06.12.2012 Views

Bax and APPL1 are involved in DCC-ADD induced colorectal ...

Bax and APPL1 are involved in DCC-ADD induced colorectal ...

Bax and APPL1 are involved in DCC-ADD induced colorectal ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Gene Therapy <strong>and</strong> Molecular Biology Vol 14, page 56<br />

56<br />

Gene Ther Mol Biol Vol 14, 56-61, 2012<br />

<strong>Bax</strong> <strong>and</strong> <strong>APPL1</strong> <strong>are</strong> <strong><strong>in</strong>volved</strong> <strong>in</strong> <strong>DCC</strong>-<strong>ADD</strong> <strong>in</strong>duced<br />

<strong>colorectal</strong> carc<strong>in</strong>oma cells apoptosis<br />

Research Article<br />

Xuhao Zhang 1,2, *, Baofeng Guo 3, *, Haizhan Jiao 2 , Yaran Wu 2 , Jiaqi Xu 4 , J<strong>in</strong>g<br />

Sun 2 , Yulai Zhou 1,2 , Q<strong>in</strong>gwei Zhou 5 , Zhongyi Cong 1,2<br />

1 The Key Laboratory of Pathobiology, M<strong>in</strong>istry of Education<br />

2 Department of Regenerative Medic<strong>in</strong>e, School of Pharmaceutical Science<br />

3 Department of Emergency Medic<strong>in</strong>e, Ch<strong>in</strong>a-Japan Union Hospital of Jil<strong>in</strong> University<br />

4 Department of Pharmacy, School of Pharmaceutical Science<br />

5 Department of Biochemistry, Institute of Regenerative Medical Sciences, Jil<strong>in</strong> University, Changchun 130021, Ch<strong>in</strong>a<br />

*These two authors contributed equally to this work.<br />

*Correspondence: Zhongyi Cong, the Key Laboratory of Pathobiology, M<strong>in</strong>istry of Education, <strong>and</strong> Department of Regenerative<br />

Medic<strong>in</strong>e, School of Pharmaceutical Science, Jil<strong>in</strong> University, Changchun 130021, Ch<strong>in</strong>a. Tel: 86-431-85619715; E-mail:<br />

congzhy@jlu.edu.cn<br />

Q<strong>in</strong>gwei Zhou, Department of Biochemistry, Institute of Regenerative Medical Sciences, Jil<strong>in</strong> University, Changchun 130021, Ch<strong>in</strong>a.<br />

Tel: 86-431-85619386; E-mail: zhouqw@jlu.edu.cn<br />

Keywords: <strong>DCC</strong> (deleted <strong>in</strong> <strong>colorectal</strong> carc<strong>in</strong>oma); <strong>colorectal</strong> carc<strong>in</strong>oma; apoptosis; <strong>Bax</strong>; <strong>APPL1</strong><br />

Received: 9 May 2012; Revised: 12 July 2012<br />

Accepted: 16 July 2012; electronically published: 18 July 2012<br />

Summary<br />

<strong>DCC</strong> (deleted <strong>in</strong> <strong>colorectal</strong> carc<strong>in</strong>oma) is a tumor suppressor whose expression is significantly reduced or absent <strong>in</strong><br />

most advanced <strong>colorectal</strong> carc<strong>in</strong>oma. <strong>DCC</strong> is a transmembrane receptor for netr<strong>in</strong>-1 function<strong>in</strong>g as a dependence<br />

receptor that triggers apoptosis <strong>in</strong> the absence of netr<strong>in</strong>-1. The addiction dependence doma<strong>in</strong> (<strong>ADD</strong>) that located <strong>in</strong><br />

the <strong>in</strong>tercellular region of <strong>DCC</strong> is prerequisite for the pro-apoptotic activity, which is released when <strong>DCC</strong> is cleaved<br />

by caspase3 <strong>and</strong> <strong>in</strong>teracts with caspase9 <strong>and</strong> activates downstream caspases. However, the concrete molecular<br />

mechanism is not very clear. In the present study, we constructed the recomb<strong>in</strong>ant plasmid pIRES2-EGFP-<strong>ADD</strong>,<br />

<strong>and</strong> transfected it <strong>in</strong>to human <strong>colorectal</strong> carc<strong>in</strong>oma cells SW1116. We <strong>in</strong>vestigated the cell proliferation <strong>and</strong><br />

apoptosis through CCK-8 cell proliferation assay, AO/EB fluorescence sta<strong>in</strong><strong>in</strong>g assay <strong>and</strong> TUNEL assay. And the<br />

expression of <strong>Bax</strong> <strong>and</strong> <strong>APPL1</strong> was detected through immunocytochemistry method <strong>and</strong> flow cytometry. The results<br />

revealed that <strong>DCC</strong>-<strong>ADD</strong> gene transfection significantly <strong>in</strong>hibited SW1116 cells proliferation (P


I. Introduction<br />

Deleted <strong>in</strong> <strong>colorectal</strong> carc<strong>in</strong>oma (<strong>DCC</strong>) is a<br />

tumor suppressor, which was discovered <strong>in</strong> rectal<br />

carc<strong>in</strong>oma tissues <strong>in</strong> the early 1990s. <strong>DCC</strong> gene<br />

locates on chromosome 18q21.3 <strong>and</strong> spans 1.4 Mb<br />

encod<strong>in</strong>g a transmembrane prote<strong>in</strong> composed of 1447<br />

am<strong>in</strong>o acids (Fearon ER, et al., 1990). The<br />

extracellular region of <strong>DCC</strong> is a receptor for netr<strong>in</strong>-1<br />

conta<strong>in</strong><strong>in</strong>g four immunoglobul<strong>in</strong> doma<strong>in</strong>s <strong>and</strong> six<br />

fibronect<strong>in</strong> type III doma<strong>in</strong>s. And the transmembrane<br />

<strong>and</strong> cytoplasmic region of <strong>DCC</strong> conta<strong>in</strong>s an addiction<br />

dependence doma<strong>in</strong> (<strong>ADD</strong>), which <strong>in</strong>troduces signals<br />

<strong>in</strong>to cytoplasm (Bernet A, et al., 2007). Expression of<br />

<strong>DCC</strong> is markedly reduced <strong>in</strong> more than 50% of<br />

<strong>colorectal</strong> tumors, as well as <strong>in</strong> many other neoplasms<br />

(Horstmann MA, et al., 1997; Mehlen, P, et al.,<br />

2004). And loss of <strong>DCC</strong> is associated with poor<br />

prognosis <strong>and</strong> potentially decreased response to<br />

adjuvant chemotherapy <strong>in</strong> <strong>colorectal</strong> cancer patients<br />

(Gal R, et al., 2004; Shibata D, et al., 1996; Saito M,<br />

et al.,1999; Banerjee AK, 1997). The Rat-1 cell l<strong>in</strong>e<br />

with high levels of <strong>DCC</strong> antisense RNA expression<br />

showed a faster growth rate, <strong>and</strong> had tumorigenicity<br />

<strong>in</strong> nude mice (Narayanan R, et al., 1992). While<br />

restoration of <strong>DCC</strong> expression can suppress<br />

tumorigenic growth properties <strong>in</strong> vitro <strong>and</strong> <strong>in</strong> nude<br />

mice (Goyette MC, et al., 1992; Tanaka K, et al.,<br />

1991; Mehlen, P, et al., 2004).<br />

<strong>DCC</strong> functions as a tumor suppressor via its<br />

ability to trigger tumor cell apoptosis (Castets M, et<br />

al., 2011). By function<strong>in</strong>g as a dependence receptor,<br />

<strong>DCC</strong> <strong>in</strong>duces apoptosis unless engaged by its lig<strong>and</strong>,<br />

netr<strong>in</strong>-1. Over expression of the <strong>DCC</strong> lig<strong>and</strong> netr<strong>in</strong>-1<br />

<strong>in</strong> the digestive tract has been shown to result <strong>in</strong> the<br />

<strong>in</strong>hibition of epithelial cell death <strong>and</strong> the promotion of<br />

tumor progression. The pro-apoptotic signal<strong>in</strong>g<br />

<strong>in</strong>duced by <strong>DCC</strong> requires its <strong>in</strong>tracellular doma<strong>in</strong><br />

cleavage by caspase3 after Asp 1290 (Mazel<strong>in</strong> L, et<br />

al., 2004; Mehlen P, et al., 1998). The mutation of<br />

Asp 1,290 to Asn <strong>in</strong>hibits the cleavage <strong>and</strong> suppresses<br />

the pro-apoptotic activity of <strong>DCC</strong>. The residues 1243-<br />

1264 of <strong>DCC</strong> exposed by cleavage were ascerta<strong>in</strong>ed<br />

to be the very doma<strong>in</strong> required to <strong>in</strong>duce apoptosis.<br />

This doma<strong>in</strong>, named <strong>ADD</strong>, <strong>in</strong>teracts with caspase9<br />

<strong>and</strong> activates downstream caspases, by which the<br />

apoptotic signal is amplified <strong>and</strong> <strong>in</strong>duces cell<br />

apoptosis (Mehlen P, et al., 1998; Forcet C, et al.,<br />

2001). Although some studies had shown that the<br />

<strong>in</strong>teraction with caspases might be the mechanism of<br />

<strong>DCC</strong>-<strong>in</strong>duced apoptosis, whether other apoptosis<br />

signal pathway is <strong><strong>in</strong>volved</strong> has not been affirmed. In<br />

the present study, we found that the expression of <strong>Bax</strong><br />

<strong>and</strong> <strong>APPL1</strong> <strong>in</strong> <strong>colorectal</strong> cancer cells SW1116 is<br />

evidently <strong>in</strong>creased after the transfection of <strong>DCC</strong>-<br />

<strong>ADD</strong> gene, <strong>in</strong>dicat<strong>in</strong>g that both <strong>Bax</strong> <strong>and</strong> <strong>APPL1</strong> <strong>are</strong><br />

closely related to the pro-apoptotic activity of <strong>DCC</strong>.<br />

Gene Therapy <strong>and</strong> Molecular Biology Vol 14, page 59<br />

57<br />

II. Materials <strong>and</strong> Methods<br />

2.1 Vector construction<br />

The cod<strong>in</strong>g sequence of <strong>DCC</strong>-<strong>ADD</strong> (NM_005215.3,<br />

3,727-3,792 bp) was obta<strong>in</strong>ed by anneal<strong>in</strong>g of the follow<strong>in</strong>g<br />

two oligodeoxynucleotides (synthesized by Sangon Biotech<br />

Co., Ltd, Ch<strong>in</strong>a) at 55 o C for 1 m<strong>in</strong> follow<strong>in</strong>g denaturat<strong>in</strong>g<br />

at 94 °C for 30 s. The sense str<strong>and</strong> was 5'-<br />

CTAGCGCCACCATGAACAATCCTGCTGTCGTGAGC<br />

GCCATCCCGGTGCCAACGCTAGAAAGTGCCCAGTA<br />

CCCAGGAATCTGAC-3', <strong>and</strong> the anti-sense str<strong>and</strong> was 5'-<br />

TCGAGTCAGATTCCTGGGTACTGGGCACTTTCTAG<br />

CGTTGGCACCGGGATGGCGCTCACGACAGCAGGA<br />

TTGTTCATGGTGGCG-3'. (The underl<strong>in</strong>ed letters were<br />

cohesive end sites of restriction enzyme XhoI <strong>and</strong> NdeI, <strong>and</strong><br />

the italic letters were Kozak sequence). The <strong>ADD</strong> sequence<br />

was then ligated with XhoI <strong>and</strong> NdeI digested plasmid<br />

vector pIRES2-EGFP. The recomb<strong>in</strong>ed plasmid was<br />

transformed <strong>in</strong>to E.coli JM109 competent cells. After<br />

screen<strong>in</strong>g, amplify<strong>in</strong>g, extract<strong>in</strong>g <strong>and</strong> purify<strong>in</strong>g, the<br />

recomb<strong>in</strong>ant plasmid pIRES2-EGFP-<strong>ADD</strong> was used for<br />

transfection.<br />

2.2 Cell culture <strong>and</strong> transfection<br />

Human <strong>colorectal</strong> carc<strong>in</strong>oma cells SW1116 were at<br />

37 o C <strong>in</strong> a 5% CO 2 humidified <strong>in</strong>cubator <strong>and</strong> ma<strong>in</strong>ta<strong>in</strong>ed <strong>in</strong><br />

Dulbecco’s modified Eagle’s medium (DMEM)<br />

supplemented with 10% heat-<strong>in</strong>activated fetal bov<strong>in</strong>e serum<br />

(FBS, GIBCO) <strong>and</strong> antibiotics (100 IU/mL of penicill<strong>in</strong> <strong>and</strong><br />

100 IU/mL of streptomyc<strong>in</strong>).<br />

The SW1116 cells were seeded <strong>in</strong>to 96, 24 or 6-well<br />

plates (5×10 3 , 1×10 4 or 2×10 5 cells/well) <strong>and</strong> cultured for<br />

12 hours to confluence. The plasmid pIRES2-EGFP-<strong>ADD</strong><br />

or pIRES2-EGFP was then transfected <strong>in</strong>to SW1116 cells<br />

with Lipofectam<strong>in</strong>e 2000 (Invitrogen, USA) accord<strong>in</strong>g to<br />

the manufacturer’s <strong>in</strong>struction, <strong>and</strong> the ratio of<br />

Lipofectam<strong>in</strong>e 2000 (μL) to DNA (μg) was 5:2.<br />

2.3 Cell count kit-8 (CCK-8) cell<br />

proliferation assay<br />

The SW1116 cells were seeded <strong>in</strong>to a 96-well plate<br />

<strong>and</strong> cultured for 12 hours to confluence followed by<br />

trasfection. Each group comprised 10 wells. 36 h post<br />

transfection, 10 μL of CCK-8 solution (Doj<strong>in</strong>do, Japanese)<br />

was added <strong>in</strong>to each well, which conta<strong>in</strong>ed 100 μL of<br />

medium. After <strong>in</strong>cubation for 3 h at 37 o C, the amount of<br />

generated formazan was measured for absorbance at a<br />

wavelength of 450 nm. The optical density (OD) values<br />

recorded represented the proliferation of cells, <strong>and</strong> were<br />

used to calculate the growth <strong>in</strong>hibition rate by the formula:<br />

Inhibition rate = (1 - OD value of transfection group/OD<br />

value of medium group) × 100%. All the above experiments<br />

were performed <strong>in</strong> triplicate.<br />

2.4 Acrid<strong>in</strong>e orange/ethidium bromide<br />

(AO/EB) fluorescence sta<strong>in</strong><strong>in</strong>g assay<br />

Little coverslips were putted <strong>in</strong>to each well of a<br />

24-well plate before seed<strong>in</strong>g SW1116 cells <strong>in</strong>to it. The<br />

cells were cultured for 12 hours to confluence followed<br />

by transfection. 24 h post transfection, the coverslips<br />

were took out for AO/EB fluorescence sta<strong>in</strong><strong>in</strong>g.


This method was based on the differential uptake of<br />

fluorescent DNA b<strong>in</strong>d<strong>in</strong>g dye AO (green fluorescence)<br />

<strong>and</strong> EB (red fluorescence) <strong>and</strong> applied to <strong>in</strong>vestigate cell<br />

apoptosis. Briefly, 2 μL of a mixture of 10 μg/mL of AO<br />

<strong>and</strong> 10 μg/mL of EB (v/v, 1:1) was added to the cells.<br />

And the cells were observed under a fluorescence<br />

microscope at 510 nm.<br />

2.5 Term<strong>in</strong>al dexynucleotidyl transferasemediated<br />

dUTP nick end label<strong>in</strong>g (TUNEL) assay<br />

Little coverslips were putted <strong>in</strong>to each well of a<br />

24-well plate before seed<strong>in</strong>g SW1116 cells <strong>in</strong>to it. The cells<br />

were cultured for 12 hours to confluence followed by<br />

transfection. 24 h post transfection, the coverslips were<br />

taken out for TUNEL assay us<strong>in</strong>g an <strong>in</strong> situ cell death<br />

detection kit (Keygen, Ch<strong>in</strong>a) as described by manufacturer.<br />

Briefly, the cell samples were treated with 4%<br />

paraformaldehyde for 30 m<strong>in</strong> <strong>and</strong> soaked <strong>in</strong> PBS for 5 m<strong>in</strong><br />

at room temperature, followed by permeabilized with 0.2%<br />

TritonX-100 for 20 m<strong>in</strong> <strong>and</strong> blocked with 3% hydrogen<br />

dioxide. Then the cell samples were <strong>in</strong>cubated with 50 μL<br />

of a mixture of term<strong>in</strong>al deoxynucleotidyl transferase (Tdt)<br />

<strong>and</strong> labeled dUTP at 37 o C for 1 h <strong>in</strong> dark. And 50 μL of<br />

streptavid<strong>in</strong>-HRP were then added to the cell samples<br />

followed by <strong>in</strong>cubated the cell samples with<br />

diam<strong>in</strong>obenzid<strong>in</strong>e (DAB) for 5 m<strong>in</strong> <strong>in</strong> dark. At last the cell<br />

samples were countersta<strong>in</strong>ed by hematoxyl<strong>in</strong> for 20 m<strong>in</strong>.<br />

After washed with PBS, the samples were observed under a<br />

microscope.<br />

2.6 Immunocytochemistry assay<br />

Little coverslips were putted <strong>in</strong>to each well of a<br />

24-well plate before seed<strong>in</strong>g SW1116 cells <strong>in</strong>to it. The cells<br />

were cultured for 12 hours to confluence followed by<br />

transfection. 20 h post transfection, the coverslips were<br />

taken out for immunocytochemistry assay. The cell samples<br />

were treated with 4% paraformaldehyde for 30 m<strong>in</strong> <strong>and</strong><br />

washed with PBS for 5 m<strong>in</strong>. Then the cell samples were<br />

permeabilized with 0.2% TritonX-100 for 20 m<strong>in</strong>, after<br />

which treated with 3% hydrogen dioxide for 10 m<strong>in</strong>, <strong>and</strong><br />

blocked with 1% normal mouse serum for 2 h. The cell<br />

samples were then <strong>in</strong>cubated overnight at 4 o C with mouse<br />

anti-human <strong>Bax</strong> monoclonal antibodies or mouse antihuman<br />

<strong>APPL1</strong> monoclonal antibodies (Santa Cruz<br />

Biotechnology, USA), <strong>and</strong> washed with PBS for 5 m<strong>in</strong>.<br />

Then the cell samples were <strong>in</strong>cubated with horseradish<br />

peroxidase (HRP)-labeled goat anti-mouse IgG polyclonal<br />

antibodies for 30 m<strong>in</strong> followed by washed for 5 m<strong>in</strong>. The<br />

cell samples were then <strong>in</strong>cubated with diam<strong>in</strong>obenzid<strong>in</strong>e<br />

(DAB) for 10 m<strong>in</strong> <strong>in</strong> dark <strong>and</strong> washed. At last, the cell<br />

samples were countersta<strong>in</strong>ed by hematoxyl<strong>in</strong> for 20 m<strong>in</strong><br />

<strong>and</strong> observed under a microscope.<br />

2.7 Flow cytometry assay<br />

The SW1116 cells were seeded <strong>in</strong> 6-well plates<br />

<strong>and</strong> cultured for 12 hours to confluence followed by<br />

transfection. 20 h post transfection, the cells were collected<br />

<strong>and</strong> washed with PBS conta<strong>in</strong><strong>in</strong>g 1% FBS. Then the cells<br />

were treated with 4% of paraformaldehyde <strong>and</strong> washed with<br />

PBS conta<strong>in</strong><strong>in</strong>g 1% FBS. The cells were resuspended <strong>in</strong><br />

500 μL of 0.1% TritonX-100 for 30 m<strong>in</strong> followed by<br />

blocked with PBS conta<strong>in</strong><strong>in</strong>g 1% FBS for 1 h. Then the<br />

cells were <strong>in</strong>cubated with 1:200 diluted mouse anti-human<br />

<strong>Bax</strong> monoclonal antibodies (Santa Cruz Biotechnology,<br />

USA) at 4 °C for 1 h followed by washed twice with PBS<br />

Gene Therapy <strong>and</strong> Molecular Biology Vol 14, page 58<br />

58<br />

conta<strong>in</strong><strong>in</strong>g 1% FBS. Then the cells were <strong>in</strong>cubated with<br />

1:40 diluted of FITC-labeled goat anti-mouse IgG<br />

polyclonal antibodies for 30 m<strong>in</strong> <strong>in</strong> dark except the negative<br />

control group followed by washed twice with PBS. Then<br />

the cells were resuspended with 400 μL of PBS b<strong>in</strong>d<strong>in</strong>g<br />

buffer <strong>and</strong> analyzed us<strong>in</strong>g a flow cytometry.<br />

2.8 Statistical analysis<br />

All numerical data were expressed <strong>in</strong> the form of<br />

means ± st<strong>and</strong>ard deviation (SD), <strong>and</strong> statistical difference<br />

between groups were evaluated by analysis of variance<br />

(ANOVA) <strong>and</strong> SNK-q test us<strong>in</strong>g SPSS11.5 statistics<br />

softw<strong>are</strong>. Significance was def<strong>in</strong>ed as P


III. Discussion<br />

The pro-apoptotic activity of <strong>DCC</strong>-<strong>ADD</strong> has long<br />

been discussed. In the present study, we constructed the<br />

recomb<strong>in</strong>ant plasmid pIRES2-EGFP-<strong>ADD</strong>, <strong>and</strong> transfected<br />

it <strong>in</strong>to human <strong>colorectal</strong> cancer cells SW1116. The results<br />

from precise methods of CCK-8 cell proliferation assay,<br />

AO/EB fluorescence sta<strong>in</strong><strong>in</strong>g assay <strong>and</strong> TUNEL assay<br />

confirm that po<strong>in</strong>t once aga<strong>in</strong>.<br />

The possible mechanism of <strong>DCC</strong>-<strong>in</strong>duced<br />

apoptosis is related to the cleavage of <strong>DCC</strong> at Asp1290 by<br />

caspase3 lead<strong>in</strong>g to the exposure of <strong>ADD</strong>, which activates<br />

caspase9 <strong>and</strong> the downstream apoptotic signals (Mehlen P,<br />

et al., 1998).<br />

<strong>Bax</strong> is a member of the Bcl-2 family <strong>and</strong> plays a<br />

central role <strong>in</strong> the mitochondria-dependent apoptotic<br />

pathway. When receiv<strong>in</strong>g a death signal, <strong>Bax</strong> can promote<br />

the release of cytochrom c from mitochondria, which can<br />

comb<strong>in</strong>e with Apaf-1 <strong>and</strong> activate caspase9 (Lalier L, et al.,<br />

2007; Renault TT, et al., 2011). Our datas revealed that the<br />

<strong>Bax</strong> expression of <strong>colorectal</strong> carc<strong>in</strong>oma cells was <strong>in</strong>creased<br />

obviously post <strong>DCC</strong>-<strong>ADD</strong> gene transfection, which gives<br />

new clues that <strong>DCC</strong> may <strong>in</strong>duce apoptosis through the<br />

mitochondria-dependent apoptotic pathway.<br />

Gene Therapy <strong>and</strong> Molecular Biology Vol 14, page 59<br />

59<br />

It has been demonstrated that <strong>APPL1</strong> (also called<br />

<strong>DCC</strong>-<strong>in</strong>teract<strong>in</strong>g prote<strong>in</strong>-13, DIP13) can mediate the proapoptotic<br />

activity of <strong>DCC</strong> through the <strong>in</strong>teraction between<br />

its <strong>DCC</strong>-<strong>in</strong>teract<strong>in</strong>g doma<strong>in</strong> <strong>and</strong> <strong>DCC</strong>-<strong>ADD</strong>. Co-expression<br />

of <strong>DCC</strong> <strong>and</strong> <strong>APPL1</strong> can <strong>in</strong>crease <strong>DCC</strong> <strong>in</strong>duced apoptosis<br />

obviously. And removal of the <strong>DCC</strong>-<strong>in</strong>teract<strong>in</strong>g doma<strong>in</strong> on<br />

<strong>APPL1</strong> or <strong>in</strong>hibition of <strong>APPL1</strong> expression blocks <strong>DCC</strong><strong>in</strong>duced<br />

apoptosis (Liu J, et al., 2002).<br />

In the present study, the result showed that <strong>DCC</strong>-<br />

<strong>ADD</strong> gene transfection <strong>in</strong>duced <strong>colorectal</strong> carc<strong>in</strong>oma cells<br />

apoptosis <strong>and</strong> enhanced the expression level of <strong>APPL1</strong>.<br />

<strong>ADD</strong> can <strong>in</strong>teract with <strong>in</strong>itiator of caspase9 <strong>and</strong> promote the<br />

activation of caspases lead<strong>in</strong>g to cell apoptosis (Mehlen P,<br />

et al., 1998; Forcet C, et al., 2001). As the adapter prote<strong>in</strong><br />

between <strong>ADD</strong> <strong>and</strong> caspase9, <strong>APPL1</strong> plays an important<br />

role <strong>in</strong> <strong>DCC</strong>-<strong>in</strong>duced apoptosis (Liu J, et al., 2002).<br />

In summary, we surmise the pathway of <strong>DCC</strong> <strong>in</strong>duc<strong>in</strong>g<br />

apoptosis may due to its <strong>ADD</strong> be<strong>in</strong>g exposed by cleavage<br />

of caspase3. And <strong>Bax</strong> <strong>and</strong> <strong>APPL1</strong> mediate the activat<strong>in</strong>g of<br />

caspase9 by <strong>ADD</strong>, which promotes the apoptosis cascade at<br />

last. Among them, the expression <strong>and</strong> activity changes of<br />

the caspase9 need further experimental validation.


Cong et al: <strong>Bax</strong> <strong>and</strong> <strong>APPL1</strong> <strong>are</strong> <strong><strong>in</strong>volved</strong> <strong>in</strong> <strong>DCC</strong>-<strong>ADD</strong> <strong>in</strong>duced <strong>colorectal</strong> carc<strong>in</strong>oma cells apoptosis<br />

Figure 1: <strong>ADD</strong> gene transfection <strong>in</strong>hibits SW1116 cells proliferation <strong>and</strong> <strong>in</strong>duces apoptosis.<br />

(a) Obta<strong>in</strong><strong>in</strong>g <strong>ADD</strong>-cod<strong>in</strong>g sequence <strong>and</strong> construct<strong>in</strong>g recomb<strong>in</strong>ant plasmid pIRES2-EGFP-<strong>ADD</strong>. Lane 1 <strong>and</strong> 2: <strong>ADD</strong>cod<strong>in</strong>g<br />

sequence obta<strong>in</strong>ed by denaturat<strong>in</strong>g <strong>and</strong> anneal<strong>in</strong>g of its sense str<strong>and</strong> <strong>and</strong> anti-sense str<strong>and</strong> oligodeoxynucleotides; lane 3:<br />

restriction enzyme XhoI <strong>and</strong> NdeI-digested recomb<strong>in</strong>ant plasmid pIRES2-EGFP-<strong>ADD</strong>.<br />

(b) Plasmid pIRES2-EGFP-<strong>ADD</strong> transfection <strong>in</strong>hibits SW1116 cells proliferation. Cell proliferation was detected through<br />

CCK-8 cell proliferation assay at 36 h post transfection. Each symbol represents the mean OD values ± SD of cell proliferation.<br />

(c) Plasmid pIRES2-EGFP-<strong>ADD</strong> transfection <strong>in</strong>duces SW1116 cells apoptosis detected through AO/EB sta<strong>in</strong><strong>in</strong>g assay at 24<br />

h post transfection. The arrows <strong>in</strong>dicate the apoptotic cells <strong>in</strong> red fluorescence. Magnification, ×200.<br />

(d) Plasmid pIRES2-EGFP-<strong>ADD</strong> transfection <strong>in</strong>duces SW1116 cells apoptosis detected through TUNEL assay at 24 h post<br />

transfection. The arrows <strong>in</strong>dicate the brown-sta<strong>in</strong>ed apoptotic cells. Magnification, ×200.<br />

Figure 2: <strong>Bax</strong> <strong>and</strong> <strong>APPL1</strong> expression <strong>in</strong>creases <strong>in</strong> <strong>ADD</strong> gene-transfected SW1116 cells.<br />

(a) <strong>Bax</strong> <strong>and</strong> <strong>APPL1</strong> expression detected by immunocytochemical method at 20 h post plasmid pIRES2-EGFP-<strong>ADD</strong> transfection.<br />

The arrows <strong>in</strong>dicate the brown-sta<strong>in</strong>ed positive cells. Magnification, ×200.<br />

(b) <strong>Bax</strong> expression detected by flow cytometry at 20 h post transfection.<br />

60


Acknowledgement<br />

This study was supported by the National Natural<br />

Science Foundation of Ch<strong>in</strong>a (No. 30801354 <strong>and</strong><br />

References<br />

Banerjee AK. <strong>DCC</strong> expression <strong>and</strong> prognosis <strong>in</strong> <strong>colorectal</strong><br />

cancer. Lancet. 1997 Apr 5;349(9057):968.<br />

Bernet A, Mehlen P. Dependence receptors: when apoptosis<br />

controls tumor progression. Bull Cancer. 2007<br />

Apr;94(4):E12-7.<br />

Castets M, Broutier L, Mol<strong>in</strong> Y, Brevet M, Chazot G, Gadot N,<br />

Paquet A, Mazel<strong>in</strong> L, Jarrosson-Wuilleme L,<br />

Scoazec JY, Bernet A, Mehlen P. <strong>DCC</strong> constra<strong>in</strong>s<br />

tumour progression via its dependence receptor<br />

activity. Nature. 2011 Dec 11;482(7386):534-7.<br />

Fearon ER, Cho KR, Nigro JM, Kern SE, Simons JW, Ruppert<br />

JM, Hamilton SR, Preis<strong>in</strong>ger AC, Thomas G, K<strong>in</strong>zler<br />

KW, et al. Identification of a chromosome 18q gene<br />

that is altered <strong>in</strong> <strong>colorectal</strong> cancers. Science. 1990<br />

Jan 5;247(4938):49-56.<br />

Forcet C, Ye X, Granger L, Corset V, Sh<strong>in</strong> H, Bredesen DE,<br />

Mehlen P. The dependence receptor <strong>DCC</strong> (deleted <strong>in</strong><br />

<strong>colorectal</strong> cancer) def<strong>in</strong>es an alternative mechanism<br />

for caspase activation. Proc Natl Acad Sci U S A.<br />

2001 Mar 13;98(6):3416-21.<br />

Gal R, Sadikov E, Sulkes J, Kle<strong>in</strong> B, Koren R. Deleted <strong>in</strong><br />

<strong>colorectal</strong> cancer prote<strong>in</strong> expression as a possible<br />

predictor of response to adjuvant chemotherapy <strong>in</strong><br />

<strong>colorectal</strong> cancer patients. Dis Colon Rectum. 2004<br />

Jul;47(7):1216-24.<br />

Goyette MC, Cho K, Fasch<strong>in</strong>g CL, Levy DB, K<strong>in</strong>zler KW,<br />

Paraskeva C, Vogelste<strong>in</strong> B, Stanbridge EJ.<br />

Progression of <strong>colorectal</strong> cancer is associated with<br />

multiple tumor suppressor gene defects but <strong>in</strong>hibition<br />

of tumorigenicity is accomplished by correction of<br />

any s<strong>in</strong>gle defect via chromosome transfer. Mol Cell<br />

Biol. 1992 Mar;12(3):1387-95.<br />

Horstmann MA, Pösl M, Scholz RB, Anderegg B, Simon P,<br />

Baumgaertl K, Dell<strong>in</strong>g G, Kabisch H. Frequent<br />

reduction or loss of <strong>DCC</strong> gene expression <strong>in</strong> human<br />

osteosarcoma. Br J Cancer. 1997;75(9):1309-17.<br />

Gene Therapy <strong>and</strong> Molecular Biology Vol 14, page 59<br />

61<br />

30970791) <strong>and</strong> the Fundamental Research Funds<br />

(201103234) from Jil<strong>in</strong> University, Ch<strong>in</strong>a<br />

Lalier L, Cartron PF, Ju<strong>in</strong> P, Nedelk<strong>in</strong>a S, Manon S, Bech<strong>in</strong>ger<br />

B, Vallette FM. <strong>Bax</strong> activation <strong>and</strong> mitochondrial<br />

<strong>in</strong>sertion dur<strong>in</strong>g apoptosis. Apoptosis. 2007<br />

May;12(5):887-96.<br />

Liu J, Yao F, Wu R, Morgan M, Thorburn A, F<strong>in</strong>ley RL Jr,<br />

Chen YQ. Mediation of the <strong>DCC</strong> apoptotic signal by<br />

DIP13 alpha. J Biol Chem. 2002 Jul<br />

19;277(29):26281-5.<br />

Mazel<strong>in</strong> L, Bernet A, Bonod-Bidaud C, Pays L, Arnaud S,<br />

Gespach C, Bredesen DE, Scoazec JY, Mehlen P.<br />

Netr<strong>in</strong>-1 controls <strong>colorectal</strong> tumorigenesis by<br />

regulat<strong>in</strong>g apoptosis. Nature. 2004 Sep<br />

2;431(7004):80-4.<br />

Mehlen P, Rabizadeh S, Snipas SJ, Assa-Munt N, Salvesen<br />

GS, Bredesen DE. The <strong>DCC</strong> gene product <strong>in</strong>duces<br />

apoptosis by a mechanism requir<strong>in</strong>g receptor<br />

proteolysis. Nature. 1998 Oct 22;395(6704):801-4.<br />

Mehlen P, Fearon ER. Role of the dependence receptor <strong>DCC</strong> <strong>in</strong><br />

<strong>colorectal</strong> cancer pathogenesis. J Cl<strong>in</strong> Oncol. 2004<br />

Aug 15;22(16):3420-8.<br />

Narayanan R, Lawlor KG, Schaapveld RQ, Cho KR,<br />

Vogelste<strong>in</strong> B, Bui-V<strong>in</strong>h Tran P, Osborne MP, Telang<br />

NT. Antisense RNA to the putative tumor-suppressor<br />

gene <strong>DCC</strong> transforms Rat-1 fibroblasts. Oncogene.<br />

1992 Mar;7(3):553-61.<br />

Renault TT, Manon S. <strong>Bax</strong>: Addressed to kill. Biochimie. 2011<br />

Sep;93(9):1379-91.<br />

Shibata D, Reale MA, Lav<strong>in</strong> P, Silverman M, Fearon ER,<br />

Steele G Jr, Jessup JM, Loda M, Summerhayes IC.<br />

The <strong>DCC</strong> prote<strong>in</strong> <strong>and</strong> prognosis <strong>in</strong> <strong>colorectal</strong> cancer.<br />

N Engl J Med. 1996 Dec 5;335(23):1727-32.<br />

Saito M, Yamaguchi A, Goi T, Tsuchiyama T, Nakagawara G,<br />

Urano T, Shiku H, Furukawa K. Expression of <strong>DCC</strong><br />

prote<strong>in</strong> <strong>in</strong> <strong>colorectal</strong> tumors <strong>and</strong> its relationship to<br />

tumor progression <strong>and</strong> metastasis. Oncology.<br />

1999;56(2):134-41.<br />

Tanaka K, Oshimura M, Kikuchi R, Seki M, Hayashi T,<br />

Miyaki M. Suppression of tumorigenicity <strong>in</strong> human<br />

colon carc<strong>in</strong>oma cells by <strong>in</strong>troduction of normal<br />

chromosome 5 or 18. Nature. 1991 Jan<br />

24;349(6307):340-2.<br />

Q<strong>in</strong>gwei Zhou Ph.D Zhongyi Cong Ph.D

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!