04.12.2012 Views

Design of functional dendritic polymers for application as drug and ...

Design of functional dendritic polymers for application as drug and ...

Design of functional dendritic polymers for application as drug and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Gene Therapy <strong>and</strong> Molecular Biology Vol 10, page 71<br />

Gene Ther Mol Biol Vol 10, 71-94, 2006<br />

<strong>Design</strong> <strong>of</strong> <strong>functional</strong> <strong>dendritic</strong> <strong>polymers</strong> <strong>for</strong><br />

<strong>application</strong> <strong>as</strong> <strong>drug</strong> <strong>and</strong> gene delivery systems<br />

Review Article<br />

Zili Sideratou, Leto-Aikaterini Tziveleka, Christina Kontoyianni, Dimitris<br />

Tsiourv<strong>as</strong>, Constantinos M. Paleos*<br />

Institute <strong>of</strong> Physical Chemistry, NCSR “Demokritos”, 15310 Aghia Par<strong>as</strong>kevi, Attiki, Greece<br />

__________________________________________________________________________________<br />

*Correspondence: Constantinos M. Paleos, Institute <strong>of</strong> Physical Chemistry, NCSR "Demokritos"; 15310 Aghia Par<strong>as</strong>kevi, Attiki,<br />

Greece; Tel.: +30 210 6503666; Fax: +30 210 6529792; e-mail: paleos@chem.demokritos.gr<br />

Key words: Dendrimers, Hyperbranched Polymers, Dendritic Polymers, Nanocarriers, Drug Delivery System, Gene Delivery<br />

Abbreviations: Adriamycin, (ADR); arginine-grafted-PAMAM dendrimer, (PAMAM-Arg); Asialo-glycoprotein, (ASGP);<br />

betameth<strong>as</strong>one dipropionate, (BD); betameth<strong>as</strong>one valerate, (BV); Boron Neutron Capture Therapy, (BNCT); diaminobutane<br />

poly(propylene imine) dendrimer, (DAB); diaminobutane poly(propylene imine) fourth generation dendrimer <strong>functional</strong>ized with 6<br />

guanidinium groups, (DAB-G6 ); diaminobutane poly(propylene imine) fourth generation dendrimer <strong>functional</strong>ized with 12 guanidinium<br />

groups, (DAB-G12); Dynamic Light Scattering, (DLS); epidermal growth factor, (EGF); green fluorescent protein, (GFP); injected dose,<br />

(ID); hyperbranched poly(ethylene imine), (PEI); hyperbranched polyglycerol, (PG); Isothermal Titration Calorimety, (ITC); L-lysine<br />

grafted-PAMAM dendrimer, (PAMAM-Lys); methotrexate, (MTX); methoxypoly(ethylene glycol)-isocyanate, (PEG-isocyanate);<br />

PEGylated diaminobutane poly(propylene imine) dendrimer with 4 PEG chains, (DAB-4PEG); PEGylated diaminobutane<br />

poly(propylene imine) dendrimer with 8 PEG chains, (DAB-8PEG); PEGylated polyglycerol, (PG-PEG); PEGylated-Folate<br />

polyglycerol, (PG-PEG-Folate); Phosphate Buffer Saline, (PBS); poly(amidoamine) dendrimer, (PAMAM); poly(amidoamine)<br />

dendrimer with terminal hydroxyl groups, (PAMAM-OH); poly(ethylene imine)-poly(ethylene glycol)-folate, (PEI-PEG-FOL);<br />

poly(ethylene glycol), (PEG); poly(ethylene glycol) monomethyl ether, (M-PEG); poly(propylene imine) dendrimer, (PPI); primaquine<br />

phosphate, (PP); pyrene, (PY); quaternized poly(amidoamine) dendrimer with terminal hydroxyl groups, (QPAMAM-OH); tamoxifen,<br />

(TAM)<br />

Received: 28 November 2005; Accepted: 10 February 2006; electronically published: March 2006<br />

Summary<br />

The present review deals with the design <strong>and</strong> preparation <strong>of</strong> <strong>functional</strong> <strong>and</strong> multi<strong>functional</strong> dendrimeric <strong>and</strong><br />

hyperbranched <strong>polymers</strong> (<strong>dendritic</strong> <strong>polymers</strong>), in order to be employed <strong>as</strong> <strong>drug</strong> <strong>and</strong> gene delivery systems. In<br />

particular, using <strong>as</strong> starting materials known <strong>and</strong> well-characterized b<strong>as</strong>ic <strong>dendritic</strong> <strong>polymers</strong>, the review discusses<br />

the kind <strong>of</strong> structural modifications that these <strong>polymers</strong> were subjected <strong>for</strong> preparing nanocarriers <strong>of</strong> low toxicity,<br />

high encapsulating capacity, specificity to certain biological cells <strong>and</strong> transport ability through their membranes.<br />

Due to the great number <strong>of</strong> external groups <strong>of</strong> <strong>dendritic</strong> <strong>polymers</strong> either <strong>functional</strong>ization or multi<strong>functional</strong>ization<br />

can occur, providing products that fulfill one or more <strong>of</strong> the requirements that an effective <strong>drug</strong> carrier should<br />

exhibit. A common feature <strong>of</strong> these <strong>dendritic</strong> <strong>polymers</strong> is the exhibition <strong>of</strong> the so-called polyvalent interactions,<br />

while <strong>for</strong> the multi<strong>functional</strong> derivatives a number <strong>of</strong> targeting lig<strong>and</strong>s determines specificity, other groups secure<br />

stability in biological milieu, while others facilitate their transport through cell membranes. In addition, <strong>for</strong> gene<br />

delivery <strong>application</strong>s these multi<strong>functional</strong> systems should be or become cationic in the biological environment <strong>for</strong><br />

the <strong>for</strong>mation <strong>of</strong> complexes with the negatively charged genetic material.<br />

I. Introduction<br />

Dendrimers are prepared by tedious synthetic<br />

procedures (Bosman et al, 1999; Schlüter <strong>and</strong> Rabe, 2000;<br />

Fréchet <strong>and</strong> Tomalia, 2001; Newkome et al, 2001) <strong>and</strong><br />

they are nanometer-sized, highly branched <strong>and</strong><br />

monodisperse macromolecules with symmetrical<br />

architecture. They consist <strong>of</strong> a central core, branching<br />

units <strong>and</strong> terminal <strong>functional</strong> groups. The core <strong>and</strong> the<br />

71<br />

internal units determine the environment <strong>of</strong> the<br />

nanocavities <strong>and</strong> consequently their solubilizing or<br />

encapsulating properties, where<strong>as</strong>, the external groups<br />

their solubility <strong>and</strong> chemical behaviour. On the other h<strong>and</strong>,<br />

hyperbranched <strong>polymers</strong> (Inoue, 2000), including the<br />

extensively investigated hyperbranched polyether polyols<br />

or polyglycerols (Sunder et al, 1999a, b; 2000a,b; Haag,<br />

2001; Frey <strong>and</strong> Haag, 2002; Siegers et al, 2004) are<br />

conveniently prepared. Hyperbranched <strong>polymers</strong> are non-


Sideratou et al: Dendritic <strong>polymers</strong> <strong>for</strong> <strong>application</strong> <strong>as</strong> <strong>drug</strong> <strong>and</strong> gene delivery systems<br />

symmetrical, highly branched <strong>and</strong> polydispersed<br />

macromolecules, while their main structural feature, also<br />

common to dendrimers, is that they exhibit nanocavities.<br />

These two types <strong>of</strong> <strong>polymers</strong> are called <strong>dendritic</strong> <strong>polymers</strong><br />

the nanocavities <strong>of</strong> which, depending on their polarity, can<br />

encapsulate various molecules, including active <strong>drug</strong><br />

ingredients. The external groups <strong>of</strong> <strong>dendritic</strong> <strong>polymers</strong> can<br />

be modified providing a diversity <strong>of</strong> <strong>functional</strong> materials<br />

(Vögtle et al, 2000) that can be employed <strong>for</strong> various<br />

<strong>application</strong>s.<br />

Within this context, commercially available or<br />

custom-made dendrimeric or hyperbranched <strong>polymers</strong> can<br />

be <strong>functional</strong>ized <strong>for</strong> being used <strong>as</strong> effective systems <strong>for</strong><br />

<strong>drug</strong> (Liu <strong>and</strong> Fréchet, 1999; De Jes-s et al, 2002; Stiriba<br />

et al, 2002; Beezer et al, 2003; Gillies <strong>and</strong> Fréchet, 2005)<br />

<strong>and</strong> gene (Bielinska et al, 1999; Luo et al, 2002; Ohsaki et<br />

al, 2002) delivery. Since more than one type <strong>of</strong> groups can<br />

be introduced at the surface <strong>of</strong> the <strong>dendritic</strong> <strong>polymers</strong>,<br />

these systems are characterized <strong>as</strong> multi<strong>functional</strong> <strong>as</strong><br />

shown in Figure 1. Each type <strong>of</strong> groups plays a specific<br />

role in the <strong>application</strong> <strong>of</strong> multi<strong>functional</strong> <strong>dendritic</strong><br />

<strong>polymers</strong> <strong>as</strong> <strong>drug</strong> delivery systems. Thus, specificity <strong>for</strong><br />

certain cells can be accomplished by attaching targeting<br />

lig<strong>and</strong>s at the surface <strong>of</strong> <strong>dendritic</strong> <strong>polymers</strong>, while<br />

enhanced solubility, decre<strong>as</strong>ed toxicity, biocompatibity,<br />

stability <strong>and</strong> protection in the biological milieu can be<br />

achieved by the <strong>functional</strong>ization <strong>of</strong> the end groups <strong>of</strong><br />

<strong>dendritic</strong> <strong>polymers</strong>, <strong>for</strong> instance, with poly(ethylene<br />

glycol) chains (PEG). The function <strong>of</strong> PEG-chains is<br />

crucial <strong>for</strong> modifying the behaviour <strong>of</strong> <strong>drug</strong> themselves or<br />

<strong>of</strong> their carriers (Noppl-Simson <strong>and</strong> Needham, 1996;<br />

Ishiwata et al, 1997; Liu et al, 1999; Liu et al, 2000;<br />

Veronese, 2001; Roberts et al, 2002; Pantos et al, 2004;<br />

V<strong>and</strong>ermeulen <strong>and</strong> Klok, 2004).<br />

Targeting lig<strong>and</strong>s are complementary to cell<br />

receptors (Cooper, 1997; Lodish et al, 2000) <strong>and</strong> induce<br />

the attachment <strong>of</strong> the nanocarrier to the cell surface. This<br />

Figure 1. Schematic representation <strong>of</strong> a multi<strong>functional</strong> dendrimer.<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

72<br />

binding is further enhanced due to the so-called polyvalent<br />

interactions (Mammen et al, 1998; Kitov <strong>and</strong> Bundle,<br />

2003) attributed to the close proximity <strong>of</strong> the recognizable<br />

lig<strong>and</strong>s on the limited surface area <strong>of</strong> the <strong>dendritic</strong><br />

molecules. On the other h<strong>and</strong>, <strong>as</strong> it h<strong>as</strong> long been<br />

established with liposomes (L<strong>as</strong>ic <strong>and</strong> Needham, 1995;<br />

Cros<strong>as</strong>so et al, 2000; Needham <strong>and</strong> Kim, 2000; Silv<strong>and</strong>er<br />

et al, 2000), PEG-chains may prolong the circulation <strong>of</strong><br />

liposomes in biological milieu. Transport through the cell<br />

membrane can also be facilitated by the introduction <strong>of</strong><br />

appropriate moieties at the surface <strong>of</strong> the <strong>dendritic</strong><br />

<strong>polymers</strong>. In addition, modification <strong>of</strong> the internal groups<br />

<strong>of</strong> dendrimers affects their solubilizing character, making,<br />

there<strong>for</strong>e, possible the encapsulation <strong>of</strong> a diversity <strong>of</strong><br />

<strong>drug</strong>s. In this connection, cationization <strong>of</strong> dendrimers, <strong>and</strong><br />

particularly <strong>of</strong> their external groups, facilitates their<br />

<strong>application</strong> <strong>as</strong> gene transfer agents (Bielinska et al, 1999;<br />

Luo et al, 2002; Ohsaki et al, 2002) due to <strong>for</strong>mation <strong>of</strong><br />

DNA-Dendritic Polymer complexes.<br />

Mon<strong>of</strong>unctional <strong>dendritic</strong> <strong>drug</strong> carriers do not<br />

simultaneously show the desired properties that<br />

multi<strong>functional</strong> derivatives exhibit. Thus, in this review,<br />

starting from selected mon<strong>of</strong>unctional systems <strong>and</strong><br />

specifically from the dendrimeric compounds<br />

poly(amidoamine), PAMAM, <strong>and</strong> diaminobutane<br />

poly(propylene imine), DAB, <strong>and</strong> also from the<br />

hyperbranched <strong>polymers</strong> polyglycerol, PG <strong>and</strong><br />

poly(ethylene imine), PEI, (Figure 2) a stepwise design <strong>of</strong><br />

multi<strong>functional</strong> systems will be discussed, aiming at<br />

obtaining appropriate nanocarriers <strong>for</strong> <strong>drug</strong> delivery <strong>and</strong><br />

gene transfection. This review is by no means exhaustive<br />

<strong>and</strong> only selected examples will be discussed highlighting<br />

on work per<strong>for</strong>med recently in our laboratory. The<br />

objective <strong>of</strong> this review is to illustrate the effectiveness <strong>of</strong><br />

the strategy <strong>of</strong> molecular engineering, applied on <strong>dendritic</strong><br />

surfaces, to prepare <strong>drug</strong> carriers with desired properties.<br />

= Branching point<br />

=<br />

=<br />

=<br />

Terminal group<br />

Recognizable group<br />

Protective coating


NH H 2 2N<br />

Gene Therapy <strong>and</strong> Molecular Biology Vol 10, page 73<br />

NH2 H2N NH2 H N<br />

H<br />

N H H<br />

H2N N O O<br />

N<br />

O N<br />

H<br />

N<br />

N<br />

H<br />

O<br />

N<br />

O<br />

O<br />

H<br />

N O<br />

H<br />

N N<br />

N N<br />

N<br />

H<br />

O<br />

H<br />

N<br />

O<br />

O<br />

N<br />

N N<br />

H<br />

H<br />

O N<br />

O<br />

N<br />

H<br />

N O<br />

O<br />

N<br />

H<br />

N<br />

O<br />

N<br />

H<br />

H<br />

H<br />

H H<br />

2N<br />

N<br />

O<br />

H2N N O<br />

H<br />

H<br />

N N<br />

H2N O<br />

H2N O<br />

N<br />

H N<br />

H<br />

N<br />

O<br />

H2N H<br />

O<br />

2N<br />

N<br />

H<br />

H<br />

N O<br />

H<br />

H2N N<br />

NH2 O<br />

N<br />

H N<br />

O<br />

N<br />

N O<br />

H<br />

H<br />

N N<br />

O<br />

O<br />

N<br />

H<br />

N<br />

H<br />

O N<br />

O<br />

N<br />

H<br />

N<br />

H<br />

N O<br />

N<br />

O<br />

O<br />

N<br />

N<br />

H<br />

N<br />

O<br />

H NH2 N<br />

N H<br />

H<br />

O<br />

H<br />

N<br />

2N<br />

O<br />

N<br />

O N H<br />

N O<br />

H<br />

H<br />

N<br />

N NH2 N<br />

O<br />

O<br />

NH2 O<br />

N<br />

H<br />

N H<br />

N<br />

O NH2 N<br />

O<br />

O<br />

N N<br />

H H<br />

H<br />

N O<br />

H2N H2N O N<br />

O<br />

N<br />

H<br />

O<br />

N N<br />

H N<br />

H<br />

H<br />

N O<br />

O N<br />

N<br />

NH2 H H<br />

O<br />

2N H N<br />

N<br />

O<br />

O N<br />

N<br />

H<br />

H<br />

N<br />

O<br />

O N<br />

N H NH2 H<br />

O NH2 N<br />

N H<br />

H<br />

N<br />

O<br />

O NH2 N N NH2 O<br />

N<br />

N<br />

H<br />

O<br />

N H<br />

H2N H<br />

H<br />

O N<br />

NH2 NH2 Core<br />

HO<br />

HO OH<br />

~<br />

O<br />

~<br />

O<br />

OH<br />

O<br />

O<br />

O<br />

O<br />

OH<br />

NH 2<br />

H 2N<br />

PAMAM<br />

O O<br />

Figure 2. Chemical structure <strong>of</strong> dendrimeric compounds.<br />

II. Drug carriers: from<br />

mon<strong>of</strong>unctional to multi<strong>functional</strong><br />

dendrimers<br />

In an example on molecular engineering <strong>of</strong> PAMAM<br />

surface, poly(ethylene glycol) monomethyl ether (M-<br />

PEG), having an average molecular weight <strong>of</strong> 550 or 2000,<br />

w<strong>as</strong> attached at the terminal amino groups <strong>of</strong> the third <strong>and</strong><br />

fourth generation <strong>polymers</strong> <strong>as</strong> shown in Figure 3. Inside<br />

the nanocavities <strong>of</strong> the so-prepared PEGylated dendrimers,<br />

Adriamycin, ADR, or Methotrexate, MTX, anticancer<br />

<strong>drug</strong>s (Figure 4) were encapsulated (Kojima et al, 2000).<br />

As the amount <strong>of</strong> ADR employed <strong>for</strong> encapsulation inside<br />

these PEGylated dendrimers incre<strong>as</strong>ed, the number <strong>of</strong><br />

ADR molecules <strong>as</strong>sociated with the dendrimer incre<strong>as</strong>ed<br />

OH<br />

O<br />

O<br />

OH<br />

O<br />

O<br />

O<br />

O<br />

OH<br />

O<br />

O<br />

OH<br />

OH<br />

OH<br />

O<br />

OH<br />

OH<br />

O<br />

O<br />

OH<br />

OH<br />

OH<br />

OH<br />

OH<br />

H 2N<br />

H 2N<br />

H 2N<br />

H 2N<br />

H 2N<br />

H 2N<br />

H 2N<br />

H 2N<br />

H 2N<br />

N<br />

N<br />

N<br />

N<br />

H 2N<br />

~<br />

H 2N<br />

N<br />

N<br />

N<br />

H 2N<br />

N<br />

NH 2<br />

~<br />

N<br />

HN<br />

N<br />

NH 2 NH2<br />

N<br />

NH 2<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

NH 2<br />

N<br />

N<br />

N<br />

N<br />

NH 2<br />

N<br />

N<br />

NH 2<br />

NH 2<br />

DAB<br />

PG PEI<br />

73<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

NH2<br />

N<br />

N<br />

H<br />

N<br />

N<br />

N<br />

N<br />

N<br />

HN<br />

N<br />

N<br />

N<br />

NH2 NH2 N<br />

N<br />

N<br />

N<br />

NH2 NH2 <strong>and</strong> finally reached a plateau. Depending on the<br />

generation, the maximum number <strong>of</strong> ADR molecules<br />

encapsulated per dendrimer i.e. by the M-PEG(550)-G3,<br />

M-PEG(2000)-G3, M-PEG(550)-G4, <strong>and</strong> M-PEG(2000)-<br />

G4 dendrimeric derivatives are ca. 1.2, 2.3, 1.6, <strong>and</strong> 6.5,<br />

respectively, <strong>as</strong> shown in Figure 5. Thus, the<br />

encapsulation ability varied <strong>for</strong> these PEG-dendrimers <strong>and</strong><br />

it w<strong>as</strong> found to depend on the molecular weight <strong>of</strong> PEGchains<br />

<strong>and</strong> also on dendrimers’ generation.<br />

PAMAM h<strong>as</strong> a b<strong>as</strong>ic interior <strong>and</strong>, there<strong>for</strong>e, it is<br />

possible to encapsulate MTX, which is acidic, since it<br />

bears two carboxyl groups. The number <strong>of</strong> MTX<br />

molecules <strong>as</strong>sociated with one dendrimer molecule, <strong>as</strong> a<br />

function <strong>of</strong> the MTX/dendrimer ratio during loading is<br />

shown in Figure 6. As it w<strong>as</strong> observed in the<br />

N<br />

NH 2<br />

NH 2<br />

NH 2<br />

NH 2<br />

N<br />

H<br />

NH 2<br />

N<br />

H<br />

H<br />

N<br />

NH 2<br />

NH 2<br />

N<br />

NH 2<br />

NH 2<br />

NH 2<br />

NH 2<br />

N<br />

H<br />

NH 2<br />

NH 2<br />

NH 2<br />

N<br />

NH 2<br />

N<br />

N<br />

N<br />

NH 2<br />

NH 2<br />

NH 2<br />

NH 2<br />

NH 2<br />

NH 2<br />

NH 2<br />

NH 2<br />

NH 2<br />

NH 2<br />

NH 2


Sideratou et al: Dendritic <strong>polymers</strong> <strong>for</strong> <strong>application</strong> <strong>as</strong> <strong>drug</strong> <strong>and</strong> gene delivery systems<br />

M-PEG<br />

(MW 550, 2000)<br />

O<br />

OH + Cl C O NO2O C O NO2 NH2 H2N NH2H2N H N<br />

H<br />

H<br />

N H<br />

NH2 H2N N<br />

O O<br />

N<br />

H N<br />

O<br />

O<br />

O<br />

N<br />

N<br />

H<br />

N<br />

O<br />

H<br />

H<br />

NH2 H2N N<br />

NH2<br />

H<br />

N<br />

N<br />

N<br />

H<br />

N H<br />

NH2 N<br />

O<br />

N<br />

O<br />

O H<br />

O<br />

H N<br />

N<br />

O<br />

H2N<br />

H<br />

O<br />

O<br />

N<br />

H<br />

N<br />

N<br />

N<br />

O<br />

H<br />

H H<br />

O N<br />

N N<br />

N NH2 NH N<br />

2<br />

O<br />

O<br />

O<br />

N O<br />

H<br />

N<br />

O<br />

N<br />

NH2 N O<br />

H<br />

H<br />

H<br />

O<br />

N<br />

N<br />

H<br />

N<br />

H<br />

O<br />

N<br />

N<br />

H<br />

N<br />

H<br />

N<br />

N<br />

O<br />

O<br />

O<br />

H2N N<br />

N H<br />

O<br />

H<br />

O<br />

H<br />

N O<br />

H2N H<br />

N<br />

O<br />

N<br />

N N<br />

N N<br />

N<br />

O NH<br />

N<br />

2<br />

H<br />

H<br />

O<br />

O<br />

N<br />

H<br />

O<br />

H<br />

NH2<br />

N<br />

O<br />

N<br />

O<br />

O<br />

N<br />

H<br />

N<br />

H O<br />

N<br />

N<br />

N H<br />

N<br />

H<br />

N<br />

N<br />

O<br />

H<br />

H<br />

H<br />

H2N N<br />

N<br />

N<br />

O<br />

H<br />

O<br />

H<br />

O<br />

2N<br />

O<br />

O N<br />

O<br />

N<br />

O<br />

NH2 N<br />

H<br />

N N<br />

NH2<br />

H H<br />

N N<br />

H<br />

N O<br />

NH2 H2N O<br />

N<br />

N<br />

H<br />

H<br />

N O<br />

O<br />

N<br />

N<br />

H O<br />

H N<br />

O<br />

N<br />

N<br />

O<br />

O<br />

N<br />

H<br />

O<br />

N H<br />

N<br />

N<br />

H<br />

N<br />

O O<br />

N<br />

H<br />

H<br />

H<br />

O N<br />

NH2 NH2 N<br />

NH2 H2N<br />

H<br />

O O<br />

N<br />

H N<br />

H<br />

N H<br />

NH2 H2N NH2 H2N PAMAM<br />

A<br />

O<br />

M-PEG 4-nitrophenyl carbonate<br />

(A)<br />

NH HN<br />

O<br />

CO<br />

CO<br />

NH<br />

HN<br />

H N<br />

N<br />

H<br />

H<br />

H<br />

NH<br />

HN<br />

N<br />

O O<br />

N<br />

O<br />

CO<br />

O<br />

CO<br />

O<br />

O O<br />

CO CO<br />

NH HN<br />

H N<br />

O<br />

OOCHN<br />

H<br />

N<br />

O N<br />

NHCOO<br />

H N<br />

O O<br />

N<br />

H<br />

N<br />

H<br />

N H<br />

N<br />

O<br />

N<br />

O<br />

O<br />

N<br />

H<br />

N<br />

O<br />

N H<br />

N<br />

O<br />

CO<br />

H<br />

N<br />

NH<br />

N H<br />

NH<br />

N<br />

O H<br />

O<br />

N<br />

O<br />

O<br />

N<br />

H<br />

N<br />

H<br />

H<br />

N<br />

N<br />

N<br />

NH<br />

O<br />

O<br />

N O<br />

H<br />

N<br />

N O<br />

H<br />

H<br />

H<br />

N N<br />

N<br />

O H<br />

N N<br />

O<br />

O<br />

OOCHN<br />

N<br />

O<br />

H<br />

O<br />

H<br />

OOCHN<br />

O<br />

N<br />

N N<br />

N N<br />

N<br />

H<br />

H<br />

O<br />

H<br />

O<br />

N<br />

N<br />

O<br />

H<br />

N<br />

H O<br />

N<br />

N<br />

N<br />

H<br />

O<br />

OOCHN<br />

H<br />

N<br />

O<br />

N<br />

O<br />

OOCHN<br />

O<br />

O<br />

N<br />

N<br />

H<br />

N N<br />

H H<br />

H<br />

O N<br />

N<br />

N<br />

O<br />

O<br />

O<br />

N<br />

H<br />

O O<br />

N<br />

NHCOOHN<br />

N<br />

N<br />

H N<br />

N<br />

H<br />

H<br />

H<br />

O<br />

O N<br />

NH<br />

H<br />

O<br />

H<br />

N<br />

N<br />

H<br />

N<br />

O<br />

N O<br />

N H<br />

H<br />

N<br />

N<br />

O NH<br />

H<br />

O NH<br />

N<br />

O<br />

O<br />

N<br />

N H<br />

N<br />

N<br />

H<br />

H<br />

N<br />

H<br />

O<br />

O N<br />

O<br />

NH<br />

NH<br />

N N<br />

H<br />

H<br />

O N<br />

O<br />

N<br />

NH<br />

N NH<br />

H<br />

N O<br />

O N<br />

N<br />

O<br />

H<br />

O<br />

N H<br />

NH<br />

HN<br />

N<br />

H O O<br />

N<br />

H N<br />

H<br />

N H<br />

NH HN<br />

NH HN<br />

O<br />

O O<br />

CO<br />

CO<br />

CO O<br />

CO O<br />

CO<br />

O<br />

CO O<br />

CO O<br />

CO O<br />

CO O<br />

CO O<br />

CO O<br />

CO O<br />

CO<br />

O CO<br />

O<br />

CO<br />

O<br />

CO<br />

O<br />

CO<br />

O<br />

CO<br />

O<br />

M-PEG-PAMAM<br />

Figure 3. Preparation <strong>and</strong> structure <strong>of</strong> M-PEG PAMAM dendrimer <strong>of</strong> the third generation. Reproduced from Kojima et al, 2000 with<br />

kind permission from the authors <strong>and</strong> American Chemical Society.<br />

OCH 3<br />

O<br />

O<br />

OH<br />

OH<br />

H3C H2N OH<br />

O<br />

CH2OH OH<br />

O<br />

H 2N<br />

ADR MTX<br />

Figure 4. Chemical structure <strong>of</strong> the anticancer <strong>drug</strong>s adriamycin, ADR, <strong>and</strong> Methotrexate, MTX<br />

NH 2<br />

74<br />

N<br />

N<br />

N<br />

CH 3<br />

O COOH<br />

N<br />

H<br />

COOH<br />

Figure 5. Encapsulation <strong>of</strong> ADR<br />

by M-PEG(550)-attached (open<br />

symbols) or M-PEG(2000)attached<br />

(closed symbols)<br />

PAMAM G3 (�,�) <strong>and</strong> G4<br />

(�,▲) dendrimers. The number <strong>of</strong><br />

ADR encapsulated per dendrimer<br />

is shown <strong>as</strong> a function <strong>of</strong> the<br />

ADR/dendrimer molar ratio during<br />

loading. Reproduced from Kojima<br />

et al, 2000 with kind permission<br />

from American Chemical Society.


encapsulation <strong>of</strong> ADR, the number <strong>of</strong> MTX molecules<br />

<strong>as</strong>sociated with the modified dendrimer incre<strong>as</strong>ed with<br />

incre<strong>as</strong>ing amount <strong>of</strong> MTX employed during loading, <strong>and</strong><br />

finally reached a constant value. The maximum numbers<br />

<strong>of</strong> MTX molecules <strong>as</strong>sociated with the M-PEG(550)-G3,<br />

M-PEG(2000)-G3, M-PEG(550)-G4, <strong>and</strong> M-PEG(2000)-<br />

G4 dendrimers are approximately 10, 13, 20, <strong>and</strong> 26<br />

mol/mol <strong>of</strong> dendrimer, respectively. Apparently, the<br />

number <strong>of</strong> the encapsulated <strong>drug</strong>s by the PEGylated<br />

dendrimers incre<strong>as</strong>ed when MTX w<strong>as</strong> used instead <strong>of</strong><br />

ADR. Since these <strong>drug</strong>s have similar molecular weights,<br />

this result suggests that the electrostatic interaction from<br />

the acid-b<strong>as</strong>e interaction between the dendrimer <strong>and</strong> MTX<br />

molecules results in an enhanced encapsulation <strong>of</strong> MTX<br />

by these dendrimers. As it w<strong>as</strong> the c<strong>as</strong>e with ADR<br />

encapsulation, the number <strong>of</strong> MTX encapsulated by the<br />

dendrimer w<strong>as</strong> affected both by generation <strong>of</strong> the<br />

PAMAM <strong>and</strong> by the chain length <strong>of</strong> the M-PEG.<br />

Rele<strong>as</strong>e experiments per<strong>for</strong>med in PBS buffer<br />

(Phosphate Buffer Saline) showed that ADR w<strong>as</strong> readily<br />

rele<strong>as</strong>ed from the modified dendrimers. Apparently,<br />

hydrophobic interaction between ADR <strong>and</strong> the dendrimer<br />

is not strong enough to retain the <strong>drug</strong> in the interior <strong>of</strong> the<br />

PAMAM dendrimeric moiety. The rele<strong>as</strong>e <strong>of</strong> MTX from<br />

the M-PEG-<strong>functional</strong>ized dendrimers w<strong>as</strong> also<br />

investigated by the same method. The time dependency <strong>of</strong><br />

MTX concentration in the outer ph<strong>as</strong>e during the dialysis<br />

is shown in Figure 7. Apparently, the MTX concentration<br />

in the outer ph<strong>as</strong>e incre<strong>as</strong>ed at a slower rate when MTX<br />

w<strong>as</strong> encapsulated in the M-PEG-attached dendrimer than<br />

in the c<strong>as</strong>e <strong>of</strong> free MTX. This indicates that MTX w<strong>as</strong><br />

gradually rele<strong>as</strong>ed from the modified dendrimer. As<br />

mentioned above, MTX w<strong>as</strong> electrostatically bound to the<br />

dendrimeric interior <strong>and</strong>, there<strong>for</strong>e, dissociation <strong>of</strong> MTX<br />

from the dendrimer w<strong>as</strong> suppressed to some extent.<br />

However, when the dialysis w<strong>as</strong> per<strong>for</strong>med in the presence<br />

<strong>of</strong> 150 mM NaCl, no difference in the rele<strong>as</strong>e rate w<strong>as</strong><br />

Gene Therapy <strong>and</strong> Molecular Biology Vol 10, page 75<br />

75<br />

Figure 6. Encapsulation <strong>of</strong> MTX<br />

by M-PEG(550)-attached (open<br />

symbols) or M-PEG(2000)attached<br />

(closed symbols)<br />

PAMAM G3 (�,�) <strong>and</strong> G4 (�,<br />

▲) dendrimers. The number <strong>of</strong><br />

MTX encapsulated per dendrimer<br />

is shown <strong>as</strong> a function <strong>of</strong> the<br />

MTX/dendrimer molar ratio during<br />

loading. Reproduced from Kojima<br />

et al, 2000 with kind permission<br />

from American Chemical Society.<br />

observed between MTX encapsulated in the M-PEGattached<br />

dendrimer <strong>and</strong> free MTX. In this c<strong>as</strong>e, MTX can<br />

dissociate readily from the dendrimer because the<br />

electrostatic interaction is weakened by the shielding<br />

effect <strong>of</strong> Na + <strong>and</strong> Cl - (Kojima et al, 2000).<br />

Effective solubilization <strong>of</strong> hydrophobic <strong>drug</strong>s w<strong>as</strong>,<br />

however, achieved with another PEGylated dendrimeric<br />

system (Sideratou et al, 2001), which is analogous to the<br />

one previously discussed. PEGylation <strong>of</strong> dendrimers w<strong>as</strong><br />

per<strong>for</strong>med under facile experimental conditions by the<br />

interaction <strong>of</strong> methoxypoly(ethylene glycol)-isocyanate<br />

(PEG-isocyanate) with the external primary amino groups<br />

<strong>of</strong> DAB dendrimers <strong>of</strong> fifth generation, <strong>as</strong> shown in<br />

Figure 8. Two different PEGylated dendrimeric<br />

derivatives were prepared i.e. the DAB-4PEG (weakly<br />

PEGylated) <strong>and</strong> DAB-8PEG (densely PEGylated). In this<br />

manner, the role <strong>of</strong> PEG-coating on encapsulation <strong>and</strong><br />

rele<strong>as</strong>e properties w<strong>as</strong> possible to be <strong>as</strong>sessed.<br />

Comparison <strong>of</strong> solubilizing ability <strong>of</strong> the parent <strong>and</strong><br />

PEGylated DAB dendrimers is shown in Table 1. For this<br />

purpose, betameth<strong>as</strong>one valerate, BV, <strong>and</strong> betameth<strong>as</strong>one<br />

dipropionate, BD, were used <strong>as</strong> active <strong>drug</strong> ingredients<br />

(Figure 9). These anti-inflammatory corticosteroids are<br />

practically water insoluble <strong>and</strong> it is, there<strong>for</strong>e, necessary to<br />

encapsulate these compounds in a water-soluble carrier <strong>for</strong><br />

facilitating their use <strong>as</strong> <strong>drug</strong>s. The concentration <strong>of</strong><br />

encapsulated betameth<strong>as</strong>one derivatives w<strong>as</strong> significantly<br />

incre<strong>as</strong>ed in PEGylated dendrimers. Thus, <strong>for</strong> DAB-8PEG<br />

the loading w<strong>as</strong> 13 <strong>and</strong> 7 wt.% <strong>for</strong> BV <strong>and</strong> BD, while <strong>for</strong><br />

DAB-4PEG w<strong>as</strong> 6 <strong>and</strong> 4 wt.%, respectively. The observed<br />

solubility incre<strong>as</strong>e w<strong>as</strong> attributed to an additional<br />

solubilization <strong>of</strong> the compounds in PEG-chains by which<br />

the dendrimers are coated. This is also verified by the fact<br />

that upon protonation they remain solubilized in PEGchains<br />

environment. As expected, by incre<strong>as</strong>ing dendrimer<br />

concentration, solubilization <strong>of</strong> <strong>drug</strong>s analogously<br />

incre<strong>as</strong>es to a certain limit.


DAB64<br />

Sideratou et al: Dendritic <strong>polymers</strong> <strong>for</strong> <strong>application</strong> <strong>as</strong> <strong>drug</strong> <strong>and</strong> gene delivery systems<br />

NH 2<br />

64<br />

O C NH<br />

NH 2 60 or 56<br />

M-PEG-isocyanate<br />

(MW 5000) HN NH<br />

O<br />

DAB64-PEG<br />

Figure 7. Rele<strong>as</strong>e <strong>of</strong> MTX from<br />

the M-PEG(2000)-attached G4<br />

dendrimer. The MTX-loaded M-<br />

PEG(2000)-G4 dendrimer (�,<br />

�) or free MTX (�, ▲)<br />

dissolved in 1 mM Tris-HClbuffered<br />

solution (pH 7.4)<br />

containing (open symbols) or not<br />

containing (closed symbols) 150<br />

mM NaCl <strong>and</strong> dialyzed against<br />

the same solution. The time<br />

course <strong>of</strong> MTX concentration in<br />

the outer ph<strong>as</strong>e during the<br />

dialysis is shown in the figure.<br />

Reproduced from Kojima et al,<br />

2000 with kind permission from<br />

American Chemical Society.<br />

Figure 8. Preparation <strong>and</strong> structure <strong>of</strong> PEGylated DAB dendrimer <strong>of</strong> the fifth generation <strong>functional</strong>ized with 4 or 8 PEG chains.<br />

For a detailed investigation <strong>of</strong> the solubilization site<br />

<strong>and</strong> rele<strong>as</strong>e properties <strong>of</strong> these PEGylated dendrimers the<br />

hydrophobic pyrene w<strong>as</strong> employed. This is a very<br />

sensitive probe <strong>and</strong> it is used <strong>as</strong> a model compound when<br />

<strong>drug</strong>s cannot <strong>of</strong>fer this type <strong>of</strong> in<strong>for</strong>mation. By employing<br />

the well-known I1/I3 fluorescence intensity ratio, which<br />

probes the polarity <strong>of</strong> the medium (Thom<strong>as</strong>, 1980), it w<strong>as</strong><br />

found that pyrene is solubilized both in the core <strong>and</strong> in<br />

PEG-chains. In addition, upon protonation <strong>of</strong> the loaded<br />

PEGylated dendrimer, pyrene is not rele<strong>as</strong>ed in the bulk<br />

aqueous ph<strong>as</strong>e <strong>as</strong> judged again by the I1/I3 ratio <strong>and</strong><br />

fluorescence intensity (F/F 0 ) results. This is attributed to<br />

the fact that <strong>as</strong> pyrene is leaving the core it is possible to<br />

be solubilized inside PEG-chains, <strong>as</strong> shown schematically<br />

in Figure 10. The results <strong>of</strong> I1/I3 fluorescence intensity<br />

ratio indicate that pyrene is neither solubilized in the bulk<br />

water ph<strong>as</strong>e nor in the interior <strong>of</strong> the dendrimer. Normally,<br />

one would expect rele<strong>as</strong>e <strong>of</strong> pyrene in water, since, due to<br />

protonation, the environment <strong>of</strong> the nanocavities becomes<br />

polar <strong>and</strong>, there<strong>for</strong>e, the hydrophobic pyrene cannot<br />

remain solubilized. In addition, protonated tertiary amino<br />

groups <strong>of</strong> the core do not exhibit anymore the property to<br />

<strong>for</strong>m charge-transfer complexes with pyrene (Sideratou et<br />

76<br />

4 or 8<br />

al, 2000) <strong>and</strong>, there<strong>for</strong>e, encapsulation <strong>of</strong> the pyrene is no<br />

longer favoured. It should, however, be noted that<br />

complete rele<strong>as</strong>e <strong>of</strong> pyrene can be achieved upon<br />

exhaustive dilution <strong>of</strong> the PEGylated dendrimer. The same<br />

behaviour w<strong>as</strong> observed <strong>for</strong> the hydrophobic <strong>drug</strong>s BV<br />

<strong>and</strong> BD. In conclusion, the enhanced solubilization <strong>of</strong><br />

these <strong>drug</strong>s in PEGylated dendrimers secures their<br />

<strong>application</strong> <strong>as</strong> promising controlled rele<strong>as</strong>e <strong>drug</strong> delivery<br />

systems.<br />

In another recent report, extending the previous<br />

work, a novel multi<strong>functional</strong> dendrimeric carrier w<strong>as</strong><br />

designed (Paleos et al, 2004) b<strong>as</strong>ed on diaminobutane<br />

poly(propylene imine) dendrimer <strong>of</strong> the fifth generation.<br />

The synthetic procedure <strong>of</strong> this derivative is shown in<br />

Figure 11. This carrier is intended to simultaneously<br />

address issues such <strong>as</strong> stability in the biological milieu,<br />

targeting <strong>and</strong> very possibly transport through cell<br />

membranes. For this purpose, in addition to surface<br />

protective poly(ethylene glycol) chains, guanidinium<br />

moieties were introduced <strong>as</strong> targeting lig<strong>and</strong>s. In addition,<br />

the accumulation <strong>of</strong> guanidinium groups at the surface <strong>of</strong><br />

the dendrimer may also facilitate its transport ability. The<br />

<strong>functional</strong> groups were covalently attached at the


dendrimeric surface <strong>and</strong> it w<strong>as</strong> possible to secure, in<br />

principle, desired <strong>drug</strong> delivery properties due to: a.<br />

Protection <strong>of</strong> the carrier because <strong>of</strong> the coverage <strong>of</strong> the<br />

dendrimeric surface with poly(ethylene glycol) chains, b.<br />

Recognition ability towards complementary moieties;<br />

surface guanidinium groups secure the facile interaction<br />

with acidic receptors including the biologically significant<br />

carboxylate <strong>and</strong> phosphate groups. Combined electrostatic<br />

<strong>for</strong>ces <strong>and</strong> hydrogen bonding are exercised making this<br />

interaction thermodynamically favorable (Hirst et al,<br />

Gene Therapy <strong>and</strong> Molecular Biology Vol 10, page 77<br />

1992), c. Possibility <strong>of</strong> encapsulation <strong>and</strong> rele<strong>as</strong>e <strong>of</strong> active<br />

<strong>drug</strong> ingredients from the nanocavities, which can be<br />

tuned by environmental changes (Sideratou et al, 2001), d.<br />

Complexation with DNA <strong>for</strong> gene therapy <strong>application</strong>s, e.<br />

The occurrence <strong>of</strong> polyvalency interactions, <strong>as</strong>sociated<br />

with enhanced binding, due to the accumulation <strong>of</strong><br />

recognizable moieties on the limited surface area <strong>of</strong> the<br />

dendrimer <strong>as</strong> schematically illustrated in Figure 12, f. The<br />

expected decre<strong>as</strong>e <strong>of</strong> toxicity due to the facile<br />

modification <strong>of</strong> the toxic amino groups (Malik et al, 2000).<br />

Table 1. Comparative solubility <strong>of</strong> pyrene (PY), betameth<strong>as</strong>one valerate (BV) <strong>and</strong> betameth<strong>as</strong>one dipropionate (BD) in<br />

parent DAB <strong>and</strong> PEGylated derivatives. Reproduced from Sideratou et al, 2001 with kind permission from Elsevier.<br />

O<br />

Compound [dendrimer]/M [PY]/M [BV]/M [BD]/M<br />

DAB 5 x 10 -5<br />

2.15 x 10 -6<br />

2.95 x 10 -5<br />

1.84 x 10 -5<br />

DAB-8PEG 5 x 10 -5<br />

5.40 x 10 -5<br />

3.85 x 10 -4<br />

2.56 x 10 -4<br />

DAB-4PEG 5 x 10 -5<br />

2.14 x 10 -5<br />

2.05 x 10 -4<br />

1.25 x 10 -4<br />

DAB-8PEG 5 x 10 -4<br />

8.75 x 10 -5<br />

3.65 x 10 -3<br />

1.87 x 10 -3<br />

DAB-4PEG 5 x 10 -4<br />

5.25 x 10 -5<br />

1.70 x 10 -3<br />

1.09 x 10 -3<br />

Me<br />

H<br />

HO<br />

F<br />

H<br />

BV<br />

Me<br />

H<br />

C O C4H9 Figure 9. Chemical structure <strong>of</strong> betameth<strong>as</strong>one valerate, BV, <strong>and</strong> betameth<strong>as</strong>one dipropionate, BD<br />

OH<br />

O<br />

H<br />

Me<br />

O<br />

O<br />

Me<br />

H<br />

HO<br />

F<br />

H<br />

Me<br />

H<br />

C O C2H4 Figure 10. Schematic representation <strong>of</strong> the solubilization <strong>of</strong> pyrene in PEGylated dendrimers. Reproduced from Sideratou et al, 2001<br />

with kind permission from Elsevier BV.<br />

77<br />

BD<br />

O<br />

O<br />

H<br />

Me<br />

C 2H 4<br />

O<br />

O


N<br />

N<br />

N N<br />

N<br />

N<br />

N N<br />

N<br />

N N N<br />

N N<br />

N<br />

N N N<br />

N<br />

N N N<br />

N N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

where:<br />

Sideratou et al: Dendritic <strong>polymers</strong> <strong>for</strong> <strong>application</strong> <strong>as</strong> <strong>drug</strong> <strong>and</strong> gene delivery systems<br />

= NH 2<br />

= PEG<br />

O C N<br />

= NHCNHCH2CH3 O<br />

= NHC<br />

NH2 Cl -<br />

NH 2 +<br />

N<br />

N<br />

N N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N N<br />

N N<br />

N<br />

N N N<br />

N<br />

N N N<br />

N N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

O C NCH 2CH 3<br />

N<br />

N<br />

N N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N N N<br />

N N<br />

N<br />

N N N<br />

N<br />

N N N<br />

N N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N N<br />

+<br />

NH2 - NH2 Cl<br />

N<br />

N<br />

N N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N N<br />

N N<br />

N<br />

N N N<br />

N<br />

N N N<br />

N N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

Figure 11. Reaction scheme <strong>for</strong> the synthesis <strong>of</strong> a multi<strong>functional</strong> dendrimeric derivative. Reproduced from Paleos et al, 2004 with kind<br />

permission from American Chemical Society.<br />

For evaluating the loading capacity <strong>and</strong> rele<strong>as</strong>e<br />

properties <strong>of</strong> the above multi<strong>functional</strong> dendrimer, pyrene<br />

(PY) <strong>and</strong> betameth<strong>as</strong>one valerate (BV), were used <strong>as</strong><br />

model compounds. The dendrimeric derivative<br />

encapsulated significantly higher concentrations <strong>of</strong> the<br />

above compounds compared to the parent dendrimer, <strong>as</strong><br />

determined by UV spectroscopy <strong>and</strong> shown in Table 2.<br />

This is particularly significant <strong>for</strong> betameth<strong>as</strong>one valerate,<br />

<strong>of</strong> which seven molecules are solubilized per dendrimeric<br />

molecule. As previously mentioned (Sideratou et al,<br />

2001), this w<strong>as</strong> attributed to the presence PEG-chains.<br />

Additionally, in the c<strong>as</strong>e <strong>of</strong> betameth<strong>as</strong>one valerate the<br />

loading capacity is 11 wt% <strong>for</strong> the multi<strong>functional</strong><br />

dendrimer, i.e. almost double compared to the loading<br />

capacity <strong>of</strong> the simply PEGylated dendrimer (6 wt%) <strong>and</strong><br />

more than five times compared to the loading capacity <strong>of</strong><br />

the parent dendrimeric solution (1.7 wt %) (Sideratou et al,<br />

2001). This is quite beneficial <strong>for</strong> its use <strong>as</strong> <strong>drug</strong> delivery<br />

system <strong>and</strong> it can only be attributed to the other two<br />

<strong>functional</strong> groups introduced at the surface <strong>of</strong> the<br />

multi<strong>functional</strong> derivative. As it will be discussed below,<br />

78<br />

Figure 12. Schematic representation<br />

<strong>of</strong> a dendrimer exhibiting polyvalent<br />

properties<br />

they may act synergistically enhancing solubilization <strong>of</strong><br />

betameth<strong>as</strong>one valerate.<br />

Pyrene, <strong>as</strong> in the previous work (Sideratou et al,<br />

2001), w<strong>as</strong> in first place employed <strong>as</strong> model hydrophobic<br />

compound <strong>for</strong> probing the solubilization properties <strong>of</strong> the<br />

multi<strong>functional</strong> dendrimer. For this re<strong>as</strong>on fluorescence<br />

intensity (F/F 0 ) changes <strong>and</strong> I1/I3 ratio were monitored,<br />

which are sensitive parameters <strong>and</strong> their values depend on<br />

the medium <strong>of</strong> solubilization <strong>of</strong> the probe. These<br />

parameters were monitored by a titration-like addition <strong>of</strong><br />

the dendrimer to an aqueous pyrene solution. A significant<br />

quenching <strong>of</strong> fluorescence intensity (F/F 0 ) w<strong>as</strong> observed<br />

<strong>and</strong> the I1/I3 ratio decre<strong>as</strong>ed (Figure 13). Fluorescence<br />

quenching w<strong>as</strong> attributed (Sideratou et al, 2001) to the<br />

<strong>for</strong>mation <strong>of</strong> a charge-transfer complex between pyrene<br />

<strong>and</strong> tertiary amino groups, <strong>as</strong> evidenced by the appearance<br />

<strong>of</strong> a weak exciplex fluorescence centered at approximately<br />

485 nm (Lakowicz, 1983). As the concentration <strong>of</strong> the<br />

dendrimer incre<strong>as</strong>es, the I1/I3 ratio decre<strong>as</strong>es to a value <strong>of</strong><br />

about 0.90, which is close to the one observed in the<br />

hydrophobic environment usually encountered in the


conventional micelles. Thus, pyrene is mainly<br />

incorporated inside the nanocavities <strong>of</strong> the dendrimer, in<br />

order to avoid contact with the hydrophilic external<br />

groups.<br />

The rele<strong>as</strong>e <strong>of</strong> the active ingredient from the<br />

dendrimer when it reaches the target site enhances its<br />

bioavailability <strong>and</strong> efficacy. In addition, <strong>drug</strong> rele<strong>as</strong>e from<br />

endosomal compartment appears a limiting factor <strong>for</strong><br />

several targeted <strong>drug</strong> delivery <strong>for</strong>mulations (Boomer et al,<br />

2003). These requirements impose the need <strong>for</strong> developing<br />

<strong>drug</strong> delivery systems in which the rele<strong>as</strong>e <strong>of</strong> <strong>drug</strong> can be<br />

triggered by appropriate stimulus. For this purpose pHtriggered,<br />

enzymatic, thermal <strong>and</strong> photochemically<br />

induced processes have been reported (Boomer et al,<br />

2003). For instance low pH within endosomal <strong>and</strong><br />

ischemic tissue environments renders acid triggerable<br />

delivery systems attractive <strong>for</strong> controlled rele<strong>as</strong>e.<br />

The multi<strong>functional</strong> poly(propylene imine)<br />

dendrimers prepared, due to the presence <strong>of</strong> tertiary amino<br />

groups in their core fulfill at le<strong>as</strong>t one <strong>of</strong> these<br />

requirements, i.e. being pH responsive (Sideratou et al,<br />

2000; Sideratou et al, 2001; Paleos et al, 2004). As found<br />

in the previous experiment pyrene is solubilized in the<br />

interior <strong>of</strong> dendrimer <strong>and</strong> also within PEG chains, while<br />

upon protonation <strong>of</strong> tertiary amines <strong>of</strong> the nanocavities<br />

pyrene is repositioned in the PEG coat.<br />

For achieving the rele<strong>as</strong>e <strong>of</strong> the encapsulated pyrene<br />

Gene Therapy <strong>and</strong> Molecular Biology Vol 10, page 79<br />

from the PEG protective coat another method h<strong>as</strong>,<br />

there<strong>for</strong>e, to be explored. We were prompted to use<br />

aqueous sodium chloride solution <strong>for</strong> triggering pyrene<br />

rele<strong>as</strong>e since, <strong>as</strong> it h<strong>as</strong> been established in independent<br />

studies (Wang et al, 2000; Bogan <strong>and</strong> Agnes, 2002), ions<br />

<strong>of</strong> alkali metals cationize poly(ethylene glycol) moieties<br />

through complexation. The designed multi<strong>functional</strong><br />

dendrimer, due to the attachment <strong>of</strong> PEG chains at its<br />

surface, is susceptible to analogous interactions <strong>and</strong>,<br />

there<strong>for</strong>e, it could be possible <strong>for</strong> metal cations to replace<br />

solubilized pyrene rele<strong>as</strong>ing it to the bulk aqueous ph<strong>as</strong>e.<br />

Indeed, by titrating dendrimeric solutions with sodium<br />

chloride solution, pyrene w<strong>as</strong> rele<strong>as</strong>ed <strong>and</strong> dispersed in the<br />

bulk solution in the <strong>for</strong>m <strong>of</strong> crystallites. The isolated<br />

crystallites were indentified by 1 H NMR <strong>and</strong> proved to be<br />

pure pyrene.<br />

The two-step triggered rele<strong>as</strong>e from the<br />

multi<strong>functional</strong> dendrimer w<strong>as</strong> also investigated using the<br />

lipophilic <strong>drug</strong> betameth<strong>as</strong>one valerate. Rele<strong>as</strong>e <strong>of</strong> the<br />

<strong>drug</strong> with hydrochloric acid h<strong>as</strong> not been observed since<br />

betameth<strong>as</strong>one valerate remained solubilized within the<br />

dendrimeric environment <strong>and</strong> preferably within the<br />

poly(ethylene glycol) chains. Betameth<strong>as</strong>one valerate<br />

encapsulated in the multi<strong>functional</strong> dendrimer w<strong>as</strong><br />

completely rele<strong>as</strong>ed upon addition <strong>of</strong> sodium chloride <strong>as</strong><br />

shown in Figure 14. However, within the concentration<br />

Table 2. Comparative solubility <strong>of</strong> pyrene (PY) <strong>and</strong> betameth<strong>as</strong>one valerate (BV) in the parent fifth generation DAB <strong>and</strong><br />

multi<strong>functional</strong> dendrimer. Reproduced from Paleos et al, 2004 with kind permission from American Chemical Society.<br />

Compound<br />

[dendrimer]<br />

/M<br />

DAB 1.0 x 10 -3<br />

Multi<strong>functional</strong><br />

Dendrimer 2.5 x 10 -4<br />

1.6<br />

1.4<br />

1.2<br />

I 1 /I 3<br />

1.0<br />

0.8<br />

[PY] /M<br />

2.1±0.2 x 10 -5<br />

1.9±0.08 x 10 -5<br />

1 2 3 4 5<br />

[dendrimer] x 10 -4 M<br />

PY/Dendrimer<br />

molar ratio<br />

0.021±0.002<br />

0.076±0.002<br />

F/F 0<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

[BV] /M BV/Dendrimer<br />

molar ratio<br />

2.5±0.4 x 10 -4<br />

1.80±0.4 x 10 -3<br />

0.25±0.04<br />

7.20±0.03<br />

0.0<br />

0 1 2 3 4 5<br />

[dendrimer] x 10 -4 M<br />

Figure 13. Plot <strong>of</strong> F/F 0 <strong>and</strong> I 1/I 3 ratio <strong>as</strong> a function <strong>of</strong> the concentration <strong>of</strong> the multi<strong>functional</strong> dendrimer. F 0 is the total fluorescence<br />

intensity <strong>of</strong> 6.81 x 10 -7 M aqueous solution <strong>of</strong> pyrene <strong>and</strong> F is the me<strong>as</strong>ured fluorescence intensity at various dendrimer concentrations.<br />

Reproduced from Paleos et al, 2004 with kind permission from American Chemical Society.<br />

79


Sideratou et al: Dendritic <strong>polymers</strong> <strong>for</strong> <strong>application</strong> <strong>as</strong> <strong>drug</strong> <strong>and</strong> gene delivery systems<br />

range <strong>of</strong> the sodium cation present in extracellular fluids,<br />

i.e. 0.142 M, (Guyton <strong>and</strong> Hall, 2000) the betameth<strong>as</strong>one<br />

valerate w<strong>as</strong> rele<strong>as</strong>ed in relatively small quantities. The<br />

gradually rele<strong>as</strong>ed betameth<strong>as</strong>one valerate from the<br />

multi<strong>functional</strong> dendrimer <strong>for</strong>med crystallites in the<br />

aqueous medium <strong>as</strong> determined by light scattering. The<br />

precipitated material w<strong>as</strong> analyzed with 1 H NMR <strong>and</strong> its<br />

spectrum corresponded to that <strong>of</strong> betameth<strong>as</strong>one valerate.<br />

This finding should be considered when PEGylated<br />

dendrimers are used <strong>as</strong> <strong>drug</strong> delivery systems in<br />

experiments in vitro <strong>and</strong> in vivo, since sodium chloride in<br />

extracellular fluids <strong>and</strong> pot<strong>as</strong>sium chloride in intracellular<br />

environment can be complexed with PEG chains (Wang et<br />

al, 2000; Bogan <strong>and</strong> Agnes, 2002) affecting the overall<br />

rele<strong>as</strong>e pr<strong>of</strong>ile <strong>of</strong> the <strong>drug</strong>. Thus, the possibility <strong>of</strong><br />

triggering <strong>drug</strong> rele<strong>as</strong>e in the extracellular fluid, i.e. be<strong>for</strong>e<br />

endocytosis to the target-cells, should be taken into<br />

account when designing a targeted PEGylated <strong>drug</strong><br />

delivery system.<br />

The <strong>drug</strong> delivery effectiveness <strong>of</strong> analogous<br />

multi<strong>functional</strong> dendrimers w<strong>as</strong> modeled by investigating<br />

their interaction with multilamellar liposomes consisting<br />

<strong>of</strong> phosphatidylcholine/cholesterol/dihexadecyl phosphate<br />

(19:9.5:1) <strong>and</strong> dispersed in aqueous or phosphate buffer<br />

solutions (Pantos et al, 2005). The multilamellar liposomes<br />

bear the phosphate moiety <strong>as</strong> recognizable group.<br />

They were used <strong>as</strong> simple models be<strong>for</strong>e one resorts<br />

to the use <strong>of</strong> cells; after all liposomes are considered <strong>as</strong> the<br />

closest analogues to cells. On the other h<strong>and</strong>,<br />

poly(propylene imine) fourth generation dendrimers were<br />

<strong>functional</strong>ized with 6 (DAB-G6 ) or 12 (DAB-G12)<br />

guanidinium groups <strong>as</strong> targeting lig<strong>and</strong>s, while the<br />

remaining toxic, external primary amino groups <strong>of</strong> the<br />

dendrimers were allowed to interact with propylene oxide<br />

af<strong>for</strong>ding the corresponding hydroxylated derivatives. The<br />

scheme <strong>of</strong> the reactions modifying the dendrimeric surface<br />

[BTV] x10 -4 M<br />

1.6<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

is shown in Figure 15. DAB-G0 dendrimer, which does<br />

not contain any guanidinium group w<strong>as</strong> used <strong>as</strong> a<br />

reference compound. The so-prepared dendrimers were<br />

loaded with corticosteroid <strong>drug</strong>s, i.e. betameth<strong>as</strong>one<br />

dipropionate <strong>and</strong> betameth<strong>as</strong>one valerate <strong>for</strong> investigating<br />

their transfer to liposomes.<br />

Microscopic, ζ-potential, <strong>and</strong> Dynamic Light<br />

Scattering (DLS) techniques have shown that liposomesdendrimers<br />

molecular recognition occurs leading to the<br />

<strong>for</strong>mation <strong>of</strong> large aggregates at dendrimer/dihexadecyl<br />

phosphate molar ratios higher than 1:30, <strong>as</strong> visually<br />

observed with ph<strong>as</strong>e contr<strong>as</strong>t optical microscopy. Calcein<br />

liposomal entrapment experiments demonstrate a limited<br />

leakage, i.e. less than 13%, following liposomes<br />

interaction with the modified dendrimers at 1:25<br />

dendrimer/ dihexadecyl phosphate molar ratio. This<br />

indicates that the membrane <strong>of</strong> the liposomes remains<br />

almost intact during their molecular recognition with these<br />

dendrimers. Isothermal Titration Calorimety (ITC)<br />

indicates that the enthalpy <strong>of</strong> the interaction is dependent<br />

on the number <strong>of</strong> the guanidinium groups present at the<br />

dendrimeric surface. Furthermore, the process is reversible<br />

<strong>and</strong> redispersion <strong>of</strong> the aggregates occurs by adding<br />

concentrated phosphate buffer.<br />

The interaction between these <strong>drug</strong>-loaded<br />

dendrimers <strong>and</strong> multilamellar liposomes results in the<br />

transport <strong>of</strong> <strong>drug</strong>s from the dendrimeric derivatives to the<br />

‘empty’ liposomes <strong>as</strong> summarized in Table 3. The<br />

experiments demonstrate that about 25% <strong>of</strong> BD or BV is<br />

present in the precipitated aggregates when DAB-G0 w<strong>as</strong><br />

used. When the guanidinylated dendrimers DAB-G6 <strong>and</strong><br />

DAB-G12 were used, the amount <strong>of</strong> <strong>drug</strong>s in the<br />

precipitate incre<strong>as</strong>es substantially becoming about 60%<br />

<strong>and</strong> 80%, respectively.<br />

0.2<br />

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4<br />

[NaCl] / M<br />

Figure 14. Plot <strong>of</strong> the concentration <strong>of</strong> betameth<strong>as</strong>one valerate in a 2.50 x 10 -5 M dendrimeric solution <strong>as</strong> a function <strong>of</strong> added NaCl.<br />

Reproduced from Paleos et al, 2004 with kind permission from American Chemical Society.<br />

80


These significant differences observed in the<br />

transport <strong>of</strong> <strong>drug</strong>s between guanidinylated <strong>and</strong> nonguanidinylated<br />

dendrimers can be attributed to the<br />

<strong>functional</strong>ization <strong>of</strong> the dendrimeric molecules. The<br />

presence <strong>of</strong> guanidinium groups at the external surface <strong>of</strong><br />

the dendrimers results in an effective adhesion to the<br />

multilamellar liposomes <strong>as</strong> the ITC <strong>and</strong> DLS experiments<br />

demonstrated. As expected, when the interaction is taking<br />

place in 10mM phosphate buffer the <strong>drug</strong> present in the<br />

aggregates decre<strong>as</strong>es slightly. In this c<strong>as</strong>e, the decre<strong>as</strong>e <strong>of</strong><br />

<strong>drug</strong> transport can be rationalized by the competitive<br />

interaction <strong>of</strong> the phosphate groups in bulk with the<br />

guanidinium dendrimeric groups leading to less effective<br />

adhesion with the multilamellar liposomes.<br />

Upon the addition <strong>of</strong> concentrated phosphate buffer<br />

followed by the redispersion <strong>of</strong> the aggregates in the<br />

medium <strong>and</strong> the separation <strong>of</strong> the no-longer interacting<br />

dendrimers, <strong>drug</strong>s are still present in the obtained<br />

DAB<br />

(NH 2) 32<br />

O<br />

CH 3<br />

Gene Therapy <strong>and</strong> Molecular Biology Vol 10, page 81<br />

(NHCH 2CH(CH 3)OH) 32<br />

(NH 2) 6<br />

(NHCH 2CH(CH 3)OH) 26<br />

(NH 2) 12<br />

DAB-G0<br />

DAB-N6<br />

(NHCH 2CH(CH 3)OH) 20<br />

DAB-N12<br />

multilamellar liposomes. Determination <strong>of</strong> BD or BV in<br />

the multilamellar liposomes indicates that, in all c<strong>as</strong>es, ca.<br />

50% (Table 3) <strong>of</strong> the amount <strong>of</strong> <strong>drug</strong>s found in the<br />

aggregates be<strong>for</strong>e redispersion is still present, suggesting<br />

that they are located in the lipid bilayer, since their<br />

solubility in water is extremely low. Drug transport is<br />

induced by the use <strong>of</strong> guanidinylated dendrimers since<br />

<strong>drug</strong> transport values <strong>of</strong> about 40-45% were obtained in<br />

the c<strong>as</strong>e <strong>of</strong> DAB-G12, while only 12-15% w<strong>as</strong> observed in<br />

the c<strong>as</strong>e <strong>of</strong> the non-guanidinylated derivative.<br />

Carbohydrates, in general, being targeting lig<strong>and</strong>s <strong>for</strong><br />

selectins can be introduced at the external surface <strong>of</strong><br />

dendrimers leading to the <strong>for</strong>mation <strong>of</strong> targeted <strong>drug</strong><br />

delivery systems. In a recent study (Bhadra et al, 2005),<br />

galactose surface-coated poly(propylene imine) (PPI)<br />

dendrimeric derivatives were prepared <strong>and</strong> loaded with<br />

primaquine phosphate (PP) (Figure 16), which is an<br />

antimalarial <strong>drug</strong>. Galactose <strong>functional</strong>ization w<strong>as</strong> carried<br />

N<br />

N<br />

NH 2<br />

+ H2N Cl -<br />

DIEA<br />

N<br />

N<br />

NH 2<br />

+ H2N Cl -<br />

DIEA<br />

NH<br />

+<br />

NH2 Cl<br />

NH2 -<br />

(NHCH2CH(CH3)OH) 26<br />

DAB-G6<br />

NH<br />

NH 2 +<br />

NH 2<br />

(NHCH2CH(CH3)OH) 20<br />

DAB-G12<br />

Figure 15. Functionalization <strong>of</strong> poly(propylene imine) dendrimer <strong>of</strong> the fourth generation including guanidinylation at the final step.<br />

Reproduced from Pantos et al, 2005 with kind permission from American Chemical Society.<br />

Table 3. Drug transfer (%) from dendrimers to multilamellar liposomes in a) aggregates obtained after their interaction in<br />

water or in 10 mM phosphate buffer (pH 7.4) <strong>and</strong> b) multilamellar liposomes obtained following redispersion <strong>of</strong> the<br />

aggregates. Reproduced from Paleos et al, 2005 with kind permission from American Chemical Society.<br />

Drug transfer (%) in aggregates Drug transfer (%)after redispersion<br />

Drug Dendrimer Water Phosphate Buffer Water Phosphate Buffer<br />

DAB-G0 24.4±2.4 19.8±1.2 15.8±0.9 12.1±1.1<br />

BD DAB-G6 62.5±1.9 48.5±1.6 28.1±1.7 24.5±1.3<br />

DAB-G12 84.5±2.1 68.4±1.5 45.1±1.8 40.0±1.4<br />

DAB-G0 32.9±2.0 27.1±1.0 15.9±1.2 14.1±0.9<br />

BV DAB-G6 59.0±1.5 39.5±2.1 29.0±1.0 26.1±1.5<br />

DAB-G12 78.1±2.3 57.5±2.0 42.0±1.5 38.2±1.2<br />

81<br />

Cl -<br />

6<br />

12


Sideratou et al: Dendritic <strong>polymers</strong> <strong>for</strong> <strong>application</strong> <strong>as</strong> <strong>drug</strong> <strong>and</strong> gene delivery systems<br />

H 3CO<br />

HN<br />

CH 3<br />

PP<br />

out by a ring opening reaction followed by Schiff’s b<strong>as</strong>e<br />

reaction <strong>and</strong> reduction to secondary amine in sodium<br />

acetate buffer <strong>as</strong> shown in Figure 17.<br />

Galactose had been shown to be a promising lig<strong>and</strong><br />

<strong>for</strong> hepatocyte (liver parenchymal cells) targeting because<br />

liver cells possess a large number <strong>of</strong> the Asialoglycoprotein<br />

(ASGP) receptors that can recognize the<br />

galactose units on the oligosaccharide chains <strong>of</strong><br />

glycoproteins, or on chemically galactosylated <strong>drug</strong><br />

carriers (Ashwell <strong>and</strong> Har<strong>for</strong>d, 1982). The receptor-lig<strong>and</strong><br />

interaction w<strong>as</strong> known to exhibit a significant ‘cluster<br />

PPI<br />

NH2 n<br />

n=16, 32, 64<br />

NH 2 . H 3PO 4<br />

Figure 16. Chemical structure <strong>of</strong><br />

primaquine phosphate.<br />

effect’ in which a polyvalent interaction results in<br />

extremely strong binding <strong>of</strong> lig<strong>and</strong>s to the receptors.<br />

The results obtained indicated that galactose coating<br />

<strong>of</strong> PPI systems incre<strong>as</strong>es the <strong>drug</strong> entrapment efficiency<br />

by 5-15 times depending upon dendrimers’ generation.<br />

Also galactose coating prolonged rele<strong>as</strong>e up to 5–6 days <strong>as</strong><br />

compared to 1-2 days <strong>for</strong> uncoated PPI. The hemolytic<br />

toxicity, blood level <strong>and</strong> hematological studies proved that<br />

these carriers are safer <strong>and</strong> suitable <strong>for</strong> sustained <strong>drug</strong><br />

delivery. Blood level studies proved the suitability <strong>of</strong> the<br />

carriers in prolonging the circulations <strong>and</strong> delivery <strong>of</strong> PP<br />

to liver.<br />

OH<br />

CH2OH<br />

O<br />

HO<br />

OH<br />

OH<br />

HOH<br />

HOH<br />

2C<br />

2C<br />

H HO H CH2OH HO<br />

H HO H HO<br />

H<br />

HO<br />

OH H OH HO<br />

H<br />

H<br />

H HO H H<br />

OH HO CH2OH HO<br />

H<br />

HO<br />

CH 2C<br />

H HO H<br />

2<br />

NH<br />

CH H<br />

2 H HO<br />

HN<br />

HO<br />

CH2OH OH HO<br />

NH<br />

H H H H<br />

2C HO H<br />

OH<br />

N<br />

NH H2C H HO<br />

HHO<br />

CH2OH N<br />

NH HO<br />

H<br />

H<br />

HN C<br />

N<br />

OH<br />

H H<br />

2<br />

N<br />

HO H HO OH<br />

H<br />

CH2OH N C<br />

N N<br />

H2 H OH H H<br />

N<br />

H H OH H OH OH<br />

2<br />

N C CH2OH N<br />

H H OHH<br />

H<br />

sodium acetate buffer<br />

N OH H OH<br />

C<br />

OH<br />

pH 4.0<br />

H<br />

N<br />

2<br />

N N N<br />

H<br />

CH<br />

HO<br />

2OH<br />

H<br />

H H H<br />

2 OH<br />

N C H<br />

OH<br />

OH<br />

H HO<br />

N<br />

N<br />

H<br />

H CH2OH 2 OH H<br />

N C H<br />

OH<br />

H<br />

OH<br />

H<br />

HO CH2OH N<br />

H2 OH<br />

H<br />

H<br />

N<br />

N C H<br />

H<br />

OH<br />

HN H<br />

OH<br />

CH HO<br />

2 H CH2OH NH NH<br />

OH H<br />

H2C HN<br />

H<br />

H2C H H<br />

H<br />

CH2 HO<br />

HO<br />

OH OH<br />

OH<br />

HO<br />

H OH<br />

H<br />

H<br />

H<br />

OH<br />

H<br />

H HO H<br />

H OH<br />

H<br />

OH<br />

H<br />

H OH CH2OH OH<br />

HOH2C OH<br />

H OH<br />

HOH2C CH2OH ~<br />

Figure 17. Galactosylation <strong>of</strong> poly(propylene imine) dendrimer <strong>of</strong> the third to fifth generation.<br />

~<br />

82


Proceeding with further <strong>functional</strong>ization <strong>and</strong><br />

employing a third generation PAMAM dendrimer <strong>as</strong> a<br />

starting compound, multi<strong>functional</strong> dendrimers were<br />

prepared (Shukla et al, 2003). These derivatives, in<br />

addition to the protective PEG-chains they also bear the<br />

folate moiety at the end <strong>of</strong> poly(ethylene glycol) chain<br />

which can induce endocytosis into folate receptor-bearing<br />

cells (Sudimack <strong>and</strong> Lee, 2000; H<strong>of</strong>l<strong>and</strong> et al, 2002;<br />

Antony, 2004; Sabharanjak <strong>and</strong> Mayor, 2004). The folate<br />

receptor is known to be significantly overexpressed over a<br />

wide variety <strong>of</strong> human cancers <strong>and</strong>, there<strong>for</strong>e, folatemediated<br />

targeting h<strong>as</strong> been widely applied with<br />

liposomes (Lee <strong>and</strong> Low, 1995; Lee <strong>and</strong> Huang, 1996;<br />

Gabizon et al, 2004), dendrimers (Kono et al, 1999; Konda<br />

et al, 2001; Shukla et al, 2003), various <strong>polymers</strong> <strong>and</strong><br />

particles (Dauty et al, 2002; Dubé et al, 2002; Aronov et<br />

al, 2003; Zuber et al, 2003; Yoo <strong>and</strong> Park, 2004; Kim et al,<br />

2005b; Licciardi et al, 2005; Wang <strong>and</strong> Hsiue, 2005) when<br />

used <strong>as</strong> <strong>drug</strong> delivery systems. In addition, in the<br />

previously <strong>functional</strong>ized dendrimer 12 to 15 decaborate<br />

clusters were covalently attached, which can be used <strong>for</strong><br />

the treatment <strong>of</strong> cancer in Boron Neutron Capture<br />

Therapy(BNCT) requiring the selective delivery <strong>of</strong> 10 B to<br />

cancerous cells within a tumor. Varying number <strong>of</strong> PEG<br />

chains <strong>of</strong> varying length were linked to these boronated<br />

dendrimers to reduce hepatic uptake. Among all prepared<br />

combinations, boronated dendrimers with 1-1.5 PEG2000<br />

units exhibited the lowest hepatic uptake in C57BL/6 mice<br />

(7.2-7.7% injected dose (ID)/g liver).<br />

Two folate receptor-targeted boronated third<br />

generation poly(amidoamine) dendrimers were prepared,<br />

the one shown in Figure 18, one containing ~15<br />

decaborate clusters <strong>and</strong> ~1 PEG2000 unit with a folic acid<br />

moiety attached to the distal end, while the other w<strong>as</strong><br />

containing ~13 decaborate clusters, ~1 PEG2000 unit <strong>and</strong><br />

~1 PEG800 unit with folic acid attached to the distal end. In<br />

vitro studies using folate receptor (+) KB cells<br />

demonstrated receptor-dependent uptake <strong>of</strong> the latter folic<br />

acid-<strong>functional</strong>ized derivative. Biodistribution studies with<br />

this derivative in C57BL/6 mice bearing folate receptor<br />

(+) murine 24JK-FBP sarcom<strong>as</strong> resulted in selective tumor<br />

uptake (6.0% ID/g tumor), but also high hepatic (38.8%<br />

ID/g) <strong>and</strong> renal (62.8% ID/g) uptake (Table 4), indicating<br />

that attachment <strong>of</strong> a second PEG unit <strong>and</strong>/or folic acid<br />

may adversely affect the pharmacodynamics <strong>of</strong> this<br />

conjugate.<br />

In conclusion, the optimal modification <strong>of</strong> Boronated<br />

dendrimers <strong>as</strong> well <strong>as</strong> <strong>of</strong> dendrimers in general with PEG<br />

chains <strong>for</strong> reducing reticuloendothelial system affinity<br />

appears to be a highly complex process that depends on a<br />

variety <strong>of</strong> factors requiring extensive evaluation. The folic<br />

acid <strong>functional</strong>ized PEGylated G3-Boronated Dendrimer<br />

showed significantly incre<strong>as</strong>ed tumor selectivity compared<br />

with non-PEGylated Boronated Dendrimeric-antibody <strong>and</strong><br />

Boronated Dendrimer-EGF (Epidermal growth factor)<br />

conjugates previously evaluated <strong>for</strong> potential <strong>application</strong><br />

in BNCT (Barth et al, 1994; Yang et al, 1997). However,<br />

the hepatic <strong>and</strong> renal uptake <strong>of</strong> this conjugate w<strong>as</strong> very<br />

high.<br />

Gene Therapy <strong>and</strong> Molecular Biology Vol 10, page 83<br />

83<br />

III. Drug carriers: from<br />

mon<strong>of</strong>unctional to multi<strong>functional</strong><br />

hyperbranched <strong>polymers</strong><br />

B<strong>as</strong>ed on polyglycerol (PG) <strong>and</strong> also on<br />

poly(ethylene imine) (PEI), pH-responsive molecular<br />

carriers were prepared (Krämer et al, 2002) through<br />

appropriate <strong>functional</strong>ization. The concept <strong>of</strong> pHresponsive<br />

carriers may have potential <strong>application</strong> <strong>for</strong><br />

selective <strong>drug</strong> delivery in tissues <strong>of</strong> a lower pH value (<strong>for</strong><br />

example, infected or tumor tissue). Polyglycerol <strong>and</strong><br />

poly(ethylene imine), which are commercially available,<br />

are r<strong>and</strong>omly branched but have defined <strong>dendritic</strong><br />

structures with a degree <strong>of</strong> branching 60 to 75%.<br />

Functionalization <strong>of</strong> these <strong>dendritic</strong> <strong>polymers</strong> w<strong>as</strong><br />

achieved through a facile condensation reaction between<br />

the 1,2-diol or NH2 moieties at their external surface <strong>and</strong><br />

various carbonyl compounds <strong>as</strong> shown in Figure 19.<br />

Several <strong>dendritic</strong> structures originating from these<br />

reactions have been prepared, differing in the following: a.<br />

the type <strong>and</strong> molecular weight <strong>of</strong> the core polymer, b. the<br />

structure <strong>of</strong> the attached peripheral shell <strong>and</strong> c. the degree<br />

<strong>of</strong> alkylation.<br />

The loading capacities (number <strong>of</strong> encapsulated<br />

congo red per polymeric nanocarrier) <strong>of</strong> <strong>dendritic</strong><br />

<strong>polymers</strong> together with their structural features are shown<br />

in Table 5. It w<strong>as</strong> found that a minimum core size (ca.<br />

3000 gmol -1 ) <strong>and</strong> a highly branched architecture are<br />

required <strong>for</strong> successful encapsulation <strong>of</strong> the guest<br />

molecules. For efficient encapsulation the degree <strong>of</strong><br />

alkylation should be about 45-50% <strong>and</strong> the alkyl chains<br />

should have a minimum length (>C10). For example, the<br />

conversion <strong>of</strong> the terminal groups in polyglylcerol, PG (21<br />

000 gmol -1 ) with a C16 aldehyde (PGa) containing one<br />

alkyl chain per diol unit results in an effective degree <strong>of</strong><br />

alkyl <strong>functional</strong>ization <strong>of</strong> 25% (Table 5) <strong>and</strong> a poor<br />

encapsulation capacity (0.15 congo red molecules). With<br />

the same PG core (21 000 gmol -1 ), the ketal <strong>functional</strong>ized<br />

carrier, PGb, with two alkyl chains per diol unit <strong>and</strong> 45%<br />

effective alkyl <strong>functional</strong>ization (Table 5) can encapsulate<br />

up to 13 congo red molecules. A higher degree <strong>of</strong> ketal<br />

<strong>functional</strong>ization (PGc: 55%, Table 5) indicates an<br />

optimal shell density <strong>of</strong> 45-50%. The exact determination<br />

<strong>of</strong> the encapsulation capacities <strong>for</strong> the amine b<strong>as</strong>ed<br />

poly(ethylene imine) carriers w<strong>as</strong> complicated because <strong>of</strong><br />

the hydrolytic sensitivity <strong>of</strong> the imine-bound peripheral<br />

shell in the PEI-b<strong>as</strong>ed systems, <strong>for</strong> instance in PEIb<br />

(Table 5). To avoid hydrolysis the dye w<strong>as</strong> directly<br />

encapsulated from the solid/organic solution interface.<br />

The complexation <strong>of</strong> an antitumor <strong>drug</strong>,<br />

mercaptopurine, several oligonucleotides, <strong>as</strong> well <strong>as</strong><br />

bacteriostatic silver compounds (<strong>for</strong> example, AgI salts<br />

<strong>and</strong> Ag 0 nanoparticles) (Haag et al, 2002) have been<br />

studied <strong>for</strong> the potential use <strong>of</strong> these carriers in <strong>drug</strong> <strong>and</strong><br />

gene delivery. Successful encapsulation w<strong>as</strong> observed in<br />

all c<strong>as</strong>es by the PEI-b<strong>as</strong>ed carriers while complexation<br />

w<strong>as</strong> not observed with the PG-b<strong>as</strong>ed carriers <strong>for</strong> the same<br />

guest molecules.<br />

The objective to develop a pH-sensitive carrier w<strong>as</strong><br />

tested using several buffer solutions <strong>for</strong> both the acetal-<br />

<strong>and</strong> imine-bound shells. The encapsulated congo red in the


Sideratou et al: Dendritic <strong>polymers</strong> <strong>for</strong> <strong>application</strong> <strong>as</strong> <strong>drug</strong> <strong>and</strong> gene delivery systems<br />

carrier PGb w<strong>as</strong> stable <strong>for</strong> several months at neutral <strong>and</strong><br />

b<strong>as</strong>ic pH values (pH>7). However, an immediate rele<strong>as</strong>e<br />

<strong>of</strong> the guest molecules occurred in acidic media (pH


Gene Therapy <strong>and</strong> Molecular Biology Vol 10, page 85<br />

Table 5. Encapsulation capacities <strong>of</strong> congo red in <strong>dendritic</strong> nanocarriers b<strong>as</strong>ed on PG <strong>and</strong> PEI. Reproduced from Krämer et<br />

al, 2002 with kind permission from Wiley-VCH.<br />

Structure<br />

Mn core<br />

[gmol -1 ]<br />

Shell<br />

Degree <strong>of</strong><br />

alkylation<br />

Encapsulation<br />

capacity<br />

PG 21 000 - - -<br />

PGa 21 000<br />

PGb 21 000<br />

PGc 21 000<br />

H 31C 15<br />

H 33C 16<br />

H 33C 16<br />

O<br />

O<br />

O<br />

C 16H 33<br />

C 16H 33<br />

25% 0.15±0.05<br />

45% 13±4<br />

55% 2±0.5<br />

PEI 25 000 - - 0.02±0.005<br />

PEIa 25 000<br />

PEIb 25 000<br />

H 31C 15<br />

H 11C 5<br />

In another recent study, the same <strong>as</strong> above<br />

polyglycerol exhibiting low toxicity <strong>and</strong> biocompatibility,<br />

w<strong>as</strong> <strong>functional</strong>ized <strong>for</strong> developing <strong>drug</strong> nanocarriers<br />

whose <strong>drug</strong> rele<strong>as</strong>e can be salt-triggered. The outmost<br />

objective <strong>of</strong> this hyperbranched polymer <strong>functional</strong>ization<br />

is, <strong>as</strong> it is the c<strong>as</strong>e with dendrimers, to simultaneously<br />

address the main issues encountered with <strong>drug</strong>s<br />

themselves, <strong>as</strong> well <strong>as</strong> with their carriers, i.e., water<br />

solubility, stability in biological milieu <strong>and</strong> targeting.<br />

O<br />

O<br />

c 5H 11<br />

85<br />

33% 0.6±0.1<br />

53% 0.2±0.05<br />

Figure 20. Time-dependence <strong>of</strong><br />

the shell cleavage <strong>of</strong> PEI-imine 4b<br />

on a KBr plate. Insert: The IR b<strong>and</strong><br />

<strong>of</strong> the imine peak at 1655 cm -1<br />

decre<strong>as</strong>es because <strong>of</strong> cleavage,<br />

while the N-H out- <strong>of</strong>- plane<br />

vibration at 1565 cm -1 incre<strong>as</strong>es.<br />

Reproduced from Krämer et al,<br />

2002 with kind permission from<br />

the authors <strong>and</strong> Wiley-VCH.<br />

In this context, PEGylated <strong>and</strong> PEGylated-Folate<br />

<strong>functional</strong> derivatives <strong>of</strong> polyglycerol, i.e. PG-PEG <strong>and</strong><br />

multi<strong>functional</strong> PG-PEG-Folate (Figure 21) were<br />

prepared <strong>and</strong> investigated <strong>as</strong> potential <strong>drug</strong> delivery<br />

systems (Tziveleka et al, 2006). For investigating this<br />

possibility, experiments have been per<strong>for</strong>med employing<br />

PY <strong>and</strong> Tamoxifen (TAM), (Figure 22), an anti-cancer<br />

hydrophobic <strong>drug</strong>, <strong>for</strong> studying their encapsulation <strong>and</strong><br />

rele<strong>as</strong>e properties.


Sideratou et al: Dendritic <strong>polymers</strong> <strong>for</strong> <strong>application</strong> <strong>as</strong> <strong>drug</strong> <strong>and</strong> gene delivery systems<br />

O<br />

O<br />

O<br />

*<br />

O<br />

H<br />

N PEG<br />

O<br />

H<br />

N<br />

C<br />

O<br />

O<br />

H<br />

N CH 2<br />

PG-PEG<br />

HOOC<br />

O<br />

N<br />

H<br />

PG-PEG-Folate<br />

CH 2 O CH 3<br />

n<br />

Figure 21. Functionalized PG-PEG <strong>and</strong> PG-PEG-Folate hyperbranched <strong>dendritic</strong> <strong>polymers</strong>.<br />

TAM<br />

B<strong>as</strong>ed on promising results on pyrene encapsulation<br />

<strong>and</strong> rele<strong>as</strong>e, the loading capacity <strong>and</strong> rele<strong>as</strong>e properties <strong>of</strong><br />

the polyglycerol derivatives <strong>for</strong> TAM were also<br />

investigated. TAM is a non-steroidal antiestrogen <strong>drug</strong>,<br />

which is widely used in the treatment <strong>and</strong> prevention <strong>of</strong><br />

bre<strong>as</strong>t cancer (Wiseman, 1994; Mocanu <strong>and</strong> Harrison,<br />

2004). Its encapsulation <strong>and</strong> rele<strong>as</strong>e w<strong>as</strong> comparatively<br />

investigated <strong>for</strong> the parent polyglycerol, PG, PG-PEG <strong>and</strong><br />

the multi<strong>functional</strong> PG-PEG-Folate derivative. The<br />

solubility <strong>of</strong> TAM in water w<strong>as</strong> found to be 1.9 x 10 -6 M.<br />

Its solubility, however, incre<strong>as</strong>es by a factor <strong>of</strong> 5 when<br />

solubilized in PG solution (Table 6). The solubility <strong>of</strong><br />

TAM is considerably further enhanced by a factor <strong>of</strong> 65 in<br />

the presence <strong>of</strong> PG-PEG. This significant solubility<br />

incre<strong>as</strong>e indicates that TAM is not only solubilized inside<br />

the hyperbranched interior but also inside the covalently<br />

bound poly(ethylene glycol) chains. This is in line with<br />

previous results employing PEGylated dendrimeric<br />

derivatives (Sideratou et al, 2001; Paleos et al., 2004) <strong>and</strong><br />

other hydrophobic <strong>drug</strong>s, establishing that the introduction<br />

<strong>of</strong> the poly(ethylene glycol) chains in general enhances the<br />

solubilization efficiency <strong>of</strong> <strong>dendritic</strong> <strong>polymers</strong>. It is<br />

interesting to note that <strong>for</strong> PG-PEG-Folate a ~1300-fold<br />

incre<strong>as</strong>e <strong>of</strong> TAM solubility w<strong>as</strong> observed.<br />

For triggering the rele<strong>as</strong>e <strong>of</strong> TAM from PG <strong>and</strong> its<br />

derivatives, incre<strong>as</strong>ing concentrations <strong>of</strong> NaCl solutions<br />

were used in analogy with the experiments with<br />

PEGylated dendrimeric derivatives (Paleos et al., 2004).<br />

O<br />

CH 3<br />

N<br />

CH 3<br />

86<br />

N<br />

H<br />

2<br />

N<br />

N<br />

OH<br />

N<br />

N<br />

H 2N<br />

3<br />

Figure 22. Chemical structure <strong>of</strong><br />

Tamoxifen (TAM).<br />

Solubilized molecules can be replaced by the metal ion<br />

<strong>and</strong> it is, there<strong>for</strong>e, necessary to investigate whether<br />

sodium cation complexation can cause premature rele<strong>as</strong>e<br />

<strong>of</strong> the <strong>drug</strong> in the extracellular fluids, be<strong>for</strong>e the<br />

nanocarrier loaded with the <strong>drug</strong> reaches the target cell.<br />

By titrating TAM loaded polymeric solutions with sodium<br />

chloride solution, the <strong>drug</strong> w<strong>as</strong> rele<strong>as</strong>ed <strong>and</strong> suspended in<br />

the bulk aqueous ph<strong>as</strong>e. In the presence <strong>of</strong> 0.142 M NaCl<br />

solution, 39 % <strong>and</strong> 24 % <strong>of</strong> the solubilized TAM in PG<br />

<strong>and</strong> PG-PEG (Figure 23) were rele<strong>as</strong>ed respectively in the<br />

aqueous media. Under the same conditions <strong>and</strong> in the<br />

presence <strong>of</strong> PG-PEG-Folate, only 6 % <strong>of</strong> the solubilized<br />

TAM w<strong>as</strong> rele<strong>as</strong>ed (Figure 23). It should, there<strong>for</strong>e, be<br />

noted that <strong>for</strong> the most elaborated derivative prepared in<br />

this study, i.e. the multi<strong>functional</strong> PG-PEG-Folate, most <strong>of</strong><br />

TAM remains encapsulated in the polymer <strong>and</strong> it is not<br />

rele<strong>as</strong>ed in the extracellular fluid at a concentration <strong>of</strong><br />

0.142 M NaCl solution. There<strong>for</strong>e, this nanocarrier can<br />

reach target cells appreciably loaded with TAM.<br />

These results have to be taken into consideration<br />

be<strong>for</strong>e PEGylated polyglycerols are to be applied <strong>as</strong> <strong>drug</strong><br />

delivery systems in experiments in vitro <strong>and</strong> in vivo.<br />

Sodium cation, in extracellular fluids can <strong>for</strong>m complexes<br />

with PEG chains affecting the overall rele<strong>as</strong>e pr<strong>of</strong>ile <strong>of</strong> the<br />

<strong>drug</strong>. It is there<strong>for</strong>e required, <strong>for</strong> designed PEGylated <strong>drug</strong><br />

delivery systems, to investigate whether <strong>drug</strong> rele<strong>as</strong>e<br />

occurs in the extracellular fluid <strong>and</strong> be<strong>for</strong>e entering the<br />

target cells.


Gene Therapy <strong>and</strong> Molecular Biology Vol 10, page 87<br />

Table 6. Solubility <strong>of</strong> Tamoxifen in PG, PG-PEG <strong>and</strong> PG-PEG-Folate aqueous solutions. Reproduced from Tziveleka et<br />

al, 2006 with kind permission from Wiley-VCH.<br />

Hyperbranched Polymer<br />

PG<br />

CPolymer [M]<br />

1.0 x 10<br />

CTamoxifen [M]<br />

-3<br />

9.6 x 10 -6<br />

PG-PEG 1.0 x 10 -3<br />

1.23 x 10 -4<br />

PG-PEG-Folate 1.0 x 10 -3<br />

2.48 x 10 -3<br />

Tamoxifen (10 -5 M)<br />

15<br />

10<br />

5<br />

1.0<br />

0.5<br />

PG-PEG-Folate<br />

PG-PEG<br />

PG<br />

0.0<br />

0.0 0.2 0.4 0.6<br />

NaCl (M)<br />

Figure 23. Rele<strong>as</strong>e <strong>of</strong> Tamoxifen from PG (�), PG-PEG (�) <strong>and</strong> PG-PEG-Folate (▲) aqueous solutions (1x 10 -3 M) <strong>as</strong> a function <strong>of</strong><br />

added NaCl solutions. Reproduced from Tziveleka et al, 2006 with kind permission from Wiley-VCH.<br />

IV. Gene carriers: from<br />

mon<strong>of</strong>unctional dendrimers to<br />

multi<strong>functional</strong> <strong>dendritic</strong> <strong>polymers</strong><br />

Numerous gene delivery systems b<strong>as</strong>ed on viral<br />

(Verma <strong>and</strong> Somia, 1997; Lotze <strong>and</strong> Kost, 2002) <strong>and</strong> nonviral<br />

(Li <strong>and</strong> Huang, 2000; Brown et al, 2001; Nishikawa<br />

<strong>and</strong> Huang, 2001) vectors have been developed <strong>and</strong> tested<br />

so far. Recently, several recurring issues about safety <strong>of</strong><br />

viral vectors have led to a careful reconsideration <strong>of</strong> their<br />

<strong>application</strong> in human clinical trials <strong>and</strong> prompted the use<br />

<strong>of</strong> synthetic systems. Moreover, viral vectors experience<br />

significant limitation in large-scale production <strong>and</strong> the<br />

available size <strong>of</strong> DNA they can carry. For addressing these<br />

problems, non-viral gene delivery systems such <strong>as</strong> cationic<br />

<strong>polymers</strong> or cationic lipids, liposomes or cationic<br />

dendrimers have attracted great attention <strong>for</strong> achieving a<br />

breakthrough in the development <strong>of</strong> an effective gene<br />

carrier. Specifically, synthetic non-viral carriers <strong>of</strong> genetic<br />

material present insignificant risks <strong>of</strong> genetic<br />

recombinations in the genome. Transfection with synthetic<br />

vectors, through appropriate tailoring, may exhibit low cell<br />

toxicity, high reproducibility <strong>and</strong> e<strong>as</strong>e <strong>of</strong> <strong>application</strong>.<br />

However, the currently known synthetic vectors present<br />

disadvantages, which are due to their generally low<br />

effectiveness compared to viral vectors <strong>and</strong> to their<br />

inability <strong>for</strong> targeted gene expression. For an effective<br />

gene expression, genes must be transferred in the interior<br />

<strong>of</strong> the nucleus <strong>of</strong> the cell <strong>and</strong> this procedure h<strong>as</strong> to<br />

87<br />

250<br />

225<br />

200<br />

175<br />

150<br />

circumvent a series <strong>of</strong> endo- <strong>and</strong> exo-cell obstacles.<br />

Among these obstacles are included cell targeting,<br />

effective transport <strong>of</strong> the carriers together with attached<br />

genetic material through cell membranes <strong>and</strong> the need <strong>of</strong><br />

carriers rele<strong>as</strong>e from the endosome following endocytosis.<br />

For the synthetic carriers that have been described in the<br />

literature, some or all <strong>of</strong> these difficulties have been<br />

addressed, without, however, completely achieving this<br />

objective yet.<br />

The strategy employed <strong>for</strong> the delivery <strong>of</strong> the<br />

conventional <strong>drug</strong>s through the preparation <strong>of</strong> <strong>functional</strong><br />

<strong>dendritic</strong> <strong>polymers</strong> can also be applied <strong>for</strong> the delivery <strong>of</strong><br />

genetic material. Specifically, the method involves<br />

molecular engineering <strong>of</strong> <strong>dendritic</strong> surface <strong>and</strong>/or the core<br />

aiming at obtaining <strong>polymers</strong>, which should be positively<br />

charged, biologically stable, non-toxic, exhibit targeting<br />

ability, <strong>and</strong> have the ability to be effectively transported<br />

through cell membranes. In addition, the dendrimer-DNA<br />

complex should have the possibility <strong>of</strong> being rele<strong>as</strong>ed<br />

from the endosome following endocytosis.<br />

Dendrimers <strong>and</strong> hyperbranched <strong>polymers</strong> are stable<br />

nanoparticles in contr<strong>as</strong>t to liposomes, which, <strong>as</strong> a rule, are<br />

unstable. Additionally, the dependence <strong>of</strong> dendrimers’ size<br />

on their generation can affect transfection efficiency.<br />

Several studies (Bo<strong>as</strong> <strong>and</strong> Heegaard, 2004) have reported<br />

the use <strong>of</strong> unmodified amino-terminated PAMAM or DAB<br />

dendrimers <strong>as</strong> non-viral gene transfer agents, enhancing<br />

the transfection <strong>of</strong> DNA into the cell nucleus. The exact<br />

structure <strong>of</strong> these host–guest binding motifs h<strong>as</strong> not been


Sideratou et al: Dendritic <strong>polymers</strong> <strong>for</strong> <strong>application</strong> <strong>as</strong> <strong>drug</strong> <strong>and</strong> gene delivery systems<br />

determined in detail, but it is presumably b<strong>as</strong>ed on<br />

acid-b<strong>as</strong>e interactions between the anionic phosphate<br />

moieties on the DNA backbone <strong>and</strong> the primary <strong>and</strong><br />

tertiary amines <strong>of</strong> the dendrimers, which are positively<br />

charged under physiological conditions. It h<strong>as</strong> also been<br />

found (Tang et al, 1996) that partially degraded (or<br />

fragmented) dendrimers, are more appropriate <strong>for</strong> gene<br />

delivery than the intact dendrimers <strong>and</strong> a fragmentation (or<br />

activation step) consisting <strong>of</strong> hydrolytic cleavage <strong>of</strong> the<br />

amide bonds is needed to enhance the transfection. These<br />

dendrimers are characterized <strong>as</strong> activated <strong>and</strong> are shown in<br />

Figure 24. It h<strong>as</strong> been concluded from several<br />

investigations that the spherical shape <strong>of</strong> dendrimers is not<br />

advantageous in gene delivery. This agrees with earlier<br />

work, where ‘fragmented’ PAMAM dendrimers show<br />

NH2 H2N O N<br />

H<br />

N<br />

N<br />

H<br />

O<br />

N<br />

O<br />

O<br />

H<br />

N O<br />

H<br />

N N<br />

N N<br />

N<br />

H<br />

O<br />

H<br />

N<br />

O<br />

O<br />

N<br />

N N<br />

H<br />

H<br />

O N<br />

O<br />

H<br />

N<br />

N O<br />

O<br />

N<br />

H<br />

N<br />

O<br />

N<br />

H<br />

H<br />

H<br />

NH H 2 2N H<br />

N<br />

H N<br />

O<br />

N H H<br />

O N<br />

NH2 H2N H<br />

N O O<br />

O<br />

N<br />

N<br />

O<br />

H<br />

H<br />

H<br />

N<br />

2N<br />

H NH2 NH<br />

N<br />

2<br />

N<br />

O<br />

N<br />

N H<br />

H<br />

O H<br />

N<br />

2N<br />

O<br />

H N<br />

N<br />

O<br />

H H<br />

N<br />

2N<br />

O<br />

N O<br />

H<br />

N<br />

H<br />

H<br />

O N<br />

N<br />

N NH2 H2N N<br />

O<br />

N O<br />

O<br />

NH2 H<br />

N O<br />

H<br />

H<br />

O<br />

N<br />

H<br />

N N<br />

H<br />

N N<br />

O<br />

O<br />

H N<br />

N H<br />

2N<br />

O<br />

H<br />

N<br />

H N<br />

NH<br />

2N O<br />

O<br />

2<br />

N<br />

H<br />

H N<br />

O N<br />

O<br />

H<br />

N<br />

H<br />

N<br />

N<br />

O<br />

H H<br />

2N<br />

N O<br />

N<br />

H O<br />

2N<br />

O O<br />

N<br />

H<br />

N<br />

N N<br />

H H<br />

H<br />

O N<br />

N<br />

N<br />

O<br />

O<br />

O<br />

N<br />

H O<br />

H<br />

O N<br />

2N H2N N N<br />

H N<br />

N H<br />

H<br />

H<br />

H<br />

N O<br />

O N<br />

N<br />

O<br />

N<br />

NH O O<br />

2 H H<br />

N<br />

2N H N N H NH2 H<br />

O NH2 N<br />

N H<br />

H<br />

O<br />

N<br />

O NH2 N N NH2 H<br />

H<br />

O N<br />

O<br />

N<br />

NH2 N NH2 H<br />

O<br />

N H<br />

H2N NH2 H2N Figure 24. Structural features <strong>of</strong> intact vs activated PAMAM Dendrimers.<br />

superior transfection efficacy in comparison with the<br />

spherical ‘intact’ dendrimers (Bo<strong>as</strong> <strong>and</strong> Heegaard, 2004).<br />

In comparison to the intact dendrimers, the partially<br />

degraded dendrimers have a more flexible structure (fewer<br />

amide bonds) <strong>and</strong> <strong>for</strong>m a more compact complex with<br />

DNA, which is preferable <strong>for</strong> gene delivery by the<br />

endocytotic pathway (Dennig <strong>and</strong> Duncan, 2002). In<br />

addition, it is generally found that the maximum<br />

transfection efficiency (Figure 25) is obtained with an<br />

excess <strong>of</strong> primary amines to DNA phosphates, yielding a<br />

positive net charge <strong>of</strong> the complexes The more flexible<br />

higher generation DAB dendrimers (containing no amides)<br />

are found to be too cytotoxic <strong>for</strong> use <strong>as</strong> non-viral gene<br />

vectors, however, the lower generation dendrimers are<br />

well-suited <strong>for</strong> gene delivery (Zinselmeyer et al, 2002).<br />

H 2N<br />

H 2N<br />

H 2N<br />

O<br />

N<br />

H<br />

HO<br />

H 2N<br />

HO<br />

N<br />

O<br />

N O<br />

H N<br />

O<br />

O<br />

N<br />

H<br />

N<br />

H<br />

N<br />

O<br />

H<br />

HO<br />

N O<br />

O<br />

HO<br />

H<br />

O<br />

N<br />

O<br />

O<br />

N<br />

H<br />

O<br />

N<br />

HO<br />

N<br />

O<br />

N<br />

N<br />

H<br />

HO<br />

N O<br />

O<br />

N<br />

H<br />

N<br />

H<br />

N<br />

O<br />

O<br />

HO<br />

O<br />

O<br />

N<br />

H H<br />

N N<br />

H N<br />

O<br />

H<br />

N<br />

N<br />

O<br />

O<br />

N<br />

N<br />

H<br />

O<br />

N H<br />

O<br />

N<br />

N<br />

H<br />

N<br />

O<br />

H N<br />

N<br />

O<br />

H N<br />

NH 2<br />

H 2N<br />

N H<br />

O<br />

N H<br />

O H<br />

N<br />

O<br />

O<br />

OH<br />

N<br />

N<br />

OH<br />

O<br />

O<br />

O<br />

N<br />

OH<br />

O<br />

N<br />

O<br />

N<br />

H<br />

N<br />

H<br />

N<br />

O<br />

Figure 25. Transfection efficacy <strong>of</strong> poly(propylene imine) dendrimers <strong>of</strong> various generations (G1-G5) relative to N-[1-(2,3dioleoyloxy)propyl]-N,N,N-trimethylammonium<br />

methylsulphate (DOTAP) in the A431 cell line studied in 96-well plates. DAB G1 <strong>and</strong><br />

DAB G2 were dosed at a dendrimer: DNA ratio <strong>of</strong> 5:1, <strong>and</strong> a DNA dose <strong>of</strong> 20 µg per well w<strong>as</strong> used. DAB G3 w<strong>as</strong> also dosed at a<br />

dendrimer: DNA ratio <strong>of</strong> 5:1, but a DNA dose <strong>of</strong> 5 µg per well DNA w<strong>as</strong> used; DAB G4 <strong>and</strong> DAB G5 were dosed at a dendrimer: DNA<br />

ratio <strong>of</strong> 3:1 <strong>and</strong> a DNA dose <strong>of</strong> 20 µg per well. DOTAP w<strong>as</strong> dosed at a DOTAP:DNA ratio <strong>of</strong> 5:1, <strong>and</strong> a DNA dose <strong>of</strong> 20 µg per well.<br />

Data represented <strong>as</strong> the mean ±SD <strong>of</strong> at le<strong>as</strong>t 3 replicates. Reproduced from Zinselmeyer et al., 2002 with kind permission from<br />

Springer.<br />

88<br />

N<br />

H<br />

N<br />

O<br />

OH<br />

H<br />

N<br />

O<br />

O<br />

OH<br />

H<br />

O N<br />

NH 2<br />

N<br />

O<br />

N<br />

N<br />

H<br />

H<br />

O N<br />

O N<br />

H<br />

NH 2<br />

O<br />

NH 2<br />

NH 2


In this connection, PAMAM-OH dendrimers, which<br />

are structurally similar to PAMAM, except that surface<br />

amino groups have been replaced by hydroxyl groups (Lee<br />

et al, 2003) have been prepared. Absence <strong>of</strong> surface<br />

primary amino groups in PAMAM-OH renders this<br />

polymer nearly neutral, which might be advantageous in<br />

terms <strong>of</strong> cytotoxicity. However, PAMAM-OH is nearly<br />

unable to <strong>for</strong>m DNA polyplex because <strong>of</strong> the low pKa <strong>of</strong><br />

interior tertiary amino groups (Tomalia et al, 1985). For<br />

this purpose, the synthesis <strong>and</strong> characterization <strong>of</strong><br />

internally quaternized PAMAM-OH h<strong>as</strong> been reported, <strong>as</strong><br />

shown in the Figure 26. The internal quaternary<br />

ammonium groups <strong>of</strong> QPAMAM-OH will interact with<br />

negatively charged DNA, while preserving a neutral<br />

polymer <strong>and</strong>/or a polyplex surface.<br />

It w<strong>as</strong> found that QPAMAM-OH/DNA polyplexes<br />

were round-shaped with the more compact <strong>and</strong> small<br />

OH<br />

HO<br />

HO<br />

OH<br />

H H<br />

H H<br />

N HO<br />

N<br />

N N<br />

O<br />

OH<br />

O O<br />

O<br />

N H<br />

N<br />

H OH<br />

O<br />

N<br />

N<br />

N<br />

HO<br />

H<br />

O<br />

N H<br />

H<br />

H N<br />

O<br />

H N<br />

O N<br />

HO HO N<br />

N H O<br />

O N<br />

H<br />

O<br />

N<br />

O<br />

H<br />

O<br />

N<br />

N<br />

N OH<br />

O N<br />

N<br />

H<br />

H N<br />

N<br />

O<br />

H N<br />

O H<br />

O N<br />

N<br />

O<br />

O<br />

H<br />

HO O N<br />

H<br />

H<br />

O OH<br />

H<br />

N<br />

H<br />

H<br />

N<br />

N<br />

N<br />

N N N<br />

N<br />

H<br />

HO O<br />

O<br />

N<br />

O N<br />

N O<br />

N H<br />

O<br />

N<br />

H<br />

H<br />

H N O<br />

O N<br />

N<br />

O<br />

H<br />

N<br />

O<br />

HO<br />

~<br />

~<br />

N<br />

N<br />

O H<br />

N<br />

~<br />

PAMAM-OH<br />

Figure 26. Quaternization <strong>of</strong> PAMAM-OH dendrimer.<br />

Gene Therapy <strong>and</strong> Molecular Biology Vol 10, page 89<br />

OH<br />

CH 3I<br />

2M NaCl dialysis<br />

89<br />

particles <strong>for</strong>med <strong>as</strong> the charge ratio incre<strong>as</strong>ed. Although<br />

the transfection efficiency <strong>of</strong> <strong>functional</strong> QPAMAM-OH<br />

derivatives w<strong>as</strong> lower by one order <strong>of</strong> magnitude than<br />

parent PAMAM (Figure 27), the QPAMAM-OH/DNA<br />

particles exhibited reduced cytoxicity compared with<br />

PAMAM <strong>and</strong> PEI. Shielding <strong>of</strong> the interior positive<br />

charges by surface hydroxyl may be possibly the re<strong>as</strong>on<br />

<strong>for</strong> this behaviour.<br />

As already mentioned, one <strong>of</strong> the major problems<br />

with non-viral gene delivery systems is their lower<br />

efficiency compared to viral vectors. Many methods have<br />

tried to overcome such problems, including linking or<br />

conjugating cell-targeting lig<strong>and</strong>s or cell penetrating<br />

peptides <strong>as</strong> efficient vectors <strong>for</strong> intracellular delivery <strong>of</strong><br />

bioactive molecules (Futaki, 2005). Arginine-rich peptides<br />

have exhibited enhanced translocational ability, which w<strong>as</strong><br />

N<br />

N<br />

N<br />

O<br />

N H<br />

N<br />

N<br />

+<br />

OH<br />

N<br />

N<br />

H<br />

O<br />

H<br />

H N<br />

HO N<br />

N H O<br />

O<br />

N<br />

O N<br />

H N<br />

O<br />

O<br />

N<br />

H<br />

H<br />

N<br />

H N<br />

H<br />

N<br />

O<br />

O<br />

O<br />

+<br />

HO<br />

OH<br />

H<br />

H<br />

N N<br />

O O<br />

N<br />

HO O<br />

N<br />

H N<br />

H<br />

N<br />

HO<br />

O<br />

+<br />

HO<br />

N H<br />

H<br />

O N<br />

HO<br />

O N<br />

H<br />

O<br />

H<br />

O<br />

N<br />

N<br />

N OH<br />

H<br />

N<br />

H<br />

O<br />

N<br />

O<br />

H<br />

O N<br />

N<br />

H<br />

HO O<br />

H<br />

N<br />

H<br />

N N N<br />

O<br />

N O<br />

N<br />

O<br />

H<br />

+<br />

N<br />

O<br />

N<br />

H<br />

H<br />

N<br />

O<br />

OH<br />

OH<br />

+<br />

HO<br />

OH<br />

H H<br />

N<br />

N<br />

O<br />

O<br />

N +<br />

HO<br />

N H H OH<br />

O N<br />

O<br />

Cl- Cl- Cl -<br />

Cl- Cl -<br />

Cl -<br />

~<br />

~ ~<br />

QPAMAM-OH<br />

Figure 27. Transfection efficiency<br />

<strong>of</strong> PEI, PAMAM <strong>and</strong> QPAMAM-<br />

OH dendrimers with 52, 78 <strong>and</strong><br />

97% quaternization degrees in<br />

293T cell at charge ratio (+/-) = 6.<br />

Data are expressed <strong>as</strong> a RLU<br />

(Relative light unit) per µg protein.<br />

Reproduced from Lee et al., 2003<br />

with kind permission from<br />

American Chemical Society.


Sideratou et al: Dendritic <strong>polymers</strong> <strong>for</strong> <strong>application</strong> <strong>as</strong> <strong>drug</strong> <strong>and</strong> gene delivery systems<br />

attributed to the presence <strong>of</strong> the guanidinium moiety<br />

(Vives et al, 1997; Rothbard et al, 2000; Wender et al,<br />

2000; Futaki et al, 2001; Kirschberg et al, 2003), a<br />

structural feature <strong>of</strong> L-arginine, which is capable <strong>of</strong><br />

hydrogen-bonding <strong>and</strong> electrostatic interactions (Onda et<br />

al, 1996) with phosphate or carboxylic group located at the<br />

surface <strong>of</strong> cell membranes. In a recent study (Choi et al,<br />

2004), it h<strong>as</strong> been reported a new three dimensional<br />

artificial protein, L-arginine-grafted-PAMAM dendrimer<br />

(PAMAM-Arg), <strong>as</strong> a novel non-viral gene delivery vector,<br />

which consisted <strong>of</strong> a PAMAM scaffold the surface <strong>of</strong><br />

which is covered with L-arginine residues (Figure 28).<br />

By the introduction <strong>of</strong> arginine moieties on the<br />

PAMAM surface, gene delivery efficiency is greatly<br />

incre<strong>as</strong>ed in comparison to that <strong>of</strong> starting PAMAM<br />

(Figure 29). It w<strong>as</strong> comparable to PEI <strong>for</strong> HepG2 <strong>and</strong><br />

primary rat v<strong>as</strong>cular smooth muscle cells, <strong>and</strong> w<strong>as</strong> more<br />

efficient in the c<strong>as</strong>e <strong>of</strong> Neuro 2A cells than PEI <strong>and</strong><br />

Lip<strong>of</strong>ectamine. As a control, L-lysine grafted-PAMAM<br />

(PAMAM-Lys) w<strong>as</strong> prepared <strong>and</strong> tested showing slightly<br />

better transfection efficiency in HepG2 cells than that <strong>of</strong><br />

b<strong>as</strong>ic PAMAM, while incre<strong>as</strong>ed effect w<strong>as</strong> not observed in<br />

primary cells. In conclusion, a polyvalent arginine<br />

<strong>functional</strong>ized PAMAM is e<strong>as</strong>ily prepared, which<br />

possesses outst<strong>and</strong>ing transfection efficiency with<br />

relatively low cytotoxicity. These properties would make<br />

PAMAM-Arg a promising non-viral vector <strong>for</strong> both in<br />

vitro <strong>and</strong> in vivo use. Potentially, PAMAM-Arg could be<br />

used <strong>as</strong> a <strong>dendritic</strong> nanocarrier encapsulating or<br />

incorporating small molecules, peptides, proteins,<br />

oligonucleotides, <strong>and</strong> pl<strong>as</strong>mids that are deficient in cellpenetrating.<br />

The structural features set <strong>for</strong>th <strong>for</strong> a successful<br />

<strong>dendritic</strong> gene vector are possibly satisfied in a PEI-<br />

PAMAM<br />

NH2 64<br />

HOBt, HBTU<br />

Fmoc-Arg(pbf)-OH<br />

in DMF<br />

30% piperidine<br />

in DMF(v/v)<br />

TFA/triisopropylsilane/H 2O<br />

(95:2.5:2.5, v/v)<br />

Figure 28. Introduction <strong>of</strong> L-Arginine at the external surface <strong>of</strong> PAMAM.<br />

poly(ethylene glycol)-folate (PEI-PEG-FOL) derivative<br />

which w<strong>as</strong> recently synthesized (Figure 30) <strong>and</strong> its<br />

efficiency <strong>as</strong> gene carrier w<strong>as</strong> tested (Kim et al, 2005a).<br />

This multi<strong>functional</strong>ization <strong>of</strong> PEI aimed at the<br />

preparation <strong>of</strong> a nanocarrier that would simultaneously<br />

combine protective <strong>and</strong> targeting properties. In this study,<br />

the PEI-PEG-FOL nanocarrier, w<strong>as</strong> tested <strong>for</strong> its capacity<br />

to complex with pl<strong>as</strong>mid DNA <strong>and</strong> be transfected to folate<br />

receptor overexpressing cells that produce exogenous<br />

green fluorescent protein, GFP, (GFP-KB cells). A special<br />

pl<strong>as</strong>mid system (pSUPER-siGFP) w<strong>as</strong> prepared, that<br />

carried a siRNA-expressing sequence, used <strong>for</strong> inhibiting<br />

the expression <strong>of</strong> exogenous GFP in mammalian cells. The<br />

pSUPER-siGFP/PEI-PEG-FOL complexes inhibited GFP<br />

expression <strong>of</strong> KB cells more effectively than pSUPERsiGFP/PEI<br />

(Figure 31). These results indicated that folate<br />

receptor-mediated endocytotosis is a major pathway in the<br />

process <strong>of</strong> cellular uptake.<br />

V. Concluding remarks<br />

Molecular engineering <strong>of</strong> b<strong>as</strong>ic dendrimeric <strong>and</strong><br />

hyperbranched polymer scaffolds resulted in the<br />

preparation <strong>of</strong> nanocarriers <strong>of</strong> low toxicity, with<br />

significant encapsulating capacity, specificity to certain<br />

biological cells <strong>and</strong> transport ability through their<br />

membranes. Depending on the degree <strong>and</strong> type <strong>of</strong><br />

<strong>functional</strong>ization, products that fulfill one or more <strong>of</strong> the<br />

above characteristics were prepared. The exhibition <strong>of</strong><br />

these properties is further induced by the so-called<br />

polyvalent interactions attributed to the placement <strong>of</strong> the<br />

<strong>functional</strong> groups in close proximity on the external<br />

surface <strong>of</strong> the <strong>dendritic</strong> <strong>polymers</strong>.<br />

H O<br />

N<br />

O N<br />

O<br />

N<br />

H<br />

N<br />

N<br />

N<br />

H<br />

O H<br />

O<br />

N<br />

N<br />

H O<br />

H<br />

N N<br />

N<br />

N<br />

N O<br />

H<br />

H<br />

N<br />

H<br />

O<br />

H<br />

O N<br />

HN<br />

N O<br />

N<br />

O<br />

NH<br />

N H<br />

HN<br />

H<br />

NH2 H O HN<br />

H2N N<br />

+ H2N NH2 H2N NH2 +<br />

H2N NH<br />

HN<br />

HN<br />

H H<br />

N N<br />

N<br />

H<br />

O O O N H<br />

O<br />

N<br />

H NH2<br />

N N<br />

N H N<br />

H<br />

H<br />

O<br />

N<br />

O<br />

HN +<br />

O<br />

NH2 H2N NH2 O<br />

N<br />

HN + NH2 H2N O<br />

H2N + HN NH2 NH2 O<br />

NH + H2N<br />

+ H2N NH2 NH<br />

NH<br />

2<br />

NHH2N<br />

O<br />

HN<br />

+ H2N<br />

+<br />

+ H2N<br />

NH2 H2N NH2 NH NH<br />

2<br />

NH<br />

N<br />

H2N H O<br />

O<br />

NH2 O<br />

NH<br />

O<br />

2<br />

NH<br />

+ NH2 2<br />

NH2 H H<br />

N N<br />

+ H2N NH2 O<br />

NH O O<br />

NH<br />

N<br />

N<br />

H<br />

O<br />

O<br />

H<br />

H N<br />

H2N N N<br />

H<br />

O<br />

N<br />

H<br />

N<br />

+H2N NH2 O<br />

O N<br />

NH<br />

N O<br />

H<br />

H2N NH<br />

N<br />

O O<br />

H<br />

N<br />

N<br />

H<br />

O<br />

O<br />

H2N N<br />

N N<br />

H<br />

+ NH N<br />

H<br />

H2N O<br />

O H<br />

N<br />

N O<br />

H<br />

H2N O<br />

N<br />

H H2N H<br />

H N N<br />

N<br />

2N<br />

H<br />

+ H2N O H<br />

O<br />

N<br />

H2N NH O NH<br />

+ H2N<br />

N<br />

90<br />

NH 2<br />

~<br />

~<br />

~<br />

PAMAM-Arg


Gene Therapy <strong>and</strong> Molecular Biology Vol 10, page 91<br />

Figure 29. Transfection efficiency <strong>for</strong> Neuro 2A cell lines (1x10 5 cells/well). DNA amount per well w<strong>as</strong> 0.2 µg (black) <strong>and</strong> 1.0 µg<br />

(gray). Values in parentheses are representing the charge ratio (N/P) <strong>of</strong> dendrimer/pl<strong>as</strong>mid DNA complexes. The lucifer<strong>as</strong>e expression<br />

mediated by reagents w<strong>as</strong> me<strong>as</strong>ured at each optimum condition. Results are expressed <strong>as</strong> mean ±SD <strong>of</strong> 3 replicates. Reproduced from<br />

Choi et al, 2004 with kind permission from Elsevier.<br />

H<br />

N<br />

N<br />

H<br />

Figure 30. Chemical structure <strong>of</strong> PEI-PEG-FOL<br />

O<br />

PEG<br />

H<br />

N<br />

C<br />

O<br />

HOOC<br />

O<br />

N<br />

H<br />

PEI-PEG-FOL<br />

91<br />

N<br />

H<br />

N<br />

N<br />

OH<br />

N<br />

N<br />

H 2N<br />

m<br />

Figure 31. GFP gene inhibition<br />

efficiency <strong>of</strong> pSUPER-siGFP/PEI<br />

<strong>and</strong> pSUPER-siGFP/PEI-PEG-<br />

FOL complexes <strong>as</strong> a function <strong>of</strong><br />

N/P ratio against GFP-KB cells.<br />

Reproduced from Kim et al, 2005a<br />

with kind permission from<br />

Elsevier.


Sideratou et al: Dendritic <strong>polymers</strong> <strong>for</strong> <strong>application</strong> <strong>as</strong> <strong>drug</strong> <strong>and</strong> gene delivery systems<br />

References<br />

Antony AC (2004) Folate receptors: reflections on a personal<br />

odyssey <strong>and</strong> a perspective on unfolding truth. Adv Drug<br />

Delivery Rev 56, 1059-1066.<br />

Aronov O, Horowitz AT, Gabizon A <strong>and</strong> Gibson D (2003)<br />

Folate-targeted PEG <strong>as</strong> a potential carrier <strong>for</strong> carboplatin<br />

analogs. Synthesis <strong>and</strong> in vitro studies. Bioconjugate Chem<br />

14, 563-574.<br />

Ashwell G <strong>and</strong> Har<strong>for</strong>d J (1982) Carbohydrate-specific receptors<br />

<strong>of</strong> the liver. Annu Rev Biochem 51, 531-554.<br />

Barth RF, Adams DM, Soloway AH, Alam F <strong>and</strong> Darby MV<br />

(1994) Borated starburst dendrimers-monoclonal antibody<br />

immunoconjugates: evaluation <strong>as</strong> a potential delivery system<br />

<strong>for</strong> neutron capture therapy. Bioconjugate Chem 5, 58-66.<br />

Beezer AE, King ASH, Martin IK, Mitchel JC, Twyman LJ <strong>and</strong><br />

Wain CF (2003) Dendrimers <strong>as</strong> potential <strong>drug</strong> carriers;<br />

encapsulation <strong>of</strong> acidic hydrophobes within water soluble<br />

PAMAM derivatives. Tetrahedron 59, 3873-3880.<br />

Bhadra D, Yadav AK, Bhadra, S <strong>and</strong> Jain NK (2005)<br />

Glycodendrimeric nanoparticulate carriers <strong>of</strong> primaquine<br />

phosphate <strong>for</strong> liver targeting. Int J Pharm 295, 221-233.<br />

Bielinska AU, Chen CL, Johnson J <strong>and</strong> Baker JR, Jr (1999) DNA<br />

complexing with polyamidoamine dendrimers: Implications<br />

<strong>for</strong> transfection. Bioconjugate Chem 10, 843-850.<br />

Bo<strong>as</strong> U <strong>and</strong> Heegaard PMH (2004) Dendrimers in <strong>drug</strong> research.<br />

Chem Soc Rev 33, 43-63 <strong>and</strong> references cited therein.<br />

Bogan MJ <strong>and</strong> Agnes GR (2002) Poly(ethylene glycol) doubly<br />

<strong>and</strong> singly cationized by different alkali metal ions: Relative<br />

cation affinities <strong>and</strong> cation-dependent resolution in a<br />

quadrupole ion trap m<strong>as</strong>s spectrometer. J Am Soc M<strong>as</strong>s<br />

Spectr 13, 177-186 <strong>and</strong> references cited therein.<br />

Boomer JA, Inerowicz HD, Zhang ZY, Bergstr<strong>and</strong> N, Edwards<br />

K, Kim JM <strong>and</strong> Thompson DH (2003) Acid-triggered rele<strong>as</strong>e<br />

from sterically stabilized fusogenic liposomes via a<br />

hydrolytic dePEGylation strategy. Langmuir 19, 6408-6415<br />

<strong>and</strong> references cited therein.<br />

Bosman AW, Janssen HM <strong>and</strong> Meijer EW (1999) About<br />

Dendrimers: Structure, Physical Properties, <strong>and</strong> Applications.<br />

Chem Rev 99, 1665-1688.<br />

Brown MD, Schätzlein AG <strong>and</strong> Uchegbu IF (2001) Gene<br />

delivery with synthetic (non viral) carriers. Int J Pharm 229,<br />

1-21.<br />

Choi JS, Nam K, Park J, Kim JB, Lee JK <strong>and</strong> Park J (2004)<br />

Enhanced transfection efficiency <strong>of</strong> PAMAM dendrimer by<br />

surface modification with L-arginine. J Controlled Rele<strong>as</strong>e<br />

99, 445-456.<br />

Cooper GM (1997) The Cell Surface, in: The Cell. A Molecular<br />

Approach, ASM Press, W<strong>as</strong>hington DC, 477.<br />

Cros<strong>as</strong>so P, Ceruti M, Brusa P, Arpicco S, Dosio F <strong>and</strong> Cattel L<br />

(2000) Preparation, characterization <strong>and</strong> properties <strong>of</strong><br />

sterically stabilized paclitaxel-containing liposomes. J<br />

Controlled Rele<strong>as</strong>e 63, 19-30.<br />

Dauty E, Remy JS, Zuber G <strong>and</strong> Behr JP (2002) Intracellular<br />

delivery <strong>of</strong> nanometric DNA particles via the folate receptor.<br />

Bioconjugate Chem 13, 831-839.<br />

De Jes-s OLP, Ihre HR, Gagne L, Fréchet JMJ <strong>and</strong> Szoka FC, Jr<br />

(2002) Polyester <strong>dendritic</strong> systems <strong>for</strong> <strong>drug</strong> delivery<br />

<strong>application</strong>s: In vitro <strong>and</strong> in vivo evaluation. Bioconjugate<br />

Chem 13, 453-461.<br />

Dennig J <strong>and</strong> Duncan E (2002) Gene transfer into eukaryotic<br />

cells using activated polyamidoamine dendrimers. Rev Mol<br />

Biotechnol 90, 339-347.<br />

Dubé D, Francis M, Leroux JC <strong>and</strong> Winnik FM (2002)<br />

Preparation <strong>and</strong> tumor cell uptake <strong>of</strong> poly(Nisopropylacrylamide)<br />

folate conjugates. Bioconjugate Chem<br />

13, 685-692.<br />

92<br />

Fréchet JMJ <strong>and</strong> Tomalia DA (2001) Dendrimers <strong>and</strong> Other<br />

Dendritic Polymers. J. Wiley & Sons, Ltd., Chichester, UK<br />

<strong>and</strong> references cited therein.<br />

Frey H <strong>and</strong> Haag R (2002) Dendritic polyglycerol: a new<br />

versatile biocompatible material. Rev Mol Biotechnol 90,<br />

257-267.<br />

Futaki S (2005) Membrane-permeable arginine-rich peptides <strong>and</strong><br />

the translocation mechanisms. Adv Drug Delivery Rev 547-<br />

558.<br />

Futaki S, Suzuki T, Oh<strong>as</strong>hi W, Yagami T, Tanaka S, Ueda K <strong>and</strong><br />

Sugiura Y (2001) Arginine-rich peptides. An abundant<br />

source <strong>of</strong> membrane-permeable peptides having potential <strong>as</strong><br />

carriers <strong>for</strong> intracellular protein delivery. J Biol Chem 276,<br />

5836-5840.<br />

Gabizon A, Shmeeda H, Horowitz AT <strong>and</strong> Zalipsky S (2004)<br />

Tumor cell targeting <strong>of</strong> liposome-entrapped <strong>drug</strong>s with<br />

phospholipid-anchored folic acid-PEG conjugates. Drug<br />

Delivery Rev 56, 1177-1192.<br />

Gillies ER <strong>and</strong> Fréchet JMJ (2005) Dendrimers <strong>and</strong> <strong>dendritic</strong><br />

<strong>polymers</strong> in <strong>drug</strong> delivery. Drug Discovery Today 10, 35-<br />

43.<br />

Guyton AC <strong>and</strong> Hall JE (2000) The body fluid compartments:<br />

Extracellular <strong>and</strong> intracellular fluids; Interstitial fluid <strong>and</strong><br />

edema, in: Textbook <strong>of</strong> Medical Physiology. W B Saunders<br />

Company, Philadelphia, 264.<br />

Haag R (2001) Dendrimers <strong>and</strong> hyperbranched <strong>polymers</strong> <strong>as</strong> highloading<br />

supports <strong>for</strong> organic synthesis. Chem Eur J 7, 327-<br />

335.<br />

Haag R, Krämer M, Stumbé JF, Krause S, Komp A <strong>and</strong><br />

Prokhorova S (2002) Dendritic <strong>polymers</strong> <strong>as</strong> multi<strong>functional</strong><br />

supports <strong>and</strong> nanocarriers <strong>for</strong> <strong>drug</strong>s. Polym Prepr (Am<br />

Chem Soc, Div Polym Chem 43, 328.<br />

Hirst SC, Tecilla P, Geib SJ, Fan E <strong>and</strong> Hamilton AD (1992)<br />

Molecular Recognition <strong>of</strong> Phosphate-esters-A Balance <strong>of</strong><br />

Hydrogen-bonding <strong>and</strong> roton-Transfer Interactions. Israel J<br />

Chem 32, 105-111.<br />

H<strong>of</strong>l<strong>and</strong> HEJ, M<strong>as</strong>son C, Iginla S, Osetinsky I, Reddy JA,<br />

Leamon CP, Scherman D, Bessodes M <strong>and</strong> Wils P (2002)<br />

Folate-targeted gene transfer in vivo. Mol Ther 5, 739-744.<br />

Inoue K (2000) Functional dendrimers, hyperbranched <strong>and</strong> star<br />

<strong>polymers</strong>. Prog Polym Sci 25, 453-571.<br />

Ishiwata H, Sato SB, Vertut-Doi A, Ham<strong>as</strong>hima Y <strong>and</strong> Miyajima<br />

K (1997) Cholesterol derivative <strong>of</strong> poly(ethylene glycol)<br />

inhibits clathrin-independent, but not clathrin-dependent<br />

endocytosis. Biochim Biophys Acta 1359, 123-135.<br />

Kim SH, Jeong JH, Cho KC, Kim SW <strong>and</strong> Park TG (2005a)<br />

Target-specific gene silencing by siRNA pl<strong>as</strong>mid DNA<br />

complexed with folate-modified poly(ethylenimine). J<br />

Controlled Rele<strong>as</strong>e 104, 223-232.<br />

Kim SH, Jeong JH, Joe CO <strong>and</strong> Park TG (2005b) Folate receptor<br />

mediated intracellular protein delivery using PLL-PEG-FOL<br />

conjugate. J Controlled Rele<strong>as</strong>e 103, 625-634.<br />

Kirschberg TA, VanDeusen CL, Rothbard JB, Yang M <strong>and</strong><br />

Wender PA (2003) Arginine-b<strong>as</strong>ed molecular transporters:<br />

The synthesis <strong>and</strong> chemical evaluation <strong>of</strong> rele<strong>as</strong>able taxoltransporter<br />

conjugates. Org Lett 5, 3459-3462.<br />

Kitov PI <strong>and</strong> Bundle DR (2003) On the nature <strong>of</strong> the<br />

multivalency effect: A thermodynamic model. J Am Chem<br />

Soc 125, 16271-16284.<br />

Kojima C, Kono K, Maruyama K <strong>and</strong> Takagishi T (2000)<br />

Synthesis <strong>of</strong> polyamidoamine dendrimers having<br />

poly(ethylene glycol) grafts <strong>and</strong> their ability to encapsulate<br />

anticancer <strong>drug</strong>s. Bioconjugate Chem 11, 910-917.<br />

Konda SD, Aref M, Wang S, Brechbiel M <strong>and</strong> Wiener EC (2001)<br />

Specific targeting <strong>of</strong> folate-dendrimer MRI contr<strong>as</strong>t agents to<br />

the high affinity folate receptor expressed in ovarian tumor<br />

xenografts. Magn Reson Mater Phys Biol Med 12, 104-<br />

113.


Kono K, Liu MJ <strong>and</strong> Fréchet JMJ (1999) <strong>Design</strong> <strong>of</strong> <strong>dendritic</strong><br />

macromolecules containing folate or methotrexate residues.<br />

Bioconjugate Chem 10, 1115-1121.<br />

Krämer M, Stumbé J-F, Türk H, Krause S, Komp A, Delineau L,<br />

Prokhorova S, Kautz H <strong>and</strong> Haag R (2002) pH-Responsive<br />

molecular nanocarriers b<strong>as</strong>ed on <strong>dendritic</strong> core-shell<br />

architectures. Angew Chem, Int Ed 41,4252-4256.<br />

Lakowicz JR (1983) in: Principles <strong>of</strong> Fluorescence Spectroscopy.<br />

Plenum Press, New York <strong>and</strong> London, 8.<br />

L<strong>as</strong>ic DD <strong>and</strong> Needham D (1995) The ''Stealth'' liposome: A<br />

prototypical biomaterial. Chem Rev 95, 2601-2628 <strong>and</strong><br />

references cited therein.<br />

Lee RJ <strong>and</strong> Low PS (1995) Folate-mediated tumor-cell targeting<br />

<strong>of</strong> liposome-entrapped doxorubicin in vitro. Biochim<br />

Biophys Acta 1233, 134-144.<br />

Lee RJ <strong>and</strong> Huang L (1996) Folate-targeted, anionic liposomeentrapped<br />

polylysine-condensed DNA <strong>for</strong> tumor cell-specific<br />

gene transfer. J Biol Chem 271, 8481-8487.<br />

Lee JH, Lim YB, Choi JS, Lee Y, Kim TI, Kim HJ, Yoon JK,<br />

Kim K <strong>and</strong> Park JS (2003) Polyplexes <strong>as</strong>sembled with<br />

internally quaternized PAMAM-OH dendrimer <strong>and</strong> pl<strong>as</strong>mid<br />

DNA have a neutral surface <strong>and</strong> gene delivery potency.<br />

Bioconjugate Chem 14, 1214-1221.<br />

Li S <strong>and</strong> Huang L (2000) Nonviral gene therapy: promises <strong>and</strong><br />

challenges. Gene Ther 7, 31-34.<br />

Licciardi M, Tang Y, Billingham NC <strong>and</strong> Armes SP (2005)<br />

Synthesis <strong>of</strong> novel folic acid-<strong>functional</strong>ized biocompatible<br />

block co<strong>polymers</strong> by atom transfer radical polymerization <strong>for</strong><br />

gene delivery <strong>and</strong> encapsulation <strong>of</strong> hydrophobic <strong>drug</strong>s.<br />

Biomacromolecules 6, 1085-1096.<br />

Liu MJ <strong>and</strong> Fréchet JMJ (1999) <strong>Design</strong>ing dendrimers <strong>for</strong> <strong>drug</strong><br />

delivery. Pharm Sci Technol Today 2, 393-401.<br />

Liu MJ, Kono K <strong>and</strong> Fréchet JMJ (1999) Water-soluble<br />

dendrimer-poly(ethylene glycol) starlike conjugates <strong>as</strong><br />

potential <strong>drug</strong> carriers. J Polym Sci, Part A: Polym Chem<br />

37, 3492-3503.<br />

Liu MJ, Kono K <strong>and</strong> Fréchet JMJ (2000) Water-soluble <strong>dendritic</strong><br />

unimolecular micelles: Their potential <strong>as</strong> <strong>drug</strong> delivery<br />

agents. J Controlled Rele<strong>as</strong>e 65, 121-131.<br />

Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D <strong>and</strong><br />

Darnell J (2000) Integrating Cells into Tissues, in: Lodish I,<br />

Harvey F. (Eds). Molecular Cell Biology. Freeman WH <strong>and</strong><br />

Company, New York, 968.<br />

Lotze MT <strong>and</strong> Kost TA (2002) Viruses <strong>as</strong> gene delivery vectors:<br />

Application to gene function, target validation, <strong>and</strong> <strong>as</strong>say<br />

development. Cancer Gene Ther 9, 692-699.<br />

Luo D, Haverstick K, Belcheva N, Han E <strong>and</strong> Saltzman WM<br />

(2002) Poly(ethylene glycol)-conjugated PAMAM dendrimer<br />

<strong>for</strong> biocompatible, high-efficiency DNA delivery.<br />

Macromolecules 35, 3456-3462.<br />

Malik N, Wiwattanapatapee R, Klopsch R, Lorenz K, Frey H,<br />

Weener JW, Meijer EW, Paulus W <strong>and</strong> Duncan R (2000)<br />

Dendrimers: Relationship between structure <strong>and</strong><br />

biocompatibility in vitro, <strong>and</strong> preliminary studies on the<br />

biodistribution <strong>of</strong> 125 I-labelled polyamidoamine dendrimers<br />

in vivo. J Controlled Rele<strong>as</strong>e 65, 133-148.<br />

Mammen M, Choi S <strong>and</strong> Whitesides GM (1998) Polyvalent<br />

Interactions in Biological Systems: Implications <strong>for</strong> <strong>Design</strong><br />

<strong>and</strong> Use <strong>of</strong> Multivalent Lig<strong>and</strong>s <strong>and</strong> Inhibitors. Angew<br />

Chem, Int Ed 37, 2754-2794.<br />

Mocanu EV <strong>and</strong> Harrison RF (2004) Tamoxifen in gynaecology.<br />

Rev Gynaecol Practice 4, 37-45.<br />

Needham D <strong>and</strong> Kim DH (2000) PEG-covered lipid surfaces:<br />

bilayers <strong>and</strong> monolayers. Colloids Surf B 18, 183-195.<br />

Newkome GR, Moorefield CN <strong>and</strong> Vögtle F (2001) Dendrimers<br />

<strong>and</strong> Dendrons. Concepts, Syntheses, Perspectives. Wiley-<br />

VCH, Weinheim, Germany, <strong>and</strong> references cited therein.<br />

Gene Therapy <strong>and</strong> Molecular Biology Vol 10, page 93<br />

93<br />

Nishikawa M <strong>and</strong> Huang L (2001) Nonviral vectors in the new<br />

millennium: Delivery barriers in gene transfer. Hum Gene<br />

Ther 12, 861-870.<br />

Noppl-Simson DA <strong>and</strong> Needham D (1996) Avidin-biotin<br />

interactions at vesicle surfaces: Adsorption <strong>and</strong> binding,<br />

cross-bridge <strong>for</strong>mation, <strong>and</strong> lateral interactions. Biophys J<br />

70, 1391-1401.<br />

Ohsaki M, Okuda T, Wada A, Hirayama T, Niidome T <strong>and</strong><br />

Aoyagi H (2002) In vitro gene transfection using <strong>dendritic</strong><br />

poly(L-lysine). Bioconjugate Chem 13, 510-517.<br />

Onda M, Yoshihara K, Koyano H, Ariga K <strong>and</strong> Kunitake T<br />

(1996) Molecular recognition <strong>of</strong> nucleotides by the<br />

guanidinium unit at the surface <strong>of</strong> aqueous micelles <strong>and</strong><br />

bilayers. A comparison <strong>of</strong> microscopic <strong>and</strong> macroscopic<br />

interfaces. J Am Chem Soc 118, 8524-8530.<br />

Paleos CM, Tsiourv<strong>as</strong> D, Sideratou Z <strong>and</strong> Tziveleka L (2004)<br />

Acid- <strong>and</strong> salt-triggered multi<strong>functional</strong> poly(propylene<br />

imine) dendrimer <strong>as</strong> a prospective <strong>drug</strong> delivery system.<br />

Biomacromolecules 5, 524-529.<br />

Pantos A, Tsiourv<strong>as</strong> D, Sideratou Z <strong>and</strong> Paleos CM (2004)<br />

Interactions <strong>of</strong> complementary PEGylated liposomes <strong>and</strong><br />

characterization <strong>of</strong> the resulting aggregates. Langmuir 20,<br />

6165-6172.<br />

Pantos A, Tsiourv<strong>as</strong> D, Nounesis G <strong>and</strong> Paleos CM (2005)<br />

Interaction <strong>of</strong> Functional Dendrimers with Multilamellar<br />

Liposomes: <strong>Design</strong> <strong>of</strong> a Model System <strong>for</strong> Studying Drug<br />

Delivery. Langmuir 21, 7483-7490.<br />

Roberts MJ, Bentley MD <strong>and</strong> Harris JM (2002) Chemistry <strong>for</strong><br />

peptide <strong>and</strong> protein PEGylation. Adv Drug Delivery Rev 54,<br />

459-476.<br />

Rothbard JB, Garlington S, Lin Q, Kirschberg T, Kreider E,<br />

McGrane PL, Wender PA <strong>and</strong> Khavari PA (2000)<br />

Conjugation <strong>of</strong> arginine oligomers to cyclosporin A<br />

facilitates topical delivery <strong>and</strong> inhibition <strong>of</strong> inflammation.<br />

Nature Med 6, 1253-1257.<br />

Sabharanjak S <strong>and</strong> Mayor S (2004) Folate receptor endocytosis<br />

<strong>and</strong> trafficking. Adv Drug Delivery Rev 56, 1099-1109.<br />

Schlüter AD <strong>and</strong> Rabe JP (2000) Dendronized Polymers:<br />

Synthesis, Characterization, Assembly at Interfaces, <strong>and</strong><br />

Manipulation. Angew Chem, Int Ed 39, 864-883.<br />

Shukla S, Wu G, Chatterjee M, Yang WL, Sekido M, Diop LA,<br />

Muller R, Sudimack JJ, Lee RJ, Barth RF <strong>and</strong> Tjarks W<br />

(2003) Synthesis <strong>and</strong> biological evaluation <strong>of</strong> folate receptortargeted<br />

boronated PAMAM dendrimers <strong>as</strong> potential agents<br />

<strong>for</strong> neutron capture therapy. Bioconjugate Chem 14, 158-<br />

167.<br />

Sideratou Z, Tsiourv<strong>as</strong> D <strong>and</strong> Paleos CM (2000) Quaternized<br />

poly(propylene imine) dendrimers <strong>as</strong> novel pH-sensitive<br />

controlled-rele<strong>as</strong>e systems. Langmuir 16, 1766-1769.<br />

Sideratou Z, Tsiourv<strong>as</strong> D <strong>and</strong> Paleos CM (2001) Solubilization<br />

<strong>and</strong> rele<strong>as</strong>e properties <strong>of</strong> PEGylated diaminobutane<br />

poly(propylene imine) dendrimers. J Colloid Interface Sci<br />

242, 272-276.<br />

Siegers C, Biesalski M <strong>and</strong> Haag R (2004) Self-<strong>as</strong>sembled<br />

monolayers <strong>of</strong> <strong>dendritic</strong> polyglycerol derivatives on gold that<br />

resist the adsorption <strong>of</strong> proteins. Chem Eur J 10, 2831-2838.<br />

Silv<strong>and</strong>er M, Hansson P <strong>and</strong> Edwards K (2000) Liposomal<br />

surface potential <strong>and</strong> bilayer packing <strong>as</strong> affected by PEGlipid<br />

inclusion. Langmuir 16, 3696-3702.<br />

Stiriba S-E, Frey H <strong>and</strong> Haag R (2002) Dendritic Polymers in<br />

Biomedical Applications: From Potential to Clinical Use in<br />

Diagnostics <strong>and</strong> Therapy. Angew Chem, Int Ed 41, 1329-<br />

1334.<br />

Sudimack J <strong>and</strong> Lee RJ (2000) Targeted <strong>drug</strong> delivery via the<br />

folate receptor. Adv Drug Delivery Rev 41, 147-162.<br />

Sunder A, Krämer M, Hanselmann R, Mühlaupt R <strong>and</strong> Frey H<br />

(1999a) Molecular Nanocapsules B<strong>as</strong>ed on Amphiphilic


Sideratou et al: Dendritic <strong>polymers</strong> <strong>for</strong> <strong>application</strong> <strong>as</strong> <strong>drug</strong> <strong>and</strong> gene delivery systems<br />

Hyperbranched Polyglycerols. Angew Chem, Int Ed 38,<br />

3552-3555.<br />

Sunder A, Quincy M-F, Mülhaupt R <strong>and</strong> Frey H (1999b)<br />

Hyperbranched Polyether Polyols with Liquid Crystalline<br />

Properties. Angew Chem, Int Ed 38, 2928-2930.<br />

Sunder A, Mülhaupt R <strong>and</strong> Frey H (2000a) Hyperbranched<br />

Polyether-Polyols B<strong>as</strong>ed on Polyglycerol: Polarity Desigh by<br />

Block Copolymerisation with Propylene Oxide.<br />

Macromolecules 33, 309-314.<br />

Sunder A, Mülhaupt R, Haag R <strong>and</strong> Frey H (2000b)<br />

Hyperbranched polyether polyols: A modular approach to<br />

complex polymer architectures. Adv Mater 12, 235-239.<br />

Tang MX, Redemann CT <strong>and</strong> Szoka FC, Jr (1996) In vitro gene<br />

delivery by degraded polyamidoamine dendrimers.<br />

Bioconjugate Chem 7, 703-714.<br />

Thom<strong>as</strong> JK (1980) Radiation-induced Reactions in Organized<br />

Assemblies. Chem Rev 80, 283-299.<br />

Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S,<br />

Roeck J, Ryder J <strong>and</strong> Smith P (1985) A new cl<strong>as</strong>s <strong>of</strong><br />

<strong>polymers</strong> - starburst-<strong>dendritic</strong> macromolecules. Polym J 17,<br />

117-132.<br />

Tziveleka L-A, Kontoyianni C, Sideratou Z, Tsiourv<strong>as</strong> D <strong>and</strong><br />

Paleos CM (2006) Novel <strong>functional</strong> Hyperbranched<br />

Polyether Polyols <strong>as</strong> Prospected Drug Delivery Systems.<br />

Macromol Biosci 6, 161-169.<br />

V<strong>and</strong>ermeulen GWM <strong>and</strong> Klok H-A (2004) Peptide/protein<br />

hybrid materials: Enhanced control <strong>of</strong> structure <strong>and</strong><br />

improved per<strong>for</strong>mance through conjugation <strong>of</strong> biological <strong>and</strong><br />

synthetic <strong>polymers</strong>. Macromol Biosci 4, 383-398.<br />

Verma IM <strong>and</strong> Somia N (1997) Gene therapy-promises,<br />

problems <strong>and</strong> prospects. Nature 389, 239-242.<br />

Veronese FM (2001) Peptide <strong>and</strong> protein PEGylation: a review<br />

<strong>of</strong> problems <strong>and</strong> solutions. Biomaterials 22, 405-417.<br />

Vives E, Brodin P <strong>and</strong> Lebleu B (1997) A truncated HIV-1 Tat<br />

protein b<strong>as</strong>ic domain rapidly translocates through the pl<strong>as</strong>ma<br />

membrane <strong>and</strong> accumulates in the cell nucleus. J Biol Chem<br />

272, 16010-16017.<br />

Vögtle F, Gestermann S, Hesse R, Schwierz H <strong>and</strong> Windisch. B<br />

(2000) Functional dendrimers. Prog Polym Sci 25, 987-<br />

1041.<br />

Wang YQ, R<strong>as</strong>hidzadeh H <strong>and</strong> Guo BC (2000) Structural effects<br />

on polyether cationization by alkali metal ions in matrix<strong>as</strong>sisted<br />

l<strong>as</strong>er desorption/ionization. J Am Soc M<strong>as</strong>s Spectr<br />

11, 639-643.<br />

94<br />

Wang CH <strong>and</strong> Hsiue GH (2005) Polymer-DNA hybrid<br />

nanoparticles b<strong>as</strong>ed on folate-polyethylenimine-blockpoly(L-lactide).<br />

Bioconjugate Chem 16, 391-396.<br />

Wender PA, Mitchell DJ, Pattabiraman K, Pelkey ET, Steinman<br />

L <strong>and</strong> Rothbard JB (2000) The design, synthesis, <strong>and</strong><br />

evaluation <strong>of</strong> molecules that enable or enhance cellular<br />

uptake: Peptoid molecular transporters. Proc Natl Acad Sci<br />

USA 97, 13003-13008.<br />

Wiseman H (1994) Tamoxifen-new membrane-mediated<br />

mechanisms <strong>of</strong> action <strong>and</strong> therapeutic advances. Trends<br />

Pharmacol Sci 15, 83-89.<br />

Yang WL, Barth RF, Adams DM <strong>and</strong> Soloway AH (1997)<br />

Intratumoral delivery <strong>of</strong> boronated epidermal growth factor<br />

<strong>for</strong> neutron capture therapy <strong>of</strong> brain tumors. Cancer Res 57,<br />

4333-4339.<br />

Yoo HS <strong>and</strong> Park TG (2004) Folate receptor targeted<br />

biodegradable polymeric doxorubicin micelles. J Controlled<br />

Rele<strong>as</strong>e 96, 273-283.<br />

Zinselmeyer BH, Mackay SP, Schatzlein AG <strong>and</strong> Uchegbu IF<br />

(2002) The lower-generation polypropylenimine dendrimers<br />

are effective gene-transfer agents. Pharm Res 19, 960-967.<br />

Zuber G, Zammut-Italiano L, Dauty E <strong>and</strong> Behr JP (2003)<br />

Targeted Gene Delivery to Cancer Cells: Directed Assembly<br />

<strong>of</strong> Nanometric DNA Particles Coated with Folic Acid.<br />

Angew Chem, Int Ed 42, 2666-2669.<br />

Constantinos M. Paleos

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!