04.04.2014 Views

EU-SICHERHEITSDATENBLATT Dieselkraftstoff ... - Schmierstoffe

EU-SICHERHEITSDATENBLATT Dieselkraftstoff ... - Schmierstoffe

EU-SICHERHEITSDATENBLATT Dieselkraftstoff ... - Schmierstoffe

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>EU</strong>-<strong>SICHERHEITSDATENBLATT</strong><br />

gemäß Verordnung (EG) Nr. 1907/2006 und Verordnung (<strong>EU</strong>) Nr. 453/2010 (REACH)<br />

<strong>Dieselkraftstoff</strong><br />

Materialnummer D001<br />

Bearbeitet: 30.05.2012<br />

Version: 12<br />

Sprache: de-DE<br />

Gedruckt: 14.06.2012<br />

Seite: 1 von 13<br />

1.1 Produktidentifikator<br />

Handelsname:<br />

REACH-Registrierungsnr.:<br />

ABSCHNITT 1: Bezeichnung des Stoffs bzw.<br />

des Gemischs und des Unternehmens<br />

<strong>Dieselkraftstoff</strong><br />

01-2119484664-27-XXXX<br />

Dieses Sicherheitsdatenblatt gilt für die folgenden Produkte:<br />

Nr. 118 - Super Diesel mit Additiv<br />

Nr. 119 - Diesel<br />

Nr. 120 - Agip Super Diesel Forte<br />

Nr. 241 - Diesel ohne Additiv, 'Bio' > 4,4%, Österreich<br />

Nr. 242 - Diesel mit Additiv, 'Bio' > 4,4%, Österreich<br />

Nr. 247 - Agip Super Diesel Forte ohne 'Bio'<br />

Nr. 248 - Super Diesel mit Additiv ohne 'Bio'<br />

Nr. 249 - Diesel ohne 'Bio'<br />

Nr. 251 - DK Schiffbetriebskraftstoff, gefärbt<br />

Nr. 272 - Super Diesel B5 mit Additiv, Export<br />

Nr. 273 - Diesel B5 Export<br />

1.2 Relevante identifizierte Verwendungen des Stoffs oder Gemischs und Verwendungen, von<br />

denen abgeraten wird<br />

Allgemeine Verwendung<br />

<strong>Dieselkraftstoff</strong><br />

Identifizierte Verwendungen 1. Herstellung des Stoffes: Industrie<br />

1a. Verteilung des Stoffes: Industrie<br />

1b. Verwendung als Zwischenprodukt: Industrie<br />

2. Zubereitung und (Um-)Packen von Stoffen und Gemischen: Industrie<br />

3a. Anwendungen in Beschichtungen: Industrie<br />

3b. Anwendungen in Beschichtungen: Gewerbe<br />

5a. Verwendung im Bohr- und Förderbetrieb in Öl- und Gasfeldern: Industrie<br />

5b. Verwendung im Bohr- und Förderbetrieb in Öl- und Gasfeldern: Gewerbe<br />

6a. <strong>Schmierstoffe</strong>: Industrie<br />

6b. <strong>Schmierstoffe</strong>: Gewerbe (niedrig Ausfertigung)<br />

6c. <strong>Schmierstoffe</strong>: Gewerbe (hoch Ausfertigung)<br />

7a. Verwendung in Metall Industrie / Walzöle: Industrie<br />

10a. Verwendung in Binde- und Trennmitteln: Industrie<br />

10b. Verwendung in Binde- und Trennmitteln: Gewerbe<br />

12a. Verwendung als Brennstoff: Industrie<br />

12b. Verwendung als Brennstoff: Gewerbe<br />

12c. Verwendung als Brennstoff: Verbraucher<br />

13a. Verwendung in Funktionsflüssigkeiten: Industrie<br />

13b. Verwendung in Funktionsflüssigkeiten: Gewerbe<br />

19. Gummiproduktion und -verarbeitung: Industrie<br />

1.3 Einzelheiten zum Lieferanten, der das Sicherheitsdatenblatt bereitstellt<br />

Firmenbezeichnung: Eni Deutschland GmbH<br />

Straße/Postfach: Sonnenstr. 23<br />

PLZ, Ort:<br />

80331 München<br />

Deutschland<br />

Telefon: +49 (0)89-59 07-0<br />

Telefax: +49 (0)89-59 63-03<br />

Auskunft gebender Bereich: HSE<br />

Telefon: +49 (0)89-59 07-0, Email: info@agip.de<br />

gedruckt von Eni Deutschland<br />

... mit Qualisys SUMDAT


<strong>EU</strong>-<strong>SICHERHEITSDATENBLATT</strong><br />

gemäß Verordnung (EG) Nr. 1907/2006 und Verordnung (<strong>EU</strong>) Nr. 453/2010 (REACH)<br />

<strong>Dieselkraftstoff</strong><br />

Materialnummer D001<br />

Bearbeitet: 30.05.2012<br />

Version: 12<br />

Sprache: de-DE<br />

Gedruckt: 14.06.2012<br />

Seite: 2 von 13<br />

1.4 Notrufnummer<br />

Beratungsstelle für Vergiftungserscheinungen (GIZ)<br />

Telefon: +49 (0)228-19240<br />

ABSCHNITT 2: Mögliche Gefahren<br />

2.1 Einstufung des Stoffs oder Gemischs<br />

Einstufung gemäß EG-Verordnung 1272/2008 (CLP):<br />

STOT RE 2; H373 Kann die Organe schädigen bei längerer oder wiederholter Exposition.<br />

Asp. Tox. 1; H304 Kann bei Verschlucken und Eindringen in die Atemwege tödlich sein.<br />

Aquatic Chronic 2; H411 Giftig für Wasserorganismen, mit langfristiger Wirkung.<br />

Carc. 2; H351<br />

Kann vermutlich Krebs erzeugen.<br />

Flam. Liq. 3; H226 Flüssigkeit und Dampf entzündbar.<br />

Acute Tox. 4; H332 Gesundheitsschädlich bei Einatmen.<br />

Skin Irrit. 2; H315 Verursacht Hautreizungen.<br />

Einstufung gemäß Richtlinie 67/548/EWG:<br />

Carc. Cat. 3; R40 Verdacht auf krebserzeugende Wirkung.<br />

Xn; R20 Gesundheitsschädlich beim Einatmen.<br />

Xn; R65 Gesundheitsschädlich: Kann beim Verschlucken Lungenschäden verursachen.<br />

Xi; R38<br />

Reizt die Haut.<br />

N; R51-53 Giftig für Wasserorganismen, kann in Gewässern längerfristig schädliche Wirkungen haben.<br />

2.2 Kennzeichnungselemente<br />

Kennzeichnung (CLP)<br />

Signalwort<br />

Gefahr<br />

Gefahrenhinweise H226 Flüssigkeit und Dampf entzündbar.<br />

H304 Kann bei Verschlucken und Eindringen in die Atemwege tödlich sein.<br />

H315 Verursacht Hautreizungen.<br />

H332 Gesundheitsschädlich bei Einatmen.<br />

H351 Kann vermutlich Krebs erzeugen.<br />

H373 Kann die Organe schädigen bei längerer oder wiederholter Exposition.<br />

H411 Giftig für Wasserorganismen, mit langfristiger Wirkung.<br />

Sicherheitshinweise P102 Darf nicht in die Hände von Kindern gelangen.<br />

P261<br />

P280<br />

P301+P310<br />

P331<br />

P501<br />

Einatmen von Dampf vermeiden.<br />

Schutzhandschuhe/Schutzkleidung/Augenschutz/Gesichtsschutz tragen.<br />

BEI VERSCHLUCKEN: Sofort GIFTINFORMATIONSZENTRUM oder Arzt anrufen.<br />

KEIN Erbrechen herbeiführen.<br />

Inhalt/Behälter der Problemabfallentsorgung zuführen.<br />

Kennzeichnung (67/548/EWG oder 1999/45/EG)<br />

Xi<br />

Xn<br />

N<br />

reizend<br />

gesundheitsschädlich<br />

umweltgefährlich<br />

gedruckt von Eni Deutschland<br />

... mit Qualisys SUMDAT


<strong>EU</strong>-<strong>SICHERHEITSDATENBLATT</strong><br />

gemäß Verordnung (EG) Nr. 1907/2006 und Verordnung (<strong>EU</strong>) Nr. 453/2010 (REACH)<br />

<strong>Dieselkraftstoff</strong><br />

Materialnummer D001<br />

Bearbeitet: 30.05.2012<br />

Version: 12<br />

Sprache: de-DE<br />

Gedruckt: 14.06.2012<br />

Seite: 3 von 13<br />

R-Sätze: R 20 Gesundheitsschädlich beim Einatmen.<br />

R 38 Reizt die Haut.<br />

R 40 Verdacht auf krebserzeugende Wirkung.<br />

R 51/53 Giftig für Wasserorganismen, kann in Gewässern längerfristig schädliche<br />

Wirkungen haben.<br />

R 65 Gesundheitsschädlich: Kann beim Verschlucken Lungenschäden verursachen.<br />

S-Sätze: S 2 Darf nicht in die Hände von Kindern gelangen.<br />

S 23 Gas/Rauch/Dampf/Aerosol nicht einatmen.<br />

S 24 Berührung mit der Haut vermeiden.<br />

S 36/37 Bei der Arbeit geeignete Schutzhandschuhe und Schutzkleidung tragen.<br />

S 51 Nur in gut gelüfteten Bereichen verwenden.<br />

S 61 Freisetzung in die Umwelt vermeiden. Besondere Anweisungen<br />

einholen/Sicherheitsdatenblatt zu Rate ziehen.<br />

S 62 Bei Verschlucken kein Erbrechen herbeiführen. Sofort ärztlichen Rat einholen<br />

und Verpackung oder dieses Etikett vorzeigen.<br />

2.3 Sonstige Gefahren<br />

Besondere Rutschgefahr durch auslaufendes/verschüttetes Produkt.<br />

3.1 Stoffe<br />

ABSCHNITT 3: Zusammensetzung / Angaben zu Bestandteilen<br />

Chemische Charakterisierung (Stoff):<br />

<strong>Dieselkraftstoff</strong> gemäß DIN EN 590.<br />

Komplexes Gemisch aus paraffinischen, cycloparaffinischen, aromatischen und olefinischen<br />

Kohlenwasserstoffen. Kann Additive enthalten.<br />

Gehalt an FAME (Biodiesel) bis 7 Vol-%.<br />

CAS-Nummer: 68334-30-5<br />

EINECS-Nummer: 269-822-7<br />

<strong>EU</strong>-Identifikationsnummer: 649-224-00-6<br />

4.1 Beschreibung der Erste-Hilfe-Maßnahmen<br />

Allgemeine Hinweise:<br />

Nach Einatmen:<br />

Nach Hautkontakt:<br />

Nach Augenkontakt:<br />

Nach Verschlucken:<br />

ABSCHNITT 4: Erste-Hilfe-Maßnahmen<br />

Ersthelfer: Auf Selbstschutz achten!<br />

Beschmutzte, getränkte Kleidung sofort ausziehen.<br />

Bei Gefahr von Bewusstlosigkeit Lagerung und Transport in stabiler Seitenlage.<br />

Betroffenen an die frische Luft bringen, beengende Kleidung lockern und ruhig lagern. Bei<br />

Atembeschwerden Sauerstoff geben. Bei unregelmäßiger Atmung oder Atemstillstand<br />

künstliche Beatmung einleiten. Sofort Arzt hinzuziehen.<br />

Bei Berührung mit der Haut sofort mit viel Wasser und Seife abspülen.<br />

Bei Hautreizungen Arzt aufsuchen.<br />

Sofort bei geöffnetem Lidspalt 10 bis 15 Minuten mit fließendem Wasser spülen. Anschließend<br />

Augenarzt konsultieren.<br />

Kein Erbrechen herbeiführen. Aspirationsgefahr! Sofort Arzt hinzuziehen.<br />

Bei Erbrechen zumindest Kopf in Seitenlage bringen. Atemwege freihalten.<br />

Die orale Aufnahme des Produktes kann durch den typischen Geruch festgestellt werden.<br />

4.2 Wichtigste akute oder verzögert auftretende Symptome und Wirkungen<br />

Folgende Symptome können auftreten: Kopfschmerzen, Übelkeit, Benommenheit, Schwindel,<br />

Atemnot, Bewusstlosigkeit.<br />

gedruckt von Eni Deutschland<br />

... mit Qualisys SUMDAT


<strong>EU</strong>-<strong>SICHERHEITSDATENBLATT</strong><br />

gemäß Verordnung (EG) Nr. 1907/2006 und Verordnung (<strong>EU</strong>) Nr. 453/2010 (REACH)<br />

<strong>Dieselkraftstoff</strong><br />

Materialnummer D001<br />

Bearbeitet: 30.05.2012<br />

Version: 12<br />

Sprache: de-DE<br />

Gedruckt: 14.06.2012<br />

Seite: 4 von 13<br />

4.3 Hinweise auf ärztliche Soforthilfe oder Spezialbehandlung<br />

Beim Verschlucken mit anschließendem Erbrechen kann Aspiration in die Lunge erfolgen, was<br />

zur chemischen Pneumonie oder zur Erstickung führen kann. Bei Lungenreizung<br />

Erstbehandlung mit Dexamethason-Spray. Regulierung der Kreislauffunktion, evtl.<br />

Schockbehandlung.<br />

Nach Verschlucken: Sofort und wiederholt reichlich Wasser mit Zusatz von viel Aktivkohle<br />

trinken lassen. Auf keinen Fall Milch oder fette Öle verabreichen. Für möglichst rasche<br />

Darmpassage sorgen.<br />

Vorsicht mit (Nor-)Adrenalin und seinen Abkömmlingen.<br />

5.1 Löschmittel<br />

Geeignete Löschmittel:<br />

ABSCHNITT 5: Maßnahmen zur Brandbekämpfung<br />

Aus Sicherheitsgründen ungeeignete Löschmittel:<br />

Wasservollstrahl<br />

Schaum, Trockenlöschmittel, ABC-Pulver, Wassersprühstrahl, Kohlendioxid, Sand.<br />

5.2 Besondere vom Stoff oder Gemisch ausgehende Gefahren<br />

Brennbar. Dämpfe bilden mit Luft explosionsfähige Gemische, die schwerer als Luft sind. Sie<br />

wälzen sich am Boden entlang und können bei Zündung über weitere Strecken zurückschlagen.<br />

Im Brandfall können entstehen: Stickoxide (NOx), Schwefeloxide, Kohlenmonoxid und<br />

Kohlendioxid, Ruß.<br />

5.3 Hinweise für die Brandbekämpfung<br />

Besondere Schutzausrüstung bei der Brandbekämpfung:<br />

Umgebungsluftunabhängiges Atemschutzgerät tragen.<br />

Zusätzliche Hinweise:<br />

Gefährdete Behälter mit Sprühwasser kühlen. Explosions- und Brandgase nicht einatmen.<br />

Kontaminiertes Löschwasser getrennt sammeln. Kontaminiertes Löschwasser muss<br />

entsprechend den behördlichen Vorschriften entsorgt werden.<br />

ABSCHNITT 6: Maßnahmen bei unbeabsichtigter Freisetzung<br />

6.1 Personenbezogene Vorsichtsmaßnahmen, Schutzausrüstungen und in Notfällen<br />

anzuwendende Verfahren<br />

6.2 Umweltschutzmaßnahmen<br />

Personen in Sicherheit bringen. Ungeschützte Personen fernhalten.<br />

Berührung mit den Augen und der Haut vermeiden. Geeignete Schutzkleidung tragen. Für<br />

ausreichende Lüftung sorgen.<br />

Eindringen in Erdreich, Gewässer oder Kanalisation verhindern.<br />

Bei Freisetzung zuständige Behörden benachrichtigen.<br />

Bei Auslaufen von größeren Mengen: Gefahr für Trinkwasser.<br />

6.3 Methoden und Material für Rückhaltung und Reinigung<br />

Zusätzliche Hinweise:<br />

Flächenmäßige Ausdehnung verhindern (z.B. durch Eindämmen oder Ölsperren). Von der<br />

Wasseroberfläche entfernen (z.B. abskimmen, absaugen).<br />

Mit unbrennbarem, flüssigkeitsbindendem Material (z.B. Sand/Erde/Kieselgur/Vermiculit)<br />

aufnehmen und vorschriftsmäßig entsorgen. Nicht mit Wasser oder wäßrigen<br />

Reinigungsmitteln wegspülen.<br />

Alle Zündquellen entfernen. Dämpfe bilden mit Luft explosive Gemische. Auf Rückzündung<br />

achten.<br />

Besondere Rutschgefahr durch auslaufendes/verschüttetes Produkt.<br />

gedruckt von Eni Deutschland<br />

... mit Qualisys SUMDAT


<strong>EU</strong>-<strong>SICHERHEITSDATENBLATT</strong><br />

gemäß Verordnung (EG) Nr. 1907/2006 und Verordnung (<strong>EU</strong>) Nr. 453/2010 (REACH)<br />

<strong>Dieselkraftstoff</strong><br />

Materialnummer D001<br />

Bearbeitet: 30.05.2012<br />

Version: 12<br />

Sprache: de-DE<br />

Gedruckt: 14.06.2012<br />

Seite: 5 von 13<br />

6.4 Verweis auf andere Abschnitte<br />

Siehe ergänzend Kapitel 8 und 13.<br />

ABSCHNITT 7: Handhabung und Lagerung<br />

7.1 Schutzmaßnahmen zur sicheren Handhabung<br />

Hinweise zum sicheren Umgang<br />

Für gute Be- und Entlüftung von Lager und Arbeitsplatz sorgen.<br />

Es ist antistatisch ausgerüstete Arbeitskleidung zu benutzen.<br />

Nur antistatisch ausgerüstetes (funkenfreies) Werkzeug verwenden.<br />

Ölnebelbildung vermeiden. Dämpfe nicht einatmen.<br />

Berührung mit den Augen und der Haut vermeiden.<br />

Nicht zu Reinigungszwecken verwenden.<br />

Hinweise zum Brand- und Explosionsschutz:<br />

Von Zündquellen fernhalten - Nicht rauchen. Von heißen Oberflächen fernhalten.<br />

Maßnahmen gegen elektrostatische Aufladungen treffen. Schweißverbot.<br />

Erdungsvorrichtungen benutzen. Auf Rückzündung achten. Nur explosionsgeschützte Geräte<br />

verwenden.<br />

Vorsicht mit entleerten Gebinden. Bei Entzündung Explosion möglich.<br />

7.2 Bedingungen zur sicheren Lagerung unter Berücksichtigung von Unverträglichkeiten<br />

Anforderungen an Lagerräume und Behälter:<br />

Nur Behälter verwenden, die speziell für das Produkt zugelassen sind.<br />

Behälter dicht geschlossen an einem gut gelüfteten Ort aufbewahren. Behälter trocken halten.<br />

Das Eindringen in den Boden ist sicher zu verhindern.<br />

Geeignetes Material: Stahl, HD Polyethylen, zugelassene Reservekanister<br />

Zusammenlagerungshinweise<br />

Nicht zusammen mit Oxidationsmitteln lagern.<br />

Nicht mit brandfördernden und selbstentzündlichen Stoffen sowie leichtentzündlichen<br />

Feststoffen zusammen lagern.<br />

Von Nahrungsmitteln und Getränken fernhalten.<br />

Sonstige Hinweise: Unter Verschluss und für Kinder unzugänglich aufbewahren.<br />

Lagerklasse:<br />

3 Entzündbare Flüssigkeiten<br />

7.3 Spezifische Endanwendungen<br />

<strong>Dieselkraftstoff</strong><br />

ABSCHNITT 8: Begrenzung und Überwachung der<br />

Exposition/Persönliche Schutzausrüstungen<br />

8.1 Zu überwachende Parameter<br />

Zusätzliche Hinweise: Ölnebel und Dämpfe: 20 mg/m³ (BIA-Information 3/82)<br />

Aerosole: 5 mg/m³ (Beurteilung von Mineralölkonzentrationen in der Luft am Arbeitsplatz;<br />

Analysenmethode BG 07292)<br />

DNEL/DMEL<br />

DNEL Kurzzeit, Arbeiter, inhalativ: 4300 mg/m³/15min (1560 mg/m³/4h).<br />

DNEL Langzeit, Arbeiter, dermal: 2,9 mg/kg/8h (30 mg/kg/d)<br />

DNEL Langzeit, Arbeiter, inhalativ: 68 mg/m³/8h (Aerosol) (125 mg/kg/d)<br />

DNEL Kurzzeit, Verbraucher, inhalativ: 2600 mg/m³/15min (1560 mg/m³/4h)<br />

DNEL Langzeit, Verbraucher, dermal: 1,3 mg/kg/24h (30 mg/kg/d)<br />

DNEL Langzeit, Verbraucher, inhalativ: 20 mg/m³/24h (Aerosol) (125 mg/kg/d)<br />

gedruckt von Eni Deutschland<br />

... mit Qualisys SUMDAT


<strong>EU</strong>-<strong>SICHERHEITSDATENBLATT</strong><br />

gemäß Verordnung (EG) Nr. 1907/2006 und Verordnung (<strong>EU</strong>) Nr. 453/2010 (REACH)<br />

<strong>Dieselkraftstoff</strong><br />

Materialnummer D001<br />

Bearbeitet: 30.05.2012<br />

Version: 12<br />

Sprache: de-DE<br />

Gedruckt: 14.06.2012<br />

Seite: 6 von 13<br />

8.2 Begrenzung und Überwachung der Exposition<br />

Für gute Raumbelüftung, Absaugung/Entlüftung sorgen.<br />

In geschlossenen Räumen: Absaugung erforderlich.<br />

Im Außenbereich und offenen Hallen ist die natürliche Lüftung ausreichend.<br />

Begrenzung und Überwachung der Exposition am Arbeitsplatz<br />

Atemschutz:<br />

Falls Dämpfe auftreten, ist Atemschutz erforderlich.<br />

Filter Typ A (= gegen Dämpfe von organischen Verbindungen) gemäß EN 14387 benutzen.<br />

Umgebungsluftunabhängiges Atemschutzgerät bei unklaren Verhältnissen und<br />

Sauerstoffgehalten unter 17% verwenden.<br />

Handschutz: Schutzhandschuhe gemäß EN 374.<br />

Handschuhmaterial:<br />

Kurzeinwirkung: Chloroprenkautschuk oder PVC (0,5 mm; max. 4h).<br />

Bei längerer Exposition:<br />

Nitrilkautschuk (0,35 mm) oder Fluorkautschuk (0,4 mm).<br />

Durchbruchzeit (maximale Tragedauer): >= 480 min.<br />

Ungeeignetes Material: Naturkautschuk, Butylkautschuk.<br />

Die Angaben des Herstellers der Schutzhandschuhe zu Durchlässigkeiten und<br />

Durchbruchzeiten sind zu beachten.<br />

Augenschutz: Dicht schließende Schutzbrille gemäß EN 166.<br />

Bei erhöhter Gefährdung zusätzlich Gesichtsschutzschild.<br />

Körperschutz:<br />

Overall/Ölfeste Schutzkleidung tragen.<br />

Schutz- und Hygienemaßnahmen:<br />

Am Arbeitsplatz nicht essen, trinken, rauchen, schnupfen.<br />

Beschmutzte, getränkte Kleidung sofort ausziehen.<br />

Vor den Pausen und bei Arbeitsende Hände waschen.<br />

Nach der Arbeit gründliche Hautreinigung und Hautpflege.<br />

Keine produktgetränkten Putzlappen in den Hosentaschen mitführen.<br />

ABSCHNITT 9: Physikalische und chemische Eigenschaften<br />

9.1 Angaben zu den grundlegenden physikalischen und chemischen Eigenschaften<br />

Form:<br />

Farbe<br />

Geruch:<br />

flüssig<br />

gelb<br />

charakteristisch, nach Mineralöl<br />

Siedepunkt / Siedebereich 168 - 366 °C (DIN EN ISO 3405)<br />

Schmelzpunkt / Schmelzbereich -40 bis +6 °C (CONCAWE 2010a)<br />

Flammpunkt / Flammbereich: > 56 °C (1013 hPa, CONCAWE 2010a)<br />

Zündtemperatur > 225 °C (CONCAWE 2010a)<br />

Explosionsgefahr:<br />

Das Produkt ist nicht explosionsgefährlich.<br />

Explosionsgrenzen:<br />

UEG (untere Explosionsgrenze): 0,60 Vol-%<br />

OEG (obere Explosionsgrenze): 6,50 Vol-%<br />

Dampfdruck:<br />

bei 20 °C: 3).<br />

Viskosität, kinematisch: bei 40 °C: 2,72 mm²/s (DIN EN ISO 3104)<br />

gedruckt von Eni Deutschland<br />

... mit Qualisys SUMDAT


<strong>EU</strong>-<strong>SICHERHEITSDATENBLATT</strong><br />

gemäß Verordnung (EG) Nr. 1907/2006 und Verordnung (<strong>EU</strong>) Nr. 453/2010 (REACH)<br />

<strong>Dieselkraftstoff</strong><br />

Materialnummer D001<br />

Bearbeitet: 30.05.2012<br />

Version: 12<br />

Sprache: de-DE<br />

Gedruckt: 14.06.2012<br />

Seite: 7 von 13<br />

9.2 Sonstige Angaben<br />

Relative Dampfdichte bei 20 °C (Luft = 1): > 5<br />

Nicht oxidierend.<br />

10.1 Reaktivität<br />

ABSCHNITT 10: Stabilität und Reaktivität<br />

Bildet mit Luft explosive Gemische, auch in leeren, ungereinigten Behältern.<br />

Dämpfe sind schwerer als Luft, sie breiten sich am Boden aus.<br />

10.2 Chemische Stabilität<br />

Das Produkt ist unter normalen Lagerbedingungen stabil.<br />

10.3 Möglichkeit gefährlicher Reaktionen<br />

Reagiert mit Oxidationsmitteln.<br />

10.4 Zu vermeidende Bedingungen<br />

10.5 Unverträgliche Materialien<br />

Vor Hitze schützen.<br />

Dämpfe sind schwerer als Luft, sie breiten sich am Boden aus.<br />

Bei starker Erwärmung: Brandgefahr/Gefahr der Selbstentzündung.<br />

Oxidationsmittel<br />

10.6 Gefährliche Zersetzungsprodukte<br />

Im Brandfall können entstehen: Stickoxide (NOx), Schwefeloxide, Kohlenmonoxid und<br />

Kohlendioxid, Ruß.<br />

ABSCHNITT 11: Toxikologische Angaben<br />

11.1 Angaben zu toxikologischen Wirkungen<br />

Akute Toxizität:<br />

LD50 Ratte, oral: > 2000 mg/kg bw (CONCAWE)<br />

LC50 Ratte, inhalativ: 4,1 mg/L/4h (OECD 403)<br />

LD50 Kaninchen, dermal: > 5000 mg/kg bw (OECD 434)<br />

gedruckt von Eni Deutschland<br />

... mit Qualisys SUMDAT


<strong>EU</strong>-<strong>SICHERHEITSDATENBLATT</strong><br />

gemäß Verordnung (EG) Nr. 1907/2006 und Verordnung (<strong>EU</strong>) Nr. 453/2010 (REACH)<br />

<strong>Dieselkraftstoff</strong><br />

Materialnummer D001<br />

Bearbeitet: 30.05.2012<br />

Version: 12<br />

Sprache: de-DE<br />

Gedruckt: 14.06.2012<br />

Seite: 8 von 13<br />

Toxikologische Wirkungen<br />

Symptome<br />

Akute Toxizität (oral): Aufgrund der verfügbaren Daten sind die Einstufungskriterien nicht erfüllt.<br />

Akute Toxizität (dermal): Aufgrund der verfügbaren Daten sind die Einstufungskriterien nicht<br />

erfüllt.<br />

Akute Toxizität (inhalativ): Acute Tox. 4; H332. Gesundheitsschädlich bei Einatmen. Kann<br />

Reizungen hervorrufen.<br />

Ätzung/Reizung der Haut: Skin Irrit. 2; H315. Verursacht Hautreizungen.<br />

Spezifische Symptome im Tierversuch (Kaninchen): reizend (API 1980b)<br />

Augenschädigung/-reizung: Aufgrund der verfügbaren Daten sind die Einstufungskriterien nicht<br />

erfüllt. Spezifische Symptome im Tierversuch (Kaninchen): nicht reizend (OECD 405)<br />

Sensibilisierung der Atemwege: Fehlende Daten.<br />

Sensibilisierung der Haut: Aufgrund der verfügbaren Daten sind die Einstufungskriterien nicht<br />

erfüllt. Spezifische Symptome im Tierversuch (Meerschweinchen): nicht sensibilisierend<br />

(OECD 406)<br />

Keimzellmutagenität/Genotoxizität: Aufgrund der verfügbaren Daten sind die<br />

Einstufungskriterien nicht erfüllt. Mutagenität: negativ (read across)<br />

Karzinogenität: Carc. 2; H351. Kann vermutlich Krebs erzeugen.<br />

Reproduktionstoxizität: Aufgrund der verfügbaren Daten sind die Einstufungskriterien nicht<br />

erfüllt. Reproduktionstoxizität:<br />

NOAEL Ratte, dermal: 500 mg/kg bw/d<br />

NOAEC Ratte, inhalativ: 1710 mg/m³<br />

Entwicklungsschädigung:<br />

NOAEL Ratte, dermal: 125 mg/kg bw/d<br />

NOAEC Ratte, inhalativ: 2110 mg/m³<br />

Wirkungen auf und über die Muttermilch: Fehlende Daten.<br />

Spezifische Zielorgan-Toxizität (einmalige Exposition): Fehlende Daten.<br />

Spezifische Zielorgan-Toxizität (wiederholte Exposition): STOT RE 2; H373. Kann die Organe<br />

schädigen bei längerer oder wiederholter Exposition.<br />

Betroffene Organe: Thymus, Blut, Leber<br />

NOAEC Ratte, dermal: 30 mg/kg bw/d (OECD 411)<br />

Aspirationsgefahr: Asp. Tox. 1; H304. Kann bei Verschlucken und Eindringen in die Atemwege<br />

tödlich sein.<br />

Gefahr einer Lungenreizung. Die Ausbildung einer Pneumonie oder eines Lungenödems ist in<br />

schweren Fällen nicht auszuschließen.<br />

Nach Einatmen:<br />

Länger anhaltende Inhalation konzentrierter Dämpfe führt zu Kopfschmerzen, Schwindel, und<br />

Störungen des ZNS.<br />

Weitere Symptome: Übelkeit, Euphorie, Erregung, Herz-Kreislaufstörungen, Atemlähmung,<br />

Bewusstlosigkeit.<br />

Nach Verschlucken: ZNS-Stimulanz, gastrointestinale Störungen, Schmerzen.<br />

Nach Hautkontakt:<br />

Wirkt entfettend auf die Haut. Wiederholter Kontakt kann zu spröder oder rissiger Haut führen.<br />

Dies kann zur Reizung/Dermatitis führen.<br />

gedruckt von Eni Deutschland<br />

... mit Qualisys SUMDAT


<strong>EU</strong>-<strong>SICHERHEITSDATENBLATT</strong><br />

gemäß Verordnung (EG) Nr. 1907/2006 und Verordnung (<strong>EU</strong>) Nr. 453/2010 (REACH)<br />

<strong>Dieselkraftstoff</strong><br />

Materialnummer D001<br />

Bearbeitet: 30.05.2012<br />

Version: 12<br />

Sprache: de-DE<br />

Gedruckt: 14.06.2012<br />

Seite: 9 von 13<br />

Allgemeine Bemerkungen<br />

Mutagenität:<br />

In-vitro-Mutagenität Ames-Test: positiv (OECD 471) (Quelle: Deininger, Jungen,<br />

Wenzel-Hartung 1991)<br />

Karzinogenität:<br />

Verdacht auf krebserzeugende Wirkung.<br />

Reproduktionstoxizität:<br />

NOAEL Ratte, dermal: 500 mg/kg bw/d<br />

NOAEC Ratte, inhalativ: 1710 mg/m³<br />

Entwicklungsschädigung:<br />

NOAEL Ratte, dermal: 125 mg/kg bw/d<br />

NOAEC Ratte, inhalativ: 2110 mg/m³<br />

12.1 Toxizität<br />

Aquatische Toxizität:<br />

ABSCHNITT 12: Umweltbezogene Angaben<br />

Giftig für Wasserorganismen, kann in Gewässern längerfristig schädliche Wirkungen haben.<br />

Algentoxizität:<br />

EbL50 Pseudokirchneriella subcapitata (Grünalge): 10-78 mg/L/72h (OECD 201, based on<br />

Wachstumrate)<br />

NOEL Pseudokirchneriella subcapitata (Grünalge): 3-10 mg/L/72h (OECD 201, based on<br />

Wachstumrate)<br />

Quelle: Girling, A. and Cann, B. (1996b)<br />

Daphnientoxizität:<br />

Kurzzeit, EL50: 68-210 mg/L/48h. (OECD 202)<br />

Kurzzeit, NOEL: 46 mg/L/48h. (OECD 202)<br />

Quelle: Girling, A. and Cann, B. (1996b)<br />

Langzeit, NOEL 0,2 mg/L/21d (QSAR, PETROTOX)<br />

Quelle: Redman, et al. (2010b)<br />

Fischtoxizität:<br />

Kurzzeit, LL50 Oncorhynchus mykiss (Regenbogenforelle): 21-65 mg/L/96h<br />

Kurzzeit, NOEL: 10 mg/L<br />

Quelle: Girling, A. and Cann, B. (1996b)<br />

Langzeit, NOEL Oncorhynchus mykiss (Regenbogenforelle): 0,083 mg/L/14d<br />

Quelle: Redman, et al. (2010b)<br />

Wassergefährdungsklasse: 2 = wassergefährdend (WGK-Katalognummer 76)<br />

Sonstige Hinweise: Die Substanz schwimmt auf der Wasseroberfläche.<br />

Wird vom Boden adsorbiert und ist nicht mobil.<br />

12.2. Persistenz und Abbaubarkeit<br />

Sonstige Hinweise:<br />

Biologische Abbaubarkeit in Wasser: 60 %/28d. Das Produkt ist biologisch nicht leicht<br />

abbaubar. (Quelle: Anon 2003)<br />

Verhalten in Kläranlagen:<br />

Bakterientoxizität:<br />

EL50 Tetrahymena pyriformis: >1000 mg/L<br />

NOEL Tetrahymena pyriformis: 3217 mg/L/40h Belebtschlamm<br />

(QSAR, PETROTOX, based on Wachstumsinhibierung)<br />

Quelle: Redman, et al. (2010b)<br />

12.3 Bioakkumulationspotenzial<br />

Verteilungskoeffizient n-Octanol/Wasser:<br />

3,9-6 log P(o/w)<br />

Ein nennenswertes Bioakkumulationspotential ist zu erwarten (log P(o/w) >3).<br />

gedruckt von Eni Deutschland<br />

... mit Qualisys SUMDAT


<strong>EU</strong>-<strong>SICHERHEITSDATENBLATT</strong><br />

gemäß Verordnung (EG) Nr. 1907/2006 und Verordnung (<strong>EU</strong>) Nr. 453/2010 (REACH)<br />

<strong>Dieselkraftstoff</strong><br />

Materialnummer D001<br />

Bearbeitet: 30.05.2012<br />

Version: 12<br />

Sprache: de-DE<br />

Gedruckt: 14.06.2012<br />

Seite: 10 von 13<br />

12.4 Mobilität im Boden<br />

Verteilung in der Umwelt nach Berechnungsmodell (PETRORISK):<br />

Luft: 24,36%<br />

Wasser: 0,14 %<br />

Boden: 62,86 %<br />

Sediment: 12,64 %<br />

Sediment, suspendiert: < 0,1 %<br />

Biota: < 0,1 %<br />

Aerosol: < 0,1 %<br />

(Quelle: Redman, et al. 2010a)<br />

12.5 Ergebnisse der PBT- und vPvB-Beurteilung<br />

Dieser Stoff erfüllt nicht die PBT-/vPvB-Kriterien der REACH-Verordnung, Annex XIII.<br />

12.6 Andere schädliche Wirkungen<br />

Allgemeine Hinweise:<br />

Nicht in das Grundwasser, in Gewässer oder in die Kanalisation gelangen lassen.<br />

Bei Auslaufen von größeren Mengen: Gefahr für Trinkwasser.<br />

13.1 Verfahren der Abfallbehandlung<br />

Produkt<br />

ABSCHNITT 13: Hinweise zur Entsorgung<br />

Abfallschlüsselnummer 13 07 01* = <strong>Dieselkraftstoff</strong><br />

* = Die Entsorgung ist nachweispflichtig.<br />

Empfehlung:<br />

Entsorgung gemäß Kreislaufwirtschafts- und Abfallgesetz (KrW-/AbfG)<br />

Übergabe an zugelassenes Entsorgungsunternehmen.<br />

Ein Eintrag in die Umwelt ist zu vermeiden.<br />

Weitere Angaben<br />

Beförderung im Tankwagen./Beförderung im Kesselwagen.<br />

Sorgfältig und möglichst vollständig entleeren.<br />

Vorsicht mit entleerten Gebinden. Bei Entzündung Explosion möglich.<br />

14.1 UN-Nummer<br />

1202<br />

ABSCHNITT 14: Angaben zum Transport<br />

14.2 Ordnungsgemäße UN-Versandbezeichnung<br />

ADR/RID, ADN:<br />

IMDG, IATA:<br />

UN 1202, DIESELKRAFTSTOFF<br />

DIESEL FUEL<br />

14.3 Transportgefahrenklassen<br />

ADR/RID, ADN: Klasse 3, Code: F1<br />

IMDG: Class 3, Code -<br />

IATA: Class 3<br />

14.4 Verpackungsgruppe<br />

III<br />

gedruckt von Eni Deutschland<br />

... mit Qualisys SUMDAT


<strong>EU</strong>-<strong>SICHERHEITSDATENBLATT</strong><br />

gemäß Verordnung (EG) Nr. 1907/2006 und Verordnung (<strong>EU</strong>) Nr. 453/2010 (REACH)<br />

<strong>Dieselkraftstoff</strong><br />

Materialnummer D001<br />

Bearbeitet: 30.05.2012<br />

Version: 12<br />

Sprache: de-DE<br />

Gedruckt: 14.06.2012<br />

Seite: 11 von 13<br />

14.5 Umweltgefahren<br />

Meeresschadstoff - IMDG:<br />

Meeresschadstoff - ADN:<br />

Ja<br />

Ja<br />

14.6 Besondere Vorsichtsmaßnahmen für den Verwender<br />

Landtransport (ADR/RID)<br />

Warntafel: ADR/RID: Gefahrnummer 30, UN-Nummer 1202<br />

Gefahrzettel 3<br />

Sondervorschriften<br />

Begrenzte Mengen<br />

EQ<br />

Verpackung: Anweisungen<br />

Sondervorschriften für die Zusammenpackung MP19<br />

Ortsbewegliche Tanks: Anweisungen<br />

Ortsbewegliche Tanks: Sondervorschriften<br />

Tankcodierung<br />

Tunnelbeschränkungscode:<br />

Binnenschiffstransport (ADN)<br />

Gefahrzettel 3<br />

Sondervorschriften<br />

Begrenzte Mengen<br />

EQ<br />

Beförderung zugelassen<br />

Ausrüstung erforderlich<br />

Lüftung<br />

Seeschiffstransport (IMDG)<br />

EmS:<br />

Sondervorschriften -<br />

Begrenzte Mengen<br />

EQ<br />

Verpackung: Anweisungen<br />

Verpackung: Vorschriften -<br />

IBC: Anweisungen<br />

IBC: Vorschriften -<br />

Tankanweisungen: IMO -<br />

640L<br />

5 L<br />

E1<br />

P001 IBC03 LP01 R001<br />

T2<br />

TP1<br />

LGBF<br />

D/E<br />

640L<br />

5 L<br />

E1<br />

T<br />

PP - EX - A<br />

VE01<br />

F-E, S-E<br />

5 L<br />

E1<br />

P001, LP01<br />

IBC03<br />

Tankanweisungen: UN<br />

T2<br />

Tankanweisungen Vorschriften<br />

TP1<br />

Stowage and segregation Category A.<br />

Properties and observations<br />

Immiscible with water.<br />

Lufttransport (IATA)<br />

Hazard<br />

EQ<br />

Passenger Ltd.Qty.:<br />

Passenger:<br />

Cargo:<br />

Special Provisioning<br />

ERG<br />

Flamm. liquid<br />

E1<br />

Pack.Instr. Y344 - Max.Qty. 10 L<br />

Pack.Instr. 355 - Max.Qty. 60 L<br />

Pack.Instr. 366 - Max.Qty. 220 L<br />

A3<br />

3L<br />

14.7 Massengutbeförderung gemäß Anhang II des MARPOL-Übereinkommens 73/78 und gemäß<br />

IBC-Code<br />

Keine Daten verfügbar<br />

gedruckt von Eni Deutschland<br />

... mit Qualisys SUMDAT


<strong>EU</strong>-<strong>SICHERHEITSDATENBLATT</strong><br />

gemäß Verordnung (EG) Nr. 1907/2006 und Verordnung (<strong>EU</strong>) Nr. 453/2010 (REACH)<br />

<strong>Dieselkraftstoff</strong><br />

Materialnummer D001<br />

Bearbeitet: 30.05.2012<br />

Version: 12<br />

Sprache: de-DE<br />

Gedruckt: 14.06.2012<br />

Seite: 12 von 13<br />

ABSCHNITT 15: Rechtsvorschriften<br />

15.1 Vorschriften zu Sicherheit, Gesundheits- und Umweltschutz/spezifische<br />

Rechtsvorschriften für den Stoff oder das Gemisch<br />

Nationale Vorschriften - Deutschland<br />

Lagerklasse:<br />

3 Entzündbare Flüssigkeiten<br />

Wassergefährdungsklasse: 2 = wassergefährdend (WGK-Katalognummer 76)<br />

Störfallverordnung: Nr. 9b, Nr. 13.3<br />

Hinweise zur Beschäftigungsbeschränkung:<br />

Beschäftigungsbeschränkungen für Jugendliche beachten.<br />

Beschäftigungsbeschränkungen für werdende und stillende Mütter beachten.<br />

Nationale Vorschriften - Großbritannien<br />

DG-EA-Code (Hazchem):<br />

3Y<br />

Nationale Vorschriften - USA<br />

Gefahrbewertungssysteme<br />

2<br />

2 0<br />

TSCA Inventory: listed; UVCB<br />

TSCA HPVC: not listed<br />

NFPA Hazard Rating:<br />

Health: 2 (Moderate)<br />

Fire: 2 (Moderate)<br />

Reactivity: 0 (Minimal)<br />

15.2 Stoffsicherheitsbeurteilung<br />

HMIS Version III Rating:<br />

Health: 2 (Moderate) - Chronic effects<br />

Flammability: 2 (Moderate)<br />

Physical Hazard: 0 (Minimal)<br />

Personal Protection: X = Consult your supervisor<br />

Eine Stoffsicherheitsbeurteilung wurde für diesen Stoff durchgeführt.<br />

HEALTH * 2<br />

FLAMMABILITY 2<br />

PHYSICAL HAZARD 0<br />

X<br />

Weitere Informationen<br />

ABSCHNITT 16: Sonstige Angaben<br />

Wortlaut der H-Sätze unter Abschnitt 2 und 3:<br />

H226 = Flüssigkeit und Dampf entzündbar.<br />

H304 = Kann bei Verschlucken und Eindringen in die Atemwege tödlich sein.<br />

H315 = Verursacht Hautreizungen.<br />

H332 = Gesundheitsschädlich bei Einatmen.<br />

H351 = Kann vermutlich Krebs erzeugen.<br />

H373 = Kann die Organe schädigen bei längerer oder wiederholter Exposition.<br />

H411 = Giftig für Wasserorganismen, mit langfristiger Wirkung.<br />

Wortlaut der R-Sätze unter Abschnitt 2 und 3:<br />

R 20 = Gesundheitsschädlich beim Einatmen.<br />

R 38 = Reizt die Haut.<br />

R 40 = Verdacht auf krebserzeugende Wirkung.<br />

R 51/53 = Giftig für Wasserorganismen, kann in Gewässern längerfristig schädliche Wirkungen<br />

haben.<br />

R 65 = Gesundheitsschädlich: Kann beim Verschlucken Lungenschäden verursachen.<br />

gedruckt von Eni Deutschland<br />

... mit Qualisys SUMDAT


<strong>EU</strong>-<strong>SICHERHEITSDATENBLATT</strong><br />

gemäß Verordnung (EG) Nr. 1907/2006 und Verordnung (<strong>EU</strong>) Nr. 453/2010 (REACH)<br />

<strong>Dieselkraftstoff</strong><br />

Materialnummer D001<br />

Bearbeitet: 30.05.2012<br />

Version: 12<br />

Sprache: de-DE<br />

Gedruckt: 14.06.2012<br />

Seite: 13 von 13<br />

Literatur: CONCAWE (Chemical Safety Report Part B, Other Gas Oils 07/2010)<br />

CONCAWE (Chemical Safety Report Part B, VHGO 07/2010)<br />

CONCAWE (Madouplein 1, B-1030 Brussels, Belgium):<br />

- Dossier 'Liquified Petroleum Gas', 92/102<br />

- Report 01/53 (Classification and of Labelling of Petroleum Substances Directive)<br />

- Report 01/54 (Environmental Classification of Petroleum Substances - Summary data and<br />

Rationale)<br />

DGMK:<br />

- Bericht 400-1: Mineralölprodukte. Erste-Hilfe-Maßnahmen, medizinisch-toxikologische Daten<br />

und Fachinformationen für Ärzte<br />

- Bericht 538: Mineralölprodukte<br />

Hommel: Merkblatt 83<br />

Mineralölwirtschaftsverband (MWV):<br />

- Merkblatt über Vorsichtsmaßnahmen beim Umgang mit flüssigen Mineralölen und<br />

Schmierfetten<br />

ICSC 1561<br />

Grund der letzten Änderungen:<br />

Änderung in Abschnitt 3: DIN EN 590<br />

Änderung in Abschnitt 11, 15: Allgemeine Überarbeitung<br />

Angelegt: 27.11.2007<br />

Datenblatt ausstellender Bereich<br />

Ansprechpartner:<br />

siehe Kapitel 1, Auskunft gebender Bereich.<br />

Die Angaben in diesem Datenblatt sind nach bestem Wissen zusammengestellt und entsprechen dem Stand der<br />

Kenntnis zum Überarbeitungsdatum. Sie sichern jedoch nicht die Einhaltung bestimmter Eigenschaften im Sinne<br />

der Rechtsverbindlichkeit zu.<br />

gedruckt von Eni Deutschland<br />

... mit Qualisys SUMDAT


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

9. EXPOSURE ASSESSMENT<br />

Table 9.1. Identified Use Description and Exposure Scenario Number Key<br />

IU Category Identified Use<br />

Name<br />

Sector ES<br />

Number<br />

Sector<br />

of Use<br />

(SU)<br />

Product<br />

Category<br />

(PC)<br />

Process<br />

Category<br />

(PROC)<br />

1 Vacuum gas oils,<br />

hydrocracked gas<br />

oils and distillate<br />

fuels<br />

2 Vacuum gas oils,<br />

hydrocracked gas<br />

oils and distillate<br />

fuels<br />

3 Vacuum gas oils,<br />

hydrocracked gas<br />

oils and distillate<br />

fuels<br />

4 Vacuum gas oils,<br />

hydrocracked gas<br />

oils and distillate<br />

fuels<br />

01 – Manufacture<br />

of Substance<br />

01b – Use of<br />

Substance as<br />

Intermediate<br />

01a –<br />

Distribution of<br />

Substance<br />

02 – Formulation<br />

& (Re)packing of<br />

Substances and<br />

Mixtures<br />

Industrial ES 9.1.1 3, 8, 9 NA 1, 2, 3, 4, 8a, 8b,<br />

15<br />

Industrial ES 9.2.1 3, 8, 9 NA 1, 2, 3, 4, 8a, 8b,<br />

15<br />

Industrial ES 9.3.1 3 NA 1, 2, 3, 4, 8a, 8b,<br />

9, 15<br />

Industrial ES 9.4.1 3, 10 NA 1, 2, 3, 4, 5, 8a,<br />

8b, 9, 14, 15<br />

5 Vacuum gas oils,<br />

hydrocracked gas<br />

oils and distillate<br />

fuels<br />

6 Vacuum gas oils,<br />

hydrocracked gas<br />

oils and distillate<br />

fuels<br />

03a – Uses in<br />

Coatings:<br />

Industrial<br />

03b – Uses in<br />

Coatings:<br />

Professional<br />

Industrial ES 9.5.1 3 NA 1, 2, 3, 4, 5, 7,<br />

8a, 8b, 10, 13,<br />

15<br />

Professional ES 9.6.1 22 NA 1, 2, 3, 4, 5, 8a,<br />

8b, 10, 11, 13,<br />

15, 19<br />

2010-07-28 CSR 107<br />

Article<br />

Category<br />

(AC)<br />

Environmental<br />

Release<br />

Category<br />

(ERC)<br />

Specific<br />

Environmental<br />

Release Category<br />

(SpERC)<br />

NA 1, 4 ESVOC SpERC<br />

1.1.v1<br />

NA 6a ESVOC SpERC<br />

6.1a.v1<br />

NA 1, 2, 3, 4, 5, 6a,<br />

6b, 6c, 6d, 7<br />

ESVOC SpERC<br />

1.1b.v1<br />

NA 2 ESVOC SpERC<br />

2.2.v1<br />

NA 4 ESVOC SpERC<br />

4.3a.v1<br />

NA 8a, 8d ESVOC SpERC<br />

8.3b.v1


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

7 Vacuum gas oils,<br />

hydrocracked gas<br />

oils and distillate<br />

fuels<br />

8 Vacuum gas oils,<br />

hydrocracked gas<br />

oils and distillate<br />

fuels<br />

9 Vacuum gas oils,<br />

hydrocracked gas<br />

oils and distillate<br />

fuels<br />

10 Vacuum gas oils,<br />

hydrocracked gas<br />

oils and distillate<br />

fuels<br />

11 Vacuum gas oils,<br />

hydrocracked gas<br />

oils and distillate<br />

fuels<br />

12 Vacuum gas oils,<br />

hydrocracked gas<br />

oils and distillate<br />

fuels<br />

05a – Use in Oil<br />

and Gas Field<br />

Drilling and<br />

Production<br />

Operations:<br />

Industrial<br />

05b – Use in Oil<br />

and Gas field<br />

drilling and<br />

production<br />

operations:<br />

Professional<br />

06a – Lubricants:<br />

Industrial<br />

06b – Lubricants:<br />

Professional<br />

(Low Release)<br />

06c – Lubricants:<br />

Professional<br />

(High Release)<br />

07a – Use in<br />

Metal Working<br />

Fluids / Rolling<br />

Oils: Industrial<br />

Industrial ES 9.7.1 3 NA 1, 2, 3, 4, 8a, 8b NA 4 QUALITATIVE<br />

ASSESSMENT<br />

FOR<br />

ENVIRONMENT<br />

Professional ES 9.8.1 22 NA 1, 2, 3, 4, 8a, 8b NA 8d QUALITATIVE<br />

ASSESSMENT<br />

FOR<br />

ENVIRONMENT<br />

Industrial ES 9.9.1 3 NA 1, 2, 3, 4, 7, 8a,<br />

8b, 9, 10, 13, 17,<br />

18<br />

Professional ES 9.10.1 22 NA 1, 2, 3, 4, 8a, 8b,<br />

9, 10, 11, 13, 17,<br />

18, 20<br />

Professional ES 9.11.1 22 NA 1, 2, 3, 4, 8a, 8b,<br />

9, 10, 11, 13, 17,<br />

18, 20<br />

Industrial ES 9.12.1 3 NA 1, 2, 3, 4, 5, 7,<br />

8a, 8b, 9, 10, 13,<br />

17<br />

NA 4, 7 ESVOC SpERC<br />

4.6a.v1<br />

NA 9a, 9b ESVOC SpERC<br />

9.6b.v1<br />

NA 8a, 8d ESVOC SpERC<br />

8.6c.v1<br />

NA 4 ESVOC SpERC<br />

4.7a.v1<br />

13 Vacuum gas oils,<br />

hydrocracked gas<br />

oils and distillate<br />

fuels<br />

14 Vacuum gas oils,<br />

hydrocracked gas<br />

oils and distillate<br />

fuels<br />

10a – Use as<br />

Release Agents<br />

or Binders:<br />

Industrial<br />

10b – Use as<br />

Release Agents<br />

or Binders:<br />

Professional<br />

Industrial ES 9.13.1 3 NA 1, 2, 3, 4, 6, 7,<br />

8b, 10, 13, 14<br />

Professional ES 9.14.1 22 NA 1, 2, 3, 4, 6, 8a,<br />

8b, 10, 11, 14<br />

NA 4 ESVOC SpERC<br />

4.10a.v1<br />

NA 8a, 8d ESVOC SpERC<br />

8.10b.v1<br />

2010-07-28 CSR 108


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

15 Vacuum gas oils,<br />

hydrocracked gas<br />

oils and distillate<br />

fuels<br />

16 Vacuum gas oils,<br />

hydrocracked gas<br />

oils and distillate<br />

fuels<br />

17 Vacuum gas oils,<br />

hydrocracked gas<br />

oils and distillate<br />

fuels<br />

18 Vacuum gas oils,<br />

hydrocracked gas<br />

oils and distillate<br />

fuels<br />

19 Vacuum gas oils,<br />

hydrocracked gas<br />

oils and distillate<br />

fuels<br />

12a – Use as a<br />

Fuel: Industrial<br />

12b – Use as a<br />

Fuel:<br />

Professional<br />

12c – Use as a<br />

Fuel: Consumer<br />

13a – Use as<br />

Functional<br />

Fluids: Industrial<br />

15 – Use in Road<br />

and Construction<br />

Applications:<br />

Professional<br />

Industrial ES 9.15.1 3 NA 1, 2, 3, 8a, 8b,<br />

16<br />

Professional ES 9.16.1 22 NA 1, 2, 3, 8a, 8b,<br />

16<br />

NA 7 ESVOC SpERC<br />

7.12a.v1<br />

NA 9a, 9b ESVOC SpERC<br />

9.12b.v1<br />

Consumer ES 9.17.1 21 13 NA NA 9a, 9b ESVOC SpERC<br />

9.12c.v1<br />

Industrial ES 9.18.1 3 NA 1, 2, 3, 4, 8a, 8b,<br />

9<br />

Professional ES 9.19.1 22 NA 8a, 8b, 9, 10, 11,<br />

13<br />

NA 7 ESVOC SpERC<br />

7.13a.v1<br />

NA 8d, 8f ESVOC SpERC<br />

8.15.v1<br />

20 Vacuum gas oils,<br />

hydrocracked gas<br />

oils and distillate<br />

fuels<br />

21 Vacuum gas oils,<br />

hydrocracked gas<br />

oils and distillate<br />

fuels<br />

18b – Explosives<br />

Manufacture &<br />

Use: Professional<br />

19 – Rubber<br />

Production and<br />

processing:<br />

Industrial<br />

Professional ES 9.20.1 22 NA 1, 3, 5, 8a, 8b NA 8e ERC DEFINED<br />

RELEASE<br />

FRACTIONS<br />

Industrial ES 9.21.1 3, 10,<br />

11<br />

NA 1, 2, 3, 4, 5, 6, 7,<br />

8a, 8b, 9, 13, 14,<br />

15, 21<br />

NA 1, 4, 6d ESVOC SpERC<br />

4.19.v1<br />

2010-07-28 CSR 109


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

The process of mapping uses and characterising risks has often identified a series of supporting<br />

measures that may further contribute to the management of exposure. The measures are identified in<br />

blue text in the Appendices contained in section 10. These measures are not contained within the<br />

Exposure Scenarios (ES) as they do not need to be implemented in order to achieve satisfactory<br />

exposure control. However, they are identified within the CSA in order that stakeholders are able to<br />

benefit from access to other exposure control information that has been obtained during the process<br />

of CSA/ES development.<br />

2010-07-30 CSR 110


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

9.1. Manufacture of Gas Oils (vacuum, hydrocracked & distillate<br />

fuels) R20, R38, R40, R65, R51/53 – Industrial<br />

9.1.1. Exposure Scenario<br />

Section 1 Exposure Scenario Title Gas Oils (vacuum, hydrocracked & distillate fuels) R20, R38,<br />

R40, R65, R51/53<br />

Title<br />

Manufacture of Substance<br />

Use Descriptor<br />

Sector(s) of Use 3, 8, 9<br />

Process Categories 1, 2, 3, 4, 8a, 8b, 15<br />

Further information on the mapping and allocation of<br />

PROC codes is contained in Table 9.1<br />

Environmental Release Categories 1, 4<br />

Specific Environmental Release Category ESVOC SpERC 1.1.v1<br />

Processes, tasks, activities covered<br />

Manufacture of the substance or use as a process chemical or extraction agent. Includes recycling /<br />

recovery, material transfers, storage, sampling, associated laboratory activities, maintenance and<br />

loading (including marine vessel/barge, road/rail car and bulk container).<br />

Assessment Method<br />

See Section 3.<br />

Section 2 Operational conditions and risk management measures<br />

Section 2.1 Control of worker exposure<br />

Product characteristics<br />

Physical form of product Liquid<br />

Vapour pressure (kPa) Liquid, vapour pressure 20°C above ambient<br />

Conditions affecting temperature). OC7. Assumes a good basic standard of occupational<br />

exposure<br />

hygiene is implemented G1.<br />

Contributing Scenarios Specific Risk Management Measures and Operating Conditions<br />

General measures<br />

applicable to all activities<br />

CS135<br />

General measures (skin<br />

irritants) G19<br />

General exposures (Closed<br />

systems) CS15<br />

Control any potential exposure using measures such as contained<br />

systems, properly designed and maintained facilities and a good standard<br />

of general ventilation. Drain down systems and transfer lines prior to<br />

breaking containment. Drain down and flush equipment where possible<br />

prior to maintenance.<br />

Where there is potential for exposure: Ensure relevant staff are informed<br />

of exposure potential and aware of basic actions to minimise exposures;<br />

ensure suitable personal protective equipment is available; clear up spills<br />

and dispose of waste in accordance with regulatory requirements; monitor<br />

effectiveness of control measures; provide regular health surveillance as<br />

appropriate; identify and implement corrective actions. G25<br />

Avoid direct skin contact with product. Identify potential areas for indirect<br />

skin contact. Wear gloves (tested to EN374) if hand contact with<br />

substance likely. Clean up contamination/spills as soon as they occur.<br />

Wash off skin contamination immediately. Provide basic employee<br />

training to prevent / minimise exposures and to report any skin effects<br />

that may develop. E3<br />

Handle substance within a closed system E47<br />

2010-07-30 CSR 111


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

General exposures (Open<br />

systems) CS16<br />

Process Sampling CS2<br />

Bulk closed loading and<br />

unloading CS501<br />

Bulk open loading and<br />

unloading CS503<br />

Equipment cleaning and<br />

maintenance CS39<br />

Wear suitable gloves tested to EN374 PPE15<br />

No other specific measures identified EI20<br />

Handle substance within a closed system E47 Wear suitable gloves<br />

tested to EN374 PPE15<br />

Wear suitable gloves tested to EN374 PPE15<br />

Drain down system prior to equipment break-in or maintenance. E65.<br />

Wear chemically resistant gloves (tested to EN374) in combination with<br />

‘basic’ employee training. PPE16<br />

No other specific measures identified EI20<br />

Laboratory activities CS36<br />

Bulk storage CS85 Store substance within a closed system. E84<br />

Additional information on the basis for the allocation of the identified OCs and RMMs is<br />

contained in Appendices 2 to 3<br />

Section 2.2 Control of environmental exposure<br />

Product characteristics<br />

Substance is complex UVCB [PrC3]. Predominantly hydrophobic [PrC4a].<br />

Amounts used<br />

Fraction of <strong>EU</strong> tonnage used in region 0.1<br />

Regional use tonnage (tonnes/year) 2.8e7<br />

Fraction of Regional tonnage used locally 0.021<br />

Annual site tonnage (tonnes/year) 6.0e5<br />

Maximum daily site tonnage (kg/day) 2.0e6<br />

Frequency and duration of use<br />

Continuous release [FD2].<br />

Emission days (days/year) 300<br />

Environmental factors not influenced by risk management<br />

Local freshwater dilution factor 10<br />

Local marine water dilution factor 100<br />

Other given operational conditions affecting environmental exposure<br />

Release fraction to air from process (initial release prior to RMM)<br />

1.0e-2<br />

Release fraction to wastewater from process (initial release prior to 3.0e-5<br />

RMM)<br />

Release fraction to soil from process (initial release prior to RMM) 0.0001<br />

Technical conditions and measures at process level (source) to prevent release<br />

Common practices vary across sites thus conservative process release estimates used [TCS1].<br />

Technical onsite conditions and measures to reduce or limit discharges, air emissions and<br />

releases to soil<br />

Risk from environmental exposure is driven by freshwater sediment [TCR1b].<br />

Prevent discharge of undissolved substance to or recover from onsite wastewater [TCR14].<br />

If discharging to domestic sewage treatment plant, no onsite wastewater treatment required [TCR9].<br />

Treat air emission to provide a typical removal efficiency of (%) 90<br />

Treat onsite wastewater (prior to receiving water discharge) to provide 90.3<br />

the required removal efficiency (%)<br />

If discharging to domestic sewage treatment plant, provide the required 0<br />

onsite wastewater removal efficiency of (%)<br />

Organisation measures to prevent/limit release from site<br />

Prevent discharge of undissolved substance to or recover from wastewater [OMS1]. Do not apply<br />

industrial sludge to natural soils [OMS2]. Sludge should be incinerated, contained or reclaimed<br />

[OMS3].<br />

Conditions and measures related to municipal sewage treatment plant<br />

Estimated substance removal from wastewater via domestic sewage<br />

treatment (%)<br />

94.1<br />

2010-07-30 CSR 112


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

Total efficiency of removal from wastewater after onsite and offsite 94.1<br />

(domestic treatment plant) RMMs (%)<br />

Maximum allowable site tonnage (M Safe ) based on release following total 3.3e6<br />

wastewater treatment removal (kg/d)<br />

Assumed domestic sewage treatment plant flow (m 3 /d) 10000<br />

Conditions and measures related to external treatment of waste for disposal<br />

During manufacturing no waste of the substance is generated to treat [ETW4].<br />

Conditions and measures related to external recovery of waste<br />

During manufacturing no waste of the substance is generated to recover [ERW2].<br />

Additional information on the basis for the allocation of the indentified OCs and RMMs is<br />

contained in PETRORISK file.<br />

Section 3 Exposure Estimation<br />

3.1. Health<br />

The ECETOC TRA tool has been used to estimate workplace exposures unless otherwise indicated.<br />

G21.<br />

3.2. Environment<br />

The Hydrocarbon Block Method has been used to calculate environmental exposure with the Petrorisk<br />

model [EE2].<br />

Section 4 Guidance to check compliance with the Exposure Scenario<br />

4.1. Health<br />

Predicted exposures are not expected to exceed the DN(M)EL when the Risk Management<br />

Measures/Operational Conditions outlined in Section 2 are implemented. G22.<br />

Where other Risk Management Measures/Operational Conditions are adopted, then users should<br />

ensure that risks are managed to at least equivalent levels. G23.<br />

Available hazard data do not enable the derivation of a DNEL for dermal irritant effects. G32. Available<br />

hazard data do not support the need for a DNEL to be established for other health effects. G36. Risk<br />

Management Measures are based on qualitative risk characterisation. G37.<br />

4.2. Environment<br />

Guidance is based on assumed operating conditions which may not be applicable to all sites; thus,<br />

scaling may be necessary to define appropriate site-specific risk management measures [DSU1].<br />

Required removal efficiency for wastewater can be achieved using onsite/offsite technologies, either<br />

alone or in combination [DSU2]. Required removal efficiency for air can be achieved using onsite<br />

technologies, either alone or in combination [DSU3]. Further details on scaling and control<br />

technologies are provided in SpERC factsheet (http://cefic.org/en/reach-for-industries-libraries.html).<br />

Scaled assessments for <strong>EU</strong> refineries have been performed using site-specific data and are attached<br />

in PETRORISK file attached to IUCLID section 13 – “Site-Specific Production” worksheet [DSU6]. For<br />

refinery sites where scaling revealed a condition of unsafe use (i.e., RCRs > 1), a site-specific<br />

chemical safety assessment was required [DSU8]. Taking into account the findings of the airmonitoring<br />

evaluation on benzene included as the Tier 2 analysis in the Low Boiling Point Naphtha<br />

category, the default “Air Removal Efficiency” of 90 % included in the SPERC has been shown to be<br />

over-conservative and that 95 % efficiency can safely be claimed in a Tier II analysis. On this basis,<br />

the Tier 2 analysis demonstrates that no refineries have RCRs>1 (see PETRORISK file in IUCLID<br />

section 13 – "Tier 2 Site Specific Production worksheet").<br />

9.1.2. Exposure Estimation<br />

9.1.2.1. Human Health<br />

See Appendix 2.a and 2.b<br />

9.1.2.2. Environment<br />

See PETRORISK file in IUCLID section 13 – “LocalCSR” worksheet<br />

2010-07-30 CSR 113


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

9.2. Use of Gas Oils (vacuum, hydrocracked & distillate fuels)<br />

R20, R38, R40, R65, R51/53 as Intermediate – Industrial<br />

9.2.1. Exposure Scenario<br />

Section 1 Exposure Scenario Title Gas Oils (vacuum, hydrocracked & distillate fuels) R20, R38,<br />

R40, R65, R51/53<br />

Title<br />

Use as Substance as Intermediate<br />

Use Descriptor<br />

Sector(s) of Use 3, 8, 9<br />

Process Categories 1, 2, 3, 4, 8a, 8b, 15<br />

Further information on the mapping and allocation of<br />

PROC codes is contained in Table 9.1<br />

Environmental Release Categories<br />

6a<br />

Specific Environmental Release Category ESVOC SpERC 6.1a.v1<br />

Processes, tasks, activities covered<br />

Use of substance as an intermediate. Includes recycling/ recovery, material transfers, storage,<br />

sampling, associated laboratory activities, maintenance and loading (including marine vessel/barge,<br />

road/rail car and bulk container).<br />

Assessment Method<br />

See Section 3.<br />

Section 2 Operational conditions and risk management measures<br />

Section 2.1 Control of worker exposure<br />

Product characteristics<br />

Physical form of product Liquid<br />

Vapour pressure (kPa) Liquid, vapour pressure 20°C above ambient<br />

Conditions affecting temperature). OC7. Assumes a good basic standard of occupational<br />

exposure<br />

hygiene is implemented G1.<br />

Contributing Scenarios Specific Risk Management Measures and Operating Conditions<br />

General measures<br />

applicable to all activities<br />

CS135<br />

General measures (skin<br />

irritants) G19<br />

General exposures (Closed<br />

systems) CS15<br />

Control any potential exposure using measures such as contained<br />

systems, properly designed and maintained facilities and a good standard<br />

of general ventilation. Drain down systems and transfer lines prior to<br />

breaking containment. Drain down and flush equipment where possible<br />

prior to maintenance.<br />

Where there is potential for exposure: Ensure relevant staff are informed<br />

of exposure potential and aware of basic actions to minimise exposures;<br />

ensure suitable personal protective equipment is available; clear up spills<br />

and dispose of waste in accordance with regulatory requirements; monitor<br />

effectiveness of control measures; provide regular health surveillance as<br />

appropriate; identify and implement corrective actions. G25<br />

Avoid direct skin contact with product. Identify potential areas for indirect<br />

skin contact. Wear gloves (tested to EN374) if hand contact with<br />

substance likely. Clean up contamination/spills as soon as they occur.<br />

Wash off skin contamination immediately. Provide basic employee<br />

training to prevent / minimise exposures and to report any skin effects<br />

that may develop. E3<br />

Handle substance within a closed system E47<br />

2010-07-30 CSR 114


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

General exposures (Open<br />

systems) CS16<br />

Process Sampling CS2<br />

Bulk closed loading and<br />

unloading CS501<br />

Bulk open loading and<br />

unloading CS503<br />

Equipment cleaning and<br />

maintenance CS39<br />

Laboratory activities CS36<br />

Bulk storage CS85<br />

Wear suitable gloves tested to EN374 PPE15<br />

No other specific measures identified EI20<br />

Handle substance within a closed system E47 Wear suitable gloves<br />

tested to EN374 PPE15<br />

Wear suitable gloves tested to EN374 PPE15<br />

Drain down system prior to equipment break-in or maintenance. E65.<br />

Wear chemically resistant gloves (tested to EN374) in combination with<br />

‘basic’ employee training. PPE16<br />

No other specific measures identified EI20<br />

Store substance within a closed system. E84<br />

Additional information on the basis for the allocation of the identified OCs and RMMs is<br />

contained in Appendices 2 to 3<br />

Section 2.2 Control of environmental exposure<br />

Product characteristics<br />

Substance is complex UVCB [PrC3]. Predominantly hydrophobic [PrC4a].<br />

Amounts used<br />

Fraction of <strong>EU</strong> tonnage used in region 0.1<br />

Regional use tonnage (tonnes/year) 3.5e5<br />

Fraction of Regional tonnage used locally 0.043<br />

Annual site tonnage (tonnes/year) 1.5e4<br />

Maximum daily site tonnage (kg/day) 5.0e4<br />

Frequency and duration of use<br />

Continuous release [FD2].<br />

Emission days (days/year) 300<br />

Environmental factors not influenced by risk management<br />

Local freshwater dilution factor 10<br />

Local marine water dilution factor 100<br />

Other given operational conditions affecting environmental exposure<br />

Release fraction to air from process (initial release prior to RMM)<br />

1.0e-3<br />

Release fraction to wastewater from process (initial release prior to 3.0e-5<br />

RMM)<br />

Release fraction to soil from process (initial release prior to RMM) 0.001<br />

Technical conditions and measures at process level (source) to prevent release<br />

Common practices vary across sites thus conservative process release estimates used [TCS1].<br />

Technical onsite conditions and measures to reduce or limit discharges, air emissions and<br />

releases to soil<br />

Risk from environmental exposure is driven by freshwater sediment [TCR1b].<br />

Prevent discharge of undissolved substance to or recover from onsite wastewater [TCR14].<br />

If discharging to domestic sewage treatment plant, no onsite wastewater treatment required [TCR9].<br />

Treat air emission to provide a typical removal efficiency of (%) 80<br />

Treat onsite wastewater (prior to receiving water discharge) to provide 51.6<br />

the required removal efficiency (%)<br />

If discharging to domestic sewage treatment plant, provide the required 0<br />

onsite wastewater removal efficiency of (%)<br />

Organisation measures to prevent/limit release from site<br />

Prevent discharge of undissolved substance to or recover from wastewater [OMS1]. Do not apply<br />

industrial sludge to natural soils [OMS2]. Sludge should be incinerated, contained or reclaimed<br />

[OMS3].<br />

Conditions and measures related to municipal sewage treatment plant<br />

Estimated substance removal from wastewater via domestic sewage<br />

treatment (%)<br />

94.1<br />

2010-07-30 CSR 115


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

Total efficiency of removal from wastewater after onsite and offsite 94.1<br />

(domestic treatment plant) RMMs (%)<br />

Maximum allowable site tonnage (M Safe ) based on release following total 4.1e5<br />

wastewater treatment removal (kg/d)<br />

Assumed domestic sewage treatment plant flow (m 3 /d) 2000<br />

Conditions and measures related to external treatment of waste for disposal<br />

This substance is consumed during use and no waste of the substance is generated to treat [ETW5].<br />

Conditions and measures related to external recovery of waste<br />

This substance is consumed during use and no waste of the substance is generated to recover<br />

[ERW3].<br />

Additional information on the basis for the allocation of the indentified OCs and RMMs is<br />

contained in PETRORISK file.<br />

Section 3 Exposure Estimation<br />

3.1. Health<br />

The ECETOC TRA tool has been used to estimate workplace exposures unless otherwise indicated.<br />

G21.<br />

3.2. Environment<br />

The Hydrocarbon Block Method has been used to calculate environmental exposure with the Petrorisk<br />

model [EE2].<br />

Section 4 Guidance to check compliance with the Exposure Scenario<br />

4.1. Health<br />

Predicted exposures are not expected to exceed the DN(M)EL when the Risk Management<br />

Measures/Operational Conditions outlined in Section 2 are implemented. G22.<br />

Where other Risk Management Measures/Operational Conditions are adopted, then users should<br />

ensure that risks are managed to at least equivalent levels. G23.<br />

Available hazard data do not enable the derivation of a DNEL for dermal irritant effects. G32. Available<br />

hazard data do not support the need for a DNEL to be established for other health effects. G36. Risk<br />

Management Measures are based on qualitative risk characterisation. G37.<br />

4.2. Environment<br />

Guidance is based on assumed operating conditions which may not be applicable to all sites; thus,<br />

scaling may be necessary to define appropriate site-specific risk management measures [DSU1].<br />

Required removal efficiency for wastewater can be achieved using onsite/offsite technologies, either<br />

alone or in combination [DSU2]. Required removal efficiency for air can be achieved using onsite<br />

technologies, either alone or in combination [DSU3]. Further details on scaling and control<br />

technologies are provided in SpERC factsheet (http://cefic.org/en/reach-for-industries-libraries.html)<br />

[DSU4].<br />

9.2.2. Exposure Estimation<br />

9.2.2.1. Human Health<br />

See Appendix 2.a and 2.b<br />

9.2.2.2. Environment<br />

See PETRORISK file in IUCLID section 13 – “LocalCSR” worksheet<br />

2010-07-30 CSR 116


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

9.3. Distribution of Gas Oils (vacuum, hydrocracked & distillate<br />

fuels) R20, R38, R40, R65, R51/53 – Industrial<br />

9.3.1. Exposure Scenario<br />

Section 1 Exposure Scenario Title Gas Oils (vacuum, hydrocracked & distillate fuels) R20, R38,<br />

R40, R65, R51/53<br />

Title<br />

Distribution of Substance<br />

Use Descriptor<br />

Sector(s) of Use 3<br />

Process Categories 1, 2, 3, 4, 8a, 8b, 9, 15<br />

Further information on the mapping and allocation of<br />

PROC codes is contained in Table 9.1<br />

Environmental Release Categories 1, 2, 3, 4, 5, 6a, 6b, 6c, 6d, 7<br />

Specific Environmental Release Category ESVOC SpERC 1.1b.v1<br />

Processes, tasks, activities covered<br />

Bulk loading (including marine vessel/barge, rail/road car and IBC loading) and repacking (including<br />

drums and small packs) of substance, including its sampling, storage, unloading, maintenance and<br />

associated laboratory activities.<br />

Assessment Method<br />

See Section 3.<br />

Section 2 Operational conditions and risk management measures<br />

Section 2.1 Control of worker exposure<br />

Product characteristics<br />

Physical form of product Liquid<br />

Vapour pressure (kPa) Liquid, vapour pressure


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

General exposures (Open<br />

systems) CS16<br />

Process sampling CS2<br />

Laboratory activities CS36<br />

Bulk closed loading and<br />

unloading CS501<br />

Bulk open loading and<br />

unloading CS503<br />

Drum and small pack filling<br />

CS6<br />

Equipment cleaning and<br />

maintenance CS39<br />

Wear suitable gloves tested to EN374 PPE15<br />

No other specific measures identified EI20<br />

No other specific measures identified EI20<br />

Handle substance within a closed system E47 Wear suitable gloves<br />

tested to EN374 PPE15<br />

Wear suitable gloves tested to EN374 PPE15<br />

Wear suitable gloves tested to EN374 PPE15<br />

Drain down system prior to equipment break-in or maintenance. E65.<br />

Wear chemically resistant gloves (tested to EN374) in combination with<br />

‘basic’ employee training. PPE16<br />

Storage CS67<br />

Handle substance within a closed system. E84<br />

Additional information on the basis for the allocation of the identified OCs and RMMs is<br />

contained in Appendices 2 to 3<br />

Section 2.2 Control of environmental exposure<br />

Product characteristics<br />

Substance is complex UVCB [PrC3]. Predominantly hydrophobic [PrC4a].<br />

Amounts used<br />

Fraction of <strong>EU</strong> tonnage used in region 0.1<br />

Regional use tonnage (tones/year) 2.8e7<br />

Fraction of Regional tonnage used locally 0.002<br />

Annual site tonnage (tonnes/year) 5.6e4<br />

Maximum daily site tonnage (kg/day) 1.9e5<br />

Frequency and duration of use<br />

Continuous release [FD2].<br />

Emission days (days/year) 300<br />

Environmental factors not influenced by risk management<br />

Local freshwater dilution factor 10<br />

Local marine water dilution factor 100<br />

Other given operational conditions affecting environmental exposure<br />

Release fraction to air from process (initial release prior to RMM)<br />

1.0e-3<br />

Release fraction to wastewater from process (initial release prior to 1.0e-6<br />

RMM)<br />

Release fraction to soil from process (initial release prior to RMM) 0.00001<br />

Technical conditions and measures at process level (source) to prevent release<br />

Common practices vary across sites thus conservative process release estimates used [TCS1].<br />

Technical onsite conditions and measures to reduce or limit discharges, air emissions and<br />

releases to soil<br />

Risk from environmental exposure is driven by human via indirect exposure (primarily ingestion)<br />

[TCR1j] Prevent discharge of undissolved substance to or recover from onsite wastewater [TCR14].No<br />

wastewater treatment required [TCR6].<br />

Treat air emission to provide a typical removal efficiency of (%) 90<br />

Treat onsite wastewater (prior to receiving water discharge) to provide 0<br />

the required removal efficiency (%)<br />

If discharging to domestic sewage treatment plant, provide the required 0<br />

onsite wastewater removal efficiency of (%)<br />

Organisation measures to prevent/limit release from site<br />

Prevent discharge of undissolved substance to or recover from wastewater [OMS1]. Do not apply<br />

industrial sludge to natural soils [OMS2]. Sludge should be incinerated, contained or reclaimed<br />

[OMS3].<br />

Conditions and measures related to municipal sewage treatment plant<br />

2010-07-30 CSR 118


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

Estimated substance removal from wastewater via domestic sewage 94.1<br />

treatment (%)<br />

Total efficiency of removal from wastewater after onsite and offsite 94.1<br />

(domestic treatment plant) RMMs (%)<br />

Maximum allowable site tonnage (M Safe ) based on release following total 2.9e6<br />

wastewater treatment removal (kg/d)<br />

Assumed domestic sewage treatment plant flow (m 3 /d) 2000<br />

Conditions and measures related to external treatment of waste for disposal<br />

External treatment and disposal of waste should comply with applicable regulations [ETW3].<br />

Conditions and measures related to external recovery of waste<br />

External recovery and recycling of waste should comply with applicable regulations [ERW1].<br />

Additional information on the basis for the allocation of the indentified OCs and RMMs is<br />

contained in PETRORISK file.<br />

Section 3 Exposure Estimation<br />

3.1. Health<br />

The ECETOC TRA tool has been used to estimate workplace exposures unless otherwise indicated.<br />

G21.<br />

3.2. Environment<br />

The Hydrocarbon Block Method has been used to calculate environmental exposure with the Petrorisk<br />

model [EE2].<br />

Section 4 Guidance to check compliance with the Exposure Scenario<br />

4.1. Health<br />

Predicted exposures are not expected to exceed the DN(M)EL when the Risk Management<br />

Measures/Operational Conditions outlined in Section 2 are implemented. G22.<br />

Where other Risk Management Measures/Operational Conditions are adopted, then users should<br />

ensure that risks are managed to at least equivalent levels. G23.<br />

Available hazard data do not enable the derivation of a DNEL for dermal irritant effects. G32. Available<br />

hazard data do not support the need for a DNEL to be established for other health effects. G36. Risk<br />

Management Measures are based on qualitative risk characterisation. G37.<br />

4.2. Environment<br />

Guidance is based on assumed operating conditions which may not be applicable to all sites; thus,<br />

scaling may be necessary to define appropriate site-specific risk management measures [DSU1].<br />

Required removal efficiency for wastewater can be achieved using onsite/offsite technologies, either<br />

alone or in combination [DSU2]. Required removal efficiency for air can be achieved using onsite<br />

technologies, either alone or in combination [DSU3]. Further details on scaling and control<br />

technologies are provided in SpERC factsheet (http://cefic.org/en/reach-for-industries-libraries.html)<br />

[DSU4].<br />

9.3.2. Exposure Estimation<br />

9.3.2.1. Human Health<br />

See Appendix 2.a and 2.b<br />

9.3.2.2. Environment<br />

See PETRORISK file in IUCLID section 13 – “LocalCSR” worksheet<br />

2010-07-30 CSR 119


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

9.4. Formulation & (Re)packing of Gas Oils (vacuum,<br />

hydrocracked & distillate fuels) R20, R38, R40, R65, R51/53 –<br />

Industrial<br />

9.4.1. Exposure Scenario<br />

Section 1 Exposure Scenario Title Gas Oils (vacuum, hydrocracked & distillate fuels) R20, R38,<br />

R40, R65, R51/53<br />

Title<br />

Formulation & (Re)packing of Substances and Mixtures<br />

Use Descriptor<br />

Sector(s) of Use 3, 10<br />

Process Categories 1, 2, 3, 4, 5, 8a, 8b, 9, 14, 15<br />

Further information on the mapping and allocation of<br />

PROC codes is contained in Table 9.1<br />

Environmental Release Categories 2<br />

Specific Environmental Release Category ESVOC SpERC 2.2.v1<br />

Processes, tasks, activities covered<br />

Formulation, packing and re-packing of the substance and its mixtures in batch or continuous<br />

operations, including storage, materials transfers, mixing, tabletting, compression, pelletization,<br />

extrusion, large and small scale packing, maintenance, sampling and associated laboratory activities<br />

Assessment Method<br />

See Section 3.<br />

Section 2 Operational conditions and risk management measures<br />

Section 2.1 Control of worker exposure<br />

Product characteristics<br />

Physical form of product Liquid<br />

Vapour pressure (kPa) Liquid, vapour pressure


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

General exposures (closed<br />

systems) CS15<br />

General exposures (open<br />

systems) CS16<br />

Process sampling CS2<br />

Drum and batch transfers<br />

CS8<br />

Bulk transfers CS14<br />

Mixing operations (open<br />

systems) CS30<br />

Production or preparation<br />

or articles by tabletting,<br />

compression, extrusion or<br />

pelletisation CS100<br />

Drum and small package<br />

filling CS8<br />

Handle substance within a closed system E47<br />

Wear suitable gloves tested to EN374 PPE15<br />

No other specific measures identified EI20<br />

Use drum pumps or carefully pour from container E64 Wear chemically<br />

resistant gloves (tested to EN374) in combination with ‘basic’ employee<br />

training PPE16<br />

Handle substance within a closed system E47 Wear suitable gloves<br />

tested to EN374 PPE15<br />

Provide extract ventilation to points where emissions occur E54 Wear<br />

chemically resistant gloves (tested to EN374) in combination with ‘basic’<br />

employee training PPE16<br />

Wear suitable gloves tested to EN374 PPE15<br />

Wear suitable gloves tested to EN374 PPE15<br />

Laboratory activities CS36 No other specific measures identified EI20<br />

Equipment clean down and Drain down system prior to equipment break-in or maintenance. E65.<br />

maintenance CS39 Wear chemically resistant gloves (tested to EN374) in combination with<br />

‘basic’ employee training. PPE16<br />

Storage CS67<br />

Store substance within a closed system. E84<br />

Additional information on the basis for the allocation of the identified OCs and RMMs is<br />

contained in Appendices 2 to 3<br />

Section 2.2 Control of environmental exposure<br />

Product characteristics<br />

Substance is complex UVCB [PrC3]. Predominantly hydrophobic [PrC4a].<br />

Amounts used<br />

Fraction of <strong>EU</strong> tonnage used in region 0.1<br />

Regional use tonnage (tonnes/year) 2.8e7<br />

Fraction of Regional tonnage used locally 0.0011<br />

Annual site tonnage (tonnes/year) 3.0e4<br />

Maximum daily site tonnage (kg/day) 1.0e5<br />

Frequency and duration of use<br />

Continuous release [FD2].<br />

Emission days (days/year) 300<br />

Environmental factors not influenced by risk management<br />

Local freshwater dilution factor 10<br />

Local marine water dilution factor 100<br />

Other given operational conditions affecting environmental exposure<br />

Release fraction to air from process (after typical onsite RMMs, 1.0e-2<br />

consistent with <strong>EU</strong> Solvent Emissions Directive requirements)<br />

Release fraction to wastewater from process (initial release prior to 2.0e-5<br />

RMM)<br />

Release fraction to soil from process (initial release prior to RMM) 0.0001<br />

Technical conditions and measures at process level (source) to prevent release<br />

Common practices vary across sites thus conservative process release estimates used [TCS1].<br />

Technical onsite conditions and measures to reduce or limit discharges, air emissions and<br />

releases to soil<br />

Risk from environmental exposure is driven by freshwater sediment [TCR1b].<br />

Prevent discharge of undissolved substance to or recover from onsite wastewater [TCR14].<br />

If discharging to domestic sewage treatment plant, no onsite wastewater treatment required [TCR9].<br />

Treat air emission to provide a typical removal efficiency of (%) 0<br />

2010-07-30 CSR 121


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

Treat onsite wastewater (prior to receiving water discharge) to provide 59.9<br />

the required removal efficiency (%)<br />

If discharging to domestic sewage treatment plant, provide the required 0<br />

onsite wastewater removal efficiency of (%)<br />

Organisation measures to prevent/limit release from site<br />

Prevent discharge of undissolved substance to or recover from wastewater [OMS1]. Do not apply<br />

industrial sludge to natural soils [OMS2]. Sludge should be incinerated, contained or reclaimed<br />

[OMS3].<br />

Conditions and measures related to municipal sewage treatment plant<br />

Estimated substance removal from wastewater via domestic sewage 94.1<br />

treatment (%)<br />

Total efficiency of removal from wastewater after onsite and offsite 94.1<br />

(domestic treatment plant) RMMs (%)<br />

Maximum allowable site tonnage (M Safe ) based on release following total 6.8e5<br />

wastewater treatment removal (kg/d)<br />

Assumed domestic sewage treatment plant flow (m 3 /d) 2000<br />

Conditions and measures related to external treatment of waste for disposal<br />

External treatment and disposal of waste should comply with applicable regulations [ETW3].<br />

Conditions and measures related to external recovery of waste<br />

External recovery and recycling of waste should comply with applicable regulations [ERW1].<br />

Additional information on the basis for the allocation of the indentified OCs and RMMs is<br />

contained in PETRORISK file.<br />

Section 3 Exposure Estimation<br />

3.1. Health<br />

The ECETOC TRA tool has been used to estimate workplace exposures unless otherwise indicated.<br />

G21.<br />

3.2. Environment<br />

The Hydrocarbon Block Method has been used to calculate environmental exposure with the Petrorisk<br />

model [EE2].<br />

Section 4 Guidance to check compliance with the Exposure Scenario<br />

4.1. Health<br />

Predicted exposures are not expected to exceed the DN(M)EL when the Risk Management<br />

Measures/Operational Conditions outlined in Section 2 are implemented. G22.<br />

Where other Risk Management Measures/Operational Conditions are adopted, then users should<br />

ensure that risks are managed to at least equivalent levels. G23.<br />

Available hazard data do not enable the derivation of a DNEL for dermal irritant effects. G32. Available<br />

hazard data do not support the need for a DNEL to be established for other health effects. G36. Risk<br />

Management Measures are based on qualitative risk characterisation. G37.<br />

4.2. Environment<br />

Guidance is based on assumed operating conditions which may not be applicable to all sites; thus,<br />

scaling may be necessary to define appropriate site-specific risk management measures [DSU1].<br />

Required removal efficiency for wastewater can be achieved using onsite/offsite technologies, either<br />

alone or in combination [DSU2]. Required removal efficiency for air can be achieved using onsite<br />

technologies, either alone or in combination [DSU3]. Further details on scaling and control<br />

technologies are provided in SpERC factsheet (http://cefic.org/en/reach-for-industries-libraries.html)<br />

[DSU4].<br />

9.4.2. Exposure Estimation<br />

9.4.2.1. Human Health<br />

See Appendix 2.a and 2.b<br />

9.4.2.2. Environment<br />

See PETRORISK file in IUCLID section 13 – “LocalCSR” worksheet<br />

2010-07-30 CSR 122


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

9.5. Uses of Gas Oils (vacuum, hydrocracked & distillate fuels) in<br />

Coatings R20, R38, R40, R65, R51/53 – Industrial<br />

9.5.1. Exposure Scenario<br />

Section 1 Exposure Scenario Title Gas Oils (vacuum, hydrocracked & distillate fuels) R20, R38,<br />

R40, R65, R51/53<br />

Title<br />

Uses in Coatings<br />

Use Descriptor<br />

Sector(s) of Use 3<br />

Process Categories 1, 2, 3, 4, 5, 7, 8a, 8b, 10, 13, 15<br />

Further information on the mapping and allocation of<br />

PROC codes is contained in Table 9.1<br />

Environmental Release Categories 4<br />

Specific Environmental Release Category ESVOC SpERC 4.3a.v1<br />

Processes, tasks, activities covered<br />

Covers the use in coatings (paints, inks, adhesives, etc) including exposures during use (including<br />

materials receipt, storage, preparation and transfer from bulk and semi-bulk, application by spray,<br />

roller, spreader, dip, flow, fluidised bed on production lines and film formation) and equipment<br />

cleaning, maintenance and associated laboratory activities.<br />

Assessment Method<br />

See Section 3.<br />

Section 2 Operational conditions and risk management measures<br />

Section 2.1 Control of worker exposure<br />

Product characteristics<br />

Physical form of product Liquid<br />

Vapour pressure (kPa) Liquid, vapour pressure


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

General exposures (closed<br />

systems) CS15<br />

Bulk transfers CS14<br />

Material transfers;<br />

Drum/batch transfers;<br />

Transfer from/pouring from<br />

containers CS3, CS8, CS22<br />

Preparation of material for<br />

application; Mixing<br />

operations (open systems)<br />

CS96, CS30<br />

Film formation - force<br />

drying, stoving and other<br />

technologies CS99<br />

Film formation - air drying<br />

CS95<br />

Spraying<br />

(automatic/robotic) CS97<br />

Manual spraying CS24<br />

Roller, spreader, flow<br />

application. CS69<br />

Dipping, immersion and<br />

pouring. CS4<br />

Production of preparations<br />

or articles by tabletting,<br />

compression, extrusion,<br />

pelletisation CS100<br />

Laboratory activities CS36<br />

Equipment clean down and<br />

maintenance CS39<br />

which are likely to lead to substantial aerosol release, e.g. spraying. E4<br />

Handle substance within a closed system E47<br />

Handle substance within a closed system E47 Wear suitable gloves<br />

tested to EN374 PPE15<br />

Wear suitable gloves tested to EN374 PPE15<br />

Wear chemically resistant gloves (tested to EN374) in combination with<br />

‘basic’ employee training. PPE16<br />

Handle substance within a closed system E47 Provide a good standard of<br />

general ventilation (not less than 3 to 5 air changes per hour) E11.<br />

Provide a good standard of general ventilation (not less than 3 to 5 air<br />

changes per hour) E11.Wear suitable gloves tested to EN374 PPE15<br />

Minimise exposure by partial enclosure of the operation or equipment and<br />

provide extract ventilation at openings E60 Wear suitable gloves tested to<br />

EN374 PPE15.Provide a good standard of general ventilation (not less<br />

than 3 to 5 air changes per hour) E11<br />

Wear a respirator conforming to EN140 with Type A/P2 filter or better.<br />

PPE29 Wear chemically resistant gloves (tested to type EN374) in<br />

combination with specific activity training PPE17 Ensure operatives are<br />

trained to minimise exposures EI19 Provide a good standard of general<br />

ventilation (not less than 3 to 5 air changes per hour) E11<br />

Wear chemically resistant gloves (tested to EN374) in combination with<br />

specific activity training PPE17<br />

Wear suitable gloves tested to EN374 PPE15<br />

No other specific measures identified EI20<br />

No other specific measures identified EI20<br />

Drain down system prior to equipment break-in or maintenance. E65.<br />

Wear chemically resistant gloves (tested to EN374) in combination with<br />

‘basic’ employee training. PPE16<br />

Storage CS67<br />

Handle substance within a closed system. E84<br />

Additional information on the basis for the allocation of the identified OCs and RMMs is<br />

contained in Appendices 2 to 3<br />

Section 2.2 Control of environmental exposure<br />

Product characteristics<br />

Substance is complex UVCB [PrC3]. Predominantly hydrophobic [PrC4a].<br />

Amounts used<br />

Fraction of <strong>EU</strong> tonnage used in region 0.1<br />

Regional use tonnage (tonnes/year) 8.1e3<br />

Fraction of Regional tonnage used locally 1<br />

Annual site tonnage (tonnes/year) 8.1e3<br />

Maximum daily site tonnage (kg/day) 2.7e4<br />

Frequency and duration of use<br />

Continuous release [FD2].<br />

Emission days (days/year) 300<br />

Environmental factors not influenced by risk management<br />

Local freshwater dilution factor 10<br />

Local marine water dilution factor 100<br />

2010-07-30 CSR 124


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

Other given operational conditions affecting environmental exposure<br />

Release fraction to air from process (initial release prior to RMM) 0.98<br />

Release fraction to wastewater from process (initial release prior to 7.0e-5<br />

RMM)<br />

Release fraction to soil from process (initial release prior to RMM) 0<br />

Technical conditions and measures at process level (source) to prevent release<br />

Common practices vary across sites thus conservative process release estimates used [TCS1].<br />

Technical onsite conditions and measures to reduce or limit discharges, air emissions and<br />

releases to soil<br />

Risk from environmental exposure is driven by humans via indirect exposure (primarily inhalation)<br />

[TCR1b].<br />

Prevent discharge of undissolved substance to or recover from onsite wastewater [TCR14].<br />

If discharging to domestic sewage treatment plant, no onsite wastewater treatment required [TCR9].<br />

Treat air emission to provide a typical removal efficiency of (%) 90<br />

Treat onsite wastewater (prior to receiving water discharge) to provide 58.2<br />

the required removal efficiency (%)<br />

If discharging to domestic sewage treatment plant, provide the required 0<br />

onsite wastewater removal efficiency of (%)<br />

Organisation measures to prevent/limit release from site<br />

Prevent discharge of undissolved substance to or recover from wastewater [OMS1]. Do not apply<br />

industrial sludge to natural soils [OMS2]. Sludge should be incinerated, contained or reclaimed<br />

[OMS3].<br />

Conditions and measures related to municipal sewage treatment plant<br />

Estimated substance removal from wastewater via domestic sewage 94.1<br />

treatment (%)<br />

Total efficiency of removal from wastewater after onsite and offsite 94.1<br />

(domestic treatment plant) RMMs (%)<br />

Maximum allowable site tonnage (M Safe ) based on release following total 1.4e5<br />

wastewater treatment removal (kg/d)<br />

Assumed domestic sewage treatment plant flow (m 3 /d) 2000<br />

Conditions and measures related to external treatment of waste for disposal<br />

External treatment and disposal of waste should comply with applicable regulations [ETW3].<br />

Conditions and measures related to external recovery of waste<br />

External recovery and recycling of waste should comply with applicable regulations [ERW1].<br />

Additional information on the basis for the allocation of the indentified OCs and RMMs is<br />

contained in PETRORISK file.<br />

Section 3 Exposure Estimation<br />

3.1. Health<br />

The ECETOC TRA tool has been used to estimate workplace exposures unless otherwise indicated.<br />

G21.<br />

3.2. Environment<br />

The Hydrocarbon Block Method has been used to calculate environmental exposure with the Petrorisk<br />

model [EE2].<br />

Section 4 Guidance to check compliance with the Exposure Scenario<br />

4.1. Health<br />

Predicted exposures are not expected to exceed the DN(M)EL when the Risk Management<br />

Measures/Operational Conditions outlined in Section 2 are implemented. G22.<br />

Where other Risk Management Measures/Operational Conditions are adopted, then users should<br />

ensure that risks are managed to at least equivalent levels. G23.<br />

Available hazard data do not enable the derivation of a DNEL for dermal irritant effects. G32. Available<br />

hazard data do not support the need for a DNEL to be established for other health effects. G36. Risk<br />

Management Measures are based on qualitative risk characterisation. G37.<br />

4.2. Environment<br />

2010-07-30 CSR 125


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

Guidance is based on assumed operating conditions which may not be applicable to all sites; thus,<br />

scaling may be necessary to define appropriate site-specific risk management measures [DSU1].<br />

Required removal efficiency for wastewater can be achieved using onsite/offsite technologies, either<br />

alone or in combination [DSU2]. Required removal efficiency for air can be achieved using onsite<br />

technologies, either alone or in combination [DSU3]. Further details on scaling and control<br />

technologies are provided in SpERC factsheet (http://cefic.org/en/reach-for-industries-libraries.html)<br />

[DSU4].<br />

9.5.2. Exposure Estimation<br />

9.5.2.1. Human Health<br />

See Appendix 2.a.<br />

9.5.2.2. Environment<br />

See PETRORISK file in IUCLID section 13 – “LocalCSR” worksheet<br />

2010-07-30 CSR 126


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

9.6. Uses of Gas Oils (vacuum, hydrocracked & distillate fuels)<br />

R20, R38, R40, R65, R51/53 in Coatings – Professional<br />

9.6.1. Exposure Scenario<br />

Section 1 Exposure Scenario Title Gas Oils (vacuum, hydrocracked & distillate fuels) R20, R38,<br />

R40, R65, R51/53<br />

Title<br />

Uses in Coatings<br />

Use Descriptor<br />

Sector(s) of Use 22<br />

Process Categories 1, 2, 3, 4, 5, 8a, 8b, 10, 11, 13, 15, 19<br />

Further information on the mapping and allocation of<br />

PROC codes is contained in Table 9.1<br />

Environmental Release Categories<br />

8a, 8d<br />

Specific Environmental Release Category ESVOC SpERC 8.3b.v1<br />

Processes, tasks, activities covered<br />

Covers the use in coatings (paints, inks, adhesives, etc) including exposures during use (including<br />

materials receipt, storage, preparation and transfer from bulk and semi-bulk, application by spray,<br />

roller, brush, spreader by hand or similar methods, and film formation), and equipment cleaning,<br />

maintenance and associated laboratory activities.<br />

Assessment Method<br />

See Section 3.<br />

Section 2 Operational conditions and risk management measures<br />

Section 2.1 Control of worker exposure<br />

Product characteristics<br />

Physical form of product Liquid<br />

Vapour pressure (kPa) Liquid, vapour pressure


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

which are likely to lead to substantial aerosol release, e.g. spraying. E4<br />

General exposures (closed Handle substance within a closed system E47<br />

systems) CS15<br />

Filling / preparation of Wear suitable gloves tested to EN374 PPE15<br />

equipment from drums or<br />

containers CS45<br />

Material transfers, Pumped Wear chemically resistant gloves (tested to EN374) in combination with<br />

Drum/batch transfers CS3, ‘basic’ employee training. PPE16<br />

CS8<br />

Preparation of material for No other specific measures identified EI20<br />

application; Mixing<br />

operations (closed systems)<br />

CS96, CS29<br />

Preparation of material for<br />

application, mixing<br />

operations (open systems)<br />

CS66,CS30<br />

Film formation - air drying<br />

CS95<br />

Manual spraying, indoor<br />

CS24, OC8<br />

Manual spraying, outdoor<br />

CS24, OC9<br />

Roller, spreader, flow<br />

application CS69<br />

Dipping, immersion and<br />

pouring CS4<br />

Hand application -<br />

fingerpaints, pastels,<br />

adhesives CS72<br />

Laboratory activities CS36<br />

Equipment cleaning and<br />

maintenance CS39<br />

Wear chemically resistant gloves (tested to EN374) in combination with<br />

‘basic’ employee training PPE16<br />

Wear suitable gloves tested to EN374 PPE15<br />

Carry out in a vented booth or extracted enclosure E57 Wear suitable<br />

gloves tested to EN374 PPE15 Limit the substance content in the product<br />

to 25 % OC18 Provide a good standard of general ventilation (not less<br />

than 3 to 5 air changes per hour) E11<br />

Wear a respirator conforming to EN140 with Type A/P2 filter or better.<br />

PPE29 Wear chemically resistant gloves (tested to EN374) in<br />

combination with specific activity training PPE17 Limit the substance<br />

content in the product to 25 % OC18 Avoid carrying out activities<br />

involving exposure for more than 4 hours OC28 Ensure operatives are<br />

trained to minimise exposures EI19<br />

Wear chemically resistant gloves (tested to EN374) in combination with<br />

‘basic’ employee training PPE16 Limit the substance content in the<br />

product to 25 % OC18<br />

Wear chemically resistant gloves (tested to EN374) in combination with<br />

‘basic’ employee training PPE16.<br />

Wear chemically resistant gloves (tested to EN374) in combination with<br />

specific activity training PPE17 Limit the substance content in the product<br />

to 5 % OC17<br />

No other specific measures identified EI20<br />

Drain down system prior to equipment break-in or maintenance E65 Wear<br />

chemically resistant gloves (tested to type EN374) in combination with<br />

basic employee training PPE16<br />

Storage CS67<br />

Store substance within a closed system E84<br />

Additional information on the basis for the allocation of the identified OCs and RMMs is<br />

contained in Appendices 2 to 3<br />

Section 2.2 Control of environmental exposure<br />

Product characteristics<br />

Substance is complex UVCB [PrC3]. Predominantly hydrophobic [PrC4a].<br />

Amounts used<br />

Fraction of <strong>EU</strong> tonnage used in region 0.1<br />

Regional use tonnage (tonnes/year) 2.3e3<br />

Fraction of Regional tonnage used locally 0.0005<br />

Annual site tonnage (tonnes/year) 1.2<br />

Maximum daily site tonnage (kg/day) 3.2<br />

Frequency and duration of use<br />

Continuous release [FD2].<br />

Emission days (days/year) 365<br />

Environmental factors not influenced by risk management<br />

2010-07-30 CSR 128


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

Local freshwater dilution factor 10<br />

Local marine water dilution factor 100<br />

Other given operational conditions affecting environmental exposure<br />

Release fraction to air from process (initial release prior to RMM) 0.98<br />

Release fraction to wastewater from process (initial release prior to 0.01<br />

RMM)<br />

Release fraction to soil from process (initial release prior to RMM) 0.01<br />

Technical conditions and measures at process level (source) to prevent release<br />

Common practices vary across sites thus conservative process release estimates used [TCS1].<br />

Technical onsite conditions and measures to reduce or limit discharges, air emissions and<br />

releases to soil<br />

Risk from environmental exposure is driven by humans via indirect exposure (primarily ingestion)<br />

[TCR1j].<br />

No wastewater treatment required [TCR6].<br />

Treat air emission to provide a typical removal efficiency of (%) N/A<br />

Treat onsite wastewater (prior to receiving water discharge) to provide 0<br />

the required removal efficiency (%)<br />

If discharging to domestic sewage treatment plant, provide the required 0<br />

onsite wastewater removal efficiency of (%)<br />

Organisation measures to prevent/limit release from site<br />

Do not apply industrial sludge to natural soils [OMS2]. Sludge should be incinerated, contained or<br />

reclaimed [OMS3].<br />

Conditions and measures related to municipal sewage treatment plant<br />

Estimated substance removal from wastewater via domestic sewage 94.1<br />

treatment (%)<br />

Total efficiency of removal from wastewater after onsite and offsite 94.1<br />

(domestic treatment plant) RMMs (%)<br />

Maximum allowable site tonnage (M Safe ) based on release following total 5.0e1<br />

wastewater treatment removal (kg/d)<br />

Assumed domestic sewage treatment plant flow (m 3 /d) 2000<br />

Conditions and measures related to external treatment of waste for disposal<br />

External treatment and disposal of waste should comply with applicable regulations [ETW3].<br />

Conditions and measures related to external recovery of waste<br />

External recovery and recycling of waste should comply with applicable regulations [ERW1].<br />

Additional information on the basis for the allocation of the indentified OCs and RMMs is<br />

contained in PETRORISK file.<br />

Section 3 Exposure Estimation<br />

3.1. Health<br />

The ECETOC TRA tool has been used to estimate workplace exposures unless otherwise indicated.<br />

G21.<br />

3.2. Environment<br />

The Hydrocarbon Block Method has been used to calculate environmental exposure with the Petrorisk<br />

model [EE2].<br />

Section 4 Guidance to check compliance with the Exposure Scenario<br />

4.1. Health<br />

Predicted exposures are not expected to exceed the DN(M)EL when the Risk Management<br />

Measures/Operational Conditions outlined in Section 2 are implemented. G22.<br />

Where other Risk Management Measures/Operational Conditions are adopted, then users should<br />

ensure that risks are managed to at least equivalent levels. G23.<br />

Available hazard data do not enable the derivation of a DNEL for dermal irritant effects. G32. Available<br />

hazard data do not support the need for a DNEL to be established for other health effects. G36. Risk<br />

Management Measures are based on qualitative risk characterisation. G37.<br />

2010-07-30 CSR 129


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

4.2. Environment<br />

Guidance is based on assumed operating conditions which may not be applicable to all sites; thus,<br />

scaling may be necessary to define appropriate site-specific risk management measures [DSU1].<br />

Required removal efficiency for wastewater can be achieved using onsite/offsite technologies, either<br />

alone or in combination [DSU2]. Required removal efficiency for air can be achieved using onsite<br />

technologies, either alone or in combination [DSU3]. Further details on scaling and control<br />

technologies are provided in SpERC factsheet (http://cefic.org/en/reach-for-industries-libraries.html)<br />

[DSU4].<br />

9.6.2. Exposure Estimation<br />

9.6.2.1. Human Health<br />

See Appendix 2.a and 2.b<br />

9.6.2.2. Environment<br />

See PETRORISK file in IUCLID section 13 – “LocalCSR” worksheet<br />

2010-07-30 CSR 130


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

9.7. Use of Gas Oils (vacuum, hydrocracked & distillate fuels)<br />

R20, R38, R40, R65, R51/53 in Oil and Gas Field Drilling and<br />

Production Operations – Industrial<br />

9.7.1. Exposure Scenario<br />

Section 1 Exposure Scenario Title Gas Oils (vacuum, hydrocracked & distillate fuels) R20, R38,<br />

R40, R65, R51/53<br />

Title<br />

Use in Oil and Gas Field Drilling and Production Operations<br />

Use Descriptor<br />

Sector(s) of Use 3<br />

Process Categories<br />

1, 2, 3, 4, 8a, 8b<br />

Further information on the mapping and allocation of<br />

PROC codes is contained in Table 9.1<br />

Environmental Release Categories 4<br />

Specific Environmental Release Category Qualitative assessment<br />

Processes, tasks, activities covered<br />

Oil field well drilling and production operations (including drilling muds and well cleaning) including<br />

material transfers, on-site formulation, well head operations, shaker room activities and related<br />

maintenance.<br />

Assessment Method<br />

See Section 3.<br />

Section 2 Operational conditions and risk management measures<br />

Section 2.1 Control of worker exposure<br />

Product characteristics<br />

Physical form of product Liquid<br />

Vapour pressure (kPa) Liquid, vapour pressure


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

Bulk transfers CS14<br />

Transfer via enclosed lines E52<br />

Filling / preparation of Wear suitable gloves tested to EN374 PPE15.<br />

equipment from drums or<br />

containers. CS45<br />

Drilling mud (re-)<br />

No other specific measures identified EI20<br />

formulation. CS115<br />

Drill floor operations CS116 Wear chemically resistant gloves (tested to EN374) in combination with<br />

Operation of solids filtering<br />

equipment CS117 Elevated<br />

temperature CS111<br />

Cleaning of solids filtering<br />

equipment CS120<br />

Cuttings treatment and<br />

disposal CS515<br />

Sample collection CS2<br />

General exposures (closed<br />

systems) CS15<br />

General exposures (open<br />

systems) CS16<br />

Pouring from small<br />

containers CS9<br />

Equipment cleaning and<br />

maintenance CS39<br />

Storage CS67<br />

‘basic’ employee training PPE16<br />

Provide the operation with a properly sited receiving hood E71.<br />

Wear chemically resistant gloves (tested to EN374) in combination with<br />

‘basic’ employee training PPE16<br />

Provide extract ventilation to points where emissions occur E54<br />

No other specific measures identified EI20<br />

Handle substance within a closed system E47<br />

Wear chemically resistant gloves (tested to EN374) in combination with<br />

‘basic’ employee training PPE16<br />

Wear chemically resistant gloves (tested to EN374) in combination with<br />

‘basic’ employee training. PPE16<br />

Wear chemically resistant gloves (tested to EN374) in combination with<br />

‘basic’ employee training. PPE16<br />

Store substance within a closed system. E84<br />

Additional information on the basis for the allocation of the identified OCs and RMMs is<br />

contained in Appendices 2 to 3<br />

Section 2.2 Control of environmental exposure<br />

Product characteristics<br />

Substance is complex UVCB [PrC3]. Predominantly hydrophobic [PrC4a].<br />

Amounts used<br />

Fraction of <strong>EU</strong> tonnage used in region [A1] 1<br />

Regional use tonnage (tonnes/year) [A2]<br />

7.75E+03<br />

Fraction of Regional tonnage used locally [A3]<br />

Not Applicable<br />

Annual site tonnage (tonnes/year) [A5]<br />

Not Applicable<br />

Maximum daily site tonnage (kg/day) [A4]<br />

Not Applicable<br />

Frequency and duration of use<br />

Emission days (days/year) [FD4]<br />

Not Applicable<br />

Environmental factors not influenced by risk management<br />

Local marine water dilution factor [EF2]<br />

Not Applicable<br />

Other given operational conditions affecting environmental exposure<br />

Release fraction to air from process (initial release prior to RMM) Not Applicable<br />

[OOC4]<br />

Release fraction to wastewater from process (initial release prior to Not Applicable<br />

RMM) [OOC5]<br />

Technical conditions and measures at process level (source) to prevent release<br />

Discharge to aquatic environment is restricted (see Section 4.2).<br />

Technical onsite conditions and measures to reduce or limit discharges, air emissions and<br />

releases to soil<br />

Not Applicable<br />

Treat air emission to provide a typical removal efficiency of (%) [TCR7] Not Applicable<br />

Treat onsite wastewater (prior to receiving water discharge) to provide Not Applicable<br />

the required removal efficiency (%)<br />

If discharging to domestic sewage treatment plant, provide the required Not Applicable<br />

2010-07-30 CSR 132


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

onsite wastewater removal efficiency of (%)<br />

Organisation measures to prevent/limit release from site<br />

Prevent environmental discharge consistent with regulatory requirements.<br />

Conditions and measures related to municipal sewage treatment plant<br />

Estimated substance removal from wastewater via domestic sewage Not Applicable<br />

treatment (%)<br />

Total efficiency of removal from wastewater after onsite and offsite Not Applicable<br />

(domestic treatment plant) RMMs (%)<br />

Maximum allowable site tonnage (M Safe ) based on domestic sewage Not Applicable<br />

treatment release (kg/d)<br />

Assumed domestic sewage treatment plant flow (m 3 /d)<br />

Not Applicable<br />

Conditions and measures related to external treatment of waste for disposal<br />

External treatment and disposal of waste should comply with applicable local and/or national<br />

regulations.<br />

Conditions and measures related to external recovery of waste<br />

External recovery and recycling of waste should comply with applicable local and/or national<br />

regulations.<br />

Conditions and measures related to external treatment of waste for disposal<br />

Section 3 Exposure Estimation<br />

3.1. Health<br />

The ECETOC TRA tool has been used to estimate workplace exposures unless otherwise indicated.<br />

G21.<br />

3.2. Environment<br />

Quantitative exposure and risk assessment not possible due to lack of emissions to aquatic<br />

environment. Qualitative approach used to conclude safe use.<br />

Section 4 Guidance to check compliance with the Exposure Scenario<br />

4.1. Health<br />

Predicted exposures are not expected to exceed the DN(M)EL when the Risk Management<br />

Measures/Operational Conditions outlined in Section 2 are implemented. G22.<br />

Where other Risk Management Measures/Operational Conditions are adopted, then users should<br />

ensure that risks are managed to at least equivalent levels. G23.<br />

Available hazard data do not enable the derivation of a DNEL for dermal irritant effects. G32. Available<br />

hazard data do not support the need for a DNEL to be established for other health effects. G36. Risk<br />

Management Measures are based on qualitative risk characterisation. G37.<br />

4.2. Environment<br />

Discharge to aquatic environment is restricted by law and industry prohibits release. 1<br />

1 OSPAR Commission 2009. Discharges, Spills and Emissions from Offshore Oil and Gas Installations<br />

in 2007, including the assessment of data reported in 2006 and 2007.<br />

9.7.2. Exposure Estimation<br />

9.7.2.1. Human Health<br />

See Appendix 2.a and 2.b<br />

9.7.2.2. Environment<br />

See PETRORISK file in IUCLID section 13 – “LocalCSR” worksheet<br />

2010-07-30 CSR 133


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

9.8. Use of Gas Oils (vacuum, hydrocracked & distillate fuels)<br />

R20, R38, R40, R65, R51/53 in Oil and Gas Field Drilling and<br />

Production Operations – Professional<br />

9.8.1. Exposure Scenario<br />

Section 1 Exposure Scenario Title Gas Oils (vacuum, hydrocracked & distillate fuels) R20, R38,<br />

R40, R65, R51/53<br />

Title<br />

Use in Oil and Gas Field Drilling and Production Operations<br />

Use Descriptor<br />

Sector(s) of Use 22<br />

Process Categories<br />

1, 2, 3, 4, 8a, 8b<br />

Further information on the mapping and allocation of<br />

PROC codes is contained in Table 9.1<br />

Environmental Release Categories<br />

8d<br />

Specific Environmental Release Category Qualitative assessment<br />

Processes, tasks, activities covered<br />

Oil field well drilling operations (including drilling muds and well cleaning) including material transfers,<br />

on-site formulation, well head operations, shaker room activities and related maintenance.<br />

Assessment Method<br />

See Section 3.<br />

Section 2 Operational conditions and risk management measures<br />

Section 2.1 Control of worker exposure<br />

Product characteristics<br />

Physical form of product Liquid<br />

Vapour pressure (kPa) Liquid, vapour pressure


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

Filling / preparation of Wear suitable gloves tested to EN374 PPE15<br />

equipment from drums or<br />

containers. CS45<br />

Drilling mud (re-)<br />

No other specific measures identified EI20<br />

formulation. CS115<br />

Drill floor operations CS116 Wear chemically resistant gloves (tested to EN374) in combination with<br />

Operation of solids filtering<br />

equipment CS117 Elevated<br />

temperature CS111<br />

Cleaning of solids filtering<br />

equipment CS120<br />

Cuttings treatment and<br />

disposal CS515<br />

Sample collection CS2<br />

General exposures (closed<br />

systems) CS15<br />

General exposures (open<br />

systems) CS16<br />

Pouring from small<br />

containers CS9<br />

Equipment cleaning and<br />

maintenance CS39<br />

Storage CS67<br />

‘basic’ employee training PPE16<br />

Provide the operation with a properly sited receiving hood E71.<br />

Wear chemically resistant gloves (tested to EN374) in combination with<br />

‘basic’ employee training PPE16<br />

Provide extract ventilation to points where emissions occur E54<br />

No other specific measures identified EI20<br />

Handle substance within a closed system E47<br />

Wear chemically resistant gloves (tested to EN374) in combination with<br />

‘basic’ employee training PPE16<br />

Wear chemically resistant gloves (tested to EN374) in combination with<br />

‘basic’ employee training. PPE16<br />

Wear chemically resistant gloves (tested to EN374) in combination with<br />

‘basic’ employee training. PPE16<br />

Store substance within a closed system. E84<br />

Additional information on the basis for the allocation of the identified OCs and RMMs is<br />

contained in Appendices 2 to 3<br />

Section 2.2 Control of environmental exposure<br />

Product characteristics<br />

Substance is complex UVCB [PrC3]. Predominantly hydrophobic [PrC4a].<br />

Amounts used<br />

Fraction of <strong>EU</strong> tonnage used in region [A1] 1<br />

Regional use tonnage (tonnes/year) [A2]<br />

7.75E+03<br />

Fraction of Regional tonnage used locally [A3]<br />

Not Applicable<br />

Annual site tonnage (tonnes/year) [A5]<br />

Not Applicable<br />

Maximum daily site tonnage (kg/day) [A4]<br />

Not Applicable<br />

Frequency and duration of use<br />

Emission days (days/year) [FD4]<br />

Environmental factors not influenced by risk management<br />

Not Applicable<br />

Local marine water dilution factor [EF2]<br />

Not Applicable<br />

Other given operational conditions affecting environmental exposure<br />

Release fraction to air from process (initial release prior to RMM) Not Applicable<br />

[OOC4]<br />

Release fraction to wastewater from process (initial release prior to Not Applicable<br />

RMM) [OOC5]<br />

Technical conditions and measures at process level (source) to prevent release<br />

Discharge to aquatic environment is restricted (see Section 4.2).<br />

Technical onsite conditions and measures to reduce or limit discharges, air emissions and<br />

releases to soil<br />

Not Applicable<br />

Treat air emission to provide a typical removal efficiency of (%) [TCR7] Not Applicable<br />

Treat onsite wastewater (prior to receiving water discharge) to provide Not Applicable<br />

the required removal efficiency (%)<br />

If discharging to domestic sewage treatment plant, provide the required Not Applicable<br />

onsite wastewater removal efficiency of (%)<br />

2010-07-30 CSR 135


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

Organisation measures to prevent/limit release from site<br />

Prevent environmental discharge consistent with regulatory requirements.<br />

Conditions and measures related to municipal sewage treatment plant<br />

Estimated substance removal from wastewater via domestic sewage Not Applicable<br />

treatment (%)<br />

Total efficiency of removal from wastewater after onsite and offsite Not Applicable<br />

(domestic treatment plant) RMMs (%)<br />

Maximum allowable site tonnage (M Safe ) based on domestic sewage Not Applicable<br />

treatment release (kg/d)<br />

Assumed domestic sewage treatment plant flow (m 3 /d)<br />

Not Applicable<br />

Conditions and measures related to external treatment of waste for disposal<br />

External treatment and disposal of waste should comply with applicable local and/or national<br />

regulations.<br />

Conditions and measures related to external recovery of waste<br />

External recovery and recycling of waste should comply with applicable local and/or national<br />

regulations.<br />

Conditions and measures related to external treatment of waste for disposal<br />

Section 3 Exposure Estimation<br />

3.1. Health<br />

The ECETOC TRA tool has been used to estimate workplace exposures unless otherwise indicated.<br />

G21.<br />

3.2. Environment<br />

Quantitative exposure and risk assessment not possible due to lack of emissions to aquatic<br />

environment. Qualitative approach used to conclude safe use.<br />

Section 4 Guidance to check compliance with the Exposure Scenario<br />

4.1. Health<br />

Predicted exposures are not expected to exceed the DN(M)EL when the Risk Management<br />

Measures/Operational Conditions outlined in Section 2 are implemented. G22.<br />

Where other Risk Management Measures/Operational Conditions are adopted, then users should<br />

ensure that risks are managed to at least equivalent levels. G23.<br />

Available hazard data do not enable the derivation of a DNEL for dermal irritant effects. G32. Available<br />

hazard data do not support the need for a DNEL to be established for other health effects. G36. Risk<br />

Management Measures are based on qualitative risk characterisation. G37.<br />

4.2. Environment<br />

Discharge to aquatic environment is restricted by law and industry prohibits release. 1<br />

1 OSPAR Commission 2009. Discharges, Spills and Emissions from Offshore Oil and Gas Installations<br />

in 2007, including the assessment of data reported in 2006 and 2007.<br />

9.8.2. Exposure Estimation<br />

9.8.2.1. Human Health<br />

See Appendix 2.a and 2.b<br />

9.8.2.2. Environment<br />

See PETRORISK file in IUCLID section 13 – “LocalCSR” worksheet<br />

2010-07-30 CSR 136


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

9.9. Use of Gas Oils (vacuum, hydrocracked & distillate fuels)<br />

R20, R38, R40, R65, R51/53 in Lubricants – Industrial<br />

9.9.1. Exposure Scenario<br />

Section 1 Exposure Scenario Title Gas Oils (vacuum, hydrocracked & distillate fuels) R20, R38,<br />

R40, R65, R51/53<br />

Title<br />

Lubricants<br />

Use Descriptor<br />

Sector(s) of Use 3<br />

Process Categories 1, 2, 3, 4, 7, 8a, 8b, 9, 10, 13, 17, 18<br />

Further information on the mapping and allocation of<br />

PROC codes is contained in Table 9.1<br />

Environmental Release Categories 4, 7<br />

Specific Environmental Release Category ESVOC SpERC 4.6a.v1<br />

Processes, tasks, activities covered<br />

Covers the use of formulated lubricants in closed and open systems including material transfers<br />

operations, operation of machinery/engines and similar articles, reworking on reject articles, equipment<br />

maintenance and disposal of wastes.<br />

Assessment Method<br />

See Section 3.<br />

Section 2 Operational conditions and risk management measures<br />

Section 2.1 Control of worker exposure<br />

Product characteristics<br />

Physical form of product Liquid<br />

Vapour pressure (kPa) Liquid, vapour pressure


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

which are likely to lead to substantial aerosol release, e.g. spraying. E4<br />

General exposures (Closed Handle substance within a closed system E47.<br />

systems) CS15<br />

General exposures (Open Provide extract ventilation to points where emissions occur. E54<br />

systems) CS16<br />

Bulk transfers CS14 Handle substance within a closed system E47 Wear suitable gloves<br />

tested to EN374 PPE15<br />

Filling preparation of Wear gloves tested to EN374 PPE15<br />

equipment from drums or<br />

containers CS45<br />

Initial factory fill of Wear suitable gloves tested to EN374 PPE15<br />

equipment CS75<br />

Operation and lubrication of Provide extract ventilation to points where emissions occur E54 Restrict<br />

high energy open<br />

area of openings to equipment E68<br />

equipment CS17<br />

Manual roller application or Wear suitable gloves tested to EN374 with specific employee training<br />

brushing CS13<br />

PPE17<br />

Treatment of articles by Wear chemically resistant gloves (tested to EN374) PPE15<br />

dipping and pouring CS35<br />

Spraying CS10<br />

Maintenance (of larger<br />

plant items) and machine<br />

set up CS77<br />

Minimise exposure by enclosing the operation or equipment and provide<br />

extract ventilation at openings E60 Wear suitable gloves tested to EN374,<br />

coveralls and eye protection PPE23<br />

Ensure material transfers are under containment or extract ventilation<br />

E66 Provide extract ventilation to emission points when contact with<br />

warm (>50oC) lubricant is likely E67 Wear suitable gloves tested to<br />

EN374 PPE15<br />

Wear chemically resistant gloves (tested to EN374) in combination with<br />

‘basic’ employee training PPE16<br />

Wear chemically resistant gloves (tested to EN374) in combination with<br />

‘basic’ employee training PPE16<br />

Maintenance of small items<br />

CS18<br />

Re-manufacture of reject<br />

articles CS19<br />

Storage CS67<br />

Store substance within a closed system. E84<br />

Additional information on the basis for the allocation of the identified OCs and RMMs is<br />

contained in Appendices 2 to 3<br />

Section 2.2 Control of environmental exposure<br />

Product characteristics<br />

Substance is complex UVCB [PrC3]. Predominantly hydrophobic [PrC4a].<br />

Amounts used<br />

Fraction of <strong>EU</strong> tonnage used in region 0.1<br />

Regional use tonnage (tonnes/year) 2.7e4<br />

Fraction of Regional tonnage used locally 0.0036<br />

Annual site tonnage (tonnes/year) 1.0e2<br />

Maximum daily site tonnage (kg/day) 5.0e3<br />

Frequency and duration of use<br />

Continuous release [FD2].<br />

Emission days (days/year) 20<br />

Environmental factors not influenced by risk management<br />

Local freshwater dilution factor 10<br />

Local marine water dilution factor 100<br />

Other given operational conditions affecting environmental exposure<br />

Release fraction to air from process (initial release prior to RMM)<br />

5.0e-3<br />

Release fraction to wastewater from process (initial release prior to 3.0e-6<br />

RMM)<br />

Release fraction to soil from process (initial release prior to RMM) 0.001<br />

Technical conditions and measures at process level (source) to prevent release<br />

Common practices vary across sites thus conservative process release estimates used [TCS1].<br />

2010-07-30 CSR 138


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

Technical onsite conditions and measures to reduce or limit discharges, air emissions and<br />

releases to soil<br />

Risk from environmental exposure is driven by humans via indirect exposure (primarily ingestion)<br />

[TCR1j].<br />

No wastewater treatment required [TCR6].<br />

Treat air emission to provide a typical removal efficiency of (%) 70<br />

Treat onsite wastewater (prior to receiving water discharge) to provide 0<br />

the required removal efficiency (%)<br />

If discharging to domestic sewage treatment plant, provide the required 0<br />

onsite wastewater removal efficiency of (%)<br />

Organisation measures to prevent/limit release from site<br />

Prevent discharge of undissolved substance to or recover from wastewater [OMS1]. Do not apply<br />

industrial sludge to natural soils [OMS2]. Sludge should be incinerated, contained or reclaimed<br />

[OMS3].<br />

Conditions and measures related to municipal sewage treatment plant<br />

Estimated substance removal from wastewater via domestic sewage 94.1<br />

treatment (%)<br />

Total efficiency of removal from wastewater after onsite and offsite 94.1<br />

(domestic treatment plant) RMMs (%)<br />

Maximum allowable site tonnage (M Safe ) based on release following total 7.8e4<br />

wastewater treatment removal (kg/d)<br />

Assumed domestic sewage treatment plant flow (m 3 /d) 2000<br />

Conditions and measures related to external treatment of waste for disposal<br />

External treatment and disposal of waste should comply with applicable regulations [ETW3].<br />

Conditions and measures related to external recovery of waste<br />

External recovery and recycling of waste should comply with applicable regulations [ERW1].<br />

Additional information on the basis for the allocation of the indentified OCs and RMMs is<br />

contained in PETRORISK file.<br />

Section 3 Exposure Estimation<br />

3.1. Health<br />

The ECETOC TRA tool has been used to estimate workplace exposures unless otherwise indicated.<br />

G21.<br />

3.2. Environment<br />

The Hydrocarbon Block Method has been used to calculate environmental exposure with the Petrorisk<br />

model [EE2].<br />

Section 4 Guidance to check compliance with the Exposure Scenario<br />

4.1. Health<br />

Predicted exposures are not expected to exceed the DN(M)EL when the Risk Management<br />

Measures/Operational Conditions outlined in Section 2 are implemented. G22.<br />

Where other Risk Management Measures/Operational Conditions are adopted, then users should<br />

ensure that risks are managed to at least equivalent levels. G23.<br />

Available hazard data do not enable the derivation of a DNEL for dermal irritant effects. G32. Available<br />

hazard data do not support the need for a DNEL to be established for other health effects. G36. Risk<br />

Management Measures are based on qualitative risk characterisation. G37.<br />

4.2. Environment<br />

Guidance is based on assumed operating conditions which may not be applicable to all sites; thus,<br />

scaling may be necessary to define appropriate site-specific risk management measures [DSU1].<br />

Required removal efficiency for wastewater can be achieved using onsite/offsite technologies, either<br />

alone or in combination [DSU2]. Required removal efficiency for air can be achieved using onsite<br />

technologies, either alone or in combination [DSU3]. Further details on scaling and control<br />

technologies are provided in SpERC factsheet (http://cefic.org/en/reach-for-industries-libraries.html)<br />

[DSU4].<br />

2010-07-30 CSR 139


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

9.9.2. Exposure Estimation<br />

9.9.2.1. Human Health<br />

See Appendix 2.a and 2.b<br />

9.9.2.2. Environment<br />

See PETRORISK file in IUCLID section 13 – “LocalCSR” worksheet<br />

2010-07-30 CSR 140


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

9.10. Use of Gas Oils (vacuum, hydrocracked & distillate fuels)<br />

R20, R38, R40, R65, R51/53 in Lubricants – Professional: Low<br />

Environmental Release<br />

9.10.1. Exposure Scenario<br />

Section 1 Exposure Scenario Title Gas Oils (vacuum, hydrocracked & distillate fuels) R20, R38,<br />

R40, R65, R51/53<br />

Title<br />

Lubricants – Professional: Low Environmental Release<br />

Use Descriptor<br />

Sector(s) of Use 22<br />

Process Categories 1, 2, 3, 4, 8a, 8b, 9, 13, 17, 20<br />

Further information on the mapping and allocation of<br />

PROC codes is contained in Table 9.1<br />

Environmental Release Categories<br />

9a, 9b<br />

Specific Environmental Release Category ESVOC SpERC 9.6b.v1<br />

Processes, tasks, activities covered<br />

Covers the use of formulated lubricants in closed and open systems including material transfers<br />

operations, operation of engines and similar articles, reworking on reject articles, equipment<br />

maintenance and disposal of waste oil.<br />

Assessment Method<br />

See Section 3.<br />

Section 2 Operational conditions and risk management measures<br />

Section 2.1 Control of worker exposure<br />

Product characteristics<br />

Physical form of product Liquid<br />

Vapour pressure (kPa) Liquid, vapour pressure


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

which are likely to lead to substantial aerosol release, e.g. spraying. E4<br />

General exposures (Closed Handle substance within a closed system E47 PPE15<br />

systems) CS15<br />

Operation of equipment No other specific measures identified EI20<br />

containing engine oils and<br />

similar CS26<br />

General exposures (Open Provide a good standard of controlled ventilation (10 to 15 air changes<br />

systems) CS16<br />

per hour) E40 Wear suitable gloves tested to EN374 PPE15<br />

Bulk transfers CS14 Wear suitable gloves tested to EN374 PPE15 Avoid carrying out activities<br />

involving exposure for more than 4 hours OC28<br />

Filling preparation of Use drum pumps or carefully pour from container E64 Wear suitable<br />

equipment from drums or gloves tested to EN374 PPE15<br />

containers CS45; dedicated<br />

facility CS81<br />

Filling preparation of<br />

equipment from drums or<br />

containers CS45; nondedicated<br />

facility CS82<br />

Operation and lubrication of<br />

high energy open<br />

equipment CS17 Indoor<br />

OC8<br />

Operation and lubrication of<br />

high energy open<br />

equipment CS17 Outdoor<br />

OC9<br />

Maintenance (of larger<br />

plant items) and machine<br />

set up CS77<br />

Maintenance of small items<br />

CS18<br />

Engine lubricant service<br />

CS78<br />

Manual roller application or<br />

brushing CS13<br />

Spraying CS10 with local<br />

exhaust ventilation CS109<br />

Wear chemically resistant gloves (tested to EN374) in combination with<br />

‘basic’ employee training. PPE16<br />

Minimise exposure by partial enclosure of the operation or equipment and<br />

provide extract ventilation at openings E60 Provide a good standard of<br />

general ventilation (not less than 3 to 5 air changes per hour) E11<br />

Ensure operation is undertaken outdoors E69 Avoid carrying out activities<br />

involving exposure for more than 4 hours OC28 Limit the substance<br />

content in the product to 25 % OC18 Wear suitable gloves tested to<br />

EN374 PPE15 Ensure operatives are trained to minimise exposures EI19<br />

Ensure material transfers are under containment or extract ventilation<br />

E66 Provide extract ventilation to emission points when contact with<br />

warm (>50oC) lubricant is likely E67 Wear suitable gloves tested to<br />

EN374 PPE15<br />

Drain or remove substance from equipment prior to break-in or<br />

maintenance E81 Provide a good standard of general ventilation (not less<br />

than 3 to 5 air changes per hour) E11 Wear chemically resistant gloves<br />

(tested to EN374) in combination with ‘basic’ employee training PPE16<br />

Wear chemically resistant gloves (tested to EN374) in combination with<br />

‘basic’ employee training PPE16<br />

Wear chemically resistant gloves (tested to EN374) in combination with<br />

specific activity training. PPE17<br />

Minimise exposure by enclosing the operation or equipment and provide<br />

extract ventilation at openings E60 Provide a good standard of general<br />

ventilation (not less than 3 to 5 air changes per hour) E11 Wear<br />

chemically resistant gloves (tested to EN374) in combination with ‘basic’<br />

employee training PPE16 Ensure operatives are trained to minimise<br />

exposures EI19<br />

Spraying CS10 without<br />

local exhaust ventilation<br />

CS110<br />

Wear a full face respirator conforming to EN140 with Type A/P2 filter or<br />

better. PPE32. Wear chemically resistant gloves (tested to EN374) in<br />

combination with intensive management supervision controls. PPE18<br />

Limit the substance content in the product to 25 % OC18 Avoid carrying<br />

out activities involving exposure for more than 4 hours OC28<br />

Treatment of articles by Wear suitable gloves tested to EN374 PPE15<br />

dipping and pouring CS35<br />

Storage CS67<br />

Store substance within a closed system E84<br />

Additional information on the basis for the allocation of the identified OCs and RMMs is<br />

contained in Appendices 2 to 3<br />

Section 2.2 Control of environmental exposure<br />

2010-07-30 CSR 142


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

Product characteristics<br />

Substance is complex UVCB [PrC3]. Predominantly hydrophobic [PrC4a].<br />

Amounts used<br />

Fraction of <strong>EU</strong> tonnage used in region 0.1<br />

Regional use tonnage (tonnes/year) 3.2e3<br />

Fraction of Regional tonnage used locally 0.0005<br />

Annual site tonnage (tonnes/year) 1.6<br />

Maximum daily site tonnage (kg/day) 4.4<br />

Frequency and duration of use<br />

Continuous release [FD2].<br />

Emission days (days/year) 365<br />

Environmental factors not influenced by risk management<br />

Local freshwater dilution factor 10<br />

Local marine water dilution factor 100<br />

Other given operational conditions affecting environmental exposure<br />

Release fraction to air from process (initial release prior to RMM) 0.01<br />

Release fraction to wastewater from process (initial release prior to 0.01<br />

RMM)<br />

Release fraction to soil from process (initial release prior to RMM) 0.01<br />

Technical conditions and measures at process level (source) to prevent release<br />

Common practices vary across sites thus conservative process release estimates used [TCS1].<br />

Technical onsite conditions and measures to reduce or limit discharges, air emissions and<br />

releases to soil<br />

Risk from environmental exposure is driven by humans via indirect exposure (primarily ingestion)<br />

[TCR1j].<br />

No wastewater treatment required [TCR6].<br />

Treat air emission to provide a typical removal efficiency of (%) N/A<br />

Treat onsite wastewater (prior to receiving water discharge) to provide 0<br />

the required removal efficiency (%)<br />

If discharging to domestic sewage treatment plant, provide the required 0<br />

onsite wastewater removal efficiency of (%)<br />

Organisation measures to prevent/limit release from site<br />

Do not apply industrial sludge to natural soils [OMS2]. Sludge should be incinerated, contained or<br />

reclaimed [OMS3].<br />

Conditions and measures related to municipal sewage treatment plant<br />

Estimated substance removal from wastewater via domestic sewage 94.1<br />

treatment (%)<br />

Total efficiency of removal from wastewater after onsite and offsite 94.1<br />

(domestic treatment plant) RMMs (%)<br />

Maximum allowable site tonnage (M Safe ) based on release following total 6.8e1<br />

wastewater treatment removal (kg/d)<br />

Assumed domestic sewage treatment plant flow (m 3 /d) 2000<br />

Conditions and measures related to external treatment of waste for disposal<br />

External treatment and disposal of waste should comply with applicable regulations [ETW3].<br />

Conditions and measures related to external recovery of waste<br />

External recovery and recycling of waste should comply with applicable regulations [ERW1].<br />

Additional information on the basis for the allocation of the indentified OCs and RMMs is<br />

contained in PETRORISK file.<br />

Section 3 Exposure Estimation<br />

3.1. Health<br />

The ECETOC TRA tool has been used to estimate workplace exposures unless otherwise indicated.<br />

G21.<br />

3.2. Environment<br />

2010-07-30 CSR 143


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

The Hydrocarbon Block Method has been used to calculate environmental exposure with the Petrorisk<br />

model [EE2].<br />

Section 4 Guidance to check compliance with the Exposure Scenario<br />

4.1. Health<br />

Predicted exposures are not expected to exceed the DN(M)EL when the Risk Management<br />

Measures/Operational Conditions outlined in Section 2 are implemented. G22.<br />

Where other Risk Management Measures/Operational Conditions are adopted, then users should<br />

ensure that risks are managed to at least equivalent levels. G23.<br />

Available hazard data do not enable the derivation of a DNEL for dermal irritant effects. G32. Available<br />

hazard data do not support the need for a DNEL to be established for other health effects. G36. Risk<br />

Management Measures are based on qualitative risk characterisation. G37.<br />

4.2. Environment<br />

Guidance is based on assumed operating conditions which may not be applicable to all sites; thus,<br />

scaling may be necessary to define appropriate site-specific risk management measures [DSU1].<br />

Required removal efficiency for wastewater can be achieved using onsite/offsite technologies, either<br />

alone or in combination [DSU2]. Required removal efficiency for air can be achieved using onsite<br />

technologies, either alone or in combination [DSU3]. Further details on scaling and control<br />

technologies are provided in SpERC factsheet (http://cefic.org/en/reach-for-industries-libraries.html)<br />

[DSU4].<br />

9.10.2. Exposure Estimation<br />

9.10.2.1. Human Health<br />

See Appendix 2.a and 2.b<br />

9.10.2.2. Environment<br />

See PETRORISK file in IUCLID section 13 – “LocalCSR” worksheet<br />

2010-07-30 CSR 144


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

9.11. Use of Gas Oils (vacuum, hydrocracked & distillate fuels)<br />

R20, R38, R40, R65, R51/53 in Lubricants – Professional: High<br />

Environmental Release<br />

9.11.1. Exposure Scenario<br />

Section 1 Exposure Scenario Title Gas Oils (vacuum, hydrocracked & distillate fuels) R20, R38,<br />

R40, R65, R51/53<br />

Title<br />

Lubricants – Professional: High Environmental Release<br />

Use Descriptor<br />

Sector(s) of Use 22<br />

Process Categories 1, 2, 3, 4, 8a, 8b, 9, 13, 17, 20<br />

Further information on the mapping and allocation of<br />

PROC codes is contained in Table 9.1<br />

Environmental Release Categories<br />

8a, 8d<br />

Specific Environmental Release Category ESVOC SpERC 8.6c.v1<br />

Processes, tasks, activities covered<br />

Covers the use of formulated lubricants in closed and open systems including material transfers<br />

operations, operation of engines and similar articles, reworking on reject articles, equipment<br />

maintenance and disposal of waste oil.<br />

Assessment Method<br />

See Section 3.<br />

Section 2 Operational conditions and risk management measures<br />

Section 2.1 Control of worker exposure<br />

Product characteristics<br />

Physical form of product Liquid<br />

Vapour pressure (kPa) Liquid, vapour pressure


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

which are likely to lead to substantial aerosol release, e.g. spraying. E4<br />

General exposures (Closed Handle substance within a closed system E47 PPE15<br />

systems) CS15<br />

Operation of equipment No other specific measures identified EI20<br />

containing engine oils and<br />

similar CS26<br />

General exposures (Open Provide a good standard of controlled ventilation (10 to 15 air changes<br />

systems) CS16<br />

per hour) E40 Wear suitable gloves tested to EN374 PPE15<br />

Bulk transfers CS14 Wear suitable gloves tested to EN374 PPE15 Avoid carrying out activities<br />

involving exposure for more than 4 hours OC28<br />

Filling preparation of Use drum pumps or carefully pour from container E64 Wear suitable<br />

equipment from drums or gloves tested to EN374 PPE15<br />

containers CS45; dedicated<br />

facility CS81<br />

Filling preparation of<br />

equipment from drums or<br />

containers CS45; nondedicated<br />

facility CS82<br />

Operation and lubrication of<br />

high energy open<br />

equipment CS17 Indoor<br />

OC8<br />

Operation and lubrication of<br />

high energy open<br />

equipment CS17 Outdoor<br />

OC9<br />

Maintenance (of larger<br />

plant items) and machine<br />

set up CS77<br />

Maintenance of small items<br />

CS18<br />

Engine lubricant service<br />

CS78<br />

Manual roller application or<br />

brushing CS13<br />

Spraying CS10<br />

Wear chemically resistant gloves (tested to EN374) in combination with<br />

‘basic’ employee training. PPE16<br />

Minimise exposure by partial enclosure of the operation or equipment and<br />

provide extract ventilation at openings E60 Provide a good standard of<br />

general ventilation (not less than 3 to 5 air changes per hour) E11<br />

Ensure operation is undertaken outdoors E69 Avoid carrying out activities<br />

involving exposure for more than 4 hours OC28 Limit the substance<br />

content in the product to 25 % OC18 Wear suitable gloves tested to<br />

EN374 PPE15 Ensure operatives are trained to minimise exposures EI19<br />

Ensure material transfers are under containment or extract ventilation<br />

E66 Provide extract ventilation to emission points when contact with<br />

warm (>50oC) lubricant is likely) E67 Wear suitable gloves tested to<br />

EN374 PPE15<br />

Drain or remove substance from equipment prior to break-in or<br />

maintenance E81 Provide a good standard of general ventilation (not less<br />

than 3 to 5 air changes per hour) E11 Wear chemically resistant gloves<br />

(tested to EN374) in combination with ‘basic’ employee training PPE16<br />

Wear chemically resistant gloves (tested to EN374) in combination with<br />

‘basic’ employee training PPE16<br />

Wear chemically resistant gloves (tested to EN374) in combination with<br />

specific activity training. PPE17<br />

Minimise exposure by enclosing the operation or equipment and provide<br />

extract ventilation at openings E60 Provide a good standard of general<br />

ventilation (not less than 3 to 5 air changes per hour) E11 Wear<br />

chemically resistant gloves (tested to EN374) in combination with ‘basic’<br />

employee training PPE16 Ensure operatives are trained to minimise<br />

exposures EI19<br />

If technical measures not practical: G16<br />

Wear a full face respirator conforming to EN140 with Type A/P2 filter or<br />

better. PPE32. Wear chemically resistant gloves (tested to EN374) in<br />

combination with intensive management supervision controls. PPE18<br />

Limit the substance content in the product to 25 % OC18 Avoid carrying<br />

out activities involving exposure for more than 4 hours OC28<br />

Treatment of articles by Wear suitable gloves tested to EN374 PPE15<br />

dipping and pouring CS35<br />

Storage CS67<br />

Store substance within a closed system E84<br />

Additional information on the basis for the allocation of the identified OCs and RMMs is<br />

contained in Appendices 2 to 3<br />

Section 2.2 Control of environmental exposure<br />

Product characteristics<br />

Substance is complex UVCB [PrC3]. Predominantly hydrophobic [PrC4a].<br />

2010-07-30 CSR 146


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

Amounts used<br />

Fraction of <strong>EU</strong> tonnage used in region 0.1<br />

Regional use tonnage (tonnes/year) 3.2e3<br />

Fraction of Regional tonnage used locally 0.0005<br />

Annual site tonnage (tonnes/year) 1.6<br />

Maximum daily site tonnage (kg/day) 4.4<br />

Frequency and duration of use<br />

Continuous release [FD2].<br />

Emission days (days/year) 365<br />

Environmental factors not influenced by risk management<br />

Local freshwater dilution factor 10<br />

Local marine water dilution factor 100<br />

Other given operational conditions affecting environmental exposure<br />

Release fraction to air from process (initial release prior to RMM)<br />

1.5e-1<br />

Release fraction to wastewater from process (initial release prior to 0.05<br />

RMM)<br />

Release fraction to soil from process (initial release prior to RMM) 0.05<br />

Technical conditions and measures at process level (source) to prevent release<br />

Common practices vary across sites thus conservative process release estimates used [TCS1].<br />

Technical onsite conditions and measures to reduce or limit discharges, air emissions and<br />

releases to soil<br />

Risk from environmental exposure is driven by humans via indirect exposure (primarily ingestion)<br />

[TCR1j].<br />

No wastewater treatment required [TCR6].<br />

Treat air emission to provide a typical removal efficiency of (%) N/A<br />

Treat onsite wastewater (prior to receiving water discharge) to provide 0<br />

the required removal efficiency (%)<br />

If discharging to domestic sewage treatment plant, provide the required 0<br />

onsite wastewater removal efficiency of (%)<br />

Organisation measures to prevent/limit release from site<br />

Do not apply industrial sludge to natural soils [OMS2]. Sludge should be incinerated, contained or<br />

reclaimed [OMS3].<br />

Conditions and measures related to municipal sewage treatment plant<br />

Estimated substance removal from wastewater via domestic sewage 94.1<br />

treatment (%)<br />

Total efficiency of removal from wastewater after onsite and offsite 94.1<br />

(domestic treatment plant) RMMs (%)<br />

Maximum allowable site tonnage (M Safe ) based on release following total 6.8e1<br />

wastewater treatment removal (kg/d)<br />

Assumed domestic sewage treatment plant flow (m 3 /d) 2000<br />

Conditions and measures related to external treatment of waste for disposal<br />

External treatment and disposal of waste should comply with applicable regulations [ETW3].<br />

Conditions and measures related to external recovery of waste<br />

External recovery and recycling of waste should comply with applicable regulations [ERW1].<br />

Additional information on the basis for the allocation of the indentified OCs and RMMs is<br />

contained in PETRORISK file.<br />

Section 3 Exposure Estimation<br />

3.1. Health<br />

The ECETOC TRA tool has been used to estimate workplace exposures unless otherwise indicated.<br />

G21.<br />

3.2. Environment<br />

The Hydrocarbon Block Method has been used to calculate environmental exposure with the Petrorisk<br />

model [EE2].<br />

Section 4 Guidance to check compliance with the Exposure Scenario<br />

2010-07-30 CSR 147


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

4.1. Health<br />

Predicted exposures are not expected to exceed the DN(M)EL when the Risk Management<br />

Measures/Operational Conditions outlined in Section 2 are implemented. G22.<br />

Where other Risk Management Measures/Operational Conditions are adopted, then users should<br />

ensure that risks are managed to at least equivalent levels. G23.<br />

Available hazard data do not enable the derivation of a DNEL for dermal irritant effects. G32. Available<br />

hazard data do not support the need for a DNEL to be established for other health effects. G36. Risk<br />

Management Measures are based on qualitative risk characterisation. G37.<br />

4.2. Environment<br />

Guidance is based on assumed operating conditions which may not be applicable to all sites; thus,<br />

scaling may be necessary to define appropriate site-specific risk management measures [DSU1].<br />

Required removal efficiency for wastewater can be achieved using onsite/offsite technologies, either<br />

alone or in combination [DSU2]. Required removal efficiency for air can be achieved using onsite<br />

technologies, either alone or in combination [DSU3]. Further details on scaling and control<br />

technologies are provided in SpERC factsheet (http://cefic.org/en/reach-for-industries-libraries.html)<br />

[DSU4].<br />

9.11.2. Exposure Estimation<br />

9.11.2.1. Human Health<br />

See Appendix 2.a and 2.b<br />

9.11.2.2. Environment<br />

See PETRORISK file in IUCLID section 13 – “LocalCSR” worksheet<br />

2010-07-30 CSR 148


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

9.12. Use of Gas Oils (vacuum, hydrocracked & distillate fuels)<br />

R20, R38, R40, R65, R51/53 in Metal Working Fluids/Rolling Oils –<br />

Industrial<br />

9.12.1. Exposure Scenario<br />

Section 1 Exposure Scenario Title Gas Oils (vacuum, hydrocracked & distillate fuels) R20, R38,<br />

R40, R65, R51/53<br />

Title<br />

Use in Metal Working Fluids/Rolling Oils<br />

Use Descriptor<br />

Sector(s) of Use 3<br />

Process Categories 1, 2, 3, 4, 5, 7, 8a, 8b, 9, 10, 13, 17<br />

Further information on the mapping and allocation of<br />

PROC codes is contained in Table 9.1<br />

Environmental Release Categories 4<br />

Specific Environmental Release Category ESVOC SpERC 4.7a.v1<br />

Processes, tasks, activities covered<br />

Covers the use in formulated MWFs/rolling oils including transfer operations, rolling and annealing<br />

activities, cutting/machining activities, automated and manual application of corrosion protections<br />

(including brushing, dipping and spraying), equipment maintenance, draining and disposal of waste<br />

oils.<br />

Assessment Method<br />

See Section 3.<br />

Section 2 Operational conditions and risk management measures<br />

Section 2.1 Control of worker exposure<br />

Product characteristics<br />

Physical form of product Liquid<br />

Vapour pressure (kPa) Liquid, vapour pressure


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

suits and face shields may be required during high dispersion activities<br />

which are likely to lead to substantial aerosol release, e.g. spraying. E4<br />

General exposures (Closed Handle substance within a closed system E47<br />

systems) CS15<br />

General exposures (Open Provide extract ventilation to points where emissions occur E54<br />

systems) CS16<br />

Bulk transfers CS14 Handle substance within a closed system. E47 Wear gloves tested to<br />

EN374 PPE15<br />

Filling preparation of Wear gloves tested to EN374 PPE15<br />

equipment from drums or<br />

containers CS45<br />

Process sampling CS2 No other specific measures identified EI20<br />

Metal Machining<br />

Minimise exposure by partial enclosure of the operation or equipment and<br />

Operations CS79<br />

provide extract ventilation at openings E60<br />

Treatment of articles by Wear gloves tested to EN374 PPE15<br />

dipping and pouring CS35<br />

Spraying CS10<br />

Minimise exposure by enclosing the operation or equipment and provide<br />

extract ventilation at openings E60 Provide a good standard of general<br />

ventilation (not less than 3 to 5 air changes per hour) .E11 Wear gloves<br />

tested to EN374, coveralls and eye protection PPE23<br />

Manual roller application or Wear suitable gloves tested to EN374 with specific employee training<br />

brushing CS13<br />

PPE17<br />

Automated metal<br />

Handle substance within a predominantly closed system provided with<br />

rolling/forming CS80 extract ventilation E49<br />

Semi-automated metal Provide extract ventilation to points where emissions occur E54.<br />

rolling/forming CS83<br />

Equipment cleaning and Drain down system prior to equipment break-in or maintenance E55 Wear<br />

maintenance CS39. chemically resistant gloves (tested to EN374) in combination with ‘basic’<br />

employee training PPE16<br />

Storage CS67<br />

Store substance within a closed system. E84<br />

Additional information on the basis for the allocation of the identified OCs and RMMs is<br />

contained in Appendices 2 to 3<br />

Section 2.2 Control of environmental exposure<br />

Product characteristics<br />

Substance is complex UVCB [PrC3]. Predominantly hydrophobic [PrC4a].<br />

Amounts used<br />

Fraction of <strong>EU</strong> tonnage used in region 0.1<br />

Regional use tonnage (tonnes/year) 1.0e4<br />

Fraction of Regional tonnage used locally 0.0097<br />

Annual site tonnage (tonnes/year) 1.0e2<br />

Maximum daily site tonnage (kg/day) 5.0e3<br />

Frequency and duration of use<br />

Continuous release [FD2].<br />

Emission days (days/year) 20<br />

Environmental factors not influenced by risk management<br />

Local freshwater dilution factor 10<br />

Local marine water dilution factor 100<br />

Other given operational conditions affecting environmental exposure<br />

Release fraction to air from process (initial release prior to RMM) 0.02<br />

Release fraction to wastewater from process (initial release prior to 3.0e-6<br />

RMM)<br />

Release fraction to soil from process (initial release prior to RMM) 0<br />

Technical conditions and measures at process level (source) to prevent release<br />

Common practices vary across sites thus conservative process release estimates used [TCS1].<br />

2010-07-30 CSR 150


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

Technical onsite conditions and measures to reduce or limit discharges, air emissions and<br />

releases to soil<br />

Risk from environmental exposure is driven by humans via indirect exposure (primarily ingestion)<br />

[TCR1j].<br />

No wastewater treatment required [TCR6].<br />

Treat air emission to provide a typical removal efficiency of (%) 70<br />

Treat onsite wastewater (prior to receiving water discharge) to provide 0<br />

the required removal efficiency (%)<br />

If discharging to domestic sewage treatment plant, provide the required 0<br />

onsite wastewater removal efficiency of (%)<br />

Organisation measures to prevent/limit release from site<br />

Prevent discharge of undissolved substance to or recover from wastewater [OMS1]. Do not apply<br />

industrial sludge to natural soils [OMS2]. Sludge should be incinerated, contained or reclaimed<br />

[OMS3].<br />

Conditions and measures related to municipal sewage treatment plant<br />

Estimated substance removal from wastewater via domestic sewage 94.1<br />

treatment (%)<br />

Total efficiency of removal from wastewater after onsite and offsite 94.1<br />

(domestic treatment plant) RMMs (%)<br />

Maximum allowable site tonnage (M Safe ) based on release following total 7.8e4<br />

wastewater treatment removal (kg/d)<br />

Assumed domestic sewage treatment plant flow (m 3 /d) 2000<br />

Conditions and measures related to external treatment of waste for disposal<br />

External treatment and disposal of waste should comply with applicable regulations [ETW3].<br />

Conditions and measures related to external recovery of waste<br />

External recovery and recycling of waste should comply with applicable regulations [ERW1].<br />

Additional information on the basis for the allocation of the indentified OCs and RMMs is<br />

contained in PETRORISK file.<br />

Section 3 Exposure Estimation<br />

3.1. Health<br />

The ECETOC TRA tool has been used to estimate workplace exposures unless otherwise indicated.<br />

G21.<br />

3.2. Environment<br />

The Hydrocarbon Block Method has been used to calculate environmental exposure with the Petrorisk<br />

model [EE2].<br />

Section 4 Guidance to check compliance with the Exposure Scenario<br />

4.1. Health<br />

Predicted exposures are not expected to exceed the DN(M)EL when the Risk Management<br />

Measures/Operational Conditions outlined in Section 2 are implemented. G22.<br />

Where other Risk Management Measures/Operational Conditions are adopted, then users should<br />

ensure that risks are managed to at least equivalent levels. G23.<br />

Available hazard data do not enable the derivation of a DNEL for dermal irritant effects. G32. Available<br />

hazard data do not support the need for a DNEL to be established for other health effects. G36. Risk<br />

Management Measures are based on qualitative risk characterisation. G37.<br />

4.2. Environment<br />

Guidance is based on assumed operating conditions which may not be applicable to all sites; thus,<br />

scaling may be necessary to define appropriate site-specific risk management measures [DSU1].<br />

Required removal efficiency for wastewater can be achieved using onsite/offsite technologies, either<br />

alone or in combination [DSU2]. Required removal efficiency for air can be achieved using onsite<br />

technologies, either alone or in combination [DSU3]. Further details on scaling and control<br />

technologies are provided in SpERC factsheet (http://cefic.org/en/reach-for-industries-libraries.html)<br />

[DSU4].<br />

2010-07-30 CSR 151


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

9.12.2. Exposure Estimation<br />

9.12.2.1. Human Health<br />

See Appendix 2.a and 2.b<br />

9.12.2.2. Environment<br />

See PETRORISK file in IUCLID section 13 – “LocalCSR” worksheet<br />

2010-07-30 CSR 152


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

9.13. Use of Gas Oils (vacuum, hydrocracked & distillate fuels)<br />

R20, R38, R40, R65, R51/53 in Release Agents or Binders –<br />

Industrial<br />

9.13.1. Exposure Scenario<br />

Section 1 Exposure Scenario Title Gas Oils (vacuum, hydrocracked & distillate fuels) R20, R38,<br />

R40, R65, R51/53<br />

Title<br />

Use as Release Agents or Binders<br />

Use Descriptor<br />

Sector(s) of Use 3<br />

Process Categories 1, 2, 3, 4, 6, 7, 8b, 10, 13, 14<br />

Further information on the mapping and allocation of<br />

PROC codes is contained in Table 9.1<br />

Environmental Release Categories 4<br />

Specific Environmental Release Category ESVOC SpERC 4.10a.v1<br />

Processes, tasks, activities covered<br />

Covers the use as binders and release agents including material transfers, mixing, application<br />

(including spraying and brushing), mould forming and casting, and handling of waste.<br />

Assessment Method<br />

See Section 3.<br />

Section 2 Operational conditions and risk management measures<br />

Section 2.1 Control of worker exposure<br />

Product characteristics<br />

Physical form of product Liquid<br />

Vapour pressure (kPa) Liquid, vapour pressure


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

Bulk transfers CS14<br />

Drum and batch transfers<br />

CS8<br />

Mixing operations (closed<br />

systems) CS29<br />

Mixing operations (open<br />

systems) CS30<br />

Mould forming CS31<br />

Handle substance within a closed system E47<br />

Wear chemically resistant gloves (tested to EN374) in combination with<br />

‘basic’ employee training PPE16<br />

No other specific measures identified EI20<br />

Wear chemically resistant gloves (tested to EN374) in combination with<br />

‘basic’ employee training PPE16<br />

Wear chemically resistant gloves (tested to EN374) in combination with<br />

‘basic’ employee training PPE16<br />

Casting Operations (open Minimise exposure by partial enclosure of the operation or equipment and<br />

systems) CS32, CS108 provide extract ventilation at openings E60 Wear suitable gloves tested to<br />

EN374 PPE15<br />

Spraying (machine) CS10, Minimise exposure by extracted full enclosure for the operation or<br />

CS33<br />

equipment E61 Wear suitable gloves tested to EN374 PPE15<br />

Spraying (manual) CS10, Wear a full face respirator conforming to EN140 with Type A/P2 filter or<br />

CS34<br />

better. PPE32 Wear suitable gloves (tested to EN374), coverall and eye<br />

protection. PPE23 Ensure operatives are trained to minimise exposures.<br />

EI19<br />

Manual applications e.g. Wear chemically resistant gloves (tested to EN374) in combination with<br />

brushing, rolling CS13 specific activity training PPE17<br />

Equipment clean down and Drain down system prior to equipment break-in or maintenance. E65.<br />

maintenance CS39 Wear chemically resistant gloves (tested to EN374) in combination with<br />

‘basic’ employee training. PPE16<br />

Storage CS67<br />

Handle substance within a closed system. E84<br />

Additional information on the basis for the allocation of the identified OCs and RMMs is<br />

contained in Appendices 2 to 3<br />

Section 2.2 Control of environmental exposure<br />

Product characteristics<br />

Substance is complex UVCB [PrC3]. Predominantly hydrophobic [PrC4a].<br />

Amounts used<br />

Fraction of <strong>EU</strong> tonnage used in region 0.1<br />

Regional use tonnage (tonnes/year) 1.4e4<br />

Fraction of Regional tonnage used locally 0.18<br />

Annual site tonnage (tonnes/year) 2.5e3<br />

Maximum daily site tonnage (kg/day) 2.5e4<br />

Frequency and duration of use<br />

Continuous release [FD2].<br />

Emission days (days/year) 100<br />

Environmental factors not influenced by risk management<br />

Local freshwater dilution factor 10<br />

Local marine water dilution factor 100<br />

Other given operational conditions affecting environmental exposure<br />

Release fraction to air from process (initial release prior to RMM) 1.0<br />

Release fraction to wastewater from process (initial release prior to 3.0e-7<br />

RMM)<br />

Release fraction to soil from process (initial release prior to RMM) 0<br />

Technical conditions and measures at process level (source) to prevent release<br />

Common practices vary across sites thus conservative process release estimates used [TCS1].<br />

Technical onsite conditions and measures to reduce or limit discharges, air emissions and<br />

releases to soil<br />

Risk from environmental exposure is driven by humans via indirect exposure (primarily inhalation)<br />

[TCR1k].<br />

No wastewater treatment required [TCR6].<br />

Treat air emission to provide a typical removal efficiency of (%) 80<br />

Treat onsite wastewater (prior to receiving water discharge) to provide 0<br />

2010-07-30 CSR 154


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

the required removal efficiency (%)<br />

If discharging to domestic sewage treatment plant, provide the required 0<br />

onsite wastewater removal efficiency of (%)<br />

Organisation measures to prevent/limit release from site<br />

Prevent discharge of undissolved substance to or recover from wastewater [OMS1]. Do not apply<br />

industrial sludge to natural soils [OMS2]. Sludge should be incinerated, contained or reclaimed<br />

[OMS3].<br />

Conditions and measures related to municipal sewage treatment plant<br />

Estimated substance removal from wastewater via domestic sewage 94.1<br />

treatment (%)<br />

Total efficiency of removal from wastewater after onsite and offsite 94.1<br />

(domestic treatment plant) RMMs (%)<br />

Maximum allowable site tonnage (M Safe ) based on release following total 1.7e5<br />

wastewater treatment removal (kg/d)<br />

Assumed domestic sewage treatment plant flow (m 3 /d) 2000<br />

Conditions and measures related to external treatment of waste for disposal<br />

External treatment and disposal of waste should comply with applicable regulations [ETW3].<br />

Conditions and measures related to external recovery of waste<br />

External recovery and recycling of waste should comply with applicable regulations [ERW1].<br />

Additional information on the basis for the allocation of the indentified OCs and RMMs is<br />

contained in PETRORISK file.<br />

Section 3 Exposure Estimation<br />

3.1. Health<br />

The ECETOC TRA tool has been used to estimate workplace exposures unless otherwise indicated.<br />

G21.<br />

3.2. Environment<br />

The Hydrocarbon Block Method has been used to calculate environmental exposure with the Petrorisk<br />

model [EE2].<br />

Section 4 Guidance to check compliance with the Exposure Scenario<br />

4.1. Health<br />

Predicted exposures are not expected to exceed the DN(M)EL when the Risk Management<br />

Measures/Operational Conditions outlined in Section 2 are implemented. G22.<br />

Where other Risk Management Measures/Operational Conditions are adopted, then users should<br />

ensure that risks are managed to at least equivalent levels. G23.<br />

Available hazard data do not enable the derivation of a DNEL for dermal irritant effects. G32. Available<br />

hazard data do not support the need for a DNEL to be established for other health effects. G36. Risk<br />

Management Measures are based on qualitative risk characterisation. G37.<br />

4.2. Environment<br />

Guidance is based on assumed operating conditions which may not be applicable to all sites; thus,<br />

scaling may be necessary to define appropriate site-specific risk management measures [DSU1].<br />

Required removal efficiency for wastewater can be achieved using onsite/offsite technologies, either<br />

alone or in combination [DSU2]. Required removal efficiency for air can be achieved using onsite<br />

technologies, either alone or in combination [DSU3]. Further details on scaling and control<br />

technologies are provided in SpERC factsheet (http://cefic.org/en/reach-for-industries-libraries.html)<br />

[DSU4].<br />

9.13.2. Exposure Estimation<br />

9.13.2.1. Human Health<br />

See Appendix 2.a and 2.b<br />

9.13.2.2. Environment<br />

See PETRORISK file in IUCLID section 13 – “LocalCSR” worksheet<br />

2010-07-30 CSR 155


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

9.14. Use of Gas Oils (vacuum, hydrocracked & distillate fuels)<br />

R20, R38, R40, R65, R51/53 in Release Agents or Binders –<br />

Professional<br />

9.14.1. Exposure Scenario<br />

Section 1 Exposure Scenario Title Gas Oils (vacuum, hydrocracked & distillate fuels) R20, R38,<br />

R40, R65, R51/53<br />

Title<br />

Use as Release Agents or Binders<br />

Use Descriptor<br />

Sector(s) of Use 22<br />

Process Categories 1, 2, 3, 4, 6, 8a, 8b, 10, 11, 14<br />

Further information on the mapping and allocation of<br />

PROC codes is contained in Table 9.1<br />

Environmental Release Categories<br />

8a, 8d<br />

Specific Environmental Release Category ESVOC SpERC 8.10b.v1<br />

Processes, tasks, activities covered<br />

Covers the use as binders and release agents including material transfers, mixing, application by<br />

spraying, brushing, and handling of waste.<br />

Assessment Method<br />

See Section 3.<br />

Section 2 Operational conditions and risk management measures<br />

Section 2.1 Control of worker exposure<br />

Product characteristics<br />

Physical form of product Liquid<br />

Vapour pressure (kPa) Liquid, vapour pressure


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

Bulk transfers (closed<br />

systems) CS3, CS107<br />

Drum/batch transfers CS8<br />

Mixing operations (closed<br />

systems) CS29<br />

Mixing operations (open<br />

systems) CS30<br />

Mould forming CS31<br />

Casting Operations, with<br />

local exhaust ventilation<br />

CS32, CS109<br />

Casting Operations, without<br />

local exhaust ventilation<br />

CS32, CS110<br />

Spraying (manual) CS10,<br />

CS34 with local exhaust<br />

ventilation CS109<br />

Spraying (manual) CS10,<br />

CS34 without local exhaust<br />

ventilation CS110<br />

Manual applications e.g.<br />

brushing, rolling CS34,<br />

CS51<br />

Equipment cleaning and<br />

maintenance CS39<br />

No other specific measures identified EI20<br />

Wear suitable gloves tested to EN374 PPE15<br />

No other specific measures identified EI20<br />

Wear suitable gloves tested to EN374 PPE15<br />

Provide extract ventilation to points where emissions occur E54 Wear<br />

suitable gloves tested to EN374 PPE15<br />

Provide extract ventilation to points where emissions occur E54 Wear<br />

suitable gloves tested to EN374 PPE15<br />

Wear a respirator conforming to EN140 with Type A/P2 filter or better.<br />

PPE29 Wear suitable gloves (tested to EN374), coverall and eye<br />

protection. PPE23<br />

Apply ventilation or undertake in ventilated enclosure E57 Wear suitable<br />

gloves (tested to EN374), coverall and eye protection PPE23 Ensure<br />

operatives are trained to minimise exposures EI19<br />

Wear a full face respirator conforming to EN140 with Type A/P2 filter or<br />

better.PPE32 Wear suitable gloves (tested to EN374), coverall and eye<br />

protection. PPE23 Ensure operatives are trained to minimise exposures.<br />

EI19<br />

Wear chemically resistant gloves (tested to EN374) in combination with<br />

specific activity training PPE17<br />

Drain down system prior to equipment break-in or maintenance E65 Wear<br />

chemically resistant gloves (tested to type EN374) in combination with<br />

basic employee training PPE16<br />

Storage CS67<br />

Store substance within a closed system E84<br />

Additional information on the basis for the allocation of the identified OCs and RMMs is<br />

contained in Appendices 2 to 3<br />

Section 2.2 Control of environmental exposure<br />

Product characteristics<br />

Substance is complex UVCB [PrC3]. Predominantly hydrophobic [PrC4a].<br />

Amounts used<br />

Fraction of <strong>EU</strong> tonnage used in region 0.1<br />

Regional use tonnage (tonnes/year) 2.9e3<br />

Fraction of Regional tonnage used locally 0.0005<br />

Annual site tonnage (tonnes/year) 1.5<br />

Maximum daily site tonnage (kg/day) 4.0<br />

Frequency and duration of use<br />

Continuous release [FD2].<br />

Emission days (days/year) 365<br />

Environmental factors not influenced by risk management<br />

Local freshwater dilution factor 10<br />

Local marine water dilution factor 100<br />

Other given operational conditions affecting environmental exposure<br />

Release fraction to air from process (initial release prior to RMM) 0.95<br />

Release fraction to wastewater from process (initial release prior to 0.025<br />

RMM)<br />

Release fraction to soil from process (initial release prior to RMM) 0.025<br />

Technical conditions and measures at process level (source) to prevent release<br />

Common practices vary across sites thus conservative process release estimates used [TCS1].<br />

2010-07-30 CSR 157


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

Technical onsite conditions and measures to reduce or limit discharges, air emissions and<br />

releases to soil<br />

Risk from environmental exposure is driven by humans via indirect exposure (primarily ingestion)<br />

[TCR1j].<br />

No wastewater treatment required [TCR9].<br />

Treat air emission to provide a typical removal efficiency of (%) N/A<br />

Treat onsite wastewater (prior to receiving water discharge) to provide 0<br />

the required removal efficiency (%)<br />

If discharging to domestic sewage treatment plant, provide the required 0<br />

onsite wastewater removal efficiency of (%)<br />

Organisation measures to prevent/limit release from site<br />

Do not apply industrial sludge to natural soils [OMS2]. Sludge should be incinerated, contained or<br />

reclaimed [OMS3].<br />

Conditions and measures related to municipal sewage treatment plant<br />

Estimated substance removal from wastewater via domestic sewage 94.1<br />

treatment (%)<br />

Total efficiency of removal from wastewater after onsite and offsite 94.1<br />

(domestic treatment plant) RMMs (%)<br />

Maximum allowable site tonnage (M Safe ) based on release following total 6.2e1<br />

wastewater treatment removal (kg/d)<br />

Assumed domestic sewage treatment plant flow (m 3 /d) 2000<br />

Conditions and measures related to external treatment of waste for disposal<br />

External treatment and disposal of waste should comply with applicable regulations [ETW3].<br />

Conditions and measures related to external recovery of waste<br />

External recovery and recycling of waste should comply with applicable regulations [ERW1].<br />

Additional information on the basis for the allocation of the indentified OCs and RMMs is<br />

contained in PETRORISK file.<br />

Section 3 Exposure Estimation<br />

3.1. Health<br />

The ECETOC TRA tool has been used to estimate workplace exposures unless otherwise indicated.<br />

G21.<br />

3.2. Environment<br />

The Hydrocarbon Block Method has been used to calculate environmental exposure with the Petrorisk<br />

model [EE2].<br />

Section 4 Guidance to check compliance with the Exposure Scenario<br />

4.1. Health<br />

Predicted exposures are not expected to exceed the DN(M)EL when the Risk Management<br />

Measures/Operational Conditions outlined in Section 2 are implemented. G22.<br />

Where other Risk Management Measures/Operational Conditions are adopted, then users should<br />

ensure that risks are managed to at least equivalent levels. G23.<br />

Available hazard data do not enable the derivation of a DNEL for dermal irritant effects. G32. Available<br />

hazard data do not support the need for a DNEL to be established for other health effects. G36. Risk<br />

Management Measures are based on qualitative risk characterisation. G37.<br />

4.2. Environment<br />

Guidance is based on assumed operating conditions which may not be applicable to all sites; thus,<br />

scaling may be necessary to define appropriate site-specific risk management measures [DSU1].<br />

Required removal efficiency for wastewater can be achieved using onsite/offsite technologies, either<br />

alone or in combination [DSU2]. Required removal efficiency for air can be achieved using onsite<br />

technologies, either alone or in combination [DSU3]. Further details on scaling and control<br />

technologies are provided in SpERC factsheet (http://cefic.org/en/reach-for-industries-libraries.html)<br />

[DSU4].<br />

2010-07-30 CSR 158


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

9.14.2. Exposure Estimation<br />

9.14.2.1. Human Health<br />

See Appendix 2.a and 2.b<br />

9.14.2.2. Environment<br />

See PETRORISK file in IUCLID section 13 – “LocalCSR” worksheet<br />

2010-07-30 CSR 159


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

9.15. Use of Gas Oils (vacuum, hydrocracked & distillate fuels)<br />

R20, R38, R40, R65, R51/53 as a Fuel – Industrial<br />

9.15.1. Exposure Scenario<br />

Section 1 Exposure Scenario Title Gas Oils (vacuum, hydrocracked & distillate fuels) R20, R38,<br />

R40, R65, R51/53<br />

Title<br />

Use as a Fuel<br />

Use Descriptor<br />

Sector(s) of Use 3<br />

Process Categories 1, 2, 3, 8a, 8b, 16<br />

Further information on the mapping and allocation of<br />

PROC codes is contained in Table 9.1<br />

Environmental Release Categories 7<br />

Specific Environmental Release Category ESVOC SpERC 7.12a.v1<br />

Processes, tasks, activities covered<br />

Covers the use as a fuel (or fuel additives and additive components) and includes activities associated<br />

with its transfer, use, equipment maintenance and handling of waste.<br />

Assessment Method<br />

See Section 3.<br />

Section 2 Operational conditions and risk management measures<br />

Section 2.1 Control of worker exposure<br />

Product characteristics<br />

Physical form of product Liquid<br />

Vapour pressure (kPa) Liquid, vapour pressure


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

Use as a fuel (closed<br />

systems) GEST_12I,<br />

CS107<br />

Equipment cleaning and<br />

maintenance CS39<br />

No other specific measures identified EI20<br />

Drain down system prior to equipment break-in or maintenance E65 Wear<br />

chemically resistant gloves (tested to type EN374) in combination with<br />

‘basic’ employee training PPE16<br />

Storage CS67<br />

Handle substance within a closed system. E84<br />

Additional information on the basis for the allocation of the identified OCs and RMMs is<br />

contained in Appendices 2 to 3<br />

Section 2.2 Control of environmental exposure<br />

Product characteristics<br />

Substance is complex UVCB [PrC3]. Predominantly hydrophobic [PrC4a].<br />

Amounts used<br />

Fraction of <strong>EU</strong> tonnage used in region 0.1<br />

Regional use tonnage (tonnes/year) 4.5e6<br />

Fraction of Regional tonnage used locally 0.34<br />

Annual site tonnage (tonnes/year) 1.5e6<br />

Maximum daily site tonnage (kg/day) 5.0e6<br />

Frequency and duration of use<br />

Continuous release [FD2].<br />

Emission days (days/year) 300<br />

Environmental factors not influenced by risk management<br />

Local freshwater dilution factor 10<br />

Local marine water dilution factor 100<br />

Other given operational conditions affecting environmental exposure<br />

Release fraction to air from process (initial release prior to RMM)<br />

5.0e-3<br />

Release fraction to wastewater from process (initial release prior to 0.00001<br />

RMM)<br />

Release fraction to soil from process (initial release prior to RMM) 0<br />

Technical conditions and measures at process level (source) to prevent release<br />

Common practices vary across sites thus conservative process release estimates used [TCS1].<br />

Technical onsite conditions and measures to reduce or limit discharges, air emissions and<br />

releases to soil<br />

Risk from environmental exposure is driven by freshwater sediment [TCR1b].<br />

If discharging to domestic sewage treatment plant, no onsite wastewater treatment required [TCR9].<br />

Treat air emission to provide a typical removal efficiency of (%) 95<br />

Treat onsite wastewater (prior to receiving water discharge) to provide 97.7<br />

the required removal efficiency (%)<br />

If discharging to domestic sewage treatment plant, provide the required 60.4<br />

onsite wastewater removal efficiency of (%)<br />

Organisation measures to prevent/limit release from site<br />

Prevent discharge of undissolved substance to or recover from wastewater [OMS1]. Do not apply<br />

industrial sludge to natural soils [OMS2]. Sludge should be incinerated, contained or reclaimed<br />

[OMS3].<br />

Conditions and measures related to municipal sewage treatment plant<br />

Estimated substance removal from wastewater via domestic sewage 94.1<br />

treatment (%)<br />

Total efficiency of removal from wastewater after onsite and offsite 97.7<br />

(domestic treatment plant) RMMs (%)<br />

Maximum allowable site tonnage (M Safe ) based on release following total 5.0e6<br />

wastewater treatment removal (kg/d)<br />

Assumed domestic sewage treatment plant flow (m 3 /d) 2000<br />

Conditions and measures related to external treatment of waste for disposal<br />

2010-07-30 CSR 161


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

Combustion emissions limited by required exhaust emission controls [ETW1]. Combustion emissions<br />

considered in regional exposure assessment [ETW2].<br />

Conditions and measures related to external recovery of waste<br />

External recovery and recycling of waste should comply with applicable regulations [ERW1].<br />

Additional information on the basis for the allocation of the indentified OCs and RMMs is<br />

contained in PETRORISK file.<br />

Section 3 Exposure Estimation<br />

3.1. Health<br />

The ECETOC TRA tool has been used to estimate workplace exposures unless otherwise indicated.<br />

G21.<br />

3.2. Environment<br />

The Hydrocarbon Block Method has been used to calculate environmental exposure with the Petrorisk<br />

model [EE2].<br />

Section 4 Guidance to check compliance with the Exposure Scenario<br />

4.1. Health<br />

Predicted exposures are not expected to exceed the DN(M)EL when the Risk Management<br />

Measures/Operational Conditions outlined in Section 2 are implemented. G22.<br />

Where other Risk Management Measures/Operational Conditions are adopted, then users should<br />

ensure that risks are managed to at least equivalent levels. G23.<br />

Available hazard data do not enable the derivation of a DNEL for dermal irritant effects. G32. Available<br />

hazard data do not support the need for a DNEL to be established for other health effects. G36. Risk<br />

Management Measures are based on qualitative risk characterisation. G37.<br />

4.2. Environment<br />

Guidance is based on assumed operating conditions which may not be applicable to all sites; thus,<br />

scaling may be necessary to define appropriate site-specific risk management measures [DSU1].<br />

Required removal efficiency for wastewater can be achieved using onsite/offsite technologies, either<br />

alone or in combination [DSU2]. Required removal efficiency for air can be achieved using onsite<br />

technologies, either alone or in combination [DSU3]. Further details on scaling and control<br />

technologies are provided in SpERC factsheet (http://cefic.org/en/reach-for-industries-libraries.html)<br />

[DSU4].<br />

9.15.2. Exposure Estimation<br />

9.15.2.1. Human Health<br />

See Appendix 2.a and 2.b<br />

9.15.2.2. Environment<br />

See PETRORISK file in IUCLID section 13 – “LocalCSR” worksheet<br />

2010-07-30 CSR 162


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

9.16. Use of Gas Oils (vacuum, hydrocracked & distillate fuels)<br />

R20, R38, R40, R65, R51/53 as a Fuel – Professional<br />

9.16.1. Exposure Scenario<br />

Section 1 Exposure Scenario Title Gas Oils (vacuum, hydrocracked & distillate fuels) R20, R38,<br />

R40, R65, R51/53<br />

Title<br />

Use as a Fuel<br />

Use Descriptor<br />

Sector(s) of Use 22<br />

Process Categories 1, 2, 3, 8a, 8b, 16<br />

Further information on the mapping and allocation of<br />

PROC codes is contained in Table 9.1<br />

Environmental Release Categories<br />

9a, 9b<br />

Specific Environmental Release Category ESVOC SpERC 9.12b.v1<br />

Processes, tasks, activities covered<br />

Covers the use as a fuel (or fuel additives and additive components) and includes activities associated<br />

with its transfer, use, equipment maintenance and handling of waste.<br />

Assessment Method<br />

See Section 3.<br />

Section 2 Operational conditions and risk management measures<br />

Section 2.1 Control of worker exposure<br />

Product characteristics<br />

Physical form of product Liquid<br />

Vapour pressure (kPa) Liquid, vapour pressure


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

Refuelling activities CS507 Wear suitable gloves tested to EN374 PPE15<br />

Use as a fuel (closed<br />

systems) GEST_12I,<br />

CS107<br />

Equipment cleaning and<br />

maintenance CS39<br />

Provide a good standard of general ventilation (not less than 3 to 5 air<br />

changes per hour) E11 or Ensure operation is undertaken outdoors E69<br />

Drain down system prior to equipment break-in or maintenance E65 Wear<br />

chemically resistant gloves (tested to EN374) in combination with basic<br />

employee training PPE16<br />

Storage CS67<br />

Store substance within a closed system E84<br />

Additional information on the basis for the allocation of the identified OCs and RMMs is<br />

contained in Appendices 2 to 3<br />

Section 2.2 Control of environmental exposure<br />

Product characteristics<br />

Substance is complex UVCB [PrC3]. Predominantly hydrophobic [PrC4a].<br />

Amounts used<br />

Fraction of <strong>EU</strong> tonnage used in region 0.1<br />

Regional use tonnage (tonnes/year) 6.7e6<br />

Fraction of Regional tonnage used locally 0.0005<br />

Annual site tonnage (tonnes/year) 3.3e3<br />

Maximum daily site tonnage (kg/day) 9.2e3<br />

Frequency and duration of use<br />

Continuous release [FD2].<br />

Emission days (days/year) 365<br />

Environmental factors not influenced by risk management<br />

Local freshwater dilution factor 10<br />

Local marine water dilution factor 100<br />

Other given operational conditions affecting environmental exposure<br />

Release fraction to air from process (initial release prior to RMM)<br />

1.0e-4<br />

Release fraction to wastewater from process (initial release prior to 0.00001<br />

RMM)<br />

Release fraction to soil from process (initial release prior to RMM) 0.00001<br />

Technical conditions and measures at process level (source) to prevent release<br />

Common practices vary across sites thus conservative process release estimates used [TCS1].<br />

Technical onsite conditions and measures to reduce or limit discharges, air emissions and<br />

releases to soil<br />

Risk from environmental exposure is driven by humans via indirect exposure (primarily ingestion)<br />

[TCR1j].<br />

No wastewater treatment required [TCR6].<br />

Treat air emission to provide a typical removal efficiency of (%) N/A<br />

Treat onsite wastewater (prior to receiving water discharge) to provide 0<br />

the required removal efficiency (%)<br />

If discharging to domestic sewage treatment plant, provide the required 0<br />

onsite wastewater removal efficiency of (%)<br />

Organisation measures to prevent/limit release from site<br />

Prevent discharge of undissolved substance to or recover from wastewater [OMS1]. Do not apply<br />

industrial sludge to natural soils [OMS2]. Sludge should be incinerated, contained or reclaimed<br />

[OMS3].<br />

Conditions and measures related to municipal sewage treatment plant<br />

Estimated substance removal from wastewater via domestic sewage<br />

treatment (%)<br />

Total efficiency of removal from wastewater after onsite and offsite<br />

(domestic treatment plant) RMMs (%)<br />

Maximum allowable site tonnage (M Safe ) based on release following total<br />

wastewater treatment removal (kg/d)<br />

94.1<br />

94.1<br />

1.4e5<br />

2010-07-30 CSR 164


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

Assumed domestic sewage treatment plant flow (m 3 /d) 2000<br />

Conditions and measures related to external treatment of waste for disposal<br />

Combustion emissions limited by required exhaust emission controls [ETW1]. Combustion emissions<br />

considered in regional exposure assessment [ETW2].<br />

Conditions and measures related to external recovery of waste<br />

External recovery and recycling of waste should comply with applicable regulations [ERW1].<br />

Additional information on the basis for the allocation of the indentified OCs and RMMs is<br />

contained in PETRORISK file.<br />

Section 3 Exposure Estimation<br />

3.1. Health<br />

The ECETOC TRA tool has been used to estimate workplace exposures unless otherwise indicated.<br />

G21.<br />

3.2. Environment<br />

The Hydrocarbon Block Method has been used to calculate environmental exposure with the Petrorisk<br />

model [EE2].<br />

Section 4 Guidance to check compliance with the Exposure Scenario<br />

4.1. Health<br />

Predicted exposures are not expected to exceed the DN(M)EL when the Risk Management<br />

Measures/Operational Conditions outlined in Section 2 are implemented. G22.<br />

Where other Risk Management Measures/Operational Conditions are adopted, then users should<br />

ensure that risks are managed to at least equivalent levels. G23.<br />

Available hazard data do not enable the derivation of a DNEL for dermal irritant effects. G32. Available<br />

hazard data do not support the need for a DNEL to be established for other health effects. G36. Risk<br />

Management Measures are based on qualitative risk characterisation. G37.<br />

4.2. Environment<br />

Guidance is based on assumed operating conditions which may not be applicable to all sites; thus,<br />

scaling may be necessary to define appropriate site-specific risk management measures [DSU1].<br />

Required removal efficiency for wastewater can be achieved using onsite/offsite technologies, either<br />

alone or in combination [DSU2]. Required removal efficiency for air can be achieved using onsite<br />

technologies, either alone or in combination [DSU3]. Further details on scaling and control<br />

technologies are provided in SpERC factsheet (http://cefic.org/en/reach-for-industries-libraries.html)<br />

[DSU4].<br />

9.16.2. Exposure Estimation<br />

9.16.2.1. Human Health<br />

See Appendix 2.a and 2.b<br />

9.16.2.2. Environment<br />

See PETRORISK file in IUCLID section 13 – “LocalCSR” worksheet<br />

2010-07-30 CSR 165


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

9.17. Use of Gas Oils (vacuum, hydrocracked & distillate fuels)<br />

R20, R38, R40, R65, R51/53 as a Fuel – Consumer<br />

9.17.1. Exposure Scenario<br />

Section 1 Exposure Scenario Title Gas Oils (vacuum, hydrocracked & distillate fuels) R20, R38,<br />

R40, R65, R51/53<br />

Title<br />

Use as a Fuel<br />

Use Descriptor<br />

Sector(s) of Use 21<br />

Product Categories 13<br />

Further information on the mapping and allocation of<br />

PC codes is contained in Table 9.1<br />

Environmental Release Categories<br />

9a, 9b<br />

Specific Environmental Release Category ESVOC SpERC 9.12c.v1<br />

Processes, tasks, activities covered<br />

Covers consumer uses in fuels.<br />

Assessment Method<br />

See Section 3.<br />

Section 2 Operational conditions and risk management measures<br />

Section 2.1 Control of consumer exposure<br />

Product characteristics<br />

Physical form of product liquid<br />

Vapour pressure (kPa) Liquid, vapour pressure > 10 Pa OC15<br />

Concentration of substance Unless otherwise stated, cover concentrations up to 100% [ConsOC1]<br />

in product<br />

Frequency and duration of Unless otherwise stated, covers use amounts up to 37500g [ConsOC2];<br />

use/exposure<br />

covers skin contact area up to 420cm2 [ConsOC5]<br />

Other Operational Unless otherwise stated, covers use frequency up to 0.143 times per day<br />

Conditions affecting [ConsOC4]; covers exposure up to 2 hours per event [ConsOC14]<br />

exposure<br />

Product Category Specific Risk Management Measures and Operating Conditions<br />

PC13:Fuels--<br />

Liquid -<br />

subcategorie<br />

s added:<br />

Automotive<br />

Refuelling<br />

PC13:Fuels--<br />

Liquid -<br />

subcategorie<br />

s added:<br />

Garden<br />

Equipment -<br />

Use<br />

OC<br />

RMM<br />

OC<br />

RMM<br />

Unless otherwise stated, covers concentrations up to 100% [ConsOC1];<br />

covers use up to 52 days/year[ConsOC3]; covers use up to 1 time/on day<br />

of use[ConsOC4]; covers skin contact area up to 210.00 cm2 [ConsOC5];<br />

for each use event, covers use amounts up to 37500g [ConsOC2]; covers<br />

outdoor use [ConsOC12]; covers use in room size of 100m3[ConsOC11];<br />

for each use event, covers exposure up to 0.05hr/event[ConsOC14];<br />

No specific RMMs developed beyond those OCs stated [ConsRMM15]<br />

Unless otherwise stated, covers concentrations up to 100% [ConsOC1];<br />

covers use up to 26 days/year[ConsOC3]; covers use up to 1 time/on day<br />

of use[ConsOC4]; for each use event, covers use amounts up to 750g<br />

[ConsOC2]; covers outdoor use [ConsOC12]; covers use in room size of<br />

100m3[ConsOC11]; for each use event, covers exposure up to<br />

2.00hr/event[ConsOC14];<br />

No specific RMMs developed beyond those OCs stated [ConsRMM15]<br />

PC13:Fuels-- OC<br />

Liquid<br />

(subcategorie<br />

s added):<br />

Garden<br />

Unless otherwise stated, covers concentrations up to 100% [ConsOC1];<br />

covers use up to 26 days/year[ConsOC3]; covers use up to 1 time/on day<br />

of use[ConsOC4]; covers skin contact area up to 420.00 cm2 [ConsOC5];<br />

for each use event, covers use amounts up to 750g [ConsOC2]; Covers<br />

use in a one car garage (34m3) under typical ventilation [ConsOC10];<br />

2010-07-30 CSR 166


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

Equipment -<br />

Refuelling<br />

RMM<br />

covers use in room size of 34m3[ConsOC11]; for each use event, covers<br />

exposure up to 0.03hr/event[ConsOC14];<br />

No specific RMMs developed beyond those OCs stated [ConsRMM15]<br />

Additional information on the basis for the allocation of the identified OCs and RMMs is<br />

contained in Appendices 2 to 3<br />

Section 2.2 Control of environmental exposure<br />

Product characteristics<br />

Substance is complex UVCB [PrC3]. Predominantly hydrophobic [PrC4a].<br />

Amounts used<br />

Fraction of <strong>EU</strong> tonnage used in region 0.1<br />

Regional use tonnage (tonnes/year) 1.6e7<br />

Fraction of Regional tonnage used locally 0.0005<br />

Annual site tonnage (tonnes/year) 8.2e3<br />

Maximum daily site tonnage (kg/day) 2.3e4<br />

Frequency and duration of use<br />

Continuous release [FD2].<br />

Emission days (days/year) 365<br />

Environmental factors not influenced by risk management<br />

Local freshwater dilution factor 10<br />

Local marine water dilution factor 100<br />

Other given operational conditions affecting environmental exposure<br />

Risk from environmental exposure is driven by humans via indirect exposure (primarily ingestion)<br />

[TCR1j].<br />

Release fraction to air from wide dispersive use (regional only) 1.0e-4<br />

Release fraction to wastewater from wide dispersive use 0.00001<br />

Release fraction to soil from wide dispersive use (regional only) 0.00001<br />

Conditions and measures related to municipal sewage treatment plant<br />

Estimated substance removal from wastewater via domestic sewage 94.1<br />

treatment (%)<br />

Maximum allowable site tonnage (M Safe ) based on release following total 3.5e5<br />

wastewater treatment removal (kg/d)<br />

Assumed domestic sewage treatment plant flow (m 3 /d) 2000<br />

Conditions and measures related to external treatment of waste for disposal<br />

Combustion emissions limited by required exhaust emission controls [ETW1]. Combustion emissions<br />

considered in regional exposure assessment [ETW2].<br />

Conditions and measures related to external recovery of waste<br />

External recovery and recycling of waste should comply with applicable regulations [ERW1].<br />

Additional information on the basis for the allocation of the indentified OCs and RMMs is<br />

contained in PETRORISK file.<br />

Section 3 Exposure Estimation<br />

3.1. Health<br />

The ECETOC TRA tool has been used to estimate consumer exposures, consistent with the content of<br />

ECETOC Report #107 and the Chapter R15 of the IR&CSA TGD. Where exposure determinants differ<br />

to these sources, then they are indicated.<br />

3.2. Environment<br />

The Hydrocarbon Block Method has been used to calculate environmental exposure with the Petrorisk<br />

model [EE2].<br />

Section 4 Guidance to check compliance with the Exposure Scenario<br />

4.1. Health<br />

Predicted exposures are not expected to exceed the DN(M)EL when the Risk Management<br />

Measures/Operational Conditions outlined in Section 2 are implemented. G22.<br />

Where other Risk Management Measures/Operational Conditions are adopted, then users should<br />

ensure that risks are managed to at least equivalent levels. G23.<br />

2010-07-30 CSR 167


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

4.2. Environment<br />

Further details on scaling and control technologies are provided in SpERC factsheet<br />

(http://cefic.org/en/reach-for-industries-libraries.html) [DSU4].<br />

9.17.2. Exposure Estimation<br />

9.17.2.1. Human Health<br />

See Appendix 2.c<br />

9.17.2.2. Environment<br />

See PETRORISK file in IUCLID section 13 – “LocalCSR” worksheet<br />

2010-07-30 CSR 168


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

9.18. Use of Gas Oils (vacuum, hydrocracked & distillate fuels)<br />

R20, R38, R40, R65, R51/53 as Functional Fluids – Industrial<br />

9.18.1. Exposure Scenario<br />

Section 1 Exposure Scenario Title Gas Oils (vacuum, hydrocracked & distillate fuels) R20, R38,<br />

R40, R65, R51/53<br />

Title<br />

Use as Functional Fluids<br />

Use Descriptor<br />

Sector(s) of Use 3<br />

Process Categories 1, 2, 3, 4, 8a, 8b, 9<br />

Further information on the mapping and allocation of<br />

PROC codes is contained in Table 9.1<br />

Environmental Release Categories 7<br />

Specific Environmental Release Category ESVOC SpERC 7.13a.v1<br />

Processes, tasks, activities covered<br />

Use as functional fluids e.g. cable oils, transfer oils, coolants, insulators, refrigerants, hydraulic fluids<br />

in industrial equipment including maintenance and related material transfers<br />

Assessment Method<br />

See Section 3.<br />

Section 2 Operational conditions and risk management measures<br />

Section 2.1 Control of worker exposure<br />

Product characteristics<br />

Physical form of product Liquid<br />

Vapour pressure (kPa) Liquid, vapour pressure


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

Filling of articles/equipment<br />

(closed systems) CS84,<br />

CS107<br />

Filling / preparation of<br />

equipment from drums or<br />

containers CS45<br />

Equipment operation<br />

(closed systems) CS15<br />

Equipment operation (open<br />

systems) CS16<br />

Re-work and remanufacture<br />

of articles<br />

CS19<br />

Transfer via enclosed lines E52<br />

Wear suitable gloves tested to EN374 PPE15<br />

No other specific measures identified EI20<br />

Restrict area of openings and provide extract ventilation to emission<br />

points when substance handled at elevated temperatures E75<br />

Wear suitable gloves tested to EN374 PPE15<br />

Equipment cleaning and Wear chemically resistant gloves (tested to EN374) in combination with<br />

maintenance CS39 ‘basic’ employee training. PPE16<br />

Storage CS67<br />

Store substance within a closed system. E84<br />

Additional information on the basis for the allocation of the identified OCs and RMMs is<br />

contained in Appendices 2 to 3<br />

Section 2.2 Control of environmental exposure<br />

Product characteristics<br />

Substance is complex UVCB [PrC3]. Predominantly hydrophobic [PrC4a].<br />

Amounts used<br />

Fraction of <strong>EU</strong> tonnage used in region 0.1<br />

Regional use tonnage (tonnes/year) 6.4e3<br />

Fraction of Regional tonnage used locally 0.0016<br />

Annual site tonnage (tonnes/year) 1.0e1<br />

Maximum daily site tonnage (kg/day) 5.0e2<br />

Frequency and duration of use<br />

Continuous release [FD2].<br />

Emission days (days/year) 20<br />

Environmental factors not influenced by risk management<br />

Local freshwater dilution factor 10<br />

Local marine water dilution factor 100<br />

Other given operational conditions affecting environmental exposure<br />

Release fraction to air from process (initial release prior to RMM)<br />

5.0e-3<br />

Release fraction to wastewater from process (initial release prior to 3.0e-6<br />

RMM)<br />

Release fraction to soil from process (initial release prior to RMM) 0.001<br />

Technical conditions and measures at process level (source) to prevent release<br />

Common practices vary across sites thus conservative process release estimates used [TCS1].<br />

Technical onsite conditions and measures to reduce or limit discharges, air emissions and<br />

releases to soil<br />

Risk from environmental exposure is driven by humans via indirect exposure (primarily injestion)<br />

[TCR1j].<br />

No wastewater treatment required [TCR6].<br />

Treat air emission to provide a typical removal efficiency of (%) 0<br />

Treat onsite wastewater (prior to receiving water discharge) to provide 0<br />

the required removal efficiency (%)<br />

If discharging to domestic sewage treatment plant, provide the required 0<br />

onsite wastewater removal efficiency of (%)<br />

Organisation measures to prevent/limit release from site<br />

Prevent discharge of undissolved substance to or recover from wastewater [OMS1]. Do not apply<br />

industrial sludge to natural soils [OMS2]. Sludge should be incinerated, contained or reclaimed<br />

[OMS3].<br />

Conditions and measures related to municipal sewage treatment plant<br />

2010-07-30 CSR 170


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

Estimated substance removal from wastewater via domestic sewage 94.1<br />

treatment (%)<br />

Total efficiency of removal from wastewater after onsite and offsite 94.1<br />

(domestic treatment plant) RMMs (%)<br />

Maximum allowable site tonnage (M Safe ) based on release following total 7.8e3<br />

wastewater treatment removal (kg/d)<br />

Assumed domestic sewage treatment plant flow (m 3 /d) 2000<br />

Conditions and measures related to external treatment of waste for disposal<br />

External treatment and disposal of waste should comply with applicable regulations [ETW3].<br />

Conditions and measures related to external recovery of waste<br />

External recovery and recycling of waste should comply with applicable regulations [ERW1].<br />

Additional information on the basis for the allocation of the indentified OCs and RMMs is<br />

contained in PETRORISK file.<br />

Section 3 Exposure Estimation<br />

3.1. Health<br />

The ECETOC TRA tool has been used to estimate workplace exposures unless otherwise indicated.<br />

G21.<br />

3.2. Environment<br />

The Hydrocarbon Block Method has been used to calculate environmental exposure with the Petrorisk<br />

model [EE2].<br />

Section 4 Guidance to check compliance with the Exposure Scenario<br />

4.1. Health<br />

Predicted exposures are not expected to exceed the DN(M)EL when the Risk Management<br />

Measures/Operational Conditions outlined in Section 2 are implemented. G22.<br />

Where other Risk Management Measures/Operational Conditions are adopted, then users should<br />

ensure that risks are managed to at least equivalent levels. G23.<br />

Available hazard data do not enable the derivation of a DNEL for dermal irritant effects. G32. Available<br />

hazard data do not support the need for a DNEL to be established for other health effects. G36. Risk<br />

Management Measures are based on qualitative risk characterisation. G37.<br />

4.2. Environment<br />

Guidance is based on assumed operating conditions which may not be applicable to all sites; thus,<br />

scaling may be necessary to define appropriate site-specific risk management measures [DSU1].<br />

Required removal efficiency for wastewater can be achieved using onsite/offsite technologies, either<br />

alone or in combination [DSU2]. Required removal efficiency for air can be achieved using onsite<br />

technologies, either alone or in combination [DSU3]. Further details on scaling and control<br />

technologies are provided in SpERC factsheet (http://cefic.org/en/reach-for-industries-libraries.html)<br />

[DSU4].<br />

9.18.2. Exposure Estimation<br />

9.18.2.1. Human Health<br />

See Appendix 2.a and 2.b<br />

9.18.2.2. Environment<br />

See PETRORISK file in IUCLID section 13 – “LocalCSR” worksheet<br />

2010-07-30 CSR 171


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

9.19. Use of Gas Oils (vacuum, hydrocracked & distillate fuels)<br />

R20, R38, R40, R65, R51/53 in Road and Construction<br />

Applications – Professional<br />

9.19.1. Exposure Scenario<br />

Section 1 Exposure Scenario Title Gas Oils (vacuum, hydrocracked & distillate fuels) R20, R38,<br />

R40, R65, R51/53<br />

Title<br />

Use in Road and Construction Applications<br />

Use Descriptor<br />

Sector(s) of Use 22<br />

Process Categories 8a, 8b, 9, 10, 11, 13<br />

Further information on the mapping and allocation of<br />

PROC codes is contained in Table 9.1<br />

Environmental Release Categories<br />

8d, 8f<br />

Specific Environmental Release Category ESVOC SpERC 8.15.v1<br />

Processes, tasks, activities covered<br />

Application of surface coatings and binders in road and construction activities, including paving uses,<br />

manual mastic and in the application of roofing and water-proofing membranes<br />

Assessment Method<br />

See Section 3.<br />

Section 2 Operational conditions and risk management measures<br />

Section 2.1 Control of worker exposure<br />

Product characteristics<br />

Physical form of product Liquid<br />

Vapour pressure (kPa) Liquid, vapour pressure


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

Drum/batch transfers (Nondedicated<br />

facility) CS8,<br />

CS82<br />

Drum/batch transfers<br />

(dedicated facility) CS8,<br />

CS81<br />

Spraying/fogging by<br />

machine application CS25<br />

Manual applications e.g.<br />

brushing, rolling CS13<br />

Dipping, immersion and<br />

pouring CS4<br />

Equipment cleaning and<br />

maintenance CS39<br />

Wear gloves tested to EN374 PPE15<br />

Wear gloves tested to EN374 PPE15<br />

Minimise exposure by partial enclosure of the operation or equipment and<br />

provide extract ventilation at openings E60 Ensure operation is<br />

undertaken outdoors E69 Wear gloves tested to EN374 PPE15<br />

Wear chemically resistant gloves (tested to EN374) in combination with<br />

specific activity training PPE17<br />

Wear chemically resistant gloves (tested to EN374) in combination with<br />

‘basic’ employee training PPE16<br />

Drain down system prior to equipment break-in or maintenance.<br />

E65.Wear chemically resistant gloves (tested to EN374) in combination<br />

with ‘basic’ employee training PPE16<br />

Store substance within a closed system. E84<br />

Store substance within a<br />

closed system. E84<br />

Additional information on the basis for the allocation of the identified OCs and RMMs is<br />

contained in Appendices 2 to 3<br />

Section 2.2 Control of environmental exposure<br />

Product characteristics<br />

Substance is complex UVCB [PrC3]. Predominantly hydrophobic [PrC4a].<br />

Amounts used<br />

Fraction of <strong>EU</strong> tonnage used in region 0.1<br />

Regional use tonnage (tonnes/year) 3.1e4<br />

Fraction of Regional tonnage used locally 0.0005<br />

Annual site tonnage (tonnes/year) 1.5e1<br />

Maximum daily site tonnage (kg/day) 4.2e1<br />

Frequency and duration of use<br />

Continuous release [FD2].<br />

Emission days (days/year) 365<br />

Environmental factors not influenced by risk management<br />

Local freshwater dilution factor 10<br />

Local marine water dilution factor 100<br />

Other given operational conditions affecting environmental exposure<br />

Release fraction to air from process (initial release prior to RMM) 0.95<br />

Release fraction to wastewater from process (initial release prior to 0.01<br />

RMM)<br />

Release fraction to soil from process (initial release prior to RMM) 0.04<br />

Technical conditions and measures at process level (source) to prevent release<br />

Common practices vary across sites thus conservative process release estimates used [TCS1].<br />

Technical onsite conditions and measures to reduce or limit discharges, air emissions and<br />

releases to soil<br />

Risk from environmental exposure is driven by freshwater sediment [TCR1b].<br />

If discharging to domestic sewage treatment plant, no onsite wastewater treatment required [TCR9].<br />

Treat air emission to provide a typical removal efficiency of (%) N/A<br />

Treat onsite wastewater (prior to receiving water discharge) to provide 12.2<br />

the required removal efficiency (%)<br />

If discharging to domestic sewage treatment plant, provide the required 0<br />

onsite wastewater removal efficiency of (%)<br />

Organisation measures to prevent/limit release from site<br />

Do not apply industrial sludge to natural soils [OMS2]. Sludge should be incinerated, contained or<br />

reclaimed [OMS3].<br />

Conditions and measures related to municipal sewage treatment plant<br />

2010-07-30 CSR 173


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

Estimated substance removal from wastewater via domestic sewage 94.1<br />

treatment (%)<br />

Total efficiency of removal from wastewater after onsite and offsite 94.1<br />

(domestic treatment plant) RMMs (%)<br />

Maximum allowable site tonnage (M Safe ) based on release following total 6.2e2<br />

wastewater treatment removal (kg/d)<br />

Assumed domestic sewage treatment plant flow (m 3 /d) 2000<br />

Conditions and measures related to external treatment of waste for disposal<br />

External treatment and disposal of waste should comply with applicable regulations [ETW3].<br />

Conditions and measures related to external recovery of waste<br />

External recovery and recycling of waste should comply with applicable regulations [ERW1].<br />

Additional information on the basis for the allocation of the indentified OCs and RMMs is<br />

contained in PETRORISK file.<br />

Section 3 Exposure Estimation<br />

3.1. Health<br />

The ECETOC TRA tool has been used to estimate workplace exposures unless otherwise indicated.<br />

G21.<br />

3.2. Environment<br />

The Hydrocarbon Block Method has been used to calculate environmental exposure with the Petrorisk<br />

model [EE2].<br />

Section 4 Guidance to check compliance with the Exposure Scenario<br />

4.1. Health<br />

Predicted exposures are not expected to exceed the DN(M)EL when the Risk Management<br />

Measures/Operational Conditions outlined in Section 2 are implemented. G22.<br />

Where other Risk Management Measures/Operational Conditions are adopted, then users should<br />

ensure that risks are managed to at least equivalent levels. G23.<br />

Available hazard data do not enable the derivation of a DNEL for dermal irritant effects. G32. Available<br />

hazard data do not support the need for a DNEL to be established for other health effects. G36. Risk<br />

Management Measures are based on qualitative risk characterisation. G37.<br />

4.2. Environment<br />

Guidance is based on assumed operating conditions which may not be applicable to all sites; thus,<br />

scaling may be necessary to define appropriate site-specific risk management measures [DSU1].<br />

Required removal efficiency for wastewater can be achieved using onsite/offsite technologies, either<br />

alone or in combination [DSU2]. Required removal efficiency for air can be achieved using onsite<br />

technologies, either alone or in combination [DSU3]. Further details on scaling and control<br />

technologies are provided in SpERC factsheet (http://cefic.org/en/reach-for-industries-libraries.html)<br />

[DSU4].<br />

9.19.2. Exposure Estimation<br />

9.19.2.1. Human Health<br />

See Appendix 2.a and 2.b<br />

9.19.2.2. Environment<br />

See PETRORISK file in IUCLID section 13 – “LocalCSR” worksheet<br />

2010-07-30 CSR 174


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

9.20. Use of Gas Oils (vacuum, hydrocracked & distillate fuels)<br />

R20, R38, R40, R65, R51/53 in Explosives Manufacture and Use –<br />

Professional<br />

9.20.1. Exposure Scenario<br />

Section 1 Exposure Scenario Title Gas Oils (vacuum, hydrocracked & distillate fuels) R20, R38,<br />

R40, R65, R51/53<br />

Title<br />

Explosives Manufacture and Use<br />

Use Descriptor<br />

Sector(s) of Use 22<br />

Process Categories<br />

1, 3, 5, 8a, 8b<br />

Further information on the mapping and allocation of<br />

PROC codes is contained in Table 9.1<br />

Environmental Release Categories<br />

8e<br />

Specific Environmental Release Category Not Applicable<br />

Processes, tasks, activities covered<br />

Covers exposures arising from the manufacture and use of slurry explosives (including materials<br />

transfer, mixing and charging) and equipment cleaning<br />

Assessment Method<br />

See Section 3.<br />

Section 2 Operational conditions and risk management measures<br />

Section 2.1 Control of worker exposure<br />

Product characteristics<br />

Physical form of product Liquid<br />

Vapour pressure (kPa) Liquid, vapour pressure


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

General exposures (open<br />

systems) CS16<br />

Process sampling CS2<br />

Drum and batch transfers<br />

CS8<br />

Bulk transfers CS14<br />

Mixing operations (open<br />

systems) CS30<br />

Production or preparation<br />

or articles by tabletting,<br />

compression, extrusion or<br />

pelletisation CS100<br />

Drum and small package<br />

filling CS8<br />

Wear suitable gloves tested to EN374 PPE15<br />

No specific measures identified EI18<br />

Use drum pumps or carefully pour from container E64 Wear chemically<br />

resistant gloves (tested to EN374) in combination with ‘basic’ employee<br />

training PPE16<br />

Handle substance within a closed system E47 Wear suitable gloves<br />

tested to EN374 PPE15<br />

Provide extract ventilation to points where emissions occur E54 Wear<br />

chemically resistant gloves (tested to EN374) in combination with ‘basic’<br />

employee training PPE16<br />

Wear suitable gloves tested to EN374 PPE15<br />

Wear suitable gloves tested to EN374 PPE15<br />

Laboratory activities CS36 No specific measures identified EI18<br />

Equipment clean down and Drain down system prior to equipment break-in or maintenance. E65.<br />

maintenance CS39 Wear chemically resistant gloves (tested to EN374) in combination with<br />

‘basic’ employee training. PPE16<br />

Storage CS67<br />

Store substance within a closed system. E84<br />

Additional information on the basis for the allocation of the identified OCs and RMMs is<br />

contained in Appendices 2 to 3<br />

Section 2.2 Control of environmental exposure<br />

Product characteristics<br />

Substance is complex UVCB [PrC3]. Predominantly hydrophobic [PrC4a].<br />

Amounts used<br />

Fraction of <strong>EU</strong> tonnage used in region 0.1<br />

Regional use tonnage (tonnes/year) 1.3e4<br />

Fraction of Regional tonnage used locally 0.0005<br />

Annual site tonnage (tonnes/year) 6.7<br />

Maximum daily site tonnage (kg/day) 1.8e1<br />

Frequency and duration of use<br />

Continuous release [FD2].<br />

Emission days (days/year) 365<br />

Environmental factors not influenced by risk management<br />

Local freshwater dilution factor 10<br />

Local marine water dilution factor 100<br />

Other given operational conditions affecting environmental exposure<br />

Release fraction to air from process (initial release prior to RMM) 0.001<br />

Release fraction to wastewater from process (initial release prior to 0.02<br />

RMM)<br />

Release fraction to soil from process (initial release prior to RMM) 0.01<br />

Technical conditions and measures at process level (source) to prevent release<br />

Common practices vary across sites thus conservative process release estimates used [TCS1].<br />

Technical onsite conditions and measures to reduce or limit discharges, air emissions and<br />

releases to soil<br />

Risk from environmental exposure is driven by freshwater sediment [TCR1b].<br />

If discharging to domestic sewage treatment plant, no onsite wastewater treatment required [TCR9].<br />

Treat air emission to provide a typical removal efficiency of (%) N/A<br />

Treat onsite wastewater (prior to receiving water discharge) to provide 8.8<br />

the required removal efficiency (%)<br />

If discharging to domestic sewage treatment plant, provide the required 0<br />

onsite wastewater removal efficiency of (%)<br />

2010-07-30 CSR 176


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

Organisation measures to prevent/limit release from site<br />

Do not apply industrial sludge to natural soils [OMS2]. Sludge should be incinerated, contained or<br />

reclaimed [OMS3].<br />

Conditions and measures related to municipal sewage treatment plant<br />

Estimated substance removal from wastewater via domestic sewage 94.1<br />

treatment (%)<br />

Total efficiency of removal from wastewater after onsite and offsite 94.1<br />

(domestic treatment plant) RMMs (%)<br />

Maximum allowable site tonnage (M Safe ) based on release following total 2.9e2<br />

wastewater treatment removal (kg/d)<br />

Assumed domestic sewage treatment plant flow (m 3 /d) 2000<br />

Conditions and measures related to external treatment of waste for disposal<br />

External treatment and disposal of waste should comply with applicable regulations [ETW3].<br />

Conditions and measures related to external recovery of waste<br />

External recovery and recycling of waste should comply with applicable regulations [ERW1].<br />

Additional information on the basis for the allocation of the indentified OCs and RMMs is<br />

contained in PETRORISK file.<br />

Section 3 Exposure Estimation<br />

3.1. Health<br />

The ECETOC TRA tool has been used to estimate workplace exposures unless otherwise indicated.<br />

G21.<br />

3.2. Environment<br />

The Hydrocarbon Block Method has been used to calculate environmental exposure with the Petrorisk<br />

model [EE2].<br />

Section 4 Guidance to check compliance with the Exposure Scenario<br />

4.1. Health<br />

Predicted exposures are not expected to exceed the DN(M)EL when the Risk Management<br />

Measures/Operational Conditions outlined in Section 2 are implemented. G22.<br />

Where other Risk Management Measures/Operational Conditions are adopted, then users should<br />

ensure that risks are managed to at least equivalent levels. G23.<br />

Available hazard data do not enable the derivation of a DNEL for dermal irritant effects. G32. Available<br />

hazard data do not support the need for a DNEL to be established for other health effects. G36. Risk<br />

Management Measures are based on qualitative risk characterisation. G37.<br />

4.2. Environment<br />

Guidance is based on assumed operating conditions which may not be applicable to all sites; thus,<br />

scaling may be necessary to define appropriate site-specific risk management measures [DSU1].<br />

Required removal efficiency for wastewater can be achieved using onsite/offsite technologies, either<br />

alone or in combination [DSU2]. Required removal efficiency for air can be achieved using onsite<br />

technologies, either alone or in combination [DSU3].<br />

9.20.2. Exposure Estimation<br />

9.20.2.1. Human Health<br />

See Appendix 2.a and 2.b<br />

9.20.2.2. Environment<br />

See PETRORISK file in IUCLID section 13 – “LocalCSR” worksheet<br />

2010-07-30 CSR 177


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

9.21. Use of Gas Oils (vacuum, hydrocracked & distillate fuels)<br />

R20, R38, R40, R65, R51/53 in Rubber Production and Processing<br />

– Industrial<br />

9.21.1. Exposure Scenario<br />

Section 1 Exposure Scenario Title Gas Oils (vacuum, hydrocracked & distillate fuels) R20, R38,<br />

R40, R65, R51/53<br />

Title<br />

Rubber Production and Processing<br />

Use Descriptor<br />

Sector(s) of Use 3, 10, 11<br />

Process Categories 1, 2, 3, 4, 5, 6, 7, 8a, 8b, 9, 13, 14, 15, 21<br />

Further information on the mapping and allocation of<br />

PROC codes is contained in Table 9.1<br />

Environmental Release Categories<br />

1, 4, 6d<br />

Specific Environmental Release Category ESVOC SpERC 4.19.v1<br />

Processes, tasks, activities covered<br />

Manufacture of tyres and general rubber articles, including processing of raw (uncured) rubber,<br />

handling and mixing of rubber additives, calendaring, vulcanising, cooling and finishing as well as<br />

maintenance<br />

Assessment Method<br />

See Section 3.<br />

Section 2 Operational conditions and risk management measures<br />

Section 2.1 Control of worker exposure<br />

Product characteristics<br />

Physical form of product Liquid<br />

Vapour pressure (kPa) Liquid, vapour pressure 20°C above ambient<br />

Conditions affecting temperature). OC7. Assumes a good basic standard of occupational<br />

exposure<br />

hygiene is implemented G1.<br />

Contributing Scenarios Specific Risk Management Measures and Operating Conditions<br />

General measures<br />

applicable to all activities<br />

CS135<br />

General measures (skin<br />

irritants) G19<br />

Control any potential exposure using measures such as contained<br />

systems, properly designed and maintained facilities and a good standard<br />

of general ventilation. Drain down systems and transfer lines prior to<br />

breaking containment. Drain down and flush equipment where possible<br />

prior to maintenance.<br />

Where there is potential for exposure: Ensure relevant staff are informed<br />

of exposure potential and aware of basic actions to minimise exposures;<br />

ensure suitable personal protective equipment is available; clear up spills<br />

and dispose of waste in accordance with regulatory requirements; monitor<br />

effectiveness of control measures; provide regular health surveillance as<br />

appropriate; identify and implement corrective actions. G25<br />

Avoid direct skin contact with product. Identify potential areas for indirect<br />

skin contact. Wear gloves (tested to EN374) if hand contact with<br />

substance likely. Clean up contamination/spills as soon as they occur.<br />

Wash off skin contamination immediately. Provide basic employee<br />

training to prevent / minimise exposures and to report any skin effects<br />

that may develop. E3 Other skin protection measures such as impervious<br />

suits and face shields may be required during high dispersion activities<br />

2010-07-30 CSR 178


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

which are likely to lead to substantial aerosol release, e.g. spraying. E4<br />

Bulk transfers (closed No other specific measures identified EI20<br />

systems) CS14, CS107<br />

Bulk transfers (open Wear suitable gloves tested to EN374 PPE15<br />

systems) CS14, CS108<br />

Material transfers CS3 Wear suitable gloves tested to EN374. PPE15<br />

Bulk weighing CS91 Wear suitable gloves tested to EN374.PPE15 No other specific measures<br />

identified EI20<br />

Small scale weighing CS90 Wear suitable gloves tested to EN374 PPE15<br />

Additive pre-mixing CS92 Wear suitable gloves tested to EN374.PPE15<br />

Calendaring (including Handle substance within a predominantly closed system provided with<br />

Banburys) CS64<br />

extract ventilation E49 Wear suitable gloves tested to EN374 PPE15<br />

Pressing uncured rubber Wear suitable gloves tested to EN374 PPE15<br />

blanks CS73<br />

Tyre build-up CS112 Minimise exposure by extracted full enclosure for the operation or<br />

equipment E61 Wear suitable gloves (tested to EN374), coverall and eye<br />

protection PPE23<br />

Vulcanisation CS70 Provide extract ventilation to material transfer points and other openings<br />

E82<br />

Cooling cured articles CS71 Minimise exposure by partial enclosure of the operation or equipment and<br />

provide extract ventilation at openings E60<br />

Production of articles by Wear suitable gloves tested to EN374 PPE15<br />

dipping and pouring CS113<br />

Finishing operations CS102 Wear suitable gloves tested to EN374 PPE15<br />

Laboratory activities CS36 No other specific measures identified EI20<br />

Equipment clean down and Drain or remove substance from equipment prior to break-in or<br />

maintenance CS39 maintenance E81 Wear chemically resistant gloves (tested to type<br />

EN374) in combination with ‘basic’ employee training PPE16<br />

Storage CS67<br />

Store substance within a closed system. E84<br />

Additional information on the basis for the allocation of the identified OCs and RMMs is<br />

contained in Appendices 2 to 3<br />

Section 2.2 Control of environmental exposure<br />

Product characteristics<br />

Substance is complex UVCB [PrC3]. Predominantly hydrophobic [PrC4a].<br />

Amounts used<br />

Fraction of <strong>EU</strong> tonnage used in region 0.1<br />

Regional use tonnage (tonnes/year) 1.6e4<br />

Fraction of Regional tonnage used locally 1<br />

Annual site tonnage (tonnes/year) 1.6e4<br />

Maximum daily site tonnage (kg/day) 5.2e4<br />

Frequency and duration of use<br />

Continuous release [FD2].<br />

Emission days (days/year) 300<br />

Environmental factors not influenced by risk management<br />

Local freshwater dilution factor 10<br />

Local marine water dilution factor 100<br />

Other given operational conditions affecting environmental exposure<br />

Release fraction to air from process (initial release prior to RMM) 0.01<br />

Release fraction to wastewater from process (initial release prior to 3.0e-5<br />

RMM)<br />

Release fraction to soil from process (initial release prior to RMM) 0.0001<br />

Technical conditions and measures at process level (source) to prevent release<br />

Common practices vary across sites thus conservative process release estimates used [TCS1].<br />

Technical onsite conditions and measures to reduce or limit discharges, air emissions and<br />

releases to soil<br />

2010-07-30 CSR 179


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

Risk from environmental exposure is driven by freshwater sediment [TCR1b].<br />

If discharging to domestic sewage treatment plant, no onsite wastewater treatment required [TCR9].<br />

Treat air emission to provide a typical removal efficiency of (%) 0<br />

Treat onsite wastewater (prior to receiving water discharge) to provide 52.8<br />

the required removal efficiency (%)<br />

If discharging to domestic sewage treatment plant, provide the required 0<br />

onsite wastewater removal efficiency of (%)<br />

Organisation measures to prevent/limit release from site<br />

Prevent discharge of undissolved substance to or recover from wastewater [OMS1]. Do not apply<br />

industrial sludge to natural soils [OMS2]. Sludge should be incinerated, contained or reclaimed<br />

[OMS3].<br />

Conditions and measures related to municipal sewage treatment plant<br />

Estimated substance removal from wastewater via domestic sewage 94.1<br />

treatment (%)<br />

Total efficiency of removal from wastewater after onsite and offsite 94.1<br />

(domestic treatment plant) RMMs (%)<br />

Maximum allowable site tonnage (M Safe ) based on release following total 4.2e5<br />

wastewater treatment removal (kg/d)<br />

Assumed domestic sewage treatment plant flow (m 3 /d) 2000<br />

Conditions and measures related to external treatment of waste for disposal<br />

External treatment and disposal of waste should comply with applicable regulations [ETW3].<br />

Conditions and measures related to external recovery of waste<br />

External recovery and recycling of waste should comply with applicable regulations [ERW1].<br />

Additional information on the basis for the allocation of the indentified OCs and RMMs is<br />

contained in PETRORISK file.<br />

Section 3 Exposure Estimation<br />

3.1. Health<br />

The ECETOC TRA tool has been used to estimate workplace exposures unless otherwise indicated.<br />

G21.<br />

3.2. Environment<br />

The Hydrocarbon Block Method has been used to calculate environmental exposure with the Petrorisk<br />

model [EE2].<br />

Section 4 Guidance to check compliance with the Exposure Scenario<br />

4.1. Health<br />

Predicted exposures are not expected to exceed the DN(M)EL when the Risk Management<br />

Measures/Operational Conditions outlined in Section 2 are implemented. G22.<br />

Where other Risk Management Measures/Operational Conditions are adopted, then users should<br />

ensure that risks are managed to at least equivalent levels. G23.<br />

Available hazard data do not enable the derivation of a DNEL for dermal irritant effects. G32. Available<br />

hazard data do not support the need for a DNEL to be established for other health effects. G36. Risk<br />

Management Measures are based on qualitative risk characterisation. G37.<br />

4.2. Environment<br />

Guidance is based on assumed operating conditions which may not be applicable to all sites; thus,<br />

scaling may be necessary to define appropriate site-specific risk management measures [DSU1].<br />

Required removal efficiency for wastewater can be achieved using onsite/offsite technologies, either<br />

alone or in combination [DSU2]. Required removal efficiency for air can be achieved using onsite<br />

technologies, either alone or in combination [DSU3]. Further details on scaling and control<br />

technologies are provided in SpERC factsheet (http://cefic.org/en/reach-for-industries-libraries.html)<br />

[DSU4].<br />

2010-07-30 CSR 180


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

9.21.2. Exposure Estimation<br />

9.21.2.1. Human Health<br />

See Appendix 2.a and 2.b<br />

9.21.2.2. Environment<br />

See PETRORISK file in IUCLID section 13 – “LocalCSR” worksheet<br />

9.22. Regional Environment Exposure Estimation<br />

See PETRORISK file in IUCLID section 13 – “RegionalCSR” worksheet<br />

2010-07-30 CSR 181


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

10. RISK CHARACTERISATION<br />

10.1. Manufacture of Gas Oils (vacuum, hydrocracked & distillate<br />

fuels) R20, R38, R40, R65, R51/53 – Industrial<br />

10.1.1. Human Health<br />

See Appendix 3.a. and 3.b.<br />

10.1.2. Environment<br />

See PETRORISK file in IUCLID section 13 – “LocalCSR” worksheet<br />

10.2. Use of Gas Oils (vacuum, hydrocracked & distillate fuels)<br />

R20, R38, R40, R65, R51/53 as Intermediate – Industrial<br />

10.2.1. Human Health<br />

See Appendix 3.a. and 3.b.<br />

10.2.2. Environment<br />

See PETRORISK file in IUCLID section 13 – “LocalCSR” worksheet<br />

10.3. Distribution of Gas Oils (vacuum, hydrocracked & distillate<br />

fuels) R20, R38, R40, R65, R51/53 – Industrial<br />

10.3.1. Human Health<br />

See Appendix 3.a. and 3.b.<br />

10.3.2. Environment<br />

See PETRORISK file in IUCLID section 13 – “LocalCSR” worksheet<br />

10.4. Formulation & (Re)packing of Gas Oils (vacuum,<br />

hydrocracked & distillate fuels) R20, R38, R40, R65, R51/53 –<br />

Industrial<br />

10.4.1. Human Health<br />

See Appendix 3.a. and 3.b.<br />

10.4.2. Environment<br />

See PETRORISK file in IUCLID section 13 – “LocalCSR” worksheet<br />

10.5. Uses of Gas Oils (vacuum, hydrocracked & distillate fuels)<br />

R20, R38, R40, R65, R51/53 in Coatings – Industrial<br />

10.5.1. Human Health<br />

See Appendix 3.a. and 3.b.<br />

10.5.2. Environment<br />

See PETRORISK file in IUCLID section 13 – “LocalCSR” worksheet<br />

2010-07-30 CSR 182


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

10.6. Uses of Gas Oils (vacuum, hydrocracked & distillate fuels)<br />

R20, R38, R40, R65, R51/53 in Coatings – Professional<br />

10.6.1. Human Health<br />

See Appendix 3.a. and 3.b.<br />

10.6.2. Environment<br />

See PETRORISK file in IUCLID section 13 – “LocalCSR” worksheet<br />

10.7. Uses of Gas Oils (vacuum, hydrocracked & distillate fuels)<br />

R20, R38, R40, R65, R51/53 in Oil and Gas Field Drilling and<br />

Production Operations – Industrial<br />

10.7.1. Human Health<br />

See Appendix 3.a. and 3.b.<br />

10.7.2. Environment<br />

See PETRORISK file in IUCLID section 13 – “LocalCSR” worksheet<br />

10.8. Uses of Gas Oils (vacuum, hydrocracked & distillate fuels)<br />

R20, R38, R40, R65, R51/53 in Oil and Gas Field Drilling and<br />

Production Operations – Professional<br />

10.8.1. Human Health<br />

See Appendix 3.a. and 3.b.<br />

10.8.2. Environment<br />

See PETRORISK file in IUCLID section 13 – “LocalCSR” worksheet<br />

10.9. Uses of Gas Oils (vacuum, hydrocracked & distillate fuels)<br />

R20, R38, R40, R65, R51/53 in Lubricants – Industrial<br />

10.9.1. Human Health<br />

See Appendix 3.a. and 3.b.<br />

10.9.2. Environment<br />

See PETRORISK file in IUCLID section 13 – “LocalCSR” worksheet<br />

10.10. Uses of Gas Oils (vacuum, hydrocracked & distillate fuels)<br />

R20, R38, R40, R65, R51/53 Lubricants – Professional: Low<br />

Environmental Release<br />

10.10.1. Human Health<br />

See Appendix 3.a. and 3.b.<br />

10.10.2. Environment<br />

See PETRORISK file in IUCLID section 13 – “LocalCSR” worksheet<br />

10.11. Uses of Gas Oils (vacuum, hydrocracked & distillate fuels)<br />

R20, R38, R40, R65, R51/53 in Lubricants – Professional: High<br />

2010-07-30 CSR 183


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

Environmental Release<br />

10.11.1. Human Health<br />

See Appendix 3.a. and 3.b.<br />

10.11.2. Environment<br />

See PETRORISK file in IUCLID section 13 – “LocalCSR” worksheet<br />

10.12. Uses of Gas Oils (vacuum, hydrocracked & distillate fuels)<br />

R20, R38, R40, R65, R51/53 in Metal Working Fluids/Rolling Oils –<br />

Industrial<br />

10.12.1. Human Health<br />

See Appendix 3.a. and 3.b.<br />

10.12.2. Environment<br />

See PETRORISK file in IUCLID section 13 – “LocalCSR” worksheet<br />

10.13. Uses of Gas Oils (vacuum, hydrocracked & distillate fuels)<br />

R20, R38, R40, R65, R51/53 as Release Agents or Binders –<br />

Industrial<br />

10.13.1. Human Health<br />

See Appendix 3.a. and 3.b.<br />

10.13.2. Environment<br />

See PETRORISK file in IUCLID section 13 – “LocalCSR” worksheet<br />

10.14. Uses of Gas Oils (vacuum, hydrocracked & distillate fuels)<br />

R20, R38, R40, R65, R51/53 as Release Agents or Binders –<br />

Professional<br />

10.14.1. Human Health<br />

See Appendix 3.a. and 3.b.<br />

10.14.2. Environment<br />

See PETRORISK file in IUCLID section 13 – “LocalCSR” worksheet<br />

10.15. Uses of Gas Oils (vacuum, hydrocracked & distillate fuels)<br />

R20, R38, R40, R65, R51/53 as a Fuel – Industrial<br />

10.15.1. Human Health<br />

See Appendix 3.a. and 3.b.<br />

10.15.2. Environment<br />

See PETRORISK file in IUCLID section 13 – “LocalCSR” worksheet<br />

10.16. Uses of Gas Oils (vacuum, hydrocracked & distillate fuels)<br />

R20, R38, R40, R65, R51/53 as a Fuel – Professional<br />

2010-07-30 CSR 184


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

10.16.1. Human Health<br />

See Appendix 3.a. and 3.b.<br />

10.16.2. Environment<br />

See PETRORISK file in IUCLID section 13 – “LocalCSR” worksheet<br />

10.17. Uses of Gas Oils (vacuum, hydrocracked & distillate fuels)<br />

R20, R38, R40, R65, R51/53 as a Fuel – Consumer<br />

10.17.1. Human Health<br />

See Appendix 3.c.<br />

10.17.2. Environment<br />

See PETRORISK file in IUCLID section 13 – “LocalCSR” worksheet<br />

10.18. Uses of Gas Oils (vacuum, hydrocracked & distillate fuels)<br />

R20, R38, R40, R65, R51/53 as Functional Fluids – Industrial<br />

10.18.1. Human Health<br />

See Appendix 3.a. and 3.b.<br />

10.18.2. Environment<br />

See PETRORISK file in IUCLID section 13 – “LocalCSR” worksheet<br />

10.19. Uses of Gas Oils (vacuum, hydrocracked & distillate fuels)<br />

R20, R38, R40, R65, R51/53 in Road and Construction<br />

Applications – Professional<br />

10.19.1. Human Health<br />

See Appendix 3.a. and 3.b.<br />

10.19.2. Environment<br />

See PETRORISK file in IUCLID section 13 – “LocalCSR” worksheet<br />

10.20. Uses of Gas Oils (vacuum, hydrocracked & distillate fuels)<br />

R20, R38, R40, R65, R51/53 in Explosives Manufacture and Use –<br />

Professional<br />

10.20.1. Human Health<br />

See Appendix 3.a. and 3.b.<br />

10.20.2. Environment<br />

See PETRORISK file in IUCLID section 13 – “LocalCSR” worksheet<br />

10.21. Uses of Gas Oils (vacuum, hydrocracked & distillate fuels)<br />

R20, R38, R40, R65, R51/53 in Rubber Production and<br />

Processing – Industrial<br />

10.21.1. Human Health<br />

2010-07-30 CSR 185


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

See Appendix 3.a. and 3.b.<br />

10.21.2. Environment<br />

See PETRORISK file in IUCLID section 13 – “LocalCSR” worksheet<br />

10.22. Overall exposure (combined for all relevant<br />

emission/release sources)<br />

10.22.1. Human health (combined for all exposure routes)<br />

See Appendix 3a, 3b & 3c.<br />

10.22.2. Environment (combined for all exposure routes)<br />

Combined exposures can be calculated with information provided on the individual exposure<br />

scenarios presented in section 9. However, it is unclear how to define risk management measures<br />

resulting from this analysis.<br />

10.23. Regional Environment<br />

See PETRORISK file in IUCLID section 13 – “LocalCSR” worksheet<br />

2010-07-30 CSR 186


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

REFERENCES<br />

Anderson, J. Neff, J. Cox, B. Tatem, H and Hightower, G (1974). Characteristics of dispersions and<br />

water-soluble extracts of crude and refined oils and their toxicity to estuarine crustaceans and fish.<br />

Marine Biology 27, 75-88.<br />

Anon (2003). High production volume (HPV) chemical challenge program. Test plan Gas Oils<br />

Category. American Petroleum Institute. Report no.: 201-14835.<br />

API (1978). Mutagenicity evaluation of diesel fuel. Testing laboratory: Litton Bionetics Inc. American<br />

Petroleum Institute. Med. Res. Pub. 26-60102<br />

API (1979). In-vitro and in-vivo mutagenicity studies No. 2 Home heating oil sample API 78-4 API<br />

Report No. 27-30140<br />

API (1979a). Teratology study in rats, diesel fuel, final report. Testing laboratory: Litton Bionetics, Inc.<br />

Kensington, Maryland. Report no.: 20698-11. Owner company: American Petroleum Institute,<br />

Washington, D. C. Study number: 27-32174. Report date: 1979-03-21.<br />

API (1979b). Inhalation/teratology study in rats- fuel oil. Testing laboratory: Litton Bionetics, Inc,<br />

Kensington, Maryland. Report no.: 21035-03. Owner company: American Petroleum Institute,<br />

Washington DC. Study number: 27-30483. Report date: 1979-09-17.<br />

API (1980aa). Acute toxicity tests. API 78-2 (No. 2 Home heating oil (30% cat)). Primary dermal<br />

irritation. Primary eye irritation. Skin sensitization. Acute dermal toxicity. Acute oral toxicity. Subacute<br />

dermal toxicity. Testing laboratory: Elars Bioresearch Laboratories Inc. Owner company: American<br />

Petroleum Institute. Report No. 27-32771.<br />

API (1980bb). Acute toxicity tests. API 78-3 (No. 2 Home heating oil (10% cat)). Primary dermal<br />

irritation. Primary eye irritation. Skin sensitization. Acute dermal toxicity. Acute oral toxicity. Subacute<br />

dermal toxicity. Testing laboratory: Elars Bioresearch Laboratories Inc. Owner company: American<br />

Petroleum Institute. Report No. 27-32773.<br />

API (1980cc). Mutagenicity evaluation of diesel fuel in the mouse dominant lethal assay. API Medical<br />

research publication 28-31346<br />

API (1980a). Acute Toxicity Tests API #78-4 #2 home heating oil (50% cat). Testing laboratory: Elars<br />

Bioresearch Laboratory, Fort Collins, CO. Report no.: 27-32068. Owner company: American<br />

Petroleum Institute, Washington DC. Study number: 1443. Report date: 1980-07-17.<br />

API (1980b). Acute Toxicity Tests API #79-6 diesel fuel (marketplace sample). Testing laboratory:<br />

Elars Bioresearch Laboratories, Inc., Fort Collins, CO. Report no.: 27-32817. Owner company:<br />

American Petroleum Institute, Washington DC. Study number: 1443. Report date: 1980-09-02.<br />

API (1982a). Acute oral toxicity study in rats. Acute dermal toxicity study in rabbits. Primary dermal<br />

irritation study in rabbits. Primary eye irritation study in rabbits. API 81-09 (Hydrodesulphurised Middle<br />

Distillate). Testing laboratory: Hazleton Raltech Inc. Owner company: American Petroleum Institute.<br />

Report No. 30-32347.<br />

API (1982b). Acute oral toxicity study in rats. Acute dermal toxicity study in rabbits. Primary dermal<br />

irritation study in rabbits. Primary eye irritation study in rabbits. API 81-09 (Hydrodesulphurised Middle<br />

Distillate). Testing laboratory: Hazleton Raltech Inc. Owner company: American Petroleum Institute.<br />

Report No. 30-32348.<br />

API (1983c). 28-day dermal toxicity study in the rabbit. API 81-09 (Hydrodesulphurised Middle<br />

Distillate). Testing laboratory: Borriston Laboratories Inc. Owner company: American Petroleum<br />

Institute. Report No. 30-32298.<br />

API (1983d). 28-day dermal toxicity study in the rabbit. API 81-10 (Hydrodesulphurised Middle<br />

Distillate. Testing laboratory: Borriston Laboratories Inc. Owner company: American Petroleum<br />

2010-07-30 CSR 187


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

Institute. Report No. 30-32296.<br />

API (1983a). LC50 acute inhalation toxicity evaluation of a petroleum-derived hydrocarbon in rats. API<br />

81-09 (Hydrodesulphurised Middle Distillate). Testing laboratory: International Research and<br />

Development Corporation. Owner company: American Petroleum Institute. Report No. 30-32856.<br />

API (1983b). LC50 acute inhalation toxicity evaluation of a petroleum-derived hydrocarbon in rats. API<br />

81-10 (Hydrodesulphurised Middle Distillate). Testing laboratory: International Research and<br />

Development Corporation. Owner company: American Petroleum Institute. Report No. 30-32857.<br />

API (1984a). Dermal sensitisation study in guinea pigs, closed patch technique. API 81-09<br />

(Hydrodesulphurised Middle Distillate). Testing laboratory: Hazleton Laboratories America Inc. Owner<br />

company: American Petroleum Institute. Report No. 31-31352.<br />

API (1984b). Dermal sensitisation study in guinea pigs, closed patch technique. API 81-10<br />

(Hydrodesulphurised Middle Distillate). Testing laboratory: Hazleton Laboratories America Inc. Owner<br />

company: American Petroleum Institute. Report No. 31-31414.<br />

API (1984c). Mutagenicity evaluation in the rat bone marrow cytogenetic assay and the mouse<br />

lymphoma forward mutation assay, API 81-10 (Hydrodesulphurised Middle Distillate. Testing<br />

laboratory: Litton Bionetics. Owner company: American Petroleum Institute. Report No. 32-30535.<br />

API (1985a). Acute in vivo cytogenetics assay in male and female rats. Testing laboratory:<br />

Microbiological Associates, Inc., Bethesda, Maryland. Report no.: T2419.105001. Owner company:<br />

American Petroleum Institute. Study number: 32-32408. Report date: 1985-05-30.<br />

API (1985b). Acute toxicity studies: hydrodesulphurized middle distillate, Sample 81-09. Testing<br />

laboratory: Hazleton Raltech. Owner company: American Petroleum Institute. Report No. 30-32347.<br />

API (1985c). Acute toxicity studies: Hydrodesulphurized Middle Distillate, Sample 81-10. Testing<br />

laboratory: Hazleton Raltech. Owner company: American Petroleum Institute. Report No. 30-32348.<br />

API (1985d). Mutagenicity evaluation study in the rat bone marrow cytogenetic assay and the mouse<br />

lymphoma forward mutation assay. API 81-09 (Hydrodesulphurised Middle Distillate). Testing<br />

laboratory: Litton Bionetics. Owner company: American Petroleum Institute. Report No. 32-30965.<br />

API (1986a). Four week subchronic inhalation toxicity study in rats. Final report. API 81-07<br />

hydrodesulfurized kerosine (petroleum) (CAS 64742-81-0). API 81-09 hydrodesulfurized middle<br />

distillate (petroleum) (CAS 64742-80-9). API 81-10 hydrodesulfurized middle distillate (petroleum)<br />

(CAS 64742-80-9). American Petroleum Institute HESD Pub. 33-32724.<br />

API (1986b). Mutagenicity in a mouse lymphoma mutation assay, API 81-10, hydrodesulphurised<br />

middle distillate, CAS No. 64742-80-9. Testing laboratory: Litton Bionetics, Kensington, Maryland.<br />

Report no.: 20989. Owner company: American Petroleum Institute, Washington, DC. Study number:<br />

33-31224.<br />

API (1987a). Mutagenicity of API 81-10 (ARO aromatic fraction of Hydrodesulphurised Middle<br />

Distillate), CAS No. 64742-80-9, (coded as API 86-10 ARO), in a mouse lymphoma mutation assay.<br />

Testing laboratory: Hazleton Biotechnologies Company. Owner company: American Petroleum<br />

Institute. Report No. 34-32644.<br />

API (1987b). Mutagenicity of API 81-10 (Hydrodesulphurised Middle Distillate), CAS No. 64742-80-9<br />

(coded as 86-10), in a mouse lymphoma mutation assay. Testing laboratory: Hazleton Laboratories<br />

America Inc. Owner company: American Petroleum Institute. Report No. 34-32643.<br />

API (1987c). Mutagenicity of API 81-10 SAT saturated fraction of Hydrodesulphurised Middle<br />

Distillate, CAS No. 64742-80-9 (coded as API 86-10 SAT), in a mouse lymphoma mutation assay.<br />

Testing laboratory: Hazelton Biotechnologies Company. Owner company: American Petroleum<br />

Institute. Report No. 34-32645.<br />

API (1988). Sister chromatid exchange assay in chinese hamster ovary (CHO) cells. Testing<br />

laboratory: Microbiological Associates, Inc., Bethesda, Maryland. Report no.: T5338.334006. Owner<br />

2010-07-30 CSR 188


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

company: American Petroleum Institute, Washington D. C. Study number: 35-32433.<br />

API (1989). Lifetime dermal carcinogenesis/chronic toxicity screening bioassay of refinery streams in<br />

C3H/HeJ mice (AP-135R = (API 81-09 and API 81-10 and API 83-02)). Testing laboratory: Primate<br />

Research Institute, New Mexico State University. Owner company: American Petroleum Institute.<br />

Report No. 36-31364.<br />

ARCO (1973). Acute oral toxicity study in albino rats. Testing laboratory: Biotest Laboratories,<br />

Northbrook, Illinois. Owner company: ARCO, Los Angeles. Study number: 73-0095.<br />

ARCO (1985). Acute oral toxicity study in rats administered naval distillate. Testing laboratory: UBTL,<br />

Salt Lake City, Utah. Owner company: ARCO, Los Angeles, CA. Study number: 85-0144.<br />

ARCO (1986a). Acute Dermal Toxicity Study in Rabbits Administered with Test Article F-91-01.<br />

Testing laboratory: Utah Biomedical Test Laboratory, Salt Lake City, Utah. Report no.: 62769. Owner<br />

company: ARCO, Los Angeles, CA. Study number: ATX-86-0056. Report date: 1986-11-03.<br />

ARCO (1986b). Primary dermal irritation study in rabbits administered cherry point diesel fuel number<br />

two. Testing laboratory: UBTL, Salt Lake City, Utah. Report no.: 60579. Owner company: ARCO, Los<br />

Angeles, CA. Study number: ATX-85-0161. Report date: 1986-12-18.<br />

ARCO (1986c). Primary dermal irritation study in rabbits administered naval distillate. Testing<br />

laboratory: UBTL, Salt Lake City, Utah. Report no.: 60576. Owner company: ARCO, Los Angeles, CA.<br />

Study number: ATX-85-0146. Report date: 1986-12-18.<br />

ARCO (1986d). Primary Eye Irritation Study in Rabbits Administered Cherry Point Diesel Fuel Number<br />

Two. Testing laboratory: Utah Biomedical Test Laboratory, Salt Lake City, Utah. Report no.: 60594.<br />

Owner company: Atlantic Richfield Company (ARCO). Study number: ATX-85-0162. Report date:<br />

1986-12-18.<br />

ARCO (1986e). Primary Eye Irritation Study in Rabbits Administered Test Substance F-71-01. Testing<br />

laboratory: Utah Biomedical Test Laboratory, Salt Lake City, Utah. Report no.: 60590. Owner<br />

company: ARCO, Los Angeles, CA. Study number: ATX-85-0142. Report date: 1986-02-12.<br />

ARCO (1986f). Primary Eye Irritation in Rabbits Administered Naval Distillate. Testing laboratory:<br />

Utah Biomedical Test Laboratory, Salt Lake City, Utah. Report no.: 60591. Owner company: Atlantic<br />

Richfield Corporation (ARCO). Study number: ATX-85-0147. Report date: 1986-11-18.<br />

ARCO (1986g). Dermal sensitization study in guinea pigs administered cherry point diesel fuel<br />

number two. Testing laboratory: UBTL, Salt Lake City, Utah. Report no.: 60624. Owner company:<br />

ARCO, Los Angeles, CA. Study number: ATX-86-0163. Report date: 1986-12-30.<br />

ARCO (1986h). Dermal sensitization study in guinea pigs administered Watson diesel fuel number<br />

two. Testing laboratory: UBTL, Salt Lake City, Utah. Report no.: 60620. Owner company: ARCO, Los<br />

Angeles, CA. Study number: ATX-85-0143. Report date: 1986-12-30.<br />

ARCO (1986i). Dermal sensitization study in guinea pigs administered naval distillate. Testing<br />

laboratory: UBTL, Salt Lake City, Utah. Report no.: 60621. Owner company: ARCO. Study number:<br />

ATX-85-0148. Report date: 1986-12-30.<br />

ARCO (1986j). Twenty-eight day dermal toxicity study in rats on Watson Cherry Point Diesel Fuel<br />

Number 2. Testing laboratory: UBTL, Inc. Salt Lake City, Utah. Report no.: 60764. Owner company:<br />

ARCO, Los Angeles, CA. Study number: ATX-85-00185. Report date: 1986-12-05.<br />

ARCO (1986k). 28 Day Dermal Toxicity Study in Rats Administered Test Article F-72-01. Testing<br />

laboratory: UBTL, Salt Lake City, Utah. Report no.: 61538. Owner company: ARCO, Los Angeles, CA.<br />

Study number: ATX-86-0006. Report date: 1987-01-15.<br />

ARCO (1986l). Twenty-eight day dermal toxicity study in rats on Watson Diesel Fuel Number 2.<br />

Testing laboratory: UBTL, Inc. Salt Lake City, Utah. Report no.: 60763. Owner company: ARCO, Los<br />

Angeles, CA. Study number: ATX-85-00184. Report date: 1986-04-01.<br />

2010-07-30 CSR 189


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

ARCO (1987a). Acute oral toxicity in rats administered test article F-91-01. Testing laboratory: UBTL,<br />

Inc., Salt Lake City, Utah. Report no.: 86-0055. Owner company: ARCO, Los Angeles, CA. Study<br />

number: 62762. Report date: 1987-09-15.<br />

ARCO (1987b). Acute oral toxicity study in rats administered watson diesel fuel number two. Testing<br />

laboratory: UBTL, Salt Lake City, Utah. Owner company: ARCO, Los Angeles, CA. Study number: 85-<br />

0139. Report date: 1986-02-04.<br />

ARCO (1987c). Acute oral toxicity study in rats administered cherry point diesel fuel number two.<br />

Testing laboratory: UBTL, Inc., Salt Lake City, Utah. Owner company: ARCO, Los Angeles, CA. Study<br />

number: 85-0159. Report date: 1986-10-24.<br />

ARCO (1987d). Acute oral toxicity study in rats administered test article F-55-01. Testing laboratory:<br />

Mideco, Inc., Salt Lake City, Utah. Owner company: ARCO, Los Angeles, CA. Study number: 84-<br />

0078. Report date: 1987-03-26.<br />

ARCO (1987e). Acute inhalation toxicity study in rats administered cherry point diesel fuel number<br />

two. Testing laboratory: Bio/dynamics, East Millstone, New Jersey. Report no.: 85-7871A. Owner<br />

company: ARCO, Los Angeles, CA. Study number: ATX-85-0180. Report date: 1987-01-12.<br />

ARCO (1987f). Acute Dermal Toxicity Study in Rabbits Administered Cherry Point Diesel Fuel<br />

Number 2. Testing laboratory: Utah Biomedical Test Laboratory, Salt Lake City, Utah. Report no.:<br />

60564. Owner company: ARCO, Los Angeles, CA. Study number: ATX-86-0160. Report date: 1987-<br />

01-20.<br />

ARCO (1987g). Acute Dermal Toxicity Study in Rabbits Administered Watson Diesel Fuel Number 2.<br />

Testing laboratory: Utah Biomedical Test Laboratory, Salt Lake City, Utah. Report no.: 60560. Owner<br />

company: ARCO, Los Angeles, CA. Study number: ATX-86-0140. Report date: 1987-01-20.<br />

ARCO (1987h). Acute Dermal Toxicity Study in Rabbits Administered F-55-01. Testing laboratory:<br />

MIDECO, Inc., Salt Lake City, Utah. Report no.: 55937. Owner company: ARCO, Los Angeles, CA.<br />

Study number: ATX-86-0079. Report date: 1987-04-01.<br />

ARCO (1987i). Acute Dermal Toxicity Study in Rabbits Administered Test Material F-72-01 Naval<br />

Distillate. Testing laboratory: Utah Biomedical Test Laboratory, Salt Lake City, Utah. Report no.:<br />

60561. Owner company: ARCO, Los Angeles, CA. Study number: ATX-85-0145. Report date: 1987-<br />

01-20.<br />

ARCO (1987j). Primary dermal irritation study in rabbits administered test article F-71-01. Testing<br />

laboratory: UBTL, Salt Lake City, Utah. Report no.: 60575. Owner company: ARCO, Los Angeles, CA.<br />

Study number: ATX-85-0141. Report date: 1987-01-31.<br />

ARCO (1987k). Primary dermal irritation study with F-55-01. Testing laboratory: MIDECO, Salt Lake<br />

City, Utah. Report no.: 55938. Owner company: ARCO, Los Angeles, CA. Study number: ATX-84-<br />

0080. Report date: 1987-04-01.<br />

ARCO (1987l). Primary Eye Irritation in Rabbits Administered Test Article F-55-01. Testing laboratory:<br />

Mideco, Inc., Salt Lake City, Utah. Report no.: 55939. Owner company: ARCO, Los Angeles, CA.<br />

Study number: ATX-84-0081. Report date: 1987-04-01.<br />

ARCO (1987m). Dermal sensitization study in albino guinea pigs with test article F-55-01. Testing<br />

laboratory: MIDECO, Salt Lake City, Utah. Report no.: 55940. Owner company: ARCO, Los Angeles,<br />

CA. Study number: ATX-84-0082. Report date: 1987-04-08.<br />

ARCO (1988a). Acute inhalation toxicity study in rats administered naval distillates. Testing<br />

laboratory: Bio/dynamics, East Millstone, New Jersey. Report no.: 85-7867(A). Owner company:<br />

ARCO, Los Angeles, CA. Study number: ATX-85-0177. Report date: 1988-06-28.<br />

ARCO (1988b). Acute inhalation toxicity study in rats administered test article F-91-01. Testing<br />

laboratory: Bio/dynamics, East Millstone, New Jersey. Report no.: 87-7999. Owner company: ARCO,<br />

Los Angeles, CA. Study number: ATX-86-0060. Report date: 1988-11-29.<br />

2010-07-30 CSR 190


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

ARCO (1988c). Acute inhalation toxicity study in rats administered diesel no. 2 heating oil. Testing<br />

laboratory: Bio/dynamics, East Millstone, New Jersey. Report no.: 85-7866. Owner company: ARCO,<br />

Los Angeles, CA. Study number: ATX-85-0176. Report date: 1988-06-28.<br />

ARCO (1988d). Acute inhalation toxicity study in rats administered test article F-55-01. Testing<br />

laboratory: Bio-Research Laboratories, Ltd., Canada. Report no.: 82191. Owner company: ARCO,<br />

Los Angeles, CA. Study number: ATX-84-0083. Report date: 1988-04-28.<br />

ARCO (1988e). Primary dermal irritation study in albino rabbits administered test article F-91-01.<br />

Testing laboratory: UBTL, Salt Lake City, Utah. Report no.: 62776. Owner company: ARCO, Los<br />

Angeles, CA. Study number: ATX-86-0057. Report date: 1988-04-15.<br />

ARCO (1988f). Primary Eye Irritation Study in Rabbits Administered ARCO Diesel - Low Sulfur.<br />

Testing laboratory: Utah Biomedical Test Laboratory, Salt Lake City, Utah. Report no.: 62783. Owner<br />

company: ARCO, Los Angeles, CA. Study number: ATX-86-0058. Report date: 1988-03-31.<br />

ARCO (1988g). Dermal sensitization study in guinea pigs administered ARCO diesel low sulfur.<br />

Testing laboratory: UBTL, Salt Lake City, Utah. Report no.: 62790. Owner company: ARCO, Los<br />

Angeles, CA. Study number: ATX-86-0059. Report date: 1988-03-31.<br />

ARCO (1988h). Twenty-eight (28) day dermal toxicity study in rats on test article F-91-01. Testing<br />

laboratory: UBTL, Salt Lake City, Utah. Report no.: 62797. Owner company: ARCO, Los Angeles, CA.<br />

Study number: ATX-86-0061. Report date: 1988-05-20.<br />

ARCO (1990a). Acute Dermal Toxicity Study in Rabbits Administered Test Article F-102-01 (Naval<br />

Distillate). Testing laboratory: Utah Biomedical Test Laboratory Salt Lake City, Utah. Report no.:<br />

65290. Owner company: ARCO, Los Angeles, CA. Study number: ATX-89-0014. Report date: 1990-<br />

04-10.<br />

ARCO (1990b). Primary dermal irritation study in rabbits administered test article F-102-01 (naval<br />

distillate). Testing laboratory: UBTL, Salt Lake City, Utah. Report no.: 65285. Owner company:<br />

ARCO, Los Angeles, CA. Study number: ATX-89-0016. Report date: 1990-02-19.<br />

ARCO (1990c). Primary Eye Irritation in Rabbits Administered Test Article F-102-01 (Naval Distillate).<br />

Testing laboratory: Utah Biomedical Test Laboratory, Salt Lake City, Utah. Report no.: 65295. Owner<br />

company: ARCO, Los Angeles, CA. Study number: ATX-89-0015. Report date: 1990-04-10.<br />

ARCO (1990d). Dermal sensitization study in guinea pigs administered test article F-102-01 (naval<br />

distillates). Testing laboratory: UBTL, Salt Lake City, Utah. Report no.: 65300. Owner company:<br />

ARCO, Los Angeles, CA. Study number: ATX-89-0017. Report date: 1990-05-15.<br />

ARCO (1990e). Dermal photoirritaiton study in rabbits adminsitered test article F-102-01 (Naval<br />

Distillate). Testing laboratory: UBTL, Salt Lake City, Utah. Report no.: 89-0038. Owner company:<br />

ARCO, Los Angeles, CA.<br />

ARCO (1991). Acute inhalation toxicity study of F-102 in rats. Testing laboratory: IIT Research<br />

Institute, Chicago, Illinois. Report no.: L08297. Owner company: ARCO, Los Angeles, CA. Study<br />

number: ATX-89-0018. Report date: 1991-04-19.<br />

ARCO (1992a). Approximate lethal dose study in rats administered test article F-102-01 (Naval<br />

Distillate). Testing laboratory: UBTL, Salt Lake City, Utah. Owner company: ARCO, Los Angeles, CA.<br />

Study number: 89-0013. Report date: 1992-10-16.<br />

ARCO (1992b). Acute inhalation toxicity study in rats administered test article F-188 (sweet<br />

distillates). Testing laboratory: UBTL, Salt Lake City, Utah. Report no.: 66366. Owner company:<br />

ARCO, Los Angeles, CA. Study number: ATX-91-0093. Report date: 1992-09-21.<br />

ARCO (1992c). Acute Dermal Toxicity Study in Rabbits Administered Test Article F-235<br />

(Hydrodesulfurized Middle Distillate). Testing laboratory: Utah Biomedical Test Laboratory, Salt Lake<br />

City, Utah. Report no.: 66512. Owner company: ARCO, Los Angeles, CA. Study number: ATX-91-<br />

0243. Report date: 1992-10-12.<br />

2010-07-30 CSR 191


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

ARCO (1992d). Primary Eye Irritation in Rabbits Administered Test Article F-235 (Hydrodesulfurized<br />

Middle Distillate). Testing laboratory: Utah Biomedical Test Laboratory, Salt Lake City, Utah. Report<br />

no.: 66519. Owner company: ARCO, Los Angeles, CA. Study number: ATX-91-0244. Report date:<br />

1992-11-19.<br />

ARCO (1992e). 28 Day Dermal Toxicity Study in Rats. Testing laboratory: UBTL, Salt Lake City, Utah.<br />

Report no.: 65365. Owner company: ARCO, Los Angeles, CA. Study number: ATX-89-0008. Report<br />

date: 1992-03-26.<br />

ARCO (1992f). 28 Day Dermal Toxicity Study in Rats. Testing laboratory: UBTL, Salt Lake City, Utah.<br />

Report no.: 66197. Owner company: ARCO, Los Angeles, CA. Study number: ATX-91-0094. Report<br />

date: 1992-07-08.<br />

ARCO (1993a). Acute oral toxicity study in rats administered test article F-188 (Sweet distillates).<br />

Testing laboratory: UBTL, Salt Lake City, Utah. Owner company: ARCO, Los Angeles, CA. Study<br />

number: 91-0087. Report date: 1993-05-26.<br />

ARCO (1993b). Acute oral toxicity study in rats administered test article F-235 (Hydrodesulfurized<br />

Middle Distillate). Testing laboratory: UBTL, Salt Lake City, Utah. Owner company: ARCO, Los<br />

Angeles, CA. Study number: 91-0242.<br />

ARCO (1993c). Acute inhalation toxicity study in rats administered test article F-235 (light vacuum gas<br />

oil). Testing laboratory: UBTL, Salt Lake City, Utah. Report no.: 66547. Owner company: ARCO, Los<br />

Angeles, CA. Study number: ATX-91-0248. Report date: 1993-07-21.<br />

ARCO (1993d). Acute Dermal Toxicity Study in Rabbits Administered Test Article F-188 (Sweet<br />

Distillates). Testing laboratory: Utah Biomedical Test Laboratory, Salt Lake City, Utah. Report no.:<br />

60560. Owner company: ARCO, Los Angeles, CA. Study number: ATX-91-0088. Report date: 1993-<br />

05-26.<br />

ARCO (1993e). Primary dermal irritation study in rabbits administered test article F-188 (sweet<br />

distillates). Testing laboratory: UBTL, Salt Lake City, Utah. Report no.: 66303. Owner company:<br />

ARCO, Los Angeles, CA. Study number: ATX-91-0090. Report date: 1993-06-21.<br />

ARCO (1993f). Primary dermal irritation study in rabbits administered test article F-235<br />

(hydrodesulfurized middle distillates). Testing laboratory: UBTL, Salt Lake City, Utah. Report no.:<br />

66526. Owner company: ARCO, Los Angeles, CA. Study number: ATX-91-0245. Report date: 1993-<br />

01-21.<br />

ARCO (1993g). Primary Eye Irritation in Rabbits Administered Test Article F-188 (Sweet Distillates).<br />

Testing laboratory: Utah Biomedical Test Laboratory, Salt Lake City, Utah. Report no.: 66309. Owner<br />

company: ARCO, Los Angeles, CA. Study number: ATX-91-0089. Report date: 1993-05-26.<br />

ARCO (1993h). Dermal sensitization study in guinea pigs with test article F-188 (sweet distillates).<br />

Testing laboratory: UBTL, Salt Lake City, Utah. Report no.: 66315. Owner company: ARCO, Los<br />

Angeles, CA. Study number: ATX-91-0091. Report date: 1993-05-26.<br />

ARCO (1993i). Dermal sensitization study in guinea pigs administered test article F-235<br />

(hydrodesulfurized middle distillates). Testing laboratory: UBTL, Salt Lake City, Utah. Report no.:<br />

66533. Owner company: ARCO, Los Angeles, CA. Study number: ATX-91-0246. Report date: 1993-<br />

04-10.<br />

ARCO (1993j). 28 Day Dermal Toxicity Study in Rats. Testing laboratory: UBTL, Salt Lake City, Utah.<br />

Report no.: 66554. Owner company: ARCO, Los Angeles, CA. Study number: ATX-91-0249. Report<br />

date: 1993-05-28.<br />

ARCO (1993k). Developmental toxicity (embryo-fetal toxicity and teratogenic potential) study of F-195<br />

administered percutaneously to Crl: CD BR VAF/Plus presumed pregnant rats. Testing laboratory:<br />

Argus Research Laboratories, Inc., Harsham, Pennsylvania. Report no.: 1001-008. Owner company:<br />

ARCO, Los Angeles, CA. Study number: 920156. Report date: 1993-12-14.<br />

ARCO (1993l). Testskin Living Skin Equivalent using MTT conversion, IL-1alpha, PGE2, and LDH<br />

2010-07-30 CSR 192


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

release. Testing laboratory: Microbiological Associates, Inc., Rockville, Maryland. Report no.: 93-<br />

0112. Study number: A000068.<br />

ARCO (1993m). Topical application assay with PGE2, IL-1alpha and LDH release using Skin ZK1300<br />

model. Testing laboratory: Microbiological Associates, Inc., Rockville, Maryland. Report no.: 93-0102.<br />

Owner company: ARCO, Los Angeles, CA. Study number: A000195.<br />

ARCO (1993n). Dermal photoirritation study in rabbits administered test article F-188 (Sweet<br />

distillates). Testing laboratory: UBTL, Salt Lake City, Utah. Report no.: 91-0092. Owner company:<br />

ARCO, Los Angeles, CA.<br />

ARCO (1993o). Dermal photoirritation study in rabbits administered test article F-235<br />

(Hydrodesulfurized middle distillate). Testing laboratory: UBTL, Salt Lake City, Utah. Report no.: 91-<br />

0247. Owner company: ARCO, Los Angeles, CA.<br />

ARCO (1994a). 28 Day Dermal Toxicity Study in Rats Administered Test Article F-102-01. Testing<br />

laboratory: UBTL, Salt Lake City, Utah. Report no.: 65365R. Owner company: ARCO, Los Angeles,<br />

CA. Study number: ATX-93-1069. Report date: 1994-03-03.<br />

ARCO (1994b). Ninety (90) day dermal toxicity study in rats administered test article F-237. Testing<br />

laboratory: UBTL, Salt Lake City, Utah. Report no.: 66556. Owner company: ARCO, Los Angeles,<br />

California. Study number: ATX-91-0258. Report date: 1994-01-29.<br />

ARCO (1994c). Developmental toxicity screen in rats administered the test article F-195, ATX 91-<br />

0129 (straight run diesel). Testing laboratory: UBTL, Salt Lake City, Utah. Report no.: 66355. Owner<br />

company: ARCO, Los Angeles, CA. Study number: 91-0129. Report date: 1994-02-25.<br />

ARCO (1994d). Developmental toxicity screen in rats administered the test article F-194, ATX 91-<br />

0128 (VDF diesel). Testing laboratory: UBTL, Salt Lake City, Utah. Report no.: 66354. Owner<br />

company: ARCO, Los Angeles, CA. Study number: 91-0128. Report date: 1994-02-28.<br />

ARCO (1994e). MTT Time Course Assay with PGE2, IL-1alpha, and LDH Release Using the EpiDerm<br />

Skin Model. Testing laboratory: Microbiological Associates, Inc., Rockville, MD. Report no.: 93-0197.<br />

Owner company: ARCO, Los Angeles, CA. Study number: AA650-AA659 & AE037-AE040.050.<br />

Battersby, N. S and Bumpus, R. N. (2001). Research Note: SMDS as an AGO component: an<br />

assessment of "ready" biodegradability. Shell Global Solutions. Testing laboratory: Shell Global<br />

Solutions. Report no.: OP.00.49011. Owner company: Shell Global Solutions. Study number:<br />

SHLL6681. Report date: 2001-01-01.<br />

Beck, L.S., Hepler, D.I. and Hansen, K.L. (1984). The acute toxicology of selected petroleum<br />

hydrocarbons. Elars Bioresearch. Advances in Modern Environmental Toxicology, Volume VI. Applied<br />

Toxicology of Petroleum Hydrocarbons. McFarland, H.N. et al. Princeton Scientific, Princeton, New<br />

Jersey, USA. Volume VI, pp1-16.<br />

Biles, R. W., Mckee, R. H., Lewis, S. C., Scala, R. A., DePass, L. R. (1988). Dermal carcinogenic<br />

activity of petroleum-derived middle distillate fuels. Toxicology 53:301-314.<br />

Blackburn, G.R., Deitch, R.A., Schreiner, C.A. and Mackerer, C.R. (1986). Predicting carcinogenicity<br />

of petroleum distillation fractions using a modified Salmonella mutagenicity assay. Mobil<br />

Environmental and Health Sciences Laboratory. Cell Biology and Toxicology. 2, pp63-84.<br />

Blackburn, G.R., Deitch, R.A., Schreiner, C.A., Mehlmann, M.A. and Mackerer, C.R. (1984).<br />

Estimation of the dermal carcinogenic activity of petroleum fractions using a modified Ames assay.<br />

Mobil Environmental and Health Sciences Laboratory. Cell Biology and Toxicology. 1, pp67-80.<br />

Brack W, Altenburger R, Kuster E, Meissner B, Wenzel K-D, Schüürmann G. (2003). Identification of<br />

toxic products of anthracene photomodification in simulated sunlight. Environmental Toxicology and<br />

Chemistry 22:2228-2237.<br />

Broddle, W.D., Dennis, M.W., Kitchen, D.N. and Vernot, E.H. (1996). Chronic dermal studies of<br />

petroleum streams in mice. Fundamental and Applied Toxicology. Volume 30, pp 47-54.<br />

2010-07-30 CSR 193


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

Canale, A. J. (1999). Determination of the aerobic ready biodegradability of Nigerian diesel fuel using<br />

the OECD 301F manometric respirometry test method. Testing laboratory: Ecotoxicology Laboratory,<br />

Mobil Business Resources Corp, Paulsboro. Owner company: MRCTEC, Extracts and Process Oils,<br />

Paulsboro, NJ. Study number: 68246. Report date: 1999-12-15.<br />

Clark, C.R., Walter, M.K., Ferguson, P.W. and Katchen, M. (1988). Comparative dermal<br />

carcinogenesis of shale and petroleum-derived distillates. Toxicology and Industrial Health. 4(1),<br />

pp11-22.<br />

Clark, R et al (2003). The Environmental Benefits of Shell GTL Diesel. Proceedings of the 4th Int.<br />

Colloquium, "Fuels," Tech. Akad. Esslingen, Ostfildern, Germany. Testing laboratory: Shell Global<br />

Solutions. Owner company: Shell Global Solutions. Study number: OGTP.02.42152. Report date:<br />

2003-01-15.<br />

CONCAWE (1991). Middle distillates - a review of the results of a CONCAWE programme of shortterm<br />

biological studies. Report No. 91/51.<br />

CONCAWE (1992). Ecotoxicological testing of petroleum products: test methodology. Report No.<br />

92/56, CONCAWE, Brussels, Belgium.<br />

CONCAWE (1993). Middle distillates programme, phase 2: overview of the results of a 13-week skinpainting<br />

study. Report No. 93/55.<br />

CONCAWE (1995). Product Dossier 94/106. Kerosines/Jet Fuels, CONCAWE, Brussels, Belgium.<br />

CONCAWE (1996a). Gas oils (diesel fuels/heating oils). Owner company: CONCAWE, Brussels,<br />

Belgium. Study number: 95/107.<br />

CONCAWE (1996b). Environmental risk assessment of petroleum substances: the hydrocarbon block<br />

method. Report no. 96/52, CONCAWE.<br />

CONCAWE (1999). Best available techniques to reduce emissions from refineries, Report no. 99/01,<br />

CONCAWE, Brussels, Belgium.<br />

CONCAWE (2010a). Compilation of selected physico-chemical properties of petroleum substances.<br />

Owner company: CONCAWE, Brussels, Belgium. Study number: 6/10.<br />

CONCAWE (2010b) An Evaluation of the Persistence, Bioaccumulation and Toxicity of Petroleum<br />

Hydrocarbons<br />

Dalbey, W., Henry, M., Holmberg, R., Moneyhun, J., Schmoyer, R. and Lock, S. (1987). Role of<br />

exposure parameters in toxicity of aerosolized diesel fuel in the rat. |Journal of Applied Toxicology.<br />

7(4), pp265-275.<br />

Dalbey, W., Lock, S., Garfinkel, S., Jenkins, R., Holmberg, R. and Guerin, M. (1982). MacFarland, H.<br />

N., Holdsorth, C. E. and MacGregor, J. A. Inhalation exposure of rats to aerosolized diesel fuel. The<br />

Toxicology of Petroleum Hydrocarbons. Owner company: American Petroleum Institute. Report 30-<br />

31531, pp 13-25.<br />

Dally, S., Hagermann, R., McKee, R., Nessel, C., Priston, R., Riley, A. and Simpson, B.J. (1996).<br />

Overview of the CONCAWE middle distillate programme. CONCAWE, Brussels. Report No. 96/62.<br />

Deininger, G., Jungen, H., Wenzel-Hartung, R. (1991). Middle distillates analytical investigations and<br />

mutagenicity studies. Testing laboratory: DGMK, Hamburg, Germany. Owner company: DGMK<br />

German Society for Petroleum Sciences and Coal Chemistry. Study number: 412-1. Report date:<br />

1991-04-30.<br />

DiToro, D.M., McGrath J.A., Hansen D.J. (2000). Technical basis for narcotic chemicals and<br />

polycyclic aromatic hydrocarbon criteria. I. Water and Tissue. Environ. Toxicol. Chem. 19, 1951-1970.<br />

Easley, J.R., Holland, J.M., Gipson, L.C. and Whitaker, M.J. (1982). Renal toxicity of middle distillates<br />

of shale oil and petroleum in mice. Toxicology and Applied Pharmacology. 65(1), pp84-91.<br />

2010-07-30 CSR 194


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

EC (2003), 2nd Edition of the Technical Guidance Document in support of Commission Directive<br />

93/67/EEC on Risk Assessment of new notified substances, Commission Regulation (EC) No<br />

1488/94 on Risk Assessment for existing substances and Directive 98/8/EC of the European<br />

Parliament and of the Council concerning the placing of biocidal products on the market. Office for<br />

the Official Publications of the European Communities, Luxembourg<br />

ECHA (2008), Guidance on information requirements and chemical safety assessment Chapter R.7c,<br />

Appendix R.7.13-1 Technical Guidance for Environmental Risk Assessment of Petroleum<br />

Substances, p 221<br />

EMBSI (1996). Two year dermal carcinogenicity study of middle distillates in mice. Exxon Biomedical<br />

Sciences Inc. New Jersey, USA. Project No. 117811A.<br />

<strong>EU</strong> (2003). European Commission Technical Guidance on Risk Assessment. In support of<br />

Commission Directive 03/67/EEC on Risk Assessment for new notified substance, Commission<br />

Regulation (EC) No 1488/94 on Risk Assessment for existing substances and Directive 98/8/EC of<br />

the European Parliament and of the Council concerning the placing of biocidal products on the<br />

market. European Commission Joint Research Centre, Ispra. Eur 20418 EN/1<br />

Febbo, E (2007a). Fish, Acute toxicity test with fathead minnows. Testing laboratory: ExxonMobil<br />

Biomedical Sciences, INC. Owner company: ExxonMobil Chemicals, Intermediates. Study number:<br />

1429401FHM. Report date: 2007-01-15.<br />

Febbo, E (2007b). Daphnia sp. Acute Immobilization Test with Gas Oil. Testing laboratory: Not<br />

reported. Report no.: 146342A. Owner company: ExxonMobil Company International. Report date:<br />

2007-01-15.<br />

Fox MA, Olive S. (1979). Photooxidation of anthracene on atmospheric particulate matter. Science<br />

205:582-583.<br />

Fritsche W and Hofrichter M, (2000), Aerobic degradation by microorganisms. In: Rehm, H.-J., Reed,<br />

G. (Eds.) Biotechnology - Vol. 11b: Environmental Processes. Wiley-VCH, Weinheim, New York, pp.<br />

145-167.<br />

Fueston, M.H., Low, L.K., Hamilton, C.E. and Mackerer, C.R. (1994). Correlation of systemic and<br />

developmental toxicities with chemical component classes of refinery streams. Fundamental and<br />

Applied Toxicology, 22(4), 622-630.<br />

Gerhart, J.M., Hatoum, N.S., Halder, C.A., Warne, T.M. and Schmitt, S.L. (1988). Tumour initiation<br />

and promotion effects of petroleum streams in mouse skin. Fundamental and Applied Toxicology, Vol<br />

11, (1), 76-90.<br />

Girling A and Cann, B (1996b). Gasoil sample 2: Acute toxicity of water accommodated fractions to<br />

Oncorhynchus mykiss, Daphnia magna and Raphidocelis subcapitata. Not applicable. Testing<br />

laboratory: Sittingbourne Research Centre. Report no.: OT.96.40018. Owner company: Shell<br />

Research Ltd. Study number: 6304. Report date: 1996-06-19.<br />

Girling A and Linnett, P (1994). Acute toxicity of diesel (Stanlow winter quality AGO) water<br />

accommodated fractions (WAFs) to Daphnia magna and Raphidocelis subcapitata. Testing<br />

laboratory: Shell Sittingbourne Research Centre. Owner company: SIPC, SMAD. Study number:<br />

6167. Report date: 1996-01-17.<br />

Girling, A and Cann, B (1996a). Gasoil sample 1: Acute toxicity of water accommodated fractions to<br />

Oncorhynchus mykiss, Daphnia magna and Raphidocelis subcapitata. Not applicable. Testing<br />

laboratory: Sittingbourne Research Centre. Report no.: OT.96.40017. Owner company: Shell<br />

Research Ltd. Study number: 6303. Report date: 1996-06-19.<br />

Girling, A. E., Makarian R.K., Bennett D. (1992). Aquatic toxicity testing of oil products - some<br />

recommendations. Chemosphere 24(10), 1469-1472.<br />

Hedtke, S and Puglisi, F (1982). Short term toxicity of five oils to four freshwater species. Arch.<br />

Environm. Contam. Toxicol 11, 425-430.<br />

2010-07-30 CSR 195


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

Huang X-D, Krylov SN, Ren L, McConkey BJ, Dixon DG, Greenberg BM. (1997). Mechanistic<br />

quantitative structure-activity relationship model for the photoinduced toxicity of polycyclic aromatic<br />

hydrocarbons: II. An empirical model for the toxicity of 16 polycyclic aromatic hydrocarbons to the<br />

duckweed Lemna gibba L. G-3. Environmental Toxicology and Chemistry. 16:2296-2303.<br />

IIT Research Institute (1984). Three week percutaneous toxicity study of diesel fuel in rabbits. Final<br />

Report. IITRI project No. L8100. Owner company: Standard Oil Co. (Ind). IIT Research Institute,<br />

Chicago. August 8, 1984<br />

IIT Research Institute (1985). Lifetime dermal tumorigenesis study of premier diesel fuel in male mice.<br />

Study No. 134 IITRI Project No. L8100 IIT Research institute<br />

Jungen, H., Mellert, W. and Wenzel-Hartung, R.P. (1995). Studies on the tumour initiation/promotion<br />

potential of six middles distillates in mouse skin. Fundamental and Applied Toxicology, 27(1), 114-<br />

120.<br />

Kachholz T and Rehm H, (1977). Degradation of long chain alkanes by bacilli. I. Development and<br />

product formation by bacilli degrading alkanes in the presence of other carbon sources, Applied<br />

Microbiology and Biotechnology, 4, 2, 101-110<br />

Kainz, R.J. and White, L.E. (1984). Depressant effects associated with the inhalation of uncombusted<br />

diesel vapour. Advances in Modern Environmental Toxicology, Volume VI. Applied Toxicology of<br />

Petroleum Hydrocarbons. MacFarland, H.N. et al. Princeton Scientific, Princeton, New Jersey, USA.<br />

Volume VI, Chapter 17, 233-243.<br />

Lee, C. (1993). Water insoluble biodegradation test report. Method development using CONCAWE<br />

reference gas oil: Phase III. Testing laboratory: Exxon Mobil Biomedical Sciences Inc. Owner<br />

company: Exxon Mobil Biomedical Sciences Inc. Report date: 1993-05-04.<br />

Lock, S., Dalbey, W., Schmoyer, R., Griesemer, K. (1984). Inhalation toxicology of diesel fuel<br />

obscurant in Sprague-Dawley rats, phase 3, subchronic exposures. Testing laboratory: Oak Ridge<br />

National Laboratory, Oak Ridge, Tennessee. Report no.: TM-9403. Owner company: U. S. Army<br />

Medical Research and Development.<br />

Mackay, D. (1991). Multimedia Environmental Models. The Fugacity Approach, Lewis Publishers.<br />

Mallakin A, Dixon DG, Greenberg BM. (2000). Pathway of anthracene modificaton under simulated<br />

solar radiation. Chemosphere. 40:1435-1441.<br />

McCarthy, L., Mackay D., Smith A.D., Ozburn G.W., Dixon D.G. (1991). Interpreting aquatic toxicity<br />

QSARs: The significance of toxicant body residues at the pharmacologic endpoint in: The Science of<br />

the Total Environment. Nrigu, J.O. (ed) 515-525. Elsevier, Amsterdam, The Netherlands.<br />

McConkey BJ, Duxbury CL, Dixon DG, Greenberg BM. (1997). Toxicity of a PAH photooxidation<br />

product to the bacteria Photobacterium phosphoreum and the duckweed Lemna gibba: Effects of<br />

phenanthrene and its primary photoproduct, phenanthrenequinone. Environmental Toxicology and<br />

Chemistry. 16:892-899.<br />

McGrath, J.A., Parkerton T.F., Di Toro D.M. (2004). Application of the narcosis target lipid model to<br />

algal toxicity and deriving predicted no effect concentrations. Environ. Toxicol. Chem. 23, 2503-2517.<br />

McKee, R. H., Amoruso, M. A., Freeman, J. J., Przygoda, R. T. (1994). Evaluation of the genetic<br />

toxicity of middle distillate fuels. Environmental and Molecular Mutagenesis 23:234-238. Testing<br />

laboratory: Exxon Biomedical Sciences, East Millstone, New Jersey.<br />

Mobil (1989a). Thirteen Week Dermal Administration of Vacuum Tower Overheads to Rats. Testing<br />

laboratory: Mobil Environmental and Health Science Laboratory, Princeton, New Jersey. Report no.:<br />

62326. Study number: 62326. Report date: 1989-11-03.<br />

Mobil (1989b). Developmental toxicity study in rats exposed dermally to vacuum tower overheads<br />

(VTO). Report no.: 62328. Owner company: CONCAWE, Brussels, Belgium. Study number: 7059.<br />

2010-07-30 CSR 196


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

Muller, J (2000). Daphnia magna, Acute immobilisation test with gas oil WAFs. Testing laboratory:<br />

Fraunhofer Institute. Owner company: DGMK, Hamburg. Study number: DGM-001/4-20. Report date:<br />

2000-07-24.<br />

Nessel, C.S., Priston, R.A.J., McKee, R.H., Cruzan, G.,Riley, A.J., Hagemann, R., Plutnick, R.T. and<br />

Simpson, B.J. (1998). A comprehensive evaluation of the mechanism of skin tumourigenesis by<br />

straight-run and cracked petroleum middle distillates. Toxicological Sciences,. 44(1), 22-31.<br />

Nikolaou K, Masclet P, Mouvier G. (1984). Sources and chemical reactivity of polynuclear aromatic<br />

hydrocarbons in the atmosphere - a critical review. Science of the Total Environment. 32:103-132.<br />

NTP (1986) Toxicology and carcinogenesis studies of marine diesel fuel (CAS No. 68334-30-5) and<br />

JP-5 nvay fuel (CAS No. 8008-20-6) in B6C3F1 mice (dermal studies). National Toxicology<br />

Programme Technical Report Series. US Department of Health and Human Services, Research<br />

Triangle Park, NC, USA. Report No. 310.<br />

Palmer, A. G. (2001a). Research Note: SMDS as an AGO component: an assessment of acute<br />

ecotoxicity. Shell Global Solutions. Testing laboratory: Shell Global Solutions. Report no.:<br />

OP.00.49012. Owner company: Shell Global Solutions. Study number: SHLL 6679. Report date:<br />

2001-02-01.<br />

Plant Reasearch Interrnational (2008). Assessment of chronic effects of 1,3,5-trimethylbenzene<br />

(mesitylene) and n-undecane on plants. Reports 204 and 205. Owner company: CONCAWE.<br />

Prince RC, Walters CC. (2006). Biodegradation of Oil Hydrocarbons and Its Implications for Source<br />

Identification. In: Wang Z, Stout SA, (Eds.) Oil Spill Environmental Forensics Academic Press. p 349-<br />

379.<br />

Redman, et al. (2010a). PETRORISK Model. CONCAWE. Testing laboratory: Hydroqual Onc.,<br />

Mahwah, NJ, USA. Owner company: CONCAWE.<br />

Redman, et al. (2010b). Aquatic Toxicity Predictions Obtained Using the PETROTOX Model for<br />

petroleum substances. CONCAWE, Brussels, Belgium.<br />

Redman, et al. (2010c). PETRORISK Users Guide, HydroQual, Inc., for Conservation of Clean Air<br />

and Water in Europe (CONCAWE).<br />

Schiff, K (1994a). Acute toxicity study with Menidia beryllina for 96 hours with daily renewal. Testing<br />

laboratory: Kinnetic Laboratories, Inc. 5225-H Avenida Ecinas, Carlsbad, California 92008. Report<br />

no.: 20MEN003. Owner company: ARCO. Study number: ATX-91-0284. Report date: 1994-08-02.<br />

Schiff, K (1994b). Acute toxicity study with Daphnia magna for 48 hours with no renewals. Testing<br />

laboratory: Kinnetic Laboratories, Inc. 5225-H Avenida Ecinas, Carlsbad, California 92008. Report<br />

no.: 20DAP003. Owner company: ARCO. Study number: ATX-91-0282. Report date: 1994-08-01.<br />

Schiff, K (1994c). Acute toxicity study with Mysidopsis bahia for 96 hours with daily renewal. Testing<br />

laboratory: Kinnetic Laboratories, Inc. 5225-H Avenida Ecinas, Carlsbad, California 92008. Report<br />

no.: 20MYS003. Owner company: ARCO. Study number: ATX-91-283. Report date: 1994-08-02.<br />

Schiff, K (1994d). Static acute toxicity study with Selenastrum capricornutum for 96 hours. Testing<br />

laboratory: Kinnetic Laboratories, Inc. 5225-H Avenida Ecinas, Carlsbad, California 92008. Report<br />

no.: 20SEL003. Owner company: ARCO. Study number: ATX-91-0285. Report date: 1994-08-01.<br />

Schiff, K. (1992). Acute toxicity study with Pimephales promelas for 96 hours with daily renewal.<br />

Testing laboratory: Kinnetic Laboratories, Inc. 5225-H Avenida Ecinas, Carlsbad, California 92008.<br />

Owner company: ARCO. Study number: 20PIM003. Report date: 1994-08-02.<br />

Stainken, D (1977). The accumulation and depuration of No. 2 fuel oil by the soft shell clam, Mya<br />

arenaria L. In Wolfe, D. Fate and Effects of Petroleum Hydrocarbons in Marine Ecosystems and<br />

Organisms. New York: Pergamon Press pp 313-322.<br />

Targia, M. (1998a). Rainbow trout acute toxicity test. Testing laboratory: Exxon Biomedical Sciences,<br />

2010-07-30 CSR 197


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

Inc. Owner company: Exxon Chemical Intermediates, Houston, Texas. Study number: 142958. Report<br />

date: 1998-06-08.<br />

Targia, M. (1998b). Sheepshead Minnow Acute Toxicity Test. Testing laboratory: Exxon Biomedical<br />

Sciences, INC. Owner company: Exxon Chemicals Intermediates, Houston, Texas. Study number:<br />

142961. Report date: 1998-09-09.<br />

Targia, M. (1998c). Fish Acute Toxicity Test with Menidia beryllina. Testing laboratory: Exxon<br />

Biomedical Sciences, Inc. Owner company: Exxon Chemicals Intermediates. Study number:<br />

142940MB. Report date: 1998-09-09.<br />

Targia, M. (1998d). Alga toxicity test. Testing laboratory: Exxon Biomedical Sciences, Inc. Owner<br />

company: Exxon Chemical Intermediates. Study number: 142967. Report date: 1998-06-08.<br />

Targia, M. (1998e). Alga Toxicity Test with Skeletonema costatum. Testing laboratory: Exxon<br />

Biomedical Sciences, INC. Owner company: Exxon Chemical Intermediates. Study number:<br />

142967SK. Report date: 1998-08-25.<br />

Van der Meer JR, de Vos WM, Harayama S, Zehnder AJB. (1992). Molecular mechanisms of genetic<br />

adaptation to xenobiotic compounds. Microbiological Reviews. 56:677-694.<br />

Volkering F, Breure AM. (2003) Biodegradation and general aspects of bioavailability. In PAHs: An<br />

ecotoxicological perspective, Douben PET (Ed.). Wiley, West Sussex, UK, pp. 81-96.<br />

Walborg, E.F., Digiovanni, J., Conti, C.J., Slaga, T.J., Freeman, J.J., Steup, D.R. and Skisak, C.M.<br />

(1998). Short-term biomarkers of tumour promotion in mouse skin treated with petroleum middle<br />

distillates. Toxicological Sciences, 45(2), 37-145.<br />

Witschi, H.P., Smith, L.H., Frome, E.L., Pequet-Goad, M.E., Griest, W.H., Ho, C.H. and Guerin, M.R.<br />

(1987). Skin tumorigenic potential of crude and refined coal liquids and analagous petroleum<br />

products. Fundamental and Applied Toxicology, 9(2), 297-303.<br />

2010-07-30 CSR 198


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

APPENDIX 1: Category Justification Document<br />

Category Justification for Petroleum Substances<br />

Vacuum Gas Oils, Hydrocracked Gas Oils & Distillate<br />

Fuels<br />

Crude oil (Petroleum, CAS Registry Number (CAS RN) 8002-05-9) is a complex combination of<br />

hydrocarbons extracted in its natural state from the ground. It consists predominantly of aliphatic,<br />

alicyclic and aromatic hydrocarbons, but may also contain small amounts of nitrogen, oxygen and<br />

sulphur compounds. It is used as a feedstock for petroleum refining operations, which separates and<br />

converts it into fractions (streams). Petroleum refinery streams are used in a variety of applications,<br />

with the major proportion being used in the production of hydrocarbon transport fuels.<br />

Due to their method of production, and complex composition, it is not possible to characterise<br />

petroleum substances in terms of their exact chemical composition, molecular formula or structure.<br />

They are grouped together according to the process by which they are being manufactured and basic<br />

physical-chemical properties. Similar conversion and/or separation processes will result in streams of<br />

broadly similar composition. The resulting groups of petroleum substances have been used by the<br />

European Commission for the purposes of compiling Annex 1 to the Existing Substances Regulation<br />

(published in the Official Journal L84 on 5 April 1993), Annex XVII of REACH and Annex VI of CLP.<br />

The groups have also been used during discussions on <strong>EU</strong> harmonised classification and labelling<br />

and for some endpoints (particularly carcinogenicity) harmonised ‘group’ classifications have been<br />

applied to individual petroleum substances and are listed in both Annex 1 to 67/548/EC and Annex VI<br />

to CLP. In the USA, petroleum substances have also been grouped in categories for the purposes of<br />

the High Production Volume (HPV) Chemicals programme. The approach is broadly similar to that<br />

used in Europe, and has been accepted by the US EPA.<br />

This category justification has been prepared in accordance with the REACH Technical Guidance<br />

Document (May 2007) prepared under RIP 3.3.<br />

1. Category Definition<br />

1.1 Category Hypothesis and Applicability Domain<br />

This category, Vacuum Gas Oils, Hydrocracked Gas Oils & Distillate Fuels, covers a group (17) of<br />

petroleum gas oil substances used in the manufacture of distillate fuels (automotive diesel fuels,<br />

home heating oils, marine gas oils), petrochemical intermediates or gas oils used as components of<br />

formulated industrial lubricants and additives. They are not intentional mixtures of chemicals but are<br />

complex combinations of hydrocarbon species, produced to meet physical-chemical and technical<br />

performance specifications.<br />

The domain of this category is established by the refining processes by which the category members<br />

are produced and the boiling point and the carbon number range as follows:<br />

<br />

<br />

Derived from crude petroleum<br />

Refinery processes<br />

o Atmospheric distillation<br />

o Vacuum distillation<br />

o Hydrocracking<br />

o Blending of petroleum substances to produce the following CASRNs<br />

• 68334-30-5 Fuels, Diesel<br />

• 68476-30-2 Fuel Oil No. 2<br />

• 68476-31-3 Fuel Oil No 4<br />

• 68476-34-6 Fuels Diesel No 2<br />

2010-07-30 CSR Appendix 1


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

<br />

<br />

<br />

Hydrocarbon types: straight and branched alkanes and alkenes, cycloalkanes and<br />

cycloalkenes, aromatics and mixed aromatic cycloalkanes.<br />

Boiling point range: 141- 500 o C<br />

Carbon number range: predominantly C9 to C30<br />

The category is formed on the principle that vacuum gas oil, hydrocracked gas oil and distillate fuel<br />

substances have similar physical-chemical and technical characteristics and present similar health,<br />

safety and environmental hazards.<br />

1.2 Category Members<br />

This category is comprised of seventeen UVCB substances (substances of Unknown or Variable<br />

compositions, Complex reaction products and Biological materials), each with a unique CAS Registry<br />

Number (CAS RN); see Appendix 1. The EINECS definition includes, inter alia, reference to method<br />

of refining (distillation), boiling point and carbon number ranges, and in some cases, final processing<br />

step. Category members are produced in a refinery as petrochemical intermediates, used in the<br />

manufacture of automotive diesel fuels, home heating oils, marine gas oils and gas oils or used as<br />

components of formulated industrial lubricants or additives. In general the individual substances are<br />

all produced in quantities of greater than 1,000t/a.<br />

The members of this category are shown in Appendix 1, some of these members are listed in REACH<br />

Annex XVII, to which Nota N 1 have been applied.<br />

Included in the category are six petroleum substances for which the EINECS number is not<br />

accompanied with a description providing information on the carbon number range and/or the boiling<br />

range. In practice, however, these substances show carbon number ranges and boiling ranges similar<br />

to other members of the category and within the category domain definition.<br />

1.3 Purity / Impurities<br />

From a regulatory perspective, the category members are recognised as UVCB substances derived<br />

from the refining of crude oil (petroleum). Such chemical substances cannot be represented by simple<br />

or unique chemical structures or molecular formulae. As such, they contain constituents but do not<br />

contain impurities.<br />

1.4 Category Order<br />

The category described consists of UVCB substances and a category order is therefore not relevant<br />

2. Category justification<br />

The Vacuum Gas Oils, Hydrocracked Gas Oils & Distillate Fuels substances in this category are all<br />

produced by distillation and processing of crude petroleum. They are all liquids of varying viscosity,<br />

and have low volatility. They are complex combinations of straight and branched alkanes and<br />

alkenes, cycloalkanes and cycloalkenes, aromatics and mixed aromatic cycloalkanes with carbon<br />

numbers ranging from C9 - C30, and boiling range of 141 - 500 o C.<br />

The complex and variable composition of UVCB substances means that it is not possible to define<br />

precisely their physical-chemical, toxicological and environmental properties, but they will fall into a<br />

range, defined by the properties, and amounts present, of the individual hydrocarbon constituents. To<br />

take account of the variable composition, hazard properties are determined using a ‘worst case’<br />

approach, except where specified. Where data do not exist for vacuum gas oils, hydrocracked gas<br />

1 i.e. The classification as a carcinogen need not apply if the full refining history is known and it can be<br />

shown that the substance from which it was produced is not a carcinogen. This Nota applies only to<br />

certain complex oil-derived substances in Annex 1.<br />

2010-07-30 CSR Appendix 1


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

oils and distillate fuels, a conservative read across is conducted to Cracked Gas Oils. This read<br />

across is considered conservative as this category has a higher degree of hazard and subsequently<br />

classification.<br />

The category approach has been applied to all relevant physical-chemical, toxicological and<br />

ecotoxicological endpoints listed in column 1 of Annexes VII, VIII, IX and X of the REACH Regulation.<br />

Where a specific endpoint is not considered applicable to substances in this category a justification is<br />

provided<br />

3. Data template and conclusions per endpoint for<br />

C&L, PBT/vPvB and dose descriptor<br />

‣ Physical-Chemical Properties (Section 7 of REACH Annexes VII-X)<br />

Vacuum Gas Oils, Hydrocracked Gas Oils & Distillate Fuels are produced to meet performance<br />

specifications. Typical values / ranges are given in Table 1.<br />

Table 1: Typical physical-chemical endpoint data for vacuum gas oils, hydrocracked gas oils and<br />

distillate fuels<br />

Endpoint 2<br />

7.1 State of the<br />

substance at 20o C<br />

and101,3 kPa<br />

Relevance<br />

to<br />

Category<br />

Typical<br />

Value /<br />

Range<br />

Comment<br />

Yes Liquid Vacuum Gas Oils/Hydrocracked Gas<br />

Oils/Distillate Fuels are liquids of low volatility.<br />

7.2 Melting/freezing<br />

Point<br />

No<br />

Not<br />

applicable –<br />

see<br />

comments<br />

Single values for the category or individual<br />

UVCB members are not applicable. To better<br />

describe the physical phase or flow<br />

characteristics of petroleum products, the<br />

pour point is routinely used. The pour point is<br />

the lowest temperature at which movement of<br />

the test specimen is observed under<br />

prescribed conditions of the test (EN ISO<br />

3016). The pour point temperature falls as an<br />

oil’s viscosity increases. For Vacuum Gas<br />

Oil, Hydrocracked Gas Oil & Distillate Fuels<br />

the pour point ranges from -40°C to +6°C.<br />

7.3 Boiling point Yes 141 - 500°C Single values for the category or individual<br />

UVCB members are not applicable.<br />

Indicative values range from 141 to 500°C.<br />

7.4 Absolute density Yes 800 – 910<br />

kg/m 3<br />

Single values for the category or individual<br />

UVCB members are not applicable.<br />

Indicative values for the category for absolute<br />

density range from 800 to 910 kg/m 3 at 15°C.<br />

7.5 Vapour pressure Yes ~0.4 kPa Values for the category indicated that the<br />

vapour pressure is approximately 0.4 kPa.<br />

7.6 Surface tension No Not<br />

applicable –<br />

see<br />

comments<br />

7.7 Water solubility No Not<br />

applicable –<br />

see<br />

In line with REACH Annex VII, data on<br />

surface tension are not required as, based on<br />

structural considerations, surface activity is<br />

not expected or predicted, and surface activity<br />

is not a desired property of the material.<br />

Substance is a hydrocarbon UVCB. Standard<br />

tests for water solubility are intended for<br />

single substances and are not appropriate for<br />

this complex substance.<br />

2 In accordance with Annexes VII to X of REACH<br />

2010-07-30 CSR Appendix 1


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

Endpoint 2<br />

7.8 Partition<br />

coefficient n-<br />

octanol/water<br />

Relevance<br />

to<br />

Category<br />

Yes<br />

Typical<br />

Value /<br />

Range<br />

comments<br />

Not<br />

applicable –<br />

see<br />

comments<br />

Comment<br />

Substance is a hydrocarbon UVCB. Standard<br />

tests for partition co-efficient are intended for<br />

single substances and are not appropriate for<br />

this complex substance.<br />

7.9 Flash-point Yes >56°C Data collected for the category indicates<br />

typical values greater than 56°C<br />

7.10 Flammability Yes Not<br />

applicable –<br />

see<br />

comments<br />

For Liquids, only flash point data are required<br />

to characterize flammability, as specified in<br />

Technical Guidance on Information<br />

Requirements / CSA, section 7.1.10<br />

7.11 Explosive<br />

Properties<br />

7.12 Self-ignition<br />

Temperature<br />

No<br />

Not<br />

Explosive<br />

According to column 2 of REACH Annex VII,<br />

the study does not need to be conducted if<br />

there are no chemical groups associated with<br />

explosive properties in the molecule<br />

Yes 225°C Based on typical self ignition temperature<br />

reported for gas oils.<br />

7.13 Oxidising<br />

Properties<br />

No<br />

Not<br />

applicable –<br />

see<br />

comments<br />

7.14 Granulometry No Not<br />

applicable –<br />

see<br />

comments<br />

7.15 Stability in<br />

organic solvents<br />

7.16 Dissociation<br />

constant<br />

No<br />

No<br />

Not<br />

applicable –<br />

see<br />

comments<br />

Not<br />

applicable –<br />

see<br />

comments<br />

7.17 Viscosity Yes > 1.3 mm 2 /s<br />

at 40°C<br />

In accordance with column 2 of REACH<br />

Annex VII, the study does not need to be<br />

conducted because on the basis of its<br />

chemical structure, the substance is<br />

incapable of reacting exothermically with<br />

combustible materials.<br />

In accordance with column 2 of REACH<br />

Annex VII, the particle size distribution study<br />

(Granulometry) does not need to be<br />

conducted because the substance is not<br />

marketed or used in any solid or granular<br />

form.<br />

In accordance with column 1 of REACH<br />

Annex IX, the study is only required if stability<br />

of the substance is considered to be critical.<br />

Category members all comprise combinations<br />

of organic hydrocarbons and stability in<br />

organic solvents is not considered relevant.<br />

In accordance with column 2 of REACH<br />

Annex IX, this study does not need to be<br />

conducted because on the basis of its<br />

chemical structure the product does not<br />

include any ionisable atoms or functional<br />

groups.<br />

Vacuum gas oils/Hydrocracked Gas<br />

Oils/Distillate Fuels span a range of<br />

viscosities and not all will meet the physical<br />

requirement for classification as an aspiration<br />

hazard.<br />

‣ Toxicological Information (Section 8 of REACH Annexes VII-X)<br />

Toxicological data do not exist for all CAS numbers in the Vacuum gas oils, hydrocracked gas oils<br />

and distillate fuels. Data on individual CAS numbers have been used to ‘read across’ to other<br />

substances in the category and in some cases (as indicated) the category value has been assigned<br />

using read across from Cracked Gas Oils. This read across is considered conservative as this<br />

category has a higher degree of hazard and subsequently classification. Unless specified, a ‘worst<br />

case’ approach has been applied.<br />

2010-07-30 CSR Appendix 1


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

Table 2: Toxicological Endpoint Category Values for Vacuum Gas Oils, Hydrocracked Gas Oils &<br />

Distillate Fuels.<br />

Endpoint 3<br />

8.1 Skin irritation or<br />

skin Corrosion<br />

8.1.1 In vivo skin<br />

irritation<br />

8.2 Eye irritation<br />

8.2.1 In vivo eye<br />

irritation<br />

8.3 Skin<br />

sensitisation<br />

8.4 Mutagenicity<br />

8.4.1 In vitro gene<br />

mutation study In<br />

Bacteria<br />

8.4.2 In vitro<br />

cytogenicity study in<br />

mammalian cells<br />

8.4.3 In vitro gene<br />

mutation study in<br />

mammalian cells<br />

8.4.4 In vivo<br />

cytogenicity<br />

8.4.5 In vivo gene<br />

Relevance<br />

to<br />

Category<br />

Derived Category<br />

Value<br />

Comment<br />

Yes Irritant Based on key study test data<br />

Yes Mild irritant Based on key study test data<br />

Yes Not sensitising Based on key study test data<br />

Yes Positive Based on key study test data<br />

Yes<br />

Yes<br />

Yes<br />

No data<br />

Positive &<br />

Ambiguous<br />

No data<br />

Based on read across supporting<br />

studies<br />

Yes Negative Based on key study test data<br />

mutation<br />

8.5 Acute toxicity<br />

8.5.1 By oral route Yes LD 50 : > 7600 mg/kg Based on key study test data<br />

8.5.2 By inhalation Yes LC 50 : 4.1 mg/l Based on key study test data<br />

8.5.3 By dermal<br />

route<br />

8.6 Repeated dose<br />

toxicity<br />

8.6.1 Short-term<br />

repeated dose<br />

toxicity study<br />

(28 days)<br />

8.6.2 Sub-chronic<br />

toxicity study (90-<br />

day)<br />

Yes LD 50 : > 4300 mg/kg Based on key study test data<br />

yes<br />

yes<br />

Dermal rat NOAEL<br />

0.5 ml/kg<br />

Inhalation rat<br />

NOAEC >1710<br />

mg/m 3<br />

Based on key study test data<br />

Based on test data from key studies<br />

8.7 Reproductive<br />

toxicity<br />

8.7.1 Screening for<br />

reproductive/<br />

developmental<br />

toxicity (OECD 421<br />

or 422)<br />

8.7.2 Pre-natal<br />

developmental<br />

Toxicity Study<br />

No<br />

Yes<br />

Dermal rat, NOAEL<br />

30 mg/kg/day<br />

No data<br />

Negative<br />

Inhalation NOAEC<br />

>401 ppm<br />

Based on key studies test data<br />

Dermal: NOAEL<br />

developmental 125<br />

mg/kg/day, NOAEL<br />

maternal toxicity<br />

3 In accordance with Annexes VII to X of REACH<br />

2010-07-30 CSR Appendix 1


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

Endpoint 3<br />

8.7.3 Onegeneration<br />

reproductive toxicity<br />

study<br />

8.8 Toxicokinetics<br />

8.8.1 Assessment of<br />

the Toxicokinetic<br />

behaviour of the<br />

substance<br />

8.9 Carcinogenicity<br />

8.9.1 Carcinogenicity<br />

study<br />

Relevance<br />

to<br />

Category<br />

Yes<br />

Derived Category<br />

Value<br />

125 mg/kg<br />

No data from<br />

reproductive<br />

studies<br />

Comment<br />

No No data Substances in this category are UVCBs.<br />

It is not possible to apply standard<br />

methodology for assessing absorption,<br />

distribution and metabolism. Data on<br />

constituents can be used as the basis<br />

for understanding the toxicokinetics are<br />

included in the dossier<br />

Yes Carcinogenic Key study test data indicate low<br />

carcinogenic potential in line with the<br />

harmonised classification.<br />

‣ Eco-toxicological Information (Section 9 of REACH Annexes VII-X)<br />

Many of the standard test methods for environmental endpoints are not suitable for assessing the<br />

hazards of complex UVCB petroleum substances. Hence it has been necessary to develop alternative<br />

methodologies e.g. use of water accommodated fractions, which are more suitable for predicting the<br />

hazard properties of complex petroleum substances, for classification purposes.<br />

A number of environmental endpoints are not relevant to the overall UVCB petroleum substance. The<br />

type, concentration, and physical-chemical properties of individual chemical constituents present will<br />

influence the environmental distribution and fate of category members. Hence, an alternative strategy,<br />

based on the ‘Hydrocarbon Block Method’, has been developed for assessing the environmental risk<br />

related to the constituents present in UVCB petroleum substances (European Chemicals Bureau,<br />

Technical Guidance Document on Risk Assessment, Part II, 2003).<br />

For the purposes of ecological hazard endpoint evaluation, data on individual CAS Registry Numbers<br />

from the category have been used. Unless specified, in all cases a ‘worst case’ approach has been<br />

applied to identify a category value, with some being assigned on the basis of data available for<br />

constituents. Table 3 summarises the data available<br />

Table 3: Eco-toxicological endpoint category values for Vacuum or Hydrocracked Gas Oils &<br />

Distillate Fuels.<br />

Endpoint<br />

9.1 Aquatic toxicity<br />

9.1.1 Short-term toxicity<br />

testing on invertebrates<br />

(preferred species Daphnia)<br />

Relevance to<br />

Category<br />

Yes<br />

Derived Category<br />

Value<br />

EL50<br />

68 mg/l<br />

(48 h)<br />

(Daphnia magna)<br />

Comment<br />

Based on key study.<br />

9.1.2 Growth inhibition study<br />

aquatic plants (algae<br />

preferred)<br />

Yes<br />

IL50<br />

22 mg/l<br />

(72 h)<br />

(Raphidocelis<br />

subcapitata)<br />

Based on key study.<br />

9.1.3 Short-term toxicity Yes LL50 Based on key study.<br />

2010-07-30 CSR Appendix 1


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

testing on fish<br />

Endpoint<br />

Relevance to<br />

Category<br />

Derived Category<br />

Value<br />

21 mg/l<br />

(96 h)<br />

(Oncorhynchus<br />

mykiss)<br />

Comment<br />

9.1.4 Activated sludge<br />

respiration inhibition testing<br />

9.1.5 Long-term toxicity<br />

testing on invertebrates<br />

(preferred species Daphnia)<br />

9.1.6 Long-term toxicity testing<br />

on fish<br />

9.1.6.1 Fish early-life stage<br />

(FELS) toxicity test<br />

9.1.6.2 Fish short-term<br />

toxicity test on embryo and<br />

sac-fry stages<br />

No Not applicable –<br />

see comments<br />

Yes<br />

Yes<br />

NOEL<br />

0.21 mg/l<br />

(21 d)<br />

(Daphnia magna)<br />

NOEL<br />

0.083 mg/l<br />

(14 d)<br />

(o. mykiss)<br />

Substance is a<br />

hydrocarbon UVCB.<br />

Standard tests for this<br />

endpoint are intended for<br />

single substances and are<br />

not appropriate for this<br />

complex substance.<br />

Based on key study.<br />

Based on QSAR<br />

(PETROTOX) prediction<br />

9.1.6.3 Fish, juvenile growth<br />

test<br />

9.2 Degradation<br />

9.2.1 Biotic<br />

9.2.1.1 Ready biodegradability Yes Readily<br />

biodegradable<br />

Based on key study.<br />

9.2.1.2 Simulation testing on<br />

ultimate degradation in<br />

surface water<br />

9.2.1.3 Soil simulation testing<br />

(for substances with a high<br />

potential for adsorption to<br />

soil)<br />

9.2.1.4 Sediment simulation<br />

testing (for substances with a<br />

high potential for adsorption<br />

to sediment)<br />

9.2.2 Abiotic<br />

9.2.2.1 Abiotic Hydrolysis as a<br />

function of pH<br />

9.2.2.2 Identification of<br />

degradation products<br />

60 % in a 28 day<br />

test<br />

Yes Not applicable –<br />

see comments<br />

No Not applicable –<br />

see comments<br />

No Not applicable –<br />

see comments<br />

No Not applicable –<br />

see comments<br />

No Not applicable –<br />

see comments<br />

Substance is a<br />

hydrocarbon UVCB.<br />

Standard tests for this<br />

endpoint are intended for<br />

single substances and are<br />

not appropriate for this<br />

complex substance.<br />

Substance is a<br />

hydrocarbon UVCB.<br />

Standard tests for this<br />

endpoint are intended for<br />

single substances and are<br />

not appropriate for this<br />

complex substance.<br />

Substance is a<br />

hydrocarbon UVCB.<br />

Standard tests for this<br />

endpoint are intended for<br />

single substances and are<br />

not appropriate for this<br />

complex substance.<br />

Hydrocarbons are not<br />

susceptible to abiotic<br />

hydrolysis.<br />

For all the major classes<br />

of hydrocarbons, the<br />

major metabolites are in<br />

most cases less toxic, and<br />

2010-07-30 CSR Appendix 1


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

Endpoint<br />

9.3 Fate and behaviour in<br />

the environment<br />

9.3.1 Adsorption/desorption<br />

Screening<br />

9.3.2 Bioaccumulation in<br />

aquatic species, preferably<br />

fish<br />

9.3.3 Further information on<br />

adsorption/desorption<br />

9.3.4 Further information on<br />

the environmental fate and<br />

behaviour of the substance<br />

and/or degradation products<br />

9.4 Effects on terrestrial<br />

Organisms<br />

Relevance to<br />

Category<br />

Derived Category<br />

Value<br />

No Not applicable –<br />

see comments<br />

Yes Not applicable –<br />

see comments<br />

No Not applicable –<br />

see comments<br />

No Not applicable –<br />

see comments<br />

Comment<br />

always less<br />

bioaccumulative than the<br />

parent molecule.<br />

Consequently, it is<br />

concluded that for PBT<br />

and risk assessment<br />

purposes, the metabolites<br />

of hydrocarbons do not<br />

require any further<br />

assessment.<br />

Substance is a<br />

hydrocarbon UVCB.<br />

Standard tests for this<br />

endpoint are intended for<br />

single substances and are<br />

not appropriate for this<br />

complex substance.<br />

Substance is a<br />

hydrocarbon UVCB.<br />

Standard tests for this<br />

endpoint are intended for<br />

single substances and are<br />

not appropriate for this<br />

complex substance.<br />

Substance is a<br />

hydrocarbon UVCB.<br />

Standard tests for this<br />

endpoint are intended for<br />

single substances and are<br />

not appropriate for this<br />

complex substance.<br />

For all the major classes<br />

of hydrocarbons, the<br />

major metabolites are in<br />

most cases less toxic, and<br />

always less<br />

bioaccumulative than the<br />

parent molecule.<br />

Consequently, it is<br />

concluded that for PBT<br />

and risk assessment<br />

purposes, the metabolites<br />

of hydrocarbons do not<br />

require any further<br />

assessment.<br />

9.4.1 Short-term toxicity to<br />

invertebrates<br />

9.4.2 Effects on soil micro-<br />

Organisms<br />

No Not applicable –<br />

see comments<br />

No Not applicable –<br />

see comments<br />

Substance is a<br />

hydrocarbon UVCB.<br />

Standard tests for this<br />

endpoint are intended for<br />

single substances and are<br />

not appropriate for this<br />

complex substance.<br />

Substance is a<br />

hydrocarbon UVCB.<br />

Standard tests for this<br />

endpoint are intended for<br />

single substances and are<br />

not appropriate for this<br />

2010-07-30 CSR Appendix 1


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

Endpoint<br />

9.4.3 Short-term toxicity to<br />

Plants<br />

9.4.4 Long-term toxicity<br />

testing on invertebrates<br />

9.4.6 (should be 9.4.5)<br />

Long-term toxicity testing on<br />

plants<br />

9.5.1 Long-term toxicity to<br />

Sediment organisms<br />

9.6.1 Long-term or<br />

reproductive toxicity to birds<br />

Relevance to<br />

Category<br />

Derived Category<br />

Value<br />

No Not applicable –<br />

see comments<br />

No Not applicable –<br />

see comments<br />

No Not applicable –<br />

see comments<br />

No Not applicable –<br />

see comments<br />

No Not applicable –<br />

see comments<br />

Comment<br />

complex substance.<br />

Substance is a<br />

hydrocarbon UVCB.<br />

Standard tests for this<br />

endpoint are intended for<br />

single substances and are<br />

not appropriate for this<br />

complex substance.<br />

Substance is a<br />

hydrocarbon UVCB.<br />

Standard tests for this<br />

endpoint are intended for<br />

single substances and are<br />

not appropriate for this<br />

complex substance.<br />

Substance is a<br />

hydrocarbon UVCB.<br />

Standard tests for this<br />

endpoint are intended for<br />

single substances and are<br />

not appropriate for this<br />

complex substance.<br />

Substance is a<br />

hydrocarbon UVCB.<br />

Standard tests for this<br />

endpoint are intended for<br />

single substances and are<br />

not appropriate for this<br />

complex substance.<br />

Substance is a<br />

hydrocarbon UVCB.<br />

Standard tests for this<br />

endpoint are intended for<br />

single substances and are<br />

not appropriate for this<br />

complex substance.<br />

4. Conclusions per end point for C&L, PBT/vPvB and<br />

dose descriptor<br />

Physicochemical Properties (Section 7 of REACH Annexes VII-X)<br />

The hazard classification of category members with respect to physical-chemical properties is as<br />

follows:<br />

o ‘Harmful’ if: may cause lung damage if swallowed’ (R65)<br />

Toxicological Information (Section 8 of REACH Annexes VII-X)<br />

The hazard classification of category members with respect to toxicological properties is as follows:<br />

‘Harmful by inhalation’ (R20)<br />

<br />

<br />

‘Irritating to skin’ (R38)<br />

‘Limited evidence of a carcinogenic effect’ – Category 3 (R40)<br />

Eco-toxicological Information (Section 9 of REACH Annexes VII-X)<br />

The hazard classification of category members with respect to ecotoxicological properties is as<br />

follows:<br />

2010-07-30 CSR Appendix 1


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

<br />

‘Toxic to aquatic organisms. May cause long-term adverse effects in the aquatic<br />

environment’ (R51/53)<br />

PBT/vPvB Assessment<br />

(Note: numbered in accordance with relevant CSR section)<br />

8.1. Assessment of PBT/vPvB Properties - Comparison with the Criteria of Annex XIII<br />

8.1.1. Persistence Assessment<br />

An evaluation of representative hydrocarbon structures indicate some structures meet the Persistent<br />

(P) or very Persistent (vP) criteria (see CONCAWE, 2010b).<br />

8.1.2. Bioaccumulation Assessment<br />

An evaluation of representative hydrocarbon structures indicates no structures meet the very<br />

Bioaccumulative (vB) criterion but some structures meet the Bioaccumulative (B) criterion (see<br />

CONCAWE, 2010b).<br />

8.1.3. Toxicity Assessment<br />

For representative hydrocarbons structures that were found to meet the P and B criteria, a toxicity<br />

evaluation was performed (see CONCAWE, 2010b). No structures relevant to petroleum substances<br />

were found to meet the toxicity criterion except anthracene which has been confirmed as a PBT<br />

substance.<br />

8.1.4. Summary and overall Conclusions on PBT or vPvB Properties<br />

Anthracene is not present in this substance at greater than 0.1% (CONCAWE, 2010b). No other<br />

representative hydrocarbon structures were found to meet the PBT / vPvB criteria.<br />

8.2. Emission Characterisation<br />

Emission Characterisation is not required because the substance does not fulfil the PBT / vPvB<br />

criteria (see CONCAWE, 2010b).<br />

Dose Desriptors (Health and Environment)<br />

Toxicity<br />

o Acute oral LD 50 > 7600 mg/kg<br />

o Acute Inhalation LC 50 > 4.1 mg/l<br />

o Acute dermal LD 50 > 4300 mg/kg<br />

o Short-term repeat dose dermal NOAEL 0.5 ml/kg<br />

o Sub-chronic repeat dose inhalation NOAEC >1710 mg/m 3<br />

o Sub-chronic repeat dose dermal NOAEL 30 mg/kg<br />

o Reproductive toxicity dermal NOAEL 125 mg/kg<br />

o Reproductive toxicity inhalation NOAEC > 401 ppm<br />

Ecotoxicity<br />

o Acute aquatic invertebrate EL 50 68 mg/l<br />

o Acute aquatic algae IL 50 22 mg/l<br />

o Acute aquatic fish LL 50 21 mg/l<br />

o Long-term invertebrate NOEL 0.21 mg/l<br />

o Long-term fish NOEL 0.083 mg/l<br />

2010-07-30 CSR Appendix 1


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

Conclusion<br />

The data available for a range of vacuum gas oils, hydrocracked gas oils, & distillate fuels have been<br />

reviewed against the REACH data requirements for high tonnage (greater than 1,000t/a) chemicals.<br />

The category justification developed is considered applicable to all 17 UVCB substances identified in<br />

appendix 1 to this document and covers all endpoints. Using a ‘worst case’ approach, applicable<br />

values have been identified for the category and these can be used as the starting point for the<br />

derivation of classification and labelling proposals and DNEL and PNEC values required under<br />

REACH.<br />

2010-07-30 CSR Appendix 1


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

Appendix 1<br />

Vacuum Gas Oil, Hydrocracked Gas Oil & Distillate Fuel – Category Members<br />

Note: Highlighted entries indicate CAS# for which tox/ecotox data are available in the dossier.<br />

The second table lists the supporting studies that have been used to read across to this<br />

category to predict the properties of this category.<br />

Substance<br />

Name<br />

Condensates<br />

(petroleum),<br />

vacuum tower<br />

EINECS Definition CAS# EINECS #<br />

A complex combination of hydrocarbons produced as the<br />

lowest boiling stream in the vacuum distillation of the<br />

residuum from atmospheric distillation of crude oil. It<br />

consists of hydrocarbons having carbon numbers<br />

predominantly in the range of C11 through C25 and boiling<br />

in the range of approximately 205°C to 400°C (401°F to<br />

752°F).<br />

64741-49-7 265-049-4<br />

Gas oils<br />

(petroleum), light<br />

vacuum<br />

A complex combination of hydrocarbons produced by the<br />

vacuum distillation of the residuum from atmospheric<br />

distillation of crude oil. It consists of hydrocarbons having<br />

carbon numbers predominantly in the range of C13<br />

through C30 and boiling in the range of approximately<br />

230°C to 450°C (446°F to 842°F).<br />

64741-58-8 265-059-9<br />

Distillates<br />

(petroleum), light<br />

hydrocracked<br />

Gas oils<br />

(petroleum),<br />

hydrodesulfurized<br />

light vacuum<br />

A complex combination of hydrocarbons from distillation of<br />

the products from a hydrocracking process. It consists<br />

predominantly of saturated hydrocarbons having carbon<br />

numbers predominantly in the range of C10 through C18,<br />

and boiling in the range of approximately 160°C to 320°C<br />

(320°F to 608°F).<br />

A complex combination of hydrocarbons obtained from a<br />

catalytic hydrodesulfurization process. It consists of<br />

hydrocarbons having carbon numbers predominantly in<br />

the range of C13 through C30 and boiling in the range of<br />

approximately 230°C to 450°C (446°F to 842°F).<br />

64741-77-1 265-078-2<br />

64742-87-6 265-190-1<br />

Fuels, diesel<br />

A complex combination of hydrocarbons produced by the<br />

distillation of crude oil. It consists of hydrocarbons having<br />

carbon numbers predominantly in the range of C9 through<br />

C20 and boiling in the range of approximately 163°C to<br />

357°C (325°F to 675°F).<br />

68334-30-5 269-822-7<br />

Fuel oil, no. 2<br />

A distillate oil having a minimum viscosity of 32.6 SUS at<br />

37.7°C (100°F) to a maximum of 37.9 SUS at 37.7°C<br />

(100°F).<br />

68476-30-2 270-671-4<br />

2010-07-30 CSR Appendix 1


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

Fuel oil, no. 4<br />

A distillate oil having a minimum viscosity of 45 SUS at<br />

37.7°C (100°F) to a maximum of 125 SUS at 37.7°C<br />

(100°F).<br />

68476-31-3 270-673-5<br />

Fuels, diesel, no.<br />

2<br />

A distillate oil having a minimum viscosity of 32.6 SUS at<br />

37.7°C (100°F) to a maximum of 40.1 SUS at 37.7°C<br />

(100°F).<br />

68476-34-6 270-676-1<br />

Gas oils<br />

(petroleum),<br />

hydrotreated light<br />

vacuum<br />

A complex combination of hydrocarbons that is obtained<br />

by treatment of light vacuum petroleum gas oils with<br />

hydrogen in the presence of a catalyst. It consists of<br />

hydrocarbons having carbon numbers predominantly in<br />

the range of C13 through C30 and boiling in the range of<br />

approximately 230°C to 450°C (446°F to 842°F).<br />

92045-24-4 295-407-5<br />

Gas oils<br />

(petroleum), light<br />

vacuum, solventdewaxed<br />

A complex combination of hydrocarbons obtained by<br />

deparaffinating a petroleum distillate under vacuum by<br />

solvent treatments. It consists predominantly of<br />

hydrocarbons having carbon numbers predominantly in<br />

the range of C20 through C30 and produces a finished oil<br />

having a viscosity of between 20-25cSt at 40°C.<br />

92045-26-6 295-408-0<br />

Gas oils<br />

(petroleum),<br />

solvent-refined<br />

light vacuum<br />

A complex combination of hydrocarbons obtained as the<br />

raffinate from a solvent extraction process. It consists of<br />

hydrocarbons having carbon numbers predominantly in<br />

the range of C13 through C30 and boiling in the range of<br />

approximately 230°C to 450°C (446°F to 842°F).<br />

92045-27-7 295-409-6<br />

Hydrocarbons,<br />

C16-20, solventdewaxed<br />

hydrocracked<br />

paraffinic distn.<br />

residue<br />

Gas oils, light<br />

naphthenic<br />

vacuum<br />

Hydrocarbons,<br />

C16-20,<br />

hydrotreated<br />

distillate, vacuum<br />

distn. lights<br />

A complex combination of hydrocarbons obtained by<br />

solvent dewaxing of a distillation residue from a<br />

hydrocracked paraffinic distillate. It consists<br />

predominantly of hydrocarbons having carbon numbers<br />

predominantly in the range of C16 through C20 and boiling<br />

in the range of approximately 360°C to 500°C (680°F to<br />

932°F). It produces a finished oil having a viscosity of<br />

4.5cSt at approximately 100°C (212°F).<br />

A complex combination of hydrocarbons obtained by<br />

vacuum distillation of a crude naphthenic. It consists<br />

predominantly of hydrocarbons having carbon numbers<br />

predominantly in the range of C13 through C27 and boiling<br />

in the range of approximately 240°C to 400°C (464°F to<br />

752°F). It produces a finished oil having a viscosity of<br />

9.5cSt at 40°C (104°F).<br />

A complex combination of hydrocarbons obtained as first<br />

runnings from the vacuum distillation of effluents from the<br />

catalytic hydrotreatment of a distillate having a viscosity of<br />

2cSt at 100°C (212 °F). It consists predominantly of<br />

hydrocarbons having carbon numbers predominantly in<br />

the range of C16 to C20 and boiling in a range of<br />

approximately 290°C to 350°C (554°F to 662°F).<br />

97675-88-2 307-662-2<br />

97722-01-5 307-750-0<br />

97722-05-9 307-754-2<br />

2010-07-30 CSR Appendix 1


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

Hydrocarbons,<br />

C11-17,<br />

naphthenic<br />

middle<br />

Gas oils<br />

(petroleum), light<br />

vacuum, carbontreated<br />

Gas oils<br />

(petroleum), light<br />

vacuum, claytreated<br />

A complex combination of hydrocarbons obtained by<br />

vacuum distillation of a naphthenic distillate having a<br />

viscosity of 2.2cSt at 40°C (104°F). It consists<br />

predominantly of hydrocarbons having carbon numbers<br />

predominantly in the range of C11 through C17 and boiling<br />

in the range of approximately 200°C to 300°C (392°F to<br />

572°F).<br />

A complex combination of hydrocarbons obtained by the<br />

treatment of light vacuum petroleum gas oils with activated<br />

charcoal for the removal of traces of polar constituents and<br />

impurities. It consists predominantly of hydrocarbons with<br />

carbon numbers predominantly in the range of C13<br />

through C30.<br />

A complex combination of hydrocarbons obtained by the<br />

treatment of light vacuum petroleum gas oils with<br />

bleaching earth for the removal of traces of polar<br />

constituents and impurities. It consists predominantly of<br />

hydrocarbons having carbon numbers predominantly in<br />

the range of C13 through C30.<br />

97722-07-1 307-756-3<br />

100684-22-8 309-693-7<br />

100684-23-9 309-694-2<br />

2010-07-30 CSR Appendix 1


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

Supporting materials used in CJD : Included in another CONCAWE category (read across)<br />

Substance<br />

Name<br />

EINECS Definition CAS# EINECS #<br />

Distillates<br />

(petroleum),<br />

straight-run<br />

middle<br />

A complex combination of hydrocarbons produced by the<br />

distillation of crude oil. It consists of hydrocarbons having<br />

carbon number predominantly in the range C11 through<br />

C20 and boiling in the range of 205°C to 345°C (401°F to<br />

653°F).<br />

64741-44-2 265-044-7<br />

Distillates<br />

(petroleum), light<br />

catalytic cracked<br />

A complex combination of hydrocarbons produced by the<br />

distillation of products from a catalytic cracking process. It<br />

consists of hydrocarbons having carbon numbers<br />

predominantly in the range of C9 through C25 and boiling<br />

in the range of approximately 150°C to 400°C (302°F to<br />

725°F). It contains a relatively large proportion of bicyclic<br />

aromatic hydrocarbons.<br />

64741-59-9 265-060-4<br />

Distillates<br />

(petroleum),<br />

hydrodesulfurized<br />

middle<br />

A complex combination of hydrocarbons obtained from a<br />

petroleum stock by treating with hydrogen to convert<br />

organic sulfur to hydrogen sulfide which is removed. It<br />

consists of hydrocarbons having carbon numbers<br />

predominantly in the range of C11 through C25 and boiling<br />

in the range of approximately 205°C to 400°C (401°F to<br />

752°F).<br />

64742-80-9 265-183-3<br />

2010-07-30 CSR Appendix 1


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

APPENDIX 2: Qualitative Exposure Estimation<br />

2010-07-30 CSR Appendix 2


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

Appendix 2.a.<br />

Worker Exposure Estimate<br />

2010-07-30 CSR Appendix 2


Gas Oils (Vacuum)<br />

4 DNEL (inhalation,<br />

aerosol, mg/m3) =<br />

68.3 DNELs (dermal)<br />

= mg/kg/d<br />

2.9<br />

Table 1: Mapping Uses in the Supply Chain 7<br />

Use Descriptor Tier 1 assumptions and adjustments Predicted Exposure - ECETOC<br />

where required<br />

TRA estimate<br />

User Group Contributing Scenarios<br />

Typical Mapped<br />

Operating Conditions<br />

CS Ref<br />

Typical Mapped RMMs Process OCs (red text Tier RMMs (red text<br />

Categoryequivalen 1 adjustments) additional Tier 1<br />

adjustments)<br />

Moderate Predicted Dermal<br />

dustiness (mg/kg/d)<br />

(mg/3) no<br />

LEV<br />

Manufacture of Industrial - General process CS15 Continuous; daily; 15 - 1 Closed processes PROC1 Closed >4 hours, ambient Closed process. 0.01 0.34<br />

substance SU8/9/3 exposures (no<br />

hour; product temp.<br />

process (no temp.<br />

No exposure.<br />

sampling)<br />

Outdoor<br />

sampling)<br />

Combine in narrative Industrial - General process CS15 Continuous; daily; 15 Enclosed process; PROC2 Closed >4 hours, ambient No LEV 1 1.37<br />

with row above SU8/9/3 exposures and sample<br />

mins - 1 hour; product Outdoor location; continuous process temp.<br />

collection<br />

temp. Outdoor closed/semi-closed (with sampling)<br />

sampling point<br />

Industrial - General process CS15 Batch process; daily; 15 - Closed equipment, PROC3 Closed >4 hours, ambient No LEV 3 0.34<br />

SU8/9/3 exposures<br />

1 hour; product temp.; enclosed or vented batch process (with temp.<br />

Indoor/Outdoor sampling points sampling)<br />

Industrial - General exposures CS16 Daily; 15 - 1 hour; Enclosed transfers, clear PROC4 batch >4 hours, ambient No LEV 5 6.86<br />

SU8/9/3 open batch process<br />

product temp.; lines prior to decoupling process with temp.<br />

Indoor/Outdoor<br />

exposure<br />

Industrial - Sample collection CS2 Daily; 4 hours, ambient No LEV 3 0.34<br />

SU8/9/3<br />

temp.; Indoor/Outdoor sampling points batch process (with temp.<br />

sampling)<br />

Industrial - Laboratory activities CS36 Daily; 15 mins - 1 hour; Fume cupboard. PPE. PROC15 Use in >4 hours, ambient No LEV 5 0.34<br />

SU8/9/3<br />

product temp.; Indoor<br />

laboratory temp.<br />

Industrial - Bulk transfers (closed CS501 Daily; 15 - 1 hour; Enclosed transfers, clear PROC8b >4 hours, ambient No LEV 5 6.86<br />

SU8/9/3 systems) e.g bottom<br />

product temp.; lines prior to decoupling Dedicated temp.<br />

loading<br />

Indoor/Outdoor<br />

discharging to/from<br />

vessels<br />

Industrial - Bulk transfers (open CS503 Daily; 1-4 hrs hour; Enclosed transfers, PROC8b<br />

daily; ambient No LEV 5 6.86<br />

SU8/9/3 systems)<br />

product temp.; vented transfer points; Dedicated temp.<br />

Indoor/Outdoor clear lines prior to discharging to/from<br />

decoupling<br />

vessels<br />

Industrial - Clean down and CS39 Daily; 15 mins -1 hour; Enclosed lines; retain PROC8a Nondedicated<br />

temp.<br />

>4 hours; ambient No LEV 10 13.71<br />

SU8/9/3 Maintenance<br />

product temp; collection wash down in sealed<br />

of line waste in storage pending disposal discharging to/from<br />

container;<br />

or use as recycled vessels<br />

Indoor/Outdoor material for subsequent<br />

formulation. PPE.<br />

Industrial - Bulk Storage CS85 Daily; 8 hrs; product samples collected at PROC1/2 Closed daily; ambient outdoor activity 1 1.37<br />

SU3/ SU10<br />

temp;<br />

dedicated sample point continuous process temp.<br />

(sometimes with<br />

sampling)<br />

Distribution of Industrial - General process CS15 Continuous; Outdoor; Closed process. No PROC1 Closed >4 hours, ambient Closed product. 0.01 0.34<br />

substance SU3<br />

exposures - closed<br />

daily; 15 - 1 hour; exposure.<br />

process (no temp.<br />

No exposure.<br />

process (e.g. In-line<br />

product temp.<br />

sampling)<br />

additive dosing<br />

equipment, in-line filter<br />

cleaning)<br />

Combine in narrative Industrial - General process CS15 Continuous; Outdoor; Enclosed process; PROC2 Closed >4 hours, ambient No LEV 1 1.37<br />

SU3<br />

exposures (occasional<br />

daily; 15 mins - 1 hour; closed/semi-closed continuous process temp.<br />

controlled exposure)<br />

product temp.<br />

sampling point<br />

(with sampling)<br />

Industrial - General process CS15 Batch process; Outdoor; Closed equipment, PROC3 Closed >4 hours, ambient No LEV 3 0.34<br />

SU3<br />

exposures - closed<br />

daily; 15 - 1 hour; enclosed or vented batch process (with temp.<br />

batch process<br />

product temp.<br />

sampling points sampling)<br />

Industrial -SU3 General exposures CS16 Daily; Indoor/Outdoor; Enclosed transfers, clear PROC4 batch >4 hours, ambient No LEV 5 6.86<br />

open batch process<br />

15 - 1 hour; product lines prior to decoupling process with temp.<br />

temp.<br />

exposure<br />

Industrial - Sample collection CS2 Daily; 4 hours, ambient No LEV 3 0.34<br />

SU3<br />

temp.; Outdoor; sampling points batch process (with temp.<br />

sampling)<br />

Industrial - Laboratory activities CS36 Daily; 15 mins - 1 hour; Fume cupboard. PPE. PROC15 Use in >4 hours, ambient No LEV 5 0.34<br />

SU3<br />

product temp.; Indoor<br />

laboratory temp.<br />

t


Industrial -<br />

SU8/9/3<br />

Combine in narrative Industrial -<br />

as Bulk Transfer SU3<br />

CS14 unless<br />

differentiation<br />

required in practice<br />

Industrial -<br />

SU3<br />

Industrial -<br />

SU3<br />

Industrial -<br />

SU3<br />

Industrial -<br />

SU3<br />

Formulation & Industrial -<br />

(re)packing of SU3/SU10<br />

substances and<br />

mixtures<br />

Combine in with Industrial -<br />

above row in SU3/ SU10<br />

narrative<br />

Industrial -<br />

SU3/ SU10<br />

Industrial -<br />

SU3/ SU10<br />

Industrial -<br />

SU3/ SU10<br />

Industrial -<br />

SU3/ SU3<br />

Industrial -<br />

SU3/ SU10<br />

Combine in narrative Industrial -<br />

SU3/ SU10<br />

Industrial -<br />

SU3/ SU10<br />

Combine in narrative Industrial -<br />

SU3/ SU10<br />

Industrial -<br />

SU3/ SU10<br />

Bulk transfers (closed CS501 Daily; 15 - 1 hour;<br />

systems) e.g bottom<br />

product temp.;<br />

loading<br />

Indoor/Outdoor<br />

Bulk closed loading and CS503 Outdoor; Daily; 15 - 1<br />

unloading NEW CS<br />

hour; product temp.;<br />

(e.g. road/rail car<br />

exposure potential<br />

bottom<br />

during breaking of hose<br />

loading/unloading;<br />

connection<br />

marine vessel/barge<br />

loading/unloading;)<br />

Bulk open loading NEW CS503 Outdoor; Daily; 1 - 4<br />

CS (e.g. road/rail car<br />

hours; product temp;<br />

top loading, may<br />

exposure potential from<br />

involve LEV)<br />

vapour emissions from<br />

tank opening<br />

Drum and small CS6 Indoor; Continuous;<br />

package filling<br />

daily; 8 hour; product<br />

temp.<br />

Clean down and CS39 Daily; 15 min - 1 hour;<br />

Maintenance<br />

product temp; collection<br />

of line waste in container<br />

Storage CS67 Daily; 8 hrs; product<br />

temp; Outdoors<br />

General process CS15 Continuous; daily; 15 - 1<br />

exposures (no<br />

hour; product temp.<br />

sampling) (e.g. In-line<br />

additive dosing<br />

equipment, in-line filter<br />

cleaning)<br />

General process CS15 Continuous; daily; 15<br />

exposures and sample<br />

mins - 1 hour<br />

collection<br />

General process<br />

exposures (e.g. In-line<br />

additive dosing<br />

equipment, in-line filter<br />

cleaning)<br />

CS15 Batch process; daily; 15 -<br />

1 hour; product temp.<br />

General exposures CS16 Daily; Indoor; 15 - 1<br />

open batch process<br />

hour; product temp.<br />

Sample collection CS2 Daily; 4 hours, ambient<br />

temp.<br />

>4 hours, ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

>4 hours, ambient<br />

temp.<br />

>4 hours, ambient<br />

temp.<br />

>4 hours, ambient<br />

temp.<br />

>4 hours, ambient<br />

temp.<br />

>4 hours, ambient<br />

temp.<br />

>4 hours, ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

No LEV 5 6.86<br />

No LEV 5 6.86<br />

No LEV 5 6.86<br />

No LEV 5 6.86<br />

No LEV 10 13.71<br />

outdoor activity 1 1.37<br />

Closed process. 0.01 0.03<br />

No LEV 1 1.37<br />

No LEV 3 0.34<br />

No LEV 5 6.86<br />

No LEV 3 0.34<br />

No LEV 5 0.34<br />

No LEV 5 6.86<br />

No LEV 5 13.71<br />

With LEV 25 0.07<br />

No LEV 10 13.71<br />

No LEV 5 6.86


Industrial - Tabletting,<br />

CS100 Indoor; daily; 8 hours; LEV, PPE PROC14<br />

SU3/ SU10 compression, extrusion<br />

product temp.<br />

Production of<br />

or pelletisation<br />

preparation by<br />

tabletting,<br />

compression,<br />

Industrial - Drum and small CS6 Indoor, Continuous; Enclosed transfers, PROC9 Transfer<br />

SU3/ SU10 package filling<br />

daily; 8 hour; product vented transfer points of<br />

temp.<br />

substance/mixture<br />

into small<br />

containers<br />

Industrial - Clean down and CS39 Indoor, Daily; 1 - 4 Enclosed lines; retain PROC8a Nondedicated<br />

SU3/ SU10 Maintenance<br />

hours; product temp; wash down in sealed<br />

collection of line waste storage pending disposal discharging to/from<br />

in container<br />

or use as recycled vessels<br />

material for subsequent<br />

formulation. PPE.<br />

Industrial - Storage CS67 Daily; 8 hrs; product samples collected at PROC1/2 Closed<br />

SU3/ SU10<br />

temp;<br />

dedicated sample point continuous process<br />

(sometimes with<br />

sampling)<br />

Uses in Coatings Industrial -SU3 General exposures CS15 ] Continuous; daily; 8hour Enclosed process; 1/2 -Use in closed,<br />

(closed systems) CS15 [CS56]<br />

closed/semi-closed continuous<br />

] with sample collection<br />

sampling point<br />

process with occasional<br />

controlled<br />

[CS56].<br />

exposure (e.g.<br />

sampling)<br />

Industrial - Bulk transfers CS14 Daily; 15 min - 1 hour; Enclosed transfers, PROC8b<br />

SU3/ SU10<br />

product temp; collection vented transfer points; Dedicated<br />

of line waste in container clear lines prior to discharging to/from<br />

decoupling<br />

vessels<br />

Industrial -SU3 Film formation - force [CS 94] enclosed in situ in 2 -Use in closed,<br />

drying (50 - 100°C).<br />

workplace<br />

continuous<br />

Stoving (>100°C).<br />

process with occasional<br />

controlled<br />

UV/EB radiation curing.<br />

[CS 94]<br />

exposure (e.g.<br />

sampling)<br />

Industrial -SU3 Film formation - air [CS95] 4 - Use in batch<br />

drying. [CS95]<br />

and other process<br />

(synthesis) where<br />

opportunity for<br />

exposure arises<br />

Industrial -SU3 Preparation of material [CS 96]<br />

liquid/ powder products) - 5 - Mixing or<br />

for application. [CS 96] [CS30]<br />

batch, indoor/ outdoor. blending in batch<br />

Mixing operations (open<br />

processes for<br />

systems) [CS30]<br />

formulation of<br />

preparations and<br />

combine Industrial -SU3 Spraying<br />

[CS97] Daily; >4 hours, product Enclosed. Vented spray 7 -Industrial<br />

(automatic/robotic).<br />

temp (ambient) booth; specific workforce spraying<br />

[CS97]<br />

education, PPE<br />

Industrial -SU3 Spraying<br />

[CS97] Daily; >4 hours, product Enclosed. Vented spray 7 -Industrial<br />

(automatic/robotic).<br />

temp (ambient) booth; specific workforce spraying<br />

[CS97] vapours<br />

education, PPE<br />

combine Industrial -SU3 Manual spraying. [CS24] Open , Air supplied 7 -Industrial<br />

[CS24]<br />

masks, respirator. spraying<br />

Industrial -SU3 Manual spraying. [CS24] Open , Air supplied 7 -Industrial<br />

[CS24] vapours<br />

masks, respirator. spraying<br />

Industrial -SU3 Material transfers. CS3 Daily; 15 min - 1 hour; Enclosed transfers, 8b -Transfer of<br />

[CS3].<br />

product temp (ambient); vented transfer points; chemicals from/to<br />

collection of line waste clear lines prior to vessels/ large<br />

in container. outdoor/ decoupling<br />

containers at<br />

indoor.<br />

dedicated facilities.<br />

Industrial -SU3 Roller, spreader, flow [CS69] Daily; >4 hours, product Local exhaust ventilation 10 - Roller<br />

application. [CS69]<br />

temp. (ambient); Range at rollers; remove spills application or<br />

from 2-3% upto 40-50% as they occur, PPE. brushing<br />

Large scale (open<br />

equipment)<br />

daily; ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

>4 hours, ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

>4 hours, ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

>4 hours, ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

> 4 hours; daily;<br />

ambient temp.<br />

> 4 hours; daily;<br />

ambient temp.<br />

daily; ambient<br />

temp.<br />

> 4 hours; daily;<br />

ambient temp.<br />

No LEV 5 3.43<br />

No LEV 5 6.86<br />

No LEV 10 13.71<br />

outdoor activity 1 1.37<br />

No LEV 1 0.03<br />

No LEV 5 6.86<br />

No LEV 10 1.37<br />

No LEV 5 6.86<br />

No LEV 5 13.71<br />

With LEV. 20 2.14<br />

With LEV. 100 2.14<br />

No LEV 20 21.85<br />

No LEV 100 21.85<br />

No LEV 5 6.86<br />

With LEV. 5 27.43


Industrial -SU3 Dipping, immersion [CS4] Daily; >4 hours, product Local exhaust ventilation 13 -Treatment of<br />

and pouring. [CS4]<br />

temp. (ambient) at open surface; remove articles by dipping<br />

spills as they occur, PPE and pouring<br />

Industrial -SU3 Laboratory activities [CS36] small scale activities<br />

15 - Use of<br />

[CS36]<br />

small amount, daily 15<br />

laboratory<br />

min<br />

reagents in small<br />

scale laboratories<br />

Industrial -SU3 Material transfers [CS3]. [CS8]. Daily; 15 min - 1 hour; wear goggles and gloves 9 -Transfer of<br />

[CS3]. Drum/batch [CS22]. product temp;<br />

chemicals into<br />

transfers [CS8].<br />

small containers<br />

Transfer from/pouring<br />

(dedicated filling<br />

from containers [CS22].<br />

line)<br />

Industrial -SU3 Production of<br />

[CS100]. Daily; 15 min - 1 hour; wear goggles and gloves 14 - Production of<br />

preparations or articles<br />

product temp (ambient);<br />

preparations or<br />

by tabletting,<br />

articles by<br />

compression, extrusion,<br />

tabletting,<br />

pelletisation [CS100].<br />

compression,<br />

extrusion,<br />

Industrial - Clean down and CS39 Indoor, Daily; 1 - 4 Enclosed lines; retain PROC8a Nondedicated<br />

SU3/ SU10 Maintenance<br />

hours; product temp; wash down in sealed<br />

collection of line waste storage pending disposal discharging to/from<br />

in container<br />

or use as recycled vessels<br />

material for subsequent<br />

formulation. PPE.<br />

Industrial - Storage CS67 Daily; 8 hrs; product samples collected at PROC1/2 Closed<br />

SU3/ SU10<br />

temp;<br />

dedicated sample point continuous process<br />

(sometimes with<br />

sampling)<br />

Uses in Coatings Professional - Filling / preparation of [CS45] closed, continuous PROC8b<br />

SU22 equipment (from drums<br />

Dedicated<br />

or containers). CS45]<br />

discharging to/from<br />

vessels<br />

Professional - General exposures [CS15 ] Continuous; daily; 8hour Enclosed process; PROC1/2 Closed<br />

SU22 (closed systems)<br />

closed/semi-closed continuous process<br />

[CS15]. Use in<br />

sampling point<br />

(with sampling)<br />

contained systems<br />

[CS38]<br />

Professional - Preparation of material [CS 96].<br />

closed, continuous 3 - Use in closed<br />

SU22 for application. [CS 96]. [CS29].<br />

batch process<br />

Mixing operations<br />

(synthesis or<br />

(closed systems)<br />

formulation)<br />

[CS29].<br />

Combined Professional - Film formation - air [CS95]. outdoor 4 - Use in batch<br />

SU22 drying. [CS95]. Outdoor [OC9].<br />

and other process<br />

[OC9].<br />

(synthesis) where<br />

opportunity for<br />

exposure arises<br />

Professional - Film formation - air [CS95]. Daily; >4 hours, product Good general ventilation 4 - Use in batch<br />

SU22 drying. [CS95]. Indoor [OC8]. temp (ambient); Indoor (equivalent to outdoors) and other process<br />

[OC8].<br />

supplemenetd with LEV (synthesis) where<br />

opportunity for<br />

exposure arises<br />

Combined Professional - Preparation of material [CS 96] . indoor, outdoor with and batch, indoor. With and 5 -Mixing or<br />

SU22 for application. [CS 66] [CS30]. without LEV, 1 - 4 hours without LEV.<br />

blending in batch<br />

Mixing operations (open [CS9]. [OC8].<br />

processes<br />

systems) [CS30].<br />

(multistage and/or<br />

Pouring from small<br />

significant contact)<br />

containers [CS9].<br />

Indoor [OC8].<br />

Professional - Preparation of material [CS 96] Outdoor; 1 - 4 hours 5 -Mixing or<br />

SU22 for application. [CS 66] [CS30] [CS9]<br />

blending in batch<br />

Mixing operations (open [OC9]<br />

processes<br />

systems) [CS30].<br />

(multistage and/or<br />

Pouring from small<br />

significant contact)<br />

containers [CS9].<br />

Outdoor [OC9].<br />

Professional - Material transfers. [CS3] Daily; 15 mins - 1 hour; Pumped transfer from 8a -Transfer of<br />

SU22 [CS3]. Pumped [CS107] product temp (ambient), drum to equipment. with chemicals from/to<br />

Drum/batch transfers [CS8] indoor, outdoor and without LEV vessels/ large<br />

[CS8].<br />

containers at non<br />

dedicated facilities<br />

comined Professional - Roller, spreader, flow [CS98] [OC8] indoor, Daily, > 4 hours 10 - Roller<br />

SU22 application. [CS69].<br />

application or<br />

Indoor [OC8].<br />

brushing<br />

Professional - Roller, spreader, flow [CS98]. outdoor, Daily, >4 hours PPE 10 - Roller<br />

SU22 application. [CS69]. [OC9].<br />

application or<br />

Outdoor [OC9].<br />

brushing<br />

daily; ambient<br />

temp.<br />

No LEV 1 6.86<br />

>4 hours, ambient<br />

temp.<br />

No LEV 0.5 0.34<br />

>4 hours, ambient<br />

temp.<br />

No LEV 5 6.86<br />

>4 hours, ambient<br />

temp.<br />

No LEV 5 3.43<br />

daily; ambient<br />

temp.<br />

No LEV 10 13.71<br />

daily; ambient<br />

temp.<br />

outdoor activity 1 1.37<br />

>4 hours, ambient<br />

temp.<br />

No LEV 5 6.86<br />

>4 hours, ambient<br />

temp.<br />

No LEV 1 1.37<br />

daily; ambient<br />

temp.<br />

No LEV 1 0.34<br />

8 hrs No LEV 5 6.86 gloves<br />

daily; ambient<br />

temp.<br />

No LEV 5 6.86 gloves<br />

>4 hours, ambient<br />

temp.<br />

No LEV 5 13.71<br />

>4 hours, ambient<br />

temp.<br />

No LEV 5 13.71<br />

daily; ambient<br />

temp.<br />

No LEV 5 13.71<br />

> 4 hours; daily; With LEV 5 16.46<br />

ambient temp;<br />

4 hours; daily;<br />

ambient temp.<br />

No LEV 5 16.46


Combined Professional - Manual spraying. [CS24] [OC8]. Daily; >4 hours, Vented spray booth; 11- Non industrial<br />

SU22 [CS68] . Indoor [OC8].<br />

Indoors,<br />

specific workforce spraying<br />

education, PPE<br />

Professional - Manual spraying. [CS24] [OC8]. Daily; >4 hours, Vented spray booth; 11- Non industrial<br />

SU22 [CS68] . Indoor [OC8].<br />

Indoors,<br />

specific workforce spraying<br />

vapour phase<br />

education, PPE<br />

Combined Professional - Manual spraying. [CS24] outdoor , 4 hour PPE 11- Non industrial<br />

SU22 [CS68] . Outdoor .[OC9].<br />

spraying<br />

[OC9].<br />

Professional - Manual spraying. [CS24] outdoor , 4 hour PPE 11- Non industrial<br />

SU22 [CS68] . Outdoor .[OC9].<br />

spraying<br />

[OC9]. vapour phase<br />

Combined Professional - Dipping, immersion [CS4] [OC8] Daily; >4 hours, product Local exhaust ventilation 13 -Treatment of<br />

SU22 and pouring. [CS4].<br />

temp (ambient) at open surface; remove articles by dipping<br />

Indoor [OC8].<br />

spills as they occur, PPE and pouring<br />

Professional - Dipping, immersion [CS4] [OC9] Daily; >4 hours, product PPE 13 -Treatment of<br />

SU22 and pouring. [CS4].<br />

temp (ambient), outdoor.<br />

articles by dipping<br />

Outdoor [OC9].<br />

and pouring<br />

Professional - Laboratory activities [CS36] Daily; >4 hours, product<br />

15 - Use of<br />

SU22 [CS36]<br />

temp (ambient)<br />

laboratory<br />

reagents in small<br />

scale laboratories<br />

Combined Professional - Hand application - [CS72] [OC8] Daily; >4 hours, product indoor 19 - Hand-mixing<br />

SU22 fingerpaints, pastels,<br />

temp (ambient)<br />

with intimate<br />

adhesives [CS72].<br />

contact (only PPE<br />

Indoor [OC8].<br />

available<br />

Professional - Hand application - [CS72]. 15 minutes; product outdoor, PPE 19 - Hand-mixing<br />

SU22 fingerpaints, pastels, [OC9]. temp (ambient)<br />

with intimate<br />

adhesives [CS72].<br />

contact (only PPE<br />

Outdoor [OC9].<br />

available<br />

Professional - Clean down and CS39 Daily; >4 hours vessel entry procedures, PROC8a<br />

SU22 Maintenance<br />

retain wash down in Discharging<br />

sealed storage pending to/from vessels<br />

disposa,. PPE.<br />

Professional - Storage CS67 Daily; 8 hrs; ambient samples collected at PROC1 Closed<br />

SU22<br />

temp;<br />

dedicated sample point continuous process<br />

(sometimes with<br />

Use as a fuel Industrial -SU3 Bulk transfers (barge, CS14 Daily; 1 - 4 hours; Enclosed transfers, clear PROC8b<br />

rail and road)<br />

ambient temp. lines prior to decoupling Dedicated<br />

Discharging<br />

to/from vessels<br />

Industrial -SU3 Transfers from drums CS8 Daily; 1 - 4 hours; Pumped transfer from PROC8b<br />

and containers<br />

ambient temp. drum to equipment Dedicated<br />

Discharging<br />

to/from vessels<br />

daily; ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

>4 hours, ambient<br />

temp.<br />

>4 hours, ambient<br />

temp.<br />

With LEV. 20 2.14<br />

With LEV. 100 2.14<br />

No LEV,


Combine in narrative Industrial -SU3 General use exposures CS15 Daily; >4 hours Closed equipment PROC1 & 2 Use<br />

as a fuel<br />

as a fuel<br />

Industrial -SU3 Use a fuel GES16, Daily; >4 hours, to 100% Closed equipment PROC16 - use as<br />

CS107<br />

a fuel<br />

Industrial -SU3 Use a fuel additive GES16, Daily; >4 hours, to 100% Closed equipment PROC3 Closed<br />

diluent<br />

CS107<br />

batch process (with<br />

sampling)<br />

Industrial -SU3 Vehicle/boiler CS39 Daily; >4 hours, to 100% PPE. Operator training. PROC8a Nondedicated<br />

maintenance<br />

(changed<br />

from CS5)<br />

Discharging<br />

to/from vessels<br />

Industrial -SU3 Cleaning fuel storage CS103 Infrequent; >4 hours vessel entry procedures, PROC8a<br />

tanks<br />

retain wash down in Discharging<br />

sealed storage pending to/from vessels<br />

disposal,. PPE.<br />

Industrial -SU3 Storage CS67 Daily; 8 hrs; ambient samples collected at PROC1/2 Closed<br />

temp;<br />

dedicated sample point continuous process<br />

(sometimes with<br />

sampling)<br />

Use as a fuel Professional - Bulk transfers (e.g. CS14 Daily; 1-4 hour; ambient Enclosed transfers, clear PROC8b<br />

SU22 heating oil and diesel<br />

temp., Outdoors lines prior to decoupling Dedicated<br />

deliveries)<br />

Discharging<br />

to/from vessels<br />

Professional - Transfers from drums CS8 Daily; 15 mins - 1 hour; Pumped transfer from PROC8b<br />

SU22 and containers<br />

ambient temp<br />

drum to equipment Dedicated<br />

Discharging<br />

to/from vessels<br />

Professional - Refuelling vehicles, CS507 Daily; >4 hours, to 100% Pumped transfer to PROC8b<br />

SU22 light aircraft or marine<br />

vehicle<br />

Dedicated<br />

Discharging<br />

to/from vessels<br />

Combine in narrative Professional - General use exposures CS15 Daily; >4 hours Closed equipment PROC1 & 2 Use<br />

SU22 as a fuel<br />

as a fuel<br />

Professional - Use a fuel additive GES16, Daily; >4 hours, Closed equipment PROC3 Closed<br />

SU22 diluent<br />

CS107<br />

batch process (with<br />

sampling)<br />

Professional - Use a fuel GES16, Daily; >4 hours Closed equipment PROC16 - use as<br />

SU22<br />

CS107<br />

a fuel<br />

Professional - Equipment<br />

CS39 Daily; >4 hours PPE. Operator training. PROC8a<br />

SU22 maintenance e.g.<br />

Discharging<br />

Vehicle, boiler, pump<br />

to/from vessels<br />

maintenance, pump<br />

calibration<br />

Professional - Vessel / container CS103 Daily; >4 hours vessel entry procedures, PROC8a<br />

SU22 cleaning<br />

retain wash down in Discharging<br />

sealed storage pending to/from vessels<br />

disposa,. PPE.<br />

Professional - Storage CS67 Daily; 8 hrs; ambient samples collected at PROC1 Closed<br />

SU22<br />

temp;<br />

dedicated sample point continuous process<br />

(sometimes with<br />

Use as a lubricant Industrial -SU3 General exposures CS15 Continuous; daily; Closed processes PROC1 and<br />

from enclosed<br />

ambient temp.<br />

PROC2 Closed<br />

processes<br />

process<br />

Combine in narrative Industrial -SU3 General exposures CS15 Continuous; daily; Enclosed process; PROC3 Closed<br />

with row above<br />

from closed processes<br />

ambient temp. closed/semi-closed batch process (with<br />

sampling point<br />

sampling)<br />

Combine in narrative Industrial -SU3 General exposures CS16 Continuous; daily; Enclosed transfers, with PROC4 Batch<br />

from open processes<br />

ambient temp. lev at mixing vessels process with<br />

exposure<br />

Industrial -SU3 General exposures CS16 Continuous; daily; Enclosed transfers, PROC4 Batch<br />

from open processes<br />

ambient temp.<br />

process with<br />

(vapour phase)<br />

exposure<br />

>4 hours, ambient<br />

temp.<br />

> 4 hours daily;<br />

ambient temp.<br />

> 4 hours daily;<br />

ambient temp.<br />

> 4 hours daily;<br />

ambient temp.<br />

daily; ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

>4 hours, ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

>4 hours, ambient<br />

temp.<br />

> 4 hours daily;<br />

ambient temp.<br />

> 4 hours daily;<br />

ambient temp.<br />

> 4 hours daily;<br />

ambient temp.<br />

daily; ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

>4 hours, ambient<br />

temp.<br />

>4 hours, ambient<br />

temp.<br />

>4 hours, ambient<br />

temp.<br />

>4 hours, ambient<br />

temp.<br />

No LEV 1 1.37<br />

No LEV 1 0.03<br />

No LEV 1 0.34<br />

No LEV 5 13.71<br />

No LEV 5 13.71<br />

outdoor activity 1 0.14<br />

No LEV 5 6.86<br />

No LEV 5 6.86<br />

No LEV 5 6.86<br />

No LEV 1 1.34<br />

No LEV 1 0.34<br />

No LEV 20 0.34<br />

No LEV 5 13.71<br />

With supplied air<br />

ventilation, PTW<br />

5 13.71<br />

outdoor activity 0.01 0.34<br />

No LEV 0.5 1.37<br />

No LEV 1 0.34<br />

With LEV 5 0.69<br />

With LEV 5 0.69


Industrial - Bulk transfers CS14 Daily; 15 min - 1 hour;<br />

SU3/ SU10<br />

product temp; collection<br />

of line waste in container<br />

Combine in narrative Industrial -SU3 Filling preparation of CS45 Daily; 15 mins - 1 hour;<br />

equipment from drums<br />

ambient temp<br />

or containers<br />

Industrial -SU3 Filling preparation of CS45 Daily; 15 mins - 1 hour;<br />

equipment from drums<br />

ambient temp<br />

or containers<br />

Industrial -SU3 Initial Factory fill of CS75 Continuous; 8 hours;<br />

equipment<br />

daily; ambient temp.<br />

Combine in narrative Industrial -SU3 Operation and<br />

CS17 Indoor, Daily; 8 hours;<br />

lubrication of high<br />

ambient temp.<br />

energy open equipment<br />

Industrial -SU3 Operation and<br />

CS17 Continuous; daily;<br />

lubrication of high<br />

ambient temp.<br />

energy open equipment<br />

(vapour phase)<br />

Industrial -SU3 Operation and<br />

CS17 Continuous; daily;<br />

lubrication of high<br />

ambient temp.<br />

energy open equipment<br />

Industrial -SU3 Operation and<br />

CS17 Continuous; daily;<br />

lubrication of high<br />

ambient temp.<br />

energy open equipment<br />

(vapour phase)<br />

Industrial -SU3 Manual roller<br />

CS13 Indoor, Daily; 8 hours,<br />

application or brushing<br />

ambient temp,<br />

Automated<br />

replenishment of roller<br />

or brush<br />

Industrial -SU3 Treatment of articles by CS35 Indoor, Daily; 8 hours,<br />

dipping and pouring<br />

ambient temp, automatic<br />

dipping in a bath<br />

Combine in narrative Industrial -SU3 Spraying CS10 Indoor, Daily; 8 hours,<br />

ambient temp,<br />

automated spraying<br />

Industrial -SU3 Spraying (vapour CS10 automatic spraying at<br />

phase)<br />

room temperature<br />

continuous<br />

Combine in narrative Industrial -SU3 Maintenance (of larger CS77 Daily; 1-4 hours;<br />

plant items) and<br />

ambient temp;<br />

machine set-up<br />

Industrial -SU3 Maintenance (of larger CS77 Daily; 1-4 hours;<br />

plant items) and<br />

Elevated temp (30o<br />

machine set-up<br />

above ambient)<br />

Industrial -SU3 Draining equipment CS18 Daily; 1 - 4 hours;<br />

(small items)<br />

ambient temp.<br />

Enclosed transfers, PROC8b<br />

daily; ambient<br />

vented transfer points; Dedicated temp.<br />

clear lines prior to discharging to/from<br />

decoupling<br />

vessels<br />

Manual filling of PROC8a Nondedicated<br />

temp.<br />

4 hours, ambient<br />

openings; extract Lubrication at high temp.<br />

ventilation to emission energy conditions<br />

points; PPE<br />

Restrict area of PROC 17 >4 hours, ambient<br />

openings; extract Lubrication at high temp.<br />

ventilation to emission energy conditions<br />

points; PPE<br />

Restrict area of PROC 18 - >4 hours, ambient<br />

openings; extract Greasing at high temp.<br />

ventilation to emission energy conditions<br />

points; PPE<br />

Restrict area of PROC 18 - >4 hours, ambient<br />

openings; extract Greasing at high temp.<br />

ventilation to emission energy conditions<br />

points; PPE<br />

PPE PROC 10 Roller or >4 hours, ambient<br />

brush application temp.<br />

Cabinet to allow the PROC 13 Dipping >4 hours, ambient<br />

dipping and the dripping and pouring temp.<br />

of the pieces. PPE<br />

LEV, Spraying cabinet PROC 7 >4 hours, ambient<br />

with capture of the<br />

temp.<br />

aerosols, PPE<br />

spraying cabinet with PROC 7 >4 hours, ambient<br />

capture of the aerosols<br />

temp.<br />

Enclosed<br />

PROC8b >4 hours, ambient<br />

transfers,vented transfer Discharging temp.<br />

points; clear lines prior to to/from vessels<br />

decoupling; PPE (dedicated)<br />

Enclosed transfers, PROC8b >4 hours, ambient<br />

vented transfer points; Discharging temp.<br />

clear lines prior to to/from vessels<br />

decoupling; PPE (dedicated)<br />

Retain drainings in PROC8a


Industrial -SU3 Remanufacture of CS19 Daily; 1-4 hours; Retain drainings in PROC9 - Transfer<br />

reject articles<br />

ambient temp; sealed storage pending of chemicals into<br />

disposal. PPE.<br />

small containers<br />

Industrial -SU3 Storage CS67 Daily; 8 hrs; ambient samples collected at PROC1/2 Closed<br />

temp;<br />

dedicated sample point continuous process<br />

(sometimes with<br />

sampling)<br />

Use as a lubricant Professional - General exposures CS15 Continuous; daily; Closed processes PROC1 and<br />

SU22 from enclosed<br />

ambient temp.<br />

PROC2 Closed<br />

processes<br />

process<br />

Combine with row Professional - General exposures CS15 Continuous; daily; Enclosed process; ; PROC3 Closed<br />

above in narrative SU22 from closed processes<br />

ambient temp. closed/semi-closed batch process (with<br />

sampling point<br />

sampling)<br />

Professional - Operation of equipment CS26 Daily; >4 hours, ambient None. Fluid inside PROC 20 Heat<br />

SU22 containing engine oils<br />

equipment<br />

and pressure<br />

and similar<br />

transfer fluids<br />

(closed systems)<br />

PROC4 not in ATIEL Professional - General exposures CS16 Continuous; daily; Enclosed transfers, PROC4 Batch<br />

mapping<br />

SU22 from open processes<br />

ambient temp.<br />

process with<br />

exposure<br />

Combine in narrative Professional - General exposures CS16 Continuous; daily; Enclosed transfers, PROC4 Batch<br />

SU22 from open processes<br />

ambient temp.<br />

process with<br />

(vapour phase)<br />

exposure<br />

Professional - Bulk transfers (e.g. CS14 Daily; 1-4 hour; ambient Enclosed transfers, clear PROC8b<br />

SU22 deliveries to<br />

temp.<br />

lines prior to decoupling Dedicated<br />

dealerships)<br />

Discharging<br />

to/from vessels<br />

Professional - Filling preparation of CS45, CS81 Daily; 15 mins - 1 hour; Pumped transfer or use PROC8b<br />

SU22 equipment from drums<br />

ambient temp<br />

of dedicated container. Discharging<br />

or containers -<br />

Eye protection, Gloves, to/from vessels<br />

dedicated facility<br />

Apron<br />

(dedicated)<br />

Professional - Filling preparation of CS45, CS82 Daily; 15 mins - 1 hour; Pumped transfer or use PROC8a Nondedicated<br />

SU22 equipment from drums<br />

ambient temp<br />

of dedicated container.<br />

or containers - non<br />

Eye protection, Gloves, discharging<br />

dedicated facility<br />

Apron<br />

Combine in narrative Professional - Operation and<br />

CS17, OC8 Continuous; daily; Restrict area of PROC 17<br />

SU22 lubrication of high (indoor) ambient temp. Indoors openings; extract Lubrication at high<br />

energy open equipment<br />

ventilation to emission energy conditions<br />

points<br />

Professional - Operation and<br />

CS17, OC8 Continuous; daily; Restrict area of PROC 17<br />

SU22 lubrication of high<br />

ambient temp. openings; extract Lubrication at high<br />

energy open equipment<br />

ventilation to emission energy conditions<br />

(vapour phase)<br />

points<br />

Combine in narrative Professional - Operation and<br />

CS17, OC8 Continuous; daily; Restrict area of PROC 18 -<br />

SU22 lubrication of high<br />

ambient temp. openings; extract Greasing at high<br />

energy open equipment<br />

ventilation to emission energy conditions<br />

points<br />

Professional - Operation and<br />

CS17, OC8 Continuous; daily; Restrict area of PROC 18 -<br />

SU22 lubrication of high<br />

ambient temp. openings; extract Greasing at high<br />

energy open equipment<br />

ventilation to emission energy conditions<br />

(vapour phase)<br />

points<br />

Covers total loss Professional - Operation and<br />

CS17, OC9 Continuous; daily; Total loss systems PROC 17<br />

equipment with spray SU22 lubrication of high (outdoor) ambient temp. Outdoors<br />

Lubrication at high<br />

potential, e.g. chain<br />

energy open<br />

energy conditions<br />

saws<br />

equipment, e.g. chain<br />

saw<br />

Professional - Operation and<br />

CS17, OC9 Continuous; daily; Total loss systems PROC 17<br />

SU22 lubrication of high<br />

ambient temp.<br />

Lubrication at high<br />

energy open equipment<br />

energy conditions<br />

(vapour phase)<br />

Combine in narrative Professional - Maintenance and<br />

CS77 Daily; 1-4 hours; Enclosed<br />

PROC8b<br />

SU22 machine set-up<br />

ambient temp; transfers,vented transfer Dedicated<br />

points;; clear lines prior discharging to/from<br />

to decoupling<br />

vessels<br />

daily; ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

>4 hours, ambient<br />

temp.<br />

>4 hours, ambient<br />

temp.<br />

> 4 hours; daily;<br />

ambient temp.<br />

>4 hours, ambient<br />

temp.<br />

>4 hours, ambient<br />

temp.<br />

4 hours, ambient<br />

temp.<br />

>4 hours, ambient<br />

temp.<br />

1-4 hours,<br />

ambient temp.<br />

1-4 hours,<br />

ambient temp.<br />

1-4 hours daily;<br />

ambient temp.<br />

No LEV 5 6.86<br />

outdoor activity 0.5 0.14<br />

No LEV 3 1.37<br />

No LEV 3 0.34<br />

No LEV 5 1.71<br />

With LEV 5 6.86<br />

With LEV 10 6.86<br />

No LEV 5 4.12<br />

No LEV 5 6.86<br />

No LEV 5 6.86<br />

With LEV 50 1.37<br />

With LEV 50 1.37<br />

With LEV 50 0.69<br />

With LEV 50 1.37<br />

No LEV,<br />

50 8.39<br />

Outdoors<br />

No LEV,<br />

50 8.39<br />

Outdoors<br />

No LEV 5 6.86


Professional - Maintenance and<br />

CS77 Daily; 1-4 hours; Enclosed transfers, PROC8b 1-4 hours daily;<br />

SU22 machine set-up<br />

Elevated temp (30o vented transfer points; Discharging elevated temp.<br />

above ambient) clear lines prior to to/from vessels<br />

decoupling<br />

(dedicated)<br />

Professional - Draining equipment CS18 Daily; 1-4 hours; Retain drainings in PROC8a 1-4 hours daily;<br />

SU22 (small items) e.g.<br />

Elevated temp (30o sealed storage pending Discharging elevated temp.<br />

engine drains<br />

above ambient) disposal. PPE.<br />

to/from vessels<br />

non dedicated<br />

Professional - Engine lubricant service CS78 Daily; 1-4 hours; None PROC9 - Transfer daily; ambient<br />

SU22 - to cover small<br />

ambient temp;<br />

of chemicals into temp.<br />

additions of oil to<br />

small containers<br />

engines<br />

Combine in narrative Professional - Manual roller<br />

CS13 Indoor, Daily; 8 hours, PPE. If LEV applied (to PROC 10 Roller or >4 hours, ambient<br />

1. LEV<br />

SU22 application or brushing<br />

product temp (ambient); provide options for RMM) brush application temp.<br />

of coatings CS13<br />

Automated<br />

replenishment of roller<br />

or brush<br />

2. General ventilation Professional - Manual roller<br />

CS13 Indoor, Daily; 8 hours, PPE PROC 10 Roller or >4 hours, ambient<br />

SU22 application or brushing<br />

product temp (ambient),<br />

brush application temp.<br />

of coatings CS13<br />

Automated<br />

replenishment of roller<br />

or brush<br />

3. RPE Professional - Manual roller<br />

CS13 Indoor, Daily; 8 hours, PPE. If ventilation PROC 10 Roller or >4 hours, ambient<br />

SU22 application or brushing<br />

product temp (ambient), inadequate and RPE brush application temp.<br />

of coatings CS13<br />

Automated<br />

applied (to provide<br />

replenishment of roller options for RMM)<br />

or brush; Solvent<br />

concentration 95% or<br />

greater for cleaners/<br />

Combine in Professional - Spraying CS10 CS10 Indoor or outdoor, Daily; Respiratory protection, PROC 11 Spraying >4 hours, ambient<br />

narrative.<br />

SU22<br />

15 min - 1 hour, product eye protection, gloves. If - non-industrial temp.<br />

1. LEV<br />

temp (ambient), LEV applied (to provide<br />

selection of spray options for RMM)<br />

nozzles to avoid small<br />

droplet size to minimise<br />

product losses<br />

Vapour phase Professional - Spraying CS10 >4 hours, ambient<br />

Value for low SU22<br />

temp.<br />

volatility liquid<br />

applied<br />

Combine in narrative Professional - Spraying CS10 CS10 Indoor or outdoor, Daily; Respiratory protection, PROC 11 Spraying >4 hours, ambient<br />

with 'alternative' SU22<br />

15 min - 1 hour, product eye protection, gloves - non-industrial temp.<br />

phrases<br />

temp (ambient),<br />

2. General ventilation<br />

selection of spray<br />

and RPE<br />

nozzles to avoid small<br />

droplet size to minimise<br />

product losses<br />

Vapour phase Professional -<br />

>4 hours, ambient<br />

Value for low SU22<br />

temp.<br />

volatility liquid<br />

applied<br />

Professional - Treatment of articles by CS35 Indoor, Daily; 8 hours, Cabinet to allow the PROC 13 Dipping >4 hours, ambient<br />

SU22 dipping and pouring<br />

ambient temp, automatic dipping and the dripping and pouring temp.<br />

(CS35)<br />

dipping in a bath of the pieces. PPE<br />

Professional - Storage CS67 Daily; 8 hrs; ambient samples collected at PROC1 Closed daily; ambient<br />

SU22<br />

temp;<br />

dedicated sample point continuous process temp.<br />

(sometimes with<br />

Metal working Industrial -SU3 General exposures CS15 Indoor, Daily; 8 hour; Closed processes PROC1 and >4 hours, ambient<br />

fluids / rolling oils<br />

(closed systems)<br />

ambient temp.<br />

PROC2 Closed temp.<br />

process<br />

Industrial -SU3 General exposures CS15 Indoor, Daily; 8 hour; Enclosed process; ; PROC3 Closed >4 hours, ambient<br />

(closed systems) ,<br />

ambient temp. closed/semi-closed batch process (with temp.<br />

including closed EDM<br />

sampling point<br />

sampling)<br />

processes<br />

No LEV 25 0.69<br />

No LEV 50 13.71<br />

No LEV 5 6.86<br />

No LEV 5 27.43<br />

No LEV 5 27.43<br />

No LEV 5 27.43<br />

With LEV 20 2.14<br />

With LEV 100 2.14<br />

No LEV 20 64.2<br />

No LEV 100 64.2<br />

With LEV 5 6.86<br />

outdoor activity 0.01 0.34<br />

No LEV 0.5 1.37<br />

No LEV 1 0.34


Industrial - General exposures CS16 Daily; Indoor; 15 - 1 Enclosed transfers, clear PROC4 Batch >4 hours, ambient<br />

SU3/ SU10 open batch process,<br />

hour; product temp. lines prior to decoupling process with temp.<br />

including open EDM<br />

exposure<br />

processes<br />

Industrial -SU3 Bulk transfers CS14 Indoor, Daily; 15 mins - Enclosed transfers, clear PROC8b<br />

daily; ambient<br />

1 hour; product temp lines prior to decoupling Dedicated temp.<br />

(ambient)<br />

discharging to/from<br />

vessels<br />

Combine in Industrial -SU3 Filling preparation of CS45 Indoor, Daily; 15 mins - Pumped transfer or use PROC8b 4 hours; ambient<br />

equipment from drums<br />

1 hour; product temp of dedicated container. blending in batch temp.<br />

or containers (CS45) -<br />

(ambient)<br />

Eye protection, Gloves, process<br />

(ATIEL identified 3<br />

Apron<br />

PROCs for this activity)<br />

Industrial -SU3 Filling preparation of CS45 Indoor, Daily; 15 mins - Pumped transfer or use PROC9 Dedicated >4 hours, ambient<br />

equipment from drums<br />

1 hour; product temp of dedicated container. filling line temp.<br />

or containers (ATIEL<br />

(ambient)<br />

Eye protection, Gloves,<br />

identified 3 PROCs for<br />

Apron<br />

this activity)<br />

Industrial -SU3 Process sampling. CS2 Indoor, Daily; 15 mins - Dedicated pipette. No PROC3 Closed >4 hours, ambient<br />

Drawing sample into a<br />

1 hour; product temp hand immersion. PPE batch process (with temp.<br />

pipette for testing<br />

(ambient)<br />

sampling)<br />

Industrial -SU3 Metal Machining<br />

CS79 Indoor, Daily; 8 hours; Restrict area of PROC 17 >4 hours, ambient<br />

Operations<br />

product temp (ambient) openings; extract Lubrication at high temp.<br />

ventilation to emission energy conditions<br />

points; PPE<br />

Industrial -SU3 Treatment of articles by CS35 Indoor, Daily; 8 hours, Cabinet to allow the PROC 13 Dipping >4 hours, ambient<br />

dipping and pouring<br />

product temp (ambient), dipping and the dripping and pouring temp.<br />

automatic dipping in a of the pieces. PPE<br />

bath<br />

Combine in narrative Industrial -SU3 Spraying CS10 Indoor, Daily; 8 hours, LEV, Spraying cabinet PROC 7<br />

>4 hours, ambient<br />

product temp (ambient), with capture of the<br />

temp.<br />

automated spraying aerosols, PPE<br />

Vapour phase Industrial -SU3 >4 hours, ambient<br />

temp.<br />

Industrial -SU3 Manual roller<br />

CS13 Indoor, Daily; 8 hours, PPE PROC 10 Roller or >4 hours, ambient<br />

application or brushing<br />

product temp (ambient),<br />

brush application temp.<br />

Automated<br />

replenishment of roller<br />

or brush<br />

Elevated<br />

Industrial -SU3 Automated metal<br />

CS80 Indoor. Continuous; Enclosed vented cabinet PROC2 >4 hours, ambient<br />

temperature<br />

rolling/forming<br />

daily; 8hour; elevated with blow off system to<br />

temp.<br />

therefore applied<br />

temperature (120 deg contain mist/vapour;<br />

value for medium<br />

C) from rolling<br />

product recovery and<br />

volatility<br />

operation; Remote recirculation; Gloves,<br />

operation<br />

eye protection, overalls.<br />

Elevated<br />

Industrial -SU3 Semi-automated metal CS83 Indoor. Continuous; LEV canopy; product PROC 17 - >4 hours, ambient<br />

temperature<br />

rolling/forming<br />

daily; 8hour; elevated recovery and<br />

lubrication at high temp.<br />

therefore applied<br />

temperature (120 deg recirculation; Gloves, energy conditions<br />

value for medium<br />

C) from rolling<br />

eye protection, overalls. and in partly open<br />

volatility<br />

operation; manual<br />

process<br />

intervention<br />

Vapour phase. Industrial -SU3 >4 hours, ambient<br />

temp.<br />

Industrial -SU3 Oil/water-based PROC4 Open >4 hours, ambient<br />

batch process (with temp.<br />

sampling)<br />

With LEV 5 0.69<br />

No LEV 5 6.86<br />

No LEV 5 6.86<br />

No LEV 5 13.71<br />

No LEV 5 6.86<br />

No LEV 3 0.34<br />

With LEV 50 1.37<br />

No LEV 1 6.86<br />

With LEV 20 2.14<br />

With LEV 100 2.14<br />

No LEV 5 27.43<br />

With LEV 1 0.14<br />

With LEV 50 1.37<br />

With LEV 50 1.37<br />

With LEV 5 0.69


Note: differentiated Industrial -SU3 Equipment cleaning CS39 Indoor, Daily; 1 - 4 Enclosed transfer, clear PROC8b<br />

dedicated and nondedicated<br />

facility for<br />

Dedicated facility CS81<br />

retain drainings in sealed discharging to/from<br />

and maintenance -<br />

hours; ambient temp. lines prior to decoupling; Dedicated<br />

equipment cleaning -<br />

storage pending vessels<br />

both identified by<br />

disposal. PPE<br />

ATIEL - combined in<br />

narrative as CS39<br />

Industrial -SU3 Equipment cleaning<br />

Indoor, Daily; 1 - 4 Collect waste and retain PROC8a<br />

and maintenance -Nondedicated<br />

facility<br />

storage pending to/from vessels<br />

hours; ambient temp. drainings in sealed Discharging<br />

(CS82)<br />

disposal. PPE<br />

Industrial -SU3 Material Storage CS67 Continuous; daily; 8hour Enclosed process; PROC1/2 Closed<br />

closed/semi-closed continuous process<br />

sampling point<br />

(sometimes with<br />

sampling)<br />

Use as binders and Industrial -SU3 Bulk transfers from CS3 Daily; 1 - 4 hours; Enclosed transfers, clear PROCs 1-3<br />

release agents<br />

storage to mixing<br />

ambient temp. lines prior to decoupling contained<br />

vessels<br />

processes<br />

Industrial -SU3 Transfers to mixing CS8 Daily; 15 mins - 1 hour; Pumped transfer from PROC8b<br />

vessels from drums<br />

ambient temp<br />

drum to holding tanks. Discharging<br />

to/from vessels<br />

Industrial -SU3 Mixing / blending of CS29 Daily; >4 hours Enclosed or ventilated PROC3 Closed<br />

foundry sands with<br />

mixing vessel<br />

batch process (with<br />

binder<br />

sampling)<br />

Industrial -SU3 Mixing / blending of CS30 Daily; >4 hours Enhanced general PROC4 Open<br />

foundry sands with<br />

ventilation<br />

batch process (with<br />

binder<br />

sampling)<br />

Industrial -SU3 Forming moulds from CS31 Daily; >4 hours, ambient PPE PROC14<br />

foundary sand<br />

temp<br />

Production by<br />

tabletting,<br />

compression,<br />

Combine in narrative Industrial -SU3 Emissions from casting CS32, CS108 Daily; 1 - 4 hours; Enhanced general PROC6 Open<br />

into moulds<br />

elevated temp.sufficient ventilation, PPE processing at<br />

to create fume<br />

elevated<br />

temperature<br />

Industrial -SU3 Emissions from casting CS32, CS108 Daily; 1 - 4 hours; Enhanced general PROC6 Open<br />

into moulds (vapour<br />

elevated temp.sufficient ventilation, PPE processing at<br />

phase)<br />

to create fume<br />

elevated<br />

temperature<br />

Combine in narrative Industrial -SU3 Applying release agent CS10, CS33 Daily; 1 - 4 hours; Enclosed or ventilated PROC7<br />

to moulds and<br />

ambient temp. production line. Application by<br />

shuttering<br />

Automation.<br />

spraying<br />

Industrial -SU3 Applying release agent CS10, CS33 Daily; 1 - 4 hours; Enclosed or ventilated PROC7<br />

to moulds and<br />

ambient temp. production line. Application by<br />

shuttering (vapour<br />

Automation.<br />

spraying<br />

phase)<br />

Industrial -SU3 Applying release agent CS13 Daily; 1 - 4 hours; PPE PROC10 Roller<br />

to moulds and<br />

ambient temp.<br />

application and<br />

shuttering<br />

brushing<br />

Combine in narrative Industrial -SU3 Applying release agent CS10, CS34 Daily; 1 - 4 hours; PPE, face mask PROC7<br />

to moulds and<br />

ambient temp.<br />

Application by<br />

shuttering<br />

spraying<br />

Industrial -SU3 Applying release agent CS10, CS34 Daily; 1 - 4 hours; PPE, face mask PROC7<br />

to moulds and<br />

ambient temp.<br />

Application by<br />

shuttering (vapours)<br />

spraying<br />

Industrial - maintenance of CS5 Daily; 1-4 hours, work methods, drain prior PROC8a<br />

SU10 equipment<br />

ambient<br />

to work, retain spills, Discharging<br />

gloves<br />

to/from vessels<br />

(non-dedicated)<br />

Industrial -SU3 Storage CS67 Daily; 8 hrs; ambient samples collected at PROC1/2 Closed<br />

temp;<br />

dedicated sample point continuous process<br />

(sometimes with<br />

li )<br />

Oil and gas field Industrial - SU3 Bulk transfers from tote CS14 Daily; 15 - 1 hour; Enclosed transfers, clear PROCs 1-3<br />

chemicals<br />

tanks and supply<br />

product temp (ambient). lines prior to decoupling contained<br />

vessels<br />

processes<br />

Industrial - SU3 Charge from drums CS45 Daily; 15 mins - 1 hour; Pumped transfer from PROC8b<br />

product temp (ambient) drum to holding tanks. Discharging<br />

to/from vessels<br />

(dedicated)<br />

Industrial - SU3 Drilling mud (re-) CS512 Daily; 1-4 hour; product Closed equipment, PROC3 Closed<br />

formulation<br />

temp (ambient); indoor enclosed or vented batch process with<br />

sampling points sampling<br />

Industrial - SU3 Drill floor operations CS513 Daily; 1-4 hour per PPE PROC4 Batch<br />

operator; product temp<br />

process with<br />

(ambient), outdoors<br />

exposure<br />

Combine Industrial - SU3 Operation of solids CS514 Daily; >4 hours; indoor; Local exhaust ventilation PROC4 Batch<br />

filtering equipment<br />

product temperature<br />

process with<br />

elevated temperature<br />

approx. 60 dC<br />

exposure<br />

> 4 hours daily;<br />

ambient temp.<br />

> 4 hours daily;<br />

ambient temp.<br />

daily; ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

> 4 hours daily;<br />

ambient temp.<br />

> 4 hours daily;<br />

ambient temp.<br />

> 4 hours daily;<br />

ambient temp.<br />

> 4 hours daily;<br />

ambient temp.<br />

> 4 hours daily;<br />

ambient temp.<br />

> 4 hours daily;<br />

ambient temp.<br />

> 4 hours daily;<br />

ambient temp.<br />

> 4 hours; daily;<br />

ambient temp.<br />

> 4 hours daily;<br />

ambient temp.<br />

> 4 hours daily;<br />

ambient temp.<br />

1-4 hours,<br />

ambient temp.<br />

daily; ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

> 4 hours daily;<br />

ambient temp.<br />

> 4 hours daily;<br />

ambient temp.<br />

> 4 hours; daily;<br />

elevated product<br />

temperature<br />

No LEV 5 13.71<br />

No LEV 5 13.71<br />

outdoor activity 0.5 0.14<br />

No LEV 3 1.37<br />

With LEV 5 6.86<br />

No LEV 3 1.37<br />

No LEV 5 13.71<br />

No LEV 5 3.43<br />

With LEV 25 1.37<br />

With LEV 5 1.37<br />

With LEV 20 2.14<br />

With LEV 100 2.14<br />

With LEV 5 27.43<br />

No LEV 100 42.86<br />

No LEV 100 42.86<br />

No LEV 5 13.71<br />

outdoor activity 0.5 0.14<br />

No LEV 3 1.37<br />

With LEV 5 6.86<br />

No LEV 3 1.37<br />

No LEV 5 13.71<br />

With LEV. 25 0.69


Industrial - SU3 Operation of solids CS514 PROC4 Batch > 4 hours; daily; With LEV. 20 0.69<br />

filtering equipment -<br />

process with elevated product<br />

vapour phase<br />

exposure temperature<br />

exposures<br />

Industrial - SU3 Cleaning of solids CS47, CS514 Daily; 15 - 1 hour; Local exhaust ventilation PROC8a > 4 hours; daily No LEV 5 13.71<br />

filtering equipment<br />

product temp (ambient).<br />

Discharging<br />

to/from vessels<br />

(non-dedicated)<br />

Industrial - SU3 Treatment and disposal CS515 Daily; 1-4 hour per Local exhaust ventilation PROC4 Batch > 4 hours; daily With LEV. 5 0.69<br />

of filtered solids<br />

operator; product temp<br />

process with<br />

(ambient), outdoors;<br />

exposure<br />

Base oil content of<br />

cuttings 1-5%<br />

Industrial - SU3 Sample collection CS2 Daily; 4 hours daily; No LEV 3 1.37<br />

temp (ambient). or ventilated sampling batch process (with ambient temp.<br />

points<br />

sampling)<br />

Industrial - SU3 In-line injection (of CS15 Daily; >4 hours, product<br />

PROC1 and >4 hours, ambient No LEV 0.5 1.37<br />

process chemicals) by<br />

temp (ambient); Outdoor<br />

PROC2 Closed temp.<br />

fixed dosing pumps<br />

continuous process<br />

(with sampling)<br />

Industrial - SU3 Application (of process CS9 Daily; 4 hours, product Local exhaust<br />

PROC4 Batch > 4 hours daily; No LEV 5 13.71<br />

operations<br />

temp (ambient); Outdoor ventilation; or Outdoor process with ambient temp.<br />

exposure<br />

Industrial - SU3 Clean down and CS39 Daily; 15 min - 1 hour; Enclosed lines; retain PROC8a Nondedicated<br />

ambient temp.<br />

1-4 hours, No LEV 5 13.71<br />

Maintenance<br />

product temp (ambient); wash down in sealed<br />

collection of line waste storage pending disposal discharging to/from<br />

in container<br />

or use as recycled vessels<br />

material for subsequent<br />

formulation. PPE.<br />

Industrial - SU3 General process CS15 Continuous; daily; 8hour Enclosed process; PROC1 and >4 hours, ambient No LEV 0.5 1.37<br />

exposures from<br />

closed/semi-closed PROC2 Closed temp.<br />

enclosed processes<br />

sampling point<br />

continuous process<br />

(with sampling)<br />

Industrial - SU3 Storage CS67 Continuous; daily; 8hour; Enclosed process; PROC1 and daily; ambient outdoor activity 0.5 0.14<br />

product temp. (ambient) closed/semi-closed PROC2 Closed temp.<br />

sampling point<br />

continuous process<br />

(with sampling)<br />

Oil and gas field Professional - Bulk transfers from tote CS14 Daily; 15 - 1 hour; Enclosed transfers, clear PROC8b >4 hours, ambient No LEV 5 6.86<br />

chemicals<br />

SU22 tanks and supply<br />

product temp (ambient). lines prior to decoupling Discharging temp.<br />

vessels<br />

to/from vessels<br />

(dedicated)<br />

Professional - Charge from drums CS45 Daily; 15 mins - 1 hour; Pumped transfer from PROC8b<br />

daily; ambient No LEV 5 6.86<br />

SU22<br />

product temp (ambient) drum to holding tanks. Discharging temp.<br />

to/from vessels<br />

(dedicated)<br />

Professional - Drilling mud (re-) CS512 Daily; 1-4 hour; product Closed equipment, PROC3 Closed > 4 hours daily; No LEV 1 1.37<br />

SU22 formulation<br />

temp (ambient); indoor enclosed or vented batch process with ambient temp.<br />

sampling points sampling<br />

Professional - Drilling head operations CS513 Daily; 1-4 hour per<br />

PROC4 Batch > 4 hours daily; With LEV 5 6.86<br />

SU22<br />

operator; product temp<br />

process with ambient temp.<br />

(ambient), outdoors<br />

exposure<br />

Combine in narrative Professional - Operation of solids CS514 Daily; >4 hours; indoor; Local exhaust ventilation PROC4 Batch > 4 hours; daily; With LEV.<br />

50 0.69<br />

SU22 filtering equipment -<br />

product temperature<br />

process with elevated product<br />

aerosol exposures ..<br />

approx. 60 dC<br />

exposure temperature<br />

Elevated temperatures<br />

Operation of solids CS514 100 0.69<br />

filtering equipment -<br />

vapour phase<br />

exposures<br />

Professional - Cleaning of solids CS47, CS514 Daily; 15 - 1 hour; Local exhaust ventilation PROC8a Nondedicated<br />

> 4 hours; daily No LEV 5 13.71<br />

SU22 filtering equipment<br />

product temp (ambient).<br />

discharging to/from<br />

vessels


Professional - Treatment and disposal CS515 Daily; 1-4 hour per Local exhaust ventilation PROC4 Batch<br />

SU22 of filtered solids<br />

operator; product temp<br />

process with<br />

(ambient), outdoors;<br />

exposure<br />

Base oil content 1-5%<br />

Professional - Sample collection CS2 Daily; 4 hours, product Outdoor PROC1 and<br />

SU22 process chemicals) by<br />

temp (ambient)<br />

PROC2 Closed<br />

fixed dosing pumps<br />

continuous process<br />

(with sampling)<br />

Professional - Application (of process CS9 Daily; 4 hours, product Local exhaust<br />

PROC4 Batch<br />

SU22 operations<br />

temp (ambient) ventilation; or Outdoor process with<br />

exposure<br />

Professional - Clean down and CS39 Daily; 15 min - 1 hour; Enclosed lines; retain PROC8a Nondedicated<br />

SU22 Maintenance<br />

product temp (ambient); wash down in sealed<br />

collection of line waste storage pending disposal discharging to/from<br />

in container<br />

or use as recycled vessels<br />

Professional - General process CS67 Continuous; daily; 8hour Enclosed t i l f process; b t PROC1 and<br />

SU22 exposures from<br />

closed/semi-closed PROC2 Closed<br />

enclosed processes<br />

sampling point<br />

continuous process<br />

(with sampling)<br />

Professional - Storage CS55 Daily; 8 hrs; ambient samples collected at PROC1/2 Closed<br />

SU22<br />

temp;<br />

dedicated sample point continuous process<br />

(sometimes with<br />

li )<br />

Use in road and Industrial -SU3 Closed system CS15 Continuous; daily; 15 - 1 Closed processes PROC1 Closed<br />

construction<br />

applications,<br />

hour; product temp<br />

process (no<br />

applications<br />

(ambient); outdoors<br />

sampling)<br />

Combine Industrial -SU3 Closed system CS15 Continuous; daily; 15 Enclosed process; PROC2 Closed<br />

applications<br />

mins - 1 hour, outdoors Outside location; continuous process<br />

closed/semi-closed (with sampling)<br />

sampling point<br />

Industrial -SU3 Closed system CS29 Daily; 15 - 1 hour; Closed processes PROC3 Closed<br />

applications<br />

product temp (ambient)<br />

batch process (with<br />

sampling)<br />

Combine Industrial -SU3 Spraying CS25 Daily; >4 hours, product Enclosed or ventilated PROC7 Spraying<br />

temp (>100 dC) production line. industrial setting<br />

Automation.<br />

Industrial -SU3 Spraying CS25 Daily; >4 hours, product Enclosed or ventilated PROC7 Spraying<br />

temp (>100 dC) production line. industrial setting<br />

Automation.<br />

Industrial -SU3 Material transfers CS8, CS82 Daily; >4 hours, product Pumped transfer - nondedicated<br />

systems Discharging<br />

PROC8a<br />

temp (ambient)<br />

to/from vessels<br />

(non-dedicated)<br />

Industrial -SU3 Material transfers CS8, CS81 Daily; >4 hours, product Pumped transfer - PROC8b<br />

temp (ambient) dedicated systems Dedicated<br />

discharging to/from<br />

vessels<br />

Industrial -SU3 Rolling, brushing CS13, CS111 Daily; >4 hours, product Work areas with extract PROC10<br />

temp (>100 dC) ventilation<br />

Application by<br />

rolling, brushing<br />

> 4 hours; daily With LEV. 5 0.69<br />

> 4 hours daily;<br />

ambient temp.<br />

No LEV 3 1.37<br />

>4 hours, ambient<br />

temp.<br />

No LEV 3 1.37<br />

>4 hours; ambient<br />

temp.<br />

No LEV 5 13.71<br />

> 4 hours daily;<br />

ambient temp.<br />

With LEV 5 6.86<br />

1-4 hours,<br />

ambient temp.<br />

No LEV 5 13.71<br />

>4 hours, ambient<br />

temp.<br />

No LEV 3 1.37<br />

daily; ambient<br />

temp.<br />

outdoor activity 1 1.37<br />

>4 hours, ambient<br />

temp.<br />

Closed process. 0.01 0.34<br />

>4 hours, ambient<br />

temp.<br />

No LEV 1 1.37<br />

>4 hours, ambient<br />

temp.<br />

No LEV 1 0.34<br />

daily; slightly With LEV 20 2.14<br />

elevated product<br />

temp.<br />

daily; vapour<br />

phase.<br />

With LEV 100 2.14<br />

daily; ambient<br />

temp.<br />

No LEV 5 13.71<br />

daily; ambient<br />

temp.<br />

No LEV 5 6.86<br />

daily; elevated<br />

product temp.<br />

With LEV 50 1.37


Industrial -SU3 Rolling, brushing CS13 Daily; >4 hours, product Work areas with extract PROC10 Daily, ambient<br />

temp ambient<br />

ventilation<br />

Application by temperature,<br />

rolling, brushing indoor<br />

Comnbine<br />

Industrial -SU3 Dipping, pouring CS4 Daily; >4 hours, product Work areas with extract PROC13 daily; elevated<br />

temp (>100 dC) ventilation<br />

Application by product temp.<br />

dipping, pouring<br />

Industrial -SU3 Dipping, pouring CS4 Daily; >4 hours, product Work areas with extract PROC13 Daily, ambient<br />

temp ambient<br />

ventilation<br />

Application by temperature,<br />

dipping, pouring indoor<br />

Industrial - maintenance of CS5 Daily; 1-4 hours, work methods, drain prior PROC8a 1-4 hours,<br />

SU10 equipment<br />

ambient<br />

to work, retain spills, Discharging ambient temp.<br />

gloves<br />

to/from vessels<br />

(non-dedicated)<br />

Industrial -SU3 Storage CS67 Daily; 8 hrs; ambient samples collected at PROC1/2 Closed daily; ambient<br />

temp;<br />

dedicated sample point continuous process temp.<br />

(sometimes with<br />

li )<br />

Use in road and Professional - Material transfers, e.g. CS8 . Plus Daily; >4 hours, product Product transfer - nondedicated<br />

systems Discharging temp.<br />

PROC8a >4 hours, ambient<br />

construction SU22 charge from drums Nondedicated<br />

to/from vessels<br />

temp (ambient)<br />

applications<br />

facility<br />

(non-dedicated)<br />

(CS82)<br />

Professional - Material transfers CS8 . Plus Daily; >4 hours, product Product transfer - PROC8b >4 hours, ambient<br />

SU22<br />

Dedicated temp (ambient) dedicated systems Dedicated temp.<br />

facility<br />

discharging to/from<br />

(CS81)<br />

vessels<br />

Professional - Rolling, brushing CS13 Daily; >4 hours, product Outdoor PROC10 >4 hours, ambient<br />

SU22<br />

temp (ambient)<br />

Application by temp.<br />

rolling, brushing<br />

combined Professional - Machine application of CS25 Daily; >4 hours, product Enclosed machinery, PROC11<br />

daily; ambient<br />

SU22 bitumen cutbacks Spraying/ temp (ambient); operator remote from Application by temp.<br />

fogging by outdoors, 50% gasoil spray head, PPE spraying<br />

machine<br />

application<br />

Professional - Machine application of CS25<br />

PROC11<br />

daily; ambient<br />

SU22 bitumen cutbacks Spraying/<br />

Application by temp.<br />

vapours<br />

fogging by<br />

spraying<br />

machine<br />

application<br />

Professional - Dipping, pouring CS4 Daily; >4 hours, product Outdoor PROC13<br />

daily; ambient<br />

SU22<br />

temp (ambient)<br />

Application by temp.<br />

dipping, pouring<br />

Professional - maintenance of CS5 Daily; 1-4 hours, work methods, drain prior PROC8a 1-4 hours,<br />

SU22 equipment<br />

ambient<br />

to work, retain spills, Discharging ambient temp.<br />

gloves<br />

to/from vessels<br />

(non-dedicated)<br />

Professional - Storage CS55 Daily; 8 hrs; ambient samples collected at PROC1/2 Closed daily; ambient<br />

SU22<br />

temp;<br />

dedicated sample point continuous process temp.<br />

(sometimes with<br />

sampling)<br />

Functional fluids Industrial - Bulk transfers to/from CS14 Daily; 15 min - 1 hour; Enclosed transfers, clear PROCS1-3 > 4 hours; daily;<br />

SU10 storage<br />

ambient temp<br />

lines prior to decoupling<br />

ambient temp.<br />

Industrial - Transfers from drums CS8 Daily; 15 min - 1 hour; Pumped transfer from PROC8b > 4 hours; daily;<br />

SU10 to filling machinery<br />

ambient temp<br />

drum to holding tanks. Discharging ambient temp.<br />

to/from vessels<br />

Industrial - filling articles from CS84, CS107 Daily; >4 hours, ambient enclosed operations, size PROC 9 Transfer > 4 hours; daily;<br />

SU10 predominantly enclosed<br />

of openings minimised of chemicals into ambient temp.<br />

machines<br />

small containers<br />

Industrial - manual filling of CS45 Daily; 1-4 hours, careful pouring, worker PROC8a 1-4 hours,<br />

SU10 machines<br />

ambient<br />

instructions<br />

Discharging ambient temp.<br />

to/from vessels<br />

(non-dedicated)<br />

Industrial - operation of closed CS15 Daily; >4 hours, ambient None. PROC2 > 4 hours; daily;<br />

SU10 equipment containing<br />

ambient temp.<br />

functional fluids<br />

Combine in narrative Industrial - operation of open CS16 Daily; >4 hours, ambient Well ventilated area. PROC 4 Use in > 4 hours; daily;<br />

SU10 equipment containing<br />

batch and other ambient temp.<br />

functional fluids<br />

process<br />

With LEV 5 27.43<br />

With LEV 5 13.71<br />

With LEV 5 13.71<br />

No LEV 5 13.71<br />

outdoor activity 0.5 0.14<br />

No LEV 5 13.71<br />

No LEV 5 6.86<br />

No LEV 5 27.43<br />

with LEV 20 2.14<br />

with LEV 100 2.14<br />

No LEV 5 13.71<br />

No LEV 5 13.71<br />

outdoor activity 1 1.37<br />

No LEV 1 1.37<br />

No LEV 5 6.86<br />

With LEV 5 0.69<br />

No LEV 5 13.71<br />

No LEV 0.5 1.37<br />

No LEV 5 6.86


Industrial - operation of open CS16 Daily; >4 hours, ambient None. PROC 4 Use in > 4 hours; daily;<br />

SU10 equipment containing<br />

(product at 80oC)<br />

batch and other elevated temp.<br />

functional fluids at<br />

process<br />

elevated temperatures<br />

Industrial - operation of open CS16 Daily; >4 hours, ambient None. PROC 4 Use in > 4 hours; daily;<br />

SU10 equipment containing<br />

(product at 80oC)<br />

batch and other elevated temp.<br />

functional fluids at<br />

process<br />

elevated temperatures<br />

vapour phase<br />

Industrial - Re-work on off CS19 Daily; >4 hours, ambient work methods, drain prior PROC9 - Transfer 1-4 hours,<br />

SU10 specification articles<br />

to work, retain spills of chemicals into ambient temp.<br />

small containers<br />

Industrial - maintenance of CS5 Daily; 1-4 hours, work methods, drain prior PROC8a 1-4 hours,<br />

SU10 equipment<br />

ambient<br />

to work, retain spills, Discharging ambient temp.<br />

gloves<br />

to/from vessels<br />

(non-dedicated)<br />

Industrial -SU3 Storage CS67 Daily; 8 hrs; ambient samples collected at PROC1/2 Closed daily; ambient<br />

temp;<br />

dedicated sample point continuous process temp.<br />

(sometimes with<br />

li )<br />

Use in Explosive Professional - Bulk transfers from CS14 Daily; 1 - 4 hours; Enclosed transfers, clear PROC3 Closed 1-4 hours,<br />

manufacture and SU22 road tankers<br />

ambient temp. lines prior to decoupling batch process (with ambient temp.<br />

use<br />

sampling)<br />

Professional - Charge from drums CS8 Daily; 15 mins - 1 hour; Pumped transfer from PROC8a 1-4 hours,<br />

SU22<br />

ambient temp<br />

drum to holding tanks. Discharging ambient temp.<br />

to/from vessels<br />

Combine in narrative Professional - Mixing / blending CS23, CS108 Daily; 1 - 4 hours; Enclosed or ventilated PROC5 Mixing & 1-4 hours,<br />

SU22<br />

ambient temp. mixing vessel<br />

blending<br />

ambient temp.<br />

Professional - Mixing / blending CS23, CS108 Daily; 1 - 4 hours; Enclosed or ventilated PROC5 Mixing & 1-4 hours,<br />

SU22 (vapour phase)<br />

ambient temp. mixing vessel<br />

blendingg) ambient temp.<br />

Professional - Mixing / blending CS23, CS107 Daily; 1 - 4 hours; Enclosed or ventilated PROC3 Closed 1-4 hours,<br />

SU22 (closed system)<br />

ambient temp. mixing vessel<br />

batch process (with ambient temp.<br />

sampling)<br />

Professional - Bulk transfers of CS3 Daily; 15 - 1 hour; Enclosed transfers to PROC8b 4 hours; daily;<br />

SU10 transfers to/from<br />

ambient temp<br />

minimise spills<br />

ambient temp.<br />

storage e.g. IBCs, big<br />

bags<br />

Industrial - In-line weighing of CS91 Daily; 15 min - 1 hour; Enclosed activity PROCs 1, 2 > 4 hours; daily;<br />

SU10 additives<br />

ambient temp<br />

ambient temp.<br />

Industrial - small scale weighing of CS90 Daily; 15 min - 1 hour; LEV; minimise spillages; PROC9 1-4 hours,<br />

SU10 additives<br />

ambient temp<br />

operator training<br />

ambient temp.<br />

Combine in narrative Industrial - small scale mixing of CS92 Daily; 15 min - 1 hour; LEV; minimise spillages; PROCs 3, 4 > 4 hours; daily;<br />

SU10 additives<br />

ambient temp<br />

ambient temp.<br />

Industrial - batch pre-mixing of CS92 Daily; 1-4 hours; LEV; minimise spillages; PROC5 1-4 hours,<br />

SU10 additives<br />

ambient temp<br />

ambient temp.<br />

Industrial - transfer of additives to CS3 Daily; 15 min - 1 hour; Enclosed activity PROC 8b, 9 1-4 hours,<br />

SU10 calendars and<br />

ambient temp<br />

ambient temp.<br />

Banburys<br />

Combine in narrative Industrial - Calendaring activities CS64 Daily; >4 hours, LEV; minimise area/size PROC6 - > 4 hours; daily;<br />

SU10 (incl banbury)<br />

elevated temperature of openings<br />

Calendering ambient temp.<br />

operations<br />

Industrial - Calendaring activities CS64 Daily; >4 hours, LEV; minimise area/size PROC6 - > 4 hours; daily;<br />

SU10 (vapour phase)<br />

elevated temperature of openings<br />

Calendering ambient temp.<br />

operations<br />

Industrial - Pressing raw rubber CS73 Daily; 1-4 hours; Good GV PROC 14 - > 4 hours; daily;<br />

SU10 blanks<br />

ambient temp<br />

Production of ambient temp.<br />

preparations or<br />

articles by<br />

tabletting,<br />

compression,<br />

extrusion,<br />

pelletisation<br />

With LEV 25 0.69<br />

With LEV 20 0.69<br />

No LEV 5 6.86<br />

No LEV 5 13.71<br />

outdoor activity 0.5 0.14<br />

No LEV 1 0.34<br />

No LEV 5 13.71<br />

No LEV 5 6.86<br />

No LEV 10 4.12<br />

No LEV 1 0.34<br />

With LEV 5 6.86<br />

No LEV 5 6.86<br />

No LEV 5 13.71<br />

No LEV 5 13.71<br />

outdoor activity 1 1.37<br />

No LEV 0.5 1.37<br />

No LEV 5 6.86<br />

No LEV 0.5 6.86<br />

No LEV 5 6.86<br />

No LEV 5 6.86<br />

No LEV 5 6.86<br />

With LEV 5 0.69<br />

With LEV 5 0.69<br />

With LEV 50 0.69<br />

No LEV 1 3.43


Industrial - Rubber refreshing CS112 Daily; 1-4 hours; Good GV PROC7 > 4 hours; daily;<br />

SU10 during article build-up<br />

ambient temp<br />

ambient temp.<br />

Combine in narrative Industrial - Vulcanising (automated CS70 Daily; >4 hours, LEV at emission points; PROC6 - > 4 hours; daily;<br />

SU10 and semi-automated)<br />

elevated temperature minimise area/size of Calendering ambient temp.<br />

elevated temperature<br />

openings; good GV operations<br />

Industrial - Vulcanising (automated CS70 Daily; >4 hours, LEV at emission points; PROC6 - > 4 hours; daily;<br />

SU10 and semi-automated)<br />

elevated temperature minimise area/size of Calendering ambient temp.<br />

elevated temperature,<br />

openings; good GV operations<br />

vapours<br />

Industrial - Vulcanising (manual) CS70 Daily; >4 hours, LEV at emission points; PROC6 - > 4 hours; daily;<br />

SU10 elevated temperature<br />

elevated temperature minimise area/size of Calendering ambient temp.<br />

openings; good GV operations<br />

Industrial - Vulcanising (manual) CS70 Daily; >4 hours, LEV at emission points; PROC6 - > 4 hours; daily;<br />

SU10 elevated temperature,<br />

elevated temperature minimise area/size of Calendering ambient temp.<br />

vapours<br />

openings; good GV operations<br />

Industrial - Cooling of cured CS71 > 4 hours; daily; ambient Extract ventilation/hood PROC6 - > 4 hours; daily;<br />

SU10 articles (elevated<br />

temp.<br />

Calendering ambient temp.<br />

temperatures)<br />

operations<br />

Industrial - production of articles by CS113 > 4 hours; daily; ambient Extract ventilation/hood PROC13 > 4 hours; daily;<br />

SU10 dipping & pouring<br />

temp.<br />

ambient temp.<br />

Industrial - build up and finishing of CS102 > 4 hours; daily; ambient good ventilation PROC21 > 4 hours; daily;<br />

SU10 articles (dermal<br />

temp.<br />

ambient temp.<br />

exposures)<br />

Industrial - Laboratory activities CS36 Daily; 8 hours, ambient<br />

ambient temp; collection wash down in sealed<br />

of line waste in container storage pending disposal discharging to/from<br />

or use as recycled vessels<br />

material for subsequent<br />

formulation. PPE.<br />

Industrial -SU8 Storage CS67 > 4 hours; daily; ambient good ventilation PROC 1/2 > 4 hours; daily;<br />

temp.<br />

ambient temp.<br />

Water treatment Industrial -SU3 Bulk transfers (e.g. CS14 Continuous; daily; 8hour Enclosed transfers, clear PROC 2 Dedicated daily; ambient<br />

applications<br />

from IBCs)<br />

lines prior to decoupling discharging to/from temp.<br />

vessels<br />

Industrial -SU3 Metered charge from CS8 Daily; 15 mins - 1 hour; Pumped transfer from PROC8b<br />

daily; ambient<br />

drums<br />

ambient temp<br />

drum<br />

Discharging temp.<br />

to/from vessels<br />

Industrial -SU3 General process CS15 Batch process; daily; Closed equipment, PROC 3 >4 hours, ambient<br />

exposures from closed<br />

ambient temp. enclosed or vented<br />

temp.<br />

processes<br />

transfer points<br />

Industrial -SU3 General process CS16 Batch process; daily; Closed equipment, PROC4 Closed >4 hours, ambient<br />

exposures from open<br />

ambient temp. enclosed or vented batch process (with temp.<br />

processes<br />

transfer points<br />

sampling)<br />

Industrial -SU3 Manual pouring of CS9 Daily;


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

Appendix 2.b. Qualitative Exposure Estimation<br />

Qualitative Exposure Estimation for R20 substances<br />

There is a difference of at least a factor of 30 between the short-term (when expressed over 15<br />

minutes) and the long term DNELs (when expressed over 8 hours)), i.e. the long-term DNEL is lower<br />

by at least 30x. In these circumstances a quantitative assessment of short-term exposure assessment<br />

has not be undertaken based on the following rationale:<br />

- For any single short term (ST) event to adversely influence the implementation of the long term<br />

(LT) reference value (DNEL when available) in the CSA, then the single ST exposure must be<br />

~30x greater than the LT DNEL. Where the ST exposure might be repeated during the course of<br />

an activity, then the contribution made by the ST exposures to the LT average would clearly be<br />

greater. Hence, provided daily average exposures are controlled to within the LT reference value,<br />

then this will also account for any potential risks arising from ST exposure.<br />

Qualitative Exposure Estimation for R38 substances<br />

This general qualitative CSA approach aims to reduce/avoid contact or incidents with the substance.<br />

However, implementation of risk management measures (RMMs) and operational conditions (OCs)<br />

need to be proportional to the degree of concern for the health hazard presented by the substance.<br />

Exposures should be controlled to at least the levels that represent an acceptable level of risk, i.e.<br />

implementation of the chosen RMMs will ensure that the likelihood of an event occurring due to the<br />

hazard of the substance is negligible, and the risk is considered to be controlled to a level of no<br />

concern.<br />

For skin irritation a qualitative risk characterisation was conducted. Handling and storage risk<br />

management measures that are generally identified for skin irritation and identified in the Table given<br />

in Appendix 3.b.<br />

A review of these RMMs indicates that if the user complies with the following generic statements, risks<br />

due to skin irritation can be considered to be adequately controlled:<br />

E3: Avoid direct skin contact with product. Identify potential areas for indirect skin contact.<br />

Wear gloves (tested to EN374) if direct hand contact with substance likely. Clean up<br />

contamination/spills as soon as they occur. Wash off skin contamination immediately. Provide<br />

basic employee training to prevent / minimise exposures and to report any skin effects that<br />

may develop.<br />

Plus (where there is the potential for additional and significant aerosol exposure, e.g. associated with<br />

PROCs 7, 11, 17 or 18):<br />

E4: Other skin protection measures such as impervious suits and face shields may be<br />

required during high dispersion activities which are likely to lead to substantial aerosol<br />

release, e.g. spraying.<br />

Qualitative Exposure Estimation for R65 substances<br />

‘Aspiration’ means the entry of a liquid substance directly into the trachea and lower respiratory tract.<br />

Aspiration of hydrocarbon substances can result in severe acute effects such as chemical<br />

pneumonitis, varying degrees of pulmonary injury or death. This property relates to the potential for<br />

low viscosity material to spread quickly into the deep lung and cause severe pulmonary tissue<br />

damage. Classification of a hydrocarbon substance for aspiration hazard is made on the basis of<br />

reliable human evidence or on the basis of physical properties.<br />

The R65 risk phrase (Harmful: may cause lung damage if swallowed) relates to potential for<br />

aspiration, a non-quantifiable hazard determined by physico-chemical properties (i.e. viscosity) that<br />

can occur during ingestion and also if it is vomited following ingestion. A DNEL cannot be derived.<br />

This general qualitative CSA approach aims to reduce/avoid contact or incidents with the substance.<br />

However, implementation of risk management measures (RMMs) and operational conditions (OCs)<br />

need to be proportional to the degree of concern for the health hazard presented by the substance.<br />

Exposures should be controlled to at least the levels that represent an acceptable level of risk such<br />

that the implementation of the chosen RMMs will ensure that the likelihood of an event occurring due<br />

to the substance hazard is negligible, and the risk is considered to be controlled to a level of no<br />

concern.<br />

There are no routine anticipated exposures by ingestion related to any supported uses of the<br />

2010-07-30 CSR Appendix 2


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

substance. The risk arising from aspiration hazard is solely related to the physico-chemical properties<br />

of the substance. The risk can therefore be controlled by implementing risk management measures<br />

tailored to this specific risk. For any substance, classified as R65, these measures should be<br />

communicated via the safety data sheet by use of the following phrase:<br />

<br />

Do not ingest. If swallowed then seek immediate medical assistance.<br />

Furthermore it should be noted that where the substance is sold for use in lamp oils and grill lighters<br />

by the general public (Consumers), then these must be visibly, legibly and indelibly marked as<br />

follows, in accordance with REACH Annex XVII update of 1.4.2010:<br />

- Keep lamps filled with this liquid out of the reach of children.<br />

- Just a sip of lamp oil – or even sucking the wick of lamps may lead to life threatening lung<br />

damage.<br />

2010-07-30 CSR Appendix 2


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

Appendix 2.c.<br />

Consumer Exposure Estimation<br />

2010-07-30 CSR Appendix 2


This tool is provided for informational purposes only and may be used at the user's<br />

own risk. Consequently you should not act, or refrain from acting, based solely on<br />

the information provided within this tool. This is intended to be a screening tool and<br />

is not a substitute for and should not be relied upon in place of appropriate technical<br />

advice, more refined knowledge of consumer exposure information, or common<br />

sense.<br />

Gasoils [vacuum] (VP>10Pa)<br />

DNEL bands<br />

Saturated<br />

Substance<br />

Molecular<br />

Physical<br />

Substance<br />

Gasoils<br />

Substance<br />

TRA volatility<br />

Vapour<br />

Band1 (very<br />

Name<br />

Weight<br />

5000.0 property liquid<br />

300000.0<br />

high<br />

605474396.8<br />

Properties:<br />

(vacuum)<br />

volatility (Pa):<br />

range<br />

Concentration<br />

low)<br />

(g/mole)<br />

(mg/m3)<br />

Common Thickness<br />

Density<br />

Life Cycle<br />

Parameter Layer (cm) 0.01 (g/cm3) 1.0 Body Weight 60.0 Inhalation Rate 1.4 fraction released to<br />

Stage / Sector<br />

Consumer<br />

Band2 (low)<br />

Defaults:<br />

(m3/hr)<br />

of Use<br />

(SU21)<br />

References<br />

dermal longterm<br />

systemic<br />

(mg/cm2)<br />

dermal local<br />

oral long-term<br />

inhalation<br />

inhalation long-term<br />

inhalation local<br />

Values<br />

10.0<br />

systemic<br />

systemic<br />

systemic (mg/m3)<br />

61.20<br />

(mg/m3)<br />

Band3 (Medium)<br />

(DNELs):<br />

(mg/kg/day)<br />

(mg/kg/day)<br />

(mg/kg/24 hr day)<br />

for 24 hr day<br />

inhalation dermal/ oral<br />

(mg/m3) (mg/kg/day)<br />

[0.5, 5)<br />

[0.1, 1)<br />

[5, 25)<br />

[1, 5)<br />

[25, 100)<br />

[5, 20)<br />

Band4 (High)<br />

>=100<br />

>=20<br />

Table 1: Mapping Consumer Uses in the Supply Chain Table 2b: Characterising the Risk - after refinement of exposure estimate<br />

all all<br />

dermal dermal dermal dermal oral inhalation inhalation inhalation inhalation inhalation inhalation inhalation<br />

Relevant Use Sentinel Product sub Category<br />

Generic Exposure Scenario TIER1 Predicted Exposure - ECETOC TRA based on defaults<br />

Risk Characterization based on defaults<br />

TIER1+ ECETOC TRA - exposure modifiers<br />

Product<br />

Sentinels<br />

dermal oral<br />

inhalation<br />

TRA Tier 1+ Predicted Exposure - ECETOC TRA - refined estimates<br />

Local Use<br />

On Day of Use<br />

TRA Tier1+ Risk Characterization - refined estimates<br />

Chronic Considering Yearly Use<br />

Frequency<br />

Operation Conditions (OCs) Risk Management Measures (RMMs)<br />

Risk Characterization - including RMMs<br />

when needed (substance Specific)<br />

TRA+ Predicted Exposure - including RMM<br />

when needed (substance specific)<br />

Chronic<br />

Predicted Predicted Oral Predicted Predicted Predicted Total Predicted<br />

Predicted Predicted Predicted Predicted Predicted Predicted Mean Inhalation Mean Inhalation Mean Inhalation Total RCR dermal RCR RCR systemic RCR systemic RCR systemic RCR systemic RCR systemic<br />

RMMs for communication - Consolidate into Indicator RCR RCR RCR Predicted Predicted Oral Predicted<br />

PCS Subcategories PEC PEC PEC DNEL Total RCR DNEL Total RCR DNEL Total RCR DNEL Total RCR<br />

Dermal Exposure Inhalation Inhalation Inhalation Exposure<br />

Dermal Dermal Dermal Oral Oral Inhalation Event Concentration Concentration Predicted local (based systemic (24hr TWA (all routes, (dermal, (inhalation, (all routes,<br />

GES or e-SDS<br />

for Basis of systemic systemic systemic (all Dermal Exposure Inhalation<br />

(dermal) (oral) (inhalation) BAND1<br />

BAND2<br />

BAND3<br />

BAND4<br />

Exposure (mg/kg/d) Exposure Exposure Exposure - upper (mg/kg/d)<br />

Dilution Factor<br />

Exposure, Exposure, Exposure, Exposure, Exposure, Exposure, Concentration (24hr TWA) on Yearly (mg/m3) Exposure on mg/cm2) (dermal, inhalation daily) chronic, based yearly, based chronic)<br />

REACH ADVISED: phrase [RMM code] Exposure (dermal, (inhalation routes) Exposure (mg/kg/d) Exposure<br />

(mg/kg/d)<br />

(mg/kg/d) (mg/m 3 ) bounded with SVC<br />

RCR (all<br />

Inhalation Factor (fraction Location<br />

incorporating<br />

RCR RCR (SVC-upper<br />

Frequency (events per<br />

Daily (mg/kg/d) Chronic Local daily Chronic daily (mg/m 3 ) Day of Exposure<br />

(mg/kg/d) -<br />

daily, based mg/m3)<br />

on mg/kg/d)) on mg/m3)<br />

Recommended: {phrase [RMM code].} Estimate based on based on<br />

(mg/kg/d)<br />

(mg/m3)<br />

Area of<br />

Short Title<br />

(mg/m 3 RCR<br />

routes - sum of Product ingredient (weight fraction)<br />

Skin surface contact area<br />

Glove<br />

of total use (indoors,<br />

Air Exchange<br />

)<br />

RCR (oral) (inhalation bounded<br />

day): if < 1, only used for<br />

Use Dilution Factor Dermal Factor<br />

Amount Used per event (g)<br />

Room Volume (m3) Exposure time (hours)<br />

(mg/kg/d) (mg/cm2) (mg/kg/d) (mg/kg/d) (mg/kg/d)<br />

(mg/m3)<br />

day of use for<br />

on mg/kg/d))<br />

mg/kg/d)) mg/m3)<br />

Application / UD<br />

(dermal)<br />

mg/kg/day<br />

(g/g)<br />

(cm 2 Amount Swallowed (g)<br />

Air Exchange Rate (1/hr)<br />

)<br />

effiency<br />

spilled/evaporated, i.e., outdoors,<br />

Rate applied to<br />

mg/kg/day) inhalation mg/m3)<br />

chronic assessment<br />

TRA<br />

values)<br />

amount lost) garage)<br />

TRA for mg/kg<br />

comparison<br />

inhalation calc.<br />

only<br />

Value Comments Value Comments Value Comments Value Comments Value Comments Value Comments Value Comments Value Comments Value Comments Value Comment Value Comments dayofuse chronic event dayofuse chronic dayofuse event dayofuse chronic 1.3 61.2 1.3 61.2 d i t d o i c c c<br />

Consumerl-SU21 PC13:Fuels<br />

71.5 0 11416.7 125000.0 125000.0 11488 54.97 #DIV/0! #DIV/0! 2042.48 #DIV/0! 1 increased above 0.14 est. as 1 per 210.00 est. as palm of<br />

TRA default<br />

week<br />

one hand<br />

Liquid - Automotive<br />

Refuelling<br />

Consumerl-SU21 PC13:Fuels<br />

71.5 0 11416.7 125000.0 125000.0 11488 54.97 #DIV/0! #DIV/0! 2042.48 #DIV/0! 1 increased above 0.33 daily use 210.00 est. as palm of<br />

TRA default<br />

assumed<br />

one hand<br />

over Winter<br />

period (4<br />

months)<br />

Liquid - Home<br />

heating oil<br />

Consumerl-SU21 PC13:Fuels<br />

71.5 0 11416.7 125000.0 125000.0 11488 54.97 #DIV/0! #DIV/0! 2042.48 #DIV/0! 1 increased above 0.07 est. as 1 per<br />

TRA default<br />

two weeks<br />

Liquid - Garden<br />

Equipment - Use<br />

Consumerl-SU21 PC13:Fuels<br />

71.5 0 11416.7 125000.0 125000.0 11488 54.97 #DIV/0! #DIV/0! 2042.48 #DIV/0! 1 increased above 0.07 est. as 1 per 420.00 Est. half of each<br />

TRA default<br />

two weeks<br />

hand<br />

Liquid - Garden<br />

Equipment - Refueling<br />

0.1000 Assumed value<br />

37500 est. fuel tank size 50 0.0100 expect low % outdoor 0.60 est. 0.99 100 Stoffenma 0.050 3mins, 97th 3.50 0.50 1.00 0.00 0.00 4.22 3694.31 7.70 1.101 7.72 0.10 2.69 0.13 2.82 0.39 0.02 0.40 Unless otherwise stated, covers concentrations up to 100% [ConsOC1]; No specific RMMs developed beyong those Based upon 0.39 0.02 0.40 0.50 0.00 1.10 PC13:Fuels<br />

0.50 0.00 1.10 0.00 0.00 0.00 0.00<br />

of no >10%<br />

L converted using<br />

loss during<br />

conservative<br />

nager<br />

percentile-<br />

covers use up to 52 days/year[ConsOC3]; covers use up to 1 time/on OCs stated<br />

infrequent<br />

transfered from<br />

gasoline density of<br />

refueling due to<br />

value for<br />

volume<br />

Vainiotalo et<br />

day of use[ConsOC4]; covers skin contact area up to 210.00 cm2<br />

use (10%<br />

L converted using<br />

loss during typical<br />

general fact<br />

default<br />

as shorter<br />

covers use up to 120 days/year[ConsOC3]; covers use up to 1 time/on OCs stated<br />

infrequent<br />

transfered from<br />

gasoline density of<br />

refueling due to<br />

sheet<br />

than vehicle<br />

day of use[ConsOC4]; covers skin contact area up to 210.00 cm2<br />

use (10%<br />

based upon density<br />

loss during<br />

conservative<br />

nager<br />

per day<br />

covers use up to 26 days/year[ConsOC3]; covers use up to 1 time/on OCs stated<br />

daily use<br />

transfered from<br />

for mogas = 750<br />

equipment use<br />

value for<br />

volume<br />

day of use[ConsOC4]; for each use event, covers use amounts up to<br />

contaminated<br />

kg/m3.<br />

outdoor<br />

used for<br />

750g [ConsOC2]; covers outdoor use [ConsOC12]; covers use in room<br />

pump handle to<br />

outdoors<br />

size of 100m3[ConsOC11]; for each use event, covers exposure up to<br />

2.00hr/event[ConsOC14];<br />

Liquid - Garden<br />

Equipment - Use<br />

0.1000 Assumed value<br />

750 1 L: Conv from L to g 0.0300 expect low % garage 1.50 RIVM 0.98 34 RIVM 0.030 Est. 2mins 7.00 0.49 1.00 0.00 0.00 0.44 647.10 0.81 0.057 7.44 0.10 5.38 0.01 5.40 0.38 0.00 0.38 Unless otherwise stated, covers concentrations up to 100% [ConsOC1]; No specific RMMs developed beyong those Based upon 0.38 0.00 0.38 0.49 0.00 0.06 PC13:Fuels<br />

0.49 0.00 0.06 0.00 0.00 0.00 0.00<br />

of no >10%<br />

based upon density loss but may be<br />

general fact<br />

general<br />

covers use up to 26 days/year[ConsOC3]; covers use up to 1 time/on OCs stated<br />

infrequent<br />

transfered from<br />

for mogas = 750<br />

more from pouring<br />

sheet<br />

fact sheet<br />

day of use[ConsOC4]; covers skin contact area up to 420.00 cm2<br />

use (


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

APPENDIX 3: Qualitative Risk Characterisation<br />

2010-07-30 CSR Appendix 3


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

Appendix 3.a.<br />

Worker Risk Characterisation<br />

2010-07-30 CSR Appendix 3


Gas Oils (Vacuum)<br />

4 DNEL (inhalation,<br />

aerosol, mg/m3) =<br />

68.3 DNELs (dermal)<br />

= mg/kg/d<br />

Table 1: Mapping Uses in the Supply Chain 7<br />

2.9 Reference<br />

Value<br />

(vapour<br />

phase<br />

portion of<br />

mixed<br />

aerosol<br />

7 Basis for ES<br />

User Group Contributing Scenarios<br />

CS Ref<br />

Use Descriptor<br />

Typical Mapped Typical Mapped RMMs Process<br />

Operating Conditions<br />

Categoryequivalen<br />

Tier 1 assumptions and adjustments<br />

Predicted Exposure - ECETOC TRA estimate<br />

RMMs for communication -<br />

where required<br />

Consolidate into GES or e-SDS (Black<br />

OCs (red text Tier RMMs (red text Moderate LEV Predicted Relvant Predicted Dermal Dermal Protection Predicted Actual<br />

text REACH advised; Blue text<br />

1 adjustments) additional Tier 1 dustiness Efficiency % Exposure Exposure (mg/kg/d) Reduction Efficiency Dermal Exposure<br />

recommended)<br />

adjustments) (mg/3) no (XX if not (mg/m3) modifiers<br />

(mg/kg/d) Substance Specific Substance Specific Substance Specific<br />

LEV TRA)<br />

RCR (inhalation) RCR (dermal) RCR (all routes)<br />

Manufacture of Industrial - General process CS15 Continuous; daily; 15 - 1 Closed processes PROC1 Closed >4 hours, ambient Closed process. 0.01 0 0.01 0.34 10 0.306 0.00 0.11 0.11 No special precautions identified' EI18<br />

substance SU8/9/3 exposures (no<br />

hour; product temp.<br />

process (no temp.<br />

No exposure.<br />

Wear gloves PPE15<br />

sampling)<br />

Outdoor<br />

sampling)<br />

Combine in narrative Industrial - General process CS15 Continuous; daily; 15 Enclosed process; PROC2 Closed >4 hours, ambient No LEV 1 0 1 1.37 0 1.37 0.01 0.47 0.49 Handle substance within a closed<br />

with row above SU8/9/3 exposures and sample<br />

mins - 1 hour; product Outdoor location; continuous process temp.<br />

system E49 Ensure samples are<br />

collection<br />

temp. Outdoor closed/semi-closed (with sampling)<br />

collected under containment or extract<br />

sampling point<br />

ventilation. E76 Wear gloves PPE15<br />

Industrial - General process CS15 Batch process; daily; 15 - Closed equipment, PROC3 Closed >4 hours, ambient No LEV 3 0 3 0.34 0 0.34 0.04 0.12 0.16 Handle substance within a closed<br />

SU8/9/3 exposures<br />

1 hour; product temp.; enclosed or vented batch process (with temp.<br />

system E47 Ensure samples are<br />

Indoor/Outdoor sampling points sampling)<br />

collected under containment or extract<br />

ventilation.E76<br />

Industrial - General exposures CS16 Daily; 15 - 1 hour; Enclosed transfers, clear PROC4 batch >4 hours, ambient No LEV 5 0 5 6.86 80 1.37 0.07 0.47 0.55 Wear gloves PPE15 Provide extract<br />

SU8/9/3 open batch process<br />

product temp.; lines prior to decoupling process with temp.<br />

ventn to transfer points E54. Clear<br />

Indoor/Outdoor<br />

exposure<br />

lines prior to decoupling. E39 Provide<br />

good GV E40<br />

Industrial - Sample collection CS2 Daily; 4 hours, ambient No LEV 3 0 2.1 0.34 0 0.34 0.03 0.12 0.15 Ensure samples are collected under<br />

SU8/9/3<br />

temp.; Indoor/Outdoor sampling points batch process (with temp.<br />

containment or extract ventilation.E76<br />

sampling)<br />

Wear gloves PPE16 Avoid splashing<br />

C&H15 Undertake outdoors E69<br />

Industrial - Laboratory activities CS36 Daily; 15 mins - 1 hour; Fume cupboard. PPE. PROC15 Use in >4 hours, ambient No LEV 5 0 5 0.34 0 0.34 0.07 0.12 0.19 Use in fume cupboard E83 Wear<br />

SU8/9/3<br />

product temp.; Indoor<br />

laboratory temp.<br />

suitable gloves tested to EN374<br />

PPE15<br />

Industrial - Bulk transfers (closed CS501 Daily; 15 - 1 hour; Enclosed transfers, clear PROC8b >4 hours, ambient No LEV 5 0 5 6.86 80 1.37 0.07 0.47 0.55 Handle substance within a closed<br />

SU8/9/3 systems) e.g bottom<br />

product temp.; lines prior to decoupling Dedicated temp.<br />

system E47 Wear chemically resistant<br />

loading<br />

Indoor/Outdoor<br />

discharging to/from<br />

gloves (tested to EN374) PPE15<br />

vessels<br />

Ensure material transfers are under<br />

containment or extract ventilation. E56<br />

Avoid splashing C&H15 Operate<br />

activity from way from sources of<br />

substance emission or release E77<br />

Industrial - Bulk transfers (open CS503 Daily; 1-4 hrs hour; Enclosed transfers, PROC8b<br />

daily; ambient No LEV 5 0 5 6.86 80 1.372 0.07 0.47 0.55 Wear gloves PPE15 Provide extract<br />

SU8/9/3 systems)<br />

product temp.; vented transfer points; Dedicated temp.<br />

ventn to transfer points E66. Clear<br />

Indoor/Outdoor clear lines prior to discharging to/from<br />

lines prior to decoupling. E39 Operate<br />

decoupling<br />

vessels<br />

activity from way from sources of<br />

substance emission or release E77<br />

Industrial - Clean down and CS39 Daily; 15 mins -1 hour; Enclosed lines; retain PROC8a Nondedicated<br />

temp.<br />

effectiveness<br />

break-in or maintenance. E65. Retain<br />

>4 hours; ambient No LEV 10 80 2 LEV<br />

13.71 90 1.371 0.03 0.47 0.50 Drain down system prior to equipment<br />

SU8/9/3 Maintenance<br />

product temp; collection wash down in sealed<br />

of line waste in storage pending disposal discharging to/from<br />

assumed to<br />

drain down in sealed storage pending<br />

container;<br />

or use as recycled vessels<br />

equate to SOP<br />

disposal or for subsequent recycle<br />

Indoor/Outdoor material for subsequent<br />

relating to<br />

ENVT4. Deal with spills immediately.<br />

formulation. PPE.<br />

draining etc<br />

C&H13. Wear chemically resistant<br />

prior to<br />

gloves (tested to EN374) . PPE16<br />

maintence<br />

Wear suitable coveralls to prevent<br />

exposure to the skin PPE27<br />

Industrial - Bulk Storage CS85 Daily; 8 hrs; product samples collected at PROC1/2 Closed daily; ambient outdoor activity 1 0 1 1.37 0 1.37 0.01 0.47 0.49 Store substance within a closed<br />

SU3/ SU10<br />

temp;<br />

dedicated sample point continuous process temp.<br />

system. E84 Avoid dip samples E42<br />

(sometimes with<br />

sampling)<br />

Distribution of Industrial - General process CS15 Continuous; Outdoor; Closed process. No PROC1 Closed >4 hours, ambient Closed product. 0.01 0 0.01 0.34 0 0.34 0.00 0.12 0.12 No special measures EI18 Handle<br />

substance SU3<br />

exposures - closed<br />

daily; 15 - 1 hour; exposure.<br />

process (no temp.<br />

No exposure.<br />

substance within a closed system. E47<br />

process (e.g. In-line<br />

product temp.<br />

sampling)<br />

additive dosing<br />

equipment, in-line filter<br />

cleaning)<br />

Combine in narrative Industrial - General process CS15 Continuous; Outdoor; Enclosed process; PROC2 Closed >4 hours, ambient No LEV 1 0 1 1.37 0 1.37 0.01 0.47 0.49 Handle substance within a closed<br />

SU3<br />

exposures (occasional<br />

daily; 15 mins - 1 hour; closed/semi-closed continuous process temp.<br />

system. E47 Ensure material transfers<br />

controlled exposure)<br />

product temp.<br />

sampling point<br />

(with sampling)<br />

are under containment or extract<br />

ventilation E66<br />

Industrial - General process CS15 Batch process; Outdoor; Closed equipment, PROC3 Closed >4 hours, ambient No LEV 3 0 3 0.34 0 0.34 0.04 0.12 0.16 Handle substance within a closed<br />

SU3<br />

exposures - closed<br />

daily; 15 - 1 hour; enclosed or vented batch process (with temp.<br />

system. E47 Ensure material transfers<br />

batch process<br />

product temp.<br />

sampling points sampling)<br />

are under containment or extract<br />

ventilation E66<br />

Industrial -SU3 General exposures CS16 Daily; Indoor/Outdoor; Enclosed transfers, clear PROC4 batch >4 hours, ambient No LEV 5 0 5 6.86 80 1.372 0.07 0.47 0.55 Ensure material transfers are under<br />

open batch process<br />

15 - 1 hour; product lines prior to decoupling process with temp.<br />

containment or extract ventilation<br />

temp.<br />

exposure<br />

[E66] Clear transfer lines prior to decoupling<br />

E39 Wear gloves tested to<br />

EN374 PPE15<br />

Industrial - Sample collection CS2 Daily; 4 hours, ambient No LEV 3 0 3 0.34 0 0.34 0.04 0.12 0.16 No special precuations EI18 Ensure<br />

SU3<br />

temp.; Outdoor; sampling points batch process (with temp.<br />

samples are obtained under<br />

sampling)<br />

containment or extract ventilation E76<br />

Wear suitable gloves tested to EN374<br />

PPE15 Avoid dip sampling E42<br />

Industrial - Laboratory activities CS36 Daily; 15 mins - 1 hour; Fume cupboard. PPE. PROC15 Use in >4 hours, ambient No LEV 5 0 5 0.34 0 0.34 0.07 0.12 0.19 No special precuations EI18 Handle in<br />

SU3<br />

product temp.; Indoor<br />

laboratory temp.<br />

a fume cupboard or under extract<br />

ventilation E83 Wear suitable gloves<br />

tested to EN374. PPE15.<br />

t


Industrial -<br />

SU8/9/3<br />

Combine in narrative Industrial -<br />

as Bulk Transfer SU3<br />

CS14 unless<br />

differentiation<br />

required in practice<br />

Industrial -<br />

SU3<br />

Industrial -<br />

SU3<br />

Industrial -<br />

SU3<br />

Industrial -<br />

SU3<br />

Formulation & Industrial -<br />

(re)packing of SU3/SU10<br />

substances and<br />

mixtures<br />

Combine in with Industrial -<br />

above row in SU3/ SU10<br />

narrative<br />

Industrial -<br />

SU3/ SU10<br />

Industrial -<br />

SU3/ SU10<br />

Industrial -<br />

SU3/ SU10<br />

Industrial -<br />

SU3/ SU3<br />

Industrial -<br />

SU3/ SU10<br />

Combine in narrative Industrial -<br />

SU3/ SU10<br />

Industrial -<br />

SU3/ SU10<br />

Combine in narrative Industrial -<br />

SU3/ SU10<br />

Industrial -<br />

SU3/ SU10<br />

Bulk transfers (closed CS501 Daily; 15 - 1 hour;<br />

systems) e.g bottom<br />

product temp.;<br />

loading<br />

Indoor/Outdoor<br />

Bulk closed loading and CS503 Outdoor; Daily; 15 - 1<br />

unloading NEW CS<br />

hour; product temp.;<br />

(e.g. road/rail car<br />

exposure potential<br />

bottom<br />

during breaking of hose<br />

loading/unloading;<br />

connection<br />

marine vessel/barge<br />

loading/unloading;)<br />

Bulk open loading NEW CS503 Outdoor; Daily; 1 - 4<br />

CS (e.g. road/rail car<br />

hours; product temp;<br />

top loading, may<br />

exposure potential from<br />

involve LEV)<br />

vapour emissions from<br />

tank opening<br />

Drum and small CS6 Indoor; Continuous;<br />

package filling<br />

daily; 8 hour; product<br />

temp.<br />

Clean down and CS39 Daily; 15 min - 1 hour;<br />

Maintenance<br />

product temp; collection<br />

of line waste in container<br />

Storage CS67 Daily; 8 hrs; product<br />

temp; Outdoors<br />

General process CS15 Continuous; daily; 15 - 1<br />

exposures (no<br />

hour; product temp.<br />

sampling) (e.g. In-line<br />

additive dosing<br />

equipment, in-line filter<br />

cleaning)<br />

General process CS15 Continuous; daily; 15<br />

exposures and sample<br />

mins - 1 hour<br />

collection<br />

General process<br />

exposures (e.g. In-line<br />

additive dosing<br />

equipment, in-line filter<br />

cleaning)<br />

CS15 Batch process; daily; 15 -<br />

1 hour; product temp.<br />

General exposures CS16 Daily; Indoor; 15 - 1<br />

open batch process<br />

hour; product temp.<br />

Sample collection CS2 Daily; 4 hours, ambient<br />

temp.<br />

>4 hours, ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

>4 hours, ambient<br />

temp.<br />

>4 hours, ambient<br />

temp.<br />

>4 hours, ambient<br />

temp.<br />

>4 hours, ambient<br />

temp.<br />

>4 hours, ambient<br />

temp.<br />

>4 hours, ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

No LEV 5 0 5 6.86 80 1.37 0.07 0.47 0.55 Handle substance within a closed<br />

system. E47 Operate activity from<br />

way from sources of substance<br />

emission or release E77 Ensure<br />

material transfers are under<br />

containment or extract ventilation.<br />

E56. Wear chemically resistant gloves<br />

(tested to EN374) PPE15 Avoid<br />

splashing C&H15<br />

No LEV 5 0 5 6.86 80 1.37 0.07 0.47 0.55 Ensure material transfers are under<br />

containment or extract ventilation E66<br />

Clear transfer lines prior to decoupling<br />

E38 Ensure operation is undertaken<br />

outdoors E69 Wear suitable gloves<br />

tested to EN374. PPE15.<br />

No LEV 5 0 5 6.86 80 1.37 0.07 0.47 0.55 Ensure material transfers are under<br />

containment or extract ventilation E66<br />

Clear transfer lines prior to decoupling<br />

E38 Ensure operation is undertaken<br />

outdoors E69 Wear suitable gloves<br />

tested to EN374. PPE15.<br />

No LEV 5 0 5 6.86 80 1.37 0.07 0.47 0.55 Fill containers/cans at dedicated fill<br />

points supplied with local extract<br />

ventilation E51 Clear spills<br />

immediately C&H13 Wear suitable<br />

gloves tested to EN374 PPE15 Put lids<br />

on containers immediately after use E9<br />

No LEV 10 80 2 LEV<br />

13.71 90 1.37 0.03 0.47 0.50 Apply vessel entry procedures<br />

effectiveness<br />

including use of forced supplied air.<br />

assumed to<br />

AP15 Drain down system prior to<br />

equate to SOP<br />

equipment break-in or maintenance<br />

relating to<br />

E65 Transfer via enclosed lines E52<br />

draining etc<br />

Wear suitable gloves tested to EN374<br />

prior to<br />

PPE16 Wear suitable coveralls to<br />

maintence<br />

prevent exposure to the skin PPE27<br />

Retain drain downs in sealed storage<br />

pending disposal or for subsequent<br />

recycle. ENVT4<br />

outdoor activity 1 0 1 1.37 0 1.37 0.01 0.47 0.49 Store substance within a closed<br />

system. E84 Transfer via enclosed<br />

lines. E52 Avoid dip sampling E42<br />

Closed process. 0.01 0 0.01 0.03 0 0.03 0.00 0.01 0.01 No special measures EI18 Handle<br />

substance within a closed system. E47<br />

No LEV 1 0 1 1.37 0 1.37 0.01 0.47 0.49 Handle substance within a closed<br />

system. E47 Ensure material transfers<br />

are under containment or extract<br />

ventilation E66<br />

No LEV 3 0 3 0.34 0 0.34 0.04 0.12 0.16 Handle substance within a closed<br />

system. E47 Ensure material transfers<br />

are under containment or extract<br />

ventilation E66<br />

No LEV 5 0 5 6.86 80 1.37 0.07 0.47 0.55 Ensure material transfers are under<br />

containment or extract ventilation<br />

[E66] Clear transfer lines prior to decoupling<br />

E39 Wear gloves tested to<br />

EN374 PPE15<br />

No LEV 3 0 3 0.34 0 0.34 0.04 0.12 0.16 No special precuations EI18 Ensure<br />

samples are obtained under<br />

containment or extract ventilation E76<br />

Wear suitable gloves tested to EN374<br />

PPE15 Avoid dip sampling E42<br />

No LEV 5 0 5 0.34 0 0.34 0.07 0.12 0.19 No special precuations EI18 Handle in<br />

a fume cupboard or under extract<br />

ventilation E83 Wear suitable gloves<br />

tested to EN374. PPE15.<br />

No LEV 5 0 5 6.86 80 1.37 0.07 0.47 0.55 Handle substance within a closed<br />

system. E47 Operate activity from<br />

way from sources of substance<br />

emission or release E77 Ensure<br />

material transfers are under<br />

containment or extract ventilation.<br />

E56. Wear chemically resistant gloves<br />

(tested to EN374) PPE15 Avoid<br />

splashing C&H15<br />

No LEV 5 0 5 13.71 90 1.37 0.07 0.47 0.55 Provide extract ventilation to points<br />

where emissions occur E54 Wear<br />

chemically resistant gloves (tested to<br />

EN374) in combination with ‘basic’<br />

employee training. PPE16<br />

With LEV 25 90 2.5 0.07 0 0.07 0.36 0.02 0.38 Provide extract ventilation to points<br />

where emissions occur E54 Wear<br />

suitable gloves tested to EN374<br />

PPE15<br />

No LEV 10 80 2 13.71 90 1.37 0.03 0.47 0.50 Use drum pumps or carefully pour from<br />

Use drum<br />

pumps<br />

container E64 Wear chemically<br />

resistant gloves (tested to EN374) in<br />

combination with ‘basic’ employee<br />

training. PPE16<br />

No LEV 5 0 5 6.86 80 1.37 0.07 0.47 0.55 Provide extract ventilation to points<br />

where emissions occur E54 Use drum<br />

pumps or carefully pour from<br />

container. E64 Avoid spillage when<br />

withdrawing pump. C&H16 Wear<br />

suitable gloves tested to EN374<br />

PPE15


Industrial - Tabletting,<br />

CS100 Indoor; daily; 8 hours; LEV, PPE PROC14<br />

SU3/ SU10 compression, extrusion<br />

product temp.<br />

Production of<br />

or pelletisation<br />

preparation by<br />

tabletting,<br />

compression,<br />

Industrial - Drum and small CS6 Indoor, Continuous; Enclosed transfers, PROC9 Transfer<br />

SU3/ SU10 package filling<br />

daily; 8 hour; product vented transfer points of<br />

temp.<br />

substance/mixture<br />

into small<br />

containers<br />

Industrial - Clean down and CS39 Indoor, Daily; 1 - 4 Enclosed lines; retain PROC8a Nondedicated<br />

SU3/ SU10 Maintenance<br />

hours; product temp; wash down in sealed<br />

collection of line waste storage pending disposal discharging to/from<br />

in container<br />

or use as recycled vessels<br />

material for subsequent<br />

formulation. PPE.<br />

Industrial - Storage CS67 Daily; 8 hrs; product samples collected at PROC1/2 Closed<br />

SU3/ SU10<br />

temp;<br />

dedicated sample point continuous process<br />

(sometimes with<br />

sampling)<br />

Uses in Coatings Industrial -SU3 General exposures CS15 ] Continuous; daily; 8hour Enclosed process; 1/2 -Use in closed,<br />

(closed systems) CS15 [CS56]<br />

closed/semi-closed continuous<br />

] with sample collection<br />

sampling point<br />

process with occasional<br />

controlled<br />

[CS56].<br />

exposure (e.g.<br />

sampling)<br />

Industrial - Bulk transfers CS14 Daily; 15 min - 1 hour; Enclosed transfers, PROC8b<br />

SU3/ SU10<br />

product temp; collection vented transfer points; Dedicated<br />

of line waste in container clear lines prior to discharging to/from<br />

decoupling<br />

vessels<br />

Industrial -SU3 Film formation - force [CS 94] enclosed in situ in 2 -Use in closed,<br />

drying (50 - 100°C).<br />

workplace<br />

continuous<br />

Stoving (>100°C).<br />

process with occasional<br />

controlled<br />

UV/EB radiation curing.<br />

[CS 94]<br />

exposure (e.g.<br />

sampling)<br />

Industrial -SU3 Film formation - air [CS95] 4 - Use in batch<br />

drying. [CS95]<br />

and other process<br />

(synthesis) where<br />

opportunity for<br />

exposure arises<br />

Industrial -SU3 Preparation of material [CS 96]<br />

liquid/ powder products) - 5 - Mixing or<br />

for application. [CS 96] [CS30]<br />

batch, indoor/ outdoor. blending in batch<br />

Mixing operations (open<br />

processes for<br />

systems) [CS30]<br />

formulation of<br />

preparations and<br />

combine Industrial -SU3 Spraying<br />

[CS97] Daily; >4 hours, product Enclosed. Vented spray 7 -Industrial<br />

(automatic/robotic).<br />

temp (ambient) booth; specific workforce spraying<br />

[CS97]<br />

education, PPE<br />

Industrial -SU3 Spraying<br />

[CS97] Daily; >4 hours, product Enclosed. Vented spray 7 -Industrial<br />

(automatic/robotic).<br />

temp (ambient) booth; specific workforce spraying<br />

[CS97] vapours<br />

education, PPE<br />

combine Industrial -SU3 Manual spraying. [CS24] Open , Air supplied 7 -Industrial<br />

[CS24]<br />

masks, respirator. spraying<br />

Industrial -SU3 Manual spraying. [CS24] Open , Air supplied 7 -Industrial<br />

[CS24] vapours<br />

masks, respirator. spraying<br />

Industrial -SU3 Material transfers. CS3 Daily; 15 min - 1 hour; Enclosed transfers, 8b -Transfer of<br />

[CS3].<br />

product temp (ambient); vented transfer points; chemicals from/to<br />

collection of line waste clear lines prior to vessels/ large<br />

in container. outdoor/ decoupling<br />

containers at<br />

indoor.<br />

dedicated facilities.<br />

Industrial -SU3 Roller, spreader, flow [CS69] Daily; >4 hours, product Local exhaust ventilation 10 - Roller<br />

application. [CS69]<br />

temp. (ambient); Range at rollers; remove spills application or<br />

from 2-3% upto 40-50% as they occur, PPE. brushing<br />

Large scale (open<br />

equipment)<br />

daily; ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

>4 hours, ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

>4 hours, ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

>4 hours, ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

> 4 hours; daily;<br />

ambient temp.<br />

> 4 hours; daily;<br />

ambient temp.<br />

daily; ambient<br />

temp.<br />

> 4 hours; daily;<br />

ambient temp.<br />

No LEV 5 0 5 3.43 80 0.69 0.07 0.24 0.31 Provide extract ventilation to points<br />

where emissions occur E54 Wear<br />

suitable gloves tested to EN374<br />

PPE15<br />

No LEV 5 0 5 6.86 80 1.372 0.07 0.47 0.55 Fill containers/cans at dedicated fill<br />

points supplied with local extract<br />

ventilation E51 Clear spills<br />

immediately C&H13 Wear suitable<br />

gloves tested to EN374 PPE15 Put lids<br />

on containers immediately after use E9<br />

No LEV 10 80 2 LEV<br />

13.71 90 1.371 0.03 0.47 0.50 Apply vessel entry procedures<br />

effectiveness<br />

including use of forced supplied air.<br />

assumed to<br />

AP15 Drain down system prior to<br />

equate to SOP<br />

equipment break-in or maintenance<br />

relating to<br />

E65 Transfer via enclosed lines E52<br />

draining etc<br />

Wear suitable gloves tested to EN374<br />

prior to<br />

PPE16 Wear suitable coveralls to<br />

maintence<br />

prevent exposure to the skin PPE27<br />

Retain drain downs in sealed storage<br />

pending disposal or for subsequent<br />

recycle. ENVT4<br />

outdoor activity 1 0 1 1.37 0 1.37 0.01 0.47 0.49 Store substance within a closed<br />

system. E84 Transfer via enclosed<br />

lines. E52 Avoid dip sampling E42<br />

No LEV 1 0 1.0 0.03 0 0.03 0.01 0.01 0.02 Handle substance within a closed<br />

system E47 Ensure material transfers<br />

are under containment or extract<br />

ventilation E66 Wear suitable gloves<br />

tested to EN374 PPE15<br />

No LEV 5 0 5 6.86 80 1.37 0.07 0.47 0.55 Handle substance within a closed<br />

system. E47 Operate activity from<br />

way from sources of substance<br />

emission or release E77 Ensure<br />

material transfers are under<br />

containment or extract ventilation.<br />

E56. Wear chemically resistant gloves<br />

(tested to EN374) PPE15 Avoid<br />

splashing C&H15<br />

No LEV 10 30 7.0 1.37 0 1.37 Handle substance within a closed<br />

Good GV 0.10 0.47 0.57 system E47 Provide a good standard<br />

of general ventilation (3 to 5 air<br />

changes per hour) E11 Provide extract<br />

ventilation to point where emissions<br />

occur E54 Wear suitable gloves tested<br />

to EN374 PPE15<br />

No LEV 5 0 5.0 6.86 80 1.37 0.07 0.47 0.55 Provide a good standard of general<br />

ventilation (3 to 5 air changes per<br />

hour) E11. Avoid manual contact with<br />

wet work pieces EI17. Wear suitable<br />

gloves tested to EN374 PPE15.<br />

No LEV 5 0 5.0 13.71 90 1.371 0.07 0.47 0.55 Provide extract ventilation to points<br />

where emissions occur E54. Wear<br />

chemically resistant gloves (tested to<br />

EN374) in combination with ‘basic’<br />

employee training PPE16<br />

With LEV. 20 95 1.0 E60 = 95% 2.14 0 2.14 0.01 0.74 0.75 Minimise exposure by partial enclosure<br />

of the operation or equipment and<br />

provide extract ventilation at openings<br />

E60 Wear suitable gloves tested to<br />

EN374 PPE15. Provide GV E11<br />

With LEV. 100 95 5.0 E60 = 95% 2.14 80 0.43 0.71 0.15 0.86 Minimise exposure by partial enclosure<br />

of the operation or equipment and<br />

provide extract ventilation at openings<br />

[E60]. {Wear suitable gloves tested to<br />

EN374 [PPE15]}. Provide GV E11<br />

No LEV 20 90 2.0 RPE (APF=10)) 21.85 95 1.09 0.03 0.38 0.41 Provide enhanced GV E48 Wear a<br />

respirator conforming to EN140 with<br />

Type A filter or better. PPE22 Wear<br />

chemically resistant gloves (tested to<br />

type EN374) in combination with<br />

specific activity training PPE17 Ensure<br />

operatives are trained to minimise<br />

exposures EI19 Segregate the activity<br />

away from other operations E63<br />

No LEV 100 90 4.2 RPE (APF=10)) 21.85 95 1.09 0.60 0.38 0.98 Provide good GV E11 Wear a<br />

operator training<br />

respirator conforming to EN140 with<br />

(reduces<br />

Type A filter or better. PPE22 Wear<br />

exposure by<br />

chemically resistant gloves (tested to<br />

15%) : good GV<br />

type EN374) in combination with<br />

(0.7x)<br />

specific activity training PPE17 Ensure<br />

operatives are trained to minimise<br />

exposures EI19 Segregate the activity<br />

away from other operations E63<br />

No LEV 5 0 5.0 6.86 80 1.37 0.07 0.47 0.55 Provide general ventilation E11 Wear<br />

suitable gloves tested to EN374<br />

PPE15 Ensure material transfers are<br />

under containment or extract<br />

ventilation E66 Clear lines prior to<br />

decoupling E39 Use drum pumps or<br />

carefully pour from container E64<br />

With LEV. 5 0 5.0 27.43 95 1.37 0.07 0.47 0.55 Wear chemically resistant gloves<br />

(tested to EN374) in combination with<br />

specific activity training. PPE17<br />

Provide GV E11 Avoid splashing<br />

C&H15 Avoid manual contact with wet<br />

work pieces EI17.


Industrial -SU3 Dipping, immersion [CS4] Daily; >4 hours, product Local exhaust ventilation 13 -Treatment of<br />

and pouring. [CS4]<br />

temp. (ambient) at open surface; remove articles by dipping<br />

spills as they occur, PPE and pouring<br />

Industrial -SU3 Laboratory activities [CS36] small scale activities<br />

15 - Use of<br />

[CS36]<br />

small amount, daily 15<br />

laboratory<br />

min<br />

reagents in small<br />

scale laboratories<br />

Industrial -SU3 Material transfers [CS3]. [CS8]. Daily; 15 min - 1 hour; wear goggles and gloves 9 -Transfer of<br />

[CS3]. Drum/batch [CS22]. product temp;<br />

chemicals into<br />

transfers [CS8].<br />

small containers<br />

Transfer from/pouring<br />

(dedicated filling<br />

from containers [CS22].<br />

line)<br />

Industrial -SU3 Production of<br />

[CS100]. Daily; 15 min - 1 hour; wear goggles and gloves 14 - Production of<br />

preparations or articles<br />

product temp (ambient);<br />

preparations or<br />

by tabletting,<br />

articles by<br />

compression, extrusion,<br />

tabletting,<br />

pelletisation [CS100].<br />

compression,<br />

extrusion,<br />

Industrial - Clean down and CS39 Indoor, Daily; 1 - 4 Enclosed lines; retain PROC8a Nondedicated<br />

SU3/ SU10 Maintenance<br />

hours; product temp; wash down in sealed<br />

collection of line waste storage pending disposal discharging to/from<br />

in container<br />

or use as recycled vessels<br />

material for subsequent<br />

formulation. PPE.<br />

Industrial - Storage CS67 Daily; 8 hrs; product samples collected at PROC1/2 Closed<br />

SU3/ SU10<br />

temp;<br />

dedicated sample point continuous process<br />

(sometimes with<br />

sampling)<br />

Uses in Coatings Professional - Filling / preparation of [CS45] closed, continuous PROC8b<br />

SU22 equipment (from drums<br />

Dedicated<br />

or containers). CS45]<br />

discharging to/from<br />

vessels<br />

Professional - General exposures [CS15 ] Continuous; daily; 8hour Enclosed process; PROC1/2 Closed<br />

SU22 (closed systems)<br />

closed/semi-closed continuous process<br />

[CS15]. Use in<br />

sampling point<br />

(with sampling)<br />

contained systems<br />

[CS38]<br />

Professional - Preparation of material [CS 96].<br />

closed, continuous 3 - Use in closed<br />

SU22 for application. [CS 96]. [CS29].<br />

batch process<br />

Mixing operations<br />

(synthesis or<br />

(closed systems)<br />

formulation)<br />

[CS29].<br />

Combined Professional - Film formation - air [CS95]. outdoor 4 - Use in batch<br />

SU22 drying. [CS95]. Outdoor [OC9].<br />

and other process<br />

[OC9].<br />

(synthesis) where<br />

opportunity for<br />

exposure arises<br />

Professional - Film formation - air [CS95]. Daily; >4 hours, product Good general ventilation 4 - Use in batch<br />

SU22 drying. [CS95]. Indoor [OC8]. temp (ambient); Indoor (equivalent to outdoors) and other process<br />

[OC8].<br />

supplemenetd with LEV (synthesis) where<br />

opportunity for<br />

exposure arises<br />

Combined Professional - Preparation of material [CS 96] . indoor, outdoor with and batch, indoor. With and 5 -Mixing or<br />

SU22 for application. [CS 66] [CS30]. without LEV, 1 - 4 hours without LEV.<br />

blending in batch<br />

Mixing operations (open [CS9]. [OC8].<br />

processes<br />

systems) [CS30].<br />

(multistage and/or<br />

Pouring from small<br />

significant contact)<br />

containers [CS9].<br />

Indoor [OC8].<br />

Professional - Preparation of material [CS 96] Outdoor; 1 - 4 hours 5 -Mixing or<br />

SU22 for application. [CS 66] [CS30] [CS9]<br />

blending in batch<br />

Mixing operations (open [OC9]<br />

processes<br />

systems) [CS30].<br />

(multistage and/or<br />

Pouring from small<br />

significant contact)<br />

containers [CS9].<br />

Outdoor [OC9].<br />

Professional - Material transfers. [CS3] Daily; 15 mins - 1 hour; Pumped transfer from 8a -Transfer of<br />

SU22 [CS3]. Pumped [CS107] product temp (ambient), drum to equipment. with chemicals from/to<br />

Drum/batch transfers [CS8] indoor, outdoor and without LEV vessels/ large<br />

[CS8].<br />

containers at non<br />

dedicated facilities<br />

comined Professional - Roller, spreader, flow [CS98] [OC8] indoor, Daily, > 4 hours 10 - Roller<br />

SU22 application. [CS69].<br />

application or<br />

Indoor [OC8].<br />

brushing<br />

Professional - Roller, spreader, flow [CS98]. outdoor, Daily, >4 hours PPE 10 - Roller<br />

SU22 application. [CS69]. [OC9].<br />

application or<br />

Outdoor [OC9].<br />

brushing<br />

daily; ambient No LEV 1 0 1.0 6.86 80 1.37 0.01 0.47 0.49 Provide extract ventilation to points<br />

temp.<br />

where emissions occur E54 Wear<br />

suitable gloves tested to EN374<br />

PPE15 Avoid manual contact with wet<br />

work pieces EI17 Clear up spills<br />

immediately and dispose of waste<br />

safely E19<br />

>4 hours, ambient No LEV 0.5 0 0.5 0.34 0 0.34 0.01 0.12 0.12 No sppecial measures EI18 Handle in<br />

temp.<br />

a fume cupboard or under extract<br />

ventilation E83 Wear suitable gloves<br />

tested to EN374 PPE15<br />

>4 hours, ambient No LEV 5 0 5.0 Use of drum<br />

6.86 80 1.37 0.07 0.47 0.55 Use drum pumps or carefully pour from<br />

temp.<br />

pumps<br />

container E64. Wear suitable gloves<br />

tested to EN374 PPE15 Avoid spillage<br />

when withdrawing pump C&H16<br />

Ensure material transfers are under<br />

containment or extract ventilation E66<br />

>4 hours, ambient No LEV 5 0 5.0 3.43 0 0.34 0.07 0.12 0.19 No specific measures identified EI18<br />

temp.<br />

Provide extract ventilation to points<br />

where emissions occur E54 Wear<br />

suitable gloves tested to EN374<br />

PPE15<br />

daily; ambient No LEV 10 80 2 LEV<br />

13.71 90 1.37 0.03 0.47 0.50 Drain down system prior to equipment<br />

temp.<br />

effectiveness<br />

break-in or maintenance. E65 Wear<br />

assumed to<br />

chemically resistant gloves (tested to<br />

equate to SOP<br />

EN374) in combination with ‘basic’<br />

relating to<br />

employee training PPE16 Wear<br />

draining etc<br />

suitable coveralls to prevent exposure<br />

prior to<br />

to the skin PPE27 Retain drain downs<br />

maintence<br />

in sealed storage pending disposal or<br />

daily; ambient outdoor activity 1 0 1 1.37 0 1.37 0.01 0.47 0.49 Store<br />

for s bseq<br />

substance<br />

ent rec<br />

within<br />

cle<br />

a<br />

ENVT4<br />

closed<br />

temp.<br />

system. E84 Transfer via enclosed<br />

lines. E52 Avoid dip sampling E42<br />

>4 hours, ambient No LEV 5 0 5 6.86 80 1.37 0.07 0.47 0.55 Use drum pumps or carefully pour from<br />

temp.<br />

container [E64]. Ensure material<br />

transfers are under containment or<br />

extract ventilation [E66]. Wear suitable<br />

gloves tested to EN374 [PPE15]<br />

provide GV E11<br />

>4 hours, ambient No LEV 1 0 1 1.37 0 1.37 0.01 0.47 0.49 Handle substance within a closed<br />

temp.<br />

system [E47]. Provide extract<br />

ventilation to points where emissions<br />

occur [E54]. [Wear suitable gloves<br />

tested to EN374] [PPE15].<br />

daily; ambient No LEV 1 0 1 0.34 0 0.34 0.01 0.12 0.13 No special measures EI18 GV E40<br />

temp.<br />

{Clear up spills immediately and<br />

dispose of waste safely [EI9]}. {Wear<br />

suitable gloves tested to EN374<br />

[PPE15]}.<br />

8 hrs No LEV 5 0 5 6.86 80 1.37 0.07 0.47 0.55 Ensure operation is undertaken<br />

outdoors [E69]. Wear suitable gloves<br />

tested to EN374 [PPE15]. Ensure<br />

operatives are trained to minimise<br />

exposures EI19 [Avoid manual contact<br />

with wet work pieces] [EI17]<br />

daily; ambient No LEV 5 0 5 6.86 80 1.37 0.07 0.47 0.55 Provide GV [E40]. Wear suitable<br />

temp.<br />

gloves tested to EN374 [PPE15]<br />

Ensure operatives are trained to<br />

minimise exposures EI19 [Avoid<br />

manual contact with wet work pieces]<br />

[EI17]<br />

>4 hours, ambient No LEV 5 0 5 13.71 90 1.37 0.07 0.47 0.55 Provide a good standard of general or<br />

temp.<br />

controlled ventilation (5 to 15 air<br />

changes per hour) (E11] Wear<br />

chemically resistant gloves (tested to<br />

EN374) in combination with ‘basic’<br />

employee training. [PPE16].<br />

>4 hours, ambient No LEV 5 0 5 13.71 90 1.37 0.07 0.47 0.55 Ensure operation is undertaken<br />

temp.<br />

outdoors (E69] Wear chemically<br />

resistant gloves (tested to EN374) in<br />

combination with ‘basic’ employee<br />

training. [PPE16].<br />

daily; ambient No LEV 5 0 5 13.71 90 1.37 0.07 0.47 0.55 Provide GV E40 or outdoors E69 Use<br />

temp.<br />

drum pumps or carefully pour from<br />

container E64 Wear chemically<br />

resistant gloves (tested to EN374) in<br />

combination with ‘basic’ employee<br />

training. [PPE16].<br />

> 4 hours; daily; With LEV 5 0 5 16.46 90 1.65 0.07 0.57 0.64 Use ventilation to extract vapours from<br />

ambient temp;<br />

freshly coated articles/objects and<br />

4 hours; daily; No LEV 5 0 5 16.46 90 1.65 0.07 0.57 0.64 Use ventilation to extract vapours from<br />

ambient temp.<br />

freshly coated articles/objects and<br />

surfaces[E56]}. Wear chemically<br />

resistant gloves (tested to EN374) in<br />

combination with ‘basic’ employee<br />

training. [PPE16].Limit the substance<br />

content in the product to 25 % OC18<br />

Ensure operatives are trained to<br />

minimise exposures EI19 Use long<br />

handled brushes and rollers where<br />

gloves<br />

gloves


Combined Professional - Manual spraying. [CS24] [OC8]. Daily; >4 hours, Vented spray booth; 11- Non industrial<br />

SU22 [CS68] . Indoor [OC8].<br />

Indoors,<br />

specific workforce spraying<br />

education, PPE<br />

Professional - Manual spraying. [CS24] [OC8]. Daily; >4 hours, Vented spray booth; 11- Non industrial<br />

SU22 [CS68] . Indoor [OC8].<br />

Indoors,<br />

specific workforce spraying<br />

vapour phase<br />

education, PPE<br />

Combined Professional - Manual spraying. [CS24] outdoor , 4 hour PPE 11- Non industrial<br />

SU22 [CS68] . Outdoor .[OC9].<br />

spraying<br />

[OC9].<br />

Professional - Manual spraying. [CS24] outdoor , 4 hour PPE 11- Non industrial<br />

SU22 [CS68] . Outdoor .[OC9].<br />

spraying<br />

[OC9]. vapour phase<br />

Combined Professional - Dipping, immersion [CS4] [OC8] Daily; >4 hours, product Local exhaust ventilation 13 -Treatment of<br />

SU22 and pouring. [CS4].<br />

temp (ambient) at open surface; remove articles by dipping<br />

Indoor [OC8].<br />

spills as they occur, PPE and pouring<br />

Professional - Dipping, immersion [CS4] [OC9] Daily; >4 hours, product PPE 13 -Treatment of<br />

SU22 and pouring. [CS4].<br />

temp (ambient), outdoor.<br />

articles by dipping<br />

Outdoor [OC9].<br />

and pouring<br />

Professional - Laboratory activities [CS36] Daily; >4 hours, product<br />

15 - Use of<br />

SU22 [CS36]<br />

temp (ambient)<br />

laboratory<br />

reagents in small<br />

scale laboratories<br />

Combined Professional - Hand application - [CS72] [OC8] Daily; >4 hours, product indoor 19 - Hand-mixing<br />

SU22 fingerpaints, pastels,<br />

temp (ambient)<br />

with intimate<br />

adhesives [CS72].<br />

contact (only PPE<br />

Indoor [OC8].<br />

available<br />

Professional - Hand application - [CS72]. 15 minutes; product outdoor, PPE 19 - Hand-mixing<br />

SU22 fingerpaints, pastels, [OC9]. temp (ambient)<br />

with intimate<br />

adhesives [CS72].<br />

contact (only PPE<br />

Outdoor [OC9].<br />

available<br />

Professional - Clean down and CS39 Daily; >4 hours vessel entry procedures, PROC8a<br />

SU22 Maintenance<br />

retain wash down in Discharging<br />

sealed storage pending to/from vessels<br />

disposa,. PPE.<br />

Professional - Storage CS67 Daily; 8 hrs; ambient samples collected at PROC1 Closed<br />

SU22<br />

temp;<br />

dedicated sample point continuous process<br />

(sometimes with<br />

Use as a fuel Industrial -SU3 Bulk transfers (barge, CS14 Daily; 1 - 4 hours; Enclosed transfers, clear PROC8b<br />

rail and road)<br />

ambient temp. lines prior to decoupling Dedicated<br />

Discharging<br />

to/from vessels<br />

Industrial -SU3 Transfers from drums CS8 Daily; 1 - 4 hours; Pumped transfer from PROC8b<br />

and containers<br />

ambient temp. drum to equipment Dedicated<br />

Discharging<br />

to/from vessels<br />

daily; ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

>4 hours, ambient<br />

temp.<br />

>4 hours, ambient<br />

temp.<br />

With LEV. 20 90 2 2.14 80 0.43 0.03 0.15 0.18 Carry out in a vented booth or<br />

extracted enclosure[E57]. Provide GV<br />

E40 Wear suitable gloves tested to<br />

EN374 [PPE15] Wear suitable<br />

coveralls to prevent exposure to the<br />

skin PPE27 Segregate the activity<br />

away from other operations E63<br />

Ensure operatives are trained to<br />

With LEV. 100 90 4.2 2.14 80 0.43 0.60 0.15 0.75 Carry out in a vented booth or<br />


Combine in narrative Industrial -SU3 General use exposures CS15 Daily; >4 hours Closed equipment PROC1 & 2 Use<br />

as a fuel<br />

as a fuel<br />

Industrial -SU3 Use a fuel GES16, Daily; >4 hours, to 100% Closed equipment PROC16 - use as<br />

CS107<br />

a fuel<br />

Industrial -SU3 Use a fuel additive GES16, Daily; >4 hours, to 100% Closed equipment PROC3 Closed<br />

diluent<br />

CS107<br />

batch process (with<br />

sampling)<br />

Industrial -SU3 Vehicle/boiler CS39 Daily; >4 hours, to 100% PPE. Operator training. PROC8a Nondedicated<br />

maintenance<br />

(changed<br />

from CS5)<br />

Discharging<br />

to/from vessels<br />

Industrial -SU3 Cleaning fuel storage CS103 Infrequent; >4 hours vessel entry procedures, PROC8a<br />

tanks<br />

retain wash down in Discharging<br />

sealed storage pending to/from vessels<br />

disposal,. PPE.<br />

Industrial -SU3 Storage CS67 Daily; 8 hrs; ambient samples collected at PROC1/2 Closed<br />

temp;<br />

dedicated sample point continuous process<br />

(sometimes with<br />

sampling)<br />

Use as a fuel Professional - Bulk transfers (e.g. CS14 Daily; 1-4 hour; ambient Enclosed transfers, clear PROC8b<br />

SU22 heating oil and diesel<br />

temp., Outdoors lines prior to decoupling Dedicated<br />

deliveries)<br />

Discharging<br />

to/from vessels<br />

Professional - Transfers from drums CS8 Daily; 15 mins - 1 hour; Pumped transfer from PROC8b<br />

SU22 and containers<br />

ambient temp<br />

drum to equipment Dedicated<br />

Discharging<br />

to/from vessels<br />

Professional - Refuelling vehicles, CS507 Daily; >4 hours, to 100% Pumped transfer to PROC8b<br />

SU22 light aircraft or marine<br />

vehicle<br />

Dedicated<br />

Discharging<br />

to/from vessels<br />

Combine in narrative Professional - General use exposures CS15 Daily; >4 hours Closed equipment PROC1 & 2 Use<br />

SU22 as a fuel<br />

as a fuel<br />

Professional - Use a fuel additive GES16, Daily; >4 hours, Closed equipment PROC3 Closed<br />

SU22 diluent<br />

CS107<br />

batch process (with<br />

sampling)<br />

Professional - Use a fuel GES16, Daily; >4 hours Closed equipment PROC16 - use as<br />

SU22<br />

CS107<br />

a fuel<br />

Professional - Equipment<br />

CS39 Daily; >4 hours PPE. Operator training. PROC8a<br />

SU22 maintenance e.g.<br />

Discharging<br />

Vehicle, boiler, pump<br />

to/from vessels<br />

maintenance, pump<br />

calibration<br />

Professional - Vessel / container CS103 Daily; >4 hours vessel entry procedures, PROC8a<br />

SU22 cleaning<br />

retain wash down in Discharging<br />

sealed storage pending to/from vessels<br />

disposa,. PPE.<br />

Professional - Storage CS67 Daily; 8 hrs; ambient samples collected at PROC1 Closed<br />

SU22<br />

temp;<br />

dedicated sample point continuous process<br />

(sometimes with<br />

Use as a lubricant Industrial -SU3 General exposures CS15 Continuous; daily; Closed processes PROC1 and<br />

from enclosed<br />

ambient temp.<br />

PROC2 Closed<br />

processes<br />

process<br />

Combine in narrative Industrial -SU3 General exposures CS15 Continuous; daily; Enclosed process; PROC3 Closed<br />

with row above<br />

from closed processes<br />

ambient temp. closed/semi-closed batch process (with<br />

sampling point<br />

sampling)<br />

Combine in narrative Industrial -SU3 General exposures CS16 Continuous; daily; Enclosed transfers, with PROC4 Batch<br />

from open processes<br />

ambient temp. lev at mixing vessels process with<br />

exposure<br />

Industrial -SU3 General exposures CS16 Continuous; daily; Enclosed transfers, PROC4 Batch<br />

from open processes<br />

ambient temp.<br />

process with<br />

(vapour phase)<br />

exposure<br />

>4 hours, ambient<br />

temp.<br />

> 4 hours daily;<br />

ambient temp.<br />

> 4 hours daily;<br />

ambient temp.<br />

> 4 hours daily;<br />

ambient temp.<br />

daily; ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

>4 hours, ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

>4 hours, ambient<br />

temp.<br />

> 4 hours daily;<br />

ambient temp.<br />

> 4 hours daily;<br />

ambient temp.<br />

> 4 hours daily;<br />

ambient temp.<br />

daily; ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

>4 hours, ambient<br />

temp.<br />

>4 hours, ambient<br />

temp.<br />

>4 hours, ambient<br />

temp.<br />

>4 hours, ambient<br />

temp.<br />

No LEV 1 0 1 1.37 0 1.37 0.01 0.47 0.49 No specific measures identified EI18<br />

No LEV 1 0 1 0.03 0 0.03 0.01 0.01 0.02 No specific measures identified EI18<br />

No LEV 1 0 1 0.34 0 0.34 0.01 0.12 0.13 No specific measures identified EI18<br />

Handle substance within a closed<br />

system E47.<br />

No LEV 5 80 1 13.71 90 1.371 0.01 0.47 0.49 Drain down system prior to equipment<br />

SOPs assumed to offer<br />

break-in or maintenance. E65 Transfer<br />

equivalent LEV<br />

via enclosed lines E52 Wear<br />

effic shown<br />

chemically resistant gloves (tested to<br />

EN374) PPE16 Wear suitable<br />

coveralls to prevent exposure to the<br />

skin PPE27 Retain drain downs in<br />

sealed storage pending disposal or for<br />

subsequent recycle. ENVT4<br />

No LEV 5 80 1 LEV efficiency 13.71 90 1.371 0.01 0.47 0.49 Apply vessel entry procedures<br />

from forced air<br />

including use of forced supplied air.<br />

assumed to<br />

AP15 Drain down system prior to<br />

equate to same<br />

equipment break-in or maintenance.<br />

as LEV<br />

E65 Transfer via enclosed lines E52<br />

Wear chemically resistant gloves<br />

(tested to EN374) PPE16 Wear<br />

suitable coveralls to prevent exposure<br />

to the skin PPE27 Retain drain downs<br />

in sealed storage pending disposal or<br />

for subsequent recycle. ENVT4<br />

outdoor activity 1 0 1 0.14 0 0.14 0.01 0.05 0.06 Store substance within a closed<br />

system. E84 Transfer via enclosed<br />

lines. E52 Avoid dip sampling E42<br />

No LEV 5 0 5 6.86 80 1.37 0.07 0.47 0.55 Provide a good standard of general<br />

ventilation (3 to 5 air changes per<br />

hour) E40 or Ensure operation is<br />

undertaken outdoors E69 Clear lines<br />

prior to decoupling. E39 Wear suitable<br />

gloves tested to EN374. PPE15<br />

No LEV 5 80 1 Use of pumped 6.86 80 1.37 0.01 0.47 0.49 Use drum pumps or carefully pour from<br />

transfer<br />

container. E64 Wear suitable gloves<br />

assumed to<br />

tested to EN374 PPE16 Avoid spillage<br />

deliver LEV effic<br />

when withdrawing pump. C&H16<br />

shown<br />

No LEV 5 0 5 Use of pumped 6.86 80 1.37 0.07 0.47 0.55 Use drum pumps or carefully pour from<br />

transfer<br />

container. E64 Wear suitable gloves<br />

assumed to<br />

tested to EN374 PPE16 Avoid spillage<br />

deliver LEV effic<br />

when withdrawing pump. C&H16 Deal<br />

shown<br />

with spills immediately. C&H13<br />

No LEV 1 0 1 1.34 0 1.34 0.01 0.46 0.48 No specific measures identified EI18<br />

No LEV 1 0 1 0.34 0 0.34 0.01 0.12 0.13 No specific measures identified EI18<br />

No LEV 20 30 14 general<br />

0.34 0 0.34 0.20 0.12 0.32 Provide a good standard of general<br />

ventilation or<br />

ventilation (3 to 5 air changes per<br />

use outdoors<br />

hour) E40 or Ensure operation is<br />

undertaken outdoors E69 Handle<br />

substance within a closed system E47.<br />

No LEV 5 80 1 SOPs assumed 13.71 90 1.37 0.01 0.47 0.49 Drain down system prior to equipment<br />

to offer<br />

break-in or maintenance E55 Good GV<br />

equivalent LEV<br />

E40 Transfer via enclosed lines E52<br />

effic shown<br />

Wear chemically resistant gloves<br />

(tested to EN374) PPE16 Retain drain<br />

downs in sealed storage pending<br />

disposal or for subsequent recycle.<br />

ENVT4<br />

With supplied air 5 0 5 13.71 90 1.37 0.07 0.47 0.55 Drain down system prior to equipment<br />

ventilation, PTW<br />

break-in or maintenance. E65 Wear<br />

chemically resistant gloves (tested to<br />

EN374) PPE16 Wear suitable<br />

coveralls to prevent exposure to the<br />

skin PPE27 Retain wash downs in<br />

sealed storage pending disposal.<br />

ENVT4<br />

outdoor activity 0.01 0 0.01 0.34 0 0.34 0.00 0.12 0.12 Store substance within a closed<br />

system. E84<br />

No LEV 0.5 0 0.5 1.37 0 1.37 0.01 0.47 0.48 Handle substance within a closed<br />

system E47 Provide extract ventilation<br />

to points where emissions occur E54<br />

No LEV 1 0 1 0.34 0 0.34 0.01 0.12 0.13 Handle substance within a closed<br />

system E47 Provide extract ventilation<br />

to points where emissions occur E54<br />

With LEV 5 90 0.5 0.69 0 0.69 0.01 0.00 0.01 Ensure material transfers are under<br />

containment or extract ventilation. E66<br />

Provide extract ventilation to points<br />

where emissions occur E54 Wear<br />

suitable gloves tested to EN374<br />

PPE15<br />

With LEV 5 90 0.5 0.69 0 0.69 0.07 0.24 0.31 Ensure material transfers are under<br />

containment or extract ventilation. E66<br />

Provide extract ventilation to points<br />

where emissions occur E54 Wear<br />

suitable gloves tested to EN374<br />

PPE15


Industrial - Bulk transfers CS14 Daily; 15 min - 1 hour;<br />

SU3/ SU10<br />

product temp; collection<br />

of line waste in container<br />

Combine in narrative Industrial -SU3 Filling preparation of CS45 Daily; 15 mins - 1 hour;<br />

equipment from drums<br />

ambient temp<br />

or containers<br />

Industrial -SU3 Filling preparation of CS45 Daily; 15 mins - 1 hour;<br />

equipment from drums<br />

ambient temp<br />

or containers<br />

Industrial -SU3 Initial Factory fill of CS75 Continuous; 8 hours;<br />

equipment<br />

daily; ambient temp.<br />

Combine in narrative Industrial -SU3 Operation and<br />

CS17 Indoor, Daily; 8 hours;<br />

lubrication of high<br />

ambient temp.<br />

energy open equipment<br />

Industrial -SU3 Operation and<br />

CS17 Continuous; daily;<br />

lubrication of high<br />

ambient temp.<br />

energy open equipment<br />

(vapour phase)<br />

Industrial -SU3 Operation and<br />

CS17 Continuous; daily;<br />

lubrication of high<br />

ambient temp.<br />

energy open equipment<br />

Industrial -SU3 Operation and<br />

CS17 Continuous; daily;<br />

lubrication of high<br />

ambient temp.<br />

energy open equipment<br />

(vapour phase)<br />

Industrial -SU3 Manual roller<br />

CS13 Indoor, Daily; 8 hours,<br />

application or brushing<br />

ambient temp,<br />

Automated<br />

replenishment of roller<br />

or brush<br />

Industrial -SU3 Treatment of articles by CS35 Indoor, Daily; 8 hours,<br />

dipping and pouring<br />

ambient temp, automatic<br />

dipping in a bath<br />

Combine in narrative Industrial -SU3 Spraying CS10 Indoor, Daily; 8 hours,<br />

ambient temp,<br />

automated spraying<br />

Industrial -SU3 Spraying (vapour CS10 automatic spraying at<br />

phase)<br />

room temperature<br />

continuous<br />

Combine in narrative Industrial -SU3 Maintenance (of larger CS77 Daily; 1-4 hours;<br />

plant items) and<br />

ambient temp;<br />

machine set-up<br />

Industrial -SU3 Maintenance (of larger CS77 Daily; 1-4 hours;<br />

plant items) and<br />

Elevated temp (30o<br />

machine set-up<br />

above ambient)<br />

Industrial -SU3 Draining equipment CS18 Daily; 1 - 4 hours;<br />

(small items)<br />

ambient temp.<br />

Enclosed transfers, PROC8b<br />

daily; ambient<br />

vented transfer points; Dedicated temp.<br />

clear lines prior to discharging to/from<br />

decoupling<br />

vessels<br />

Manual filling of PROC8a Nondedicated<br />

temp.<br />

4 hours, ambient<br />

openings; extract Lubrication at high temp.<br />

ventilation to emission energy conditions<br />

points; PPE<br />

Restrict area of PROC 17 >4 hours, ambient<br />

openings; extract Lubrication at high temp.<br />

ventilation to emission energy conditions<br />

points; PPE<br />

Restrict area of PROC 18 - >4 hours, ambient<br />

openings; extract Greasing at high temp.<br />

ventilation to emission energy conditions<br />

points; PPE<br />

Restrict area of PROC 18 - >4 hours, ambient<br />

openings; extract Greasing at high temp.<br />

ventilation to emission energy conditions<br />

points; PPE<br />

PPE PROC 10 Roller or >4 hours, ambient<br />

brush application temp.<br />

Cabinet to allow the PROC 13 Dipping >4 hours, ambient<br />

dipping and the dripping and pouring temp.<br />

of the pieces. PPE<br />

LEV, Spraying cabinet PROC 7 >4 hours, ambient<br />

with capture of the<br />

temp.<br />

aerosols, PPE<br />

spraying cabinet with PROC 7 >4 hours, ambient<br />

capture of the aerosols<br />

temp.<br />

Enclosed<br />

PROC8b >4 hours, ambient<br />

transfers,vented transfer Discharging temp.<br />

points; clear lines prior to to/from vessels<br />

decoupling; PPE (dedicated)<br />

Enclosed transfers, PROC8b >4 hours, ambient<br />

vented transfer points; Discharging temp.<br />

clear lines prior to to/from vessels<br />

decoupling; PPE (dedicated)<br />

Retain drainings in PROC8a 50oC) lubricant is likely) E67 Clear<br />

transfer lines prior to decoupling E39<br />

Wear suitable gloves (tested to<br />

EN374) PPE15<br />

No LEV 5 0 5 13.71 90 1.371 0.07 0.47 0.55 Provide a good standard of controlled<br />

ventilation (10 to 15 air changes per<br />

hour). E11 Wear chemically resistant<br />

gloves (tested to EN374) in<br />

combination with ‘basic’ employee<br />

training. PPE16 Avoid manual contact<br />

with wet work pieces EI17 Retain drain<br />

downs in sealed storage pending<br />

disposal or for subsequent recycle.<br />

ENVT4


Industrial -SU3 Remanufacture of CS19 Daily; 1-4 hours; Retain drainings in PROC9 - Transfer<br />

reject articles<br />

ambient temp; sealed storage pending of chemicals into<br />

disposal. PPE.<br />

small containers<br />

Industrial -SU3 Storage CS67 Daily; 8 hrs; ambient samples collected at PROC1/2 Closed<br />

temp;<br />

dedicated sample point continuous process<br />

(sometimes with<br />

sampling)<br />

Use as a lubricant Professional - General exposures CS15 Continuous; daily; Closed processes PROC1 and<br />

SU22 from enclosed<br />

ambient temp.<br />

PROC2 Closed<br />

processes<br />

process<br />

Combine with row Professional - General exposures CS15 Continuous; daily; Enclosed process; ; PROC3 Closed<br />

above in narrative SU22 from closed processes<br />

ambient temp. closed/semi-closed batch process (with<br />

sampling point<br />

sampling)<br />

Professional - Operation of equipment CS26 Daily; >4 hours, ambient None. Fluid inside PROC 20 Heat<br />

SU22 containing engine oils<br />

equipment<br />

and pressure<br />

and similar<br />

transfer fluids<br />

(closed systems)<br />

PROC4 not in ATIEL Professional - General exposures CS16 Continuous; daily; Enclosed transfers, PROC4 Batch<br />

mapping<br />

SU22 from open processes<br />

ambient temp.<br />

process with<br />

exposure<br />

Combine in narrative Professional - General exposures CS16 Continuous; daily; Enclosed transfers, PROC4 Batch<br />

SU22 from open processes<br />

ambient temp.<br />

process with<br />

(vapour phase)<br />

exposure<br />

Professional - Bulk transfers (e.g. CS14 Daily; 1-4 hour; ambient Enclosed transfers, clear PROC8b<br />

SU22 deliveries to<br />

temp.<br />

lines prior to decoupling Dedicated<br />

dealerships)<br />

Discharging<br />

to/from vessels<br />

Professional - Filling preparation of CS45, CS81 Daily; 15 mins - 1 hour; Pumped transfer or use PROC8b<br />

SU22 equipment from drums<br />

ambient temp<br />

of dedicated container. Discharging<br />

or containers -<br />

Eye protection, Gloves, to/from vessels<br />

dedicated facility<br />

Apron<br />

(dedicated)<br />

Professional - Filling preparation of CS45, CS82 Daily; 15 mins - 1 hour; Pumped transfer or use PROC8a Nondedicated<br />

SU22 equipment from drums<br />

ambient temp<br />

of dedicated container.<br />

or containers - non<br />

Eye protection, Gloves, discharging<br />

dedicated facility<br />

Apron<br />

Combine in narrative Professional - Operation and<br />

CS17, OC8 Continuous; daily; Restrict area of PROC 17<br />

SU22 lubrication of high (indoor) ambient temp. Indoors openings; extract Lubrication at high<br />

energy open equipment<br />

ventilation to emission energy conditions<br />

points<br />

Professional - Operation and<br />

CS17, OC8 Continuous; daily; Restrict area of PROC 17<br />

SU22 lubrication of high<br />

ambient temp. openings; extract Lubrication at high<br />

energy open equipment<br />

ventilation to emission energy conditions<br />

(vapour phase)<br />

points<br />

Combine in narrative Professional - Operation and<br />

CS17, OC8 Continuous; daily; Restrict area of PROC 18 -<br />

SU22 lubrication of high<br />

ambient temp. openings; extract Greasing at high<br />

energy open equipment<br />

ventilation to emission energy conditions<br />

points<br />

Professional - Operation and<br />

CS17, OC8 Continuous; daily; Restrict area of PROC 18 -<br />

SU22 lubrication of high<br />

ambient temp. openings; extract Greasing at high<br />

energy open equipment<br />

ventilation to emission energy conditions<br />

(vapour phase)<br />

points<br />

Covers total loss Professional - Operation and<br />

CS17, OC9 Continuous; daily; Total loss systems PROC 17<br />

equipment with spray SU22 lubrication of high (outdoor) ambient temp. Outdoors<br />

Lubrication at high<br />

potential, e.g. chain<br />

energy open<br />

energy conditions<br />

saws<br />

equipment, e.g. chain<br />

saw<br />

Professional - Operation and<br />

CS17, OC9 Continuous; daily; Total loss systems PROC 17<br />

SU22 lubrication of high<br />

ambient temp.<br />

Lubrication at high<br />

energy open equipment<br />

energy conditions<br />

(vapour phase)<br />

Combine in narrative Professional - Maintenance and<br />

CS77 Daily; 1-4 hours; Enclosed<br />

PROC8b<br />

SU22 machine set-up<br />

ambient temp; transfers,vented transfer Dedicated<br />

points;; clear lines prior discharging to/from<br />

to decoupling<br />

vessels<br />

daily; ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

>4 hours, ambient<br />

temp.<br />

>4 hours, ambient<br />

temp.<br />

> 4 hours; daily;<br />

ambient temp.<br />

>4 hours, ambient<br />

temp.<br />

>4 hours, ambient<br />

temp.<br />

4 hours, ambient<br />

temp.<br />

>4 hours, ambient<br />

temp.<br />

1-4 hours,<br />

ambient temp.<br />

1-4 hours,<br />

ambient temp.<br />

1-4 hours daily;<br />

ambient temp.<br />

No LEV 5 0 5 6.86 80 1.372 0.07 0.47 0.55 Provide a good standard of controlled<br />

ventilation (10 to 15 air changes per<br />

hour). E11 Retain drain downs in<br />

sealed storage pending disposal or for<br />

subsequent recycle. ENVT4 Wear<br />

suitable gloves tested to EN374<br />

PPE15<br />

outdoor activity 0.5 0 0.5 0.14 0 0.14 0.01 0.05 0.06 Store substance within a closed<br />

system. E84 Transfer via enclosed<br />

lines. E52 Avoid dip sampling E42<br />

No LEV 3 0 3 1.37 80 0.274 0.04 0.09 0.14 Handle substance within a closed<br />

system E47 Provide GV E40 Wear<br />

gloves when breaching PPE15<br />

No LEV 3 0 3 0.34 0 0.34 0.04 0.12 0.16 Handle substance within a closed<br />

system E47 Provide GV E40 Wear<br />

gloves when breaching PPE15<br />

No LEV 5 0 5 1.71 0 1.71 0.07 0.59 0.66 No special measures EIi18 Use in<br />

enclosed systems and restrict area of<br />

openings E49 Provide GV E11<br />

With LEV 5 0 5 6.86 80 1.372 0.07 0.00 0.07 Provide extract ventilation to points<br />

where emissions occur E54 Wear<br />

suitable gloves tested to EN374<br />

PPE15<br />

With LEV 10 70 3 Enhanced GV 6.86 80 1.37 0.43 0.47 0.90 Provide a good standard of controlled<br />

ventilation (10 to 15 air changes per<br />

hour) E40 Provide extract ventilation<br />

to points where emissions occur E54<br />

Wear suitable gloves tested to EN374<br />

PPE15<br />

No LEV 5 0 3 (


Professional - Maintenance and<br />

CS77 Daily; 1-4 hours; Enclosed transfers, PROC8b 1-4 hours daily;<br />

SU22 machine set-up<br />

Elevated temp (30o vented transfer points; Discharging elevated temp.<br />

above ambient) clear lines prior to to/from vessels<br />

decoupling<br />

(dedicated)<br />

Professional - Draining equipment CS18 Daily; 1-4 hours; Retain drainings in PROC8a 1-4 hours daily;<br />

SU22 (small items) e.g.<br />

Elevated temp (30o sealed storage pending Discharging elevated temp.<br />

engine drains<br />

above ambient) disposal. PPE.<br />

to/from vessels<br />

non dedicated<br />

Professional - Engine lubricant service CS78 Daily; 1-4 hours; None PROC9 - Transfer daily; ambient<br />

SU22 - to cover small<br />

ambient temp;<br />

of chemicals into temp.<br />

additions of oil to<br />

small containers<br />

engines<br />

Combine in narrative Professional - Manual roller<br />

CS13 Indoor, Daily; 8 hours, PPE. If LEV applied (to PROC 10 Roller or >4 hours, ambient<br />

1. LEV<br />

SU22 application or brushing<br />

product temp (ambient); provide options for RMM) brush application temp.<br />

of coatings CS13<br />

Automated<br />

replenishment of roller<br />

or brush<br />

2. General ventilation Professional - Manual roller<br />

CS13 Indoor, Daily; 8 hours, PPE PROC 10 Roller or >4 hours, ambient<br />

SU22 application or brushing<br />

product temp (ambient),<br />

brush application temp.<br />

of coatings CS13<br />

Automated<br />

replenishment of roller<br />

or brush<br />

3. RPE Professional - Manual roller<br />

CS13 Indoor, Daily; 8 hours, PPE. If ventilation PROC 10 Roller or >4 hours, ambient<br />

SU22 application or brushing<br />

product temp (ambient), inadequate and RPE brush application temp.<br />

of coatings CS13<br />

Automated<br />

applied (to provide<br />

replenishment of roller options for RMM)<br />

or brush; Solvent<br />

concentration 95% or<br />

greater for cleaners/<br />

Combine in Professional - Spraying CS10 CS10 Indoor or outdoor, Daily; Respiratory protection, PROC 11 Spraying >4 hours, ambient<br />

narrative.<br />

SU22<br />

15 min - 1 hour, product eye protection, gloves. If - non-industrial temp.<br />

1. LEV<br />

temp (ambient), LEV applied (to provide<br />

selection of spray options for RMM)<br />

nozzles to avoid small<br />

droplet size to minimise<br />

product losses<br />

Vapour phase Professional - Spraying CS10 >4 hours, ambient<br />

Value for low SU22<br />

temp.<br />

volatility liquid<br />

applied<br />

Combine in narrative Professional - Spraying CS10 CS10 Indoor or outdoor, Daily; Respiratory protection, PROC 11 Spraying >4 hours, ambient<br />

with 'alternative' SU22<br />

15 min - 1 hour, product eye protection, gloves - non-industrial temp.<br />

phrases<br />

temp (ambient),<br />

2. General ventilation<br />

selection of spray<br />

and RPE<br />

nozzles to avoid small<br />

droplet size to minimise<br />

product losses<br />

Vapour phase Professional -<br />

>4 hours, ambient<br />

Value for low SU22<br />

temp.<br />

volatility liquid<br />

applied<br />

Professional - Treatment of articles by CS35 Indoor, Daily; 8 hours, Cabinet to allow the PROC 13 Dipping >4 hours, ambient<br />

SU22 dipping and pouring<br />

ambient temp, automatic dipping and the dripping and pouring temp.<br />

(CS35)<br />

dipping in a bath of the pieces. PPE<br />

Professional - Storage CS67 Daily; 8 hrs; ambient samples collected at PROC1 Closed daily; ambient<br />

SU22<br />

temp;<br />

dedicated sample point continuous process temp.<br />

(sometimes with<br />

Metal working Industrial -SU3 General exposures CS15 Indoor, Daily; 8 hour; Closed processes PROC1 and >4 hours, ambient<br />

fluids / rolling oils<br />

(closed systems)<br />

ambient temp.<br />

PROC2 Closed temp.<br />

process<br />

Industrial -SU3 General exposures CS15 Indoor, Daily; 8 hour; Enclosed process; ; PROC3 Closed >4 hours, ambient<br />

(closed systems) ,<br />

ambient temp. closed/semi-closed batch process (with temp.<br />

including closed EDM<br />

sampling point<br />

sampling)<br />

processes<br />

No LEV 25 80 5 1-4 hours daily 0.69 80 0.14 0.07 0.05 0.12 Provide extract ventilation to emission<br />

(0.6x); E67<br />

points when contact with warm<br />

conveys 90%<br />

(>50oC) lubricant is likely) E67 Clear<br />

efficiency<br />

transfer lines prior to decoupling E39<br />

Wear suitable gloves tested to EN374<br />

PPE15<br />

Provide a good standard of general<br />

No LEV 50 80 7 SOP re drain<br />

13.71 90 1.37 0.10 0.47 0.58 downs (E81);<br />

ventilation (3 to 5 air changes per<br />

Good general<br />

hour) E11 Drain or remove substance<br />

ventilation<br />

from equipment prior to break-in or<br />

(0.7x);<br />

maintenance E81. Wear chemically<br />

resistant gloves (tested to EN374) in<br />

combination with ‘basic’ employee<br />

training.. PPE16 Retain drain downs in<br />

sealed storage pending disposal or for<br />

subsequent recycle. ENVT4.<br />

No LEV 5 0 5 6.86 90 0.69 0.07 0.24 0.31 Provide a good standard of general<br />

ventilation (3 to 5 air changes per<br />

hour) E11 Wear suitable gloves tested<br />

to EN374 with basic training PPE16<br />

No LEV 5 0 5 27.43 95 1.37 0.07 0.47 0.55 Provide a good standard of general<br />

ventilation (3 to 5 air changes per<br />

hour) E11 Provide extract ventilation<br />

to points where emissions occur E54<br />

Wear chemically resistant gloves<br />

(tested to EN374) in combination with<br />

specific activity training . PPE17<br />

No LEV 5 0 5 27.43 95 1.37 0.07 0.47 0.55 Provide a good standard of general<br />

ventilation (3 to 5 air changes per<br />

hour) E11 Provide extract ventilation<br />

to points where emissions occur E54<br />

Wear chemically resistant gloves<br />

(tested to EN374) in combination with<br />

specific activity training . PPE17<br />

No LEV 5 0 5 27.43 95 1.37 0.07 0.47 0.55 Provide a good standard of general<br />

ventilation (3 to 5 air changes per<br />

hour) E11 Provide extract ventilation<br />

to points where emissions occur E54<br />

Wear chemically resistant gloves<br />

(tested to EN374) in combination with<br />

specific activity training . PPE17<br />

With LEV 20 80 4 2.14 80 0.43 0.06 0.15 0.21 Carry out in a vented booth or<br />

extracted enclosure E57 Wear<br />

suitable gloves tested to<br />

EN374.PPE15 Provide a good<br />

standard of general ventilation (3 to 5<br />

air changes per hour) E11<br />

With LEV 100 90 5.95 90% effic LEV<br />

2.14 90 0.21 0.85 0.07 0.92 Minimise exposure by enclosing the<br />

required (= E60)<br />

operation or equipment and provide<br />

: additional GV<br />

extract ventilation at openings E60<br />

(E11) ; trained<br />

Provide GV E11 Wear chemically<br />

personnel<br />

resistant gloves (tested to EN374) in<br />

(0.85x)<br />

combination with ‘basic’ employee<br />

training PPE16 Ensure operatives are<br />

trained to minimise exposures EI19<br />

Segregate the activity away from other<br />

operations E63<br />

No LEV 20 90 2 RPE APF 10<br />

64.2 98 1.28 0.03 0.44 0.47 If technical measures not practical:<br />

(x0.05)<br />

G16 Provide a good standard of<br />

controlled ventilation (10 to 15 air<br />

changes per hour). E11 Limit the<br />

substance content in the product to 25<br />

% OC18 Wear a respirator conforming<br />

to EN140 with Type A filter or better<br />

PPE22. Wear chemically resistant<br />

gloves (tested to EN374) in<br />

combination with intensive<br />

management supervision<br />

controls.PPE18 Cover skin PPE 27<br />

Segregate the activity away from other<br />

operations E63<br />

No LEV 100 95 3 RPE APF 20<br />

64.2 98 1.28 0.43 0.44 0.87 Provide a good standard of controlled<br />

(x0.05) ;


Industrial - General exposures CS16 Daily; Indoor; 15 - 1 Enclosed transfers, clear PROC4 Batch >4 hours, ambient<br />

SU3/ SU10 open batch process,<br />

hour; product temp. lines prior to decoupling process with temp.<br />

including open EDM<br />

exposure<br />

processes<br />

Industrial -SU3 Bulk transfers CS14 Indoor, Daily; 15 mins - Enclosed transfers, clear PROC8b<br />

daily; ambient<br />

1 hour; product temp lines prior to decoupling Dedicated temp.<br />

(ambient)<br />

discharging to/from<br />

vessels<br />

Combine in Industrial -SU3 Filling preparation of CS45 Indoor, Daily; 15 mins - Pumped transfer or use PROC8b 4 hours; ambient<br />

equipment from drums<br />

1 hour; product temp of dedicated container. blending in batch temp.<br />

or containers (CS45) -<br />

(ambient)<br />

Eye protection, Gloves, process<br />

(ATIEL identified 3<br />

Apron<br />

PROCs for this activity)<br />

Industrial -SU3 Filling preparation of CS45 Indoor, Daily; 15 mins - Pumped transfer or use PROC9 Dedicated >4 hours, ambient<br />

equipment from drums<br />

1 hour; product temp of dedicated container. filling line temp.<br />

or containers (ATIEL<br />

(ambient)<br />

Eye protection, Gloves,<br />

identified 3 PROCs for<br />

Apron<br />

this activity)<br />

Industrial -SU3 Process sampling. CS2 Indoor, Daily; 15 mins - Dedicated pipette. No PROC3 Closed >4 hours, ambient<br />

Drawing sample into a<br />

1 hour; product temp hand immersion. PPE batch process (with temp.<br />

pipette for testing<br />

(ambient)<br />

sampling)<br />

Industrial -SU3 Metal Machining<br />

CS79 Indoor, Daily; 8 hours; Restrict area of PROC 17 >4 hours, ambient<br />

Operations<br />

product temp (ambient) openings; extract Lubrication at high temp.<br />

ventilation to emission energy conditions<br />

points; PPE<br />

Industrial -SU3 Treatment of articles by CS35 Indoor, Daily; 8 hours, Cabinet to allow the PROC 13 Dipping >4 hours, ambient<br />

dipping and pouring<br />

product temp (ambient), dipping and the dripping and pouring temp.<br />

automatic dipping in a of the pieces. PPE<br />

bath<br />

Combine in narrative Industrial -SU3 Spraying CS10 Indoor, Daily; 8 hours, LEV, Spraying cabinet PROC 7<br />

>4 hours, ambient<br />

product temp (ambient), with capture of the<br />

temp.<br />

automated spraying aerosols, PPE<br />

Vapour phase Industrial -SU3 >4 hours, ambient<br />

temp.<br />

Industrial -SU3 Manual roller<br />

CS13 Indoor, Daily; 8 hours, PPE PROC 10 Roller or >4 hours, ambient<br />

application or brushing<br />

product temp (ambient),<br />

brush application temp.<br />

Automated<br />

replenishment of roller<br />

or brush<br />

Elevated<br />

Industrial -SU3 Automated metal<br />

CS80 Indoor. Continuous; Enclosed vented cabinet PROC2 >4 hours, ambient<br />

temperature<br />

rolling/forming<br />

daily; 8hour; elevated with blow off system to<br />

temp.<br />

therefore applied<br />

temperature (120 deg contain mist/vapour;<br />

value for medium<br />

C) from rolling<br />

product recovery and<br />

volatility<br />

operation; Remote recirculation; Gloves,<br />

operation<br />

eye protection, overalls.<br />

Elevated<br />

Industrial -SU3 Semi-automated metal CS83 Indoor. Continuous; LEV canopy; product PROC 17 - >4 hours, ambient<br />

temperature<br />

rolling/forming<br />

daily; 8hour; elevated recovery and<br />

lubrication at high temp.<br />

therefore applied<br />

temperature (120 deg recirculation; Gloves, energy conditions<br />

value for medium<br />

C) from rolling<br />

eye protection, overalls. and in partly open<br />

volatility<br />

operation; manual<br />

process<br />

intervention<br />

Vapour phase. Industrial -SU3 >4 hours, ambient<br />

temp.<br />

Industrial -SU3 Oil/water-based PROC4 Open >4 hours, ambient<br />

batch process (with temp.<br />

sampling)<br />

With LEV 5 90 0.5 0.69 0 0.69 0.01 0.00 0.01 Ensure material transfers are under<br />

containment or extract ventilation. E66<br />

Provide extract ventilation to points<br />

where emissions occur E54 Wear<br />

suitable gloves tested to EN374<br />

PPE15<br />

No LEV 5 0 5 6.86 80 1.37 0.07 0.47 0.55 Handle substance within a closed<br />

system. E47 Operate activity from<br />

way from sources of substance<br />

emission or release E77 Ensure<br />

material transfers are under<br />

containment or extract ventilation.<br />

E56. Wear chemically resistant gloves<br />

(tested to EN374) PPE15 Avoid<br />

splashing C&H15<br />

No LEV 5 0 5 6.86 80 1.372 0.07 0.47 0.55 Transfer via enclosed lines E52 Use<br />

drum pumps or carefully pour from<br />

container E64<br />

Wear gloves tested to EN374 PPE15<br />

No LEV 5 0 5 13.71 90 1.371 0.07 0.47 0.55 Transfer via enclosed lines E52 Use<br />

drum pumps or carefully pour from<br />

container E64 Provide good GV E11<br />

Wear gloves tested to EN374 with<br />

basic training PPE16<br />

No LEV 5 0 5 6.86 80 1.37 0.07 0.47 0.55 Ensure material transfers are under<br />

containment or extract ventilation. E66<br />

Wear suitable gloves tested to EN374<br />

PPE15<br />

No LEV 3 0 3 0.34 0 0.34 0.04 0.12 0.16 No special precuations EI18 Ensure<br />

samples are obtained under<br />

containment or extract ventilation E76<br />

Wear suitable gloves tested to EN374<br />

PPE15 Avoid dip sampling E42<br />

With LEV 50 90 5 90% ventilation 1.37 0 1.37 0.07 0.47 0.55 Minimise exposure by partial enclosure<br />

reflceted in E60<br />

of the operation or equipment and<br />

phrase;<br />

provide extract ventilation at openings<br />

E60 Provide a good standard of<br />

general ventilation (3 to 5 air changes<br />

per hour) .E11 Wear suitable gloves<br />

tested to EN374 PPE15<br />

No LEV 1 0 1 6.86 80 1.372 0.01 0.47 0.49 Provide extract ventilation to points<br />

where emissions occur E54. Allow time<br />

for product to drain from work pieces<br />

EI21 Automate activity where possible<br />

AP16 Wear chemically resistant gloves<br />

(tested to EN374) PPE15 Avoid<br />

manual contact with wet work pieces<br />

With LEV 20 95 1 2.14 80 0.43 0.01 0.15 0.16 Minimise exposure by enclosing the<br />

operation or equipment and provide<br />

extract ventilation at openings E60<br />

provide GV E11 Automate activity<br />

where possible AP16 Wear a respirator<br />

conforming to EN140 with Type A/P2<br />

filter or better PPE29. Wear gloves<br />

tested to EN374, coveralls and eye<br />

protection PPE23<br />

With LEV 100 95 5 2.14 80 0.43 0.71 0.15 0.86 Minimise exposure by enclosing the<br />

operation or equipment and provide<br />

extract ventilation at openings E60<br />

provide enhanced GV E48 Automate<br />

activity where possible AP16 Wear a<br />

respirator conforming to EN140 with<br />

Type A/P2 filter or better PPE29.<br />

Wear gloves tested to EN374,<br />

coveralls and eye protection PPE23<br />

No LEV 5 0 5 27.43 95 1.37 0.07 0.47 0.55 Wear suitable gloves tested to EN374<br />

with specific employee training PPE17<br />

Provide a good standard of general<br />

ventilation E11 Use long handled<br />

brushes and rollers where possible.E58<br />

With LEV 1 90 0.1 0.14 0 0.14 0.00 0.05 0.05 Handle substance within a closed<br />

system E47 Provide extract ventilation<br />

to points where emissions occur E54<br />

With LEV 50 95 2.5 1.37 0 1.37 0.04 0.00 0.04 Provide extract ventilation to points<br />

where emissions occur E54. Restrict<br />

area of openings to equipment E68<br />

Wear chemically resistant gloves<br />

(tested to EN374) PPE15 Segregate<br />

the activity away from other operations<br />

E63<br />

With LEV 50 95 2.5 1.37 0 1.37 0.36 0.47 0.83 Provide extract ventilation to points<br />

where emissions occur E54. Restrict<br />

area of openings to equipment E68<br />

Wear chemically resistant gloves<br />

(tested to EN374) PPE15 Segregate<br />

the activity away from other operations<br />

E63<br />

With LEV 5 90 0.5 0.69 0 0.69 0.01 0.00 0.01 Ensure material transfers are under<br />

containment or extract ventilation. E66<br />

Provide extract ventilation to points<br />

where emissions occur E54 Wear<br />

suitable gloves tested to EN374<br />

PPE15


Note: differentiated Industrial -SU3 Equipment cleaning CS39 Indoor, Daily; 1 - 4 Enclosed transfer, clear PROC8b<br />

dedicated and nondedicated<br />

facility for<br />

Dedicated facility CS81<br />

retain drainings in sealed discharging to/from<br />

and maintenance -<br />

hours; ambient temp. lines prior to decoupling; Dedicated<br />

equipment cleaning -<br />

storage pending vessels<br />

both identified by<br />

disposal. PPE<br />

ATIEL - combined in<br />

narrative as CS39<br />

Industrial -SU3 Equipment cleaning<br />

Indoor, Daily; 1 - 4 Collect waste and retain PROC8a<br />

and maintenance -Nondedicated<br />

facility<br />

storage pending to/from vessels<br />

hours; ambient temp. drainings in sealed Discharging<br />

(CS82)<br />

disposal. PPE<br />

Industrial -SU3 Material Storage CS67 Continuous; daily; 8hour Enclosed process; PROC1/2 Closed<br />

closed/semi-closed continuous process<br />

sampling point<br />

(sometimes with<br />

sampling)<br />

Use as binders and Industrial -SU3 Bulk transfers from CS3 Daily; 1 - 4 hours; Enclosed transfers, clear PROCs 1-3<br />

release agents<br />

storage to mixing<br />

ambient temp. lines prior to decoupling contained<br />

vessels<br />

processes<br />

Industrial -SU3 Transfers to mixing CS8 Daily; 15 mins - 1 hour; Pumped transfer from PROC8b<br />

vessels from drums<br />

ambient temp<br />

drum to holding tanks. Discharging<br />

to/from vessels<br />

Industrial -SU3 Mixing / blending of CS29 Daily; >4 hours Enclosed or ventilated PROC3 Closed<br />

foundry sands with<br />

mixing vessel<br />

batch process (with<br />

binder<br />

sampling)<br />

Industrial -SU3 Mixing / blending of CS30 Daily; >4 hours Enhanced general PROC4 Open<br />

foundry sands with<br />

ventilation<br />

batch process (with<br />

binder<br />

sampling)<br />

Industrial -SU3 Forming moulds from CS31 Daily; >4 hours, ambient PPE PROC14<br />

foundary sand<br />

temp<br />

Production by<br />

tabletting,<br />

compression,<br />

Combine in narrative Industrial -SU3 Emissions from casting CS32, CS108 Daily; 1 - 4 hours; Enhanced general PROC6 Open<br />

into moulds<br />

elevated temp.sufficient ventilation, PPE processing at<br />

to create fume<br />

elevated<br />

temperature<br />

Industrial -SU3 Emissions from casting CS32, CS108 Daily; 1 - 4 hours; Enhanced general PROC6 Open<br />

into moulds (vapour<br />

elevated temp.sufficient ventilation, PPE processing at<br />

phase)<br />

to create fume<br />

elevated<br />

temperature<br />

Combine in narrative Industrial -SU3 Applying release agent CS10, CS33 Daily; 1 - 4 hours; Enclosed or ventilated PROC7<br />

to moulds and<br />

ambient temp. production line. Application by<br />

shuttering<br />

Automation.<br />

spraying<br />

Industrial -SU3 Applying release agent CS10, CS33 Daily; 1 - 4 hours; Enclosed or ventilated PROC7<br />

to moulds and<br />

ambient temp. production line. Application by<br />

shuttering (vapour<br />

Automation.<br />

spraying<br />

phase)<br />

Industrial -SU3 Applying release agent CS13 Daily; 1 - 4 hours; PPE PROC10 Roller<br />

to moulds and<br />

ambient temp.<br />

application and<br />

shuttering<br />

brushing<br />

Combine in narrative Industrial -SU3 Applying release agent CS10, CS34 Daily; 1 - 4 hours; PPE, face mask PROC7<br />

to moulds and<br />

ambient temp.<br />

Application by<br />

shuttering<br />

spraying<br />

Industrial -SU3 Applying release agent CS10, CS34 Daily; 1 - 4 hours; PPE, face mask PROC7<br />

to moulds and<br />

ambient temp.<br />

Application by<br />

shuttering (vapours)<br />

spraying<br />

Industrial - maintenance of CS5 Daily; 1-4 hours, work methods, drain prior PROC8a<br />

SU10 equipment<br />

ambient<br />

to work, retain spills, Discharging<br />

gloves<br />

to/from vessels<br />

(non-dedicated)<br />

Industrial -SU3 Storage CS67 Daily; 8 hrs; ambient samples collected at PROC1/2 Closed<br />

temp;<br />

dedicated sample point continuous process<br />

(sometimes with<br />

li )<br />

Oil and gas field Industrial - SU3 Bulk transfers from tote CS14 Daily; 15 - 1 hour; Enclosed transfers, clear PROCs 1-3<br />

chemicals<br />

tanks and supply<br />

product temp (ambient). lines prior to decoupling contained<br />

vessels<br />

processes<br />

Industrial - SU3 Charge from drums CS45 Daily; 15 mins - 1 hour; Pumped transfer from PROC8b<br />

product temp (ambient) drum to holding tanks. Discharging<br />

to/from vessels<br />

(dedicated)<br />

Industrial - SU3 Drilling mud (re-) CS512 Daily; 1-4 hour; product Closed equipment, PROC3 Closed<br />

formulation<br />

temp (ambient); indoor enclosed or vented batch process with<br />

sampling points sampling<br />

Industrial - SU3 Drill floor operations CS513 Daily; 1-4 hour per PPE PROC4 Batch<br />

operator; product temp<br />

process with<br />

(ambient), outdoors<br />

exposure<br />

Combine Industrial - SU3 Operation of solids CS514 Daily; >4 hours; indoor; Local exhaust ventilation PROC4 Batch<br />

filtering equipment<br />

product temperature<br />

process with<br />

elevated temperature<br />

approx. 60 dC<br />

exposure<br />

> 4 hours daily;<br />

ambient temp.<br />

> 4 hours daily;<br />

ambient temp.<br />

daily; ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

> 4 hours daily;<br />

ambient temp.<br />

> 4 hours daily;<br />

ambient temp.<br />

> 4 hours daily;<br />

ambient temp.<br />

> 4 hours daily;<br />

ambient temp.<br />

> 4 hours daily;<br />

ambient temp.<br />

> 4 hours daily;<br />

ambient temp.<br />

> 4 hours daily;<br />

ambient temp.<br />

> 4 hours; daily;<br />

ambient temp.<br />

> 4 hours daily;<br />

ambient temp.<br />

> 4 hours daily;<br />

ambient temp.<br />

1-4 hours,<br />

ambient temp.<br />

daily; ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

daily; ambient<br />

temp.<br />

> 4 hours daily;<br />

ambient temp.<br />

> 4 hours daily;<br />

ambient temp.<br />

> 4 hours; daily;<br />

elevated product<br />

temperature<br />

No LEV 5 80 1 SOPs assumed 13.71 90 1.37 0.01 0.47 0.49 Drain down system prior to equipment<br />

to offer<br />

break-in or maintenance E55 Good GV<br />

equivalent LEV<br />

E40 Transfer via enclosed lines E52<br />

effic shown<br />

Wear chemically resistant gloves<br />

(tested to EN374) PPE16 Retain drain<br />

downs in sealed storage pending<br />

disposal or for subsequent recycle.<br />

ENVT4<br />

Drain down system prior to equipment<br />

No LEV 5 80 1 SOPs assumed 13.71 90 1.37 0.01 0.47 0.49 to offer<br />

break-in or maintenance E55 Good GV<br />

equivalent LEV<br />

E40 Transfer via enclosed lines E52<br />

effic shown<br />

Wear chemically resistant gloves<br />

(tested to EN374) PPE16 Retain drain<br />

downs in sealed storage pending<br />

disposal or for subsequent recycle.<br />

ENVT4<br />

outdoor activity 0.5 0 0.5 0.14 0 0.14 0.01 0.05 0.06 Store substance within a closed<br />

system. E84 Transfer via enclosed<br />

lines. E52 Avoid dip sampling E42<br />

No LEV 3 0 3 1.37 0 1.37 0.04 0.47 0.52 Handle within contained systems E47<br />

Ensure material transfers are under<br />

containment or extract ventilation E66<br />

wear gloves PPE15 clear lines prior to<br />

decoupling E39 remote vent vapours<br />

ENVT17<br />

With LEV 5 0 5 6.86 80 1.37 0.07 0.47 0.55 Use drum pumps E53 Wear gloves<br />

(80%) PPE15 Avoid spillage on<br />

withdrawal C&H16 GV E40<br />

No LEV 3 0 3 1.37 0 1.37 0.04 0.47 0.52 No psecial measures EI18 Use GV<br />

E11 wear gloves PPE15 Provide<br />

extract ventilation to points where<br />

emissions occur E54<br />

No LEV 5 0 5 13.71 90 1.37 0.07 0.47 0.55 Provide GV E11 Wear gloves (90%)<br />

PPE16 Provide extract ventilation to<br />

points where emissions occur E54<br />

No LEV 5 0 5 3.43 80 0.69 0.07 0.24 0.31 Provide GV E11 Wear gloves (90%)<br />

PPE16 Provide extract ventilation to<br />

points where emissions occur E54<br />

With LEV 25 90 2.5 1.37 80 0.27 0.04 0.09 0.13 Wear gloves (80%) PPE15. Apply<br />

extract ventilation to emissions E60<br />

apply GV E11<br />

With LEV 5 90 0.5 1.37 0 1.37 0.07 0.47 0.54 Apply extract ventilation to emissions.<br />

E60 apply GV E11<br />

With LEV 20 90 2 Use of E57<br />

2.14 80 0.43 0.03 0.15 0.18 Carry out in a vented booth or<br />

equates to 90%<br />

extracted enclosure. E57 wear gloves<br />

PPE15 automate AP16 Segregate the<br />

activity away from other operations<br />

E63<br />

Apply ventilation or undertake in<br />

With LEV 100 90 10 Use of E57<br />

2.14 80 0.43 0.15 0.15 0.29 equates to 90%<br />

ventilated enclosure. E61 wear gloves<br />

PPE15 automate AP16<br />

With LEV 5 0 5 27.43 95 1.37 0.07 0.47 0.55 Apply extract ventilation to emissions.<br />

E54 Wear gloves (95%). PPE17 good<br />

GV E11<br />

No LEV 100 95 5 42.86 95 2.14 0.07 0.74 0.81 Good GV E11 Wear RPE (APF=20)<br />

APF=20 defines LEV value;<br />

and gloves (95%) PPE24, PPE23<br />

specific activity<br />

Segregate E63 Ensure operatives are<br />

training (0.85x)<br />

trained to minimise exposures EI19<br />

No LEV 100 95 5 APF=20 defines 42.86 95 2.14 0.07 0.74 0.81 Good GV E11 Wear RPE (APF=20)<br />

LEV value;<br />

and gloves (95%) PPE24, PPE23<br />

specific activity<br />

Segregate E63 Ensure operatives are<br />

training (0.85x)<br />

trained to minimise exposures EI19<br />

No LEV 5 0 5 13.71 90 1.37 0.07 0.47 0.55 SOP re drain downs.E65 Enclosed<br />

transfers E52 Wear gloves (90%)<br />

PPE16<br />

outdoor activity 0.5 0 0.5 0.14 0 0.14 0.01 0.05 0.06 Store substance within a closed<br />

system. E84 Avoid dip samples E42<br />

No LEV 3 0 3 1.37 0 1.37 0.04 0.47 0.52 Handle within contained systems E47<br />

Ensure material transfers are under<br />

containment or extract ventilation E66<br />

wear gloves PPE15 clear lines prior to<br />

decoupling E39 remote vent vapours<br />

ENVT17<br />

With LEV 5 0 5 6.86 80 1.37 0.07 0.47 0.55 Use drum pumps E53 Wear gloves<br />

(80%) PPE15 Avoid spillage on<br />

withdrawal C&H16 GV E40<br />

No LEV 3 0 3 1.37 0 1.37 0.04 0.47 0.52 No psecial measures EI18 Use GV<br />

E11 wear gloves PPE15 Handle<br />

substance within a predominantly<br />

closed system provided with extract<br />

ventilation E49<br />

No LEV 5 0 5 13.71 90 1.37 0.07 0.47 0.55 Use outdoors E69 Wear gloves (90%)<br />

PPE16 Wear suitable coveralls<br />

capable of preventing penetration of<br />

the substance PPE27 Wear rubber<br />

boots PPE28<br />

With LEV. 25 90 2.5 0.69 0 0.69 0.04 0.24 0.27 Provide the operation with a properly<br />

sited receiving hood E71. Recirculation<br />

of exhaust air is not<br />

recommended E80 Ensure the<br />

ventilation system is regularly<br />

maintained and tested (E74). Wear<br />

suitable gloves tested to EN374<br />

PPE15<br />

0


Industrial - SU3 Operation of solids CS514 PROC4 Batch > 4 hours; daily; With LEV. 20 90 2 0.69 0 0.69 0.29 0.24 0.52<br />

filtering equipment -<br />

process with elevated product<br />

vapour phase<br />

exposure temperature<br />

exposures<br />

Industrial - SU3 Cleaning of solids CS47, CS514 Daily; 15 - 1 hour; Local exhaust ventilation PROC8a > 4 hours; daily No LEV 5 0 5 13.71 90 1.37 0.07 0.47 0.55 Provide extract ventilation to points<br />

filtering equipment<br />

product temp (ambient).<br />

Discharging<br />

where emissions occur E54 Ensure the<br />

to/from vessels<br />

ventilation system is regularly<br />

(non-dedicated)<br />

maintained and tested E74 Drain down<br />

system prior to equipment break-in or<br />

maintenance .E65 Wear gloves (90%)<br />

PPE16<br />

Industrial - SU3 Treatment and disposal CS515 Daily; 1-4 hour per Local exhaust ventilation PROC4 Batch > 4 hours; daily With LEV. 5 90 0.5 0.69 0 0.69 0.01 0.24 0.25 Provide a good standard of general<br />

of filtered solids<br />

operator; product temp<br />

process with<br />

ventilation (not less than 3 to 5 air<br />

(ambient), outdoors;<br />

exposure<br />

changes per hour) E11 Provide extract<br />

Base oil content of<br />

ventilation to points where emissions<br />

cuttings 1-5%<br />

occur (E54). Ensure the ventilation<br />

system is regularly maintained and<br />

tested (E74). Wear suitable gloves<br />

tested to EN374 (PPE15).<br />

Industrial - SU3 Sample collection CS2 Daily; 4 hours daily; No LEV 3 0 3 1.37 0 1.37 0.04 0.47 0.52 No psecial measures EI18 Use GV<br />

temp (ambient). or ventilated sampling batch process (with ambient temp.<br />

E11 wear gloves PPE15 Provide<br />

points<br />

sampling)<br />

extract ventilation to points where<br />

emissions occur E54<br />

Industrial - SU3 In-line injection (of CS15 Daily; >4 hours, product<br />

PROC1 and >4 hours, ambient No LEV 0.5 0 0.5 1.37 0 1.37 0.01 0.47 0.48 Handle substance within a closed<br />

process chemicals) by<br />

temp (ambient); Outdoor<br />

PROC2 Closed temp.<br />

system E47 Provide extract ventilation<br />

fixed dosing pumps<br />

continuous process<br />

to points where emissions occur E54<br />

(with sampling)<br />

Industrial - SU3 Application (of process CS9 Daily; 4 hours, product Local exhaust<br />

PROC4 Batch > 4 hours daily; No LEV 5 0 5 13.71 90 1.37 0.07 0.47 0.55 Provide GV E11 Wear gloves (90%)<br />

operations<br />

temp (ambient); Outdoor ventilation; or Outdoor process with ambient temp.<br />

PPE16 Provide extract ventilation to<br />

exposure<br />

points where emissions occur E54<br />

Industrial - SU3 Clean down and CS39 Daily; 15 min - 1 hour; Enclosed lines; retain PROC8a Nondedicated<br />

ambient temp.<br />

transfers E52 Wear gloves (90%)<br />

1-4 hours, No LEV 5 0 5 13.71 90 1.37 0.07 0.47 0.55 SOP re drain downs.E65 Enclosed<br />

Maintenance<br />

product temp (ambient); wash down in sealed<br />

collection of line waste storage pending disposal discharging to/from<br />

PPE16<br />

in container<br />

or use as recycled vessels<br />

material for subsequent<br />

formulation. PPE.<br />

Industrial - SU3 General process CS15 Continuous; daily; 8hour Enclosed process; PROC1 and >4 hours, ambient No LEV 0.5 0 0.5 1.37 0 1.37 0.01 0.47 0.48 Handle substance within a closed<br />

exposures from<br />

closed/semi-closed PROC2 Closed temp.<br />

system E47 Provide extract ventilation<br />

enclosed processes<br />

sampling point<br />

continuous process<br />

to points where emissions occur E54<br />

(with sampling)<br />

Industrial - SU3 Storage CS67 Continuous; daily; 8hour; Enclosed process; PROC1 and daily; ambient outdoor activity 0.5 0 0.5 0.14 0 0.14 0.01 0.05 0.06 Store substance within a closed<br />

product temp. (ambient) closed/semi-closed PROC2 Closed temp.<br />

system. E84 Avoid dip samples E42<br />

sampling point<br />

continuous process<br />

Ensure material transfers are under<br />

(with sampling)<br />

containment or extract ventilation E66<br />

Oil and gas field Professional - Bulk transfers from tote CS14 Daily; 15 - 1 hour; Enclosed transfers, clear PROC8b >4 hours, ambient No LEV 5 0 5 6.86 80 1.37 0.07 0.47 0.55 Transfer via enclosed lines (E52).<br />

chemicals<br />

SU22 tanks and supply<br />

product temp (ambient). lines prior to decoupling Discharging temp.<br />

Clear transfer lines prior to de-coupling<br />

vessels<br />

to/from vessels<br />

(E39). Wear suitable gloves tested to<br />

(dedicated)<br />

EN374 (PPE15). Deal with spills<br />

immediately (C&H1).<br />

Professional - Charge from drums CS45 Daily; 15 mins - 1 hour; Pumped transfer from PROC8b<br />

daily; ambient No LEV 5 0 5 6.86 80 1.37 0.07 0.47 0.55 Use drum pumps E53 LEV to transfers<br />

SU22<br />

product temp (ambient) drum to holding tanks. Discharging temp.<br />

E66 Wear gloves (80%) PPE15<br />

to/from vessels<br />

Transfer materials directly to mixing<br />

(dedicated)<br />

vessels E45<br />

Professional - Drilling mud (re-) CS512 Daily; 1-4 hour; product Closed equipment, PROC3 Closed > 4 hours daily; No LEV 1 0 1 1.37 0 1.37 0.01 0.47 0.49 No specific measures identified EI18<br />

SU22 formulation<br />

temp (ambient); indoor enclosed or vented batch process with ambient temp.<br />

Handle substance within a<br />

sampling points sampling<br />

predominantly closed system provided<br />

with extract ventilation E49 Wear<br />

suitable gloves tested to EN374<br />

PPE15 Ensure the ventilation system<br />

is regularly maintained and tested E74<br />

Professional - Drilling head operations CS513 Daily; 1-4 hour per<br />

PROC4 Batch > 4 hours daily; With LEV 5 0 5 6.86 80 1.372 0.07 0.47 0.55 Wear chemically resistant gloves<br />

SU22<br />

operator; product temp<br />

process with ambient temp.<br />

(tested to EN374) in combination with<br />

(ambient), outdoors<br />

exposure<br />

‘basic’ employee training PPE16 Wear<br />

suitable coveralls capable of<br />

preventing penetration of the<br />

substance PPE27 Wear rubber boots<br />

PPE28 Ensure operation undertaken<br />

outdoors E69<br />

Combine in narrative Professional - Operation of solids CS514 Daily; >4 hours; indoor; Local exhaust ventilation PROC4 Batch > 4 hours; daily; With LEV. 50 80 10 0.69 0 0.69 0.15 0.24 0.38<br />

Provide the operation with a properly<br />

SU22 filtering equipment -<br />

product temperature<br />

process with elevated product<br />

sited receiving hood E71. Recirculation<br />

of exhaust air is not<br />

aerosol exposures ..<br />

approx. 60 dC<br />

exposure temperature<br />

Elevated temperatures<br />

recommended E80 Ensure the<br />

Operation of solids CS514 100 80 20 0.69 0 0.14 0.29 0.05 0.34<br />

ventilation system is regularly<br />

filtering equipment -<br />

maintained and tested (E74). Wear<br />

vapour phase<br />

suitable gloves tested to EN374<br />

exposures<br />

PPE15<br />

Professional - Cleaning of solids CS47, CS514 Daily; 15 - 1 hour; Local exhaust ventilation PROC8a Nondedicated<br />

where emissions occur (E54). Ensure<br />

> 4 hours; daily No LEV 5 0 5 13.71 90 1.37 0.07 0.47 0.55 Provide extract ventilation to points<br />

SU22 filtering equipment<br />

product temp (ambient).<br />

discharging to/from<br />

the ventilation system is regularly<br />

vessels<br />

maintained and tested (E74). Wear<br />

suitable gloves tested to EN374 with<br />

basic training (PPE16).


Professional - Treatment and disposal CS515 Daily; 1-4 hour per Local exhaust ventilation PROC4 Batch<br />

SU22 of filtered solids<br />

operator; product temp<br />

process with<br />

(ambient), outdoors;<br />

exposure<br />

Base oil content 1-5%<br />

Professional - Sample collection CS2 Daily; 4 hours, product Outdoor PROC1 and<br />

SU22 process chemicals) by<br />

temp (ambient)<br />

PROC2 Closed<br />

fixed dosing pumps<br />

continuous process<br />

(with sampling)<br />

Professional - Application (of process CS9 Daily; 4 hours, product Local exhaust<br />

PROC4 Batch<br />

SU22 operations<br />

temp (ambient) ventilation; or Outdoor process with<br />

exposure<br />

Professional - Clean down and CS39 Daily; 15 min - 1 hour; Enclosed lines; retain PROC8a Nondedicated<br />

SU22 Maintenance<br />

product temp (ambient); wash down in sealed<br />

collection of line waste storage pending disposal discharging to/from<br />

in container<br />

or use as recycled vessels<br />

Professional - General process CS67 Continuous; daily; 8hour Enclosed t i l f process; b t PROC1 and<br />

SU22 exposures from<br />

closed/semi-closed PROC2 Closed<br />

enclosed processes<br />

sampling point<br />

continuous process<br />

(with sampling)<br />

Professional - Storage CS55 Daily; 8 hrs; ambient samples collected at PROC1/2 Closed<br />

SU22<br />

temp;<br />

dedicated sample point continuous process<br />

(sometimes with<br />

li )<br />

Use in road and Industrial -SU3 Closed system CS15 Continuous; daily; 15 - 1 Closed processes PROC1 Closed<br />

construction<br />

applications,<br />

hour; product temp<br />

process (no<br />

applications<br />

(ambient); outdoors<br />

sampling)<br />

Combine Industrial -SU3 Closed system CS15 Continuous; daily; 15 Enclosed process; PROC2 Closed<br />

applications<br />

mins - 1 hour, outdoors Outside location; continuous process<br />

closed/semi-closed (with sampling)<br />

sampling point<br />

Industrial -SU3 Closed system CS29 Daily; 15 - 1 hour; Closed processes PROC3 Closed<br />

applications<br />

product temp (ambient)<br />

batch process (with<br />

sampling)<br />

Combine Industrial -SU3 Spraying CS25 Daily; >4 hours, product Enclosed or ventilated PROC7 Spraying<br />

temp (>100 dC) production line. industrial setting<br />

Automation.<br />

Industrial -SU3 Spraying CS25 Daily; >4 hours, product Enclosed or ventilated PROC7 Spraying<br />

temp (>100 dC) production line. industrial setting<br />

Automation.<br />

Industrial -SU3 Material transfers CS8, CS82 Daily; >4 hours, product Pumped transfer - nondedicated<br />

systems Discharging<br />

PROC8a<br />

temp (ambient)<br />

to/from vessels<br />

(non-dedicated)<br />

Industrial -SU3 Material transfers CS8, CS81 Daily; >4 hours, product Pumped transfer - PROC8b<br />

temp (ambient) dedicated systems Dedicated<br />

discharging to/from<br />

vessels<br />

Industrial -SU3 Rolling, brushing CS13, CS111 Daily; >4 hours, product Work areas with extract PROC10<br />

temp (>100 dC) ventilation<br />

Application by<br />

rolling, brushing<br />

> 4 hours; daily With LEV. 5 90 0.5 0.69 0 0.69 0.01 0.24 0.25 Provide a good standard of general<br />

ventilation (not less than 3 to 5 air<br />

changes per hour) E11 Provide extract<br />

ventilation to points where emissions<br />

occur (E54). Ensure the ventilation<br />

system is regularly maintained and<br />

tested (E74). Wear suitable gloves<br />

> 4 hours daily; No LEV 3 0 3 1.37 0 1.37 No psecial measures EI18 Use GV<br />

0.04 0.47 0.52 ambient temp.<br />

E11 wear gloves PPE15 Provide<br />

extract ventilation to points where<br />

emissions occur E54<br />

>4 hours, ambient No LEV 3 0 3 1.37 0 1.37 0.04 0.47 0.52 Handle substance within a closed<br />

temp.<br />

system E47 Provide GV E40 Wear<br />

gloves when breaching PPE15<br />

>4 hours; ambient No LEV 5 0 5 13.71 90 1.371 0.07 0.47 0.55 Transfer via enclosed lines E52 Use<br />

temp.<br />

drum pumps or carefully pour from<br />

container E64 Provide good GV E11<br />

Wear gloves tested to EN374 with<br />

basic training PPE16<br />

> 4 hours daily; With LEV 5 0 5 6.86 80 1.372 0.07 0.47 0.55 LEV to transfers E60 Wear gloves<br />

ambient temp.<br />

(80%) PPE15 Provide a good standard<br />

of general ventilation (3 to 5 air<br />

changes per hour) E11<br />

1-4 hours, No LEV 5 0 5 SOP on draining 13.71 90 1.37 0.07 0.47 0.55 wear gloves (90%). PPE16 Ensure<br />

ambient temp.<br />

equates to 80%<br />

equipment drained prior to<br />

reduction<br />

maintenance E65 retain drainings<br />

ENVT4<br />

>4 hours, ambient No LEV 3 0 3 1.37 0 1.37 0.04 0.47 0.52 Handle substance within a closed<br />

temp.<br />

system E47 Provide GV E40 Wear<br />

gloves when breaching PPE15<br />

daily; ambient outdoor activity 1 0 1 1.37 0 1.37 0.01 0.47 0.49 Store outside E69 Avoid dip samples<br />

temp.<br />

E42<br />

>4 hours, ambient Closed process. 0.01 0 0.01 0.34 0 0.34 0.00 0.12 0.12 Handle substance within a closed<br />

temp.<br />

system E47 No other specific<br />

measures identified EI20<br />

>4 hours, ambient No LEV 1 0 1 1.37 0 1.37 0.01 0.47 0.49 Handle substance within a closed<br />

temp.<br />

system E47 Provide extract ventilation<br />

to points where emissions occur (E54).<br />

Ensure the ventilation system is<br />

regularly maintained and tested (E74).<br />

>4 hours, ambient No LEV 1 0 1 0.34 0 0.34 0.01 0.12 0.13 Handle substance within a closed<br />

temp.<br />

system E47 Provide a good standard<br />

of general ventilation (3 to 5 air<br />

changes per hour) (E11) or use<br />

outdoors E69 wear gloves PPE15<br />

daily; slightly With LEV 20 95 1 LEV 2.14 80 0.43 0.01 0.15 0.16 Operation is carried out at elevated<br />

elevated product<br />

temperature (> then 20°C above<br />

temp.<br />

ambient temperature) (OC7). Minimise<br />

exposure by partial enclosure of the<br />

operation or equipment and provide<br />

extract ventilation at openings E60<br />

Ensure the ventilation system is<br />

regularly maintained and tested (E74).<br />

Wear suitable gloves tested to EN374<br />

(PPE15).Segregate the activity away<br />

from other operations E63<br />

daily; vapour With LEV 100 95 5 LEV 2.14 80 0.43 0.71 0.15 0.86 Operation is carried out at elevated<br />

phase.<br />

temperature (> then 20°C above<br />

ambient temperature) (OC7). Minimise<br />

exposure by partial enclosure of the<br />

operation or equipment and provide<br />

extract ventilation at openings E60<br />

Ensure the ventilation system is<br />

regularly maintained and tested (E74).<br />

Wear suitable gloves tested to EN374<br />

(PPE15).Segregate the activity away<br />

from other operations E63<br />

daily; ambient No LEV 5 0 5 13.71 90 1.37 0.07 0.47 0.55 Provide a good standard of general<br />

temp.<br />

ventilation (3 to 5 air changes per<br />

hour) E40 Wear chemically resistant<br />

gloves (tested to EN374) in<br />

combination with ‘basic’ employee<br />

training. PPE16 Ensure material<br />

transfers are under containment or<br />

daily; ambient No LEV 5 0 5 6.86 80 1.37 0.07 0.47 0.55 Use dedicated equipment (E85). Clear<br />

temp.<br />

transfer lines prior to de-coupling<br />

(E39). Provide a good standard of<br />

general ventilation (3 to 5 air changes<br />

per hour) (E11). Wear suitable gloves<br />

tested to EN374 (PPE15).Ensure<br />

material transfers are under<br />

containment or extract ventilation E66<br />

daily; elevated With LEV 50 90 5 1.37 80 0.27 0.07 0.09 0.17 Operation is carried out at elevated<br />

product temp.<br />

temperature (> then 20°C above<br />

ambient temperature) (OC7). Provide<br />

extract ventilation to points where<br />

emissions occur (E54). Wear suitable<br />

gloves tested to EN374 (PPE15). Use<br />

long handled brushes and rollers where<br />

possible. (E58). Provide a good<br />

standard of general ventilation (3 to 5<br />

air changes per hour) (E11)


Industrial -SU3 Rolling, brushing CS13 Daily; >4 hours, product Work areas with extract PROC10 Daily, ambient<br />

temp ambient<br />

ventilation<br />

Application by temperature,<br />

rolling, brushing indoor<br />

Comnbine<br />

Industrial -SU3 Dipping, pouring CS4 Daily; >4 hours, product Work areas with extract PROC13 daily; elevated<br />

temp (>100 dC) ventilation<br />

Application by product temp.<br />

dipping, pouring<br />

Industrial -SU3 Dipping, pouring CS4 Daily; >4 hours, product Work areas with extract PROC13 Daily, ambient<br />

temp ambient<br />

ventilation<br />

Application by temperature,<br />

dipping, pouring indoor<br />

Industrial - maintenance of CS5 Daily; 1-4 hours, work methods, drain prior PROC8a 1-4 hours,<br />

SU10 equipment<br />

ambient<br />

to work, retain spills, Discharging ambient temp.<br />

gloves<br />

to/from vessels<br />

(non-dedicated)<br />

Industrial -SU3 Storage CS67 Daily; 8 hrs; ambient samples collected at PROC1/2 Closed daily; ambient<br />

temp;<br />

dedicated sample point continuous process temp.<br />

(sometimes with<br />

li )<br />

Use in road and Professional - Material transfers, e.g. CS8 . Plus Daily; >4 hours, product Product transfer - nondedicated<br />

systems Discharging temp.<br />

PROC8a >4 hours, ambient<br />

construction SU22 charge from drums Nondedicated<br />

to/from vessels<br />

temp (ambient)<br />

applications<br />

facility<br />

(non-dedicated)<br />

(CS82)<br />

Professional - Material transfers CS8 . Plus Daily; >4 hours, product Product transfer - PROC8b >4 hours, ambient<br />

SU22<br />

Dedicated temp (ambient) dedicated systems Dedicated temp.<br />

facility<br />

discharging to/from<br />

(CS81)<br />

vessels<br />

Professional - Rolling, brushing CS13 Daily; >4 hours, product Outdoor PROC10 >4 hours, ambient<br />

SU22<br />

temp (ambient)<br />

Application by temp.<br />

rolling, brushing<br />

combined Professional - Machine application of CS25 Daily; >4 hours, product Enclosed machinery, PROC11<br />

daily; ambient<br />

SU22 bitumen cutbacks Spraying/ temp (ambient); operator remote from Application by temp.<br />

fogging by outdoors, 50% gasoil spray head, PPE spraying<br />

machine<br />

application<br />

Professional - Machine application of CS25<br />

PROC11<br />

daily; ambient<br />

SU22 bitumen cutbacks Spraying/<br />

Application by temp.<br />

vapours<br />

fogging by<br />

spraying<br />

machine<br />

application<br />

Professional - Dipping, pouring CS4 Daily; >4 hours, product Outdoor PROC13<br />

daily; ambient<br />

SU22<br />

temp (ambient)<br />

Application by temp.<br />

dipping, pouring<br />

Professional - maintenance of CS5 Daily; 1-4 hours, work methods, drain prior PROC8a 1-4 hours,<br />

SU22 equipment<br />

ambient<br />

to work, retain spills, Discharging ambient temp.<br />

gloves<br />

to/from vessels<br />

(non-dedicated)<br />

Professional - Storage CS55 Daily; 8 hrs; ambient samples collected at PROC1/2 Closed daily; ambient<br />

SU22<br />

temp;<br />

dedicated sample point continuous process temp.<br />

(sometimes with<br />

sampling)<br />

Functional fluids Industrial - Bulk transfers to/from CS14 Daily; 15 min - 1 hour; Enclosed transfers, clear PROCS1-3 > 4 hours; daily;<br />

SU10 storage<br />

ambient temp<br />

lines prior to decoupling<br />

ambient temp.<br />

Industrial - Transfers from drums CS8 Daily; 15 min - 1 hour; Pumped transfer from PROC8b > 4 hours; daily;<br />

SU10 to filling machinery<br />

ambient temp<br />

drum to holding tanks. Discharging ambient temp.<br />

to/from vessels<br />

Industrial - filling articles from CS84, CS107 Daily; >4 hours, ambient enclosed operations, size PROC 9 Transfer > 4 hours; daily;<br />

SU10 predominantly enclosed<br />

of openings minimised of chemicals into ambient temp.<br />

machines<br />

small containers<br />

Industrial - manual filling of CS45 Daily; 1-4 hours, careful pouring, worker PROC8a 1-4 hours,<br />

SU10 machines<br />

ambient<br />

instructions<br />

Discharging ambient temp.<br />

to/from vessels<br />

(non-dedicated)<br />

Industrial - operation of closed CS15 Daily; >4 hours, ambient None. PROC2 > 4 hours; daily;<br />

SU10 equipment containing<br />

ambient temp.<br />

functional fluids<br />

Combine in narrative Industrial - operation of open CS16 Daily; >4 hours, ambient Well ventilated area. PROC 4 Use in > 4 hours; daily;<br />

SU10 equipment containing<br />

batch and other ambient temp.<br />

functional fluids<br />

process<br />

With LEV 5 30 3.5 Good GV (0.7x) 27.43 95 1.37 0.05 0.47 0.52 Provide a good standard of general<br />

ventilation (3 to 5 air changes per<br />

hour) (E11) Provide extract ventilation<br />

to points where emissions occur (E54).<br />

Wear chemically resistant gloves<br />

(tested to EN374) in combination with<br />

specific activity training. (PPE17). Use<br />

l h dl d b h d ll h<br />

Provide extract ventilation points With LEV 5 0 5 13.71 90 1.37 0.07 0.47 0.55 to where emissions occur (E54). Ensure<br />

the ventilation system is regularly<br />

maintained and tested E74. Wear<br />

chemically resistant gloves (tested to<br />

EN374) in combination with ‘basic’<br />

employee training. PPE16. Use long<br />

handled tools where possible (E50).<br />

With LEV 5 0 5 13.71 90 1.37 0.07 0.47 0.55 Provide extract ventilation to points<br />

where emissions occur (E54). Ensure<br />

the ventilation system is regularly<br />

maintained and tested E74. Wear<br />

chemically resistant gloves (tested to<br />

EN374) in combination with ‘basic’<br />

employee training. PPE16. Use long<br />

handled tools where possible (E50).<br />

No LEV 5 0 5 13.71 90 1.37 0.07 0.47 0.55 SOP re drain downs.E65 Enclosed<br />

transfers E52 Wear gloves (90%)<br />

PPE16<br />

outdoor activity 0.5 0 0.5 0.14 0 0.14 0.01 0.05 0.06 Store substance within a closed<br />

system. E84 Avoid dip samples E42<br />

No LEV 5 0 5 13.71 90 1.37 0.07 0.47 0.55 Use drum pumps E53 wear gloves<br />

PPE16 clear spills immediately<br />

CH&H13.<br />

No LEV 5 0 5 6.86 80 1.372 0.07 0.47 0.55 Provide extract ventilation to points<br />

where emissions occur E54 handle<br />

outdoors E69 wear gloves PPE15<br />

No LEV 5 0 5 27.43 95 1.37 0.07 0.47 0.55 Control emissions by enclosing<br />

equipment and restricting the area of<br />

openings (E87) Wear chemically<br />

resistant gloves (tested to EN374) in<br />

combination with specific activity<br />

training. (PPE17) Use long handled<br />

brushes and rollers where possible.<br />

(E58).<br />

with LEV 20 80 4 2.14 80 0.43 0.06 0.15 0.21 Handle with appropriate extract<br />

ventilation or equivalent methods to<br />

control exposure E94 relates to<br />

outdoors E69 wear gloves PPE15<br />

Operate activity from way from<br />

sources of substance emission or<br />

release E77<br />

with LEV 100 90 5.95 2.14 90 0.21 0.85 0.07 0.92 Minimise exposure by partial enclosure<br />

90% signified by E60 : outdoor<br />

of the operation or equipment and<br />

applications<br />

provide extract ventilation at openings<br />

(0.7x); operator<br />

E60 wear gloves PPE16 Ensure<br />

training (0.85x)<br />

operation is undertaken outdoors E69<br />

Ensure operatives are trained to<br />

minimise exposures EI19<br />

No LEV 5 0 5 13.71 90 1.37 0.07 0.47 0.55 Outdoors E69 wear gloves (90%).<br />

PPE16 Avoid manual contact with wet<br />

work pieces EI17.<br />

No LEV 5 80 2.1 SOP on draining 13.71 90 1.37 0.03 0.47 0.50 wear gloves (90%). PPE16 Ensure<br />

equates to 80%<br />

equipment drained prior to<br />

reduction<br />

maintenance E65 retain drainings<br />

ENVT4<br />

outdoor activity 1 0 1 1.37 0 1.37 0.01 0.47 0.49 Store outside E69 wear gloves PPE15<br />

No LEV 1 0 1 1.37 0 1.37 0.01 0.47 0.49 No special measures EI18 Enclosed<br />

transfers, E52 clear lines prior to<br />

decoupling. E39 Wear gloves (80%)<br />

PPE15 Ensure material transfers are<br />

under containment or extract<br />

ventilation E66<br />

No LEV 5 0 5 6.86 80 1.37 0.07 0.47 0.55 Wear gloves (80%). PPE15 Pumped<br />

transfer.E64 Avoid spillage on pump<br />

removal C&H16<br />

With LEV 5 0 5 0.69 0 0.69 0.07 0.24 0.31 Transfer via enclosed lines E52<br />

Provide good GV E40 wear gloves<br />

PPE15<br />

No LEV 5 0 5 13.71 90 1.37 0.07 0.47 0.55 Use drum pumps.E64 Wear gloves<br />

(90%) PPE16 Avoid spillage on pump<br />

removal C&H16 train operators EI19<br />

No LEV 0.5 0 0.5 1.37 0 1.37 0.01 0.47 0.48 No special precautions. EI19 Use in<br />

enclosed systems and restrict area of<br />

openings E49<br />

No LEV 5 0 5 6.86 80 1.37 0.07 0.47 0.55 apply good GV E40 Wear gloves<br />

(80%).PPE15


Industrial - operation of open CS16 Daily; >4 hours, ambient None. PROC 4 Use in > 4 hours; daily;<br />

SU10 equipment containing<br />

(product at 80oC)<br />

batch and other elevated temp.<br />

functional fluids at<br />

process<br />

elevated temperatures<br />

Industrial - operation of open CS16 Daily; >4 hours, ambient None. PROC 4 Use in > 4 hours; daily;<br />

SU10 equipment containing<br />

(product at 80oC)<br />

batch and other elevated temp.<br />

functional fluids at<br />

process<br />

elevated temperatures<br />

vapour phase<br />

Industrial - Re-work on off CS19 Daily; >4 hours, ambient work methods, drain prior PROC9 - Transfer 1-4 hours,<br />

SU10 specification articles<br />

to work, retain spills of chemicals into ambient temp.<br />

small containers<br />

Industrial - maintenance of CS5 Daily; 1-4 hours, work methods, drain prior PROC8a 1-4 hours,<br />

SU10 equipment<br />

ambient<br />

to work, retain spills, Discharging ambient temp.<br />

gloves<br />

to/from vessels<br />

(non-dedicated)<br />

Industrial -SU3 Storage CS67 Daily; 8 hrs; ambient samples collected at PROC1/2 Closed daily; ambient<br />

temp;<br />

dedicated sample point continuous process temp.<br />

(sometimes with<br />

li )<br />

Use in Explosive Professional - Bulk transfers from CS14 Daily; 1 - 4 hours; Enclosed transfers, clear PROC3 Closed 1-4 hours,<br />

manufacture and SU22 road tankers<br />

ambient temp. lines prior to decoupling batch process (with ambient temp.<br />

use<br />

sampling)<br />

Professional - Charge from drums CS8 Daily; 15 mins - 1 hour; Pumped transfer from PROC8a 1-4 hours,<br />

SU22<br />

ambient temp<br />

drum to holding tanks. Discharging ambient temp.<br />

to/from vessels<br />

Combine in narrative Professional - Mixing / blending CS23, CS108 Daily; 1 - 4 hours; Enclosed or ventilated PROC5 Mixing & 1-4 hours,<br />

SU22<br />

ambient temp. mixing vessel<br />

blending<br />

ambient temp.<br />

Professional - Mixing / blending CS23, CS108 Daily; 1 - 4 hours; Enclosed or ventilated PROC5 Mixing & 1-4 hours,<br />

SU22 (vapour phase)<br />

ambient temp. mixing vessel<br />

blendingg) ambient temp.<br />

Professional - Mixing / blending CS23, CS107 Daily; 1 - 4 hours; Enclosed or ventilated PROC3 Closed 1-4 hours,<br />

SU22 (closed system)<br />

ambient temp. mixing vessel<br />

batch process (with ambient temp.<br />

sampling)<br />

Professional - Bulk transfers of CS3 Daily; 15 - 1 hour; Enclosed transfers to PROC8b 4 hours; daily;<br />

SU10 transfers to/from<br />

ambient temp<br />

minimise spills<br />

ambient temp.<br />

storage e.g. IBCs, big<br />

bags<br />

Industrial - In-line weighing of CS91 Daily; 15 min - 1 hour; Enclosed activity PROCs 1, 2 > 4 hours; daily;<br />

SU10 additives<br />

ambient temp<br />

ambient temp.<br />

Industrial - small scale weighing of CS90 Daily; 15 min - 1 hour; LEV; minimise spillages; PROC9 1-4 hours,<br />

SU10 additives<br />

ambient temp<br />

operator training<br />

ambient temp.<br />

Combine in narrative Industrial - small scale mixing of CS92 Daily; 15 min - 1 hour; LEV; minimise spillages; PROCs 3, 4 > 4 hours; daily;<br />

SU10 additives<br />

ambient temp<br />

ambient temp.<br />

Industrial - batch pre-mixing of CS92 Daily; 1-4 hours; LEV; minimise spillages; PROC5 1-4 hours,<br />

SU10 additives<br />

ambient temp<br />

ambient temp.<br />

Industrial - transfer of additives to CS3 Daily; 15 min - 1 hour; Enclosed activity PROC 8b, 9 1-4 hours,<br />

SU10 calendars and<br />

ambient temp<br />

ambient temp.<br />

Banburys<br />

Combine in narrative Industrial - Calendaring activities CS64 Daily; >4 hours, LEV; minimise area/size PROC6 - > 4 hours; daily;<br />

SU10 (incl banbury)<br />

elevated temperature of openings<br />

Calendering ambient temp.<br />

operations<br />

Industrial - Calendaring activities CS64 Daily; >4 hours, LEV; minimise area/size PROC6 - > 4 hours; daily;<br />

SU10 (vapour phase)<br />

elevated temperature of openings<br />

Calendering ambient temp.<br />

operations<br />

Industrial - Pressing raw rubber CS73 Daily; 1-4 hours; Good GV PROC 14 - > 4 hours; daily;<br />

SU10 blanks<br />

ambient temp<br />

Production of ambient temp.<br />

preparations or<br />

articles by<br />

tabletting,<br />

compression,<br />

extrusion,<br />

pelletisation<br />

With LEV 25 90 2.5 0.69 0 0.69 0.04 0.24 0.27 Restrict area of openings and provide<br />

extract ventilation to emission points<br />

when substance handled at elevated<br />

temperatures E75 provide good GV<br />

E40<br />

With LEV 20 90 2 0.69 0 0.69 0.03 0.10 0.13 Restrict area of openings and provide<br />

extract ventilation to emission points<br />

when substance handled at elevated<br />

temperatures E75 wear gloves PPE15<br />

No LEV 5 0 5 6.86 80 1.37 0.07 0.47 0.55 Drain or remove substance from<br />

equipment prior to break-in or<br />

maintenance E81 Retain drainings in<br />

sealed storage pending disposal.<br />

ENVT4 Wear gloves PPE15<br />

No LEV 5 0 5 13.71 90 1.37 0.07 0.47 0.55 SOP re drain downs.E65 Enclosed<br />

transfers E52 Wear gloves (90%)<br />

PPE16<br />

outdoor activity 0.5 0 0.5 0.14 0 0.14 0.01 0.05 0.06 Store substance within a closed<br />

system. E84 Avoid dip samples E42<br />

No LEV 1 0 1 0.34 0 0.34 0.01 0.12 0.13 Handle substance within a closed<br />

system E47 Carry out oudoors E69<br />

Clear lines prior to decoupling. E39<br />

remote vapour discharge ENVT17<br />

No LEV 5 0 5 13.71 90 1.371 0.07 0.47 0.55 Wear gloves (90%). PPE16 Use drum<br />

pumps E53 Outdoors E69<br />

No LEV 5 0 5 6.86 80 1.372 0.07 0.47 0.55 GV E11 Wear gloves (80%) PPE15<br />

No LEV 10 30 4.2 general ventn<br />

4.12 80 0.824 0.60 0.28 0.88 Good GV E11 or Outdoors E69 Wear<br />

(0.7x):


Industrial - Rubber refreshing CS112 Daily; 1-4 hours; Good GV PROC7 > 4 hours; daily;<br />

SU10 during article build-up<br />

ambient temp<br />

ambient temp.<br />

Combine in narrative Industrial - Vulcanising (automated CS70 Daily; >4 hours, LEV at emission points; PROC6 - > 4 hours; daily;<br />

SU10 and semi-automated)<br />

elevated temperature minimise area/size of Calendering ambient temp.<br />

elevated temperature<br />

openings; good GV operations<br />

Industrial - Vulcanising (automated CS70 Daily; >4 hours, LEV at emission points; PROC6 - > 4 hours; daily;<br />

SU10 and semi-automated)<br />

elevated temperature minimise area/size of Calendering ambient temp.<br />

elevated temperature,<br />

openings; good GV operations<br />

vapours<br />

Industrial - Vulcanising (manual) CS70 Daily; >4 hours, LEV at emission points; PROC6 - > 4 hours; daily;<br />

SU10 elevated temperature<br />

elevated temperature minimise area/size of Calendering ambient temp.<br />

openings; good GV operations<br />

Industrial - Vulcanising (manual) CS70 Daily; >4 hours, LEV at emission points; PROC6 - > 4 hours; daily;<br />

SU10 elevated temperature,<br />

elevated temperature minimise area/size of Calendering ambient temp.<br />

vapours<br />

openings; good GV operations<br />

Industrial - Cooling of cured CS71 > 4 hours; daily; ambient Extract ventilation/hood PROC6 - > 4 hours; daily;<br />

SU10 articles (elevated<br />

temp.<br />

Calendering ambient temp.<br />

temperatures)<br />

operations<br />

Industrial - production of articles by CS113 > 4 hours; daily; ambient Extract ventilation/hood PROC13 > 4 hours; daily;<br />

SU10 dipping & pouring<br />

temp.<br />

ambient temp.<br />

Industrial - build up and finishing of CS102 > 4 hours; daily; ambient good ventilation PROC21 > 4 hours; daily;<br />

SU10 articles (dermal<br />

temp.<br />

ambient temp.<br />

exposures)<br />

Industrial - Laboratory activities CS36 Daily; 8 hours, ambient<br />

ambient temp; collection wash down in sealed<br />

of line waste in container storage pending disposal discharging to/from<br />

or use as recycled vessels<br />

material for subsequent<br />

formulation. PPE.<br />

Industrial -SU8 Storage CS67 > 4 hours; daily; ambient good ventilation PROC 1/2 > 4 hours; daily;<br />

temp.<br />

ambient temp.<br />

Water treatment Industrial -SU3 Bulk transfers (e.g. CS14 Continuous; daily; 8hour Enclosed transfers, clear PROC 2 Dedicated daily; ambient<br />

applications<br />

from IBCs)<br />

lines prior to decoupling discharging to/from temp.<br />

vessels<br />

Industrial -SU3 Metered charge from CS8 Daily; 15 mins - 1 hour; Pumped transfer from PROC8b<br />

daily; ambient<br />

drums<br />

ambient temp<br />

drum<br />

Discharging temp.<br />

to/from vessels<br />

Industrial -SU3 General process CS15 Batch process; daily; Closed equipment, PROC 3 >4 hours, ambient<br />

exposures from closed<br />

ambient temp. enclosed or vented<br />

temp.<br />

processes<br />

transfer points<br />

Industrial -SU3 General process CS16 Batch process; daily; Closed equipment, PROC4 Closed >4 hours, ambient<br />

exposures from open<br />

ambient temp. enclosed or vented batch process (with temp.<br />

processes<br />

transfer points<br />

sampling)<br />

Industrial -SU3 Manual pouring of CS9 Daily;


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

Appendix 3.b. Qualitative Risk Characterisation<br />

Qualitative Risk Characterisation for R20 substances<br />

A quantitative assessment of short term exposure has not been undertaken as there is a difference of<br />

at least a factor of 30 between the short term (when expressed over 15 minutes) and the long term<br />

DNEL (when expressed over 8 hours) DNELs.<br />

Qualitative Risk Characterisation for R38 substances<br />

The implementation of relevant RMMs will ensure that the likelihood of an event occurring due to the<br />

substance hazard of skin irritation is negligible and the risk is considered to be controlled to a level of<br />

no concern.<br />

For the skin irritation (R38) hazard a qualitative risk characterisation has been conducted consistent<br />

with the considerations and risk management measures identified in the Table below.<br />

Hazard Material Risk /<br />

Hazard<br />

Phrase<br />

Skin<br />

Irritation<br />

(R38)<br />

Liquid R38 /<br />

H315<br />

Examples of<br />

Relevant S<br />

Phrases and P<br />

Statements<br />

S24: Avoid<br />

contact with<br />

skin<br />

Prevention:<br />

P264: Wash<br />

... thoroughly<br />

after<br />

handling.<br />

P280: Wear<br />

protective<br />

gloves.<br />

Response:<br />

P280: Wear<br />

protective<br />

gloves/protect<br />

ive<br />

clothing/eye<br />

protection/fac<br />

e protection.<br />

P302 + P352:<br />

IF ON SKIN:<br />

Wash with<br />

plenty of soap<br />

and water.<br />

P321:<br />

Specific<br />

treatment<br />

(see ... on this<br />

label).<br />

P332 + P313:<br />

If skin<br />

irritation<br />

occurs: Get<br />

medical<br />

advice/attenti<br />

Components of the Qualitative Risk<br />

Assessment<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Implementation of basic standards of<br />

occupational hygiene;<br />

Avoid direct skin contact with product;<br />

Wear gloves (tested to EN374) if direct hand<br />

contact with the substance is likely; wash off<br />

skin contamination immediately;<br />

Avoid splashes and spills;<br />

Avoidance of contact with contaminated tools<br />

and objects;<br />

Clean up contamination/spills as soon as they<br />

occur;<br />

Regular cleaning of equipment and work area;<br />

Ensure suitable management/supervision is in<br />

place to check that the RMMs in place are<br />

being used correctly and OCs followed;<br />

Train staff on good practice to prevent /<br />

minimise exposures and to report any skin<br />

problems that may develop;<br />

<br />

<br />

Adopt good standards of personal skin<br />

hygiene.<br />

Where activities may lead to aerosol release<br />

e.g. spraying, then additional skin protection<br />

measures such as impervious suits and face<br />

shields may be required.<br />

2010-07-30 CSR Appendix 3


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

on.<br />

P362 : Take<br />

off<br />

contaminated<br />

clothing and<br />

wash before<br />

re-use<br />

The outcome of the CSA is displayed within the relevant Exposure Scenarios by the inclusion of the<br />

general phrase<br />

E3: Avoid direct skin contact with product. Identify potential areas for indirect skin contact.<br />

Wear gloves (tested to EN374) if direct hand contact with substance likely. Clean up<br />

contamination/spills as soon as they occur. Wash off skin contamination immediately. Provide<br />

basic employee training to prevent / minimise exposures and to report any skin effects that<br />

may develop.<br />

Together with (where there is the potential for additional and significant aerosol exposure):<br />

E4: Other skin protection measures such as impervious suits and face shields may be<br />

required during high dispersion activities which are likely to lead to substantial aerosol<br />

release, e.g. spraying.<br />

Qualitative Risk Characterisation for R65 substances<br />

The implementation of relevant RMMs will ensure that the likelihood of an event occurring due to the<br />

aspiration hazard of the substance is negligible and the risk is considered to be controlled to a level of<br />

no concern.<br />

For aspiration hazard a qualitative risk characterisation has been conducted consistent with the<br />

considerations and risk management measures identified in the Table below.<br />

Hazard Material Risk /<br />

Hazard<br />

Phrase<br />

Aspiration<br />

Toxicity<br />

(R65)<br />

Liquid R65 /<br />

H304<br />

Examples of<br />

Relevant S Phrases<br />

and P Statements<br />

Response:<br />

(S2): Keep out of<br />

the reach of<br />

children (for<br />

dangerous<br />

products sold to<br />

the general public<br />

must include this<br />

safety phrase)<br />

S62: If swallowed,<br />

do not induce<br />

vomiting: seek<br />

medical advice<br />

immediately and<br />

show this container<br />

or label<br />

P102: Keep out of<br />

reach of children.<br />

P301 + P310: IF<br />

SWALLOWED:<br />

Immediately call a<br />

POISON CENTER<br />

or doctor/physician.<br />

P331: Do NOT<br />

induce vomiting.<br />

Storage:<br />

Components of the Qualitative Risk<br />

Assessment<br />

Worker<br />

Do not ingest<br />

Implementation of basic standards of<br />

occupational hygiene<br />

Avoid splashes and spills<br />

Avoidance of contact with<br />

contaminated tools and objects<br />

Management/supervision to check that<br />

the RMMs in place are being used<br />

correctly and OCs followed<br />

Training for staff on good practice<br />

Good standard of personal hygiene<br />

Consumer<br />

Do not ingest<br />

For lamp oils and grill lighters, follow the<br />

provisions of REACH – Annex XVII,<br />

including:<br />

- Marketing in black opaque containers<br />

not exceeding 1 litre<br />

- Labelling with specific safe use<br />

instruction<br />

2010-07-30 CSR Appendix 3


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

Hazard Material Risk /<br />

Hazard<br />

Phrase<br />

Examples of<br />

Relevant S Phrases<br />

and P Statements<br />

P405: Store locked<br />

up.<br />

Disposal:<br />

P501 : Dispose of<br />

contents/container<br />

to.... in accordance<br />

with local/regional/<br />

national/internation<br />

al regulations (to be<br />

specified)<br />

Components of the Qualitative Risk<br />

Assessment<br />

For any substance, classified as R65, these risk management measures should be communicated via<br />

the safety data sheet by use of the following phrase:<br />

Do not ingest. If swallowed then seek immediate medical assistance.<br />

2010-07-30 CSR Appendix 3


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

Appendix 3.c.<br />

Consumer Risk Characterisation<br />

2010-07-30 CSR Appendix 3


This tool is provided for informational purposes only and may be used at the user's<br />

own risk. Consequently you should not act, or refrain from acting, based solely on<br />

the information provided within this tool. This is intended to be a screening tool and<br />

is not a substitute for and should not be relied upon in place of appropriate technical<br />

advice, more refined knowledge of consumer exposure information, or common<br />

sense.<br />

Gasoils [vacuum] (VP>10Pa)<br />

DNEL bands<br />

Saturated<br />

Substance<br />

Molecular<br />

Physical<br />

Substance<br />

Gasoils<br />

Substance<br />

TRA volatility<br />

Vapour<br />

Band1 (very<br />

Name<br />

Weight<br />

5000.0 property liquid<br />

300000.0<br />

high<br />

605474396.8<br />

Properties:<br />

(vacuum)<br />

volatility (Pa):<br />

range<br />

Concentration<br />

low)<br />

(g/mole)<br />

(mg/m3)<br />

Common Thickness<br />

Density<br />

Life Cycle<br />

Parameter Layer (cm) 0.01 (g/cm3) 1.0 Body Weight 60.0 Inhalation Rate 1.4 fraction released to<br />

Stage / Sector<br />

Consumer<br />

Band2 (low)<br />

Defaults:<br />

(m3/hr)<br />

of Use<br />

(SU21)<br />

References<br />

dermal longterm<br />

systemic<br />

(mg/cm2)<br />

dermal local<br />

oral long-term<br />

inhalation<br />

inhalation long-term<br />

inhalation local<br />

Values<br />

10.0<br />

systemic<br />

systemic<br />

systemic (mg/m3)<br />

61.20<br />

(mg/m3)<br />

Band3 (Medium)<br />

(DNELs):<br />

(mg/kg/day)<br />

(mg/kg/day)<br />

(mg/kg/24 hr day)<br />

for 24 hr day<br />

inhalation dermal/ oral<br />

(mg/m3) (mg/kg/day)<br />

[0.5, 5)<br />

[0.1, 1)<br />

[5, 25)<br />

[1, 5)<br />

[25, 100)<br />

[5, 20)<br />

Band4 (High)<br />

>=100<br />

>=20<br />

Table 1: Mapping Consumer Uses in the Supply Chain Table 2b: Characterising the Risk - after refinement of exposure estimate<br />

all all<br />

dermal dermal dermal dermal oral inhalation inhalation inhalation inhalation inhalation inhalation inhalation<br />

Relevant Use Sentinel Product sub Category<br />

Generic Exposure Scenario TIER1 Predicted Exposure - ECETOC TRA based on defaults<br />

Risk Characterization based on defaults<br />

TIER1+ ECETOC TRA - exposure modifiers<br />

Product<br />

Sentinels<br />

dermal oral<br />

inhalation<br />

TRA Tier 1+ Predicted Exposure - ECETOC TRA - refined estimates<br />

Local Use<br />

On Day of Use<br />

TRA Tier1+ Risk Characterization - refined estimates<br />

Chronic Considering Yearly Use<br />

Frequency<br />

Operation Conditions (OCs) Risk Management Measures (RMMs)<br />

Risk Characterization - including RMMs<br />

when needed (substance Specific)<br />

TRA+ Predicted Exposure - including RMM<br />

when needed (substance specific)<br />

Chronic<br />

Predicted Predicted Oral Predicted Predicted Predicted Total Predicted<br />

Predicted Predicted Predicted Predicted Predicted Predicted Mean Inhalation Mean Inhalation Mean Inhalation Total RCR dermal RCR RCR systemic RCR systemic RCR systemic RCR systemic RCR systemic<br />

RMMs for communication - Consolidate into Indicator RCR RCR RCR Predicted Predicted Oral Predicted<br />

PCS Subcategories PEC PEC PEC DNEL Total RCR DNEL Total RCR DNEL Total RCR DNEL Total RCR<br />

Dermal Exposure Inhalation Inhalation Inhalation Exposure<br />

Dermal Dermal Dermal Oral Oral Inhalation Event Concentration Concentration Predicted local (based systemic (24hr TWA (all routes, (dermal, (inhalation, (all routes,<br />

GES or e-SDS<br />

for Basis of systemic systemic systemic (all Dermal Exposure Inhalation<br />

(dermal) (oral) (inhalation) BAND1<br />

BAND2<br />

BAND3<br />

BAND4<br />

Exposure (mg/kg/d) Exposure Exposure Exposure - upper (mg/kg/d)<br />

Dilution Factor<br />

Exposure, Exposure, Exposure, Exposure, Exposure, Exposure, Concentration (24hr TWA) on Yearly (mg/m3) Exposure on mg/cm2) (dermal, inhalation daily) chronic, based yearly, based chronic)<br />

REACH ADVISED: phrase [RMM code] Exposure (dermal, (inhalation routes) Exposure (mg/kg/d) Exposure<br />

(mg/kg/d)<br />

(mg/kg/d) (mg/m 3 ) bounded with SVC<br />

RCR (all<br />

Inhalation Factor (fraction Location<br />

incorporating<br />

RCR RCR (SVC-upper<br />

Frequency (events per<br />

Daily (mg/kg/d) Chronic Local daily Chronic daily (mg/m 3 ) Day of Exposure<br />

(mg/kg/d) -<br />

daily, based mg/m3)<br />

on mg/kg/d)) on mg/m3)<br />

Recommended: {phrase [RMM code].} Estimate based on based on<br />

(mg/kg/d)<br />

(mg/m3)<br />

Area of<br />

Short Title<br />

(mg/m 3 RCR<br />

routes - sum of Product ingredient (weight fraction)<br />

Skin surface contact area<br />

Glove<br />

of total use (indoors,<br />

Air Exchange<br />

)<br />

RCR (oral) (inhalation bounded<br />

day): if < 1, only used for<br />

Use Dilution Factor Dermal Factor<br />

Amount Used per event (g)<br />

Room Volume (m3) Exposure time (hours)<br />

(mg/kg/d) (mg/cm2) (mg/kg/d) (mg/kg/d) (mg/kg/d)<br />

(mg/m3)<br />

day of use for<br />

on mg/kg/d))<br />

mg/kg/d)) mg/m3)<br />

Application / UD<br />

(dermal)<br />

mg/kg/day<br />

(g/g)<br />

(cm 2 Amount Swallowed (g)<br />

Air Exchange Rate (1/hr)<br />

)<br />

effiency<br />

spilled/evaporated, i.e., outdoors,<br />

Rate applied to<br />

mg/kg/day) inhalation mg/m3)<br />

chronic assessment<br />

TRA<br />

values)<br />

amount lost) garage)<br />

TRA for mg/kg<br />

comparison<br />

inhalation calc.<br />

only<br />

Value Comments Value Comments Value Comments Value Comments Value Comments Value Comments Value Comments Value Comments Value Comments Value Comment Value Comments dayofuse chronic event dayofuse chronic dayofuse event dayofuse chronic 1.3 61.2 1.3 61.2 d i t d o i c c c<br />

Consumerl-SU21 PC13:Fuels<br />

71.5 0 11416.7 125000.0 125000.0 11488 54.97 #DIV/0! #DIV/0! 2042.48 #DIV/0! 1 increased above 0.14 est. as 1 per 210.00 est. as palm of<br />

TRA default<br />

week<br />

one hand<br />

Liquid - Automotive<br />

Refuelling<br />

Consumerl-SU21 PC13:Fuels<br />

71.5 0 11416.7 125000.0 125000.0 11488 54.97 #DIV/0! #DIV/0! 2042.48 #DIV/0! 1 increased above 0.33 daily use 210.00 est. as palm of<br />

TRA default<br />

assumed<br />

one hand<br />

over Winter<br />

period (4<br />

months)<br />

Liquid - Home<br />

heating oil<br />

Consumerl-SU21 PC13:Fuels<br />

71.5 0 11416.7 125000.0 125000.0 11488 54.97 #DIV/0! #DIV/0! 2042.48 #DIV/0! 1 increased above 0.07 est. as 1 per<br />

TRA default<br />

two weeks<br />

Liquid - Garden<br />

Equipment - Use<br />

Consumerl-SU21 PC13:Fuels<br />

71.5 0 11416.7 125000.0 125000.0 11488 54.97 #DIV/0! #DIV/0! 2042.48 #DIV/0! 1 increased above 0.07 est. as 1 per 420.00 Est. half of each<br />

TRA default<br />

two weeks<br />

hand<br />

Liquid - Garden<br />

Equipment - Refueling<br />

0.1000 Assumed value<br />

37500 est. fuel tank size 50 0.0100 expect low % outdoor 0.60 est. 0.99 100 Stoffenma 0.050 3mins, 97th 3.50 0.50 1.00 0.00 0.00 4.22 3694.31 7.70 1.101 7.72 0.10 2.69 0.13 2.82 0.39 0.02 0.40 Unless otherwise stated, covers concentrations up to 100% [ConsOC1]; No specific RMMs developed beyong those Based upon 0.39 0.02 0.40 0.50 0.00 1.10 PC13:Fuels<br />

0.50 0.00 1.10 0.00 0.00 0.00 0.00<br />

of no >10%<br />

L converted using<br />

loss during<br />

conservative<br />

nager<br />

percentile-<br />

covers use up to 52 days/year[ConsOC3]; covers use up to 1 time/on OCs stated<br />

infrequent<br />

transfered from<br />

gasoline density of<br />

refueling due to<br />

value for<br />

volume<br />

Vainiotalo et<br />

day of use[ConsOC4]; covers skin contact area up to 210.00 cm2<br />

use (10%<br />

L converted using<br />

loss during typical<br />

general fact<br />

default<br />

as shorter<br />

covers use up to 120 days/year[ConsOC3]; covers use up to 1 time/on OCs stated<br />

infrequent<br />

transfered from<br />

gasoline density of<br />

refueling due to<br />

sheet<br />

than vehicle<br />

day of use[ConsOC4]; covers skin contact area up to 210.00 cm2<br />

use (10%<br />

based upon density<br />

loss during<br />

conservative<br />

nager<br />

per day<br />

covers use up to 26 days/year[ConsOC3]; covers use up to 1 time/on OCs stated<br />

daily use<br />

transfered from<br />

for mogas = 750<br />

equipment use<br />

value for<br />

volume<br />

day of use[ConsOC4]; for each use event, covers use amounts up to<br />

contaminated<br />

kg/m3.<br />

outdoor<br />

used for<br />

750g [ConsOC2]; covers outdoor use [ConsOC12]; covers use in room<br />

pump handle to<br />

outdoors<br />

size of 100m3[ConsOC11]; for each use event, covers exposure up to<br />

2.00hr/event[ConsOC14];<br />

Liquid - Garden<br />

Equipment - Use<br />

0.1000 Assumed value<br />

750 1 L: Conv from L to g 0.0300 expect low % garage 1.50 RIVM 0.98 34 RIVM 0.030 Est. 2mins 7.00 0.49 1.00 0.00 0.00 0.44 647.10 0.81 0.057 7.44 0.10 5.38 0.01 5.40 0.38 0.00 0.38 Unless otherwise stated, covers concentrations up to 100% [ConsOC1]; No specific RMMs developed beyong those Based upon 0.38 0.00 0.38 0.49 0.00 0.06 PC13:Fuels<br />

0.49 0.00 0.06 0.00 0.00 0.00 0.00<br />

of no >10%<br />

based upon density loss but may be<br />

general fact<br />

general<br />

covers use up to 26 days/year[ConsOC3]; covers use up to 1 time/on OCs stated<br />

infrequent<br />

transfered from<br />

for mogas = 750<br />

more from pouring<br />

sheet<br />

fact sheet<br />

day of use[ConsOC4]; covers skin contact area up to 420.00 cm2<br />

use (


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

APPENDIX 4: An Evaluation of the Persistence,<br />

Bioaccumulation and Toxicity of Petroleum<br />

Hydrocarbons<br />

2010-07-30 CSR Appendix 4


An Evaluation of the Persistence, Bioaccumulation and<br />

Toxicity<br />

of Petroleum Hydrocarbons<br />

Report Prepared for CONCAWE<br />

Brussels, Belgium<br />

by<br />

Mark Lampi a , Miriam Léon Paumen b , Tom Parkerton a<br />

a ExxonMobil Biomedical Sciences, Inc., Annandale NJ, USA<br />

b ExxonMobil Petroleum and Chemical, Machelen, Belgium<br />

March 2010


Executive Summary<br />

In order to comply with the European Union’s Registration, Evaluation and Authorisation<br />

of Chemicals (REACH) legislation requirements to perform a persistence,<br />

bioaccumulation and toxicity (PBT) assessment on complex petroleum substances, a<br />

systematic review of the persistence and bioaccumulation properties of petroleum<br />

hydrocarbons was conducted. Those substances deemed potentially to meet the<br />

persistence and bioaccumulation criteria were subsequently assessed for toxicity.<br />

Consistent with REACH technical guidance and Annex XIII criteria, petroleum<br />

hydrocarbons were evaluated using the hydrocarbon block method. Measured data and<br />

model predictions were evaluated for representative structures associated with each block<br />

to develop an evidence-based conclusion regarding PBT properties.<br />

The results of this analysis indicate that higher carbon number blocks tend to fulfill the<br />

persistence criterion while lighter carbon number blocks sometimes met the<br />

bioaccumulative criterion. None of the hydrocarbon blocks were found to meet the very<br />

bioaccumulative criterion. Selected hydrocarbon blocks, namely C16-C18 di-naphthenic<br />

hydrocarbons and C16-C22 poly-naphthenic hydrocarbons were found potentially to<br />

fulfill persistence and bioaccumulation criteria. However, these blocks will not fulfill the<br />

toxicity criteria as they are not soluble enough to pose a chronic aquatic hazard and do<br />

not exhibit health hazard classifications. Therefore, this analysis shows that none of the<br />

hydrocarbon blocks that comprise complex petroleum substances meet the vPvB/PBT<br />

criteria. As part of the TC-NES WG on PBTs, two unique hydrocarbons, namely<br />

anthracene and o-terphenyl, were found to present a PBT concern. However, these<br />

individual substances are not expected to be present in petroleum substances in sufficient<br />

quantity to impact PBT decision-making.<br />

ii


Table of Contents<br />

Executive Summary ............................................................................................................ ii<br />

Table of Contents ............................................................................................................... iii<br />

1.0 Introduction ................................................................................................................... 4<br />

2.0 Outline of Assessment Approach for Complex Petroleum Substances ........................ 5<br />

3.0 Persistence Assessment of Petroleum Hydrocarbon Blocks ......................................... 7<br />

3.1 Normal Paraffins ....................................................................................................... 7<br />

3.2 Iso-paraffins .............................................................................................................. 9<br />

3.3 Mono-Naphthenic hydrocarbons ............................................................................ 12<br />

3.4 Di-Naphthenic hydrocarbons .................................................................................. 14<br />

3.5 Poly-Naphthenic hydrocarbons ............................................................................... 16<br />

3.6 Mono-Aromatics ..................................................................................................... 18<br />

3.7 Naphthenic Mono-Aromatics.................................................................................. 20<br />

3.8 Di-Aromatics........................................................................................................... 22<br />

3.9 Naphthenic Di-Aromatics ....................................................................................... 24<br />

3.10 Poly-Aromatics ..................................................................................................... 25<br />

4.0 Bioaccumulation Assessment of Petroleum Hydrocarbon Blocks ............................. 28<br />

4.1 Normal Paraffins ..................................................................................................... 30<br />

4.2 Iso-paraffins ............................................................................................................ 32<br />

4.3 Mono-Naphthenic hydrocarbons ............................................................................ 36<br />

4.4 Di-Naphthenic hydrocarbons .................................................................................. 38<br />

4.5 Poly-Naphthenic hydrocarbons ............................................................................... 41<br />

4.6 Mono-Aromatics ..................................................................................................... 43<br />

4.7 Naphthenic Mono-Aromatics.................................................................................. 46<br />

4.8 Di-Aromatics........................................................................................................... 48<br />

4.9 Naphthenic Di-Aromatics ....................................................................................... 52<br />

4.10 Poly-Aromatics ..................................................................................................... 55<br />

5.0 Summary of Persistence and Bioaccumulation Assessment ....................................... 63<br />

6.0 Toxicity Assessment of HBs meeting P and B criteria ............................................... 64<br />

7.0 Conclusions ................................................................................................................. 60<br />

8.0 References ................................................................................................................... 61<br />

9.0 Appendices...................................................................................................................65<br />

iii


1.0 Introduction<br />

REACH requires that a PBT/vPvB assessment be performed for all substances for which<br />

a Chemical Safety Assessment (CSA) must be conducted. This generally translates to all<br />

substances manufactured or imported in amounts above 10 tonnes per year that are not<br />

exempted from registration. The objective of the PBT/vPvB assessment is to determine in<br />

a stepwise manner if a substance fulfils the criteria specified in Annex XIII of the<br />

regulation. This document describes the rationale and data used to complete this<br />

assessment for complex petroleum substances comprised of hydrocarbons. For complex<br />

substances, this assessment must be applied to all constituents that are present at greater<br />

than 0.1% (<strong>EU</strong> 2006).<br />

Due to the complex nature and variability in composition, most petroleum substances are<br />

UVCBs (Substances of Unknown or Variable composition, Complex reaction products or<br />

Biological materials). These substances are composed of a mixture of many unique<br />

hydrocarbons that each exhibit different properties relevant to environmental assessment.<br />

Current risk assessment methods that have been developed for substances with unique<br />

properties are not directly applicable to complex petroleum substances. To address this<br />

gap, CONCAWE developed the hydrocarbon block (HCB) method as a framework to<br />

perform the environmental assessment for complex petroleum substances. The HCB<br />

method has been incorporated in the REACH endpoint specific guidance (c.f. Appendix<br />

to section R.7.13), and will be applied to fulfill the requirements of the REACH<br />

regulation (ECHA 2008a). The HCB method resolves complex petroleum substances into<br />

pseudo-components (‘blocks’) that are defined by representative hydrocarbon structures<br />

that exhibit similar physical and chemical properties. The representative structures have<br />

been chosen to cover the degree of complexity that is typically found in petroleum<br />

substances as summarised in the “CONCAWE library” (Appendix 1). However, some of<br />

the representative structures were selected based on availability of the compound, rather<br />

than whether completely representative of typical petroleum hydrocarbons. This is the<br />

case for several of the more conservative structures (e.g. highly branched). For the<br />

purpose of this PBT assessment, all of the available data is presented. However, select<br />

structures were not used to assess the PBT properties of a particular hydrocarbon block<br />

(e.g. anthracene, o-terphenyl).<br />

4


2.0 Outline of PBT/vPvB Assessment Approach for Complex<br />

Petroleum Substances<br />

The Persistence, Bioaccumulation and Toxicity (PBT/vPvB) assessment for petroleum<br />

substances is also performed by applying HCB principles. Due to limited solubility and<br />

variable biodegradability of these complex mixtures, petroleum substances will often not<br />

meet the stringent pass criteria for ready biodegradability. Thus, based on an initial<br />

screening assessment, most petroleum substances should be regarded as persistent and<br />

hence, further evaluation is required to determine if they meet REACH Annex XIII vPvB<br />

or PBT criteria. To accomplish this objective, the P and B properties of representative<br />

structures for a given HCB are assessed, in order to develop a weight of evidence for<br />

deciding if vPvB or PB criteria are or are not fulfilled. This approach is consistent with<br />

the strategy discussed in REACH guidance Chapter R11 for PBT assessment of complex<br />

substances (ECHA 2008b).<br />

PBT/vPvB properties of representative structures have been evaluated using the<br />

following HCB scheme:<br />

C# n-P i-P MN DiN PolyN MoAr NMAr DiAr NDiAr PolyAr<br />

5 `<br />

6<br />

7<br />

8<br />

9<br />

10<br />

…<br />

Where the abbreviations at the top of each row denote the ten main hydrocarbon classes<br />

that are found in petroleum products:<br />

n-P = normal-paraffins (straight chain alkanes)<br />

i-P = iso-paraffins (branched chain alkanes)<br />

Mo-N = mono-naphthenic hydrocarbons consisting of saturated one ring cyclic alkanes<br />

DiN = di-naphthenic hydrocarbons consisting of saturated two ring cyclic alkanes<br />

PolyN = poly-naphthenic hydrocarbons consisting of saturated three or more ring cyclic<br />

alkanes<br />

MoAr = mono-aromatics consisting of one ring aromatics<br />

NMAr = naphthenic-mono-aromatics consisting of one ring aromatics with one or more<br />

saturated rings<br />

DiAr = di-aromatics consisting of two ring aromatics<br />

NDiAr = naphthenic-di-aromatics consisting of two ring aromatics with one or more<br />

saturated rings<br />

5


PolyAr = poly-aromatics consisting of three or more ring aromatics that may include<br />

saturated rings<br />

Note that for certain HCBs, none of the possible structures may exist, e.g. there are no C5<br />

aromatics.<br />

The strategy to assess PBT/vPvB properties of HCBs consists of the following steps:<br />

QSAR models are applied to compute predictions of primary biodegradation halflives<br />

(P) and fish bioconcentration factors (B) for the CONCAWE library of<br />

representative structures (Appendix 1) as recommended by the REACH PBT<br />

guidance (R.11). Two modules from EPISuite v4.00 were used to screen for<br />

persistence and bioaccumulative properties, BioHCwin and BCFBAF.<br />

Where available for hydrocarbons, experimental primary biodegradation half-lives in<br />

un-acclimated freshwater or marine water as well as aqueous or dietary<br />

bioaccumulation test data are compiled and compared to model predictions. In<br />

addition, other relevant lab and field bioaccumulation studies are also considered to<br />

assess the potential of petroleum hydrocarbons to biomagnify in the foodchain. This<br />

information is an important compliment to bioconcentration data since<br />

biomagnification is regarded as the principal determinant for identifying substances<br />

posing a bioaccumulation concern (Weisbrod et al. 2009).<br />

In some cases, experimental data for hydrocarbons that have atypical structures (e.g.<br />

ethanediyl or isopropyl functional groups) are included in this analysis. This allows a<br />

more through appraisal of the reasonableness of model predictions based on available<br />

experimental information. However, such data are interpreted with caution, and<br />

judged relative to the weight of evidence provided by more typical structures, in<br />

deciding P and B properties of specific HCBs.<br />

Finally, all the available information on persistence and bioaccumulation are<br />

collectively reviewed to determine if a further assessment of toxicity was required. If<br />

a HCB was found to meet the P and B criteria, toxicity was evaluated in accordance<br />

with Annex XIII criteria. If necessary, the chronic aquatic toxicity for the structures<br />

comprising the HCB was computed using the target lipid model included in the<br />

PETROTOX model (Redman 2009).<br />

6


3.0 Persistence Assessment of Petroleum Hydrocarbon Blocks<br />

Hydrocarbons have been present in the environment for billions of years. As a highly<br />

reduced form of carbon, these substances provide a valuable source of energy for<br />

consumption by microorganisms. Therefore, mechanisms have evolved to degrade<br />

hydrocarbons, and nearly all hydrocarbons can be degraded under appropriate conditions<br />

(Prince and Walters, 2007).<br />

In order to assess the persistence of the different HCBs, aquatic half-life predictions for<br />

representative constituents were made using the BioHCwin module of the EPISuite v4.0<br />

model. Unacclimated, marine and freshwater experimental biodegradation half-lives from<br />

three different sources (Prince et al. 2007, 2008; EMBSI, 2009a, b and c) were compiled<br />

and compared to model predictions. According to previous work (Prince et al. 2007) halflives<br />

for different classes of hydrocarbons do not differ significantly between marine and<br />

freshwater. Thus, half-life data from both media have been used collectively in the<br />

persistence assessment.<br />

Results of standardized biodegradation experiments may vary significantly depending on<br />

the microbial inoculum that is used. Further, in experiments with hydrocarbon mixtures,<br />

observed biodegradation rates can be influenced by a lag phase that is due to the presence<br />

of other hydrocarbons that are preferentially biodegraded. Consequently, if more than<br />

one reliable half-life value was available for the structure the lowest half-life for the<br />

structure was selected as proof the structure has the potential to biodegrade under unacclimated<br />

test conditions. Persistence of the HCBs was assessed comparing predicted<br />

and experimental half-lives for the corresponding representative structures to the 60-day<br />

criterion for marine water persistence specified in Annex XIII of the REACH regulation.<br />

In the following sections, the results of the persistence assessment will be discussed.<br />

3.1 Normal Paraffins<br />

The BioHCwin model predicts that n-paraffins with chain lengths above twenty-two<br />

carbons will have half-lives exceeding the 60-day persistence criterion (Figure 1).<br />

However, marine and freshwater experimental half-lives for n-paraffins with carbon<br />

chain lengths up to 19 carbons (Table 1) range from 1.9 to 15 days. For the carbon<br />

numbers for which experimental persistence data are available, predicted and<br />

experimental data are below the persistence criterion (Figure 2). In several cases, there<br />

are data for multiple hydrocarbons with the same number of carbons. In fact,<br />

experimental values are far below the persistence criterion, meaning that model<br />

predictions are conservative. Moreover, n-paraffins larger than hexane are known to be<br />

the preferred substrate in oil degradation processes (Prince and Walters, 2007). This is<br />

reflected by the higher experimental half-lives of the shorter chain paraffins (Table 1). It<br />

can be concluded that, based on the BioHCwin predictions, n-paraffins at or above C22<br />

may have half-lives above the persistence criterion.<br />

7


ioHCwin half-life (days)<br />

1000.0<br />

100.0<br />

60 d half-life<br />

10.0<br />

1.0<br />

0 5 10 15 20 25 30 35 40<br />

Carbon number<br />

Figure 1. Half-life predictions for n-paraffins using the US EPA model BioHCwin<br />

Hydrocarbon<br />

C nr<br />

BioHCwin<br />

Predicted<br />

Half-Life<br />

(days)<br />

Measured<br />

Seawater<br />

Half-Life<br />

(days)<br />

Measured<br />

Freshwater<br />

Half-Life<br />

(days)<br />

n-butane 4 3.5 15.0<br />

n-pentane 5 4.0 10.5 10.7<br />

n-hexane 6 4.7 3.5 6.3<br />

n-hexane 6 4.7 6.5<br />

n-heptane 7 5.5 3.5 2.3<br />

n-octane 8 6.4 2.1<br />

n-nonane 9 7.4 2.1 2.1<br />

n-decane 10 8.7 2.1<br />

n-undecane 11 10.1 2.1<br />

n-dodecane 12 11.8 2.1 1.9<br />

n-tridecane 13 13.7 2.3<br />

n-tetradecane 14 16.0 2.3<br />

n-pentadecane 15 18.6 2.4<br />

n-hexadecane 16 21.7 4.60 2.5<br />

n-heptadecane 17 25.3 2.3<br />

n-octadecane 18 29.4 2.5<br />

n-nonadecane 19 34.3 2.8<br />

Table 1. Predicted and experimental marine and freshwater half-life values for n-paraffins<br />

8


100.0<br />

Half-life predicted (days)<br />

10.0<br />

Freshwater<br />

P criterion<br />

Marine Water<br />

1.0<br />

1.0 10.0 100.0<br />

Half-life observed (days)<br />

Figure 2. BioHCwin (Y-axis) vs. experimental half-lives (X-axis) for n-paraffins<br />

3.2 Iso-paraffins<br />

Degradation of iso-paraffins is influenced negatively by increased branching of the<br />

molecule, because complex branching hinders the initial oxidation and the subsequent<br />

lipid catabolism of the hydrocarbon molecules (Prince and Walters 2007). Accordingly,<br />

the BioHCwin model predicts a half-life above 60 days for 2,2,4,4,6,8,8-<br />

heptamethylnonane, a highly branched C16 structure (Figure 3). For less branched<br />

structures, BioHCwin predicts half-lives above 60 days for structures above C21. The<br />

only experimental half-life above 60 days is the value for the extremely branched C16<br />

structure, 2,2,4,4,6,8,8-heptamethylnonane, confirming the model prediction (Table 2).<br />

Adjacent quaternary carbons (e.g. pentamethylheptane) are not characteristic of<br />

petroleum hydrocarbons (Quann and Jaffe 1992; Sarpal et al. 1997; Quann 1998); results<br />

for this compound may overstate the persistence for this HCB. Experimental half-lives<br />

for iso-paraffins are available for carbon chains up to C20, and are all below the<br />

persistence criterion. The experimental half-life for the C20 structure is 28 days, meaning<br />

that half-life predictions for iso-paraffins above C21 may be over-estimated.<br />

For carbon numbers for which persistence data are available, predicted and experimental<br />

data are consistent. For structures up to C20, half-lives are below the persistence<br />

criterion with the exception of the structure mentioned above (Figure 4). In several cases,<br />

there are data for multiple hydrocarbons with the same number of carbons. It can be<br />

concluded that, based on the available data, iso-paraffins at or above C21 may have halflives<br />

above the persistence criterion.<br />

9


ioHCwin half-life (days)<br />

1000.0<br />

100.0<br />

10.0<br />

60 d half-life<br />

1.0<br />

0 5 10 15 20 25 30 35 40<br />

Carbon number<br />

Figure 3. Half-life predictions for iso-paraffins using the US EPA model BioHCwin<br />

Hydrocarbon<br />

C nr<br />

BioHCwin<br />

Predicted<br />

Half-Life<br />

(days)<br />

Measured<br />

Seawater<br />

Half-Life<br />

(days)<br />

Measured<br />

Freshwater<br />

Half-Life<br />

(days)<br />

isobutane 4 3.1 17.1<br />

2-methylbutane 5 3.6 13.0<br />

2,2-dimethylbutane 6 7.0 26.5<br />

2-methylpentane 6 4.2 10.4<br />

3-methylpentane 6 4.2 10.1<br />

2,2,3-trimethylbutane 7 9.4 13.0<br />

2,2-dimethylpentane 7 8.1 13.0<br />

2,3-dimethylpentane 7 5.6 8.1<br />

2,4-dimethylpentane 7 5.6 9.1<br />

2-methylhexane 7 4.9 6.6<br />

3,3-dimethylpentane 7 8.1 13.0<br />

3-methylhexane 7 4.9 7.5<br />

2,2,3-trimethylpentane 8 10.9 13.0<br />

2,2,4-trimethylpentane 8 10.9 8.4<br />

2,3,3-trimethylpentane 8 10.9 13.0<br />

2,3,4-trimethylpentane 8 7.6 10.6<br />

2,3-dimethylhexane 8 6.6 7.5<br />

2,4-dimethylhexane 8 6.6 6.6<br />

2,5-dimethylhexane 8 6.6 6.5<br />

2-methylheptane 8 5.7 4.8<br />

3-ethylhexane 8 5.7 8.1<br />

3-methylheptane 8 5.7 6.5<br />

4-methylheptane 8 5.7 6.5<br />

2,2,5-trimemethylhexane 9 12.7 8.1<br />

10


2,3-dimethylheptane 9 7.7 6.2 7.4<br />

2,5-dimethylheptane 9 7.7 6.5<br />

2,6-dimethylheptane 9 7.7 5.3<br />

3,5-dimethylheptane 9 7.7 6.4<br />

3-ethylheptane 9 6.6 3.1<br />

3-methyloctane 9 6.6 4.3<br />

3-methyloctane 9 6.6 2.8<br />

4-methyloctane 9 6.6 2.3<br />

2,2,4-trimethylheptane 10 14.8 6.5<br />

2,2,5,5-tetramethylhexane 10 24.6 7.4<br />

2,2,dimethyloctane 10 12.9 6.6<br />

2,3-dimethyloctane 10 8.9 3.9<br />

2,5-dimethyloctane 10 8.9 4.9<br />

2,6-dimethyloctane 10 8.9 3.8 4.1<br />

2,7-dimethyloctane 10 8.9 6.9<br />

2-methyl-3-ethylheptane 10 6.6 19.9<br />

2-methylnonane 10 7.7 2.1<br />

3,3-dimethyloctane 10 12.9 6.6<br />

3,6-dimethyloctane 10 8.9 4.6<br />

3-ethyloctane 10 7.7 6.0<br />

3-methylnonane 10 7.7 2.1<br />

4-ethyloctane 10 7.7 4.6<br />

4-methylnonane 10 7.7 2.1<br />

4-propylheptane 10 7.7 5.1<br />

5-methylnonane 10 7.7 3.3<br />

2,5-dimethylnonane 11 9.0 3.9<br />

2,6-dimethylnonane 11 10.4 5.5<br />

2-methyldecane 11 9.0 3.5 2.1<br />

3-ethyl-nonane 11 9.0 2.9 4.0<br />

3-methyldecane 11 9.0 2.1<br />

4-methyldecane 11 9.0 1.1<br />

5-methyldecane 11 9.0 2.7<br />

2,3-dimethyldecane 12 12.1 3.8<br />

2,6-dimethyldecane 12 12.1 2.8 3.3<br />

2-methylundecane 12 10.5 2.1<br />

4-methylundecane 12 10.5 2.1<br />

5-methylundecane 12 10.5 2.1<br />

6-methylundecane 12 10.5 2.1<br />

2,2,3-trimethyldecane 13 23.4 1.9 6.2<br />

2,6-dimethylundecane 13 14.1 2.3<br />

11


4-methyldodecane 13 12.2 3.3 6.7<br />

2,6,10-trimethyldodecane 15 22.0 3.5<br />

2,2,4,4,6,8,8-heptamethyl nonane 16 135.4 60<br />

2,6,10,14-tetramethyl hexadecane<br />

(pristane)<br />

20 54.5 21.0 4.3<br />

2,6,10,14-tetramethylhexadecane<br />

(phytane)<br />

20 54.5 28.0<br />

Table 2. Predicted and experimental marine and freshwater half-life values for isoparaffins<br />

(in bold, structure names for which BioHCwin predicts half-lives above 60<br />

days; rows in orange show experimental values above 60 days)<br />

Half-life predicted (days)<br />

1000.0<br />

100.0<br />

10.0<br />

Freshwater<br />

P criterion<br />

Marine Water<br />

1.0<br />

1.0 10.0 100.0<br />

Half-life observed (days)<br />

Figure 4. BioHCwin (Y-axis) vs. experimental half-lives (X-axis) for iso-paraffins<br />

3.3 Mono-Naphthenic Hydrocarbons<br />

The BioHCwin model predicts half-lives above 60 days for mono-naphthenic<br />

hydrocarbons above C19 (Figure 5). Marine and freshwater experimental half-lives for<br />

mono-naphthenic hydrocarbons up to C18 range from 1.7 to 55.9 days (Table 3). The<br />

highest half-life, which is still well below the persistence criterion, was found for a C10<br />

structure, cis-1,1,3,5-tetramethylcyclohexane, which is the most branched structure in the<br />

experimental dataset. In several cases, there are data for multiple hydrocarbons with the<br />

same number of carbons.<br />

For carbon numbers for which persistence data are available, predicted and experimental<br />

data are consistent, and all values up to C18 are below the persistence criterion (Figure<br />

6). It can be concluded that, based on the available data, mono-naphthenic hydrocarbons<br />

at or above C19 may have half-lives above the persistence criterion.<br />

12


ioHCwin half-life (days)<br />

10000.0<br />

1000.0<br />

100.0<br />

10.0<br />

1.0<br />

0 5 10 15 20 25 30 35 40<br />

Carbon number<br />

60 d half-life<br />

Figure 5. Half-life predictions for mono-naphthenic hydrocarbons using the US EPA<br />

model BioHCwin<br />

Hydrocarbon<br />

C nr<br />

BioHCwin<br />

Predicted<br />

Half-Life<br />

(days)<br />

Measured<br />

Seawater<br />

Half-Life<br />

(days)<br />

Measured<br />

Freshwater<br />

Half-Life<br />

(days)<br />

cyclopentane 5 45.1 6.0 9.1<br />

cyclohexane 6 55.4 4.3 8.2<br />

methylcyclopentane 6 6.0 3.9 8.1<br />

1,1-dimethylcyclopentane 7 21.2 8.6 7.4<br />

cis-1,3-dimethylcyclopentane 7 4.1 8.3<br />

ethylcyclopentane 7 6.9 6.5<br />

methylcyclohexane 7 7.3 3.8 7.4<br />

trans-1,2-dimethylcyclopentane 7 4.1 10.4<br />

trans-1,3-dimethylcyclopentane 7 4.1 8.0<br />

1,1-dimethylcyclohexane 8 26.0 10.4<br />

cis-1,2-dimethylcyclohexane 8 5.1 7.9<br />

cis-1,3-dimethylcyclohexane 8 5.1 8.1<br />

ethylcyclohexane 8 8.5 6.5<br />

trans-1,2-dimethylcyclohexane 8 5.1 8.1<br />

trans-1,3-dimethylcyclohexane 8 5.1 7.7<br />

1,1,3-trimethylcyclohexane 9 18.0 8.5<br />

1,3,5-trimethylcyclohexane 9 3.5 8.0 30.4<br />

bicyclo[4.3.0]nonane 9 55.9 4.9 18.9<br />

n-propylcyclohexane 9 9.9 5.5<br />

butylcyclohexane 10 11.6 2.6<br />

cis-1,1,3,5-tetramethylcyclohexane 10 12.5 20.1 36.1<br />

iso-butylcyclohexane 10 13.3 6.3 7.4<br />

pentylcyclohexane 11 13.5 2.1<br />

1-isobutyl 2,5 12 6.4 2.8 12.9<br />

13


dimethylcyclohexane<br />

hexylcyclohexane 12 15.7 1.7 1.3<br />

n-heptylcyclohexane 13 18.3 3.7 2.7<br />

n-octylcyclohexane 14 21.3 2.2 3.0<br />

nonylcyclohexane 15 24.8 2.8<br />

decylcyclohexane 16 28.9 3.4<br />

undecylcyclohexane 17 33.7 3.1<br />

dodecylcyclohexane 18 39.3 3.3<br />

Table 3. Predicted and experimental marine and freshwater half-life values for mononaphthenic<br />

hydrocarbons<br />

100.0<br />

Half-life predicted (days)<br />

10.0<br />

1.0<br />

1.0 10.0 100.0<br />

Half-life observed (days)<br />

Freshwater<br />

P criterion<br />

Marine Water<br />

Figure 6. BioHCwin vs. experimental half-lives for mono-naphthenic hydrocarbons<br />

3.4 Di-Naphthenic hydrocarbons<br />

The BioHCwin model predicts half-lives above 60 days for some di-naphthenic structures<br />

above C12 (Figure 7). Marine and freshwater experimental half-lives for di-naphthenic<br />

hydrocarbons are available up to C16, and range from 7.9 to greater than 191 days (Table<br />

4). In several cases, there are data for multiple hydrocarbons with the same number of<br />

carbons. Structures up to C14 have half-lives below 60 days; the half-life for 2,7-<br />

diisopropyldecalin (C16) is above the persistence criterion. This half-life value is much<br />

higher than values for single isopropyl-branched decalins, showing again the influence of<br />

increased branching on persistence results (Prince and Walters 2007).<br />

In Figure 8, predicted and experimental data are shown. The plot shows that predicted<br />

half-lives are often higher that experimental values. While no experimental half-life data<br />

are available for C15 di-naphthenic hydrocarbons, read across to C15 poly-naphthenic<br />

hydrocarbons (see section 3.5) indicates these structures would not fulfill the persistence<br />

14


criterion. It can be concluded that, based on the conservative use of experimental results<br />

for diisopropyldecalin, some di-naphthenic structures at or above C16 may have halflives<br />

above the persistence criterion.<br />

10000.0<br />

bioHCwin half-life (days)<br />

1000.0<br />

100.0<br />

60 d half-life<br />

10.0<br />

1.0<br />

0 5 10 15 20 25 30 35 40<br />

Carbon number<br />

Figure 7. Half-life predictions for di-naphthenic hydrocarbons using the US EPA model<br />

BioHCwin<br />

BioHCwin<br />

Predicted<br />

Half-Life<br />

(days)<br />

Measured<br />

Seawater<br />

Half-Life<br />

(days)<br />

Measured<br />

Freshwater<br />

Half-Life<br />

(days)<br />

Hydrocarbon<br />

C nr<br />

decahydronaphthalene<br />

(decalin)<br />

10 68.6 66.0<br />

2,6-dimethyldecalin 12 33.1 10.0<br />

bicyclohexyl 12 27.0 15.0 7.9<br />

2,3,6-trimethyldecalin 13 23.0 33<br />

2-isopropyldecalin 13 74.4 20<br />

n-propyldecalin 13 64.6 20<br />

1, 4, 6, 7- tetramethyldecalin 14 15.9 22<br />

2,7-diisopropyldecalin 16 80.8 >191.0<br />

Table 4. Predicted and experimental marine and freshwater half-life values for dinaphthenic<br />

hydrocarbons (in bold, structure names for which BioHCwin predicts halflives<br />

above 60 days; rows in orange show experimental values above 60 days)<br />

15


100.0<br />

Half-life predicted (days)<br />

10.0<br />

Freshwater<br />

P criterion<br />

Marine Water<br />

1.0<br />

1.0 10.0 100.0<br />

Half-life observed (days)<br />

Figure 8. BioHCwin (Y-axis) vs. experimental half-lives (X-axis) for di-naphthenic<br />

hydrocarbons<br />

3.5 Poly-Naphthenic hydrocarbons<br />

The BioHCwin model predicts that half-lives for poly-naphthenic hydrocarbons above<br />

C13 will be higher than 60 days (Figure 9). Experimental marine degradation half-lives<br />

for poly-naphthenic hydrocarbons up to C19 range from 6.1 to greater than 191 days<br />

(Table 5). In several cases, there are data for multiple hydrocarbons with the same<br />

number of carbons. Up to C15 and for some C18 and C19 structures half-lives are below<br />

the persistence criterion. However, some C16 and C18 structures have experimental halflives<br />

clearly exceeding the persistence criterion although BioHCwin predictions for<br />

structures with experimental half-lives above 60 days are in many cases overly<br />

conservative (Table 5, Figure 10). It can be concluded that for poly-naphthenic<br />

hydrocarbons at or above C16, some structures will exhibit half-lives above the<br />

persistence criterion.<br />

16


ioHCwin half-life (days)<br />

100000.0<br />

10000.0<br />

1000.0<br />

100.0<br />

10.0<br />

1.0<br />

0 5 10 15 20 25 30 35 40<br />

Carbon number<br />

60 d half-life<br />

Figure 9. Half-life predictions for poly-naphthenic hydrocarbons using the US EPA<br />

model BioHCwin<br />

Hydrocarbon<br />

C nr<br />

BioHCwin<br />

Predicted<br />

Half-Life<br />

(days)<br />

Measured<br />

Seawater<br />

Half-Life<br />

(days)<br />

perhydro-1-methyl-fluorene 14 117.0 46<br />

perhydrophenanthrene 14 117.0 32<br />

perhydro-2-methylanthracene 15 143.0 33<br />

perhydrodimethylphenanthrene 15 174.8 51<br />

hexadecahydropyrene 16 450.7 >191.0<br />

1-methyl-7-(1methylethyl)-hydrophenanthrene 18 155.2 >191.0<br />

perhydro-chrysene 18 678.3 117.0<br />

perhydro-terphenyl (tricyclohexyl) 18 69.4 6.1<br />

-androstane 19 619.0 34.0<br />

Table 5. Predicted and experimental marine and freshwater half-life values for polynaphthenic<br />

hydrocarbons (in bold, structure names for which BioHCwin predicts halflives<br />

above 60 days; rows in orange show experimental values above 60 days)<br />

17


1000.0<br />

Half-life predicted (days)<br />

100.0<br />

10.0<br />

Freshwater<br />

P criterion<br />

Marine Water<br />

1.0<br />

1.0 10.0 100.0<br />

Half-life observed (days)<br />

Figure 10. BioHCwin (Y-axis) vs. experimental half-lives (X-axis) for poly-naphthenic<br />

hydrocarbons<br />

3.6 Mono-Aromatics<br />

The BioHCwin model predicts that half-lives for mono-aromatics above C22 will be<br />

higher than 60 days (Figure 11). Experimental freshwater and marine half-lives for<br />

mono-aromatics up to C18 range from 1.7 to above 182 days (Table 6). In several cases,<br />

there are data for multiple hydrocarbons with the same number of carbons. Most of the<br />

mono-aromatic hydrocarbons across the whole range of carbon chain lengths have halflives<br />

below 5 days, but there is one exception in the dataset with half-life of 50 days: 1,1'-<br />

(1,1,2,2-tetramethyl-1,2-ethanediyl)bis-benzene (Table 6, Figure 12). While<br />

experimental half-life data are available for this compound, this is not a typical structure<br />

found in petroleum substances. Although the BioHCwin model may be overly<br />

conservative, it can be concluded that mono-aromatics at or above C22 may have halflives<br />

above 60 days.<br />

bioHCwin half-life (days)<br />

1000.0<br />

100.0<br />

10.0<br />

1.0<br />

0 5 10 15 20 25 30 35 40<br />

Carbon number<br />

60 d half-life<br />

Figure 11. Half-life predictions for mono-aromatic hydrocarbons using the US EPA<br />

model BioHCwin<br />

18


Hydrocarbon<br />

C nr<br />

BioHCwin<br />

Predicted<br />

Half-Life<br />

(days)<br />

Measured<br />

Seawater<br />

Half-Life<br />

(days)<br />

Measured<br />

Freshwater<br />

Half-Life<br />

(days)<br />

benzene 6 4.6 2.1 2.1<br />

toluene 7 4.5 2.1 2.3<br />

ethylbenzene 8 5.0 2.1 2.8<br />

m-xylene 8 4.4 2.1 2.3<br />

o-xylene 8 4.4 2.1 2.2<br />

p-xylene 8 4.4 2.1 2.3<br />

1,2,3-trimethylbenzene 9 4.4 3.2<br />

1,2,4-trimethylbenzene 9 4.4 3.2<br />

1,3,5 trimethylbenzene 9 4.4 2.1 3.2<br />

1-ethyl-2-methylbenzene 9 4.9 3.2<br />

1-ethyl-4-methylbenzene 9 4.9 3.2<br />

isopropylbenzene 9 10.6 3.2<br />

propylbenzene 9 5.8 3.2<br />

(1-methylpropyl)benzene 10 12.4 3.2<br />

(2-methylpropyl)benzene 10 7.8 3.2<br />

1,2,3,4 tetramethylbenzene 10 4.3 2.8 2.2<br />

1,2-diethylbenzene 10 5.4 2.8<br />

1,2-dimethyl-4-ethylbenzene 10 4.9 3.2<br />

1,4-diethylbenzene 10 5.4 2.1<br />

1-ethyl-2,4-dimethyl-benzene 10 4.9 3.2<br />

1-ethyl-3,5-dimethylbenzene 10 4.9 1.8<br />

1-methyl-2-(1-methylethyl)benzene 10 10.5 3.6<br />

1-methyl-2-propylbenzene 10 5.7 2.0<br />

1-methyl-3-(1-methylethyl)benzene 10 10.5 3.2<br />

1-methyl-3-propylbenzene 10 5.7 1.7<br />

1-methyl-4-(1-methylethyl)benzene 10 10.5 2.5<br />

1-methyl-4-propylbenzene 10 5.7 2.2<br />

2-ethyl-1,3-dimethylbenzene 10 4.9 3.2<br />

2-ethyl-1,4-dimethylbenzene 10 4.9 3.2<br />

1,3-dimethyl-5-(1-methylethyl)benzene 11 10.4 3.2<br />

1-ethyl-3-methylbenzene 11 4.9 3.2<br />

n-octyl benzene 14 12.4 13.0<br />

butylbenzene 10 12.4 2.3<br />

1,3,5-tris(1-methylethyl)-benzene 15 58.3 54.0<br />

decylbenzene 16 16.9 3.0<br />

1,1'-(1,1,2,2-tetramethyl-1,2-<br />

ethanediyl)bis-benzene<br />

18 50.5 >182.0<br />

Table 6. Predicted and experimental marine and freshwater half-life values for monoaromatic<br />

hydrocarbons<br />

19


100.0<br />

Half-life predicted (days)<br />

10.0<br />

Freshwater<br />

P criterium<br />

Marine Water<br />

1.0<br />

1.0 10.0 100.0<br />

Half-life observed (days)<br />

Figure 12. BioHCwin (Y-axis) vs. experimental half-lives (X-axis) for mono-aromatic<br />

hydrocarbons<br />

3.7 Naphthenic Mono-Aromatics<br />

The BioHCwin model predicts that half-lives for naphthenic mono-aromatic<br />

hydrocarbons above C14 will be higher than 60 days (Figure 13). In several cases, there<br />

are data for multiple hydrocarbons with the same number of carbons. Half-life<br />

predictions for three-ring and higher hydrogenated polycyclic aromatic hydrocarbons<br />

significantly exceed the persistence criterion. However, experimental freshwater and<br />

marine half-lives for naphthenic mono-aromatics up to C18 range from 1.9 to 38 days<br />

(Table 7), showing that the BioHCwin model predictions are again overly conservative<br />

(Figure 14). Based on the available data it can be concluded that some naphthenic monoaromatic<br />

structures at or above C19 may have half-lives above 60 days.<br />

20


ioHCwin half-life (days)<br />

1000000.0<br />

100000.0<br />

10000.0<br />

1000.0<br />

100.0<br />

10.0<br />

1.0<br />

0 5 10 15 20 25 30 35 40<br />

Carbon number<br />

60 d half-life<br />

Figure 13. Half-life predictions for naphthenic mono-aromatic hydrocarbons using the<br />

US EPA model BioHCwin<br />

Hydrocarbon<br />

C nr<br />

BioHCwin<br />

Predicted<br />

Half-Life<br />

(days)<br />

Measured<br />

Seawater<br />

Half-Life<br />

(days)<br />

Measured<br />

Freshwater<br />

Half-Life<br />

(days)<br />

indane 9 2.9 3.2<br />

indane (residuum trimethylalkane) 9 2.9 2.2 2.8<br />

1,2,3,4-tetrahydronaphthalene (tetralin) 10 1.5 2.0 2.4<br />

1-methylindane 10 6.2 3.2<br />

4-methylindane 10 2.9 3.2<br />

5-methylindane 10 2.9 3.2<br />

tetralin 10 1.5 3.2<br />

2-methyltetralin 11 1.0 3.9<br />

5-methyltetralin 11 1.5 3.5<br />

6-methyltetralin 11 1.5 3.2<br />

1,2,3,4-tetrahydro-1-4-<br />

dimethylnaphthalene<br />

12 6.7 6.0 8.2<br />

1,1,6- trimethyl tetralin 13 2.9 3.1 3.0<br />

1,2,3,4,5,6,7,8-octahydrophenanthrene 14 203.6 3.9<br />

2-hexyltetralin 16 3.0 1.9<br />

dehydroabietine 17 892.9 38.0<br />

3- phenyl-bicyclohexyl 18 118.6 23.0<br />

Table 7. Predicted and experimental marine and freshwater half-life values for naphthenic<br />

mono-aromatic hydrocarbons (in bold, structure names for which BioHCwin predicts<br />

half-lives above 60 days)<br />

21


1000.0<br />

Half-life predicted (days)<br />

100.0<br />

10.0<br />

Freshwater<br />

P criterion<br />

Marine Water<br />

1.0<br />

1.0 10.0 100.0<br />

Half-life observed (days)<br />

Figure 14. BioHCwin (Y-axis) vs. experimental half-lives (X-axis) for naphthenic monoaromatic<br />

hydrocarbons<br />

3.8 Di-Aromatics<br />

The BioHCwin model predicts that half-lives for di-aromatic hydrocarbons above C15<br />

will be above 60 days (Figure 15). Experimental freshwater and marine half-lives for diaromatics<br />

up to C18 range from 2.1 to 122 days (Table 8). In several cases, there are data<br />

for multiple hydrocarbons with the same number of carbons. It can be argued that the<br />

C16 structure (2,7-diisopropyl naphthalene) with a half-life of 122 days does not<br />

represent branching that is typical of petroleum hydrocarbons. However, the C18<br />

structure (2,3 dimethyl-5(4methylpentyl) naphthalene) with a half-life of 65 days is<br />

typical and exceeds the persistence criterion. For the rest of the dataset, half-lives across<br />

the entire carbon chain length range from 2.1 to 11.6 days, meaning that model<br />

predictions are overly conservative (Figure 16). Based on the available data, it can be<br />

concluded that di-aromatics at or above C18 may exhibit half-lives above the persistence<br />

criterion.<br />

22


ioHCwin half-life (days)<br />

1000.0<br />

100.0<br />

10.0<br />

1.0<br />

0 5 10 15 20 25 30 35 40<br />

Carbon number<br />

60 d half-life<br />

Figure 15. Half-life predictions for di-aromatic hydrocarbons using the US EPA model<br />

BioHCwin<br />

Hydrocarbon<br />

C nr<br />

BioHCwin<br />

Predicted<br />

Half-Life<br />

(days)<br />

Measured<br />

Seawater<br />

Half-Life<br />

(days)<br />

Measured<br />

Freshwater<br />

Half-Life<br />

(days)<br />

biphenyl 10 31.0 11.6 2.8<br />

naphthalene 10 5.6 2.1 2.1<br />

1-methylnaphthalene 11 8.9 3.7 2.9<br />

2-methylbiphenyl 11 30.6 3.3<br />

2-methylnaphthalene 11 8.9 3.2<br />

3-methylbiphenyl 11 30.6 3.1<br />

4-methylbiphenyl 11 30.6 3.0<br />

2,7-diisopropyl naphthalene 16 30.5 122.0<br />

6-n-Butyl-2,3-dimethylnaphthalene 16 21.1 3.8<br />

1,1'-biphenyl, 4-pentyl- 17 53.6 3.0<br />

2,3 dimethyl-5(4methylpentyl)<br />

naphthalene 18 33.0 65.0<br />

Table 8. Predicted and experimental marine and freshwater half-life values for diaromatic<br />

hydrocarbons (rows in orange show experimental values above 60 days)<br />

23


100.0<br />

Half-life predicted (days)<br />

10.0<br />

Freshwater<br />

P criterion<br />

Marine Water<br />

1.0<br />

1.0 10.0 100.0<br />

Half-life observed (days)<br />

Figure 16. BioHCwin (Y-axis) vs. experimental half-lives (X-axis) for di-naphthenic<br />

hydrocarbons<br />

3.9 Naphthenic Di-Aromatics<br />

The BioHCwin model predicts that half-lives for naphthenic di-aromatic hydrocarbons<br />

above C14 will be higher than 60 days (Figure 17). In several cases, there are data for<br />

multiple hydrocarbons with the same number of carbons. Experimental freshwater and<br />

marine half-lives for C16 naphthenic di-aromatics (Table 9) were higher than the<br />

persistence criterion for two of the three tested structures, but experimental values were<br />

much lower than BioHCwin predicted half-lives. Based on model predictions and due to<br />

the limited experimental data available (Figure 18), it is concluded that structures at or<br />

above C14 may have half-lives above the persistence criterion.<br />

1000000.0<br />

bioHCwin half-life (days)<br />

100000.0<br />

10000.0<br />

1000.0<br />

100.0<br />

10.0<br />

1.0<br />

0 5 10 15 20 25 30 35 40<br />

Carbon number<br />

60 d half-life<br />

Figure 17. Half-life predictions for naphthenic di-aromatic hydrocarbons using the US<br />

EPA model BioHCwin<br />

24


Hydrocarbon<br />

C nr<br />

BioHCwin<br />

Predicted<br />

Half-Life<br />

(days)<br />

Measured<br />

Seawater<br />

Half-Life<br />

(days)<br />

1,2,3,10b-tetrahydrofluoranthene 16 4908.0 22<br />

1,2,3,6,7,8 hexahydropyrene 16 11860.0 >182<br />

4,5,9,10-tetrahydropyrene 16 656.0 >182<br />

Table 9. Predicted and experimental marine and freshwater half-life values for naphthenic<br />

di-aromatic hydrocarbons (in bold, structure names for which BioHCwin predicts halflives<br />

above 60 days; rows in orange show experimental values above 60 days)<br />

100000.0<br />

Half-life predicted (days)<br />

10000.0<br />

1000.0<br />

100.0<br />

Freshwater<br />

10.0<br />

P criterion<br />

Marine Water<br />

1.0<br />

1.0 10.0 100.0 1000.0 10000.0<br />

Half-life observed (days)<br />

Figure 18. BioHCwin (Y-axis) vs. experimental half-lives (X-axis) for naphthenic-diaromatic<br />

hydrocarbons<br />

3.10 Poly-Aromatics<br />

The BioHCwin model predicts that half-lives for poly-aromatic hydrocarbons above C14<br />

will be higher than 60 days (Figure 19). In several cases, there are data for multiple<br />

hydrocarbons with the same number of carbons. Experimental half-lives for polyaromatics<br />

up to C20 range from 2.5 days to > 182, while the model predicts half-lives<br />

from 15 to 348 days (Table 10). For some C18 structures (with more than three rings and<br />

o-terphenyl, Figure 20) experimental half-lives are above the persistence criterion. The<br />

slower degradation of four-ring PAHs is well-known (Prince and Walters 2007). Based<br />

on the available data it can be concluded that at or above C18, half-lives for some four<br />

ring poly-aromatics will be above the persistence criterion.<br />

25


ioHCwin half-life (days)<br />

100000.0<br />

10000.0<br />

1000.0<br />

100.0<br />

10.0<br />

1.0<br />

0 5 10 15 20 25 30 35 40<br />

Carbon number<br />

60 d half-life<br />

Figure 19. Half-life predictions for poly-aromatic hydrocarbons using the US EPA model<br />

BioHCwin<br />

Hydrocarbon<br />

C nr<br />

BioHCwin<br />

Predicted<br />

Half-Life<br />

(days)<br />

Measured<br />

Seawater<br />

Half-Life<br />

(days)<br />

Measured<br />

Freshwater<br />

Half-Life<br />

(days)<br />

fluorene 13 15.1 2.5<br />

methylfluorene 14 24.2 4.2<br />

phenanthrene 14 15.0 5.0 2.6<br />

1-methylphenanthrene 15 23.9 2.8<br />

2-methylphenanthrene 15 23.9 4.2<br />

3-methylphenanthrene 15 23.9 4.2<br />

9-methylanthracene 15 196.7 6.0<br />

9-methylphenanthrene 15 23.9 4.2<br />

fluoranthene 16 191.4 9.2<br />

pyrene 16 283.4 151<br />

1-methylpyrene 17 108.8 64.0<br />

benzo(b)fluorene 17 347.6 4.2<br />

1-methyl-7-(1methylethyl)-<br />

phenanthrene 18<br />

56.0 20<br />

9-n butylphenanthrene 18 22.2 72.0<br />

benzo[a]anthracene 18 343.8 > 182<br />

chrysene 18 343.8 > 182<br />

m-terphenyl 18 6.7 15<br />

o-terphenyl 18 6.7 > 182<br />

triphenylene 18 343.8 > 182<br />

7-methylbenz(a)anthracene 19 131.9 4.7<br />

benzo(k)fluoranthene 20 284.7 11.4<br />

26


enzo[a]pyrene 20 421.6 16.5<br />

Table 10. Predicted and experimental marine and freshwater half-life values for polyaromatic<br />

hydrocarbons (in bold, structure names for which BioHCwin predicts half-lives<br />

above 60 days; rows in orange show experimental values above 60 days)<br />

1000.0<br />

Half-life predicted (days)<br />

100.0<br />

10.0<br />

Freshwater<br />

P criterion<br />

1.0<br />

Marine Water<br />

1.0 10.0 100.0<br />

Half-life observed (days)<br />

Figure 20. BioHCwin (Y-axis) vs. experimental half-lives (X-axis) for poly-aromatic<br />

hydrocarbons<br />

27


4.0 Bioaccumulation Assessment of Petroleum hydrocarbon<br />

Blocks<br />

Guidance provided by the ECHA (ECHA 2008b) on how to interpret the Annex XIII<br />

criteria and the recent discussion on the proposed revision of those criteria, indicate that<br />

the assessment of B/vB properties (B: BCF of >2000,


(see Appendix 2). Since BCF predictions derived from this model are based on a default<br />

lipid content of 10.7%, predictions were adjusted to 5% lipid content as recommended in<br />

REACH Guidance Chapter R.7c (ECHA, 2008a). Default values for particulate and<br />

dissolved organic carbon concentrations of 0.5 mg/l that are assumed in the BCFBAF<br />

model were also used as conservative defaults in these calculations. The marked<br />

influence that fish biotransformation exerts on the predicted BCFs derived from this<br />

model is evident (see second figure in each of the sections below). BAF predictions<br />

included in the BCFBAF model were judged to be inappropriate for hydrocarbons since<br />

metabolism in the gut (which effectively reduces the default dietary assimilation<br />

efficiency assumed in food chain model calculations) is ignored. The decision to exclude<br />

BAF model predictions in this analysis is supported by experimental dietary BMF data<br />

(see below) demonstrating the critical role of gut metabolism in limiting biomagnification<br />

of hydrocarbons via the diet.<br />

Experimental data<br />

Aqueous and dietary bioaccumulation data are reported in tables in each hydrocarbon<br />

class section. Dietary bioaccumulation tests (Anon, 2004) offer a number of practical<br />

advantages over traditional aqueous BCF tests, particularly for more hydrophobic test<br />

substances. These data may be used to calculate a biomagnification factor (BMF) which<br />

is defined as the concentration ratio of test substance in fish tissue at steady-state to that<br />

in the administered diet. If expressed on a lipid normalized basis, substances that exhibit<br />

a BMF significantly above one may undergo biomagnification while substances with a<br />

BMF well below one may exhibit trophic dilution in the food chain. Experimental<br />

elimination rate data derived from these studies can also be combined with allometric<br />

equations for estimating the uptake clearance (k 1 ) to estimate a BCF for the test substance<br />

(Parkerton et al. 2008):<br />

The BCF, normalized to 5% lipid content is calculated with the following equation:<br />

BCF<br />

C<br />

<br />

C<br />

fish<br />

water<br />

ku<br />

t<br />

<br />

0.693<br />

1<br />

2<br />

5<br />

x<br />

L<br />

fish<br />

where k u is the uptake rate constant (520·W -0.32 ) (Sijm et al. 1995), t 1/2 is the growthcorrected<br />

half-life, derived from the slope of the depuration plot and the fish growth rate<br />

during the dietary test, and L fish <br />

a correction for bioavailability which limits uptake for more hydrophobic substances. For<br />

such substances, complexation to low concentrations of organic carbon in dilution water<br />

is unavoidable. As a result, the ratio of chemical to oxygen gill transfer efficiencies<br />

declines as predicted by the following relationship (Gobas and Arnot 2003):<br />

1<br />

<br />

, X poc = 0, X doc = 2×10 -6<br />

(1 (0.35<br />

X K ) (0.08<br />

X K )<br />

poc<br />

OW<br />

doc<br />

OW<br />

29


where POC and DOC are the particulate and dissolved organic carbon concentrations<br />

(kg•L -1 ) in dilution water, respectively. For the BCF values presented in the subsequent<br />

tables, a DOC value of 2 mg/L and a POC of 0 mg/L are assumed which corresponds to<br />

the acceptable concentration of total organic carbon that is specified in the OECD 305<br />

bioconcentration test guideline. Since DOC has a lower affinity than POC, these<br />

assumptions are expected to provide a conservative basis for evaluating bioavailability of<br />

hydrocarbons in clean lab water relative to natural waters.<br />

4.1 Normal Paraffins<br />

Bioconcentration factor predictions for n-paraffins obtained using the regression method<br />

(Figure 21) are above the B criterion of 2000 for the C14 n-paraffin, tetradecane. When<br />

biotransformation is incorporated to the model, none of the predicted n-paraffin BCFs are<br />

above 2000 (Figure 22). Dietary BCF values, which are typically more conservative than<br />

aqueous BCF values, are above the criterion for C9, and C12-C14 (Table 11). In contrast,<br />

aqueous BCF test data in the same carbon range are all below the criterion (Figure 23).<br />

The elevated BCF prediction for tetradecane is confirmed by the BMF, which is near 1<br />

(Figure 24). It can be concluded that based on the available data, only a C13 and C14 n-<br />

paraffin have a BCF greater than 2000, and no n-paraffin has a BCF greater than 5000<br />

(vB criterion). Thus the C13 and C14 n-paraffins may fulfill the B criterion but not the<br />

vB criterion.<br />

10000<br />

BCF (regression)<br />

1000<br />

100<br />

10<br />

n-Paraffins<br />

B<br />

vB<br />

1<br />

0 5 10 15 20 25 30 35 40<br />

Carbon Number<br />

Figure 21. Predicted fish BCFs for n- paraffins using the regression-based approach in<br />

BCFBAF. B – 2000, vB - 5000<br />

30


10000<br />

BCF (Arnot)<br />

1000<br />

100<br />

10<br />

1<br />

n-Paraffins<br />

B<br />

vB<br />

0<br />

0 5 10 15 20 25 30 35 40<br />

Carbon Number<br />

Figure 22. Predicted fish BCFs for n-paraffins using Arnot’s equations incorporating<br />

metabolism (Arnot and Gobas 2003). B – 2000, vB - 5000<br />

Hydrocarbon C BMF<br />

BCF<br />

(Arnot)<br />

Dietary<br />

BCF<br />

Aqueous<br />

BCF<br />

Species<br />

Reference<br />

n-nonane 9 0.128 666 2531 RT EMBSI, 2001a<br />

n-dodecane 12 0.224 732 4408 RT EMBSI, 2001a<br />

12 0.041 732 773 RT EMBSI, 2005e<br />

732 400 FHM<br />

Tolls and v<br />

Dijk , 2002<br />

n-tridecane 13 0.27 640 3210 RT EMBSI, 2007a<br />

n-tetradecane 14 1.07 415 4231 RT EMBSI, 2006a<br />

n-pentadecane 15 203 20 C CITI, 1992<br />

n-hexadecane 16 0.485 90 756 RT EMBSI, 2001a<br />

90 46 C CITI, 1992<br />

n-hexadecane<br />

(deuterated)<br />

16 0.653 90 778 RT EMBSI, 2005a<br />

Table 11. Experimentally derived dietary and aqueous bioaccumulation data for n-<br />

paraffins. BCF (Arnot) is the predicted BCF using Arnot’s equations incorporating<br />

metabolism (Arnot and Gobas 2003). RT: rainbow trout; FHM: fathead minnow; C: carp.<br />

Bold blue entries represent BCF values between the B criterion (2000) and the vB<br />

criterion (5000).<br />

31


10000<br />

Experimental BCF<br />

1000<br />

100<br />

10<br />

nP Dietary BCF<br />

nP Aqueous BCF<br />

B<br />

vB<br />

1<br />

5 10 15 20 25 30<br />

Carbon Number<br />

Figure 23. Experimentally derived fish BCFs for n-paraffins. B – 2000, vB - 5000<br />

Experimental BMF<br />

10<br />

1<br />

0.1<br />

nP Dietary BMF<br />

BMF = 1<br />

0.01<br />

5 10 15 20<br />

Carbon Number<br />

Figure 24. Experimentally derived fish BMFs for n-paraffins from dietary<br />

bioaccumulation studies<br />

4.2 Iso-paraffins<br />

Regression method BCF predictions for iso-paraffins (Figure 25) are above the B<br />

criterion of 2000 for structures ranging from C11 to C16. Above these carbon chain<br />

lengths, BCF values decrease below 2000. When biotransformation is incorporated into<br />

the model, none of the iso-paraffin BCF predictions are above 2000 (Figure 26).<br />

Experimental BCF values for iso-paraffins range from 673 (aqueous) to 6004 (dietary).<br />

Dietary BCF values, which are typically more conservative than aqueous BCF values, are<br />

above the B criterion for selected C9, C11 and C12 structures. Aqueous BCF data for<br />

2,2,4,6,6-pentamethylheptane which is a highly branched, atypical structure indicates the<br />

B criterion maybe fulfilled (Figure 27). For all tested C13, C15 and C16 structures<br />

dietary calculated BCFs exceed 2000 (Table 12). However, reliable aqueous BCF data<br />

for C15 and C16 structures indicate these compounds do not fulfill the B criterion but do<br />

32


exhibit BMFs near unity (Figure 28). It can be concluded that based on the available<br />

data, C12-C16 iso-paraffins may be bioaccumulative (B), but not very bioaccumulative<br />

(vB).<br />

BCF (regression)<br />

100000<br />

10000<br />

1000<br />

100<br />

10<br />

i-Paraffins<br />

B<br />

vB<br />

1<br />

0 5 10 15 20 25 30 35<br />

Carbon Number<br />

Figure 25. Predicted fish BCFs for iso-paraffins using the regression-based approach in<br />

BCFBAF. B – 2000, vB - 5000<br />

10000<br />

BCF (Arnot)<br />

1000<br />

100<br />

10<br />

i-Paraffins<br />

B<br />

vB<br />

1<br />

0<br />

0 5 10 15 20 25 30 35<br />

Carbon Number<br />

Figure 26. Predicted fish BCFs for iso-paraffins using Arnot’s equations incorporating<br />

metabolism (Arnot and Gobas 2003). B – 2000, vB - 5000<br />

33


Hydrocarbon C BMF<br />

BCF<br />

(Arnot)<br />

Dietary<br />

BCF<br />

Aqueous<br />

BCF<br />

Species<br />

Reference<br />

2,2,4-<br />

CITI, 1992<br />

8 200 853 C<br />

trimethylpentane<br />

8 200 821 C CITI, 1992<br />

2,3-dimethylheptane 9 0.258 298 3726 RT<br />

EMBSI,<br />

2001a<br />

2,3-dimethylheptane 9 0.065 298 1957 RT<br />

EMBSI,<br />

2006a<br />

2,6-dimethyl octane 10 0.014 406 1735 RT<br />

EMBSI,<br />

2006a<br />

3-ethyl-nonane 11 0.036 602 2235 RT<br />

EMBSI,<br />

2004a<br />

3-methyl decane 11 0.02 602 1753 RT<br />

EMBSI,<br />

2006a<br />

2-methyl decane 11 0.036 602 663 RT<br />

EMBSI,<br />

2006a<br />

2,2,4,6,6-<br />

EMBSI,<br />

12 0.187 1012 5899 RT<br />

pentamethylheptane<br />

2001a<br />

12 1012 4518 RT<br />

EMBSI<br />

2004c<br />

12 1012 1467 FHM<br />

Tolls and v<br />

Dijk, 2002<br />

2,3 dimethyldecane 12 0.03 693 1049 RT<br />

EMBSI,<br />

2005d<br />

2,3 dimethyldecane 12 0.022 693 6004 RT<br />

EMBSI,<br />

2006a<br />

2,6-dimethyldecane 12 0.073 693 4380 RT<br />

EMBSI,<br />

2001a<br />

2,6-dimethyldecane 12 0.023 693 299 RT<br />

EMBSI,<br />

2005e<br />

2-methyl undecane 12 0.051 695 2983 RT<br />

EMBSI,<br />

2006a<br />

2,2,3-trimethyl<br />

EMBSI,<br />

13 0.094 844 2499 RT<br />

decane<br />

2004a<br />

2,2,3-trimethyl<br />

EMBSI,<br />

13 0.038 844 3623 RT<br />

decane<br />

2006a<br />

2,6-dimethyl<br />

EMBSI,<br />

13 0.094 656 3467 RT<br />

undecane<br />

2006a<br />

4-methyl dodecane 13 0.077 631 2921 RT<br />

EMBSI,<br />

2006a<br />

2,6,10-trimethyl<br />

EMBSI,<br />

15 1.27 251 2424 RT<br />

dodecane<br />

2004a<br />

2,6,10-trimethyl<br />

EMBSI,<br />

15 0.72 251 3345 RT<br />

dodecane<br />

2005b<br />

15 291 RT<br />

EMBSI<br />

2004b<br />

15 817 RT<br />

EMBSI,<br />

2005c<br />

34


2,2,4,4,6,8,8-<br />

heptamethyl nonane<br />

16 1.01 298 2620 RT<br />

16 298 673 RT<br />

EMBSI,<br />

2004a<br />

EMBSI,<br />

2005c<br />

Table 12. Experimentally derived dietary and aqueous bioaccumulation data for isoparaffins.<br />

BCF (Arnot) is the predicted BCF using Arnot’s equations incorporating<br />

metabolism (Arnot and Gobas 2003). RT: rainbow trout; FHM: fathead minnow; C: carp.<br />

Bold blue entries represent BCF values between the B criterion (2000) and the vB<br />

criterion (5000). Bold red entries represent BCF values above the vB criterion (5000).<br />

10000<br />

Experimental BCF<br />

1000<br />

100<br />

10<br />

iP Dietary BCF<br />

iP Aqueous BCF<br />

B<br />

vB<br />

1<br />

5 10 15 20<br />

Carbon Number<br />

Figure 27. Experimentally derived fish BCFs for iso-paraffins. B – 2000, vB - 5000<br />

10<br />

iP Dietary BMF<br />

BMF = 1<br />

Experimental BMF<br />

1<br />

0.1<br />

0.01<br />

5 10 15 20<br />

Carbon Number<br />

Figure 28. Experimentally derived fish BMFs for iso-paraffins from dietary<br />

bioaccumulation studies<br />

35


4.3 Mono-Naphthenic hydrocarbons<br />

The regression-based BCF predictions for mono-naphthenic hydrocarbons (Figure 29) are<br />

above the B criterion of 2000 for structures ranging from C11 to C18. Above these<br />

carbon chain lengths, BCF values decrease below 2000. When biotransformation is<br />

incorporated into the model, only one C12 BCF prediction is above 2000 (Figure 30).<br />

Experimental BCF values for mono-naphthenic hydrocarbons range from 77 (aqueous) to<br />

4614 (dietary). Dietary BCF values are above the B criterion for many of the tested<br />

structures, which range from C9 to C14 (Table 13). Aqueous BCF data are limited but<br />

data for a C8 structure indicates the B criterion is fulfilled (Figure 31). Experimental<br />

BMF factors, derived from the dietary data (Figure 32), are always below 1 suggesting<br />

that calculated dietary BCFs may overstate bioaccumulation potential at least for some<br />

structures. It can be concluded that based on the available data, mono-naphthenic<br />

hydrocarbons below C8 are not bioaccumulative, and that some C8-C14 mononaphthenic<br />

hydrocarbons may meet the bioaccumulative criterion (above 2000), but do<br />

not exceed 5000, therefore are not very bioaccumulative (vB).<br />

BCF (regression)<br />

100000<br />

10000<br />

1000<br />

100<br />

10<br />

Mononaphthenics<br />

B<br />

vB<br />

1<br />

0 5 10 15 20 25 30 35<br />

Carbon Number<br />

Figure 29. Predicted fish BCFs for mono-naphthenic hydrocarbons using the regressionbased<br />

approach in BCFBAF. B – 2000, vB - 5000<br />

10000<br />

BCF (Arnot)<br />

1000<br />

100<br />

10<br />

1<br />

Mononaphthenics<br />

B<br />

vB<br />

0<br />

0 5 10 15 20 25 30 35<br />

Carbon Number<br />

Figure 30. Predicted fish BCFs for mono-naphthenic hydrocarbons using Arnot’s<br />

equations incorporating metabolism (Arnot and Gobas 2003). B – 2000, vB - 5000<br />

36


Hydrocarbon C BMF<br />

BCF<br />

(Arnot)<br />

Dietary<br />

BCF<br />

Aqueous<br />

BCF<br />

Species<br />

Reference<br />

cyclohexane 6 71 77 C CITI, 1992<br />

1-methylcyclohexane 7 106 240 C CITI, 1992<br />

ethylcyclohexane 8 342 2529 C CITI, 1992<br />

1,3,5-trimethyl<br />

cyclohexane<br />

9 0.35 456 3882 RT EMBSI, 2001a<br />

cis-1,1,3,5 tetramethyl<br />

cyclohexane<br />

10 0.543 620 4614 RT EMBSI, 2003<br />

iso-butyl cyclohexane 10 0.223 484 2028 RT EMBSI, 2003<br />

1-isobutyl-2,5-dimethyl<br />

cyclohexane<br />

11 0.332 1363 2423 RT EMBSI, 2004a<br />

1,4-diisopropyl<br />

cyclohexane<br />

12 0.332 1047 3315 RT EMBSI, 2004a<br />

n-hexylcyclohexane 12 0.042 891 1917 RT EMBSI, 2004a<br />

3-methyl-1-hexyl<br />

cyclohexane<br />

13 0.066 1152 3428 RT EMBSI, 2006a<br />

n-heptylcyclohexane 13 0.02 858 591 RT EMBSI, 2005e<br />

cyclohexane, 1,1'-(1,2-<br />

ethanediyl)bis-<br />

14 0.05 858 410 RT EMBSI, 2005d<br />

n-octylcyclohexane 14 0.06 607 2536 RT EMBSI, 2006a<br />

Table 13. Experimentally derived dietary and aqueous bioaccumulation data for mononaphthenic<br />

hydrocarbons. BCF (Arnot) is the predicted BCF using Arnot’s equations<br />

incorporating metabolism (Arnot and Gobas 2003). RT: rainbow trout; C: carp. Bold blue<br />

entries represent BCF values between the B criterion (2000) and the vB criterion (5000).<br />

10000<br />

Experimental BCF<br />

1000<br />

100<br />

10<br />

1<br />

MN Dietary BCF<br />

MN Aqueous BCF<br />

B<br />

vB<br />

5 10 15<br />

Carbon Number<br />

37


Figure 31. Experimentally derived fish BCFs for mono-naphthenic hydrocarbons. B –<br />

2000, vB - 5000<br />

10<br />

MN Dietary BMF<br />

BMF = 1<br />

Experimental BMF<br />

1<br />

0.1<br />

0.01<br />

5 10 15<br />

Carbon Number<br />

Figure 32. Experimentally derived fish BMFs for mono-naphthenic hydrocarbons from<br />

dietary bioaccumulation studies<br />

4.4 Di-Naphthenic hydrocarbons<br />

Regression-based BCF predictions for di-naphthenic hydrocarbons (Figure 33) are above<br />

the B criterion of 2000 for structures ranging from C14 to C20. When biotransformation<br />

is incorporated to the model, BCF predictions for structures with carbon numbers ranging<br />

from C13 to C18 are above 2000 (Figure 34). Dietary BCF values are above the B<br />

criterion for many of the tested structures, which range from C9 to C16 (Table 14). One<br />

of the structures, trans-decalin, has a calculated dietary BCF value of more than 5000 but<br />

several aqueous BCF values for cis-decalin clearly show the true BCF is below 5000.<br />

Experimental BMF factors, derived from the dietary data (Figure 36), are always below 1<br />

indicating these substances are not expected to biomagnify. It can be concluded that<br />

based on the available data, some C10 to C18 di-naphthenic hydrocarbons likely meet the<br />

bioaccumulative (B), but not very bioaccumulative (vB) criterion.<br />

38


BCF (regression)<br />

100000<br />

10000<br />

1000<br />

100<br />

10<br />

Dinaphthenics<br />

B<br />

vB<br />

1<br />

0 5 10 15 20 25 30 35 40<br />

Carbon number<br />

Figure 33. Predicted fish BCFs for di-naphthenic hydrocarbons using the regressionbased<br />

approach in BCFBAF. B – 2000, vB - 5000<br />

10000<br />

BCF (Arnot)<br />

1000<br />

100<br />

10<br />

Dinaphthenics<br />

B<br />

vB<br />

1<br />

0<br />

0 5 10 15 20 25 30 35 40<br />

Carbon number<br />

Figure 34. Predicted fish BCFs for di-naphthenic hydrocarbons using Arnot’s equations<br />

incorporating metabolism (Arnot and Gobas 2003). B – 2000, vB - 5000<br />

Hydrocarbon C BMF<br />

BCF<br />

Arnot<br />

Dietary<br />

BCF<br />

Aqueous<br />

BCF<br />

Species<br />

Reference<br />

bicyclo[4.3.0]<br />

nonane<br />

9 0.079 194 838 RT EMBSI, 2003<br />

trans-decalin 10 0.856 486 5846 RT EMBSI, 2001a<br />

10 486 1962 C CITI, 1992<br />

10 486 2250 C CITI, 1992<br />

cis-decalin 10 486 2573 C CITI, 1992<br />

10 486 2323 C CITI, 1992<br />

39


2-isopropyl<br />

decalin<br />

13 0.02 2694 3893 RT EMBSI, 2006a<br />

13 0.056 2694 1606 RT EMBSI, 2007b<br />

0.02 2694 2877 C EMBSI, 2007c<br />

bicyclohexyl 12 0.17 1031 1324 EMBSI, 2005d<br />

2,7-diisopropyl<br />

decalin<br />

16 0.1 2915 4543 EMBSI, 2008a<br />

Table 14. Experimentally derived dietary and aqueous bioaccumulation data for dinaphthenic<br />

hydrocarbons. BCF (Arnot) is the predicted BCF using Arnot’s equations<br />

incorporating metabolism (Arnot and Gobas 2003). RT: rainbow trout; C: carp. Bold<br />

blue entries represent BCF values between the B criterion (2000) and the vB criterion<br />

(5000). Bold red entries represent BCF values above the vB criterion (5000).<br />

10000<br />

Experimental BCF<br />

1000<br />

100<br />

5 10 15 20<br />

Carbon Number<br />

Dinaphthenic Dietary BCF<br />

Dinapthenic Aqueous BCF<br />

B<br />

vB<br />

Figure 35. Experimentally derived fish BCFs for di-naphthenic hydrocarbons. B – 2000,<br />

vB - 5000<br />

Experimental BMF<br />

10<br />

1<br />

0.1<br />

Dinaphthenic Dietary BMF<br />

BMF = 1<br />

0.01<br />

5 10 15 20<br />

Carbon Number<br />

Figure 36. Experimentally derived fish BMFs for di-naphthenic hydrocarbons from<br />

dietary bioaccumulation studies<br />

40


4.5 Polynaphthenic hydrocarbons<br />

Regression method-based BCF predictions for polynaphthenic hydrocarbons (Figure 37)<br />

are above the B criterion of 2000 for C15 to C27 structures. When biotransformation is<br />

incorporated to the model, BCF predictions for structures ranging from C14 to C22 are<br />

above 2000 (Figure 38). Dietary BCF values, which are typically more conservative than<br />

aqueous BCF values, are above the vB criterion for some of the tested structures, which<br />

range from C16 to C18 (Table 15). While hexadecahydropyrene exhibited the highest<br />

calculated dietary BCF, the aquatic BCF value for this compound is below 5000. Since<br />

this compound is considered the worst case representative structure for this HCB, it can<br />

be concluded polynaphthenic hydrocarbons do not have BCFs exceeding 5000.<br />

Experimental BMF factors derived from dietary data (Figure 40) provide further support<br />

since BMFs are at or below 1. It can be concluded that based on the available data, some<br />

C14 to C22 polynaphthenic hydrocarbons may be bioaccumulative (B), but not very<br />

bioaccumulative (vB).<br />

100000<br />

BCF (regression)<br />

10000<br />

1000<br />

100<br />

10<br />

Polynaphthenics<br />

B<br />

vB<br />

1<br />

5 10 15 20 25 30 35<br />

Carbon Number<br />

Figure 37. Predicted fish BCFs for polynaphthenic hydrocarbons using the regressionbased<br />

approach in BCFBAF. B – 2000, vB - 5000<br />

10000<br />

1000<br />

BCF (Arnot)<br />

100<br />

10<br />

1<br />

Polynaphthenics<br />

B<br />

vB<br />

0<br />

5 10 15 20 25 30 35<br />

Carbon Number<br />

Figure 38. Predicted fish BCFs for polynaphthenic hydrocarbons using Arnot’s equations<br />

incorporating metabolism (Arnot and Gobas 2003). B – 2000, vB - 5000<br />

41


Hydrocarbon C BMF<br />

BCF<br />

Arnot<br />

Dietary<br />

BCF<br />

Aqueous<br />

BCF<br />

Species<br />

hexadecahydropyrene 16 1.02 4084 19451 4955 RT<br />

isopropyl<br />

hydrophenanthrene<br />

1-methyl-7-<br />

(isopropyl)-<br />

hydrophenanthrene<br />

17 0.448 3563 11595 RT<br />

18 0.35 2872 7607 RT<br />

perhydrochrysene 18 0.376 4871 9691 RT<br />

1,1':3', 1"-<br />

tercyclohexane<br />

hydrogenated<br />

terphenyl<br />

18 0.44 95 282 RT<br />

Reference<br />

EMBSI,<br />

2008a, 2009b<br />

EMBSI,<br />

2006b<br />

EMBSI,<br />

2008a<br />

EMBSI,<br />

2008b<br />

EMBSI,<br />

2008c<br />

18 4650 C CITI, 1992<br />

Table 15. Experimentally derived dietary and aqueous bioaccumulation data for polynaphthenic<br />

hydrocarbons. BCF (Arnot) is the predicted BCF using Arnot’s equations<br />

incorporating metabolism (Arnot and Gobas 2003). RT: rainbow trout; C: carp. Bold<br />

blue entries represent BCF values between the B criterion (2000) and the vB criterion<br />

(5000). Bold red entries represent BCF values above the vB criterion (5000).<br />

Experimental BCF<br />

100000<br />

10000<br />

1000<br />

Polynaphth. Dietary BCF<br />

Polynaphth. Aqueous BCF<br />

B<br />

vB<br />

100<br />

15 16 17 18 19 20<br />

Carbon Number<br />

Figure 39. Experimentally derived fish BCFs for polynaphthenic hydrocarbons. B – 2000,<br />

vB - 5000<br />

42


Experimental BMF<br />

10<br />

1<br />

Polynaphth. Dietary BMF<br />

BMF = 1<br />

0.1<br />

15 16 17 18 19 20<br />

Carbon Number<br />

Figure 40. Experimentally derived fish BMFs for polynaphthenic hydrocarbons from<br />

dietary bioaccumulation studies<br />

4.6 Mono-Aromatics<br />

Regression method BCF predictions for mono-aromatics (Figure 41) are above the B<br />

criterion of 2000 for structures ranging from C12 to C17. When biotransformation is<br />

incorporated to the model, none of the BCF predictions are above 2000 (Figure 42).<br />

Dietary BCF values, which are typically more conservative than aqueous BCF values, are<br />

below the B criterion for all tested structures (C9 to C16) except 1,3,5-tris(1-<br />

methylethyl)-benzene (triisopropyl benzene, Table 16). However, this compound is not<br />

representative of petroleum hydrocarbon structures and is therefore not used for B<br />

assessment of this HCB. Aqueous BCFs for all other monoaromatics are below 2000.<br />

Experimental BMF factors derived from dietary data (Figure 44) are consistently well<br />

below 1. It can be concluded that based on the available data, mono-aromatic<br />

hydrocarbons, as a class, are neither bioaccumulative nor very bioaccumulative.<br />

BCF (regression)<br />

100000<br />

10000<br />

1000<br />

100<br />

10<br />

Monoaromatics<br />

B<br />

vB<br />

1<br />

5 10 15 20 25 30 35<br />

Carbon Number<br />

Figure 41. Predicted fish BCFs for mono-aromatic hydrocarbons using the regressionbased<br />

approach in BCFBAF. B – 2000, vB - 5000<br />

43


10000<br />

BCF (Arnot)<br />

1000<br />

100<br />

10<br />

1<br />

Monoaromatics<br />

B<br />

vB<br />

0<br />

5 10 15 20 25 30 35<br />

Carbon Number<br />

Figure 42. Predicted fish BCFs for mono-aromatic hydrocarbons using Arnot’s equations<br />

incorporating metabolism (Arnot and Gobas, 2003). B – 2000, vB - 5000<br />

Hydrocarbon C nr BMF<br />

1,3,5-<br />

trimethylbenzene<br />

BCF<br />

Arnot<br />

Dietary<br />

BCF<br />

Aqueous<br />

BCF<br />

Species<br />

9 0.025 95 1209 RT<br />

Reference<br />

EMBSI,<br />

2001a<br />

9 95 338 C CITI, 1992<br />

9 95 343 C CITI, 1992<br />

alpha-methylstyrene 9 8 78 C CITI, 1992<br />

9 82 63 C CITI, 1992<br />

1,2,4-<br />

trimethylbenzene<br />

9 91 154 C CITI, 1992<br />

9 91 119 C CITI, 1992<br />

1,2,3-<br />

trimethylbenzene<br />

9 95 125 C CITI, 1992<br />

9 95 141 C CITI, 1992<br />

1,2,3,4-tetramethyl<br />

benzene<br />

10 0.051 103 717 RT EMBSI, 2003<br />

m-cymene 10 392 531 C CITI, 1992<br />

10 392 572 C CITI, 1992<br />

m-diethylbenzene 10 340 556 C CITI, 1992<br />

p-diethylbenzene 10 343 478 C CITI, 1992<br />

tert-pentylbenzene 11 244 624 C CITI, 1992<br />

1-tert- butyl-4-methyl<br />

benzene<br />

11 0.096 1044 760 RT EMBSI, 2003<br />

m-<br />

diisopropylbenzene<br />

12 628 1349 C CITI, 1992<br />

p-diisopropylbenzene 12 628 1607 C CITI, 1992<br />

diisopropylbenzene<br />

(2531-09-9)<br />

12 628 1519 C CITI, 1992<br />

1,1,1-trimethyl butyl 13 0.055 351 556 RT EMBSI,<br />

44


enzene<br />

n-octylbenzene 14 0.034 403 414 RT<br />

14 0.011 403 694 C<br />

decylbenzene 16 0.18 191 596 RT<br />

2007a<br />

EMBSI,<br />

2007b<br />

EMBSI,<br />

2007c<br />

EMBSI,<br />

2005d<br />

Table 16. Experimentally derived dietary and aqueous bioaccumulation data for<br />

monoaromatic hydrocarbons. BCF (Arnot) is the predicted BCF using Arnot’s equations<br />

incorporating metabolism (Arnot and Gobas 2003). RT: rainbow trout; C: carp<br />

10000<br />

Experimental BCF<br />

1000<br />

100<br />

5 10 15 20 25<br />

Carbon Number<br />

Monoar. Dietary BCF<br />

Monoar. Aqueous BCF<br />

B<br />

vB<br />

Figure 43. Experimentally derived fish BCFs for mono-aromatics for mono-aromatic<br />

hydrocarbons. B – 2000, vB - 5000<br />

Experimental BMF<br />

10<br />

1<br />

0.1<br />

Monoar. Dietary BMF<br />

BMF = 1<br />

0.01<br />

5 10 15 20<br />

Carbon Number<br />

Figure 44. Experimentally derived fish BMFs for mono-aromatic hydrocarbons from<br />

dietary bioaccumulation studies<br />

45


4.7 Naphthenic Mono-Aromatics<br />

Regression method-based BCF predictions for naphthenic mono-aromatics (Figure 45)<br />

are above the B criterion of 2000 for structures ranging from C13 to C24. When<br />

biotransformation is incorporated to the model, BCF predictions are above 2000 for a few<br />

C14 and C17 structures (Figure 46). Some aqueous and dietary BCFs are above 2000 in<br />

the C13-C18 range, although none of these values exceed 5000 (Table 17). Experimental<br />

BMFs derived from dietary data are all below one, with the exception of one compound<br />

(3-phenyl bicyclohexyl), which has a BMF near unity but a dietary calculated BCF of<br />

only 300. It can be concluded that based on the available data, some naphthenic monoaromatic<br />

hydrocarbons in the C13 to C18 range may be bioaccumulative, but are not very<br />

bioaccumulative.<br />

100000<br />

10000<br />

BCF (regression)<br />

1000<br />

100<br />

10<br />

NMAr<br />

B<br />

vB<br />

1<br />

5 10 15 20 25 30 35<br />

Carbon Number<br />

Figure 45. Predicted fish BCFs for naphthenic mono-aromatic hydrocarbons using the<br />

regression-based approach in BCFBAF. NMAr: naphthenic monoaromatic. B – 2000, vB<br />

- 5000<br />

46


10000<br />

1000<br />

BCF (Arnot)<br />

100<br />

10<br />

1<br />

NMAr<br />

B<br />

vB<br />

0<br />

5 10 15 20 25 30 35<br />

Carbon Number<br />

Figure 46. Predicted fish BCFs for naphthenic mono-aromatic hydrocarbons using<br />

Arnot’s equations incorporating metabolism (Arnot and Gobas 2003). NMAr: naphthenic<br />

monoaromatic. B – 2000, vB - 5000<br />

Hydrocarbon C BMF<br />

BCF<br />

Arnot<br />

Dietary<br />

BCF<br />

Aqueous<br />

BCF<br />

tetralin 10 103 230 C<br />

1,2,3,4-tetrahydro-1,4-<br />

dimethyl naphthalene<br />

12 0.158 800 1364 RT<br />

1,1,6-trimethyl tetralin 13 0.328 1119 2381 RT<br />

1,2,3,4,5,6,7,8-<br />

octahydrophenanthrene<br />

2,2,5,7-<br />

tetramethyltetralin<br />

1,1,3,3,5-<br />

pentamethylindan<br />

14 0.128 239 3063 3418 RT<br />

14 0.05 574 1171 RT<br />

15 0.146 640 2347 RT<br />

2-hexyl tetralin 16 0.013 605 939 RT<br />

dehydroabietine 17 0.053 1061 4097 RT<br />

3-phenyl bicyclohexyl 18 1.09 252 300 RT<br />

m-<br />

dicyclohexylbenzene<br />

18 0.07 265 607 1406 RT<br />

dodecahydrochrysene 18 0.17 82 1773 4588 RT<br />

Species Reference<br />

CITI,<br />

1992<br />

EMBSI,<br />

2003<br />

EMBSI,<br />

2004a<br />

EMBSI,<br />

2005e,<br />

2009b<br />

EMBSI,<br />

2006b<br />

EMBSI,<br />

2006b<br />

EMBSI,<br />

2006a<br />

EMBSI,<br />

2006b<br />

EMBSI,<br />

2005d<br />

EMBSI,<br />

2008c<br />

EMBSI,<br />

2008c<br />

Table 17. Experimentally derived dietary and aqueous bioaccumulation data for<br />

naphthenic monoaromatic hydrocarbons. BCF (Arnot) is the predicted BCF using Arnot’s<br />

equations incorporating metabolism (Arnot and Gobas 2003). RT: rainbow trout; C:<br />

47


carp. Bold blue entries represent BCF values between the B criterion (2000) and the vB<br />

criterion (5000).<br />

10000<br />

NMAr Dietary BCF<br />

NMAr Aqueous BCF<br />

B<br />

vB<br />

Experimental BCF<br />

1000<br />

100<br />

5 10 15 20 25<br />

Carbon Number<br />

Figure 47. Experimentally derived fish BCFs for naphthenic mono-aromatic<br />

hydrocarbons. NMAr: naphthenic monoaromatic. B – 2000, vB - 5000<br />

Experimental BMF<br />

10<br />

1<br />

0.1<br />

NMAr Dietary BMF<br />

BMF = 1<br />

0.01<br />

5 10 15 20<br />

Carbon Number<br />

Figure 48. Experimentally derived fish BMFs for naphthenic mono-aromatic<br />

hydrocarbons from dietary bioaccumulation studies. NMAr: naphthenic monoaromatic<br />

4.8 Di-Aromatics<br />

Regression method-based BCF predictions for di-aromatics (Figure 49) are above the B<br />

criterion of 2000 for structures ranging from C15 to C22. When biotransformation is<br />

incorporated to the model, BCF predictions are above 2000 for a few structures ranging<br />

from C15 to C18 (Figure 50). Only a few aqueous and dietary BCFs in the large dataset<br />

available for di-aromatics are above 2000, mainly for structures above C15 (Table 17). A<br />

reported aqueous BCF of 12298 for 2-isopropylnaphthalene reported by Jonsson et al.<br />

(2004) is contradictory to two high quality values (1620, 600) reported by CITI (1992)<br />

48


and appears to be an outlier. This value is not consistent with 11 other BCF values for<br />

C11-C16 methylated naphthalenes, all of which indicate that these structures are not<br />

bioaccumulative.<br />

There is some indication that selected C16 and C18 di-aromatic structures may be<br />

bioaccumulative. However, the compounds that trigger the B criterion have structural<br />

features (di-isopropyl branching, ethanediyl and bibenzyl moities) that are not typical of<br />

petroleum hydrocarbons. If data for only representative structures are considered,<br />

available data show di-aromatics exhibit a low bioaccumulation potential. This<br />

conclusion is further supported by the fact that experimental BMF values (Figure 51) for<br />

these structures are at or well below 0.1 (Figure 52). It can be concluded that based on<br />

the available data, di-aromatic hydrocarbons, as a class, are neither bioaccumulative nor<br />

very bioaccumulative.<br />

100000<br />

10000<br />

BCF (regression)<br />

1000<br />

100<br />

10<br />

DiAr<br />

B<br />

vB<br />

1<br />

5 10 15 20 25 30 35<br />

Carbon Number<br />

Figure 49. Predicted fish BCFs for di-aromatic hydrocarbons (DiAr) using the regressionbased<br />

approach in BCFBAF. B – 2000, vB - 5000<br />

49


10000<br />

1000<br />

BCF (Arnot)<br />

100<br />

10<br />

1<br />

DiAr<br />

B<br />

vB<br />

0<br />

5 10 15 20 25 30 35<br />

Carbon Number<br />

Figure 50. Predicted fish BCFs for di-aromatic hydrocarbons (DiAr) using Arnot’s<br />

equations incorporating metabolism (Arnot and Gobas 2003). B – 2000, vB - 5000<br />

Hydrocarbon C BMF<br />

BCF<br />

Arnot<br />

Dietary<br />

BCF<br />

Aqueous<br />

BCF<br />

Species<br />

Reference<br />

naphthalene 10 0.005 229 814 RT<br />

EMBSI,<br />

2005a<br />

10 229 95 C CITI, 1992<br />

10 229 91 C CITI, 1992<br />

2-methylnaphthalene 11 389 1871 SHM<br />

Jonsson et<br />

al, 2004<br />

2-methylnaphthalene 11 0.01 389 651 RT<br />

EMBSI,<br />

2005a<br />

methylnaphthalenes 11 0.063 398 857 RT<br />

EMBSI,<br />

2001b<br />

1,3-dimethylnaphthalene 12 378 2051 SHM<br />

Jonsson et<br />

al, 2004<br />

2,3-dimethylnaphthalene 12 0.012 378 973 RT<br />

EMBSI,<br />

2005a<br />

di-me & et naphthalenes 12 0.108 863 1425 RT<br />

EMBSI,<br />

2001b<br />

tri-me naphthalenes 13 0.092 2011 1702 RT<br />

EMBSI,<br />

2001b<br />

2-isopropylnapthalene 13 740 12298 SHM<br />

Jonsson et<br />

al, 2004<br />

isopropylnaphthalene 13 740 1620 C CITI, 1992<br />

13 740 600 C CITI, 1992<br />

diphenylmethane 13 95 904 C CITI, 1992<br />

4-ethyl-1,1'-biphenyl 14 0.031 863 216 RT<br />

EMBSI,<br />

2008b<br />

14 0.005 863 628 C<br />

EMBSI,<br />

2008c<br />

50


4-ethylbiphenyl 14 863 1039 C<br />

Yakata et<br />

al, 2006<br />

1,4-dimethyl-2-(1-<br />

Yakata et<br />

16 400 1106 C<br />

phenylethyl) benzene<br />

al, 2006<br />

3,3',4,4'-tetramethyl 1,1'-<br />

EMBSI,<br />

16 0.009 2068 536 RT<br />

biphenyl<br />

2005e<br />

2,7-diisopropyl<br />

EMBSI,<br />

16 0.043 1570 229 RT<br />

naphthalene<br />

2008b<br />

2,7-<br />

EMBSI,<br />

16 0.03 1570 2422 C<br />

diisopropylnaphthalene<br />

2008c<br />

benzyl-p-xylene 16 426 1869 C CITI, 1992<br />

426 1407 C CITI, 1992<br />

6-n-butyl-2,3-<br />

EMBSI,<br />

16 0.013 386 1695 RT<br />

dimethylnaphthalene<br />

2006b<br />

4-pentyl-1,1'-Biphenyl 17 0.067 746 526 RT<br />

EMBSI,<br />

2005d<br />

benzene, 1,1'-(1,1,2,2-<br />

tetramethyl-1,2-<br />

ethanediyl)bis-<br />

3,3',5,5'- tetramethyl<br />

bibenzyl<br />

2,3-dimethy-<br />

5(4methylpentyl)<br />

naphthalene<br />

2,3-dimethy-<br />

5(4methylpentyl)<br />

naphthalene<br />

18 0.167 440 3097 RT<br />

18 0.42 440 3501 RT<br />

18 0.04 229 229 RT<br />

18 0.046 389 191 RT<br />

EMBSI,<br />

2005e<br />

EMBSI,<br />

2005e<br />

EMBSI,<br />

2005d<br />

EMBSI,<br />

2006b<br />

Table 18. Experimentally derived dietary and aqueous bioaccumulation data for diaromatic<br />

hydrocarbons. BCF (Arnot) is the predicted BCF using Arnot’s equations<br />

incorporating metabolism (Arnot and Gobas 2003). RT: rainbow trout; C: carp; SHM:<br />

sheepshead minnow. Bold blue entries represent BCF values between the B criterion<br />

(2000) and the vB criterion (5000). Bold red entries represent BCF values above the vB<br />

criterion (5000).<br />

51


Experimental BCF<br />

100000<br />

10000<br />

1000<br />

DAH Dietary BCF<br />

DAH Aqueous BCF<br />

B<br />

vB<br />

100<br />

5 10 15 20 25<br />

Carbon Number<br />

Figure 51. Experimentally derived fish BCFs for di-aromatic hydrocarbons (DiAr) . B –<br />

2000, vB - 5000<br />

Experimental BMF<br />

10<br />

1<br />

0.1<br />

0.01<br />

DAH Dietary BMF<br />

BMF = 1<br />

0.001<br />

5 10 15 20<br />

Carbon Number<br />

Figure 52. Experimentally derived fish BMFs for di-aromatic hydrocarbons (DiAr) from<br />

dietary bioaccumulation studies<br />

4.9 Naphthenic Di-Aromatics<br />

Regression method-based BCF predictions for naphthenic di-aromatic hydrocarbons<br />

(Figure 53) are above the B criterion of 2000 for structures ranging from C15 to C23.<br />

When biotransformation is incorporated to the model, none of the BCF predictions are<br />

above 2000 (Figure 54). In support of model predictions, no aqueous or dietary BCF that<br />

is available for naphthenic di-aromatics structures is above 2000. Furthermore, all<br />

experimental BMF values (Figure 55) are below 0.1. It can be concluded that based on<br />

the available data, naphthenic di-aromatic hydrocarbons, as a class, are not<br />

bioaccumulative or very bioaccumulative.<br />

52


100000<br />

BCF (regression)<br />

10000<br />

1000<br />

100<br />

10<br />

NDiAr<br />

B<br />

vB<br />

1<br />

10 15 20 25 30 35<br />

Carbon Number<br />

Figure 53. Predicted fish BCFs for naphthenic di-aromatic hydrocarbons (NDiAr) using<br />

the regression-based approach in BCFBAF. B – 2000, vB - 5000<br />

10000.0<br />

1000.0<br />

BCF (Arnot)<br />

100.0<br />

10.0<br />

1.0<br />

NDiAr<br />

B<br />

vB<br />

0.1<br />

10 15 20 25 30 35<br />

Carbon Number<br />

Figure 54. Predicted fish BCFs for naphthenic di-aromatic hydrocarbons (NDiAr) using<br />

Arnot’s equations incorporating metabolism (Arnot and Gobas 2003). B – 2000, vB -<br />

5000<br />

Hydrocarbon C BMF<br />

BCF<br />

Arnot<br />

Dietary<br />

BCF<br />

Aqueous<br />

BCF<br />

Species<br />

Reference<br />

acenaphthene 12 44 979 C CITI, 1992<br />

12 44 1003 C CITI, 1992<br />

1,2,3,10b-tetrahydro<br />

fluoranthene<br />

16 0.023 132 506 RT EMBSI, 2008a<br />

1,2,3,6,7,8- 16 0.056 176 1349 RT EMBSI, 2005e<br />

53


hexahydropyrene<br />

4,5,9,10-<br />

tetrahydropyrene<br />

cyclohexylbiphenyl<br />

(hexahydroterphenyl)<br />

16 0.025 12 368 RT EMBSI, 2008a<br />

18 0.06 82 426 1646 RT<br />

hexahydrochrysene 18 0.05 2353 346 653 RT<br />

octahydrochrysene 18 0.05 157 141 670 RT<br />

EMBSI,<br />

2008c, 2009b<br />

EMBSI,<br />

2008c, 2009b<br />

EMBSI,<br />

2008c, 2009b<br />

Table 19. Experimentally derived dietary and aqueous bioaccumulation data for<br />

naphthenic di-aromatic hydrocarbons. BCF (Arnot) is the predicted BCF using Arnot’s<br />

equations incorporating metabolism (Arnot and Gobas 2003). RT: rainbow trout; C: carp.<br />

10000<br />

Experimental BCF<br />

1000<br />

NDiAr Dietary BCF<br />

NDiAr Aqueous BCF<br />

B<br />

vB<br />

100<br />

5 10 15 20 25<br />

Carbon Number<br />

Figure 55. Experimentally derived fish BCFs for naphthenic di-aromatic hydrocarbons<br />

(NDiAr). B – 2000, vB - 5000<br />

54


10<br />

Experimental BMF<br />

1<br />

0.1<br />

NDiAr Dietary BMF<br />

BMF = 1<br />

0.01<br />

15 16 17 18 19 20<br />

Carbon Number<br />

Figure 56. Experimentally derived fish BMFs for naphthenic di-aromatic hydrocarbons<br />

(NDiAr) from dietary bioaccumulation studies<br />

4.10 Poly-Aromatics<br />

Regression method BCF predictions for poly-aromatic hydrocarbons structures (Figure<br />

57) are above the B criterion of 2000, ranging from C15 to C28. When biotransformation<br />

is incorporated to the model, BCF predictions are above 2000 for one C25 structure<br />

(Figure 58). There is a very large experimental BCF dataset available for poly-aromatic<br />

hydrocarbons (Table 20). With the exception of anthracene, phenanthrene and o-<br />

terphenyl model predictions and reliable BCF data indicate that these substances do not<br />

meet the B criteria. There are three terphenyl isomers (o-. m-, and p-terphenyl), two of<br />

which do not meet the B criterion. The third, o-terphenyl, meets the B criterion in two of<br />

three studies, including an aqueous BCF study. Anthracene has been determined to be a<br />

PBT substance by the ECB TC-NES PBT Working Group. At the time of the release of<br />

this assessment, o-Terphenyl has not been decided.<br />

A compilation of dietary and aqueous BCFs (Figure 59), laboratory BMFs (Figure 60)<br />

and field BSAFs (Figure 61)(USEPA, 2008) and TMFs (Table 21)(Wan et al. 2007; Nfon<br />

et al, 2008; Takeuchi et al. 2009) support the general conclusion that poly-aromatic<br />

hydrocarbons (PAH) do not meet the B or vB criteria. In fact, available data provide a<br />

compelling case that PAH are not biomagnified but rather, undergo trophic dilution in the<br />

field thereby limiting exposure via the foodchain. This is supported further by other<br />

studies that do not present TMF data, but show evidence of PAH metabolism (Broman et<br />

al. 1990; D’Adamo et al. 1997) Therefore, it can be concluded that based on the available<br />

data, only C14 poly-aromatic hydrocarbons (e.g. anthracene and phenanthrene) meet the<br />

B criterion.<br />

55


100000<br />

BCF (regression)<br />

10000<br />

1000<br />

100<br />

10<br />

PAr<br />

B<br />

vB<br />

1<br />

10 15 20 25 30 35<br />

Carbon Number<br />

Figure 57. Predicted fish BCFs for poly-aromatic hydrocarbons (PAr) using the<br />

regression-based approach in BCFBAF. B – 2000, vB - 5000<br />

10000<br />

BCF (Arnot)<br />

1000<br />

100<br />

10<br />

10 15 20 25 30 35<br />

Carbon Number<br />

PAr<br />

B<br />

vB<br />

Figure 58. Predicted fish BCFs for poly-aromatic hydrocarbons (PAr) using Arnot’s<br />

equations incorporating metabolism (Arnot and Gobas 2003). B – 2000, vB - 5000<br />

Hydrocarbon C BMF<br />

Arnot<br />

BCF<br />

Dietary<br />

BCF<br />

Aqueous<br />

BCF<br />

Species<br />

Reference<br />

acenaphthylene 12 0.005 269 67 RT<br />

Niimi and<br />

Dookhran 1989<br />

12 269 579 C Yakata, 2006<br />

12 269 596 C Yakata, 2006<br />

56


Hydrocarbon C BMF<br />

Arnot<br />

BCF<br />

Dietary<br />

BCF<br />

Aqueous<br />

BCF<br />

Species<br />

Reference<br />

12 269 507 C CITI, 1992<br />

12 269 488 C CITI, 1992<br />

fluorene 13 0.03 197 316 RT<br />

Niimi and<br />

Palazzo 1986<br />

13 197 672 C CITI, 1992<br />

13 197 780 C CITI, 1992<br />

13 197 1875 FHM<br />

Carlson et al.,<br />

1979<br />

13 197 1146 FHM<br />

Carlson et al.,<br />

1979<br />

anthracene* 14 0.004 362 811 RT EMBSI, 2005a<br />

14 0.027 362 217 RT EMBSI, 2008b<br />

14 0.009 362 351 C EMBSI, 2008c<br />

14 0.002 362 316 RT<br />

Niimi and<br />

Palazzo 1986<br />

14 362 1807 C CITI, 1992<br />

14 362 2240 C CITI, 1992<br />

14 362 2354 FHM<br />

Hall and Oris,<br />

1991<br />

14 362 3725 FHM<br />

Hall and Oris,<br />

1991<br />

phenanthrene 14 0.076 365 2208 RT EMBSI, 2001a<br />

14 0.01 365 407 RT<br />

Niimi and<br />

Palazzo 1986<br />

14 1194 SHM<br />

Jonsson et al.,<br />

2004<br />

14 417 SHM<br />

Jonsson et<br />

al.,2004<br />

14 2329 FHM<br />

Carlson et<br />

al.,1979<br />

14 3546 FHM<br />

Carlson et<br />

al.,1979<br />

14 2927 FHM<br />

Carlson et al.,<br />

1979<br />

9-methyl<br />

anthracene<br />

15 0.004 344 959 RT EMBSI, 2005a<br />

1-methyl<br />

phenanthrene<br />

15 0.019 345 2282 RT EMBSI, 2001a<br />

2-methyl anthracene 15 0.009 327 158 RT<br />

Niimi and<br />

Dookhran, 1989<br />

9-methyl anthracene 15 0.001 344 315 RT<br />

Niimi and<br />

Dookhran, 1989<br />

fluoranthene 16 0.032 451 213 435 RT<br />

EMBSI, 2007b,<br />

2009b<br />

16 0.046 451 967 RT EMBSI, 2008b<br />

57


Hydrocarbon C BMF<br />

Arnot<br />

BCF<br />

Dietary<br />

BCF<br />

Aqueous<br />

BCF<br />

Species<br />

Reference<br />

16 0.006 451 344 C EMBSI, 2007c<br />

16 0.002 451 271 RT<br />

Niimi and<br />

Palazzo, 1986<br />

16 451 2771 FHM<br />

Carlson et al.,<br />

1979<br />

pyrene 16 0.005 106 965 RT EMBSI, 2005a<br />

16 106 90 RT<br />

Niimi and<br />

Palazzo 1986<br />

16 106 75 SHM<br />

Jonsson et al.,<br />

2004<br />

16 106 50 SHM<br />

Jonsson et al.,<br />

2004<br />

16 106 892 FHM<br />

Carlson et al.,<br />

1979<br />

1-phenyl<br />

Niimi and<br />

16 0.26 1050 1976 RT<br />

naphthalene<br />

Dookhran, 1989<br />

1-methylpyrene 17 0.005 97 932 RT EMBSI, 2005a<br />

benzo(b)fluorene 17 0.041 153 199 RT EMBSI, 2007b<br />

17 0.024 153 815 RT EMBSI, 2008b<br />

17 0.01 153 129 C EMBSI, 2007c<br />

1-methyl-7-(1-<br />

methylethyl)- 18 0.028 414 275 RT EMBSI, 2008a<br />

phenanthrene<br />

m-terphenyl 18 0.05 1034 403 832 RT EMBSI, 2008c<br />

o-terphenyl* 18 0.2 1034 4197 RT EMBSI, 2007b<br />

18 0.035 1034 1405 C EMBSI, 2007c<br />

18 3316 C CITI, 1992<br />

p-terphenyl 18 64 C CITI, 1992<br />

Niimi and<br />

Dookhran, 1989<br />

18 0.026 440 260 RT EMBSI, 2007b<br />

18 0.018 440 403 C EMBSI, 2007c<br />

triphenylene 18 0.003 440 153 RT<br />

benzo[a]<br />

anthracene<br />

18 0.005 509 895 RT EMBSI, 2005a<br />

18 0.001 509 90 RT<br />

Niimi and<br />

Palazzo, 1986<br />

chrysene 18 0.016 520 2105 153 RT<br />

EMBSI, 2006b,<br />

2009b<br />

18 0.04 520 615 RT EMBSI, 2008c<br />

18 520 90 RT<br />

Niimi and<br />

Palazzo, 1986<br />

1-ethylpyrene 18 0.02 112 962 RT EMBSI, 2006b<br />

9-n<br />

butylphenanthrene<br />

2,3,6,7-tetramethyl<br />

anthracene<br />

18 0.014 559 1448 RT EMBSI, 2006b<br />

18 0.018 143 1650 RT EMBSI, 2006b<br />

58


Hydrocarbon C BMF<br />

Arnot<br />

BCF<br />

Dietary<br />

BCF<br />

Aqueous<br />

BCF<br />

Species<br />

Reference<br />

6-methylchrysene 19 0.04 357 667 RT EMBSI, 2008b<br />

7-methylbenz(a)<br />

anthracene<br />

19 0.011 357 276 RT EMBSI, 2007b<br />

19 0.005 357 356 C EMBSI, 2007c<br />

6-ethylchrysene 20 0.032 323 815 RT EMBSI, 2008b<br />

benzo(k)<br />

fluoranthene<br />

20 0.012 501 271 RT EMBSI, 2007b<br />

0.009 501 350 C EMBSI, 2007c<br />

benzo[a]pyrene 20 0.005 139 804 RT EMBSI, 2005a<br />

0.001 139 90 RT<br />

Niimi and<br />

Palazzo, 1986<br />

perylene 20 0.001 125 RT<br />

Niimi and<br />

Dookhran, 1989<br />

3-<br />

methylcholanthene<br />

21 0.03 46 270 RT EMBSI, 2008a<br />

dibenzo[a,h]<br />

anthracene<br />

22 0.007 385 943 RT EMBSI, 2005a<br />

benzo[b]chrysene 22 0.018 385 1280 RT EMBSI, 2006b<br />

benzo(ghi)<br />

perylene<br />

22 0.032 31 331 RT EMBSI, 2008a<br />

indeno-1,2,3-cd<br />

pyrene<br />

22 0.029 111 303 RT EMBSI, 2008a<br />

benzo(c)chrysene 22 0.05 263 141 RT EMBSI, 2008c<br />

1-octylpyrene 24 0.078 6 87 RT EMBSI, 2006b<br />

Table 20. Experimentally derived dietary and aqueous bioaccumulation data for<br />

polyaromatic hydrocarbons. BCF (Arnot) is the predicted BCF using Arnot’s equations<br />

incorporating metabolism (Arnot and Gobas 2003). RT: rainbow trout; C: carp. Bold blue<br />

entries represent BCF values between the B criterion (2000) and the vB criterion (5000).<br />

*-compounds are included, but not used to form conclusions; already deemed PBT, or not<br />

relevant.<br />

59


10000<br />

Experimental BCF<br />

1000<br />

100<br />

PAr Dietary BCF<br />

PAr Aqueous BCF<br />

B<br />

vB<br />

5 10 15 20 25<br />

Carbon Number<br />

Figure 59. Experimentally derived fish BCFs for poly-aromatic hydrocarbons (PAr)<br />

Experimental BMF<br />

10<br />

1<br />

0.1<br />

0.01<br />

PAr Dietary BMF<br />

BMF = 1<br />

0.001<br />

10 11 12 13 14 15 16 17 18 19 20<br />

Carbon Number<br />

Figure 60. Experimentally derived fish BMFs for poly-aromatic hydrocarbons (PAr) from<br />

dietary bioaccumulation studies<br />

60


Acenaphthene<br />

Acenaphthylene<br />

Benz(a)anthracene<br />

Benzo(a)pyrene<br />

Benzo(b)fluoranthene<br />

Benzo(k)fluoranthene<br />

Benzo(e)pyrene<br />

Benzo(ghi)perylene<br />

Chrysene<br />

Dibenz(ah)anthracene<br />

Fluoranthene<br />

Fluorene<br />

Indeno(123cd)pyrene<br />

Naphthalene<br />

Phenanthrene<br />

Pyrene<br />

1<br />

10 -5 10 -4 10 -3 10 -2 10 -1 10 0 10 1<br />

Fish Field BSAF<br />

Figure 61. Box plot of fish field biota-sediment accumulation factors (BSAFs) for several<br />

PAH. Box boundaries represent 25 th and 75 th percentile, the median is indicated by a line<br />

within each box, and whiskers denote the 10 th and 90 th percentiles of the data. Individual<br />

PAH data points ranged from n = 10 to n = 53. BSAFs for all of the compounds listed<br />

were extracted from a database compiled by the US Environmental Protection Agency<br />

(USEPA, 2008)<br />

Compound<br />

TMF (Wan<br />

et al. 2007)<br />

TMF<br />

(Nfon et al.<br />

2008)<br />

TMF<br />

(Takeuchi et<br />

al. 2009)<br />

acenaphthylene 0.45<br />

acenaphthene (1.02)<br />

benz[a]anthracene 0.2 0.75 (0.83)<br />

benzo[a]pyrene 0.24 (0.75) (0.80)<br />

benzo[e]pyrene 0.25 (0.86) (0.57)<br />

benzo[b]fluoranthene 0.60<br />

benzo[b+k]fluoranthene 0.27<br />

benzo[j+k]fluoranthene 0.69<br />

benzo[k]fluoranthene (0.84)<br />

benzo[ghi]perylene (0.66) (0.75) (0.72)<br />

chrysene 0.26 0.66 0.65<br />

fluoranthene 0.11 0.72 0.60<br />

fluorene (1.15)<br />

indeno-123-cd]pyrene (0.81) (0.75) (0.80)<br />

dibenz[ah]anthracene (0.85)<br />

perylene 0.24 (0.67) (0.77)<br />

phenanthrene (0.43) 0.82 0.75<br />

61


pyrene 0.17 0.74 0.62<br />

Table 21. Trophic magnification factors for PAH in the marine food webs of Bohai Bay,<br />

Baltic Sea and Tokyo Bay. Antilogs of the slopes of the regression equations for the<br />

lipid-based PAH concentrations versus 15 N were used to calculate TMFs.<br />

62


5.0 Summary of Persistence and Bioaccumulation Assessment<br />

The results of the persistence and bioaccumulation assessment described in section 3.0<br />

and 4.0 have been mapped to the HCB scheme presented in section 2.0 (Table 22).<br />

C# n-P i-P MN DiN PolyN MoAr NMAr DiAr NDiAr PolyAr<br />

5<br />

6<br />

7<br />

8 B<br />

9 B<br />

10 B B<br />

11 B B<br />

12 B B B<br />

13 B B B B B<br />

14 B B B B B P PB 1<br />

15 B B B P<br />

16 B PB PB B P<br />

17 PB PB B P<br />

18 PB PB B P P PB 2<br />

19 P P PB P P P P<br />

20 P P PB P P P P<br />

21 P P P PB P P P P<br />

22 P P P P PB P P P P P<br />

23 P P P P P P P P P P<br />

24 P P P P P P P P P P<br />

25 P P P P P P P P P P<br />

footnotes: 1 = anthracene; 2 = o-terphenyl<br />

Table 22. Summary of P and B properties of petroleum hydrocarbon blocks<br />

The results from this analysis indicate C16-C18 di-naphthenic hydrocarbons and C16-<br />

C22 poly-naphthenic hydrocarbons may fulfill the criteria for P and B. As a result, a<br />

toxicity assessment for these HCB was performed. While aromatic HCB do not meet the<br />

PB criteria, two unique aromatic hydrocarbons, anthracene and o-terphenyl, fulfill PB<br />

criteria based on available data. A previous review of the toxicity of anthracene<br />

performed by the ECB TC-NES PBT workgroup concluded this substance meets the T<br />

criterion based on consideration of chronic aquatic toxicity. A toxicity assessment for o-<br />

terphenyl is included in section 6.0.<br />

63


Hydrocarbon metabolites have been briefly assessed (Appendix 3) where there was<br />

potentially considered to be an issue with their PBT properties for certain HCB. This<br />

assessment indicates that metabolites are not P or B.<br />

6.0 Toxicity Assessment of HCBs meeting P and B criteria<br />

To determine if a substance fulfills the toxicity criterion an evaluation of both aquatic<br />

toxicity and specific hazard classifications is required based on the following triggers:<br />

The long-term no-observed effect concentration for marine of freshwater organisms is<br />

less than 10 g/L, or<br />

the substance is classified as carcinogenic, (R45, R49), mutagenic (R46) , or toxic to<br />

reproduction (R60, R61), or<br />

there is other evidence of chronic toxicity (R48)<br />

A compilation of reliable chronic aquatic toxicity data for aliphatic hydrocarbons is<br />

provided in Tables 23 and 24 for algae (P. subcapita) and daphnia (D. magna),<br />

respectively. A comparison of observed chronic toxicity to measured water solubility<br />

presented in these tables indicates that a chronic toxicity cut-off for algae occurs at a<br />

solubility limit of ca. 6 g/L while a cut-off for daphnia occurs above 10 g/L. The<br />

observation that algae are more sensitive to daphnia is consistent with lower estimated<br />

critical body burden derived using the target lipid model. Critical body burdens for algae<br />

and daphnia were reported to be 48 and 115 mmol/kg lipid, respectively (McGrath et al.<br />

2004).<br />

In the case of the C16 di-naphthenic structures, the water solubility is expected to be too<br />

low to pose a chronic toxicity concern. This is confirmed by measured slow-stir water<br />

solubility and chronic test data for 2,7-diisopropyldecalin which shows no chronic algal<br />

effects are observed at measured exposure concentrations exceeding the solubility limit<br />

(Table 23). Further, C17 and C18 di-naphthenic hydrocarbons will exhibit even lower<br />

water solubility and thus based on read across will also not fulfill the chronic aquatic<br />

toxicity criterion.<br />

In the case of the C16 poly-naphthenic structures, the water solubility is again expected<br />

to be too low to pose a chronic aquatic toxicity hazard. This is supported by measured<br />

slow-stir water solubility and target lipid model predictions for hexadecahydropyrene<br />

using the PETROTOX model (Redman, 2009). This structure serves as the worst case,<br />

most water soluble representative structure that occurs in this HCB. Predicted NOECs<br />

for algae, daphnia and trout are 5, 12 and 7 g/L, respectively. The measured water<br />

solubility of hexadecahydropyrene (4.7 g/L) falls just below the lowest toxicity value<br />

for algae. In addition, the measured solubility falls below the empirical chronic solubility<br />

cut-off for algae of ca. 6 g/L as previously discussed. Therefore, based on available<br />

data for hexadecahydropyrene and recognizing other C16 poly-naphthenic structures that<br />

fall into this HCB will exhibit lower aqueous solubilities, it may be concluded that C16<br />

poly-naphthenics are unlikely to meet the aquatic toxicity criterion. Testing could help to<br />

verify this conclusion. Given C17 to C22 poly-naphthenic hydrocarbons will exhibit even<br />

64


lower water solubility, it is possible to conclude, based on read across, that these HCBs<br />

will also not fulfill the chronic aquatic toxicity criterion.<br />

Slow-Stir<br />

Water<br />

Solubility<br />

Mean<br />

Measured<br />

Exposure<br />

Test Compound (g/L) (g/L)<br />

Algal<br />

Chronic<br />

Toxicity<br />

2,6,10-trimethyldodecane 0.3 23 No<br />

n-octylcyclohexane 1.4 9 No<br />

2,7 di-isopropyl decalin 1.8 5 No<br />

2,6- dimethylundecane 2.7 16 No<br />

hexadecahydropyrene 4.7 not tested<br />

n-heptylcylohexane 6.2 64 Yes<br />

2,6-dimethyldecane 11 19 Yes<br />

2,2,4,6,6-<br />

pentamehtylheptane<br />

2,2,4,6,6-<br />

pentamehtylheptane<br />

23 6 No<br />

23 146 Yes<br />

2-isopropyl decalin 25 68 Yes<br />

Reference<br />

EMBSI,<br />

2006c<br />

EMBSI,<br />

2006d<br />

EMBSI,<br />

2009c<br />

EMBSI,<br />

2006d<br />

EMBSI,<br />

2009p<br />

EMBSI,<br />

2006e<br />

EMBSI,<br />

2009c<br />

SafePharm,<br />

2004a<br />

Tolls and<br />

van Dijk,<br />

2002<br />

EMBSI,<br />

2009c<br />

Table 23. Chronic algal toxicity for selected hydrocarbons that may be used to readacross<br />

for the C16-18 poly-naphthenic hydrocarbons.<br />

Slow-Stir<br />

Water<br />

Solubility<br />

Mean<br />

Measured<br />

Exposure<br />

Daphnia<br />

Chronic<br />

Test Compound (g/L) (g/L) Toxicity<br />

n-octylcyclohexane 1.4 3 No<br />

2,6-dimethylundecane 2.7 2 No<br />

2,6-dimethylundecane 2.7 3 No<br />

hexadecahydropyrene 3.8 not tested<br />

Reference<br />

EMBSI,<br />

2006f<br />

EMBSI,<br />

2006f<br />

EMBSI,<br />

2007d<br />

EMBSI,<br />

2009p<br />

65


2,6-dimethyldecane 11 10 No<br />

2,2,4,6,6-<br />

pentamehtylheptane<br />

23 13 Yes<br />

2- isopropyl decalin 25 68 Yes<br />

EMBSI,<br />

2007d<br />

SafePharm,<br />

2004b<br />

EMBSI,<br />

2008d<br />

Table 24. Chronic daphnia toxicity data for aliphatic hydrocarbons.<br />

Available information does not indicate di-naphthenic or poly-naphthenic hydrocarbons<br />

warrant classification as carcinogenic, mutagenic or reproductive toxicant, nor is there<br />

evidence of other long-term chronic toxicity hazards. For example, cis- and trans-decalin<br />

which forms the molecular backbone of di-naphthenic hydrocarbons is not classified for<br />

any of the endpoints used for toxicity assessment. Moreover, highly refined mineral oils,<br />

which are manufactured by hydrogenating petroleum streams that contain di and polyaromatics<br />

to form di- and polynaphthenic hydrocarbons, are well recognized to exhibit<br />

lower health hazards since aromatics are effectively removed. Such oils are not classified<br />

for any of the endpoints relevant for toxicity assessment (Boogaard et al. 2005). In<br />

summary, based on available evidence, neither C16-C18 di-naphthenic hydrocarbons nor<br />

C16-C22 poly-naphthenic hydrocarbons fulfill the criteria for toxicity.<br />

Reliable chronic toxicity data are not available for o-terphenyl which has a measured<br />

water solubility of 1.24 mg/l as cited by EPIsuite 4.0. Application of the target lipid<br />

model provides chronic NOEC predictions for algae, daphnia and trout of 4, 6 and 10<br />

g/L, respectively. Given the solubility is well above the predicted NOECs coupled with<br />

the fact that two of the NOEC values are below the toxicity trigger of 10 g/L, it is<br />

concluded that o-terphenyl likely meets the toxicity criterion and may thus be a PBT<br />

substance.<br />

A recent review on terphenyls indicates the p- and m- isomers occur in nature. In<br />

contrast, o-terphenyls have not been reported to occur naturally (Liu, 2006). In fact, o-<br />

terphenyl is often used as a spike surrogate in environmental forensic analyses to<br />

discriminate different hydrocarbon sources because this substance is not present in<br />

petroleum substances. This anthropogenic origin likely explains the differences in<br />

observed persistence and bioaccumulation of o-terphenyl versus m- or p-terphenyls.<br />

Given that o-terphenyl is not present in crude oil feedstocks used to manufacture<br />

petroleum substances, this structure is not representative and is therefore not expected to<br />

be present in products at concentrations approaching 0.1% w/w. Therefore, while o-<br />

terphenyl may fulfill the PBT criteria, this conclusion does not impact PBT decisionmaking<br />

for petroleum substances.<br />

7.0 Conclusions<br />

In order to comply with REACH requirements to perform a PBT assessment on complex<br />

petroleum substances, a systematic review of the persistence and bioaccumulation<br />

66


properties of petroleum hydrocarbons was conducted. Consistent with REACH technical<br />

guidance and Annex XIII criteria, petroleum hydrocarbons were evaluated using a HCB<br />

scheme that divided these constituents into ten major classes by carbon number.<br />

Measured data and model predictions were used to develop an evidence-based conclusion<br />

for each HCB.<br />

The results of this analysis indicated that within a given HCB class, higher carbon<br />

numbers tended to fulfill the persistence criterion while lighter carbon numbers<br />

sometimes met the B criterion. None of the HCBs were found to meet the vB criterion,<br />

so no HCBs fulfill the vPvB criteria.<br />

Selected HCBs, namely C16-C18 di-naphthenic hydrocarbons and C16-C22 polynaphthenic<br />

hydrocarbons, were found to fulfill the P and B criteria. However, these<br />

blocks will not fulfill the toxicity critieria as they are not soluble enough to pose a<br />

chronic aquatic hazard and do not exhibit health hazard classifications. Therefore, it is<br />

concluded that none of the HCBs that comprise complex petroleum substances meet the<br />

PBT criteria.<br />

Anthracene has been agreed to fulfill the PBT criteria, so the percentage of this substance<br />

in complex petroleum substances must be considered. Since anthracene is derived<br />

principally from pyrogenic rather petrogenic sources, it is present at only trace levels in<br />

petroleum substances. 2DGC analysis has been used to characterize aliphatic and<br />

aromatic hydrocarbons in petroleum product categories. For substances with aromatic<br />

fractions greater than 5%, detailed PAH analysis has been performed. Anthracene<br />

concentrations determined from these analyses are summarized in Table 25. None of the<br />

84 samples analysed contained anthracene at greater than 0.1% (or 1000 ppm).<br />

Category No. of samples No. of<br />

detects<br />

Mean<br />

anthracene<br />

level<br />

Range<br />

Lubricant Base<br />

2<br />

< 1.81 – 6.59<br />

Oils a 9<br />

2.60 ppm<br />

ppm<br />

Unrefined/Acid-<br />

2<br />

< 1.71 – 53.2<br />

6<br />

11.8 ppm<br />

Treated Oils<br />

ppm<br />

Kerosene d 13 2 # < 1.59 ppm<br />

Distillate Aromatic<br />

2<br />

< 1.79 - 13.2<br />

Extracts d 6<br />

3.80 ppm<br />

ppm<br />

Treated Distillate<br />

0<br />

Aromatic Extracts d 1<br />

< 1.98 ppm -<br />

Residual Aromatic<br />

2 #<br />

Extracts e 4<br />

< 1.89 ppm<br />

Bitumen f 7 3 # < 1.94 ppm<br />

Heavy Fuel Oils g 9 9 91.1 ppm 0.3 - 425 ppm<br />

Gas Oils h 16 16 6.97 ppm 0.5 ppm<br />

Paraffin Waxes i 2 - -<br />

Petroleum Coke j 6 - -<br />

Foots Oil k 2 - -<br />

White Mineral Oils l 4 - -<br />

Slack Waxes m 6 - -<br />

Petrolatums n 2 - -<br />

67


a -EMBSI 2009d; b -EMBSI 2009e; c -EMBSI 2009f; d -EMBSI 2009g; e -EMBSI 2009h; f -EMBSI 2009i g -<br />

Shell Global Solutions 2008; h - DGMK 2002; i - EMBSI 2009j; j - EMBSI 2009k; k - EMBSI 2009l; l -<br />

EMBSI 2009m; m - EMBSI 2009n; n - EMBSI 2009o; # - anthracene was detected, but below quantitation<br />

limit, so reported detection limit was used.<br />

Table 25. Anthracene content in a variety of representative petroleum products.<br />

Similarly, while o-terphenyl may fulfill the PBT criteria, this substance is of synthetic<br />

origin and is therefore not expected to be present in petroleum substances at<br />

concentrations impacting PBT assessment (Liu, 2006).<br />

68


8.0 References<br />

Anonymous (2004). Fish, Dietary Bioaccumulation Study, Basic Protocol, Document<br />

prepared for the TCNES SUBGROUP ON IDENTIFICATION OF PBT AND vPvB<br />

SUBSTANCES, January 20, 2004, 14 pp.<br />

Arnot JA, Gobas F. (2003). A generic QSAR for assessing the bioaccumulation potential<br />

of organic chemicals in aquatic food webs. QSAR and Combinatorial Science 22:337-<br />

345.<br />

Boogaard P, Dmytrasz B, King D, Waterman S, Wennington J. (2005). Classification and<br />

labelling of petroleum substances according to the <strong>EU</strong> dangerous substances directive<br />

(CONCAWE recommendations –July 2005), CONCAWE Report no 6/05, Brussels,<br />

Belgium, 184 pp.<br />

Broman D, Naf C, Lundbergh I, Zebuhr Y. (1990). An in situ study on the distribution,<br />

biotransformation and flux of polycyclic aromatic hydrocarbons (PAHs) in an aquatic<br />

food chan (Seston-Mytilus edulis L.-Somateria mollissima L.) from the Baltic: An<br />

ecotoxicological perspective. Environmental Toxicology and Chemistry. 9: 429-442.<br />

Carlson RM, Oyler AR, Gerhart EH, Caple R, Welch KJ, Kopperman HL, Bodenner D,<br />

Swanson D. (1979). Implications to the aquatic environment of polynuclear aromatic<br />

hydrocarbons liberated from northern great plans coal. U.S. EPA Environmental<br />

Research Laboratory (EPA 600/3-79-093).<br />

Chemicals Inspection and Testing Institute. (1992). Bioaccumulation and Biodegradation<br />

Data on Existing Chemicals Based on the CSCL Japan. Tokyo, Japan<br />

D’Adamo R, Pelosi S, Trotta P, Sansone G. (1997). Bioaccumulation and<br />

biomagnification of polycyclic aromatic hydrocarbons in aquatic organisms. Marine<br />

Chemistry. 56:45-49.<br />

DGMK – German Society for Petroleum and Coal Science and Technology (2002).<br />

DGMK Research Report 583: Composition of Diesel Fuels from German Refineries.<br />

Hamburg, Germany.<br />

European Chemicals Agency (2008a). Technical Guidance Document for Preparing the<br />

Chemical Safety Assessment RIP 3.2-2 Chapter R.7c: Endpoint Specific Summary.<br />

European Chemicals Agency (2008b). Technical Guidance Document for Preparing the<br />

Chemical Safety Assessment RIP 3.2-2 Chapter R.11: PBT and vPvB assessment.<br />

European Union (2006). REGULATION (EC) No 1907/2006 OF THE <strong>EU</strong>ROPEAN<br />

PARLIAMENT AND OF THE COUNCIL of 18 December 2006 concerning the<br />

Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH),<br />

establishing a European Chemicals Agency, amending Directive 1999/45/EC and<br />

repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No<br />

1488/94 as well as Council Directive 76/769/EEC and Commission Directives<br />

91/155/EEC,93/67/EEC, 93/105/EC and 2000/21/EC. Official Journal of the European<br />

Union, L396, 849 pp.<br />

69


EMBSI (2001a). Fish, dietary bioaccumulation test, study no. 100047AB. ExxonMobil<br />

Biomedical Sciences Inc. Annandale, NJ.<br />

EMBSI (2001b). Fish, dietary bioaccumulation study, study no. 175047. ExxonMobil<br />

Biomedical Sciences Inc. Annandale, NJ.<br />

EMBSI (2003). Fish, dietary bioaccumulation study, study no. 100047E. ExxonMobil<br />

Biomedical Sciences Inc. Annandale, NJ.<br />

EMBSI (2004a). Fish, dietary bioaccumulation study, study no. 0400947. ExxonMobil<br />

Biomedical Sciences Inc. Annandale, NJ.<br />

EMBSI (2004b). Fish, aqueous bioaccumulation study, study no. 0409544. ExxonMobil<br />

Biomedical Sciences Inc. Annandale, NJ.<br />

EMBSI (2004c). Fish, aqueous bioaccumulation study, study no. 9942644. ExxonMobil<br />

Biomedical Sciences Inc. Annandale, NJ.<br />

EMBSI (2005a). Fish, dietary bioaccumulation test, study no. 100047P. ExxonMobil<br />

Biomedical Sciences Inc. Annandale, NJ.<br />

EMBSI (2005b). Fish, dietary bioaccumulation study, study no. 0409547. ExxonMobil<br />

Biomedical Sciences Inc. Annandale, NJ.<br />

EMBSI (2005c). Fish, aqueous bioaccumulation test, study no. 0523644. ExxonMobil<br />

Biomedical Sciences Inc. Annandale, NJ.<br />

EMBSI (2005d). Fish, dietary bioaccumulation study, study no. 0523747. ExxonMobil<br />

Biomedical Sciences Inc. Annandale, NJ.<br />

EMBSI (2005e). Fish, dietary bioaccumulation study, study no. 0531047. ExxonMobil<br />

Biomedical Sciences Inc. Annandale, NJ.<br />

EMBSI (2006a). Fish, dietary bioaccumulation study, study no. 0674247. ExxonMobil<br />

Biomedical Sciences Inc. Annandale, NJ.<br />

EMBSI (2006b). Fish, dietary bioaccumulation test, study no. 0681647. ExxonMobil<br />

Biomedical Sciences Inc. Annandale, NJ.<br />

EMBSI (2006c). Alga, Growth Inhibition Test, study no. 0545267. ExxonMobil<br />

Biomedical Sciences Inc. Annandale, NJ.<br />

EMBSI (2006d). Alga, Growth Inhibition Test, study no. 0545067. ExxonMobil<br />

Biomedical Sciences Inc. Annandale, NJ.<br />

EMBSI (2006e). Alga, Growth Inhibition Test, study no. 0545567. ExxonMobil<br />

Biomedical Sciences Inc. Annandale, NJ.<br />

EMBSI (2006f). Daphnia magna, Reproduction Test, study no. 0545046. ExxonMobil<br />

Biomedical Sciences Inc. Annandale, NJ.<br />

EMBSI (2007a). Fish, dietary bioaccumulation study, study no. 0790247. ExxonMobil<br />

Biomedical Sciences Inc. Annandale, NJ.<br />

EMBSI (2007b). Fish, dietary bioaccumulation study, study no. 0796347T. ExxonMobil<br />

Biomedical Sciences Inc. Annandale, NJ.<br />

70


EMBSI (2007c). Fish, dietary bioaccumulation study, study no. 0796347C. ExxonMobil<br />

Biomedical Sciences Inc. Annandale, NJ.<br />

EMBSI (2007d). Daphnia magna, Reproduction Test, study no. 0545446. ExxonMobil<br />

Biomedical Sciences Inc. Annandale, NJ.<br />

EMBSI (2008a). Fish, dietary bioaccumulation study, study no. 0711047. ExxonMobil<br />

Biomedical Sciences Inc. Annandale, NJ.<br />

EMBSI (2008b). Fish, dietary bioaccumulation study, study no. 0821047. ExxonMobil<br />

Biomedical Sciences Inc. Annandale, NJ.<br />

EMBSI (2008c). Fish, dietary bioaccumulation study, study no. 0818447. ExxonMobil<br />

Biomedical Sciences Inc. Annandale, NJ.<br />

EMBSI (2008d). Daphnia magna, Reproduction Test, study no. 0704946. ExxonMobil<br />

Biomedical Sciences Inc. Annandale, NJ.<br />

EMBSI (2009a) (in preparation). Primary biodegradation in seawater. Covers<br />

CONCAWE Study #'s 0822469, 0822569, 0949869. ExxonMobil Biomedical Sciences,<br />

Inc., Annandale, NJ.<br />

EMBSI (2009b) (in preparation). Alga growth inhibition test. Study no 0704967.<br />

ExxonMobil Biomedical Sciences, Inc., Annandale, NJ.<br />

EMBSI (2009c). Fish, dietary bioaccumulation study, study no. 0818447. ExxonMobil<br />

Biomedical Sciences Inc. Annandale, NJ.<br />

EMBSI (2009d). CONCAWE Product Compositional Characterization. Report 09 TP 17.<br />

ExxonMobil Biomedical Sciences Inc. Annandale, NJ.<br />

EMBSI (2009e). CONCAWE Product Compositional Characterization. Report 09 TP 16.<br />

ExxonMobil Biomedical Sciences Inc. Annandale, NJ.<br />

EMBSI (2009f). CONCAWE Product Compositional Characterization. Report 09 TP 20.<br />

ExxonMobil Biomedical Sciences Inc. Annandale, NJ.<br />

EMBSI (2009g). CONCAWE Product Compositional Characterization. Report 09 TP 19.<br />

ExxonMobil Biomedical Sciences Inc. Annandale, NJ.<br />

EMBSI (2009h). CONCAWE Product Compositional Characterization. Report 09 TP 18.<br />

ExxonMobil Biomedical Sciences Inc. Annandale, NJ.<br />

EMBSI (2009i). CONCAWE Product Compositional Characterization. Report 09 TP 15.<br />

ExxonMobil Biomedical Sciences Inc. Annandale, NJ.<br />

EMBSI (2009j). CONCAWE Product Compositional Characterization. Report 09 TP 10.<br />

ExxonMobil Biomedical Sciences Inc. Annandale, NJ.<br />

EMBSI (2009k). CONCAWE Product Compositional Characterization. Report 09 TP 22.<br />

ExxonMobil Biomedical Sciences Inc. Annandale, NJ.<br />

EMBSI (2009l). CONCAWE Product Compositional Characterization. Report 09 TP 14.<br />

ExxonMobil Biomedical Sciences Inc. Annandale, NJ.<br />

EMBSI (2009m). CONCAWE Product Compositional Characterization. Report 09 TP<br />

11. ExxonMobil Biomedical Sciences Inc. Annandale, NJ.<br />

71


EMBSI (2009n). CONCAWE Product Compositional Characterization. Report 09 TP 12.<br />

ExxonMobil Biomedical Sciences Inc. Annandale, NJ.<br />

EMBSI (2009o). CONCAWE Product Compositional Characterization. Report 09 TP 13.<br />

ExxonMobil Biomedical Sciences Inc. Annandale, NJ.<br />

EMBSI (2009p). Slow-Stir Water Solubility of Hexadecahydropyrene. Study 0951584.<br />

ExxonMobil Biomedical Sciences, Inc., Annandale, NJ.<br />

Gobas F, Arnot J. (2003) Categorization of organic substances on the domestic<br />

substances list for bioaccumulation potential. Report for Environment Canada. Burnaby:<br />

Simon Fraser University. 116 p.<br />

Hall AT. Oris JT. (1991). Anthracene reduces reproductive potential and is maternally<br />

transferred during long-term exposure in fathead minnows. Aquatic Toxicology. 19:249-<br />

264.<br />

Howard P, Meylan W, Aronson D, Stiteler W, Tunkel J, Comber M, Parkerton TF.<br />

(2005). A new biodegradation prediction model specific to petroleum hydrocarbons.<br />

Environmental Toxicology and Chemistry. 24:1847–1860.<br />

Jonsson G, Bechmann RK, Bamber SD, Baussant T. 2004. Bioconcentration,<br />

biotransformation, and elimination of polycyclic aromatic hydrocarbons in sheepshead<br />

minnows (Cyprinodon variegatus) exposed to contaminated seawater. Environmental<br />

Toxicology and Chemistry 23:1538-1548.<br />

Liu K-K. (2006). Natural Terphenyls: Developments since 1877. Chemical Reviews.<br />

106:2209-2223.<br />

McGrath JA, Parkerton TG, Di Toro DM. (2004). Application of the narcosis target lipid<br />

model to algal toxicity and deriving predicted no effect concentrations. Environmental<br />

Toxicology and Chemistry. 23:2503–2517<br />

Nfon E, Cousins IT, Broman D. (2008). Biomagnification of organic pollutants in benthic<br />

and pelagic marine food chains from the Baltic Sea. Science of the Total Environment.<br />

397:190-204.<br />

Niimi AJ, Dookhran GP. (1989). Dietary absorption efficiencies and elimination rates of<br />

polycyclic aromatic hydrocarbons (PAHs) in rainbow trout (Salmo gairdneri).<br />

Environmental Toxicology and Chemistry. 8:719-722.<br />

Niimi A, Palazzo V. (1986). Biological half-lives of eight polycyclic aromatic<br />

hydrocarbons (PAHs) in rainbow trout (Salmo gairdneri). Water Research. 20:503-507.<br />

Parkerton TF, Arnot J, Woodburn K, Weisbrod A, Russom C, Hoke R, Traas T, Bonnell<br />

M, Burkhard L, Lampi MA. (2008). Guidance for evaluating in-vivo fish<br />

bioaccumulation data. Integrated Environmental Assessment and Management. 4:139–<br />

155.<br />

Prince RC, Parkerton TG, Lee C. (2007). The pimary aerobic biodegradation of gasoline<br />

hydrocarbons. Environmental Science and Technology. 41:3316-3321.<br />

Prince RC, Haitmanek C, Lee C. (2008).The primary aerobic biodegradation of biodiesel<br />

B20, Chemosphere, 7:1446-145.<br />

72


Prince RC, Walters CC. (2007). Biodegradation of oil hydrocarbons and its implications<br />

for source identification. In Environmental Forensics: Spill Oil Fingerprinting and<br />

Source Identification, Wang Z, Stout SA (Eds.), Elsevier, New York, NY, USA pp 349-<br />

379.<br />

Quann RJ, Jaffe SJ. (1992). Structure-oriented lumping: Describing the chemistry of<br />

complex hydrocarbon mixtures. Indian Journal of Chemical Research. 31: 2488-2497.<br />

Quann RJ. (1998). Modeling the chemistry of complex petroleum mixtures.<br />

Environmental Health Perspectives. 106(S6):1441-1448.<br />

Redman A. (2009). PETROTOX. Version 3.04. CONCAWE, Brussels, Belgium.<br />

http://concawe.org/DocShareNoFrame/Common/GetFile.asp?PortalSource=958&DocID<br />

=9588&mfd=off&pdoc=1<br />

SafePharm Laboratories (2004a) 2,2,4,6,6-pentamethylheptane Daphnia magna<br />

reproduction Test; SPL Project No. 599/089; Study Sponsor: BP Chemicals Ltd.,<br />

Middlesex, LN.<br />

SafePharm Laboratories (2004b) 2,2,4,6,6-pentamethylheptane algal inhibition test; SPL<br />

Project No. 599/090; Study Sponsor: BP Chemicals Ltd., Middlesex, LN.<br />

Sarpal AS, Kapur GS, Mukherjee S, Jain SK. (1997). Characterization by 13 C NMR<br />

spectroscopy of base oils produced by different processes. Fuel. 76:931-937.<br />

Sijm DTHM, van der Linde A. (1995) Size-dependent bioconcentration kinetics of<br />

hydrophobic organic chemicals in fish based on diffusive mass transfer and allometric<br />

relationships. Environmental Science and Technology. 29:2769-2777.<br />

Shell Global Solutions. (2008) CONCAWE Risk Assessment Project: Detailed<br />

Compositional Analysis of Heavy Fuel Oil (HFO) Samples. Report GS.08.50772.<br />

Chester, England.<br />

Takeuchi I, Miyoshi N, Mizukawa K, Takada H, Ikemoto T, Omori K, Tsuchiya K.<br />

(2009). Biomagnification profiles of polycyclic aromatic hydrocarbons, alkylphenols and<br />

polychlorinated biphenyls in Tokyo Bay elucidated by 13C and 15N isotope ratios as<br />

guides to trophic web structure. Marine Pollution Bulletin 58:663-671.<br />

Tolls J, van Dijk J. (2002). Bioconcentration of n-dodecane and its highly branched<br />

isomer 2,2,4,6,6-pentamethylheptane in fathead minnows. Chemosphere 47, 1049-1057.<br />

US Environmental Protection Agency. (2008). Biota-Sediment Accumulation Factor Data<br />

Set. http://www.epa.gov/med/Prods_Pubs/bsaf.zip. Accessed 19 February.<br />

US Environmental Protection Agency. (2009). EPISuite v4.0.<br />

http://www.epa.gov/oppt/exposure/pubs/episuitedl.htm<br />

Wan Y, Jin X, Hu J, Jin F. (2007). Trophic dilution of polycyclic aromatic hydrocarbons<br />

(PAHs) in a marine food web from Bohai Bay, North China. Environmental Science and<br />

Technology 41:3109-3114.<br />

Weisbrod AV, Woodburn KB, Koelmans AA, Parkerton TF, McElroy AE, Borga K.<br />

(2009). Evaluation of bioaccumulation using in vivo laboratory and field studies.<br />

Integrated Environmental Assessment and Management. 5:598–623.<br />

73


Yakata N, Sudo Y, Tadokoro H. (2006). Influence of dispersants on bioconcentration<br />

factors of seven organic compounds with different lipophilicities and structures.<br />

Chemosphere 64:1885-1891.<br />

74


Appendix 1. Hydrocarbon structures in the CONCAWE library.<br />

Class C # Name SMILES<br />

nP 4 n-butane CCCC<br />

nP 5 n-pentane CCCCC<br />

nP 6 n-hexane CCCCCC<br />

nP 16 n-Hexadecane CCCCCCCCCCCCCCCC<br />

nP 7 n-heptane CCCCCCC<br />

nP 17 n-Heptadecane CCCCCCCCCCCCCCCCC<br />

nP 8 n-Octane CCCCCCCC<br />

nP 18 n-Octadecane CCCCCCCCCCCCCCCCCC<br />

nP 9 n-Nonane CCCCCCCCC<br />

nP 19 n-Nonadecane CCCCCCCCCCCCCCCCCCC<br />

nP 10 n-Decane CCCCCCCCCC<br />

nP 11 n-Undecane CCCCCCCCCCC<br />

nP 12 n-Dodecane CCCCCCCCCCCC<br />

nP 13 n-Tridecane CCCCCCCCCCCCC<br />

nP 14 n-Tetradecane CCCCCCCCCCCCCC<br />

nP 15 n-Pentadecane CCCCCCCCCCCCCCC<br />

nP 20 n-Eicosane CCCCCCCCCCCCCCCCCCCC<br />

nP 21 n-Heneicosane CCCCCCCCCCCCCCCCCCCCC<br />

nP 22 n-Docosane CCCCCCCCCCCCCCCCCCCCCC<br />

nP 23 n-Tricosane CCCCCCCCCCCCCCCCCCCCCCC<br />

nP 23 n-Hexacosane CCCCCCCCCCCCCCCCCCCCCCCCCC<br />

nP 24 n-Tetracosane CCCCCCCCCCCCCCCCCCCCCCCC<br />

nP 25 n-Pentacosane CCCCCCCCCCCCCCCCCCCCCCCCC<br />

nP 27 n-Heptacosane CCCCCCCCCCCCCCCCCCCCCCCCCCC<br />

nP 28 n-Octacosane CCCCCCCCCCCCCCCCCCCCCCCCCCCC<br />

nP 29 n-Nonacosane CCCCCCCCCCCCCCCCCCCCCCCCCCCCC<br />

nP 30 n-Triacontane CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC<br />

nP 31 n-Hentriacontane<br />

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC<br />

C<br />

nP 32 n-Dotriacontane<br />

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC<br />

CC<br />

nP 34 Tetratriacontane<br />

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC<br />

CCCC<br />

nP 36 Hexatriacontane<br />

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC<br />

CCCCCC<br />

iP 4 2-methylpropane CC(C)C<br />

iP 5 2-methylbutane CC(C)CC<br />

iP 6 2-methylpentane CC(C)CCC<br />

iP 7 2,4dimethylpentane CC(C)CC(C)C<br />

iP 7 2,3,3-trimethylbutane CC(C)C(C)(C)C<br />

iP 7 2-methylhexane CC(C)CCCC<br />

iP 8 3-Methylheptane CCC(C)CCCC<br />

iP 8 2-Methylheptane CC(C)CCCCC<br />

iP 9 2,6-Dimethylheptane CC(C)CCCC(C)C<br />

iP 9 2,3-Dimethylheptane CC(C)C(C)CCCC<br />

iP 9 2,4-Dimethylheptane CC(C)CC(C)CCC<br />

iP 9 2,5-Dimethylheptane CC(C)CCC(C)CC<br />

75


iP 9 2-Methyloctane CC(C)CCCCCC<br />

iP 9 3-Methyloctane CCC(C)CCCCC<br />

iP 9 2-Ethylheptane CC(CC)CCCCC<br />

iP 9 3-Ethylheptane CCC(CC)CCCC<br />

iP 10 2,6-Dimethyloctane CC(C)CCCC(C)CC<br />

iP 10 2,3-Dimethyloctane CC(C)C(C)CCCCC<br />

iP 10 2,4-Dimethyloctane CC(C)CC(C)CCCC<br />

iP 10 2,5-Dimethyloctane CC(C)CCC(C)CCC<br />

iP 10 2-Methylnonane CC(C)CCCCCCC<br />

iP 10 3-Methylnonane CCC(C)CCCCCC<br />

iP 10 2-Ethyloctane CC(CC)CCCCCC<br />

iP 10 3-Ethyloctane CCC(CC)CCCCC<br />

iP 11 2,6-Dimethylnonane CC(C)CCCC(C)CCC<br />

iP 11 2,3-Dimethylnonane CC(C)C(C)CCCCCC<br />

iP 11 2,4-Dimethylnonane CC(C)CC(C)CCCCC<br />

iP 11 2,5-Dimethylnonane CC(C)CCC(C)CCCC<br />

iP 11 2,6-Diethylheptane CC(CC)CCCC(CC)C<br />

iP 11 2,4-Diethylheptane CC(CC)CC(CC)CCC<br />

iP 11 2-Methyldecane CC(C)CCCCCCCC<br />

iP 11 3-Methyldecane CCC(C)CCCCCCC<br />

iP 11 2-Ethylnonane CC(CC)CCCCCCC<br />

iP 11 3-Ethylnonane CCC(CC)CCCCCC<br />

iP 12 2,6-Dimethyldecane CC(C)CCCC(C)CCCC<br />

iP 12 2,3-Dimethyldecane CC(C)C(C)CCCCCCC<br />

iP 12 2,4-Dimethyldecane CC(C)CC(C)CCCCCC<br />

iP 12 2,5-Dimethyldecane CC(C)CCC(C)CCCCC<br />

iP 12 2,6-Diethyloctane CC(CC)CCCC(CC)CC<br />

iP 12 2,4-Diethyloctane CC(CC)CC(CC)CCCC<br />

iP 12 2-Methylundecane CCCCCCCCCC(C)C<br />

iP 12 3-Methylundecane CCCCCCCCC(C)CC<br />

iP 12 2-Ethyldecane CC(CC)CCCCCCCC<br />

iP 12 3-Ethyldecane CCC(CC)CCCCCCC<br />

iP 12 2,2,4,6,6-pentamethylheptane C(C)(C)(C)CC(C)CC(C)(C)C<br />

iP 12 3,3,6,6-Tetramethyloctane CCC(C)(C)CCC(C)(C)CC<br />

iP 13 2,6-Dimethylundecane CC(C)CCCC(C)CCCCC<br />

iP 13 2,3-Dimethylundecane CC(C)C(C)CCCCCCCC<br />

iP 13 2,4-Dimethylundecane CC(C)CC(C)CCCCCCC<br />

iP 13 2,5-Dimethylundecane CC(C)CCC(C)CCCCCC<br />

iP 13 2,6-Diethylnonane CC(CC)CCCC(CC)CCC<br />

iP 13 2,6-Dipropylheptane CC(CCC)CCCC(CCC)C<br />

iP 13 2,4-Diethylnonane CC(CC)CC(CC)CCCCC<br />

iP 13 2,4-Dipropylheptane CC(CCC)CC(CCC)CCC<br />

iP 13 2-Methyldodecane CCCCCCCCCCC(C)C<br />

iP 13 3-Methyldodecane CCCCCCCCCC(C)CC<br />

iP 13 2-Ethylundecane CCCCCCCCCC(CC)C<br />

iP 13 3-Ethylundecane CCCCCCCCC(CC)CC<br />

iP 13 2,2,3-trimethyldecane CCCCCCCC(C)C(C)(C)C<br />

iP 14 2,3,4,5-Tetramethyldecane CC(C)C(C)C(C)C(C)CCCCC<br />

iP 14 2,4,6,8-Tetramethyldecane CC(C)CC(C)CC(C)CC(C)CC<br />

iP 14 2,6,10-Trimethylundecane CC(C)CCCC(C)CCCC(C)C<br />

76


iP 14 2,4,10-Trimethylundecane CC(C)CC(C)CCCCCC(C)C<br />

iP 14 2,4,8-Trimethylundecane CC(C)CC(C)CCCC(C)CCC<br />

iP 14 2,4,6-Trimethylundecane CC(C)CC(C)CC(C)CCCCC<br />

iP 14 2,3,4-Trimethylundecane CC(C)C(C)C(C)CCCCCCC<br />

iP 14 2,3,5-Trimethylundecane CC(C)C(C)CC(C)CCCCCC<br />

iP 14 2,6-Dimethyldodecane CC(C)CCCC(C)CCCCCC<br />

iP 14 2,3-Dimethyldodecane CC(C)C(C)CCCCCCCCC<br />

iP 14 2,4-Dimethyldodecane CC(C)CC(C)CCCCCCCC<br />

iP 14 2,5-Dimethyldodecane CC(C)CCC(C)CCCCCCC<br />

iP 14 2,6-Diethyldecane CC(CC)CCCC(CC)CCCC<br />

iP 14 2,6-Dipropyloctane CC(CCC)CCCC(CCC)CC<br />

iP 14 2,4-Diethyldecane CC(CC)CC(CC)CCCCCC<br />

iP 14 2,4-Dipropyloctane CC(CCC)CC(CCC)CCCC<br />

iP 14 2-Methyltridecane CCCCCCCCCCCC(C)C<br />

iP 14 3-Methyltridecane CCCCCCCCCCC(C)CC<br />

iP 14 2-Ethyldodecane CCCCCCCCCCC(CC)C<br />

iP 14 3-Ethyldodecane CCCCCCCCCC(CC)CC<br />

iP 15 2,4,6,8-Tetramethylundecane CC(C)CC(C)CC(C)CC(C)CCC<br />

iP 15 2,4,6,10-Tetramethyldodecane CC(C)CC(C)CC(C)CCCC(C)C<br />

iP 15 2,6,10-Trimethyldodecane CC(C)CCCC(C)CCCC(C)CC<br />

iP 15 2,4,10-Trimethyldodecane CC(C)CC(C)CCCCCC(C)CC<br />

iP 15 2,4,8-Trimethyldodecane CC(C)CC(C)CCCC(C)CCCC<br />

iP 15 2,4,6-Trimethyldodecane CC(C)CC(C)CC(C)CCCCCC<br />

iP 15 2,3,4-Trimethyldodecane CC(C)C(C)C(C)CCCCCCCC<br />

iP 15 2,3,5-Trimethyldodecane CC(C)C(C)CC(C)CCCCCCC<br />

iP 15 2,6-Dimethyltridecane CC(C)CCCC(C)CCCCCCC<br />

iP 15 2,3-Dimethyltridecane CC(C)C(C)CCCCCCCCCC<br />

iP 15 2,4-Dimethyltridecane CC(C)CC(C)CCCCCCCCC<br />

iP 15 2,5-Dimethyltridecane CC(C)CCC(C)CCCCCCCC<br />

iP 15 2-Methyltetradecane CCCCCCCCCCCCC(C)C<br />

iP 15 3-Methyltetradecane CCCCCCCCCCCC(C)CC<br />

iP 15 2-Ethyltridecane CCCCCCCCCCCC(CC)C<br />

iP 15 3-Ethyltridecane CCCCCCCCCCC(CC)CC<br />

iP 16<br />

2,4,6,8,10-<br />

Pentamethylundecane<br />

CC(C)CC(C)CC(C)CC(C)CC(C)C<br />

iP 16 2,4,6,8-Tetramethyldodecane CC(C)CC(C)CC(C)CC(C)CCCC<br />

iP 16 2,4,6,10-Tetramethyldodecane CC(C)CC(C)CC(C)CCCC(C)CC<br />

iP 16 2,6,10-Trimethyltridecane CC(C)CCCC(C)CCCC(C)CCC<br />

iP 16 2,4,10-Trimethyltridecane CC(C)CC(C)CCCCCC(C)CCC<br />

iP 16 2,4,8-Trimethyltridecane CC(C)CC(C)CCCC(C)CCCCC<br />

iP 16 2,4,6-Trimethyltridecane CC(C)CC(C)CC(C)CCCCCCC<br />

iP 16 2,3,4-Trimethyltridecane CC(C)C(C)C(C)CCCCCCCCC<br />

iP 16 2,3,5-Trimethyltridecane CC(C)C(C)CC(C)CCCCCCCC<br />

iP 16 2-Ethyltetradecane CCCCCCCCCCCCC(CC)C<br />

iP 16 3-Ethyltetradecane CCCCCCCCCCCC(CC)CC<br />

iP 16 2-Methylpentadecane CCCCCCCCCCCCCC(C)C<br />

iP 16<br />

2,2,4,4,5,5,7,7-<br />

Octamethyloctane<br />

CC(C(CC(C)(C)C)(C)C)(CC(C)(C)C)C<br />

iP 16<br />

2,2,4,4,6,8,8-<br />

heptamethylnonane<br />

CC(C)(C)CC(C)CC(C)(C)CC(C)(C)C<br />

iP 17 2-Methylhexadecane CCCCCCCCCCCCCCC(C)C<br />

77


iP 17 3-Methylhexadecane CCCCCCCCCCCCCC(C)CC<br />

iP 17 2,6,10-Trimethyltetradecane CCCCC(C)CCCC(C)CCCC(C)C<br />

iP 18 2-Methylheptadecane CCCCCCCCCCCCCCCC(C)C<br />

iP 18 3-Methylheptadecane CCCCCCCCCCCCCCC(C)CC<br />

iP 18 2,6,10-Trimethylpentadecane CC(CCCC(CCCC(CCCCC)C)C)C<br />

iP 19 2-Methyloctadecane CCCCCCCCCCCCCCCCC(C)C<br />

iP 19 3-Methyloctadecane CCCCCCCCCCCCCCCC(C)CC<br />

iP 19 Pristane C(CCCC(CCCC(CCCC(C)C)C)C)(C)C<br />

iP 20 2-Methylnonadecane CCCCCCCCCCCCCCCCCC(C)C<br />

iP 20 3-Methylnonadecane CCCCCCCCCCCCCCCCC(C)CC<br />

iP 20 10-Methylnonadecane CCCCCCCCCC(C)CCCCCCCCC<br />

iP 20 Phytane CCC(C)CCCC(C)CCCC(C)CCCC(C)C<br />

iP 20<br />

2,6,11,15-<br />

Tetramethylhexadecane<br />

CC(C)CCCC(C)CCCCC(C)CCCC(C)C<br />

iP 21 2-Methyleicosane CCCCCCCCCCCCCCCCCCC(C)C<br />

iP 21<br />

2,6,10,14-<br />

Tetramethylheptadecane CC(CCCC(CCCC(CCCC(CCC)C)C)C)C<br />

iP 22 2-Methylheneicosane CCCCCCCCCCCCCCCCCCCC(C)C<br />

iP 22<br />

2,6,10,14-<br />

Tetramethyloctadecane<br />

CCCCC(C)CCCC(C)CCCC(C)CCCC(C)C<br />

iP 23 2-Methyldocosane CCCCCCCCCCCCCCCCCCCCC(C)C<br />

iP 23<br />

2,6,10,14-<br />

Tetramethylnonadecane<br />

CC(CCCC(CCCC(CCCC(CCCCC)C)C)C)C<br />

iP 24 2-Methyltricosane CCCCCCCCCCCCCCCCCCCCCC(C)C<br />

iP 24<br />

2,6,10,14,18-<br />

Pentamethylnonadecane CC(C)CCCC(C)CCCC(C)CCCC(C)CCCC(C)C<br />

iP 25<br />

2,6,10,14,18-<br />

Pentamethyleicosane<br />

CC(C)CCCC(C)CCCC(C)CCCC(C)CCCC(C)CC<br />

iP 26 2-Methylpentacosane CCCCCCCCCCCCCCCCCCCCCCCC(C)C<br />

iP 26<br />

2,6,10,14,18-<br />

Pentamethylheneicosane CC(C)CCCC(C)CCCC(C)CCCC(C)CCCC(C)CCC<br />

iP 27 2-Methylhexacosane CCCCCCCCCCCCCCCCCCCCCCCCC(C)C<br />

2,6,10,14,18-<br />

CC(C)CCCC(C)CCCC(C)CCCC(C)CCCC(C)CCC<br />

iP 27 Pentamethyldocosane<br />

C<br />

iP 28 2-Methylheptacosane CCCCCCCCCCCCCCCCCCCCCCCCCC(C)C<br />

2,6,10,14,18-<br />

CC(C)CCCC(C)CCCC(C)CCCC(C)CCCC(C)CCC<br />

iP 28 Pentamethyltricosane<br />

CC<br />

iP 28 2,11Dimethyl-16ethyltricosane CCCCCCCC(CC)CCCCC(C)CCCCCCCCC(CC)C<br />

iP 29 2-Methyloctacosane CCCCCCCCCCCCCCCCCCCCCCCCCCC(C)C<br />

2,6,10,14,18,22-<br />

CC(C)CCCC(C)CCCC(C)CCCC(C)CCCC(C)CCC<br />

iP 29 Hexamethyltricosane<br />

C(C)C<br />

iP 30 2-Methylnonacosane<br />

CCCCCCCCCCCCCCCCCCCCCCCCCCCC(C)<br />

C<br />

iP 30 Squalane<br />

C(CCCC(CCCC(CCCCC(CCCC(CCCC(C)C)C)C)<br />

C)C)(C)C<br />

iP 30 2-methylOctacosane<br />

CC(C)CCCCCCCCCCCCCCCCCCCCCCCCCC<br />

C<br />

iP 31 2-methylTetratriacontane<br />

CC(C)CCCCCCCCCCCCCCCCCCCCCCCCCC<br />

CC<br />

MN 5 Cyclopentane C(CCC1)C1<br />

MN 6 Cyclohexane C(CCCC1)C1<br />

MN 6 Methylcyclopentane C(CCC1)(C1)C<br />

MN 7 Methylcyclohexane C(CCCC1)(C1)C<br />

78


MN 7 1,2-Dimethylcyclopentane CC1C(C)CCC1<br />

MN 7 1,3-Dimethylcyclopentane CC1CC(C)CC1<br />

MN 7 Ethylcyclopentane CCC1CCCC1<br />

MN 8 1,1,3-trimethylcyclopentane C1CC(C)(C)CC1C<br />

MN 8 1,4-Dimethylcyclohexane CC1CCC(C)CC1<br />

MN 8 1,2-Dimethylcyclohexane CC1C(C)CCCC1<br />

MN 8 1,3-Dimethylcyclohexane CC1CC(C)CCC1<br />

MN 8 Ethylcyclohexane CCC1CCCCC1<br />

MN 8 1,2,3-Trimethylcyclopentane CC1C(C)C(C)CC1<br />

MN 8 1,2,4-Trimethylcyclopentane CC1C(C)CC(C)C1<br />

MN 8 1,2-Diethylcyclopentane CC1C(CC)CCC1<br />

MN 8 1,3-Diethylcyclopentane CC1CC(CC)CC1<br />

MN 8 n-Propylcyclopentane CCCC1CCCC1<br />

MN 8 Isopropylcyclopentane C(CC1)CC1C(C)C<br />

MN 9 1,1,3-trimethylcyclohexane C1CCC(C)(C)CC1C<br />

MN 9 1,2,3-Trimethylcyclohexane CC1C(C)C(C)CCC1<br />

MN 9 1,2,4-Trimethylcyclohexane CC1C(C)CC(C)CC1<br />

MN 9 1,2,5-Trimethylcyclohexane CC1C(C)CCC(C)C1<br />

MN 9 1-Methyl-2-ethylcyclohexane CC1C(CC)CCCC1<br />

MN 9 1-Methyl-3-ethylcyclohexane CC1CC(CC)CCC1<br />

MN 9 1-Methyl-4-ethylcyclohexane CC1CCC(CC)CC1<br />

MN 9 n-Propylcyclohexane CCCC1CCCCC1<br />

MN 9<br />

1,2,3,4-<br />

Tetramethylcyclopentane CC1C(C)C(C)C(C)C1<br />

MN 9<br />

1,2,3,4,5-<br />

Pentamethylcyclopentane CC1C(C)C(C)C(C)C1<br />

MN 9 n-Butylcyclopentane CCCCC1CCCC1<br />

MN 9 iso-Butylcyclopentane CC(C)CC1CCCC1<br />

MN 9 iso-Propylcyclohexane C(C)CC1CCCCC1<br />

MN 10<br />

1,2,3,4-<br />

Tetramethylcyclohexane<br />

CC1C(C)C(C)C(C)CC1<br />

MN 10<br />

1,2,3,5-<br />

Tetramethylcyclohexane<br />

CC1C(C)C(C)CC(C)C1<br />

MN 10 1-Methylpropylcyclohexane C1CCCCC1C(C)CC<br />

MN 10 1,2-Diethylcyclohexane CCC1C(CC)CCCC1<br />

MN 10 1,3-Diethylcyclohexane CCC1CC(CC)CCC1<br />

MN 10 1,4-Diethylcyclohexane CCC1CCC(CC)CC1<br />

MN 10 1-Methyl-2-propylcyclohexane CC1C(CCC)CCCC1<br />

MN 10 1-Methyl-3-propylcyclohexane CC1CC(CCC)CCC1<br />

MN 10 1-Methyl-4-propylcyclohexane CC1CCC(CCC)CC1<br />

MN 10 n-Butylcyclohexane C(CCCC1)(C1)CCCC<br />

MN 10 2-Methylbutylcyclopentane CCC(C)CC1CCCC1<br />

MN 10 1,2-Dipropylcyclopentane CCC1C(CCC)CCC1<br />

MN 10 1,3-Dipropylcyclopentane CCC1CC(CCC)CC1<br />

MN 10 n-Pentylcyclopentane CCCCCC1CCCC1<br />

MN 10 n-Pentylcyclohexane CCCC1CCCCCC1<br />

MN 10 iso-Pentylcyclopentane CC(C)CCC1CCCC1<br />

MN 10 iso-Butylcyclohexane C(CCCC1)(C1)CC(C)C<br />

MN 10 iso-Pentylcyclopentane C(CC1)CC1CCC(C)C<br />

MN 11<br />

1,2,3,4,5-<br />

Pentamethylcyclohexane CC1C(C)C(C)C(C)C(C)C1<br />

79


MN 11 1-Methylbutylcyclohexane C1CCCCC1C(C)CCC<br />

MN 11 2-Methylbutylcyclohexane C1CCCCC1CC(C)CC<br />

MN 11 1-Methyl-2-butylcyclohexane CC1C(CCCC)CCCC1<br />

MN 11 1-Methyl-3-butylcyclohexane CC1CC(CCCC)CCC1<br />

MN 11 1-Methyl-4-butylcyclohexane CC1CCC(CCCC)CC1<br />

MN 11 2-Methylpentylcyclopentane CCCC(C)CC1CCCC1<br />

MN 11 n-Hexylcyclopentane CCCCCCC1CCCC1<br />

MN 11 iso-Hexylcyclopentane CC(C)CCCC1CCCC1<br />

MN 11 iso-Pentylcyclohexane C1CCCCC1CCC(C)C<br />

MN 12<br />

1,2,3,4,5,6-<br />

Hexamethylcyclohexane<br />

CC1C(C)C(C)C(C)C(C)C1C<br />

MN 12 1,2,3-Triethylcyclohexane CCC1C(CC)C(CC)CCC1<br />

MN 12 1,2,4-Triethylcyclohexane CCC1C(CC)CC(CC)CC1<br />

MN 12 1,2,5-Triethylcyclohexane CCC1C(CC)CCC(CC)C1<br />

MN 12 1-Methyl-2-pentylcyclohexane CC1C(CCCCC)CCCC1<br />

MN 12 1-Methyl-3-pentylcyclohexane CC1CC(CCCCC)CCC1<br />

MN 12 1-Methyl-4-pentylcyclohexane CC1CCC(CCCCC)CC1<br />

MN 12 n-Hexylcyclohexane C(CCCC1)(C1)CCCCCC<br />

MN 12 2-Methylhexylcyclopentane CCCCC(C)CC1CCCC1<br />

MN 12 1-Methylpentylcyclopentane C1CCCCC1C(C)CCCC<br />

MN 12 2-Methylpentylcyclopentane C1CCCCC1CC(C)CCC<br />

MN 12 3-Methylpentylcyclopentane C1CCCCC1CCC(C)CC<br />

MN 12 n-Heptylcyclopentane CCCCCCCC1CCCC1<br />

MN 12 iso-Heptylcyclopentane CC(C)CCCCC1CCCC1<br />

MN 12 iso-Hexylcyclohexane C(CCCC1)(C1)CCCC(C)C<br />

MN 13 1-Methylhexylcyclohexane C1CCCCC1C(C)CCCCC<br />

MN 13 2-Methylhexylcyclohexane C1CCCCC1CC(C)CCCC<br />

MN 13 3-Methylhexylcyclohexane C1CCCCC1CCC(C)CCC<br />

MN 13 4-Methylhexylcyclohexane C1CCCCC1CCCC(C)CC<br />

MN 13 1-Methyl-2-hexylcyclohexane CC1C(CCCCCC)CCCC1<br />

MN 13 1-Methyl-3-hexylcyclohexane CC1CC(CCCCCC)CCC1<br />

MN 13 1-Methyl-4-hexylcyclohexane CC1CCC(CCCCCC)CC1<br />

MN 13 n-Heptylcyclohexane C(CCCC1)(C1)CCCCCCC<br />

MN 13 2,4-Dimethylpentylcyclopentane C1CCCCC1CC(C)CC(C)C<br />

MN 13 2-Methylheptylcyclopentane CCCCCC(C)CC1CCCC1<br />

MN 13 n-Octylcyclopentane CCCCCCCCC1CCCC1<br />

MN 13 iso-Octylcyclopentane CC(C)CCCCCC1CCCC1<br />

MN 13 iso-Heptylcyclohexane C(CCCC1)(C1)CCCCC(C)C<br />

MN 14 1,2,3,4-Tetraethylcyclohexane CCC1C(CC)C(CC)C(CC)CC1<br />

MN 14 1,2,3,5-Tetraethylcyclohexane CCC1C(CC)C(CC)CC(CC)C1<br />

MN 14 2,4-Dimethylhexylcyclohexane C1CCCCC1CC(C)CC(C)CC<br />

MN 14 1-Methylheptylcyclohexane C1CCCCC1C(C)CCCCCC<br />

MN 14 2-Methylheptylcyclohexane C1CCCCC1CC(C)CCCCC<br />

MN 14 3-Methylheptylcyclohexane C1CCCCC1CCC(C)CCCC<br />

MN 14 4-Methylheptylcyclohexane C1CCCCC1CCCC(C)CCC<br />

MN 14 5-Methylheptylcyclohexane C1CCCCC1CCCCC(C)CC<br />

MN 14 1-Methyl-2-heptylcyclohexane CC1C(CCCCCCC)CCCC1<br />

MN 14 1-Methyl-3-heptylcyclohexane CC1CC(CCCCCCC)CCC1<br />

MN 14 1-Methyl-4-heptylcyclohexane CC1CCC(CCCCCCC)CC1<br />

MN 14 n-Octylcyclohexane C(CCCC1)(C1)CCCCCCCC<br />

MN 14 2-Methyloctylcyclopentane CCCCCCC(C)CC1CCCC1<br />

80


MN 14 n-Nonylcyclopentane CCCCCCCCCC1CCCC1<br />

MN 14 iso-Nonylcyclopentane CC(C)CCCCCCC1CCCC1<br />

MN 14 iso-Octylcyclohexane C(CCCC1)(C1)CCCCCC(C)C<br />

MN 15 2,4-Dimethylheptylcyclohexane C1CCCCC1CC(C)CC(C)CCC<br />

MN 15 1-Methyloctylcyclohexane C1CCCCC1C(C)CCCCCCC<br />

MN 15 2-Methyloctylcyclohexane C1CCCCC1CC(C)CCCCCC<br />

MN 15 3-Methyloctylcyclohexane C1CCCCC1CCC(C)CCCCC<br />

MN 15 4-Methyloctylcyclohexane C1CCCCC1CCCC(C)CCCC<br />

MN 15 5-Methyloctylcyclohexane C1CCCCC1CCCCC(C)CCC<br />

MN 15 6-Methyloctylcyclohexane C1CCCCC1CCCCCC(C)CC<br />

MN 15 n-Nonylcyclohexane C(CCCC1)(C1)CCCCCCCCC<br />

MN 15 2-Methylnonylcyclopentane CCCCCCCC(C)CC1CCCC1<br />

MN 15 n-Decylcyclopentane CCCCCCCCCCC1CCCC1<br />

MN 15 iso-Decylcyclopentane CC(C)CCCCCCCC1CCCC1<br />

MN 15 iso-Nonylcyclohexane C(CCCC1)(C1)CCCCCCC(C)C<br />

MN 16 2,4-Dimethyloctylcyclohexane C1CCCCC1CC(C)CC(C)CCCC<br />

MN 16 1-Methylnonylcyclohexane C1CCCCC1C(C)CCCCCCCC<br />

MN 16 2-Methylnonylcyclohexane C1CCCCC1CC(C)CCCCCCC<br />

MN 16 3-Methylnonylcyclohexane C1CCCCC1CCC(C)CCCCCC<br />

MN 16 4-Methylnonylcyclohexane C1CCCCC1CCCC(C)CCCCC<br />

MN 16 5-Methylnonylcyclohexane C1CCCCC1CCCCC(C)CCCC<br />

MN 16 6-Methylnonylcyclohexane C1CCCCC1CCCCCC(C)CCC<br />

MN 16 7-Methylnonylcyclohexane C1CCCCC1CCCCCCC(C)CC<br />

MN 16 n-Decylcyclohexane C(CCCC1)(C1)CCCCCCCCCC<br />

MN 16 2-Methyldecylcyclopentane CCCCCCCCC(C)CC1CCCC1<br />

MN 16 n-Undecylcyclopentane CCCCCCCCCCCC1CCCC1<br />

MN 16 iso-Undecylcyclopentane CC(C)CCCCCCCCC1CCCC1<br />

MN 16 iso-Decylcyclohexane C(CCCC1)(C1)CCCCCCCC(C)C<br />

MN 17 2,4-Dimethylnonylcyclohexane C1CCCCC1CC(C)CC(C)CCCCC<br />

MN 17 n-Undecylcyclohexane C(CCCC1)(C1)CCCCCCCCCCC<br />

MN 17 n-Dodecylcyclopentane CCCCCCCCCCCCC1CCCC1<br />

MN 17 1-cyclohexyl4,8dimethylnonane C1CCCCC1CCCC(C)CCCC(C)C<br />

MN 17<br />

1,5-Dimethyl-1-(3,7-<br />

dimethylheptyl)cyclohexane C1C(C)CCC(C)C1CCC(C)CCC(C)C<br />

MN 18 n-Dodecylcyclohexane C(CCCC1)(C1)CCCCCCCCCCCC<br />

MN 18 n-Tridecylcyclopentane CCCCCCCCCCCCCC1CCCC1<br />

MN 18 1-cyclohexyl4,8dimethyldecane C1CCCCC1CCCC(C)CCCC(C)CC<br />

MN 18<br />

1,5-Dimethyl-1-(3,7-<br />

dimethyloctyl)cyclohexane C1C(C)CCC(C)C1CCC(C)CCCC(C)C<br />

MN 19 n-Tridecylcyclohexane C(CCCC1)(C1)CCCCCCCCCCCCC<br />

MN 19 n-Tetradecylcyclopentane CCCCCCCCCCCCCCC1CCCC1<br />

MN 19<br />

1-cyclohexyl-4,8-<br />

dimethylundecane<br />

C1CCCCC1CCCC(C)CCCC(C)CCC<br />

MN 19<br />

1,5-Dimethyl-1-(3,7-<br />

dimethylnonyl)cyclohexane C1C(C)CCC(C)C1CCC(C)CCCC(C)CC<br />

MN 20 n-Tetradecylcyclohexane C(CCCC1)(C1)CCCCCCCCCCCCCC<br />

MN 20 n-Pentadecylcyclopentane CCCCCCCCCCCCCCCC1CCCC1<br />

MN 20<br />

1-cyclohexyl-4,8-<br />

dimethyldodecane<br />

C1CCCCC1CCCC(C)CCCC(C)CCCC<br />

MN 20<br />

1,5-Dimethyl-1-(3,7-<br />

dimethyldecyl)cyclohexane C1C(C)CCC(C)C1CCC(C)CCCC(C)CCC<br />

MN 21 n-Pentadecylcyclohexane C(CCCC1)(C1)CCCCCCCCCCCCCCC<br />

81


MN 21 n-Hexadecylcyclopentane CCCCCCCCCCCCCCCCC1CCCC1<br />

MN 21<br />

1-cyclohexyl-4,8-<br />

dimethyltridecane<br />

C1CCCCC1CCCC(C)CCCC(C)CCCCC<br />

MN 21<br />

1,5-Dimethyl-1-(3,7-<br />

dimethylundecyl)cyclohexane C1C(C)CCC(C)C1CCC(C)CCCC(C)CCCC<br />

MN 22 n-Hexadecylcyclohexane C(CCCC1)(C1)CCCCCCCCCCCCCCCC<br />

MN 22 n-Heptadecylcyclopentane CCCCCCCCCCCCCCCCCC1CCCC1<br />

MN 22<br />

1-<br />

cyclohexyl4,8,12trimethyltrideca<br />

ne<br />

C1CCCCC1CCCC(C)CCCC(C)CCCC(C)C<br />

MN 22<br />

1,5-Dimethyl-1-(3,7-<br />

dimethyldodecyl)cyclohexane C1C(C)CCC(C)C1CCC(C)CCCC(C)CCCCC<br />

MN 23 n-Heptadecylcyclohexane C(CCCC1)(C1)CCCCCCCCCCCCCCCCC<br />

MN 23 n-Octadecylcyclopentane CCCCCCCCCCCCCCCCCCC1CCCC1<br />

MN 23<br />

1-<br />

cyclohexyl4,8,12trimethyltetrad<br />

ecane<br />

C1CCCCC1CCCC(C)CCCC(C)CCCC(C)CC<br />

MN 23<br />

1,5-Dimethyl-1-(3,7,11-<br />

trimethyldodecyl)cyclohexane C1C(C)CCC(C)C1CCC(C)CCCC(C)CCCC(C)C<br />

MN 24 n-Octadecylcyclohexane C(CCCC1)(C1)CCCCCCCCCCCCCCCCCC<br />

MN 24 n-Nonadecylcyclopentane CCCCCCCCCCCCCCCCCCCC1CCCC1<br />

MN 24<br />

1-cyclohexyl-4,8,12-<br />

trimethylpentadecane<br />

C1CCCCC1CCCC(C)CCCC(C)CCCC(C)CCC<br />

MN 24<br />

1,5-Dimethyl-1-(3,7,11-<br />

trimethyltridecyl)cyclohexane C1C(C)CCC(C)C1CCC(C)CCCC(C)CCCC(C)CC<br />

MN 25 n-Nonadecylcyclohexane C(CCCC1)(C1)CCCCCCCCCCCCCCCCCCC<br />

MN 25 n-Eicosylcyclopentane CCCCCCCCCCCCCCCCCCCCC1CCCC1<br />

MN 25<br />

1-cyclohexyl-4,8,12-<br />

trimethylhexadecane<br />

C1CCCCC1CCCC(C)CCCC(C)CCCC(C)CCCC<br />

1,5-Dimethyl-1-(3,7,11-<br />

C1C(C)CCC(C)C1CCC(C)CCCC(C)CCCC(C)CC<br />

MN 25 trimethyltetradecyl)cyclohexane C<br />

MN 26 n-Eicosylcyclohexane C(CCCC1)(C1)CCCCCCCCCCCCCCCCCCCC<br />

MN 26 n-Heneicosylcyclopentane CCCCCCCCCCCCCCCCCCCCCC1CCCC1<br />

MN 26<br />

1-cyclohexyl-4,8,12-<br />

trimethylheptadecane<br />

C1CCCCC1CCCC(C)CCCC(C)CCCC(C)CCCCC<br />

1,5-Dimethyl-1-(3,7,11-<br />

trimethylpentadecyl)cyclohexan C1C(C)CCC(C)C1CCC(C)CCCC(C)CCCC(C)CC<br />

MN 26 e<br />

CC<br />

MN 27 n-Heneicosylcyclohexane C(CCCC1)(C1)CCCCCCCCCCCCCCCCCCCCC<br />

MN 27 n-Docosylcylcyclopentane CCCCCCCCCCCCCCCCCCCCCCC1CCCC1<br />

1-cyclohexyl-4,8,12,16-<br />

C1CCCCC1CCCC(C)CCCC(C)CCCC(C)CCCC(C<br />

MN 27 tetramethylheptadecane<br />

)C<br />

1,5-Dimethyl-1-(3,7,11-<br />

trimethylhexyldecyl)cyclohexan<br />

e<br />

MN 27<br />

C1C(C)CCC(C)C1CCC(C)CCCC(C)CCCC(C)CC<br />

CCC<br />

MN 28 n-Docosylcylcyclohexane<br />

C(CCCC1)(C1)CCCCCCCCCCCCCCCCCCCCC<br />

C<br />

MN 28 n-Tricosyllcyclopentane CCCCCCCCCCCCCCCCCCCCCCCC1CCCC1<br />

1-cyclohexyl-4,8,12,16-<br />

C1CCCCC1CCCC(C)CCCC(C)CCCC(C)CCCC(C<br />

MN 28 tetramethyloctadecane<br />

)CC<br />

1,5-Dimethyl-1-(3,7,11,15-tetramethylhexyldecyl)cyclohexane<br />

C1C(C)CCC(C)C1CCC(C)CCCC(C)CCCC(C)CC<br />

MN 28<br />

CC(C)C<br />

MN 29 n-Tricosyllcyclohexane<br />

C(CCCC1)(C1)CCCCCCCCCCCCCCCCCCCCC<br />

CC<br />

MN 29 n-Tetracosylcyclopentane CCCCCCCCCCCCCCCCCCCCCCCCC1CCCC1<br />

82


MN 29<br />

MN 29<br />

MN 30 n-Tetracosylcyclohexane<br />

1-cyclohexyl-4,8,12,16-<br />

tetramethylnonadecane<br />

1,5-Dimethyl-1-(3,7,11,15-tetramethylheptyldecyl)cyclohexane<br />

MN 30 n-Pentacosylcyclopentane<br />

1-cyclohexyl-4,8,12,16-<br />

MN 30 tetramethyleicosane<br />

1,5-Dimethyl-1-(3,7,11,15-tetramethyloctadecyl)cyclohexane<br />

MN 30<br />

MN 31 n-Pentacosylcyclohexane<br />

1-cyclohexyl-4,8,12,16-<br />

MN 31 tetramethylheneicosane<br />

1,5-Dimethyl-1-(3,7,11,15-tetramethylnonadecyl)cyclohexane<br />

MN 31<br />

MN 32 n-Hexacosylcyclohexane<br />

1-cyclohexyl-4,8,12,16-<br />

MN 32 pentamethylheneicosane<br />

1-cyclohexyl-4,8,12,16-<br />

MN 34 pentamethyltricosane<br />

1-(3-methyltetraacosyl)-2-<br />

MN 34 methylcyclohexane<br />

1-cyclohexyl-4,8,12,16-<br />

MN 36 pentamethylpentacosane<br />

1-(3-methylhexacosyl)-2-<br />

MN 36 methylcyclohexane<br />

C1CCCCC1CCCC(C)CCCC(C)CCCC(C)CCCC(C<br />

)CCC<br />

C1C(C)CCC(C)C1CCC(C)CCCC(C)CCCC(C)CC<br />

CC(C)CC<br />

C(CCCC1)(C1)CCCCCCCCCCCCCCCCCCCCC<br />

CCC<br />

CCCCCCCCCCCCCCCCCCCCCCCCCC1CCCC<br />

1<br />

C1CCCCC1CCCC(C)CCCC(C)CCCC(C)CCCC(C<br />

)CCCC<br />

C1C(C)CCC(C)C1CCC(C)CCCC(C)CCCC(C)CC<br />

CC(C)CCC<br />

C(CCCC1)(C1)CCCCCCCCCCCCCCCCCCCCC<br />

CCCC<br />

C1CCCCC1CCCC(C)CCCC(C)CCCC(C)CCCC(C<br />

)CCCCC<br />

C1C(C)CCC(C)C1CCC(C)CCCC(C)CCCC(C)CC<br />

CC(C)CCCC<br />

C(CCCC1)(C1)CCCCCCCCCCCCCCCCCCCCC<br />

CCCCC<br />

C1CCCCC1CCCC(C)CCCC(C)CCCC(C)CCCC(C<br />

)CCCC(C)C<br />

C1CCCCC1CCCC(C)CCCC(C)CCCC(C)CCCC(C<br />

)CCCC(C)CCC<br />

C1CCCCC1CCCC(C)CCCC(C)CCCC(C)CCCC(C<br />

)CCCC(C)CCC<br />

C1CCCCC1CCCC(C)CCCC(C)CCCC(C)CCCC(C<br />

)CCCC(C)CCCCC<br />

C1CCCCC1CCCC(C)CCCC(C)CCCC(C)CCCC(C<br />

)CCCC(C)CCCCC<br />

DN 7 Bicyclo[2.2.1]heptane C1CC2CC1CC2<br />

DN 8 dicyclopentane C1CCC2CCCC12<br />

DN 8 Bicyclo[2,2,2]octane C1CC2CCC1CC2<br />

DN 9 methyldicyclopentane C1C(C)CC2CCCC12<br />

DN 9 hexahydroindane C1CCC2CCCC2C1<br />

DN 9 cis-Bicyclo[4.3.0]nonane C(CC1CC2)CC1CC2<br />

DN 9 trans-Bicyclo[4.3.0]nonane C(CC1CC2)CC1CC2<br />

DN 9 2-Ethylbicyclo[2.2.1]heptane C(C(C1)C2)C(C1)C2CC<br />

DN 10 Decalin C1CCC2CCCCC2C1<br />

DN 10 methylhexahydroindane C1C(C)CC2CCCC2C1<br />

DN 11 2-Methyldecalin C1CCC2CCC(C)CC2C1<br />

DN 12 2,3-Dimethyldecalin C1CCC2CC(C)C(C)CC2C1<br />

DN 12 2,4-Dimethyldecalin C1CCC2C(C)CC(C)CC2C1<br />

DN 12 2,5-Dimethyldecalin C1CC(C)C2CCC(C)CC2C1<br />

DN 12 2,6-Dimethyldecalin C1C(C)CC2CCC(C)CC2C1<br />

DN 12 2,7-Dimethyldecalin CC1CCC2CCC(C)CC2C1<br />

DN 12 2,8-Dimethyldecalin C1CCC2CCC(C)CC2C1C<br />

DN 12 2-Ethyldecalin C1CCC2CCC(CC)CC2C1<br />

DN 12 isopropylhexaydroindane C1C(C(C)C)CC2CCCC2C1<br />

DN 13 2,3,4-Trimethyldecalin C1CCC2C(C)C(C)C(C)CC2C1<br />

DN 13 2,3,5-Trimethyldecalin C1CC(C)C2CC(C)C(C)CC2C1<br />

DN 13 2,3,6-Trimethyldecalin C1C(C)CC2CC(C)C(C)CC2C1<br />

DN 13 2,3,7-Trimethyldecalin CC1CCC2CC(C)C(C)CC2C1<br />

DN 13 2,3,8-Trimethyldecalin C1CCC2CC(C)C(C)CC2C1C<br />

83


DN 13 2,4,5-Trimethyldecalin C1CC(C)C2C(C)CC(C)CC2C1<br />

DN 13 2,4,6-Trimethyldecalin C1C(C)CC2C(C)CC(C)CC2C1<br />

DN 13 2,4,7-Trimethyldecalin CC1CCC2C(C)CC(C)CC2C1<br />

DN 13 2,4,8-Trimethyldecalin C1CCC2C(C)CC(C)CC2C1C<br />

DN 13 2,5,6-Trimethyldecalin C1C(C)C(C)C2CCC(C)CC2C1<br />

DN 13 2,5,7-Trimethyldecalin CC1CC(C)C2CCC(C)CC2C1<br />

DN 13 2,5,8-Trimethyldecalin C1CC(C)C2CCC(C)CC2C1C<br />

DN 13 2,6,7-Trimethyldecalin CC1C(C)CC2CCC(C)CC2C1<br />

DN 13 2,6,8-Trimethyldecalin C1C(C)CC2CCC(C)CC2C1C<br />

DN 13 2-Isopropyldecalin C1CCC2CCC(C(C)C)CC2C1<br />

DN 13 2,7,8-Trimethyldecalin C1CCC2CCC(C)CC2C1CC<br />

DN 13 2-n-Propyldecalin C1CCC2CCC(CCC)CC2C1<br />

DN 14 2,3,4,5-Tetramethyldecalin C1CC(C)C2C(C)C(C)C(C)CC2C1<br />

DN 14 2,3,4,6-Tetramethyldecalin C1C(C)CC2C(C)C(C)C(C)CC2C1<br />

DN 14 2,3,4,7-Tetramethyldecalin CC1CCC2C(C)C(C)C(C)CC2C1<br />

DN 14 2,3,4,8-Tetramethyldecalin C1CCC2C(C)C(C)C(C)CC2C1C<br />

DN 14 2,4,5,6-Tetramethyldecalin C1C(C)C(C)C2C(C)CC(C)CC2C1<br />

DN 14 2,4,5,7-Tetramethyldecalin CC1CC(C)C2C(C)CC(C)CC2C1<br />

DN 14 2,4,5,8-Tetramethyldecalin C1CC(C)C2C(C)CC(C)CC2C1C<br />

DN 14 2,5,6,7-Tetramethyldecalin CC1C(C)C(C)C2CCC(C)CC2C1<br />

DN 14 2,5,6,8-Tetramethyldecalin C1C(C)C(C)C2CCC(C)CC2C1C<br />

DN 14 2,6,7,8-Tetramethyldecalin CC1C(C)CC2CCC(C)CC2C1C<br />

DN 14 2-Isobutyldecalin C1CCC2CCC(CC(C)C)CC2C1<br />

DN 14 2-n-Butyldecalin C1CCC2CCC(CCCC)CC2C1<br />

DN 14 isopentylhexaydroindane C1C(CC(C)CC)CC2CCCC2C1<br />

DN 15 2,3,4,5,6-Pentamethyldecalin C1C(C)C(C)C2C(C)C(C)C(C)CC2C1<br />

DN 15 2,3,4,5,7-Pentamethyldecalin CC1CC(C)C2C(C)C(C)C(C)CC2C1<br />

DN 15 2,3,4,5,8-Pentamethyldecalin C1CC(C)C2C(C)C(C)C(C)CC2C1C<br />

DN 15 2,4,5,6,7-Pentamethyldecalin CC1C(C)C(C)C2C(C)CC(C)CC2C1<br />

DN 15 2,4,5,6,8-Pentamethyldecalin C1C(C)C(C)C2C(C)CC(C)CC2C1C<br />

DN 15 2,5,6,7,8-Pentamethyldecalin CC1C(C)C(C)C2CCC(C)CC2C1C<br />

DN 15 2-Isopentyldecalin C1CCC2CCC(CCC(C)C)CC2C1<br />

DN 15 2-n-Pentyldecalin C1CCC2CCC(CCCCC)CC2C1<br />

DN 16 2,3,4,5,6,7-Hexamethyldecalin CC1C(C)C(C)C2C(C)C(C)C(C)CC2C1<br />

DN 16 2,3,4,5,6,8-Hexamethyldecalin C1C(C)C(C)C2C(C)C(C)C(C)CC2C1C<br />

DN 16 2,3,4,5,7,8-Hexamethyldecalin CC1CC(C)C2C(C)C(C)C(C)CC2C1C<br />

DN 16 2,3,4,5,7,8-Hexamethyldecalin CC1C(C)CC2C(C)C(C)C(C)CC2C1C<br />

DN 16 2-Isohexyldecalin C1CCC2CCC(CCCC(C)C)CC2C1<br />

DN 16 2-n-Hexyldecalin C1CCC2CCC(CCCCCC)CC2C1<br />

DN 16 isoheptylhexahydroindane C1C(CC(C)CCCC)CC2CCCC2C1<br />

DN 17<br />

2,3,4,5,6,7,8-<br />

Heptamethyldecalin<br />

CC1C(C)C(C)C2C(C)C(C)C(C)CC2C1C<br />

DN 17 2-Isoheptyldecalin C1CCC2CCC(CCCCC(C)C)CC2C1<br />

DN 17 2-n-Heptyldecalin C1CCC2CCC(CCCCCCC)CC2C1<br />

DN 17 2,4-dimethylpentyl-2-decalin C1CCC2CCC(CC(C)CC(C)C)CC2C1<br />

DN 18 Octamethyldecalin CC1C(C)C(C)C2C(C)C(C)C(C)C(C)C2C1C<br />

DN 18<br />

2,6-dimethylheptylhexahydroindane<br />

C1C(CC(C)CCCC(C)C)CC2CCCC2C1<br />

DN 18 2,4dimethylhexyl-2-decalin C1CCC2CCC(CC(C)CC(C)CC)CC2C1<br />

DN 19 2,4dimethylheptyl-2-decalin C1CCC2CCC(CC(C)CC(C)CCC)CC2C1<br />

DN 20 2,6-dimethylnonyl- C1C(CC(C)CCCC(C)CCC)CC2CCCC2C1<br />

84


hexahydroindane<br />

DN 20 2,4-dimethyloctyl-2-decalin C1CCC2CCC(CC(C)CC(C)CCCC)CC2C1<br />

DN 21 2,4,6trimethyloctyl-2-decalin C1CCC2CCC(CC(C)CC(C)CC(C)CC)CC2C1<br />

DN 22<br />

2,6,9-trimethyldecylhexahydroindane<br />

C1C(CC(C)CCCC(C)CCC(C)C)CC2CCCC2C1<br />

DN 22 2,4,6trimethylnonyl-2-decalin C1CCC2CCC(CC(C)CC(C)CC(C)CCC)CC2C1<br />

DN 23 2,4,6t-rimethyldecyl-2-decalin C1CCC2CCC(CC(C)CC(C)CC(C)CCCC)CC2C1<br />

DN 24<br />

2,6,9-trimethyldodecylhexahydroindane<br />

C1C(CC(C)CCCC(C)CCC(C)CCC)CC2CCCC2C1<br />

DN 24 2,4,6-trimethylundecyl-2-decalin C1CCC2CCC(CC(C)CC(C)CC(C)CCCCC)CC2C1<br />

DN 24 4,8-dimethyldodecyl-2-decalin C1CCC2CCC(CCCC(C)CCCC(C)CCCC)CC2C1<br />

DN 25 2,4,6trimethyldodecyl-2-decalin<br />

C1CCC2CCC(CC(C)CC(C)CC(C)CCCCCC)CC2<br />

C1<br />

2,6,9,12-tetramethyltridecylhexahydroindane<br />

C2C1<br />

C1C(CC(C)CCCC(C)CCC(C)CCC(C)C)CC2CCC<br />

DN 26<br />

2,4,6,10,14-<br />

C1CCC2CCC(CC(C)CC(C)CC(C)CC(C)CC(C)C)<br />

DN 26 pentamethylundecyl-2-decalin CC2C1<br />

2,4,6,10,14-<br />

C1CCC2CCC(CC(C)CC(C)CC(C)CC(C)CC(C)CC<br />

DN 27 pentamethyldodecyl-2-decalin )CC2C1<br />

2,6,9,14tetramethylpentadecylh C1C(CC(C)CCCC(C)CCC(C)CCC(C)CCC)CC2C<br />

DN 28 exahydroindane<br />

CCC2C1<br />

2,4,6,10,14pentamethyltridecyl- C1CCC2CCC(CC(C)CC(C)CC(C)CC(C)CC(C)CC<br />

DN 28 2-decalin<br />

C)CC2C1<br />

2,4,6,10tetramethyl-tetradecyl- C1CCC2CCC(CC(C)CC(C)CC(C)CC(C)CC(C)CC<br />

DN 29 2-decalin<br />

CC)CC2C1<br />

4,8,12-trimethylhexyldecyl-2- C1CCC2CCC(CCCC(C)CCCC(C)CCCC(C)CCCC<br />

DN 29 decalin<br />

)CC2C1<br />

2,6,9,14tetramethylhexadecylhexahydroindane<br />

2CCCC2C1<br />

C1C(CC(C)CCCC(C)CCC(C)CCC(C)CCCCC)CC<br />

DN 30<br />

2,4,6,10,14-pentamethyldodecyl-2-decalin<br />

CCC)CC2C1<br />

C1CCC2CCC(CC(C)CC(C)CC(C)CC(C)CC(C)CC<br />

DN 30<br />

2,4,6,10-tetramethylhexyldecyl-2-decalin<br />

CCCC)CC2C1<br />

C1CCC2CCC(CC(C)CC(C)CC(C)CC(C)CC(C)CC<br />

DN 31<br />

2-(2,6,10,14-tetramethylhexadecyl)-9-methyl-decalin<br />

CC)CC2C1C<br />

C1CCC2CCC(CC(C)CCCC(C)CCCC(C)CCCC(C)<br />

DN 31<br />

2-(2,6,10,14-tetramethylhexadecyl)-9-ethyl-decalin<br />

CC)CC2C1CC<br />

C1CCC2CCC(CC(C)CCCC(C)CCCC(C)CCCC(C)<br />

DN 32<br />

2-(2,6,10,14-tetramethylhexadecyl)-9-propyl-decalin<br />

CC)CC2C1CCC<br />

C1CCC2CCC(CC(C)CCCC(C)CCCC(C)CCCC(C)<br />

DN 33<br />

2-(2,6,10,14-tetramethylhexadecyl)-9-butyl-decalin<br />

CC)CC2C1CCCC<br />

C1CCC2CCC(CC(C)CCCC(C)CCCC(C)CCCC(C)<br />

DN 34<br />

2-(2,6,10,14-tetramethylhexadecyl)-9-pentyl-decalin<br />

CC)CC2C1CCCCC<br />

C1CCC2CCC(CC(C)CCCC(C)CCCC(C)CCCC(C)<br />

DN 35<br />

2-(2,6,10,14-tetramethylhexadecyl)-9-heptyl-decalin<br />

CC)CC2C1CCCCCCC<br />

C1CCC2CCC(CC(C)CCCC(C)CCCC(C)CCCC(C)<br />

DN 37<br />

2-(2,6,10,14-tetramethylhexadecyl)-9-nonyl-decalin<br />

C1CCC2CCC(CC(C)CCCC(C)CCCC(C)CCCC(C)<br />

DN 39<br />

CC)CC2C1CCCCCCCCC<br />

PN 10 Adamantane C(CC(CC1CC23)C3)(C1)C2<br />

PN 11 2-methyl-Adamantane C(CC(CC1CC23)C3)(C1)C2C<br />

PN 12 2-ethyl-Adamantane C(CC(CC1CC23)C3)(C1)C2CC<br />

PN 12 n-phenylcyclohexane c(cccc1)(c1)C(CCCC2)C2<br />

PN 13 1,3,5-Trimethyladamantane C(C(CC1(C2)C)CC23C)C(C1)(C3)C<br />

85


PN 14 Hydro-Phenanthrene C1CCC2CCC3CCCCC3C2C1<br />

PN 15 Methyl-hydro-Phenanthrene C1CCC2CCC3CC(C)CCC3C2C1<br />

PN 16 Ethyl-hydro-Phenanthrene C1CCC2CCC3CC(CC)CCC3C2C1<br />

PN 17 iso-Propyl-hydro-Phenanthrene C1CCC2CCC3CC(C(C)C)CCC3C2C1<br />

PN 17 n-Propyl-hydro-Phenanthrene C1CCC2CCC3CC(CCC)CCC3C2C1<br />

PN 18 Hydro-Chrysene C1CCC2CCC3C4CCCCC4CCC3C2C1<br />

PN 18 iso-Butyl-hydro-Phenanthrene C1CCC2CCC3CC(CC(C)C)CCC3C2C1<br />

PN 18 n-Butyl-hydro-Phenanthrene C1CCC2CCC3CC(CCCC)CCC3C2C1<br />

PN 19 Methyl-hydro-Chrysene C1CCC2CCC3C4CCC(C)CC4CCC3C2C1<br />

PN 19 iso-Pentyl-hydro-Phenanthrene C1CCC2CCC3CC(CCC(C)C)CCC3C2C1<br />

PN 19 n-Pentyl-hydro-Phenanthrene C1CCC2CCC3CC(CCCCC)CCC3C2C1<br />

PN 19 (5alpha)-Androstane<br />

C(CC1)[C@](CC[C@@]2([C@@](CCC3)([C@@]<br />

4(C3)H)C)H)(C)[C@@]1([C@@]2(CC4)H)H<br />

PN 20 Ethyl-hydro-Chrysene C1CCC2CCC3C4CCC(CC)CC4CCC3C2C1<br />

PN 20 iso-Hexyl-hydro-Phenanthrene C1CCC2CCC3CC(CCCC(C)C)CCC3C2C1<br />

PN 20 n-Hexyl-hydro-Phenanthrene C1CCC2CCC3CC(CCCCCC)CCC3C2C1<br />

PN 21 iso-Propyl-hydro-Chrysene C1CCC2CCC3C4CCC(C(C)C)CC4CCC3C2C1<br />

PN 21 n-Propyl-hydro-Chrysene C1CCC2CCC3C4CCC(CCC)CC4CCC3C2C1<br />

PN 21<br />

2-methylhexyl-hydro-<br />

Phenanthrene<br />

C1CCC2CCC3CC(CC(C)CCCC)CCC3C2C1<br />

PN 21 (5beta)-Pregnane<br />

C(CCC1)[C@]([C@@]1(CC2)H)(C)[C@@](CC[C<br />

@@]3([C@H]4CC)C)([C@@]2([C@@]3(CC4)H)<br />

H)H<br />

PN 22 Hydro-Picene C1CCC2CCC3C4CCC5CCCCC5C4CCC3C2C1<br />

PN 22 iso-Butyl-hydro-Chrysene C1CCC2CCC3C4CCC(CC(C)C)CC4CCC3C2C1<br />

PN 22 n-Butyl-hydro-Chrysene C1CCC2CCC3C4CCC(CCCC)CC4CCC3C2C1<br />

2-methylhepyl-hydro-<br />

PN 22 Phenanthrene<br />

C1CCC2CCC3CC(CC(C)CCCCC)CCC3C2C1<br />

C1CCC2CCC3C4CCC5CC(C)CCC5C4CCC3C2<br />

C1<br />

PN 23 Methyl-hydro-Picene<br />

2,6-dimethylheptyl-hydro-<br />

PN 23 Phenanthrene<br />

C1CCC2CCC3CC(CC(C)CCCC(C)C)CCC3C2C1<br />

PN 23 2-methylbutyl-hydro-Chrysene<br />

C1CCC2CCC3C4CCC(CC(C)CC)CC4CCC3C2C<br />

1<br />

PN 24 Ethyl-hydro-Picene<br />

C1CCC2CCC3C4CCC5CC(CC)CCC5C4CCC3C<br />

2C1<br />

2,6-dimethyloctyl-hydro-<br />

C1CCC2CCC3CC(CC(C)CCCC(C)CC)CCC3C2C<br />

PN 24 Phenanthrene<br />

1<br />

PN 24 2-methylpentyl-hydro-Chrysene<br />

C1CCC2CCC3C4CCC(CC(C)CCC)CC4CCC3C2<br />

C1<br />

2,6-dimethylnonyl-hydro- C1CCC2CCC3CC(CC(C)CCCC(C)CCC)CCC3C2<br />

PN 25 Phenanthrene<br />

C1<br />

PN 25 2-methylhexyl-hydro-Chrysene<br />

C1CCC2CCC3C4CCC(CC(C)CCCC)CC4CCC3C<br />

2C1<br />

PN 25 propyl-hydro-Picene<br />

C1CCC2CCC3C4CCC5CC(CCC)CCC5C4CCC3<br />

C2C1<br />

1,2-hydronaphthenohydrochrysene<br />

4CC3)CC2<br />

C12CCCCC1C3C(C(CCC5C4CCC6C5CCCC6)C<br />

PN 26<br />

2,6-dimethyldecyl-hydro- C1CCC2CCC3CC(CC(C)CCCC(C)CCCC)CCC3<br />

PN 26 Phenanthrene<br />

C2C1<br />

PN 26 2-methylhepyl-hydro-Chrysene<br />

C1CCC2CCC3C4CCC(CC(C)CCCCC)CC4CCC3<br />

C2C1<br />

PN 26 isobutyl-hydro-Picene<br />

C1CCC2CCC3C4CCC5CC(CC(C)C)CCC5C4CC<br />

C3C2C1<br />

PN 26 Hydro-dibenzo(b,k)chrysene<br />

C5C6CCCCC6CC2C5C1C(C3CC4C(CC3CC1)C<br />

CCC4)CC2<br />

PN 26 n-Butyldimethyl-hydroperylene<br />

CCCCC2CC1CC(C)CC4C1C(C3CC(C)CC5C3C4<br />

CCC5)C2<br />

PN 27 2,6-dimethylundecyl-hydro- C1CCC2CCC3CC(CC(C)CCCC(C)CCCCC)CCC<br />

86


PN 27<br />

Phenanthrene<br />

2,6-dimethylheptyl-hydro-<br />

Chrysene<br />

PN 27 isopenyl-hydro-Picene<br />

1,2-hydronaphtheno-8-methylhydrochrysene<br />

PN 27<br />

PN 27 Cholestane<br />

2,6,10-trimethylundecyl-hydro-<br />

PN 28 Phenanthrene<br />

2,6-dimethyloctyl-hydro-<br />

PN 28 Chrysene<br />

PN 28 isohexyl-hydro-Picene<br />

1,2-(1-ethyl-hydronaphtheno)-<br />

PN 28 hydrochrysene<br />

Hydro-benzo(p)naphtho(1,8,7-<br />

PN 28 ghi)chrysene<br />

2,6,10-trimethyldodecyl-hydro-<br />

PN 29 Phenanthrene<br />

2,6-dimethylnonyl-hydro-<br />

PN 29 Chrysene<br />

PN 29 isoheptyl-hydro-Picene<br />

1,2-(1-propyl-hydronaphtheno)-<br />

PN 29 hydrochrysene<br />

Dimethylheptylhydrobenzo(a)pyrene<br />

PN 29<br />

2,6,10-trimethyltridecyl-hydro-<br />

PN 30 Phenanthrene<br />

2,6-dimethyldecyl-hydro-<br />

PN 30 Chrysene<br />

PN 30 isooctyl-hydro-Picene<br />

1,2-(1-isobutyl-<br />

hydronaphtheno)-<br />

PN 30 hydrochrysene<br />

PN 30 Isohexylhydro-benzo-perylene<br />

2,6,10-trimethylteradecyl-hydro-<br />

PN 31 Phenanthrene<br />

2,6-dimethylundecyl-hydro-<br />

PN 31 Chrysene<br />

PN 32 2,6dimethylhexyl-hydro-Picene<br />

2-ethyl,6-methylundecyl-hydrochrysene<br />

PN 32<br />

2-(3,6-dimethylheptyl)-6-<br />

PN 32 methylhydro-chrysene<br />

2-propyl,6-methylundecylhydro-chrysene<br />

PN 33<br />

2-isopentyl,6-ethylundecylhydro-chrysene<br />

PN 36<br />

2-(3,6-dimethylheptyl)-6-butyl-<br />

10-(2methylhexyl)hydrochrysene<br />

PN 41<br />

3C2C1<br />

C1CCC2CCC3C4CCC(CC(C)CCCC(C)C)CC4CC<br />

C3C2C1<br />

C1CCC2CCC3C4CCC5CC(CC(C)CC)CCC5C4C<br />

CC3C2C1<br />

C12CC(C)CCC1C3C(C(CCC5C4CCC6C5CCCC6<br />

)C4CC3)CC2<br />

C(CCC1)[C@]([C@]1(CC2)H)(C)[C@@](CC[C@<br />

@]3([C@]4([C@@H](CCCC(C)C)C)H)C)([C@@]<br />

2([C@@]3(CC4)H)H)H<br />

C1CCC2CCC3CC(CC(C)CCCC(C)CCCC(C)C)C<br />

CC3C2C1<br />

C1CCC2CCC3C4CCC(CC(C)CCCC(C)CC)CC4C<br />

CC3C2C1<br />

C1CCC2CCC3C4CCC5CC(CC(C)CCC)CCC5C4<br />

CCC3C2C1<br />

C12CC(CC)CCC1C3C(C(CCC5C4CCC6C5CCC<br />

C6)C4CC3)CC2<br />

C1CC6CCCC7C6C2C(C4C7C3C(C5C4CCCC5)<br />

CCCC3)CCCC12<br />

C1CCC2CCC3CC(CC(C)CCCC(C)CCCC(C)CC)<br />

CCC3C2C1<br />

C1CCC2CCC3C4CCC(CC(C)CCCC(C)CCC)CC4<br />

CCC3C2C1<br />

C1CCC2CCC3C4CCC5CC(CC(C)CCCC)CCC5C<br />

4CCC3C2C1<br />

C12CC(CCC)CCC1C3C(C(CCC5C4CCC6C5CC<br />

CC6)C4CC3)CC2<br />

C(C(C(CC1)CCC2)C2CC3)(C3CC(C4CCC5CC(C<br />

)CCCC(C)C)C5)C14<br />

C1CCC2CCC3CC(CC(C)CCCC(C)CCCC(C)CCC<br />

)CCC3C2C1<br />

C1CCC2CCC3C4CCC(CC(C)CCCC(C)CCCC)C<br />

C4CCC3C2C1<br />

C1CCC2CCC3C4CCC5CC(CC(C)CCCCC)CCC5<br />

C4CCC3C2C1<br />

C12CC(CC(C)C)CCC1C3C(C(CCC5C4CCC6C5<br />

CCCC6)C4CC3)CC2<br />

CCC(C)CCC6CC2C(CC6)C1CCCC4C1C(C3CCC<br />

C5C3C4CCC5)C2<br />

C1CCC2CCC3CC(CC(C)CCCC(C)CCCC(C)CCC<br />

C)CCC3C2C1<br />

C1CCC2CCC3C4CCC(CC(C)CCCC(C)CCCCC)<br />

CC4CCC3C2C1<br />

C1CCC2CCC3C4CCC5CC(CC(C)CCCC(C)CC)C<br />

CC5C4CCC3C2C1<br />

C1CCC2CCC3C4CCC(CC(CC)CCCC(C)CCCCC<br />

)CC4CCC3C2C1<br />

C4C(CCC(C)CCC(C)CCCCC)CC3CC(C)C2C1CC<br />

CCC1CCC2C3C4<br />

C1CCC2CCC3C4CCC(CC(CCC)CCCC(C)CCCC<br />

C)CC4CCC3C2C1<br />

C1CCC2CCC3C4CCC(CC(CC(C)CC)CCCC(CC)<br />

CCCCC)CC4CCC3C2C1<br />

C4C(CCC(C)CCC(C)CCCCC)CC3CC(CCCC)C2<br />

C1CC(CC(C)CCC)CCC1CCC2C3C4<br />

87


MAr 6 Benzene c1ccccc1<br />

MAr 7 Toluene c1ccccc1C<br />

MAr 8 1-Methyl-3-ethylbenzene Cc1cc(CC)ccc1<br />

MAr 8 n-Propylbenzene c1ccccc1CCC<br />

MAr 8 1,2-Diethylbenzene CCc1c(CC)cccc1<br />

MAr 8 iso-Propylbenzene c1ccccc1C(C)C<br />

MAr 9 Ethylbenzene c1ccccc1CC<br />

MAr 9 1,2,3-Trimethylbenzene Cc1c(C)c(C)ccc1<br />

MAr 9 1,4-Dimethylbenzene Cc1ccc(C)cc1<br />

MAr 9 1,2,5-Trimethylbenzene Cc1c(C)ccc(C)c1<br />

MAr 9 1,2,3,4-Tetramethylbenzene Cc1c(C)c(C)c(C)cc1<br />

MAr 9 1,2-Dimethylbenzene Cc1c(C)cccc1<br />

MAr 9 1,3-Dimethylbenzene Cc1cc(C)ccc1<br />

MAr 9 1-Methyl-2-ethylbenzene Cc1c(CC)cccc1<br />

MAr 10 1,2,4-Trimethylbenzene Cc1c(C)cc(C)cc1<br />

MAr 10 1-Methyl-4-ethylbenzene Cc1ccc(CC)cc1<br />

MAr 10 1,2,3,5-Tetramethylbenzene Cc1c(C)c(C)cc(C)c1<br />

MAr 10 n-Butylbenzene c1ccccc1CCCC<br />

MAr 10 1-Methyl-2-propylbenzene Cc1c(CCC)cccc1<br />

MAr 10 1,3-Diethylbenzene CCc1cc(CC)ccc1<br />

MAr 10 1,4-Diethylbenzene CCc1ccc(CC)cc1<br />

MAr 10 1-Methyl-4-propylbenzene Cc1ccc(CCC)cc1<br />

MAr 10 1-Methyl-3-propylbenzene Cc1cc(CCC)ccc1<br />

MAr 11 1-Methyl-2-butylbenzene Cc1c(CCCC)cccc1<br />

MAr 11 1-Methyl-3-butylbenzene Cc1cc(CCCC)ccc1<br />

MAr 11 1-Methyl-4-butylbenzene Cc1ccc(CCCC)cc1<br />

MAr 11 1-Ethyl-2-propylbenzene CCc1c(CCC)cccc1<br />

MAr 11 1-Ethyl-3-propylbenzene CCc1cc(CCC)ccc1<br />

MAr 11 1-Ethyl-4-propylbenzene CCc1ccc(CCC)cc1<br />

MAr 11 1,2,3,4,5-Pentamethylbenzene Cc1c(C)c(C)c(C)c(C)c1<br />

MAr 11 n-Pentylbenzene c1ccccc1CCCCC<br />

MAr 12 1,2-Dipropylbenzene CCCc1c(CCC)cccc1<br />

MAr 12 1,3-Dipropylbenzene CCCc1cc(CCC)ccc1<br />

MAr 12 1,4-Dipropylbenzene CCCc1ccc(CCC)cc1<br />

MAr 12 1-Methyl-2-pentylbenzene Cc1c(CCCCC)cccc1<br />

MAr 12 1-Methyl-3-pentylbenzene Cc1cc(CCCCC)ccc1<br />

MAr 12 1-Methyl-4-pentylbenzene Cc1ccc(CCCCC)cc1<br />

MAr 12 1-Ethyl-2-butylbenzene CCc1c(CCCC)cccc1<br />

MAr 12 1-Ethyl-3-butylbenzene CCc1cc(CCCC)ccc1<br />

MAr 12 1-Ethyl-4-butylbenzene CCc1ccc(CCCC)cc1<br />

MAr 12 1,2-Dipropylbenzene CCCc1c(CCC)cccc1<br />

MAr 12 1,3-Dipropylbenzene CCCc1cc(CCC)ccc1<br />

MAr 12 1,4-Dipropylbenzene CCCc1ccc(CCC)cc1<br />

MAr 12 1,2,3-Triethylbenzene CCc1c(CC)c(CC)ccc1<br />

MAr 12 1,2,4-Triethylbenzene CCc1c(CC)cc(CC)cc1<br />

MAr 12 1,2,5-Triethylbenzene CCc1c(CC)ccc(CC)c1<br />

MAr 12 1,2,3,4,5,6-Hexamethylbenzene Cc1c(C)c(C)c(C)c(C)c1C<br />

MAr 12 n-Hexylbenzene c1ccccc1CCCCCC<br />

MAr 13 n-Heptylbenzene c1ccccc1CCCCCCC<br />

MAr 13 1-Methyl-2-hexylbenzene Cc1c(CCCCCC)cccc1<br />

88


MAr 13 1-Methyl-3-hexylbenzene Cc1cc(CCCCCC)ccc1<br />

MAr 13 1-Methyl-4-hexylbenzene Cc1ccc(CCCCCC)cc1<br />

MAr 13 1-Ethyl-2-pentylbenzene CCc1c(CCCCC)cccc1<br />

MAr 13 1-Ethyl-3-pentylbenzene CCc1cc(CCCCC)ccc1<br />

MAr 13 1-Ethyl-4-pentylbenzene CCc1ccc(CCCCC)cc1<br />

MAr 14 1-Methyl-2-heptylbenzene Cc1c(CCCCCCC)cccc1<br />

MAr 14 1-Methyl-3-heptylbenzene Cc1cc(CCCCCCC)ccc1<br />

MAr 14 1-Methyl-4-heptylbenzene Cc1ccc(CCCCCCC)cc1<br />

MAr 14 1-Ethyl-2-hexylbenzene CCc1c(CCCCCC)cccc1<br />

MAr 14 1-Ethyl-3-hexylbenzene CCc1cc(CCCCCC)ccc1<br />

MAr 14 1-Ethyl-4-hexylbenzene CCc1ccc(CCCCCC)cc1<br />

MAr 14 1,2-Dibutylbenzene CCCCc1c(CCCC)cccc1<br />

MAr 14 1,3-Dibutylbenzene CCCCc1cc(CCCC)ccc1<br />

MAr 14 1,4-Dibutylbenzene CCCCc1ccc(CCCC)cc1<br />

MAr 14 1,2,3,4-Tetraethylbenzene CCc1c(CC)c(CC)c(CC)cc1<br />

MAr 14 1,2,3,5-Tetraethylbenzene CCc1c(CC)c(CC)cc(CC)c1<br />

MAr 14 n-Octylbenzene c1ccccc1CCCCCCCC<br />

MAr 15 1-Methyl-2-octylbenzene Cc1c(CCCCCCCC)cccc1<br />

MAr 15 1-Methyl-3-octylbenzene Cc1cc(CCCCCCCC)ccc1<br />

MAr 15 1-Methyl-4-octylbenzene Cc1ccc(CCCCCCCC)cc1<br />

MAr 15 1-Ethyl-2-heptylbenzene CCc1c(CCCCCCC)cccc1<br />

MAr 15 1-Ethyl-3-heptylbenzene CCc1cc(CCCCCCC)ccc1<br />

MAr 15 1-Ethyl-4-heptylbenzene CCc1ccc(CCCCCCC)cc1<br />

MAr 15 1,2,3-Tripropylbenzene CCCc1c(CCC)c(CCC)ccc1<br />

MAr 15 1,2,4-Tripropylbenzene CCCc1c(CCC)cc(CCC)cc1<br />

MAr 15 1,2,5-Tripropylbenzene CCCc1c(CCC)ccc(CCC)c1<br />

MAr 15 1,2,3-Tripropylbenzene CCCc1c(CCC)c(CCC)ccc1<br />

MAr 15 1,2,4-Tripropylbenzene CCCc1cc(CCC)c(CCC)cc1<br />

MAr 15 1,2,5-Tripropylbenzene CCCc1ccc(CCC)c(CCC)c1<br />

MAr 15 n-Nonylbenzene c1ccccc1CCCCCCCCC<br />

MAr 16 1-Methyl-2-nonylbenzene Cc1c(CCCCCCCCC)cccc1<br />

MAr 16 1-Methyl-3-nonylbenzene Cc1cc(CCCCCCCCC)ccc1<br />

MAr 16 1-Methyl-4-nonylbenzene Cc1ccc(CCCCCCCCC)cc1<br />

MAr 16 1-Ethyl-2-octylbenzene CCc1c(CCCCCCCC)cccc1<br />

MAr 16 1-Ethyl-3-octylbenzene CCc1cc(CCCCCCCC)ccc1<br />

MAr 16 1-Ethyl-4-octylbenzene CCc1ccc(CCCCCCCC)cc1<br />

MAr 16 1,2-Dipentylbenzene CCCCCc1c(CCCCC)cccc1<br />

MAr 16 1,3-Dipentylbenzene CCCCCc1cc(CCCCC)ccc1<br />

MAr 16 1,4-Dipentylbenzene CCCCCc1ccc(CCCCC)cc1<br />

MAr 16 1,2,3,4,5-Pentaethylbenzene CCc1c(CC)c(CC)c(CC)c(CC)c1<br />

MAr 16 n-Decylbenzene c1ccccc1CCCCCCCCCC<br />

MAr 17 1-Methyl-2-decylbenzene Cc1c(CCCCCCCCCC)cccc1<br />

MAr 17 1-Methyl-3-decylbenzene Cc1cc(CCCCCCCCCC)ccc1<br />

MAr 17 1-Methyl-4-decylbenzene Cc1ccc(CCCCCCCCCC)cc1<br />

MAr 17 1-Ethyl-2-nonylbenzene CCc1c(CCCCCCCCC)cccc1<br />

MAr 17 1-Ethyl-3-nonylbenzene CCc1cc(CCCCCCCCC)ccc1<br />

MAr 17 1-Ethyl-4-nonylbenzene CCc1ccc(CCCCCCCCC)cc1<br />

MAr 17 n-Undecylbenzene c1ccccc1CCCCCCCCCCC<br />

MAr 17 1-benzyl4,8dimethylnonane c1ccccc1CCCC(C)CCCC(C)C<br />

MAr 18 n-Dodecylbenzene c1ccccc1CCCCCCCCCCCC<br />

89


MAr 18 1-benzyl4,8dimethyldecane c1ccccc1CCCC(C)CCCC(C)CC<br />

MAr 19 1-benzyl4,8dimethylundecane c1ccccc1CCCC(C)CCCC(C)CCC<br />

MAr 19 n-tridecylbenzene c1ccccc1CCCCCCCCCCCCC<br />

MAr 20 1-benzyl4,8dimethyldodecane c1ccccc1CCCC(C)CCCC(C)CCCC<br />

MAr 20 n-tetradecylbenzene c1ccccc1CCCCCCCCCCCCCC<br />

MAr 21 1-benzyl4,8dimethyltridecane c1ccccc1CCCC(C)CCCC(C)CCCCC<br />

MAr 21 n-pentadecylbenzene c1ccccc1CCCCCCCCCCCCCCC<br />

MAr 22<br />

1-<br />

benzyl4,8,12trimethyltridecane c1ccccc1CCCC(C)CCCC(C)CCCC(C)C<br />

MAr 22 n-hexadecylbenzene c1ccccc1CCCCCCCCCCCCCCCC<br />

MAr 23<br />

1-benzyl-4,8,12-<br />

trimethyltetradecane<br />

c1ccccc1CCCC(C)CCCC(C)CCCC(C)CC<br />

MAr 23 n-heptadecylbenzene c1ccccc1CCCCCCCCCCCCCCCCC<br />

MAr 24<br />

1-benzyl-4,8,12-<br />

trimethylpentadecane<br />

c1ccccc1CCCC(C)CCCC(C)CCCC(C)CCC<br />

MAr 24 n-octadecylbenzene c1ccccc1CCCCCCCCCCCCCCCCCC<br />

MAr 25<br />

1-benzyl-4,8,12-<br />

trimethylhexadecane<br />

c1ccccc1CCCC(C)CCCC(C)CCCC(C)CCCC<br />

MAr 25 n-nonyldecylbenzene c1ccccc1CCCCCCCCCCCCCCCCCCC<br />

MAr 26<br />

1-benzyl-4,8,12-<br />

trimethylheptadecane<br />

c1ccccc1CCCC(C)CCCC(C)CCCC(C)CCCCC<br />

MAr 26 n-eicosylbenzene c1ccccc1CCCCCCCCCCCCCCCCCCCC<br />

MAr 27<br />

1-benzyl-4,8,12,16-<br />

tetramethylheptadecane<br />

c1ccccc1CCCC(C)CCCC(C)CCCC(C)CCCC(C)C<br />

MAr 27 n-heneicosylbenzene c1ccccc1CCCCCCCCCCCCCCCCCCCCC<br />

1-benzyl-4,8,12,16-<br />

c1ccccc1CCCC(C)CCCC(C)CCCC(C)CCCC(C)C<br />

MAr 28 tetramethyloctadecane<br />

C<br />

MAr 28 n-docosylbenzene c1ccccc1CCCCCCCCCCCCCCCCCCCCCC<br />

1-benzyl-4,8,12,16-<br />

c1ccccc1CCCC(C)CCCC(C)CCCC(C)CCCC(C)C<br />

MAr 29 tetramethylnonadecane<br />

CC<br />

MAr 29 n-tricosylbenzene c1ccccc1CCCCCCCCCCCCCCCCCCCCCCC<br />

1-benzyl-4,8,12,16-<br />

c1ccccc1CCCC(C)CCCC(C)CCCC(C)CCCC(C)C<br />

MAr 30 tetramethyleicosane<br />

CCC<br />

MAr 30 n-tetracosylbenzene c1ccccc1CCCCCCCCCCCCCCCCCCCCCCCC<br />

1-benzyl-4,8,12,16-<br />

c1ccccc1CCCC(C)CCCC(C)CCCC(C)CCCC(C)C<br />

MAr 31 tetramethylheneicosane<br />

CCCC<br />

MAr 31 n-pentacosylbenzene c1ccccc1CCCCCCCCCCCCCCCCCCCCCCCCC<br />

1-benzyl-4,8,12,16-<br />

c1ccccc1CCCC(C)CCCC(C)CCCC(C)CCCC(C)C<br />

MAr 32 pentamethylheneicosane CCC(C)C<br />

NMAr 9 Indan(dihydroindene) c1ccc2CCCc2c1<br />

NMAr 9 cyclopropylbenzene c1ccccc1C2CC2<br />

NMAr 10 Methylindan c1ccc2CC(C)Cc2c1<br />

NMAr 10 Tetralin(tetrahydronaphthalene) c1ccc2CCCCc2c1<br />

NMAr 11 Ethylindan c1ccc2CC(CC)Cc2c1<br />

NMAr 11 Methyltetralin c1ccc2CC(C)CCc2c1<br />

NMAr 11 1,4dimethylindane c1cc(C)c2CC(C)Cc2c1<br />

NMAr 12 iso-Propylindan c1ccc2CC(C(C)C)Cc2c1<br />

NMAr 12 1,2-Dimethyltetralin c1ccc2C(C)C(C)CCc2c1<br />

NMAr 12 1,3-Dimethyltetralin c1ccc2C(C)CC(C)Cc2c1<br />

NMAr 12 1,4-Dimethyltetralin c1ccc2C(C)CCC(C)c2c1<br />

90


NMAr 12 n-Propylindan c1ccc2CC(CCC)Cc2c1<br />

NMAr 12 Ethyltetralin c1ccc2CC(CC)CCc2c1<br />

NMAr 12 1-ethyl4-methylindane c1cc(C)c2CC(CC)Cc2c1<br />

NMAr 13 1,2,3-Trimethyltetralin c1ccc2C(C)C(C)C(C)Cc2c1<br />

NMAr 13 1,2,4-Trimethyltetralin c1ccc2C(C)C(C)CC(C)c2c1<br />

NMAr 13 iso-Butylindan c1ccc2CC(CC(C)C)Cc2c1<br />

NMAr 13 n-Butylindan c1ccc2CC(CCCC)Cc2c1<br />

NMAr 13 5,6,7-Trimethyltetralin Cc1c(C)cc2CCCCc2c1C<br />

NMAr 13 1,4diethylindane c1cc(CC)c2CC(CC)Cc2c1<br />

NMAr 14 Octahydro-phenanthrene c1ccc2CCC3CCCCC3c2c1<br />

NMAr 14 5,6-Dimethyltetralin Cc1ccc2CCCCc2c1C<br />

NMAr 14 6,7-Dimethyltetralin Cc1c(C)cc2CCCCc2c1<br />

NMAr 14 6,8-Dimethyltetralin Cc1cc(C)c2CCCCc2c1<br />

NMAr 14 iso-Propyltetralin c1ccc2CC(C(C)C)CCc2c1<br />

NMAr 14 n-Propyltetralin c1ccc2CC(CCC)CCc2c1<br />

NMAr 14 1,2,3,4-Tetramethyltetralin c1ccc2C(C)C(C)C(C)C(C)c2c1<br />

NMAr 14 iso-Pentylindan c1ccc2CC(CCC(C)C)Cc2c1<br />

NMAr 14 2-Methyl-n-butylindan c1ccc2CC(CC(C)CC)Cc2c1<br />

NMAr 14 iso-Butyltetralin c1ccc2CC(CC(C)C)CCc2c1<br />

NMAr 14 n-Pentylindan c1ccc2CC(CCCCC)Cc2c1<br />

NMAr 14 n-Butyltetralin c1ccc2CC(CCCC)CCc2c1<br />

NMAr 14 5,6,7,8-Tetramethyltetralin Cc1c(C)c(C)c2CCCCc2c1C<br />

NMAr 14 1-methyl5-isopropyltetralin c1c(C(C)C)cc2CC(C)CCc2c1<br />

NMAr 14 1-methyl5-n-propyltetralin c1c(CCC)cc2CC(C)CCc2c1<br />

NMAr 14 1-ethyl4-propylylindane c1cc(CCC)c2CC(CC)Cc2c1<br />

NMAr 15 Methyl-octahydro-phenanthrene c1ccc2CCC3CC(C)CCC3c2c1<br />

NMAr 15 iso-Hexylindan c1ccc2CC(CCCC(C)C)Cc2c1<br />

NMAr 15 2-Methyl-n-pentylindan c1ccc2CC(CC(C)CCC)Cc2c1<br />

NMAr 15 iso-Pentyltetralin c1ccc2CC(CCC(C)C)CCc2c1<br />

NMAr 15 2-Methyl-n-butyltetralin c1ccc2CC(CC(C)CC)CCc2c1<br />

NMAr 15 n-Hexylindan c1ccc2CC(CCCCCC)Cc2c1<br />

NMAr 15 n-Pentyltetralin c1ccc2CC(CCCCC)CCc2c1<br />

NMAr 15 1-methyl5-2methylpropyltetralin c1c(CC(C)C)cc2CC(C)CCc2c1<br />

NMAr 15 1-ethyl4-butylindane c1cc(CCCC)c2CC(CC)Cc2c1<br />

NMAr 16 Ethyl-octahydro-phenanthrene c1ccc2CCC3CC(CC)CCC3c2c1<br />

NMAr 16 iso-Heptylindan c1ccc2CC(CCCCC(C)C)Cc2c1<br />

NMAr 16 2-Methyl-n-hexylindan c1ccc2CC(CC(C)CCCC)Cc2c1<br />

NMAr 16 iso-Hexyltetralin c1ccc2CC(CCCC(C)C)CCc2c1<br />

NMAr 16 2-Methyl-n-pentyltetralin c1ccc2CC(CC(C)CCC)CCc2c1<br />

NMAr 16 n-Heptylindan c1ccc2CC(CCCCCCC)Cc2c1<br />

NMAr 16 n-Hexyltetralin c1ccc2CC(CCCCCC)CCc2c1<br />

NMAr 16 1-methyl5-2methylbutyltetralin c1c(CC(C)CC)cc2CC(C)CCc2c1<br />

NMAr 16 1-ethyl4-isopentylindane c1cc(CC(C)CC)c2CC(CC)Cc2c1<br />

NMAr 17<br />

iso-Propyl-octahydrophenanthrene<br />

c1ccc2CCC3CC(C(C)C)CCC3c2c1<br />

NMAr 17<br />

n-Propyl-octahydrophenanthrene<br />

c1ccc2CCC3CC(CCC)CCC3c2c1<br />

NMAr 17 iso-Octylindan c1ccc2CC(CCCCCC(C)C)Cc2c1<br />

NMAr 17 2-Methyl-n-heptylindan c1ccc2CC(CC(C)CCCCC)Cc2c1<br />

NMAr 17 iso-Heptyltetralin c1ccc2CC(CCCCC(C)C)CCc2c1<br />

NMAr 17 2-Methyl-n-hexyltetralin c1ccc2CC(CC(C)CCCC)CCc2c1<br />

91


NMAr 17 n-Octylindan c1ccc2CC(CCCCCCCC)Cc2c1<br />

NMAr 17 n-Heptyltetralin c1ccc2CC(CCCCCCC)CCc2c1<br />

NMAr 17 1-methyl5-2methylpentyltetralin c1c(CC(C)CCC)cc2CC(C)CCc2c1<br />

NMAr 17 1-ethyl4-2methypenyllindane c1cc(CC(C)CCC)c2CC(CC)Cc2c1<br />

NMAr 18 Dodecahydro-Chrysene c1ccc2CCC3C4CCCCC4CCC3c2c1<br />

NMAr 18<br />

iso-Butyl-octahydrophenanthrene<br />

c1ccc2CCC3CC(CC(C)C)CCC3c2c1<br />

NMAr 18<br />

n-Butyl-octahydrophenanthrene<br />

c1ccc2CCC3CC(CCCC)CCC3c2c1<br />

NMAr 18 iso-Nonylindan c1ccc2CC(CCCCCCC(C)C)Cc2c1<br />

NMAr 18 2-Methyl-n-octylindan c1ccc2CC(CC(C)CCCCCC)Cc2c1<br />

NMAr 18 iso-Octyltetralin c1ccc2CC(CCCCCC(C)C)CCc2c1<br />

NMAr 18 2-Methyl-n-heptyltetralin c1ccc2CC(CC(C)CCCCC)CCc2c1<br />

NMAr 18 n-Nonylindan c1ccc2CC(CCCCCCCCC)Cc2c1<br />

NMAr 18 n-Octyltetralin c1ccc2CC(CCCCCCCC)CCc2c1<br />

NMAr 18 1-methyl5-2methylhexyltetralin c1c(CC(C)CCCC)cc2CC(C)CCc2c1<br />

NMAr 18 1-ethyl4-2methylhexylindane c1cc(CC(C)CCCC)c2CC(CC)Cc2c1<br />

NMAr 18 bicyclohexyl-benzene C(C(CCCC1)C1)(CC(c3ccccc3)CC2)C2<br />

NMAr 19 Methyl-dodecahydro-chyrsene c1ccc2CCC3C4CC(C)CCC4CCC3c2c1<br />

NMAr 19<br />

iso-Pentyl-octahydrophenanthrene<br />

c1ccc2CCC3CC(CCC(C)C)CCC3c2c1<br />

NMAr 19<br />

n-Pentyl-octahydrophenanthrene<br />

c1ccc2CCC3CC(CCCCC)CCC3c2c1<br />

NMAr 19 iso-Decylindan c1ccc2CC(CCCCCCCC(C)C)Cc2c1<br />

NMAr 19 2-Methyl-n-nonylindan c1ccc2CC(CC(C)CCCCCCC)Cc2c1<br />

NMAr 19 iso-Nonyltetralin c1ccc2CC(CCCCCCC(C)C)CCc2c1<br />

NMAr 19 2-Methyl-n-octyltetralin c1ccc2CC(CC(C)CCCCCC)CCc2c1<br />

NMAr 19 n-Decylindan c1ccc2CC(CCCCCCCCCC)Cc2c1<br />

NMAr 19 n-Nonyltetralin c1ccc2CC(CCCCCCCCC)CCc2c1<br />

NMAr 19 1-methyl5-2methylheptyltetralin c1c(CC(C)CCCCC)cc2CC(C)CCc2c1<br />

NMAr 19 1-ethyl4-2methylheptylindane c1cc(CC(C)CCCCC)c2CC(CC)Cc2c1<br />

NMAr 19 methyl-bicylohexyl-benzene C(C(CC(C)CC1)C1)(CC(c3ccccc3)CC2)C2<br />

NMAr 20 Ethyl-dodecahydro-chrysene c1ccc2CCC3C4CC(CC)CCC4CCC3c2c1<br />

NMAr 20<br />

iso-Hexyl-octahydrophenanthrene<br />

c1ccc2CCC3CC(CCCC(C)C)CCC3c2c1<br />

NMAr 20<br />

n-Hexyl-octahydrophenanthrene<br />

c1ccc2CCC3CC(CCCCCC)CCC3c2c1<br />

NMAr 20 1-methyl5-2methyloctyltetralin c1c(CC(C)CCCCCC)cc2CC(C)CCc2c1<br />

NMAr 20 2,4dimethyloctyltetralin c1ccc2CC(CC(C)CC(C)CCCC)CCc2c1<br />

NMAr 20 1-ethyl4-2methyoctyllindane c1cc(CC(C)CCCCCC)c2CC(CC)Cc2c1<br />

NMAr 20 ethyl-bicylohexyl-benzene C(C(CC(CC)CC1)C1)(CC(c3ccccc3)CC2)C2<br />

NMAr 21<br />

iso-Propyl-dodecahydrochyrsene<br />

c1ccc2CCC3C4CC(C(C)C)CCC4CCC3c2c1<br />

NMAr 21<br />

n-Propyl-dodecahydrochyrsene<br />

c1ccc2CCC3C4CC(CCC)CCC4CCC3c2c1<br />

NMAr 21<br />

iso-Heptyl-octahydrophenanthrene<br />

c1ccc2CCC3CC(CCCCC(C)C)CCC3c2c1<br />

NMAr 21<br />

n-Heptyl-octahydrophenanthrene<br />

c1ccc2CCC3CC(CCCCCCC)CCC3c2c1<br />

NMAr 21 1-methyl5-2methylnonyltetralin c1c(CC(C)CCCCCCC)cc2CC(C)CCc2c1<br />

NMAr 21 2,4,6trimethyloctyltetralin c1ccc2CC(CC(C)CC(C)CC(C)CC)CCc2c1<br />

NMAr 21 1-ethyl4-2,6dimethyloctylindane c1cc(CC(C)CCCC(C)CC)c2CC(CC)Cc2c1<br />

92


NMAr 24<br />

c1cc(CC(C)CCCC(C)CCCCC)c2CC(CC)Cc2c1<br />

NMAr 21<br />

isohexyl-octahydrophenanthrene<br />

c1ccc2CCC3CC(CC(C)CCCC)CCC3c2c1<br />

NMAr 21 isopropyl-bicylohexyl-benzene C(C(CC(C(C)C)CC1)C1)(CC(c3ccccc3)CC2)C2<br />

NMAr 22<br />

iso-Butyl-dodecahydrochyrsene<br />

c1ccc2CCC3C4CC(CC(C)C)CCC4CCC3c2c1<br />

NMAr 22 n-Butyl-dodecahydro-chyrsene c1ccc2CCC3C4CC(CCCC)CCC4CCC3c2c1<br />

NMAr 22 Hexadecahydro-Picene<br />

C12=CC=C4C(CCC5C4CCCC5)=C1CCC3C2CC<br />

CC3<br />

NMAr 22<br />

1-methyl-5-(2,6-<br />

dimethylnonyl)tetralin<br />

c1c(CC(C)CCCC(C)CCC)cc2CC(C)CCc2c1<br />

NMAr 22 2,4,6trimethylnonyltetralin c1ccc2CC(CC(C)CC(C)CC(C)CCC)CCc2c1<br />

NMAr 22<br />

1-ethyl4-<br />

2,6dimethylnonylindane<br />

c1cc(CC(C)CCCC(C)CCC)c2CC(CC)Cc2c1<br />

NMAr 22<br />

isoheptyl-octahydrophenanthrene<br />

c1ccc2CCC3CC(CC(C)CCCCC)CCC3c2c1<br />

NMAr 22 isobutyl-bicylohexyl-benzene C(C(CC(CC(C)C)CC1)C1)(CC(c3ccccc3)CC2)C2<br />

NMAr 22<br />

methyl-tetrahydrobenzo(a)pyrene<br />

c(c(c(cc1)cc(C)c2)c2cc3)(c3cc(c4CCC5)C5)c14<br />

NMAr 23<br />

iso-Pentyl-dodecahydrochyrsene<br />

c1ccc2CCC3C4CC(CCC(C)C)CCC4CCC3c2c1<br />

NMAr 23 n-Pentyl-dodecahydro-chyrsene c1ccc2CCC3C4CC(CCCCC)CCC4CCC3c2c1<br />

NMAr 23 Methyl-hexadecahydro-picene<br />

C12=CC=C4C(CCC5C4CCCC5)=C1CCC3C2CC<br />

C(C)C3<br />

NMAr 23<br />

1-methyl-5-(2,6-<br />

dimethyldecyl)tetralin<br />

c1c(CC(C)CCCC(C)CCCC)cc2CC(C)CCc2c1<br />

NMAr 23 2,4,6-trimethyldecyltetralin c1ccc2CC(CC(C)CC(C)CC(C)CCCC)CCc2c1<br />

NMAr 23<br />

1-ethyl-4-(2,6-<br />

dimethyldecyl)indane<br />

c1cc(CC(C)CCCC(C)CCCC)c2CC(CC)Cc2c1<br />

NMAr 23<br />

2,6-dimethylheptyl-octahydrophenanthrene<br />

c1ccc2CCC3CC(CC(C)CCCC(C)C)CCC3c2c1<br />

NMAr 23 isopentyl-bicylohexyl-benzene<br />

C(C(CC(CC(C)CC)CC1)C1)(CC(c3ccccc3)CC2)C<br />

2<br />

NMAr 23 isopentyldodecahydro-chyrsene c1ccc2CCC3C4CCC(CC(C)CC)CC4CCC3c2c1<br />

NMAr 23<br />

ethyl-tetrahydrobenzo(a)pyrene<br />

c(c(c(cc1)cc(CC)c2)c2cc3)(c3cc(c4CCC5)C5)c14<br />

NMAr 23 Methyl-hexadecahydro-picene<br />

C12=CC=C4C(CCC5C4CCCC5)=C1CCC3C2CC<br />

C(C)C3<br />

NMAr 24<br />

1-methyl-(5-2,6-<br />

dimethylundecyl)tetralin<br />

c1c(CC(C)CCCC(C)CCCCC)cc2CC(C)CCc2c1<br />

NMAr 24<br />

2,4,6,10-<br />

tetramethyldecyltetralin<br />

c1ccc2CC(CC(C)CC(C)CC(C)CC(C)CC)CCc2c1<br />

1-ethyl-4-(2,6-<br />

dimethylundecyl)indane<br />

2,6-dimethyloctyl-octahydrophenanthrene<br />

NMAr 24<br />

c1ccc2CCC3CC(CC(C)CCCC(C)CC)CCC3c2c1<br />

NMAr 24 isohexyl-bicylohexyl-benzene<br />

C(C(CC(CC(C)CCC)CC1)C1)(CC(c3ccccc3)CC2)<br />

C2<br />

NMAr 24 isohexyldodecahydro-chyrsene c1ccc2CCC3C4CCC(CC(C)CCC)CC4CCC3c2c1<br />

propyl-tetrahydrobenzo(a)pyrene<br />

c(c(c(cc1)cc(CCC)c2)c2cc3)(c3cc(c4CCC5)C5)c1<br />

NMAr 24<br />

4<br />

NMAr 24 Ethyl-hexadecahydro-picene<br />

C12=CC=C4C(CCC5C4CCCC5)=C1CCC3C2CC<br />

C(CC)C3<br />

NMAr 25<br />

1-methyl-5-(2,6-<br />

dimethyldodecyl)tetralin<br />

c1c(CC(C)CCCC(C)CCCCCC)cc2CC(C)CCc2c1<br />

2,4,6,10tetramethylundecyltetra c1ccc2CC(CC(C)CC(C)CC(C)CC(C)CCC)CCc2c<br />

NMAr 25 lin<br />

1<br />

NMAr 25 1-ethyl-4-(2,6- c1cc(CC(C)CCCC(C)CCCCCC)c2CC(CC)Cc2c1<br />

93


NMAr 25<br />

NMAr 25 isoheptyl-bicylohexyl-benzene<br />

NMAr 25 Propyl-hexadecahydro-picene<br />

NMAr 26<br />

NMAr 26<br />

NMAr 26<br />

NMAr 26<br />

NMAr 26<br />

dimethyldodecyl)indane<br />

2,6-dimethylnonyl-octahydrophenanthrene<br />

NMAr 25 isoheptyldodecahydro-chyrsene<br />

isobutyl-tetrahydrobenzo(a)pyrene<br />

NMAr 25<br />

1-methyl-5-(2,6-<br />

dimethyltridecyl)tetralin<br />

2,4,6,10tetramethyldodecyltetra<br />

lin<br />

1-ethyl-4-(2,6,10-<br />

trimethyldodecyl)indane<br />

2,6-dimethyldecyl-octahydrophenanthrene<br />

NMAr 26 isooctyldodecahydro-chyrsene<br />

isopentyl-tetrahydrobenzo(a)pyrene<br />

NMAr 26<br />

NMAr 26 Isobutyl-hexadecahydro-picene<br />

1-methyl-5-(2,6,10-<br />

NMAr 27 trimethyltridecyl)tetralin<br />

1-ethyl-4-(2,6,10-<br />

NMAr 27 trimethyltridecyl)indane<br />

2,6-dimethylundecyl-octahydrophenanthrene<br />

NMAr 27<br />

2,6-<br />

dimethylheptyldodecahydrochyrsene<br />

NMAr 27<br />

isohexyl-tetrahydrobenzo(a)pyrene<br />

NMAr 27<br />

Isopentyl-hexadecahydropicene<br />

NMAr 27<br />

1-methyl-5-(2,6,10-<br />

NMAr 28 trimethyltetradecyl)tetralin<br />

2,4,6,10-pentamethyldodecyltetralin<br />

NMAr 28<br />

1-ethyl-4-(2,6,10-<br />

NMAr 28 trimethylteradecyl)indane<br />

2,6,10-trimethylundecyloctahydro-phenanthrene<br />

NMAr 28<br />

2,6-dimethyloctyldodecahydrochyrsene<br />

NMAr 28<br />

isoheptyl-tetrahydrobenzo(a)pyrene<br />

NMAr 28<br />

2,6-dimethylheptyl-tetrahydrobenzo(a)pyrene<br />

NMAr 28<br />

NMAr 28 Isohexyl-hexadecahydro-picene<br />

1-methyl5-<br />

2,6,10trimethylpentadecyltetrali<br />

NMAr 29 n<br />

c1ccc2CCC3CC(CC(C)CCCC(C)CCC)CCC3c2c1<br />

C(C(CC(CC(C)CCCC)CC1)C1)(CC(c3ccccc3)CC<br />

2)C2<br />

c1ccc2CCC3C4CCC(CC(C)CCCC)CC4CCC3c2c<br />

1<br />

c(c(c(cc1)cc(CC(C)C)c2)c2cc3)(c3cc(c4CCC5)C5<br />

)c14<br />

C12=CC=C4C(CCC5C4CCCC5)=C1CCC3C2CC<br />

C(CCC)C3<br />

C12=CC=C4C(CCC5C4CCC6C5CCCC6)=C1CC<br />

C3C2CCCC3<br />

c1c(CC(C)CCCC(C)CCCCCCC)cc2CC(C)CCc2c<br />

1<br />

c1ccc2CC(CC(C)CC(C)CC(C)CC(C)CCCC)CCc2<br />

c1<br />

c1cc(CC(C)CCCC(C)CCCC(C)CC)c2CC(CC)Cc2<br />

c1<br />

c1ccc2CCC3CC(CC(C)CCCC(C)CCCC)CCC3c2c<br />

1<br />

c1ccc2CCC3C4CCC(CC(C)CCCCC)CC4CCC3c2<br />

c1<br />

c(c(c(cc1)cc(CC(C)CC)c2)c2cc3)(c3cc(c4CCC5)C<br />

5)c14<br />

C12=CC=C4C(CCC5C4CCCC5)=C1CCC3C2CC<br />

C(CC(C)C)C3<br />

c1c(CC(C)CCCC(C)CCCC(C)CCC)cc2CC(C)CCc<br />

2c1<br />

c1cc(CC(C)CCCC(C)CCCC(C)CCC)c2CC(CC)Cc<br />

2c1<br />

c1ccc2CCC3CC(CC(C)CCCC(C)CCCCC)CCC3c<br />

2c1<br />

c1ccc2CCC3C4CCC(CC(C)CCCC(C)C)CC4CCC<br />

3c2c1<br />

c(c(c(cc1)cc(CC(C)CCC)c2)c2cc3)(c3cc(c4CCC5)<br />

C5)c14<br />

C12=CC=C4C(CCC5C4CCCC5)=C1CCC3C2CC<br />

C(CC(C)CC)C3<br />

c1c(CC(C)CCCC(C)CCCC(C)CCCC)cc2CC(C)C<br />

Cc2c1<br />

c1ccc2CC(CC(C)CC(C)CC(C)CC(C)CC(C)CCC)C<br />

Cc2c1<br />

c1cc(CC(C)CCCC(C)CCCC(C)CCCC)c2CC(CC)<br />

Cc2c1<br />

c1ccc2CCC3CC(CC(C)CCCC(C)CCCC(C)C)CCC<br />

3c2c1<br />

c1ccc2CCC3C4CCC(CC(C)CCCC(C)CC)CC4CC<br />

C3c2c1<br />

c(c(c(cc1)cc(CC(C)CCCC)c2)c2cc3)(c3cc(c4CCC<br />

5)C5)c14<br />

c(c(c(cc1)cc(CC(C)CCCC(C))c2)c2cc3)(c3cc(c4C<br />

CC5)C5)c14<br />

C12=CC=C4C(CCC5C4CCCC5)=C1CCC3C2CC<br />

C(CC(C)CCC)C3<br />

c1c(CC(C)CCCC(C)CCCC(C)CCCCC)cc2CC(C)<br />

CCc2c1<br />

94


NMAr 29<br />

NMAr 29<br />

NMAr 29<br />

NMAr 29<br />

NMAr 29<br />

NMAr 29<br />

2,4,6,10pentamethyltridecyltetr<br />

alin<br />

1-ethyl4-<br />

2,6,10trimethylpentaadecylinda<br />

ne<br />

2,6,10-trimethyldodecyloctahydro-phenanthrene<br />

2,6-dimethylnonyldodecahydrochyrsene<br />

2,6-dimethyloctyl-tetrahydrobenzo(a)pyrene<br />

Isoheptyl-hexadecahydropicene<br />

NMAr 30 #15---------<br />

1-methyl5-<br />

NMAr 30 2,6,10trimethyhexadecyltetralin<br />

2,4,6,10pentamethyltetradecylt<br />

NMAr 30 etralin<br />

1-ethyl4-<br />

NMAr 30 2,6,10trimethylhexadecylindane<br />

2,6,10-trimethyltridecyloctahydro-phenanthrene<br />

NMAr 30<br />

2,6-dimethyldecyldodecahydrochyrsene<br />

NMAr 30<br />

2,6-dimethylnonyl-tetrahydrobenzo(a)pyrene<br />

NMAr 30<br />

NMAr 30 Isooctyl-hexadecahydro-picene<br />

1-methyl5-<br />

2,6,10,14tetramethyltridecyltetr<br />

NMAr 31 alin<br />

2,4,6,10pentamethylpentadecylt<br />

NMAr 31 etralin<br />

1-ethyl4-<br />

2,6,10,14tetramethylhexadecyli<br />

NMAr 31 ndane<br />

2-methyloctylhexadecahydropicene<br />

NMAr 31<br />

2,4,6,10pentamethylhexadecylt<br />

NMAr 32 etralin<br />

2,6-dimethyoctylhexadecahydro-picene<br />

NMAr 32<br />

c1ccc2CC(CC(C)CC(C)CC(C)CC(C)CC(C)CCCC)<br />

CCc2c1<br />

c1cc(CC(C)CCCC(C)CCCC(C)CCCCC)c2CC(CC<br />

)Cc2c1<br />

c1ccc2CCC3CC(CC(C)CCCC(C)CCCC(C)CC)CC<br />

C3c2c1<br />

c1ccc2CCC3C4CCC(CC(C)CCCC(C)CCC)CC4C<br />

CC3c2c1<br />

c(c(c(cc1)cc(CC(C)CCCC(C)C)c2)c2cc3)(c3cc(c4<br />

CCC5)C5)c14<br />

C12=CC=C4C(CCC5C4CCCC5)=C1CCC3C2CC<br />

C(CC(C)CCCC)C3<br />

C12=CC=CC=C1CC3C(CCC4C3CCC5C4CC(CC<br />

C7C6CCCC7)C6C5)C2<br />

c1c(CC(C)CCCC(C)CCCC(C)CCCCCC)cc2CC(C<br />

)CCc2c1<br />

c1ccc2CC(CC(C)CC(C)CC(C)CC(C)CC(C)CC(C)<br />

CC)CCc2c1<br />

c1cc(CC(C)CCCC(C)CCCC(C)CCCCCC)c2CC(C<br />

C)Cc2c1<br />

c1ccc2CCC3CC(CC(C)CCCC(C)CCCC(C)CCC)C<br />

CC3c2c1<br />

c1ccc2CCC3C4CCC(CC(C)CCCC(C)CCCC)CC4<br />

CCC3c2c1<br />

c(c(c(cc1)cc(CC(C)CCCC(C)CC)c2)c2cc3)(c3cc(c<br />

4CCC5)C5)c14<br />

C12=CC=C4C(CCC5C4CCCC5)=C1CCC3C2CC<br />

C(CC(C)CCCCC)C3<br />

c1c(CC(C)CCCC(C)CCCC(C)CCCC(C)CC)cc2C<br />

C(C)CCc2c1<br />

c1ccc2CC(CC(C)CC(C)CC(C)CC(C)CC(C)CC(C)<br />

CCC)CCc2c1<br />

c1cc(CC(C)CCCC(C)CCCC(C)CCCC(C)CC)c2C<br />

C(CC)Cc2c1<br />

c12ccc3c(c2CCC5C1CCC(CC(C)CCCCCC)C5)C<br />

CC4C3CCCC4<br />

c1ccc2CC(CC(C)CC(C)CC(C)CC(C)CC(C)CC(C)<br />

CCCC)CCc2c1<br />

c12ccc3c(c2CCC5C1CCC(CC(C)CCCC(C)CC)C5<br />

)CCC4C3CCCC4<br />

DAr 10 Naphthalene c1ccc2ccccc2c1<br />

DAr 10 1,2-Dimethylnaphthalene Cc1ccc2ccccc2c1C<br />

DAr 11 2-Methylnaphthalene Cc1ccc2ccccc2c1<br />

DAr 11 1-Methylnaphthalene c1ccc2ccccc2c1C<br />

DAr 12 Biphenyl c1ccccc1c2ccccc2<br />

DAr 12 2,6-Dimethylnaphthalene Cc1ccc2cc(C)ccc2c1<br />

DAr 12 2,7-Dimethylnaphthalene Cc1ccc2ccc(C)cc2c1<br />

DAr 12 2-Ethylnaphthalene CCc1ccc2ccccc2c1<br />

DAr 12 2,3-Dimethylnaphthalene Cc1c(C)cc2ccccc2c1<br />

DAr 12 1-Ethylnaphthalene c1ccc2ccccc2c1CC<br />

DAr 12 2,4-Dimethylnaphthalene Cc1cc(C)c2ccccc2c1<br />

95


DAr 12 2,5-Dimethylnaphthalene Cc1ccc2c(C)cccc2c1<br />

DAr 12 2,8-Dimethylnaphthalene Cc1ccc2cccc(C)c2c1<br />

DAr 12 2-iso-Propylnaphthalene CC(C)c1ccc2ccccc2c1<br />

DAr 13 4-Methylbiphenyl c1ccccc1c2ccc(C)cc2<br />

DAr 13 2-Propylnaphthalene CCCc1ccc2ccccc2c1<br />

DAr 13 1-Propylnaphthalene c1ccc2ccccc2c1CCC<br />

DAr 13 2,3,6-Trimethylnaphthalene Cc1c(C)cc2cc(C)ccc2c1<br />

DAr 13 2,3,7-Trimethylnaphthalene Cc1c(C)cc2ccc(C)cc2c1<br />

DAr 13 4-Ethylbiphenyl c1ccccc1c2ccc(CC)cc2<br />

DAr 13 1,2,4-Trimethylnaphthalene Cc1cc(C)c2ccccc2c1C<br />

DAr 13 1,2,5-Trimethylnaphthalene Cc1ccc2c(C)cccc2c1C<br />

DAr 13 2,3,4-Trimethylnaphthalene Cc1c(C)c(C)c2ccccc2c1<br />

DAr 13 2,3,5-Trimethylnaphthalene Cc1c(C)cc2c(C)cccc2c1<br />

DAr 13 2,3,8-Trimethylnaphthalene Cc1c(C)cc2cccc(C)c2c1<br />

DAr 13 2,4,5-Trimethylnaphthalene Cc1cc(C)c2c(C)cccc2c1<br />

DAr 13 2,4,6-Trimethylnaphthalene Cc1cc(C)c2cc(C)ccc2c1<br />

DAr 13 2,4,7-Trimethylnaphthalene Cc1cc(C)c2ccc(C)cc2c1<br />

DAr 13 2,4,8-Trimethylnaphthalene Cc1cc(C)c2cccc(C)c2c1<br />

DAr 13 2,3-Dimethylbiphenyl Cc1c(C)cccc1c2ccccc2<br />

DAr 14 1,2,3-Trimethylnaphthalene Cc1c(C)cc2ccccc2c1C<br />

DAr 14 2,4-Dimethylbiphenyl Cc1cc(C)ccc1c2ccccc2<br />

DAr 14 2-iso-Butylnaphthalene CC(C)Cc1ccc2ccccc2c1<br />

DAr 14 2-Butylnaphthalene CCCCc1ccc2ccccc2c1<br />

DAr 14 1-Butylnaphthalene c1ccc2ccccc2c1CCCC<br />

DAr 14 4-Propylbiphenyl c1ccccc1c2ccc(CCC)cc2<br />

DAr 14 2,3,4,5-Tetramethylnaphthalene Cc1c(C)c(C)c2c(C)cccc2c1<br />

DAr 14 2,3,4,6-Tetramethylnaphthalene Cc1c(C)c(C)c2cc(C)ccc2c1<br />

DAr 14 2,3,4,7-Tetramethylnaphthalene Cc1c(C)c(C)c2ccc(C)cc2c1<br />

DAr 14 2,3,4,8-Tetramethylnaphthalene Cc1c(C)c(C)c2cccc(C)c2c1<br />

DAr 14 2,3,4-Trimethylbiphenyl Cc1c(C)c(C)ccc1c2ccccc2<br />

DAr 15 1,2,3,4-Tetramethylnaphthalene Cc1c(C)c(C)c2ccccc2c1C<br />

DAr 15 2,4,6-Trimethylbiphenyl Cc1cc(C)cc(C)c1c2ccccc2<br />

DAr 15 4-iso-Propylbiphenyl c1ccccc1c2ccc(C(C)C)cc2<br />

DAr 15 2-iso-Pentylnaphthalene CC(C)CCc1ccc2ccccc2c1<br />

DAr 15 2-(2-Methylbutyl)naphthalene CCC(C)Cc1ccc2ccccc2c1<br />

DAr 15 2-Pentylnaphthalene CCCCCc1ccc2ccccc2c1<br />

DAr 15 1-Pentylnaphthalene c1ccc2ccccc2c1CCCCC<br />

DAr 15 4-iso-Butylbiphenyl c1ccccc1c2ccc(CC(C)C)cc2<br />

DAr 15<br />

1,2,3,4,6-<br />

Pentamethylnaphthalene Cc1c(C)c(C)c2cc(C)ccc2c1C<br />

DAr 15<br />

1,2,3,4,7-<br />

Pentamethylnaphthalene Cc1c(C)c(C)c2ccc(C)cc2c1C<br />

DAr 15<br />

1,2,3,4,8-<br />

Pentamethylnaphthalene Cc1c(C)c(C)c2cccc(C)c2c1C<br />

DAr 15 2,3,4,5-Trimethylbiphenyl Cc1c(C)c(C)c(C)cc1c2ccccc2<br />

DAr 16 4-Butylbiphenyl c1ccccc1c2ccc(CCCC)cc2<br />

DAr 16<br />

1,2,3,4,5-<br />

Pentamethylnaphthalene Cc1c(C)c(C)c2c(C)cccc2c1C<br />

DAr 16 2-iso-Hexylnaphthalene CC(C)CCCc1ccc2ccccc2c1<br />

DAr 16 2-(2-Methylpentyl)naphthalene CCCC(C)Cc1ccc2ccccc2c1<br />

DAr 16 2-(3-Methylpentyl)naphthalene CCC(C)CCc1ccc2ccccc2c1<br />

96


DAr 16 2-Hexylnaphthalene CCCCCCc1ccc2ccccc2c1<br />

DAr 16 1-Hexylnaphthalene c1ccc2ccccc2c1CCCCCC<br />

DAr 16 4-iso-Pentylbiphenyl c1ccccc1c2ccc(CCC(C)C)cc2<br />

DAr 16<br />

1,2,3,4,5,7-<br />

Hexamethylnaphthalene<br />

Cc1c(C)c(C)c2c(C)cc(C)cc2c1C<br />

DAr 16<br />

1,2,3,4,5,8-<br />

Hexamethylnaphthalene<br />

Cc1c(C)c(C)c2c(C)ccc(C)c2c1C<br />

DAr 16 2-iso-Heptylnaphthalene CC(C)CCCCc1ccc2ccccc2c1<br />

DAr 17 4-Pentylbiphenyl c1ccccc1c2ccc(CCCCC)cc2<br />

DAr 17<br />

1,2,3,4,5,6-<br />

Hexamethylnaphthalene<br />

Cc1c(C)c(C)c2c(C)c(C)ccc2c1C<br />

DAr 17 2-(2-Methylhexyl)naphthalene CCCCC(C)Cc1ccc2ccccc2c1<br />

DAr 17 2-(3-Methylhexyl)naphthalene CCCC(C)CCc1ccc2ccccc2c1<br />

DAr 17 2-(4-Methylhexyl)naphthalene CCC(C)CCCc1ccc2ccccc2c1<br />

DAr 17 2-Heptylnaphthalene CCCCCCCc1ccc2ccccc2c1<br />

DAr 17 1-Heptylnaphthalene c1ccc2ccccc2c1CCCCCCC<br />

DAr 17 4-iso-Hexylbiphenyl c1ccccc1c2ccc(CCCC(C)C)cc2<br />

DAr 17<br />

1,2,3,4,5,6,8-<br />

Heptylmethylnaphthalene Cc1c(C)c(C)c2c(C)c(C)cc(C)c2c1C<br />

DAr 17 2-iso-Octylnaphthalene CC(C)CCCCCc1ccc2ccccc2c1<br />

DAr 18 4-Hexylbiphenyl c1ccccc1c2ccc(CCCCCC)cc2<br />

DAr 18<br />

1,2,3,4,5,6,7-<br />

Heptylmethylnaphthalene Cc1c(C)c(C)c2c(C)c(C)c(C)cc2c1C<br />

DAr 18 2-(2-Methylheptyl)naphthalene CCCCCC(C)Cc1ccc2ccccc2c1<br />

DAr 18 2-(3-Methylheptyl)naphthalene CCCCC(C)CCc1ccc2ccccc2c1<br />

DAr 18 2-(4-Methylheptyl)naphthalene CCCC(C)CCCc1ccc2ccccc2c1<br />

DAr 18 2-Octylnaphthalene CCCCCCCCc1ccc2ccccc2c1<br />

DAr 18 1-Octylnaphthalene c1ccc2ccccc2c1CCCCCCCC<br />

DAr 18 4-iso-Heptylbiphenyl c1ccccc1c2ccc(CCCCC(C)C)cc2<br />

DAr 18 2-iso-Nonylnaphthalene CC(C)CCCCCCc1ccc2ccccc2c1<br />

DAr 18<br />

2,3Dimethy-<br />

5(4methylpentyl)naphthalene Cc2cc1c(CCCC(C)C)cccc1cc2C<br />

DAr 19 4-Heptylbiphenyl c1ccccc1c2ccc(CCCCCCC)cc2<br />

DAr 19 Octylmethylnaphthalene Cc1c(C)c(C)c2c(C)c(C)c(C)c(C)c2c1C<br />

DAr 19 2-(2-Methyloctyl)naphthalene CCCCCCC(C)Cc1ccc2ccccc2c1<br />

DAr 19 2-(3-Methyloctyl)naphthalene CCCCCC(C)CCc1ccc2ccccc2c1<br />

DAr 19 2-(4-Methyloctyl)naphthalene CCCCC(C)CCCc1ccc2ccccc2c1<br />

DAr 19 2-Nonylnaphthalene CCCCCCCCCc1ccc2ccccc2c1<br />

DAr 19 1-Nonylnaphthalene c1ccc2ccccc2c1CCCCCCCCC<br />

DAr 19 4-iso-Octylbiphenyl c1ccccc1c2ccc(CCCCCC(C)C)cc2<br />

DAr 20 4-octylbiphenyl c1ccccc1c2ccc(CCCCCCCC)cc2<br />

DAr 20 2-iso-Decylnaphthalene CC(C)CCCCCCCc1ccc2ccccc2c1<br />

DAr 20 2-(2-Methylnonyl)naphthalene CCCCCCCC(C)Cc1ccc2ccccc2c1<br />

DAr 20 2-Decylnaphthalene CCCCCCCCCCc1ccc2ccccc2c1<br />

DAr 20 1-Decylnaphthalene c1ccc2ccccc2c1CCCCCCCCCC<br />

DAr 20 4-Nonylbiphenyl c1ccccc1c2ccc(CCCCCCC(C)C)cc2<br />

DAr 21 4-Nonylbiphenyl c1ccccc1c2ccc(CCCCCCCCC)cc2<br />

DAr 21 2-(3-Methylnonyl)naphthalene CCCCCCCCC(C)CCc1ccc2ccccc2c1<br />

DAr 22 2-(4-Methylnonyl)naphthalene CCCCCCCC(C)CCCc1ccc2ccccc2c1<br />

DAr 22 4-2,6dimethyloctylbiphenyl c1ccccc1c2ccc(CC(C)CCCC(C)CC)cc2<br />

DAr 22 4-2,6dimethylnonylbiphenyl c1ccccc1c2ccc(CC(C)CCCC(C)CCC)cc2<br />

DAr 22 2-(4,8-Dimethylundecyl)- CCCC(C)CCCC(C)CCCc1ccc2ccccc2c1<br />

97


naphthalene<br />

DAr 23 4-2,6dimethyldecylbiphenyl c1ccccc1c2ccc(CC(C)CCCC(C)CCCC)cc2<br />

DAr 23<br />

2-(4,8-Dimethyldodecyl)-<br />

naphthalene<br />

CCCCC(C)CCCC(C)CCCc1ccc2ccccc2c1<br />

DAr 24 4-2,6dimethylundecylbiphenyl c1ccccc1c2ccc(CC(C)CCCC(C)CCCCC)cc2<br />

DAr 24<br />

2-(4,8,14-Trimethyldodecyl)-<br />

naphthalene<br />

C(C)CCCC(C)CCCC(C)CCCc1ccc2ccccc2c1<br />

DAr 25<br />

4-<br />

2,6,10trimethylundecylbiphenyl c1ccccc1c2ccc(CC(C)CCCC(C)CCCC(C)C)cc2<br />

DAr 25<br />

2-(4,8,14-<br />

Trimethyltridecyl)naphthalene CC(C)CCCC(C)CCCC(C)CCCc1ccc2ccccc2c1<br />

DAr 26<br />

4-<br />

2,6,10trimethyldodecylbiphenyl c1ccccc1c2ccc(CC(C)CCCC(C)CCCC(C)CC)cc2<br />

DAr 26<br />

2-(4,8,14-<br />

Trimethyltetradecyl)naphthalen<br />

e<br />

CCC(C)CCCC(C)CCCC(C)CCCc1ccc2ccccc2c1<br />

4-<br />

c1ccccc1c2ccc(CC(C)CCCC(C)CCCC(C)CCC)cc<br />

DAr 27 2,6,10trimethyltridecylbiphenyl 2<br />

2-(4,8,14-Trimethylpentadecyl)<br />

DAr 27 naphthalene<br />

CCCC(C)CCCC(C)CCCC(C)CCCc1ccc2ccccc2c1<br />

4-<br />

2,6,10trimethyltetradecylbiphen c1ccccc1c2ccc(CC(C)CCCC(C)CCCC(C)CCCC)c<br />

DAr 28 yl<br />

c2<br />

DAr 28<br />

DAr 29<br />

DAr 29<br />

DAr 30<br />

DAr 30<br />

DAr 33<br />

CCCCC(C)CCCC(C)CCCC(C)CCCc1ccc2ccccc2<br />

c1<br />

c1ccccc1c2ccc(CC(C)CCCC(C)CCCC(C)CCCCC<br />

)cc2<br />

C(C)CCCC(C)CCCC(C)CCCC(C)CCCc1ccc2cccc<br />

c2c1<br />

CCC(C)CCCC(C)CCCc1ccc2ccccc2c1<br />

Cc2cc1ccc(CCCC)cc1cc2C<br />

C(C)CCCC(C)CCCC(C)CCCC(C)CCCCCCc1ccc<br />

2ccccc2c1<br />

2-(4,8,14-Trimethylhexadecyl)<br />

naphthalene<br />

4-(2,6,10trimethylpentadecyl)<br />

biphenyl<br />

2-(4,8,14,18-Tetramethylhexadecyl)naphthalene<br />

2-(4,8-<br />

Dimethyldecyl)naphthalene<br />

6-n-Butyl-2,3-<br />

dimethylnaphthalene<br />

2-(4,8,14,18-Tetramethylnonadecyl)naphthalene<br />

NDAr 12 Acenaphthene c12cccc(CC3)c1c3ccc2<br />

NDAr 13 Fluorene c1ccc2Cc3ccccc3c2c1<br />

NDAr 13 Methylacenaphthene c12cccc(CC3)c1c3c(C)cc2<br />

NDAr 14 Methylfluorene c1ccc2Cc3ccc(C)cc3c2c1<br />

NDAr 14 Tetrahydro-phenanthrene c1ccc2ccc3CCCCc3c2c1<br />

NDAr 14 Ethylacenaphthene c12cccc(CC3)c1c3c(CC)cc2<br />

NDAr 14 tetrahydro-phenanthrene c1ccc2ccc3CCCCc3c2c1<br />

NDAr 15 Ethylfluorene c1ccc2Cc3ccc(CC)cc3c2c1<br />

NDAr 15<br />

Methyl-tetrahydrophenanthrene<br />

c1ccc2ccc3CC(C)CCc3c2c1<br />

NDAr 15 iso-Propylacenaphthene c12cccc(CC3)c1c3c(C(C)C)cc2<br />

NDAr 15 n-Propylacenaphthene c12cccc(CC3)c1c3c(CCC)cc2<br />

NDAr 15<br />

methyl-tetrahydrophenanthrene<br />

c1ccc2ccc3CC(C)CCc3c2c1<br />

NDAr 16 iso-Propylfluorene c1ccc2Cc3ccc(C(C)C)cc3c2c1<br />

NDAr 16 n-Propylfluorene c1ccc2Cc3ccc(CCC)cc3c2c1<br />

NDAr 16 Ethyl-tetrahydro-phenanthrene c1ccc2ccc3CC(CC)CCc3c2c1<br />

NDAr 16 iso-Butylacenaphthene c12cccc(CC3)c1c3c(CC(C)C)cc2<br />

98


NDAr 16 n-Butylacenaphthene c12cccc(CC3)c1c3c(CCCC)cc2<br />

NDAr 16 1,2,3,6,7,8hexahydropyrene c1c(CC3)c2c(C3)ccc(CC4)c2c(C4)c1<br />

NDAr 16<br />

ethylheptyl-tetrahydrophenanthrene<br />

c1ccc2ccc3CC(CC)CCc3c2c1<br />

NDAr 17 Benzo(a)fluorene C3c1ccccc1c4ccc2ccccc2c34<br />

NDAr 17 iso-Butylfluorene c1ccc2Cc3ccc(CC(C)C)cc3c2c1<br />

NDAr 17 n-Butylfluorene c1ccc2Cc3ccc(CCCC)cc3c2c1<br />

NDAr 17<br />

iso-Propyl-tetrahydrophenanthrene<br />

c1ccc2ccc3CC(C(C)C)CCc3c2c1<br />

NDAr 17<br />

n-Propyl-tetrahydrophenanthrene<br />

c1ccc2ccc3CC(CCC)CCc3c2c1<br />

NDAr 17 iso-Pentylacenaphthene c12cccc(CC3)c1c3c(CCC(C)C)cc2<br />

NDAr 17 n-Pentylacenaphthene c12cccc(CC3)c1c3c(CCCCC)cc2<br />

NDAr 17<br />

Methyl-1,2,3,6,7,8-<br />

hexahydropyrene<br />

c1c(CC3(C))c2c(C3)ccc(CC4)c2c(C4)c1<br />

NDAr 17 propyl-tetrahydro-phenanthrene c1ccc2ccc3CC(CCC)CCc3c2c1<br />

NDAr 17<br />

isopropyl-tetrahydrophenanthrene<br />

c1ccc2ccc3CC(C(C)C)CCc3c2c1<br />

NDAr 18 Methyl-benzo(b)fluorene Cc1ccc2c3cc4ccccc4cc3Cc2c1<br />

NDAr 18 Methyl-benzo(a)fluorene C3c1cc(C)ccc1c4ccc2ccccc2c34<br />

NDAr 18 Octahydro-chyrsene c1ccc2ccc3C4CCCCC4CCc3c2c1<br />

NDAr 18 iso-Pentylfluorene c1ccc2Cc3ccc(CCC(C)C)cc3c2c1<br />

NDAr 18 n-Pentylfluorene c1ccc2Cc3ccc(CCCCC)cc3c2c1<br />

NDAr 18 iso-Hexylacenaphthylene c12cccc(C=C3)c1c3c(CCCC(C)C)cc2<br />

NDAr 18<br />

iso-Butyl-tetrahydrophenanthrene<br />

c1ccc2ccc3CC(CC(C)C)CCc3c2c1<br />

NDAr 18<br />

n-Butyl-tetrahydrophenanthrene<br />

c1ccc2ccc3CC(CCCC)CCc3c2c1<br />

NDAr 18 iso-Hexylacenaphthene c12cccc(CC3)c1c3c(CCCC(C)C)cc2<br />

NDAr 18 n-Hexylacenaphthene c12cccc(CC3)c1c3c(CCCCCC)cc2<br />

NDAr 18 hexahydroterphenyl C(c(cccc1)c1)(CC(c3ccccc3)CC2)C2<br />

NDAr 18<br />

Ethyl-1,2,3,6,7,8-<br />

hexahydropyrene<br />

c1c(CC3(CC))c2c(C3)ccc(CC4)c2c(C4)c1<br />

NDAr 18 butyl-tetrahydro-phenanthrene c1ccc2ccc3CC(CCCC)CCc3c2c1<br />

NDAr 18<br />

isobutyl-tetrahydrophenanthrene<br />

c1ccc2ccc3CC(C(C)CC)CCc3c2c1<br />

NDAr 19 Methyloctahydro-chyrsene c1ccc2ccc3C4CCC(C)CC4CCc3c2c1<br />

NDAr 19 iso-Hexylfluorene c1ccc2Cc3ccc(CCCC(C)C)cc3c2c1<br />

NDAr 19 n-Hexylfluorene c1ccc2Cc3ccc(CCCCCC)cc3c2c1<br />

NDAr 19<br />

iso-Pentyl-tetrahydrophenanthrene<br />

c1ccc2ccc3CC(CCC(C)C)CCc3c2c1<br />

NDAr 19<br />

n-Pentyl-tetrahydrophenanthrene<br />

c1ccc2ccc3CC(CCCCC)CCc3c2c1<br />

NDAr 19 iso-Heptylacenaphthene c12cccc(CC3)c1c3c(CCCCC(C)C)cc2<br />

NDAr 19 n-Heptylacenaphthene c12cccc(CC3)c1c3c(CCCCCCC)cc2<br />

NDAr 19 hexahydromethylterphenyl C(c(cc(C)cc1)c1)(CC(c3ccccc3)CC2)C2<br />

NDAr 19<br />

Propyl-1,2,3,6,7,8-<br />

hexahydropyrene<br />

c1c(CC3(CCC))c2c(C3)ccc(CC4)c2c(C4)c1<br />

NDAr 19<br />

isopentyl-tetrahydrophenanthrene<br />

c1ccc2ccc3CC(CC(C)CC)CCc3c2c1<br />

NDAr 20 Ethyl-octahydro-chyrsene c1ccc2ccc3C4CCC(CC)CC4CCc3c2c1<br />

NDAr 20 iso-Heptylfluorene c1ccc2Cc3ccc(CCCCC(C)C)cc3c2c1<br />

NDAr 20 n-Heptylfluorene c1ccc2Cc3ccc(CCCCCCC)cc3c2c1<br />

99


NDAr 20<br />

iso-Hexyltetrahydrophenanthrene<br />

c1ccc2ccc3CC(CCCC(C)C)CCc3c2c1<br />

NDAr 20<br />

n-Hexyltetrahydrophenanthrene<br />

c1ccc2ccc3CC(CCCCCC)CCc3c2c1<br />

NDAr 20 hexahydroethylterphenyl C(c(cc(CC)cc1)c1)(CC(c3ccccc3)CC2)C2<br />

NDAr 20<br />

Isobutyl-1,2,3,6,7,8-<br />

hexahydropyrene<br />

c1c(CC3(CC(C)C))c2c(C3)ccc(CC4)c2c(C4)c1<br />

NDAr 21 n-Butyl-benzo(b)fluorene CCCCc1ccc2c3cc4ccccc4cc3Cc2c1<br />

NDAr 21 iso-Propyl-octahydrochyrsene c1ccc2ccc3C4CCC(C(C)C)CC4CCc3c2c1<br />

NDAr 21 n-Propyloctahydro-chyrsene c1ccc2ccc3C4CCC(CCC)CC4CCc3c2c1<br />

NDAr 21 iso-Octylfluorene c1ccc2Cc3ccc(CCCCCC(C)C)cc3c2c1<br />

NDAr 21 n-Octylfluorene c1ccc2Cc3ccc(CCCCCCCC)cc3c2c1<br />

NDAr 21<br />

isohexyl-tetrahydrophenanthrene<br />

c1ccc2ccc3CC(CC(C)CCCC)CCc3c2c1<br />

NDAr 21 hexahydropropylterphenyl C(c(cc(CCC)cc1)c1)(CC(c3ccccc3)CC2)C2<br />

NDAr 21<br />

Isopentyl-1,2,3,6,7,8-<br />

hexahydropyrene<br />

c1c(CC3(CC(C)CC))c2c(C3)ccc(CC4)c2c(C4)c1<br />

NDAr 22 n-Hexylfluoranthene c24c(cc(CCCCCC)cc4)c1cccc3c1c2ccc3<br />

NDAr 22 iso-Butyloctahydro-chyrsene c1ccc2ccc3C4CCC(CC(C)C)CC4CCc3c2c1<br />

NDAr 22 n-Butyloctahydro-chyrsene c1ccc2ccc3C4CCC(CCCC)CC4CCc3c2c1<br />

NDAr 22 Dodecahydro-Picene<br />

C1(C=CC3=C2C=CC4=C3CCC5C4CCCC5)=C2<br />

CCCC1<br />

NDAr 22<br />

isoheptyl-tetrahydrophenanthrene<br />

c1ccc2ccc3CC(CC(C)CCCCC)CCc3c2c1<br />

NDAr 22 hexahydroisobutylterphenyl C(c(cc(CC(C)C)cc1)c1)(CC(c3ccccc3)CC2)C2<br />

NDAr 22<br />

Isohexyl-1,2,3,6,7,8-<br />

hexahydropyrene<br />

c1c(CC3(CC(C)CCC))c2c(C3)ccc(CC4)c2c(C4)c1<br />

NDAr 23<br />

2,6-dimethylheptyl-tetrahydrophenanthrene<br />

c1ccc2ccc3CC(CC(C)CCCC(C)C)CCc3c2c1<br />

NDAr 23 hexahydroisopentylterphenyl C(c(cc(CC(C)CC)cc1)c1)(CC(c3ccccc3)CC2)C2<br />

NDAr 23 isopentyloctahydro-chyrsene c1ccc2ccc3C4CCC(CC(C)CC)CC4CCc3c2c1<br />

Isoheptyl-1,2,3,6,7,8-<br />

c1c(CC3(CC(C)CCCC))c2c(C3)ccc(CC4)c2c(C4)<br />

NDAr 23 hexahydropyrene<br />

c1<br />

NDAr 23 Methyldodecahydro-Picene<br />

C1(C=CC3=C2C=CC4=C3CCC5C4CCCC5)=C2<br />

CC(C)CC1<br />

NDAr 24<br />

2,6-dimethyloctyl-tetrahydrophenanthrene<br />

c1ccc2ccc3CC(CC(C)CCCC(C)CC)CCc3c2c1<br />

NDAr 24 hexahydroisohexylterphenyl C(c(cc(CC(C)CCC)cc1)c1)(CC(c3ccccc3)CC2)C2<br />

NDAr 24 isohexyloctahydro-chyrsene c1ccc2ccc3C4CCC(CC(C)CCC)CC4CCc3c2c1<br />

Isoctyl-1,2,3,6,7,8-<br />

c1c(CC3(CC(C)CCCCC))c2c(C3)ccc(CC4)c2c(C4<br />

NDAr 24 hexahydropyrene<br />

)c1<br />

C1(C=CC3=C2C=CC4=C3CCC5C4CCCC5)=C2<br />

CC(CC)CC1<br />

NDAr 24 Ethyldodecahydro-Picene<br />

2,6-dimethylnonyl-tetrahydrophenanthrene<br />

NDAr 25<br />

c1ccc2ccc3CC(CC(C)CCCC(C)CCC)CCc3c2c1<br />

NDAr 25 hexahydroterphenyl<br />

C(c(cc(CC(C)CCCC)cc1)c1)(CC(c3ccccc3)CC2)C<br />

2<br />

NDAr 25 isoheptyloctahydro-chyrsene c1ccc2ccc3C4CCC(CC(C)CCCC)CC4CCc3c2c1<br />

Dimethylheptyl-1,2,3,6,7,8- c1c(CC3(CC(C)CCCC(C)C))c2c(C3)ccc(CC4)c2c<br />

NDAr 25 hexahydropyrene<br />

(C4)c1<br />

NDAr 25 Propyldodecahydro-Picene<br />

2,6-dimethyldecyl-tetrahydrophenanthrene<br />

NDAr 26<br />

NDAr 26 isooctyloctahydro-chyrsene<br />

C1(C=CC3=C2C=CC4=C3CCC5C4CCCC5)=C2<br />

CC(CCC)CC1<br />

c1ccc2ccc3CC(CC(C)CCCC(C)CCCC)CCc3c2c1<br />

c1ccc2ccc3C4CCC(CC(C)CCCCC)CC4CCc3c2c<br />

1<br />

100


NDAr 26<br />

Dimethyloctyl-1,2,3,6,7,8-<br />

hexahydropyrene<br />

NDAr 26 Isobutyldodecahydro-Picene<br />

2,6-dimethylundecyl-tetrahydrophenanthrene<br />

NDAr 27<br />

2,6-dimethylheptyloctahydrochrysene<br />

NDAr 27<br />

Dimethylnonyl-1,2,3,6,7,8-<br />

NDAr 27 hexahydropyrene<br />

NDAr 27 Isopentyldodecahydro-Picene<br />

2,6,10-trimethylundecyltetrahydro-phenanthrene<br />

NDAr 28<br />

2,6-dimethyloctyloctahydrochrysene<br />

NDAr 28<br />

Dimethyldecyl-1,2,3,6,7,8-<br />

NDAr 28 hexahydropyrene<br />

NDAr 28 Isohexyyldodecahydro-Picene<br />

2,6,10-trimethyldodecyltetrahydro-phenanthrene<br />

NDAr 29<br />

2,6-dimethylnonyloctahydrochrsene<br />

NDAr 29<br />

Dyimethylundecyl-1,2,3,6,7,8-<br />

NDAr 29 hexahydropyrene<br />

NDAr 29 isoheptyldodecahydro-Picene<br />

2,6,10-trimethyltridecyltetrahydro-phenanthrene<br />

NDAr 30<br />

2,6-dimethyldecyloctahydrochrysene<br />

NDAr 30<br />

Trimethylundecyl-1,2,3,6,7,8-<br />

NDAr 30 hexahydropyrene<br />

NDAr 30 isooctyldodecahydro-Picene<br />

c1c(CC3(CC(C)CCCC(C)CC))c2c(C3)ccc(CC4)c2<br />

c(C4)c1<br />

C1(C=CC3=C2C=CC4=C3CCC5C4CCCC5)=C2<br />

CC(CC(C)C)CC1<br />

c1ccc2ccc3CC(CC(C)CCCC(C)CCCCC)CCc3c2c<br />

1<br />

c1ccc2ccc3C4CCC(CC(C)CCCC(C)C)CC4CCc3c<br />

2c1<br />

c1c(CC3(CC(C)CCCC(C)CCC))c2c(C3)ccc(CC4)<br />

c2c(C4)c1<br />

C1(C=CC3=C2C=CC4=C3CCC5C4CCCC5)=C2<br />

CC(CC(C)CC)CC1<br />

c1ccc2ccc3CC(CC(C)CCCC(C)CCCC(C)C)CCc3<br />

c2c1<br />

c1ccc2ccc3C4CCC(CC(C)CCCC(C)CC)CC4CCc<br />

3c2c1<br />

c1c(CC3(CC(C)CCCC(C)CCCC))c2c(C3)ccc(CC4<br />

)c2c(C4)c1<br />

C1(C=CC3=C2C=CC4=C3CCC5C4CCCC5)=C2<br />

CC(CC(C)CCC)CC1<br />

c1ccc2ccc3CC(CC(C)CCCC(C)CCCC(C)CC)CCc<br />

3c2c1<br />

c1ccc2ccc3C4CCC(CC(C)CCCC(C)CCC)CC4CC<br />

c3c2c1<br />

c1c(CC3(CC(C)CCCC(C)CCCCC))c2c(C3)ccc(C<br />

C4)c2c(C4)c1<br />

C1(C=CC3=C2C=CC4=C3CCC5C4CCCC5)=C2<br />

CC(CC(C)CCCC)CC1<br />

c1ccc2ccc3CC(CC(C)CCCC(C)CCCC(C)CCC)C<br />

Cc3c2c1<br />

c1ccc2ccc3C4CCC(CC(C)CCCC(C)CCCC)CC4C<br />

Cc3c2c1<br />

c1c(CC3(CC(C)CCCC(C)CCCC(C)C))c2c(C3)ccc<br />

(CC4)c2c(C4)c1<br />

C1(C=CC3=C2C=CC4=C3CCC5C4CCCC5)=C2<br />

CC(CC(C)CCCCC)CC1<br />

PAr 12 Acenaphthylene c12cccc(C=C3)c1c3ccc2<br />

PAr 13 Methylacenaphthylene c12cccc(C=C3)c1c3c(C)cc2<br />

PAr 14 Anthracene c1ccc2cc3ccccc3cc2c1<br />

PAr 14 Phenanthrene c1ccc2ccc3ccccc3c2c1<br />

PAr 14 Ethylacenaphthylene c12cccc(C=C3)c1c3c(CC)cc2<br />

PAr 15 2-Methylphenanthrene c1cc2c3ccc(C)cc3ccc2cc1<br />

PAr 15 2-Methylanthracene Cc1ccc2cc3ccccc3cc2c1<br />

PAr 15 9-Methylanthracene CC1=C(C=CC=C3)C3=CC2=C1C=CC=C2<br />

PAr 15 iso-Propylacenaphthylene c12cccc(C=C3)c1c3c(C(C)C)cc2<br />

PAr 15 n-Propylacenaphthylene c12cccc(C=C3)c1c3c(CCC)cc2<br />

PAr 16 Pyrene c1(ccc3ccc4)cccc2ccc4c3c12<br />

PAr 16 1-Phenylnaphthalene c1ccc2cccc(c3ccccc3)c2c1<br />

PAr 16 Fluoranthene c24c(cccc4)c1cccc3c1c2ccc3<br />

PAr 16 2-Ethylphenanthrene c1cc2c3ccc(CC)cc3ccc2cc1<br />

PAr 16 1,2-Dimethylphenanthrene c1cc2c3ccc(C)c(C)c3ccc2cc1<br />

PAr 16 2,3-Dimethylphenanthrene c1cc2c3cc(C)c(C)cc3ccc2cc1<br />

PAr 16 2,4-Dimethylphenanthrene c1cc2c3c(C)cc(C)cc3ccc2cc1<br />

PAr 16 2,3-Dimethylanthracene Cc1c(C)cc2cc3ccccc3cc2c1<br />

101


PAr 16 2,4-Dimethylanthracene Cc1cc(C)c2cc3ccccc3cc2c1<br />

PAr 16 2,5-Dimethylanthracene Cc1ccc2c(C)c3ccccc3cc2c1<br />

PAr 16 2,6-Dimethylanthracene Cc1ccc2cc3c(C)cccc3cc2c1<br />

PAr 16 2,7-Dimethylanthracene Cc1ccc2cc3cc(C)ccc3cc2c1<br />

PAr 16 2-Ethylanthracene CCc1ccc2cc3ccccc3cc2c1<br />

PAr 16 iso-Butylacenaphthylene c12cccc(C=C3)c1c3c(CC(C)C)cc2<br />

PAr 16 n-Butylacenaphthylene c12cccc(C=C3)c1c3c(CCCC)cc2<br />

PAr 17 1-Phenyl-5-methylnaphthalene c1cc(C)c2cccc(c3ccccc3)c2c1<br />

PAr 17 Methylpyrene c1(ccc3cc(C)c4)cccc2ccc4c3c12<br />

PAr 17 Methylfluoranthene c24c(cc(C)cc4)c1cccc3c1c2ccc3<br />

PAr 17 2,3-Benzofluorene c1ccc2c3cc4ccccc4cc3Cc2c1<br />

PAr 17 2-iso-Propylphenanthrene c1cc2c3ccc(C(C)C)cc3ccc2cc1<br />

PAr 17 2-iso-Propylanthracene CC(C)c1ccc2cc3ccccc3cc2c1<br />

PAr 17 2-Propylphenanthrene c1cc2c3ccc(CCC)cc3ccc2cc1<br />

PAr 17 2-Propylanthracene CCCc1ccc2cc3ccccc3cc2c1<br />

PAr 17 2,3,4-Trimethylanthracene Cc1c(C)c(C)c2cc3ccccc3cc2c1<br />

PAr 17 2,3,5-Trimethylanthracene Cc1c(C)cc2c(C)c3ccccc3cc2c1<br />

PAr 17 2,3,6-Trimethylanthracene Cc1c(C)cc2cc3c(C)cccc3cc2c1<br />

PAr 17 iso-Pentylacenaphthylene c12cccc(C=C3)c1c3c(CCC(C)C)cc2<br />

PAr 17 n-Pentylacenaphthylene c12cccc(C=C3)c1c3c(CCCCC)cc2<br />

PAr 18 Triphenylene c1ccc2c3ccccc3c4ccccc4c2c1<br />

PAr 18 Benzo(ghi)fluoranthene c1ccc3c4cccc5c4c2c3c1ccc2cc5<br />

PAr 18 Cyclopenta(cd)pyrene C1=Cc2cc4cccc5ccc3ccc1c2c3c45<br />

PAr 18 Benz(a)anthracene c12c(cccc3)c3ccc1cc4c(cccc4)c2<br />

PAr 18 Chrysene c1ccc2ccc3c4ccccc4ccc3c2c1<br />

PAr 18 1-Phenyl-5-ethylnaphthalene c1cc(CC)c2cccc(c3ccccc3)c2c1<br />

PAr 18 Ethylpyrene c1(ccc3cc(CC)c4)cccc2ccc4c3c12<br />

PAr 18 Ethylfluoranthene c24c(cc(CC)cc4)c1cccc3c1c2ccc3<br />

PAr 18 2-iso-Butylphenanthrene c1cc2c3ccc(CC(C)C)cc3ccc2cc1<br />

PAr 18 2-iso-Butylanthracene CC(C)Cc1ccc2cc3ccccc3cc2c1<br />

PAr 18 Tetrahydro-chyrsene c1ccc2ccc3c4CCCCc4ccc3c2c1<br />

PAr 18<br />

1-Methyl-7-<br />

isopropylphenanthrene<br />

c(ccc1c(ccc2C(C)C)c3c2)c(C)c1cc3<br />

PAr 18 2-Butylphenanthrene c1cc2c3ccc(CCCC)cc3ccc2cc1<br />

PAr 18 2-Butylanthracene CCCCc1ccc2cc3ccccc3cc2c1<br />

PAr 18 1,2-Diethylphenanthrene c1cc2c3ccc(CC)c(CC)c3ccc2cc1<br />

PAr 18 2,3-Diethylphenanthrene c1cc2c3cc(CC)c(CC)cc3ccc2cc1<br />

PAr 18 2,4-Diethylphenanthrene c1cc2c3c(CC)cc(CC)cc3ccc2cc1<br />

PAr 18 2,3-Diethylanthracene CCc1c(CC)cc2cc3ccccc3cc2c1<br />

PAr 18 2,4-Diethylanthracene CCc1cc(CC)c2cc3ccccc3cc2c1<br />

PAr 18 2,5-Diethylanthracene CCc1ccc2c(CC)c3ccccc3cc2c1<br />

PAr 18 2,6-Diethylanthracene CCc1ccc2cc3c(CC)cccc3cc2c1<br />

PAr 18 2,7-Diethylanthracene CCc1ccc2cc3cc(CC)ccc3cc2c1<br />

PAr 18 1,2,3,4-Tetramethylanthracene Cc1c(C)c(C)c2cc3ccccc3cc2c1C<br />

PAr 18 1,2,3,5-Tetramethylanthracene Cc1c(C)cc2c(C)c3ccccc3cc2c1C<br />

PAr 18 n-Hexylacenaphthylene c12cccc(C=C3)c1c3c(CCCCCC)cc2<br />

PAr 19 2-Methylchrysene c4c(C)cc3ccc2c1ccccc1ccc2c3c4<br />

PAr 19 Methylbenz(a)anthracene c12c(cccc3)c3ccc1cc4c(cc(C)cc4)c2<br />

PAr 19 Methyltriphenylene Cc1ccc2c3ccccc3c4ccccc4c2c1<br />

PAr 19 Methylbenzo(ghi)fluoranthene c1c(C)cc3c4cccc5c4c2c3c1ccc2cc5<br />

PAr 19 Ethyl-benzo(b)fluorene CCc1ccc2c3cc4ccccc4cc3Cc2c1<br />

102


PAr 19 Ethylbenzo(a)fluorene C3c1cc(CC)ccc1c4ccc2ccccc2c34<br />

PAr 19<br />

1-Phenyl-5-isopropylnaphthalene<br />

c1cc(C(C)C)c2cccc(c3ccccc3)c2c1<br />

PAr 19 iso-Propylpyrene c1(ccc3cc(C(C)C)c4)cccc2ccc4c3c12<br />

PAr 19 1-Phenyl-5-propylnaphthalene c1cc(CCC)c2cccc(c3ccccc3)c2c1<br />

PAr 19 n-Propylpyrene c1(ccc3cc(CCC)c4)cccc2ccc4c3c12<br />

PAr 19 n-Propylfluoranthene c24c(cc(CCC)cc4)c1cccc3c1c2ccc3<br />

PAr 19 Methyl-tetrahydro-chrysene c1ccc2ccc3c4CCC(C)Cc4ccc3c2c1<br />

PAr 19 2-(2-Methylbutyl)phenanthrene c1cc2c3ccc(CC(C)CC)cc3ccc2cc1<br />

PAr 19 2-iso-Pentylphenanthrene c1cc2c3ccc(CCC(C)C)cc3ccc2cc1<br />

PAr 19 2-iso-Pentylanthracene CC(C)CCc1ccc2cc3ccccc3cc2c1<br />

PAr 19 2-Pentylphenanthrene c1cc2c3ccc(CCCCC)cc3ccc2cc1<br />

PAr 19 2-Pentylanthracene CCCCCc1ccc2cc3ccccc3cc2c1<br />

PAr 19 iso-Heptylacenaphthylene c12cccc(C=C3)c1c3c(CCCCC(C)C)cc2<br />

PAr 19 n-Heptylacenaphthylene c12cccc(C=C3)c1c3c(CCCCCCC)cc2<br />

PAr 19 methyltetrahydro-chyrsene c1ccc2ccc3c4CCC(C)Cc4ccc3c2c1<br />

PAr 20 Tetrahydroperylene c12cccc4c1c(c3cccc5c3C4CCC5)ccc2<br />

PAr 20 Benzo(b)fluoranthene c12ccccc1cc3c4ccccc4c5c3c2ccc5<br />

PAr 20 1-Naphthyl-1-naphthalene c1ccc2ccccc2c1c3c4ccccc4ccc3<br />

PAr 20 2-Naphthyl-1-naphthalene c1ccc2ccccc2c1c3cc4ccccc4cc3<br />

PAr 20 Benzo(k)fluoranthene c2ccc1cc3c(cc1c2)c4cccc5cccc3c45<br />

PAr 20 Benzo(a)pyrene c(c(c(cc1)ccc2)c2cc3)(c3cc(c4ccc5)c5)c14<br />

PAr 20 Perylene c12cccc4c1c(c3cccc5c3c4ccc5)ccc2<br />

PAr 20 Benzo(e)pyrene c1ccc2c(c1)c4cccc5ccc3cccc2c3c45<br />

PAr 20 2-Ethylchrysene c4c(CC)cc3ccc2c1ccccc1ccc2c3c4<br />

PAr 20 Ethylbenz(a)anthracene c12c(cccc3)c3ccc1cc4c(cc(CC)cc4)c2<br />

PAr 20 Ethyltriphenylene CCc1ccc2c3ccccc3c4ccccc4c2c1<br />

PAr 20 Ethylbenzo(ghi)fluoranthene c1c(CC)cc3c4cccc5c4c2c3c1ccc2cc5<br />

PAr 20 n-Propyl2,3-benzofluorene CCCc1ccc2c3cc4ccccc4cc3Cc2c1<br />

PAr 20 n-Propylbenzo(a)fluorene C3c1cc(CCC)ccc1c4ccc2ccccc2c34<br />

PAr 20<br />

1-Phenyl-5-isobutylnaphthalene<br />

c1cc(CC(C)C)c2cccc(c3ccccc3)c2c1<br />

PAr 20 iso-Butylpyrene c1(ccc3cc(CC(C)C)c4)cccc2ccc4c3c12<br />

PAr 20 1-Phenyl-5-butylnaphthalene c1cc(CCCC)c2cccc(c3ccccc3)c2c1<br />

PAr 20 n-Butylpyrene c1(ccc3cc(CCCC)c4)cccc2ccc4c3c12<br />

PAr 20 n-Butylfluoranthene c24c(cc(CCCC)cc4)c1cccc3c1c2ccc3<br />

PAr 20 Ethyl-tetrahydro-chyrsene c1ccc2ccc3c4CCC(CC)Cc4ccc3c2c1<br />

PAr 20<br />

2-(2-Methylpentyl)<br />

phenanthrene<br />

c1cc2c3ccc(CC(C)CCC)cc3ccc2cc1<br />

PAr 20 2-iso-Hexylphenanthrene c1cc2c3ccc(CCCC(C)C)cc3ccc2cc1<br />

PAr 20 2-iso-Hexylanthracene CC(C)CCCc1ccc2cc3ccccc3cc2c1<br />

PAr 20 2-Hexylphenanthrene c1cc2c3ccc(CCCCCC)cc3ccc2cc1<br />

PAr 20 2-Hexylanthracene CCCCCCc1ccc2cc3ccccc3cc2c1<br />

PAr 20 1,2-Dipropylphenanthrene c1cc2c3ccc(CCC)c(CCC)c3ccc2cc1<br />

PAr 20 2,3-Dipropylphenanthrene c1cc2c3cc(CCC)c(CCC)cc3ccc2cc1<br />

PAr 20 2,4-Dipropylphenanthrene c1cc2c3c(CCC)cc(CCC)cc3ccc2cc1<br />

PAr 20 ethyltetrahydro-chyrsene c1ccc2ccc3c4CCC(CC)Cc4ccc3c2c1<br />

PAr 21 Methyltetrahydroperylene Cc2cc1cccc4c1c(c3cccc5c3C4CCC5)c2<br />

PAr 21 3-Methylcholanthrene c(c(ccc1C)cc(c2ccc3cccc4)c34)(c1CC5)c25<br />

PAr 21<br />

Methyl1-naphthyl-1-<br />

naphthalene<br />

c1ccc2cc(C)ccc2c1c3c4ccccc4ccc3<br />

103


PAr 21<br />

Methyl2-naphthyl-1-<br />

naphthalene<br />

c1ccc2cc(C)ccc2c1c3cc4ccccc4cc3<br />

PAr 21 Methylbenzo(a)pyrene c(c(c(cc1)ccc2)c2cc3)(c3cc(c4ccc5C)c5)c14<br />

PAr 21 Methylperylene Cc2cc1cccc4c1c(c3cccc5c3c4ccc5)c2<br />

PAr 21 Methylbenzo(b)fluoranthene c12ccccc1cc3c4cc(C)ccc4c5c3c2ccc5<br />

PAr 21 Methylbenzo(k)fluoranthene Cc2ccc1cc3c(cc1c2)c4cccc5cccc3c45<br />

PAr 21 Methylbenzo(e)pyrene c1ccc2c(c1)c4cccc5ccc3cc(C)cc2c3c45<br />

PAr 21 2-iso-Propylchrysene c4c(C(C)C)cc3ccc2c1ccccc1ccc2c3c4<br />

PAr 21 iso-Propylbenz(a)anthracene c12c(cccc3)c3ccc1cc4c(cc(C(C)C)cc4)c2<br />

PAr 21 iso-Propyltriphenylene CC(C)c1ccc2c3ccccc3c4ccccc4c2c1<br />

PAr 21 2-Propylchyrsene c4c(CCC)cc3ccc2c1ccccc1ccc2c3c4<br />

PAr 21 n-Propylbenz(a)anthracene c12c(cccc3)c3ccc1cc4c(cc(CCC)cc4)c2<br />

PAr 21 n-Propyltriphenylene CCCc1ccc2c3ccccc3c4ccccc4c2c1<br />

PAr 21 Propylbenzo(ghi)fluoranthene c1c(CCC)cc3c4cccc5c4c2c3c1ccc2cc5<br />

PAr 21 n-Butylbenzo(a)fluorene C3c1cc(CCCC)ccc1c4ccc2ccccc2c34<br />

PAr 21<br />

1-Phenyl-5-isopentylnaphthalene<br />

c1cc(CCC(C)C)c2cccc(c3ccccc3)c2c1<br />

PAr 21 iso-Pentylpyrene c1(ccc3cc(CCC(C)C)c4)cccc2ccc4c3c12<br />

PAr 21 1-Phenyl-5-pentylnaphthalene c1cc(CCCCC)c2cccc(c3ccccc3)c2c1<br />

PAr 21 n-Pentylpyrene c1(ccc3cc(CCCCC)c4)cccc2ccc4c3c12<br />

PAr 21 n-Pentylfluoranthene c24c(cc(CCCCC)cc4)c1cccc3c1c2ccc3<br />

PAr 21 iso-Propyl-tetrahydro-chyrsene c1ccc2ccc3c4CCC(C(C)C)Cc4ccc3c2c1<br />

PAr 21 Propyl-tetrahydro-chyrsene c1ccc2ccc3c4CCC(CCC)Cc4ccc3c2c1<br />

PAr 21 2-(2-Methylhexyl)phenanthrene c1cc2c3ccc(CC(C)CCCC)cc3ccc2cc1<br />

PAr 21 2-iso-Heptylphenanthrene c1cc2c3ccc(CCCCC(C)C)cc3ccc2cc1<br />

PAr 21 2-iso-Heptylanthracene CC(C)CCCCc1ccc2cc3ccccc3cc2c1<br />

PAr 21 2-Heptylphenanthrene c1cc2c3ccc(CCCCCCC)cc3ccc2cc1<br />

PAr 21 2-Heptylanthracene CCCCCCCc1ccc2cc3ccccc3cc2c1<br />

PAr 21 propyltetrahydro-chyrsene c1ccc2ccc3c4CCC(CCC)Cc4ccc3c2c1<br />

PAr 22 Benzo(b)chrysene c1cc2cc3c4ccc5ccccc5c4ccc3cc2cc1<br />

PAr 22 1,2,5,6-Dibenzanthracene c(c(c(c(c1)ccc2)c2)cc(c3c(c(c4)ccc5)c5)c4)(c1)c3<br />

PAr 22 Ethyltetrahydroperylene CCc2cc1cccc4c1c(c3cccc5c3C4CCC5)c2<br />

PAr 22 Indeno(1,2,3-cd)pyrene c(c(c(c(ccc1)c2)c1cc3)c3cc4)(c2c(c5ccc6)c6)c45<br />

PAr 22 Benzo(ghi)perylene c1(c(cc6)ccc3ccc4ccc5)c3c4c5c2c1c6ccc2<br />

PAr 22 Picene c1cc2c3ccc4c5ccccc5ccc4c3ccc2cc1<br />

PAr 22 Ethyl1-Naphthyl-1-naphthalene c1ccc2cc(CC)ccc2c1c3c4ccccc4ccc3<br />

PAr 22 Ethyl2-Naphthyl-1-naphthalene c1ccc2cc(CC)ccc2c1c3cc4ccccc4cc3<br />

PAr 22 Ethylbenzo(a)pyrene c(c(c(cc1)ccc2)c2cc3)(c3cc(c4ccc5CC)c5)c14<br />

PAr 22 Ethylperylene CCc2cc1cccc4c1c(c3cccc5c3c4ccc5)c2<br />

PAr 22 Ethylbenzo(b)fluoranthene c12ccccc1cc3c4cc(CC)ccc4c5c3c2ccc5<br />

PAr 22 Ethylbenzo(k)fluoranthene CCc2ccc1cc3c(cc1c2)c4cccc5cccc3c45<br />

PAr 22 Ethylbenzo(e)pyrene c1ccc2c(c1)c4cccc5ccc3cc(CC)cc2c3c45<br />

PAr 22 2-iso-Butylchrysene c4c(CC(C)C)cc3ccc2c1ccccc1ccc2c3c4<br />

PAr 22 iso-Butylbenz(a)anthracene c12c(cccc3)c3ccc1cc4c(cc(CC(C)C)cc4)c2<br />

PAr 22 iso-Butyltriphenylene CC(C)Cc1ccc2c3ccccc3c4ccccc4c2c1<br />

PAr 22 Tetrahydro-Picene c12ccc3c(ccc4c3ccc5c4cccc5)c1CCCC2<br />

PAr 22 2-Butylchyrsene c4c(CCCC)cc3ccc2c1ccccc1ccc2c3c4<br />

PAr 22 n-Butylbenz(a)anthracene c12c(cccc3)c3ccc1cc4c(cc(CCCC)cc4)c2<br />

PAr 22 n-Butyltriphenylene CCCCc1ccc2c3ccccc3c4ccccc4c2c1<br />

PAr 22 Butylbenzo(ghi)fluoranthene c1c(CCCC)cc3c4cccc5c4c2c3c1ccc2cc5<br />

PAr 22 n-Pentyl2,3-benzofluorene CCCCCc1ccc2c3cc4ccccc4cc3Cc2c1<br />

104


PAr 22 n-Pentylbenzo(a)fluorene C3c1cc(CCCCC)ccc1c4ccc2ccccc2c34<br />

PAr 22<br />

1-Phenyl-5-isohexylnaphthalene<br />

c1cc(CCCC(C)C)c2cccc(c3ccccc3)c2c1<br />

PAr 22 iso-Hexylpyrene c1(ccc3cc(CCCC(C)C)c4)cccc2ccc4c3c12<br />

PAr 22 1-Phenyl-5-hexylnaphthalene c1cc(CCCCCC)c2cccc(c3ccccc3)c2c1<br />

PAr 22 n-Hexylpyrene c1(ccc3cc(CCCCCC)c4)cccc2ccc4c3c12<br />

PAr 22 iso-Butyl-tetrahydro-chyrsene c1ccc2ccc3c4CCC(CC(C)C)Cc4ccc3c2c1<br />

PAr 22 Butyl-tetrahydro-chyrsene c1ccc2ccc3c4CCC(CCCC)Cc4ccc3c2c1<br />

PAr 22<br />

2-(2-Methylheptyl)<br />

phenanthrene<br />

c1cc2c3ccc(CC(C)CCCCC)cc3ccc2cc1<br />

PAr 22 2-iso-Octylphenanthrene c1cc2c3ccc(CCCCCC(C)C)cc3ccc2cc1<br />

PAr 22 Octahydro-Picene<br />

C12=CC=C3C(C=CC4=C3C=CC5=C4CCCC5)=C<br />

1CCCC2<br />

PAr 22 2-Octylphenanthrene c1cc2c3ccc(CCCCCCCC)cc3ccc2cc1<br />

PAr 22 Octadecahydro-picene<br />

C12=CC=C3C(C=CC4=C3C=CC5=C4CCCC5)=C<br />

1CCCC2<br />

PAr 23 iso-Propyltetrahydroperylene CC(C)c2cc1cccc4c1c(c3cccc5c3C4CCC5)c2<br />

PAr 23 n-Propyltetrahydroperylene CCCc2cc1cccc4c1c(c3cccc5c3C4CCC5)c2<br />

PAr 23 Methylpicene c1cc2c3ccc4c5ccccc5ccc4c3ccc2cc1C<br />

PAr 23 Methylbenzo(ghi)perylene c1(c(c(C)c6)ccc3ccc4ccc5)c3c4c5c2c1c6ccc2<br />

PAr 23 iso-Propylperylene CC(C)c2cc1cccc4c1c(c3cccc5c3c4ccc5)c2<br />

PAr 23 iso-Propylbenzo(e)pyrene c1ccc2c(c1)c4cccc5ccc3cc(C(C)C)cc2c3c45<br />

PAr 23<br />

Propyl1-Naphthyl-1-<br />

naphthalene<br />

c1ccc2cc(CCC)ccc2c1c3c4ccccc4ccc3<br />

PAr 23<br />

Propyl2-Naphthyl-1-<br />

naphthalene<br />

c1ccc2cc(CCC)ccc2c1c3cc4ccccc4cc3<br />

PAr 23 Propylbenzo(a)pyrene c(c(c(cc1)ccc2)c2cc3)(c3cc(c4ccc5CCC)c5)c14<br />

PAr 23 n-Propylperylene CCCc2cc1cccc4c1c(c3cccc5c3c4ccc5)c2<br />

PAr 23 n-Propylbenzo(b)fluoranthene c12ccccc1cc3c4cc(CCC)ccc4c5c3c2ccc5<br />

PAr 23 Propylbenzo(k)fluoranthene CCCc2ccc1cc3c(cc1c2)c4cccc5cccc3c45<br />

PAr 23 n-Propylbenzo(e)pyrene c1ccc2c(c1)c4cccc5ccc3cc(CCC)cc2c3c45<br />

PAr 23 2-iso-Pentylchrysene c4c(CCC(C)C)cc3ccc2c1ccccc1ccc2c3c4<br />

PAr 23 2-Pentylchrysene c4c(CCCCC)cc3ccc2c1ccccc1ccc2c3c4<br />

PAr 23 Methyltetrahydro-picene c12ccc3c(ccc4c3ccc5c4ccc(C)c5)c1CCCC2<br />

PAr 23 Pentylbenzo(ghi)fluoranthene c1c(CCCCC)cc3c4cccc5c4c2c3c1ccc2cc5<br />

PAr 23<br />

1-Phenyl-5-isoheptylnaphthalene<br />

c1cc(CCCCC(C)C)c2cccc(c3ccccc3)c2c1<br />

PAr 23 iso-Heptylpyrene c1(ccc3cc(CCCCC(C)C)c4)cccc2ccc4c3c12<br />

PAr 23 1-Phenyl-5-heptylnaphthalene c1cc(CCCCCCC)c2cccc(c3ccccc3)c2c1<br />

PAr 23 n-Heptylpyrene c1(ccc3cc(CCCCCCC)c4)cccc2ccc4c3c12<br />

PAr 23 2-(2-Methyloctyl)phenanthrene c1cc2c3ccc(CC(C)CCCCCC)cc3ccc2cc1<br />

PAr 23 2-iso-Pentylchrysene c4c(CCC(C)C)cc3ccc2c1ccccc1ccc2c3c4<br />

PAr 23 isopentyltetrahydro-chrysene c1ccc2ccc3c4CCC(CC(C)CC)Cc4ccc3c2c1<br />

PAr 23 Methyl-octadecahydro-picene<br />

C12=CC=C3C(C=CC4=C3C=CC5=C4CCCC5)=C<br />

1CC(C)CC2<br />

PAr 23 Methyltetrahydro-picene c12ccc3c(ccc4c3ccc5c4ccc(C)c5)c1CCCC2<br />

PAr 24 1-Naphthyl-2-anthracene c1ccc2ccccc2c1c3cc4cc5ccccc5cc4cc3<br />

PAr 24 Benzo-perylene c12cccc5c1c(c4cccc6c4c5ccc6)cc3c2cccc3<br />

PAr 24 iso-Butyltetrahydroperylene CC(C)Cc2cc1cccc4c1c(c3cccc5c3C4CCC5)c2<br />

PAr 24 n-Butyltetrahydroperylene CCCCc2cc1cccc4c1c(c3cccc5c3C4CCC5)c2<br />

PAr 24 Coronene c1cc3ccc4ccc5ccc6ccc7ccc1c2c7c6c5c4c23<br />

PAr 24 Ethylpicene c1cc2c3ccc4c5ccccc5ccc4c3ccc2cc1CC<br />

PAr 24 Ethylbenzo(ghi)perylene c1(c(c(CC)c6)ccc3ccc4ccc5)c3c4c5c2c1c6ccc2<br />

105


PAr 24 iso-Butylperylene CC(C)Cc2cc1cccc4c1c(c3cccc5c3c4ccc5)c2<br />

PAr 24 Butylbenzo(a)pyrene c(c(c(cc1)ccc2)c2cc3)(c3cc(c4ccc5CCCC)c5)c14<br />

PAr 24 n-Butylperylene CCCCc2cc1cccc4c1c(c3cccc5c3c4ccc5)c2<br />

PAr 24<br />

2-(2,4-dimethyloctyl)<br />

phenanthrene<br />

c1cc2c3ccc(CC(C)CCCC(C)CC)cc3ccc2cc1<br />

PAr 24 2-iso-Hexylchrysene c4c(CCC(C)CC)cc3ccc2c1ccccc1ccc2c3c4<br />

PAr 24 isohexyltetrahydro-chyrsene c1ccc2ccc3c4CCC(CC(C)CCC)Cc4ccc3c2c1<br />

PAr 24 Ethyl-octadecahydro-picene<br />

C12=CC=C3C(C=CC4=C3C=CC5=C4CCCC5)=C<br />

1CC(CC)CC2<br />

PAr 24 Ethyltetrahydro-picene c12ccc3c(ccc4c3ccc5c4ccc(CC)c5)c1CCCC2<br />

PAr 25 Methylbenzo-perylene Cc6cc2c(cc6)c1cccc4c1c(c3cccc5c3c4ccc5)c2<br />

PAr 25 iso-Pentyltetrahydroperylene CC(C)CCc2cc1cccc4c1c(c3cccc5c3C4CCC5)c2<br />

PAr 25 n-Pentyltetrahydroperylene CCCCCc2cc1cccc4c1c(c3cccc5c3C4CCC5)c2<br />

PAr 25 iso-Propylpicene c1cc2c3ccc4c5ccccc5ccc4c3ccc2cc1C(C)C<br />

PAr 25 n-Propylpicene c1cc2c3ccc4c5ccccc5ccc4c3ccc2cc1CCC<br />

PAr 25 Propylbenzo(ghi)perylene c1(c(c(CCC)c6)ccc3ccc4ccc5)c3c4c5c2c1c6ccc2<br />

PAr 25<br />

2-(2,4-dimethylnonyl)<br />

phenanthrene<br />

c1cc2c3ccc(CC(C)CCCC(C)CCC)cc3ccc2cc1<br />

PAr 25 2-iso-Heptylchrysene c4c(CCC(C)CCC)cc3ccc2c1ccccc1ccc2c3c4<br />

PAr 25 Isopentyl-benzo(a)pyrene<br />

c(c(c(cc1)ccc2)c2cc3)(c3cc(c4ccc5CC(C)CC)c5)c<br />

14<br />

PAr 25 isoheptyltetrahydro-chrysene c1ccc2ccc3c4CCC(CC(C)CCCC)Cc4ccc3c2c1<br />

PAr 25 Propyl-octadecahydro-picene<br />

C12=CC=C3C(C=CC4=C3C=CC5=C4CCCC5)=C<br />

1CC(CCC)CC2<br />

PAr 25 Propyltetrahydro-picene c12ccc3c(ccc4c3ccc5c4ccc(CCC)c5)c1CCCC2<br />

PAr 26 Ethylbenzo-perylene CCc6cc2c(cc6)c1cccc4c1c(c3cccc5c3c4ccc5)c2<br />

PAr 26<br />

2-(2,4-dimethyldecyl)<br />

phenanthrene<br />

c1cc2c3ccc(CC(C)CCCC(C)CCCC)cc3ccc2cc1<br />

PAr 26 2-iso-Octylchrysene c4c(CCC(C)CCCC)cc3ccc2c1ccccc1ccc2c3c4<br />

PAr 26 Isohexyl-benzo(a)pyrene<br />

c(c(c(cc1)ccc2)c2cc3)(c3cc(c4ccc5CC(C)CCC)c5<br />

)c14<br />

PAr 26 isooctyltetrahydro-chrysene c1ccc2ccc3c4CCC(CC(C)CCCCC)Cc4ccc3c2c1<br />

PAr 26 Isobutyl-octadecahydro-picene<br />

C12=CC=C3C(C=CC4=C3C=CC5=C4CCCC5)=C<br />

1CC(CC(C)C)CC2<br />

PAr 26 isohexyltetrahydroperylene CCC(C)CCc2cc1cccc4c1c(c3cccc5c3C4CCC5)c2<br />

PAr 26 Isobutyltetrahydro-picene<br />

c12ccc3c(ccc4c3ccc5c4ccc(CC(C)C)c5)c1CCCC<br />

2<br />

PAr 26 dibenzo(b,k)chrysene c5c6ccccc6cc2c5c1c(c3cc4c(cc3cc1)cccc4)cc2<br />

PAr 27<br />

2-(2,4-<br />

dimethylundecyl)phenanthrene c1cc2c3ccc(CC(C)CCCC(C)CCCCC)cc3ccc2cc1<br />

PAr 27 2-(3,6-dimethylheptyl)chrysene c4c(CCC(C)CCC(C)C)cc3ccc2c1ccccc1ccc2c3c4<br />

PAr 27 Isoheptyl-benzo(a)pyrene<br />

c(c(c(cc1)ccc2)c2cc3)(c3cc(c4ccc5CC(C)CCCC)c<br />

5)c14<br />

PAr 27 Propylbenzo-perylene CCCc6cc2c(cc6)c1cccc4c1c(c3cccc5c3c4ccc5)c2<br />

2,6-dimethylheptyl-tetrahydrochrysene<br />

c1<br />

c1ccc2ccc3c4CCC(CC(C)CCCC(C)C)Cc4ccc3c2<br />

PAr 27<br />

PAr 27 Isopentyl-octadecahydro-picene<br />

C12=CC=C3C(C=CC4=C3C=CC5=C4CCCC5)=C<br />

1CC(CC(C)CC)CC2<br />

PAr 27 isoheptyltetrahydroperylene<br />

CCCC(C)CCc2cc1cccc4c1c(c3cccc5c3C4CCC5)<br />

c2<br />

PAr 27 Isopentyltetrahydro-picene<br />

c12ccc3c(ccc4c3ccc5c4ccc(CC(C)CC)c5)c1CCC<br />

C2<br />

2-(2,4-dimethyldodecyl)<br />

c1cc2c3ccc(CC(C)CCCC(C)CCCC(C)C)cc3ccc2c<br />

PAr 28 phenanthrene<br />

c1<br />

PAr 28 2-(3,6-dimethyloctyl)chrysene<br />

c4c(CCC(C)CCC(C)CC)cc3ccc2c1ccccc1ccc2c3c<br />

4<br />

PAr 28 Isooctyl-benzo(a)pyrene<br />

c(c(c(cc1)ccc2)c2cc3)(c3cc(c4ccc5CC(C)CCCCC<br />

)c5)c14<br />

106


PAr 28 Isohexyl-octadecahydro-picene<br />

PAr 28 isoctyltetrahydroperylene<br />

PAr 29 2-(3,6-dimethylnonyl)chrysene<br />

PAr 29 Dimethylheptyl-benzo(a)pyrene<br />

PAr 28 Isobuylbenzo-perylene<br />

2,6-dimethyloctyltetrahydrochyrsene<br />

PAr 28<br />

PAr 28 Isohexyltetrahydro-picene<br />

benzo(p)naphtho(1,8,7-<br />

PAr 28 ghi)chrysene<br />

2-(2,4,10-trimethyldodecyl)<br />

PAr 29 Phenanthrene<br />

PAr 29 Isopentylbenzo-perylene<br />

2,6-dimethylnonyltetrahydrochyrsene<br />

PAr 29<br />

PAr 29 Isoheptyl-octadecahydro-picene<br />

dimethyheptyltetrahydroperylene<br />

PAr 29<br />

PAr 29 Isoheptyltetrahydro-picene<br />

2-(2,4,10-<br />

PAr 30 trimethyltridecyl)phenanthrene<br />

PAr 30 2-(3,6-dimethyldecyl)chrysene<br />

PAr 30 Dimethyloctyl-benzo(a)pyrene<br />

PAr 30 Isohexylbenzo-perylene<br />

2,6-dimethyldecyltetrahydrochrysene<br />

PAr 30<br />

PAr 30 Isooctyl-octadecahydro-picene<br />

PAr 30 dimethyoctyltetrahydroperylene<br />

PAr 30 Isooctyltetrahydro-picene<br />

2-(2,4,10-trimethyltetradecyl)<br />

PAr 31 phenanthrene<br />

PAr 31 2-(3,6-dimethylheptyl)chrysene<br />

C(C)CCc6cc2c(cc6)c1cccc4c1c(c3cccc5c3c4ccc5<br />

)c2<br />

c1ccc2ccc3c4CCC(CC(C)CCCC(C)CC)Cc4ccc3c<br />

2c1<br />

C12=CC=C3C(C=CC4=C3C=CC5=C4CCCC5)=C<br />

1CC(CC(C)CCC)CC2<br />

CCCCC(C)CCc2cc1cccc4c1c(c3cccc5c3C4CCC5<br />

)c2<br />

c12ccc3c(ccc4c3ccc5c4ccc(CC(C)CCC)c5)c1CC<br />

CC2<br />

c1cc6cccc7c6c2c(c4c7c3c(c5c4cccc5)cccc3)cccc<br />

12<br />

c1cc2c3ccc(CC(C)CCCC(C)CCCC(C)CC)cc3ccc<br />

2cc1<br />

c4c(CCC(C)CCC(C)CCC)cc3ccc2c1ccccc1ccc2c<br />

3c4<br />

c(c(c(cc1)ccc2)c2cc3)(c3cc(c4ccc5CC(C)CCCC(<br />

C)C)c5)c14<br />

CC(C)CCc6cc2c(cc6)c1cccc4c1c(c3cccc5c3c4cc<br />

c5)c2<br />

c1ccc2ccc3c4CCC(CC(C)CCCC(C)CCC)Cc4ccc3<br />

c2c1<br />

C12=CC=C3C(C=CC4=C3C=CC5=C4CCCC5)=C<br />

1CC(CC(C)CCCC)CC2<br />

C(C)CCCC(C)CCc2cc1cccc4c1c(c3cccc5c3C4C<br />

CC5)c2<br />

c12ccc3c(ccc4c3ccc5c4ccc(CC(C)CCCC)c5)c1C<br />

CCC2<br />

c1cc2c3ccc(CC(C)CCCC(C)CCCC(C)CCC)cc3cc<br />

c2cc1<br />

c4c(CCC(C)CCC(C)CCCC)cc3ccc2c1ccccc1ccc2<br />

c3c4<br />

c(c(c(cc1)ccc2)c2cc3)(c3cc(c4ccc5CC(C)CCCC(<br />

C)CC)c5)c14<br />

CCC(C)CCc6cc2c(cc6)c1cccc4c1c(c3cccc5c3c4c<br />

cc5)c2<br />

c1ccc2ccc3c4CCC(CC(C)CCCC(C)CCCC)Cc4cc<br />

c3c2c1<br />

C12=CC=C3C(C=CC4=C3C=CC5=C4CCCC5)=C<br />

1CC(CC(C)CCCCC)CC2<br />

CC(C)CCCC(C)CCc2cc1cccc4c1c(c3cccc5c3C4<br />

CCC5)c2<br />

c12ccc3c(ccc4c3ccc5c4ccc(CC(C)CCCCC)c5)c1<br />

CCCC2<br />

c1cc2c3ccc(CC(C)CCCC(C)CCCC(C)CCCC)cc3c<br />

cc2cc1<br />

c4c(CCC(C)CCC(C)CCCCC)cc3ccc2c1ccccc1ccc<br />

2c3c4<br />

107


Appendix 2. Description of BCF calculations derived from BCFBAF module using Arnot<br />

Model<br />

The equations below are taken from Appendix K in BCFBAF users manual:<br />

log BCF<br />

upper<br />

log((1 Lb<br />

<br />

( k2<br />

kE<br />

upper<br />

upper<br />

upper<br />

) ( k1<br />

kG<br />

upper<br />

upper<br />

)<br />

kM<br />

upper<br />

)<br />

1<br />

where, <br />

, X poc = X doc = 510 -7<br />

(1 (0.35<br />

X K ) (0.08 X K )<br />

poc<br />

OW<br />

doc<br />

OW<br />

k1<br />

upper<br />

<br />

((0.01 <br />

1<br />

1<br />

K<br />

OW<br />

) W<br />

0.4<br />

upper<br />

, where W upper = 1.53 = upper trophic level fish weight<br />

)<br />

k2<br />

kD<br />

upper<br />

upper<br />

k1<br />

<br />

( Lb<br />

upper<br />

upper<br />

K<br />

OW<br />

0.15<br />

(0.02 Wupper<br />

e<br />

<br />

(0.00000005<br />

K<br />

, where Lb upper = 0.107 = lipid content in upper trophic level fish<br />

)<br />

(0.06<br />

OW<br />

T<br />

)<br />

)<br />

, where T = temperature = 10 C<br />

2)<br />

kE<br />

0 . 125<br />

upper<br />

kD upper<br />

kG<br />

upper<br />

0.000502 W<br />

0.2<br />

upper<br />

kM<br />

upper<br />

0.693<br />

<br />

Wupper<br />

( HLN ( )<br />

0.01<br />

0.25<br />

, where HLN = half-life normalized<br />

)<br />

108


Appendix 3. CONCAWE Position Paper on the<br />

Environmental Assessment of Metabolites derived from<br />

Petroleum Substances for PBT purposes<br />

Summary<br />

In conducting a PBT assessment of hydrocarbon substances, the Hydrocarbon Block<br />

(HCB) Method is used (EC, 2003) together with predictive tools for assessing the<br />

primary half-life. In the following paper the consequences of this for assessing major<br />

metabolites is discussed. The review shows that all hydrocarbons must degrade (under<br />

oxic conditions) by first forming ketone, aldehyde and subsequently carboxylate and<br />

hydroxyl substituents. A further assessment demonstrates that for all the major classes of<br />

hydrocarbons, the major metabolites formed are in all cases less toxic, less persistent and<br />

less bioaccumulative than the parent molecule. Consequently it can be concluded that for<br />

PBT assessment purposes, the metabolites of hydrocarbons are not required to be further<br />

assessed.<br />

Introduction<br />

Petroleum substances typically contain hydrocarbons that exhibit large differences in<br />

physico-chemical and fate properties. These properties define the pattern of emissions<br />

and differential environmental distribution of the constituent hydrocarbons, and<br />

consequently it is not possible to define a unique predicted exposure concentration (PEC)<br />

for a petroleum substance. Furthermore, it is not possible to directly apply current risk<br />

assessment guidance developed for individual substances to complex petroleum<br />

substances. To provide a sound technical basis to assess environmental exposure and<br />

risks of petroleum substances, CONCAWE devised the Hydrocarbon Block Method in<br />

which constituent hydrocarbons with similar properties are treated as pseudo-components<br />

or "blocks" for which PECs and predicted no effect concentrations (PNECs) can be<br />

determined (CONCAWE, 1996). Risks are then assessed by summing the PEC/PNEC<br />

ratios of the constituent blocks. While this conceptual approach has been adopted by the<br />

<strong>EU</strong> as regulatory guidance (EC, 2003) experience in applying this method was limited.<br />

Recent studies demonstrate the utility of the HCB method to gasoline (MacLeod et al.<br />

2004, McGrath et al. 2004; Foster et al. 2005) and further work has been on-going to<br />

support the practical implementation of the HCB methodology to higher boiling<br />

petroleum substances that pose an environmental hazard. Utilising the basic approach<br />

described in these papers, the generic approach (as described in Comber et al, 2006) has<br />

been developed and is in the process of being written up.<br />

One of the issues that arise in such risk assessments, whether of single substances or<br />

hydrocarbon blocks, is the environmental impact of any metabolites that are formed. In<br />

order to assess this issue, the first task is to understand the range of hydrocarbon<br />

structures and thus the type of structures that would be involved in generating<br />

metabolites. There are four major classes of hydrocarbons to be addressed:<br />

paraffins/alkanes; iso-paraffins; naphthenics (cyclic alkanes) and aromatic structures,<br />

which will also include polyaromatic compounds. Within these basic classes there is an<br />

109


infinite number of structures including many variations and combinations of the classes<br />

and with increasing boiling point of a petroleum substance, this complexity will increase.<br />

For the purpose of this review only the basic structures will be evaluated and it is<br />

assumed that the application of this information to the more complex structures will be<br />

similar.<br />

The principle methods of predicting the metabolites utilises two sources of information;<br />

- the WWW and especially the site of the University of Minnesota<br />

- CATABOL and other published QSARs for biodegradation that predict metabolites<br />

To assess the potential for increased concern with metabolites over their parent<br />

compounds, either EPIsuite (US EPA 2009) or the OECD Tool Box (v1.1<br />

http://www.oecd.org/document/54/0,3343,en_2649_34379_42923638_1_1_1_1,00.html#<br />

Download_qsar_application_toolbox) or specific QSAR models e.g. OASIS, were used.<br />

In all cases the approach was based on a comparison with the parent compound. It is<br />

assumed that if the metabolite was less toxic, or more degradable than the parent<br />

compound, then the risk assessments of petroleum substances being undertaken by<br />

CONCAWE will be sufficiently protective of any metabolites that could be formed.<br />

Similarly, for a PBT assessment, the metabolites were firstly compared to the parent<br />

molecule and only for those parent molecules that may have a potential PBT concern<br />

were the metabolites further assessed for their specific PBT properties. The models and<br />

the basic approach are further outlined in the section below. Individual sections address<br />

each of the principle classes of hydrocarbons.<br />

1. Models and assessments<br />

1.1 Prediction of the metabolites<br />

For the purposes of this paper two sources of information were used. The first source<br />

was the World Wide Web and especially the site of the University of Minnesota (Ellis et<br />

al. 2006), at http://umbbd.msi.umn.edu/. This site contains information on over 900<br />

compounds, over 600 enzymes, nearly 1000 reactions and about 350 microorganism<br />

entries. There is a Pathway Prediction System (PPS) which is an open system for<br />

predicting microbial catabolism of organic compounds. Graphical display of PPS rules, a<br />

stand-alone version of the PPS and guidance for PPS users are also being developed.<br />

These references and others have been used to describe the general mechanisms by which<br />

hydrocarbons are degraded and hence the typical metabolites formed.<br />

The second source of information was the model CATABOL (Jaworska et al. 2002,<br />

supplied by the Laboratory of Mathematical Chemistry, Bourgas, http://oasis-lmc.org/).<br />

CATABOL is a degradation simulator, which includes a library of hierarchically ordered<br />

individual transformations (abiotic and enzymatic reactions) and a matching substructure<br />

engine providing their subsequent performance. The catabolic steps are derived from a<br />

set of most plausible metabolic pathways, predicted by experts for each chemical from<br />

the training set. The MITI-I database is used for that purpose, and provides the largest<br />

structural diversity and most consistent biodegradability assessments (O 2 yield during<br />

OECD 301 C test) among existing data collections. Subsequently, the transformation<br />

110


probabilities are adjusted to best reproduce documented degradation pathways for over<br />

500 chemicals. The model predicts biodegradation pathways and primary/ultimate halflives<br />

as well as the simulation of integral biodegradation data, such as BOD, CO2<br />

production and the level of the different metabolites. This model (and others) are further<br />

discussed in the next section here the models for addressing the metabolites are<br />

described.<br />

1.2 Predicting the PBT properties of metabolites compared to parent<br />

compounds<br />

To do this assessment a series of molecules were assessed using the OASIS Laboratory of<br />

the Mathematical Chemistry models (LMC). These are described below.<br />

1.2.1 OASIS LMC models: Environmental fate and Ecotoxicity<br />

1.2.1.1. Catalogic BOD model (OECD 301 C)<br />

This is based on an expert system in which predicted biotransformation pathways are<br />

combined with a probabilistic model that calculates the probabilities of individual<br />

transformations. The principal catabolic steps are derived from a set of metabolic<br />

pathways predicted for each chemical from the training set, 1078 chemicals of MITI I<br />

(OECD 301 C) database were used as a training set. The output is given as percentage of<br />

the theoretical biochemical oxygen demand (Jaworska et al., 2002). The system predicts<br />

the catabolic pathways, the level of stable metabolites and their physical-chemical and<br />

toxic endpoint values. The primary and ultimate half-lives are calculated.<br />

1.2.1.2. Catalogic BOD model (OECD 301 F)<br />

The model predicts the integral biodegradation estimates as BOD and CO2 production for<br />

OECD 301F protocol by simulating the metabolic pathways. Primary and ultimate halflives<br />

are predicted. The magnitudes of metabolites as well as BOD are defined as a<br />

function of time. The model is based on a training set with 488 kinetic biodegradation<br />

curves provided by industry (e.g. BASF, ExxonMobil, Givaudan, Dow Chemical).<br />

1.2.1.3. BCF Base Line Model<br />

A refined BCF Base Line Model is used to predict bioaccumulation potential of the tested<br />

chemicals. The maximum bioaccumulation (i.e., highest log BCF) for a given<br />

lipophilicity (i.e., log Kow value) is exhibited by chemicals ignoring their bioavailability<br />

and metabolism. The maximum potential for bioconcentration is further reduced by<br />

different factors: organism dependent (like metabolism) and chemical properties<br />

dependent like molecular size, ionization, water solubility and others). Metabolism,<br />

molecular size, ionization and water solubility are accounted explicitly in the model as<br />

used.<br />

The training set of the model contains 706 chemicals covering variety of chemical<br />

classes: alkanes, alkenes, mono- and di- aromatic hydrocarbons, polycyclic aromatic<br />

hydrocarbons, polychlorinated dibenzo-furans, polychlorinated dibenzodioxins,<br />

polychlorinated biphenyls, cycloalkanes and cycloalkenes, chloroaromatic chemicals,<br />

perfluorinated acids, chlorinated biphenyl ethers, aliphatic esters, and chloroorganic<br />

chemicals (Dimitrov et al. 2005a, 2005b and 2007).<br />

111


1.2.1.4. Acute aquatic toxicity model<br />

Utilizing an acute toxicity database for guppies, Verhaar et al. (1992) delineated the<br />

classes of inert, less inert, reactive, and specifically-acting chemicals, and provided the<br />

chemical rules for discrimination of the first three groups. Using a broader set of<br />

chemicals tested with fathead minnow in combination with concordant information about<br />

the primary mode of toxic action, Russom et al. (1997) established seven toxicodynamic<br />

categories, including three types of narcosis-acting chemicals, oxidative phosphorylation<br />

uncouplers, reactive electrophiles/pro-electrophiles, acetylcholinesterase inhibitors and<br />

central nervous seizure agents. The two independently developed classification schemes<br />

bear common features. Both systems delineate inert chemicals, or Type I narcotics, less<br />

inert chemicals, or Type II narcotics, and reactive electrophiles/proelectrophiles.<br />

Categorization of chemicals according to their mode of action (MOA) was further<br />

adopted by LMC by postulating the so-called toxic response surface. In this approach 2-<br />

D structural information is used only to identify the MOA of chemicals. Based on<br />

theoretical and empiric knowledge the following seven hierarchically ordered MOA are<br />

distinguished:<br />

Reactive Unspecified<br />

Aldehydes<br />

alpha, beta-Unsaturated alcohols<br />

Phenols and anilines<br />

Esters<br />

Narcotic amines<br />

Basesurface (non-polar) narcotics<br />

The toxicity of chemicals showing different MOA is predicted on the basis of<br />

interspecies models with the following mathematical structure (Dimitrov et al. 2000,<br />

2003 and 2004):<br />

log<br />

Species<br />

1/<br />

C b b BCF<br />

<br />

b R<br />

1<br />

0<br />

log<br />

tox<br />

2<br />

where BCF tox is the bioconcentration factor corrected for the effect of internal organisms<br />

water phase [10], R is a global or local reactivity parameter specific for each MOA, C is<br />

the concentration in mol/l causing specific toxic effect, such as 50% lethality,<br />

Species<br />

immobilization, inhibition of bioluminescence, etc., and<br />

b 0<br />

,<br />

b 1 , and<br />

b2<br />

are adjusted<br />

model parameters. Chemicals with an unknown MOA or with insufficient number of<br />

data for model building are classified in the category Reactive Unspecified MOA. For<br />

these chemicals the minimum toxicity is predicted by making use of the model for nonpolar<br />

narcotics:<br />

log<br />

1/<br />

C<br />

<br />

log1<br />

C<br />

<br />

Re activeUnspecified<br />

/<br />

Non<br />

polarnar cot ics<br />

The applicability domain of chemicals with Reactive Unspecified MOA is not estimated.<br />

112


1.2.2 OASIS LMC Models: Toxicological models - Protein/DNA Based<br />

1.2.2.1. Simulating Metabolism<br />

A probabilistic approach to simulating metabolism was developed in LMC. The<br />

approach is based on the sets of hierarchically ordered principal molecular<br />

transformations used to simulate the specific metabolic fate of chemicals. Databases of<br />

documented metabolic pathways for different environmental niches, such as aerobic<br />

microbial degradation or rat liver metabolism, were collected. This empiric knowledge<br />

was used to extract specific molecular transformations to simulate metabolism, assess<br />

their probability of occurrence and their reliability. Due to the limited quantitative<br />

metabolism data reported for some tissue compartments, such as skin, the quantification<br />

of transformations was assigned also on the basis of expert knowledge. The quantitative<br />

assessment of the principal transformations is an advantage of this approach to simulate<br />

metabolism in terms of confining the propagation of metabolic pathways, prioritization of<br />

generated metabolites and defining the applicability domain of simulators. The<br />

developed software systems CATABOL and TIMES (see section 1.2.2.2 for further<br />

details) provide not only ability to model biodegradation or bioaccumulation of chemicals<br />

but also a unique ability to merge metabolism simulation with specific toxic endpoints as<br />

acute aquatic toxicity, skin sensitization, mutagenicity, estrogenicity, etc. The<br />

compilation of traditional (Q)SARs for assessing toxic endpoints with metabolism<br />

simulators and estimates of the applicability domains affords a new perspective in the<br />

(Q)SAR methodology.<br />

Two metabolism models have been developed recently in the lab simulating molecular<br />

transformations in skin and rat liver S9.<br />

1.2.2.2. Skin Sensitization Model<br />

Skin sensitization potential depends upon the ability of chemicals to react with skin<br />

proteins either directly or after appropriate metabolism. The model was built as a<br />

composite of two sub models:<br />

Skin metabolism simulator - The metabolic simulator was constructed to mimic the<br />

enzyme activation of chemicals in the skin. It contains hierarchically ordered<br />

spontaneous and enzyme controlled reactions. The formation of macromolecular<br />

immunogens was used to identify probable structural alerts in parent chemicals or<br />

their metabolites.<br />

COREPA 3D-QSARs /COmmon REactivity PAttern/ for intrinsic reactivity of<br />

compounds having substructures associated with activity: these models depend on<br />

both the structural alert and the rate of skin sensitization. Steric effect around the<br />

active site, molecular size, shape, solubility, lipophilicity, and electronic properties<br />

are taken into account. These models generally may involve combinations of<br />

molecular parameters or descriptors, which trigger the alerting group.<br />

The model was derived from a data set compiled from chemicals tested in the LLNA<br />

(local lymph node assay), GPMT (guinea pig maximization test) and BgVV list (German<br />

Federal Institute for Health Protection of Consumers and Veterinary Medicine). Skin<br />

sensitization potency for these chemicals was assigned to one of three classes: strong,<br />

weak or nonsensitizing. For chemicals whose potency was assessed by more than one<br />

113


method, the LLNA value was accepted as representative for the structure; where the<br />

LLNA test was not available, the GPMT value was taken (Patlewicz et al., 2007, Roberts<br />

et al., 2007).<br />

1.2.2.3. AMES Mutagenicity model<br />

The mutagenicity model (Serafimova et al., 2006) was derived on the basis of 345<br />

chemicals that were found experimentally to be positive without S-9 metabolic system<br />

and a further 2357 chemicals – including 2012 negatives, and 397 positives with S-9<br />

system. The simulator used for predicting metabolic activation of chemicals under S-9 is<br />

in fact predicting a mammalian liver metabolism where the settings of the simulator were<br />

adjusted in a way to avoid missing mutagenic metabolites. The simulator used in the<br />

model mimics formation of enzyme complexes and channeling effects. According to the<br />

adopted modeling scheme, the target chemicals are submitted to a metabolic simulator<br />

and generated metabolites are subsequently screened by the 3D QSAR model to identify<br />

mutagenic metabolites.<br />

1.2.2.4. Model for Chromosomal aberrations<br />

The model for chromosomal aberrations (CA) accounts for two principal types of<br />

interaction mechanisms – interactions with DNA and interactions with proteins or nuclear<br />

enzymes (Mekenyan et al., 2007). The model is used to predict metabolism in rat liver.<br />

The alerting groups associated with these mechanisms are defined by specific structural<br />

boundaries as well as by 2D and 3D parameter ranges describing effects of bioavailability<br />

and reactivity alerts that are conditioned by the rest of the molecule. The model was<br />

derived on the basis of 497 (166 positive and 331 negative) chemicals that have<br />

experimental data without S-9 metabolic system and other 162 chemicals – including 81<br />

positives, and 81 negatives with S-9 system. The performance of the model without<br />

metabolic activation was characterized by sensitivity and specificity values of 77% and<br />

82%, respectively. For the model coupled with the metabolic simulator (trained to<br />

reproduce documented maps for mammalian (mainly rat) liver metabolism of 332<br />

chemicals), the performance is 75% and 60% for sensitivity and specificity respectively.<br />

1.2.3 OASIS LMC Models: Toxicological models - Receptor mediated effects<br />

1.2.3.1. Androgen Binding Affinity QSAR model<br />

Some of the environmental and industrial chemicals can interact with the androgen<br />

receptor (AR) by mimicking the functions of natural hormones. The multiparameter<br />

formulation of COmmon REactivity PAttern (COREPA) (Mekenyan et al., 2004)<br />

approach was used to describe the structural requirements for eliciting androgen potency.<br />

A structurally diverse training data set containing 202 chemicals was obtained from the<br />

National Center for Toxicology Research (NCTR, US). The chemical affinities for the rat<br />

AR were related to distances between nucleophilic sites and structural features describing<br />

electronic interactions between the receptor and ligands.<br />

1.2.3.2. Estrogen binding affinity QSAR model<br />

The multiparameter formulation of COmmon REactivity PAttern (COREPA) (Mekenyan<br />

et al., 2004) approach was used to describe the structural requirements for eliciting<br />

estrogen binding potency. A training set of 645 chemicals which includes 497 steroid and<br />

114


environmental chemicals (database of Chemical Evaluation and Research Institute, Japan<br />

- CERI) and 148 chemicals to further explore hER-structure interactions (selected J.<br />

Katzenellenbogen references) were used. Analysis of the reactivity patterns resulted in<br />

identification of distinct interaction types: a steroid-like A–B type described by frontier<br />

orbital energies and distance between nucleophilic sites with specific charge<br />

requirements; an A–C type where local hydrophobic effects are combined with electronic<br />

interactions to modulate binding; and mixed A–B–C (AD) type. Chemicals were grouped<br />

by type, then COREPA models were developed for within specific relative binding<br />

affinity ranges greater then 10%, 0.1


ioaccumulative than the parent molecules. This is partly borne out by the predictive<br />

methods, where (Table 1) it can be seen that certainly the bioaccumulative behaviour is<br />

significantly reduced by 2 to 3 orders of magnitude when compared to the parent<br />

molecule.<br />

2.3 Naphthenics (Cyclo-alkanes)<br />

Cyclic alkanes are relatively resistant to microbial attack, as the absence of an exposed<br />

terminal methyl group complicates the primary attack (Fritsche and Hofrichter, 2000).<br />

The mechanism of cyclohexane degradation is again generally via the alcohol and in<br />

general, alkyl side chains of cyclo-alkanes facilitate degradation. The pattern noted for<br />

the toxicity or biodegradation is variable, and led to more toxic and/or persistent<br />

metabolites. However, without exception, the predicted effect of these changes is to lead<br />

to significant reductions in the bioaccumulative behaviour of the metabolites, of the order<br />

of one to over three orders of magnitude.<br />

Given the properties of certain naphthenic type structures, it was decided to further<br />

investigate the naphthenics in more detail. The results of this are shown in Table 1,<br />

where many more structures were addressed, but instead only at one carbon number, i.e.<br />

C15. Exactly the same result has been obtained in these predictions, with variable<br />

changes being observed to the toxicity and/or persistency of the metabolites, but a<br />

consistent one to three orders of magnitude decline in the bioaccumulative behaviour<br />

when compared with the parent molecules.<br />

It should be concluded therefore that there is no reason to believe that any metabolites of<br />

these structures is likely to be B or vB, and hence they will not be either PBT or vPvB.<br />

2.4 Aromatic compounds<br />

Given that a large number of aromatic compounds are formed by organisms, e.g., as<br />

aromatic amino acids, phenols, or quinines, it is not surprising that many microorganisms<br />

have evolved catabolic pathways to degrade them. It can be assumed that in general<br />

petrochemical molecules can be degraded by microorganisms, when the respective<br />

molecules are similar to other natural compounds and are converted enzymatically to<br />

natural intermediates of the degradation: catechol and protecatechuate (Fritsche and<br />

Hofrichter, 2000). While the introduction of aliphatic substituents will alter the point of<br />

attack, it should not be anticipated that the products of that attack will be significantly<br />

different.<br />

Again the pattern noted for the toxicity or biodegradation is variable, and does in some<br />

cases lead to more toxic and/or persistent metabolites. However, without exception, the<br />

predicted effect of these changes is to lead to reductions in the bioaccumulative<br />

behaviour of the metabolites by two to three orders of magnitude (Table 1).<br />

2.4.1 Polyaromatic compounds<br />

The biochemical pathway for the aerobic biodegradation of PAHs has been extensively<br />

investigated. It is understood that the initial step in the aerobic catabolism of a PAH<br />

molecule by bacteria uses a multicomponent enzyme system to oxidise the PAH to a<br />

116


dihydrodiol. These dihydroxylated intermediates may then be processed through either an<br />

ortho cleavage type of pathway, in which ring fission occurs between the two<br />

hydroxylated carbon atoms, or a meta- cleavage type of pathway, which involves<br />

cleavage of the bond adjacent to the hydroxyl groups, leading to central intermediates<br />

such as protocatechates and catechols. These compounds are further converted to<br />

tricarboxylic acid cycle intermediates (van der Meer et al. 1992). For the lower molecular<br />

weight PAHs, the most common route involves the fission into a C3 compound and a<br />

hydroxyl aromatic acid compound. The aromatic ring can thereafter either undergo direct<br />

fission or can be subjected to decarboxylation, leading to the formation of a<br />

dihydroxylated compound. This compound can be dissimilated as described above. When<br />

degraded via these pathways, the low molecular weight PAHs can be completely<br />

mineralized to CO 2 and H 2 O (Volkering and Breure, 2003).<br />

The following observations were made by Volkering and Breure (2003);<br />

- Many bacterial and fungal species have the enzymatic capacity to oxidise PAHs<br />

- The aerobic transformation of PAHs always involve incorporation of oxygen into the<br />

molecule<br />

- The initial step is usually performed via a dioxygenase and forms a dihydrodiol<br />

Their conclusions were that the transformation products of PAHs were in general more<br />

polar than the parent and that there were metabolites that were potentially harmful to<br />

mammals and could also have important environmental consequences.<br />

-bonding orbitals, which results in the<br />

absorption of light in the UV/far blue region of the spectrum that is present in solar radiation<br />

(Nikolaou et al. 1984; Newsted and Giesy 1987; Larson and Berenbaum 1988; Krylov et al.<br />

1997). Absorption of light energy can alter the toxicity of these compounds through two<br />

different mechanisms: photosensitization and photomodification (Krylov et al. 1997).<br />

Photosensitization generally leads to the production of singlet oxygen, and other reactive<br />

oxygen species (ROS), which are capable of damaging biological molecules (Foote 1991).<br />

Photomodification of PAHs is defined here as photooxidation and photolysis, and results in<br />

the formation of new compounds with increased polarity, and in many cases, increased<br />

toxicity (Zhu et al. 1995; Duxbury et al. 1997; Mallakin et al. 2000; Brack et al. 2003;<br />

Shimada et al. 2004; Lampi et al. 2006).<br />

Photosensitization has been widely documented in environmental toxicology, particularly<br />

with respect to homo- and heterocyclic PAHs (Mekenyan et al. 1994; Wiegman et al.<br />

2002, Diamond et al. 2006). These compounds are ideal photosensitizers, and are able to<br />

absorb environmentally relevant wavelengths of radiation (Krylov et al. 1997). The<br />

photosensitized production of highly reactive, and biologically damaging singlet oxygen<br />

is an important, and well-studied aspect of PAH phototoxicity (Larson and Berenbaum<br />

1988).<br />

Singlet oxygen-induced biological damage is not the only mechanism of PAH<br />

phototoxicity. Many PAHs can undergo subsequent reactions with oxygen (Mallakin et<br />

al. 2000), forming new compounds that may be more toxic and/or mutagenic than the<br />

117


parent PAH (McCoy et al. 1979; Nikolaou et al.1984; Brack et al. 2003; Lampi et al.<br />

2006).<br />

Photodegradation via photolysis is a major source of elimination of PAHs from various<br />

environmental compartments (Nikolaou et al. 1984), however, this is not the only<br />

pathway that occurs. For instance, anthracene, which is a known photosensitizer, is able<br />

to form the photoproduct 9,10-anthraquinone (ATQ) (Fox and Olive 1979; Nikolaou et<br />

al. 1984; Mallakin et al. 2000). There are a wide variety of other oxyPAHs that are<br />

formed via PAH photomodification. Some of these include phenanthrenequinone<br />

(McConkey et al. 1997), many hydroxylated anthraquinones (Mallakin et al. 2000; Brack<br />

et al. 2003), and a host of other unidentified compounds, resulting from the<br />

photomodification of a variety of PAHs (Huang et al. 1997).<br />

There is little specific data available to evaluate the persistence and bioaccumulation of<br />

specific PAH photodegradation products. However, accompanying photomodification,<br />

which is generally via oxygenation, should lead to an increase in susceptibility to<br />

biotransformation in a similar manner to that observed after phase I metabolism by the<br />

mixed function oxidases (Prince and Walters, 2006) which will minimise the risk of<br />

persistence and bioaccumulation of such compounds.<br />

In evaluating the toxicity of PAH photoproducts or metabolites, one must consider that<br />

they will be less hydrophobic than the parent PAHs, although some hydrophobicity<br />

remains, thereby facilitating partitioning in biological membranes (Krylov et al. 1997;<br />

McConkey et al. 1997). They can then manifest toxicity to a variety of organisms through<br />

specific and non-specific mechanisms (Chesis et al. 1984; Bondy et al. 1994; Zhu et al.<br />

1995; Huang et al. 1997; Li et al. 2000; Shimada et al. 2004). There are few reports of the<br />

presence of photoproducts or metabolites in the aquatic environment (Marvin et al. 2000;<br />

Lampi et al. 2001; Machala et al. 2001; Papadoyannis et al. 2002; Kurihara et al. 2005),<br />

and although in some cases, concentrations may reach that close to the parent (Kurihara<br />

et al. 2005) or interact with co-contaminants (Xie et al. 2006), other work (Lampi et al.<br />

2007) has shown that the contribution of photomodification, although significant, is<br />

outweighed by that of photosensitisation, which is the greatest contributing factor to<br />

photoinduced toxicity, and is already considered in the toxicity assessment of PAHs (e.g.<br />

<strong>EU</strong> 2008).<br />

Given the increase in polar groups and increase in potential for metabolism, PAH<br />

metabolites should not be considered persistent or bioaccumulative substances. There is a<br />

potential for toxicity of PAH metabolites, but this is less than the potential for effects<br />

from photosensitized generation of reactive oxygen species, and is considered in PAH<br />

hazard assessment. Thus PAH metabolites should not be considered PBT substances.<br />

118


Table 1 : PBT assessment of C15 structure metabolites when<br />

compared to the parent structures<br />

Name Class LogKow L(E)C50 Primary Bioacumulation<br />

half-life<br />

2-Methyltetradecane BrAlkane 7.63<br />

Metabolite 1 -0.02 +++ >


Table 2 : PBT assessment of C11 – C19 monocyclic naphthenic<br />

metabolites when compared to the parent structures<br />

Name C# LogKow L(E)C50 Primary Bioacumulation<br />

half-life<br />

n-Heptylcyclopentane 12 6.05<br />

Metabolite 1 1.87 +++ >>>> >> > > <<br />

Metabolite 3 2.36 + >>>> >>> <<br />

1-cyclohexyl 4,8 dimethyl undecane 19 9.34<br />

Metabolite 1 8.10 <<br />

Metabolite 2 8.10 <<br />

120


1: The following structures were predicted to have no stable metabolites: n-hexylcyclopentane, isohexylcyclopentane,<br />

1,2,3,4-tetraethylcyclohexane, iso-nonylcyclohexane, 1,5-dimethyl-1-(3,7-<br />

dimethyloctyl)cyclohexane, 1,5-dimethyl-1-(3,7-dimethylnonyl)cyclohexane<br />

2: each symbol indicates the order of magnitude greater or less for the metabolite when compared to the<br />

parent molecule.<br />

121


REFERENCES<br />

Bondy GS, Armstrong CL, Dawson BA, Heroux-Metcalf C, Neville GA, Rogers CG.<br />

(1994). Toxicity of structurally related anthraquinones and anthrones to mammalian cells<br />

in vitro. Toxicology in Vitro 8:329-335.<br />

Brack W, Altenburger R, Kuster E, Meissner B, Wenzel K-D, Schüürmann G. (2003).<br />

Identification of toxic products of anthracene photomodification in simulated sunlight.<br />

Environmental Toxicology and Chemistry 22:2228-2237.<br />

Chesis PL, Levin DE, Smith MT, Ernster L, Ames BN. 1984. Mutagenicity of quinones:<br />

Pathways of Metabolic activation and detoxification. Proceedings of the National<br />

Academy of Sciences, USA. 81:1696-1700.<br />

Comber M, Dmytrasz B, Eadsforth C, King D, Parkerton T, Toy R. (2006). Developing a<br />

Generic risk assessment methodology for petroleum products - Poster presented at<br />

SETAC, Den Hague, the Netherlands.<br />

Diamond SA, Mount DR, Mattson VR, Heinis LJ. (2006). Photoactivated polycyclic<br />

aromatic hydrocarbon toxicity in medaka (Oryzias latipes) embryos: Relevance to<br />

environmental risk in contaminated sites. Environmental Toxicology and Chemistry.<br />

25:3015-3023.<br />

Dimitrov SD, Mekenyan OG, Schultz TW. (2000). Interspecies modeling of narcotics<br />

toxicity to aquatic animals. Bulletin of Environmental Contamination and Toxicology.<br />

65:399-406.<br />

Dimitrov SD, O. G. Mekenyan, J.D. Walker. (2002). Non-linear modeling of<br />

bioconcentration factor usibg partition coefficient for narcotic chemicals, SAR and<br />

QSAR in Environmental Research. 13:177-184.<br />

Dimitrov SD, Mekenyan OG, Sinks GD, Schultz TW. (2003). Global modeling of<br />

narcotic chemicals: ciliate and fish toxicity, Journal of Molecular Structure:<br />

THEOCHEM, 622:63-70.<br />

Dimitrov S, Koleva Y, Schultz TW, Walker JD, Mekenyan O. (2004). Interspecies<br />

quantitative structure activity-relationship model for aldehydes: aquatic toxicity.<br />

Environmental Toxicology and Chemistry. 23:463-470.<br />

Dimitrov SD, Dimitrova N, Parkerton TF, Comber M, Bonnell M, Mekenyan O. (2005a).<br />

Base –line model for identifying the bioaccumulation potential of chemicals, SAR QSAR<br />

Environ Res 16:531-554.<br />

Dimitrov SD, Dimitrova N, Pavlov T, Dimitrova N, Patlelwicz G, Niemela J, Mekenyan<br />

O. (2005b). A stepwise approach for defining the applicability domain of SAR and<br />

QSAR Models. Journal of Chemical Inference and Modeling. 45:839-849.<br />

122


Dimitrov SD, Dimitrova N, Mekenyan O. (2007). BCF Base Line Model for Predicting<br />

Bioaccumulation: New modification. SETAC Europe 17th Annual Meeting, 20-24 May,<br />

2007, Porto, Portugal.<br />

Duxbury CL, Dixon DG, Greenberg BM. (1997). Effects of simulated solar radiation on<br />

the bioaccumulation of polycyclic aromatic hydrocarbons by the duckweed Lemna<br />

gibba. Environmental Toxicology and Chemistry. 16:1739-1748.<br />

EC. (2003). 2nd Edition of the Technical Guidance Document in support of Commission<br />

Directive 93/67/EEC on Risk Assessment of new notified substances, Commission<br />

Regulation (EC) No 1488/94 on Risk Assessment for existing substances and Directive<br />

98/8/EC of the European Parliament and of the Council concerning the placing of<br />

biocidal products on the market. Office for the Official Publications of the European<br />

Communities, Luxembourg.<br />

<strong>EU</strong>. (2008). European Union Risk Assessment Report, Anthracene.<br />

http://ecb.jrc.ec.europa.eu/esis/<br />

Ellis LBM, Roe D, Wackett LP. (2006). The University of Minnesota<br />

Biocatalysis/Biodegradation Database: The First Decade. Nucleic Acids Research 34:<br />

D517-D521.<br />

Foote CS. (1991). Definition of type I and type II photosensitized oxidation.<br />

Photochemistry and Photobiology. 54:659.<br />

Fox MA, Olive S. (1979). Photooxidation of anthracene on atmospheric particulate<br />

matter. Science 205:582-583.<br />

Foster KL, Mackay D, Parkerton TF, Webster E, Milford L. (2005). Five-stage<br />

environmental exposure assessment strategy for mixtures: Gasoline as a case study,<br />

Environmental Science and Technology. 39:2711-2718.<br />

Fritsche W, Hofrichter M. (2000). Aerobic degradation by microorganisms. In: Rehm,<br />

H.-J., Reed, G. (Eds.) Biotechnology - Vol. 11b: Environmental Processes. Wiley-VCH,<br />

Weinheim, New York, pp. 145-167.<br />

Huang X-D, Krylov SN, Ren L, McConkey BJ, Dixon DG, Greenberg BM. (1997).<br />

Mechanistic quantitative structure-activity relationship model for the photoinduced<br />

toxicity of polycyclic aromatic hydrocarbons: II. An empirical model for the toxicity of<br />

16 polycyclic aromatic hydrocarbons to the duckweed Lemna gibba L. G-3.<br />

Environmental Toxicology and Chemistry. 16:2296-2303.<br />

Jaworska J, Dimitrov S, Nikolova N, Mekenyan O. (2002). Probabilistic Assessment of<br />

Biodegradability Based on Metabolic Pathways: CATABOL System, SAR and QSAR in<br />

Environmental Research. 13:307-323.<br />

123


Kachholz T, Rehm H. (1977). Degradation of long chain alkanes by bacilli. I.<br />

Development and product formation by bacilli degrading alkanes in the presence of other<br />

carbon sources, Appl Microbiol Biotechnol 4:101-110<br />

Krylov SN, Huang X-D, Zeiler LF, Dixon DG, Greenberg BM. (1997). Mechanistic<br />

quantitative structure-activity relationship model for the photoinduced toxicity of<br />

polycyclic aromatic hydrocarbons: I. Physical model based on chemical kinetics in a twocompartment<br />

system. Environmental Toxicology and Chemistry. 16:2283-2295.<br />

Kurihara R, Shiraishi F, Tanaka N, Hashimoto S. (2005). Presence and estrogenicity of<br />

anthracene derivatives in coastal Japanese waters. Environmental Toxicology and<br />

Chemistry. 24:1984-1993.<br />

Lampi MA, Huang X-D, El-Alawi YS, McConkey BJ, Dixon DG, Greenberg BM.<br />

(2001). Occurrence and toxicity of photomodified polycyclic aromatic hydrocarbon<br />

mixtures present in contaminated sediments. In: Greenberg BM, Hull RN, Roberts MH,<br />

Gensemer RW, editors. Environmental Toxicology and Risk Assessment: Science, Policy,<br />

and Standardization - Implications for Environmental Decisions. American Society for<br />

Testing and Materials, West Conshohocken, PA, USA, pp. 211-220.<br />

Lampi MA, Gurska J, McDonald KIC, Xie F, Huang X-D, Dixon DG. (2006).<br />

Photoinduced toxicity of PAHs to Daphnia magna: UV-mediated effects and the toxicity<br />

of PAH photoproducts. Environmental Toxicology and Chemistry. 25:1079-1087.<br />

Lampi MA, Gurska J, Huang X-D, Dixon DG, Greenberg BM. (2007). A predictive<br />

quantitative structure-activity relationship model for the photoinduced toxicity of<br />

polycyclic aromatic hydrocarbons to Daphnia magna with the use of factors for<br />

photosensitization and photomodification. Environmental Toxicology and Chemistry.<br />

26:406-415.<br />

Larson RA, Berenbaum MR. (1988). Environmental phototoxicity. Environmental<br />

Science and Technology 22:354-360.<br />

Li N, Venkatesan MI, Miguel A, Kaplan R, Gujuluva C, Alam J, Nel A. 2000. Induction<br />

of heme oxygenase-1 expression in macrophages by diesel exhaust particle chemicals and<br />

quinones via the antioxidant-responsive element. Journal of Immunology. 165:3393-<br />

3401.<br />

Marvin CH, McCarry BE, Villella J, Allan LM, Bryant DW. (2000). Chemical and<br />

biological profiles of sediments as indicators of sources of genotoxic contamination in<br />

Hamilton Harbour. Part I: Analysis of polycyclic aromatic hydrocarbons and thia-arene<br />

compounds. Chemosphere. 41:979-988.<br />

Machala M, Giganek M, Blaha L, Minksova K, Vondrack J. (2001). Aryl hydrocarbon<br />

receptor-mediated and estrogenic activities of oxygenated polycyclic aromatic<br />

124


hydrocarbons and azaarenes originally identified in extracts of river sediments.<br />

Environmental Toxicology and Chemistry. 20:2736-2743.<br />

MacLeod M, McKone TE, Foster K, Maddalena RL, Parkerton TF, Mackay D. (2004).<br />

Applications of contaminant fate and bioaccumulation models in assessing ecological<br />

risks of chemicals: A case study for gasoline hydrocarbons. Environmental Science and<br />

Technology. 38:6225-6233.<br />

Mallakin A, Dixon DG, Greenberg BM. (2000). Pathway of anthracene modificaton<br />

under simulated solar radiation. Chemosphere. 40:1435-1441.<br />

McConkey BJ, Duxbury CL, Dixon DG, Greenberg BM. (1997). Toxicity of a PAH<br />

photooxidation product to the bacteria Photobacterium phosphoreum and the duckweed<br />

Lemna gibba: Effects of phenanthrene and its primary photoproduct,<br />

phenanthrenequinone. Environmental Toxicology and Chemistry. 16:892-899.<br />

McCoy EC, Hyman J, Rosenkranz HS. (1979). Conversion of Environmental Pollutant to<br />

Mutagens by Visible Light. Biochemical and Biophysical Research Communications.<br />

89:729-734.<br />

McGrath JA, Parkerton TF, Di Toro DM. (2004). Application of the narcosis target lipid<br />

model to algal toxicity and deriving predicted no effect concentrations. Environmental<br />

Toxicology and Chemistry. 23:2503–2517.<br />

Mekenyan OG, Ankley GT, Veith GD, Call DJ. (1994). QSARs for photoinduced<br />

toxicity: I. Acute lethality of polycyclic aromatic hydrocarbons to Daphnia magna.<br />

Chemosphere 28:567-582.<br />

Mekenyan O, Nikolova N, Schmieder P, Veith G. (2004). COREPA-M: A multi<br />

dimensional formulation of COREPA. QSAR and Combinatorial Science. 23:5-18.<br />

Mekenyan O, Serafimova R, Todorov M, Stoeva S, Aptula A, Jacob E, Finking R.<br />

(2007). Identification of the structural requirements for chromosomal aberration, by<br />

incorporating molecular flexibility and metabolic activation of chemicals. Chemical<br />

Research in Toxicology. 20:1927–1941.<br />

Newsted JL, Giesy JP. (1987). Predictive models for photoinduced acute toxicity of<br />

polycyclic aromatic hydrocarbons to Daphnia magna Strauss (Cladocera, Crustacea).<br />

Environmental Toxicology and Chemistry.6:445-461.<br />

Nikolaou K, Masclet P, Mouvier G. (1984). Sources and chemical reactivity of<br />

polynuclear aromatic hydrocarbons in the atmosphere - a critical review. Science of the<br />

Total Environment. 32:103-132.<br />

Papadoyannis IN, Xotou A, Samanidou VF. (2002). Development of a solid phase<br />

extraction protocol for the simultaneous determination of anthracene and its oxidation<br />

125


products in surface waters by reversed-phase HPLC. Journal of Liquid Chromatography<br />

and Related Technologies. 25:2635-2653.<br />

Patlewicz G, Dimitrov SD, Low LK, Kern PS, Dimitrova GD, Comber MHI, Aptula AO,<br />

Phillips RD, Niemela J, Madsen C, Wedebye EB, Roberts DW, Bailey PT, Mekenyan<br />

OG. (2007). TIMES-SS—A promising tool for the assessment of skin sensitization<br />

hazard. A characterization with respect to the OECD validation principles for (Q)SARs<br />

and an external evaluation for predictivity. Regulatory Toxicology and Pharmacology<br />

48:225–239.<br />

Prince RC, Walters CC. 2006. Biodegradation of Oil Hydrocarbons and Its Implications<br />

for Source Identification. In: Wang Z, Stout SA, (Eds.) Oil Spill Environmental Forensics<br />

Academic Press. p 349-379.<br />

Roberts DW, Patlewicz G, Dimitrov SD, Low LK, Kern PS, Dimitrova GD, Comber<br />

MHI, Aptula AO, Phillips RD, Niemela J, Madsen C, Wedebye EB, Bailey PT,<br />

Mekenyan OG. (2007). TIMES-SS - A mechanistic evaluation of an external validation<br />

study using reaction chemistry principles. Chemical Research in Toxicology. 20:1321-<br />

1330.<br />

Russom CL, Bradbury SP, Broderius SJ, Drummond RA, Hammermeister DE. (1997).<br />

Predicting modes of toxic action from chemical structure: acute toxicity in Fathead<br />

minnow (Pimephales Promelas). Part I - development of a rule-based expert system.<br />

Environmental Toxicology and Chemistry. 16:948-967.<br />

Serafimova R, Todorov M, Pavlov T, Kotov S, Jacob E, Aptula A, Mekenyan O. (2006).<br />

Identification of the structural requirements for mutagencitiy, by incorporating molecular<br />

flexibility and metabolic activation of chemicals II. General Ames mutagenicity model.<br />

Chemical Research in Toxicology. 20:662 -676.<br />

Serafimova R, Todorov M, Nedelcheva D, Pavlov T, Akahori Y, Nakai M, Mekenyan O.<br />

(2007). QSAR and mechanistic interpretation of estrogen receptor binding. SAR and<br />

QSAR in Environmental Research. 18:1-33.<br />

Shimada H, Oginuma M, Hara A, Imamura Y. (2004). 9,10-Phenanthrenequinone, a<br />

component of diesel exhaust particles, inhibits the reduction of 4-benzoylpyridine and alltrans-retinal<br />

and mediates superoxide formation through its redox cycling in pig heart.<br />

Chemical Research in Toxicology. 17:1145-1150.<br />

US Environmental Protection Agency. (2009). EPISuite v4.0.<br />

http://www.epa.gov/oppt/exposure/pubs/episuitedl.htm<br />

van der Meer JR, de Vos WM, Harayama S, Zehnder AJB. (1992). Molecular<br />

mechanisms of genetic adaptation to xenobiotic compounds. Microbiological Reviews.<br />

56:677-694.<br />

126


Verhaar HJM, van Leeuwen CJ, Hermens JLM. (1992). Classifying environmental<br />

pollutants. 1. Structure-activity relationships for prediction of aquatic toxicity.<br />

Chemosphere. 25:471-491.<br />

Volkering F, Breure AM. (2003) Biodegradation and general aspects of bioavailability. In<br />

PAHs: An ecotoxicological perspective, Douben PET (Ed.). Wiley, West Sussex, UK, pp.<br />

81-96<br />

Wiegman S, Termeer JAG, Verheul T, Kraak MHS, de Voogt P, Admiraal W. (2002).<br />

UV absorbance -dependent toxicity of acridine to the marine diatom Phaecodactylum<br />

tricornutum. Environmental Science and Technology. 36:908-913.<br />

Xie F, Koziar S, Lampi MA, Dixon DG, Norwood W, Borgmann U, Greenberg BM.<br />

(2006). Assessment of the toxicity of mixtures of copper, 9,10-phenanthrenequinone and<br />

phenanthrene to D. magna. Environ Toxicol Chem 25:613-622.<br />

Zhu H, Li Y, Trush MA. (1995). Characterization of benzo[a]pyrene quinone-induced<br />

toxicity to primary cultured bone marrow stromal cells from DBA/2 mice: Potential role<br />

of mitochondrial dysfunction. Toxicology and Applied Pharmacology. 130:108-120.<br />

127


Vacuum Gas Oils, Hydrocracked Gas Oils, and Distillate Fuels<br />

APPENDIX 5: Aquatic Toxicity Predictions Obtained<br />

Using the PETROTOX Model for Petroleum Substance<br />

Categories<br />

2010-07-30 CSR Appendix 5


CONCAWE<br />

AQUATIC TOXICITY PREDICTIONS<br />

USING THE PETROTOX MODEL FOR<br />

PETROL<strong>EU</strong>M SUBSTANCE CATEGORIES<br />

Report prepared for CONCAWE<br />

by<br />

Aaron Redman a , Badri Yadav b<br />

a Hydroqual, Providence, Utah<br />

b Hydroqual, Mahwah, New Jersey<br />

June 3, 2010<br />

CONC.008.006


CONTENTS<br />

Section<br />

Page<br />

1 INTRODUCTION ............................................................................................................... 1-1<br />

2 SUMMARY OF COMPOSITION AND TOXICITY PREDICTIONS FOR<br />

NAPHTHA .......................................................................................................................... 2-1<br />

3 SUMMARY OF COMPOSITION AND TOXICITY PREDICTIONS FOR<br />

KEROSINES ........................................................................................................................ 3-1<br />

4 SUMMARY OF COMPOSITION AND TOXICITY PREDICTIONS FOR MK-1 .......... 4-1<br />

5 SUMMARY OF COMPOSITION AND TOXICITY PREDICTIONS FOR<br />

STRAIGHT-RUN GAS OILS ............................................................................................. 5-1<br />

6 SUMMARY OF COMPOSITION AND TOXICITY PREDICTIONS FOR<br />

CRACKED GAS OILS ........................................................................................................ 6-1<br />

7 SUMMARY OF COMPOSITION AND TOXICITY PREDICTIONS FOR<br />

VACUUM GAS OILS / HYDROCRACKED / OTHER DISTILLATE FUELS ............... 7-1<br />

8 SUMMARY OF COMPOSITION AND TOXICITY PREDICTIONS FOR OTHER<br />

GAS OILS ............................................................................................................................ 8-1<br />

9 SUMMARY OF COMPOSITION AND TOXICITY PREDICTIONS FOR HEAVY<br />

FUEL OIL COMPONENTS ................................................................................................ 9-1<br />

10 SUMMARY OF COMPOSITION AND TOXICITY PREDICTIONS FOR<br />

BITUMEN ......................................................................................................................... 10-1<br />

11 SUMMARY OF COMPOSITION AND TOXICITY PREDICTIONS FOR<br />

UNTREATED DISTILLATE AROMATIC EXTRACTS ................................................ 11-1<br />

12 SUMMARY OF COMPOSITION AND TOXICITY PREDICTIONS FOR<br />

TREATED DISTILLATE AROMATIC EXTRACTS ..................................................... 12-1<br />

13 SUMMARY OF COMPOSITION AND TOXICITY PREDICTIONS FOR FOOTS<br />

OILS ................................................................................................................................... 13-1<br />

14 SUMMARY OF COMPOSITION AND TOXICITY PREDICTIONS FOR OTHER<br />

LUBRICANT BASE OILS ................................................................................................ 14-1<br />

i


CONTENTS (Continued)<br />

Section<br />

Page<br />

15 SUMMARY OF COMPOSITION AND TOXICITY PREDICTIONS FOR<br />

PARAFFIN AND HYDROCARBON WAXES ............................................................... 15-1<br />

16 SUMMARY OF COMPOSITION AND TOXICITY PREDICTIONS FOR<br />

PETROLATUMS .............................................................................................................. 16-1<br />

17 SUMMARY OF COMPOSITION AND TOXICITY PREDICTIONS FOR<br />

RESIDUAL AROMATIC EXTRACTS ............................................................................ 17-1<br />

18 SUMMARY OF COMPOSITION AND TOXICITY PREDICTIONS FOR SLACK<br />

WAXES ............................................................................................................................. 18-1<br />

19 SUMMARY OF COMPOSITION AND TOXICITY PREDICTIONS FOR<br />

UNREFINED/ACID-TREATED OILS ............................................................................. 19-1<br />

20 SUMMARY OF COMPOSITION AND TOXICITY PREDICTIONS FOR<br />

HIGHLY REFINED MINERAL OILS ............................................................................. 20-1<br />

ii


1-1<br />

SECTION 1<br />

1 INTRODUCTION<br />

Refined petroleum substances are complex substances containing numerous<br />

hydrocarbon constituents. This poses a challenge for environmental hazard assessments<br />

including toxicity testing. As a result high quality toxicity data may not be available for<br />

hazard ranking of petroleum substances. In these instances the PETROTOX model can be<br />

used to provide reasonably conservative predictions of acute and chronic toxicity (Redman<br />

et al 2010; HydroQual 2009). However, precedence will be given to experimental data<br />

(when available) over predicted values.<br />

The PETROTOX model is based on previous work modeling the solubility of<br />

petroleum substances (Di Toro et al 2007; McGrath et al 2005) and the Target Lipid Model<br />

to predict toxicity of narcotic chemicals (Di Toro et al 2000; McGrath and Di Toro 2009).<br />

This report documents the results of PETROTOX predictions for the wide range of<br />

petroleum substances that are currently under review as part of the chemicals regulation<br />

program REACH in Europe.<br />

Substance categories<br />

This report addresses 19 main substance categories that represent major categories of<br />

refined petroleum substances being managed by CONCAWE in support of REACH<br />

requirements. These categories span a wide range of distillation properties in refined<br />

substances from petroleum gases to bitumen. An industry-wide effort was conducted to<br />

characterize these substances using comprehensive 2D gas chromatography, which were<br />

used as the input to the PETROTOX predictions. The average compositions of all samples<br />

within a category are reported in the sections below.<br />

Model set-up<br />

The PETROTOX model was designed to predict the results of standardized<br />

laboratory toxicity testing methods. The default system parameters are, therefore, consistent<br />

with the design of the testing systems as well as the validation of the PETROTOX model<br />

(Redman et al 2010). For example, model simulations were performed assuming a 10%<br />

headspace to account for volatilization of test substances during exposures. Also,<br />

predictions for microbial organisms (e.g., algae and WWTP organisms such as protozoa)<br />

were performed assuming a particulate organic carbon content of 2 mg/L. This accounts<br />

for elevated particulate concentrations present during typical test conditions, which can<br />

lower the bioavailability of the dissolved hydrocarbons and is consistent with the initial<br />

validation of the model (Redman et al 2010).


1-2<br />

The model predictions include median lethal loadings (LL50) and no observed effect<br />

loadings (NOEL) through the use of an acute to chronic ratio (McGrath et al 2004;<br />

McGrath and Di Toro 2009). The ACR was applied to the critical body burdens at the time<br />

of the calculations so that NOEL predictions are still affected by the inherent solubilities of<br />

these complex petroleum substances and are not simply scaled from the acute toxicity<br />

predictions. Toxicity endpoints are reported for several standard test organisms (fish, algae,<br />

daphnid, protozoa), which are relatively sensitive and are considered representative of other<br />

sensitive aquatic organisms. These predictions, therefore, provide a reasonable initial basis<br />

for evaluating aquatic hazards of the petroleum substances in this study (Redman et al 2007;<br />

Di Toro et al 2000; McGrath et al 2004). Based on the initial validation (HydroQual 2009)<br />

the predictions and are considered conservative.<br />

The term “loading” refers to the insoluble nature of the petroleum substances as well<br />

as the test methods used to generate exposure media (e.g., water accommodated fractions).<br />

Due to solubility limitations some petroleum substances are classified as Non-Toxic. This is<br />

presented in the report as the LL50 or NOEL >1000 mg/L, which is the maximum loading<br />

evaluated in PETROTOX (HydroQual 2009). In these cases the maximum Toxic Unit (TU)<br />

reached under the simulation conditions is reported for relative comparisons.


1-3<br />

References<br />

Redman A, Parkerton T, McGrath J, Di Toro D. 2010. PETROTOX: A Toxicity Model for<br />

Petroleum Products. Environ. Toxicol. Chem. in prep<br />

HydroQual. 2009. PETROTOX User's Guide Version 3.01. CONC.006<br />

McGrath JA, Parkerton TF, Hellweger FL and Di Toro DM. 2005. Validation of the<br />

narcosis target lipid model for petroleum products: Gasoline as a case study. Environ<br />

Toxicol Chem 24:2382-2394.<br />

Di Toro DM, McGrath JA and Stubblefield WA. 2007. Predicting the toxicity of neat and<br />

weathered crude oil: Toxic potential and the toxicity of saturated mixtures. Environ<br />

Toxicol Chem 26:24-36.<br />

McGrath J and Di Toro D. 2009. Validation of the target lipid model for toxicity assessment<br />

of residual petroleum constituents: monocyclic and polycyclic aromatic<br />

hydrocarbons. Environ. Toxicol. and Chem. 28(6):1130-1148.<br />

Redman A, McGrath J, Febbo E, Parkerton T, Letinski D, Connelly M, Winkelmann D, Di<br />

Toro D. 2007. Application of the target lipid model for deriving predicted no-effect<br />

concentrations for wastewater organisms. Environ. Toxicol. and Chem.26(11):2317-<br />

2331.


2-1<br />

SECTION 2<br />

2 SUMMARY OF COMPOSITION AND TOXICITY<br />

PREDICTIONS FOR NAPHTHA<br />

Table of Toxicity Predictions – based on average composition (see below for details)<br />

LL50<br />

(mg/L)<br />

NOEL<br />

(mg/L)<br />

Tetrahymena pyriformis (WWTP organism, protozoa) 30.8 6.8<br />

Selenastrum capricornutum (algae) 5.8 1.3<br />

Onchorhyncus mykiss (fish) 6.8 1.5<br />

Daphnia magna (aquatic invertebrate) 11.9 2.7<br />

Table of composition (Average of 33 samples)<br />

n- i-<br />

C# n-P i-P CC5 CC6 i-N Di-N Olefins Olefins PolyN MoAr NMAr DiAr NDiAr PolyAr<br />

wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt %<br />

4 3.06 1.22 0.00 0.00 0.00 0.00 0.53 0.28 0.00 0.00 0.00 0.00 0.00 0.00<br />

5 3.15 9.75 0.40 0.00 0.00 0.00 1.48 1.78 0.00 0.00 0.00 0.00 0.00 0.00<br />

6 2.22 9.51 1.27 1.27 0.00 0.00 0.94 3.56 0.00 1.20 0.00 0.00 0.00 0.00<br />

7 1.72 4.78 0.69 0.69 0.00 0.69 0.44 1.77 0.00 11.56 0.00 0.00 0.00 0.00<br />

8 0.89 5.18 0.21 0.21 0.21 0.21 0.09 0.07 0.00 14.32 0.00 0.00 0.00 0.00<br />

9 0.46 1.15 0.14 0.14 0.14 0.14 0.03 0.03 0.00 4.08 4.08 0.00 0.00 0.00<br />

10 0.18 0.32 0.03 0.03 0.03 0.03 0.02 0.02 0.00 0.83 0.83 0.83 0.00 0.00<br />

11 0.24 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.10 0.10 0.00 0.00<br />

12 0.20 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00<br />

13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00


3-1<br />

SECTION 3<br />

3 SUMMARY OF COMPOSITION AND TOXICITY<br />

PREDICTIONS FOR KEROSINES<br />

Table of Toxicity Predictions – based on average composition (see below for details)<br />

LL50<br />

(mg/L)<br />

NOEL<br />

(mg/L)<br />

Tetrahymena pyriformis (WWTP organism, protozoa) 6789 1.64<br />

Selenastrum capricornutum (algae) 1.2 0.17<br />

Onchorhyncus mykiss (fish) 0.75 0.098<br />

Daphnia magna (aquatic invertebrate) 2.8 0.19<br />

Table of composition (Average of 33 samples)<br />

C# n-P i-P CC5 CC6 i-N Di-N PolyN MoAr NMAr DiAr NDiAr PolyAr<br />

wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt %<br />

5 0.005 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

6 0.034 0.024 0.020 0.026 0.000 0.000 0.000 0.010 0.000 0.000 0.000 0.000<br />

7 0.157 0.170 0.061 0.202 0.041 0.000 0.000 0.147 0.000 0.000 0.000 0.000<br />

8 0.671 0.689 0.246 0.331 0.677 0.053 0.000 1.125 0.000 0.000 0.000 0.000<br />

9 2.095 2.198 0.300 0.475 2.498 0.365 0.000 3.167 0.248 0.000 0.000 0.000<br />

10 3.939 5.321 0.422 0.497 4.581 1.432 0.000 3.134 0.845 0.188 0.000 0.000<br />

11 3.978 5.858 0.311 0.360 4.851 2.297 0.000 2.231 1.231 0.556 0.000 0.000<br />

12 3.405 4.647 0.221 0.267 4.029 2.116 0.000 1.390 1.217 0.552 0.001 0.000<br />

13 2.358 3.936 0.122 0.141 2.761 1.729 0.000 0.866 0.768 0.225 0.007 0.000<br />

14 1.278 2.380 0.050 0.066 1.397 0.744 0.007 0.413 0.381 0.073 0.004 0.000<br />

15 0.487 1.229 0.016 0.017 0.600 0.210 0.007 0.175 0.137 0.020 0.003 0.000<br />

16 0.117 0.462 0.003 0.003 0.168 0.040 0.007 0.054 0.028 0.007 0.000 0.001<br />

17 0.029 0.110 0.001 0.001 0.039 0.008 0.007 0.013 0.013 0.000 0.000 0.001<br />

18 0.008 0.033 0.000 0.000 0.009 0.002 0.007 0.003 0.006 0.000 0.000 0.000<br />

19 0.003 0.014 0.000 0.000 0.003 0.002 0.007 0.001 0.000 0.000 0.000 0.000<br />

20 0.001 0.005 0.000 0.000 0.002 0.004 0.007 0.000 0.000 0.000 0.000 0.000<br />

21 0.001 0.003 0.000 0.000 0.002 0.006 0.007 0.000 0.000 0.000 0.000 0.000<br />

22 0.001 0.003 0.000 0.000 0.009 0.000 0.007 0.000 0.000 0.000 0.000 0.000<br />

23 0.000 0.000 0.000 0.000 0.000 0.000 0.007 0.000 0.000 0.000 0.000 0.000<br />

24 0.000 0.000 0.000 0.000 0.000 0.000 0.007 0.000 0.000 0.000 0.000 0.000<br />

25 0.000 0.000 0.000 0.000 0.000 0.000 0.007 0.000 0.000 0.000 0.000 0.000<br />

26 0.000 0.000 0.000 0.000 0.000 0.000 0.007 0.000 0.000 0.000 0.000 0.000<br />

27 0.000 0.000 0.000 0.000 0.000 0.000 0.007 0.000 0.000 0.000 0.000 0.000<br />

28 0.000 0.000 0.000 0.000 0.000 0.000 0.007 0.000 0.000 0.000 0.000 0.000<br />

29 0.000 0.000 0.000 0.000 0.000 0.000 0.007 0.000 0.000 0.000 0.000 0.000<br />

30 0.000 0.000 0.000 0.000 0.000 0.000 0.007 0.000 0.000 0.000 0.000 0.000<br />

Sum 99.845


4-1<br />

SECTION 4<br />

4 SUMMARY OF COMPOSITION AND TOXICITY<br />

PREDICTIONS FOR MK-1<br />

Table of Toxicity Predictions – based on average composition (see below for details)<br />

LL50<br />

(mg/L)<br />

NOEL<br />

(mg/L)<br />

Tetrahymena pyriformis (WWTP organism, protozoa) >1000(0.16 † ) >1000(0.72)<br />

Selenastrum capricornutum (algae) >1000(0.84) 0.43<br />

Onchorhyncus mykiss (fish) 63.2 0.16<br />

Daphnia magna (aquatic invertebrate) >1000(0.59) 0.42<br />

† Maximum TU reached under PETROTOX simulation conditions<br />

Table of composition (1 sample)<br />

C# n-P i-P CC5 CC6 i-N Di-N PolyN MoAr NMAr DiAr NDiAr PolyAr<br />

wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt %<br />

5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

8 0.020 0.000 0.030 0.080 0.080 0.010 0.000 0.000 0.000 0.000 0.000 0.000<br />

9 0.230 0.120 0.040 0.180 0.750 0.210 0.000 0.030 0.000 0.000 0.000 0.000<br />

10 1.320 0.850 0.170 0.420 2.570 1.490 0.000 0.090 0.010 0.000 0.000 0.000<br />

11 1.970 1.970 0.190 0.390 3.340 3.790 0.000 0.100 0.050 0.000 0.000 0.000<br />

12 2.080 2.040 0.220 0.460 3.740 5.280 0.000 0.100 0.120 0.010 0.000 0.000<br />

13 2.260 2.820 0.270 0.480 4.590 5.760 0.000 0.120 0.170 0.010 0.005 0.000<br />

14 2.160 3.640 0.130 0.480 4.390 5.680 0.000 0.100 0.120 0.040 0.005 0.005<br />

15 1.860 4.160 0.140 0.290 3.660 2.680 0.000 0.080 0.080 0.020 0.000 0.005<br />

16 1.270 2.040 0.060 0.130 2.460 1.180 0.000 0.050 0.040 0.010 0.000 0.000<br />

17 0.650 1.400 0.020 0.040 1.340 0.440 0.000 0.020 0.020 0.010 0.000 0.000<br />

18 0.200 1.050 0.010 0.010 0.500 0.140 0.000 0.010 0.010 0.005 0.000 0.000<br />

19 0.060 0.840 0.005 0.000 0.160 0.040 0.000 0.005 0.000 0.005 0.000 0.000<br />

20 0.020 0.220 0.005 0.000 0.040 0.005 0.000 0.005 0.000 0.000 0.000 0.000<br />

21 0.010 0.050 0.000 0.000 0.010 0.005 0.000 0.005 0.000 0.000 0.000 0.000<br />

22 0.000 0.020 0.000 0.000 0.005 0.000 0.000 0.005 0.000 0.000 0.000 0.000<br />

23 0.000 0.010 0.000 0.000 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

24 0.000 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

25 0.000 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

26 0.000 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

27 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

28 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

29 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

30 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

Sum 95.430


5-1<br />

SECTION 5<br />

5 SUMMARY OF COMPOSITION AND TOXICITY<br />

PREDICTIONS FOR STRAIGHT-RUN GAS OILS<br />

Table of Toxicity Predictions – based on average composition (see below for details)<br />

LL50<br />

(mg/L)<br />

NOEL<br />

(mg/L)<br />

Tetrahymena pyriformis (WWTP organism, protozoa) >1000(0.57 † ) 3.10<br />

Selenastrum capricornutum (algae) 2.08 0.15<br />

Onchorhyncus mykiss (fish) 1.30 0.068<br />

Daphnia magna (aquatic invertebrate) 9.98 0.17<br />

†<br />

Maximum TU reached under PETROTOX simulation conditions<br />

Table of composition (Average of 8 samples)<br />

C# n-P i-P CC5 CC6 i-N Di-N PolyN MoAr NMAr DiAr NDiAr PolyAr<br />

Wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt %<br />

5 0.005 0.000 0.008 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

6 0.028 0.000 0.012 0.018 0.000 0.000 0.000 0.006 0.000 0.000 0.000 0.000<br />

7 0.041 0.029 0.010 0.077 0.019 0.000 0.000 0.050 0.000 0.000 0.000 0.000<br />

8 0.103 0.069 0.029 0.073 0.147 0.012 0.000 0.168 0.000 0.000 0.000 0.000<br />

9 0.212 0.169 0.020 0.070 0.235 0.070 0.000 0.312 0.007 0.000 0.000 0.000<br />

10 0.422 0.345 0.062 0.087 0.438 0.275 0.000 0.474 0.067 0.093 0.000 0.000<br />

11 0.724 0.598 0.053 0.088 0.679 0.500 0.000 0.470 0.190 0.397 0.000 0.000<br />

12 0.802 0.672 0.057 0.089 0.809 0.661 0.000 0.413 0.383 0.809 0.003 0.000<br />

13 0.932 0.852 0.065 0.099 0.978 0.955 0.000 0.456 0.531 0.957 0.076 0.000<br />

14 1.105 1.088 0.083 0.129 1.110 1.140 0.000 0.441 0.747 0.954 0.295 0.102<br />

15 1.386 1.281 0.086 0.163 1.342 1.071 0.000 0.497 0.616 0.789 0.606 0.315<br />

16 1.492 1.563 0.077 0.136 1.503 0.998 0.000 0.536 0.674 0.678 0.688 0.504<br />

17 1.517 1.337 0.080 0.122 1.598 0.996 0.000 0.543 0.646 0.631 0.601 0.539<br />

18 1.402 1.565 0.080 0.104 1.647 1.025 0.000 0.549 0.571 0.556 0.535 0.495<br />

19 1.317 2.122 0.080 0.085 1.696 1.062 0.000 0.543 0.475 0.461 0.335 0.366<br />

20 1.253 1.938 0.070 0.075 1.458 0.839 0.000 0.491 0.397 0.392 0.223 0.261<br />

21 1.075 1.276 0.060 0.075 1.253 0.677 0.000 0.448 0.406 0.312 0.130 0.144<br />

22 0.887 0.958 0.048 0.051 1.130 0.474 0.000 0.354 0.329 0.198 0.087 0.104<br />

23 0.641 0.851 0.035 0.038 0.849 0.338 0.000 0.275 0.299 0.117 0.049 0.047<br />

24 0.446 0.758 0.031 0.023 0.610 0.240 0.000 0.187 0.216 0.106 0.032 0.037<br />

25 0.266 0.550 0.017 0.017 0.411 0.157 0.000 0.133 0.138 0.059 0.032 0.024<br />

26 0.176 0.380 0.011 0.009 0.288 0.110 0.000 0.070 0.099 0.030 0.018 0.017<br />

27 0.110 0.236 0.007 0.008 0.195 0.060 0.000 0.041 0.052 0.037 0.009 0.016<br />

28 0.074 0.185 0.007 0.009 0.138 0.030 0.000 0.031 0.027 0.018 0.005 0.005<br />

29 0.048 0.127 0.004 0.005 0.095 0.017 0.000 0.014 0.014 0.009 0.004 0.000<br />

30 0.026 0.094 0.002 0.002 0.057 0.015 1.899 0.008 0.010 0.008 0.003 0.000<br />

Sum 99.306


6-1<br />

SECTION 6<br />

6 SUMMARY OF COMPOSITION AND TOXICITY<br />

PREDICTIONS FOR CRACKED GAS OILS<br />

Table of Toxicity Predictions – based on average composition (see below for details)<br />

LL50<br />

(mg/L)<br />

NOEL<br />

(mg/L)<br />

Tetrahymena pyriformis (WWTP organism, protozoa) 1.95 0.24<br />

Selenastrum capricornutum (algae) 0.20 0.041<br />

Onchorhyncus mykiss (fish) 0.16 0.029<br />

Daphnia magna (aquatic invertebrate) 0.32 0.053<br />

Table of composition (Average of 4 samples)<br />

C# n-P i-P CC5 CC6 i-N Di-N PolyN MoAr NMAr DiAr NDiAr PolyAr<br />

wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt %<br />

5 0.000 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

6 0.010 0.000 0.010 0.010 0.000 0.000 0.000 0.005 0.000 0.000 0.000 0.000<br />

7 0.020 0.025 0.008 0.023 0.013 0.000 0.000 0.100 0.000 0.000 0.000 0.000<br />

8 0.028 0.050 0.003 0.018 0.115 0.005 0.000 0.495 0.000 0.000 0.000 0.000<br />

9 0.048 0.110 0.008 0.013 0.153 0.023 0.000 1.230 0.145 0.000 0.000 0.000<br />

10 0.115 0.220 0.018 0.015 0.243 0.073 0.000 1.828 1.078 0.750 0.000 0.000<br />

11 0.193 0.400 0.018 0.020 0.318 0.118 0.000 1.798 3.418 6.030 0.000 0.000<br />

12 0.265 0.608 0.030 0.025 0.473 0.195 0.000 1.673 4.183 10.645 0.168 0.000<br />

13 0.380 0.993 0.033 0.035 0.768 0.178 0.000 1.590 2.665 8.258 1.500 0.000<br />

14 0.445 1.395 0.035 0.025 0.958 0.175 0.000 1.075 1.563 4.388 2.680 0.600<br />

15 0.415 1.298 0.025 0.023 0.823 0.143 0.000 0.715 0.575 1.778 2.618 1.740<br />

16 0.348 0.995 0.018 0.020 0.620 0.125 0.000 0.473 0.328 0.673 1.573 2.238<br />

17 0.285 0.718 0.015 0.010 0.430 0.110 0.000 0.285 0.200 0.320 0.703 1.605<br />

18 0.223 0.528 0.010 0.008 0.325 0.108 0.000 0.230 0.115 0.170 0.305 0.788<br />

19 0.195 0.415 0.010 0.008 0.240 0.108 0.000 0.148 0.080 0.113 0.110 0.293<br />

20 0.190 0.323 0.010 0.008 0.213 0.108 0.000 0.123 0.060 0.085 0.048 0.073<br />

21 0.188 0.245 0.010 0.013 0.188 0.085 0.000 0.090 0.055 0.058 0.018 0.008<br />

22 0.175 0.198 0.010 0.008 0.188 0.063 0.000 0.078 0.053 0.023 0.008 0.003<br />

23 0.148 0.170 0.005 0.008 0.165 0.043 0.000 0.068 0.040 0.013 0.003 0.000<br />

24 0.110 0.145 0.005 0.005 0.133 0.025 0.000 0.040 0.025 0.003 0.003 0.000<br />

25 0.058 0.118 0.005 0.000 0.093 0.015 0.000 0.028 0.013 0.003 0.000 0.000<br />

26 0.033 0.083 0.000 0.003 0.058 0.003 0.000 0.010 0.008 0.000 0.000 0.000<br />

27 0.013 0.043 0.000 0.000 0.023 0.003 0.000 0.005 0.003 0.000 0.000 0.000<br />

28 0.005 0.025 0.000 0.000 0.013 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

29 0.003 0.018 0.000 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

30 0.000 0.005 0.000 0.000 0.000 0.000 0.140 0.000 0.000 0.000 0.000 0.000<br />

Sum 99.043


7-1<br />

SECTION 7<br />

7 SUMMARY OF COMPOSITION AND TOXICITY<br />

PREDICTIONS FOR VACUUM GAS OILS / HYDROCRACKED /<br />

OTHER DISTILLATE FUELS<br />

Table of Toxicity Predictions – based on average composition (see below for details)<br />

LL50<br />

(mg/L)<br />

NOEL<br />

(mg/L)<br />

Tetrahymena pyriformis (WWTP organism, protozoa) >1000(0.60 † ) 3.22<br />

Selenastrum capricornutum (algae) 2.20 0.17<br />

Onchorhyncus mykiss (fish) 1.49 0.083<br />

Daphnia magna (aquatic invertebrate) 10.4 0.20<br />

†<br />

Maximum TU reached under PETROTOX simulation conditions<br />

Table of composition (Average of 30 samples)<br />

C# n-P i-P CC5 CC6 i-N Di-N PolyN MoAr NMAr DiAr NDiAr PolyAr<br />

wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt %<br />

5 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

6 0.006 0.000 0.003 0.005 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000<br />

7 0.017 0.009 0.029 0.021 0.011 0.000 0.000 0.018 0.000 0.000 0.000 0.000<br />

8 0.090 0.069 0.063 0.046 0.129 0.012 0.000 0.188 0.000 0.000 0.000 0.000<br />

9 0.335 0.271 0.085 0.050 0.385 0.116 0.000 0.595 0.034 0.000 0.000 0.000<br />

10 0.592 0.709 0.113 0.081 0.816 0.497 0.000 0.829 0.396 0.060 0.000 0.000<br />

11 0.925 1.047 0.104 0.083 1.263 0.928 0.000 0.793 0.944 0.238 0.000 0.000<br />

12 1.024 1.198 0.114 0.081 1.443 1.028 0.000 0.658 1.240 0.480 0.003 0.000<br />

13 1.199 1.431 0.108 0.096 1.568 1.219 0.000 0.645 1.154 0.594 0.076 0.000<br />

14 1.294 1.595 0.119 0.094 1.532 1.631 0.000 0.593 0.942 0.745 0.282 0.032<br />

15 1.405 1.654 0.118 0.109 1.639 1.236 0.000 0.553 0.724 0.562 0.467 0.119<br />

16 1.293 1.793 0.097 0.084 1.627 1.016 0.000 0.485 0.549 0.450 0.467 0.249<br />

17 1.282 1.438 0.090 0.085 1.670 0.927 0.000 0.449 0.518 0.404 0.411 0.282<br />

18 1.121 1.789 0.074 0.072 1.578 0.860 0.000 0.410 0.416 0.319 0.294 0.258<br />

19 1.011 2.030 0.064 0.066 1.476 0.837 0.000 0.379 0.369 0.237 0.186 0.200<br />

20 0.900 1.621 0.050 0.054 1.284 0.611 0.000 0.323 0.301 0.189 0.134 0.147<br />

21 0.773 1.239 0.051 0.049 1.064 0.499 0.000 0.258 0.262 0.149 0.081 0.088<br />

22 0.658 0.930 0.037 0.039 0.950 0.331 0.000 0.215 0.208 0.103 0.042 0.051<br />

23 0.515 0.834 0.029 0.033 0.749 0.206 0.000 0.175 0.153 0.070 0.027 0.022<br />

24 0.383 0.763 0.021 0.021 0.530 0.125 0.000 0.114 0.120 0.051 0.013 0.014<br />

25 0.225 0.580 0.013 0.015 0.344 0.074 0.000 0.081 0.072 0.031 0.011 0.009<br />

26 0.138 0.398 0.008 0.007 0.209 0.037 0.000 0.043 0.039 0.020 0.005 0.007<br />

27 0.071 0.209 0.003 0.004 0.104 0.018 0.000 0.029 0.017 0.016 0.003 0.002<br />

28 0.038 0.122 0.002 0.002 0.060 0.007 0.000 0.017 0.010 0.008 0.002 0.003<br />

29 0.020 0.066 0.001 0.001 0.032 0.002 0.000 0.010 0.005 0.006 0.001 0.002<br />

30 0.011 0.043 0.001 0.001 0.018 0.002 0.629 0.005 0.002 0.004 0.001 0.001<br />

Sum 98.160


8-1<br />

SECTION 8<br />

8 SUMMARY OF COMPOSITION AND TOXICITY<br />

PREDICTIONS FOR OTHER GAS OILS<br />

Table of Toxicity Predictions – based on average composition (see below for details)<br />

LL50<br />

(mg/L)<br />

NOEL<br />

(mg/L)<br />

Tetrahymena pyriformis (WWTP organism, protozoa) >1000(0.61 † ) 2.49<br />

Selenastrum capricornutum (algae) 1.71 0.14<br />

Onchorhyncus mykiss (fish) 1.13 0.069<br />

Daphnia magna (aquatic invertebrate) 7.39 0.16<br />

†<br />

Maximum TU reached under PETROTOX simulation conditions<br />

Table of composition (Average of 6 samples)<br />

C# n-P i-P CC5 CC6 i-N Di-N PolyN MoAr NMAr DiAr NDiAr PolyAr<br />

wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt %<br />

5 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

6 0.015 0.000 0.007 0.013 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

7 0.028 0.022 0.012 0.058 0.010 0.000 0.000 0.032 0.000 0.000 0.000 0.000<br />

8 0.118 0.072 0.028 0.085 0.167 0.017 0.000 0.207 0.000 0.000 0.000 0.000<br />

9 0.453 0.328 0.047 0.083 0.488 0.088 0.000 0.498 0.045 0.000 0.000 0.000<br />

10 0.555 0.507 0.082 0.072 0.637 0.382 0.000 0.722 0.380 0.013 0.000 0.000<br />

11 0.710 0.652 0.065 0.077 0.785 0.795 0.000 0.722 1.002 0.093 0.000 0.000<br />

12 0.837 0.785 0.077 0.083 0.987 1.168 0.000 0.685 1.550 0.365 0.002 0.000<br />

13 1.025 1.067 0.090 0.122 1.277 1.645 0.000 0.782 1.602 0.657 0.070 0.000<br />

14 1.370 1.395 0.122 0.145 1.685 1.823 0.000 0.767 1.695 0.867 0.277 0.022<br />

15 1.610 1.870 0.108 0.145 1.973 1.622 0.000 0.762 1.193 0.825 0.500 0.090<br />

16 1.488 1.887 0.090 0.107 1.912 1.272 0.000 0.700 0.993 0.578 0.528 0.180<br />

17 1.340 1.540 0.082 0.098 1.792 1.068 0.000 0.633 0.827 0.445 0.358 0.188<br />

18 1.173 1.627 0.068 0.075 1.637 0.953 0.000 0.567 0.592 0.333 0.257 0.155<br />

19 1.002 1.883 0.068 0.057 1.527 0.837 0.000 0.507 0.435 0.250 0.137 0.093<br />

20 0.868 1.738 0.047 0.047 1.207 0.567 0.000 0.422 0.332 0.182 0.087 0.057<br />

21 0.687 1.087 0.042 0.047 0.897 0.422 0.000 0.345 0.277 0.128 0.040 0.020<br />

22 0.537 0.780 0.033 0.032 0.765 0.277 0.000 0.270 0.240 0.058 0.018 0.007<br />

23 0.385 0.628 0.022 0.025 0.563 0.183 0.000 0.210 0.200 0.027 0.003 0.000<br />

24 0.272 0.565 0.018 0.012 0.417 0.098 0.000 0.142 0.145 0.013 0.003 0.000<br />

25 0.153 0.407 0.012 0.010 0.262 0.072 0.000 0.092 0.095 0.010 0.002 0.000<br />

26 0.098 0.267 0.007 0.003 0.178 0.028 0.000 0.048 0.053 0.012 0.000 0.000<br />

27 0.050 0.162 0.003 0.003 0.098 0.012 0.000 0.025 0.030 0.010 0.000 0.000<br />

28 0.033 0.095 0.003 0.002 0.058 0.005 0.000 0.015 0.010 0.000 0.000 0.000<br />

29 0.017 0.062 0.000 0.002 0.033 0.003 0.000 0.005 0.007 0.000 0.000 0.000<br />

30 0.007 0.038 0.000 0.000 0.013 0.000 1.393 0.002 0.003 0.000 0.000 0.000<br />

Sum 99.747


9-1<br />

SECTION 9<br />

9 SUMMARY OF COMPOSITION AND TOXICITY<br />

PREDICTIONS FOR HEAVY FUEL OIL COMPONENTS<br />

Table of Toxicity Predictions – based on average composition (see below for details)<br />

LL50<br />

(mg/L)<br />

NOEL<br />

(mg/L)<br />

Tetrahymena pyriformis (WWTP organism, protozoa) >1000(0.33 † ) 14.9<br />

Selenastrum capricornutum (algae) 7.53 0.24<br />

Onchorhyncus mykiss (fish) 3.86 0.1<br />

Daphnia magna (aquatic invertebrate) >1000(0.99) 0.27<br />

†<br />

Maximum TU reached under PETROTOX simulation conditions<br />

Table of composition (Average of 9 samples)<br />

C# n-P i-P CC5 CC6 i-N Di-N PolyN MoAr NMAr DiAr NDiAr PolyAr<br />

wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt %<br />

5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.013 0.007 0.000 0.000 0.000<br />

10 0.001 0.001 0.000 0.000 0.002 0.001 0.013 0.053 0.037 0.053 0.000 0.000<br />

11 0.005 0.007 0.000 0.000 0.007 0.004 0.013 0.050 0.072 0.154 0.000 0.000<br />

12 0.012 0.020 0.000 0.000 0.016 0.009 0.013 0.040 0.092 0.295 0.006 0.000<br />

13 0.020 0.033 0.000 0.000 0.030 0.019 0.013 0.039 0.076 0.318 0.087 0.000<br />

14 0.031 0.049 0.000 0.000 0.042 0.030 0.074 0.036 0.062 0.275 0.259 0.082<br />

15 0.043 0.063 0.000 0.000 0.060 0.032 0.074 0.038 0.056 0.181 0.414 0.429<br />

16 0.058 0.086 0.000 0.000 0.076 0.032 0.074 0.044 0.047 0.184 0.422 0.904<br />

17 0.086 0.092 0.000 0.000 0.126 0.042 0.074 0.057 0.058 0.159 0.379 1.284<br />

18 0.131 0.156 0.000 0.000 0.210 0.075 0.074 0.082 0.069 0.152 0.230 1.433<br />

19 0.199 0.211 0.000 0.000 0.297 0.105 0.074 0.105 0.085 0.161 0.170 1.406<br />

20 0.277 0.317 0.000 0.000 0.416 0.095 0.089 0.136 0.116 0.173 0.119 1.343<br />

21 0.327 0.350 0.000 0.000 0.496 0.077 0.089 0.122 0.098 0.237 0.085 1.148<br />

22 0.403 0.459 0.000 0.000 0.607 0.076 0.089 0.137 0.091 0.199 0.074 0.819<br />

23 0.446 0.521 0.000 0.000 0.715 0.067 0.089 0.145 0.082 0.204 0.063 0.400<br />

24 0.475 0.536 0.000 0.000 0.732 0.068 0.089 0.130 0.084 0.193 0.061 0.185<br />

25 0.467 0.614 0.000 0.000 0.710 0.066 0.089 0.131 0.076 0.186 0.047 0.147<br />

26 0.442 0.647 0.000 0.000 0.707 0.070 0.089 0.097 0.077 0.163 0.067 0.101<br />

27 0.395 0.589 0.000 0.000 0.605 0.068 0.089 0.115 0.067 0.124 0.060 0.042<br />

28 0.346 0.561 0.000 0.000 0.586 0.027 0.074 0.107 0.063 0.076 0.055 0.000<br />

29 0.292 0.480 0.000 0.000 0.479 0.018 0.013 0.096 0.047 0.000 0.000 0.000<br />

30 0.239 0.432 0.000 0.000 0.253 0.000 0.000 0.036 0.000 0.000 0.000 0.000<br />

Sum 39.447


10-1<br />

SECTION 10<br />

10 SUMMARY OF COMPOSITION AND TOXICITY<br />

PREDICTIONS FOR BITUMEN<br />

Table of Toxicity Predictions – based on average composition (see below for details)<br />

LL50<br />

(mg/L)<br />

NOEL<br />

(mg/L)<br />

Tetrahymena pyriformis (WWTP organism, protozoa) >1000(0.058 † ) >1000(0.27)<br />

Selenastrum capricornutum (algae) >1000(0.30) 901<br />

Onchorhyncus mykiss (fish) >1000(0.23) >1000(0.82)<br />

Daphnia magna (aquatic invertebrate) >1000(0.11) >1000(0.55)<br />

†<br />

Maximum TU reached under PETROTOX simulation conditions<br />

Table of composition (Average of 2 samples)<br />

C# n-P i-P CC5 CC6 i-N Di-N PolyN MoAr NMAr DiAr NDiAr PolyAr<br />

wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt %<br />

5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

6 0.606 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

9 0.000 0.001 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

10 0.003 0.021 0.000 0.000 0.020 0.008 0.000 0.000 0.000 0.000 0.000 0.000<br />

11 0.006 0.017 0.000 0.000 0.015 0.015 0.000 0.000 0.000 0.000 0.000 0.000<br />

12 0.000 0.014 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

13 0.002 0.003 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

14 0.003 0.005 0.001 0.001 0.008 0.008 0.000 0.000 0.000 0.000 0.000 0.000<br />

15 0.007 0.014 0.003 0.003 0.019 0.025 0.000 0.000 0.000 0.000 0.000 0.000<br />

16 0.017 0.039 0.007 0.007 0.055 0.053 0.000 0.000 0.000 0.000 0.000 0.000<br />

17 0.039 0.105 0.003 0.003 0.066 0.039 0.000 0.000 0.000 0.000 0.000 0.000<br />

18 0.030 0.065 0.004 0.004 0.029 0.019 0.000 0.000 0.000 0.000 0.000 0.000<br />

19 0.029 0.045 0.004 0.004 0.027 0.020 0.000 0.000 0.000 0.000 0.000 0.000<br />

20 0.043 0.033 0.007 0.007 0.031 0.029 0.000 0.000 0.000 0.000 0.000 0.000<br />

21 0.066 0.046 0.011 0.011 0.067 0.046 0.000 0.000 0.000 0.000 0.000 0.000<br />

22 0.094 0.145 0.010 0.010 0.068 0.042 0.000 0.000 0.000 0.000 0.000 0.000<br />

23 0.085 0.127 0.010 0.010 0.060 0.046 0.000 0.000 0.000 0.000 0.000 0.000<br />

24 0.072 0.145 0.010 0.010 0.062 0.049 0.000 0.000 0.000 0.000 0.000 0.000<br />

25 0.029 0.105 0.010 0.010 0.064 0.056 0.000 0.000 0.000 0.000 0.000 0.000<br />

26 0.056 0.105 0.014 0.014 0.063 0.064 0.000 0.000 0.000 0.000 0.000 0.000<br />

27 0.039 0.146 0.016 0.016 0.083 0.092 0.000 0.000 0.000 0.000 0.000 0.000<br />

28 0.066 0.172 0.016 0.016 0.088 0.087 0.000 0.000 0.000 0.000 0.000 0.000<br />

29 0.088 0.193 0.012 0.012 0.089 0.098 0.000 0.000 0.000 0.000 0.000 0.000<br />

30 0.068 0.231 0.016 0.016 0.090 0.162 0.000 0.000 0.000 0.000 0.000 0.000<br />

Sum 5.498


11-1<br />

SECTION 11<br />

11 SUMMARY OF COMPOSITION AND TOXICITY<br />

PREDICTIONS FOR UNTREATED DISTILLATE AROMATIC<br />

EXTRACTS<br />

Table of Toxicity Predictions – based on average composition (see below for details)<br />

LL50<br />

(mg/L)<br />

NOEL<br />

(mg/L)<br />

Tetrahymena pyriformis (WWTP organism, protozoa) >1000(0.076 † ) >1000(0.34)<br />

Selenastrum capricornutum (algae) >1000(0.39) 33.06<br />

Onchorhyncus mykiss (fish) >1000(0.38) 20.01<br />

Daphnia magna (aquatic invertebrate) >1000(0.22) >1000(0.97)<br />

†<br />

Maximum TU reached under PETROTOX simulation conditions<br />

Table of composition (Average of 5 samples)<br />

C# n-P i-P CC5 CC6 i-N Di-N PolyN MoAr NMAr DiAr NDiAr PolyAr<br />

wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt %<br />

5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

7 0.000 0.000 0.010 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

8 0.000 0.001 0.010 0.010 0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.000<br />

9 0.000 0.000 0.010 0.010 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000<br />

10 0.000 0.001 0.010 0.010 0.001 0.001 0.000 0.000 0.002 0.000 0.000 0.000<br />

11 0.002 0.001 0.010 0.010 0.001 0.001 0.000 0.001 0.000 0.001 0.000 0.000<br />

12 0.002 0.002 0.010 0.010 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000<br />

13 0.001 0.002 0.010 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.251 0.256<br />

14 0.000 0.000 0.010 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

15 0.000 0.000 0.010 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001<br />

16 0.000 0.000 0.010 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.034<br />

17 0.001 0.000 0.010 0.010 0.000 0.000 0.000 0.001 0.004 0.000 0.000 0.122<br />

18 0.004 0.000 0.010 0.010 0.006 0.006 0.000 0.021 0.036 0.001 0.000 0.397<br />

19 0.021 0.009 0.010 0.010 0.029 0.032 0.000 0.100 0.097 0.017 0.003 0.811<br />

20 0.076 0.039 0.010 0.010 0.066 0.074 0.000 0.220 0.209 0.085 0.019 1.365<br />

21 0.154 0.094 0.010 0.010 0.158 0.119 0.000 0.362 0.316 0.172 0.102 1.445<br />

22 0.247 0.178 0.010 0.010 0.237 0.134 0.000 0.422 0.306 0.322 0.287 1.691<br />

23 0.342 0.309 0.010 0.010 0.271 0.184 0.000 0.426 0.231 0.287 0.549 1.595<br />

24 0.382 0.322 0.010 0.010 0.298 0.191 0.000 0.341 0.226 0.158 0.608 1.000<br />

25 0.278 0.458 0.010 0.010 0.356 0.208 0.000 0.354 0.186 0.119 0.434 0.656<br />

26 0.380 0.690 0.011 0.011 0.380 0.205 0.000 0.363 0.244 0.092 0.240 0.463<br />

27 0.193 0.625 0.011 0.011 0.280 0.245 0.000 0.331 0.311 0.090 0.182 0.573<br />

28 0.294 0.641 0.011 0.011 0.335 0.251 0.000 0.374 0.423 0.091 0.164 0.488<br />

29 0.221 0.496 0.012 0.012 0.285 0.322 0.000 0.378 0.502 0.102 0.161 0.349<br />

30 0.135 0.525 0.013 0.013 0.335 0.462 0.000 0.404 0.000 0.188 0.184 0.411<br />

Sum 36.855


12-1<br />

SECTION 12<br />

12 SUMMARY OF COMPOSITION AND TOXICITY<br />

PREDICTIONS FOR TREATED DISTILLATE AROMATIC<br />

EXTRACTS<br />

Table of Toxicity Predictions – (only one sample)<br />

LL50<br />

(mg/L)<br />

NOEL<br />

(mg/L)<br />

Tetrahymena pyriformis (WWTP organism, protozoa) >1000(0.13 † ) >1000(0.55)<br />

Selenastrum capricornutum (algae) >1000(0.64) 17.5<br />

Onchorhyncus mykiss (fish) >1000(0.50) 27<br />

Daphnia magna (aquatic invertebrate) >1000(0.28) 122<br />

†<br />

Maximum TU reached under PETROTOX simulation conditions<br />

Table of composition (1 sample)<br />

C# n-P i-P CC5 CC6 i-N Di-N PolyN MoAr NMAr DiAr NDiAr PolyAr<br />

wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt %<br />

5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

7 0.000 0.000 0.005 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

8 0.000 0.000 0.005 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

9 0.000 0.000 0.005 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

10 0.000 0.000 0.005 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

11 0.000 0.000 0.005 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

12 0.000 0.000 0.005 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

13 0.000 0.000 0.005 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.480 0.471<br />

14 0.000 0.000 0.005 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

15 0.000 0.000 0.005 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

16 0.000 0.000 0.005 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003<br />

17 0.000 0.000 0.005 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.011<br />

18 0.000 0.000 0.005 0.005 0.000 0.001 0.000 0.003 0.006 0.000 0.000 0.014<br />

19 0.002 0.000 0.005 0.005 0.005 0.005 0.000 0.012 0.005 0.003 0.000 0.041<br />

20 0.004 0.007 0.005 0.005 0.004 0.005 0.000 0.010 0.010 0.006 0.001 0.079<br />

21 0.005 0.008 0.005 0.005 0.011 0.009 0.000 0.022 0.019 0.007 0.010 0.081<br />

22 0.010 0.015 0.005 0.005 0.017 0.012 0.000 0.031 0.040 0.014 0.008 0.131<br />

23 0.020 0.020 0.005 0.005 0.028 0.029 0.000 0.072 0.046 0.029 0.017 0.185<br />

24 0.038 0.038 0.005 0.005 0.042 0.042 0.000 0.081 0.075 0.026 0.035 0.203<br />

25 0.040 0.055 0.005 0.005 0.056 0.061 0.000 0.127 0.093 0.035 0.046 0.309<br />

26 0.063 0.096 0.005 0.005 0.065 0.078 0.000 0.190 0.175 0.049 0.048 0.378<br />

27 0.059 0.103 0.005 0.005 0.125 0.130 0.000 0.225 0.301 0.073 0.075 0.713<br />

28 0.088 0.162 0.005 0.005 0.099 0.216 0.000 0.368 0.523 0.091 0.130 0.807<br />

29 0.119 0.181 0.005 0.005 0.207 0.397 0.000 0.514 0.858 0.116 0.182 0.513<br />

30 0.097 0.356 0.005 0.005 0.384 0.831 0.000 0.748 0.000 0.277 0.225 0.603<br />

Sum 15.750


13-1<br />

SECTION 13<br />

13 SUMMARY OF COMPOSITION AND TOXICITY<br />

PREDICTIONS FOR FOOTS OILS<br />

Table of Toxicity Predictions – based on average composition (see below for details)<br />

LL50<br />

(mg/L)<br />

NOEL<br />

(mg/L)<br />

Tetrahymena pyriformis (WWTP organism, protozoa) >1000(0.013 † ) >1000(0.056)<br />

Selenastrum capricornutum (algae) >1000(0.065) >1000(0.29)<br />

Onchorhyncus mykiss (fish) >1000(0.049) >1000(0.176)<br />

Daphnia magna (aquatic invertebrate) >1000(0.029) >1000(0.113)<br />

†<br />

Maximum TU reached under PETROTOX simulation conditions<br />

Table of composition (Average of 2 samples)<br />

C# n-P i-P CC5 CC6 i-N Di-N PolyN MoAr NMAr DiAr NDiAr PolyAr<br />

wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt %<br />

5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

6 0.149 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

10 0.000 0.000 0.000 0.000 0.001 0.002 0.000 0.000 0.000 0.000 0.000 0.000<br />

11 0.000 0.002 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

12 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

13 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

14 0.000 0.000 0.000 0.000 0.001 0.002 0.000 0.000 0.000 0.000 0.000 0.000<br />

15 0.001 0.003 0.000 0.000 0.003 0.004 0.000 0.000 0.000 0.000 0.000 0.000<br />

16 0.002 0.005 0.001 0.001 0.006 0.007 0.000 0.000 0.000 0.000 0.000 0.000<br />

17 0.002 0.011 0.001 0.001 0.007 0.006 0.000 0.000 0.000 0.000 0.000 0.000<br />

18 0.007 0.011 0.002 0.002 0.010 0.009 0.000 0.000 0.000 0.000 0.000 0.000<br />

19 0.064 0.024 0.002 0.002 0.013 0.011 0.000 0.000 0.000 0.000 0.000 0.000<br />

20 0.568 0.094 0.008 0.008 0.032 0.028 0.000 0.000 0.000 0.000 0.000 0.000<br />

21 3.090 0.118 0.015 0.015 0.127 0.073 0.000 0.000 0.000 0.000 0.000 0.000<br />

22 8.541 0.568 0.032 0.032 0.685 0.123 0.000 0.000 0.000 0.000 0.000 0.000<br />

23 9.047 1.199 0.060 0.060 0.376 0.237 0.000 0.000 0.000 0.000 0.000 0.000<br />

24 9.511 4.282 0.062 0.062 0.426 0.338 0.000 0.000 0.000 0.000 0.000 0.000<br />

25 8.800 3.686 0.049 0.049 0.626 0.328 0.000 0.000 0.000 0.000 0.000 0.000<br />

26 7.263 3.472 0.059 0.059 0.864 0.270 0.000 0.000 0.000 0.000 0.000 0.000<br />

27 5.050 3.032 0.063 0.063 1.189 0.288 0.000 0.000 0.000 0.000 0.000 0.000<br />

28 3.682 2.376 0.070 0.070 1.163 0.263 0.000 0.000 0.000 0.000 0.000 0.000<br />

29 2.620 1.957 0.038 0.038 1.148 0.240 0.000 0.000 0.000 0.000 0.000 0.000<br />

30 1.297 1.399 0.036 0.036 0.479 0.219 0.000 0.000 0.000 0.000 0.000 0.000<br />

Sum 92.535


14-1<br />

SECTION 14<br />

14 SUMMARY OF COMPOSITION AND TOXICITY<br />

PREDICTIONS FOR OTHER LUBRICANT BASE OILS<br />

Table of Toxicity Predictions – based on average composition (see below for details)<br />

LL50<br />

(mg/L)<br />

NOEL<br />

(mg/L)<br />

Tetrahymena pyriformis (WWTP organism, protozoa) >1000(0.016 † ) >1000(0.058)<br />

Selenastrum capricornutum (algae) >1000(0.066) >1000(0.291)<br />

Onchorhyncus mykiss (fish) >1000(0.088) >1000(0.35)<br />

Daphnia magna (aquatic invertebrate) >1000(0.046) >1000(0.211)<br />

†<br />

Maximum TU reached under PETROTOX simulation conditions<br />

Table of composition (Average of 14 samples)<br />

C# n-P i-P CC5 CC6 i-N Di-N PolyN MoAr NMAr DiAr NDiAr PolyAr<br />

wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt %<br />

5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.015 0.000 0.000 0.000 0.000<br />

7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

11 0.000 0.001 0.000 0.000 0.001 0.001 0.000 0.000 0.001 0.000 0.000 0.000<br />

12 0.001 0.002 0.000 0.000 0.003 0.001 0.000 0.001 0.001 0.001 0.001 0.000<br />

13 0.003 0.007 0.001 0.001 0.006 0.004 0.001 0.002 0.006 0.009 0.004 0.000<br />

14 0.008 0.013 0.002 0.002 0.015 0.014 0.003 0.005 0.022 0.027 0.010 0.002<br />

15 0.025 0.037 0.007 0.007 0.048 0.037 0.011 0.023 0.037 0.024 0.029 0.005<br />

16 0.060 0.077 0.012 0.012 0.107 0.058 0.023 0.042 0.047 0.032 0.039 0.016<br />

17 0.200 0.181 0.025 0.025 0.220 0.102 0.074 0.060 0.057 0.044 0.038 0.031<br />

18 0.353 0.307 0.054 0.054 0.394 0.193 0.147 0.093 0.077 0.061 0.040 0.039<br />

19 0.364 0.617 0.083 0.083 0.529 0.317 0.226 0.120 0.116 0.097 0.049 0.050<br />

20 0.595 0.874 0.142 0.142 0.726 0.458 0.325 0.176 0.163 0.133 0.063 0.096<br />

21 0.778 1.185 0.132 0.132 1.162 0.576 0.402 0.259 0.206 0.228 0.087 0.067<br />

22 0.973 1.642 0.186 0.186 1.583 0.627 0.477 0.374 0.354 0.312 0.112 0.076<br />

23 1.120 1.934 0.229 0.229 1.669 0.883 0.553 0.472 0.476 0.332 0.145 0.057<br />

24 1.008 1.955 0.216 0.216 1.552 0.880 0.526 0.579 0.524 0.365 0.164 0.061<br />

25 0.808 1.805 0.149 0.149 1.474 0.870 0.458 0.491 0.537 0.396 0.178 0.069<br />

26 0.772 1.807 0.163 0.163 1.126 0.739 0.453 0.512 0.637 0.439 0.192 0.074<br />

27 0.671 1.488 0.141 0.141 0.768 0.765 0.519 0.388 0.663 0.368 0.206 0.015<br />

28 0.628 1.296 0.131 0.131 1.054 0.647 0.418 0.325 0.558 0.330 0.079 0.000<br />

29 0.637 1.018 0.089 0.089 0.830 0.667 0.368 0.286 0.465 0.000 0.000 0.000<br />

30 0.435 0.945 0.077 0.077 0.658 0.761 0.000 0.232 0.344 0.000 0.000 0.000<br />

Sum 72.858


15-1<br />

SECTION 15<br />

15 SUMMARY OF COMPOSITION AND TOXICITY<br />

PREDICTIONS FOR PARAFFIN AND HYDROCARBON WAXES<br />

Table of Toxicity Predictions – based on average composition (see below for details)<br />

LL50<br />

(mg/L)<br />

NOEL<br />

(mg/L)<br />

Tetrahymena pyriformis (WWTP organism, protozoa) >1000(0.031 † ) >1000(0.125)<br />

Selenastrum capricornutum (algae) >1000(0.143) >1000(0.566)<br />

Onchorhyncus mykiss (fish) >1000(0.11) >1000(0.462)<br />

Daphnia magna (aquatic invertebrate) >1000(0.066) >1000(0.241)<br />

†<br />

Maximum TU reached under PETROTOX simulation conditions<br />

Table of composition (Average of 2 samples)<br />

C# n-P i-P CC5 CC6 i-N Di-N PolyN MoAr NMAr DiAr NDiAr PolyAr<br />

wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt %<br />

5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

6 0.291 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

11 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

12 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

13 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

14 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

15 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

16 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

17 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

18 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

19 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

20 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

21 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

22 0.018 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

23 0.039 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000<br />

24 0.113 0.006 0.002 0.002 0.004 0.006 0.000 0.000 0.000 0.000 0.000 0.000<br />

25 0.216 0.017 0.000 0.000 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000<br />

26 0.355 0.016 0.000 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000<br />

27 0.577 0.032 0.000 0.000 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000<br />

28 0.991 0.062 0.001 0.001 0.011 0.008 0.000 0.000 0.000 0.000 0.000 0.000<br />

29 1.869 0.142 0.004 0.004 0.069 0.015 0.000 0.000 0.000 0.000 0.000 0.000<br />

30 2.918 0.362 0.087 0.087 0.137 0.019 0.000 0.000 0.000 0.000 0.000 0.000<br />

Sum 8.500


16-1<br />

SECTION 16<br />

16 SUMMARY OF COMPOSITION AND TOXICITY<br />

PREDICTIONS FOR PETROLATUMS<br />

Table of Toxicity Predictions – based on average composition (see below for details)<br />

LL50<br />

(mg/L)<br />

NOEL<br />

(mg/L)<br />

Tetrahymena pyriformis (WWTP organism, protozoa) >1000(0.017 † ) >1000(0.065)<br />

Selenastrum capricornutum (algae) >1000(0.073) >1000(0.337)<br />

Onchorhyncus mykiss (fish) >1000(0.054) >1000(0.265)<br />

Daphnia magna (aquatic invertebrate) >1000(0.034) >1000(0.167)<br />

†<br />

Maximum TU reached under PETROTOX simulation conditions<br />

Table of composition (Average of 2 samples)<br />

C# n-P i-P CC5 CC6 i-N Di-N PolyN MoAr NMAr DiAr NDiAr PolyAr<br />

wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt %<br />

5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

6 0.170 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

9 0.000 0.002 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000<br />

10 0.001 0.004 0.000 0.000 0.005 0.009 0.000 0.000 0.000 0.000 0.000 0.000<br />

11 0.001 0.006 0.000 0.000 0.005 0.007 0.000 0.000 0.000 0.000 0.000 0.000<br />

12 0.001 0.005 0.001 0.001 0.006 0.008 0.000 0.000 0.000 0.000 0.000 0.000<br />

13 0.002 0.007 0.001 0.001 0.010 0.018 0.000 0.000 0.000 0.000 0.000 0.000<br />

14 0.001 0.010 0.001 0.001 0.011 0.015 0.000 0.000 0.000 0.000 0.000 0.000<br />

15 0.005 0.013 0.002 0.002 0.021 0.024 0.000 0.000 0.000 0.000 0.000 0.000<br />

16 0.008 0.025 0.002 0.002 0.027 0.022 0.000 0.000 0.000 0.000 0.000 0.000<br />

17 0.019 0.031 0.004 0.004 0.037 0.025 0.000 0.000 0.000 0.000 0.000 0.000<br />

18 0.035 0.044 0.009 0.009 0.059 0.040 0.000 0.000 0.000 0.000 0.000 0.000<br />

19 0.070 0.081 0.036 0.036 0.146 0.112 0.000 0.000 0.000 0.000 0.000 0.000<br />

20 0.275 0.253 0.128 0.128 0.425 0.302 0.000 0.000 0.000 0.000 0.000 0.000<br />

21 0.357 0.594 0.101 0.101 0.789 0.370 0.000 0.000 0.000 0.000 0.000 0.000<br />

22 0.499 0.914 0.148 0.148 0.933 0.359 0.000 0.000 0.000 0.000 0.000 0.000<br />

23 0.382 0.969 0.173 0.173 0.995 0.540 0.000 0.000 0.000 0.000 0.000 0.000<br />

24 0.650 1.322 0.212 0.212 1.194 0.716 0.000 0.000 0.000 0.000 0.000 0.000<br />

25 0.753 1.344 0.200 0.200 1.290 0.842 0.000 0.000 0.000 0.000 0.000 0.000<br />

26 1.057 1.461 0.216 0.216 1.071 0.792 0.000 0.000 0.000 0.000 0.000 0.000<br />

27 0.944 1.540 0.180 0.180 0.971 0.801 0.000 0.000 0.000 0.000 0.000 0.000<br />

28 0.977 1.175 0.158 0.158 0.769 0.570 0.000 0.000 0.000 0.000 0.000 0.000<br />

29 0.809 0.983 0.123 0.123 0.865 0.508 0.000 0.000 0.000 0.000 0.000 0.000<br />

30 0.642 0.927 0.115 0.115 0.670 0.636 0.000 0.000 0.000 0.000 0.000 0.000<br />

Sum 40.000


17-1<br />

SECTION 17<br />

17 SUMMARY OF COMPOSITION AND TOXICITY<br />

PREDICTIONS FOR RESIDUAL AROMATIC EXTRACTS<br />

Table of Toxicity Predictions – (only one sample)<br />

LL50<br />

(mg/L)<br />

NOEL<br />

(mg/L)<br />

Tetrahymena pyriformis (WWTP organism, protozoa) >1000(0.088 † ) >1000(0.391)<br />

Selenastrum capricornutum (algae) >1000(0.45) 34.9<br />

Onchorhyncus mykiss (fish) >1000(0.343) 62.97<br />

Daphnia magna (aquatic invertebrate) >1000(0.202) >1000(0.88)<br />

†<br />

Maximum TU reached under PETROTOX simulation conditions<br />

Table of composition (1 sample)<br />

C# n-P i-P CC5 CC6 i-N Di-N PolyN MoAr NMAr DiAr NDiAr PolyAr<br />

wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt %<br />

5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

6 0.000 0.009 0.001 0.001 0.152 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

7 0.000 0.000 0.004 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

8 0.000 0.000 0.004 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

9 0.000 0.000 0.004 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

10 0.000 0.000 0.004 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

11 0.000 0.000 0.004 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

12 0.000 0.000 0.004 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

13 0.000 0.000 0.004 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.301 0.285<br />

14 0.000 0.000 0.004 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

15 0.000 0.000 0.004 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

16 0.000 0.000 0.004 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

17 0.000 0.000 0.004 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

18 0.000 0.000 0.004 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.040<br />

19 0.000 0.000 0.004 0.004 0.000 0.000 0.000 0.000 0.005 0.000 0.000 0.061<br />

20 0.002 0.000 0.004 0.004 0.005 0.009 0.000 0.029 0.030 0.002 0.000 0.066<br />

21 0.010 0.007 0.004 0.004 0.021 0.020 0.000 0.043 0.037 0.023 0.000 0.102<br />

22 0.018 0.019 0.004 0.004 0.030 0.020 0.000 0.058 0.049 0.031 0.034 0.101<br />

23 0.035 0.032 0.004 0.004 0.040 0.032 0.000 0.083 0.073 0.037 0.046 0.151<br />

24 0.053 0.040 0.004 0.004 0.063 0.060 0.000 0.125 0.117 0.043 0.061 0.156<br />

25 0.073 0.062 0.004 0.004 0.090 0.082 0.000 0.169 0.142 0.055 0.090 0.129<br />

26 0.097 0.099 0.004 0.004 0.101 0.095 0.000 0.235 0.233 0.067 0.102 0.169<br />

27 0.117 0.106 0.004 0.004 0.117 0.133 0.000 0.223 0.310 0.084 0.135 0.400<br />

28 0.138 0.149 0.004 0.004 0.138 0.119 0.000 0.245 0.413 0.073 0.191 0.403<br />

29 0.179 0.109 0.004 0.004 0.146 0.181 0.000 0.272 0.556 0.079 0.156 0.244<br />

30 0.201 0.140 0.004 0.004 0.294 0.441 0.000 0.407 0.000 0.167 0.152 0.372<br />

Sum 12.750


18-1<br />

SECTION 18<br />

18 SUMMARY OF COMPOSITION AND TOXICITY<br />

PREDICTIONS FOR SLACK WAXES<br />

Table of Toxicity Predictions – based on average composition (see below for details)<br />

LL50<br />

(mg/L)<br />

NOEL<br />

(mg/L)<br />

Tetrahymena pyriformis (WWTP organism, protozoa) >1000(0.009 † ) >1000(0.036)<br />

Selenastrum capricornutum (algae) >1000(0.042) >1000(0.194)<br />

Onchorhyncus mykiss (fish) >1000(0.031) >1000(0.149)<br />

Daphnia magna (aquatic invertebrate) >1000(0.019) >1000(0.067)<br />

†<br />

Maximum TU reached under PETROTOX simulation conditions<br />

Table of composition (Average of 6 samples)<br />

C# n-P i-P CC5 CC6 i-N Di-N PolyN MoAr NMAr DiAr NDiAr PolyAr<br />

wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt %<br />

5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

6 0.082 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

9 0.000 0.001 0.000 0.000 0.002 0.002 0.000 0.000 0.000 0.000 0.000 0.000<br />

10 0.000 0.004 0.000 0.000 0.002 0.002 0.000 0.000 0.000 0.000 0.000 0.000<br />

11 0.000 0.001 0.000 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000<br />

12 0.000 0.002 0.001 0.001 0.002 0.004 0.000 0.000 0.000 0.000 0.000 0.000<br />

13 0.001 0.005 0.000 0.000 0.004 0.008 0.000 0.000 0.000 0.000 0.000 0.000<br />

14 0.001 0.007 0.000 0.000 0.004 0.007 0.000 0.000 0.000 0.000 0.000 0.000<br />

15 0.001 0.006 0.001 0.001 0.005 0.006 0.000 0.000 0.000 0.000 0.000 0.000<br />

16 0.004 0.009 0.001 0.001 0.007 0.006 0.000 0.000 0.000 0.000 0.000 0.000<br />

17 0.020 0.016 0.001 0.001 0.011 0.006 0.000 0.000 0.000 0.000 0.000 0.000<br />

18 0.124 0.035 0.003 0.003 0.033 0.012 0.000 0.000 0.000 0.000 0.000 0.000<br />

19 0.422 0.137 0.004 0.004 0.259 0.017 0.000 0.000 0.000 0.000 0.000 0.000<br />

20 0.625 0.220 0.007 0.007 0.524 0.022 0.000 0.000 0.000 0.000 0.000 0.000<br />

21 1.261 0.226 0.004 0.004 0.053 0.020 0.000 0.000 0.000 0.000 0.000 0.000<br />

22 1.539 0.347 0.007 0.007 0.281 0.020 0.000 0.000 0.000 0.000 0.000 0.000<br />

23 1.221 0.606 0.014 0.014 0.102 0.032 0.000 0.000 0.000 0.000 0.000 0.000<br />

24 1.562 1.108 0.014 0.014 0.133 0.045 0.000 0.000 0.000 0.000 0.000 0.000<br />

25 1.376 1.088 0.010 0.010 0.160 0.049 0.000 0.000 0.000 0.000 0.000 0.000<br />

26 1.413 1.194 0.014 0.014 0.172 0.111 0.000 0.000 0.000 0.000 0.000 0.000<br />

27 1.198 1.358 0.016 0.016 0.271 0.076 0.000 0.000 0.000 0.000 0.000 0.000<br />

28 1.141 1.369 0.021 0.021 0.370 0.078 0.000 0.000 0.000 0.000 0.000 0.000<br />

29 1.117 1.572 0.023 0.023 0.631 0.103 0.000 0.000 0.000 0.000 0.000 0.000<br />

30 1.010 1.699 0.056 0.056 0.543 0.151 0.000 0.000 0.000 0.000 0.000 0.000<br />

Sum 29.872


19-1<br />

SECTION 19<br />

19 SUMMARY OF COMPOSITION AND TOXICITY<br />

PREDICTIONS FOR UNREFINED/ACID-TREATED OILS<br />

Table of Toxicity Predictions – based on average composition (see below for details)<br />

LL50<br />

(mg/L)<br />

NOEL<br />

(mg/L)<br />

Tetrahymena pyriformis (WWTP organism, protozoa) >1000(0.048 † ) >1000(0.215)<br />

Selenastrum capricornutum (algae) >1000(0.249) 104.3<br />

Onchorhyncus mykiss (fish) >1000(0.315) 3.592<br />

Daphnia magna (aquatic invertebrate) >1000(0.179) >1000(0.799)<br />

†<br />

Maximum TU reached under PETROTOX simulation conditions<br />

Table of composition (Average of 6 samples)<br />

C# n-P i-P CC5 CC6 i-N Di-N PolyN MoAr NMAr DiAr NDiAr PolyAr<br />

wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt %<br />

5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

6 0.000 0.003 0.000 0.000 0.004 0.000 0.000 0.001 0.000 0.000 0.000 0.000<br />

7 0.000 0.001 0.018 0.018 0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.000<br />

8 0.000 0.001 0.018 0.018 0.001 0.000 0.000 0.004 0.000 0.000 0.000 0.000<br />

9 0.000 0.002 0.018 0.018 0.001 0.001 0.000 0.005 0.001 0.000 0.000 0.000<br />

10 0.001 0.003 0.018 0.018 0.004 0.003 0.000 0.001 0.001 0.001 0.000 0.000<br />

11 0.001 0.002 0.018 0.018 0.003 0.003 0.000 0.002 0.002 0.000 0.000 0.000<br />

12 0.003 0.003 0.018 0.018 0.006 0.006 0.000 0.005 0.005 0.003 0.000 0.000<br />

13 0.007 0.009 0.018 0.018 0.011 0.012 0.000 0.012 0.010 0.007 0.000 0.010<br />

14 0.018 0.018 0.018 0.018 0.023 0.023 0.000 0.028 0.010 0.012 0.004 0.035<br />

15 0.035 0.035 0.018 0.018 0.043 0.035 0.000 0.062 0.024 0.023 0.023 0.113<br />

16 0.062 0.051 0.018 0.018 0.072 0.042 0.000 0.096 0.041 0.014 0.035 0.182<br />

17 0.151 0.102 0.018 0.018 0.135 0.068 0.000 0.154 0.076 0.025 0.091 0.333<br />

18 0.280 0.161 0.018 0.018 0.234 0.128 0.000 0.249 0.137 0.040 0.119 0.500<br />

19 0.349 0.293 0.018 0.018 0.312 0.213 0.000 0.439 0.187 0.079 0.154 0.641<br />

20 0.614 0.546 0.018 0.018 0.401 0.294 0.000 0.593 0.294 0.152 0.248 0.966<br />

21 0.786 0.736 0.018 0.018 0.674 0.363 0.000 0.810 0.435 0.218 0.379 1.101<br />

22 1.011 1.094 0.018 0.018 0.866 0.362 0.000 0.907 0.474 0.397 0.581 1.376<br />

23 1.199 1.472 0.018 0.018 0.850 0.483 0.000 0.988 0.435 0.434 0.654 1.430<br />

24 1.224 1.211 0.018 0.018 0.896 0.491 0.000 0.854 0.503 0.331 0.622 1.259<br />

25 0.690 1.580 0.018 0.018 0.873 0.488 0.000 0.837 0.373 0.311 0.496 0.972<br />

26 0.958 1.890 0.018 0.018 0.689 0.391 0.000 0.671 0.373 0.259 0.486 0.559<br />

27 0.502 1.499 0.018 0.018 0.333 0.346 0.000 0.432 0.325 0.185 0.365 0.342<br />

28 0.694 1.330 0.018 0.018 0.509 0.236 0.000 0.334 0.418 0.120 0.212 0.166<br />

29 0.565 0.963 0.018 0.018 0.363 0.309 0.000 0.319 0.493 0.090 0.150 0.167<br />

30 0.263 1.178 0.018 0.018 0.569 0.496 0.000 0.324 0.000 0.137 0.150 0.119<br />

Sum 67.741


20-1<br />

SECTION 20<br />

20 SUMMARY OF COMPOSITION AND TOXICITY<br />

PREDICTIONS FOR HIGHLY REFINED MINERAL OILS<br />

Table of Toxicity Predictions – based on average composition (see below for details)<br />

LL50<br />

(mg/L)<br />

NOEL<br />

(mg/L)<br />

Tetrahymena pyriformis (WWTP organism, protozoa) >1000(0.0002 † ) >1000(0.001)<br />

Selenastrum capricornutum (algae) >1000(0.001) >1000(0.004)<br />

Onchorhyncus mykiss (fish) >1000(0.001) >1000(0.005)<br />

Daphnia magna (aquatic invertebrate) >1000(0.001) >1000(0.003)<br />

†<br />

Maximum TU reached under PETROTOX simulation conditions<br />

Table of composition (Average of 3 samples)<br />

C# n-P i-P CC5 CC6 i-N Di-N PolyN MoAr NMAr DiAr NDiAr PolyAr<br />

wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt %<br />

5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

7 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

9 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000<br />

11 0.000 0.000 0.000 0.000 0.001 0.002 0.000 0.000 0.000 0.000 0.000 0.000<br />

12 0.000 0.002 0.000 0.000 0.002 0.003 0.000 0.000 0.000 0.000 0.000 0.000<br />

13 0.000 0.002 0.000 0.000 0.002 0.004 0.003 0.000 0.000 0.000 0.000 0.000<br />

14 0.002 0.003 0.002 0.002 0.008 0.012 0.011 0.000 0.000 0.000 0.000 0.000<br />

15 0.012 0.011 0.008 0.008 0.042 0.055 0.058 0.000 0.000 0.000 0.000 0.000<br />

16 0.052 0.042 0.020 0.020 0.132 0.117 0.123 0.000 0.000 0.000 0.000 0.000<br />

17 0.156 0.131 0.041 0.041 0.297 0.195 0.246 0.000 0.000 0.000 0.000 0.000<br />

18 0.269 0.253 0.070 0.070 0.473 0.280 0.332 0.000 0.000 0.000 0.000 0.000<br />

19 0.245 0.393 0.082 0.082 0.509 0.333 0.343 0.000 0.000 0.000 0.000 0.000<br />

20 0.278 0.540 0.113 0.113 0.516 0.357 0.356 0.000 0.000 0.000 0.000 0.000<br />

21 0.263 0.622 0.084 0.084 0.703 0.334 0.330 0.000 0.000 0.000 0.000 0.000<br />

22 0.289 0.705 0.090 0.090 0.766 0.285 0.313 0.000 0.000 0.000 0.000 0.000<br />

23 0.351 0.717 0.106 0.106 0.722 0.350 0.360 0.000 0.000 0.000 0.000 0.000<br />

24 0.351 0.674 0.106 0.106 0.713 0.348 0.411 0.000 0.000 0.000 0.000 0.000<br />

25 0.286 0.677 0.086 0.086 0.752 0.399 0.522 0.000 0.000 0.000 0.000 0.000<br />

26 0.276 0.770 0.116 0.116 0.713 0.436 0.634 0.000 0.000 0.000 0.000 0.000<br />

27 0.282 0.712 0.128 0.128 0.774 0.564 1.051 0.000 0.000 0.000 0.000 0.000<br />

28 0.282 0.790 0.165 0.165 0.780 0.648 1.029 0.000 0.000 0.000 0.000 0.000<br />

29 0.463 0.660 0.153 0.153 1.033 0.893 1.053 0.000 0.000 0.000 0.000 0.000<br />

30 0.388 0.929 0.188 0.188 1.383 1.429 0.000 0.000 0.000 0.000 0.000 0.000<br />

Sum 40.542

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!