydrocarbons to biomagnify in the foodchain. Thisinformation is an important compliment to bioconcentration data sincebiomagnification is regarded as the principal determinant for identifying substancesposing a bioaccumulation concern (Weisbrod et al. 2009).• In some cases, experimental data for hydrocarbons that have atypical structures (e.g.ethanediyl or isopropyl functional groups) are included in this analysis. This allows amore through appraisal of the reasonableness of model predictions based on availableexperimental information. However, such data are interpreted with caution, andjudged relative to the weight of evidence provided by more typical structures, indeciding P and B properties of specific HCBs.• Finally, all the available information on persistence and bioaccumulation arecollectively reviewed to determine if a further assessment of toxicity was required. Ifa HCB was found to meet the P and B criteria, toxicity was evaluated in accordancewith Annex XIII criteria. If necessary, the chronic aquatic toxicity for the structurescomprising the HCB was computed using the target lipid model included in thePETROTOX model (Redman 2009).6


3.0 Persistence Assessment of Petroleum Hydrocarbon BlocksHydrocarbons have been present in the environment for billions of years. As a highlyreduced form of carbon, these substances provide a valuable source of energy forconsumption by microorganisms. Therefore, mechanisms have evolved to degradehydrocarbons, and nearly all hydrocarbons can be degraded under appropriate conditions(Prince and Walters, 2007).In order to assess the persistence of the different HCBs, aquatic half-life predictions forrepresentative constituents were made using the BioHCwin module of the EPISuite v4.0model. Unacclimated, marine and freshwater experimental biodegradation half-lives fromthree different sources (Prince et al. 2007, 2008; EMBSI, 2009a, b and c) were compiledand compared to model predictions. According to previous work (Prince et al. 2007) halflivesfor different classes of hydrocarbons do not differ significantly between marine andfreshwater. Thus, half-life data from both media have been used collectively in thepersistence assessment.Results of standardized biodegradation experiments may vary significantly depending onthe microbial inoculum that is used. Further, in experiments with hydrocarbon mixtures,observed biodegradation rates can be influenced by a lag phase that is due to the presenceof other hydrocarbons that are preferentially biodegraded. Consequently, if more thanone reliable half-life value was available for the structure the lowest half-life for thestructure was selected as proof the structure has the potential to biodegrade under unacclimatedtest conditions. Persistence of the HCBs was assessed comparing predictedand experimental half-lives for the corresponding representative structures to the 60-daycriterion for marine water persistence specified in Annex XIII of the REACH regulation.In the following sections, the results of the persistence assessment will be discussed.3.1 Normal ParaffinsThe BioHCwin model predicts that n-paraffins with chain lengths above twenty-twocarbons will have half-lives exceeding the 60-day persistence criterion (Figure 1).However, marine and freshwater experimental half-lives for n-paraffins with carbonchain lengths up to 19 carbons (Table 1) range from 1.9 to 15 days. For the carbonnumbers for which experimental persistence data are available, predicted andexperimental data are below the persistence criterion (Figure 2). In several cases, thereare data for multiple hydrocarbons with the same number of carbons. In fact,experimental values are far below the persistence criterion, meaning that modelpredictions are conservative. Moreover, n-paraffins larger than hexane are known to bethe preferred substrate in oil degradation processes (Prince and Walters, 2007). This isreflected by the higher experimental half-lives of the shorter chain paraffins (Table 1). Itcan be concluded that, based on the BioHCwin predictions, n-paraffins at or above C22may have half-lives above the persistence criterion.7


Figure 1. Half-life predictions for n-paraffins using the US EPA model BioHCwinHydrocarbonC nrBioHCwinPredictedHalf-Life(days)MeasuredSeawaterHalf-Life(days)MeasuredFreshwaterHalf-Life(days)n-butane 4 3.5 15.0n-pentane 5 4.0 10.5 10.7n-hexane 6 4.7 3.5 6.3n-hexane 6 4.7 6.5n-heptane 7 5.5 3.5 2.3n-octane 8 6.4 2.1n-nonane 9 7.4 2.1 2.1n-decane 10 8.7 2.1n-undecane 11 10.1 2.1n-dodecane 12 11.8 2.1 1.9n-tridecane 13 13.7 2.3n-tetradecane 14 16.0 2.3n-pentadecane 15 18.6 2.4n-hexadecane 16 21.7 4.60 2.5n-heptadecane 17 25.3 2.3n-octadecane 18 29.4 2.5n-nonadecane 19 34.3 2.8Table 1. Predicted and experimental marine and freshwater half-life values for n-paraffins8


Figure 2. BioHCwin (Y-axis) vs. experimental half-lives (X-axis) for n-paraffins3.2 Iso-paraffinsDegradation of iso-paraffins is influenced negatively by increased branching of themolecule, because complex branching hinders the initial oxidation and the subsequentlipid catabolism of the hydrocarbon molecules (Prince and Walters 2007). Accordingly,the BioHCwin model predicts a half-life above 60 days for 2,2,4,4,6,8,8-heptamethylnonane, a highly branched C16 structure (Figure 3). For less branchedstructures, BioHCwin predicts half-lives above 60 days for structures above C21. Theonly experimental half-life above 60 days is the value for the extremely branched C16structure, 2,2,4,4,6,8,8-heptamethylnonane, confirming the model prediction (Table 2).Adjacent quaternary carbons (e.g. pentamethylheptane) are not characteristic ofpetroleum hydrocarbons (Quann and Jaffe 1992; Sarpal et al. 1997; Quann 1998); resultsfor this compound may overstate the persistence for this HCB. Experimental half-livesfor iso-paraffins are available for carbon chains up to C20, and are all below thepersistence criterion. The experimental half-life for the C20 structure is 28 days, meaningthat half-life predictions for iso-paraffins above C21 may be over-estimated.For carbon numbers for which persistence data are available, predicted and experimentaldata are consistent. For structures up to C20, half-lives are below the persistencecriterion with the exception of the structure mentioned above (Figure 4). In several cases,there are data for multiple hydrocarbons with the same number of carbons. It can beconcluded that, based on the available data, iso-paraffins at or above C21 may have halflivesabove the persistence criterion.9


Figure 3. Half-life predictions for iso-paraffins using the US EPA model BioHCwinHydrocarbonC nrBioHCwinPredictedHalf-Life(days)MeasuredSeawaterHalf-Life(days)MeasuredFreshwaterHalf-Life(days)isobutane 4 3.1 17.12-methylbutane 5 3.6 13.02,2-dimethylbutane 6 7.0 26.52-methylpentane 6 4.2 10.43-methylpentane 6 4.2 10.12,2,3-trimethylbutane 7 9.4 13.02,2-dimethylpentane 7 8.1 13.02,3-dimethylpentane 7 5.6 8.12,4-dimethylpentane 7 5.6 9.12-methylhexane 7 4.9 6.63,3-dimethylpentane 7 8.1 13.03-methylhexane 7 4.9 7.52,2,3-trimethylpentane 8 10.9 13.02,2,4-trimethylpentane 8 10.9 8.42,3,3-trimethylpentane 8 10.9 13.02,3,4-trimethylpentane 8 7.6 10.62,3-dimethylhexane 8 6.6 7.52,4-dimethylhexane 8 6.6 6.62,5-dimethylhexane 8 6.6 6.52-methylheptane 8 5.7 4.83-ethylhexane 8 5.7 8.13-methylheptane 8 5.7 6.54-methylheptane 8 5.7 6.52,2,5-trimemethylhexane 9 12.7 8.110


2,3-dimethylheptane 9 7.7 6.2 7.42,5-dimethylheptane 9 7.7 6.52,6-dimethylheptane 9 7.7 5.33,5-dimethylheptane 9 7.7 6.43-ethylheptane 9 6.6 3.13-methyloctane 9 6.6 4.33-methyloctane 9 6.6 2.84-methyloctane 9 6.6 2.32,2,4-trimethylheptane 10 14.8 6.52,2,5,5-tetramethylhexane 10 24.6 7.42,2,dimethyloctane 10 12.9 6.62,3-dimethyloctane 10 8.9 3.92,5-dimethyloctane 10 8.9 4.92,6-dimethyloctane 10 8.9 3.8 4.12,7-dimethyloctane 10 8.9 6.92-methyl-3-ethylheptane 10 6.6 19.92-methylnonane 10 7.7 2.13,3-dimethyloctane 10 12.9 6.63,6-dimethyloctane 10 8.9 4.63-ethyloctane 10 7.7 6.03-methylnonane 10 7.7 2.14-ethyloctane 10 7.7 4.64-methylnonane 10 7.7 2.14-propylheptane 10 7.7 5.15-methylnonane 10 7.7 3.32,5-dimethylnonane 11 9.0 3.92,6-dimethylnonane 11 10.4 5.52-methyldecane 11 9.0 3.5 2.13-ethyl-nonane 11 9.0 2.9 4.03-methyldecane 11 9.0 2.14-methyldecane 11 9.0 1.15-methyldecane 11 9.0 2.72,3-dimethyldecane 12 12.1 3.82,6-dimethyldecane 12 12.1 2.8 3.32-methylundecane 12 10.5 2.14-methylundecane 12 10.5 2.15-methylundecane 12 10.5 2.16-methylundecane 12 10.5 2.12,2,3-trimethyldecane 13 23.4 1.9 6.22,6-dimethylundecane 13 14.1 2.311


4-methyldodecane 13 12.2 3.3 6.72,6,10-trimethyldodecane 15 22.0 3.52,2,4,4,6,8,8-heptamethyl nonane 16 135.4 602,6,10,14-tetramethyl hexadecane(pristane)20 54.5 21.0 4.32,6,10,14-tetramethylhexadecane(phytane)20 54.5 28.0Table 2. Predicted and experimental marine and freshwater half-life values for isoparaffins(in bold, structure names for which BioHCwin predicts half-lives above 60 days; rows in orange show experimental values above 60 days) Figure 4. BioHCwin (Y-axis) vs. experimental half-lives (X-axis) for iso-paraffins3.3 Mono-Naphthenic HydrocarbonsThe BioHCwin model predicts half-lives above 60 days for mono-naphthenichydrocarbons above C19 (Figure 5). Marine and freshwater experimental half-lives formono-naphthenic hydrocarbons up to C18 range from 1.7 to 55.9 days (Table 3). Thehighest half-life, which is still well below the persistence criterion, was found for a C10structure, cis-1,1,3,5-tetramethylcyclohexane, which is the most branched structure in theexperimental dataset. In several cases, there are data for multiple hydrocarbons with thesame number of carbons.For carbon numbers for which persistence data are available, predicted and experimentaldata are consistent, and all values up to C18 are below the persistence criterion (Figure6). It can be concluded that, based on the available data, mono-naphthenic hydrocarbonsat or above C19 may have half-lives above the persistence criterion.12


Figure 5. Half-life predictions for mono-naphthenic hydrocarbons using the US EPAmodel BioHCwinHydrocarbonC nrBioHCwinPredictedHalf-Life(days)MeasuredSeawaterHalf-Life(days)MeasuredFreshwaterHalf-Life(days)cyclopentane 5 45.1 6.0 9.1cyclohexane 6 55.4 4.3 8.2methylcyclopentane 6 6.0 3.9 8.11,1-dimethylcyclopentane 7 21.2 8.6 7.4cis-1,3-dimethylcyclopentane 7 4.1 8.3ethylcyclopentane 7 6.9 6.5methylcyclohexane 7 7.3 3.8 7.4trans-1,2-dimethylcyclopentane 7 4.1 10.4trans-1,3-dimethylcyclopentane 7 4.1 8.01,1-dimethylcyclohexane 8 26.0 10.4cis-1,2-dimethylcyclohexane 8 5.1 7.9cis-1,3-dimethylcyclohexane 8 5.1 8.1ethylcyclohexane 8 8.5 6.5trans-1,2-dimethylcyclohexane 8 5.1 8.1trans-1,3-dimethylcyclohexane 8 5.1 7.71,1,3-trimethylcyclohexane 9 18.0 8.51,3,5-trimethylcyclohexane 9 3.5 8.0 30.4bicyclo[4.3.0]nonane 9 55.9 4.9 18.9n-propylcyclohexane 9 9.9 5.5butylcyclohexane 10 11.6 2.6cis-1,1,3,5-tetramethylcyclohexane 10 12.5 20.1 36.1iso-butylcyclohexane 10 13.3 6.3 7.4pentylcyclohexane 11 13.5 2.11-isobutyl 2,5 12 6.4 2.8 12.913


dimethylcyclohexanehexylcyclohexane 12 15.7 1.7 1.3n-heptylcyclohexane 13 18.3 3.7 2.7n-octylcyclohexane 14 21.3 2.2 3.0nonylcyclohexane 15 24.8 2.8decylcyclohexane 16 28.9 3.4undecylcyclohexane 17 33.7 3.1dodecylcyclohexane 18 39.3 3.3Table 3. Predicted and experimental marine and freshwater half-life values for mononaphthenichydrocarbons Figure 6. BioHCwin vs. experimental half-lives for mono-naphthenic hydrocarbons3.4 Di-Naphthenic hydrocarbonsThe BioHCwin model predicts half-lives above 60 days for some di-naphthenic structuresabove C12 (Figure 7). Marine and freshwater experimental half-lives for di-naphthenichydrocarbons are available up to C16, and range from 7.9 to greater than 191 days (Table4). In several cases, there are data for multiple hydrocarbons with the same number ofcarbons. Structures up to C14 have half-lives below 60 days; the half-life for 2,7-diisopropyldecalin (C16) is above the persistence criterion. This half-life value is muchhigher than values for single isopropyl-branched decalins, showing again the influence ofincreased branching on persistence results (Prince and Walters 2007).In Figure 8, predicted and experimental data are shown. The plot shows that predictedhalf-lives are often higher that experimental values. While no experimental half-life dataare available for C15 di-naphthenic hydrocarbons, read across to C15 poly-naphthenichydrocarbons (see section 3.5) indicates these structures would not fulfill the persistence14


criterion. It can be concluded that, based on the conservative use of experimental resultsfor diisopropyldecalin, some di-naphthenic structures at or above C16 may have halflivesabove the persistence criterion. Figure 7. Half-life predictions for di-naphthenic hydrocarbons using the US EPA modelBioHCwinBioHCwinPredictedHalf-Life(days)MeasuredSeawaterHalf-Life(days)MeasuredFreshwaterHalf-Life(days)HydrocarbonC nrdecahydronaphthalene(decalin)10 68.6 66.02,6-dimethyldecalin 12 33.1 10.0bicyclohexyl 12 27.0 15.0 7.92,3,6-trimethyldecalin 13 23.0 332-isopropyldecalin 13 74.4 20n-propyldecalin 13 64.6 201, 4, 6, 7- tetramethyldecalin 14 15.9 222,7-diisopropyldecalin 16 80.8 >191.0Table 4. Predicted and experimental marine and freshwater half-life values for dinaphthenichydrocarbons (in bold, structure names for which BioHCwin predicts halflivesabove 60 days; rows in orange show experimental values above 60 days)15


Figure 8. BioHCwin (Y-axis) vs. experimental half-lives (X-axis) for di-naphthenichydrocarbons3.5 Poly-Naphthenic hydrocarbonsThe BioHCwin model predicts that half-lives for poly-naphthenic hydrocarbons aboveC13 will be higher than 60 days (Figure 9). Experimental marine degradation half-livesfor poly-naphthenic hydrocarbons up to C19 range from 6.1 to greater than 191 days(Table 5). In several cases, there are data for multiple hydrocarbons with the samenumber of carbons. Up to C15 and for some C18 and C19 structures half-lives are belowthe persistence criterion. However, some C16 and C18 structures have experimental halflivesclearly exceeding the persistence criterion although BioHCwin predictions forstructures with experimental half-lives above 60 days are in many cases overlyconservative (Table 5, Figure 10). It can be concluded that for poly-naphthenichydrocarbons at or above C16, some structures will exhibit half-lives above thepersistence criterion.16


Figure 9. Half-life predictions for poly-naphthenic hydrocarbons using the US EPAmodel BioHCwinHydrocarbonC nrBioHCwinPredictedHalf-Life(days)MeasuredSeawaterHalf-Life(days)perhydro-1-methyl-fluorene 14 117.0 46perhydrophenanthrene 14 117.0 32perhydro-2-methylanthracene 15 143.0 33perhydrodimethylphenanthrene 15 174.8 51hexadecahydropyrene 16 450.7 >191.01-methyl-7-(1methylethyl)-hydrophenanthrene 18 155.2 >191.0perhydro-chrysene 18 678.3 117.0perhydro-terphenyl (tricyclohexyl) 18 69.4 6.1-androstane 19 619.0 34.0Table 5. Predicted and experimental marine and freshwater half-life values for polynaphthenichydrocarbons (in bold, structure names for which BioHCwin predicts halflivesabove 60 days; rows in orange show experimental values above 60 days)17


Figure 10. BioHCwin (Y-axis) vs. experimental half-lives (X-axis) for poly-naphthenichydrocarbons3.6 Mono-AromaticsThe BioHCwin model predicts that half-lives for mono-aromatics above C22 will behigher than 60 days (Figure 11). Experimental freshwater and marine half-lives formono-aromatics up to C18 range from 1.7 to above 182 days (Table 6). In several cases,there are data for multiple hydrocarbons with the same number of carbons. Most of themono-aromatic hydrocarbons across the whole range of carbon chain lengths have halflivesbelow 5 days, but there is one exception in the dataset with half-life of 50 days: 1,1'-(1,1,2,2-tetramethyl-1,2-ethanediyl)bis-benzene (Table 6, Figure 12). Whileexperimental half-life data are available for this compound, this is not a typical structurefound in petroleum substances. Although the BioHCwin model may be overlyconservative, it can be concluded that mono-aromatics at or above C22 may have halflivesabove 60 days. Figure 11. Half-life predictions for mono-aromatic hydrocarbons using the US EPAmodel BioHCwin18


HydrocarbonC nrBioHCwinPredictedHalf-Life(days)MeasuredSeawaterHalf-Life(days)MeasuredFreshwaterHalf-Life(days)benzene 6 4.6 2.1 2.1toluene 7 4.5 2.1 2.3ethylbenzene 8 5.0 2.1 2.8m-xylene 8 4.4 2.1 2.3o-xylene 8 4.4 2.1 2.2p-xylene 8 4.4 2.1 2.31,2,3-trimethylbenzene 9 4.4 3.21,2,4-trimethylbenzene 9 4.4 3.21,3,5 trimethylbenzene 9 4.4 2.1 3.21-ethyl-2-methylbenzene 9 4.9 3.21-ethyl-4-methylbenzene 9 4.9 3.2isopropylbenzene 9 10.6 3.2propylbenzene 9 5.8 3.2(1-methylpropyl)benzene 10 12.4 3.2(2-methylpropyl)benzene 10 7.8 3.21,2,3,4 tetramethylbenzene 10 4.3 2.8 2.21,2-diethylbenzene 10 5.4 2.81,2-dimethyl-4-ethylbenzene 10 4.9 3.21,4-diethylbenzene 10 5.4 2.11-ethyl-2,4-dimethyl-benzene 10 4.9 3.21-ethyl-3,5-dimethylbenzene 10 4.9 1.81-methyl-2-(1-methylethyl)benzene 10 10.5 3.61-methyl-2-propylbenzene 10 5.7 2.01-methyl-3-(1-methylethyl)benzene 10 10.5 3.21-methyl-3-propylbenzene 10 5.7 1.71-methyl-4-(1-methylethyl)benzene 10 10.5 2.51-methyl-4-propylbenzene 10 5.7 2.22-ethyl-1,3-dimethylbenzene 10 4.9 3.22-ethyl-1,4-dimethylbenzene 10 4.9 3.21,3-dimethyl-5-(1-methylethyl)benzene 11 10.4 3.21-ethyl-3-methylbenzene 11 4.9 3.2n-octyl benzene 14 12.4 13.0butylbenzene 10 12.4 2.31,3,5-tris(1-methylethyl)-benzene 15 58.3 54.0decylbenzene 16 16.9 3.01,1'-(1,1,2,2-tetramethyl-1,2-ethanediyl)bis-benzene18 50.5 >182.0Table 6. Predicted and experimental marine and freshwater half-life values for monoaromatichydrocarbons19


Figure 12. BioHCwin (Y-axis) vs. experimental half-lives (X-axis) for mono-aromatichydrocarbons3.7 Naphthenic Mono-AromaticsThe BioHCwin model predicts that half-lives for naphthenic mono-aromatichydrocarbons above C14 will be higher than 60 days (Figure 13). In several cases, thereare data for multiple hydrocarbons with the same number of carbons. Half-lifepredictions for three-ring and higher hydrogenated polycyclic aromatic hydrocarbonssignificantly exceed the persistence criterion. However, experimental freshwater andmarine half-lives for naphthenic mono-aromatics up to C18 range from 1.9 to 38 days(Table 7), showing that the BioHCwin model predictions are again overly conservative(Figure 14). Based on the available data it can be concluded that some naphthenic monoaromaticstructures at or above C19 may have half-lives above 60 days.20


Figure 13. Half-life predictions for naphthenic mono-aromatic hydrocarbons using theUS EPA model BioHCwinHydrocarbonC nrBioHCwinPredictedHalf-Life(days)MeasuredSeawaterHalf-Life(days)MeasuredFreshwaterHalf-Life(days)indane 9 2.9 3.2indane (residuum trimethylalkane) 9 2.9 2.2 2.81,2,3,4-tetrahydronaphthalene (tetralin) 10 1.5 2.0 2.41-methylindane 10 6.2 3.24-methylindane 10 2.9 3.25-methylindane 10 2.9 3.2tetralin 10 1.5 3.22-methyltetralin 11 1.0 3.95-methyltetralin 11 1.5 3.56-methyltetralin 11 1.5 3.21,2,3,4-tetrahydro-1-4-dimethylnaphthalene12 6.7 6.0 8.21,1,6- trimethyl tetralin 13 2.9 3.1 3.01,2,3,4,5,6,7,8-octahydrophenanthrene 14 203.6 3.92-hexyltetralin 16 3.0 1.9dehydroabietine 17 892.9 38.03- phenyl-bicyclohexyl 18 118.6 23.0Table 7. Predicted and experimental marine and freshwater half-life values for naphthenicmono-aromatic hydrocarbons (in bold, structure names for which BioHCwin predictshalf-lives above 60 days)21


Figure 14. BioHCwin (Y-axis) vs. experimental half-lives (X-axis) for naphthenic monoaromatichydrocarbons3.8 Di-AromaticsThe BioHCwin model predicts that half-lives for di-aromatic hydrocarbons above C15will be above 60 days (Figure 15). Experimental freshwater and marine half-lives for diaromaticsup to C18 range from 2.1 to 122 days (Table 8). In several cases, there are datafor multiple hydrocarbons with the same number of carbons. It can be argued that theC16 structure (2,7-diisopropyl naphthalene) with a half-life of 122 days does notrepresent branching that is typical of petroleum hydrocarbons. However, the C18structure (2,3 dimethyl-5(4methylpentyl) naphthalene) with a half-life of 65 days istypical and exceeds the persistence criterion. For the rest of the dataset, half-lives acrossthe entire carbon chain length range from 2.1 to 11.6 days, meaning that modelpredictions are overly conservative (Figure 16). Based on the available data, it can beconcluded that di-aromatics at or above C18 may exhibit half-lives above the persistencecriterion.22


Figure 15. Half-life predictions for di-aromatic hydrocarbons using the US EPA modelBioHCwinHydrocarbonC nrBioHCwinPredictedHalf-Life(days)MeasuredSeawaterHalf-Life(days)MeasuredFreshwaterHalf-Life(days)biphenyl 10 31.0 11.6 2.8naphthalene 10 5.6 2.1 2.11-methylnaphthalene 11 8.9 3.7 2.92-methylbiphenyl 11 30.6 3.32-methylnaphthalene 11 8.9 3.23-methylbiphenyl 11 30.6 3.14-methylbiphenyl 11 30.6 3.02,7-diisopropyl naphthalene 16 30.5 122.06-n-Butyl-2,3-dimethylnaphthalene 16 21.1 3.81,1'-biphenyl, 4-pentyl- 17 53.6 3.02,3 dimethyl-5(4methylpentyl)naphthalene 18 33.0 65.0Table 8. Predicted and experimental marine and freshwater half-life values for diaromatichydrocarbons (rows in orange show experimental values above 60 days)23


Figure 16. BioHCwin (Y-axis) vs. experimental half-lives (X-axis) for di-naphthenichydrocarbons3.9 Naphthenic Di-AromaticsThe BioHCwin model predicts that half-lives for naphthenic di-aromatic hydrocarbonsabove C14 will be higher than 60 days (Figure 17). In several cases, there are data formultiple hydrocarbons with the same number of carbons. Experimental freshwater andmarine half-lives for C16 naphthenic di-aromatics (Table 9) were higher than thepersistence criterion for two of the three tested structures, but experimental values weremuch lower than BioHCwin predicted half-lives. Based on model predictions and due tothe limited experimental data available (Figure 18), it is concluded that structures at orabove C14 may have half-lives above the persistence criterion. Figure 17. Half-life predictions for naphthenic di-aromatic hydrocarbons using the USEPA model BioHCwin24


HydrocarbonC nrBioHCwinPredictedHalf-Life(days)MeasuredSeawaterHalf-Life(days)1,2,3,10b-tetrahydrofluoranthene 16 4908.0 221,2,3,6,7,8 hexahydropyrene 16 11860.0 >1824,5,9,10-tetrahydropyrene 16 656.0 >182Table 9. Predicted and experimental marine and freshwater half-life values for naphthenicdi-aromatic hydrocarbons (in bold, structure names for which BioHCwin predicts halflivesabove 60 days; rows in orange show experimental values above 60 days) Figure 18. BioHCwin (Y-axis) vs. experimental half-lives (X-axis) for naphthenic-diaromatichydrocarbons3.10 Poly-AromaticsThe BioHCwin model predicts that half-lives for poly-aromatic hydrocarbons above C14will be higher than 60 days (Figure 19). In several cases, there are data for multiplehydrocarbons with the same number of carbons. Experimental half-lives for polyaromaticsup to C20 range from 2.5 days to > 182, while the model predicts half-livesfrom 15 to 348 days (Table 10). For some C18 structures (with more than three rings ando-terphenyl, Figure 20) experimental half-lives are above the persistence criterion. Theslower degradation of four-ring PAHs is well-known (Prince and Walters 2007). Basedon the available data it can be concluded that at or above C18, half-lives for some fourring poly-aromatics will be above the persistence criterion.25


Figure 19. Half-life predictions for poly-aromatic hydrocarbons using the US EPA modelBioHCwinHydrocarbonC nrBioHCwinPredictedHalf-Life(days)MeasuredSeawaterHalf-Life(days)MeasuredFreshwaterHalf-Life(days)fluorene 13 15.1 2.5methylfluorene 14 24.2 4.2phenanthrene 14 15.0 5.0 2.61-methylphenanthrene 15 23.9 2.82-methylphenanthrene 15 23.9 4.23-methylphenanthrene 15 23.9 4.29-methylanthracene 15 196.7 6.09-methylphenanthrene 15 23.9 4.2fluoranthene 16 191.4 9.2pyrene 16 283.4 1511-methylpyrene 17 108.8 64.0benzo(b)fluorene 17 347.6 4.21-methyl-7-(1methylethyl)-phenanthrene 1856.0 209-n butylphenanthrene 18 22.2 72.0benzo[a]anthracene 18 343.8 > 182chrysene 18 343.8 > 182m-terphenyl 18 6.7 15o-terphenyl 18 6.7 > 182triphenylene 18 343.8 > 1827-methylbenz(a)anthracene 19 131.9 4.7benzo(k)fluoranthene 20 284.7 11.426


enzo[a]pyrene 20 421.6 16.5Table 10. Predicted and experimental marine and freshwater half-life values for polyaromatichydrocarbons (in bold, structure names for which BioHCwin predicts half-lives above 60 days; rows in orange show experimental values above 60 days) Figure 20. BioHCwin (Y-axis) vs. experimental half-lives (X-axis) for poly-aromatichydrocarbons27


4.0 Bioaccumulation Assessment of Petroleum hydrocarbonBlocksGuidance provided by the ECHA (ECHA 2008b) on how to interpret the Annex XIIIcriteria and the recent discussion on the proposed revision of those criteria, indicate thatthe assessment of B/vB properties (B: BCF of >2000,


(see Appendix 2). Since BCF predictions derived from this model are based on a defaultlipid content of 10.7%, predictions were adjusted to 5% lipid content as recommended inREACH Guidance Chapter R.7c (ECHA, 2008a). Default values for particulate anddissolved organic carbon concentrations of 0.5 mg/l that are assumed in the BCFBAFmodel were also used as conservative defaults in these calculations. The markedinfluence that fish biotransformation exerts on the predicted BCFs derived from thismodel is evident (see second figure in each of the sections below). BAF predictionsincluded in the BCFBAF model were judged to be inappropriate for hydrocarbons sincemetabolism in the gut (which effectively reduces the default dietary assimilationefficiency assumed in food chain model calculations) is ignored. The decision to excludeBAF model predictions in this analysis is supported by experimental dietary BMF data(see below) demonstrating the critical role of gut metabolism in limiting biomagnificationof hydrocarbons via the diet.Experimental dataAqueous and dietary bioaccumulation data are reported in tables in each hydrocarbonclass section. Dietary bioaccumulation tests (Anon, 2004) offer a number of practicaladvantages over traditional aqueous BCF tests, particularly for more hydrophobic testsubstances. These data may be used to calculate a biomagnification factor (BMF) whichis defined as the concentration ratio of test substance in fish tissue at steady-state to thatin the administered diet. If expressed on a lipid normalized basis, substances that exhibita BMF significantly above one may undergo biomagnification while substances with aBMF well below one may exhibit trophic dilution in the food chain. Experimentalelimination rate data derived from these studies can also be combined with allometricequations for estimating the uptake clearance (k 1 ) to estimate a BCF for the test substance(Parkerton et al. 2008):The BCF, normalized to 5% lipid content is calculated with the following equation:BCFC=Cfishwaterφ ⋅ ku⋅ t=0.693125xLfishwhere k u is the uptake rate constant (520·W -0.32 ) (Sijm et al. 1995), t 1/2 is the growthcorrectedhalf-life, derived from the slope of the depuration plot and the fish growth rateduring the dietary test, and L fish a correction for bioavailability which limits uptake for more hydrophobic substances. Forsuch substances, complexation to low concentrations of organic carbon in dilution wateris unavoidable. As a result, the ratio of chemical to oxygen gill transfer efficienciesdeclines as predicted by the following relationship (Gobas and Arnot 2003):1φ =, X poc = 0, X doc = 2×10 -6(1 + (0.35⋅X ⋅ K ) + (0.08⋅X ⋅ K )pocOWdocOW29


where POC and DOC are the particulate and dissolved organic carbon concentrations(kg•L -1 ) in dilution water, respectively. For the BCF values presented in the subsequenttables, a DOC value of 2 mg/L and a POC of 0 mg/L are assumed which corresponds tothe acceptable concentration of total organic carbon that is specified in the OECD 305bioconcentration test guideline. Since DOC has a lower affinity than POC, theseassumptions are expected to provide a conservative basis for evaluating bioavailability ofhydrocarbons in clean lab water relative to natural waters.4.1 Normal ParaffinsBioconcentration factor predictions for n-paraffins obtained using the regression method(Figure 21) are above the B criterion of 2000 for the C14 n-paraffin, tetradecane. Whenbiotransformation is incorporated to the model, none of the predicted n-paraffin BCFs areabove 2000 (Figure 22). Dietary BCF values, which are typically more conservative thanaqueous BCF values, are above the criterion for C9, and C12-C14 (Table 11). In contrast,aqueous BCF test data in the same carbon range are all below the criterion (Figure 23).The elevated BCF prediction for tetradecane is confirmed by the BMF, which is near 1(Figure 24). It can be concluded that based on the available data, only a C13 and C14 n-paraffin have a BCF greater than 2000, and no n-paraffin has a BCF greater than 5000(vB criterion). Thus the C13 and C14 n-paraffins may fulfill the B criterion but not thevB criterion.10000100010010n-ParaffinsBvB10 5 10 15 20 25 30 35 40Figure 21. Predicted fish BCFs for n- paraffins using the regression-based approach inBCFBAF. B – 2000, vB - 500030


100001000100101n-ParaffinsBvB00 5 10 15 20 25 30 35 40Figure 22. Predicted fish BCFs for n-paraffins using Arnot’s equations incorporatingmetabolism (Arnot and Gobas 2003). B – 2000, vB - 5000Hydrocarbon C BMFBCF(Arnot)DietaryBCFAqueousBCFSpeciesReferencen-nonane 9 0.128 666 2531 RT EMBSI, 2001an-dodecane 12 0.224 732 4408 RT EMBSI, 2001a12 0.041 732 773 RT EMBSI, 2005e732 400 FHMTolls and vDijk , 2002n-tridecane 13 0.27 640 3210 RT EMBSI, 2007an-tetradecane 14 1.07 415 4231 RT EMBSI, 2006an-pentadecane 15 203 20 C CITI, 1992n-hexadecane 16 0.485 90 756 RT EMBSI, 2001a90 46 C CITI, 1992n-hexadecane(deuterated)16 0.653 90 778 RT EMBSI, 2005aTable 11. Experimentally derived dietary and aqueous bioaccumulation data for n-paraffins. BCF (Arnot) is the predicted BCF using Arnot’s equations incorporatingmetabolism (Arnot and Gobas 2003). RT: rainbow trout; FHM: fathead minnow; C: carp.Bold blue entries represent BCF values between the B criterion (2000) and the vBcriterion (5000).31


10000100010010nP Dietary BCFnP Aqueous BCFBvB15 10 15 20 25 30Figure 23. Experimentally derived fish BCFs for n-paraffins. B – 2000, vB - 50001010.1nP Dietary BMFBMF = 10.015 10 15 20Figure 24. Experimentally derived fish BMFs for n-paraffins from dietarybioaccumulation studies4.2 Iso-paraffinsRegression method BCF predictions for iso-paraffins (Figure 25) are above the Bcriterion of 2000 for structures ranging from C11 to C16. Above these carbon chainlengths, BCF values decrease below 2000. When biotransformation is incorporated intothe model, none of the iso-paraffin BCF predictions are above 2000 (Figure 26).Experimental BCF values for iso-paraffins range from 673 (aqueous) to 6004 (dietary).Dietary BCF values, which are typically more conservative than aqueous BCF values, areabove the B criterion for selected C9, C11 and C12 structures. Aqueous BCF data for2,2,4,6,6-pentamethylheptane which is a highly branched, atypical structure indicates theB criterion maybe fulfilled (Figure 27). For all tested C13, C15 and C16 structuresdietary calculated BCFs exceed 2000 (Table 12). However, reliable aqueous BCF datafor C15 and C16 structures indicate these compounds do not fulfill the B criterion but do32


exhibit BMFs near unity (Figure 28). It can be concluded that based on the availabledata, C12-C16 iso-paraffins may be bioaccumulative (B), but not very bioaccumulative(vB).10000010000100010010i-ParaffinsBvB10 5 10 15 20 25 30 35Figure 25. Predicted fish BCFs for iso-paraffins using the regression-based approach inBCFBAF. B – 2000, vB - 500010000100010010i-ParaffinsBvB100 5 10 15 20 25 30 35Figure 26. Predicted fish BCFs for iso-paraffins using Arnot’s equations incorporatingmetabolism (Arnot and Gobas 2003). B – 2000, vB - 500033


Hydrocarbon C BMFBCF(Arnot)DietaryBCFAqueousBCFSpeciesReference2,2,4-CITI, 19928 200 853 Ctrimethylpentane8 200 821 C CITI, 19922,3-dimethylheptane 9 0.258 298 3726 RTEMBSI,2001a2,3-dimethylheptane 9 0.065 298 1957 RTEMBSI,2006a2,6-dimethyl octane 10 0.014 406 1735 RTEMBSI,2006a3-ethyl-nonane 11 0.036 602 2235 RTEMBSI,2004a3-methyl decane 11 0.02 602 1753 RTEMBSI,2006a2-methyl decane 11 0.036 602 663 RTEMBSI,2006a2,2,4,6,6-EMBSI,12 0.187 1012 5899 RTpentamethylheptane2001a12 1012 4518 RTEMBSI2004c12 1012 1467 FHMTolls and vDijk, 20022,3 dimethyldecane 12 0.03 693 1049 RTEMBSI,2005d2,3 dimethyldecane 12 0.022 693 6004 RTEMBSI,2006a2,6-dimethyldecane 12 0.073 693 4380 RTEMBSI,2001a2,6-dimethyldecane 12 0.023 693 299 RTEMBSI,2005e2-methyl undecane 12 0.051 695 2983 RTEMBSI,2006a2,2,3-trimethylEMBSI,13 0.094 844 2499 RTdecane2004a2,2,3-trimethylEMBSI,13 0.038 844 3623 RTdecane2006a2,6-dimethylEMBSI,13 0.094 656 3467 RTundecane2006a4-methyl dodecane 13 0.077 631 2921 RTEMBSI,2006a2,6,10-trimethylEMBSI,15 1.27 251 2424 RTdodecane2004a2,6,10-trimethylEMBSI,15 0.72 251 3345 RTdodecane2005b15 291 RTEMBSI2004b15 817 RTEMBSI,2005c34


2,2,4,4,6,8,8-heptamethyl nonane16 1.01 298 2620 RT16 298 673 RTEMBSI,2004aEMBSI,2005cTable 12. Experimentally derived dietary and aqueous bioaccumulation data for isoparaffins.BCF (Arnot) is the predicted BCF using Arnot’s equations incorporatingmetabolism (Arnot and Gobas 2003). RT: rainbow trout; FHM: fathead minnow; C: carp.Bold blue entries represent BCF values between the B criterion (2000) and the vBcriterion (5000). Bold red entries represent BCF values above the vB criterion (5000).10000100010010iP Dietary BCFiP Aqueous BCFBvB15 10 15 20Figure 27. Experimentally derived fish BCFs for iso-paraffins. B – 2000, vB - 500010iP Dietary BMFBMF = 110.10.015 10 15 20Figure 28. Experimentally derived fish BMFs for iso-paraffins from dietarybioaccumulation studies35


4.3 Mono-Naphthenic hydrocarbonsThe regression-based BCF predictions for mono-naphthenic hydrocarbons (Figure 29) areabove the B criterion of 2000 for structures ranging from C11 to C18. Above thesecarbon chain lengths, BCF values decrease below 2000. When biotransformation isincorporated into the model, only one C12 BCF prediction is above 2000 (Figure 30).Experimental BCF values for mono-naphthenic hydrocarbons range from 77 (aqueous) to4614 (dietary). Dietary BCF values are above the B criterion for many of the testedstructures, which range from C9 to C14 (Table 13). Aqueous BCF data are limited butdata for a C8 structure indicates the B criterion is fulfilled (Figure 31). ExperimentalBMF factors, derived from the dietary data (Figure 32), are always below 1 suggestingthat calculated dietary BCFs may overstate bioaccumulation potential at least for somestructures. It can be concluded that based on the available data, mono-naphthenichydrocarbons below C8 are not bioaccumulative, and that some C8-C14 mononaphthenichydrocarbons may meet the bioaccumulative criterion (above 2000), but donot exceed 5000, therefore are not very bioaccumulative (vB).10000010000100010010MononaphthenicsBvB10 5 10 15 20 25 30 35Figure 29. Predicted fish BCFs for mono-naphthenic hydrocarbons using the regressionbasedapproach in BCFBAF. B – 2000, vB - 5000100001000100101MononaphthenicsBvB00 5 10 15 20 25 30 35Figure 30. Predicted fish BCFs for mono-naphthenic hydrocarbons using Arnot’sequations incorporating metabolism (Arnot and Gobas 2003). B – 2000, vB - 500036


Hydrocarbon C BMFBCF(Arnot)DietaryBCFAqueousBCFSpeciesReferencecyclohexane 6 71 77 C CITI, 19921-methylcyclohexane 7 106 240 C CITI, 1992ethylcyclohexane 8 342 2529 C CITI, 19921,3,5-trimethylcyclohexane9 0.35 456 3882 RT EMBSI, 2001acis-1,1,3,5 tetramethylcyclohexane10 0.543 620 4614 RT EMBSI, 2003iso-butyl cyclohexane 10 0.223 484 2028 RT EMBSI, 20031-isobutyl-2,5-dimethylcyclohexane11 0.332 1363 2423 RT EMBSI, 2004a1,4-diisopropylcyclohexane12 0.332 1047 3315 RT EMBSI, 2004an-hexylcyclohexane 12 0.042 891 1917 RT EMBSI, 2004a3-methyl-1-hexylcyclohexane13 0.066 1152 3428 RT EMBSI, 2006an-heptylcyclohexane 13 0.02 858 591 RT EMBSI, 2005ecyclohexane, 1,1'-(1,2-ethanediyl)bis-14 0.05 858 410 RT EMBSI, 2005dn-octylcyclohexane 14 0.06 607 2536 RT EMBSI, 2006aTable 13. Experimentally derived dietary and aqueous bioaccumulation data for mononaphthenichydrocarbons. BCF (Arnot) is the predicted BCF using Arnot’s equationsincorporating metabolism (Arnot and Gobas 2003). RT: rainbow trout; C: carp. Bold blueentries represent BCF values between the B criterion (2000) and the vB criterion (5000).100001000100101MN Dietary BCFMN Aqueous BCFBvB5 10 1537


Figure 31. Experimentally derived fish BCFs for mono-naphthenic hydrocarbons. B –2000, vB - 500010MN Dietary BMFBMF = 110.10.015 10 15Figure 32. Experimentally derived fish BMFs for mono-naphthenic hydrocarbons fromdietary bioaccumulation studies4.4 Di-Naphthenic hydrocarbonsRegression-based BCF predictions for di-naphthenic hydrocarbons (Figure 33) are abovethe B criterion of 2000 for structures ranging from C14 to C20. When biotransformationis incorporated to the model, BCF predictions for structures with carbon numbers rangingfrom C13 to C18 are above 2000 (Figure 34). Dietary BCF values are above the Bcriterion for many of the tested structures, which range from C9 to C16 (Table 14). Oneof the structures, trans-decalin, has a calculated dietary BCF value of more than 5000 butseveral aqueous BCF values for cis-decalin clearly show the true BCF is below 5000.Experimental BMF factors, derived from the dietary data (Figure 36), are always below 1indicating these substances are not expected to biomagnify. It can be concluded thatbased on the available data, some C10 to C18 di-naphthenic hydrocarbons likely meet thebioaccumulative (B), but not very bioaccumulative (vB) criterion.38


10000010000100010010DinaphthenicsBvB10 5 10 15 20 25 30 35 40Figure 33. Predicted fish BCFs for di-naphthenic hydrocarbons using the regressionbasedapproach in BCFBAF. B – 2000, vB - 500010000100010010DinaphthenicsBvB100 5 10 15 20 25 30 35 40Figure 34. Predicted fish BCFs for di-naphthenic hydrocarbons using Arnot’s equationsincorporating metabolism (Arnot and Gobas 2003). B – 2000, vB - 5000Hydrocarbon C BMFBCFArnotDietaryBCFAqueousBCFSpeciesReferencebicyclo[4.3.0]nonane9 0.079 194 838 RT EMBSI, 2003trans-decalin 10 0.856 486 5846 RT EMBSI, 2001a10 486 1962 C CITI, 199210 486 2250 C CITI, 1992cis-decalin 10 486 2573 C CITI, 199210 486 2323 C CITI, 199239


2-isopropyldecalin13 0.02 2694 3893 RT EMBSI, 2006a13 0.056 2694 1606 RT EMBSI, 2007b0.02 2694 2877 C EMBSI, 2007cbicyclohexyl 12 0.17 1031 1324 EMBSI, 2005d2,7-diisopropyldecalin16 0.1 2915 4543 EMBSI, 2008aTable 14. Experimentally derived dietary and aqueous bioaccumulation data for dinaphthenichydrocarbons. BCF (Arnot) is the predicted BCF using Arnot’s equationsincorporating metabolism (Arnot and Gobas 2003). RT: rainbow trout; C: carp. Boldblue entries represent BCF values between the B criterion (2000) and the vB criterion(5000). Bold red entries represent BCF values above the vB criterion (5000).1000010001005 10 15 20Dinaphthenic Dietary BCFDinapthenic Aqueous BCFBvBFigure 35. Experimentally derived fish BCFs for di-naphthenic hydrocarbons. B – 2000,vB - 50001010.1Dinaphthenic Dietary BMFBMF = 10.015 10 15 20Figure 36. Experimentally derived fish BMFs for di-naphthenic hydrocarbons fromdietary bioaccumulation studies40


4.5 Polynaphthenic hydrocarbonsRegression method-based BCF predictions for polynaphthenic hydrocarbons (Figure 37)are above the B criterion of 2000 for C15 to C27 structures. When biotransformation isincorporated to the model, BCF predictions for structures ranging from C14 to C22 areabove 2000 (Figure 38). Dietary BCF values, which are typically more conservative thanaqueous BCF values, are above the vB criterion for some of the tested structures, whichrange from C16 to C18 (Table 15). While hexadecahydropyrene exhibited the highestcalculated dietary BCF, the aquatic BCF value for this compound is below 5000. Sincethis compound is considered the worst case representative structure for this HCB, it canbe concluded polynaphthenic hydrocarbons do not have BCFs exceeding 5000.Experimental BMF factors derived from dietary data (Figure 40) provide further supportsince BMFs are at or below 1. It can be concluded that based on the available data, someC14 to C22 polynaphthenic hydrocarbons may be bioaccumulative (B), but not verybioaccumulative (vB).10000010000100010010PolynaphthenicsBvB15 10 15 20 25 30 35Figure 37. Predicted fish BCFs for polynaphthenic hydrocarbons using the regressionbasedapproach in BCFBAF. B – 2000, vB - 5000100001000100101PolynaphthenicsBvB05 10 15 20 25 30 35Figure 38. Predicted fish BCFs for polynaphthenic hydrocarbons using Arnot’s equationsincorporating metabolism (Arnot and Gobas 2003). B – 2000, vB - 500041


Hydrocarbon C BMFBCFArnotDietaryBCFAqueousBCFSpecieshexadecahydropyrene 16 1.02 4084 19451 4955 RTisopropylhydrophenanthrene1-methyl-7-(isopropyl)-hydrophenanthrene17 0.448 3563 11595 RT18 0.35 2872 7607 RTperhydrochrysene 18 0.376 4871 9691 RT1,1':3', 1"-tercyclohexanehydrogenatedterphenyl18 0.44 95 282 RTReferenceEMBSI,2008a, 2009bEMBSI,2006bEMBSI,2008aEMBSI,2008bEMBSI,2008c18 4650 C CITI, 1992Table 15. Experimentally derived dietary and aqueous bioaccumulation data for polynaphthenichydrocarbons. BCF (Arnot) is the predicted BCF using Arnot’s equationsincorporating metabolism (Arnot and Gobas 2003). RT: rainbow trout; C: carp. Boldblue entries represent BCF values between the B criterion (2000) and the vB criterion(5000). Bold red entries represent BCF values above the vB criterion (5000).100000100001000Polynaphth. Dietary BCFPolynaphth. Aqueous BCFBvB10015 16 17 18 19 20Figure 39. Experimentally derived fish BCFs for polynaphthenic hydrocarbons. B – 2000,vB - 500042


101Polynaphth. Dietary BMFBMF = 10.115 16 17 18 19 20Figure 40. Experimentally derived fish BMFs for polynaphthenic hydrocarbons fromdietary bioaccumulation studies4.6 Mono-AromaticsRegression method BCF predictions for mono-aromatics (Figure 41) are above the Bcriterion of 2000 for structures ranging from C12 to C17. When biotransformation isincorporated to the model, none of the BCF predictions are above 2000 (Figure 42).Dietary BCF values, which are typically more conservative than aqueous BCF values, arebelow the B criterion for all tested structures (C9 to C16) except 1,3,5-tris(1-methylethyl)-benzene (triisopropyl benzene, Table 16). However, this compound is notrepresentative of petroleum hydrocarbon structures and is therefore not used for Bassessment of this HCB. Aqueous BCFs for all other monoaromatics are below 2000.Experimental BMF factors derived from dietary data (Figure 44) are consistently wellbelow 1. It can be concluded that based on the available data, mono-aromatichydrocarbons, as a class, are neither bioaccumulative nor very bioaccumulative.10000010000100010010MonoaromaticsBvB15 10 15 20 25 30 35Figure 41. Predicted fish BCFs for mono-aromatic hydrocarbons using the regressionbasedapproach in BCFBAF. B – 2000, vB - 500043


100001000100101MonoaromaticsBvB05 10 15 20 25 30 35Figure 42. Predicted fish BCFs for mono-aromatic hydrocarbons using Arnot’s equationsincorporating metabolism (Arnot and Gobas, 2003). B – 2000, vB - 5000Hydrocarbon C nr BMF1,3,5-trimethylbenzeneBCFArnotDietaryBCFAqueousBCFSpecies9 0.025 95 1209 RTReferenceEMBSI,2001a9 95 338 C CITI, 19929 95 343 C CITI, 1992alpha-methylstyrene 9 8 78 C CITI, 19929 82 63 C CITI, 19921,2,4-trimethylbenzene9 91 154 C CITI, 19929 91 119 C CITI, 19921,2,3-trimethylbenzene9 95 125 C CITI, 19929 95 141 C CITI, 19921,2,3,4-tetramethylbenzene10 0.051 103 717 RT EMBSI, 2003m-cymene 10 392 531 C CITI, 199210 392 572 C CITI, 1992m-diethylbenzene 10 340 556 C CITI, 1992p-diethylbenzene 10 343 478 C CITI, 1992tert-pentylbenzene 11 244 624 C CITI, 19921-tert- butyl-4-methylbenzene11 0.096 1044 760 RT EMBSI, 2003m-diisopropylbenzene12 628 1349 C CITI, 1992p-diisopropylbenzene 12 628 1607 C CITI, 1992diisopropylbenzene(2531-09-9)12 628 1519 C CITI, 19921,1,1-trimethyl butyl 13 0.055 351 556 RT EMBSI,44


enzenen-octylbenzene 14 0.034 403 414 RT14 0.011 403 694 Cdecylbenzene 16 0.18 191 596 RT2007aEMBSI,2007bEMBSI,2007cEMBSI,2005dTable 16. Experimentally derived dietary and aqueous bioaccumulation data formonoaromatic hydrocarbons. BCF (Arnot) is the predicted BCF using Arnot’s equationsincorporating metabolism (Arnot and Gobas 2003). RT: rainbow trout; C: carp1000010001005 10 15 20 25Monoar. Dietary BCFMonoar. Aqueous BCFBvBFigure 43. Experimentally derived fish BCFs for mono-aromatics for mono-aromatichydrocarbons. B – 2000, vB - 50001010.1Monoar. Dietary BMFBMF = 10.015 10 15 20Figure 44. Experimentally derived fish BMFs for mono-aromatic hydrocarbons fromdietary bioaccumulation studies45


4.7 Naphthenic Mono-AromaticsRegression method-based BCF predictions for naphthenic mono-aromatics (Figure 45)are above the B criterion of 2000 for structures ranging from C13 to C24. Whenbiotransformation is incorporated to the model, BCF predictions are above 2000 for a fewC14 and C17 structures (Figure 46). Some aqueous and dietary BCFs are above 2000 inthe C13-C18 range, although none of these values exceed 5000 (Table 17). ExperimentalBMFs derived from dietary data are all below one, with the exception of one compound(3-phenyl bicyclohexyl), which has a BMF near unity but a dietary calculated BCF ofonly 300. It can be concluded that based on the available data, some naphthenic monoaromatichydrocarbons in the C13 to C18 range may be bioaccumulative, but are not verybioaccumulative.10000010000100010010NMArBvB15 10 15 20 25 30 35Figure 45. Predicted fish BCFs for naphthenic mono-aromatic hydrocarbons using theregression-based approach in BCFBAF. NMAr: naphthenic monoaromatic. B – 2000, vB- 500046


100001000100101NMArBvB05 10 15 20 25 30 35Figure 46. Predicted fish BCFs for naphthenic mono-aromatic hydrocarbons usingArnot’s equations incorporating metabolism (Arnot and Gobas 2003). NMAr: naphthenicmonoaromatic. B – 2000, vB - 5000Hydrocarbon C BMFBCFArnotDietaryBCFAqueousBCFSpeciestetralin 10 103 230 C1,2,3,4-tetrahydro-1,4-dimethyl naphthalene12 0.158 800 1364 RT1,1,6-trimethyl tetralin 13 0.328 1119 2381 RT1,2,3,4,5,6,7,8-octahydrophenanthrene2,2,5,7-tetramethyltetralin1,1,3,3,5-pentamethylindan14 0.128 239 3063 3418 RT14 0.05 574 1171 RT15 0.146 640 2347 RT2-hexyl tetralin 16 0.013 605 939 RTdehydroabietine 17 0.053 1061 4097 RT3-phenyl bicyclohexyl 18 1.09 252 300 RTm-dicyclohexylbenzene18 0.07 265 607 1406 RTdodecahydrochrysene 18 0.17 82 1773 4588 RTReferenceCITI,1992EMBSI,2003EMBSI,2004aEMBSI,2005e,2009bEMBSI,2006bEMBSI,2006bEMBSI,2006aEMBSI,2006bEMBSI,2005dEMBSI,2008cEMBSI,2008cTable 17. Experimentally derived dietary and aqueous bioaccumulation data fornaphthenic monoaromatic hydrocarbons. BCF (Arnot) is the predicted BCF using Arnot’sequations incorporating metabolism (Arnot and Gobas 2003). RT: rainbow trout; C:47


carp. Bold blue entries represent BCF values between the B criterion (2000) and the vBcriterion (5000).10000NMAr Dietary BCFNMAr Aqueous BCFBvB10001005 10 15 20 25Figure 47. Experimentally derived fish BCFs for naphthenic mono-aromatichydrocarbons. NMAr: naphthenic monoaromatic. B – 2000, vB - 50001010.1NMAr Dietary BMFBMF = 10.015 10 15 20Figure 48. Experimentally derived fish BMFs for naphthenic mono-aromatichydrocarbons from dietary bioaccumulation studies. NMAr: naphthenic monoaromatic4.8 Di-AromaticsRegression method-based BCF predictions for di-aromatics (Figure 49) are above the Bcriterion of 2000 for structures ranging from C15 to C22. When biotransformation isincorporated to the model, BCF predictions are above 2000 for a few structures rangingfrom C15 to C18 (Figure 50). Only a few aqueous and dietary BCFs in the large datasetavailable for di-aromatics are above 2000, mainly for structures above C15 (Table 17). Areported aqueous BCF of 12298 for 2-isopropylnaphthalene reported by Jonsson et al.(2004) is contradictory to two high quality values (1620, 600) reported by CITI (1992)48


and appears to be an outlier. This value is not consistent with 11 other BCF values forC11-C16 methylated naphthalenes, all of which indicate that these structures are notbioaccumulative.There is some indication that selected C16 and C18 di-aromatic structures may bebioaccumulative. However, the compounds that trigger the B criterion have structuralfeatures (di-isopropyl branching, ethanediyl and bibenzyl moities) that are not typical ofpetroleum hydrocarbons. If data for only representative structures are considered,available data show di-aromatics exhibit a low bioaccumulation potential. Thisconclusion is further supported by the fact that experimental BMF values (Figure 51) forthese structures are at or well below 0.1 (Figure 52). It can be concluded that based onthe available data, di-aromatic hydrocarbons, as a class, are neither bioaccumulative norvery bioaccumulative.10000010000100010010DiArBvB15 10 15 20 25 30 35Figure 49. Predicted fish BCFs for di-aromatic hydrocarbons (DiAr) using the regressionbasedapproach in BCFBAF. B – 2000, vB - 500049


100001000100101DiArBvB05 10 15 20 25 30 35Figure 50. Predicted fish BCFs for di-aromatic hydrocarbons (DiAr) using Arnot’sequations incorporating metabolism (Arnot and Gobas 2003). B – 2000, vB - 5000Hydrocarbon C BMFBCFArnotDietaryBCFAqueousBCFSpeciesReferencenaphthalene 10 0.005 229 814 RTEMBSI,2005a10 229 95 C CITI, 199210 229 91 C CITI, 19922-methylnaphthalene 11 389 1871 SHMJonsson etal, 20042-methylnaphthalene 11 0.01 389 651 RTEMBSI,2005amethylnaphthalenes 11 0.063 398 857 RTEMBSI,2001b1,3-dimethylnaphthalene 12 378 2051 SHMJonsson etal, 20042,3-dimethylnaphthalene 12 0.012 378 973 RTEMBSI,2005adi-me & et naphthalenes 12 0.108 863 1425 RTEMBSI,2001btri-me naphthalenes 13 0.092 2011 1702 RTEMBSI,2001b2-isopropylnapthalene 13 740 12298 SHMJonsson etal, 2004isopropylnaphthalene 13 740 1620 C CITI, 199213 740 600 C CITI, 1992diphenylmethane 13 95 904 C CITI, 19924-ethyl-1,1'-biphenyl 14 0.031 863 216 RTEMBSI,2008b14 0.005 863 628 CEMBSI,2008c50


4-ethylbiphenyl 14 863 1039 CYakata etal, 20061,4-dimethyl-2-(1-Yakata et16 400 1106 Cphenylethyl) benzeneal, 20063,3',4,4'-tetramethyl 1,1'-EMBSI,16 0.009 2068 536 RTbiphenyl2005e2,7-diisopropylEMBSI,16 0.043 1570 229 RTnaphthalene2008b2,7-EMBSI,16 0.03 1570 2422 Cdiisopropylnaphthalene2008cbenzyl-p-xylene 16 426 1869 C CITI, 1992426 1407 C CITI, 19926-n-butyl-2,3-EMBSI,16 0.013 386 1695 RTdimethylnaphthalene2006b4-pentyl-1,1'-Biphenyl 17 0.067 746 526 RTEMBSI,2005dbenzene, 1,1'-(1,1,2,2-tetramethyl-1,2-ethanediyl)bis-3,3',5,5'- tetramethylbibenzyl2,3-dimethy-5(4methylpentyl)naphthalene2,3-dimethy-5(4methylpentyl)naphthalene18 0.167 440 3097 RT18 0.42 440 3501 RT18 0.04 229 229 RT18 0.046 389 191 RTEMBSI,2005eEMBSI,2005eEMBSI,2005dEMBSI,2006bTable 18. Experimentally derived dietary and aqueous bioaccumulation data for diaromatichydrocarbons. BCF (Arnot) is the predicted BCF using Arnot’s equationsincorporating metabolism (Arnot and Gobas 2003). RT: rainbow trout; C: carp; SHM:sheepshead minnow. Bold blue entries represent BCF values between the B criterion(2000) and the vB criterion (5000). Bold red entries represent BCF values above the vBcriterion (5000).51


100000100001000DAH Dietary BCFDAH Aqueous BCFBvB1005 10 15 20 25Figure 51. Experimentally derived fish BCFs for di-aromatic hydrocarbons (DiAr) . B –2000, vB - 50001010.10.01DAH Dietary BMFBMF = 10.0015 10 15 20Figure 52. Experimentally derived fish BMFs for di-aromatic hydrocarbons (DiAr) fromdietary bioaccumulation studies4.9 Naphthenic Di-AromaticsRegression method-based BCF predictions for naphthenic di-aromatic hydrocarbons(Figure 53) are above the B criterion of 2000 for structures ranging from C15 to C23.When biotransformation is incorporated to the model, none of the BCF predictions areabove 2000 (Figure 54). In support of model predictions, no aqueous or dietary BCF thatis available for naphthenic di-aromatics structures is above 2000. Furthermore, allexperimental BMF values (Figure 55) are below 0.1. It can be concluded that based onthe available data, naphthenic di-aromatic hydrocarbons, as a class, are notbioaccumulative or very bioaccumulative.52


10000010000100010010NDiArBvB110 15 20 25 30 35Figure 53. Predicted fish BCFs for naphthenic di-aromatic hydrocarbons (NDiAr) usingthe regression-based approach in BCFBAF. B – 2000, vB - 500010000.01000.0100.010.01.0NDiArBvB0.110 15 20 25 30 35Figure 54. Predicted fish BCFs for naphthenic di-aromatic hydrocarbons (NDiAr) usingArnot’s equations incorporating metabolism (Arnot and Gobas 2003). B – 2000, vB -5000Hydrocarbon C BMFBCFArnotDietaryBCFAqueousBCFSpeciesReferenceacenaphthene 12 44 979 C CITI, 199212 44 1003 C CITI, 19921,2,3,10b-tetrahydrofluoranthene16 0.023 132 506 RT EMBSI, 2008a1,2,3,6,7,8- 16 0.056 176 1349 RT EMBSI, 2005e53


hexahydropyrene4,5,9,10-tetrahydropyrenecyclohexylbiphenyl(hexahydroterphenyl)16 0.025 12 368 RT EMBSI, 2008a18 0.06 82 426 1646 RThexahydrochrysene 18 0.05 2353 346 653 RToctahydrochrysene 18 0.05 157 141 670 RTEMBSI,2008c, 2009bEMBSI,2008c, 2009bEMBSI,2008c, 2009bTable 19. Experimentally derived dietary and aqueous bioaccumulation data fornaphthenic di-aromatic hydrocarbons. BCF (Arnot) is the predicted BCF using Arnot’sequations incorporating metabolism (Arnot and Gobas 2003). RT: rainbow trout; C: carp.100001000NDiAr Dietary BCFNDiAr Aqueous BCFBvB1005 10 15 20 25Figure 55. Experimentally derived fish BCFs for naphthenic di-aromatic hydrocarbons(NDiAr). B – 2000, vB - 500054


1010.1NDiAr Dietary BMFBMF = 10.0115 16 17 18 19 20Figure 56. Experimentally derived fish BMFs for naphthenic di-aromatic hydrocarbons(NDiAr) from dietary bioaccumulation studies4.10 Poly-AromaticsRegression method BCF predictions for poly-aromatic hydrocarbons structures (Figure57) are above the B criterion of 2000, ranging from C15 to C28. When biotransformationis incorporated to the model, BCF predictions are above 2000 for one C25 structure(Figure 58). There is a very large experimental BCF dataset available for poly-aromatichydrocarbons (Table 20). With the exception of anthracene, phenanthrene and o-terphenyl model predictions and reliable BCF data indicate that these substances do notmeet the B criteria. There are three terphenyl isomers (o-. m-, and p-terphenyl), two ofwhich do not meet the B criterion. The third, o-terphenyl, meets the B criterion in two ofthree studies, including an aqueous BCF study. Anthracene has been determined to be aPBT substance by the ECB TC-NES PBT Working Group. At the time of the release ofthis assessment, o-Terphenyl has not been decided.A compilation of dietary and aqueous BCFs (Figure 59), laboratory BMFs (Figure 60)and field BSAFs (Figure 61)(USEPA, 2008) and TMFs (Table 21)(Wan et al. 2007; Nfonet al, 2008; Takeuchi et al. 2009) support the general conclusion that poly-aromatichydrocarbons (PAH) do not meet the B or vB criteria. In fact, available data provide acompelling case that PAH are not biomagnified but rather, undergo trophic dilution in thefield thereby limiting exposure via the foodchain. This is supported further by otherstudies that do not present TMF data, but show evidence of PAH metabolism (Broman etal. 1990; D’Adamo et al. 1997) Therefore, it can be concluded that based on the availabledata, only C14 poly-aromatic hydrocarbons (e.g. anthracene and phenanthrene) meet theB criterion.55


10000010000100010010PArBvB110 15 20 25 30 35Figure 57. Predicted fish BCFs for poly-aromatic hydrocarbons (PAr) using theregression-based approach in BCFBAF. B – 2000, vB - 50001000010001001010 15 20 25 30 35PArBvBFigure 58. Predicted fish BCFs for poly-aromatic hydrocarbons (PAr) using Arnot’sequations incorporating metabolism (Arnot and Gobas 2003). B – 2000, vB - 5000Hydrocarbon C BMFArnotBCFDietaryBCFAqueousBCFSpeciesReferenceacenaphthylene 12 0.005 269 67 RTNiimi andDookhran 198912 269 579 C Yakata, 200612 269 596 C Yakata, 200656


Hydrocarbon C BMFArnotBCFDietaryBCFAqueousBCFSpeciesReference12 269 507 C CITI, 199212 269 488 C CITI, 1992fluorene 13 0.03 197 316 RTNiimi andPalazzo 198613 197 672 C CITI, 199213 197 780 C CITI, 199213 197 1875 FHMCarlson et al.,197913 197 1146 FHMCarlson et al.,1979anthracene* 14 0.004 362 811 RT EMBSI, 2005a14 0.027 362 217 RT EMBSI, 2008b14 0.009 362 351 C EMBSI, 2008c14 0.002 362 316 RTNiimi andPalazzo 198614 362 1807 C CITI, 199214 362 2240 C CITI, 199214 362 2354 FHMHall and Oris,199114 362 3725 FHMHall and Oris,1991phenanthrene 14 0.076 365 2208 RT EMBSI, 2001a14 0.01 365 407 RTNiimi andPalazzo 198614 1194 SHMJonsson et al.,200414 417 SHMJonsson etal.,200414 2329 FHMCarlson etal.,197914 3546 FHMCarlson etal.,197914 2927 FHMCarlson et al.,19799-methylanthracene15 0.004 344 959 RT EMBSI, 2005a1-methylphenanthrene15 0.019 345 2282 RT EMBSI, 2001a2-methyl anthracene 15 0.009 327 158 RTNiimi andDookhran, 19899-methyl anthracene 15 0.001 344 315 RTNiimi andDookhran, 1989fluoranthene 16 0.032 451 213 435 RTEMBSI, 2007b,2009b16 0.046 451 967 RT EMBSI, 2008b57


Hydrocarbon C BMFArnotBCFDietaryBCFAqueousBCFSpeciesReference16 0.006 451 344 C EMBSI, 2007c16 0.002 451 271 RTNiimi andPalazzo, 198616 451 2771 FHMCarlson et al.,1979pyrene 16 0.005 106 965 RT EMBSI, 2005a16 106 90 RTNiimi andPalazzo 198616 106 75 SHMJonsson et al.,200416 106 50 SHMJonsson et al.,200416 106 892 FHMCarlson et al.,19791-phenylNiimi and16 0.26 1050 1976 RTnaphthaleneDookhran, 19891-methylpyrene 17 0.005 97 932 RT EMBSI, 2005abenzo(b)fluorene 17 0.041 153 199 RT EMBSI, 2007b17 0.024 153 815 RT EMBSI, 2008b17 0.01 153 129 C EMBSI, 2007c1-methyl-7-(1-methylethyl)- 18 0.028 414 275 RT EMBSI, 2008aphenanthrenem-terphenyl 18 0.05 1034 403 832 RT EMBSI, 2008co-terphenyl* 18 0.2 1034 4197 RT EMBSI, 2007b18 0.035 1034 1405 C EMBSI, 2007c18 3316 C CITI, 1992p-terphenyl 18 64 C CITI, 1992Niimi andDookhran, 198918 0.026 440 260 RT EMBSI, 2007b18 0.018 440 403 C EMBSI, 2007ctriphenylene 18 0.003 440 153 RTbenzo[a]anthracene18 0.005 509 895 RT EMBSI, 2005a18 0.001 509 90 RTNiimi andPalazzo, 1986chrysene 18 0.016 520 2105 153 RTEMBSI, 2006b,2009b18 0.04 520 615 RT EMBSI, 2008c18 520 90 RTNiimi andPalazzo, 19861-ethylpyrene 18 0.02 112 962 RT EMBSI, 2006b9-nbutylphenanthrene2,3,6,7-tetramethylanthracene18 0.014 559 1448 RT EMBSI, 2006b18 0.018 143 1650 RT EMBSI, 2006b58


Hydrocarbon C BMFArnotBCFDietaryBCFAqueousBCFSpeciesReference6-methylchrysene 19 0.04 357 667 RT EMBSI, 2008b7-methylbenz(a)anthracene19 0.011 357 276 RT EMBSI, 2007b19 0.005 357 356 C EMBSI, 2007c6-ethylchrysene 20 0.032 323 815 RT EMBSI, 2008bbenzo(k)fluoranthene20 0.012 501 271 RT EMBSI, 2007b0.009 501 350 C EMBSI, 2007cbenzo[a]pyrene 20 0.005 139 804 RT EMBSI, 2005a0.001 139 90 RTNiimi andPalazzo, 1986perylene 20 0.001 125 RTNiimi andDookhran, 19893-methylcholanthene21 0.03 46 270 RT EMBSI, 2008adibenzo[a,h]anthracene22 0.007 385 943 RT EMBSI, 2005abenzo[b]chrysene 22 0.018 385 1280 RT EMBSI, 2006bbenzo(ghi)perylene22 0.032 31 331 RT EMBSI, 2008aindeno-1,2,3-cdpyrene22 0.029 111 303 RT EMBSI, 2008abenzo(c)chrysene 22 0.05 263 141 RT EMBSI, 2008c1-octylpyrene 24 0.078 6 87 RT EMBSI, 2006bTable 20. Experimentally derived dietary and aqueous bioaccumulation data forpolyaromatic hydrocarbons. BCF (Arnot) is the predicted BCF using Arnot’s equationsincorporating metabolism (Arnot and Gobas 2003). RT: rainbow trout; C: carp. Bold blueentries represent BCF values between the B criterion (2000) and the vB criterion (5000).*-compounds are included, but not used to form conclusions; already deemed PBT, or notrelevant.59


100001000100PAr Dietary BCFPAr Aqueous BCFBvB5 10 15 20 25Figure 59. Experimentally derived fish BCFs for poly-aromatic hydrocarbons (PAr)1010.10.01PAr Dietary BMFBMF = 10.00110 11 12 13 14 15 16 17 18 19 20Figure 60. Experimentally derived fish BMFs for poly-aromatic hydrocarbons (PAr) fromdietary bioaccumulation studies60


AcenaphtheneAcenaphthyleneBenz(a)anthraceneBenzo(a)pyreneBenzo(b)fluorantheneBenzo(k)fluorantheneBenzo(e)pyreneBenzo(ghi)peryleneChryseneDibenz(ah)anthraceneFluorantheneFluoreneIndeno(123cd)pyreneNaphthalenePhenanthrenePyrene110 -5 10 -4 10 -3 10 -2 10 -1 10 0 10 1Fish Field BSAFFigure 61. Box plot of fish field biota-sediment accumulation factors (BSAFs) for severalPAH. Box boundaries represent 25 th and 75 th percentile, the median is indicated by a linewithin each box, and whiskers denote the 10 th and 90 th percentiles of the data. IndividualPAH data points ranged from n = 10 to n = 53. BSAFs for all of the compounds listedwere extracted from a database compiled by the US Environmental Protection Agency(USEPA, 2008)CompoundTMF (Wanet al. 2007)TMF(Nfon et al.2008)TMF(Takeuchi etal. 2009)acenaphthylene 0.45acenaphthene (1.02)benz[a]anthracene 0.2 0.75 (0.83)benzo[a]pyrene 0.24 (0.75) (0.80)benzo[e]pyrene 0.25 (0.86) (0.57)benzo[b]fluoranthene 0.60benzo[b+k]fluoranthene 0.27benzo[j+k]fluoranthene 0.69benzo[k]fluoranthene (0.84)benzo[ghi]perylene (0.66) (0.75) (0.72)chrysene 0.26 0.66 0.65fluoranthene 0.11 0.72 0.60fluorene (1.15)indeno-123-cd]pyrene (0.81) (0.75) (0.80)dibenz[ah]anthracene (0.85)perylene 0.24 (0.67) (0.77)phenanthrene (0.43) 0.82 0.7561


pyrene 0.17 0.74 0.62Table 21. Trophic magnification factors for PAH in the marine food webs of Bohai Bay,Baltic Sea and Tokyo Bay. Antilogs of the slopes of the regression equations for thelipid-based PAH concentrations versus δ 15 N were used to calculate TMFs.62


5.0 Summary of Persistence and Bioaccumulation AssessmentThe results of the persistence and bioaccumulation assessment described in section 3.0and 4.0 have been mapped to the HCB scheme presented in section 2.0 (Table 22).C# n-P i-P MN DiN PolyN MoAr NMAr DiAr NDiAr PolyAr5678 B9 B10 B B11 B B12 B B B13 B B B B B14 B B B B B P PB 115 B B B P16 B PB PB B P17 PB PB B P18 PB PB B P P PB 219 P P PB P P P P20 P P PB P P P P21 P P P PB P P P P22 P P P P PB P P P P P23 P P P P P P P P P P24 P P P P P P P P P P≥ 25 P P P P P P P P P Pfootnotes: 1 = anthracene; 2 = o-terphenylTable 22. Summary of P and B properties of petroleum hydrocarbon blocksThe results from this analysis indicate C16-C18 di-naphthenic hydrocarbons and C16-C22 poly-naphthenic hydrocarbons may fulfill the criteria for P and B. As a result, atoxicity assessment for these HCB was performed. While aromatic HCB do not meet thePB criteria, two unique aromatic hydrocarbons, anthracene and o-terphenyl, fulfill PBcriteria based on available data. A previous review of the toxicity of anthraceneperformed by the ECB TC-NES PBT workgroup concluded this substance meets the Tcriterion based on consideration of chronic aquatic toxicity. A toxicity assessment for o-terphenyl is included in section 6.0.63


Hydrocarbon metabolites have been briefly assessed (Appendix 3) where there waspotentially considered to be an issue with their PBT properties for certain HCB. Thisassessment indicates that metabolites are not P or B.6.0 Toxicity Assessment of HCBs meeting P and B criteriaTo determine if a substance fulfills the toxicity criterion an evaluation of both aquatictoxicity and specific hazard classifications is required based on the following triggers:• The long-term no-observed effect concentration for marine of freshwater organisms isless than 10 µg/L, or• the substance is classified as carcinogenic, (R45, R49), mutagenic (R46) , or toxic toreproduction (R60, R61), or• there is other evidence of chronic toxicity (R48)A compilation of reliable chronic aquatic toxicity data for aliphatic hydrocarbons isprovided in Tables 23 and 24 for algae (P. subcapita) and daphnia (D. magna),respectively. A comparison of observed chronic toxicity to measured water solubilitypresented in these tables indicates that a chronic toxicity cut-off for algae occurs at asolubility limit of ca. 6 µg/L while a cut-off for daphnia occurs above 10 µg/L. Theobservation that algae are more sensitive to daphnia is consistent with lower estimatedcritical body burden derived using the target lipid model. Critical body burdens for algaeand daphnia were reported to be 48 and 115 mmol/kg lipid, respectively (McGrath et al.2004).In the case of the C16 di-naphthenic structures, the water solubility is expected to be toolow to pose a chronic toxicity concern. This is confirmed by measured slow-stir watersolubility and chronic test data for 2,7-diisopropyldecalin which shows no chronic algaleffects are observed at measured exposure concentrations exceeding the solubility limit(Table 23). Further, C17 and C18 di-naphthenic hydrocarbons will exhibit even lowerwater solubility and thus based on read across will also not fulfill the chronic aquatictoxicity criterion.In the case of the C16 poly-naphthenic structures, the water solubility is again expectedto be too low to pose a chronic aquatic toxicity hazard. This is supported by measuredslow-stir water solubility and target lipid model predictions for hexadecahydropyreneusing the PETROTOX model (Redman, 2009). This structure serves as the worst case,most water soluble representative structure that occurs in this HCB. Predicted NOECsfor algae, daphnia and trout are 5, 12 and 7 µg/L, respectively. The measured watersolubility of hexadecahydropyrene (4.7 µg/L) falls just below the lowest toxicity valuefor algae. In addition, the measured solubility falls below the empirical chronic solubilitycut-off for algae of ca. 6 µg/L as previously discussed. Therefore, based on availabledata for hexadecahydropyrene and recognizing other C16 poly-naphthenic structures thatfall into this HCB will exhibit lower aqueous solubilities, it may be concluded that C16poly-naphthenics are unlikely to meet the aquatic toxicity criterion. Testing could help toverify this conclusion. Given C17 to C22 poly-naphthenic hydrocarbons will exhibit even64


lower water solubility, it is possible to conclude, based on read across, that these HCBswill also not fulfill the chronic aquatic toxicity criterion.Slow-StirWaterSolubilityMeanMeasuredExposureTest Compound (µg/L) (µg/L)AlgalChronicToxicity2,6,10-trimethyldodecane 0.3 23 Non-octylcyclohexane 1.4 9 No2,7 di-isopropyl decalin 1.8 5 No2,6- dimethylundecane 2.7 16 Nohexadecahydropyrene 4.7 not testedn-heptylcylohexane 6.2 64 Yes2,6-dimethyldecane 11 19 Yes2,2,4,6,6-pentamehtylheptane2,2,4,6,6-pentamehtylheptane23 6 No23 146 Yes2-isopropyl decalin 25 68 YesReferenceEMBSI,2006cEMBSI,2006dEMBSI,2009cEMBSI,2006dEMBSI,2009pEMBSI,2006eEMBSI,2009cSafePharm,2004aTolls andvan Dijk,2002EMBSI,2009cTable 23. Chronic algal toxicity for selected hydrocarbons that may be used to readacrossfor the C16-18 poly-naphthenic hydrocarbons.Slow-StirWaterSolubilityMeanMeasuredExposureDaphniaChronicTest Compound (µg/L) (µg/L) Toxicityn-octylcyclohexane 1.4 3 No2,6-dimethylundecane 2.7 2 No2,6-dimethylundecane 2.7 3 Nohexadecahydropyrene 3.8 not testedReferenceEMBSI,2006fEMBSI,2006fEMBSI,2007dEMBSI,2009p65


2,6-dimethyldecane 11 10 No2,2,4,6,6-pentamehtylheptane23 13 Yes2- isopropyl decalin 25 68 YesEMBSI,2007dSafePharm,2004bEMBSI,2008dTable 24. Chronic daphnia toxicity data for aliphatic hydrocarbons.Available information does not indicate di-naphthenic or poly-naphthenic hydrocarbonswarrant classification as carcinogenic, mutagenic or reproductive toxicant, nor is thereevidence of other long-term chronic toxicity hazards. For example, cis- and trans-decalinwhich forms the molecular backbone of di-naphthenic hydrocarbons is not classified forany of the endpoints used for toxicity assessment. Moreover, highly refined mineral oils,which are manufactured by hydrogenating petroleum streams that contain di and polyaromaticsto form di- and polynaphthenic hydrocarbons, are well recognized to exhibitlower health hazards since aromatics are effectively removed. Such oils are not classifiedfor any of the endpoints relevant for toxicity assessment (Boogaard et al. 2005). Insummary, based on available evidence, neither C16-C18 di-naphthenic hydrocarbons norC16-C22 poly-naphthenic hydrocarbons fulfill the criteria for toxicity.Reliable chronic toxicity data are not available for o-terphenyl which has a measuredwater solubility of 1.24 mg/l as cited by EPIsuite 4.0. Application of the target lipidmodel provides chronic NOEC predictions for algae, daphnia and trout of 4, 6 and 10µg/L, respectively. Given the solubility is well above the predicted NOECs coupled withthe fact that two of the NOEC values are below the toxicity trigger of 10 µg/L, it isconcluded that o-terphenyl likely meets the toxicity criterion and may thus be a PBTsubstance.A recent review on terphenyls indicates the p- and m- isomers occur in nature. Incontrast, o-terphenyls have not been reported to occur naturally (Liu, 2006). In fact, o-terphenyl is often used as a spike surrogate in environmental forensic analyses todiscriminate different hydrocarbon sources because this substance is not present inpetroleum substances. This anthropogenic origin likely explains the differences inobserved persistence and bioaccumulation of o-terphenyl versus m- or p-terphenyls.Given that o-terphenyl is not present in crude oil feedstocks used to manufacturepetroleum substances, this structure is not representative and is therefore not expected tobe present in products at concentrations approaching 0.1% w/w. Therefore, while o-terphenyl may fulfill the PBT criteria, this conclusion does not impact PBT decisionmakingfor petroleum substances.7.0 ConclusionsIn order to comply with REACH requirements to perform a PBT assessment on complexpetroleum substances, a systematic review of the persistence and bioaccumulation66


properties of petroleum hydrocarbons was conducted. Consistent with REACH technicalguidance and Annex XIII criteria, petroleum hydrocarbons were evaluated using a HCBscheme that divided these constituents into ten major classes by carbon number.Measured data and model predictions were used to develop an evidence-based conclusionfor each HCB.The results of this analysis indicated that within a given HCB class, higher carbonnumbers tended to fulfill the persistence criterion while lighter carbon numberssometimes met the B criterion. None of the HCBs were found to meet the vB criterion,so no HCBs fulfill the vPvB criteria.Selected HCBs, namely C16-C18 di-naphthenic hydrocarbons and C16-C22 polynaphthenichydrocarbons, were found to fulfill the P and B criteria. However, theseblocks will not fulfill the toxicity critieria as they are not soluble enough to pose achronic aquatic hazard and do not exhibit health hazard classifications. Therefore, it isconcluded that none of the HCBs that comprise complex petroleum substances meet thePBT criteria.Anthracene has been agreed to fulfill the PBT criteria, so the percentage of this substancein complex petroleum substances must be considered. Since anthracene is derivedprincipally from pyrogenic rather petrogenic sources, it is present at only trace levels inpetroleum substances. 2DGC analysis has been used to characterize aliphatic andaromatic hydrocarbons in petroleum product categories. For substances with aromaticfractions greater than 5%, detailed PAH analysis has been performed. Anthraceneconcentrations determined from these analyses are summarized in Table 25. None of the84 samples analysed contained anthracene at greater than 0.1% (or 1000 ppm).Category No. of samples No. ofdetectsMeananthracenelevelRangeLubricant Base2< 1.81 – 6.59Oils a 92.60 ppmppmUnrefined/Acid-2< 1.71 – 53.2611.8 ppmTreated OilsppmKerosene d 13 2 # < 1.59 ppmDistillate Aromatic2< 1.79 - 13.2Extracts d 63.80 ppmppmTreated Distillate0Aromatic Extracts d 1< 1.98 ppm -Residual Aromatic2 #Extracts e 4< 1.89 ppmBitumen f 7 3 # < 1.94 ppmHeavy Fuel Oils g 9 9 91.1 ppm 0.3 - 425 ppmGas Oils h 16 16 6.97 ppm 0.5 ppmParaffin Waxes i 2 - -Petroleum Coke j 6 - -Foots Oil k 2 - -White Mineral Oils l 4 - -Slack Waxes m 6 - -Petrolatums n 2 - -67


a -EMBSI 2009d; b -EMBSI 2009e; c -EMBSI 2009f; d -EMBSI 2009g; e -EMBSI 2009h; f -EMBSI 2009i g -Shell Global Solutions 2008; h - DGMK 2002; i - EMBSI 2009j; j - EMBSI 2009k; k - EMBSI 2009l; l -EMBSI 2009m; m - EMBSI 2009n; n - EMBSI 2009o; # - anthracene was detected, but below quantitationlimit, so reported detection limit was used.Table 25. Anthracene content in a variety of representative petroleum products.Similarly, while o-terphenyl may fulfill the PBT criteria, this substance is of syntheticorigin and is therefore not expected to be present in petroleum substances atconcentrations impacting PBT assessment (Liu, 2006).68


8.0 ReferencesAnonymous (2004). Fish, Dietary Bioaccumulation Study, Basic Protocol, Documentprepared for the TCNES SUBGROUP ON IDENTIFICATION OF PBT AND vPvBSUBSTANCES, January 20, 2004, 14 pp.Arnot JA, Gobas F. (2003). A generic QSAR for assessing the bioaccumulation potentialof organic chemicals in aquatic food webs. QSAR and Combinatorial Science 22:337-345.Boogaard P, Dmytrasz B, King D, Waterman S, Wennington J. (2005). Classification andlabelling of petroleum substances according to the <strong>EU</strong> dangerous substances directive(CONCAWE recommendations –July 2005), CONCAWE Report no 6/05, Brussels,Belgium, 184 pp.Broman D, Naf C, Lundbergh I, Zebuhr Y. (1990). An in situ study on the distribution,biotransformation and flux of polycyclic aromatic hydrocarbons (PAHs) in an aquaticfood chan (Seston-Mytilus edulis L.-Somateria mollissima L.) from the Baltic: Anecotoxicological perspective. Environmental Toxicology and Chemistry. 9: 429-442.Carlson RM, Oyler AR, Gerhart EH, Caple R, Welch KJ, Kopperman HL, Bodenner D,Swanson D. (1979). Implications to the aquatic environment of polynuclear aromatichydrocarbons liberated from northern great plans coal. U.S. EPA EnvironmentalResearch Laboratory (EPA 600/3-79-093).Chemicals Inspection and Testing Institute. (1992). Bioaccumulation and BiodegradationData on Existing Chemicals Based on the CSCL Japan. Tokyo, JapanD’Adamo R, Pelosi S, Trotta P, Sansone G. (1997). Bioaccumulation andbiomagnification of polycyclic aromatic hydrocarbons in aquatic organisms. MarineChemistry. 56:45-49.DGMK – German Society for Petroleum and Coal Science and Technology (2002).DGMK Research Report 583: Composition of Diesel Fuels from German Refineries.Hamburg, Germany.European Chemicals Agency (2008a). Technical Guidance Document for Preparing theChemical Safety Assessment RIP 3.2-2 Chapter R.7c: Endpoint Specific Summary.European Chemicals Agency (2008b). Technical Guidance Document for Preparing theChemical Safety Assessment RIP 3.2-2 Chapter R.11: PBT and vPvB assessment.European Union (2006). REGULATION (EC) No 1907/2006 OF THE <strong>EU</strong>ROPEANPARLIAMENT AND OF THE COUNCIL of 18 December 2006 concerning theRegistration, Evaluation, Authorisation and Restriction of Chemicals (REACH),establishing a European Chemicals Agency, amending Directive 1999/45/EC andrepealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No1488/94 as well as Council Directive 76/769/EEC and Commission Directives91/155/EEC,93/67/EEC, 93/105/EC and 2000/21/EC. Official Journal of the EuropeanUnion, L396, 849 pp.69


EMBSI (2001a). Fish, dietary bioaccumulation test, study no. 100047AB. ExxonMobilBiomedical Sciences Inc. Annandale, NJ.EMBSI (2001b). Fish, dietary bioaccumulation study, study no. 175047. ExxonMobilBiomedical Sciences Inc. Annandale, NJ.EMBSI (2003). Fish, dietary bioaccumulation study, study no. 100047E. ExxonMobilBiomedical Sciences Inc. Annandale, NJ.EMBSI (2004a). Fish, dietary bioaccumulation study, study no. 0400947. ExxonMobilBiomedical Sciences Inc. Annandale, NJ.EMBSI (2004b). Fish, aqueous bioaccumulation study, study no. 0409544. ExxonMobilBiomedical Sciences Inc. Annandale, NJ.EMBSI (2004c). Fish, aqueous bioaccumulation study, study no. 9942644. ExxonMobilBiomedical Sciences Inc. Annandale, NJ.EMBSI (2005a). Fish, dietary bioaccumulation test, study no. 100047P. ExxonMobilBiomedical Sciences Inc. Annandale, NJ.EMBSI (2005b). Fish, dietary bioaccumulation study, study no. 0409547. ExxonMobilBiomedical Sciences Inc. Annandale, NJ.EMBSI (2005c). Fish, aqueous bioaccumulation test, study no. 0523644. ExxonMobilBiomedical Sciences Inc. Annandale, NJ.EMBSI (2005d). Fish, dietary bioaccumulation study, study no. 0523747. ExxonMobilBiomedical Sciences Inc. Annandale, NJ.EMBSI (2005e). Fish, dietary bioaccumulation study, study no. 0531047. ExxonMobilBiomedical Sciences Inc. Annandale, NJ.EMBSI (2006a). Fish, dietary bioaccumulation study, study no. 0674247. ExxonMobilBiomedical Sciences Inc. Annandale, NJ.EMBSI (2006b). Fish, dietary bioaccumulation test, study no. 0681647. ExxonMobilBiomedical Sciences Inc. Annandale, NJ.EMBSI (2006c). Alga, Growth Inhibition Test, study no. 0545267. ExxonMobilBiomedical Sciences Inc. Annandale, NJ.EMBSI (2006d). Alga, Growth Inhibition Test, study no. 0545067. ExxonMobilBiomedical Sciences Inc. Annandale, NJ.EMBSI (2006e). Alga, Growth Inhibition Test, study no. 0545567. ExxonMobilBiomedical Sciences Inc. Annandale, NJ.EMBSI (2006f). Daphnia magna, Reproduction Test, study no. 0545046. ExxonMobilBiomedical Sciences Inc. Annandale, NJ.EMBSI (2007a). Fish, dietary bioaccumulation study, study no. 0790247. ExxonMobilBiomedical Sciences Inc. Annandale, NJ.EMBSI (2007b). Fish, dietary bioaccumulation study, study no. 0796347T. ExxonMobilBiomedical Sciences Inc. Annandale, NJ.70


EMBSI (2007c). Fish, dietary bioaccumulation study, study no. 0796347C. ExxonMobilBiomedical Sciences Inc. Annandale, NJ.EMBSI (2007d). Daphnia magna, Reproduction Test, study no. 0545446. ExxonMobilBiomedical Sciences Inc. Annandale, NJ.EMBSI (2008a). Fish, dietary bioaccumulation study, study no. 0711047. ExxonMobilBiomedical Sciences Inc. Annandale, NJ.EMBSI (2008b). Fish, dietary bioaccumulation study, study no. 0821047. ExxonMobilBiomedical Sciences Inc. Annandale, NJ.EMBSI (2008c). Fish, dietary bioaccumulation study, study no. 0818447. ExxonMobilBiomedical Sciences Inc. Annandale, NJ.EMBSI (2008d). Daphnia magna, Reproduction Test, study no. 0704946. ExxonMobilBiomedical Sciences Inc. Annandale, NJ.EMBSI (2009a) (in preparation). Primary biodegradation in seawater. CoversCONCAWE Study #'s 0822469, 0822569, 0949869. ExxonMobil Biomedical Sciences,Inc., Annandale, NJ.EMBSI (2009b) (in preparation). Alga growth inhibition test. Study no 0704967.ExxonMobil Biomedical Sciences, Inc., Annandale, NJ.EMBSI (2009c). Fish, dietary bioaccumulation study, study no. 0818447. ExxonMobilBiomedical Sciences Inc. Annandale, NJ.EMBSI (2009d). CONCAWE Product Compositional Characterization. Report 09 TP 17.ExxonMobil Biomedical Sciences Inc. Annandale, NJ.EMBSI (2009e). CONCAWE Product Compositional Characterization. Report 09 TP 16.ExxonMobil Biomedical Sciences Inc. Annandale, NJ.EMBSI (2009f). CONCAWE Product Compositional Characterization. Report 09 TP 20.ExxonMobil Biomedical Sciences Inc. Annandale, NJ.EMBSI (2009g). CONCAWE Product Compositional Characterization. Report 09 TP 19.ExxonMobil Biomedical Sciences Inc. Annandale, NJ.EMBSI (2009h). CONCAWE Product Compositional Characterization. Report 09 TP 18.ExxonMobil Biomedical Sciences Inc. Annandale, NJ.EMBSI (2009i). CONCAWE Product Compositional Characterization. Report 09 TP 15.ExxonMobil Biomedical Sciences Inc. Annandale, NJ.EMBSI (2009j). CONCAWE Product Compositional Characterization. Report 09 TP 10.ExxonMobil Biomedical Sciences Inc. Annandale, NJ.EMBSI (2009k). CONCAWE Product Compositional Characterization. Report 09 TP 22.ExxonMobil Biomedical Sciences Inc. Annandale, NJ.EMBSI (2009l). CONCAWE Product Compositional Characterization. Report 09 TP 14.ExxonMobil Biomedical Sciences Inc. Annandale, NJ.EMBSI (2009m). CONCAWE Product Compositional Characterization. Report 09 TP11. ExxonMobil Biomedical Sciences Inc. Annandale, NJ.71


EMBSI (2009n). CONCAWE Product Compositional Characterization. Report 09 TP 12.ExxonMobil Biomedical Sciences Inc. Annandale, NJ.EMBSI (2009o). CONCAWE Product Compositional Characterization. Report 09 TP 13.ExxonMobil Biomedical Sciences Inc. Annandale, NJ.EMBSI (2009p). Slow-Stir Water Solubility of Hexadecahydropyrene. Study 0951584.ExxonMobil Biomedical Sciences, Inc., Annandale, NJ.Gobas F, Arnot J. (2003) Categorization of organic substances on the domesticsubstances list for bioaccumulation potential. Report for Environment Canada. Burnaby:Simon Fraser University. 116 p.Hall AT. Oris JT. (1991). Anthracene reduces reproductive potential and is maternallytransferred during long-term exposure in fathead minnows. Aquatic Toxicology. 19:249-264.Howard P, Meylan W, Aronson D, Stiteler W, Tunkel J, Comber M, Parkerton TF.(2005). A new biodegradation prediction model specific to petroleum hydrocarbons.Environmental Toxicology and Chemistry. 24:1847–1860.Jonsson G, Bechmann RK, Bamber SD, Baussant T. 2004. Bioconcentration,biotransformation, and elimination of polycyclic aromatic hydrocarbons in sheepsheadminnows (Cyprinodon variegatus) exposed to contaminated seawater. EnvironmentalToxicology and Chemistry 23:1538-1548.Liu K-K. (2006). Natural Terphenyls: Developments since 1877. Chemical Reviews.106:2209-2223.McGrath JA, Parkerton TG, Di Toro DM. (2004). Application of the narcosis target lipidmodel to algal toxicity and deriving predicted no effect concentrations. EnvironmentalToxicology and Chemistry. 23:2503–2517Nfon E, Cousins IT, Broman D. (2008). Biomagnification of organic pollutants in benthicand pelagic marine food chains from the Baltic Sea. Science of the Total Environment.397:190-204.Niimi AJ, Dookhran GP. (1989). Dietary absorption efficiencies and elimination rates ofpolycyclic aromatic hydrocarbons (PAHs) in rainbow trout (Salmo gairdneri).Environmental Toxicology and Chemistry. 8:719-722.Niimi A, Palazzo V. (1986). Biological half-lives of eight polycyclic aromatichydrocarbons (PAHs) in rainbow trout (Salmo gairdneri). Water Research. 20:503-507.Parkerton TF, Arnot J, Woodburn K, Weisbrod A, Russom C, Hoke R, Traas T, BonnellM, Burkhard L, Lampi MA. (2008). Guidance for evaluating in-vivo fishbioaccumulation data. Integrated Environmental Assessment and Management. 4:139–155.Prince RC, Parkerton TG, Lee C. (2007). The pimary aerobic biodegradation of gasolinehydrocarbons. Environmental Science and Technology. 41:3316-3321.Prince RC, Haitmanek C, Lee C. (2008).The primary aerobic biodegradation of biodieselB20, Chemosphere, 7:1446-145.72


Prince RC, Walters CC. (2007). Biodegradation of oil hydrocarbons and its implicationsfor source identification. In Environmental Forensics: Spill Oil Fingerprinting andSource Identification, Wang Z, Stout SA (Eds.), Elsevier, New York, NY, USA pp 349-379.Quann RJ, Jaffe SJ. (1992). Structure-oriented lumping: Describing the chemistry ofcomplex hydrocarbon mixtures. Indian Journal of Chemical Research. 31: 2488-2497.Quann RJ. (1998). Modeling the chemistry of complex petroleum mixtures.Environmental Health Perspectives. 106(S6):1441-1448.Redman A. (2009). PETROTOX. Version 3.04. CONCAWE, Brussels, Belgium.http://concawe.org/DocShareNoFrame/Common/GetFile.asp?PortalSource=958&DocID=9588&mfd=off&pdoc=1SafePharm Laboratories (2004a) 2,2,4,6,6-pentamethylheptane Daphnia magnareproduction Test; SPL Project No. 599/089; Study Sponsor: BP Chemicals Ltd.,Middlesex, LN.SafePharm Laboratories (2004b) 2,2,4,6,6-pentamethylheptane algal inhibition test; SPLProject No. 599/090; Study Sponsor: BP Chemicals Ltd., Middlesex, LN.Sarpal AS, Kapur GS, Mukherjee S, Jain SK. (1997). Characterization by 13 C NMRspectroscopy of base oils produced by different processes. Fuel. 76:931-937.Sijm DTHM, van der Linde A. (1995) Size-dependent bioconcentration kinetics ofhydrophobic organic chemicals in fish based on diffusive mass transfer and allometricrelationships. Environmental Science and Technology. 29:2769-2777.Shell Global Solutions. (2008) CONCAWE Risk Assessment Project: DetailedCompositional Analysis of Heavy Fuel Oil (HFO) Samples. Report GS.08.50772.Chester, England.Takeuchi I, Miyoshi N, Mizukawa K, Takada H, Ikemoto T, Omori K, Tsuchiya K.(2009). Biomagnification profiles of polycyclic aromatic hydrocarbons, alkylphenols andpolychlorinated biphenyls in Tokyo Bay elucidated by δ13C and δ 15N isotope ratios asguides to trophic web structure. Marine Pollution Bulletin 58:663-671.Tolls J, van Dijk J. (2002). Bioconcentration of n-dodecane and its highly branchedisomer 2,2,4,6,6-pentamethylheptane in fathead minnows. Chemosphere 47, 1049-1057.US Environmental Protection Agency. (2008). Biota-Sediment Accumulation Factor DataSet. http://www.epa.gov/med/Prods_Pubs/bsaf.zip. Accessed 19 February.US Environmental Protection Agency. (2009). EPISuite v4.0.http://www.epa.gov/oppt/exposure/pubs/episuitedl.htmWan Y, Jin X, Hu J, Jin F. (2007). Trophic dilution of polycyclic aromatic hydrocarbons(PAHs) in a marine food web from Bohai Bay, North China. Environmental Science andTechnology 41:3109-3114.Weisbrod AV, Woodburn KB, Koelmans AA, Parkerton TF, McElroy AE, Borga K.(2009). Evaluation of bioaccumulation using in vivo laboratory and field studies.Integrated Environmental Assessment and Management. 5:598–623.73


Yakata N, Sudo Y, Tadokoro H. (2006). Influence of dispersants on bioconcentrationfactors of seven organic compounds with different lipophilicities and structures.Chemosphere 64:1885-1891.74


Appendix 1. Hydrocarbon structures in the CONCAWE library. nP 4 n-butane CCCCnP 5 n-pentane CCCCCnP 6 n-hexane CCCCCCnP 16 n-Hexadecane CCCCCCCCCCCCCCCCnP 7 n-heptane CCCCCCCnP 17 n-Heptadecane CCCCCCCCCCCCCCCCCnP 8 n-Octane CCCCCCCCnP 18 n-Octadecane CCCCCCCCCCCCCCCCCCnP 9 n-Nonane CCCCCCCCCnP 19 n-Nonadecane CCCCCCCCCCCCCCCCCCCnP 10 n-Decane CCCCCCCCCCnP 11 n-Undecane CCCCCCCCCCCnP 12 n-Dodecane CCCCCCCCCCCCnP 13 n-Tridecane CCCCCCCCCCCCCnP 14 n-Tetradecane CCCCCCCCCCCCCCnP 15 n-Pentadecane CCCCCCCCCCCCCCCnP 20 n-Eicosane CCCCCCCCCCCCCCCCCCCCnP 21 n-Heneicosane CCCCCCCCCCCCCCCCCCCCCnP 22 n-Docosane CCCCCCCCCCCCCCCCCCCCCCnP 23 n-Tricosane CCCCCCCCCCCCCCCCCCCCCCCnP 23 n-Hexacosane CCCCCCCCCCCCCCCCCCCCCCCCCCnP 24 n-Tetracosane CCCCCCCCCCCCCCCCCCCCCCCCnP 25 n-Pentacosane CCCCCCCCCCCCCCCCCCCCCCCCCnP 27 n-Heptacosane CCCCCCCCCCCCCCCCCCCCCCCCCCCnP 28 n-Octacosane CCCCCCCCCCCCCCCCCCCCCCCCCCCCnP 29 n-Nonacosane CCCCCCCCCCCCCCCCCCCCCCCCCCCCCnP 30 n-Triacontane CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCnP 31 n-HentriacontaneCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCnP 32 n-DotriacontaneCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCnP 34 TetratriacontaneCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCnP 36 HexatriacontaneCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCiP 4 2-methylpropane CC(C)CiP 5 2-methylbutane CC(C)CCiP 6 2-methylpentane CC(C)CCCiP 7 2,4dimethylpentane CC(C)CC(C)CiP 7 2,3,3-trimethylbutane CC(C)C(C)(C)CiP 7 2-methylhexane CC(C)CCCCiP 8 3-Methylheptane CCC(C)CCCCiP 8 2-Methylheptane CC(C)CCCCCiP 9 2,6-Dimethylheptane CC(C)CCCC(C)CiP 9 2,3-Dimethylheptane CC(C)C(C)CCCCiP 9 2,4-Dimethylheptane CC(C)CC(C)CCCiP 9 2,5-Dimethylheptane CC(C)CCC(C)CC75


iP 9 2-Methyloctane CC(C)CCCCCCiP 9 3-Methyloctane CCC(C)CCCCCiP 9 2-Ethylheptane CC(CC)CCCCCiP 9 3-Ethylheptane CCC(CC)CCCCiP 10 2,6-Dimethyloctane CC(C)CCCC(C)CCiP 10 2,3-Dimethyloctane CC(C)C(C)CCCCCiP 10 2,4-Dimethyloctane CC(C)CC(C)CCCCiP 10 2,5-Dimethyloctane CC(C)CCC(C)CCCiP 10 2-Methylnonane CC(C)CCCCCCCiP 10 3-Methylnonane CCC(C)CCCCCCiP 10 2-Ethyloctane CC(CC)CCCCCCiP 10 3-Ethyloctane CCC(CC)CCCCCiP 11 2,6-Dimethylnonane CC(C)CCCC(C)CCCiP 11 2,3-Dimethylnonane CC(C)C(C)CCCCCCiP 11 2,4-Dimethylnonane CC(C)CC(C)CCCCCiP 11 2,5-Dimethylnonane CC(C)CCC(C)CCCCiP 11 2,6-Diethylheptane CC(CC)CCCC(CC)CiP 11 2,4-Diethylheptane CC(CC)CC(CC)CCCiP 11 2-Methyldecane CC(C)CCCCCCCCiP 11 3-Methyldecane CCC(C)CCCCCCCiP 11 2-Ethylnonane CC(CC)CCCCCCCiP 11 3-Ethylnonane CCC(CC)CCCCCCiP 12 2,6-Dimethyldecane CC(C)CCCC(C)CCCCiP 12 2,3-Dimethyldecane CC(C)C(C)CCCCCCCiP 12 2,4-Dimethyldecane CC(C)CC(C)CCCCCCiP 12 2,5-Dimethyldecane CC(C)CCC(C)CCCCCiP 12 2,6-Diethyloctane CC(CC)CCCC(CC)CCiP 12 2,4-Diethyloctane CC(CC)CC(CC)CCCCiP 12 2-Methylundecane CCCCCCCCCC(C)CiP 12 3-Methylundecane CCCCCCCCC(C)CCiP 12 2-Ethyldecane CC(CC)CCCCCCCCiP 12 3-Ethyldecane CCC(CC)CCCCCCCiP 12 2,2,4,6,6-pentamethylheptane C(C)(C)(C)CC(C)CC(C)(C)CiP 12 3,3,6,6-Tetramethyloctane CCC(C)(C)CCC(C)(C)CCiP 13 2,6-Dimethylundecane CC(C)CCCC(C)CCCCCiP 13 2,3-Dimethylundecane CC(C)C(C)CCCCCCCCiP 13 2,4-Dimethylundecane CC(C)CC(C)CCCCCCCiP 13 2,5-Dimethylundecane CC(C)CCC(C)CCCCCCiP 13 2,6-Diethylnonane CC(CC)CCCC(CC)CCCiP 13 2,6-Dipropylheptane CC(CCC)CCCC(CCC)CiP 13 2,4-Diethylnonane CC(CC)CC(CC)CCCCCiP 13 2,4-Dipropylheptane CC(CCC)CC(CCC)CCCiP 13 2-Methyldodecane CCCCCCCCCCC(C)CiP 13 3-Methyldodecane CCCCCCCCCC(C)CCiP 13 2-Ethylundecane CCCCCCCCCC(CC)CiP 13 3-Ethylundecane CCCCCCCCC(CC)CCiP 13 2,2,3-trimethyldecane CCCCCCCC(C)C(C)(C)CiP 14 2,3,4,5-Tetramethyldecane CC(C)C(C)C(C)C(C)CCCCCiP 14 2,4,6,8-Tetramethyldecane CC(C)CC(C)CC(C)CC(C)CCiP 14 2,6,10-Trimethylundecane CC(C)CCCC(C)CCCC(C)C76


iP 14 2,4,10-Trimethylundecane CC(C)CC(C)CCCCCC(C)CiP 14 2,4,8-Trimethylundecane CC(C)CC(C)CCCC(C)CCCiP 14 2,4,6-Trimethylundecane CC(C)CC(C)CC(C)CCCCCiP 14 2,3,4-Trimethylundecane CC(C)C(C)C(C)CCCCCCCiP 14 2,3,5-Trimethylundecane CC(C)C(C)CC(C)CCCCCCiP 14 2,6-Dimethyldodecane CC(C)CCCC(C)CCCCCCiP 14 2,3-Dimethyldodecane CC(C)C(C)CCCCCCCCCiP 14 2,4-Dimethyldodecane CC(C)CC(C)CCCCCCCCiP 14 2,5-Dimethyldodecane CC(C)CCC(C)CCCCCCCiP 14 2,6-Diethyldecane CC(CC)CCCC(CC)CCCCiP 14 2,6-Dipropyloctane CC(CCC)CCCC(CCC)CCiP 14 2,4-Diethyldecane CC(CC)CC(CC)CCCCCCiP 14 2,4-Dipropyloctane CC(CCC)CC(CCC)CCCCiP 14 2-Methyltridecane CCCCCCCCCCCC(C)CiP 14 3-Methyltridecane CCCCCCCCCCC(C)CCiP 14 2-Ethyldodecane CCCCCCCCCCC(CC)CiP 14 3-Ethyldodecane CCCCCCCCCC(CC)CCiP 15 2,4,6,8-Tetramethylundecane CC(C)CC(C)CC(C)CC(C)CCCiP 15 2,4,6,10-Tetramethyldodecane CC(C)CC(C)CC(C)CCCC(C)CiP 15 2,6,10-Trimethyldodecane CC(C)CCCC(C)CCCC(C)CCiP 15 2,4,10-Trimethyldodecane CC(C)CC(C)CCCCCC(C)CCiP 15 2,4,8-Trimethyldodecane CC(C)CC(C)CCCC(C)CCCCiP 15 2,4,6-Trimethyldodecane CC(C)CC(C)CC(C)CCCCCCiP 15 2,3,4-Trimethyldodecane CC(C)C(C)C(C)CCCCCCCCiP 15 2,3,5-Trimethyldodecane CC(C)C(C)CC(C)CCCCCCCiP 15 2,6-Dimethyltridecane CC(C)CCCC(C)CCCCCCCiP 15 2,3-Dimethyltridecane CC(C)C(C)CCCCCCCCCCiP 15 2,4-Dimethyltridecane CC(C)CC(C)CCCCCCCCCiP 15 2,5-Dimethyltridecane CC(C)CCC(C)CCCCCCCCiP 15 2-Methyltetradecane CCCCCCCCCCCCC(C)CiP 15 3-Methyltetradecane CCCCCCCCCCCC(C)CCiP 15 2-Ethyltridecane CCCCCCCCCCCC(CC)CiP 15 3-Ethyltridecane CCCCCCCCCCC(CC)CCiP 162,4,6,8,10-PentamethylundecaneCC(C)CC(C)CC(C)CC(C)CC(C)CiP 16 2,4,6,8-Tetramethyldodecane CC(C)CC(C)CC(C)CC(C)CCCCiP 16 2,4,6,10-Tetramethyldodecane CC(C)CC(C)CC(C)CCCC(C)CCiP 16 2,6,10-Trimethyltridecane CC(C)CCCC(C)CCCC(C)CCCiP 16 2,4,10-Trimethyltridecane CC(C)CC(C)CCCCCC(C)CCCiP 16 2,4,8-Trimethyltridecane CC(C)CC(C)CCCC(C)CCCCCiP 16 2,4,6-Trimethyltridecane CC(C)CC(C)CC(C)CCCCCCCiP 16 2,3,4-Trimethyltridecane CC(C)C(C)C(C)CCCCCCCCCiP 16 2,3,5-Trimethyltridecane CC(C)C(C)CC(C)CCCCCCCCiP 16 2-Ethyltetradecane CCCCCCCCCCCCC(CC)CiP 16 3-Ethyltetradecane CCCCCCCCCCCC(CC)CCiP 16 2-Methylpentadecane CCCCCCCCCCCCCC(C)CiP 162,2,4,4,5,5,7,7-OctamethyloctaneCC(C(CC(C)(C)C)(C)C)(CC(C)(C)C)CiP 162,2,4,4,6,8,8-heptamethylnonaneCC(C)(C)CC(C)CC(C)(C)CC(C)(C)CiP 17 2-Methylhexadecane CCCCCCCCCCCCCCC(C)C77


iP 17 3-Methylhexadecane CCCCCCCCCCCCCC(C)CCiP 17 2,6,10-Trimethyltetradecane CCCCC(C)CCCC(C)CCCC(C)CiP 18 2-Methylheptadecane CCCCCCCCCCCCCCCC(C)CiP 18 3-Methylheptadecane CCCCCCCCCCCCCCC(C)CCiP 18 2,6,10-Trimethylpentadecane CC(CCCC(CCCC(CCCCC)C)C)CiP 19 2-Methyloctadecane CCCCCCCCCCCCCCCCC(C)CiP 19 3-Methyloctadecane CCCCCCCCCCCCCCCC(C)CCiP 19 Pristane C(CCCC(CCCC(CCCC(C)C)C)C)(C)CiP 20 2-Methylnonadecane CCCCCCCCCCCCCCCCCC(C)CiP 20 3-Methylnonadecane CCCCCCCCCCCCCCCCC(C)CCiP 20 10-Methylnonadecane CCCCCCCCCC(C)CCCCCCCCCiP 20 Phytane CCC(C)CCCC(C)CCCC(C)CCCC(C)CiP 202,6,11,15-TetramethylhexadecaneCC(C)CCCC(C)CCCCC(C)CCCC(C)CiP 21 2-Methyleicosane CCCCCCCCCCCCCCCCCCC(C)CiP 212,6,10,14-TetramethylheptadecaneCC(CCCC(CCCC(CCCC(CCC)C)C)C)CiP 22 2-Methylheneicosane CCCCCCCCCCCCCCCCCCCC(C)CiP 222,6,10,14-TetramethyloctadecaneCCCCC(C)CCCC(C)CCCC(C)CCCC(C)CiP 23 2-Methyldocosane CCCCCCCCCCCCCCCCCCCCC(C)CiP 232,6,10,14-TetramethylnonadecaneCC(CCCC(CCCC(CCCC(CCCCC)C)C)C)CiP 24 2-Methyltricosane CCCCCCCCCCCCCCCCCCCCCC(C)CiP 242,6,10,14,18-PentamethylnonadecaneCC(C)CCCC(C)CCCC(C)CCCC(C)CCCC(C)CiP 252,6,10,14,18-PentamethyleicosaneCC(C)CCCC(C)CCCC(C)CCCC(C)CCCC(C)CCiP 26 2-Methylpentacosane CCCCCCCCCCCCCCCCCCCCCCCC(C)CiP 262,6,10,14,18-PentamethylheneicosaneCC(C)CCCC(C)CCCC(C)CCCC(C)CCCC(C)CCCiP 27 2-Methylhexacosane CCCCCCCCCCCCCCCCCCCCCCCCC(C)C2,6,10,14,18-CC(C)CCCC(C)CCCC(C)CCCC(C)CCCC(C)CCCiP 27 PentamethyldocosaneCiP 28 2-Methylheptacosane CCCCCCCCCCCCCCCCCCCCCCCCCC(C)C2,6,10,14,18-CC(C)CCCC(C)CCCC(C)CCCC(C)CCCC(C)CCCiP 28 PentamethyltricosaneCCiP 28 2,11Dimethyl-16ethyltricosane CCCCCCCC(CC)CCCCC(C)CCCCCCCCC(CC)CiP 29 2-Methyloctacosane CCCCCCCCCCCCCCCCCCCCCCCCCCC(C)C2,6,10,14,18,22-CC(C)CCCC(C)CCCC(C)CCCC(C)CCCC(C)CCCiP 29 HexamethyltricosaneC(C)CiP 30 2-MethylnonacosaneCCCCCCCCCCCCCCCCCCCCCCCCCCCC(C)CiP 30 SqualaneC(CCCC(CCCC(CCCCC(CCCC(CCCC(C)C)C)C)C)C)(C)CiP 30 2-methylOctacosaneCC(C)CCCCCCCCCCCCCCCCCCCCCCCCCCCiP 31 2-methylTetratriacontaneCC(C)CCCCCCCCCCCCCCCCCCCCCCCCCCCCMN 5 Cyclopentane C(CCC1)C1MN 6 Cyclohexane C(CCCC1)C1MN 6 Methylcyclopentane C(CCC1)(C1)CMN 7 Methylcyclohexane C(CCCC1)(C1)C78


MN 7 1,2-Dimethylcyclopentane CC1C(C)CCC1MN 7 1,3-Dimethylcyclopentane CC1CC(C)CC1MN 7 Ethylcyclopentane CCC1CCCC1MN 8 1,1,3-trimethylcyclopentane C1CC(C)(C)CC1CMN 8 1,4-Dimethylcyclohexane CC1CCC(C)CC1MN 8 1,2-Dimethylcyclohexane CC1C(C)CCCC1MN 8 1,3-Dimethylcyclohexane CC1CC(C)CCC1MN 8 Ethylcyclohexane CCC1CCCCC1MN 8 1,2,3-Trimethylcyclopentane CC1C(C)C(C)CC1MN 8 1,2,4-Trimethylcyclopentane CC1C(C)CC(C)C1MN 8 1,2-Diethylcyclopentane CC1C(CC)CCC1MN 8 1,3-Diethylcyclopentane CC1CC(CC)CC1MN 8 n-Propylcyclopentane CCCC1CCCC1MN 8 Isopropylcyclopentane C(CC1)CC1C(C)CMN 9 1,1,3-trimethylcyclohexane C1CCC(C)(C)CC1CMN 9 1,2,3-Trimethylcyclohexane CC1C(C)C(C)CCC1MN 9 1,2,4-Trimethylcyclohexane CC1C(C)CC(C)CC1MN 9 1,2,5-Trimethylcyclohexane CC1C(C)CCC(C)C1MN 9 1-Methyl-2-ethylcyclohexane CC1C(CC)CCCC1MN 9 1-Methyl-3-ethylcyclohexane CC1CC(CC)CCC1MN 9 1-Methyl-4-ethylcyclohexane CC1CCC(CC)CC1MN 9 n-Propylcyclohexane CCCC1CCCCC1MN 91,2,3,4-TetramethylcyclopentaneCC1C(C)C(C)C(C)C1MN 91,2,3,4,5-Pentamethylcyclopentane CC1C(C)C(C)C(C)C1MN 9 n-Butylcyclopentane CCCCC1CCCC1MN 9 iso-Butylcyclopentane CC(C)CC1CCCC1MN 9 iso-Propylcyclohexane C(C)CC1CCCCC1MN 101,2,3,4-TetramethylcyclohexaneCC1C(C)C(C)C(C)CC1MN 101,2,3,5-TetramethylcyclohexaneCC1C(C)C(C)CC(C)C1MN 10 1-Methylpropylcyclohexane C1CCCCC1C(C)CCMN 10 1,2-Diethylcyclohexane CCC1C(CC)CCCC1MN 10 1,3-Diethylcyclohexane CCC1CC(CC)CCC1MN 10 1,4-Diethylcyclohexane CCC1CCC(CC)CC1MN 10 1-Methyl-2-propylcyclohexane CC1C(CCC)CCCC1MN 10 1-Methyl-3-propylcyclohexane CC1CC(CCC)CCC1MN 10 1-Methyl-4-propylcyclohexane CC1CCC(CCC)CC1MN 10 n-Butylcyclohexane C(CCCC1)(C1)CCCCMN 10 2-Methylbutylcyclopentane CCC(C)CC1CCCC1MN 10 1,2-Dipropylcyclopentane CCC1C(CCC)CCC1MN 10 1,3-Dipropylcyclopentane CCC1CC(CCC)CC1MN 10 n-Pentylcyclopentane CCCCCC1CCCC1MN 10 n-Pentylcyclohexane CCCC1CCCCCC1MN 10 iso-Pentylcyclopentane CC(C)CCC1CCCC1MN 10 iso-Butylcyclohexane C(CCCC1)(C1)CC(C)CMN 10 iso-Pentylcyclopentane C(CC1)CC1CCC(C)CMN 111,2,3,4,5-PentamethylcyclohexaneCC1C(C)C(C)C(C)C(C)C179


MN 11 1-Methylbutylcyclohexane C1CCCCC1C(C)CCCMN 11 2-Methylbutylcyclohexane C1CCCCC1CC(C)CCMN 11 1-Methyl-2-butylcyclohexane CC1C(CCCC)CCCC1MN 11 1-Methyl-3-butylcyclohexane CC1CC(CCCC)CCC1MN 11 1-Methyl-4-butylcyclohexane CC1CCC(CCCC)CC1MN 11 2-Methylpentylcyclopentane CCCC(C)CC1CCCC1MN 11 n-Hexylcyclopentane CCCCCCC1CCCC1MN 11 iso-Hexylcyclopentane CC(C)CCCC1CCCC1MN 11 iso-Pentylcyclohexane C1CCCCC1CCC(C)CMN 121,2,3,4,5,6-HexamethylcyclohexaneCC1C(C)C(C)C(C)C(C)C1CMN 12 1,2,3-Triethylcyclohexane CCC1C(CC)C(CC)CCC1MN 12 1,2,4-Triethylcyclohexane CCC1C(CC)CC(CC)CC1MN 12 1,2,5-Triethylcyclohexane CCC1C(CC)CCC(CC)C1MN 12 1-Methyl-2-pentylcyclohexane CC1C(CCCCC)CCCC1MN 12 1-Methyl-3-pentylcyclohexane CC1CC(CCCCC)CCC1MN 12 1-Methyl-4-pentylcyclohexane CC1CCC(CCCCC)CC1MN 12 n-Hexylcyclohexane C(CCCC1)(C1)CCCCCCMN 12 2-Methylhexylcyclopentane CCCCC(C)CC1CCCC1MN 12 1-Methylpentylcyclopentane C1CCCCC1C(C)CCCCMN 12 2-Methylpentylcyclopentane C1CCCCC1CC(C)CCCMN 12 3-Methylpentylcyclopentane C1CCCCC1CCC(C)CCMN 12 n-Heptylcyclopentane CCCCCCCC1CCCC1MN 12 iso-Heptylcyclopentane CC(C)CCCCC1CCCC1MN 12 iso-Hexylcyclohexane C(CCCC1)(C1)CCCC(C)CMN 13 1-Methylhexylcyclohexane C1CCCCC1C(C)CCCCCMN 13 2-Methylhexylcyclohexane C1CCCCC1CC(C)CCCCMN 13 3-Methylhexylcyclohexane C1CCCCC1CCC(C)CCCMN 13 4-Methylhexylcyclohexane C1CCCCC1CCCC(C)CCMN 13 1-Methyl-2-hexylcyclohexane CC1C(CCCCCC)CCCC1MN 13 1-Methyl-3-hexylcyclohexane CC1CC(CCCCCC)CCC1MN 13 1-Methyl-4-hexylcyclohexane CC1CCC(CCCCCC)CC1MN 13 n-Heptylcyclohexane C(CCCC1)(C1)CCCCCCCMN 13 2,4-Dimethylpentylcyclopentane C1CCCCC1CC(C)CC(C)CMN 13 2-Methylheptylcyclopentane CCCCCC(C)CC1CCCC1MN 13 n-Octylcyclopentane CCCCCCCCC1CCCC1MN 13 iso-Octylcyclopentane CC(C)CCCCCC1CCCC1MN 13 iso-Heptylcyclohexane C(CCCC1)(C1)CCCCC(C)CMN 14 1,2,3,4-Tetraethylcyclohexane CCC1C(CC)C(CC)C(CC)CC1MN 14 1,2,3,5-Tetraethylcyclohexane CCC1C(CC)C(CC)CC(CC)C1MN 14 2,4-Dimethylhexylcyclohexane C1CCCCC1CC(C)CC(C)CCMN 14 1-Methylheptylcyclohexane C1CCCCC1C(C)CCCCCCMN 14 2-Methylheptylcyclohexane C1CCCCC1CC(C)CCCCCMN 14 3-Methylheptylcyclohexane C1CCCCC1CCC(C)CCCCMN 14 4-Methylheptylcyclohexane C1CCCCC1CCCC(C)CCCMN 14 5-Methylheptylcyclohexane C1CCCCC1CCCCC(C)CCMN 14 1-Methyl-2-heptylcyclohexane CC1C(CCCCCCC)CCCC1MN 14 1-Methyl-3-heptylcyclohexane CC1CC(CCCCCCC)CCC1MN 14 1-Methyl-4-heptylcyclohexane CC1CCC(CCCCCCC)CC1MN 14 n-Octylcyclohexane C(CCCC1)(C1)CCCCCCCCMN 14 2-Methyloctylcyclopentane CCCCCCC(C)CC1CCCC180


MN 14 n-Nonylcyclopentane CCCCCCCCCC1CCCC1MN 14 iso-Nonylcyclopentane CC(C)CCCCCCC1CCCC1MN 14 iso-Octylcyclohexane C(CCCC1)(C1)CCCCCC(C)CMN 15 2,4-Dimethylheptylcyclohexane C1CCCCC1CC(C)CC(C)CCCMN 15 1-Methyloctylcyclohexane C1CCCCC1C(C)CCCCCCCMN 15 2-Methyloctylcyclohexane C1CCCCC1CC(C)CCCCCCMN 15 3-Methyloctylcyclohexane C1CCCCC1CCC(C)CCCCCMN 15 4-Methyloctylcyclohexane C1CCCCC1CCCC(C)CCCCMN 15 5-Methyloctylcyclohexane C1CCCCC1CCCCC(C)CCCMN 15 6-Methyloctylcyclohexane C1CCCCC1CCCCCC(C)CCMN 15 n-Nonylcyclohexane C(CCCC1)(C1)CCCCCCCCCMN 15 2-Methylnonylcyclopentane CCCCCCCC(C)CC1CCCC1MN 15 n-Decylcyclopentane CCCCCCCCCCC1CCCC1MN 15 iso-Decylcyclopentane CC(C)CCCCCCCC1CCCC1MN 15 iso-Nonylcyclohexane C(CCCC1)(C1)CCCCCCC(C)CMN 16 2,4-Dimethyloctylcyclohexane C1CCCCC1CC(C)CC(C)CCCCMN 16 1-Methylnonylcyclohexane C1CCCCC1C(C)CCCCCCCCMN 16 2-Methylnonylcyclohexane C1CCCCC1CC(C)CCCCCCCMN 16 3-Methylnonylcyclohexane C1CCCCC1CCC(C)CCCCCCMN 16 4-Methylnonylcyclohexane C1CCCCC1CCCC(C)CCCCCMN 16 5-Methylnonylcyclohexane C1CCCCC1CCCCC(C)CCCCMN 16 6-Methylnonylcyclohexane C1CCCCC1CCCCCC(C)CCCMN 16 7-Methylnonylcyclohexane C1CCCCC1CCCCCCC(C)CCMN 16 n-Decylcyclohexane C(CCCC1)(C1)CCCCCCCCCCMN 16 2-Methyldecylcyclopentane CCCCCCCCC(C)CC1CCCC1MN 16 n-Undecylcyclopentane CCCCCCCCCCCC1CCCC1MN 16 iso-Undecylcyclopentane CC(C)CCCCCCCCC1CCCC1MN 16 iso-Decylcyclohexane C(CCCC1)(C1)CCCCCCCC(C)CMN 17 2,4-Dimethylnonylcyclohexane C1CCCCC1CC(C)CC(C)CCCCCMN 17 n-Undecylcyclohexane C(CCCC1)(C1)CCCCCCCCCCCMN 17 n-Dodecylcyclopentane CCCCCCCCCCCCC1CCCC1MN 17 1-cyclohexyl4,8dimethylnonane C1CCCCC1CCCC(C)CCCC(C)CMN 171,5-Dimethyl-1-(3,7-dimethylheptyl)cyclohexane C1C(C)CCC(C)C1CCC(C)CCC(C)CMN 18 n-Dodecylcyclohexane C(CCCC1)(C1)CCCCCCCCCCCCMN 18 n-Tridecylcyclopentane CCCCCCCCCCCCCC1CCCC1MN 18 1-cyclohexyl4,8dimethyldecane C1CCCCC1CCCC(C)CCCC(C)CCMN 181,5-Dimethyl-1-(3,7-dimethyloctyl)cyclohexane C1C(C)CCC(C)C1CCC(C)CCCC(C)CMN 19 n-Tridecylcyclohexane C(CCCC1)(C1)CCCCCCCCCCCCCMN 19 n-Tetradecylcyclopentane CCCCCCCCCCCCCCC1CCCC1MN 191-cyclohexyl-4,8-dimethylundecaneC1CCCCC1CCCC(C)CCCC(C)CCCMN 191,5-Dimethyl-1-(3,7-dimethylnonyl)cyclohexane C1C(C)CCC(C)C1CCC(C)CCCC(C)CCMN 20 n-Tetradecylcyclohexane C(CCCC1)(C1)CCCCCCCCCCCCCCMN 20 n-Pentadecylcyclopentane CCCCCCCCCCCCCCCC1CCCC1MN 201-cyclohexyl-4,8-dimethyldodecaneC1CCCCC1CCCC(C)CCCC(C)CCCCMN 201,5-Dimethyl-1-(3,7-dimethyldecyl)cyclohexane C1C(C)CCC(C)C1CCC(C)CCCC(C)CCCMN 21 n-Pentadecylcyclohexane C(CCCC1)(C1)CCCCCCCCCCCCCCC81


MN 21 n-Hexadecylcyclopentane CCCCCCCCCCCCCCCCC1CCCC1MN 211-cyclohexyl-4,8-dimethyltridecaneC1CCCCC1CCCC(C)CCCC(C)CCCCCMN 211,5-Dimethyl-1-(3,7-dimethylundecyl)cyclohexane C1C(C)CCC(C)C1CCC(C)CCCC(C)CCCCMN 22 n-Hexadecylcyclohexane C(CCCC1)(C1)CCCCCCCCCCCCCCCCMN 22 n-Heptadecylcyclopentane CCCCCCCCCCCCCCCCCC1CCCC1MN 221-cyclohexyl4,8,12trimethyltridecaneC1CCCCC1CCCC(C)CCCC(C)CCCC(C)CMN 221,5-Dimethyl-1-(3,7-dimethyldodecyl)cyclohexane C1C(C)CCC(C)C1CCC(C)CCCC(C)CCCCCMN 23 n-Heptadecylcyclohexane C(CCCC1)(C1)CCCCCCCCCCCCCCCCCMN 23 n-Octadecylcyclopentane CCCCCCCCCCCCCCCCCCC1CCCC1MN 231-cyclohexyl4,8,12trimethyltetradecaneC1CCCCC1CCCC(C)CCCC(C)CCCC(C)CCMN 231,5-Dimethyl-1-(3,7,11-trimethyldodecyl)cyclohexane C1C(C)CCC(C)C1CCC(C)CCCC(C)CCCC(C)CMN 24 n-Octadecylcyclohexane C(CCCC1)(C1)CCCCCCCCCCCCCCCCCCMN 24 n-Nonadecylcyclopentane CCCCCCCCCCCCCCCCCCCC1CCCC1MN 241-cyclohexyl-4,8,12-trimethylpentadecaneC1CCCCC1CCCC(C)CCCC(C)CCCC(C)CCCMN 241,5-Dimethyl-1-(3,7,11-trimethyltridecyl)cyclohexane C1C(C)CCC(C)C1CCC(C)CCCC(C)CCCC(C)CCMN 25 n-Nonadecylcyclohexane C(CCCC1)(C1)CCCCCCCCCCCCCCCCCCCMN 25 n-Eicosylcyclopentane CCCCCCCCCCCCCCCCCCCCC1CCCC1MN 251-cyclohexyl-4,8,12-trimethylhexadecaneC1CCCCC1CCCC(C)CCCC(C)CCCC(C)CCCC1,5-Dimethyl-1-(3,7,11-C1C(C)CCC(C)C1CCC(C)CCCC(C)CCCC(C)CCMN 25 trimethyltetradecyl)cyclohexane CMN 26 n-Eicosylcyclohexane C(CCCC1)(C1)CCCCCCCCCCCCCCCCCCCCMN 26 n-Heneicosylcyclopentane CCCCCCCCCCCCCCCCCCCCCC1CCCC1MN 261-cyclohexyl-4,8,12-trimethylheptadecaneC1CCCCC1CCCC(C)CCCC(C)CCCC(C)CCCCC1,5-Dimethyl-1-(3,7,11-trimethylpentadecyl)cyclohexan C1C(C)CCC(C)C1CCC(C)CCCC(C)CCCC(C)CCMN 26 eCCMN 27 n-Heneicosylcyclohexane C(CCCC1)(C1)CCCCCCCCCCCCCCCCCCCCCMN 27 n-Docosylcylcyclopentane CCCCCCCCCCCCCCCCCCCCCCC1CCCC11-cyclohexyl-4,8,12,16-C1CCCCC1CCCC(C)CCCC(C)CCCC(C)CCCC(CMN 27 tetramethylheptadecane)C1,5-Dimethyl-1-(3,7,11-trimethylhexyldecyl)cyclohexaneMN 27C1C(C)CCC(C)C1CCC(C)CCCC(C)CCCC(C)CCCCCMN 28 n-DocosylcylcyclohexaneC(CCCC1)(C1)CCCCCCCCCCCCCCCCCCCCCCMN 28 n-Tricosyllcyclopentane CCCCCCCCCCCCCCCCCCCCCCCC1CCCC11-cyclohexyl-4,8,12,16-C1CCCCC1CCCC(C)CCCC(C)CCCC(C)CCCC(CMN 28 tetramethyloctadecane)CC1,5-Dimethyl-1-(3,7,11,15-tetramethylhexyldecyl)cyclohexaneC1C(C)CCC(C)C1CCC(C)CCCC(C)CCCC(C)CCMN 28CC(C)CMN 29 n-TricosyllcyclohexaneC(CCCC1)(C1)CCCCCCCCCCCCCCCCCCCCCCCMN 29 n-Tetracosylcyclopentane CCCCCCCCCCCCCCCCCCCCCCCCC1CCCC182


MN 29MN 29MN 30 n-Tetracosylcyclohexane1-cyclohexyl-4,8,12,16-tetramethylnonadecane1,5-Dimethyl-1-(3,7,11,15-tetramethylheptyldecyl)cyclohexaneMN 30 n-Pentacosylcyclopentane1-cyclohexyl-4,8,12,16-MN 30 tetramethyleicosane1,5-Dimethyl-1-(3,7,11,15-tetramethyloctadecyl)cyclohexaneMN 30MN 31 n-Pentacosylcyclohexane1-cyclohexyl-4,8,12,16-MN 31 tetramethylheneicosane1,5-Dimethyl-1-(3,7,11,15-tetramethylnonadecyl)cyclohexaneMN 31MN 32 n-Hexacosylcyclohexane1-cyclohexyl-4,8,12,16-MN 32 pentamethylheneicosane1-cyclohexyl-4,8,12,16-MN 34 pentamethyltricosane1-(3-methyltetraacosyl)-2-MN 34 methylcyclohexane1-cyclohexyl-4,8,12,16-MN 36 pentamethylpentacosane1-(3-methylhexacosyl)-2-MN 36 methylcyclohexaneC1CCCCC1CCCC(C)CCCC(C)CCCC(C)CCCC(C)CCCC1C(C)CCC(C)C1CCC(C)CCCC(C)CCCC(C)CCCC(C)CCC(CCCC1)(C1)CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC1CCCC1C1CCCCC1CCCC(C)CCCC(C)CCCC(C)CCCC(C)CCCCC1C(C)CCC(C)C1CCC(C)CCCC(C)CCCC(C)CCCC(C)CCCC(CCCC1)(C1)CCCCCCCCCCCCCCCCCCCCCCCCCC1CCCCC1CCCC(C)CCCC(C)CCCC(C)CCCC(C)CCCCCC1C(C)CCC(C)C1CCC(C)CCCC(C)CCCC(C)CCCC(C)CCCCC(CCCC1)(C1)CCCCCCCCCCCCCCCCCCCCCCCCCCC1CCCCC1CCCC(C)CCCC(C)CCCC(C)CCCC(C)CCCC(C)CC1CCCCC1CCCC(C)CCCC(C)CCCC(C)CCCC(C)CCCC(C)CCCC1CCCCC1CCCC(C)CCCC(C)CCCC(C)CCCC(C)CCCC(C)CCCC1CCCCC1CCCC(C)CCCC(C)CCCC(C)CCCC(C)CCCC(C)CCCCCC1CCCCC1CCCC(C)CCCC(C)CCCC(C)CCCC(C)CCCC(C)CCCCCDN 7 Bicyclo[2.2.1]heptane C1CC2CC1CC2DN 8 dicyclopentane C1CCC2CCCC12DN 8 Bicyclo[2,2,2]octane C1CC2CCC1CC2DN 9 methyldicyclopentane C1C(C)CC2CCCC12DN 9 hexahydroindane C1CCC2CCCC2C1DN 9 cis-Bicyclo[4.3.0]nonane C(CC1CC2)CC1CC2DN 9 trans-Bicyclo[4.3.0]nonane C(CC1CC2)CC1CC2DN 9 2-Ethylbicyclo[2.2.1]heptane C(C(C1)C2)C(C1)C2CCDN 10 Decalin C1CCC2CCCCC2C1DN 10 methylhexahydroindane C1C(C)CC2CCCC2C1DN 11 2-Methyldecalin C1CCC2CCC(C)CC2C1DN 12 2,3-Dimethyldecalin C1CCC2CC(C)C(C)CC2C1DN 12 2,4-Dimethyldecalin C1CCC2C(C)CC(C)CC2C1DN 12 2,5-Dimethyldecalin C1CC(C)C2CCC(C)CC2C1DN 12 2,6-Dimethyldecalin C1C(C)CC2CCC(C)CC2C1DN 12 2,7-Dimethyldecalin CC1CCC2CCC(C)CC2C1DN 12 2,8-Dimethyldecalin C1CCC2CCC(C)CC2C1CDN 12 2-Ethyldecalin C1CCC2CCC(CC)CC2C1DN 12 isopropylhexaydroindane C1C(C(C)C)CC2CCCC2C1DN 13 2,3,4-Trimethyldecalin C1CCC2C(C)C(C)C(C)CC2C1DN 13 2,3,5-Trimethyldecalin C1CC(C)C2CC(C)C(C)CC2C1DN 13 2,3,6-Trimethyldecalin C1C(C)CC2CC(C)C(C)CC2C1DN 13 2,3,7-Trimethyldecalin CC1CCC2CC(C)C(C)CC2C1DN 13 2,3,8-Trimethyldecalin C1CCC2CC(C)C(C)CC2C1C83


DN 13 2,4,5-Trimethyldecalin C1CC(C)C2C(C)CC(C)CC2C1DN 13 2,4,6-Trimethyldecalin C1C(C)CC2C(C)CC(C)CC2C1DN 13 2,4,7-Trimethyldecalin CC1CCC2C(C)CC(C)CC2C1DN 13 2,4,8-Trimethyldecalin C1CCC2C(C)CC(C)CC2C1CDN 13 2,5,6-Trimethyldecalin C1C(C)C(C)C2CCC(C)CC2C1DN 13 2,5,7-Trimethyldecalin CC1CC(C)C2CCC(C)CC2C1DN 13 2,5,8-Trimethyldecalin C1CC(C)C2CCC(C)CC2C1CDN 13 2,6,7-Trimethyldecalin CC1C(C)CC2CCC(C)CC2C1DN 13 2,6,8-Trimethyldecalin C1C(C)CC2CCC(C)CC2C1CDN 13 2-Isopropyldecalin C1CCC2CCC(C(C)C)CC2C1DN 13 2,7,8-Trimethyldecalin C1CCC2CCC(C)CC2C1CCDN 13 2-n-Propyldecalin C1CCC2CCC(CCC)CC2C1DN 14 2,3,4,5-Tetramethyldecalin C1CC(C)C2C(C)C(C)C(C)CC2C1DN 14 2,3,4,6-Tetramethyldecalin C1C(C)CC2C(C)C(C)C(C)CC2C1DN 14 2,3,4,7-Tetramethyldecalin CC1CCC2C(C)C(C)C(C)CC2C1DN 14 2,3,4,8-Tetramethyldecalin C1CCC2C(C)C(C)C(C)CC2C1CDN 14 2,4,5,6-Tetramethyldecalin C1C(C)C(C)C2C(C)CC(C)CC2C1DN 14 2,4,5,7-Tetramethyldecalin CC1CC(C)C2C(C)CC(C)CC2C1DN 14 2,4,5,8-Tetramethyldecalin C1CC(C)C2C(C)CC(C)CC2C1CDN 14 2,5,6,7-Tetramethyldecalin CC1C(C)C(C)C2CCC(C)CC2C1DN 14 2,5,6,8-Tetramethyldecalin C1C(C)C(C)C2CCC(C)CC2C1CDN 14 2,6,7,8-Tetramethyldecalin CC1C(C)CC2CCC(C)CC2C1CDN 14 2-Isobutyldecalin C1CCC2CCC(CC(C)C)CC2C1DN 14 2-n-Butyldecalin C1CCC2CCC(CCCC)CC2C1DN 14 isopentylhexaydroindane C1C(CC(C)CC)CC2CCCC2C1DN 15 2,3,4,5,6-Pentamethyldecalin C1C(C)C(C)C2C(C)C(C)C(C)CC2C1DN 15 2,3,4,5,7-Pentamethyldecalin CC1CC(C)C2C(C)C(C)C(C)CC2C1DN 15 2,3,4,5,8-Pentamethyldecalin C1CC(C)C2C(C)C(C)C(C)CC2C1CDN 15 2,4,5,6,7-Pentamethyldecalin CC1C(C)C(C)C2C(C)CC(C)CC2C1DN 15 2,4,5,6,8-Pentamethyldecalin C1C(C)C(C)C2C(C)CC(C)CC2C1CDN 15 2,5,6,7,8-Pentamethyldecalin CC1C(C)C(C)C2CCC(C)CC2C1CDN 15 2-Isopentyldecalin C1CCC2CCC(CCC(C)C)CC2C1DN 15 2-n-Pentyldecalin C1CCC2CCC(CCCCC)CC2C1DN 16 2,3,4,5,6,7-Hexamethyldecalin CC1C(C)C(C)C2C(C)C(C)C(C)CC2C1DN 16 2,3,4,5,6,8-Hexamethyldecalin C1C(C)C(C)C2C(C)C(C)C(C)CC2C1CDN 16 2,3,4,5,7,8-Hexamethyldecalin CC1CC(C)C2C(C)C(C)C(C)CC2C1CDN 16 2,3,4,5,7,8-Hexamethyldecalin CC1C(C)CC2C(C)C(C)C(C)CC2C1CDN 16 2-Isohexyldecalin C1CCC2CCC(CCCC(C)C)CC2C1DN 16 2-n-Hexyldecalin C1CCC2CCC(CCCCCC)CC2C1DN 16 isoheptylhexahydroindane C1C(CC(C)CCCC)CC2CCCC2C1DN 172,3,4,5,6,7,8-HeptamethyldecalinCC1C(C)C(C)C2C(C)C(C)C(C)CC2C1CDN 17 2-Isoheptyldecalin C1CCC2CCC(CCCCC(C)C)CC2C1DN 17 2-n-Heptyldecalin C1CCC2CCC(CCCCCCC)CC2C1DN 17 2,4-dimethylpentyl-2-decalin C1CCC2CCC(CC(C)CC(C)C)CC2C1DN 18 Octamethyldecalin CC1C(C)C(C)C2C(C)C(C)C(C)C(C)C2C1CDN 182,6-dimethylheptylhexahydroindaneC1C(CC(C)CCCC(C)C)CC2CCCC2C1DN 18 2,4dimethylhexyl-2-decalin C1CCC2CCC(CC(C)CC(C)CC)CC2C1DN 19 2,4dimethylheptyl-2-decalin C1CCC2CCC(CC(C)CC(C)CCC)CC2C1DN 20 2,6-dimethylnonyl- C1C(CC(C)CCCC(C)CCC)CC2CCCC2C184


hexahydroindaneDN 20 2,4-dimethyloctyl-2-decalin C1CCC2CCC(CC(C)CC(C)CCCC)CC2C1DN 21 2,4,6trimethyloctyl-2-decalin C1CCC2CCC(CC(C)CC(C)CC(C)CC)CC2C1DN 222,6,9-trimethyldecylhexahydroindaneC1C(CC(C)CCCC(C)CCC(C)C)CC2CCCC2C1DN 22 2,4,6trimethylnonyl-2-decalin C1CCC2CCC(CC(C)CC(C)CC(C)CCC)CC2C1DN 23 2,4,6t-rimethyldecyl-2-decalin C1CCC2CCC(CC(C)CC(C)CC(C)CCCC)CC2C1DN 242,6,9-trimethyldodecylhexahydroindaneC1C(CC(C)CCCC(C)CCC(C)CCC)CC2CCCC2C1DN 24 2,4,6-trimethylundecyl-2-decalin C1CCC2CCC(CC(C)CC(C)CC(C)CCCCC)CC2C1DN 24 4,8-dimethyldodecyl-2-decalin C1CCC2CCC(CCCC(C)CCCC(C)CCCC)CC2C1DN 25 2,4,6trimethyldodecyl-2-decalinC1CCC2CCC(CC(C)CC(C)CC(C)CCCCCC)CC2C12,6,9,12-tetramethyltridecylhexahydroindaneC2C1C1C(CC(C)CCCC(C)CCC(C)CCC(C)C)CC2CCCDN 262,4,6,10,14-C1CCC2CCC(CC(C)CC(C)CC(C)CC(C)CC(C)C)DN 26 pentamethylundecyl-2-decalin CC2C12,4,6,10,14-C1CCC2CCC(CC(C)CC(C)CC(C)CC(C)CC(C)CCDN 27 pentamethyldodecyl-2-decalin )CC2C12,6,9,14tetramethylpentadecylh C1C(CC(C)CCCC(C)CCC(C)CCC(C)CCC)CC2CDN 28 exahydroindaneCCC2C12,4,6,10,14pentamethyltridecyl- C1CCC2CCC(CC(C)CC(C)CC(C)CC(C)CC(C)CCDN 28 2-decalinC)CC2C12,4,6,10tetramethyl-tetradecyl- C1CCC2CCC(CC(C)CC(C)CC(C)CC(C)CC(C)CCDN 29 2-decalinCC)CC2C14,8,12-trimethylhexyldecyl-2- C1CCC2CCC(CCCC(C)CCCC(C)CCCC(C)CCCCDN 29 decalin)CC2C12,6,9,14tetramethylhexadecylhexahydroindane2CCCC2C1C1C(CC(C)CCCC(C)CCC(C)CCC(C)CCCCC)CCDN 302,4,6,10,14-pentamethyldodecyl-2-decalinCCC)CC2C1C1CCC2CCC(CC(C)CC(C)CC(C)CC(C)CC(C)CCDN 302,4,6,10-tetramethylhexyldecyl-2-decalinCCCC)CC2C1C1CCC2CCC(CC(C)CC(C)CC(C)CC(C)CC(C)CCDN 312-(2,6,10,14-tetramethylhexadecyl)-9-methyl-decalinCC)CC2C1CC1CCC2CCC(CC(C)CCCC(C)CCCC(C)CCCC(C)DN 312-(2,6,10,14-tetramethylhexadecyl)-9-ethyl-decalinCC)CC2C1CCC1CCC2CCC(CC(C)CCCC(C)CCCC(C)CCCC(C)DN 322-(2,6,10,14-tetramethylhexadecyl)-9-propyl-decalinCC)CC2C1CCCC1CCC2CCC(CC(C)CCCC(C)CCCC(C)CCCC(C)DN 332-(2,6,10,14-tetramethylhexadecyl)-9-butyl-decalinCC)CC2C1CCCCC1CCC2CCC(CC(C)CCCC(C)CCCC(C)CCCC(C)DN 342-(2,6,10,14-tetramethylhexadecyl)-9-pentyl-decalinCC)CC2C1CCCCCC1CCC2CCC(CC(C)CCCC(C)CCCC(C)CCCC(C)DN 352-(2,6,10,14-tetramethylhexadecyl)-9-heptyl-decalinCC)CC2C1CCCCCCCC1CCC2CCC(CC(C)CCCC(C)CCCC(C)CCCC(C)DN 372-(2,6,10,14-tetramethylhexadecyl)-9-nonyl-decalinC1CCC2CCC(CC(C)CCCC(C)CCCC(C)CCCC(C)DN 39CC)CC2C1CCCCCCCCCPN 10 Adamantane C(CC(CC1CC23)C3)(C1)C2PN 11 2-methyl-Adamantane C(CC(CC1CC23)C3)(C1)C2CPN 12 2-ethyl-Adamantane C(CC(CC1CC23)C3)(C1)C2CCPN 12 n-phenylcyclohexane c(cccc1)(c1)C(CCCC2)C2PN 13 1,3,5-Trimethyladamantane C(C(CC1(C2)C)CC23C)C(C1)(C3)C85


PN 14 Hydro-Phenanthrene C1CCC2CCC3CCCCC3C2C1PN 15 Methyl-hydro-Phenanthrene C1CCC2CCC3CC(C)CCC3C2C1PN 16 Ethyl-hydro-Phenanthrene C1CCC2CCC3CC(CC)CCC3C2C1PN 17 iso-Propyl-hydro-Phenanthrene C1CCC2CCC3CC(C(C)C)CCC3C2C1PN 17 n-Propyl-hydro-Phenanthrene C1CCC2CCC3CC(CCC)CCC3C2C1PN 18 Hydro-Chrysene C1CCC2CCC3C4CCCCC4CCC3C2C1PN 18 iso-Butyl-hydro-Phenanthrene C1CCC2CCC3CC(CC(C)C)CCC3C2C1PN 18 n-Butyl-hydro-Phenanthrene C1CCC2CCC3CC(CCCC)CCC3C2C1PN 19 Methyl-hydro-Chrysene C1CCC2CCC3C4CCC(C)CC4CCC3C2C1PN 19 iso-Pentyl-hydro-Phenanthrene C1CCC2CCC3CC(CCC(C)C)CCC3C2C1PN 19 n-Pentyl-hydro-Phenanthrene C1CCC2CCC3CC(CCCCC)CCC3C2C1PN 19 (5alpha)-AndrostaneC(CC1)[C@](CC[C@@]2([C@@](CCC3)([C@@]4(C3)H)C)H)(C)[C@@]1([C@@]2(CC4)H)HPN 20 Ethyl-hydro-Chrysene C1CCC2CCC3C4CCC(CC)CC4CCC3C2C1PN 20 iso-Hexyl-hydro-Phenanthrene C1CCC2CCC3CC(CCCC(C)C)CCC3C2C1PN 20 n-Hexyl-hydro-Phenanthrene C1CCC2CCC3CC(CCCCCC)CCC3C2C1PN 21 iso-Propyl-hydro-Chrysene C1CCC2CCC3C4CCC(C(C)C)CC4CCC3C2C1PN 21 n-Propyl-hydro-Chrysene C1CCC2CCC3C4CCC(CCC)CC4CCC3C2C1PN 212-methylhexyl-hydro-PhenanthreneC1CCC2CCC3CC(CC(C)CCCC)CCC3C2C1PN 21 (5beta)-PregnaneC(CCC1)[C@]([C@@]1(CC2)H)(C)[C@@](CC[C@@]3([C@H]4CC)C)([C@@]2([C@@]3(CC4)H)H)HPN 22 Hydro-Picene C1CCC2CCC3C4CCC5CCCCC5C4CCC3C2C1PN 22 iso-Butyl-hydro-Chrysene C1CCC2CCC3C4CCC(CC(C)C)CC4CCC3C2C1PN 22 n-Butyl-hydro-Chrysene C1CCC2CCC3C4CCC(CCCC)CC4CCC3C2C12-methylhepyl-hydro-PN 22 PhenanthreneC1CCC2CCC3CC(CC(C)CCCCC)CCC3C2C1C1CCC2CCC3C4CCC5CC(C)CCC5C4CCC3C2C1PN 23 Methyl-hydro-Picene2,6-dimethylheptyl-hydro-PN 23 PhenanthreneC1CCC2CCC3CC(CC(C)CCCC(C)C)CCC3C2C1PN 23 2-methylbutyl-hydro-ChryseneC1CCC2CCC3C4CCC(CC(C)CC)CC4CCC3C2C1PN 24 Ethyl-hydro-PiceneC1CCC2CCC3C4CCC5CC(CC)CCC5C4CCC3C2C12,6-dimethyloctyl-hydro-C1CCC2CCC3CC(CC(C)CCCC(C)CC)CCC3C2CPN 24 Phenanthrene1PN 24 2-methylpentyl-hydro-ChryseneC1CCC2CCC3C4CCC(CC(C)CCC)CC4CCC3C2C12,6-dimethylnonyl-hydro-C1CCC2CCC3CC(CC(C)CCCC(C)CCC)CCC3C2PN 25 PhenanthreneC1PN 25 2-methylhexyl-hydro-ChryseneC1CCC2CCC3C4CCC(CC(C)CCCC)CC4CCC3C2C1PN 25 propyl-hydro-PiceneC1CCC2CCC3C4CCC5CC(CCC)CCC5C4CCC3C2C11,2-hydronaphthenohydrochrysene4CC3)CC2C12CCCCC1C3C(C(CCC5C4CCC6C5CCCC6)CPN 262,6-dimethyldecyl-hydro-C1CCC2CCC3CC(CC(C)CCCC(C)CCCC)CCC3PN 26 PhenanthreneC2C1PN 26 2-methylhepyl-hydro-ChryseneC1CCC2CCC3C4CCC(CC(C)CCCCC)CC4CCC3C2C1PN 26 isobutyl-hydro-PiceneC1CCC2CCC3C4CCC5CC(CC(C)C)CCC5C4CCC3C2C1PN 26 Hydro-dibenzo(b,k)chryseneC5C6CCCCC6CC2C5C1C(C3CC4C(CC3CC1)CCCC4)CC2PN 26 n-Butyldimethyl-hydroperyleneCCCCC2CC1CC(C)CC4C1C(C3CC(C)CC5C3C4CCC5)C2PN 27 2,6-dimethylundecyl-hydro- C1CCC2CCC3CC(CC(C)CCCC(C)CCCCC)CCC86


PN 27Phenanthrene2,6-dimethylheptyl-hydro-ChrysenePN 27 isopenyl-hydro-Picene1,2-hydronaphtheno-8-methylhydrochrysenePN 27PN 27 Cholestane2,6,10-trimethylundecyl-hydro-PN 28 Phenanthrene2,6-dimethyloctyl-hydro-PN 28 ChrysenePN 28 isohexyl-hydro-Picene1,2-(1-ethyl-hydronaphtheno)-PN 28 hydrochryseneHydro-benzo(p)naphtho(1,8,7-PN 28 ghi)chrysene2,6,10-trimethyldodecyl-hydro-PN 29 Phenanthrene2,6-dimethylnonyl-hydro-PN 29 ChrysenePN 29 isoheptyl-hydro-Picene1,2-(1-propyl-hydronaphtheno)-PN 29 hydrochryseneDimethylheptylhydrobenzo(a)pyrenePN 292,6,10-trimethyltridecyl-hydro-PN 30 Phenanthrene2,6-dimethyldecyl-hydro-PN 30 ChrysenePN 30 isooctyl-hydro-Picene1,2-(1-isobutyl-hydronaphtheno)-PN 30 hydrochrysenePN 30 Isohexylhydro-benzo-perylene2,6,10-trimethylteradecyl-hydro-PN 31 Phenanthrene2,6-dimethylundecyl-hydro-PN 31 ChrysenePN 32 2,6dimethylhexyl-hydro-Picene2-ethyl,6-methylundecyl-hydrochrysenePN 322-(3,6-dimethylheptyl)-6-PN 32 methylhydro-chrysene2-propyl,6-methylundecylhydro-chrysenePN 332-isopentyl,6-ethylundecylhydro-chrysenePN 362-(3,6-dimethylheptyl)-6-butyl-10-(2methylhexyl)hydrochrysenePN 413C2C1C1CCC2CCC3C4CCC(CC(C)CCCC(C)C)CC4CCC3C2C1C1CCC2CCC3C4CCC5CC(CC(C)CC)CCC5C4CCC3C2C1C12CC(C)CCC1C3C(C(CCC5C4CCC6C5CCCC6)C4CC3)CC2C(CCC1)[C@]([C@]1(CC2)H)(C)[C@@](CC[C@@]3([C@]4([C@@H](CCCC(C)C)C)H)C)([C@@]2([C@@]3(CC4)H)H)HC1CCC2CCC3CC(CC(C)CCCC(C)CCCC(C)C)CCC3C2C1C1CCC2CCC3C4CCC(CC(C)CCCC(C)CC)CC4CCC3C2C1C1CCC2CCC3C4CCC5CC(CC(C)CCC)CCC5C4CCC3C2C1C12CC(CC)CCC1C3C(C(CCC5C4CCC6C5CCCC6)C4CC3)CC2C1CC6CCCC7C6C2C(C4C7C3C(C5C4CCCC5)CCCC3)CCCC12C1CCC2CCC3CC(CC(C)CCCC(C)CCCC(C)CC)CCC3C2C1C1CCC2CCC3C4CCC(CC(C)CCCC(C)CCC)CC4CCC3C2C1C1CCC2CCC3C4CCC5CC(CC(C)CCCC)CCC5C4CCC3C2C1C12CC(CCC)CCC1C3C(C(CCC5C4CCC6C5CCCC6)C4CC3)CC2C(C(C(CC1)CCC2)C2CC3)(C3CC(C4CCC5CC(C)CCCC(C)C)C5)C14C1CCC2CCC3CC(CC(C)CCCC(C)CCCC(C)CCC)CCC3C2C1C1CCC2CCC3C4CCC(CC(C)CCCC(C)CCCC)CC4CCC3C2C1C1CCC2CCC3C4CCC5CC(CC(C)CCCCC)CCC5C4CCC3C2C1C12CC(CC(C)C)CCC1C3C(C(CCC5C4CCC6C5CCCC6)C4CC3)CC2CCC(C)CCC6CC2C(CC6)C1CCCC4C1C(C3CCCC5C3C4CCC5)C2C1CCC2CCC3CC(CC(C)CCCC(C)CCCC(C)CCCC)CCC3C2C1C1CCC2CCC3C4CCC(CC(C)CCCC(C)CCCCC)CC4CCC3C2C1C1CCC2CCC3C4CCC5CC(CC(C)CCCC(C)CC)CCC5C4CCC3C2C1C1CCC2CCC3C4CCC(CC(CC)CCCC(C)CCCCC)CC4CCC3C2C1C4C(CCC(C)CCC(C)CCCCC)CC3CC(C)C2C1CCCCC1CCC2C3C4C1CCC2CCC3C4CCC(CC(CCC)CCCC(C)CCCCC)CC4CCC3C2C1C1CCC2CCC3C4CCC(CC(CC(C)CC)CCCC(CC)CCCCC)CC4CCC3C2C1C4C(CCC(C)CCC(C)CCCCC)CC3CC(CCCC)C2C1CC(CC(C)CCC)CCC1CCC2C3C487


MAr 6 Benzene c1ccccc1MAr 7 Toluene c1ccccc1CMAr 8 1-Methyl-3-ethylbenzene Cc1cc(CC)ccc1MAr 8 n-Propylbenzene c1ccccc1CCCMAr 8 1,2-Diethylbenzene CCc1c(CC)cccc1MAr 8 iso-Propylbenzene c1ccccc1C(C)CMAr 9 Ethylbenzene c1ccccc1CCMAr 9 1,2,3-Trimethylbenzene Cc1c(C)c(C)ccc1MAr 9 1,4-Dimethylbenzene Cc1ccc(C)cc1MAr 9 1,2,5-Trimethylbenzene Cc1c(C)ccc(C)c1MAr 9 1,2,3,4-Tetramethylbenzene Cc1c(C)c(C)c(C)cc1MAr 9 1,2-Dimethylbenzene Cc1c(C)cccc1MAr 9 1,3-Dimethylbenzene Cc1cc(C)ccc1MAr 9 1-Methyl-2-ethylbenzene Cc1c(CC)cccc1MAr 10 1,2,4-Trimethylbenzene Cc1c(C)cc(C)cc1MAr 10 1-Methyl-4-ethylbenzene Cc1ccc(CC)cc1MAr 10 1,2,3,5-Tetramethylbenzene Cc1c(C)c(C)cc(C)c1MAr 10 n-Butylbenzene c1ccccc1CCCCMAr 10 1-Methyl-2-propylbenzene Cc1c(CCC)cccc1MAr 10 1,3-Diethylbenzene CCc1cc(CC)ccc1MAr 10 1,4-Diethylbenzene CCc1ccc(CC)cc1MAr 10 1-Methyl-4-propylbenzene Cc1ccc(CCC)cc1MAr 10 1-Methyl-3-propylbenzene Cc1cc(CCC)ccc1MAr 11 1-Methyl-2-butylbenzene Cc1c(CCCC)cccc1MAr 11 1-Methyl-3-butylbenzene Cc1cc(CCCC)ccc1MAr 11 1-Methyl-4-butylbenzene Cc1ccc(CCCC)cc1MAr 11 1-Ethyl-2-propylbenzene CCc1c(CCC)cccc1MAr 11 1-Ethyl-3-propylbenzene CCc1cc(CCC)ccc1MAr 11 1-Ethyl-4-propylbenzene CCc1ccc(CCC)cc1MAr 11 1,2,3,4,5-Pentamethylbenzene Cc1c(C)c(C)c(C)c(C)c1MAr 11 n-Pentylbenzene c1ccccc1CCCCCMAr 12 1,2-Dipropylbenzene CCCc1c(CCC)cccc1MAr 12 1,3-Dipropylbenzene CCCc1cc(CCC)ccc1MAr 12 1,4-Dipropylbenzene CCCc1ccc(CCC)cc1MAr 12 1-Methyl-2-pentylbenzene Cc1c(CCCCC)cccc1MAr 12 1-Methyl-3-pentylbenzene Cc1cc(CCCCC)ccc1MAr 12 1-Methyl-4-pentylbenzene Cc1ccc(CCCCC)cc1MAr 12 1-Ethyl-2-butylbenzene CCc1c(CCCC)cccc1MAr 12 1-Ethyl-3-butylbenzene CCc1cc(CCCC)ccc1MAr 12 1-Ethyl-4-butylbenzene CCc1ccc(CCCC)cc1MAr 12 1,2-Dipropylbenzene CCCc1c(CCC)cccc1MAr 12 1,3-Dipropylbenzene CCCc1cc(CCC)ccc1MAr 12 1,4-Dipropylbenzene CCCc1ccc(CCC)cc1MAr 12 1,2,3-Triethylbenzene CCc1c(CC)c(CC)ccc1MAr 12 1,2,4-Triethylbenzene CCc1c(CC)cc(CC)cc1MAr 12 1,2,5-Triethylbenzene CCc1c(CC)ccc(CC)c1MAr 12 1,2,3,4,5,6-Hexamethylbenzene Cc1c(C)c(C)c(C)c(C)c1CMAr 12 n-Hexylbenzene c1ccccc1CCCCCCMAr 13 n-Heptylbenzene c1ccccc1CCCCCCCMAr 13 1-Methyl-2-hexylbenzene Cc1c(CCCCCC)cccc188


MAr 13 1-Methyl-3-hexylbenzene Cc1cc(CCCCCC)ccc1MAr 13 1-Methyl-4-hexylbenzene Cc1ccc(CCCCCC)cc1MAr 13 1-Ethyl-2-pentylbenzene CCc1c(CCCCC)cccc1MAr 13 1-Ethyl-3-pentylbenzene CCc1cc(CCCCC)ccc1MAr 13 1-Ethyl-4-pentylbenzene CCc1ccc(CCCCC)cc1MAr 14 1-Methyl-2-heptylbenzene Cc1c(CCCCCCC)cccc1MAr 14 1-Methyl-3-heptylbenzene Cc1cc(CCCCCCC)ccc1MAr 14 1-Methyl-4-heptylbenzene Cc1ccc(CCCCCCC)cc1MAr 14 1-Ethyl-2-hexylbenzene CCc1c(CCCCCC)cccc1MAr 14 1-Ethyl-3-hexylbenzene CCc1cc(CCCCCC)ccc1MAr 14 1-Ethyl-4-hexylbenzene CCc1ccc(CCCCCC)cc1MAr 14 1,2-Dibutylbenzene CCCCc1c(CCCC)cccc1MAr 14 1,3-Dibutylbenzene CCCCc1cc(CCCC)ccc1MAr 14 1,4-Dibutylbenzene CCCCc1ccc(CCCC)cc1MAr 14 1,2,3,4-Tetraethylbenzene CCc1c(CC)c(CC)c(CC)cc1MAr 14 1,2,3,5-Tetraethylbenzene CCc1c(CC)c(CC)cc(CC)c1MAr 14 n-Octylbenzene c1ccccc1CCCCCCCCMAr 15 1-Methyl-2-octylbenzene Cc1c(CCCCCCCC)cccc1MAr 15 1-Methyl-3-octylbenzene Cc1cc(CCCCCCCC)ccc1MAr 15 1-Methyl-4-octylbenzene Cc1ccc(CCCCCCCC)cc1MAr 15 1-Ethyl-2-heptylbenzene CCc1c(CCCCCCC)cccc1MAr 15 1-Ethyl-3-heptylbenzene CCc1cc(CCCCCCC)ccc1MAr 15 1-Ethyl-4-heptylbenzene CCc1ccc(CCCCCCC)cc1MAr 15 1,2,3-Tripropylbenzene CCCc1c(CCC)c(CCC)ccc1MAr 15 1,2,4-Tripropylbenzene CCCc1c(CCC)cc(CCC)cc1MAr 15 1,2,5-Tripropylbenzene CCCc1c(CCC)ccc(CCC)c1MAr 15 1,2,3-Tripropylbenzene CCCc1c(CCC)c(CCC)ccc1MAr 15 1,2,4-Tripropylbenzene CCCc1cc(CCC)c(CCC)cc1MAr 15 1,2,5-Tripropylbenzene CCCc1ccc(CCC)c(CCC)c1MAr 15 n-Nonylbenzene c1ccccc1CCCCCCCCCMAr 16 1-Methyl-2-nonylbenzene Cc1c(CCCCCCCCC)cccc1MAr 16 1-Methyl-3-nonylbenzene Cc1cc(CCCCCCCCC)ccc1MAr 16 1-Methyl-4-nonylbenzene Cc1ccc(CCCCCCCCC)cc1MAr 16 1-Ethyl-2-octylbenzene CCc1c(CCCCCCCC)cccc1MAr 16 1-Ethyl-3-octylbenzene CCc1cc(CCCCCCCC)ccc1MAr 16 1-Ethyl-4-octylbenzene CCc1ccc(CCCCCCCC)cc1MAr 16 1,2-Dipentylbenzene CCCCCc1c(CCCCC)cccc1MAr 16 1,3-Dipentylbenzene CCCCCc1cc(CCCCC)ccc1MAr 16 1,4-Dipentylbenzene CCCCCc1ccc(CCCCC)cc1MAr 16 1,2,3,4,5-Pentaethylbenzene CCc1c(CC)c(CC)c(CC)c(CC)c1MAr 16 n-Decylbenzene c1ccccc1CCCCCCCCCCMAr 17 1-Methyl-2-decylbenzene Cc1c(CCCCCCCCCC)cccc1MAr 17 1-Methyl-3-decylbenzene Cc1cc(CCCCCCCCCC)ccc1MAr 17 1-Methyl-4-decylbenzene Cc1ccc(CCCCCCCCCC)cc1MAr 17 1-Ethyl-2-nonylbenzene CCc1c(CCCCCCCCC)cccc1MAr 17 1-Ethyl-3-nonylbenzene CCc1cc(CCCCCCCCC)ccc1MAr 17 1-Ethyl-4-nonylbenzene CCc1ccc(CCCCCCCCC)cc1MAr 17 n-Undecylbenzene c1ccccc1CCCCCCCCCCCMAr 17 1-benzyl4,8dimethylnonane c1ccccc1CCCC(C)CCCC(C)CMAr 18 n-Dodecylbenzene c1ccccc1CCCCCCCCCCCC89


MAr 18 1-benzyl4,8dimethyldecane c1ccccc1CCCC(C)CCCC(C)CCMAr 19 1-benzyl4,8dimethylundecane c1ccccc1CCCC(C)CCCC(C)CCCMAr 19 n-tridecylbenzene c1ccccc1CCCCCCCCCCCCCMAr 20 1-benzyl4,8dimethyldodecane c1ccccc1CCCC(C)CCCC(C)CCCCMAr 20 n-tetradecylbenzene c1ccccc1CCCCCCCCCCCCCCMAr 21 1-benzyl4,8dimethyltridecane c1ccccc1CCCC(C)CCCC(C)CCCCCMAr 21 n-pentadecylbenzene c1ccccc1CCCCCCCCCCCCCCCMAr 221-benzyl4,8,12trimethyltridecane c1ccccc1CCCC(C)CCCC(C)CCCC(C)CMAr 22 n-hexadecylbenzene c1ccccc1CCCCCCCCCCCCCCCCMAr 231-benzyl-4,8,12-trimethyltetradecanec1ccccc1CCCC(C)CCCC(C)CCCC(C)CCMAr 23 n-heptadecylbenzene c1ccccc1CCCCCCCCCCCCCCCCCMAr 241-benzyl-4,8,12-trimethylpentadecanec1ccccc1CCCC(C)CCCC(C)CCCC(C)CCCMAr 24 n-octadecylbenzene c1ccccc1CCCCCCCCCCCCCCCCCCMAr 251-benzyl-4,8,12-trimethylhexadecanec1ccccc1CCCC(C)CCCC(C)CCCC(C)CCCCMAr 25 n-nonyldecylbenzene c1ccccc1CCCCCCCCCCCCCCCCCCCMAr 261-benzyl-4,8,12-trimethylheptadecanec1ccccc1CCCC(C)CCCC(C)CCCC(C)CCCCCMAr 26 n-eicosylbenzene c1ccccc1CCCCCCCCCCCCCCCCCCCCMAr 271-benzyl-4,8,12,16-tetramethylheptadecanec1ccccc1CCCC(C)CCCC(C)CCCC(C)CCCC(C)CMAr 27 n-heneicosylbenzene c1ccccc1CCCCCCCCCCCCCCCCCCCCC1-benzyl-4,8,12,16-c1ccccc1CCCC(C)CCCC(C)CCCC(C)CCCC(C)CMAr 28 tetramethyloctadecaneCMAr 28 n-docosylbenzene c1ccccc1CCCCCCCCCCCCCCCCCCCCCC1-benzyl-4,8,12,16-c1ccccc1CCCC(C)CCCC(C)CCCC(C)CCCC(C)CMAr 29 tetramethylnonadecaneCCMAr 29 n-tricosylbenzene c1ccccc1CCCCCCCCCCCCCCCCCCCCCCC1-benzyl-4,8,12,16-c1ccccc1CCCC(C)CCCC(C)CCCC(C)CCCC(C)CMAr 30 tetramethyleicosaneCCCMAr 30 n-tetracosylbenzene c1ccccc1CCCCCCCCCCCCCCCCCCCCCCCC1-benzyl-4,8,12,16-c1ccccc1CCCC(C)CCCC(C)CCCC(C)CCCC(C)CMAr 31 tetramethylheneicosaneCCCCMAr 31 n-pentacosylbenzene c1ccccc1CCCCCCCCCCCCCCCCCCCCCCCCC1-benzyl-4,8,12,16-c1ccccc1CCCC(C)CCCC(C)CCCC(C)CCCC(C)CMAr 32 pentamethylheneicosaneCCC(C)CNMAr 9 Indan(dihydroindene) c1ccc2CCCc2c1NMAr 9 cyclopropylbenzene c1ccccc1C2CC2NMAr 10 Methylindan c1ccc2CC(C)Cc2c1NMAr 10 Tetralin(tetrahydronaphthalene) c1ccc2CCCCc2c1NMAr 11 Ethylindan c1ccc2CC(CC)Cc2c1NMAr 11 Methyltetralin c1ccc2CC(C)CCc2c1NMAr 11 1,4dimethylindane c1cc(C)c2CC(C)Cc2c1NMAr 12 iso-Propylindan c1ccc2CC(C(C)C)Cc2c1NMAr 12 1,2-Dimethyltetralin c1ccc2C(C)C(C)CCc2c1NMAr 12 1,3-Dimethyltetralin c1ccc2C(C)CC(C)Cc2c1NMAr 12 1,4-Dimethyltetralin c1ccc2C(C)CCC(C)c2c190


NMAr 12 n-Propylindan c1ccc2CC(CCC)Cc2c1NMAr 12 Ethyltetralin c1ccc2CC(CC)CCc2c1NMAr 12 1-ethyl4-methylindane c1cc(C)c2CC(CC)Cc2c1NMAr 13 1,2,3-Trimethyltetralin c1ccc2C(C)C(C)C(C)Cc2c1NMAr 13 1,2,4-Trimethyltetralin c1ccc2C(C)C(C)CC(C)c2c1NMAr 13 iso-Butylindan c1ccc2CC(CC(C)C)Cc2c1NMAr 13 n-Butylindan c1ccc2CC(CCCC)Cc2c1NMAr 13 5,6,7-Trimethyltetralin Cc1c(C)cc2CCCCc2c1CNMAr 13 1,4diethylindane c1cc(CC)c2CC(CC)Cc2c1NMAr 14 Octahydro-phenanthrene c1ccc2CCC3CCCCC3c2c1NMAr 14 5,6-Dimethyltetralin Cc1ccc2CCCCc2c1CNMAr 14 6,7-Dimethyltetralin Cc1c(C)cc2CCCCc2c1NMAr 14 6,8-Dimethyltetralin Cc1cc(C)c2CCCCc2c1NMAr 14 iso-Propyltetralin c1ccc2CC(C(C)C)CCc2c1NMAr 14 n-Propyltetralin c1ccc2CC(CCC)CCc2c1NMAr 14 1,2,3,4-Tetramethyltetralin c1ccc2C(C)C(C)C(C)C(C)c2c1NMAr 14 iso-Pentylindan c1ccc2CC(CCC(C)C)Cc2c1NMAr 14 2-Methyl-n-butylindan c1ccc2CC(CC(C)CC)Cc2c1NMAr 14 iso-Butyltetralin c1ccc2CC(CC(C)C)CCc2c1NMAr 14 n-Pentylindan c1ccc2CC(CCCCC)Cc2c1NMAr 14 n-Butyltetralin c1ccc2CC(CCCC)CCc2c1NMAr 14 5,6,7,8-Tetramethyltetralin Cc1c(C)c(C)c2CCCCc2c1CNMAr 14 1-methyl5-isopropyltetralin c1c(C(C)C)cc2CC(C)CCc2c1NMAr 14 1-methyl5-n-propyltetralin c1c(CCC)cc2CC(C)CCc2c1NMAr 14 1-ethyl4-propylylindane c1cc(CCC)c2CC(CC)Cc2c1NMAr 15 Methyl-octahydro-phenanthrene c1ccc2CCC3CC(C)CCC3c2c1NMAr 15 iso-Hexylindan c1ccc2CC(CCCC(C)C)Cc2c1NMAr 15 2-Methyl-n-pentylindan c1ccc2CC(CC(C)CCC)Cc2c1NMAr 15 iso-Pentyltetralin c1ccc2CC(CCC(C)C)CCc2c1NMAr 15 2-Methyl-n-butyltetralin c1ccc2CC(CC(C)CC)CCc2c1NMAr 15 n-Hexylindan c1ccc2CC(CCCCCC)Cc2c1NMAr 15 n-Pentyltetralin c1ccc2CC(CCCCC)CCc2c1NMAr 15 1-methyl5-2methylpropyltetralin c1c(CC(C)C)cc2CC(C)CCc2c1NMAr 15 1-ethyl4-butylindane c1cc(CCCC)c2CC(CC)Cc2c1NMAr 16 Ethyl-octahydro-phenanthrene c1ccc2CCC3CC(CC)CCC3c2c1NMAr 16 iso-Heptylindan c1ccc2CC(CCCCC(C)C)Cc2c1NMAr 16 2-Methyl-n-hexylindan c1ccc2CC(CC(C)CCCC)Cc2c1NMAr 16 iso-Hexyltetralin c1ccc2CC(CCCC(C)C)CCc2c1NMAr 16 2-Methyl-n-pentyltetralin c1ccc2CC(CC(C)CCC)CCc2c1NMAr 16 n-Heptylindan c1ccc2CC(CCCCCCC)Cc2c1NMAr 16 n-Hexyltetralin c1ccc2CC(CCCCCC)CCc2c1NMAr 16 1-methyl5-2methylbutyltetralin c1c(CC(C)CC)cc2CC(C)CCc2c1NMAr 16 1-ethyl4-isopentylindane c1cc(CC(C)CC)c2CC(CC)Cc2c1NMAr 17iso-Propyl-octahydrophenanthrenec1ccc2CCC3CC(C(C)C)CCC3c2c1NMAr 17n-Propyl-octahydrophenanthrenec1ccc2CCC3CC(CCC)CCC3c2c1NMAr 17 iso-Octylindan c1ccc2CC(CCCCCC(C)C)Cc2c1NMAr 17 2-Methyl-n-heptylindan c1ccc2CC(CC(C)CCCCC)Cc2c1NMAr 17 iso-Heptyltetralin c1ccc2CC(CCCCC(C)C)CCc2c1NMAr 17 2-Methyl-n-hexyltetralin c1ccc2CC(CC(C)CCCC)CCc2c191


NMAr 17 n-Octylindan c1ccc2CC(CCCCCCCC)Cc2c1NMAr 17 n-Heptyltetralin c1ccc2CC(CCCCCCC)CCc2c1NMAr 17 1-methyl5-2methylpentyltetralin c1c(CC(C)CCC)cc2CC(C)CCc2c1NMAr 17 1-ethyl4-2methypenyllindane c1cc(CC(C)CCC)c2CC(CC)Cc2c1NMAr 18 Dodecahydro-Chrysene c1ccc2CCC3C4CCCCC4CCC3c2c1NMAr 18iso-Butyl-octahydrophenanthrenec1ccc2CCC3CC(CC(C)C)CCC3c2c1NMAr 18n-Butyl-octahydrophenanthrenec1ccc2CCC3CC(CCCC)CCC3c2c1NMAr 18 iso-Nonylindan c1ccc2CC(CCCCCCC(C)C)Cc2c1NMAr 18 2-Methyl-n-octylindan c1ccc2CC(CC(C)CCCCCC)Cc2c1NMAr 18 iso-Octyltetralin c1ccc2CC(CCCCCC(C)C)CCc2c1NMAr 18 2-Methyl-n-heptyltetralin c1ccc2CC(CC(C)CCCCC)CCc2c1NMAr 18 n-Nonylindan c1ccc2CC(CCCCCCCCC)Cc2c1NMAr 18 n-Octyltetralin c1ccc2CC(CCCCCCCC)CCc2c1NMAr 18 1-methyl5-2methylhexyltetralin c1c(CC(C)CCCC)cc2CC(C)CCc2c1NMAr 18 1-ethyl4-2methylhexylindane c1cc(CC(C)CCCC)c2CC(CC)Cc2c1NMAr 18 bicyclohexyl-benzene C(C(CCCC1)C1)(CC(c3ccccc3)CC2)C2NMAr 19 Methyl-dodecahydro-chyrsene c1ccc2CCC3C4CC(C)CCC4CCC3c2c1NMAr 19iso-Pentyl-octahydrophenanthrenec1ccc2CCC3CC(CCC(C)C)CCC3c2c1NMAr 19n-Pentyl-octahydrophenanthrenec1ccc2CCC3CC(CCCCC)CCC3c2c1NMAr 19 iso-Decylindan c1ccc2CC(CCCCCCCC(C)C)Cc2c1NMAr 19 2-Methyl-n-nonylindan c1ccc2CC(CC(C)CCCCCCC)Cc2c1NMAr 19 iso-Nonyltetralin c1ccc2CC(CCCCCCC(C)C)CCc2c1NMAr 19 2-Methyl-n-octyltetralin c1ccc2CC(CC(C)CCCCCC)CCc2c1NMAr 19 n-Decylindan c1ccc2CC(CCCCCCCCCC)Cc2c1NMAr 19 n-Nonyltetralin c1ccc2CC(CCCCCCCCC)CCc2c1NMAr 19 1-methyl5-2methylheptyltetralin c1c(CC(C)CCCCC)cc2CC(C)CCc2c1NMAr 19 1-ethyl4-2methylheptylindane c1cc(CC(C)CCCCC)c2CC(CC)Cc2c1NMAr 19 methyl-bicylohexyl-benzene C(C(CC(C)CC1)C1)(CC(c3ccccc3)CC2)C2NMAr 20 Ethyl-dodecahydro-chrysene c1ccc2CCC3C4CC(CC)CCC4CCC3c2c1NMAr 20iso-Hexyl-octahydrophenanthrenec1ccc2CCC3CC(CCCC(C)C)CCC3c2c1NMAr 20n-Hexyl-octahydrophenanthrenec1ccc2CCC3CC(CCCCCC)CCC3c2c1NMAr 20 1-methyl5-2methyloctyltetralin c1c(CC(C)CCCCCC)cc2CC(C)CCc2c1NMAr 20 2,4dimethyloctyltetralin c1ccc2CC(CC(C)CC(C)CCCC)CCc2c1NMAr 20 1-ethyl4-2methyoctyllindane c1cc(CC(C)CCCCCC)c2CC(CC)Cc2c1NMAr 20 ethyl-bicylohexyl-benzene C(C(CC(CC)CC1)C1)(CC(c3ccccc3)CC2)C2NMAr 21iso-Propyl-dodecahydrochyrsenec1ccc2CCC3C4CC(C(C)C)CCC4CCC3c2c1NMAr 21n-Propyl-dodecahydrochyrsenec1ccc2CCC3C4CC(CCC)CCC4CCC3c2c1NMAr 21iso-Heptyl-octahydrophenanthrenec1ccc2CCC3CC(CCCCC(C)C)CCC3c2c1NMAr 21n-Heptyl-octahydrophenanthrenec1ccc2CCC3CC(CCCCCCC)CCC3c2c1NMAr 21 1-methyl5-2methylnonyltetralin c1c(CC(C)CCCCCCC)cc2CC(C)CCc2c1NMAr 21 2,4,6trimethyloctyltetralin c1ccc2CC(CC(C)CC(C)CC(C)CC)CCc2c1NMAr 21 1-ethyl4-2,6dimethyloctylindane c1cc(CC(C)CCCC(C)CC)c2CC(CC)Cc2c192


NMAr 24c1cc(CC(C)CCCC(C)CCCCC)c2CC(CC)Cc2c1NMAr 21isohexyl-octahydrophenanthrenec1ccc2CCC3CC(CC(C)CCCC)CCC3c2c1NMAr 21 isopropyl-bicylohexyl-benzene C(C(CC(C(C)C)CC1)C1)(CC(c3ccccc3)CC2)C2NMAr 22iso-Butyl-dodecahydrochyrsenec1ccc2CCC3C4CC(CC(C)C)CCC4CCC3c2c1NMAr 22 n-Butyl-dodecahydro-chyrsene c1ccc2CCC3C4CC(CCCC)CCC4CCC3c2c1NMAr 22 Hexadecahydro-PiceneC12=CC=C4C(CCC5C4CCCC5)=C1CCC3C2CCCC3NMAr 221-methyl-5-(2,6-dimethylnonyl)tetralinc1c(CC(C)CCCC(C)CCC)cc2CC(C)CCc2c1NMAr 22 2,4,6trimethylnonyltetralin c1ccc2CC(CC(C)CC(C)CC(C)CCC)CCc2c1NMAr 221-ethyl4-2,6dimethylnonylindanec1cc(CC(C)CCCC(C)CCC)c2CC(CC)Cc2c1NMAr 22isoheptyl-octahydrophenanthrenec1ccc2CCC3CC(CC(C)CCCCC)CCC3c2c1NMAr 22 isobutyl-bicylohexyl-benzene C(C(CC(CC(C)C)CC1)C1)(CC(c3ccccc3)CC2)C2NMAr 22methyl-tetrahydrobenzo(a)pyrenec(c(c(cc1)cc(C)c2)c2cc3)(c3cc(c4CCC5)C5)c14NMAr 23iso-Pentyl-dodecahydrochyrsenec1ccc2CCC3C4CC(CCC(C)C)CCC4CCC3c2c1NMAr 23 n-Pentyl-dodecahydro-chyrsene c1ccc2CCC3C4CC(CCCCC)CCC4CCC3c2c1NMAr 23 Methyl-hexadecahydro-piceneC12=CC=C4C(CCC5C4CCCC5)=C1CCC3C2CCC(C)C3NMAr 231-methyl-5-(2,6-dimethyldecyl)tetralinc1c(CC(C)CCCC(C)CCCC)cc2CC(C)CCc2c1NMAr 23 2,4,6-trimethyldecyltetralin c1ccc2CC(CC(C)CC(C)CC(C)CCCC)CCc2c1NMAr 231-ethyl-4-(2,6-dimethyldecyl)indanec1cc(CC(C)CCCC(C)CCCC)c2CC(CC)Cc2c1NMAr 232,6-dimethylheptyl-octahydrophenanthrenec1ccc2CCC3CC(CC(C)CCCC(C)C)CCC3c2c1NMAr 23 isopentyl-bicylohexyl-benzeneC(C(CC(CC(C)CC)CC1)C1)(CC(c3ccccc3)CC2)C2NMAr 23 isopentyldodecahydro-chyrsene c1ccc2CCC3C4CCC(CC(C)CC)CC4CCC3c2c1NMAr 23ethyl-tetrahydrobenzo(a)pyrenec(c(c(cc1)cc(CC)c2)c2cc3)(c3cc(c4CCC5)C5)c14NMAr 23 Methyl-hexadecahydro-piceneC12=CC=C4C(CCC5C4CCCC5)=C1CCC3C2CCC(C)C3NMAr 241-methyl-(5-2,6-dimethylundecyl)tetralinc1c(CC(C)CCCC(C)CCCCC)cc2CC(C)CCc2c1NMAr 242,4,6,10-tetramethyldecyltetralinc1ccc2CC(CC(C)CC(C)CC(C)CC(C)CC)CCc2c11-ethyl-4-(2,6-dimethylundecyl)indane2,6-dimethyloctyl-octahydrophenanthreneNMAr 24c1ccc2CCC3CC(CC(C)CCCC(C)CC)CCC3c2c1NMAr 24 isohexyl-bicylohexyl-benzeneC(C(CC(CC(C)CCC)CC1)C1)(CC(c3ccccc3)CC2)C2NMAr 24 isohexyldodecahydro-chyrsene c1ccc2CCC3C4CCC(CC(C)CCC)CC4CCC3c2c1propyl-tetrahydrobenzo(a)pyrenec(c(c(cc1)cc(CCC)c2)c2cc3)(c3cc(c4CCC5)C5)c1NMAr 244NMAr 24 Ethyl-hexadecahydro-piceneC12=CC=C4C(CCC5C4CCCC5)=C1CCC3C2CCC(CC)C3NMAr 251-methyl-5-(2,6-dimethyldodecyl)tetralinc1c(CC(C)CCCC(C)CCCCCC)cc2CC(C)CCc2c12,4,6,10tetramethylundecyltetra c1ccc2CC(CC(C)CC(C)CC(C)CC(C)CCC)CCc2cNMAr 25 lin1NMAr 25 1-ethyl-4-(2,6- c1cc(CC(C)CCCC(C)CCCCCC)c2CC(CC)Cc2c193


NMAr 25NMAr 25 isoheptyl-bicylohexyl-benzeneNMAr 25 Propyl-hexadecahydro-piceneNMAr 26NMAr 26NMAr 26NMAr 26NMAr 26dimethyldodecyl)indane2,6-dimethylnonyl-octahydrophenanthreneNMAr 25 isoheptyldodecahydro-chyrseneisobutyl-tetrahydrobenzo(a)pyreneNMAr 251-methyl-5-(2,6-dimethyltridecyl)tetralin2,4,6,10tetramethyldodecyltetralin1-ethyl-4-(2,6,10-trimethyldodecyl)indane2,6-dimethyldecyl-octahydrophenanthreneNMAr 26 isooctyldodecahydro-chyrseneisopentyl-tetrahydrobenzo(a)pyreneNMAr 26NMAr 26 Isobutyl-hexadecahydro-picene1-methyl-5-(2,6,10-NMAr 27 trimethyltridecyl)tetralin1-ethyl-4-(2,6,10-NMAr 27 trimethyltridecyl)indane2,6-dimethylundecyl-octahydrophenanthreneNMAr 272,6-dimethylheptyldodecahydrochyrseneNMAr 27isohexyl-tetrahydrobenzo(a)pyreneNMAr 27Isopentyl-hexadecahydropiceneNMAr 271-methyl-5-(2,6,10-NMAr 28 trimethyltetradecyl)tetralin2,4,6,10-pentamethyldodecyltetralinNMAr 281-ethyl-4-(2,6,10-NMAr 28 trimethylteradecyl)indane2,6,10-trimethylundecyloctahydro-phenanthreneNMAr 282,6-dimethyloctyldodecahydrochyrseneNMAr 28isoheptyl-tetrahydrobenzo(a)pyreneNMAr 282,6-dimethylheptyl-tetrahydrobenzo(a)pyreneNMAr 28NMAr 28 Isohexyl-hexadecahydro-picene1-methyl5-2,6,10trimethylpentadecyltetraliNMAr 29 nc1ccc2CCC3CC(CC(C)CCCC(C)CCC)CCC3c2c1C(C(CC(CC(C)CCCC)CC1)C1)(CC(c3ccccc3)CC2)C2c1ccc2CCC3C4CCC(CC(C)CCCC)CC4CCC3c2c1c(c(c(cc1)cc(CC(C)C)c2)c2cc3)(c3cc(c4CCC5)C5)c14C12=CC=C4C(CCC5C4CCCC5)=C1CCC3C2CCC(CCC)C3C12=CC=C4C(CCC5C4CCC6C5CCCC6)=C1CCC3C2CCCC3c1c(CC(C)CCCC(C)CCCCCCC)cc2CC(C)CCc2c1c1ccc2CC(CC(C)CC(C)CC(C)CC(C)CCCC)CCc2c1c1cc(CC(C)CCCC(C)CCCC(C)CC)c2CC(CC)Cc2c1c1ccc2CCC3CC(CC(C)CCCC(C)CCCC)CCC3c2c1c1ccc2CCC3C4CCC(CC(C)CCCCC)CC4CCC3c2c1c(c(c(cc1)cc(CC(C)CC)c2)c2cc3)(c3cc(c4CCC5)C5)c14C12=CC=C4C(CCC5C4CCCC5)=C1CCC3C2CCC(CC(C)C)C3c1c(CC(C)CCCC(C)CCCC(C)CCC)cc2CC(C)CCc2c1c1cc(CC(C)CCCC(C)CCCC(C)CCC)c2CC(CC)Cc2c1c1ccc2CCC3CC(CC(C)CCCC(C)CCCCC)CCC3c2c1c1ccc2CCC3C4CCC(CC(C)CCCC(C)C)CC4CCC3c2c1c(c(c(cc1)cc(CC(C)CCC)c2)c2cc3)(c3cc(c4CCC5)C5)c14C12=CC=C4C(CCC5C4CCCC5)=C1CCC3C2CCC(CC(C)CC)C3c1c(CC(C)CCCC(C)CCCC(C)CCCC)cc2CC(C)CCc2c1c1ccc2CC(CC(C)CC(C)CC(C)CC(C)CC(C)CCC)CCc2c1c1cc(CC(C)CCCC(C)CCCC(C)CCCC)c2CC(CC)Cc2c1c1ccc2CCC3CC(CC(C)CCCC(C)CCCC(C)C)CCC3c2c1c1ccc2CCC3C4CCC(CC(C)CCCC(C)CC)CC4CCC3c2c1c(c(c(cc1)cc(CC(C)CCCC)c2)c2cc3)(c3cc(c4CCC5)C5)c14c(c(c(cc1)cc(CC(C)CCCC(C))c2)c2cc3)(c3cc(c4CCC5)C5)c14C12=CC=C4C(CCC5C4CCCC5)=C1CCC3C2CCC(CC(C)CCC)C3c1c(CC(C)CCCC(C)CCCC(C)CCCCC)cc2CC(C)CCc2c194


NMAr 29NMAr 29NMAr 29NMAr 29NMAr 29NMAr 292,4,6,10pentamethyltridecyltetralin1-ethyl4-2,6,10trimethylpentaadecylindane2,6,10-trimethyldodecyloctahydro-phenanthrene2,6-dimethylnonyldodecahydrochyrsene2,6-dimethyloctyl-tetrahydrobenzo(a)pyreneIsoheptyl-hexadecahydropiceneNMAr 30 #15---------1-methyl5-NMAr 30 2,6,10trimethyhexadecyltetralin2,4,6,10pentamethyltetradecyltNMAr 30 etralin1-ethyl4-NMAr 30 2,6,10trimethylhexadecylindane2,6,10-trimethyltridecyloctahydro-phenanthreneNMAr 302,6-dimethyldecyldodecahydrochyrseneNMAr 302,6-dimethylnonyl-tetrahydrobenzo(a)pyreneNMAr 30NMAr 30 Isooctyl-hexadecahydro-picene1-methyl5-2,6,10,14tetramethyltridecyltetrNMAr 31 alin2,4,6,10pentamethylpentadecyltNMAr 31 etralin1-ethyl4-2,6,10,14tetramethylhexadecyliNMAr 31 ndane2-methyloctylhexadecahydropiceneNMAr 312,4,6,10pentamethylhexadecyltNMAr 32 etralin2,6-dimethyoctylhexadecahydro-piceneNMAr 32c1ccc2CC(CC(C)CC(C)CC(C)CC(C)CC(C)CCCC)CCc2c1c1cc(CC(C)CCCC(C)CCCC(C)CCCCC)c2CC(CC)Cc2c1c1ccc2CCC3CC(CC(C)CCCC(C)CCCC(C)CC)CCC3c2c1c1ccc2CCC3C4CCC(CC(C)CCCC(C)CCC)CC4CCC3c2c1c(c(c(cc1)cc(CC(C)CCCC(C)C)c2)c2cc3)(c3cc(c4CCC5)C5)c14C12=CC=C4C(CCC5C4CCCC5)=C1CCC3C2CCC(CC(C)CCCC)C3C12=CC=CC=C1CC3C(CCC4C3CCC5C4CC(CCC7C6CCCC7)C6C5)C2c1c(CC(C)CCCC(C)CCCC(C)CCCCCC)cc2CC(C)CCc2c1c1ccc2CC(CC(C)CC(C)CC(C)CC(C)CC(C)CC(C)CC)CCc2c1c1cc(CC(C)CCCC(C)CCCC(C)CCCCCC)c2CC(CC)Cc2c1c1ccc2CCC3CC(CC(C)CCCC(C)CCCC(C)CCC)CCC3c2c1c1ccc2CCC3C4CCC(CC(C)CCCC(C)CCCC)CC4CCC3c2c1c(c(c(cc1)cc(CC(C)CCCC(C)CC)c2)c2cc3)(c3cc(c4CCC5)C5)c14C12=CC=C4C(CCC5C4CCCC5)=C1CCC3C2CCC(CC(C)CCCCC)C3c1c(CC(C)CCCC(C)CCCC(C)CCCC(C)CC)cc2CC(C)CCc2c1c1ccc2CC(CC(C)CC(C)CC(C)CC(C)CC(C)CC(C)CCC)CCc2c1c1cc(CC(C)CCCC(C)CCCC(C)CCCC(C)CC)c2CC(CC)Cc2c1c12ccc3c(c2CCC5C1CCC(CC(C)CCCCCC)C5)CCC4C3CCCC4c1ccc2CC(CC(C)CC(C)CC(C)CC(C)CC(C)CC(C)CCCC)CCc2c1c12ccc3c(c2CCC5C1CCC(CC(C)CCCC(C)CC)C5)CCC4C3CCCC4DAr 10 Naphthalene c1ccc2ccccc2c1DAr 10 1,2-Dimethylnaphthalene Cc1ccc2ccccc2c1CDAr 11 2-Methylnaphthalene Cc1ccc2ccccc2c1DAr 11 1-Methylnaphthalene c1ccc2ccccc2c1CDAr 12 Biphenyl c1ccccc1c2ccccc2DAr 12 2,6-Dimethylnaphthalene Cc1ccc2cc(C)ccc2c1DAr 12 2,7-Dimethylnaphthalene Cc1ccc2ccc(C)cc2c1DAr 12 2-Ethylnaphthalene CCc1ccc2ccccc2c1DAr 12 2,3-Dimethylnaphthalene Cc1c(C)cc2ccccc2c1DAr 12 1-Ethylnaphthalene c1ccc2ccccc2c1CCDAr 12 2,4-Dimethylnaphthalene Cc1cc(C)c2ccccc2c195


DAr 12 2,5-Dimethylnaphthalene Cc1ccc2c(C)cccc2c1DAr 12 2,8-Dimethylnaphthalene Cc1ccc2cccc(C)c2c1DAr 12 2-iso-Propylnaphthalene CC(C)c1ccc2ccccc2c1DAr 13 4-Methylbiphenyl c1ccccc1c2ccc(C)cc2DAr 13 2-Propylnaphthalene CCCc1ccc2ccccc2c1DAr 13 1-Propylnaphthalene c1ccc2ccccc2c1CCCDAr 13 2,3,6-Trimethylnaphthalene Cc1c(C)cc2cc(C)ccc2c1DAr 13 2,3,7-Trimethylnaphthalene Cc1c(C)cc2ccc(C)cc2c1DAr 13 4-Ethylbiphenyl c1ccccc1c2ccc(CC)cc2DAr 13 1,2,4-Trimethylnaphthalene Cc1cc(C)c2ccccc2c1CDAr 13 1,2,5-Trimethylnaphthalene Cc1ccc2c(C)cccc2c1CDAr 13 2,3,4-Trimethylnaphthalene Cc1c(C)c(C)c2ccccc2c1DAr 13 2,3,5-Trimethylnaphthalene Cc1c(C)cc2c(C)cccc2c1DAr 13 2,3,8-Trimethylnaphthalene Cc1c(C)cc2cccc(C)c2c1DAr 13 2,4,5-Trimethylnaphthalene Cc1cc(C)c2c(C)cccc2c1DAr 13 2,4,6-Trimethylnaphthalene Cc1cc(C)c2cc(C)ccc2c1DAr 13 2,4,7-Trimethylnaphthalene Cc1cc(C)c2ccc(C)cc2c1DAr 13 2,4,8-Trimethylnaphthalene Cc1cc(C)c2cccc(C)c2c1DAr 13 2,3-Dimethylbiphenyl Cc1c(C)cccc1c2ccccc2DAr 14 1,2,3-Trimethylnaphthalene Cc1c(C)cc2ccccc2c1CDAr 14 2,4-Dimethylbiphenyl Cc1cc(C)ccc1c2ccccc2DAr 14 2-iso-Butylnaphthalene CC(C)Cc1ccc2ccccc2c1DAr 14 2-Butylnaphthalene CCCCc1ccc2ccccc2c1DAr 14 1-Butylnaphthalene c1ccc2ccccc2c1CCCCDAr 14 4-Propylbiphenyl c1ccccc1c2ccc(CCC)cc2DAr 14 2,3,4,5-Tetramethylnaphthalene Cc1c(C)c(C)c2c(C)cccc2c1DAr 14 2,3,4,6-Tetramethylnaphthalene Cc1c(C)c(C)c2cc(C)ccc2c1DAr 14 2,3,4,7-Tetramethylnaphthalene Cc1c(C)c(C)c2ccc(C)cc2c1DAr 14 2,3,4,8-Tetramethylnaphthalene Cc1c(C)c(C)c2cccc(C)c2c1DAr 14 2,3,4-Trimethylbiphenyl Cc1c(C)c(C)ccc1c2ccccc2DAr 15 1,2,3,4-Tetramethylnaphthalene Cc1c(C)c(C)c2ccccc2c1CDAr 15 2,4,6-Trimethylbiphenyl Cc1cc(C)cc(C)c1c2ccccc2DAr 15 4-iso-Propylbiphenyl c1ccccc1c2ccc(C(C)C)cc2DAr 15 2-iso-Pentylnaphthalene CC(C)CCc1ccc2ccccc2c1DAr 15 2-(2-Methylbutyl)naphthalene CCC(C)Cc1ccc2ccccc2c1DAr 15 2-Pentylnaphthalene CCCCCc1ccc2ccccc2c1DAr 15 1-Pentylnaphthalene c1ccc2ccccc2c1CCCCCDAr 15 4-iso-Butylbiphenyl c1ccccc1c2ccc(CC(C)C)cc2DAr 151,2,3,4,6-PentamethylnaphthaleneCc1c(C)c(C)c2cc(C)ccc2c1CDAr 151,2,3,4,7-PentamethylnaphthaleneCc1c(C)c(C)c2ccc(C)cc2c1CDAr 151,2,3,4,8-PentamethylnaphthaleneCc1c(C)c(C)c2cccc(C)c2c1CDAr 15 2,3,4,5-Trimethylbiphenyl Cc1c(C)c(C)c(C)cc1c2ccccc2DAr 16 4-Butylbiphenyl c1ccccc1c2ccc(CCCC)cc2DAr 161,2,3,4,5-PentamethylnaphthaleneCc1c(C)c(C)c2c(C)cccc2c1CDAr 16 2-iso-Hexylnaphthalene CC(C)CCCc1ccc2ccccc2c1DAr 16 2-(2-Methylpentyl)naphthalene CCCC(C)Cc1ccc2ccccc2c1DAr 16 2-(3-Methylpentyl)naphthalene CCC(C)CCc1ccc2ccccc2c196


DAr 16 2-Hexylnaphthalene CCCCCCc1ccc2ccccc2c1DAr 16 1-Hexylnaphthalene c1ccc2ccccc2c1CCCCCCDAr 16 4-iso-Pentylbiphenyl c1ccccc1c2ccc(CCC(C)C)cc2DAr 161,2,3,4,5,7-HexamethylnaphthaleneCc1c(C)c(C)c2c(C)cc(C)cc2c1CDAr 161,2,3,4,5,8-HexamethylnaphthaleneCc1c(C)c(C)c2c(C)ccc(C)c2c1CDAr 16 2-iso-Heptylnaphthalene CC(C)CCCCc1ccc2ccccc2c1DAr 17 4-Pentylbiphenyl c1ccccc1c2ccc(CCCCC)cc2DAr 171,2,3,4,5,6-HexamethylnaphthaleneCc1c(C)c(C)c2c(C)c(C)ccc2c1CDAr 17 2-(2-Methylhexyl)naphthalene CCCCC(C)Cc1ccc2ccccc2c1DAr 17 2-(3-Methylhexyl)naphthalene CCCC(C)CCc1ccc2ccccc2c1DAr 17 2-(4-Methylhexyl)naphthalene CCC(C)CCCc1ccc2ccccc2c1DAr 17 2-Heptylnaphthalene CCCCCCCc1ccc2ccccc2c1DAr 17 1-Heptylnaphthalene c1ccc2ccccc2c1CCCCCCCDAr 17 4-iso-Hexylbiphenyl c1ccccc1c2ccc(CCCC(C)C)cc2DAr 171,2,3,4,5,6,8-HeptylmethylnaphthaleneCc1c(C)c(C)c2c(C)c(C)cc(C)c2c1CDAr 17 2-iso-Octylnaphthalene CC(C)CCCCCc1ccc2ccccc2c1DAr 18 4-Hexylbiphenyl c1ccccc1c2ccc(CCCCCC)cc2DAr 181,2,3,4,5,6,7-HeptylmethylnaphthaleneCc1c(C)c(C)c2c(C)c(C)c(C)cc2c1CDAr 18 2-(2-Methylheptyl)naphthalene CCCCCC(C)Cc1ccc2ccccc2c1DAr 18 2-(3-Methylheptyl)naphthalene CCCCC(C)CCc1ccc2ccccc2c1DAr 18 2-(4-Methylheptyl)naphthalene CCCC(C)CCCc1ccc2ccccc2c1DAr 18 2-Octylnaphthalene CCCCCCCCc1ccc2ccccc2c1DAr 18 1-Octylnaphthalene c1ccc2ccccc2c1CCCCCCCCDAr 18 4-iso-Heptylbiphenyl c1ccccc1c2ccc(CCCCC(C)C)cc2DAr 18 2-iso-Nonylnaphthalene CC(C)CCCCCCc1ccc2ccccc2c1DAr 182,3Dimethy-5(4methylpentyl)naphthalene Cc2cc1c(CCCC(C)C)cccc1cc2CDAr 19 4-Heptylbiphenyl c1ccccc1c2ccc(CCCCCCC)cc2DAr 19 Octylmethylnaphthalene Cc1c(C)c(C)c2c(C)c(C)c(C)c(C)c2c1CDAr 19 2-(2-Methyloctyl)naphthalene CCCCCCC(C)Cc1ccc2ccccc2c1DAr 19 2-(3-Methyloctyl)naphthalene CCCCCC(C)CCc1ccc2ccccc2c1DAr 19 2-(4-Methyloctyl)naphthalene CCCCC(C)CCCc1ccc2ccccc2c1DAr 19 2-Nonylnaphthalene CCCCCCCCCc1ccc2ccccc2c1DAr 19 1-Nonylnaphthalene c1ccc2ccccc2c1CCCCCCCCCDAr 19 4-iso-Octylbiphenyl c1ccccc1c2ccc(CCCCCC(C)C)cc2DAr 20 4-octylbiphenyl c1ccccc1c2ccc(CCCCCCCC)cc2DAr 20 2-iso-Decylnaphthalene CC(C)CCCCCCCc1ccc2ccccc2c1DAr 20 2-(2-Methylnonyl)naphthalene CCCCCCCC(C)Cc1ccc2ccccc2c1DAr 20 2-Decylnaphthalene CCCCCCCCCCc1ccc2ccccc2c1DAr 20 1-Decylnaphthalene c1ccc2ccccc2c1CCCCCCCCCCDAr 20 4-Nonylbiphenyl c1ccccc1c2ccc(CCCCCCC(C)C)cc2DAr 21 4-Nonylbiphenyl c1ccccc1c2ccc(CCCCCCCCC)cc2DAr 21 2-(3-Methylnonyl)naphthalene CCCCCCCCC(C)CCc1ccc2ccccc2c1DAr 22 2-(4-Methylnonyl)naphthalene CCCCCCCC(C)CCCc1ccc2ccccc2c1DAr 22 4-2,6dimethyloctylbiphenyl c1ccccc1c2ccc(CC(C)CCCC(C)CC)cc2DAr 22 4-2,6dimethylnonylbiphenyl c1ccccc1c2ccc(CC(C)CCCC(C)CCC)cc2DAr 22 2-(4,8-Dimethylundecyl)- CCCC(C)CCCC(C)CCCc1ccc2ccccc2c197


naphthaleneDAr 23 4-2,6dimethyldecylbiphenyl c1ccccc1c2ccc(CC(C)CCCC(C)CCCC)cc2DAr 232-(4,8-Dimethyldodecyl)-naphthaleneCCCCC(C)CCCC(C)CCCc1ccc2ccccc2c1DAr 24 4-2,6dimethylundecylbiphenyl c1ccccc1c2ccc(CC(C)CCCC(C)CCCCC)cc2DAr 242-(4,8,14-Trimethyldodecyl)-naphthaleneC(C)CCCC(C)CCCC(C)CCCc1ccc2ccccc2c1DAr 254-2,6,10trimethylundecylbiphenyl c1ccccc1c2ccc(CC(C)CCCC(C)CCCC(C)C)cc2DAr 252-(4,8,14-Trimethyltridecyl)naphthalene CC(C)CCCC(C)CCCC(C)CCCc1ccc2ccccc2c1DAr 264-2,6,10trimethyldodecylbiphenyl c1ccccc1c2ccc(CC(C)CCCC(C)CCCC(C)CC)cc2DAr 262-(4,8,14-Trimethyltetradecyl)naphthaleneCCC(C)CCCC(C)CCCC(C)CCCc1ccc2ccccc2c14-c1ccccc1c2ccc(CC(C)CCCC(C)CCCC(C)CCC)ccDAr 27 2,6,10trimethyltridecylbiphenyl 22-(4,8,14-Trimethylpentadecyl)DAr 27 naphthaleneCCCC(C)CCCC(C)CCCC(C)CCCc1ccc2ccccc2c14-2,6,10trimethyltetradecylbiphen c1ccccc1c2ccc(CC(C)CCCC(C)CCCC(C)CCCC)cDAr 28 ylc2DAr 28DAr 29DAr 29DAr 30DAr 30DAr 33CCCCC(C)CCCC(C)CCCC(C)CCCc1ccc2ccccc2c1c1ccccc1c2ccc(CC(C)CCCC(C)CCCC(C)CCCCC)cc2C(C)CCCC(C)CCCC(C)CCCC(C)CCCc1ccc2ccccc2c1CCC(C)CCCC(C)CCCc1ccc2ccccc2c1Cc2cc1ccc(CCCC)cc1cc2CC(C)CCCC(C)CCCC(C)CCCC(C)CCCCCCc1ccc2ccccc2c12-(4,8,14-Trimethylhexadecyl)naphthalene4-(2,6,10trimethylpentadecyl)biphenyl2-(4,8,14,18-Tetramethylhexadecyl)naphthalene2-(4,8-Dimethyldecyl)naphthalene6-n-Butyl-2,3-dimethylnaphthalene2-(4,8,14,18-Tetramethylnonadecyl)naphthaleneNDAr 12 Acenaphthene c12cccc(CC3)c1c3ccc2NDAr 13 Fluorene c1ccc2Cc3ccccc3c2c1NDAr 13 Methylacenaphthene c12cccc(CC3)c1c3c(C)cc2NDAr 14 Methylfluorene c1ccc2Cc3ccc(C)cc3c2c1NDAr 14 Tetrahydro-phenanthrene c1ccc2ccc3CCCCc3c2c1NDAr 14 Ethylacenaphthene c12cccc(CC3)c1c3c(CC)cc2NDAr 14 tetrahydro-phenanthrene c1ccc2ccc3CCCCc3c2c1NDAr 15 Ethylfluorene c1ccc2Cc3ccc(CC)cc3c2c1NDAr 15Methyl-tetrahydrophenanthrenec1ccc2ccc3CC(C)CCc3c2c1NDAr 15 iso-Propylacenaphthene c12cccc(CC3)c1c3c(C(C)C)cc2NDAr 15 n-Propylacenaphthene c12cccc(CC3)c1c3c(CCC)cc2NDAr 15methyl-tetrahydrophenanthrenec1ccc2ccc3CC(C)CCc3c2c1NDAr 16 iso-Propylfluorene c1ccc2Cc3ccc(C(C)C)cc3c2c1NDAr 16 n-Propylfluorene c1ccc2Cc3ccc(CCC)cc3c2c1NDAr 16 Ethyl-tetrahydro-phenanthrene c1ccc2ccc3CC(CC)CCc3c2c1NDAr 16 iso-Butylacenaphthene c12cccc(CC3)c1c3c(CC(C)C)cc298


NDAr 16 n-Butylacenaphthene c12cccc(CC3)c1c3c(CCCC)cc2NDAr 16 1,2,3,6,7,8hexahydropyrene c1c(CC3)c2c(C3)ccc(CC4)c2c(C4)c1NDAr 16ethylheptyl-tetrahydrophenanthrenec1ccc2ccc3CC(CC)CCc3c2c1NDAr 17 Benzo(a)fluorene C3c1ccccc1c4ccc2ccccc2c34NDAr 17 iso-Butylfluorene c1ccc2Cc3ccc(CC(C)C)cc3c2c1NDAr 17 n-Butylfluorene c1ccc2Cc3ccc(CCCC)cc3c2c1NDAr 17iso-Propyl-tetrahydrophenanthrenec1ccc2ccc3CC(C(C)C)CCc3c2c1NDAr 17n-Propyl-tetrahydrophenanthrenec1ccc2ccc3CC(CCC)CCc3c2c1NDAr 17 iso-Pentylacenaphthene c12cccc(CC3)c1c3c(CCC(C)C)cc2NDAr 17 n-Pentylacenaphthene c12cccc(CC3)c1c3c(CCCCC)cc2NDAr 17Methyl-1,2,3,6,7,8-hexahydropyrenec1c(CC3(C))c2c(C3)ccc(CC4)c2c(C4)c1NDAr 17 propyl-tetrahydro-phenanthrene c1ccc2ccc3CC(CCC)CCc3c2c1NDAr 17isopropyl-tetrahydrophenanthrenec1ccc2ccc3CC(C(C)C)CCc3c2c1NDAr 18 Methyl-benzo(b)fluorene Cc1ccc2c3cc4ccccc4cc3Cc2c1NDAr 18 Methyl-benzo(a)fluorene C3c1cc(C)ccc1c4ccc2ccccc2c34NDAr 18 Octahydro-chyrsene c1ccc2ccc3C4CCCCC4CCc3c2c1NDAr 18 iso-Pentylfluorene c1ccc2Cc3ccc(CCC(C)C)cc3c2c1NDAr 18 n-Pentylfluorene c1ccc2Cc3ccc(CCCCC)cc3c2c1NDAr 18 iso-Hexylacenaphthylene c12cccc(C=C3)c1c3c(CCCC(C)C)cc2NDAr 18iso-Butyl-tetrahydrophenanthrenec1ccc2ccc3CC(CC(C)C)CCc3c2c1NDAr 18n-Butyl-tetrahydrophenanthrenec1ccc2ccc3CC(CCCC)CCc3c2c1NDAr 18 iso-Hexylacenaphthene c12cccc(CC3)c1c3c(CCCC(C)C)cc2NDAr 18 n-Hexylacenaphthene c12cccc(CC3)c1c3c(CCCCCC)cc2NDAr 18 hexahydroterphenyl C(c(cccc1)c1)(CC(c3ccccc3)CC2)C2NDAr 18Ethyl-1,2,3,6,7,8-hexahydropyrenec1c(CC3(CC))c2c(C3)ccc(CC4)c2c(C4)c1NDAr 18 butyl-tetrahydro-phenanthrene c1ccc2ccc3CC(CCCC)CCc3c2c1NDAr 18isobutyl-tetrahydrophenanthrenec1ccc2ccc3CC(C(C)CC)CCc3c2c1NDAr 19 Methyloctahydro-chyrsene c1ccc2ccc3C4CCC(C)CC4CCc3c2c1NDAr 19 iso-Hexylfluorene c1ccc2Cc3ccc(CCCC(C)C)cc3c2c1NDAr 19 n-Hexylfluorene c1ccc2Cc3ccc(CCCCCC)cc3c2c1NDAr 19iso-Pentyl-tetrahydrophenanthrenec1ccc2ccc3CC(CCC(C)C)CCc3c2c1NDAr 19n-Pentyl-tetrahydrophenanthrenec1ccc2ccc3CC(CCCCC)CCc3c2c1NDAr 19 iso-Heptylacenaphthene c12cccc(CC3)c1c3c(CCCCC(C)C)cc2NDAr 19 n-Heptylacenaphthene c12cccc(CC3)c1c3c(CCCCCCC)cc2NDAr 19 hexahydromethylterphenyl C(c(cc(C)cc1)c1)(CC(c3ccccc3)CC2)C2NDAr 19Propyl-1,2,3,6,7,8-hexahydropyrenec1c(CC3(CCC))c2c(C3)ccc(CC4)c2c(C4)c1NDAr 19isopentyl-tetrahydrophenanthrenec1ccc2ccc3CC(CC(C)CC)CCc3c2c1NDAr 20 Ethyl-octahydro-chyrsene c1ccc2ccc3C4CCC(CC)CC4CCc3c2c1NDAr 20 iso-Heptylfluorene c1ccc2Cc3ccc(CCCCC(C)C)cc3c2c1NDAr 20 n-Heptylfluorene c1ccc2Cc3ccc(CCCCCCC)cc3c2c199


NDAr 20iso-Hexyltetrahydrophenanthrenec1ccc2ccc3CC(CCCC(C)C)CCc3c2c1NDAr 20n-Hexyltetrahydrophenanthrenec1ccc2ccc3CC(CCCCCC)CCc3c2c1NDAr 20 hexahydroethylterphenyl C(c(cc(CC)cc1)c1)(CC(c3ccccc3)CC2)C2NDAr 20Isobutyl-1,2,3,6,7,8-hexahydropyrenec1c(CC3(CC(C)C))c2c(C3)ccc(CC4)c2c(C4)c1NDAr 21 n-Butyl-benzo(b)fluorene CCCCc1ccc2c3cc4ccccc4cc3Cc2c1NDAr 21 iso-Propyl-octahydrochyrsene c1ccc2ccc3C4CCC(C(C)C)CC4CCc3c2c1NDAr 21 n-Propyloctahydro-chyrsene c1ccc2ccc3C4CCC(CCC)CC4CCc3c2c1NDAr 21 iso-Octylfluorene c1ccc2Cc3ccc(CCCCCC(C)C)cc3c2c1NDAr 21 n-Octylfluorene c1ccc2Cc3ccc(CCCCCCCC)cc3c2c1NDAr 21isohexyl-tetrahydrophenanthrenec1ccc2ccc3CC(CC(C)CCCC)CCc3c2c1NDAr 21 hexahydropropylterphenyl C(c(cc(CCC)cc1)c1)(CC(c3ccccc3)CC2)C2NDAr 21Isopentyl-1,2,3,6,7,8-hexahydropyrenec1c(CC3(CC(C)CC))c2c(C3)ccc(CC4)c2c(C4)c1NDAr 22 n-Hexylfluoranthene c24c(cc(CCCCCC)cc4)c1cccc3c1c2ccc3NDAr 22 iso-Butyloctahydro-chyrsene c1ccc2ccc3C4CCC(CC(C)C)CC4CCc3c2c1NDAr 22 n-Butyloctahydro-chyrsene c1ccc2ccc3C4CCC(CCCC)CC4CCc3c2c1NDAr 22 Dodecahydro-PiceneC1(C=CC3=C2C=CC4=C3CCC5C4CCCC5)=C2CCCC1NDAr 22isoheptyl-tetrahydrophenanthrenec1ccc2ccc3CC(CC(C)CCCCC)CCc3c2c1NDAr 22 hexahydroisobutylterphenyl C(c(cc(CC(C)C)cc1)c1)(CC(c3ccccc3)CC2)C2NDAr 22Isohexyl-1,2,3,6,7,8-hexahydropyrenec1c(CC3(CC(C)CCC))c2c(C3)ccc(CC4)c2c(C4)c1NDAr 232,6-dimethylheptyl-tetrahydrophenanthrenec1ccc2ccc3CC(CC(C)CCCC(C)C)CCc3c2c1NDAr 23 hexahydroisopentylterphenyl C(c(cc(CC(C)CC)cc1)c1)(CC(c3ccccc3)CC2)C2NDAr 23 isopentyloctahydro-chyrsene c1ccc2ccc3C4CCC(CC(C)CC)CC4CCc3c2c1Isoheptyl-1,2,3,6,7,8-c1c(CC3(CC(C)CCCC))c2c(C3)ccc(CC4)c2c(C4)NDAr 23 hexahydropyrenec1NDAr 23 Methyldodecahydro-PiceneC1(C=CC3=C2C=CC4=C3CCC5C4CCCC5)=C2CC(C)CC1NDAr 242,6-dimethyloctyl-tetrahydrophenanthrenec1ccc2ccc3CC(CC(C)CCCC(C)CC)CCc3c2c1NDAr 24 hexahydroisohexylterphenyl C(c(cc(CC(C)CCC)cc1)c1)(CC(c3ccccc3)CC2)C2NDAr 24 isohexyloctahydro-chyrsene c1ccc2ccc3C4CCC(CC(C)CCC)CC4CCc3c2c1Isoctyl-1,2,3,6,7,8-c1c(CC3(CC(C)CCCCC))c2c(C3)ccc(CC4)c2c(C4NDAr 24 hexahydropyrene)c1C1(C=CC3=C2C=CC4=C3CCC5C4CCCC5)=C2CC(CC)CC1NDAr 24 Ethyldodecahydro-Picene2,6-dimethylnonyl-tetrahydrophenanthreneNDAr 25c1ccc2ccc3CC(CC(C)CCCC(C)CCC)CCc3c2c1NDAr 25 hexahydroterphenylC(c(cc(CC(C)CCCC)cc1)c1)(CC(c3ccccc3)CC2)C2NDAr 25 isoheptyloctahydro-chyrsene c1ccc2ccc3C4CCC(CC(C)CCCC)CC4CCc3c2c1Dimethylheptyl-1,2,3,6,7,8- c1c(CC3(CC(C)CCCC(C)C))c2c(C3)ccc(CC4)c2cNDAr 25 hexahydropyrene(C4)c1NDAr 25 Propyldodecahydro-Picene2,6-dimethyldecyl-tetrahydrophenanthreneNDAr 26NDAr 26 isooctyloctahydro-chyrseneC1(C=CC3=C2C=CC4=C3CCC5C4CCCC5)=C2CC(CCC)CC1c1ccc2ccc3CC(CC(C)CCCC(C)CCCC)CCc3c2c1c1ccc2ccc3C4CCC(CC(C)CCCCC)CC4CCc3c2c1100


NDAr 26Dimethyloctyl-1,2,3,6,7,8-hexahydropyreneNDAr 26 Isobutyldodecahydro-Picene2,6-dimethylundecyl-tetrahydrophenanthreneNDAr 272,6-dimethylheptyloctahydrochryseneNDAr 27Dimethylnonyl-1,2,3,6,7,8-NDAr 27 hexahydropyreneNDAr 27 Isopentyldodecahydro-Picene2,6,10-trimethylundecyltetrahydro-phenanthreneNDAr 282,6-dimethyloctyloctahydrochryseneNDAr 28Dimethyldecyl-1,2,3,6,7,8-NDAr 28 hexahydropyreneNDAr 28 Isohexyyldodecahydro-Picene2,6,10-trimethyldodecyltetrahydro-phenanthreneNDAr 292,6-dimethylnonyloctahydrochrseneNDAr 29Dyimethylundecyl-1,2,3,6,7,8-NDAr 29 hexahydropyreneNDAr 29 isoheptyldodecahydro-Picene2,6,10-trimethyltridecyltetrahydro-phenanthreneNDAr 302,6-dimethyldecyloctahydrochryseneNDAr 30Trimethylundecyl-1,2,3,6,7,8-NDAr 30 hexahydropyreneNDAr 30 isooctyldodecahydro-Picenec1c(CC3(CC(C)CCCC(C)CC))c2c(C3)ccc(CC4)c2c(C4)c1C1(C=CC3=C2C=CC4=C3CCC5C4CCCC5)=C2CC(CC(C)C)CC1c1ccc2ccc3CC(CC(C)CCCC(C)CCCCC)CCc3c2c1c1ccc2ccc3C4CCC(CC(C)CCCC(C)C)CC4CCc3c2c1c1c(CC3(CC(C)CCCC(C)CCC))c2c(C3)ccc(CC4)c2c(C4)c1C1(C=CC3=C2C=CC4=C3CCC5C4CCCC5)=C2CC(CC(C)CC)CC1c1ccc2ccc3CC(CC(C)CCCC(C)CCCC(C)C)CCc3c2c1c1ccc2ccc3C4CCC(CC(C)CCCC(C)CC)CC4CCc3c2c1c1c(CC3(CC(C)CCCC(C)CCCC))c2c(C3)ccc(CC4)c2c(C4)c1C1(C=CC3=C2C=CC4=C3CCC5C4CCCC5)=C2CC(CC(C)CCC)CC1c1ccc2ccc3CC(CC(C)CCCC(C)CCCC(C)CC)CCc3c2c1c1ccc2ccc3C4CCC(CC(C)CCCC(C)CCC)CC4CCc3c2c1c1c(CC3(CC(C)CCCC(C)CCCCC))c2c(C3)ccc(CC4)c2c(C4)c1C1(C=CC3=C2C=CC4=C3CCC5C4CCCC5)=C2CC(CC(C)CCCC)CC1c1ccc2ccc3CC(CC(C)CCCC(C)CCCC(C)CCC)CCc3c2c1c1ccc2ccc3C4CCC(CC(C)CCCC(C)CCCC)CC4CCc3c2c1c1c(CC3(CC(C)CCCC(C)CCCC(C)C))c2c(C3)ccc(CC4)c2c(C4)c1C1(C=CC3=C2C=CC4=C3CCC5C4CCCC5)=C2CC(CC(C)CCCCC)CC1PAr 12 Acenaphthylene c12cccc(C=C3)c1c3ccc2PAr 13 Methylacenaphthylene c12cccc(C=C3)c1c3c(C)cc2PAr 14 Anthracene c1ccc2cc3ccccc3cc2c1PAr 14 Phenanthrene c1ccc2ccc3ccccc3c2c1PAr 14 Ethylacenaphthylene c12cccc(C=C3)c1c3c(CC)cc2PAr 15 2-Methylphenanthrene c1cc2c3ccc(C)cc3ccc2cc1PAr 15 2-Methylanthracene Cc1ccc2cc3ccccc3cc2c1PAr 15 9-Methylanthracene CC1=C(C=CC=C3)C3=CC2=C1C=CC=C2PAr 15 iso-Propylacenaphthylene c12cccc(C=C3)c1c3c(C(C)C)cc2PAr 15 n-Propylacenaphthylene c12cccc(C=C3)c1c3c(CCC)cc2PAr 16 Pyrene c1(ccc3ccc4)cccc2ccc4c3c12PAr 16 1-Phenylnaphthalene c1ccc2cccc(c3ccccc3)c2c1PAr 16 Fluoranthene c24c(cccc4)c1cccc3c1c2ccc3PAr 16 2-Ethylphenanthrene c1cc2c3ccc(CC)cc3ccc2cc1PAr 16 1,2-Dimethylphenanthrene c1cc2c3ccc(C)c(C)c3ccc2cc1PAr 16 2,3-Dimethylphenanthrene c1cc2c3cc(C)c(C)cc3ccc2cc1PAr 16 2,4-Dimethylphenanthrene c1cc2c3c(C)cc(C)cc3ccc2cc1PAr 16 2,3-Dimethylanthracene Cc1c(C)cc2cc3ccccc3cc2c1101


PAr 16 2,4-Dimethylanthracene Cc1cc(C)c2cc3ccccc3cc2c1PAr 16 2,5-Dimethylanthracene Cc1ccc2c(C)c3ccccc3cc2c1PAr 16 2,6-Dimethylanthracene Cc1ccc2cc3c(C)cccc3cc2c1PAr 16 2,7-Dimethylanthracene Cc1ccc2cc3cc(C)ccc3cc2c1PAr 16 2-Ethylanthracene CCc1ccc2cc3ccccc3cc2c1PAr 16 iso-Butylacenaphthylene c12cccc(C=C3)c1c3c(CC(C)C)cc2PAr 16 n-Butylacenaphthylene c12cccc(C=C3)c1c3c(CCCC)cc2PAr 17 1-Phenyl-5-methylnaphthalene c1cc(C)c2cccc(c3ccccc3)c2c1PAr 17 Methylpyrene c1(ccc3cc(C)c4)cccc2ccc4c3c12PAr 17 Methylfluoranthene c24c(cc(C)cc4)c1cccc3c1c2ccc3PAr 17 2,3-Benzofluorene c1ccc2c3cc4ccccc4cc3Cc2c1PAr 17 2-iso-Propylphenanthrene c1cc2c3ccc(C(C)C)cc3ccc2cc1PAr 17 2-iso-Propylanthracene CC(C)c1ccc2cc3ccccc3cc2c1PAr 17 2-Propylphenanthrene c1cc2c3ccc(CCC)cc3ccc2cc1PAr 17 2-Propylanthracene CCCc1ccc2cc3ccccc3cc2c1PAr 17 2,3,4-Trimethylanthracene Cc1c(C)c(C)c2cc3ccccc3cc2c1PAr 17 2,3,5-Trimethylanthracene Cc1c(C)cc2c(C)c3ccccc3cc2c1PAr 17 2,3,6-Trimethylanthracene Cc1c(C)cc2cc3c(C)cccc3cc2c1PAr 17 iso-Pentylacenaphthylene c12cccc(C=C3)c1c3c(CCC(C)C)cc2PAr 17 n-Pentylacenaphthylene c12cccc(C=C3)c1c3c(CCCCC)cc2PAr 18 Triphenylene c1ccc2c3ccccc3c4ccccc4c2c1PAr 18 Benzo(ghi)fluoranthene c1ccc3c4cccc5c4c2c3c1ccc2cc5PAr 18 Cyclopenta(cd)pyrene C1=Cc2cc4cccc5ccc3ccc1c2c3c45PAr 18 Benz(a)anthracene c12c(cccc3)c3ccc1cc4c(cccc4)c2PAr 18 Chrysene c1ccc2ccc3c4ccccc4ccc3c2c1PAr 18 1-Phenyl-5-ethylnaphthalene c1cc(CC)c2cccc(c3ccccc3)c2c1PAr 18 Ethylpyrene c1(ccc3cc(CC)c4)cccc2ccc4c3c12PAr 18 Ethylfluoranthene c24c(cc(CC)cc4)c1cccc3c1c2ccc3PAr 18 2-iso-Butylphenanthrene c1cc2c3ccc(CC(C)C)cc3ccc2cc1PAr 18 2-iso-Butylanthracene CC(C)Cc1ccc2cc3ccccc3cc2c1PAr 18 Tetrahydro-chyrsene c1ccc2ccc3c4CCCCc4ccc3c2c1PAr 181-Methyl-7-isopropylphenanthrenec(ccc1c(ccc2C(C)C)c3c2)c(C)c1cc3PAr 18 2-Butylphenanthrene c1cc2c3ccc(CCCC)cc3ccc2cc1PAr 18 2-Butylanthracene CCCCc1ccc2cc3ccccc3cc2c1PAr 18 1,2-Diethylphenanthrene c1cc2c3ccc(CC)c(CC)c3ccc2cc1PAr 18 2,3-Diethylphenanthrene c1cc2c3cc(CC)c(CC)cc3ccc2cc1PAr 18 2,4-Diethylphenanthrene c1cc2c3c(CC)cc(CC)cc3ccc2cc1PAr 18 2,3-Diethylanthracene CCc1c(CC)cc2cc3ccccc3cc2c1PAr 18 2,4-Diethylanthracene CCc1cc(CC)c2cc3ccccc3cc2c1PAr 18 2,5-Diethylanthracene CCc1ccc2c(CC)c3ccccc3cc2c1PAr 18 2,6-Diethylanthracene CCc1ccc2cc3c(CC)cccc3cc2c1PAr 18 2,7-Diethylanthracene CCc1ccc2cc3cc(CC)ccc3cc2c1PAr 18 1,2,3,4-Tetramethylanthracene Cc1c(C)c(C)c2cc3ccccc3cc2c1CPAr 18 1,2,3,5-Tetramethylanthracene Cc1c(C)cc2c(C)c3ccccc3cc2c1CPAr 18 n-Hexylacenaphthylene c12cccc(C=C3)c1c3c(CCCCCC)cc2PAr 19 2-Methylchrysene c4c(C)cc3ccc2c1ccccc1ccc2c3c4PAr 19 Methylbenz(a)anthracene c12c(cccc3)c3ccc1cc4c(cc(C)cc4)c2PAr 19 Methyltriphenylene Cc1ccc2c3ccccc3c4ccccc4c2c1PAr 19 Methylbenzo(ghi)fluoranthene c1c(C)cc3c4cccc5c4c2c3c1ccc2cc5PAr 19 Ethyl-benzo(b)fluorene CCc1ccc2c3cc4ccccc4cc3Cc2c1102


PAr 19 Ethylbenzo(a)fluorene C3c1cc(CC)ccc1c4ccc2ccccc2c34PAr 191-Phenyl-5-isopropylnaphthalenec1cc(C(C)C)c2cccc(c3ccccc3)c2c1PAr 19 iso-Propylpyrene c1(ccc3cc(C(C)C)c4)cccc2ccc4c3c12PAr 19 1-Phenyl-5-propylnaphthalene c1cc(CCC)c2cccc(c3ccccc3)c2c1PAr 19 n-Propylpyrene c1(ccc3cc(CCC)c4)cccc2ccc4c3c12PAr 19 n-Propylfluoranthene c24c(cc(CCC)cc4)c1cccc3c1c2ccc3PAr 19 Methyl-tetrahydro-chrysene c1ccc2ccc3c4CCC(C)Cc4ccc3c2c1PAr 19 2-(2-Methylbutyl)phenanthrene c1cc2c3ccc(CC(C)CC)cc3ccc2cc1PAr 19 2-iso-Pentylphenanthrene c1cc2c3ccc(CCC(C)C)cc3ccc2cc1PAr 19 2-iso-Pentylanthracene CC(C)CCc1ccc2cc3ccccc3cc2c1PAr 19 2-Pentylphenanthrene c1cc2c3ccc(CCCCC)cc3ccc2cc1PAr 19 2-Pentylanthracene CCCCCc1ccc2cc3ccccc3cc2c1PAr 19 iso-Heptylacenaphthylene c12cccc(C=C3)c1c3c(CCCCC(C)C)cc2PAr 19 n-Heptylacenaphthylene c12cccc(C=C3)c1c3c(CCCCCCC)cc2PAr 19 methyltetrahydro-chyrsene c1ccc2ccc3c4CCC(C)Cc4ccc3c2c1PAr 20 Tetrahydroperylene c12cccc4c1c(c3cccc5c3C4CCC5)ccc2PAr 20 Benzo(b)fluoranthene c12ccccc1cc3c4ccccc4c5c3c2ccc5PAr 20 1-Naphthyl-1-naphthalene c1ccc2ccccc2c1c3c4ccccc4ccc3PAr 20 2-Naphthyl-1-naphthalene c1ccc2ccccc2c1c3cc4ccccc4cc3PAr 20 Benzo(k)fluoranthene c2ccc1cc3c(cc1c2)c4cccc5cccc3c45PAr 20 Benzo(a)pyrene c(c(c(cc1)ccc2)c2cc3)(c3cc(c4ccc5)c5)c14PAr 20 Perylene c12cccc4c1c(c3cccc5c3c4ccc5)ccc2PAr 20 Benzo(e)pyrene c1ccc2c(c1)c4cccc5ccc3cccc2c3c45PAr 20 2-Ethylchrysene c4c(CC)cc3ccc2c1ccccc1ccc2c3c4PAr 20 Ethylbenz(a)anthracene c12c(cccc3)c3ccc1cc4c(cc(CC)cc4)c2PAr 20 Ethyltriphenylene CCc1ccc2c3ccccc3c4ccccc4c2c1PAr 20 Ethylbenzo(ghi)fluoranthene c1c(CC)cc3c4cccc5c4c2c3c1ccc2cc5PAr 20 n-Propyl2,3-benzofluorene CCCc1ccc2c3cc4ccccc4cc3Cc2c1PAr 20 n-Propylbenzo(a)fluorene C3c1cc(CCC)ccc1c4ccc2ccccc2c34PAr 201-Phenyl-5-isobutylnaphthalenec1cc(CC(C)C)c2cccc(c3ccccc3)c2c1PAr 20 iso-Butylpyrene c1(ccc3cc(CC(C)C)c4)cccc2ccc4c3c12PAr 20 1-Phenyl-5-butylnaphthalene c1cc(CCCC)c2cccc(c3ccccc3)c2c1PAr 20 n-Butylpyrene c1(ccc3cc(CCCC)c4)cccc2ccc4c3c12PAr 20 n-Butylfluoranthene c24c(cc(CCCC)cc4)c1cccc3c1c2ccc3PAr 20 Ethyl-tetrahydro-chyrsene c1ccc2ccc3c4CCC(CC)Cc4ccc3c2c1PAr 202-(2-Methylpentyl)phenanthrenec1cc2c3ccc(CC(C)CCC)cc3ccc2cc1PAr 20 2-iso-Hexylphenanthrene c1cc2c3ccc(CCCC(C)C)cc3ccc2cc1PAr 20 2-iso-Hexylanthracene CC(C)CCCc1ccc2cc3ccccc3cc2c1PAr 20 2-Hexylphenanthrene c1cc2c3ccc(CCCCCC)cc3ccc2cc1PAr 20 2-Hexylanthracene CCCCCCc1ccc2cc3ccccc3cc2c1PAr 20 1,2-Dipropylphenanthrene c1cc2c3ccc(CCC)c(CCC)c3ccc2cc1PAr 20 2,3-Dipropylphenanthrene c1cc2c3cc(CCC)c(CCC)cc3ccc2cc1PAr 20 2,4-Dipropylphenanthrene c1cc2c3c(CCC)cc(CCC)cc3ccc2cc1PAr 20 ethyltetrahydro-chyrsene c1ccc2ccc3c4CCC(CC)Cc4ccc3c2c1PAr 21 Methyltetrahydroperylene Cc2cc1cccc4c1c(c3cccc5c3C4CCC5)c2PAr 21 3-Methylcholanthrene c(c(ccc1C)cc(c2ccc3cccc4)c34)(c1CC5)c25PAr 21Methyl1-naphthyl-1-naphthalenec1ccc2cc(C)ccc2c1c3c4ccccc4ccc3103


PAr 21Methyl2-naphthyl-1-naphthalenec1ccc2cc(C)ccc2c1c3cc4ccccc4cc3PAr 21 Methylbenzo(a)pyrene c(c(c(cc1)ccc2)c2cc3)(c3cc(c4ccc5C)c5)c14PAr 21 Methylperylene Cc2cc1cccc4c1c(c3cccc5c3c4ccc5)c2PAr 21 Methylbenzo(b)fluoranthene c12ccccc1cc3c4cc(C)ccc4c5c3c2ccc5PAr 21 Methylbenzo(k)fluoranthene Cc2ccc1cc3c(cc1c2)c4cccc5cccc3c45PAr 21 Methylbenzo(e)pyrene c1ccc2c(c1)c4cccc5ccc3cc(C)cc2c3c45PAr 21 2-iso-Propylchrysene c4c(C(C)C)cc3ccc2c1ccccc1ccc2c3c4PAr 21 iso-Propylbenz(a)anthracene c12c(cccc3)c3ccc1cc4c(cc(C(C)C)cc4)c2PAr 21 iso-Propyltriphenylene CC(C)c1ccc2c3ccccc3c4ccccc4c2c1PAr 21 2-Propylchyrsene c4c(CCC)cc3ccc2c1ccccc1ccc2c3c4PAr 21 n-Propylbenz(a)anthracene c12c(cccc3)c3ccc1cc4c(cc(CCC)cc4)c2PAr 21 n-Propyltriphenylene CCCc1ccc2c3ccccc3c4ccccc4c2c1PAr 21 Propylbenzo(ghi)fluoranthene c1c(CCC)cc3c4cccc5c4c2c3c1ccc2cc5PAr 21 n-Butylbenzo(a)fluorene C3c1cc(CCCC)ccc1c4ccc2ccccc2c34PAr 211-Phenyl-5-isopentylnaphthalenec1cc(CCC(C)C)c2cccc(c3ccccc3)c2c1PAr 21 iso-Pentylpyrene c1(ccc3cc(CCC(C)C)c4)cccc2ccc4c3c12PAr 21 1-Phenyl-5-pentylnaphthalene c1cc(CCCCC)c2cccc(c3ccccc3)c2c1PAr 21 n-Pentylpyrene c1(ccc3cc(CCCCC)c4)cccc2ccc4c3c12PAr 21 n-Pentylfluoranthene c24c(cc(CCCCC)cc4)c1cccc3c1c2ccc3PAr 21 iso-Propyl-tetrahydro-chyrsene c1ccc2ccc3c4CCC(C(C)C)Cc4ccc3c2c1PAr 21 Propyl-tetrahydro-chyrsene c1ccc2ccc3c4CCC(CCC)Cc4ccc3c2c1PAr 21 2-(2-Methylhexyl)phenanthrene c1cc2c3ccc(CC(C)CCCC)cc3ccc2cc1PAr 21 2-iso-Heptylphenanthrene c1cc2c3ccc(CCCCC(C)C)cc3ccc2cc1PAr 21 2-iso-Heptylanthracene CC(C)CCCCc1ccc2cc3ccccc3cc2c1PAr 21 2-Heptylphenanthrene c1cc2c3ccc(CCCCCCC)cc3ccc2cc1PAr 21 2-Heptylanthracene CCCCCCCc1ccc2cc3ccccc3cc2c1PAr 21 propyltetrahydro-chyrsene c1ccc2ccc3c4CCC(CCC)Cc4ccc3c2c1PAr 22 Benzo(b)chrysene c1cc2cc3c4ccc5ccccc5c4ccc3cc2cc1PAr 22 1,2,5,6-Dibenzanthracene c(c(c(c(c1)ccc2)c2)cc(c3c(c(c4)ccc5)c5)c4)(c1)c3PAr 22 Ethyltetrahydroperylene CCc2cc1cccc4c1c(c3cccc5c3C4CCC5)c2PAr 22 Indeno(1,2,3-cd)pyrene c(c(c(c(ccc1)c2)c1cc3)c3cc4)(c2c(c5ccc6)c6)c45PAr 22 Benzo(ghi)perylene c1(c(cc6)ccc3ccc4ccc5)c3c4c5c2c1c6ccc2PAr 22 Picene c1cc2c3ccc4c5ccccc5ccc4c3ccc2cc1PAr 22 Ethyl1-Naphthyl-1-naphthalene c1ccc2cc(CC)ccc2c1c3c4ccccc4ccc3PAr 22 Ethyl2-Naphthyl-1-naphthalene c1ccc2cc(CC)ccc2c1c3cc4ccccc4cc3PAr 22 Ethylbenzo(a)pyrene c(c(c(cc1)ccc2)c2cc3)(c3cc(c4ccc5CC)c5)c14PAr 22 Ethylperylene CCc2cc1cccc4c1c(c3cccc5c3c4ccc5)c2PAr 22 Ethylbenzo(b)fluoranthene c12ccccc1cc3c4cc(CC)ccc4c5c3c2ccc5PAr 22 Ethylbenzo(k)fluoranthene CCc2ccc1cc3c(cc1c2)c4cccc5cccc3c45PAr 22 Ethylbenzo(e)pyrene c1ccc2c(c1)c4cccc5ccc3cc(CC)cc2c3c45PAr 22 2-iso-Butylchrysene c4c(CC(C)C)cc3ccc2c1ccccc1ccc2c3c4PAr 22 iso-Butylbenz(a)anthracene c12c(cccc3)c3ccc1cc4c(cc(CC(C)C)cc4)c2PAr 22 iso-Butyltriphenylene CC(C)Cc1ccc2c3ccccc3c4ccccc4c2c1PAr 22 Tetrahydro-Picene c12ccc3c(ccc4c3ccc5c4cccc5)c1CCCC2PAr 22 2-Butylchyrsene c4c(CCCC)cc3ccc2c1ccccc1ccc2c3c4PAr 22 n-Butylbenz(a)anthracene c12c(cccc3)c3ccc1cc4c(cc(CCCC)cc4)c2PAr 22 n-Butyltriphenylene CCCCc1ccc2c3ccccc3c4ccccc4c2c1PAr 22 Butylbenzo(ghi)fluoranthene c1c(CCCC)cc3c4cccc5c4c2c3c1ccc2cc5PAr 22 n-Pentyl2,3-benzofluorene CCCCCc1ccc2c3cc4ccccc4cc3Cc2c1104


PAr 22 n-Pentylbenzo(a)fluorene C3c1cc(CCCCC)ccc1c4ccc2ccccc2c34PAr 221-Phenyl-5-isohexylnaphthalenec1cc(CCCC(C)C)c2cccc(c3ccccc3)c2c1PAr 22 iso-Hexylpyrene c1(ccc3cc(CCCC(C)C)c4)cccc2ccc4c3c12PAr 22 1-Phenyl-5-hexylnaphthalene c1cc(CCCCCC)c2cccc(c3ccccc3)c2c1PAr 22 n-Hexylpyrene c1(ccc3cc(CCCCCC)c4)cccc2ccc4c3c12PAr 22 iso-Butyl-tetrahydro-chyrsene c1ccc2ccc3c4CCC(CC(C)C)Cc4ccc3c2c1PAr 22 Butyl-tetrahydro-chyrsene c1ccc2ccc3c4CCC(CCCC)Cc4ccc3c2c1PAr 222-(2-Methylheptyl)phenanthrenec1cc2c3ccc(CC(C)CCCCC)cc3ccc2cc1PAr 22 2-iso-Octylphenanthrene c1cc2c3ccc(CCCCCC(C)C)cc3ccc2cc1PAr 22 Octahydro-PiceneC12=CC=C3C(C=CC4=C3C=CC5=C4CCCC5)=C1CCCC2PAr 22 2-Octylphenanthrene c1cc2c3ccc(CCCCCCCC)cc3ccc2cc1PAr 22 Octadecahydro-piceneC12=CC=C3C(C=CC4=C3C=CC5=C4CCCC5)=C1CCCC2PAr 23 iso-Propyltetrahydroperylene CC(C)c2cc1cccc4c1c(c3cccc5c3C4CCC5)c2PAr 23 n-Propyltetrahydroperylene CCCc2cc1cccc4c1c(c3cccc5c3C4CCC5)c2PAr 23 Methylpicene c1cc2c3ccc4c5ccccc5ccc4c3ccc2cc1CPAr 23 Methylbenzo(ghi)perylene c1(c(c(C)c6)ccc3ccc4ccc5)c3c4c5c2c1c6ccc2PAr 23 iso-Propylperylene CC(C)c2cc1cccc4c1c(c3cccc5c3c4ccc5)c2PAr 23 iso-Propylbenzo(e)pyrene c1ccc2c(c1)c4cccc5ccc3cc(C(C)C)cc2c3c45PAr 23Propyl1-Naphthyl-1-naphthalenec1ccc2cc(CCC)ccc2c1c3c4ccccc4ccc3PAr 23Propyl2-Naphthyl-1-naphthalenec1ccc2cc(CCC)ccc2c1c3cc4ccccc4cc3PAr 23 Propylbenzo(a)pyrene c(c(c(cc1)ccc2)c2cc3)(c3cc(c4ccc5CCC)c5)c14PAr 23 n-Propylperylene CCCc2cc1cccc4c1c(c3cccc5c3c4ccc5)c2PAr 23 n-Propylbenzo(b)fluoranthene c12ccccc1cc3c4cc(CCC)ccc4c5c3c2ccc5PAr 23 Propylbenzo(k)fluoranthene CCCc2ccc1cc3c(cc1c2)c4cccc5cccc3c45PAr 23 n-Propylbenzo(e)pyrene c1ccc2c(c1)c4cccc5ccc3cc(CCC)cc2c3c45PAr 23 2-iso-Pentylchrysene c4c(CCC(C)C)cc3ccc2c1ccccc1ccc2c3c4PAr 23 2-Pentylchrysene c4c(CCCCC)cc3ccc2c1ccccc1ccc2c3c4PAr 23 Methyltetrahydro-picene c12ccc3c(ccc4c3ccc5c4ccc(C)c5)c1CCCC2PAr 23 Pentylbenzo(ghi)fluoranthene c1c(CCCCC)cc3c4cccc5c4c2c3c1ccc2cc5PAr 231-Phenyl-5-isoheptylnaphthalenec1cc(CCCCC(C)C)c2cccc(c3ccccc3)c2c1PAr 23 iso-Heptylpyrene c1(ccc3cc(CCCCC(C)C)c4)cccc2ccc4c3c12PAr 23 1-Phenyl-5-heptylnaphthalene c1cc(CCCCCCC)c2cccc(c3ccccc3)c2c1PAr 23 n-Heptylpyrene c1(ccc3cc(CCCCCCC)c4)cccc2ccc4c3c12PAr 23 2-(2-Methyloctyl)phenanthrene c1cc2c3ccc(CC(C)CCCCCC)cc3ccc2cc1PAr 23 2-iso-Pentylchrysene c4c(CCC(C)C)cc3ccc2c1ccccc1ccc2c3c4PAr 23 isopentyltetrahydro-chrysene c1ccc2ccc3c4CCC(CC(C)CC)Cc4ccc3c2c1PAr 23 Methyl-octadecahydro-piceneC12=CC=C3C(C=CC4=C3C=CC5=C4CCCC5)=C1CC(C)CC2PAr 23 Methyltetrahydro-picene c12ccc3c(ccc4c3ccc5c4ccc(C)c5)c1CCCC2PAr 24 1-Naphthyl-2-anthracene c1ccc2ccccc2c1c3cc4cc5ccccc5cc4cc3PAr 24 Benzo-perylene c12cccc5c1c(c4cccc6c4c5ccc6)cc3c2cccc3PAr 24 iso-Butyltetrahydroperylene CC(C)Cc2cc1cccc4c1c(c3cccc5c3C4CCC5)c2PAr 24 n-Butyltetrahydroperylene CCCCc2cc1cccc4c1c(c3cccc5c3C4CCC5)c2PAr 24 Coronene c1cc3ccc4ccc5ccc6ccc7ccc1c2c7c6c5c4c23PAr 24 Ethylpicene c1cc2c3ccc4c5ccccc5ccc4c3ccc2cc1CCPAr 24 Ethylbenzo(ghi)perylene c1(c(c(CC)c6)ccc3ccc4ccc5)c3c4c5c2c1c6ccc2105


PAr 24 iso-Butylperylene CC(C)Cc2cc1cccc4c1c(c3cccc5c3c4ccc5)c2PAr 24 Butylbenzo(a)pyrene c(c(c(cc1)ccc2)c2cc3)(c3cc(c4ccc5CCCC)c5)c14PAr 24 n-Butylperylene CCCCc2cc1cccc4c1c(c3cccc5c3c4ccc5)c2PAr 242-(2,4-dimethyloctyl)phenanthrenec1cc2c3ccc(CC(C)CCCC(C)CC)cc3ccc2cc1PAr 24 2-iso-Hexylchrysene c4c(CCC(C)CC)cc3ccc2c1ccccc1ccc2c3c4PAr 24 isohexyltetrahydro-chyrsene c1ccc2ccc3c4CCC(CC(C)CCC)Cc4ccc3c2c1PAr 24 Ethyl-octadecahydro-piceneC12=CC=C3C(C=CC4=C3C=CC5=C4CCCC5)=C1CC(CC)CC2PAr 24 Ethyltetrahydro-picene c12ccc3c(ccc4c3ccc5c4ccc(CC)c5)c1CCCC2PAr 25 Methylbenzo-perylene Cc6cc2c(cc6)c1cccc4c1c(c3cccc5c3c4ccc5)c2PAr 25 iso-Pentyltetrahydroperylene CC(C)CCc2cc1cccc4c1c(c3cccc5c3C4CCC5)c2PAr 25 n-Pentyltetrahydroperylene CCCCCc2cc1cccc4c1c(c3cccc5c3C4CCC5)c2PAr 25 iso-Propylpicene c1cc2c3ccc4c5ccccc5ccc4c3ccc2cc1C(C)CPAr 25 n-Propylpicene c1cc2c3ccc4c5ccccc5ccc4c3ccc2cc1CCCPAr 25 Propylbenzo(ghi)perylene c1(c(c(CCC)c6)ccc3ccc4ccc5)c3c4c5c2c1c6ccc2PAr 252-(2,4-dimethylnonyl)phenanthrenec1cc2c3ccc(CC(C)CCCC(C)CCC)cc3ccc2cc1PAr 25 2-iso-Heptylchrysene c4c(CCC(C)CCC)cc3ccc2c1ccccc1ccc2c3c4PAr 25 Isopentyl-benzo(a)pyrenec(c(c(cc1)ccc2)c2cc3)(c3cc(c4ccc5CC(C)CC)c5)c14PAr 25 isoheptyltetrahydro-chrysene c1ccc2ccc3c4CCC(CC(C)CCCC)Cc4ccc3c2c1PAr 25 Propyl-octadecahydro-piceneC12=CC=C3C(C=CC4=C3C=CC5=C4CCCC5)=C1CC(CCC)CC2PAr 25 Propyltetrahydro-picene c12ccc3c(ccc4c3ccc5c4ccc(CCC)c5)c1CCCC2PAr 26 Ethylbenzo-perylene CCc6cc2c(cc6)c1cccc4c1c(c3cccc5c3c4ccc5)c2PAr 262-(2,4-dimethyldecyl)phenanthrenec1cc2c3ccc(CC(C)CCCC(C)CCCC)cc3ccc2cc1PAr 26 2-iso-Octylchrysene c4c(CCC(C)CCCC)cc3ccc2c1ccccc1ccc2c3c4PAr 26 Isohexyl-benzo(a)pyrenec(c(c(cc1)ccc2)c2cc3)(c3cc(c4ccc5CC(C)CCC)c5)c14PAr 26 isooctyltetrahydro-chrysene c1ccc2ccc3c4CCC(CC(C)CCCCC)Cc4ccc3c2c1PAr 26 Isobutyl-octadecahydro-piceneC12=CC=C3C(C=CC4=C3C=CC5=C4CCCC5)=C1CC(CC(C)C)CC2PAr 26 isohexyltetrahydroperylene CCC(C)CCc2cc1cccc4c1c(c3cccc5c3C4CCC5)c2PAr 26 Isobutyltetrahydro-picenec12ccc3c(ccc4c3ccc5c4ccc(CC(C)C)c5)c1CCCC2PAr 26 dibenzo(b,k)chrysene c5c6ccccc6cc2c5c1c(c3cc4c(cc3cc1)cccc4)cc2PAr 272-(2,4-dimethylundecyl)phenanthrene c1cc2c3ccc(CC(C)CCCC(C)CCCCC)cc3ccc2cc1PAr 27 2-(3,6-dimethylheptyl)chrysene c4c(CCC(C)CCC(C)C)cc3ccc2c1ccccc1ccc2c3c4PAr 27 Isoheptyl-benzo(a)pyrenec(c(c(cc1)ccc2)c2cc3)(c3cc(c4ccc5CC(C)CCCC)c5)c14PAr 27 Propylbenzo-perylene CCCc6cc2c(cc6)c1cccc4c1c(c3cccc5c3c4ccc5)c22,6-dimethylheptyl-tetrahydrochrysenec1c1ccc2ccc3c4CCC(CC(C)CCCC(C)C)Cc4ccc3c2PAr 27PAr 27 Isopentyl-octadecahydro-piceneC12=CC=C3C(C=CC4=C3C=CC5=C4CCCC5)=C1CC(CC(C)CC)CC2PAr 27 isoheptyltetrahydroperyleneCCCC(C)CCc2cc1cccc4c1c(c3cccc5c3C4CCC5)c2PAr 27 Isopentyltetrahydro-picenec12ccc3c(ccc4c3ccc5c4ccc(CC(C)CC)c5)c1CCCC22-(2,4-dimethyldodecyl)c1cc2c3ccc(CC(C)CCCC(C)CCCC(C)C)cc3ccc2cPAr 28 phenanthrenec1PAr 28 2-(3,6-dimethyloctyl)chrysenec4c(CCC(C)CCC(C)CC)cc3ccc2c1ccccc1ccc2c3c4PAr 28 Isooctyl-benzo(a)pyrenec(c(c(cc1)ccc2)c2cc3)(c3cc(c4ccc5CC(C)CCCCC)c5)c14106


PAr 28 Isohexyl-octadecahydro-picenePAr 28 isoctyltetrahydroperylenePAr 29 2-(3,6-dimethylnonyl)chrysenePAr 29 Dimethylheptyl-benzo(a)pyrenePAr 28 Isobuylbenzo-perylene2,6-dimethyloctyltetrahydrochyrsenePAr 28PAr 28 Isohexyltetrahydro-picenebenzo(p)naphtho(1,8,7-PAr 28 ghi)chrysene2-(2,4,10-trimethyldodecyl)PAr 29 PhenanthrenePAr 29 Isopentylbenzo-perylene2,6-dimethylnonyltetrahydrochyrsenePAr 29PAr 29 Isoheptyl-octadecahydro-picenedimethyheptyltetrahydroperylenePAr 29PAr 29 Isoheptyltetrahydro-picene2-(2,4,10-PAr 30 trimethyltridecyl)phenanthrenePAr 30 2-(3,6-dimethyldecyl)chrysenePAr 30 Dimethyloctyl-benzo(a)pyrenePAr 30 Isohexylbenzo-perylene2,6-dimethyldecyltetrahydrochrysenePAr 30PAr 30 Isooctyl-octadecahydro-picenePAr 30 dimethyoctyltetrahydroperylenePAr 30 Isooctyltetrahydro-picene2-(2,4,10-trimethyltetradecyl)PAr 31 phenanthrenePAr 31 2-(3,6-dimethylheptyl)chryseneC(C)CCc6cc2c(cc6)c1cccc4c1c(c3cccc5c3c4ccc5)c2c1ccc2ccc3c4CCC(CC(C)CCCC(C)CC)Cc4ccc3c2c1C12=CC=C3C(C=CC4=C3C=CC5=C4CCCC5)=C1CC(CC(C)CCC)CC2CCCCC(C)CCc2cc1cccc4c1c(c3cccc5c3C4CCC5)c2c12ccc3c(ccc4c3ccc5c4ccc(CC(C)CCC)c5)c1CCCC2c1cc6cccc7c6c2c(c4c7c3c(c5c4cccc5)cccc3)cccc12c1cc2c3ccc(CC(C)CCCC(C)CCCC(C)CC)cc3ccc2cc1c4c(CCC(C)CCC(C)CCC)cc3ccc2c1ccccc1ccc2c3c4c(c(c(cc1)ccc2)c2cc3)(c3cc(c4ccc5CC(C)CCCC(C)C)c5)c14CC(C)CCc6cc2c(cc6)c1cccc4c1c(c3cccc5c3c4ccc5)c2c1ccc2ccc3c4CCC(CC(C)CCCC(C)CCC)Cc4ccc3c2c1C12=CC=C3C(C=CC4=C3C=CC5=C4CCCC5)=C1CC(CC(C)CCCC)CC2C(C)CCCC(C)CCc2cc1cccc4c1c(c3cccc5c3C4CCC5)c2c12ccc3c(ccc4c3ccc5c4ccc(CC(C)CCCC)c5)c1CCCC2c1cc2c3ccc(CC(C)CCCC(C)CCCC(C)CCC)cc3ccc2cc1c4c(CCC(C)CCC(C)CCCC)cc3ccc2c1ccccc1ccc2c3c4c(c(c(cc1)ccc2)c2cc3)(c3cc(c4ccc5CC(C)CCCC(C)CC)c5)c14CCC(C)CCc6cc2c(cc6)c1cccc4c1c(c3cccc5c3c4ccc5)c2c1ccc2ccc3c4CCC(CC(C)CCCC(C)CCCC)Cc4ccc3c2c1C12=CC=C3C(C=CC4=C3C=CC5=C4CCCC5)=C1CC(CC(C)CCCCC)CC2CC(C)CCCC(C)CCc2cc1cccc4c1c(c3cccc5c3C4CCC5)c2c12ccc3c(ccc4c3ccc5c4ccc(CC(C)CCCCC)c5)c1CCCC2c1cc2c3ccc(CC(C)CCCC(C)CCCC(C)CCCC)cc3ccc2cc1c4c(CCC(C)CCC(C)CCCCC)cc3ccc2c1ccccc1ccc2c3c4107


Appendix 2. Description of BCF calculations derived from BCFBAF module using ArnotModelThe equations below are taken from Appendix K in BCFBAF users manual:log BCFupperlog((1 − Lb=( k2+ kEupperupperupper) + ( k1+ kGupperupper⋅φ)+ kMupper)1where, φ =, X poc = X doc = 5×10 -7(1 + (0.35⋅X ⋅ K ) + (0.08 ⋅ X ⋅ K )pocOWdocOWk1upper1=1, where W upper = 1.53 = upper trophic level fish weight0.4((0.01 + ) ⋅Wupper)KOWk2upperk1upper= , where Lb upper = 0.107 = lipid content in upper trophic level fish( Lb ⋅ K )upperOW−0.15(0.06⋅T)(0.02 ⋅Wupper⋅ e )kDupper=, where T = temperature = 10 °C(0.00000005⋅K + 2)OWkE= 0. 125⋅upperkD upperkG upperW−0.2= 0.000502 ⋅upperkMupper0.693=Wupper( HLN ⋅ ( )0.01−0.25, where HLN = half-life normalized)108


SummaryIn conducting a PBT assessment of hydrocarbon substances, the Hydrocarbon Block(HCB) Method is used (EC, 2003) together with predictive tools for assessing theprimary half-life. In the following paper the consequences of this for assessing majormetabolites is discussed. The review shows that all hydrocarbons must degrade (underoxic conditions) by first forming ketone, aldehyde and subsequently carboxylate andhydroxyl substituents. A further assessment demonstrates that for all the major classes ofhydrocarbons, the major metabolites formed are in all cases less toxic, less persistent andless bioaccumulative than the parent molecule. Consequently it can be concluded that forPBT assessment purposes, the metabolites of hydrocarbons are not required to be furtherassessed.IntroductionPetroleum substances typically contain hydrocarbons that exhibit large differences inphysico-chemical and fate properties. These properties define the pattern of emissionsand differential environmental distribution of the constituent hydrocarbons, andconsequently it is not possible to define a unique predicted exposure concentration (PEC)for a petroleum substance. Furthermore, it is not possible to directly apply current riskassessment guidance developed for individual substances to complex petroleumsubstances. To provide a sound technical basis to assess environmental exposure andrisks of petroleum substances, CONCAWE devised the Hydrocarbon Block Method inwhich constituent hydrocarbons with similar properties are treated as pseudo-componentsor "blocks" for which PECs and predicted no effect concentrations (PNECs) can bedetermined (CONCAWE, 1996). Risks are then assessed by summing the PEC/PNECratios of the constituent blocks. While this conceptual approach has been adopted by the<strong>EU</strong> as regulatory guidance (EC, 2003) experience in applying this method was limited.Recent studies demonstrate the utility of the HCB method to gasoline (MacLeod et al.2004, McGrath et al. 2004; Foster et al. 2005) and further work has been on-going tosupport the practical implementation of the HCB methodology to higher boilingpetroleum substances that pose an environmental hazard. Utilising the basic approachdescribed in these papers, the generic approach (as described in Comber et al, 2006) hasbeen developed and is in the process of being written up.One of the issues that arise in such risk assessments, whether of single substances orhydrocarbon blocks, is the environmental impact of any metabolites that are formed. Inorder to assess this issue, the first task is to understand the range of hydrocarbonstructures and thus the type of structures that would be involved in generatingmetabolites. There are four major classes of hydrocarbons to be addressed:paraffins/alkanes; iso-paraffins; naphthenics (cyclic alkanes) and aromatic structures,which will also include polyaromatic compounds. Within these basic classes there is an109


infinite number of structures including many variations and combinations of the classesand with increasing boiling point of a petroleum substance, this complexity will increase.For the purpose of this review only the basic structures will be evaluated and it isassumed that the application of this information to the more complex structures will besimilar.The principle methods of predicting the metabolites utilises two sources of information;- the WWW and especially the site of the University of Minnesota- CATABOL and other published QSARs for biodegradation that predict metabolitesTo assess the potential for increased concern with metabolites over their parentcompounds, either EPIsuite (US EPA 2009) or the OECD Tool Box (v1.1http://www.oecd.org/document/54/0,3343,en_2649_34379_42923638_1_1_1_1,00.html#Download_qsar_application_toolbox) or specific QSAR models e.g. OASIS, were used.In all cases the approach was based on a comparison with the parent compound. It isassumed that if the metabolite was less toxic, or more degradable than the parentcompound, then the risk assessments of petroleum substances being undertaken byCONCAWE will be sufficiently protective of any metabolites that could be formed.Similarly, for a PBT assessment, the metabolites were firstly compared to the parentmolecule and only for those parent molecules that may have a potential PBT concernwere the metabolites further assessed for their specific PBT properties. The models andthe basic approach are further outlined in the section below. Individual sections addresseach of the principle classes of hydrocarbons.1. Models and assessmentsFor the purposes of this paper two sources of information were used. The first sourcewas the World Wide Web and especially the site of the University of Minnesota (Ellis etal. 2006), at http://umbbd.msi.umn.edu/. This site contains information on over 900compounds, over 600 enzymes, nearly 1000 reactions and about 350 microorganismentries. There is a Pathway Prediction System (PPS) which is an open system forpredicting microbial catabolism of organic compounds. Graphical display of PPS rules, astand-alone version of the PPS and guidance for PPS users are also being developed.These references and others have been used to describe the general mechanisms by whichhydrocarbons are degraded and hence the typical metabolites formed.The second source of information was the model CATABOL (Jaworska et al. 2002,supplied by the Laboratory of Mathematical Chemistry, Bourgas, http://oasis-lmc.org/).CATABOL is a degradation simulator, which includes a library of hierarchically orderedindividual transformations (abiotic and enzymatic reactions) and a matching substructureengine providing their subsequent performance. The catabolic steps are derived from aset of most plausible metabolic pathways, predicted by experts for each chemical fromthe training set. The MITI-I database is used for that purpose, and provides the largeststructural diversity and most consistent biodegradability assessments (O 2 yield duringOECD 301 C test) among existing data collections. Subsequently, the transformation110


probabilities are adjusted to best reproduce documented degradation pathways for over500 chemicals. The model predicts biodegradation pathways and primary/ultimate halflivesas well as the simulation of integral biodegradation data, such as BOD, CO2production and the level of the different metabolites. This model (and others) are furtherdiscussed in the next section here the models for addressing the metabolites aredescribed.To do this assessment a series of molecules were assessed using the OASIS Laboratory ofthe Mathematical Chemistry models (LMC). These are described below.1.2.1 OASIS LMC models: Environmental fate and Ecotoxicity1.2.1.1. Catalogic BOD model (OECD 301 C)This is based on an expert system in which predicted biotransformation pathways arecombined with a probabilistic model that calculates the probabilities of individualtransformations. The principal catabolic steps are derived from a set of metabolicpathways predicted for each chemical from the training set, 1078 chemicals of MITI I(OECD 301 C) database were used as a training set. The output is given as percentage ofthe theoretical biochemical oxygen demand (Jaworska et al., 2002). The system predictsthe catabolic pathways, the level of stable metabolites and their physical-chemical andtoxic endpoint values. The primary and ultimate half-lives are calculated.1.2.1.2. Catalogic BOD model (OECD 301 F)The model predicts the integral biodegradation estimates as BOD and CO2 production forOECD 301F protocol by simulating the metabolic pathways. Primary and ultimate halflivesare predicted. The magnitudes of metabolites as well as BOD are defined as afunction of time. The model is based on a training set with 488 kinetic biodegradationcurves provided by industry (e.g. BASF, ExxonMobil, Givaudan, Dow Chemical).1.2.1.3. BCF Base Line ModelA refined BCF Base Line Model is used to predict bioaccumulation potential of the testedchemicals. The maximum bioaccumulation (i.e., highest log BCF) for a givenlipophilicity (i.e., log Kow value) is exhibited by chemicals ignoring their bioavailabilityand metabolism. The maximum potential for bioconcentration is further reduced bydifferent factors: organism dependent (like metabolism) and chemical propertiesdependent like molecular size, ionization, water solubility and others). Metabolism,molecular size, ionization and water solubility are accounted explicitly in the model asused.The training set of the model contains 706 chemicals covering variety of chemicalclasses: alkanes, alkenes, mono- and di- aromatic hydrocarbons, polycyclic aromatichydrocarbons, polychlorinated dibenzo-furans, polychlorinated dibenzodioxins,polychlorinated biphenyls, cycloalkanes and cycloalkenes, chloroaromatic chemicals,perfluorinated acids, chlorinated biphenyl ethers, aliphatic esters, and chloroorganicchemicals (Dimitrov et al. 2005a, 2005b and 2007).111


1.2.1.4. Acute aquatic toxicity modelUtilizing an acute toxicity database for guppies, Verhaar et al. (1992) delineated theclasses of inert, less inert, reactive, and specifically-acting chemicals, and provided thechemical rules for discrimination of the first three groups. Using a broader set ofchemicals tested with fathead minnow in combination with concordant information aboutthe primary mode of toxic action, Russom et al. (1997) established seven toxicodynamiccategories, including three types of narcosis-acting chemicals, oxidative phosphorylationuncouplers, reactive electrophiles/pro-electrophiles, acetylcholinesterase inhibitors andcentral nervous seizure agents. The two independently developed classification schemesbear common features. Both systems delineate inert chemicals, or Type I narcotics, lessinert chemicals, or Type II narcotics, and reactive electrophiles/proelectrophiles.Categorization of chemicals according to their mode of action (MOA) was furtheradopted by LMC by postulating the so-called toxic response surface. In this approach 2-D structural information is used only to identify the MOA of chemicals. Based ontheoretical and empiric knowledge the following seven hierarchically ordered MOA aredistinguished:• Reactive Unspecified• Aldehydes• alpha, beta-Unsaturated alcohols• Phenols and anilines• Esters• Narcotic amines• Basesurface (non-polar) narcoticsThe toxicity of chemicals showing different MOA is predicted on the basis ofinterspecies models with the following mathematical structure (Dimitrov et al. 2000,2003 and 2004):Species( 1/ C) = b + b ( BCF ) b Rlog0log +1tox2where BCF tox is the bioconcentration factor corrected for the effect of internal organismswater phase [10], R is a global or local reactivity parameter specific for each MOA, C isthe concentration in mol/l causing specific toxic effect, such as 50% lethality,Speciesimmobilization, inhibition of bioluminescence, etc., andb 0,b1 , andb2are adjustedmodel parameters. Chemicals with an unknown MOA or with insufficient number ofdata for model building are classified in the category Reactive Unspecified MOA. Forthese chemicals the minimum toxicity is predicted by making use of the model for nonpolarnarcotics:log( 1/ C) ≤ log( 1 C)Re activeUnspecified/Non−polarnar cot icsThe applicability domain of chemicals with Reactive Unspecified MOA is not estimated.112


1.2.2 OASIS LMC Models: Toxicological models - Protein/DNA Based1.2.2.1. Simulating MetabolismA probabilistic approach to simulating metabolism was developed in LMC. Theapproach is based on the sets of hierarchically ordered principal moleculartransformations used to simulate the specific metabolic fate of chemicals. Databases ofdocumented metabolic pathways for different environmental niches, such as aerobicmicrobial degradation or rat liver metabolism, were collected. This empiric knowledgewas used to extract specific molecular transformations to simulate metabolism, assesstheir probability of occurrence and their reliability. Due to the limited quantitativemetabolism data reported for some tissue compartments, such as skin, the quantificationof transformations was assigned also on the basis of expert knowledge. The quantitativeassessment of the principal transformations is an advantage of this approach to simulatemetabolism in terms of confining the propagation of metabolic pathways, prioritization ofgenerated metabolites and defining the applicability domain of simulators. Thedeveloped software systems CATABOL and TIMES (see section 1.2.2.2 for furtherdetails) provide not only ability to model biodegradation or bioaccumulation of chemicalsbut also a unique ability to merge metabolism simulation with specific toxic endpoints asacute aquatic toxicity, skin sensitization, mutagenicity, estrogenicity, etc. Thecompilation of traditional (Q)SARs for assessing toxic endpoints with metabolismsimulators and estimates of the applicability domains affords a new perspective in the(Q)SAR methodology.Two metabolism models have been developed recently in the lab simulating moleculartransformations in skin and rat liver S9.1.2.2.2. Skin Sensitization ModelSkin sensitization potential depends upon the ability of chemicals to react with skinproteins either directly or after appropriate metabolism. The model was built as acomposite of two sub models:• Skin metabolism simulator - The metabolic simulator was constructed to mimic theenzyme activation of chemicals in the skin. It contains hierarchically orderedspontaneous and enzyme controlled reactions. The formation of macromolecularimmunogens was used to identify probable structural alerts in parent chemicals ortheir metabolites.• COREPA 3D-QSARs /COmmon REactivity PAttern/ for intrinsic reactivity ofcompounds having substructures associated with activity: these models depend onboth the structural alert and the rate of skin sensitization. Steric effect around theactive site, molecular size, shape, solubility, lipophilicity, and electronic propertiesare taken into account. These models generally may involve combinations ofmolecular parameters or descriptors, which trigger the alerting group.The model was derived from a data set compiled from chemicals tested in the LLNA(local lymph node assay), GPMT (guinea pig maximization test) and BgVV list (GermanFederal Institute for Health Protection of Consumers and Veterinary Medicine). Skinsensitization potency for these chemicals was assigned to one of three classes: strong,weak or nonsensitizing. For chemicals whose potency was assessed by more than one113


method, the LLNA value was accepted as representative for the structure; where theLLNA test was not available, the GPMT value was taken (Patlewicz et al., 2007, Robertset al., 2007).1.2.2.3. AMES Mutagenicity modelThe mutagenicity model (Serafimova et al., 2006) was derived on the basis of 345chemicals that were found experimentally to be positive without S-9 metabolic systemand a further 2357 chemicals – including 2012 negatives, and 397 positives with S-9system. The simulator used for predicting metabolic activation of chemicals under S-9 isin fact predicting a mammalian liver metabolism where the settings of the simulator wereadjusted in a way to avoid missing mutagenic metabolites. The simulator used in themodel mimics formation of enzyme complexes and channeling effects. According to theadopted modeling scheme, the target chemicals are submitted to a metabolic simulatorand generated metabolites are subsequently screened by the 3D QSAR model to identifymutagenic metabolites.1.2.2.4. Model for Chromosomal aberrationsThe model for chromosomal aberrations (CA) accounts for two principal types ofinteraction mechanisms – interactions with DNA and interactions with proteins or nuclearenzymes (Mekenyan et al., 2007). The model is used to predict metabolism in rat liver.The alerting groups associated with these mechanisms are defined by specific structuralboundaries as well as by 2D and 3D parameter ranges describing effects of bioavailabilityand reactivity alerts that are conditioned by the rest of the molecule. The model wasderived on the basis of 497 (166 positive and 331 negative) chemicals that haveexperimental data without S-9 metabolic system and other 162 chemicals – including 81positives, and 81 negatives with S-9 system. The performance of the model withoutmetabolic activation was characterized by sensitivity and specificity values of 77% and82%, respectively. For the model coupled with the metabolic simulator (trained toreproduce documented maps for mammalian (mainly rat) liver metabolism of 332chemicals), the performance is 75% and 60% for sensitivity and specificity respectively.1.2.3 OASIS LMC Models: Toxicological models - Receptor mediated effects1.2.3.1. Androgen Binding Affinity QSAR modelSome of the environmental and industrial chemicals can interact with the androgenreceptor (AR) by mimicking the functions of natural hormones. The multiparameterformulation of COmmon REactivity PAttern (COREPA) (Mekenyan et al., 2004)approach was used to describe the structural requirements for eliciting androgen potency.A structurally diverse training data set containing 202 chemicals was obtained from theNational Center for Toxicology Research (NCTR, US). The chemical affinities for the ratAR were related to distances between nucleophilic sites and structural features describingelectronic interactions between the receptor and ligands.1.2.3.2. Estrogen binding affinity QSAR modelThe multiparameter formulation of COmmon REactivity PAttern (COREPA) (Mekenyanet al., 2004) approach was used to describe the structural requirements for elicitingestrogen binding potency. A training set of 645 chemicals which includes 497 steroid and114


environmental chemicals (database of Chemical Evaluation and Research Institute, Japan- CERI) and 148 chemicals to further explore hER-structure interactions (selected J.Katzenellenbogen references) were used. Analysis of the reactivity patterns resulted inidentification of distinct interaction types: a steroid-like A–B type described by frontierorbital energies and distance between nucleophilic sites with specific chargerequirements; an A–C type where local hydrophobic effects are combined with electronicinteractions to modulate binding; and mixed A–B–C (AD) type. Chemicals were groupedby type, then COREPA models were developed for within specific relative bindingaffinity ranges greater then 10%, 0.1


ioaccumulative than the parent molecules. This is partly borne out by the predictivemethods, where (Table 1) it can be seen that certainly the bioaccumulative behaviour issignificantly reduced by 2 to 3 orders of magnitude when compared to the parentmolecule.2.3 Naphthenics (Cyclo-alkanes)Cyclic alkanes are relatively resistant to microbial attack, as the absence of an exposedterminal methyl group complicates the primary attack (Fritsche and Hofrichter, 2000).The mechanism of cyclohexane degradation is again generally via the alcohol and ingeneral, alkyl side chains of cyclo-alkanes facilitate degradation. The pattern noted forthe toxicity or biodegradation is variable, and led to more toxic and/or persistentmetabolites. However, without exception, the predicted effect of these changes is to leadto significant reductions in the bioaccumulative behaviour of the metabolites, of the orderof one to over three orders of magnitude.Given the properties of certain naphthenic type structures, it was decided to furtherinvestigate the naphthenics in more detail. The results of this are shown in Table 1,where many more structures were addressed, but instead only at one carbon number, i.e.C15. Exactly the same result has been obtained in these predictions, with variablechanges being observed to the toxicity and/or persistency of the metabolites, but aconsistent one to three orders of magnitude decline in the bioaccumulative behaviourwhen compared with the parent molecules.It should be concluded therefore that there is no reason to believe that any metabolites ofthese structures is likely to be B or vB, and hence they will not be either PBT or vPvB.2.4 Aromatic compoundsGiven that a large number of aromatic compounds are formed by organisms, e.g., asaromatic amino acids, phenols, or quinines, it is not surprising that many microorganismshave evolved catabolic pathways to degrade them. It can be assumed that in generalpetrochemical molecules can be degraded by microorganisms, when the respectivemolecules are similar to other natural compounds and are converted enzymatically tonatural intermediates of the degradation: catechol and protecatechuate (Fritsche andHofrichter, 2000). While the introduction of aliphatic substituents will alter the point ofattack, it should not be anticipated that the products of that attack will be significantlydifferent.Again the pattern noted for the toxicity or biodegradation is variable, and does in somecases lead to more toxic and/or persistent metabolites. However, without exception, thepredicted effect of these changes is to lead to reductions in the bioaccumulativebehaviour of the metabolites by two to three orders of magnitude (Table 1).2.4.1 Polyaromatic compoundsThe biochemical pathway for the aerobic biodegradation of PAHs has been extensivelyinvestigated. It is understood that the initial step in the aerobic catabolism of a PAHmolecule by bacteria uses a multicomponent enzyme system to oxidise the PAH to a116


dihydrodiol. These dihydroxylated intermediates may then be processed through either anortho cleavage type of pathway, in which ring fission occurs between the twohydroxylated carbon atoms, or a meta- cleavage type of pathway, which involvescleavage of the bond adjacent to the hydroxyl groups, leading to central intermediatessuch as protocatechates and catechols. These compounds are further converted totricarboxylic acid cycle intermediates (van der Meer et al. 1992). For the lower molecularweight PAHs, the most common route involves the fission into a C3 compound and ahydroxyl aromatic acid compound. The aromatic ring can thereafter either undergo directfission or can be subjected to decarboxylation, leading to the formation of adihydroxylated compound. This compound can be dissimilated as described above. Whendegraded via these pathways, the low molecular weight PAHs can be completelymineralized to CO 2 and H 2 O (Volkering and Breure, 2003).The following observations were made by Volkering and Breure (2003);- Many bacterial and fungal species have the enzymatic capacity to oxidise PAHs- The aerobic transformation of PAHs always involve incorporation of oxygen into themolecule- The initial step is usually performed via a dioxygenase and forms a dihydrodiolTheir conclusions were that the transformation products of PAHs were in general morepolar than the parent and that there were metabolites that were potentially harmful tomammals and could also have important environmental consequences.-bonding orbitals, which results in theabsorption of light in the UV/far blue region of the spectrum that is present in solar radiation(Nikolaou et al. 1984; Newsted and Giesy 1987; Larson and Berenbaum 1988; Krylov et al.1997). Absorption of light energy can alter the toxicity of these compounds through twodifferent mechanisms: photosensitization and photomodification (Krylov et al. 1997).Photosensitization generally leads to the production of singlet oxygen, and other reactiveoxygen species (ROS), which are capable of damaging biological molecules (Foote 1991).Photomodification of PAHs is defined here as photooxidation and photolysis, and results inthe formation of new compounds with increased polarity, and in many cases, increasedtoxicity (Zhu et al. 1995; Duxbury et al. 1997; Mallakin et al. 2000; Brack et al. 2003;Shimada et al. 2004; Lampi et al. 2006).Photosensitization has been widely documented in environmental toxicology, particularlywith respect to homo- and heterocyclic PAHs (Mekenyan et al. 1994; Wiegman et al.2002, Diamond et al. 2006). These compounds are ideal photosensitizers, and are able toabsorb environmentally relevant wavelengths of radiation (Krylov et al. 1997). Thephotosensitized production of highly reactive, and biologically damaging singlet oxygenis an important, and well-studied aspect of PAH phototoxicity (Larson and Berenbaum1988).Singlet oxygen-induced biological damage is not the only mechanism of PAHphototoxicity. Many PAHs can undergo subsequent reactions with oxygen (Mallakin etal. 2000), forming new compounds that may be more toxic and/or mutagenic than the117


parent PAH (McCoy et al. 1979; Nikolaou et al.1984; Brack et al. 2003; Lampi et al.2006).Photodegradation via photolysis is a major source of elimination of PAHs from variousenvironmental compartments (Nikolaou et al. 1984), however, this is not the onlypathway that occurs. For instance, anthracene, which is a known photosensitizer, is ableto form the photoproduct 9,10-anthraquinone (ATQ) (Fox and Olive 1979; Nikolaou etal. 1984; Mallakin et al. 2000). There are a wide variety of other oxyPAHs that areformed via PAH photomodification. Some of these include phenanthrenequinone(McConkey et al. 1997), many hydroxylated anthraquinones (Mallakin et al. 2000; Bracket al. 2003), and a host of other unidentified compounds, resulting from thephotomodification of a variety of PAHs (Huang et al. 1997).There is little specific data available to evaluate the persistence and bioaccumulation ofspecific PAH photodegradation products. However, accompanying photomodification,which is generally via oxygenation, should lead to an increase in susceptibility tobiotransformation in a similar manner to that observed after phase I metabolism by themixed function oxidases (Prince and Walters, 2006) which will minimise the risk ofpersistence and bioaccumulation of such compounds.In evaluating the toxicity of PAH photoproducts or metabolites, one must consider thatthey will be less hydrophobic than the parent PAHs, although some hydrophobicityremains, thereby facilitating partitioning in biological membranes (Krylov et al. 1997;McConkey et al. 1997). They can then manifest toxicity to a variety of organisms throughspecific and non-specific mechanisms (Chesis et al. 1984; Bondy et al. 1994; Zhu et al.1995; Huang et al. 1997; Li et al. 2000; Shimada et al. 2004). There are few reports of thepresence of photoproducts or metabolites in the aquatic environment (Marvin et al. 2000;Lampi et al. 2001; Machala et al. 2001; Papadoyannis et al. 2002; Kurihara et al. 2005),and although in some cases, concentrations may reach that close to the parent (Kuriharaet al. 2005) or interact with co-contaminants (Xie et al. 2006), other work (Lampi et al.2007) has shown that the contribution of photomodification, although significant, isoutweighed by that of photosensitisation, which is the greatest contributing factor tophotoinduced toxicity, and is already considered in the toxicity assessment of PAHs (e.g.<strong>EU</strong> 2008).Given the increase in polar groups and increase in potential for metabolism, PAHmetabolites should not be considered persistent or bioaccumulative substances. There is apotential for toxicity of PAH metabolites, but this is less than the potential for effectsfrom photosensitized generation of reactive oxygen species, and is considered in PAHhazard assessment. Thus PAH metabolites should not be considered PBT substances.118


Table 1 : PBT assessment ofC15 structure metabolites whencompared to the parent structuresName Class LogKow L(E)C50 Primary Bioacumulationhalf-life2-Methyltetradecane BrAlkane 7.63Metabolite 1 -0.02 +++ >


Name C# LogKow L(E)C50 Primary Bioacumulationhalf-lifen-Heptylcyclopentane 12 6.05Metabolite 1 1.87 +++ >>>>


1: The following structures were predicted to have no stable metabolites: n-hexylcyclopentane, isohexylcyclopentane,1,2,3,4-tetraethylcyclohexane, iso-nonylcyclohexane, 1,5-dimethyl-1-(3,7-dimethyloctyl)cyclohexane, 1,5-dimethyl-1-(3,7-dimethylnonyl)cyclohexane2: each symbol indicates the order of magnitude greater or less for the metabolite when compared to theparent molecule.121


REFERENCESBondy GS, Armstrong CL, Dawson BA, Heroux-Metcalf C, Neville GA, Rogers CG.(1994). Toxicity of structurally related anthraquinones and anthrones to mammalian cellsin vitro. Toxicology in Vitro 8:329-335.Brack W, Altenburger R, Kuster E, Meissner B, Wenzel K-D, Schüürmann G. (2003).Identification of toxic products of anthracene photomodification in simulated sunlight.Environmental Toxicology and Chemistry 22:2228-2237.Chesis PL, Levin DE, Smith MT, Ernster L, Ames BN. 1984. Mutagenicity of quinones:Pathways of Metabolic activation and detoxification. Proceedings of the NationalAcademy of Sciences, USA. 81:1696-1700.Comber M, Dmytrasz B, Eadsforth C, King D, Parkerton T, Toy R. (2006). Developing aGeneric risk assessment methodology for petroleum products - Poster presented atSETAC, Den Hague, the Netherlands.Diamond SA, Mount DR, Mattson VR, Heinis LJ. (2006). Photoactivated polycyclicaromatic hydrocarbon toxicity in medaka (Oryzias latipes) embryos: Relevance toenvironmental risk in contaminated sites. Environmental Toxicology and Chemistry.25:3015-3023.Dimitrov SD, Mekenyan OG, Schultz TW. (2000). Interspecies modeling of narcoticstoxicity to aquatic animals. Bulletin of Environmental Contamination and Toxicology.65:399-406.Dimitrov SD, O. G. Mekenyan, J.D. Walker. (2002). Non-linear modeling ofbioconcentration factor usibg partition coefficient for narcotic chemicals, SAR andQSAR in Environmental Research. 13:177-184.Dimitrov SD, Mekenyan OG, Sinks GD, Schultz TW. (2003). Global modeling ofnarcotic chemicals: ciliate and fish toxicity, Journal of Molecular Structure:THEOCHEM, 622:63-70.Dimitrov S, Koleva Y, Schultz TW, Walker JD, Mekenyan O. (2004). Interspeciesquantitative structure activity-relationship model for aldehydes: aquatic toxicity.Environmental Toxicology and Chemistry. 23:463-470.Dimitrov SD, Dimitrova N, Parkerton TF, Comber M, Bonnell M, Mekenyan O. (2005a).Base –line model for identifying the bioaccumulation potential of chemicals, SAR QSAREnviron Res 16:531-554.Dimitrov SD, Dimitrova N, Pavlov T, Dimitrova N, Patlelwicz G, Niemela J, MekenyanO. (2005b). A stepwise approach for defining the applicability domain of SAR andQSAR Models. Journal of Chemical Inference and Modeling. 45:839-849.122


Dimitrov SD, Dimitrova N, Mekenyan O. (2007). BCF Base Line Model for PredictingBioaccumulation: New modification. SETAC Europe 17th Annual Meeting, 20-24 May,2007, Porto, Portugal.Duxbury CL, Dixon DG, Greenberg BM. (1997). Effects of simulated solar radiation onthe bioaccumulation of polycyclic aromatic hydrocarbons by the duckweed Lemnagibba. Environmental Toxicology and Chemistry. 16:1739-1748.EC. (2003). 2nd Edition of the Technical Guidance Document in support of CommissionDirective 93/67/EEC on Risk Assessment of new notified substances, CommissionRegulation (EC) No 1488/94 on Risk Assessment for existing substances and Directive98/8/EC of the European Parliament and of the Council concerning the placing ofbiocidal products on the market. Office for the Official Publications of the EuropeanCommunities, Luxembourg.<strong>EU</strong>. (2008). European Union Risk Assessment Report, Anthracene.http://ecb.jrc.ec.europa.eu/esis/Ellis LBM, Roe D, Wackett LP. (2006). The University of MinnesotaBiocatalysis/Biodegradation Database: The First Decade. Nucleic Acids Research 34:D517-D521.Foote CS. (1991). Definition of type I and type II photosensitized oxidation.Photochemistry and Photobiology. 54:659.Fox MA, Olive S. (1979). Photooxidation of anthracene on atmospheric particulatematter. Science 205:582-583.Foster KL, Mackay D, Parkerton TF, Webster E, Milford L. (2005). Five-stageenvironmental exposure assessment strategy for mixtures: Gasoline as a case study,Environmental Science and Technology. 39:2711-2718.Fritsche W, Hofrichter M. (2000). Aerobic degradation by microorganisms. In: Rehm,H.-J., Reed, G. (Eds.) Biotechnology - Vol. 11b: Environmental Processes. Wiley-VCH,Weinheim, New York, pp. 145-167.Huang X-D, Krylov SN, Ren L, McConkey BJ, Dixon DG, Greenberg BM. (1997).Mechanistic quantitative structure-activity relationship model for the photoinducedtoxicity of polycyclic aromatic hydrocarbons: II. An empirical model for the toxicity of16 polycyclic aromatic hydrocarbons to the duckweed Lemna gibba L. G-3.Environmental Toxicology and Chemistry. 16:2296-2303.Jaworska J, Dimitrov S, Nikolova N, Mekenyan O. (2002). Probabilistic Assessment ofBiodegradability Based on Metabolic Pathways: CATABOL System, SAR and QSAR inEnvironmental Research. 13:307-323.123


Kachholz T, Rehm H. (1977). Degradation of long chain alkanes by bacilli. I.Development and product formation by bacilli degrading alkanes in the presence of othercarbon sources, Appl Microbiol Biotechnol 4:101-110Krylov SN, Huang X-D, Zeiler LF, Dixon DG, Greenberg BM. (1997). Mechanisticquantitative structure-activity relationship model for the photoinduced toxicity ofpolycyclic aromatic hydrocarbons: I. Physical model based on chemical kinetics in a twocompartmentsystem. Environmental Toxicology and Chemistry. 16:2283-2295.Kurihara R, Shiraishi F, Tanaka N, Hashimoto S. (2005). Presence and estrogenicity ofanthracene derivatives in coastal Japanese waters. Environmental Toxicology andChemistry. 24:1984-1993.Lampi MA, Huang X-D, El-Alawi YS, McConkey BJ, Dixon DG, Greenberg BM.(2001). Occurrence and toxicity of photomodified polycyclic aromatic hydrocarbonmixtures present in contaminated sediments. In: Greenberg BM, Hull RN, Roberts MH,Gensemer RW, editors. Environmental Toxicology and Risk Assessment: Science, Policy,and Standardization - Implications for Environmental Decisions. American Society forTesting and Materials, West Conshohocken, PA, USA, pp. 211-220.Lampi MA, Gurska J, McDonald KIC, Xie F, Huang X-D, Dixon DG. (2006).Photoinduced toxicity of PAHs to Daphnia magna: UV-mediated effects and the toxicityof PAH photoproducts. Environmental Toxicology and Chemistry. 25:1079-1087.Lampi MA, Gurska J, Huang X-D, Dixon DG, Greenberg BM. (2007). A predictivequantitative structure-activity relationship model for the photoinduced toxicity ofpolycyclic aromatic hydrocarbons to Daphnia magna with the use of factors forphotosensitization and photomodification. Environmental Toxicology and Chemistry.26:406-415.Larson RA, Berenbaum MR. (1988). Environmental phototoxicity. EnvironmentalScience and Technology 22:354-360.Li N, Venkatesan MI, Miguel A, Kaplan R, Gujuluva C, Alam J, Nel A. 2000. Inductionof heme oxygenase-1 expression in macrophages by diesel exhaust particle chemicals andquinones via the antioxidant-responsive element. Journal of Immunology. 165:3393-3401.Marvin CH, McCarry BE, Villella J, Allan LM, Bryant DW. (2000). Chemical andbiological profiles of sediments as indicators of sources of genotoxic contamination inHamilton Harbour. Part I: Analysis of polycyclic aromatic hydrocarbons and thia-arenecompounds. Chemosphere. 41:979-988.Machala M, Giganek M, Blaha L, Minksova K, Vondrack J. (2001). Aryl hydrocarbonreceptor-mediated and estrogenic activities of oxygenated polycyclic aromatic124


hydrocarbons and azaarenes originally identified in extracts of river sediments.Environmental Toxicology and Chemistry. 20:2736-2743.MacLeod M, McKone TE, Foster K, Maddalena RL, Parkerton TF, Mackay D. (2004).Applications of contaminant fate and bioaccumulation models in assessing ecologicalrisks of chemicals: A case study for gasoline hydrocarbons. Environmental Science andTechnology. 38:6225-6233.Mallakin A, Dixon DG, Greenberg BM. (2000). Pathway of anthracene modificatonunder simulated solar radiation. Chemosphere. 40:1435-1441.McConkey BJ, Duxbury CL, Dixon DG, Greenberg BM. (1997). Toxicity of a PAHphotooxidation product to the bacteria Photobacterium phosphoreum and the duckweedLemna gibba: Effects of phenanthrene and its primary photoproduct,phenanthrenequinone. Environmental Toxicology and Chemistry. 16:892-899.McCoy EC, Hyman J, Rosenkranz HS. (1979). Conversion of Environmental Pollutant toMutagens by Visible Light. Biochemical and Biophysical Research Communications.89:729-734.McGrath JA, Parkerton TF, Di Toro DM. (2004). Application of the narcosis target lipidmodel to algal toxicity and deriving predicted no effect concentrations. EnvironmentalToxicology and Chemistry. 23:2503–2517.Mekenyan OG, Ankley GT, Veith GD, Call DJ. (1994). QSARs for photoinducedtoxicity: I. Acute lethality of polycyclic aromatic hydrocarbons to Daphnia magna.Chemosphere 28:567-582.Mekenyan O, Nikolova N, Schmieder P, Veith G. (2004). COREPA-M: A multidimensional formulation of COREPA. QSAR and Combinatorial Science. 23:5-18.Mekenyan O, Serafimova R, Todorov M, Stoeva S, Aptula A, Jacob E, Finking R.(2007). Identification of the structural requirements for chromosomal aberration, byincorporating molecular flexibility and metabolic activation of chemicals. ChemicalResearch in Toxicology. 20:1927–1941.Newsted JL, Giesy JP. (1987). Predictive models for photoinduced acute toxicity ofpolycyclic aromatic hydrocarbons to Daphnia magna Strauss (Cladocera, Crustacea).Environmental Toxicology and Chemistry.6:445-461.Nikolaou K, Masclet P, Mouvier G. (1984). Sources and chemical reactivity ofpolynuclear aromatic hydrocarbons in the atmosphere - a critical review. Science of theTotal Environment. 32:103-132.Papadoyannis IN, Xotou A, Samanidou VF. (2002). Development of a solid phaseextraction protocol for the simultaneous determination of anthracene and its oxidation125


products in surface waters by reversed-phase HPLC. Journal of Liquid Chromatographyand Related Technologies. 25:2635-2653.Patlewicz G, Dimitrov SD, Low LK, Kern PS, Dimitrova GD, Comber MHI, Aptula AO,Phillips RD, Niemela J, Madsen C, Wedebye EB, Roberts DW, Bailey PT, MekenyanOG. (2007). TIMES-SS—A promising tool for the assessment of skin sensitizationhazard. A characterization with respect to the OECD validation principles for (Q)SARsand an external evaluation for predictivity. Regulatory Toxicology and Pharmacology48:225–239.Prince RC, Walters CC. 2006. Biodegradation of Oil Hydrocarbons and Its Implicationsfor Source Identification. In: Wang Z, Stout SA, (Eds.) Oil Spill Environmental ForensicsAcademic Press. p 349-379.Roberts DW, Patlewicz G, Dimitrov SD, Low LK, Kern PS, Dimitrova GD, ComberMHI, Aptula AO, Phillips RD, Niemela J, Madsen C, Wedebye EB, Bailey PT,Mekenyan OG. (2007). TIMES-SS - A mechanistic evaluation of an external validationstudy using reaction chemistry principles. Chemical Research in Toxicology. 20:1321-1330.Russom CL, Bradbury SP, Broderius SJ, Drummond RA, Hammermeister DE. (1997).Predicting modes of toxic action from chemical structure: acute toxicity in Fatheadminnow (Pimephales Promelas). Part I - development of a rule-based expert system.Environmental Toxicology and Chemistry. 16:948-967.Serafimova R, Todorov M, Pavlov T, Kotov S, Jacob E, Aptula A, Mekenyan O. (2006).Identification of the structural requirements for mutagencitiy, by incorporating molecularflexibility and metabolic activation of chemicals II. General Ames mutagenicity model.Chemical Research in Toxicology. 20:662 -676.Serafimova R, Todorov M, Nedelcheva D, Pavlov T, Akahori Y, Nakai M, Mekenyan O.(2007). QSAR and mechanistic interpretation of estrogen receptor binding. SAR andQSAR in Environmental Research. 18:1-33.Shimada H, Oginuma M, Hara A, Imamura Y. (2004). 9,10-Phenanthrenequinone, acomponent of diesel exhaust particles, inhibits the reduction of 4-benzoylpyridine and alltrans-retinaland mediates superoxide formation through its redox cycling in pig heart.Chemical Research in Toxicology. 17:1145-1150.US Environmental Protection Agency. (2009). EPISuite v4.0.http://www.epa.gov/oppt/exposure/pubs/episuitedl.htmvan der Meer JR, de Vos WM, Harayama S, Zehnder AJB. (1992). Molecularmechanisms of genetic adaptation to xenobiotic compounds. Microbiological Reviews.56:677-694.126


Verhaar HJM, van Leeuwen CJ, Hermens JLM. (1992). Classifying environmentalpollutants. 1. Structure-activity relationships for prediction of aquatic toxicity.Chemosphere. 25:471-491.Volkering F, Breure AM. (2003) Biodegradation and general aspects of bioavailability. InPAHs: An ecotoxicological perspective, Douben PET (Ed.). Wiley, West Sussex, UK, pp.81-96Wiegman S, Termeer JAG, Verheul T, Kraak MHS, de Voogt P, Admiraal W. (2002).UV absorbance -dependent toxicity of acridine to the marine diatom Phaecodactylumtricornutum. Environmental Science and Technology. 36:908-913.Xie F, Koziar S, Lampi MA, Dixon DG, Norwood W, Borgmann U, Greenberg BM.(2006). Assessment of the toxicity of mixtures of copper, 9,10-phenanthrenequinone andphenanthrene to D. magna. Environ Toxicol Chem 25:613-622.Zhu H, Li Y, Trush MA. (1995). Characterization of benzo[a]pyrene quinone-inducedtoxicity to primary cultured bone marrow stromal cells from DBA/2 mice: Potential roleof mitochondrial dysfunction. Toxicology and Applied Pharmacology. 130:108-120.127


Heavy Fuel Oil Components2010-08-10 CSR Appendix 6


CONCAWEAQUATIC TOXICITY PREDICTIONSUSING THE PETROTOX MODEL FORPETROL<strong>EU</strong>M SUBSTANCE CATEGORIESReport prepared for CONCAWEbyAaron Redman a , Badri Yadav ba Hydroqual, Providence, Utahb Hydroqual, Mahwah, New JerseyJune 3, 2010CONC.008.006


CONTENTSSectionPage1 INTRODUCTION ............................................................................................................... 1-12 SUMMARY OF COMPOSITION AND TOXICITY PREDICTIONS FORNAPHTHA .......................................................................................................................... 2-13 SUMMARY OF COMPOSITION AND TOXICITY PREDICTIONS FORKEROSINES ........................................................................................................................ 3-14 SUMMARY OF COMPOSITION AND TOXICITY PREDICTIONS FOR MK-1 .......... 4-15 SUMMARY OF COMPOSITION AND TOXICITY PREDICTIONS FORSTRAIGHT-RUN GAS OILS ............................................................................................. 5-16 SUMMARY OF COMPOSITION AND TOXICITY PREDICTIONS FORCRACKED GAS OILS ........................................................................................................ 6-17 SUMMARY OF COMPOSITION AND TOXICITY PREDICTIONS FORVACUUM GAS OILS / HYDROCRACKED / OTHER DISTILLATE FUELS ............... 7-18 SUMMARY OF COMPOSITION AND TOXICITY PREDICTIONS FOR OTHERGAS OILS ............................................................................................................................ 8-19 SUMMARY OF COMPOSITION AND TOXICITY PREDICTIONS FOR HEAVYFUEL OIL COMPONENTS ................................................................................................ 9-110 SUMMARY OF COMPOSITION AND TOXICITY PREDICTIONS FORBITUMEN ......................................................................................................................... 10-111 SUMMARY OF COMPOSITION AND TOXICITY PREDICTIONS FORUNTREATED DISTILLATE AROMATIC EXTRACTS ................................................ 11-112 SUMMARY OF COMPOSITION AND TOXICITY PREDICTIONS FORTREATED DISTILLATE AROMATIC EXTRACTS ..................................................... 12-113 SUMMARY OF COMPOSITION AND TOXICITY PREDICTIONS FOR FOOTSOILS ................................................................................................................................... 13-114 SUMMARY OF COMPOSITION AND TOXICITY PREDICTIONS FOR OTHERLUBRICANT BASE OILS ................................................................................................ 14-1i


CONTENTS (Continued)SectionPage15 SUMMARY OF COMPOSITION AND TOXICITY PREDICTIONS FORPARAFFIN AND HYDROCARBON WAXES ............................................................... 15-116 SUMMARY OF COMPOSITION AND TOXICITY PREDICTIONS FORPETROLATUMS .............................................................................................................. 16-117 SUMMARY OF COMPOSITION AND TOXICITY PREDICTIONS FORRESIDUAL AROMATIC EXTRACTS ............................................................................ 17-118 SUMMARY OF COMPOSITION AND TOXICITY PREDICTIONS FOR SLACKWAXES ............................................................................................................................. 18-119 SUMMARY OF COMPOSITION AND TOXICITY PREDICTIONS FORUNREFINED/ACID-TREATED OILS ............................................................................. 19-120 SUMMARY OF COMPOSITION AND TOXICITY PREDICTIONS FORHIGHLY REFINED MINERAL OILS ............................................................................. 20-1ii


1-1SECTION 11 INTRODUCTIONRefined petroleum substances are complex substances containing numeroushydrocarbon constituents. This poses a challenge for environmental hazard assessmentsincluding toxicity testing. As a result high quality toxicity data may not be available forhazard ranking of petroleum substances. In these instances the PETROTOX model can beused to provide reasonably conservative predictions of acute and chronic toxicity (Redmanet al 2010; HydroQual 2009). However, precedence will be given to experimental data(when available) over predicted values.The PETROTOX model is based on previous work modeling the solubility ofpetroleum substances (Di Toro et al 2007; McGrath et al 2005) and the Target Lipid Modelto predict toxicity of narcotic chemicals (Di Toro et al 2000; McGrath and Di Toro 2009).This report documents the results of PETROTOX predictions for the wide range ofpetroleum substances that are currently under review as part of the chemicals regulationprogram REACH in Europe.Substance categoriesThis report addresses 19 main substance categories that represent major categories ofrefined petroleum substances being managed by CONCAWE in support of REACHrequirements. These categories span a wide range of distillation properties in refinedsubstances from petroleum gases to bitumen. An industry-wide effort was conducted tocharacterize these substances using comprehensive 2D gas chromatography, which wereused as the input to the PETROTOX predictions. The average compositions of all sampleswithin a category are reported in the sections below.Model set-upThe PETROTOX model was designed to predict the results of standardizedlaboratory toxicity testing methods. The default system parameters are, therefore, consistentwith the design of the testing systems as well as the validation of the PETROTOX model(Redman et al 2010). For example, model simulations were performed assuming a 10%headspace to account for volatilization of test substances during exposures. Also,predictions for microbial organisms (e.g., algae and WWTP organisms such as protozoa)were performed assuming a particulate organic carbon content of 2 mg/L. This accountsfor elevated particulate concentrations present during typical test conditions, which canlower the bioavailability of the dissolved hydrocarbons and is consistent with the initialvalidation of the model (Redman et al 2010).


1-2The model predictions include median lethal loadings (LL50) and no observed effectloadings (NOEL) through the use of an acute to chronic ratio (McGrath et al 2004;McGrath and Di Toro 2009). The ACR was applied to the critical body burdens at the timeof the calculations so that NOEL predictions are still affected by the inherent solubilities ofthese complex petroleum substances and are not simply scaled from the acute toxicitypredictions. Toxicity endpoints are reported for several standard test organisms (fish, algae,daphnid, protozoa), which are relatively sensitive and are considered representative of othersensitive aquatic organisms. These predictions, therefore, provide a reasonable initial basisfor evaluating aquatic hazards of the petroleum substances in this study (Redman et al 2007;Di Toro et al 2000; McGrath et al 2004). Based on the initial validation (HydroQual 2009)the predictions and are considered conservative.The term “loading” refers to the insoluble nature of the petroleum substances as wellas the test methods used to generate exposure media (e.g., water accommodated fractions).Due to solubility limitations some petroleum substances are classified as Non-Toxic. This ispresented in the report as the LL50 or NOEL >1000 mg/L, which is the maximum loadingevaluated in PETROTOX (HydroQual 2009). In these cases the maximum Toxic Unit (TU)reached under the simulation conditions is reported for relative comparisons.


1-3ReferencesRedman A, Parkerton T, McGrath J, Di Toro D. 2010. PETROTOX: A Toxicity Model forPetroleum Products. Environ. Toxicol. Chem. in prepHydroQual. 2009. PETROTOX User's Guide Version 3.01. CONC.006McGrath JA, Parkerton TF, Hellweger FL and Di Toro DM. 2005. Validation of thenarcosis target lipid model for petroleum products: Gasoline as a case study. EnvironToxicol Chem 24:2382-2394.Di Toro DM, McGrath JA and Stubblefield WA. 2007. Predicting the toxicity of neat andweathered crude oil: Toxic potential and the toxicity of saturated mixtures. EnvironToxicol Chem 26:24-36.McGrath J and Di Toro D. 2009. Validation of the target lipid model for toxicity assessmentof residual petroleum constituents: monocyclic and polycyclic aromatichydrocarbons. Environ. Toxicol. and Chem. 28(6):1130-1148.Redman A, McGrath J, Febbo E, Parkerton T, Letinski D, Connelly M, Winkelmann D, DiToro D. 2007. Application of the target lipid model for deriving predicted no-effectconcentrations for wastewater organisms. Environ. Toxicol. and Chem.26(11):2317-2331.


2-1SECTION 22 SUMMARY OF COMPOSITION AND TOXICITYPREDICTIONS FOR NAPHTHATable of Toxicity Predictions – based on average composition (see below for details)LL50(mg/L)NOEL(mg/L)Tetrahymena pyriformis (WWTP organism, protozoa) 30.8 6.8Selenastrum capricornutum (algae) 5.8 1.3Onchorhyncus mykiss (fish) 6.8 1.5Daphnia magna (aquatic invertebrate) 11.9 2.7Table of composition (Average of 33 samples)n- i-C# n-P i-P CC5 CC6 i-N Di-N Olefins Olefins PolyN MoAr NMAr DiAr NDiAr PolyArwt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt %4 3.06 1.22 0.00 0.00 0.00 0.00 0.53 0.28 0.00 0.00 0.00 0.00 0.00 0.005 3.15 9.75 0.40 0.00 0.00 0.00 1.48 1.78 0.00 0.00 0.00 0.00 0.00 0.006 2.22 9.51 1.27 1.27 0.00 0.00 0.94 3.56 0.00 1.20 0.00 0.00 0.00 0.007 1.72 4.78 0.69 0.69 0.00 0.69 0.44 1.77 0.00 11.56 0.00 0.00 0.00 0.008 0.89 5.18 0.21 0.21 0.21 0.21 0.09 0.07 0.00 14.32 0.00 0.00 0.00 0.009 0.46 1.15 0.14 0.14 0.14 0.14 0.03 0.03 0.00 4.08 4.08 0.00 0.00 0.0010 0.18 0.32 0.03 0.03 0.03 0.03 0.02 0.02 0.00 0.83 0.83 0.83 0.00 0.0011 0.24 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.10 0.10 0.00 0.0012 0.20 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0013 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00


3-1SECTION 33 SUMMARY OF COMPOSITION AND TOXICITYPREDICTIONS FOR KEROSINESTable of Toxicity Predictions – based on average composition (see below for details)LL50(mg/L)NOEL(mg/L)Tetrahymena pyriformis (WWTP organism, protozoa) 6789 1.64Selenastrum capricornutum (algae) 1.2 0.17Onchorhyncus mykiss (fish) 0.75 0.098Daphnia magna (aquatic invertebrate) 2.8 0.19Table of composition (Average of 33 samples)C# n-P i-P CC5 CC6 i-N Di-N PolyN MoAr NMAr DiAr NDiAr PolyArwt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt %5 0.005 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0006 0.034 0.024 0.020 0.026 0.000 0.000 0.000 0.010 0.000 0.000 0.000 0.0007 0.157 0.170 0.061 0.202 0.041 0.000 0.000 0.147 0.000 0.000 0.000 0.0008 0.671 0.689 0.246 0.331 0.677 0.053 0.000 1.125 0.000 0.000 0.000 0.0009 2.095 2.198 0.300 0.475 2.498 0.365 0.000 3.167 0.248 0.000 0.000 0.00010 3.939 5.321 0.422 0.497 4.581 1.432 0.000 3.134 0.845 0.188 0.000 0.00011 3.978 5.858 0.311 0.360 4.851 2.297 0.000 2.231 1.231 0.556 0.000 0.00012 3.405 4.647 0.221 0.267 4.029 2.116 0.000 1.390 1.217 0.552 0.001 0.00013 2.358 3.936 0.122 0.141 2.761 1.729 0.000 0.866 0.768 0.225 0.007 0.00014 1.278 2.380 0.050 0.066 1.397 0.744 0.007 0.413 0.381 0.073 0.004 0.00015 0.487 1.229 0.016 0.017 0.600 0.210 0.007 0.175 0.137 0.020 0.003 0.00016 0.117 0.462 0.003 0.003 0.168 0.040 0.007 0.054 0.028 0.007 0.000 0.00117 0.029 0.110 0.001 0.001 0.039 0.008 0.007 0.013 0.013 0.000 0.000 0.00118 0.008 0.033 0.000 0.000 0.009 0.002 0.007 0.003 0.006 0.000 0.000 0.00019 0.003 0.014 0.000 0.000 0.003 0.002 0.007 0.001 0.000 0.000 0.000 0.00020 0.001 0.005 0.000 0.000 0.002 0.004 0.007 0.000 0.000 0.000 0.000 0.00021 0.001 0.003 0.000 0.000 0.002 0.006 0.007 0.000 0.000 0.000 0.000 0.00022 0.001 0.003 0.000 0.000 0.009 0.000 0.007 0.000 0.000 0.000 0.000 0.00023 0.000 0.000 0.000 0.000 0.000 0.000 0.007 0.000 0.000 0.000 0.000 0.00024 0.000 0.000 0.000 0.000 0.000 0.000 0.007 0.000 0.000 0.000 0.000 0.00025 0.000 0.000 0.000 0.000 0.000 0.000 0.007 0.000 0.000 0.000 0.000 0.00026 0.000 0.000 0.000 0.000 0.000 0.000 0.007 0.000 0.000 0.000 0.000 0.00027 0.000 0.000 0.000 0.000 0.000 0.000 0.007 0.000 0.000 0.000 0.000 0.00028 0.000 0.000 0.000 0.000 0.000 0.000 0.007 0.000 0.000 0.000 0.000 0.00029 0.000 0.000 0.000 0.000 0.000 0.000 0.007 0.000 0.000 0.000 0.000 0.00030 0.000 0.000 0.000 0.000 0.000 0.000 0.007 0.000 0.000 0.000 0.000 0.000Sum 99.845


4-1SECTION 44 SUMMARY OF COMPOSITION AND TOXICITYPREDICTIONS FOR MK-1Table of Toxicity Predictions – based on average composition (see below for details)LL50(mg/L)NOEL(mg/L)Tetrahymena pyriformis (WWTP organism, protozoa) >1000(0.16 † ) >1000(0.72)Selenastrum capricornutum (algae) >1000(0.84) 0.43Onchorhyncus mykiss (fish) 63.2 0.16Daphnia magna (aquatic invertebrate) >1000(0.59) 0.42† Maximum TU reached under PETROTOX simulation conditionsTable of composition (1 sample)C# n-P i-P CC5 CC6 i-N Di-N PolyN MoAr NMAr DiAr NDiAr PolyArwt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt %5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0006 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0007 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0008 0.020 0.000 0.030 0.080 0.080 0.010 0.000 0.000 0.000 0.000 0.000 0.0009 0.230 0.120 0.040 0.180 0.750 0.210 0.000 0.030 0.000 0.000 0.000 0.00010 1.320 0.850 0.170 0.420 2.570 1.490 0.000 0.090 0.010 0.000 0.000 0.00011 1.970 1.970 0.190 0.390 3.340 3.790 0.000 0.100 0.050 0.000 0.000 0.00012 2.080 2.040 0.220 0.460 3.740 5.280 0.000 0.100 0.120 0.010 0.000 0.00013 2.260 2.820 0.270 0.480 4.590 5.760 0.000 0.120 0.170 0.010 0.005 0.00014 2.160 3.640 0.130 0.480 4.390 5.680 0.000 0.100 0.120 0.040 0.005 0.00515 1.860 4.160 0.140 0.290 3.660 2.680 0.000 0.080 0.080 0.020 0.000 0.00516 1.270 2.040 0.060 0.130 2.460 1.180 0.000 0.050 0.040 0.010 0.000 0.00017 0.650 1.400 0.020 0.040 1.340 0.440 0.000 0.020 0.020 0.010 0.000 0.00018 0.200 1.050 0.010 0.010 0.500 0.140 0.000 0.010 0.010 0.005 0.000 0.00019 0.060 0.840 0.005 0.000 0.160 0.040 0.000 0.005 0.000 0.005 0.000 0.00020 0.020 0.220 0.005 0.000 0.040 0.005 0.000 0.005 0.000 0.000 0.000 0.00021 0.010 0.050 0.000 0.000 0.010 0.005 0.000 0.005 0.000 0.000 0.000 0.00022 0.000 0.020 0.000 0.000 0.005 0.000 0.000 0.005 0.000 0.000 0.000 0.00023 0.000 0.010 0.000 0.000 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.00024 0.000 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00025 0.000 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00026 0.000 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00027 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00028 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00029 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00030 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000Sum 95.430


5-1SECTION 55 SUMMARY OF COMPOSITION AND TOXICITYPREDICTIONS FOR STRAIGHT-RUN GAS OILSTable of Toxicity Predictions – based on average composition (see below for details)LL50(mg/L)NOEL(mg/L)Tetrahymena pyriformis (WWTP organism, protozoa) >1000(0.57 † ) 3.10Selenastrum capricornutum (algae) 2.08 0.15Onchorhyncus mykiss (fish) 1.30 0.068Daphnia magna (aquatic invertebrate) 9.98 0.17†Maximum TU reached under PETROTOX simulation conditionsTable of composition (Average of 8 samples)C# n-P i-P CC5 CC6 i-N Di-N PolyN MoAr NMAr DiAr NDiAr PolyArWt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt %5 0.005 0.000 0.008 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0006 0.028 0.000 0.012 0.018 0.000 0.000 0.000 0.006 0.000 0.000 0.000 0.0007 0.041 0.029 0.010 0.077 0.019 0.000 0.000 0.050 0.000 0.000 0.000 0.0008 0.103 0.069 0.029 0.073 0.147 0.012 0.000 0.168 0.000 0.000 0.000 0.0009 0.212 0.169 0.020 0.070 0.235 0.070 0.000 0.312 0.007 0.000 0.000 0.00010 0.422 0.345 0.062 0.087 0.438 0.275 0.000 0.474 0.067 0.093 0.000 0.00011 0.724 0.598 0.053 0.088 0.679 0.500 0.000 0.470 0.190 0.397 0.000 0.00012 0.802 0.672 0.057 0.089 0.809 0.661 0.000 0.413 0.383 0.809 0.003 0.00013 0.932 0.852 0.065 0.099 0.978 0.955 0.000 0.456 0.531 0.957 0.076 0.00014 1.105 1.088 0.083 0.129 1.110 1.140 0.000 0.441 0.747 0.954 0.295 0.10215 1.386 1.281 0.086 0.163 1.342 1.071 0.000 0.497 0.616 0.789 0.606 0.31516 1.492 1.563 0.077 0.136 1.503 0.998 0.000 0.536 0.674 0.678 0.688 0.50417 1.517 1.337 0.080 0.122 1.598 0.996 0.000 0.543 0.646 0.631 0.601 0.53918 1.402 1.565 0.080 0.104 1.647 1.025 0.000 0.549 0.571 0.556 0.535 0.49519 1.317 2.122 0.080 0.085 1.696 1.062 0.000 0.543 0.475 0.461 0.335 0.36620 1.253 1.938 0.070 0.075 1.458 0.839 0.000 0.491 0.397 0.392 0.223 0.26121 1.075 1.276 0.060 0.075 1.253 0.677 0.000 0.448 0.406 0.312 0.130 0.14422 0.887 0.958 0.048 0.051 1.130 0.474 0.000 0.354 0.329 0.198 0.087 0.10423 0.641 0.851 0.035 0.038 0.849 0.338 0.000 0.275 0.299 0.117 0.049 0.04724 0.446 0.758 0.031 0.023 0.610 0.240 0.000 0.187 0.216 0.106 0.032 0.03725 0.266 0.550 0.017 0.017 0.411 0.157 0.000 0.133 0.138 0.059 0.032 0.02426 0.176 0.380 0.011 0.009 0.288 0.110 0.000 0.070 0.099 0.030 0.018 0.01727 0.110 0.236 0.007 0.008 0.195 0.060 0.000 0.041 0.052 0.037 0.009 0.01628 0.074 0.185 0.007 0.009 0.138 0.030 0.000 0.031 0.027 0.018 0.005 0.00529 0.048 0.127 0.004 0.005 0.095 0.017 0.000 0.014 0.014 0.009 0.004 0.00030 0.026 0.094 0.002 0.002 0.057 0.015 1.899 0.008 0.010 0.008 0.003 0.000Sum 99.306


6-1SECTION 66 SUMMARY OF COMPOSITION AND TOXICITYPREDICTIONS FOR CRACKED GAS OILSTable of Toxicity Predictions – based on average composition (see below for details)LL50(mg/L)NOEL(mg/L)Tetrahymena pyriformis (WWTP organism, protozoa) 1.95 0.24Selenastrum capricornutum (algae) 0.20 0.041Onchorhyncus mykiss (fish) 0.16 0.029Daphnia magna (aquatic invertebrate) 0.32 0.053Table of composition (Average of 4 samples)C# n-P i-P CC5 CC6 i-N Di-N PolyN MoAr NMAr DiAr NDiAr PolyArwt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt %5 0.000 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0006 0.010 0.000 0.010 0.010 0.000 0.000 0.000 0.005 0.000 0.000 0.000 0.0007 0.020 0.025 0.008 0.023 0.013 0.000 0.000 0.100 0.000 0.000 0.000 0.0008 0.028 0.050 0.003 0.018 0.115 0.005 0.000 0.495 0.000 0.000 0.000 0.0009 0.048 0.110 0.008 0.013 0.153 0.023 0.000 1.230 0.145 0.000 0.000 0.00010 0.115 0.220 0.018 0.015 0.243 0.073 0.000 1.828 1.078 0.750 0.000 0.00011 0.193 0.400 0.018 0.020 0.318 0.118 0.000 1.798 3.418 6.030 0.000 0.00012 0.265 0.608 0.030 0.025 0.473 0.195 0.000 1.673 4.183 10.645 0.168 0.00013 0.380 0.993 0.033 0.035 0.768 0.178 0.000 1.590 2.665 8.258 1.500 0.00014 0.445 1.395 0.035 0.025 0.958 0.175 0.000 1.075 1.563 4.388 2.680 0.60015 0.415 1.298 0.025 0.023 0.823 0.143 0.000 0.715 0.575 1.778 2.618 1.74016 0.348 0.995 0.018 0.020 0.620 0.125 0.000 0.473 0.328 0.673 1.573 2.23817 0.285 0.718 0.015 0.010 0.430 0.110 0.000 0.285 0.200 0.320 0.703 1.60518 0.223 0.528 0.010 0.008 0.325 0.108 0.000 0.230 0.115 0.170 0.305 0.78819 0.195 0.415 0.010 0.008 0.240 0.108 0.000 0.148 0.080 0.113 0.110 0.29320 0.190 0.323 0.010 0.008 0.213 0.108 0.000 0.123 0.060 0.085 0.048 0.07321 0.188 0.245 0.010 0.013 0.188 0.085 0.000 0.090 0.055 0.058 0.018 0.00822 0.175 0.198 0.010 0.008 0.188 0.063 0.000 0.078 0.053 0.023 0.008 0.00323 0.148 0.170 0.005 0.008 0.165 0.043 0.000 0.068 0.040 0.013 0.003 0.00024 0.110 0.145 0.005 0.005 0.133 0.025 0.000 0.040 0.025 0.003 0.003 0.00025 0.058 0.118 0.005 0.000 0.093 0.015 0.000 0.028 0.013 0.003 0.000 0.00026 0.033 0.083 0.000 0.003 0.058 0.003 0.000 0.010 0.008 0.000 0.000 0.00027 0.013 0.043 0.000 0.000 0.023 0.003 0.000 0.005 0.003 0.000 0.000 0.00028 0.005 0.025 0.000 0.000 0.013 0.000 0.000 0.000 0.000 0.000 0.000 0.00029 0.003 0.018 0.000 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.00030 0.000 0.005 0.000 0.000 0.000 0.000 0.140 0.000 0.000 0.000 0.000 0.000Sum 99.043


7-1SECTION 77 SUMMARY OF COMPOSITION AND TOXICITYPREDICTIONS FOR VACUUM GAS OILS /HYDROCRACKED /OTHER DISTILLATE FUELSTable of Toxicity Predictions – based on average composition (see below for details)LL50(mg/L)NOEL(mg/L)Tetrahymena pyriformis (WWTP organism, protozoa) >1000(0.60 † ) 3.22Selenastrum capricornutum (algae) 2.20 0.17Onchorhyncus mykiss (fish) 1.49 0.083Daphnia magna (aquatic invertebrate) 10.4 0.20†Maximum TU reached under PETROTOX simulation conditionsTable of composition (Average of 30 samples)C# n-P i-P CC5 CC6 i-N Di-N PolyN MoAr NMAr DiAr NDiAr PolyArwt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt %5 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0006 0.006 0.000 0.003 0.005 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.0007 0.017 0.009 0.029 0.021 0.011 0.000 0.000 0.018 0.000 0.000 0.000 0.0008 0.090 0.069 0.063 0.046 0.129 0.012 0.000 0.188 0.000 0.000 0.000 0.0009 0.335 0.271 0.085 0.050 0.385 0.116 0.000 0.595 0.034 0.000 0.000 0.00010 0.592 0.709 0.113 0.081 0.816 0.497 0.000 0.829 0.396 0.060 0.000 0.00011 0.925 1.047 0.104 0.083 1.263 0.928 0.000 0.793 0.944 0.238 0.000 0.00012 1.024 1.198 0.114 0.081 1.443 1.028 0.000 0.658 1.240 0.480 0.003 0.00013 1.199 1.431 0.108 0.096 1.568 1.219 0.000 0.645 1.154 0.594 0.076 0.00014 1.294 1.595 0.119 0.094 1.532 1.631 0.000 0.593 0.942 0.745 0.282 0.03215 1.405 1.654 0.118 0.109 1.639 1.236 0.000 0.553 0.724 0.562 0.467 0.11916 1.293 1.793 0.097 0.084 1.627 1.016 0.000 0.485 0.549 0.450 0.467 0.24917 1.282 1.438 0.090 0.085 1.670 0.927 0.000 0.449 0.518 0.404 0.411 0.28218 1.121 1.789 0.074 0.072 1.578 0.860 0.000 0.410 0.416 0.319 0.294 0.25819 1.011 2.030 0.064 0.066 1.476 0.837 0.000 0.379 0.369 0.237 0.186 0.20020 0.900 1.621 0.050 0.054 1.284 0.611 0.000 0.323 0.301 0.189 0.134 0.14721 0.773 1.239 0.051 0.049 1.064 0.499 0.000 0.258 0.262 0.149 0.081 0.08822 0.658 0.930 0.037 0.039 0.950 0.331 0.000 0.215 0.208 0.103 0.042 0.05123 0.515 0.834 0.029 0.033 0.749 0.206 0.000 0.175 0.153 0.070 0.027 0.02224 0.383 0.763 0.021 0.021 0.530 0.125 0.000 0.114 0.120 0.051 0.013 0.01425 0.225 0.580 0.013 0.015 0.344 0.074 0.000 0.081 0.072 0.031 0.011 0.00926 0.138 0.398 0.008 0.007 0.209 0.037 0.000 0.043 0.039 0.020 0.005 0.00727 0.071 0.209 0.003 0.004 0.104 0.018 0.000 0.029 0.017 0.016 0.003 0.00228 0.038 0.122 0.002 0.002 0.060 0.007 0.000 0.017 0.010 0.008 0.002 0.00329 0.020 0.066 0.001 0.001 0.032 0.002 0.000 0.010 0.005 0.006 0.001 0.00230 0.011 0.043 0.001 0.001 0.018 0.002 0.629 0.005 0.002 0.004 0.001 0.001Sum 98.160


8-1SECTION 88 SUMMARY OF COMPOSITION AND TOXICITYPREDICTIONS FOR OTHER GAS OILSTable of Toxicity Predictions – based on average composition (see below for details)LL50(mg/L)NOEL(mg/L)Tetrahymena pyriformis (WWTP organism, protozoa) >1000(0.61 † ) 2.49Selenastrum capricornutum (algae) 1.71 0.14Onchorhyncus mykiss (fish) 1.13 0.069Daphnia magna (aquatic invertebrate) 7.39 0.16†Maximum TU reached under PETROTOX simulation conditionsTable of composition (Average of 6 samples)C# n-P i-P CC5 CC6 i-N Di-N PolyN MoAr NMAr DiAr NDiAr PolyArwt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt %5 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0006 0.015 0.000 0.007 0.013 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0007 0.028 0.022 0.012 0.058 0.010 0.000 0.000 0.032 0.000 0.000 0.000 0.0008 0.118 0.072 0.028 0.085 0.167 0.017 0.000 0.207 0.000 0.000 0.000 0.0009 0.453 0.328 0.047 0.083 0.488 0.088 0.000 0.498 0.045 0.000 0.000 0.00010 0.555 0.507 0.082 0.072 0.637 0.382 0.000 0.722 0.380 0.013 0.000 0.00011 0.710 0.652 0.065 0.077 0.785 0.795 0.000 0.722 1.002 0.093 0.000 0.00012 0.837 0.785 0.077 0.083 0.987 1.168 0.000 0.685 1.550 0.365 0.002 0.00013 1.025 1.067 0.090 0.122 1.277 1.645 0.000 0.782 1.602 0.657 0.070 0.00014 1.370 1.395 0.122 0.145 1.685 1.823 0.000 0.767 1.695 0.867 0.277 0.02215 1.610 1.870 0.108 0.145 1.973 1.622 0.000 0.762 1.193 0.825 0.500 0.09016 1.488 1.887 0.090 0.107 1.912 1.272 0.000 0.700 0.993 0.578 0.528 0.18017 1.340 1.540 0.082 0.098 1.792 1.068 0.000 0.633 0.827 0.445 0.358 0.18818 1.173 1.627 0.068 0.075 1.637 0.953 0.000 0.567 0.592 0.333 0.257 0.15519 1.002 1.883 0.068 0.057 1.527 0.837 0.000 0.507 0.435 0.250 0.137 0.09320 0.868 1.738 0.047 0.047 1.207 0.567 0.000 0.422 0.332 0.182 0.087 0.05721 0.687 1.087 0.042 0.047 0.897 0.422 0.000 0.345 0.277 0.128 0.040 0.02022 0.537 0.780 0.033 0.032 0.765 0.277 0.000 0.270 0.240 0.058 0.018 0.00723 0.385 0.628 0.022 0.025 0.563 0.183 0.000 0.210 0.200 0.027 0.003 0.00024 0.272 0.565 0.018 0.012 0.417 0.098 0.000 0.142 0.145 0.013 0.003 0.00025 0.153 0.407 0.012 0.010 0.262 0.072 0.000 0.092 0.095 0.010 0.002 0.00026 0.098 0.267 0.007 0.003 0.178 0.028 0.000 0.048 0.053 0.012 0.000 0.00027 0.050 0.162 0.003 0.003 0.098 0.012 0.000 0.025 0.030 0.010 0.000 0.00028 0.033 0.095 0.003 0.002 0.058 0.005 0.000 0.015 0.010 0.000 0.000 0.00029 0.017 0.062 0.000 0.002 0.033 0.003 0.000 0.005 0.007 0.000 0.000 0.00030 0.007 0.038 0.000 0.000 0.013 0.000 1.393 0.002 0.003 0.000 0.000 0.000Sum 99.747


9-1SECTION 99 SUMMARY OF COMPOSITION AND TOXICITYPREDICTIONS FOR HEAVY FUEL OIL COMPONENTSTable of Toxicity Predictions – based on average composition (see below for details)LL50(mg/L)NOEL(mg/L)Tetrahymena pyriformis (WWTP organism, protozoa) >1000(0.33 † ) 14.9Selenastrum capricornutum (algae) 7.53 0.24Onchorhyncus mykiss (fish) 3.86 0.1Daphnia magna (aquatic invertebrate) >1000(0.99) 0.27†Maximum TU reached under PETROTOX simulation conditionsTable of composition (Average of 9 samples)C# n-P i-P CC5 CC6 i-N Di-N PolyN MoAr NMAr DiAr NDiAr PolyArwt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt %5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0006 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0007 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0008 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0009 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.013 0.007 0.000 0.000 0.00010 0.001 0.001 0.000 0.000 0.002 0.001 0.013 0.053 0.037 0.053 0.000 0.00011 0.005 0.007 0.000 0.000 0.007 0.004 0.013 0.050 0.072 0.154 0.000 0.00012 0.012 0.020 0.000 0.000 0.016 0.009 0.013 0.040 0.092 0.295 0.006 0.00013 0.020 0.033 0.000 0.000 0.030 0.019 0.013 0.039 0.076 0.318 0.087 0.00014 0.031 0.049 0.000 0.000 0.042 0.030 0.074 0.036 0.062 0.275 0.259 0.08215 0.043 0.063 0.000 0.000 0.060 0.032 0.074 0.038 0.056 0.181 0.414 0.42916 0.058 0.086 0.000 0.000 0.076 0.032 0.074 0.044 0.047 0.184 0.422 0.90417 0.086 0.092 0.000 0.000 0.126 0.042 0.074 0.057 0.058 0.159 0.379 1.28418 0.131 0.156 0.000 0.000 0.210 0.075 0.074 0.082 0.069 0.152 0.230 1.43319 0.199 0.211 0.000 0.000 0.297 0.105 0.074 0.105 0.085 0.161 0.170 1.40620 0.277 0.317 0.000 0.000 0.416 0.095 0.089 0.136 0.116 0.173 0.119 1.34321 0.327 0.350 0.000 0.000 0.496 0.077 0.089 0.122 0.098 0.237 0.085 1.14822 0.403 0.459 0.000 0.000 0.607 0.076 0.089 0.137 0.091 0.199 0.074 0.81923 0.446 0.521 0.000 0.000 0.715 0.067 0.089 0.145 0.082 0.204 0.063 0.40024 0.475 0.536 0.000 0.000 0.732 0.068 0.089 0.130 0.084 0.193 0.061 0.18525 0.467 0.614 0.000 0.000 0.710 0.066 0.089 0.131 0.076 0.186 0.047 0.14726 0.442 0.647 0.000 0.000 0.707 0.070 0.089 0.097 0.077 0.163 0.067 0.10127 0.395 0.589 0.000 0.000 0.605 0.068 0.089 0.115 0.067 0.124 0.060 0.04228 0.346 0.561 0.000 0.000 0.586 0.027 0.074 0.107 0.063 0.076 0.055 0.00029 0.292 0.480 0.000 0.000 0.479 0.018 0.013 0.096 0.047 0.000 0.000 0.00030 0.239 0.432 0.000 0.000 0.253 0.000 0.000 0.036 0.000 0.000 0.000 0.000Sum 39.447


10-1SECTION 1010 SUMMARY OF COMPOSITION AND TOXICITYPREDICTIONS FOR BITUMENTable of Toxicity Predictions – based on average composition (see below for details)LL50(mg/L)NOEL(mg/L)Tetrahymena pyriformis (WWTP organism, protozoa) >1000(0.058 † ) >1000(0.27)Selenastrum capricornutum (algae) >1000(0.30) 901Onchorhyncus mykiss (fish) >1000(0.23) >1000(0.82)Daphnia magna (aquatic invertebrate) >1000(0.11) >1000(0.55)†Maximum TU reached under PETROTOX simulation conditionsTable of composition (Average of 2 samples)C# n-P i-P CC5 CC6 i-N Di-N PolyN MoAr NMAr DiAr NDiAr PolyArwt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt %5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0006 0.606 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0007 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0008 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0009 0.000 0.001 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.00010 0.003 0.021 0.000 0.000 0.020 0.008 0.000 0.000 0.000 0.000 0.000 0.00011 0.006 0.017 0.000 0.000 0.015 0.015 0.000 0.000 0.000 0.000 0.000 0.00012 0.000 0.014 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00013 0.002 0.003 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.00014 0.003 0.005 0.001 0.001 0.008 0.008 0.000 0.000 0.000 0.000 0.000 0.00015 0.007 0.014 0.003 0.003 0.019 0.025 0.000 0.000 0.000 0.000 0.000 0.00016 0.017 0.039 0.007 0.007 0.055 0.053 0.000 0.000 0.000 0.000 0.000 0.00017 0.039 0.105 0.003 0.003 0.066 0.039 0.000 0.000 0.000 0.000 0.000 0.00018 0.030 0.065 0.004 0.004 0.029 0.019 0.000 0.000 0.000 0.000 0.000 0.00019 0.029 0.045 0.004 0.004 0.027 0.020 0.000 0.000 0.000 0.000 0.000 0.00020 0.043 0.033 0.007 0.007 0.031 0.029 0.000 0.000 0.000 0.000 0.000 0.00021 0.066 0.046 0.011 0.011 0.067 0.046 0.000 0.000 0.000 0.000 0.000 0.00022 0.094 0.145 0.010 0.010 0.068 0.042 0.000 0.000 0.000 0.000 0.000 0.00023 0.085 0.127 0.010 0.010 0.060 0.046 0.000 0.000 0.000 0.000 0.000 0.00024 0.072 0.145 0.010 0.010 0.062 0.049 0.000 0.000 0.000 0.000 0.000 0.00025 0.029 0.105 0.010 0.010 0.064 0.056 0.000 0.000 0.000 0.000 0.000 0.00026 0.056 0.105 0.014 0.014 0.063 0.064 0.000 0.000 0.000 0.000 0.000 0.00027 0.039 0.146 0.016 0.016 0.083 0.092 0.000 0.000 0.000 0.000 0.000 0.00028 0.066 0.172 0.016 0.016 0.088 0.087 0.000 0.000 0.000 0.000 0.000 0.00029 0.088 0.193 0.012 0.012 0.089 0.098 0.000 0.000 0.000 0.000 0.000 0.00030 0.068 0.231 0.016 0.016 0.090 0.162 0.000 0.000 0.000 0.000 0.000 0.000Sum 5.498


11-1SECTION 1111 SUMMARY OF COMPOSITION AND TOXICITYPREDICTIONS FOR UNTREATED DISTILLATE AROMATICEXTRACTSTable of Toxicity Predictions – based on average composition (see below for details)LL50(mg/L)NOEL(mg/L)Tetrahymena pyriformis (WWTP organism, protozoa) >1000(0.076 † ) >1000(0.34)Selenastrum capricornutum (algae) >1000(0.39) 33.06Onchorhyncus mykiss (fish) >1000(0.38) 20.01Daphnia magna (aquatic invertebrate) >1000(0.22) >1000(0.97)†Maximum TU reached under PETROTOX simulation conditionsTable of composition (Average of 5 samples)C# n-P i-P CC5 CC6 i-N Di-N PolyN MoAr NMAr DiAr NDiAr PolyArwt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt %5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0006 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0007 0.000 0.000 0.010 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0008 0.000 0.001 0.010 0.010 0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.0009 0.000 0.000 0.010 0.010 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.00010 0.000 0.001 0.010 0.010 0.001 0.001 0.000 0.000 0.002 0.000 0.000 0.00011 0.002 0.001 0.010 0.010 0.001 0.001 0.000 0.001 0.000 0.001 0.000 0.00012 0.002 0.002 0.010 0.010 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.00013 0.001 0.002 0.010 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.251 0.25614 0.000 0.000 0.010 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00015 0.000 0.000 0.010 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00116 0.000 0.000 0.010 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.03417 0.001 0.000 0.010 0.010 0.000 0.000 0.000 0.001 0.004 0.000 0.000 0.12218 0.004 0.000 0.010 0.010 0.006 0.006 0.000 0.021 0.036 0.001 0.000 0.39719 0.021 0.009 0.010 0.010 0.029 0.032 0.000 0.100 0.097 0.017 0.003 0.81120 0.076 0.039 0.010 0.010 0.066 0.074 0.000 0.220 0.209 0.085 0.019 1.36521 0.154 0.094 0.010 0.010 0.158 0.119 0.000 0.362 0.316 0.172 0.102 1.44522 0.247 0.178 0.010 0.010 0.237 0.134 0.000 0.422 0.306 0.322 0.287 1.69123 0.342 0.309 0.010 0.010 0.271 0.184 0.000 0.426 0.231 0.287 0.549 1.59524 0.382 0.322 0.010 0.010 0.298 0.191 0.000 0.341 0.226 0.158 0.608 1.00025 0.278 0.458 0.010 0.010 0.356 0.208 0.000 0.354 0.186 0.119 0.434 0.65626 0.380 0.690 0.011 0.011 0.380 0.205 0.000 0.363 0.244 0.092 0.240 0.46327 0.193 0.625 0.011 0.011 0.280 0.245 0.000 0.331 0.311 0.090 0.182 0.57328 0.294 0.641 0.011 0.011 0.335 0.251 0.000 0.374 0.423 0.091 0.164 0.48829 0.221 0.496 0.012 0.012 0.285 0.322 0.000 0.378 0.502 0.102 0.161 0.34930 0.135 0.525 0.013 0.013 0.335 0.462 0.000 0.404 0.000 0.188 0.184 0.411Sum 36.855


12-1SECTION 1212 SUMMARY OF COMPOSITION AND TOXICITYPREDICTIONS FOR TREATED DISTILLATE AROMATICEXTRACTSTable of Toxicity Predictions – (only one sample)LL50(mg/L)NOEL(mg/L)Tetrahymena pyriformis (WWTP organism, protozoa) >1000(0.13 † ) >1000(0.55)Selenastrum capricornutum (algae) >1000(0.64) 17.5Onchorhyncus mykiss (fish) >1000(0.50) 27Daphnia magna (aquatic invertebrate) >1000(0.28) 122†Maximum TU reached under PETROTOX simulation conditionsTable of composition (1 sample)C# n-P i-P CC5 CC6 i-N Di-N PolyN MoAr NMAr DiAr NDiAr PolyArwt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt %5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0006 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0007 0.000 0.000 0.005 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0008 0.000 0.000 0.005 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0009 0.000 0.000 0.005 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00010 0.000 0.000 0.005 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00011 0.000 0.000 0.005 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00012 0.000 0.000 0.005 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00013 0.000 0.000 0.005 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.480 0.47114 0.000 0.000 0.005 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00015 0.000 0.000 0.005 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00016 0.000 0.000 0.005 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00317 0.000 0.000 0.005 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.01118 0.000 0.000 0.005 0.005 0.000 0.001 0.000 0.003 0.006 0.000 0.000 0.01419 0.002 0.000 0.005 0.005 0.005 0.005 0.000 0.012 0.005 0.003 0.000 0.04120 0.004 0.007 0.005 0.005 0.004 0.005 0.000 0.010 0.010 0.006 0.001 0.07921 0.005 0.008 0.005 0.005 0.011 0.009 0.000 0.022 0.019 0.007 0.010 0.08122 0.010 0.015 0.005 0.005 0.017 0.012 0.000 0.031 0.040 0.014 0.008 0.13123 0.020 0.020 0.005 0.005 0.028 0.029 0.000 0.072 0.046 0.029 0.017 0.18524 0.038 0.038 0.005 0.005 0.042 0.042 0.000 0.081 0.075 0.026 0.035 0.20325 0.040 0.055 0.005 0.005 0.056 0.061 0.000 0.127 0.093 0.035 0.046 0.30926 0.063 0.096 0.005 0.005 0.065 0.078 0.000 0.190 0.175 0.049 0.048 0.37827 0.059 0.103 0.005 0.005 0.125 0.130 0.000 0.225 0.301 0.073 0.075 0.71328 0.088 0.162 0.005 0.005 0.099 0.216 0.000 0.368 0.523 0.091 0.130 0.80729 0.119 0.181 0.005 0.005 0.207 0.397 0.000 0.514 0.858 0.116 0.182 0.51330 0.097 0.356 0.005 0.005 0.384 0.831 0.000 0.748 0.000 0.277 0.225 0.603Sum 15.750


13-1SECTION 1313 SUMMARY OF COMPOSITION AND TOXICITYPREDICTIONS FOR FOOTS OILSTable of Toxicity Predictions – based on average composition (see below for details)LL50(mg/L)NOEL(mg/L)Tetrahymena pyriformis (WWTP organism, protozoa) >1000(0.013 † ) >1000(0.056)Selenastrum capricornutum (algae) >1000(0.065) >1000(0.29)Onchorhyncus mykiss (fish) >1000(0.049) >1000(0.176)Daphnia magna (aquatic invertebrate) >1000(0.029) >1000(0.113)†Maximum TU reached under PETROTOX simulation conditionsTable of composition (Average of 2 samples)C# n-P i-P CC5 CC6 i-N Di-N PolyN MoAr NMAr DiAr NDiAr PolyArwt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt %5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0006 0.149 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0007 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0008 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0009 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00010 0.000 0.000 0.000 0.000 0.001 0.002 0.000 0.000 0.000 0.000 0.000 0.00011 0.000 0.002 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.00012 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00013 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00014 0.000 0.000 0.000 0.000 0.001 0.002 0.000 0.000 0.000 0.000 0.000 0.00015 0.001 0.003 0.000 0.000 0.003 0.004 0.000 0.000 0.000 0.000 0.000 0.00016 0.002 0.005 0.001 0.001 0.006 0.007 0.000 0.000 0.000 0.000 0.000 0.00017 0.002 0.011 0.001 0.001 0.007 0.006 0.000 0.000 0.000 0.000 0.000 0.00018 0.007 0.011 0.002 0.002 0.010 0.009 0.000 0.000 0.000 0.000 0.000 0.00019 0.064 0.024 0.002 0.002 0.013 0.011 0.000 0.000 0.000 0.000 0.000 0.00020 0.568 0.094 0.008 0.008 0.032 0.028 0.000 0.000 0.000 0.000 0.000 0.00021 3.090 0.118 0.015 0.015 0.127 0.073 0.000 0.000 0.000 0.000 0.000 0.00022 8.541 0.568 0.032 0.032 0.685 0.123 0.000 0.000 0.000 0.000 0.000 0.00023 9.047 1.199 0.060 0.060 0.376 0.237 0.000 0.000 0.000 0.000 0.000 0.00024 9.511 4.282 0.062 0.062 0.426 0.338 0.000 0.000 0.000 0.000 0.000 0.00025 8.800 3.686 0.049 0.049 0.626 0.328 0.000 0.000 0.000 0.000 0.000 0.00026 7.263 3.472 0.059 0.059 0.864 0.270 0.000 0.000 0.000 0.000 0.000 0.00027 5.050 3.032 0.063 0.063 1.189 0.288 0.000 0.000 0.000 0.000 0.000 0.00028 3.682 2.376 0.070 0.070 1.163 0.263 0.000 0.000 0.000 0.000 0.000 0.00029 2.620 1.957 0.038 0.038 1.148 0.240 0.000 0.000 0.000 0.000 0.000 0.00030 1.297 1.399 0.036 0.036 0.479 0.219 0.000 0.000 0.000 0.000 0.000 0.000Sum 92.535


14-1SECTION 1414 SUMMARY OF COMPOSITION AND TOXICITYPREDICTIONS FOR OTHER LUBRICANT BASE OILSTable of Toxicity Predictions – based on average composition (see below for details)LL50(mg/L)NOEL(mg/L)Tetrahymena pyriformis (WWTP organism, protozoa) >1000(0.016 † ) >1000(0.058)Selenastrum capricornutum (algae) >1000(0.066) >1000(0.291)Onchorhyncus mykiss (fish) >1000(0.088) >1000(0.35)Daphnia magna (aquatic invertebrate) >1000(0.046) >1000(0.211)†Maximum TU reached under PETROTOX simulation conditionsTable of composition (Average of 14 samples)C# n-P i-P CC5 CC6 i-N Di-N PolyN MoAr NMAr DiAr NDiAr PolyArwt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt %5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0006 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.015 0.000 0.000 0.000 0.0007 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0008 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0009 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00011 0.000 0.001 0.000 0.000 0.001 0.001 0.000 0.000 0.001 0.000 0.000 0.00012 0.001 0.002 0.000 0.000 0.003 0.001 0.000 0.001 0.001 0.001 0.001 0.00013 0.003 0.007 0.001 0.001 0.006 0.004 0.001 0.002 0.006 0.009 0.004 0.00014 0.008 0.013 0.002 0.002 0.015 0.014 0.003 0.005 0.022 0.027 0.010 0.00215 0.025 0.037 0.007 0.007 0.048 0.037 0.011 0.023 0.037 0.024 0.029 0.00516 0.060 0.077 0.012 0.012 0.107 0.058 0.023 0.042 0.047 0.032 0.039 0.01617 0.200 0.181 0.025 0.025 0.220 0.102 0.074 0.060 0.057 0.044 0.038 0.03118 0.353 0.307 0.054 0.054 0.394 0.193 0.147 0.093 0.077 0.061 0.040 0.03919 0.364 0.617 0.083 0.083 0.529 0.317 0.226 0.120 0.116 0.097 0.049 0.05020 0.595 0.874 0.142 0.142 0.726 0.458 0.325 0.176 0.163 0.133 0.063 0.09621 0.778 1.185 0.132 0.132 1.162 0.576 0.402 0.259 0.206 0.228 0.087 0.06722 0.973 1.642 0.186 0.186 1.583 0.627 0.477 0.374 0.354 0.312 0.112 0.07623 1.120 1.934 0.229 0.229 1.669 0.883 0.553 0.472 0.476 0.332 0.145 0.05724 1.008 1.955 0.216 0.216 1.552 0.880 0.526 0.579 0.524 0.365 0.164 0.06125 0.808 1.805 0.149 0.149 1.474 0.870 0.458 0.491 0.537 0.396 0.178 0.06926 0.772 1.807 0.163 0.163 1.126 0.739 0.453 0.512 0.637 0.439 0.192 0.07427 0.671 1.488 0.141 0.141 0.768 0.765 0.519 0.388 0.663 0.368 0.206 0.01528 0.628 1.296 0.131 0.131 1.054 0.647 0.418 0.325 0.558 0.330 0.079 0.00029 0.637 1.018 0.089 0.089 0.830 0.667 0.368 0.286 0.465 0.000 0.000 0.00030 0.435 0.945 0.077 0.077 0.658 0.761 0.000 0.232 0.344 0.000 0.000 0.000Sum 72.858


15-1SECTION 1515 SUMMARY OF COMPOSITION AND TOXICITYPREDICTIONS FOR PARAFFIN AND HYDROCARBON WAXESTable of Toxicity Predictions – based on average composition (see below for details)LL50(mg/L)NOEL(mg/L)Tetrahymena pyriformis (WWTP organism, protozoa) >1000(0.031 † ) >1000(0.125)Selenastrum capricornutum (algae) >1000(0.143) >1000(0.566)Onchorhyncus mykiss (fish) >1000(0.11) >1000(0.462)Daphnia magna (aquatic invertebrate) >1000(0.066) >1000(0.241)†Maximum TU reached under PETROTOX simulation conditionsTable of composition (Average of 2 samples)C# n-P i-P CC5 CC6 i-N Di-N PolyN MoAr NMAr DiAr NDiAr PolyArwt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt %5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0006 0.291 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0007 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0008 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0009 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00011 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00012 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00013 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00014 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00015 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00016 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00017 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00018 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00019 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00020 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00021 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00022 0.018 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00023 0.039 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.00024 0.113 0.006 0.002 0.002 0.004 0.006 0.000 0.000 0.000 0.000 0.000 0.00025 0.216 0.017 0.000 0.000 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.00026 0.355 0.016 0.000 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.00027 0.577 0.032 0.000 0.000 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.00028 0.991 0.062 0.001 0.001 0.011 0.008 0.000 0.000 0.000 0.000 0.000 0.00029 1.869 0.142 0.004 0.004 0.069 0.015 0.000 0.000 0.000 0.000 0.000 0.00030 2.918 0.362 0.087 0.087 0.137 0.019 0.000 0.000 0.000 0.000 0.000 0.000Sum 8.500


16-1SECTION 1616 SUMMARY OF COMPOSITION AND TOXICITYPREDICTIONS FOR PETROLATUMSTable of Toxicity Predictions – based on average composition (see below for details)LL50(mg/L)NOEL(mg/L)Tetrahymena pyriformis (WWTP organism, protozoa) >1000(0.017 † ) >1000(0.065)Selenastrum capricornutum (algae) >1000(0.073) >1000(0.337)Onchorhyncus mykiss (fish) >1000(0.054) >1000(0.265)Daphnia magna (aquatic invertebrate) >1000(0.034) >1000(0.167)†Maximum TU reached under PETROTOX simulation conditionsTable of composition (Average of 2 samples)C# n-P i-P CC5 CC6 i-N Di-N PolyN MoAr NMAr DiAr NDiAr PolyArwt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt %5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0006 0.170 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0007 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0008 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0009 0.000 0.002 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.00010 0.001 0.004 0.000 0.000 0.005 0.009 0.000 0.000 0.000 0.000 0.000 0.00011 0.001 0.006 0.000 0.000 0.005 0.007 0.000 0.000 0.000 0.000 0.000 0.00012 0.001 0.005 0.001 0.001 0.006 0.008 0.000 0.000 0.000 0.000 0.000 0.00013 0.002 0.007 0.001 0.001 0.010 0.018 0.000 0.000 0.000 0.000 0.000 0.00014 0.001 0.010 0.001 0.001 0.011 0.015 0.000 0.000 0.000 0.000 0.000 0.00015 0.005 0.013 0.002 0.002 0.021 0.024 0.000 0.000 0.000 0.000 0.000 0.00016 0.008 0.025 0.002 0.002 0.027 0.022 0.000 0.000 0.000 0.000 0.000 0.00017 0.019 0.031 0.004 0.004 0.037 0.025 0.000 0.000 0.000 0.000 0.000 0.00018 0.035 0.044 0.009 0.009 0.059 0.040 0.000 0.000 0.000 0.000 0.000 0.00019 0.070 0.081 0.036 0.036 0.146 0.112 0.000 0.000 0.000 0.000 0.000 0.00020 0.275 0.253 0.128 0.128 0.425 0.302 0.000 0.000 0.000 0.000 0.000 0.00021 0.357 0.594 0.101 0.101 0.789 0.370 0.000 0.000 0.000 0.000 0.000 0.00022 0.499 0.914 0.148 0.148 0.933 0.359 0.000 0.000 0.000 0.000 0.000 0.00023 0.382 0.969 0.173 0.173 0.995 0.540 0.000 0.000 0.000 0.000 0.000 0.00024 0.650 1.322 0.212 0.212 1.194 0.716 0.000 0.000 0.000 0.000 0.000 0.00025 0.753 1.344 0.200 0.200 1.290 0.842 0.000 0.000 0.000 0.000 0.000 0.00026 1.057 1.461 0.216 0.216 1.071 0.792 0.000 0.000 0.000 0.000 0.000 0.00027 0.944 1.540 0.180 0.180 0.971 0.801 0.000 0.000 0.000 0.000 0.000 0.00028 0.977 1.175 0.158 0.158 0.769 0.570 0.000 0.000 0.000 0.000 0.000 0.00029 0.809 0.983 0.123 0.123 0.865 0.508 0.000 0.000 0.000 0.000 0.000 0.00030 0.642 0.927 0.115 0.115 0.670 0.636 0.000 0.000 0.000 0.000 0.000 0.000Sum 40.000


17-1SECTION 1717 SUMMARY OF COMPOSITION AND TOXICITYPREDICTIONS FOR RESIDUAL AROMATIC EXTRACTSTable of Toxicity Predictions – (only one sample)LL50(mg/L)NOEL(mg/L)Tetrahymena pyriformis (WWTP organism, protozoa) >1000(0.088 † ) >1000(0.391)Selenastrum capricornutum (algae) >1000(0.45) 34.9Onchorhyncus mykiss (fish) >1000(0.343) 62.97Daphnia magna (aquatic invertebrate) >1000(0.202) >1000(0.88)†Maximum TU reached under PETROTOX simulation conditionsTable of composition (1 sample)C# n-P i-P CC5 CC6 i-N Di-N PolyN MoAr NMAr DiAr NDiAr PolyArwt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt %5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0006 0.000 0.009 0.001 0.001 0.152 0.000 0.000 0.000 0.000 0.000 0.000 0.0007 0.000 0.000 0.004 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0008 0.000 0.000 0.004 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0009 0.000 0.000 0.004 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00010 0.000 0.000 0.004 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00011 0.000 0.000 0.004 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00012 0.000 0.000 0.004 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00013 0.000 0.000 0.004 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.301 0.28514 0.000 0.000 0.004 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00015 0.000 0.000 0.004 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00016 0.000 0.000 0.004 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00017 0.000 0.000 0.004 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00018 0.000 0.000 0.004 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.04019 0.000 0.000 0.004 0.004 0.000 0.000 0.000 0.000 0.005 0.000 0.000 0.06120 0.002 0.000 0.004 0.004 0.005 0.009 0.000 0.029 0.030 0.002 0.000 0.06621 0.010 0.007 0.004 0.004 0.021 0.020 0.000 0.043 0.037 0.023 0.000 0.10222 0.018 0.019 0.004 0.004 0.030 0.020 0.000 0.058 0.049 0.031 0.034 0.10123 0.035 0.032 0.004 0.004 0.040 0.032 0.000 0.083 0.073 0.037 0.046 0.15124 0.053 0.040 0.004 0.004 0.063 0.060 0.000 0.125 0.117 0.043 0.061 0.15625 0.073 0.062 0.004 0.004 0.090 0.082 0.000 0.169 0.142 0.055 0.090 0.12926 0.097 0.099 0.004 0.004 0.101 0.095 0.000 0.235 0.233 0.067 0.102 0.16927 0.117 0.106 0.004 0.004 0.117 0.133 0.000 0.223 0.310 0.084 0.135 0.40028 0.138 0.149 0.004 0.004 0.138 0.119 0.000 0.245 0.413 0.073 0.191 0.40329 0.179 0.109 0.004 0.004 0.146 0.181 0.000 0.272 0.556 0.079 0.156 0.24430 0.201 0.140 0.004 0.004 0.294 0.441 0.000 0.407 0.000 0.167 0.152 0.372Sum 12.750


18-1SECTION 1818 SUMMARY OF COMPOSITION AND TOXICITYPREDICTIONS FOR SLACK WAXESTable of Toxicity Predictions – based on average composition (see below for details)LL50(mg/L)NOEL(mg/L)Tetrahymena pyriformis (WWTP organism, protozoa) >1000(0.009 † ) >1000(0.036)Selenastrum capricornutum (algae) >1000(0.042) >1000(0.194)Onchorhyncus mykiss (fish) >1000(0.031) >1000(0.149)Daphnia magna (aquatic invertebrate) >1000(0.019) >1000(0.067)†Maximum TU reached under PETROTOX simulation conditionsTable of composition (Average of 6 samples)C# n-P i-P CC5 CC6 i-N Di-N PolyN MoAr NMAr DiAr NDiAr PolyArwt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt %5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0006 0.082 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0007 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0008 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0009 0.000 0.001 0.000 0.000 0.002 0.002 0.000 0.000 0.000 0.000 0.000 0.00010 0.000 0.004 0.000 0.000 0.002 0.002 0.000 0.000 0.000 0.000 0.000 0.00011 0.000 0.001 0.000 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.00012 0.000 0.002 0.001 0.001 0.002 0.004 0.000 0.000 0.000 0.000 0.000 0.00013 0.001 0.005 0.000 0.000 0.004 0.008 0.000 0.000 0.000 0.000 0.000 0.00014 0.001 0.007 0.000 0.000 0.004 0.007 0.000 0.000 0.000 0.000 0.000 0.00015 0.001 0.006 0.001 0.001 0.005 0.006 0.000 0.000 0.000 0.000 0.000 0.00016 0.004 0.009 0.001 0.001 0.007 0.006 0.000 0.000 0.000 0.000 0.000 0.00017 0.020 0.016 0.001 0.001 0.011 0.006 0.000 0.000 0.000 0.000 0.000 0.00018 0.124 0.035 0.003 0.003 0.033 0.012 0.000 0.000 0.000 0.000 0.000 0.00019 0.422 0.137 0.004 0.004 0.259 0.017 0.000 0.000 0.000 0.000 0.000 0.00020 0.625 0.220 0.007 0.007 0.524 0.022 0.000 0.000 0.000 0.000 0.000 0.00021 1.261 0.226 0.004 0.004 0.053 0.020 0.000 0.000 0.000 0.000 0.000 0.00022 1.539 0.347 0.007 0.007 0.281 0.020 0.000 0.000 0.000 0.000 0.000 0.00023 1.221 0.606 0.014 0.014 0.102 0.032 0.000 0.000 0.000 0.000 0.000 0.00024 1.562 1.108 0.014 0.014 0.133 0.045 0.000 0.000 0.000 0.000 0.000 0.00025 1.376 1.088 0.010 0.010 0.160 0.049 0.000 0.000 0.000 0.000 0.000 0.00026 1.413 1.194 0.014 0.014 0.172 0.111 0.000 0.000 0.000 0.000 0.000 0.00027 1.198 1.358 0.016 0.016 0.271 0.076 0.000 0.000 0.000 0.000 0.000 0.00028 1.141 1.369 0.021 0.021 0.370 0.078 0.000 0.000 0.000 0.000 0.000 0.00029 1.117 1.572 0.023 0.023 0.631 0.103 0.000 0.000 0.000 0.000 0.000 0.00030 1.010 1.699 0.056 0.056 0.543 0.151 0.000 0.000 0.000 0.000 0.000 0.000Sum 29.872


19-1SECTION 1919 SUMMARY OF COMPOSITION AND TOXICITYPREDICTIONS FOR UNREFINED/ACID-TREATED OILSTable of Toxicity Predictions – based on average composition (see below for details)LL50(mg/L)NOEL(mg/L)Tetrahymena pyriformis (WWTP organism, protozoa) >1000(0.048 † ) >1000(0.215)Selenastrum capricornutum (algae) >1000(0.249) 104.3Onchorhyncus mykiss (fish) >1000(0.315) 3.592Daphnia magna (aquatic invertebrate) >1000(0.179) >1000(0.799)†Maximum TU reached under PETROTOX simulation conditionsTable of composition (Average of 6 samples)C# n-P i-P CC5 CC6 i-N Di-N PolyN MoAr NMAr DiAr NDiAr PolyArwt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt %5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0006 0.000 0.003 0.000 0.000 0.004 0.000 0.000 0.001 0.000 0.000 0.000 0.0007 0.000 0.001 0.018 0.018 0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.0008 0.000 0.001 0.018 0.018 0.001 0.000 0.000 0.004 0.000 0.000 0.000 0.0009 0.000 0.002 0.018 0.018 0.001 0.001 0.000 0.005 0.001 0.000 0.000 0.00010 0.001 0.003 0.018 0.018 0.004 0.003 0.000 0.001 0.001 0.001 0.000 0.00011 0.001 0.002 0.018 0.018 0.003 0.003 0.000 0.002 0.002 0.000 0.000 0.00012 0.003 0.003 0.018 0.018 0.006 0.006 0.000 0.005 0.005 0.003 0.000 0.00013 0.007 0.009 0.018 0.018 0.011 0.012 0.000 0.012 0.010 0.007 0.000 0.01014 0.018 0.018 0.018 0.018 0.023 0.023 0.000 0.028 0.010 0.012 0.004 0.03515 0.035 0.035 0.018 0.018 0.043 0.035 0.000 0.062 0.024 0.023 0.023 0.11316 0.062 0.051 0.018 0.018 0.072 0.042 0.000 0.096 0.041 0.014 0.035 0.18217 0.151 0.102 0.018 0.018 0.135 0.068 0.000 0.154 0.076 0.025 0.091 0.33318 0.280 0.161 0.018 0.018 0.234 0.128 0.000 0.249 0.137 0.040 0.119 0.50019 0.349 0.293 0.018 0.018 0.312 0.213 0.000 0.439 0.187 0.079 0.154 0.64120 0.614 0.546 0.018 0.018 0.401 0.294 0.000 0.593 0.294 0.152 0.248 0.96621 0.786 0.736 0.018 0.018 0.674 0.363 0.000 0.810 0.435 0.218 0.379 1.10122 1.011 1.094 0.018 0.018 0.866 0.362 0.000 0.907 0.474 0.397 0.581 1.37623 1.199 1.472 0.018 0.018 0.850 0.483 0.000 0.988 0.435 0.434 0.654 1.43024 1.224 1.211 0.018 0.018 0.896 0.491 0.000 0.854 0.503 0.331 0.622 1.25925 0.690 1.580 0.018 0.018 0.873 0.488 0.000 0.837 0.373 0.311 0.496 0.97226 0.958 1.890 0.018 0.018 0.689 0.391 0.000 0.671 0.373 0.259 0.486 0.55927 0.502 1.499 0.018 0.018 0.333 0.346 0.000 0.432 0.325 0.185 0.365 0.34228 0.694 1.330 0.018 0.018 0.509 0.236 0.000 0.334 0.418 0.120 0.212 0.16629 0.565 0.963 0.018 0.018 0.363 0.309 0.000 0.319 0.493 0.090 0.150 0.16730 0.263 1.178 0.018 0.018 0.569 0.496 0.000 0.324 0.000 0.137 0.150 0.119Sum 67.741


20-1SECTION 2020 SUMMARY OF COMPOSITION AND TOXICITYPREDICTIONS FOR HIGHLY REFINED MINERAL OILSTable of Toxicity Predictions – based on average composition (see below for details)LL50(mg/L)NOEL(mg/L)Tetrahymena pyriformis (WWTP organism, protozoa) >1000(0.0002 † ) >1000(0.001)Selenastrum capricornutum (algae) >1000(0.001) >1000(0.004)Onchorhyncus mykiss (fish) >1000(0.001) >1000(0.005)Daphnia magna (aquatic invertebrate) >1000(0.001) >1000(0.003)†Maximum TU reached under PETROTOX simulation conditionsTable of composition (Average of 3 samples)C# n-P i-P CC5 CC6 i-N Di-N PolyN MoAr NMAr DiAr NDiAr PolyArwt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt %5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0006 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0007 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0008 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0009 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00011 0.000 0.000 0.000 0.000 0.001 0.002 0.000 0.000 0.000 0.000 0.000 0.00012 0.000 0.002 0.000 0.000 0.002 0.003 0.000 0.000 0.000 0.000 0.000 0.00013 0.000 0.002 0.000 0.000 0.002 0.004 0.003 0.000 0.000 0.000 0.000 0.00014 0.002 0.003 0.002 0.002 0.008 0.012 0.011 0.000 0.000 0.000 0.000 0.00015 0.012 0.011 0.008 0.008 0.042 0.055 0.058 0.000 0.000 0.000 0.000 0.00016 0.052 0.042 0.020 0.020 0.132 0.117 0.123 0.000 0.000 0.000 0.000 0.00017 0.156 0.131 0.041 0.041 0.297 0.195 0.246 0.000 0.000 0.000 0.000 0.00018 0.269 0.253 0.070 0.070 0.473 0.280 0.332 0.000 0.000 0.000 0.000 0.00019 0.245 0.393 0.082 0.082 0.509 0.333 0.343 0.000 0.000 0.000 0.000 0.00020 0.278 0.540 0.113 0.113 0.516 0.357 0.356 0.000 0.000 0.000 0.000 0.00021 0.263 0.622 0.084 0.084 0.703 0.334 0.330 0.000 0.000 0.000 0.000 0.00022 0.289 0.705 0.090 0.090 0.766 0.285 0.313 0.000 0.000 0.000 0.000 0.00023 0.351 0.717 0.106 0.106 0.722 0.350 0.360 0.000 0.000 0.000 0.000 0.00024 0.351 0.674 0.106 0.106 0.713 0.348 0.411 0.000 0.000 0.000 0.000 0.00025 0.286 0.677 0.086 0.086 0.752 0.399 0.522 0.000 0.000 0.000 0.000 0.00026 0.276 0.770 0.116 0.116 0.713 0.436 0.634 0.000 0.000 0.000 0.000 0.00027 0.282 0.712 0.128 0.128 0.774 0.564 1.051 0.000 0.000 0.000 0.000 0.00028 0.282 0.790 0.165 0.165 0.780 0.648 1.029 0.000 0.000 0.000 0.000 0.00029 0.463 0.660 0.153 0.153 1.033 0.893 1.053 0.000 0.000 0.000 0.000 0.00030 0.388 0.929 0.188 0.188 1.383 1.429 0.000 0.000 0.000 0.000 0.000 0.000Sum 40.542

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!