17.07.2015 Views

Post Transcriptional Gene Silencing in Plants (PTGS) - Eurasnet.info

Post Transcriptional Gene Silencing in Plants (PTGS) - Eurasnet.info

Post Transcriptional Gene Silencing in Plants (PTGS) - Eurasnet.info

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

POST TRANSCRIPTIONALGENE SILENCING -<strong>PTGS</strong><strong>Plants</strong>: Cosuppression or Epigenetic gene silenc<strong>in</strong>g:1990: found that transgenes could suppress the expression of similar endogenousgenes. which resulted <strong>in</strong> loss of function <strong>in</strong> 10-40% of the transgenic plants.Exp: Chalcone synthase (anthocyan<strong>in</strong> synthese pathway ) <strong>in</strong> PetuniaCaMVGenNOS-TerCaMV: Cauliflower Mosaic Virus PromotorNOS-Ter: Nopal<strong>in</strong>synthase Term<strong>in</strong>atorBoth, endogenous and transgene were transcribed but almost no mRNA wasdetectable, so silenc<strong>in</strong>g is on the RNA level RNA silenc<strong>in</strong>g (not genesilenc<strong>in</strong>g), cod<strong>in</strong>g region was methylated.


GENE SILENCING<strong>PTGS</strong>: <strong>Post</strong> transcriptional gene silenc<strong>in</strong>gTGS: <strong>Transcriptional</strong> gene silenc<strong>in</strong>gTGSHDGS: Homology dependentgene silenc<strong>in</strong>g<strong>PTGS</strong>-) promotor <strong>in</strong>active-) promotor methylated-) chromat<strong>in</strong> remodell<strong>in</strong>g-) frequently meiotically heritable-)both transgene and endogenousgenes are methylated-) non symmetrical methylation(non CG or CNG) → hallmark ofRNA directed DNA methylation.-) X <strong>in</strong>activation: Xist – Tsix:dsRNA? and methylation-) transcribed, but no fulltranscript found-) cod<strong>in</strong>g region methylated-) not dependent on ongo<strong>in</strong>gtranslation-) fully reversible dur<strong>in</strong>g meioses


<strong>PTGS</strong> can also be <strong>in</strong>duced by homologous DNA, with nopromoter sequence (m<strong>in</strong>imal length 300 bp) „ectopicpair<strong>in</strong>g“ aberrant RNAGrant,S., 1999, Cell, Vol. 96, 303–306.


N. clevelandii - TMV: systemic <strong>in</strong>fection with strongsymptoms


Cross protection: for several viruses an RNA mediated process:Model system: Potato virus X (PVX)Additional:recomb<strong>in</strong>ant PVX virus: with exonsequences of an endogenous gene:gene expression was suppressed ifthe virus was replication competent(virus replication: ds RNA): decl<strong>in</strong>eof viral RNA and host mRNA:VIGS: virus <strong>in</strong>duced gene silenc<strong>in</strong>g


GFP-Nicotiana benthamiana – model plantfor <strong>PTGS</strong>Transgenic Tobacco GFP plant <strong>in</strong>fectedwith Agrobacteria conta<strong>in</strong><strong>in</strong>g a GFP geneConstruct with a GFP genefor Agrobacteria transformationC: GFP express<strong>in</strong>g plantD: silenced plantBrigneti et al., 1998, EMBO J. 17, 6739-6746


Fire, A. TIGS, 15, 358 (1999)


POST - TRANSCRIPTIONALGENE SILENCING -<strong>PTGS</strong>„RNA <strong>in</strong>terference“ RNAi, a phenomenon <strong>in</strong> C. elegansand Drosophila for silenc<strong>in</strong>g of gene expression through asignal <strong>in</strong>duced by double stranded RNA (dsRNA)C. elegans: <strong>in</strong>jection of dsRNA: correspond<strong>in</strong>g gene productdisapears <strong>in</strong> the somatic cells, also <strong>in</strong> F1 generation.However, F2 normal phenotyp, no mutation, no sequencedifference: is post-transcriptional because only exonsequences show RNAi. In polycistronic pre-mRNAs only thesequences of the <strong>in</strong>itial dsRNA are silenced. RNAdegradation is at the level of nucleus and cytoplasm.WHAT HAPPENS? WHY is DEGRADATIONtransmissible through the whole organism??


<strong>PTGS</strong>: siRNAs<strong>Plants</strong>: 1999: small RNAs of 21- 25 nt were detected which correspondedto the silenced gene, but only detectable <strong>in</strong> plants which were silenced. Alsofor viral sequences(Hamilton and Baulcombe, Science, 286, 950).Drosophila: <strong>in</strong>duced silenc<strong>in</strong>g of a gene with a dsRNA, cell extract hadnuclease activity which was sequence specific: partial purified nucleaseconta<strong>in</strong>ed sequence specific 21-25 mers.Cell extract could be <strong>in</strong>duced with dsRNA to process the dsRNA <strong>in</strong>to21-23 nt RNA (dsRNA nuclease). Addition of mRNA resulted <strong>in</strong> degradationof sequences correspond<strong>in</strong>g to the orig<strong>in</strong>al dsRNA sequence: siRNA: small <strong>in</strong>terfer<strong>in</strong>g RNAs: hallmark <strong>in</strong> RNA silenc<strong>in</strong>g


A Model for the RNAi PathwayZamore, P.D., Nature structural biology, 8 (2001), 746RISC: RNA <strong>in</strong>duced silenc<strong>in</strong>g complex


An <strong>in</strong>tegrated model for RNAi and <strong>PTGS</strong>Hutvagner, G. and Zamore, P.D., Current Op<strong>in</strong>ion <strong>in</strong> <strong>Gene</strong>tics & Development, 12 (2002), 225


Virus <strong>in</strong>duced gene silenc<strong>in</strong>g (VIGS)RNA of a virus +a gene of <strong>in</strong>terestRdRpdsRNAdegradation of viral RNADicer-likedsRNaseRISC-like nucleasecomplex21-25nt siRNAEndogenous mRNANucleusmRNA degradation


Systemic silenc<strong>in</strong>g: mobile signalsilenc<strong>in</strong>g signal moves both cell-to-cell and throughphloem mimick<strong>in</strong>g pattern of viral movementscionGUS express<strong>in</strong>g plant: scionGUS silenced rootstockhistochemical sta<strong>in</strong><strong>in</strong>g showsthat movement of the signal <strong>in</strong>toscion is first evidenced by theabsence of blue color <strong>in</strong> theregions along the ve<strong>in</strong>sMlotshwa et al., The Plant Cell, Supp. 2002, S289


Viral cell-to-cell movement proceedsthrough plasmodesmatacell wallplasmodesmataplasmodesmata provide an <strong>in</strong>tercellular transport pathway for small molecules


Intercellular transport of TMV RNA?transport viamicrotubuliPlasmodesmanucleusmovementprote<strong>in</strong>viralgenomesynthesis ofviralcomponentsModified from Lazarowicz and Beachy, Plant Cell, 1999


Tobacco Mosaic virus movement prote<strong>in</strong> (TMV-MP)opens plasmodesmata10 kDa fluores. Dextran10 kDa fluores. Dextran+ TMV-MPN. tabacum


Viruses fight back: suppressors of RNAsilenc<strong>in</strong>gtransgenic GFP plantPotato virus Y15 d post InokulationPlant viruses all have RNAsilenc<strong>in</strong>g suppressors:PVX-p25 movement prote<strong>in</strong>:affects systemic silenc<strong>in</strong>g,HcPro-Potyviruses: suppressproduction of small RNAs,important for virus <strong>in</strong>fectivity


Viral strategies for suppression and evasion of RNA-silenc<strong>in</strong>ga | Direct <strong>in</strong>terference with silenc<strong>in</strong>g-effectormolecules is illustrated by the tombusviral P19prote<strong>in</strong>. The head-to-tail organization of thetombusviral P19 homodimers (blue and green)allows b<strong>in</strong>d<strong>in</strong>g to small <strong>in</strong>terfer<strong>in</strong>g RNA (siRNA)duplexes (yellow). Two sets of tryptophanresidues (yellow) b<strong>in</strong>d to the last set of base pairson either end of the siRNA, lead<strong>in</strong>g to effectivemeasurement of the duplex length, such that P19selects siRNAs of 21nt for b<strong>in</strong>d<strong>in</strong>g. Thesequestered siRNA is prevented from enter<strong>in</strong>gthe RNA <strong>in</strong>duced silenc<strong>in</strong>g complex (RISC) andis therefore <strong>in</strong>activated.b | Recruitment of endogenous negativeregulators of RNA silenc<strong>in</strong>g is illustrated by thepotyviral helper component prote<strong>in</strong>ase (HcPro).HcPro <strong>in</strong>teracts with the calmodul<strong>in</strong>-like prote<strong>in</strong>rgsCaM (regulator of gene silenc<strong>in</strong>g CaM) to<strong>in</strong>activate the RNA-silenc<strong>in</strong>g pathway throughan unknown mechanism at an <strong>in</strong>termediate stepthat <strong>in</strong>volves both RISC and Dicer.


RNA-based silenc<strong>in</strong>g strategies <strong>in</strong> plantsMatzke et. al., Current Op<strong>in</strong>ion <strong>in</strong> <strong>Gene</strong>tics & Development 2001, 11:221–227


More Dicer prote<strong>in</strong>s <strong>in</strong> plants<strong>Plants</strong>: short siRNA: 21-22nt, correlate with sequence specific degradation;long siRNA 24-26 nt <strong>in</strong>volved <strong>in</strong> trigger<strong>in</strong>g systemic silenc<strong>in</strong>gVo<strong>in</strong>net, Trends <strong>in</strong> Plant Science, 8, 307, 2003


<strong>Gene</strong>ral pathway of RNAi <strong>in</strong> vitroRNAi: RNA <strong>in</strong>terferencesiRNA: small <strong>in</strong>terfer<strong>in</strong>g RNARISC: RNA-<strong>in</strong>duced silenc<strong>in</strong>g complexSontheimer, NRMCB, 2005, p127


Chemical Mechanism of RISC-catalysed target-mRNA cleavageSlicer: enzyme which cuts the target strand, strong evidence that Ago prote<strong>in</strong>s possessthis activity. Crystal structure show that the PIWI doma<strong>in</strong> of Ago prote<strong>in</strong>s are very similarto RNaseH and harbour endonuclease activity. Like RNase H it is dependent on divalentmetal ions, produces 3‘OH and 5‘P and only cleaves onestrand of the duplex RNA.


siRNA asymmetry, dsRNA process<strong>in</strong>g and the implicationsfor RISC assembly.a | When 21-nt short <strong>in</strong>terfer<strong>in</strong>g (si)RNAs are used to <strong>in</strong>itiate RNA <strong>in</strong>terference (RNAi), the strand with its5‘ term<strong>in</strong>us at the thermodynamically less stable end of the duplex is preferentially <strong>in</strong>corporated <strong>in</strong>to theRNA-<strong>in</strong>duced silenc<strong>in</strong>g complex (RISC). The guide strand is shown <strong>in</strong> red and the passenger strand <strong>in</strong>blue. Less stably base-paired regions of the siRNA are depicted <strong>in</strong> grey and the more stable regions areshown <strong>in</strong> black.b | Dicer (Dcr) generates siRNAs from the ends of double-stranded (ds)RNAs. The multiple doma<strong>in</strong>s thatare found <strong>in</strong> most Dcrs (the RNA helicase, DUF283, PAZ, RNase IIIa (RIIIa), RNase IIIb (RIIIb), anddsRNA-b<strong>in</strong>d<strong>in</strong>g (dsRBD) doma<strong>in</strong>s) are shown. Current models <strong>in</strong>dicate that Dcr <strong>in</strong>teracts with nascentsiRNAs asymmetrically, with its PAZ doma<strong>in</strong> bound to the pre-exist<strong>in</strong>g dsRNA end and its dsRBD boundcloser to the dsRNA-cleavage sites (arrows). The dual roles of Dcr <strong>in</strong> dsRNA cleavage and RISC assembly<strong>in</strong>dicate that Dcr might rema<strong>in</strong> bound to the siRNA after it is processed from the dsRNA precursor.Comb<strong>in</strong>ed dsRNA-process<strong>in</strong>g and target-cleavage assays suggest that the strand that has its 3‘ end boundto the PAZ doma<strong>in</strong> preferentially assembles <strong>in</strong>to RISC.


dsRNA process<strong>in</strong>g by dicer and RISC formationpassenger strandguide strandRISC: RNA <strong>in</strong>duced silenc<strong>in</strong>g complex.thermodynamic asymmetry rule: for synthetic siRNA strand selection: The strand whichhas the its 5‘ end at the less stably base-paired region becomes the guide strand.


RISC Assembly <strong>in</strong> Drosophila

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!