05.12.2012 Views

priciples of insecticide use in rice ipm

priciples of insecticide use in rice ipm

priciples of insecticide use in rice ipm

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

DRR Technical Bullet<strong>in</strong> 30/2008<br />

Correct citation :<br />

N.V. Krishnaiah, V. Jhansi Lakshmi, I.C. Pasalu, G.R. Katti and Ch. Padmavathi, INSECTICIDES IN RICE<br />

IPM PAST, PRESENT AND FUTURE. Technical Bullet<strong>in</strong> No.30, Directorate <strong>of</strong> Rice Research, Hyderabad,<br />

A.P. India – pp : 146<br />

Published by :<br />

Dr. B.C.Viraktamath<br />

Project Director<br />

Directorate <strong>of</strong> Rice Research<br />

RajendraNagar, Hyderabad- 500 030, India<br />

Tel : +91 -40-24015120,2401 5026-39<br />

Fax : +91-40-2401 5308<br />

Website : www.drricar.org<br />

Email : pd<strong>rice</strong>@drricar.org<br />

Designed by :<br />

S. Nagaraj<br />

Pr<strong>in</strong>ted by :<br />

Suneetha Offset Pr<strong>in</strong>ters<br />

# 4-5-716/3, Kuthibguda, Koti<br />

Hyderabad - 500 027. A.P. India.<br />

Ph : +91-40-24657269, 24761780.


FOREWORD<br />

Rice, the staple food <strong>of</strong> more than half <strong>of</strong> human population is grown <strong>in</strong> 153.9 million hectares <strong>in</strong> the<br />

world with a production <strong>of</strong> 618million tones and a productivity <strong>of</strong> 4.02 tones /ha.<br />

India ranks first <strong>in</strong> the world <strong>in</strong> <strong>rice</strong> area with 44.3 million hectares. But our productivity is only 3.01<br />

t/ha, which is below world average. Insect pests, diseases and weeds ca<strong>use</strong> considerable are the<br />

major deterrents <strong>in</strong> enhanc<strong>in</strong>g <strong>rice</strong> productivity <strong>in</strong> the country. Among these, <strong>in</strong>sect pests alone ca<strong>use</strong><br />

about 10% loss <strong>in</strong> yield. To avert the damage by these <strong>in</strong>sect pests, farmers are forced to apply<br />

<strong><strong>in</strong>secticide</strong>s.<br />

There is vast <strong>in</strong>formation generated on the effectiveness <strong>of</strong> <strong><strong>in</strong>secticide</strong>s, methods <strong>of</strong> application and<br />

associated problems like <strong><strong>in</strong>secticide</strong> resistance, pest resurgence, secondary pest outbreaks, effects<br />

on non-target organisms etc. <strong>in</strong> all the major <strong>rice</strong> grow<strong>in</strong>g countries dur<strong>in</strong>g the last 40 to 45 years <strong>of</strong><br />

post green revolution era. Entomologists at our Directorate have made untir<strong>in</strong>g efforts <strong>in</strong> gather<strong>in</strong>g<br />

almost the vast <strong>in</strong>formation on <strong><strong>in</strong>secticide</strong> usage <strong>in</strong> <strong>rice</strong> with special emphasis on <strong><strong>in</strong>secticide</strong>s as a<br />

component <strong>of</strong> IPM.<br />

The <strong>in</strong>formation has been arranged thematically and presented <strong>in</strong> an easy and readable way. This<br />

should serve as a source <strong>of</strong> the past and present knowledge <strong>of</strong> <strong><strong>in</strong>secticide</strong> utilization <strong>in</strong> <strong>rice</strong>. This<br />

should also serve as a ready reckoner with the most updated <strong>in</strong>formation on all aspects <strong>of</strong> <strong><strong>in</strong>secticide</strong>s<br />

for the researchers, students, agrochemical agencies and those engaged <strong>in</strong> <strong><strong>in</strong>secticide</strong> production<br />

and evaluation <strong>in</strong> <strong>rice</strong>.<br />

(B.C. Viraktamath)<br />

Project Director


PREFACE<br />

Insect pests, <strong>in</strong> general, damage crops result<strong>in</strong>g <strong>in</strong> an yield loss <strong>of</strong> about 10%. In case <strong>of</strong> <strong>rice</strong> also,<br />

<strong>in</strong>sect pests ca<strong>use</strong> about 10 to 15% reduction <strong>in</strong> yield as evidenced by multi-location experiments<br />

conducted under AICRIP for the last 40 years. To avert these losses, <strong>in</strong>tegrated pest management<br />

(IPM) is adopted as a national policy <strong>in</strong> India. In IPM, the major emphasis <strong>in</strong> <strong>rice</strong> is given for development<br />

<strong>of</strong> varieties resistant to <strong>in</strong>sect pests. However, there are no sources <strong>of</strong> good level <strong>of</strong> resistance, even<br />

to major <strong>in</strong>sect pests like stem borer and leaf folder. For brown planthopper and whitebacked<br />

planthopper, the level <strong>of</strong> host plant resistance is only moderate. Good level <strong>of</strong> resistance is available<br />

for gall midge, but the problem <strong>of</strong> biotypes is crippl<strong>in</strong>g the release <strong>of</strong> resistant varieties suitable for<br />

all areas. Pheromones have come to a stage <strong>of</strong> practical exploitation only <strong>in</strong> case <strong>of</strong> stem borer. The<br />

cultural methods like optimum fertilizer application, clean cultivation etc. are be<strong>in</strong>g followed as <strong>in</strong><br />

other crops. In the given scenario, <strong><strong>in</strong>secticide</strong> application to protect <strong>rice</strong> crop is becom<strong>in</strong>g a necessary<br />

evil, which is forc<strong>in</strong>g <strong>rice</strong> entomologists to cont<strong>in</strong>ue research to fully exploit the potential <strong>of</strong> this<br />

component <strong>of</strong> IPM.<br />

For quite some time, there were misunderstand<strong>in</strong>gs about the role <strong>of</strong> <strong><strong>in</strong>secticide</strong>s <strong>in</strong> <strong>rice</strong> IPM. Some<br />

entomologists argued that IPM means completely avoid<strong>in</strong>g <strong><strong>in</strong>secticide</strong> usage, but, the practical field<br />

situation under farmers’ conditions is entirely different. Rice farmer has to resort to <strong>use</strong> <strong>of</strong> susceptible<br />

varieties for their own obvious reasons and are forced to apply <strong><strong>in</strong>secticide</strong>s whenever some pest<br />

problems arise.<br />

Unfortunately, <strong>in</strong>ternational organizations have discont<strong>in</strong>ued the <strong><strong>in</strong>secticide</strong> evaluation programmes<br />

<strong>in</strong> <strong>rice</strong>. Hence, national programs like AICRIP have to shoulder the responsibility <strong>of</strong> generat<strong>in</strong>g the<br />

<strong>in</strong>formation on the effectiveness <strong>of</strong> new molecules <strong>of</strong> <strong><strong>in</strong>secticide</strong>s aga<strong>in</strong>st all the major and m<strong>in</strong>or<br />

<strong>in</strong>sect pests <strong>of</strong> <strong>rice</strong>. This has been effectively executed under AICRIP for the last forty years. Therefore,<br />

it is apt to review the whole scenario <strong>of</strong> <strong><strong>in</strong>secticide</strong> evaluation program under AICRIP along with<br />

related efforts by entomologists from other <strong>rice</strong> grow<strong>in</strong>g countries like Ch<strong>in</strong>a, Japan, Korea, Philipp<strong>in</strong>es,<br />

Sri Lanka, Indonesia and Malaysia.<br />

There is no comprehensive source <strong>of</strong> <strong>in</strong>formation available on the effectiveness <strong>of</strong> <strong><strong>in</strong>secticide</strong>s aga<strong>in</strong>st<br />

major <strong>in</strong>sect pests. Hence, we the entomologists at DRR made an attempt <strong>in</strong> our own humble way to<br />

collect, organize and thematically present the whole <strong>in</strong>formation on various aspects <strong>of</strong> <strong><strong>in</strong>secticide</strong> <strong>use</strong><br />

<strong>in</strong> <strong>rice</strong> IPM, its past, current status and future directions.<br />

N.V. Krishnaiah, V. Jhansi Lakshmi, I.C. Pasalu,<br />

G.R.Katti, Ch.Padmavathi


CONTENTS<br />

Integrated Pest Management <strong>in</strong> Rice 1<br />

Bio-ecology <strong>of</strong> major <strong>rice</strong> pests 6<br />

Insecticides <strong>use</strong>d <strong>in</strong> <strong>rice</strong> IPM 16<br />

Pr<strong>in</strong>ciples <strong>of</strong> <strong><strong>in</strong>secticide</strong> <strong>use</strong> <strong>in</strong> <strong>rice</strong> IPM 21<br />

Effectiveness <strong>of</strong> <strong><strong>in</strong>secticide</strong>s aga<strong>in</strong>st <strong>rice</strong> <strong>in</strong>sect pests 31<br />

Methods and tim<strong>in</strong>g <strong>of</strong> <strong><strong>in</strong>secticide</strong> application <strong>in</strong> <strong>rice</strong> 43<br />

Systemic nature <strong>of</strong> <strong><strong>in</strong>secticide</strong>s <strong>in</strong> <strong>rice</strong>: the concept and practice 50<br />

Molecular approaches for <strong><strong>in</strong>secticide</strong> utilization <strong>in</strong> <strong>rice</strong> 54<br />

Safety <strong>of</strong> <strong><strong>in</strong>secticide</strong>s to natural enemies <strong>in</strong> <strong>rice</strong> ecosystem 59<br />

Insecticide resistance <strong>in</strong> <strong>rice</strong> pests 67<br />

Insecticide <strong>in</strong>duced resurgence <strong>in</strong> <strong>rice</strong> pests 79<br />

Botanical <strong><strong>in</strong>secticide</strong>s <strong>in</strong> <strong>rice</strong> pest management 89<br />

Biopesticides and their <strong>use</strong> <strong>in</strong> <strong>rice</strong> IPM 101<br />

Management <strong>of</strong> green leafhopper, the vector <strong>of</strong> <strong>rice</strong> tungro disease with <strong><strong>in</strong>secticide</strong>s 104<br />

Future strategies 109<br />

References 112<br />

Acknowledgements 146


Introduction<br />

Insecticides <strong>in</strong> Rice IPM (DRR)<br />

INTEGRATED PEST MANAGEMENT IN RICE<br />

Rice is grown ma<strong>in</strong>ly <strong>in</strong> Asian countries like Ch<strong>in</strong>a, India, Japan, Korea Republic, Srilanka, Pakistan,<br />

Bangladesh, Indonesia, Malaysia, The Philipp<strong>in</strong>es, Thailand etc. More than 90% <strong>of</strong> <strong>rice</strong> is produced and<br />

consumed <strong>in</strong> these Asian countries. Rice is biologically, ethologically and culturally bound with the life <strong>of</strong><br />

Asians. The total <strong>rice</strong> grow<strong>in</strong>g area <strong>in</strong> the world is 153.9 million hectares with a production <strong>of</strong> 618 million<br />

tons <strong>of</strong> rough <strong>rice</strong>. Among the <strong>rice</strong> produc<strong>in</strong>g countries, India occupies number one position with regard<br />

to area with 44.3 million hectares followed by Ch<strong>in</strong>a (29.3 million ha.). However, with regard to the<br />

productivity or per hectare yield <strong>of</strong> <strong>rice</strong>, India occupies 15th or still lower position with 3.01 t./ha <strong>of</strong> rough<br />

<strong>rice</strong>, compared to Ch<strong>in</strong>a (6.26t./ha.), Japan (6.65t./ha.), Korea Republic (6.57t./ha.), Indonesia (4.57t./<br />

ha.), Malaysia (3.36t./ha.),The Philipp<strong>in</strong>es(3.65t/ha.), SriLanka(3.51t./ha.)etc.(FAO,2006). The major<br />

reasons for low productivity <strong>in</strong> India are the losses due to <strong>in</strong>sect pests, diseases and weeds. Insect pests<br />

alone are responsible for 10-25% yield losses <strong>in</strong> India.<br />

There are several methods like host plant resistance, cultural measures, optimum time <strong>of</strong> sow<strong>in</strong>g and<br />

transplant<strong>in</strong>g, recommended and balanced fertilizer application, water management, biological control<br />

methods like conservation and utilization <strong>of</strong> parasitoids and predators, biorational methods like <strong>use</strong> <strong>of</strong><br />

<strong>in</strong>sect pheromones, botanicals and need based <strong><strong>in</strong>secticide</strong> <strong>use</strong>. Utilization <strong>of</strong> as many techniques as<br />

possible <strong>in</strong>to a unified programme is called <strong>in</strong>tegrated pest management or IPM. This has been accepted<br />

and attempted as a national policy <strong>in</strong> India.<br />

There are over a dozen def<strong>in</strong>itions propounded by various authors for the concept <strong>of</strong> <strong>in</strong>tegrated pest<br />

management (IPM). However, the salient po<strong>in</strong>ts <strong>of</strong> all the def<strong>in</strong>itions are that<br />

(1) IPM is an ecosystem approach <strong>in</strong> pest management <strong>in</strong> which all the natural<br />

forces <strong>of</strong> pest suppression are strengthened.<br />

2) One or more methods <strong>of</strong> pest suppression are employed <strong>in</strong>to a unified command.<br />

3) The option(s) <strong>of</strong> least possible disturbance <strong>in</strong> the agri-ecosystem like <strong>rice</strong> ecosystem is (are)<br />

employed.<br />

4) With the awareness <strong>of</strong> the limitations imposed by the fact that agro-ecosystems are “artificial<br />

ecosystems”.<br />

Philosophy <strong>of</strong> IPM<br />

The <strong>in</strong>sects have come <strong>in</strong>to existence dur<strong>in</strong>g the course <strong>of</strong> evolution about 300 million years ago, while<br />

man appeared on the scene <strong>of</strong> evolution only about one lakh years ago or even later. The <strong>in</strong>sects have<br />

<strong>in</strong>vaded all spheres <strong>of</strong> earth both terrestrial and aquatic. They adapted to all types <strong>of</strong> food materials<br />

available on the planet. They developed physiological mechanisms to cope up with any adverse conditions<br />

1


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

<strong>in</strong> terms <strong>of</strong> biotic and abiotic factors. Above all, the <strong>in</strong>sects have immense reproductive potential. The<br />

<strong>in</strong>sect pests <strong>of</strong> crops <strong>in</strong> general and <strong>rice</strong> <strong>in</strong> particular developed high physiological abilities <strong>of</strong> adaptation.<br />

For <strong>in</strong>stance, the fact that there are no sources <strong>of</strong> host plant resistance to many <strong>rice</strong> <strong>in</strong>sect pests like stem<br />

borers, leaf folders, <strong>rice</strong> hispa, gundhi bug etc. is an expression <strong>of</strong> their high level <strong>of</strong> adaptation to <strong>rice</strong><br />

plant. As <strong>rice</strong> is grown <strong>in</strong> different ecosystems, like irrigated, deep water, upland and ra<strong>in</strong>-fed lowland, the<br />

adaptation <strong>of</strong> different pests is f<strong>in</strong>e-tuned to suit that particular ecosystem. Termites and root aphids are<br />

present <strong>in</strong> uplands only, while gall midge is conf<strong>in</strong>ed ma<strong>in</strong>ly to irrigated <strong>rice</strong> ecosystem.<br />

The major philosophy <strong>of</strong> IPM is to live with the <strong>in</strong>sect pests <strong>in</strong>stead <strong>of</strong> attempt<strong>in</strong>g to completely elim<strong>in</strong>ate<br />

them from <strong>rice</strong> ecosystem. At the same time the farmer has to safe guard the yield levels <strong>of</strong> the crop.<br />

Hence, he can tolerate only up to certa<strong>in</strong> level <strong>of</strong> pest population or damage. Hence, the concept <strong>of</strong><br />

economic thresholds (ETLs) was arrived at.<br />

Concept <strong>of</strong> ecosystem<br />

“Ecosystem <strong>in</strong> general is any unit hav<strong>in</strong>g liv<strong>in</strong>g organisms and non-liv<strong>in</strong>g environment representative <strong>of</strong><br />

an area with effective <strong>in</strong>teraction between the liv<strong>in</strong>g organisms and the non-liv<strong>in</strong>g environment, lead<strong>in</strong>g to<br />

trophic levels, material cycles and energy flow” (Odum, 1971).<br />

In a natural ecosystem like a forest, the vegetation serv<strong>in</strong>g as the energy source for all the animal<br />

k<strong>in</strong>gdom is permanent, evolved over millions <strong>of</strong> years ago, consist<strong>in</strong>g <strong>of</strong> many plant species and best<br />

suited to the climate. The phytophagous animals <strong>in</strong>clud<strong>in</strong>g <strong>in</strong>sects feed<strong>in</strong>g on these plants never <strong>in</strong>crease<br />

beyond certa<strong>in</strong> levels as the natural enemies like parasitoids and predators automatically push down the<br />

phytophagous <strong>in</strong>sect populations. All this is possible beca<strong>use</strong> the vegetation <strong>in</strong> forest ecosystem is<br />

permanent and stable.<br />

If we compare now the <strong>rice</strong> crop as an ecosystem with the forest we can clearly understand the differences.<br />

Here a s<strong>in</strong>gle species that too a s<strong>in</strong>gle variety <strong>of</strong> <strong>rice</strong> is fed with nutrients <strong>of</strong> NPK, Zn etc to serve as a<br />

feast for phytophagous <strong>in</strong>sects and boost their populations. The natural enemies will try to push down the<br />

phytophagous <strong>in</strong>sects but cannot cope up with the tremendous reproductive abilities <strong>of</strong> phytophagous<br />

<strong>in</strong>sects. Hence, natural enemies are present only as passive dependants on phytophagous <strong>in</strong>sects and<br />

cannot actively push down their populations. Further, once the crop is harvested, the natural enemies are<br />

destroyed and hence they have to re-colonize and start multiply<strong>in</strong>g on the phytophagous <strong>in</strong>sects all<br />

afresh. Thus, it is clear why natural biological control alone is not sufficient to push down pest levels <strong>in</strong> <strong>rice</strong><br />

ecosystem.<br />

Thus <strong>in</strong> <strong>rice</strong> IPM, the farmer needs to depend on other methods like host-plant resistance where ever<br />

possible, sow and plant <strong>in</strong> time, monitor the pest populations so that they do not cross ETLs, adopt<br />

cultural methods like optimum and recommended fertilizer levels, proper water management, adoption <strong>of</strong><br />

pheromones, botanicals, biopesticides or other non-pesticidal approaches along with need based application<br />

<strong>of</strong> <strong><strong>in</strong>secticide</strong>s.<br />

2


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

Pit-falls lie <strong>in</strong> understand<strong>in</strong>g the concept <strong>of</strong> IPM<br />

The difficulties lie <strong>in</strong> understand<strong>in</strong>g how the concept <strong>of</strong> IPM has been evolved. It was thought that the<br />

agro-ecosystems like <strong>rice</strong> need no pesticide application at all or <strong>in</strong>tegrated pest management means / or<br />

synonymous with concept <strong>of</strong> ban on <strong>use</strong> <strong>of</strong> pesticides <strong>in</strong> <strong>rice</strong> ecosystems. Therefore, it was stated that<br />

agro ecosystems like <strong>rice</strong> crop needs only to be planted and left to Mother Nature for its care dur<strong>in</strong>g the<br />

rest <strong>of</strong> the cropp<strong>in</strong>g period. Our past experience proves to the contrary. In many <strong>of</strong> the experiments, it<br />

was observed that even under normal cultural practices with recommended fertilizer levels normal irrigated<br />

<strong>rice</strong> crop suffers very heavily from <strong>in</strong>sect pests like stem borer, gall midge, brown planthopper, whitebacked<br />

planthopper and leaf folder etc. The loss can be between 10 to 25%.<br />

Fertilizer application Versus the Concept <strong>of</strong> IPM<br />

Usually, <strong>rice</strong> farmers <strong>in</strong> deltaic areas apply more than the recommended doses <strong>of</strong> fertilizers, particularly<br />

‘N’. It is this tendency that encourages pest build-up and leads to more pest problems. This practice is<br />

responsible for further enhanc<strong>in</strong>g the magnitude <strong>of</strong> major pests and m<strong>in</strong>or and sporadic pests atta<strong>in</strong><strong>in</strong>g<br />

major pest status. Therefore, farmers must be advised to strictly follow fertilizer levels based on local<br />

recommendations which depend on the variety, soil type, water management etc. It is collectively called as<br />

“good agronomic practice (GAP). This should form the base and a part <strong>of</strong> IPM.<br />

Host Plant Resistance versus IPM<br />

Integrated pest management is a practical approach <strong>in</strong> which utilization <strong>of</strong> pest resistant varieties is the<br />

key component. But the major limitation <strong>in</strong> full utilization <strong>of</strong> host plant resistance for pest management is<br />

lack <strong>of</strong> suitable resistant sources to major <strong>in</strong>sect pests like stem borer and leaf folder <strong>in</strong> <strong>rice</strong>. Good<br />

sources <strong>of</strong> resistance are available <strong>in</strong> case <strong>of</strong> gall midge, but development <strong>of</strong> biotypes is a limitation. But<br />

still gall midge resistant varieties are extensively cultivated <strong>in</strong> many endemic areas, which need no chemical<br />

protection. In case <strong>of</strong> brown planthopper and whitebacked planthopper, the resistance sources are moderate<br />

and also not be<strong>in</strong>g fully exploited. At farmers’ level, the major considerations <strong>in</strong> select<strong>in</strong>g a variety are its<br />

high yield, gra<strong>in</strong> quality, p<strong>rice</strong> <strong>of</strong> the produce and availability <strong>of</strong> market to that particular variety <strong>in</strong> the<br />

region. Host plant resistance at least to major <strong>in</strong>sect pests <strong>of</strong> the region <strong>in</strong> a variety is only a secondary<br />

consideration for the farmer. For <strong>in</strong>stance farmers <strong>in</strong> Krishna Godavari Zone <strong>of</strong> Andhra Pradesh and<br />

Tungabhadra Delta <strong>of</strong> Karnataka are grow<strong>in</strong>g only BPT 5204 and Swarna <strong>in</strong> majority <strong>of</strong> the area although<br />

these are susceptible to the major <strong>in</strong>sect pest like brown planthopper <strong>in</strong> these deltas. Similarly, <strong>in</strong> Kerala<br />

red kernel varieties are preferred over white kernel varieties and it is the red kernel varieties that fetch<br />

premium p<strong>rice</strong> to the Kerala farmers <strong>in</strong> the market. Hence, Kerala farmer goes only for red kernel varieties<br />

whether they are resistant or susceptible to brown planthopper, the major menace <strong>in</strong> the state. However,<br />

there are many brown planthopper resistant varieties with white kernel but these did not f<strong>in</strong>d acceptance<br />

with the Kerala farmers.<br />

3


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

Biological control versus IPM<br />

There are many species <strong>of</strong> parasitoids and predators for all the major <strong>in</strong>sect pests <strong>of</strong> <strong>rice</strong> like stem<br />

borers, planthoppers, leafhoppers, and gall midge etc. Many species <strong>of</strong> spiders present <strong>in</strong> <strong>rice</strong> ecosystem<br />

also prey on these major <strong>in</strong>sect pests. Even when <strong>rice</strong> is sown and planted normally and fertilizer application<br />

is at recommended dose, there are <strong>in</strong>stances <strong>of</strong> 10-25% <strong>in</strong>festation <strong>of</strong> <strong>rice</strong> crop by stem borer and gall<br />

midge <strong>in</strong> endemic areas if the crop is unprotected (DRR, 2006). There are several occasions where<br />

hopper burn has occurred due to planthoppers if timely <strong>in</strong>tervention with <strong><strong>in</strong>secticide</strong> application is not<br />

resorted to. Any number <strong>of</strong> examples like this can be cited. The basic question is if the natural biological<br />

control exist<strong>in</strong>g <strong>in</strong> <strong>rice</strong> ecosystem is sufficient to keep the <strong>in</strong>sect populations below economic threshold<br />

levels, the occasions described above should not have occurred. This means that human <strong>in</strong>tervention<br />

through <strong>use</strong> <strong>of</strong> <strong><strong>in</strong>secticide</strong>s is an unavoidable evil to protect <strong>rice</strong> crop from <strong>in</strong>sect pests.<br />

Integrated pest management does not <strong>in</strong>volve only <strong>in</strong>sect pests<br />

IPM <strong>in</strong>volves diseases, weeds, rodents, other <strong>in</strong>vertebrate pests like snails etc. Farmer at his level has to<br />

confront with all these problems <strong>in</strong> adopt<strong>in</strong>g the strategy <strong>of</strong> <strong>in</strong>tegrated pest management. The scientists<br />

<strong>in</strong> different discipl<strong>in</strong>es plan and execute the <strong>in</strong>corporation <strong>of</strong> resistance <strong>in</strong> the varieties concern<strong>in</strong>g their<br />

own discipl<strong>in</strong>es. For <strong>in</strong>stance <strong>in</strong> Punjab, Haryana and Western Uttar Pradesh bacterial leaf blight is a major<br />

menace. Other problems are p<strong>in</strong>k stem borer, yellow stem borer, whitebacked planthopper and leaf folder.<br />

When the whole situation is taken <strong>in</strong>to consideration there are no varieties with good level <strong>of</strong> resistance to<br />

these <strong>in</strong>sect pests. On the other hand, varieties resistant to bacterial leaf blight are available. Another<br />

consideration is that these <strong>in</strong>sect pests can be managed by utiliz<strong>in</strong>g suitable <strong><strong>in</strong>secticide</strong>s or other materials.<br />

But there are no effective chemicals so far identified aga<strong>in</strong>st bacterial leaf blight. Therefore, farmers <strong>of</strong><br />

Punjab have to choose necessarily the varieties with bacterial leaf blight resistance. In coastal Andhra<br />

Pradesh and delta areas <strong>of</strong> Karnataka, along with brown planthopper and whitebacked planthopper,<br />

sheath blight is a major menace. But there are no sources <strong>of</strong> resistance to sheath blight <strong>in</strong> the entire <strong>rice</strong><br />

germplasm evaluated so far. The brown planthopper resistant varieties released <strong>in</strong> these areas were<br />

found acceptance with the farmers for some time. But later they have shifted to the susceptible varieties.<br />

Therefore, farmers <strong>in</strong> this area have to manage both brown planthopper and sheath blight together.<br />

Economic thresholds and economic <strong>in</strong>jury levels <strong>in</strong> adoption <strong>of</strong> IPM<br />

As per the def<strong>in</strong>ition “Economic threshold levels are the levels <strong>of</strong> pest population / <strong>in</strong>festation at which<br />

control measures have to be <strong>in</strong>itiated so that the pest population or damage will not reach the economic<br />

<strong>in</strong>jury level”. Economic <strong>in</strong>jury levels have been def<strong>in</strong>ed as the levels <strong>of</strong> pest populations / damage where<br />

the loss <strong>in</strong> economic yield equals to the cost <strong>of</strong> crop protection or cost <strong>of</strong> management options.<br />

There are certa<strong>in</strong> lacunae <strong>in</strong> understand<strong>in</strong>g the concept <strong>of</strong> ETLs <strong>in</strong> pests and diseases on the part <strong>of</strong><br />

many plant protection scientists as well as farmers. ETLs are only broad guidel<strong>in</strong>es <strong>in</strong> tak<strong>in</strong>g up control<br />

measures aga<strong>in</strong>st the pest or pests or diseases <strong>in</strong> a given area and given situation. For <strong>in</strong>stance, <strong>in</strong> brown<br />

4


The follow<strong>in</strong>g are the Economic Threshold Levels for major <strong>in</strong>sect pests<br />

Insect pest Economic thresholds<br />

Insecticides <strong>in</strong> Rice IPM (DRR)<br />

Brown planthopper/ 10 <strong>in</strong>sects per hill at vegetative stage or 20 <strong>in</strong>sects per at later<br />

whitebacked planthopper stages<br />

Stem borer 5-10% dead hearts or 1 egg mass / sq m or 1 adult moth / sq. m.<br />

Leaf folder 3 freshly damaged leaves / hill at post active tiller<strong>in</strong>g stage<br />

Green leafhopper 2 <strong>in</strong>sects / hill <strong>in</strong> tungro endemic areas. 20-30 <strong>in</strong>sects /hill <strong>in</strong> other<br />

areas.<br />

Gundhi bug 1 nymph or adult / hill<br />

Gall midge 5% silver shoots at the active tiller<strong>in</strong>g stage<br />

planthopper endemic areas where whitebacked planthopper is also present the population <strong>of</strong> both the<br />

planthoppers is to be taken <strong>in</strong>to consideration while decid<strong>in</strong>g 15 to 20 <strong>in</strong>sects / hill as ETL. In these areas<br />

if the leaf folder is also a major menace, even if the <strong>in</strong>tensity <strong>of</strong> all the pests is below economic threshold<br />

<strong>in</strong> respect <strong>of</strong> <strong>in</strong>dividual pests as cited above, the control measures have to be <strong>in</strong>itiated early. Similarly, <strong>in</strong><br />

areas where brown planthopper and whitebacked planthopper are problems, sheath blight is also a major<br />

menace, the level <strong>of</strong> damage by sheath blight is also to be considered while <strong>in</strong>itiat<strong>in</strong>g necessary management<br />

practices.<br />

Another important consideration while decid<strong>in</strong>g the ETL is the stage <strong>of</strong> the plant. Usually, for the <strong>in</strong>cidence<br />

<strong>of</strong> yellow stem borer <strong>in</strong> vegetative stage, 5% dead hearts is considered as ETL. However, at head<strong>in</strong>g<br />

stage, there is no level <strong>of</strong> white ear heads fixed as ETL beca<strong>use</strong> the damage at this stage is not compensated.<br />

Hence, as per the guide l<strong>in</strong>es one moth or 1 egg mass per sq. m. dur<strong>in</strong>g flower<strong>in</strong>g phase or even slightly<br />

earlier has to be considered as ETL. Further, to prevent the white ear head damage, the management<br />

measures have to be <strong>in</strong>itiated before panicle emergence itself. Similarly, <strong>in</strong> case <strong>of</strong> neck blast <strong>in</strong>festation<br />

also, more or less similar guidel<strong>in</strong>es have to be followed.<br />

5


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

BIO-ECOLOGY OF MAJOR INSECT PESTS OF RICE<br />

Rice is cultivated <strong>in</strong> varied environments like uplands, deep-water, shallow-low lands and irrigated conditions.<br />

However, the most preferred ecology <strong>of</strong> the <strong>rice</strong> plant is tropical and humid climate with a temperature<br />

range <strong>of</strong> 15-35 0 C and RH <strong>of</strong> 85-100%. This climate is also best suited for the survival and multiplication<br />

<strong>of</strong> many <strong>in</strong>sects. Therefore, a large number <strong>of</strong> <strong>in</strong>sects got adapted for feed<strong>in</strong>g on <strong>rice</strong> and utilize it as their<br />

food. There are more than 100 <strong>in</strong>sect species recorded as feed<strong>in</strong>g on <strong>rice</strong> plant. About 20-25 <strong>of</strong> them<br />

reached the status <strong>of</strong> pests caus<strong>in</strong>g economic losses under farmers’ field situations. Among them, stem<br />

borers, planthoppers, leafhoppers, leaf folders, gall midge, <strong>rice</strong> hispa, gundi bug, case worm, army<br />

worm, cut worm, mealy bugs and <strong>rice</strong> thrips are the most important <strong>in</strong> India and other countries. A brief<br />

bio-ecology <strong>of</strong> these pests is presented below.<br />

Stem borers<br />

The stem borers attack <strong>rice</strong> crop throughout the growth period from nursery up to harvest. The damage<br />

results <strong>in</strong> characteristic symptoms <strong>of</strong> ‘dead hearts’ or ‘white ears’ depend<strong>in</strong>g on the stage <strong>of</strong> the crop.<br />

Dur<strong>in</strong>g vegetative phase, the stem borer larvae emerge from the egg masses laid on leaves and enter the<br />

tiller to feed <strong>in</strong>side, result<strong>in</strong>g <strong>in</strong> the characteristic damage <strong>of</strong> ‘dead heart’. In the damaged plants, the<br />

central leaf whorl does not unfold, turns brownish and dries out although the lower leaves rema<strong>in</strong> green<br />

and healthy. The affected tillers do not grow further and eventually dry. The dead heart comes out easily<br />

6<br />

YSB Male YSBFemale YSB Egg mass<br />

YSB Pupa<br />

YSB Larva


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

when pulled and emits foul smell. At reproductive stage, the damage is characterized by whitish, erect<br />

and chaffy panicles, which are very conspicuous <strong>in</strong> field and are called ‘white ears’. However, the stem<br />

borer damage may occur dur<strong>in</strong>g the gra<strong>in</strong> fill<strong>in</strong>g stage also, lead<strong>in</strong>g to stoppage <strong>of</strong> further gra<strong>in</strong> fill<strong>in</strong>g and<br />

result<strong>in</strong>g partially filled gra<strong>in</strong>s.<br />

There are five species <strong>of</strong> stem borers distributed throughout India. Among these, yellow stem borer (YSB),<br />

Scirpophaga <strong>in</strong>certulas (Walker) is the most important, widespread, dom<strong>in</strong>ant and destructive. The other<br />

borers are, p<strong>in</strong>k stem borer, Sesamia <strong>in</strong>ferens (Walker) occurr<strong>in</strong>g mostly <strong>in</strong> <strong>rice</strong>-wheat cropp<strong>in</strong>g systems<br />

<strong>of</strong> north-west, white borer, Scirpophaga <strong>in</strong>notata (Walker) common <strong>in</strong> southern region particularly <strong>in</strong><br />

Kerala, dark headed stem borer, Chilo polychrysus (Meyrick) and striped stem borer, Chilo suppressalis<br />

(Meyrick) <strong>in</strong> states <strong>of</strong> West Bengal and Assam respectively.<br />

In southern parts <strong>of</strong> India where <strong>rice</strong> is cultivated through out the year, there are usually 3 generations<br />

dur<strong>in</strong>g kharif season and 2 generations dur<strong>in</strong>g rabi season. Similar is the case <strong>in</strong> most parts <strong>of</strong> eastern<br />

states like Orissa, West Bengal and the north eastern states like Assam, etc. However, <strong>in</strong> north western<br />

parts <strong>of</strong> India, where one crop season <strong>of</strong> <strong>rice</strong> is prevail<strong>in</strong>g, the yellow stem borer completes 2-3 generations<br />

dur<strong>in</strong>g kharif and enters <strong>in</strong>to quiescent stage or diapa<strong>use</strong> <strong>in</strong> larval stage dur<strong>in</strong>g October-November<br />

immediately after <strong>rice</strong> is harvested. It rema<strong>in</strong>s <strong>in</strong> that stage through out the w<strong>in</strong>ter months <strong>of</strong> December to<br />

February-March. With rise <strong>in</strong> the temperatures dur<strong>in</strong>g March, the diapa<strong>use</strong> is broken, the larva pupates<br />

and emerges as adult from April beg<strong>in</strong>n<strong>in</strong>g on wards.<br />

Brown planthopper, Nilaparvata lugens (Stal.)<br />

Brown planthopper emerged as a major pest <strong>of</strong> <strong>rice</strong> <strong>in</strong> India only after 1972, when large scale adoption <strong>of</strong><br />

short-statured high yield<strong>in</strong>g and high nitrogen responsive varieties occupied major areas <strong>in</strong> deltas <strong>of</strong> A.P.,<br />

BPH Adults BPH Eggs<br />

BPH Nymphs BPH Damage<br />

7


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

Tamil Nadu, Kerala and Karnataka, although this pest was notorious <strong>in</strong> parts <strong>of</strong> Ch<strong>in</strong>a, Japan, North and<br />

South Koreas even dur<strong>in</strong>g early parts <strong>of</strong> 20 th century. In those countries japonicas were traditionally<br />

grown with high fertilizer levels. The microclimate <strong>of</strong> <strong>rice</strong> crop which existed <strong>in</strong> japonica varieties <strong>in</strong> those<br />

countries also started prevail<strong>in</strong>g <strong>in</strong> India, Philipp<strong>in</strong>es, Indonesia etc. which are tropical countries, after<br />

large scale adoption <strong>of</strong> dwarf varieties. Although the microclimate <strong>in</strong> these tropical countries is not precisely<br />

del<strong>in</strong>eated, shady atmosphere, high humidity, improper aeration, coupled with optimum temperature <strong>of</strong><br />

25-30 0 C appear to be responsible for rapid build up <strong>of</strong> BPH caus<strong>in</strong>g heavy losses. Heavy nitrogen<br />

application associated with dwarf varieties also appeared to be responsible for major BPH epidemics <strong>in</strong><br />

tropical countries.<br />

Adult BPH are dimorphic. W<strong>in</strong>ged as well as half w<strong>in</strong>ged males and females along with nymphs occur as<br />

mixed populations <strong>in</strong> fields. Both adults and nymphs suck sap from the base <strong>of</strong> the tillers, result<strong>in</strong>g <strong>in</strong><br />

yellow<strong>in</strong>g and dry<strong>in</strong>g <strong>of</strong> the plants. At early stages <strong>of</strong> attack, round yellowish patches appear which soon<br />

turn brownish due to dry<strong>in</strong>g up <strong>of</strong> the plants. The patches <strong>of</strong> <strong>in</strong>festation spread <strong>in</strong> concentric circles with<strong>in</strong><br />

the field and <strong>in</strong> severe cases the affected field gives a burnt appearance known as ‘hopper burn’. The<br />

hopper populations can multiply very fast and migrate over long distances caus<strong>in</strong>g widespread <strong>in</strong>festation<br />

<strong>in</strong> short time. Apart from caus<strong>in</strong>g direct damage, BPH also acts as a vector <strong>of</strong> grassy stunt virus.<br />

The life cycle <strong>of</strong> the <strong>in</strong>sect is completed with<strong>in</strong> 20-25 days depend<strong>in</strong>g on temperature. There are usually<br />

3-4 overlapp<strong>in</strong>g generations dur<strong>in</strong>g the crop season. The w<strong>in</strong>ged adults settle <strong>in</strong> the crop after 15-20<br />

days <strong>of</strong> transplant<strong>in</strong>g. But the population will be very low. It is <strong>of</strong> the order <strong>of</strong> 2-5 <strong>in</strong>sects per 100 hills.<br />

Hence, farmer cannot recognize its presence. It is only dur<strong>in</strong>g 3rd or 4th generation we can see the<br />

population <strong>in</strong> damag<strong>in</strong>g proportions. By that time, the crop comes to flower<strong>in</strong>g phase. That is the reason<br />

why farmers th<strong>in</strong>k that BPH attacks <strong>rice</strong> crop only at flower<strong>in</strong>g phase (Krishnaiah et al., 2006b).<br />

Whitebacked planthopper, Sogatella furcifera (Horvath)<br />

Dur<strong>in</strong>g 70s and 80s whitebacked planthopper (WBPH) <strong>use</strong>d to be conf<strong>in</strong>ed to north-western belt <strong>of</strong><br />

Punjab, Haryana, and western Uttar Pradesh. Later, the pest has spread to almost all areas where <strong>rice</strong> is<br />

grown and started occurr<strong>in</strong>g together with BPH <strong>in</strong> many deltas <strong>of</strong> the southern states. This has emerged<br />

as a serious pest <strong>in</strong> areas particularly where <strong>rice</strong> varieties resistant to BPH are grown. The partially<br />

8<br />

WBPH Adults WBPH Eggs WBPH Nymphs


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

cleared ecological- niche due to low population <strong>of</strong> BPH on resistant varieties appeared to have triggered<br />

the multiplication <strong>of</strong> WBPH on those varieties.<br />

WBPH is relatively smaller <strong>in</strong> size compared to BPH with a conspicuous white spot on dorsal thorax. Hence, the<br />

name whitebacked planthopper. The nature <strong>of</strong> damage and the biology <strong>of</strong> WBPH are similar to BPH. Both<br />

nymphs and adults suck the plant sap from phloem and ca<strong>use</strong> dry<strong>in</strong>g up <strong>of</strong> plants. Unlike BPH, it does not ca<strong>use</strong><br />

sudden and severe hopper burn. WBPH is not known to transmit any <strong>of</strong> the virus diseases <strong>of</strong> <strong>rice</strong>.<br />

The ecological conditions like high humidity (90 to 100%), optimum temperature (22 – 27oC) is very similar to<br />

BPH. The most significant difference between BPH and WBPH is that WBPH tends to be more numerous dur<strong>in</strong>g<br />

early stages <strong>of</strong> crop growth i.e. up to 40 DAT, while BPH multiplies faster later on. In many <strong>of</strong> the deltaic areas<br />

WBPH is conf<strong>in</strong>ed mostly to kharif season while BPH occurs dur<strong>in</strong>g both kharif and rabi seasons.<br />

Green leafhoppers Nephotettix virescens (Distant) and Nephotettix nigropictus (Stal)<br />

There are two species <strong>of</strong> green leafhopper occurr<strong>in</strong>g <strong>in</strong> <strong>rice</strong> viz., Nephotettix virescens (Distant) and Nephotettix<br />

nigropictus (Stal). Both the leafhoppers suck the sap from <strong>rice</strong> plant from phloem as well as xylem. But unlike<br />

planthoppers, green leafhoppers do not ca<strong>use</strong> hopper burn. These two <strong>in</strong>sects are economically important as<br />

vectors <strong>of</strong> <strong>rice</strong> tungro disease (RTD). They transmit RTD from one plant to another and act as vectors <strong>of</strong> the<br />

GLH Adults GLH Eggs GLH Nymphs<br />

disease. Rice is the ma<strong>in</strong> host for N. virescens although it can feed on some grassy weeds occurr<strong>in</strong>g on <strong>rice</strong><br />

bunds. N. nigropictus feeds ma<strong>in</strong>ly on Leersia hexandra and other weed hosts and occasionally feeds on <strong>rice</strong><br />

crop. RTD is transmitted from weed hosts to <strong>rice</strong> crop ma<strong>in</strong>ly through N. nigropictus while the transmission<br />

among the <strong>rice</strong> plants is ma<strong>in</strong>ly by N. virescens. GLH lay their eggs either <strong>in</strong> the mid rib <strong>of</strong> leaves or <strong>in</strong> leaf sheath.<br />

The nymphs <strong>of</strong> N. nigropictus are brownish to p<strong>in</strong>kish <strong>in</strong> colour while the nymphs <strong>of</strong> N. virescens are light green<br />

<strong>in</strong> colour. N. nigropictus has a conspicuous black spot on the head, which is absent <strong>in</strong> case <strong>of</strong> N. virescens.<br />

The optimum conditions for multiplication <strong>of</strong> N. virescens and N. nigropictus are about 25 o C temperature and<br />

80% RH. Both the <strong>in</strong>sects are more numerous dur<strong>in</strong>g September and October months <strong>of</strong> kharif. Another GLH<br />

species called N. c<strong>in</strong>ticeps (Uhler) is present <strong>in</strong> Japan and Korea and it is not prevalent <strong>in</strong> India.<br />

9


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

Gundhi bugs Leptocorisa acuta (Thunberg) and Leptocorisa oratorius (Fabricius)<br />

There are ma<strong>in</strong>ly two species <strong>of</strong> gundhi bug viz., Leptocorisa acuta (Thunberg) and<br />

Leptocorisa oratorius. The nymphs as well as adults emit a characteristic <strong>of</strong>fensive<br />

odour <strong>in</strong> <strong>in</strong>fested fields, which can be very easily recognized as a signal <strong>of</strong> presence<br />

<strong>of</strong> gundhi bug <strong>in</strong> <strong>rice</strong> fields. The nymphs and adults feed on develop<strong>in</strong>g milky gra<strong>in</strong>s<br />

caus<strong>in</strong>g brown spots and results <strong>in</strong> damag<strong>in</strong>g the quality <strong>of</strong> the gra<strong>in</strong>. At times, it<br />

becomes more serious and can ca<strong>use</strong> heavy losses. The eggs are laid <strong>in</strong> rows on<br />

upper or lower side <strong>of</strong> leaves. There are five nymphal <strong>in</strong>stars, which last for 25 to 30<br />

days.<br />

Leaf folder Cnaphalocrocis med<strong>in</strong>alis (Guenee)<br />

There are six to eight species <strong>of</strong> leaf folders attack<strong>in</strong>g <strong>rice</strong> crop but the most important one is Cnaphalocrocis<br />

med<strong>in</strong>alis (Guenee). As the very name <strong>in</strong>dicates the larvae, after emerg<strong>in</strong>g from eggs, fold the leaves with the<br />

10<br />

LF Female LF Male LF Eggs<br />

LF Larva LF Damage<br />

Gundhi Bug Adult<br />

help <strong>of</strong> silken threads secreted from salivary glands, rema<strong>in</strong> <strong>in</strong>side and feed on the chlorophyll content <strong>of</strong> the<br />

leaves leav<strong>in</strong>g only the lower epidermis. As a result, the photosynthetic activity is affected result<strong>in</strong>g <strong>in</strong> loss <strong>of</strong><br />

gra<strong>in</strong> yield. The loss <strong>in</strong> yield is more significant when larvae feed on boot-leaf compared to other lower leaves.<br />

There are 5 larval <strong>in</strong>stars, which are completed <strong>in</strong> 18 to 25 days depend<strong>in</strong>g on the temperatures. The pupation


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

occurs <strong>in</strong>side the folded leaf, and the pupal period lasts for 5 to 7 days. The adult emerges and after mat<strong>in</strong>g<br />

starts lay<strong>in</strong>g eggs s<strong>in</strong>gly or <strong>in</strong> groups <strong>of</strong> 2-3 either on the lower side or upper side <strong>of</strong> the leaf or sometimes on<br />

leaf sheath. The egg period lasts for 4-6 days. The population <strong>of</strong> leaf folder, <strong>in</strong>creases tremendously at higher<br />

nitrogen levels. As farmer tends to apply more than recommended nitrogen, leaf folder is becom<strong>in</strong>g more<br />

serious <strong>in</strong> many <strong>of</strong> the irrigated <strong>rice</strong> grow<strong>in</strong>g deltaic tracts <strong>in</strong> many states. Of late, the population <strong>of</strong> leaf folder<br />

is <strong>in</strong>creas<strong>in</strong>g <strong>in</strong> plots treated with either phorate or carb<strong>of</strong>uran granules.<br />

Gall midge Orseolia oryzae (Wood Mason)<br />

The maggot <strong>of</strong> <strong>rice</strong> gall midge enters <strong>in</strong>side the young <strong>rice</strong> plant and starts feed<strong>in</strong>g on grow<strong>in</strong>g portions. As a<br />

result, the meristematic tissue grows and encloses the feed<strong>in</strong>g <strong>in</strong>sect <strong>in</strong>side. The meristematic tissue as it grows,<br />

turns <strong>in</strong>to a pale green tubular structure called “silver shoot.” The larvae pupates <strong>in</strong>side the silver shoot and<br />

emerges as adult from the top portion <strong>of</strong> silver shoot. The damaged tiller does not bear panicle. The crop under<br />

severe <strong>in</strong>festation is stunted with more numerous tillers. These new tillers are also eventually attacked result<strong>in</strong>g<br />

<strong>in</strong> almost 80 to 90% loss under severe <strong>in</strong>festation conditions.<br />

GM Adult GM Eggs GM Larva<br />

GM Pupa GM Damage<br />

The damage is more serious dur<strong>in</strong>g kharif or wet season, although, gall midge started <strong>in</strong>fest<strong>in</strong>g rabi <strong>rice</strong> also <strong>in</strong><br />

some <strong>of</strong> the coastal <strong>rice</strong> grow<strong>in</strong>g tracts. For proper egg hatch<strong>in</strong>g <strong>of</strong> gall midge, 90 to 100% humidity is<br />

essential. High humidity and a th<strong>in</strong> film <strong>of</strong> water are required for larval dispersal and entry <strong>in</strong>to the plant. The<br />

female adult is a mosquito like dipteran fly with reddish abdomen. The male is slightly smaller <strong>in</strong> size with<br />

11


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

brownish abdomen. The adult life span is one to four days. The mat<strong>in</strong>g occurs immediately after emergence and<br />

eggs are laid any where on the foliage. The eggs are microscopic, cigar shaped and the egg period is about<br />

three to four days. There are five larval <strong>in</strong>stars, which last for twelve to fifteen days. The optimum temperature<br />

for <strong>rice</strong> gall midge is 22 to 26 oC. Gall midge is more severe, <strong>in</strong> late planted conditions.<br />

Although a number <strong>of</strong> gall midge resistant varieties are released, their spread is hampered due to the<br />

problem <strong>of</strong> biotypes.<br />

Rice hispa Dicladispa armigera Olivier<br />

The adults <strong>of</strong> <strong>rice</strong> hispa (Dicladispa armigera Olivier) are sh<strong>in</strong><strong>in</strong>g black beetles<br />

with sp<strong>in</strong>es on forew<strong>in</strong>gs. Both adults and grubs damage the crop. The adults<br />

scrap the chlorophyll content on the upper side and lower side <strong>of</strong> leaves. The<br />

grubs m<strong>in</strong>e <strong>in</strong> between two epidermal layers and feed on the chlorophyll content.<br />

In severe <strong>in</strong>festations, the crop gets dried with whitish appearance without any<br />

green colour. In cases <strong>of</strong> epidemics, about 25- 50 beetles may be present on a<br />

s<strong>in</strong>gle hill. This pest is more serious <strong>in</strong> young stages <strong>of</strong> the crop growth either <strong>in</strong><br />

nursery or <strong>in</strong> early transplanted conditions.<br />

Hispa Adult<br />

The adult beetles lay eggs s<strong>in</strong>gly either on the lower surface or on the upper surface <strong>of</strong> leaves covered<br />

with a brownish material. The egg period is about six to seven days. The emerg<strong>in</strong>g grubs directly enter<br />

between the two epidermal layers and grow there. The total larval period (five <strong>in</strong>stars) lasts for 15 –18<br />

days. The pupation occurs <strong>in</strong> the larval m<strong>in</strong>e <strong>in</strong> between the two epidermal layers and the pupal period<br />

lasts for 4 to 5 days.<br />

Hispa <strong>use</strong>d to be a sporadic pest previously. However, it is occurr<strong>in</strong>g regularly <strong>in</strong> many Sub-Himalayan<br />

areas and also <strong>in</strong> north-eastern states.<br />

Case worm Adult<br />

12<br />

Case worm Nymphula depunctalis (Guenee)<br />

Case worm Nymphula depunctalis (Guenee) is a sporadic pest and occurs usually<br />

<strong>in</strong> young crop located <strong>in</strong> stagnant water. The attack is usually patchy and not<br />

cont<strong>in</strong>uous. The larva cuts the leaves <strong>in</strong>to small bits and makes them <strong>in</strong>to cases<br />

<strong>of</strong> approximately its own body size.The larvae rema<strong>in</strong> <strong>in</strong>side the case and feeds<br />

on leaves, by scrapp<strong>in</strong>g the chlorophyll content. As a result, the plant growth<br />

and vigour are seriously affected. If the leaves are disturbed, the cases along<br />

with larvae fall on water surface. This is the characteristic symptom <strong>of</strong> case<br />

worm attack. The larva is aquatic and can breathe with gills.


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

Cut worms Mythimna separata (Walker) and army worms Spodoptera mauritia (Boisd.)<br />

These are a group <strong>of</strong> noctuid pests occurr<strong>in</strong>g sporadically <strong>in</strong> <strong>rice</strong>. The most<br />

important among these <strong>in</strong>sects are (1) the army worm Spodoptera mauritia<br />

and the cut worm Mythimna separata. The former is a gregarious pest. It<br />

<strong>use</strong>d to ca<strong>use</strong> severe losses to <strong>rice</strong> crop before the green revolution era.<br />

This pest moves from one field to another field <strong>in</strong> large numbers like an army<br />

Cut worm Larva<br />

and almost completely defoliates the <strong>rice</strong> crop <strong>in</strong> the fields they <strong>in</strong>vade. Hence,<br />

the name army worm. Cut worms, at times become serious and feed on the foliage dur<strong>in</strong>g <strong>in</strong>itial stages <strong>of</strong><br />

crop growth. After flower<strong>in</strong>g, the larvae climb and cut the ear-heads result<strong>in</strong>g <strong>in</strong> fall<strong>in</strong>g <strong>of</strong> the entire ear<br />

head or a part <strong>of</strong> the ear-head. This results <strong>in</strong> very serious losses to the crop. The <strong>in</strong>festation may occur<br />

just before harvest lead<strong>in</strong>g to fall<strong>in</strong>g <strong>of</strong> even matured gra<strong>in</strong>s <strong>in</strong> huge quantities.<br />

Mealy bug Brevennia rehi (L<strong>in</strong>d<strong>in</strong>ger)<br />

Mealy bug damage & adult (<strong>in</strong>set)<br />

Rice thrips Stenchaetothrips biformis (Bagnall)<br />

Mealy bug is a common pest <strong>in</strong> upland and dry areas and <strong>in</strong> fields with<br />

uneven surface and where plant stand is not uniform and patchy.<br />

These mealy bugs are covered by a dist<strong>in</strong>ct waxy and powdery coat<strong>in</strong>g.<br />

Ants frequently visit the mealy bug <strong>in</strong>fested plants and help <strong>in</strong> the<br />

dispersal <strong>of</strong> bugs from one plant to another. Both the adults and<br />

nymphs suck the plant sap result<strong>in</strong>g <strong>in</strong> the stunted growth and curved<br />

yellowish leaves. In severe <strong>in</strong>festations, plants dry up and panicles do<br />

not emerge from the boot leaf. Damage occurs <strong>in</strong> patches and is<br />

severe under moisture stress conditions.<br />

Rice thrips (S. biformis) occur dur<strong>in</strong>g the seedl<strong>in</strong>g stage and <strong>in</strong> early transplanted crop. The nymphs and<br />

adults suck the sap from the leaves. Due to this feed<strong>in</strong>g, <strong>in</strong>itially yellow streaks appear on the leaves and<br />

Thrips Thrips Damage<br />

13


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

later they curl longitud<strong>in</strong>ally from the marg<strong>in</strong>s <strong>in</strong>wards. These have sharp po<strong>in</strong>ted leaf tips resembl<strong>in</strong>g<br />

needles, which f<strong>in</strong>ally dry up. The plants become lanky and present a sick appearance.<br />

Black bug Scot<strong>in</strong>ophara sp.<br />

Black bug or Malayan bug is a common name for a group <strong>of</strong> Pentatomids belong<strong>in</strong>g to the genus<br />

Scot<strong>in</strong>ophara. Three species namely, S. coarctata (Fabricius), S. lurida (Burmeister) and S. bisp<strong>in</strong>osa<br />

(Fabricius) were found <strong>in</strong> India. Both nymphs and adults suck sap from the base <strong>of</strong> <strong>rice</strong> stems and <strong>in</strong>fest<br />

<strong>rice</strong> plants from seedl<strong>in</strong>g to flower<strong>in</strong>g stage. Adults are black <strong>in</strong> colour and can live up to seven months.<br />

Female lays about 200 eggs at the basal portion <strong>of</strong> the <strong>rice</strong> plant near the water surface. Freshly laid<br />

eggs are green <strong>in</strong> clour and turn p<strong>in</strong>k before hatch<strong>in</strong>g. Egg period lasts for about 4-7 days. Nymphs are<br />

light brown with yellowish green abdomen. They pass through four to five <strong>in</strong>stars <strong>in</strong> about 25- 30 days.<br />

The bugs aestivates <strong>in</strong> cracks <strong>of</strong> bunds <strong>in</strong> the adult or late nymphal stage.<br />

Leaf mite Oligonychus oryzae (Hirst)<br />

Leaf mites feed on upper and lower surface <strong>of</strong> <strong>rice</strong> leaves. Usually they are more numerous on lower<br />

surface than upper surface. Leaf mites are small and microscopic spider mites which pierce the leaf<br />

tissue and suck the exud<strong>in</strong>g sap. They multiply very fast under congenial condition and damage the entire<br />

14<br />

Mites Mite damage<br />

leaf portion under severe <strong>in</strong>festation. The damage results <strong>in</strong> the appearance <strong>of</strong> yellowish brown specks<br />

which <strong>in</strong>crease under severe conditions and whole leaf turns to brown with complete loss <strong>of</strong> chlorophyll.<br />

The secretions <strong>of</strong> leaf mites form m<strong>in</strong>ute webs on the damaged surface <strong>of</strong> the leaf. These complete life<br />

cycle <strong>in</strong> 10-12 days.<br />

The damage is most serious dur<strong>in</strong>g summer months when the temperature is high and humidity is low<br />

compared to w<strong>in</strong>ter and ra<strong>in</strong>y seasons.<br />

Panicle mite Steneotarsonemus sp<strong>in</strong>kii Smiley<br />

Sheath mite or panicle mite is transparent, microscopic tarsonemid mite which is mostly conf<strong>in</strong>ed to<br />

<strong>in</strong>ternal tissues. Sheath mite attacks <strong>rice</strong> at panicle <strong>in</strong>itiation stage and conf<strong>in</strong>es to the area between leaf


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

sheath and the stem. With the development <strong>of</strong> panicle <strong>in</strong>side the boot, sheath mite moves to the panicle<br />

and starts damag<strong>in</strong>g the <strong>in</strong>ternal tissues <strong>of</strong> develop<strong>in</strong>g gra<strong>in</strong>s. As a result the gra<strong>in</strong>s become sterile and<br />

ill-filled. In association with the sheath rot fungus, Acrocyl<strong>in</strong>drium oryzae, sheath mite or panicle mite<br />

ca<strong>use</strong>s brown discolouration even <strong>in</strong> fully developed gra<strong>in</strong>s. This leads to deterioration <strong>in</strong> paddy gra<strong>in</strong><br />

quality.<br />

Before sheath mite enters <strong>in</strong>to develop<strong>in</strong>g gra<strong>in</strong>s, it is also present on midrib <strong>of</strong> leaf sheath and leaf and<br />

ca<strong>use</strong>s brownish, longitud<strong>in</strong>al specks. It completes life cycle <strong>in</strong> 10 days.<br />

15


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

ORGANOPHOSPATES<br />

16<br />

INSECTICIDES USED IN RICE PEST<br />

MANAGEMENT<br />

Qu<strong>in</strong>alphos: C H N O PS. O, O-diethyl O-qu<strong>in</strong>oxal<strong>in</strong>e-2-yl phosporothioate. It is a contact and stomach<br />

12 15 2 3<br />

<strong><strong>in</strong>secticide</strong> and acaricide with good penetrative properties. It is effective aga<strong>in</strong>st suck<strong>in</strong>g <strong>in</strong>sects and<br />

lepidopterous larvae particularly <strong>of</strong> cotton and <strong>rice</strong>. The acute oral LD and dermal LD for rats are 62-<br />

50 50<br />

137 mg/kg and 1250-1400 mg/kg respectively. It is toxic to honeybees. It is formulated as 25% EC, 5%<br />

granules and 1.5% dust.<br />

Phosalone: C H CINO PS . It is O, O-diethyl S- (6-chloro 1, 3 benzoxazole-2 (3H)-on-methyl)<br />

12 15 4 2<br />

phosphorodithioate or 3-O,-O, diethyl dithiophosphorylmethyl-6 chloro benzoxazolone. It is a contact<br />

<strong><strong>in</strong>secticide</strong> and acaricide effective aga<strong>in</strong>st a wide range <strong>of</strong> pest species. It is stable under normal storage<br />

conditions, compatible with most other pesticides and non-corrosive. It is safe to honey bees and natural<br />

enemies <strong>of</strong> <strong>in</strong>sect pests. Formulated as 4% dust and 35% EC. LD for rat: oral 120-170mg/kg, dermal<br />

50<br />

1500 mg/kg.<br />

Monocrotophos: C H NO P. It is dimethyl (E)-1-methyl-2-methylcarbamoylv<strong>in</strong>yl posphate. It is <strong>in</strong>compatible<br />

7 14 5<br />

with alkal<strong>in</strong>e pesticides. It is corrosive to iron, brass and drum steel. It is a fast act<strong>in</strong>g <strong><strong>in</strong>secticide</strong> and<br />

acaricide with both systemic and contact action <strong>use</strong>d aga<strong>in</strong>st a wide range <strong>of</strong> pests <strong>in</strong>clud<strong>in</strong>g mites,<br />

suck<strong>in</strong>g <strong>in</strong>sects, leaf eat<strong>in</strong>g beetles and bollworms. It persists for 7-14 days. It is highly toxic to birds and<br />

honeybees. Oral LD for rats is 14-23 mg/kg and dermal LD for rabbit is 336 mg/kg. Formulated as<br />

50 50<br />

36% SL.<br />

Chlorpyriphos: C H C NO PS. The chemical name is O,O-diethyl O-(3,5,6-trichloro-2-pyridyl)<br />

9 11 l3 3<br />

phosphorothioate. It is compatible with non-alkal<strong>in</strong>e pesticides but corrosive to copper and brass. It has<br />

a broad range <strong>of</strong> <strong>in</strong>secticidal activity and <strong>use</strong>d for the control <strong>of</strong> mosquitoes, flies, soil and foliar crop<br />

pests, ho<strong>use</strong>hold pests and animal pests. It is contact, non-systemic and has some fumigant action. It is<br />

non-phytotoxic and persists <strong>in</strong> the soil for 60-120 days. It is toxic to fish and shrimps. It is rapidly detoxified<br />

<strong>in</strong> the animal body. The acute oral LD for rats is 135-163 mg/kg. The formulations registered are 20%<br />

50<br />

EC, 10% granules and 1.5% DP.<br />

Acephate: C H NO PS. It is O, S-dimethyl acetylphosphoramideothioate. Acephate is a contact and systemic<br />

4 10 3<br />

<strong><strong>in</strong>secticide</strong> with moderate persistence for 10-15 days and effective aga<strong>in</strong>st aphids, thrips, leaf m<strong>in</strong>ers,<br />

saw flies and lepidopterous larvae. It is formulated as 75% SP. Acute oral LD for rats is 866-945 mg/kg;<br />

50<br />

dermal for rabbit is >2000 mg/kg. It is relatively safer to many natural enemies compared to other<br />

organophosphates.<br />

Fenitrothion: C 9 H 12 O 5 NPS. It is O, O-dimethyl O- (3-methyl -4 nitrophenyl) phosphorothioate. It is a contact<br />

and stomach <strong><strong>in</strong>secticide</strong>, selective acaricide but <strong>of</strong> low ovicidal activity. It is toxic to bees and fish. It is a<br />

broad-spectrum <strong><strong>in</strong>secticide</strong> <strong>use</strong>d for the control <strong>of</strong> mites, mosquito larvae, bed bugs, poultry lice,


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

ectoparasites <strong>of</strong> livestock and pet animals. Formulations registered are 5% DP, 40% WP, 50% EC, 5% G,<br />

2% spray, 20% OL. Oral LD for rats is 250 mg/kg and dermal for mice is > 3000 mg/kg.<br />

50<br />

Dichlorvos (DDVP): C H C1 O P. It is 2,2-dichlorov<strong>in</strong>yl dimethyl phosphate. It is a contact and stomach<br />

4 7 2 4<br />

poison with fumigant and penetrant action. It br<strong>in</strong>gs quick knock down effect. It is moderately toxic<br />

to fish but highly toxic to bees. Soon after application <strong>in</strong> leaves it gets hydrolyzed to harmless<br />

dimethyl phosphoric acid and dichloroacetaldehyde, which decomposes and evaporates. Therefore,<br />

it does not leave any residue and can be <strong>use</strong>d on all crops until shortly before harvest. It is <strong>use</strong>d <strong>in</strong> the<br />

control <strong>of</strong> ho<strong>use</strong>hold pests lepidopterous larvae, suck<strong>in</strong>g <strong>in</strong>sects etc. It is available <strong>in</strong> India as 76% SC.<br />

Oral LD for alb<strong>in</strong>o male rat 80 mg/kg, for female 56 mg/kg; dermal-alb<strong>in</strong>o male rat 107 g/kg, and<br />

50<br />

female rat 75 mg/kg.<br />

Fenthion: C H O PS . It is O, O-dimethyl, O-3 me-thyl-4-methylthiophenyl phosphorothionate. It is a<br />

10 15 3 2<br />

systemic and contact <strong><strong>in</strong>secticide</strong> with high persistence. In the plant it is oxidized to sulfoxide and sulfone,<br />

which are <strong>in</strong>secticidally active. It is harmful to bees. It is effective aga<strong>in</strong>st a wide variety <strong>of</strong> pests<br />

particularly fruit flies, mango nut weevil, etc. Registered formulations are 82.5 EC, 2% G and 2% spray.<br />

LD for rat: oral 215-245 mg/kg; dermal 320-330 mg/kg.<br />

50<br />

Phorate: C H O PS . It is O,O-diethyl S-(ethylthio- methyl) phosphorothiolothionate. It is a systemic<br />

7 17 2 8<br />

<strong><strong>in</strong>secticide</strong> ma<strong>in</strong>ly <strong>use</strong>d for soil application as granules. It has contact and fumigant action and to<br />

some extent nematicidal and acaricidal action also. It does not persist for a longer period and gets<br />

metabolically oxidized yield<strong>in</strong>g phosphorothioate and sulfone, which are readily hydrolysed. It has<br />

been found effective aga<strong>in</strong>st sorghum shoot fly and <strong>rice</strong> gall midge. Formulated as 10% G. LD for 50<br />

rat: oral 16 to 37, dermal 2.5 to 6.2 mg/kg.<br />

Phosphamidon: C H O NCIP. It is 2 - Chloro - 2 – diethyl carbamoyl – 1 - methyl v<strong>in</strong>yl dimethyl<br />

10 19 5<br />

phosphate.It is a systemic poison and has relatively less contact action. It is relatively less toxic to<br />

fish but toxic to bees. Useful <strong>in</strong> the control <strong>of</strong> suck<strong>in</strong>g pests, leaf m<strong>in</strong>ers, certa<strong>in</strong> mites etc. Though<br />

compatible with most pesticides, its biological activity is reduced with copper oxychloride. LD for rat:<br />

50<br />

Oral 17.9 - 30 mg/kg, dermal 374 - 530 mg/kg. Its <strong>use</strong> <strong>in</strong> India is be<strong>in</strong>g phased out.<br />

Ethoprophos: C H O PS It is O-ethyl S.S-dipropyl phosphorodithioate. It is an ether derivative. It is very<br />

8 19 2 2.<br />

stable <strong>in</strong> water up to 100° but is rapidly hydrolysed <strong>in</strong> alkal<strong>in</strong>e media at 25°. Ethoprophos is a nonsystemic,<br />

non-fumigant nematicide and soil <strong><strong>in</strong>secticide</strong> <strong>use</strong>d at rates <strong>of</strong> 1.0 kg a.i./ha for most crops. The<br />

acute oral LD for alb<strong>in</strong>o rats is 62 mg/kg; the acute dermal LD for alb<strong>in</strong>o rabbits is 26mg/kg. It is<br />

50 50<br />

formulated as granules and EC.<br />

CARBAMATES<br />

Carbaryl: C |2 H H NO 2 It is 1 - napthyl N - methyl carbamate. It was <strong>in</strong>troduced <strong>in</strong> 1956. It is a contact<br />

<strong><strong>in</strong>secticide</strong> with slight systemic action. It is not generally phytotoxic up to 2 kg a.i./ha and is compatible<br />

with most pesticides except Bordeaux mixture, lime sulphur and urea. It is effective aga<strong>in</strong>st a wide<br />

spectrum <strong>of</strong> <strong>in</strong>sect pests <strong>of</strong> crops particularly <strong>of</strong> cotton. It does not kill mites. Application <strong>of</strong> carbaryl<br />

17


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

on apple trees ca<strong>use</strong>s fall <strong>of</strong> young fruits. It is formulated as 5% or 10% dust, 4% granule and<br />

50% WP or 85% SP or 40% LV and 42% Flow. 5% dust controls ticks on cattle, sheep and dogs and<br />

poultry lice. Sevidol granule recommended for control <strong>of</strong> <strong>rice</strong> pests is composed <strong>of</strong> 4% <strong>in</strong> each <strong>of</strong><br />

carbaryl and gamma HCH. Sevimol 40 LV is a product conta<strong>in</strong><strong>in</strong>g 40% carbaryl plus molasses.<br />

Carb<strong>of</strong>uran: C H NO . It is 2,3-dihydro - 2, 2-dimethyl 7 benz<strong>of</strong>uranyl methyl carbamate. It is a<br />

I2 15 3<br />

systemic <strong><strong>in</strong>secticide</strong> and nematicide effective aga<strong>in</strong>st suck<strong>in</strong>g and soil <strong>in</strong>habit<strong>in</strong>g pests and <strong>use</strong>d <strong>in</strong><br />

the control <strong>of</strong> sorghum shoot fly. Established crop tolerances are: 0.5 ppm <strong>in</strong> forage, 0.1 ppm <strong>in</strong> gra<strong>in</strong>;<br />

0.2 ppm <strong>in</strong> <strong>rice</strong> and <strong>rice</strong> straw. Formulated as 50% SP and 3% granule. LD for rat: oral 8.8 to 14.1<br />

50<br />

mg/kg; dermal 10,200 mg/kg. Carb<strong>of</strong>uran application <strong>in</strong>duced growth stimulation <strong>in</strong> cotton, <strong>rice</strong>,<br />

tobacco, sorghum and corn.<br />

Carbosulfan: C H N O S. It is 2, 3 - dihydro - 2, 2 - dimethyl benz<strong>of</strong>uran - 7 - yl (dibutylam<strong>in</strong>othio) -<br />

20 22 2 3<br />

methyl carbamate. It is effective aga<strong>in</strong>st a broad spectrum <strong>of</strong> pest species on various crops. It is<br />

metabolized <strong>in</strong> plants to carb<strong>of</strong>uran and 3 -hydroxycarb<strong>of</strong>uran. Its registered formulations are 25% DS<br />

and 25% EC. Its acute oral LD5 for rat 185 - 250 mg/kg; dermal for rat > 2000 mg/kg.<br />

0<br />

BPMC or Fenobucarb: C H NO . It is 2-jec-butylphenyl methyl-carbamate. It is unstable to alkali and to<br />

12 17 2<br />

concentrated acid. It is an <strong><strong>in</strong>secticide</strong> <strong>use</strong>d to control hoppers on <strong>rice</strong>. The acute oral LD is: 410 mg/kg<br />

50<br />

for rats; dermal LD for mice is 4200 mg/kg. It is formulated as EC, dust and granules.<br />

50<br />

MIPC or Isoprocarb: C H NO . It is 2-isopropylphenyl methylcarbamate or o- cumenyl methylcarbamate. It<br />

11 15 2<br />

is compatible with most conventional pesticides, but should not be comb<strong>in</strong>ed with products hav<strong>in</strong>g an<br />

alkal<strong>in</strong>e reaction nor <strong>use</strong>d with<strong>in</strong> 10 days prior to or after application <strong>of</strong> propanil. Isoprocarb is a contact<br />

<strong><strong>in</strong>secticide</strong> <strong>of</strong> low mammalian toxicity effective aga<strong>in</strong>st pests <strong>of</strong> <strong>rice</strong>, for the control <strong>of</strong> aphids, leafhoppers,<br />

capsid bugs and other pests <strong>of</strong> deciduous fruit and other crops. It has a moderately long residual activity.<br />

The acute oral LD is 403-485 mg/kg for rats. The acute dermal LD for male rats is > 500 mg/kg. It<br />

50 50<br />

is harmful to honey bees. The formulations <strong>in</strong>clude wettable powder, EC, thermal fog, granules and dusts.<br />

INSECT GROWTH REGULATOR<br />

Bupr<strong>of</strong>ez<strong>in</strong>: C 16 H 23 N 3 OS. It is 2-tert - butylim<strong>in</strong>o - 3 - isopropyl - 5 - phenylperhydro - 1,3,5 -<br />

thiadiaz<strong>in</strong> -4 - one. It has contact and stomach action. Effective aga<strong>in</strong>st mealy bugs, whiteflies,<br />

scales, plant hoppers, etc. The eggs laid by treated <strong>in</strong>sects are sterile. Oral LD 50 for rat is > 2000<br />

mg/kg; dermal for rat is > 5000 mg/kg.<br />

PHENYL PYRAZOLES<br />

Fipronil: C 12 H 4 C1 2 F 6 N 4 OS. It is chemically (±) -5 -am<strong>in</strong>o - 1 - (2,6 - dichloro -trifluoro - g_ tolyl) - 4<br />

trifluoro methyl) = sulf<strong>in</strong>ylpyrazole - 3 - carbonitrile. It is an <strong><strong>in</strong>secticide</strong> and acaricide effective aga<strong>in</strong>st<br />

pests <strong>of</strong> <strong>rice</strong> <strong>in</strong> India. Acute oral LD 50 for rat is100 mg/kg, dermal for rat is > 2000 mg/kg. Its<br />

registered formulations <strong>in</strong> India are 0.3% G and 5% SC.<br />

18


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

Ethiprole: C 13 H 9 C 12 F 3 N 4 OS. The chemical name is 5-amono-1-(2-6-dichloro-4-(trifluromethyl)-4ethylsulf<strong>in</strong>yl-1H-pyrazole-3-carbonitrile.<br />

It differs from fipronil the major phenyl pyrazoles <strong><strong>in</strong>secticide</strong>,<br />

only <strong>in</strong> an ethylsulf<strong>in</strong>yl substituent replac<strong>in</strong>g the trifluromethylsulf<strong>in</strong>yl moiety. It is an <strong><strong>in</strong>secticide</strong><br />

recommended for alfalfa, cotton, peanut, <strong>rice</strong> and soybean highly active on st<strong>in</strong>k bugs, planthoppers<br />

and aphids.it is an <strong>in</strong>hibitor to neural transmission by GABA. It has low toxicity to fish and birds but<br />

affects silkworms.<br />

NEONICOTINOIDS<br />

Imidacloprid: C H C1N 0 . Chemically it is 1 - (6 - chloro - 3 - pyridylmethyl) - N nitroimidazolid<strong>in</strong>-2 -<br />

9 IO 5 2<br />

ylideneam<strong>in</strong>e. It is a systemic <strong><strong>in</strong>secticide</strong> with stomach and contact action. Controls suck<strong>in</strong>g <strong>in</strong>sects,<br />

soil <strong>in</strong>sects, <strong>rice</strong> water weevil etc. Used as a seed dress<strong>in</strong>g or foliar/soil treatment for control <strong>of</strong><br />

pests <strong>of</strong> cotton, <strong>rice</strong>, etc. Acute oral LD for rat is 450 mg/kg; dermal for rat is > 5000 mg/kg.<br />

50<br />

Thiamethoxam: C H ClN O S (EZ)-3-(2-chloro-1, 3-thiazol-5-ylmethyl)-5- methyl-1, 3,5-oxadiaz<strong>in</strong>an-4-<br />

3 10 5 3<br />

ylidene (nitro) am<strong>in</strong>e. It is nitroguanid<strong>in</strong>e or thiazole <strong><strong>in</strong>secticide</strong>. It is slightly carc<strong>in</strong>ogenic to rats. It has<br />

contact, stomach and systemic activity. It is recommended for the control <strong>of</strong> aphids, whitefly, thrips, <strong>rice</strong><br />

hoppers, <strong>rice</strong> bugs, mealybugs, white grubs, leaf m<strong>in</strong>ers etc as foliar and soil <strong><strong>in</strong>secticide</strong> <strong>in</strong> cole crops,<br />

vegetables, <strong>rice</strong>, cotton, fruits trees and other cereals. The formulations are FS, 70 WP, GR, SG, 25 WDG,<br />

and WS. Acute oral LD for rat is1563 mg/kg and dermal for rat is > 2000 mg/kg.<br />

50<br />

Thiacloprid: C H CIN S. It is (Z)-3-(6-chloro-3-pyridylmethyl)-1-3-thiazolid<strong>in</strong>e-2-ylidenecynamide. It is an<br />

10 9 4<br />

<strong><strong>in</strong>secticide</strong> and molluscicide. It has contact and stomach action with some systemic properties. It is new<br />

chloronicot<strong>in</strong>yl <strong><strong>in</strong>secticide</strong>, targeted chiefly to control aphids <strong>in</strong> orchards and vegetables. It’s acute oral<br />

LD for rat’s is > 444 mg/kg. It is a possible carc<strong>in</strong>ogen <strong>in</strong> the human be<strong>in</strong>gs. MRL for cereals is<br />

50<br />

0.02 mg/kg.<br />

NERISTOXINS<br />

Cartap: C 7 H 16 C1N 3 O 3 S 2 . Common name is Cartap hydrochloride. Chemical name is S, S - 2dimethylam<strong>in</strong>otri<br />

methylene) bis (thiocarbamate) hydrochloride or 1, 3 - Bis (carbomylthio) - 2 -(N,<br />

N-dimethylarn<strong>in</strong>o) propane hydrochloride. It is systemic with stomach and contact action. It acts on<br />

the central nervous system by ganglionic block<strong>in</strong>g action result<strong>in</strong>g <strong>in</strong> paralysis, cessation <strong>of</strong> feed<strong>in</strong>g<br />

and death due to starvation. It is effective aga<strong>in</strong>st <strong>rice</strong> stem borer and leaf folder, sugarcane shoot<br />

borer, cabbage diamond back moth, etc. Its registered formulations <strong>in</strong> India are: 50 SP and 4 G. It’s<br />

acute LD 50 : oral (rat) male 345 mg/kg, female 325 mg/kg; dermal (mice) > 1000 mg/kg.<br />

Thiocyclam: C 5 H 11 NS 3 . It is N.N-dimethyl-l, 2, 3—trithian-5-ylam<strong>in</strong>e. It is stable under ambient storage<br />

conditions. Thiocyclam is selective <strong><strong>in</strong>secticide</strong> act<strong>in</strong>g as stomach poison and by contact with a 7-14 d<br />

residual activity and capable <strong>of</strong> acropetal translocation. It is effective aga<strong>in</strong>st lepidopterous and coleopterous<br />

pests, particularly Lept<strong>in</strong>otarsa deceml<strong>in</strong>eata larvae on potatoes. The acute oral LD 50 is 310 mg/kg for<br />

male rats. It is moderately toxic to honey bees. It is formulated as SP, WSP and granules.<br />

19


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

ETHER DERIVATIVES<br />

Eth<strong>of</strong>enprox: C 25 H 2g O 3 . It is a non-ester pyrethroid <strong>in</strong>troduced <strong>in</strong> 1987. It is a contact and stomach <strong><strong>in</strong>secticide</strong>.<br />

It is effective aga<strong>in</strong>st pests <strong>of</strong> <strong>rice</strong>, particularly BPH and leafhoppers. It is also effective aga<strong>in</strong>st<br />

ho<strong>use</strong>flies and cockroaches. Its registered formulation is 10% EC. Its acute oral LD 50 for rat is 42880<br />

mg/kg; dermal for rat > 2140 mg/kg.<br />

FERMENTATION PRODUCTS<br />

Sp<strong>in</strong>osad: A natural source <strong><strong>in</strong>secticide</strong> conta<strong>in</strong><strong>in</strong>g a mixture <strong>of</strong> two components derived from<br />

fermentation technology produced by Saccharopolyspora sp<strong>in</strong>osa, a species <strong>of</strong> act<strong>in</strong>omycete. It is<br />

formulated as 48 SC and is active aga<strong>in</strong>st Helicoverpa armigera, leafhoppers, aphids and whiteflis on<br />

cotton at 75 - 100 g a.i. /ha.<br />

DIAMIDES<br />

Flubendiamide: C 23 H 22 F 7 IN 2 O 4 S. It is 3-iodo-N-2(-mesyl-1-1-dimethylethyl-N-(4-(1, 2, 2, 2-tetrafluoro-1-<br />

(trifluromethyl) =ethyl)-Otolyl) phthalamide. It is a stomach poison. Flubendiamide has excellent fast<br />

act<strong>in</strong>g and residual activity aga<strong>in</strong>st a broad spectrum <strong>of</strong> lepidopterous <strong>in</strong>sect pests <strong>in</strong>clud<strong>in</strong>g resistant<br />

stra<strong>in</strong>s. The fludendiamide treated larva discrim<strong>in</strong>ately contracts <strong>in</strong> size. It is safe to non-target organisms.<br />

Its acute oral LD 50 for rats > 2000mg/kg, dermal for rat is > 2000 mg/kg. It is a slight eye irritant<br />

but not sk<strong>in</strong> irritant. The commercial formulation available is wettable powder.<br />

20


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

PRICIPLES OF INSECTICIDE USE IN RICE IPM<br />

Insecticide <strong>use</strong> is an <strong>in</strong>dispensable evil <strong>in</strong> any crop ecosystem when one th<strong>in</strong>ks <strong>in</strong> terms <strong>of</strong> ecological<br />

conservation. However, the follow<strong>in</strong>g pr<strong>in</strong>ciples will, to a large extent, avoid the ill effects and help conserve<br />

biological and ecological diversity.<br />

Selection <strong>of</strong> proper <strong><strong>in</strong>secticide</strong> and formulation<br />

The major factors that dictate the selection <strong>of</strong> an <strong><strong>in</strong>secticide</strong> are the pest situation, stage <strong>of</strong> crop growth,<br />

availability <strong>of</strong> the chemical and its formulation, the cost <strong>of</strong> the <strong><strong>in</strong>secticide</strong>, the likely benefit that will accrue<br />

due to usage <strong>of</strong> the <strong><strong>in</strong>secticide</strong> <strong>in</strong> comparison with the other alternatives etc.<br />

Based on the experience ga<strong>in</strong>ed <strong>in</strong> <strong><strong>in</strong>secticide</strong> evaluation <strong>in</strong> <strong>rice</strong>, both as a part <strong>of</strong> lead research and<br />

coord<strong>in</strong>ated programme, s<strong>in</strong>ce 1966, when All-India Coord<strong>in</strong>ated Rice Improvement Programme (AICRIP)<br />

was <strong>in</strong>itiated, <strong>in</strong>formation on the spectrum <strong>of</strong> <strong><strong>in</strong>secticide</strong> effectiveness aga<strong>in</strong>st different <strong>in</strong>sect pests <strong>of</strong><br />

<strong>rice</strong> has been generated. The details are presented for spray formulations (Table 1) and for granular<br />

formulations (Table 2).<br />

EVALUATION METHODOLOGY<br />

In the All India Co-ord<strong>in</strong>ated test<strong>in</strong>g program the spray formulations were evaluated as high volume<br />

sprays by mix<strong>in</strong>g with water @ 500 to 800 litres per hectare on need basis depend<strong>in</strong>g on the pest<br />

occurrence. The number <strong>of</strong> applications varied from 1 to 5 depend<strong>in</strong>g on pest <strong>in</strong>tensity <strong>in</strong> a given location<br />

and season. The recommended plot size was 20-25 square meters. The granular <strong><strong>in</strong>secticide</strong>s were<br />

broadcast <strong>in</strong> stand<strong>in</strong>g water and the number <strong>of</strong> applications varied from 1 to 3 and rarely 4. The test<br />

<strong><strong>in</strong>secticide</strong>s were compared with a standard <strong><strong>in</strong>secticide</strong> (usually monocrotophos / chlorpyriphos @ 500 g<br />

a.i./ha <strong>in</strong> case <strong>of</strong> spray formulations and carb<strong>of</strong>uran @1000 g a.i./ha, with respect to granules).<br />

The observations on different <strong>in</strong>sect pests were recorded as per the standard procedures. In case <strong>of</strong><br />

stem borer, the total tillers and dead hearts were counted <strong>in</strong> 20 hills per plot by follow<strong>in</strong>g stratified<br />

random sampl<strong>in</strong>g <strong>in</strong> vegetative phase. The same procedure was followed at head<strong>in</strong>g phase by count<strong>in</strong>g<br />

white ears and panicle bear<strong>in</strong>g tillers. In case <strong>of</strong> gall midge, silver shoots were enumerated along with<br />

total tillers. In all the above cases percentages were computed for judg<strong>in</strong>g the relative efficacy <strong>of</strong> <strong><strong>in</strong>secticide</strong>s.<br />

With regard to leaf feed<strong>in</strong>g <strong>in</strong>sects like leaf folder, <strong>rice</strong> hispa, case worm, swarm<strong>in</strong>g caterpillars, whorl<br />

maggot etc. total leaves and damaged leaves were enumerated to calculate percentage leaves damaged.<br />

Brown planthopper, whitebacked planthopper and green leafhopper were enumerated as total <strong>in</strong>sects for<br />

each species (both nymphs and adults) present on 10 to 20 randomly selected hills per plot and relative<br />

number <strong>of</strong> <strong>in</strong>sects present was the basis for judg<strong>in</strong>g the effectiveness <strong>of</strong> <strong><strong>in</strong>secticide</strong>s. Observations on<br />

important natural enemies <strong>of</strong> <strong>in</strong>sect pests viz. egg parasitism <strong>in</strong> case <strong>of</strong> stem borers, important predators<br />

<strong>of</strong> BPH and WBPH such as green mirid bug, brown mirid bug, spiders as group were recorded under field<br />

conditions or after br<strong>in</strong>g<strong>in</strong>g samples to the laboratory.<br />

21


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

SPECTRUM OF INSECTICIDE EFFICACY<br />

Some <strong>of</strong> the spray formulations like monocrotophos, phosphamidon, cartap, and fipronil are effective<br />

aga<strong>in</strong>st wide range <strong>of</strong> <strong>in</strong>sect pests like stem borers, leaf folder, case worm, cut worm and army worms (all<br />

lepidopterans), brown planthopper, whitebacked planthopper, green leafhopper (all homopterans), <strong>rice</strong><br />

hispa (coleopteran) and thrips (thysonopteran). These broad-spectrum <strong><strong>in</strong>secticide</strong>s have to be<br />

recommended <strong>in</strong> situations where many groups <strong>of</strong> pests are simultaneously present <strong>in</strong> <strong>rice</strong> ecosystem.<br />

This type <strong>of</strong> situation is common <strong>in</strong> many delta areas like Krishna-Godavari zone <strong>of</strong> Andhra Pradesh,<br />

Tunga Bhadhra areas <strong>of</strong> Karnataka, Tanjore delta <strong>of</strong> Tamil Nadu, Mahanadi delta <strong>of</strong> Orissa particularly<br />

dur<strong>in</strong>g kharif season (Table 1).<br />

However, <strong>in</strong> areas like Punjab, Haryana, Assam, parts <strong>of</strong> Maharashtra (Karjat area) dur<strong>in</strong>g kharif season<br />

and parts <strong>of</strong> Telangana <strong>in</strong> Andhra Pradesh, Mandya area <strong>of</strong> Karnataka, Coimbatore region <strong>of</strong> Tamil Nadu<br />

dur<strong>in</strong>g rabi season, where stem borers and leaf folders are the major menace, the <strong><strong>in</strong>secticide</strong>s like cartap<br />

(both granules and spray), qu<strong>in</strong>alphos, phosalone, chlorpyriphos, phosphamidon, triazophos sprays which<br />

have proven effective aga<strong>in</strong>st both stem borers and leaf folders have to be preferred. Among the modern<br />

groups <strong>of</strong> <strong><strong>in</strong>secticide</strong>s, sp<strong>in</strong>osad (a fermentation product conta<strong>in</strong><strong>in</strong>g sp<strong>in</strong>osyn A and B), flubendiamide<br />

belong<strong>in</strong>g to diamide group and <strong>in</strong>doxacarb belong<strong>in</strong>g to oxadiaz<strong>in</strong>e group, which can check lepidopteran<br />

pests effectively and economically, have to be preferred.<br />

In situations, where BPH and WBPH are the major problems without significant presence <strong>of</strong> other pests<br />

particularly lepidopterans, the <strong><strong>in</strong>secticide</strong>s that have high degree <strong>of</strong> effectiveness aga<strong>in</strong>st homopterans<br />

like imidacloprid, thiamethoxam, clothianid<strong>in</strong> (all neonicot<strong>in</strong>oids) can be economically <strong>use</strong>d. However, <strong>in</strong><br />

view <strong>of</strong> already widespread signals <strong>of</strong> resistance development <strong>in</strong> hopper pests <strong>in</strong> these endemic areas,<br />

this factor should be given due consideration. In this connection, detailed <strong>in</strong>formation has already been<br />

documented and readers are recommended to go through the Technical Bullet<strong>in</strong> “Neonicot<strong>in</strong>oid Insecticide<br />

Resistance <strong>in</strong> Agricultural Pests” by Krishnaiah et al., (2006) published by DRR, Rajendranagar, Hyderabad.<br />

As alternatives to neonicot<strong>in</strong>oids, phenyl pyrazoles like ethiprole, or organophosphates like acephate,<br />

monocrotophos or carbamates like carbaryl, carbosulfan BPMC, MIPC or neiristox<strong>in</strong>s like cartap or <strong>in</strong>sect<br />

growth regulators such as bupr<strong>of</strong>ez<strong>in</strong>, or ether derivatives like eth<strong>of</strong>enprox, which can effectively check<br />

even neonicot<strong>in</strong>oid resistant populations at reasonable cost, are suggested.<br />

GRANULAR FORMULATIONS AGAINST INSECT PESTS<br />

Among granular formulations, carb<strong>of</strong>uran, carbosulfan, isazophos, and fipronil are broad-spectrum<br />

<strong><strong>in</strong>secticide</strong>s, which can be utilized <strong>in</strong> areas where both lepidopterans and homopterans are present. But<br />

<strong>in</strong> situations where lepidopterans like stem borers and leaf folder are problematic, cartap is the best<br />

<strong><strong>in</strong>secticide</strong> followed by fenthion and thiocyclam. In areas, which are endemic to leafhoppers and planthoppers<br />

and where these are the major devastat<strong>in</strong>g pests, granular <strong><strong>in</strong>secticide</strong>s like BPMC and MIPC can be <strong>use</strong>d<br />

followed by sprays <strong>of</strong> neonicot<strong>in</strong>oids and other alternative spray formulations; as sole dependence on<br />

granular formulations for the management <strong>of</strong> leaf- and planthoppers is not a suitable strategy <strong>in</strong> view <strong>of</strong><br />

the cost <strong>in</strong>volved (Table 2).<br />

22


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

Table1: Spectrum <strong>of</strong> toxicity <strong>of</strong> spray formulations aga<strong>in</strong>st <strong>in</strong>sect pests <strong>of</strong> <strong>rice</strong><br />

Insecticide Group Rate<br />

(g a.i. ha)<br />

SB LF RHBPHWBPHCW GLH<br />

Qu<strong>in</strong>alphos OP 500 ** *** ** * **<br />

Phosalone OP 500 *** ** *** ** * * **<br />

Monocrotophos OP 400 *** *** ** *** *** ** ***<br />

Chlorpyriphos OP 500 *** *** ** **<br />

Acephate OP 750 * ** ** *** **<br />

Fenitrothion OP 500 * ** *<br />

Phosphamidon OP 500 ** *** ** ** ** **<br />

Fenthion OP 500 * *** ** *<br />

Dichlorvos OP 500 ** ** ***<br />

Triazophos OP 300 ** *** ***<br />

Carbaryl CB750 * ** ** *** *** * **<br />

MIPC CB500 * ** ** **<br />

BPMC CB 500 * ** ** **<br />

Carbosulfan CB500 * * ** ** **<br />

Cartap NT 300 *** *** ** ** ** **<br />

Eth<strong>of</strong>enprox ED 75 * * *** *** ***<br />

Fipronil PP 50 ** ** ** ** ** ** *<br />

Ethiprole PP 50 * * *** *** *<br />

Imidacloprid NN 25 * *** *** ***<br />

Thiamethoxam NN 25 * *** *** ***<br />

Thiacloprid NN 120 * * ** ** **<br />

Bupr<strong>of</strong>ez<strong>in</strong> GR 100 ** ** **<br />

Indoxacarb OD 30 ** **<br />

Sp<strong>in</strong>osad FP 56 *** ***<br />

Flubendiamide DA 25 *** ***<br />

* Moderately effective ** Effective *** Highly effective<br />

NT: Neiristox<strong>in</strong> OP: Organophosphate CB: Carbamate<br />

NN: Neonicot<strong>in</strong>oid PP: Phenyl pyrazole GR: Growth regulator<br />

DA: Diamide ED: Ether derivative FP: Fermentation product<br />

OD: Oxadiazene SB: Stem borers LF: Leaf folders<br />

RH: Rice hispa BPH: Brown Planthopper CW: Cutworm<br />

GLH: Green leafhopper WBPH: Whitebacked planthopper<br />

23


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

GALL MIDGE MANAGEMENT WITH GRANULAR INSECTICIDES<br />

For the management <strong>of</strong> gall midge, which is endemic <strong>in</strong> many deltas and certa<strong>in</strong> special areas like Telangana<br />

<strong>in</strong> A.P, Ranchi area <strong>of</strong> Bihar, states like Orissa, Goa, and Manipur along with many coastal areas, resistant<br />

varieties are popular. But the problem <strong>of</strong> biotypes <strong>in</strong> the <strong>in</strong>sect and lack <strong>of</strong> other desirable traits like gra<strong>in</strong><br />

quality <strong>in</strong> the resistant varieties etc. are the limitations. Hence, farmers have to resort to <strong><strong>in</strong>secticide</strong><br />

application particularly <strong>in</strong> late sown and late transplanted situations.<br />

The past results from coord<strong>in</strong>ated trials and lead research have clearly shown that spray formulations are<br />

<strong>in</strong>effective aga<strong>in</strong>st gall midge except chlorpyriphos which is moderately effective at recommended dosage<br />

<strong>of</strong> 500 g a.i./ha. Among the granular <strong><strong>in</strong>secticide</strong>s carb<strong>of</strong>uran, phorate, chlorpyriphos, isazophos and<br />

qu<strong>in</strong>alphos are moderately good <strong>in</strong> reduc<strong>in</strong>g the silver shoot <strong>in</strong>cidence. It also came to light that cartap<br />

and thiocyclam, which are neiristox<strong>in</strong>s, have poor potential toxicity to gall midge (Table 2).<br />

24<br />

Table 2: Spectrum <strong>of</strong> toxicity <strong>of</strong> granular formulations aga<strong>in</strong>st <strong>in</strong>sect pests <strong>of</strong> <strong>rice</strong><br />

Insecticide Group<br />

Rate<br />

(g a.i./ ha)<br />

Carb<strong>of</strong>uran CB750 *** ** *** ** *** *** **<br />

Carbosulfan CB1000 ** ** ** ** * *** *** ***<br />

MIPC CB1000 ** * *** ** **<br />

BPMC CB 1000 * * ** ** **<br />

Phorate OP 1250 ** *** ** ** **<br />

Qu<strong>in</strong>alphos OP 1000 *** ***<br />

Fenthion OP 1000 ** ** ** ***<br />

SB GM WM LF RHBPHWBPHGLH<br />

Ethoprop OP 1000 ** * * * * *<br />

Chlorpyriphos OP 1000 ** *** ** * * * *<br />

Isazophos OP 600 *** *** ** *** *** ** ***<br />

Cartap NT 750 *** *** ** ** **<br />

Thiocyclam NT 750 *** *** ** ** ***<br />

Fipronil PP 75 ** *** ** ** ** ** ** **<br />

* Moderately effective ** Effective *** Highly effective<br />

PP: Phenyl pyrazole OP: Organophosphate CB: Carbamate<br />

NT: Neiristox<strong>in</strong> SB: Stem borer GM: Gall midge<br />

WM: Whorl maggot LF: Leaf folder RH: Rice hispa<br />

BPH: Brown planthopper WBPH: Whitebacked planthopper GLH: Green leafhopper


Methods <strong>of</strong> <strong><strong>in</strong>secticide</strong> application<br />

Insecticides <strong>in</strong> Rice IPM (DRR)<br />

Method <strong>of</strong> <strong><strong>in</strong>secticide</strong> application greatly <strong>in</strong>fluences the toxicity <strong>of</strong> <strong><strong>in</strong>secticide</strong> to target pests and also <strong>in</strong><br />

m<strong>in</strong>imiz<strong>in</strong>g the adverse effect on natural enemies.<br />

SEED TREATMENT<br />

Detailed experiments under controlled glassho<strong>use</strong> conditions as well as field conditions clearly showed<br />

that soak<strong>in</strong>g sprouted <strong>rice</strong> seed <strong>in</strong> 0.2% emulsion <strong>of</strong> chlorpyriphos for 3 hours before sow<strong>in</strong>g can guard<br />

the nursery from gall midge damage through out the nursery period. However, due to slight phytotoxicity<br />

<strong>of</strong> the <strong><strong>in</strong>secticide</strong> reduc<strong>in</strong>g the nursery stand by about 10%, it can be recommended to the farmers <strong>in</strong> gall<br />

midge endemic areas with the caution about the reduced plant stand <strong>in</strong> the nursery.<br />

SEEDLING ROOT DIP<br />

Transplant<strong>in</strong>g is common practice <strong>in</strong> many <strong>rice</strong> grow<strong>in</strong>g areas. This simultaneously <strong>of</strong>fers the possibility <strong>of</strong><br />

dipp<strong>in</strong>g the roots <strong>of</strong> seedl<strong>in</strong>gs <strong>in</strong> <strong><strong>in</strong>secticide</strong> emulsions or solutions to ward <strong>of</strong>f the transplanted crop from<br />

early stage pests like gall midge, stem borer and whorl maggot. Out <strong>of</strong> the 30 <strong><strong>in</strong>secticide</strong> formulations<br />

evaluated as seedl<strong>in</strong>g root dip treatments, chlorpyriphos as 0.02% emulsion with a normal dipp<strong>in</strong>g period<br />

<strong>of</strong> 12 hours could effectively reduce the damage ca<strong>use</strong>d by gall midge, stem borer and whorl maggot.<br />

Logically this should also help conserve natural enemies like spiders, which colonize <strong>rice</strong> fields immediately<br />

after transplant<strong>in</strong>g as the <strong><strong>in</strong>secticide</strong> was conf<strong>in</strong>ed only to root portion <strong>of</strong> the crop.<br />

However, chlorpyriphos as seedl<strong>in</strong>g root dip could not effectively check hoppers like GLH, WBPH and some<br />

times BPH, which start coloniz<strong>in</strong>g <strong>rice</strong> crop <strong>in</strong> early stages after transplant<strong>in</strong>g. Hence, efforts were directed<br />

to this aspect and among several <strong><strong>in</strong>secticide</strong>s tested, carbosulfan 0.02% emulsion was the best and<br />

effective treatment aga<strong>in</strong>st all the three hoppers. Therefore, a logical comb<strong>in</strong>ation <strong>of</strong> chlorpyriphos 0.01%+<br />

carbosulfan 0.01% was found effective aga<strong>in</strong>st the whole pest complex <strong>in</strong> early stages after transplant<strong>in</strong>g.<br />

As 12 hour dipp<strong>in</strong>g period is too long under practical field conditions, it can be reduced to 3 hours by<br />

add<strong>in</strong>g 1% urea <strong>in</strong> the <strong><strong>in</strong>secticide</strong> emulsion/solution.<br />

ROOT ZONE APPLICATION OF INSECTICIDES<br />

Rice is probably the only crop that <strong>of</strong>fers anaerobic conditions <strong>in</strong> the root zone, due to its submergence<br />

under normal transplanted and irrigated conditions. Attempts to place the <strong><strong>in</strong>secticide</strong>s <strong>in</strong> the root zone<br />

either as solids or as liquids immediately after transplant<strong>in</strong>g revealed that carb<strong>of</strong>uran granules @ 1.0 kg<br />

a.i./ha were the most effective and protected the crop from stem borers, gall midge, whorl maggot as well<br />

as GLH upto 90 days and the efficacy was equal to 3 granular broadcasts <strong>in</strong> stand<strong>in</strong>g water given at 20<br />

days <strong>in</strong>terval.<br />

When <strong><strong>in</strong>secticide</strong>s were placed <strong>in</strong> the root zone, the persistence <strong>of</strong> <strong><strong>in</strong>secticide</strong>s was <strong>in</strong>creased due to the<br />

m<strong>in</strong>imization <strong>of</strong> losses by oxidation, vaporization, run-<strong>of</strong>f along with flow<strong>in</strong>g water and exposure to sunlight<br />

25


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

etc. Encouraged by this, attempts were made to apply <strong><strong>in</strong>secticide</strong>s more easily as liquids by mix<strong>in</strong>g wettable<br />

powders and EC formulations with water <strong>in</strong> to the root-zone successfully with different applicators.<br />

Further attempts to coat urea super granules with wettable powders <strong>of</strong> carb<strong>of</strong>uran either with coal tar or<br />

with neem oil and plac<strong>in</strong>g the coated material <strong>in</strong> the root zone were also successful. This could place both<br />

<strong><strong>in</strong>secticide</strong> and the urea fertilizer <strong>in</strong> the root zone with the same labour cost and results <strong>in</strong> supply <strong>of</strong> both<br />

N and <strong><strong>in</strong>secticide</strong> to the crop very efficiently.<br />

Predators like spiders, mirid bugs, egg, larval and pupal parasitoids <strong>of</strong> all foliage feed<strong>in</strong>g pests like leaf<br />

folder, hispa and also stem borers etc. could be conserved by root zone application <strong>of</strong> <strong><strong>in</strong>secticide</strong>s <strong>in</strong> this<br />

manner.<br />

Management <strong>of</strong> pest resurgence<br />

It is very well documented <strong>in</strong> literature that resurgence <strong>of</strong> <strong>in</strong>sect pests <strong>in</strong> <strong>rice</strong> has to be very carefully dealt<br />

with. This problem was more acute <strong>in</strong> BPH and WBPH. But <strong>in</strong> future this is go<strong>in</strong>g to be problem <strong>in</strong> case <strong>of</strong><br />

other pests like leaf folder also.<br />

BPH AND WBPH ENDEMIC AREAS<br />

Synthetic pyrethroids like deltamethr<strong>in</strong>, cypermethr<strong>in</strong>, fenvalerate and more recent molecules like beta<br />

cyfluthr<strong>in</strong> and lambda cyhalothr<strong>in</strong> have been found to <strong>in</strong>crease the populations <strong>of</strong> BPH and WBPH <strong>in</strong>variably<br />

and to significantly higher levels than <strong>in</strong> untreated plots. The reasons for the resurgence <strong>of</strong> these pests<br />

could be multifarious <strong>in</strong>clud<strong>in</strong>g reduced competition, destruction <strong>of</strong> natural enemies, reproductive stimulation<br />

<strong>of</strong> the <strong>in</strong>sect pests either directly due to contact with <strong><strong>in</strong>secticide</strong>s or <strong>in</strong>directly through changed physiology<br />

<strong>of</strong> the host plant. Hence, it has been strongly advocated that synthetic pyrethroids should be avoided <strong>in</strong><br />

<strong>rice</strong> ecosystem at all costs. Further, synthetic pyrethroids possess poor potential toxicity to other <strong>in</strong>sect<br />

pests like stem borers etc. barr<strong>in</strong>g leaf folders. Hence, the synthetic pyrethroids are not <strong>in</strong>dispensable <strong>in</strong><br />

<strong>rice</strong> ecosystem.<br />

In India, the problem <strong>of</strong> planthoppers is <strong>in</strong>creas<strong>in</strong>g year after year. These pests are spread<strong>in</strong>g to new<br />

areas <strong>in</strong> <strong>in</strong>do-gangetic belt from their traditional areas <strong>in</strong> southern parts <strong>of</strong> the country. So, with the <strong>use</strong><br />

<strong>of</strong> synthetic pyrethroids <strong>in</strong> areas where BPH and WBPH are not currently the major pests may also<br />

turnout to be the hot spots for hoppers <strong>in</strong> future. This po<strong>in</strong>t is to be viewed with utmost caution.<br />

OTHER PESTS, PARTICULARLY LEAF FOLDER<br />

Among the other pests, the problem <strong>of</strong> resurgence will be more acute <strong>in</strong> leaf folders. Previously, there<br />

were stray cases <strong>of</strong> relatively higher leaf folder damage <strong>in</strong> plots treated with granular <strong><strong>in</strong>secticide</strong>s like<br />

phorate and some times carb<strong>of</strong>uran. Later observations confirmed that these two granular formulations<br />

do ca<strong>use</strong> resurgence <strong>of</strong> leaf folder. These granular <strong><strong>in</strong>secticide</strong>s are very essential component <strong>of</strong> <strong>in</strong>sect<br />

pest management strategy <strong>in</strong> <strong>rice</strong>, beca<strong>use</strong>, granules have to be applied <strong>in</strong> gall midge endemic areas if<br />

susceptible cultivars and late-planted conditions are unavoidable. Under these situations, the farmers<br />

26


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

are to be cautioned regard<strong>in</strong>g the possible upsurge <strong>of</strong> leaf folder follow<strong>in</strong>g the granular application<br />

aga<strong>in</strong>st gall midge.<br />

Of late, neonicot<strong>in</strong>oid <strong><strong>in</strong>secticide</strong>s like imidacloprid, thiamethoxam and clothianid<strong>in</strong> are extensively <strong>use</strong>d<br />

aga<strong>in</strong>st BPH <strong>in</strong> endemic areas. In these conditions also there are observations <strong>of</strong> high leaf folder <strong>in</strong>cidence<br />

compared to untreated plots. Even, if a quick conclusion need not be arrived at that all neonicot<strong>in</strong>oids<br />

ca<strong>use</strong> resurgence <strong>of</strong> leaf folder, the situation demands more observations confirm<strong>in</strong>g the <strong>in</strong>effectiveness<br />

<strong>of</strong> neonicot<strong>in</strong>oids aga<strong>in</strong>st leaf folder, on the part <strong>of</strong> the <strong>rice</strong> entomologists and caution for <strong>rice</strong> farmers.<br />

COMBINATION PRODUCTS: THE SCOPE AND RISK<br />

The latest groups <strong>of</strong> <strong><strong>in</strong>secticide</strong>s like neonicot<strong>in</strong>oids, diamide compounds like flubendiamide, oxadiaz<strong>in</strong>es<br />

like <strong>in</strong>doxacarb and fermentation products like sp<strong>in</strong>osad and relatively older molecules like synthetic<br />

pyrethroids are effective at low dosages (10 to 100 g a.i./ha) compared to 500 g a.i./ha <strong>in</strong> case <strong>of</strong> OPs<br />

and carbamates. But these tend to be more specific. For <strong>in</strong>stance, neonicot<strong>in</strong>oids are effective aga<strong>in</strong>st<br />

homopterans or suck<strong>in</strong>g pests while other groups are effective aga<strong>in</strong>st lepidopterans. Therefore, by<br />

prepar<strong>in</strong>g the comb<strong>in</strong>ation products with one molecule <strong>of</strong> neonicot<strong>in</strong>oids and another molecule from<br />

lepidopteran effective groups, it is possible to effectively check the whole pest spectrum attack<strong>in</strong>g <strong>rice</strong><br />

crop. Accord<strong>in</strong>gly, the thrust is to evaluate and select suitable comb<strong>in</strong>ation products for each pest situation<br />

depend<strong>in</strong>g on the spectrum <strong>of</strong> toxicity <strong>of</strong> these <strong>in</strong>dividual compounds. Thus, there is ample scope <strong>in</strong> this<br />

direction for management <strong>of</strong> <strong>in</strong>sect pests <strong>in</strong> general and <strong>rice</strong> pests <strong>in</strong> particular. Some <strong>of</strong> the latest<br />

comb<strong>in</strong>ation products under evaluation along with their effectiveness aga<strong>in</strong>st different <strong>rice</strong> pests are<br />

presented. (Table 3&4).<br />

However, the risk <strong>in</strong>volved with comb<strong>in</strong>ation products is high toxicity to natural enemies viz., both predators<br />

and parasitoids. At times, the comb<strong>in</strong>ation products may be aimed at lepidopterans but they may ca<strong>use</strong><br />

harm to predators <strong>of</strong> leaf and planthoppers. Hence, a thorough evaluation <strong>of</strong> these comb<strong>in</strong>ation products<br />

aga<strong>in</strong>st the whole complex <strong>of</strong> natural enemies is essential before recommendation.<br />

Comb<strong>in</strong><strong>in</strong>g <strong><strong>in</strong>secticide</strong>s with other methods<br />

Insecticides alone are not the panacea for pest management <strong>in</strong> <strong>rice</strong> like any other agro-ecosystem.<br />

Insecticide <strong>use</strong> should be suitably <strong>in</strong>tegrated with other methods like natural enemies, sex pheromones,<br />

resistant varieties, cultural methods etc.<br />

AWARENESS OF TOTALITY OF RICE CROP AS AN ECOSYSTEM<br />

The awareness and the consciousness that <strong>rice</strong> crop or for that matter any other crop as an ecosystem is<br />

and should be the prime guid<strong>in</strong>g pr<strong>in</strong>ciple whenever some <strong>in</strong>terference with any <strong>of</strong> the methods <strong>of</strong> pest<br />

management <strong>in</strong>clud<strong>in</strong>g <strong><strong>in</strong>secticide</strong> <strong>use</strong> is decided. For <strong>in</strong>stance, when leaf mite and /or panicle mite are<br />

the problems <strong>in</strong> an area, then application <strong>of</strong> acaricides like dic<strong>of</strong>ol, diafenthiuron, abamect<strong>in</strong>, milbemect<strong>in</strong><br />

etc is very much essential. Similarly, when the diseases like sheath blight or sheath rot are prevalent<br />

27


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

Table 3: Spectrum <strong>of</strong> toxicity <strong>of</strong> comb<strong>in</strong>ation products <strong>of</strong> <strong><strong>in</strong>secticide</strong>s aga<strong>in</strong>st <strong>rice</strong> <strong>in</strong>sect pests<br />

Comb<strong>in</strong>ation product Group<br />

Ethiprole 40% +<br />

Imidacloprid 40%<br />

PP & NN 100 ** *** *** **<br />

Thiamethoxam 12.6% +<br />

Lambda cyhalothr<strong>in</strong> 9.4%<br />

NN & SP 44 ** ** ** * * *<br />

Indoxacarb 7.5% +<br />

Lambda cyhalothr<strong>in</strong> 4%<br />

OD & SP 46 ** *** * *<br />

Acetamiprid 0.4% +<br />

Chlorpyriphos 20%<br />

NN & OP 510 * ** * *<br />

Pr<strong>of</strong>enophos 40% +<br />

Cypermethr<strong>in</strong> 5%<br />

OP & SP 440 * **<br />

Chlorpyriphos 50% +<br />

Cypermethr<strong>in</strong> 5%<br />

OP & SP 344 * **<br />

Beta cyfluthr<strong>in</strong> 5% +<br />

Imidacloprid 5%<br />

SP & NN 30 * ** * *<br />

Acephate 45% +<br />

Cypermethr<strong>in</strong> 5%<br />

OP & SP 500 * ** * * *<br />

28<br />

Dosage<br />

(g a.i./ha)<br />

Stem<br />

borer<br />

Effectiveness aga<strong>in</strong>st pests<br />

Leaf<br />

folder<br />

Hispa Brown<br />

plant<br />

hopper<br />

White<br />

backed<br />

plant<br />

hopper<br />

Green<br />

leaf<br />

hopper<br />

* = moderately effective ** = effective *** = highly effective<br />

PP = Phenyl pyrazole NN = Neonicot<strong>in</strong>oid SP = Synthetic pyrethroid<br />

OP = Organophosphate OD = Oxadiaz<strong>in</strong>e<br />

along with <strong>in</strong>sect pests like BPH and WBPH, or stem borer <strong>in</strong> head<strong>in</strong>g phase <strong>of</strong> the crop, <strong>in</strong> those<br />

circumstances, the fungicides like edifenphos or IBP, which have some <strong>in</strong>secticidal properties, have to be<br />

<strong>use</strong>d. In these circumstances, these are go<strong>in</strong>g to have adverse effect on natural enemies <strong>of</strong> <strong>in</strong>sect pests.<br />

This type <strong>of</strong> <strong>in</strong>formation need to be generated and made available to the farmers for their guidance and<br />

corrective measures.<br />

COMBINING INSECTICIDE USE WITH VARIETAL RESISTANCE<br />

Donors and varieties with high level <strong>of</strong> resistance are available only for gall midge followed by moderate<br />

to good level <strong>of</strong> resistance for BPH, WBPH and GLH. Very few varieties with low level <strong>of</strong> resistance are


Insecticide<br />

Dosage<br />

(g a.i./ha)<br />

Insecticides <strong>in</strong> Rice IPM (DRR)<br />

Table 4 : Influence <strong>of</strong> some comb<strong>in</strong>ation products on stem borer and leaf folder<br />

Stem borer Leaf folder<br />

(% DH) (ADL/10 h)<br />

55 DAT (% WE) 55 DAT 70 DAT<br />

Gra<strong>in</strong> yield<br />

(Kg/ha)<br />

Acephate 45% +<br />

Cypermethr<strong>in</strong> 5%<br />

500 2.1a 6.7ab 1.2a 3.0ab 4293a<br />

BPMC 300 g a.i. +<br />

Fipronil 10 g a.i.<br />

310 7.3b 7.5b 9.5b 12.7b 3725c<br />

Betacyfluthr<strong>in</strong> 12.5 g a.i. +<br />

Chlorpyriphos 250 g a.i.<br />

393 1.4a 7.4b 3.0a 8.5ab 3977b<br />

BPMC 230 g a.i +<br />

Chlorpyriphos 320 g a.i<br />

550 3.4a 7.0ab 34.2c 8.2ab 4040ab<br />

Monocrotophos 500 1.3a 5.4a 14.0b 1.5a 3914bc<br />

Untreated control 11.5b 9.7c 59.5d 32.7 3093d<br />

(Krishnaiah et al 2003a)<br />

Note: figures <strong>in</strong> a column followed by same letter are not significantly different at p=0.05 by l.s.d.<br />

available for YSB, and few donors for leaf folders. This emphasizes the importance <strong>of</strong> comb<strong>in</strong><strong>in</strong>g <strong><strong>in</strong>secticide</strong><br />

<strong>use</strong> along with varietal resistance.<br />

In the regions like many coastal areas <strong>of</strong> Orissa, A.P., Tamil Nadu, Kerala and Karnataka, where gall midge<br />

is the major problem, this can be taken care by resistant varieties alone. In such cases, other pests like<br />

leaf folder and stem borer need to be managed by selection and <strong>use</strong> <strong>of</strong> appropriate <strong><strong>in</strong>secticide</strong>s.<br />

In areas where BPH and WBPH are the major problems <strong>use</strong> <strong>of</strong> moderately resistant varieties alone is not<br />

adequate to protect the crop from these pests. Varietal resistance should be supplemented with need<br />

based <strong><strong>in</strong>secticide</strong> <strong>use</strong> depend<strong>in</strong>g on the pest pressure. However, the quantum <strong>of</strong> <strong><strong>in</strong>secticide</strong> <strong>use</strong> is much<br />

less compared to that <strong>use</strong>d <strong>in</strong> the protection <strong>of</strong> BPH and WBPH susceptible varieties. In case <strong>of</strong> GLH,<br />

moderate to high level <strong>of</strong> resistance is available but the number <strong>of</strong> resistant varieties available are very<br />

few and are not sufficient to meet all ecological situations where, tungro is a problem for which GLH is<br />

notorious as vector. Therefore, <strong>in</strong> tungro endemic situations, <strong><strong>in</strong>secticide</strong> <strong>use</strong> is a must.<br />

SAFE-GUARDING NATURAL ENEMIES FROM INSECTICIDES<br />

The biodiversity <strong>of</strong> natural enemies <strong>of</strong> all the major pests <strong>in</strong> <strong>rice</strong> ecosystem is very wide. The egg, larval<br />

and pupal parasitoids <strong>of</strong> lepidopteran and coleopteran pests and wide variety <strong>of</strong> predators like mirid<br />

bugs, cocc<strong>in</strong>ellids, staphyl<strong>in</strong>ids and few hundreds <strong>of</strong> species <strong>of</strong> spiders are present <strong>in</strong> <strong>rice</strong> ecosystem.<br />

29


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

Hence, any <strong><strong>in</strong>secticide</strong> <strong>use</strong> is likely to harm one or other groups <strong>of</strong> these natural enemies. Studies on<br />

potential toxicity <strong>of</strong> important <strong><strong>in</strong>secticide</strong>s to major natural enemies under laboratory conditions are a pre<br />

requisite for avoid<strong>in</strong>g the <strong><strong>in</strong>secticide</strong>s with high ecological damage.<br />

Secondly, the tim<strong>in</strong>g <strong>of</strong> <strong><strong>in</strong>secticide</strong> <strong>use</strong> is very important. For <strong>in</strong>stance, the <strong>in</strong>undative release <strong>of</strong> parasitoids<br />

like Trichogramma aimed aga<strong>in</strong>st egg stage <strong>of</strong> leaf folder should not co<strong>in</strong>cide with <strong><strong>in</strong>secticide</strong> <strong>use</strong> aga<strong>in</strong>st<br />

BPH and WBPH, which simultaneously occur <strong>in</strong> the same crop ecosystem.<br />

COMBINING PHEROMONES WITH INSECTICIDE USE<br />

In <strong>rice</strong>, pheromone technology has come to a stage <strong>of</strong> practical application only <strong>in</strong> case <strong>of</strong> YSB. Pheromones<br />

can be <strong>use</strong>d <strong>in</strong> <strong>rice</strong> ecosystem for 1) monitor<strong>in</strong>g the levels <strong>of</strong> pest populations to decide the best time <strong>of</strong><br />

<strong><strong>in</strong>secticide</strong> application 2) for mass-trapp<strong>in</strong>g 3) male confusion technique.<br />

For the purpose <strong>of</strong> monitor<strong>in</strong>g, trap-capture thresholds that establish the relationship between numbers<br />

<strong>of</strong> male moths caught per week <strong>in</strong> the traps and the damage that is likely to occur with the pest population<br />

present <strong>in</strong> the field are already established <strong>in</strong> case <strong>of</strong> YSB. Hence, <strong>in</strong> areas where YSB alone is the<br />

problem, <strong><strong>in</strong>secticide</strong>s already suggested aga<strong>in</strong>st stem borer can be coupled with pheromone trap capture<br />

thresholds<br />

Mass trapp<strong>in</strong>g <strong>of</strong> male moths to reduce their population below a critical level, which reduces the total<br />

number <strong>of</strong> fertile eggs laid by females and f<strong>in</strong>ally results <strong>in</strong> lower actual damage as dead hearts or white<br />

ears, has been successful. Sleeve traps each with 10 mg <strong>of</strong> pheromone @ 20 traps/ ha have been found<br />

effective aga<strong>in</strong>st YSB. However, the male confusion technique did not workout to be practical or economical<br />

<strong>in</strong> case <strong>of</strong> YSB.<br />

If YSB is the only problem <strong>in</strong> a <strong>rice</strong> crop, mass trapp<strong>in</strong>g technology can be very well coupled with <strong>use</strong> <strong>of</strong><br />

appropriate <strong><strong>in</strong>secticide</strong>s on need basis. If other pests like leaf folders or BPH and WBPH are also present<br />

<strong>in</strong> <strong>rice</strong> crop ecosystem, then selection <strong>of</strong> proper <strong><strong>in</strong>secticide</strong>(s) that can take care <strong>of</strong> all the problems may<br />

work out to be practical and economical.<br />

30


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

EFFECTIVENESS OF INSECTICIDES AGAINST<br />

RICE INSECT PESTS<br />

A. INSECTICIDE EVALUATION AGAINST MAJOR PESTS<br />

i) BROWN PLANTHOPPER, Nilaparvata lugens (Stal)<br />

After BPH became a major <strong>in</strong>sect pest attack<strong>in</strong>g <strong>rice</strong> crop <strong>in</strong> India <strong>in</strong> 1972, late Dr. M. B. Kalode took lead<br />

<strong>in</strong> evaluat<strong>in</strong>g <strong><strong>in</strong>secticide</strong>s aga<strong>in</strong>st this pest. With the help <strong>of</strong> his student, Dr. Kalode studied the biology <strong>of</strong><br />

this pest and assessed the potential toxicity <strong>of</strong> several spray and granular formulations available at that<br />

time (Venkataswamy & Kalode, 1980). Among 24 granular formulations (at 2 kg a.i./ha) and 38 spray<br />

formulations (0.05% a.i.) evaluated aga<strong>in</strong>st nymphs by cag<strong>in</strong>g method., isoprocarb (Mipc<strong>in</strong>) and carb<strong>of</strong>uran<br />

granules and sprays <strong>of</strong> carbaryl and monocrotophos were the best for quick <strong>in</strong>itial effectiveness and<br />

persistent toxicity. Among other <strong><strong>in</strong>secticide</strong>s terbuphos, disulfoton granules, sprays <strong>of</strong> thiocyclam and<br />

cartap were the next best <strong>in</strong> the order. Initial recommendations <strong>of</strong> the best <strong><strong>in</strong>secticide</strong>s were also made to<br />

the farmers based on the study. Later, Krishnaiah et al., (1982a and b) made detailed toxicological<br />

<strong>in</strong>vestigations on brown planthopper. Among the 14 spray <strong><strong>in</strong>secticide</strong>s at 0.05%, carbosulfan, BPMC had<br />

good knock down effect but carbosulfan persisted for a longer period. Carbosulfan also exhibited high<br />

contact toxicity when tested by Potters Tower method. Among the <strong><strong>in</strong>secticide</strong>s evaluated for their downward<br />

translocation property <strong>in</strong> <strong>rice</strong> plants by spray<strong>in</strong>g on the upper portion and conf<strong>in</strong><strong>in</strong>g the BPH to the lower<br />

unsprayed position, BPMC was identified to possess that property. But it persisted only for 5 days.<br />

Chlorpyriphos, is<strong>of</strong>enphos, dicrotophos, carb<strong>of</strong>uran, monocrotophos, demeton–o-methyl, carbaryl and<br />

isoprocarb showed no appreciable translocation. Ovicidal activity was assessed by spray<strong>in</strong>g on plants<br />

conta<strong>in</strong><strong>in</strong>g one day old BPH eggs. Carb<strong>of</strong>uran, isoprocarb and BPMC @ 0.05% completely <strong>in</strong>hibited egg<br />

hatch<strong>in</strong>g.<br />

Later studies at DRR on comparative toxicity <strong>of</strong> synthetic pyrethroid, organophosphate and carbamate<br />

<strong><strong>in</strong>secticide</strong>s aga<strong>in</strong>st BPH and GLH (Krishnaiah and Kalode 1988a) revealed that synthetic pyrethroids<br />

(deltamethr<strong>in</strong>, cypermethr<strong>in</strong> and fenvalerate) were less toxic to BPH compared to GLH. Of seven<br />

organophosphates and two carbamates, UC-54229 to BPH and chlorfenv<strong>in</strong>phos to GLH were more toxic<br />

than monocrotophos.<br />

Krishnaiah et al., (2004) cont<strong>in</strong>ued their efforts to evaluate later generation <strong><strong>in</strong>secticide</strong>s like neonicot<strong>in</strong>oids<br />

and phenylpyrazoles aga<strong>in</strong>st BPH, WBPH and GLH. Neonicot<strong>in</strong>oids like imidacloprid, thiamethoxam and<br />

thiocloprid were toxic to BPH, WBPH and GLH, while phenyl pyrazoles like fipronil and ethiprole exhibited<br />

good toxicity to BPH and WBPH but were almost non toxic to GLH at 25 to 50 g a.i./ha, the normally<br />

recommended dose for these <strong><strong>in</strong>secticide</strong>s (Table 5).<br />

With the developments on <strong>in</strong>secticidal evaluation at DRR, Prakasa Rao and PRM Rao at CRRI Cuttack also<br />

evaluated several <strong><strong>in</strong>secticide</strong>s for their effectiveness and suitable methods <strong>of</strong> application (Rao and Rao<br />

1979, 1981 and 1982). Carb<strong>of</strong>uan, BPMC and isoprocarb were good ovicidal agents and also effective<br />

31


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

32<br />

Table 5 : PT values <strong>of</strong> neonicot<strong>in</strong>oids and phenyl pyrazoles for BPH, WBPH and GLH<br />

Insecticide Conc. (ppm)<br />

Persistent toxicity at 24 hours after release<br />

BPHWBPHGLH<br />

Thiamethoxam 25 2042cd 1811b 1483bc<br />

Imidacloprid 25 2166bc 1811b 1548ab<br />

Fipronil 50 2264ab 1975a 365f<br />

Monocrotophos (Check) 500 433h 931g 750e<br />

Acephate (check) 1200 1219g 1194f 1306d<br />

NB: The values <strong>in</strong> a column followed by the same letter are not significantly different at<br />

P= 0.05 accord<strong>in</strong>g to l.s.d method.<br />

(Krishnaiah et al., 2004)<br />

aga<strong>in</strong>st mobile stages. Among the <strong><strong>in</strong>secticide</strong>s phorate, BPMC and MIPC were found to have effective<br />

fumigant action.<br />

Carb<strong>of</strong>uran among granules and BPMC among sprays were confirmed for their effectiveness at other<br />

<strong>in</strong>stitutes also (Mohamed Ali et al., 1981; Uthama Samy and Suresh 1986; Krishnaiah and Butchaiah<br />

1987; Prakash and Bhattacharya 1993). Several field studies also confirmed the effectiveness <strong>of</strong><br />

neonicot<strong>in</strong>oid compounds like imidacloprid and thiamethoxam and phenyl pyrazole compounds like ethiprole<br />

at dosages as low as 25 to 50 g a.i./ha (Manjunatha and Shivanna 2001; Verma et al., 2003; Hegde<br />

2005).<br />

At IRRI, Philipp<strong>in</strong>es, several <strong><strong>in</strong>secticide</strong>s have been evaluated for their ovicidal activity aga<strong>in</strong>st brown<br />

planthopper. Sprays <strong>of</strong> carb<strong>of</strong>uran, triazophos, az<strong>in</strong>phos–ethyl, propoxur, fenitrothion, carbosulfan (0.75<br />

kg a.i/ha) were good ovicidal agents (He<strong>in</strong>richs and Valencia 1978; Valencia et al., 1979; Basilio and<br />

He<strong>in</strong>richs 1981; He<strong>in</strong>richs and Valencia 1981).<br />

Studies <strong>in</strong> Malaysia (Lim 1971) revealed that carbaryl, monocrotophos, thiometon, dicrotophos, malathion,<br />

phosphamidon (all at 0.1% concentration) exhibited good knockdown effect aga<strong>in</strong>st nymphs <strong>of</strong> BPH.<br />

Field studies showed that imidacloprid alone was effective aga<strong>in</strong>st BPH while <strong>in</strong> comb<strong>in</strong>ation with monosultap<br />

it could effectively check both BPH and the stem borer Chilo supressalis <strong>in</strong> Ch<strong>in</strong>a (Iwawa et al., 1998 and<br />

Tao et al., 2005). Fipronil was found effective aga<strong>in</strong>st several pests <strong>in</strong>clud<strong>in</strong>g BPH and WBPH <strong>in</strong> Ch<strong>in</strong>a (Wei<br />

et al., 2001; Sun et al., 1996 and Wang et al., 1995).<br />

Studies on Bupr<strong>of</strong>ez<strong>in</strong><br />

Bupr<strong>of</strong>ez<strong>in</strong> is an <strong>in</strong>sect growth regulator and chit<strong>in</strong> synthesis <strong>in</strong>hibitor with stomach action and also hav<strong>in</strong>g<br />

good persistence <strong>in</strong> <strong>rice</strong>. It has been found to be effective at dosages as low as 100 to 150 g a.i./ha. It has<br />

been found to be extremely safe to natural enemies <strong>of</strong> BPH and WBPH under field conditions (Zheng et


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

al., 1993; Huang and Pang 1992; Pan and Chui 1989; Huang et al., 1989). Bae et al., (1994) from Korea<br />

could successfully suppress the populations <strong>of</strong> BPH and WBPH when bupr<strong>of</strong>ez<strong>in</strong> was applied <strong>in</strong> later<br />

stages <strong>of</strong> plant growth.<br />

Several studies were made on physiological effects <strong>of</strong> bupr<strong>of</strong>ez<strong>in</strong> application <strong>in</strong> BPH. Bae and Hyun<br />

(1989) from Korea observed that bupr<strong>of</strong>ez<strong>in</strong> reduced adult lifespan if applied to the nymphs. Gu et. al.<br />

(1993) from Ch<strong>in</strong>a reported that bupr<strong>of</strong>ez<strong>in</strong> suppressed egg lay<strong>in</strong>g and decreased life span <strong>of</strong> adults.<br />

Application <strong>of</strong> bupr<strong>of</strong>ez<strong>in</strong> at low dosages affected several metabolic enzymes such as CarE, AcP, AkP, ASAT<br />

and ALAT which resulted <strong>in</strong> metabolic disorders both <strong>in</strong> males and females with serious disturbances <strong>in</strong><br />

free am<strong>in</strong>o acids present <strong>in</strong> BPH (Fan et. al. 1993). This has great practical significance as the free am<strong>in</strong>o<br />

acid content <strong>in</strong> <strong>rice</strong> stems follow<strong>in</strong>g the application <strong>of</strong> high dosages <strong>of</strong> N to <strong>rice</strong> crop <strong>in</strong>creases and this is<br />

a serious predisposition <strong>of</strong> <strong>rice</strong> crop for enhanced multiplication <strong>of</strong> BPH <strong>in</strong> the field.<br />

Liu et. al. (1989) from Ch<strong>in</strong>a reported that the toxicity <strong>of</strong> bupr<strong>of</strong>ez<strong>in</strong> decl<strong>in</strong>es as the nymphal stages <strong>of</strong><br />

BPH advance. Histological observations revealed that destruction <strong>of</strong> chit<strong>in</strong> lamellae <strong>in</strong> the endocuticle<br />

and other organs rich <strong>in</strong> chit<strong>in</strong> was the ma<strong>in</strong> ca<strong>use</strong> <strong>of</strong> moult<strong>in</strong>g <strong>in</strong>hibition due to bupr<strong>of</strong>ez<strong>in</strong>. Kobayashi et<br />

al., (1989) from Japan observed that the <strong><strong>in</strong>secticide</strong> bupr<strong>of</strong>ez<strong>in</strong> elevated the level <strong>of</strong> moult<strong>in</strong>g harmone<br />

(ecdysone) and retarded the fall <strong>of</strong> ecdysterone <strong>in</strong> treated nymphs dur<strong>in</strong>g 33 to 48 hours follow<strong>in</strong>g the<br />

topical application. The fall <strong>in</strong> ecdysterone adversely affected old cuticle digestion and new cuticle deposition.<br />

Thus, bupr<strong>of</strong>ez<strong>in</strong> <strong>in</strong>terferes by several ways with the physiology <strong>of</strong> treated <strong>in</strong>sects but the death occurs<br />

only at the time <strong>of</strong> moult<strong>in</strong>g show<strong>in</strong>g that <strong>in</strong>terference with the moult<strong>in</strong>g process is the ma<strong>in</strong> mode <strong>of</strong><br />

action <strong>in</strong> BPH.<br />

ii) WHITEBACKED PLANTHOPPER Sogatella furcifera (Horvath)<br />

Zafar (1982) from Pakistan identified isoprocarb and carbaryl as effective (1.25 to 2.125 kg formulation<br />

/ha) aga<strong>in</strong>st WBPH. Krishnaiah and Kalode (1986c) carried out detailed <strong><strong>in</strong>secticide</strong> evaluation studies<br />

under green ho<strong>use</strong> conditions, which <strong>in</strong>volved 33 spray formulations and 7 granular formulations aga<strong>in</strong>st<br />

nymphs <strong>of</strong> WBPH. Among sprays carbosulfan, fenitrothion, isoprocarb, were most effective, while carbosulfan<br />

was the most persistent compound. Dichlorvos was also effective under field conditions (Khan and Kushwaha<br />

1990). Carbforuan was the best granular <strong><strong>in</strong>secticide</strong> both for knockdown kill as well as persistent toxicity.<br />

In field trials <strong>in</strong> Punjab, isoprocarb, qu<strong>in</strong>alphos, ethion, fenitrothion and fenthion were found effective at<br />

500 g a.i./ha (Jaswant S<strong>in</strong>gh et. al. 1988). The effectiveness <strong>of</strong> carb<strong>of</strong>uran at 1 kg a.i./ha was also<br />

confirmed under field conditions by others. Cartap as granules was also moderately effective (Panda and<br />

Shi 1988; Roshan Lal 2000; Sontakke and Senapati 1997). Phosphamidon (0.05%) was found to be<br />

ovicidal aga<strong>in</strong>st WBPH (Ramaraju et. al. 1987).<br />

Flufenoxuran, a chit<strong>in</strong> synthesis <strong>in</strong>hibitor at 600 ppm was found to be ovicidal and also ca<strong>use</strong>d morphological<br />

deformities <strong>in</strong> hatched nymphs <strong>of</strong> WBPH. The deformed adults resulted when the nymphs were treated<br />

with this compound (Mani and Gopalan 1991).<br />

33


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

iii) STEM BORERS<br />

Among the stem borers that <strong>in</strong>fest <strong>rice</strong> crop <strong>in</strong> India, yellow stem borer Scirphophaga <strong>in</strong>certulas is the<br />

most important. This <strong>in</strong>sect is not amenable for artificial rear<strong>in</strong>g <strong>in</strong> the laboratory. Rear<strong>in</strong>g under greenho<strong>use</strong><br />

conditions on its natural host, <strong>rice</strong> plant, has limited scope for mass multiplication, ow<strong>in</strong>g to requirement<br />

<strong>of</strong> huge space, long time and big effort even to get very limited <strong>in</strong>sect culture. Hence, the <strong>in</strong>formation on<br />

<strong><strong>in</strong>secticide</strong> efficacy aga<strong>in</strong>st yellow stem borer has been generated under field conditions. However, under<br />

field conditions along with YSB, other stem borers like white stem borer S. <strong>in</strong>notata, dark headed borer<br />

Chilo suppresalis, and p<strong>in</strong>k stem borer Sesamia <strong>in</strong>ferens are also present. As the symptoms ca<strong>use</strong>d by<br />

these different stem borers <strong>in</strong> vegetative phase (dead hearts) and head<strong>in</strong>g phase (white ear heads) are<br />

similar, the effectiveness <strong>of</strong> <strong><strong>in</strong>secticide</strong>s reported <strong>in</strong> the literature reflects on the totality <strong>of</strong> stem borer<br />

complex and not necessarily to yellow stem borer alone. Along with stem borer, other pests like leaf folder<br />

and gall midge are also present <strong>in</strong> certa<strong>in</strong> situations.<br />

GRANULAR FORMULATIONS<br />

Both granular formulations and spray formulations were extensively evaluated aga<strong>in</strong>st stem borer.<br />

Subramanian et al., (1981) observed that BPMC granules at 2 kg a.i./ha were at par with standard check<br />

carb<strong>of</strong>uran (0.75 kg a.i./ha). BPMC was effective <strong>in</strong> Philipp<strong>in</strong>es (He<strong>in</strong>richs et al., 1986). Chlorpyriphos 5G,<br />

carb<strong>of</strong>uran 3G and diaz<strong>in</strong>on 10 G were effective aga<strong>in</strong>st over-w<strong>in</strong>ter<strong>in</strong>g larvae <strong>in</strong> Pakistan (Ul-Haq and<br />

Inayatullah 1990). Gubbaiah et al., (1995) reported that cartap 4 G at 0.75 kg a.i./ha was at par with<br />

carb<strong>of</strong>uran 0.6 kg a.i./ha. Krishnaiah et al., (1996) reported that granules <strong>of</strong> ethoprophos and isazophos<br />

<strong>in</strong> addition to cartap (each at 1 kg a.i./ha) were more effective than the check <strong><strong>in</strong>secticide</strong> carb<strong>of</strong>uran<br />

aga<strong>in</strong>st stem borer and also leaf folder. Khan and Khaliq (1989) from Pakistan confirmed the effectiveness<br />

<strong>of</strong> cartap granules. Sontakke and Dash (2000) observed that chlorpyriphos granules (1kg a.i/ha) were<br />

effective aga<strong>in</strong>st stem borer. Krishnaiah et. al. (2003a) reported that carbosulfan (1 kg a.i./ha) was also<br />

as effective as check <strong><strong>in</strong>secticide</strong> carb<strong>of</strong>uran (1 kg a.i./ha) aga<strong>in</strong>st this pest.<br />

SPRAY FORMULATIONS<br />

Among the spray formulations, furathiocarb, pyridaphenthion, BPMC (0.75 kg a.i./ha) and eth<strong>of</strong>enprox<br />

(0.05 kg a.i./ha) were moderately effective aga<strong>in</strong>st stem borers while, pyridaphenthion and eth<strong>of</strong>enprox<br />

exhibited moderate effectiveness aga<strong>in</strong>st leaf folder and were similar to chlorpyriphos (0.5 kg a.i./ha)<br />

(Krishnaiah et al., 1996). Triazophos and two new formulations <strong>of</strong> qu<strong>in</strong>alphos (20 AF and 20 CS) at 0.5<br />

kg a.i./ha were found effective aga<strong>in</strong>st stem borer. Later studies (Krishnaiah et. al. 2003a) <strong>in</strong>dicated that<br />

the comb<strong>in</strong>ation product viz., acephate 45% + cypermethr<strong>in</strong> 5% (500 g a.i./ha); beta cyfluthr<strong>in</strong> 1.25%<br />

+ chlorpyriphos 25% at 393 g a.i./ha; BPMC 23% + chlorpyriphos 33 % at 550 g a.i/ha and BPMC 30%<br />

+ fipronil 1% (at 310 g a.i/ha) were at par with standard check monocrotophos aga<strong>in</strong>st stem borer and<br />

leaf folder. Dash and Mukherjee (2003) observed that silaflu<strong>of</strong>en at 0.1 kg a.i./ha was at par with check<br />

<strong><strong>in</strong>secticide</strong> chlorpyriphos (0.5 kg a.i./ha) aga<strong>in</strong>st stem borers. Misra and Parida (2004) screened several<br />

34


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

comb<strong>in</strong>ations <strong>of</strong> <strong><strong>in</strong>secticide</strong>s aga<strong>in</strong>st stem borer and observed that the comb<strong>in</strong>ations like acephate 25%<br />

+ fenvalerate 3%, ethion 40% + cypermethr<strong>in</strong> 5%, pr<strong>of</strong>enophos 40% + cypermethr<strong>in</strong> 4% were effective<br />

<strong>in</strong> reduc<strong>in</strong>g dead heart as well as white ear head <strong>in</strong>cidence.<br />

Recent studies <strong>in</strong> Ch<strong>in</strong>a and Pakistan revealed that fipronil 5 EC @ 66 g a.i./ha either as spray or as mixed<br />

with fertilizer and broadcast <strong>in</strong> water (Saljoqi et. al. 2002) or as spray at 22.5 g a.i./ha was effective <strong>in</strong><br />

reduc<strong>in</strong>g the dead heart and white ear <strong>in</strong>cidence (Zhu et al., 2002).<br />

OVICIDAL ACTION<br />

Effectiveness <strong>of</strong> some <strong>of</strong> the <strong><strong>in</strong>secticide</strong>s aga<strong>in</strong>st yellow stem borer eggs has been reported ma<strong>in</strong>ly from<br />

laboratory studies. Chlorpyriphos @ 0.5 kg a.i./ha (Sharma & S<strong>in</strong>gh 1995); monocrotophos and fenitrothion<br />

@ 0.04% concentration (Pandya et. al. 1987) were good ovicidal agents. Synthetic pyrethroids like<br />

Permethr<strong>in</strong> (0.0125%), cypermethr<strong>in</strong> (0.01%) and fenvalerate (0.01%) ca<strong>use</strong>d higher mortality <strong>of</strong> stem<br />

borer eggs than the check <strong><strong>in</strong>secticide</strong> diflubenzuron (0.02%) (Raju et. al. 1988).<br />

iv) LEAF FOLDER<br />

Leaf folder is a complex <strong>of</strong> species. About 8 species <strong>of</strong> leaf folders have so far been recorded attack<strong>in</strong>g<br />

<strong>rice</strong>. However, recent studies <strong>in</strong> DRR under co-ord<strong>in</strong>ated trials revealed that Cnaphalocrocis med<strong>in</strong>alis is<br />

the most dom<strong>in</strong>ant species or the sole species <strong>in</strong> almost all situations throughout the country. Hence, the<br />

effectiveness <strong>of</strong> <strong><strong>in</strong>secticide</strong>s even under field conditions reflects the efficacy aga<strong>in</strong>st C. med<strong>in</strong>alis.<br />

Insecticide evaluation aga<strong>in</strong>st leaf folder has been a part <strong>of</strong> <strong><strong>in</strong>secticide</strong> test<strong>in</strong>g program <strong>of</strong> DRR (formerly<br />

AICRIP) almost s<strong>in</strong>ce 1980 when leaf folder started becom<strong>in</strong>g a major pest (DRR 1980-2006). A bird’s<br />

eye view <strong>of</strong> the entire results on the effectiveness <strong>of</strong> granular formulations and spray formulations <strong>of</strong><br />

various <strong><strong>in</strong>secticide</strong>s revealed that among the granular <strong><strong>in</strong>secticide</strong>s cartap 4G is the most effective <strong><strong>in</strong>secticide</strong><br />

when applied at 0.8 to 1.0 kg a.i./ha. It cont<strong>in</strong>ues to be effective even today. Among other granules,<br />

carb<strong>of</strong>uran was moderately effective at 0.75 to 1 kg a.i./ha <strong>in</strong> the beg<strong>in</strong>n<strong>in</strong>g that is upto 1990. Subsequently,<br />

there were many <strong>in</strong>stances <strong>of</strong> <strong>in</strong>effectiveness <strong>of</strong> carb<strong>of</strong>uran aga<strong>in</strong>st leaf folder. Among the spray<br />

formulations, chlorpyriphos, qu<strong>in</strong>alphos, monocrotophos, phosphamidon, triazophos, dicrotophos, cartap<br />

(all at 0.5 kg a.i./ha) and eth<strong>of</strong>enprox (@ 0.05 to 0.1 kg a.i./ha) were effective. Thus reveal<strong>in</strong>g that leaf<br />

folder can be very easily managed by a wide range <strong>of</strong> spray formulations.<br />

Effectiveness <strong>of</strong> Cartap aga<strong>in</strong>st Leaf Folder<br />

Sakai (1971) was first to evaluate cartap hydrochloride as <strong><strong>in</strong>secticide</strong> aga<strong>in</strong>st leaf folder <strong>in</strong> Japan under<br />

field conditions. Endo and Masuda (1981a & b) from Japan concluded that cartap spray at 6 days after<br />

peak adult appearance is the best method for LF management. Endo (1997) observed differences <strong>in</strong><br />

susceptibility level <strong>of</strong> larvae and adults <strong>of</strong> LF to cartap, monocrotophos and acephate by topical application<br />

method. LD 50 <strong>of</strong> cartap to adults was lower than that for larvae, while reverse was the case with<br />

35


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

monocrotophos and acephate. The effectiveness <strong>of</strong> cartap (0.5 kg a.i/ha) was confirmed under field<br />

conditions recently also (Seetharamu et. al. 2005).<br />

Valencia and He<strong>in</strong>richs (1982) identified 23 <strong><strong>in</strong>secticide</strong>s as effective aga<strong>in</strong>st eggs and larvae <strong>of</strong> C. med<strong>in</strong>alis<br />

under green ho<strong>use</strong> conditions. Sa<strong>in</strong> et. al. (1987) evaluated 15 <strong><strong>in</strong>secticide</strong>s @ 0.5 kg a.i./ha as sprays<br />

and observed that chlorpyriphos, methyl parathion, monocrotophos and qu<strong>in</strong>alphos as the most effective<br />

based on larval mortality assessed at 5 days after spray and leaf damage at 10 days after spray.<br />

Naik et al. (1993) from Bhubaneswar assessed the toxicity <strong>of</strong> commercial <strong><strong>in</strong>secticide</strong> formulations aga<strong>in</strong>st<br />

4th <strong>in</strong>star larvae and found that monocrotophos, qu<strong>in</strong>alphos and phosphamidon were the most effective<br />

based on LC50 values. Triazophos @ 0.5 kg a .i. /ha was effective under field conditions for controll<strong>in</strong>g<br />

the <strong>in</strong>cidence <strong>of</strong> C. med<strong>in</strong>alis and M. patnalis <strong>in</strong> Karaikal, Pondichery (Nadarajan 1996). Eth<strong>of</strong>enprox was<br />

observed to be effective aga<strong>in</strong>st larvae at one tenth <strong>of</strong> the concentration <strong>of</strong> monocrotophos (Jena et al.,<br />

1992). Mishra et al., (1998) confirmed that eth<strong>of</strong>enprox at 100 g a.i./ha was on par with cartap<br />

hydrochloride @ 0.5 kg a.i./ha aga<strong>in</strong>st larvae. Pandya et. al. (1999) reported that pr<strong>of</strong>enophos (0.5 kg<br />

a.i./ha) spray was effective aga<strong>in</strong>st leaf folder under field conditions.<br />

Synthetic pyrethroids, <strong>in</strong> general, are highly effective aga<strong>in</strong>st leaf folder at recommended dosages <strong>of</strong><br />

12.5 to 50 g a.i./ha. But these are not recommended <strong>in</strong> <strong>rice</strong> ecosystem due to BPH resurgence, as BPH<br />

is also endemic <strong>in</strong> many <strong>rice</strong> grow<strong>in</strong>g tracts where the leaf folder is a problem.<br />

v) GALL MIDGE Orseolia oryzae (Wood-Mason)<br />

Dur<strong>in</strong>g 1960s spray formulations <strong>of</strong> <strong><strong>in</strong>secticide</strong>s like endr<strong>in</strong> and ethyl parathion were under recommendation<br />

aga<strong>in</strong>st gall midge. However, systematic evaluation <strong>of</strong> granular formulations and spray formulations <strong>of</strong><br />

<strong><strong>in</strong>secticide</strong>s under AICRIP Entomology programme (DRR 1970-2000) and <strong>in</strong>tensive studies under<br />

greenho<strong>use</strong> conditions (Kalode et al 1982a and b) led to the identification <strong>of</strong> granular <strong><strong>in</strong>secticide</strong>s like<br />

carb<strong>of</strong>uran, mephosfolan, chlorfenv<strong>in</strong>phos, qu<strong>in</strong>alphos and phorate at 750 to 1000 g a.i./ha as effective<br />

aga<strong>in</strong>st this pest. Dur<strong>in</strong>g this period the most important po<strong>in</strong>t that emerged was that spray formulations,<br />

<strong>in</strong> general, were <strong>in</strong>effective aga<strong>in</strong>st gall midge except chlorpyriphos, which exhibited moderate efficacy at<br />

500 g a.i./ha. This prompted explor<strong>in</strong>g the possibility <strong>of</strong> other methods <strong>of</strong> <strong><strong>in</strong>secticide</strong> application like seed<br />

treatment, seedl<strong>in</strong>g root-dip etc. for the management <strong>of</strong> gall midge, which is cost effective, compared to<br />

granular <strong><strong>in</strong>secticide</strong>s.<br />

Seed dress<strong>in</strong>g with 16 g <strong>of</strong> 5% wettable powder <strong>of</strong> is<strong>of</strong>enphos / kg <strong>of</strong> seed after sprout<strong>in</strong>g or soak<strong>in</strong>g<br />

sprouted seed <strong>in</strong> a 5% wettable powder or emulsifiable concentrate <strong>of</strong> is<strong>of</strong>enphos controlled gall midge<br />

<strong>in</strong>festation for about 30 days ensur<strong>in</strong>g the protection for the entire nursery period (Kalode et. al. 1982a).<br />

Carb<strong>of</strong>uran at the same rate and method showed moderate effectiveness for 15 days. When sprouted<br />

seeds were soaked for 3 hrs <strong>in</strong> either WP or EC formulations (0.5% emulsions) <strong>of</strong> is<strong>of</strong>enphos or<br />

chlorpyriphos for 3 hours, gall midge <strong>in</strong>festation was checked for 30 days. However, carb<strong>of</strong>uran, carbosulfan,<br />

BPMC and monocrotophos were not effective when treated <strong>in</strong> this way (Kalode et. al. 1982b).<br />

36


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

Seedl<strong>in</strong>g root dip <strong>in</strong> 0.02% emulsions <strong>of</strong> chlorpyriphos for 12 hours or for 3 hours along with 1% urea<br />

completely checked gall midge damage for 25 days after transplant<strong>in</strong>g. To evaluate the effectiveness <strong>of</strong><br />

different granular <strong><strong>in</strong>secticide</strong>s aga<strong>in</strong>st different ages <strong>of</strong> gall midge maggots present <strong>in</strong>side the stem, the<br />

studies revealed that carb<strong>of</strong>uran, mephosfolan and is<strong>of</strong>enphos @ 2 kg a.i./ha basis could check 7 day old<br />

maggots and prevented gall formation. Chlorfenv<strong>in</strong>phos, isoprocarb and phorate @ 2 kg a.i./ha checked<br />

the formation <strong>of</strong> silver shoots when applied 3 days after larval entry. Insecticides applied 8 days or later<br />

could not prevent silver shoot formation (Kalode et. al. 1982b).<br />

Shukla and Kaushik (1983) confirmed the effectiveness <strong>of</strong> chlorpyriphos and carb<strong>of</strong>uran granules through<br />

field studies. While Sr<strong>in</strong>ivas and Madhumathi (2004) confirmed the cont<strong>in</strong>ued efficacy <strong>of</strong> carb<strong>of</strong>uran<br />

aga<strong>in</strong>st gall midge.<br />

B. INSECTICDE EVALUATION AGAINST MINOR PESTS IN RICE<br />

i) Rice skipper, Palopidas mathias (Fabricius)<br />

Among the <strong><strong>in</strong>secticide</strong>s evaluated under field conditions, qu<strong>in</strong>alphos (0.08%) was the best treatment and<br />

ca<strong>use</strong>d 100% mortality with <strong>in</strong> 2 days after application <strong>in</strong> Maharashtra, India. Other <strong><strong>in</strong>secticide</strong>s tested<br />

were carbaryl (0.1%), HCH (0.2%), phenthoate (0.08%), phosalone (0.04%) and endosulfan (0.06%)<br />

(Gaikwad and Dalvi, 1987).<br />

ii) Blue Beetle, Leptispa pygmaea Baly<br />

The efficacy <strong>of</strong> acephate, dimethoate, methomyl, monocrotophos, HCH, carbaryl, permethr<strong>in</strong>, phosalone,<br />

BPMC and endosulfan were field evaluated and found to be almost equally effective aga<strong>in</strong>st the <strong>rice</strong> blue<br />

beetle <strong>in</strong> Maharashtra, India (Dalvi et. al. 1985).<br />

iii) Root Weevil Ech<strong>in</strong>ocneumus oryzae Mshl<br />

Among the 5 <strong><strong>in</strong>secticide</strong>s evaluated <strong>in</strong> U.P., chlorfenv<strong>in</strong>phos was the best one (Srivastava et. al. 1976).<br />

S<strong>in</strong>gh and Dhaliwal (1981) tested 8 granular formulations by broadcast<strong>in</strong>g and observed best reduction<br />

<strong>in</strong> larval population’s upto 20 days after application <strong>of</strong> carb<strong>of</strong>uran (89.6%), qu<strong>in</strong>alphos (84.9%) and<br />

phorate (81.25%). Other <strong><strong>in</strong>secticide</strong>s like is<strong>of</strong>enphos, disulfoton and l<strong>in</strong>dane were less effective. Kushwaha<br />

et. al. (1983) also observed carb<strong>of</strong>uran granules as the best treatment aga<strong>in</strong>st root weevil <strong>in</strong> Haryana.<br />

iv) Rice thrips Stenchaetothrips biformis Bagnall<br />

Sathiayanandam et. al. (1987) observed that seed treatment with carbosulfan @ 0.5 g a.i./100g seed<br />

was the most effective followed by broadcast<strong>in</strong>g <strong>of</strong> carb<strong>of</strong>uran granules @ 1.5 kg a.i./ha <strong>of</strong> nursery.<br />

Barwal and Rao (1983) recorded highest mortality <strong>of</strong> thrips <strong>in</strong> nursery plots treated with qu<strong>in</strong>alphos,<br />

phosalone and carbaryl <strong>in</strong> Imphal valley <strong>of</strong> Manipur. Among the synthetic pyrethroids tested <strong>in</strong> nursery,<br />

deltamethr<strong>in</strong>, flucythr<strong>in</strong>ate, cypermethr<strong>in</strong> and fenvalerate (0.0015-0.0125%) were as effective as<br />

37


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

monocrotophos (0.025%) <strong>in</strong> Kerala (Reghunath et al., 1988). S<strong>in</strong>gh et al,. (1983) evaluated 10 spray<br />

formulations @ 500 g a.i./ha and observed highest reduction <strong>in</strong> number <strong>of</strong> thrips <strong>in</strong> plots treated with<br />

demeton-o-methyl, qu<strong>in</strong>alphos, fenthion, fenitrothion, monocrotophos, endosulfan and phosphamidon<br />

(90-96%). Chlorpyriphos @ 500 g a.i./ha was also observed to significantly reduce thrips population <strong>in</strong><br />

transplanted <strong>rice</strong> at 3 days after spray<strong>in</strong>g (Murugesan et. al. 1987). Dimethoate, monocrotophos and<br />

methamidophos were proved to be effective aga<strong>in</strong>st thrips <strong>in</strong> Karnataka, India reduc<strong>in</strong>g 98.2 - 99.0% <strong>of</strong><br />

the population after 7 days (Gubbaiah et. al. 1988). In ra<strong>in</strong>fed lowlands, carb<strong>of</strong>uran alone or <strong>in</strong> comb<strong>in</strong>ation<br />

with qu<strong>in</strong>alphos spray effectively checked thrips population (Panda and Shi 1988).<br />

v) Gundhi Bugs Leptocorisa oratorius (Fabricius) and Leptocorisa acuta (Thunberg)<br />

Among the <strong><strong>in</strong>secticide</strong>s evaluated malathion was the most toxic followed by formothion, fenthion,<br />

phosphamidon, fenitrothion and monocrotophos (Krishna Kumar and Visalakshi 1989). Even among the<br />

dust formulations, malathion dust @ 1.0 kg a.i./ha was the most effective followed by carbaryl and endosulfan<br />

(Pangtey 1985). However, <strong>in</strong> a detailed greenho<strong>use</strong> study <strong>in</strong>volv<strong>in</strong>g 12 <strong><strong>in</strong>secticide</strong>s <strong>in</strong> Orissa, India, Jena<br />

et. al. (1990) observed that eth<strong>of</strong>enprox, monocrotophos and oxydemeton methyl @ 500 g a.i../ha<br />

checked the pest through out the milky stage while malathion, BPMC, qu<strong>in</strong>alphos and chlorpyriphos were<br />

persistent for lesser period. Comb<strong>in</strong>ation products <strong>in</strong>volv<strong>in</strong>g acephate 45% + cypermethr<strong>in</strong> 5% @ 500 g<br />

a.i./ha, beta cyfluthr<strong>in</strong> 12.5 g a.i./ha + chlorpyriphos 250 g a.i./ha @ 262.5 g a.i./ha were also observed<br />

to be effective under field conditions (Dh<strong>in</strong>gra et. al. 2003).<br />

It is advantageous to have ovicidal effectiveness along with toxicity to mobile stages for realiz<strong>in</strong>g maximum<br />

effectiveness <strong>of</strong> the <strong><strong>in</strong>secticide</strong> aga<strong>in</strong>st a given pest species. Among the eight <strong><strong>in</strong>secticide</strong>s tested by<br />

Rajendran and Chelliah (1987) aga<strong>in</strong>st the eggs <strong>of</strong> L. oratorius, fenthion at an equivalent <strong>of</strong> 500 g a.i./ha<br />

was the best followed by chlorpyriphos and phosphamidon. He<strong>in</strong>richs et. al.(1982) at IRRI, Philipp<strong>in</strong>es<br />

tested spray formulations <strong>of</strong> <strong><strong>in</strong>secticide</strong>s by apply<strong>in</strong>g to the panicles and conf<strong>in</strong><strong>in</strong>g 2 days old L. oratorius<br />

adults for 48 hours. The treatments that afforded effective control <strong>of</strong> gundhi bug were monocrotophos<br />

(0.05%), chlorpyriphos, (0.16%), phosphamidon (0.07%), acephate (0.09 %) and triazophos (0.07%),<br />

fenitrothion (0.05%) and carbaryl (0.12 %).<br />

vi) Rice mealy bug Brevernia rehi (L<strong>in</strong>d<strong>in</strong>ger)<br />

A pot culture study <strong>in</strong> Tamil Nadu, India, revealed that dimethoate and fenthion as sprays were the most<br />

effective aga<strong>in</strong>st the nymphs and adults <strong>of</strong> the mealy bug based on the number <strong>of</strong> live and dead <strong>in</strong>sects<br />

at 1-14 days after application (Radja et. al. 1988). Among 11 <strong><strong>in</strong>secticide</strong>s evaluated for ovicidal action<br />

aga<strong>in</strong>st this pest, fenobucarb @ 250 g a.i./ha equivalent was the best by caus<strong>in</strong>g 88% mortality <strong>of</strong> the<br />

crawlers that hatched (Gopalan et al., 1987).<br />

vii) Rice case worm Nymphula depunctalis (Guenee)<br />

Gagav and Patel (1973) observed that among the 10 <strong><strong>in</strong>secticide</strong>s evaluated <strong>in</strong> the laboratory, fenitrothion<br />

38


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

(0.5%), qu<strong>in</strong>alphos (0.025%), carbaryl (0.1%) and monocrotophos (0.048%) were effective. Among<br />

the synthetic pyrethroids, fenvalerate (100 g a.i./ha) was the most effective compared to cypermethr<strong>in</strong><br />

and deltamethr<strong>in</strong> under field conditions (Suresh et al., 1985) <strong>in</strong> Tamil Nadu, India.<br />

Bandong and Lits<strong>in</strong>ger (1981 a, b and c) at IRRI evaluated 11 <strong><strong>in</strong>secticide</strong>s as sprays applied to foliage <strong>in</strong><br />

field conditions and observed that az<strong>in</strong>phos-ethyl, triazophos, malathion, isoprocarb, chlorpyriphos, carbaryl,<br />

BPMC and phosphamidon @ 750 g a.i./ha significantly reduced the number <strong>of</strong> cut leaves compared to<br />

untreated control. Among the 9 <strong><strong>in</strong>secticide</strong>s tested for their ovicidal action, isoprocarb (MIPC), diaz<strong>in</strong>on,<br />

triazophos and BPMC exhibited better ovicidal action.<br />

viii) Rice water weevil Lissorhoptrus brevirostris and L. Oryzophilus Kuschel<br />

Seed dress<strong>in</strong>g <strong>of</strong> <strong>rice</strong> with furathiocarb @ 5 or 6 g/kg seed was found effective <strong>in</strong> Cuba (Neyra et. al.<br />

1997). In Brazil, pre and post flood<strong>in</strong>g applications <strong>of</strong> deltamethr<strong>in</strong> or Lambda cyhalothr<strong>in</strong> @ 7.5 to 10 g<br />

a.i./ha were repoted to be effective (Mart<strong>in</strong>’s JF – da, 1997). Carb<strong>of</strong>uran @ 550 to 750 g a.i./ha applied<br />

when the pest population started to <strong>in</strong>crease at the permanent flood<strong>in</strong>g stage <strong>of</strong> <strong>rice</strong> crop gave effective<br />

control <strong>of</strong> these curculionids <strong>in</strong> Cuba (Meneseses et. al. 1988). Among the other <strong><strong>in</strong>secticide</strong>s, Lambda<br />

cyhalothr<strong>in</strong> was found to be alternative to carb<strong>of</strong>uran <strong>in</strong> Louisiana, US. However, diflubenzuron (280 g<br />

a.i./ha) was <strong>in</strong>effective (Smith et. al. 1985). Novel studies <strong>of</strong> spot application <strong>of</strong> synthetic pyrethroids,<br />

granules <strong>of</strong> cycloprothr<strong>in</strong> 2% and eth<strong>of</strong>enprox (4% oil) could effectively check water weevil, L. oryzophilus.<br />

Usually, L. oryzophilus <strong>in</strong>habit the peripheral zone <strong>of</strong> <strong>rice</strong> field dur<strong>in</strong>g the <strong>in</strong>itial <strong>in</strong>festation period and<br />

oviposit <strong>in</strong> the peripheral areas <strong>of</strong> the field. By apply<strong>in</strong>g these granular <strong><strong>in</strong>secticide</strong>s only to the peripheries<br />

costed only 10% <strong>of</strong> the conventional broadcast or submerged application <strong>of</strong> these <strong><strong>in</strong>secticide</strong>s <strong>in</strong> the<br />

entire field.<br />

ix) Cut worms Spodoptera frugiperda (J.E.Smith) and Army worms Mythimna separata (Walker)<br />

Of the 26 <strong><strong>in</strong>secticide</strong>s evaluated for their contact toxicity aga<strong>in</strong>st the armyworm Mythimna separata, 17<br />

<strong><strong>in</strong>secticide</strong>s ca<strong>use</strong>d 100% mortality <strong>in</strong> contact toxicity tests. Cypermethr<strong>in</strong>, a synthetic pyrethroid killed<br />

the pest and also prevented larvae from feed<strong>in</strong>g (Basilio and Mochida 1985). In Brazil, diflubenzuron @<br />

100 g a.i./ha, monocrotophos @ 240 g a.i./ha, permethr<strong>in</strong> @ 30 g a.i./ha and fenvalerate @ 25 g a.i./ha<br />

were effective aga<strong>in</strong>st S. frugiperda. Fenvelarate was more effective compared to other synthetic pyrethroids<br />

aga<strong>in</strong>st M. separata <strong>in</strong> UP, India (Pande & Tiwari 1999). Earlier studies <strong>in</strong>dicated that chlorpyriphos @<br />

400 g a.i./ha (Rizvi and S<strong>in</strong>gh 1981); monocrotophos and qu<strong>in</strong>alphos @ 500 g a.i./ha were also effective<br />

aga<strong>in</strong>st M. separata larva under field conditions <strong>in</strong> Punjab (Dhaliwal and S<strong>in</strong>gh 1986b). Jena et. al.<br />

(1989) from Cuttack identified carbosulfan as effective <strong><strong>in</strong>secticide</strong> aga<strong>in</strong>st ear cutt<strong>in</strong>g M. venalba. Hiremath<br />

et. al. (1992) from Dharwad, Karnataka, India, evaluated a poison bait technique <strong>in</strong> the field traps. The<br />

bait conta<strong>in</strong><strong>in</strong>g monocrotohos (250 ml monocrotophos 36 WSC+ 50 kg <strong>rice</strong> or wheat bran + 1 kg jaggery<br />

+ 68 litres <strong>of</strong> water) was superior to spray applications <strong>of</strong> monocrotophos and other <strong><strong>in</strong>secticide</strong>s <strong>in</strong> the<br />

control <strong>of</strong> M. separata <strong>in</strong> sorghum. This technique can also be tried <strong>in</strong> <strong>rice</strong> <strong>in</strong> future.<br />

39


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

C. Factors <strong>in</strong>fluenc<strong>in</strong>g efficacy <strong>of</strong> <strong><strong>in</strong>secticide</strong>s<br />

i) Compatibility <strong>of</strong> <strong><strong>in</strong>secticide</strong>s and fungicides<br />

Many a times, both <strong>in</strong>sect pests and diseases occur together <strong>in</strong> <strong>rice</strong>. Under such situations, it is easy,<br />

economical and practicable to <strong>use</strong> the comb<strong>in</strong>ations <strong>of</strong> suitable <strong><strong>in</strong>secticide</strong>s and fungicides <strong>in</strong> the same<br />

spray tank. But at the same time, the effectiveness <strong>of</strong> the <strong>in</strong>dividual components <strong>in</strong> the mixture should not<br />

be reduced. Therefore, it is essential to evaluate the physical compatibility as well as compatibility with<br />

regard to bioeffectiveness aga<strong>in</strong>st <strong>in</strong>sect pests and diseases.<br />

Usually, BPH and WBPH are associated with the sheath blight disease ca<strong>use</strong>d by Rhizactonia solani.<br />

Sometimes it is the lepidopteran pests like stem borer and leaf folder, which are associated with the blast<br />

disease particularly <strong>in</strong> hilly terra<strong>in</strong>s and some hot spot locations for blast like Cuttack <strong>of</strong> Orissa and<br />

Nellore <strong>of</strong> Andhra Pradesh. Therefore, systematic efforts have been put to evaluate the compatibility <strong>of</strong><br />

recommended <strong><strong>in</strong>secticide</strong>s and fungicides <strong>in</strong> Lead Research at DRR and also Coord<strong>in</strong>ated Program <strong>of</strong><br />

DRR. Krishnaiah and Reddy (1992) observed that the comb<strong>in</strong>ations <strong>of</strong> the <strong><strong>in</strong>secticide</strong>s carbaryl and<br />

eth<strong>of</strong>enprox (at recommended doses aga<strong>in</strong>st BPH) and fungicides carbendazim and thio-phanate methyl<br />

(at recommended doses aga<strong>in</strong>st sheath blight) were compatible <strong>in</strong> all <strong><strong>in</strong>secticide</strong>-fungicide comb<strong>in</strong>ations<br />

both physically as well as biologically. Peter et. al. (1989) from Tamil Nadu also observed that eth<strong>of</strong>enprox<br />

was compatible with fungicides viz., edifenphos and mancozeb. Reddy and Krishnaiah (1997) <strong>in</strong> their<br />

cont<strong>in</strong>ued efforts <strong>in</strong> this direction found that the <strong>in</strong>sect growth regulator bupr<strong>of</strong>ez<strong>in</strong> (0.02%) was compatible<br />

with the three fungicides viz., captafol (0.16%), IBP (Iprobenphos) (0.048%) and edifenphos (0.05%) <strong>in</strong><br />

all <strong><strong>in</strong>secticide</strong> fungicide comb<strong>in</strong>ations aga<strong>in</strong>st brown planthopper and sheath blight under glass ho<strong>use</strong><br />

conditions. Dodan et. al. (1997) from Kaul, Haryana, studied the compatibility <strong>of</strong> carbendazim and<br />

edifenphos (the fungicides), monocrotophos and phosphamidon (<strong><strong>in</strong>secticide</strong>s) at different dosages and<br />

observed their compatibility as reflected by their effectiveness aga<strong>in</strong>st stem borer and neck blast under<br />

field conditions. They realized higher gra<strong>in</strong> yields <strong>in</strong> comb<strong>in</strong>ation treatments compared to either <strong><strong>in</strong>secticide</strong><br />

or fungicide treatments alone. Bhaskaran et. al. (1976) observed that comb<strong>in</strong>ation <strong>of</strong> phasalone<br />

(<strong><strong>in</strong>secticide</strong>) and edifenphos (fungicide) gave the best control <strong>of</strong> leaf folder, green leafhopper and<br />

Helm<strong>in</strong>thosporium leaf spot disease.<br />

Similar attempts were also made <strong>in</strong> other countries like Korea (Song et. al. 1985 and 1987). The <strong><strong>in</strong>secticide</strong>s<br />

BPMC and fenthion and the fungicides isoprothiolane and edifenphos were comb<strong>in</strong>ed <strong>in</strong> the spray tank at<br />

different dosages and observed that the mixtures were more stable than the <strong>in</strong>dividual components and<br />

were also most efficient for simultaneous control <strong>of</strong> BPH and <strong>rice</strong> blast. Song et al (1987) reported that<br />

the comb<strong>in</strong>ations <strong>of</strong> pencycuron and isoprocarb exhibited very high synergism aga<strong>in</strong>st sheath blight and<br />

brown planthopper.<br />

ii) Environmental factors<br />

Spray formulations<br />

Ra<strong>in</strong>fall<br />

Insecticides are applied to <strong>rice</strong> crop as foliar sprays by mix<strong>in</strong>g with water. However, the quantity <strong>of</strong> water<br />

40


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

required for preparation <strong>of</strong> spray fluid depends on the type <strong>of</strong> sprayer <strong>use</strong>d. For apply<strong>in</strong>g with mist blower<br />

or power sprayer the spray fluid normally required <strong>in</strong> <strong>rice</strong> is about 100 to 150 litres per hectare. However,<br />

for hand compression sprayer or the simple knap-sack sprayer, the spray fluid required per hectare is<br />

400 to 600 litres per hectare depend<strong>in</strong>g on the plant stage. The <strong><strong>in</strong>secticide</strong>s <strong>in</strong> recommended dosages<br />

are mixed separately <strong>in</strong> a conta<strong>in</strong>er before load<strong>in</strong>g <strong>in</strong>to the sprayer.<br />

The <strong><strong>in</strong>secticide</strong> sprayed on the foliage is subjected to several environmental factors. The most common<br />

environmental factors that affect the spray deposits on <strong>rice</strong> foliage and their biological efficacy aga<strong>in</strong>st the<br />

pests is ra<strong>in</strong>fall. A study has been <strong>in</strong>itiated to know the <strong>in</strong>fluence <strong>of</strong> simulated ra<strong>in</strong>fall on biological<br />

effectiveness <strong>of</strong> spray deposits <strong>of</strong> monocrotophos (0.05%) and carbaryl (0.05%) ma<strong>in</strong>ly to estimate the<br />

time <strong>in</strong>terval required between the spray application and natural ra<strong>in</strong>fall under field conditions. The results<br />

revealed that 24 hours gap between spray application and the ra<strong>in</strong>fall is required to reta<strong>in</strong> sufficient<br />

spray deposit <strong>of</strong> carbaryl and monocrotophos to exert biological effectiveness aga<strong>in</strong>st BPH N. lugens and<br />

green leafhopper Nephotettix virescens. (Krishnaiah and Kalode 1988a). If ra<strong>in</strong>fall occurs with<strong>in</strong> the<br />

same day, it is advisable to repeat the spray.<br />

Granular formulations<br />

Temperature<br />

To estimate the <strong>in</strong>fluence <strong>of</strong> ambient temperature on the biological effectiveness <strong>of</strong> granules aga<strong>in</strong>st<br />

BPH, bioassay studies have been carried out after application <strong>of</strong> <strong><strong>in</strong>secticide</strong>s <strong>in</strong> both summer season<br />

(April-May) and w<strong>in</strong>ter season (December-January). The results revealed that majority <strong>of</strong> the <strong><strong>in</strong>secticide</strong>s<br />

exhibited higher toxicity <strong>in</strong> w<strong>in</strong>ter than <strong>in</strong> summer. Among the seven granular formulations tested, dur<strong>in</strong>g<br />

both summer and w<strong>in</strong>ter, carb<strong>of</strong>uran and BPMC were most effective aga<strong>in</strong>st BPH (Krishnaiah and Kalode,<br />

1988a&b).<br />

Water depth<br />

Water depth <strong>in</strong> the field is another important factor that <strong>in</strong>fluences the bioeffectiveness <strong>of</strong> granular<br />

<strong><strong>in</strong>secticide</strong>s. Therefore, a greenho<strong>use</strong> study <strong>in</strong>volv<strong>in</strong>g four water depths viz., saturation, 2.5 cm, 7.5 cm,<br />

15 cm were evaluated for their <strong>in</strong>fluence on the effectiveness <strong>of</strong> carb<strong>of</strong>uran to BPH under controlled<br />

greenho<strong>use</strong> conditions. The results clearly showed that <strong>in</strong>creas<strong>in</strong>g water depth beyond 7.5 cm drastically<br />

reduced the <strong>in</strong>itial and persistent toxicity <strong>of</strong> carb<strong>of</strong>uran to BPH at 1 kg a.i./ha. It was also clear that<br />

saturation was more effective condition for realiz<strong>in</strong>g greater toxicity <strong>of</strong> carb<strong>of</strong>uran to BPH as compare to<br />

2.5 cm water depth. This suggests that dra<strong>in</strong><strong>in</strong>g <strong>of</strong> water <strong>in</strong> the field <strong>in</strong>fested with BPH recommended for<br />

reduc<strong>in</strong>g the multiplication rate <strong>of</strong> BPH <strong>in</strong> endemic areas can be followed advantageously by apply<strong>in</strong>g<br />

granular <strong><strong>in</strong>secticide</strong>s immediately after field is dra<strong>in</strong>ed and comes to saturation level (Krishnaiah and<br />

Kalode 1988a).<br />

iii) Soil factors <strong>in</strong>fluenc<strong>in</strong>g toxicity <strong>of</strong> granular <strong><strong>in</strong>secticide</strong>s<br />

Persistent toxicity <strong>of</strong> granular <strong><strong>in</strong>secticide</strong>s carb<strong>of</strong>uran and phorate aga<strong>in</strong>st BPH nymphs <strong>in</strong> soils with<br />

41


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

vary<strong>in</strong>g physioco-chemical properties have been <strong>in</strong>vestigated to make appropriate recommendations <strong>in</strong><br />

select<strong>in</strong>g a suitable <strong><strong>in</strong>secticide</strong> <strong>in</strong> a given soil type (Krishnaiah and Kalode 1992a). Four types <strong>of</strong> soils viz.,<br />

red sandy, sandy loam, clay and sandy clay loam with P H rang<strong>in</strong>g from 6.5 to 9.2 and EC (ds/m) vary<strong>in</strong>g<br />

from 0.03 to 0.67 were stabilized under greenho<strong>use</strong> conditions <strong>in</strong> pots and the <strong>rice</strong> plants were grown<br />

upto 45 days. Carb<strong>of</strong>uran was applied @ 2 kg a.i./ha and phorate @ 3 kg a.i/ha by two methods <strong>of</strong><br />

application viz., broadcast<strong>in</strong>g <strong>in</strong> stand<strong>in</strong>g water and soil <strong>in</strong>corporation. Persistent toxicity to BPH nymphs<br />

was assessed. The results clearly showed that with <strong>in</strong>crease <strong>in</strong> P H and EC <strong>of</strong> the soil, the persistent toxicity<br />

(PT) <strong>of</strong> carb<strong>of</strong>uran was drastically reduced from 1228 to 655, while PT <strong>of</strong> phorate was not altered that<br />

much (PT was 1421 <strong>in</strong> red sandy soil with 6.5 P H and 1318 <strong>in</strong> alkal<strong>in</strong>e sandy clay loam soil with a P H <strong>of</strong><br />

9.2). This showed that <strong>in</strong> alkal<strong>in</strong>e soils phorate should be preferred over carb<strong>of</strong>uran for the management<br />

<strong>of</strong> brown planthopper (Table 6). Sridevi et. al. (1995) from APAU, Rajendranagar, <strong>in</strong> a similar study<br />

observed that more than 50% <strong>of</strong> BPH mortality was recorded <strong>in</strong> soils with low P H compared to negligible<br />

mortality <strong>in</strong> alkal<strong>in</strong>e soils with high P H by carb<strong>of</strong>uran granules.<br />

42<br />

Table 6 : Effect <strong>of</strong> soil types on persistent toxicity (PT) <strong>of</strong> granular <strong><strong>in</strong>secticide</strong>s<br />

aga<strong>in</strong>st brown planthopper<br />

Soil type P<br />

Red Sandy 6.5 0.03 895 de 1228 c 1421 abc<br />

Sandy loam 7.8 0.13 910 de 1687 a 1502 ab<br />

Clay 8.7 0.45 565 g 752 ef 968 d<br />

Sandy clay loam (alkal<strong>in</strong>e) 9.2 0.67 455 h 655 fg 1318 bc<br />

H EC<br />

(ds/m)<br />

PT Value<br />

Carb<strong>of</strong>uran (2 kg a.i. /ha)<br />

Phorate<br />

(3 kg a.i. /ha)<br />

BSW – Broadcast <strong>in</strong> stand<strong>in</strong>g water INC – Incorporated <strong>in</strong> top 1.5 cm soil layer<br />

(Krishnaiah and Kalode 1992a)


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

METHODS AND TIMING OF INSECTICIDE<br />

APPLICATION IN RICE<br />

Insecticides need to be applied to the <strong>rice</strong> from nursery to harvest to safe guard the crop from <strong>in</strong>sect<br />

pests. Apart from potential toxicity <strong>of</strong> an <strong><strong>in</strong>secticide</strong> to a given pest species or group <strong>of</strong> pests, the method<br />

and tim<strong>in</strong>g <strong>of</strong> <strong><strong>in</strong>secticide</strong> application to a great deal <strong>in</strong>fluence the realized effectiveness <strong>of</strong> the <strong><strong>in</strong>secticide</strong><br />

aga<strong>in</strong>st the pest(s). Seed treatment, seedl<strong>in</strong>g root dip, root zone application, controlled droplet application<br />

are some <strong>of</strong> the methods <strong>of</strong> <strong><strong>in</strong>secticide</strong> application, which are more unique to <strong>rice</strong> crop. Further, the<br />

tim<strong>in</strong>g <strong>of</strong> <strong><strong>in</strong>secticide</strong> application, which depends on nature and mode <strong>of</strong> action <strong>of</strong> the <strong><strong>in</strong>secticide</strong>, is very<br />

important <strong>in</strong> the management <strong>of</strong> planthoppers <strong>in</strong> <strong>rice</strong>. Hence, a detailed account <strong>of</strong> all these aspects is<br />

presented here.<br />

Seedl<strong>in</strong>g root dip method<br />

In traditional Rice cultivation, grow<strong>in</strong>g seedl<strong>in</strong>gs <strong>in</strong> nursery <strong>in</strong> a small area, pull<strong>in</strong>g them and transplant<strong>in</strong>g<br />

<strong>in</strong> the ma<strong>in</strong> field is followed. This <strong>of</strong>fers an opportunity to treat the seedl<strong>in</strong>gs with <strong><strong>in</strong>secticide</strong>s to suppress<br />

the <strong>in</strong>sect populations dur<strong>in</strong>g early stages after transplant<strong>in</strong>g. This is economical, effective and ecologically<br />

sound.<br />

Seedl<strong>in</strong>g dip can be done by two ways: 1) dipp<strong>in</strong>g the whole seedl<strong>in</strong>gs for a shorter period <strong>of</strong> 2 m<strong>in</strong>utes<br />

<strong>in</strong> <strong><strong>in</strong>secticide</strong> emulsion or suspension 2) dipp<strong>in</strong>g the roots <strong>of</strong> seedl<strong>in</strong>gs for longer period, usually 12 hours<br />

before transplant<strong>in</strong>g. The second method is ecologically safer as the <strong><strong>in</strong>secticide</strong> is conf<strong>in</strong>ed to root portion<br />

and thus the predators <strong>of</strong> pests, which are usually present on the foliage, are not harmed.<br />

Dipp<strong>in</strong>g the whole seedl<strong>in</strong>gs <strong>in</strong> 0.05% <strong><strong>in</strong>secticide</strong> emulsions <strong>of</strong> chlorpyriphos, monocrotophos, qu<strong>in</strong>alphos<br />

or phosalone has been attempted <strong>in</strong> a limited way and found to be successful aga<strong>in</strong>st stem borers and<br />

whorl maggot upto about 20 days after transplant<strong>in</strong>g. Although this method is economical over spray<strong>in</strong>g<br />

the crop immediately after transplant<strong>in</strong>g for the early stage pests like stem borer and whorl maggot, this<br />

was not effective aga<strong>in</strong>st gall midge. Further, this is not ecologically safe either to the ecosystem or the<br />

workers <strong>in</strong>volved <strong>in</strong> the operation. Hence, the whole seedl<strong>in</strong>g dip did not f<strong>in</strong>d favour with the <strong>rice</strong><br />

entomologists for large scale test<strong>in</strong>g. The more suitable alternative <strong>of</strong> seedl<strong>in</strong>g root dip or seedl<strong>in</strong>g root<br />

soak<strong>in</strong>g method has ga<strong>in</strong>ed prom<strong>in</strong>ence. The basic procedure for seedl<strong>in</strong>g root dip is described below.<br />

PROCEDURE FOR SEEDLING ROOT –DIP<br />

A smooth area <strong>of</strong> 10x1 m is bunded strongly on all sides. A polyethylene sheet <strong>of</strong> 10.5 x1.5 m is spread<br />

over the area touch<strong>in</strong>g the soil surface and extended along the bunds upto a height <strong>of</strong> 10-15 cm. The<br />

water is let <strong>in</strong> up to a depth <strong>of</strong> 2 cm and 200 ml <strong>of</strong> chlorpryriphos is added and mixed thoroughly.<br />

Uprooted <strong>rice</strong> seedl<strong>in</strong>gs required to plant one acre area are closely arranged with<strong>in</strong> the polyethylene l<strong>in</strong>ed<br />

area immers<strong>in</strong>g roots <strong>in</strong> <strong><strong>in</strong>secticide</strong> emulsion (0.02%). All these operations are done towards even<strong>in</strong>g<br />

43


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

and seedl<strong>in</strong>gs are allowed to rema<strong>in</strong> <strong>in</strong> the <strong><strong>in</strong>secticide</strong> emulsion over night (approximately 12 hours) and<br />

are transplanted next day morn<strong>in</strong>g.<br />

In case <strong>of</strong> time shortage, one percent urea can be added to <strong><strong>in</strong>secticide</strong> emulsion <strong>in</strong> bunded area and<br />

mixed thoroughly. Roots <strong>of</strong> seedl<strong>in</strong>gs can be dipped <strong>in</strong> this emulsion for 3 hours and planted.<br />

By follow<strong>in</strong>g the procedure, as many as 30 <strong><strong>in</strong>secticide</strong> formulations have been evaluated over a period <strong>of</strong><br />

15 years <strong>in</strong> coord<strong>in</strong>ated programme as well as <strong>in</strong> lead research at DRR. Among all the <strong><strong>in</strong>secticide</strong>s,<br />

chlorpyriphos gave consistently good performance aga<strong>in</strong>st stem borer, gall midge and whorl maggot.<br />

Even the so-called systemic <strong><strong>in</strong>secticide</strong>s like monocrotophos, dicrotophos, phosphamidon and dimethoate<br />

tried <strong>in</strong> this method failed to check the <strong>in</strong>festations <strong>of</strong> SB, GM and WM.<br />

Later, it was expressed that 12 hours dipp<strong>in</strong>g is too long a period, and several attempts were made by<br />

mix<strong>in</strong>g various materials along with <strong><strong>in</strong>secticide</strong> emulsions to reduce the dipp<strong>in</strong>g period. Of all the efforts,<br />

1% urea along with <strong><strong>in</strong>secticide</strong> emulsion with dipp<strong>in</strong>g period <strong>of</strong> three hours was found to give effectiveness<br />

similar to 12 hours dipp<strong>in</strong>g with out urea (DRR 1970 to 1985).<br />

Dur<strong>in</strong>g this period, another organophosphorus <strong><strong>in</strong>secticide</strong> is<strong>of</strong>enphos was also found to be effective at<br />

the same concentration as chlorpyriphos (Natarajan and Chandy, 1979; Kalode et al., 1980). Later several<br />

workers from CRRI, Cuttack and other <strong>in</strong>stitutions also confirmed these results (Rajamani et al., 1981 and<br />

1985; Misra et al., 1981).<br />

However, chlorpyriphos was not effective aga<strong>in</strong>st other pests like, green leafhopper, which is also serious<br />

at times <strong>in</strong> tungro endemic areas. Therefore, <strong>in</strong>tensive <strong>in</strong>vestigations were carried out at DRR under<br />

controlled greenho<strong>use</strong> conditions to identify the most suitable <strong><strong>in</strong>secticide</strong> for the purpose and its effective<br />

dosage or concentrations. Of the several <strong><strong>in</strong>secticide</strong>s tested for the purpose, carbosulfan at 0.02% was<br />

the best <strong><strong>in</strong>secticide</strong> (Krishnaiah and Kalode, 1986) (Table 7). Therefore, attempts were made to see the<br />

effectiveness <strong>of</strong> the comb<strong>in</strong>ation <strong>of</strong> chlorpyriphos and carbosulfan (0.01%+0.01%) as seedl<strong>in</strong>g root dip<br />

and was found effective aga<strong>in</strong>st both gall midge and GLH.<br />

Table 7 : Effectiveness <strong>of</strong> carbosulfan as seedl<strong>in</strong>g root dip treatment aga<strong>in</strong>st green leafhopper<br />

under greenho<strong>use</strong> conditions<br />

Insecticide<br />

Carbosulfan 0.02 100a 100a 100a 1733a<br />

Carbosulfan 0.01 100a 80a 60b 945b<br />

Carbosulfan 0.005 100a 53b 33cd 555c<br />

44<br />

Concentration<br />

(%)<br />

% mortality at days after treatment PT value*<br />

1 2 3<br />

(Krishnaiah and Kalode, 1986)


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

However, among other <strong><strong>in</strong>secticide</strong>s, thiocyclam hydrogen oxalate was also effective aga<strong>in</strong>st stem borer<br />

under field conditions but <strong>in</strong>effective aga<strong>in</strong>st gall midge. (Rajamani et al., 1984). Mayab<strong>in</strong>i Jena (2004) <strong>in</strong><br />

her recent work observed that seedl<strong>in</strong>g root dip with fipronil (0.01%) and carbosulfan (0.02%) was<br />

effective aga<strong>in</strong>st YSB under field conditions.<br />

After 1990, there were many practical difficulties posed by researchers and farmers for implement<strong>in</strong>g<br />

seedl<strong>in</strong>g root dip <strong>in</strong> a large scale under farmers’ conditions. These <strong>in</strong>clude toxicity ca<strong>use</strong>d to the labour<br />

while carry<strong>in</strong>g <strong><strong>in</strong>secticide</strong> treated seedl<strong>in</strong>gs from nursery to the ma<strong>in</strong> field, contam<strong>in</strong>ation to the labour<br />

while transplant<strong>in</strong>g etc. Therefore, an alternative strategy has been thought and implemented through<br />

coord<strong>in</strong>ated programme. That is by apply<strong>in</strong>g granular <strong><strong>in</strong>secticide</strong>s like carb<strong>of</strong>uran, cartap, qu<strong>in</strong>alphos and<br />

isazophos to the nursery 5 days before pull<strong>in</strong>g the seedl<strong>in</strong>gs followed by pull<strong>in</strong>g and transplant<strong>in</strong>g as per<br />

schedule. This allows the <strong><strong>in</strong>secticide</strong>s to enter the seedl<strong>in</strong>gs and is carried to the ma<strong>in</strong> field. The results<br />

showed that almost all granular <strong><strong>in</strong>secticide</strong>s were moderately effective aga<strong>in</strong>st early <strong>in</strong>festations <strong>of</strong> stem<br />

borer and gall midge but <strong>in</strong>ferior to the seedl<strong>in</strong>g root dip with chlorpyriphos which was the check <strong>in</strong> the<br />

trial but clearly superior to untreated control with out any <strong><strong>in</strong>secticide</strong> treatment. (Table 8).<br />

Table 8 : Influence <strong>of</strong> late nursery applications with granules on pests <strong>in</strong> early stages<br />

after transplant<strong>in</strong>g <strong>in</strong> ma<strong>in</strong> field<br />

Rate<br />

Application Stem Borer (% dead hearts)<br />

Gall midge<br />

(% SS)<br />

Insecticide (kg a.i/ha)/<br />

Conc. (%)<br />

Time Method RGL WGL RNR FZB Warangal Ragolu<br />

30 DAT 30 DAT 30 DAT 40 DAT 30 DAT 30 DAT<br />

Carb<strong>of</strong>uran 3G 1.5 5 DBP BSW 3.8 3.3 3.3 0.9 0.3 15.1<br />

Qu<strong>in</strong>alphos 5G 1.5 5 DBP BSW - 5.2 - - 0.9 -<br />

Cartap 4G 1.5 5 DBP BSW 4.4 1.7 4.3 1.3 0.0 15.6<br />

Isazophos 3G 2.0 5 DBP BSW 3.8 3.0 2.6 0.6 0.0 15.5<br />

Isazophos 3G 1.5 5 DBP BSW 4.4 2.5 2.6 1.0 0.1 16.3<br />

Chlorpyriphos 20EC 0.02% 12 hrs SRD 3.3 0.4 0.9 0.4 0.1 7.4<br />

Untreated control - - - 6.3 10.1 4.1 5.1 4.9 23.4<br />

DBP = Days before pull<strong>in</strong>g, BSW = Broadcast<strong>in</strong>g <strong>in</strong> stand<strong>in</strong>g water, SRD = Seedl<strong>in</strong>g root dip,<br />

DAT= Days after transplant<strong>in</strong>g<br />

(DRR, 1995)<br />

Root-Zone Application <strong>of</strong> Insecticides <strong>in</strong> Rice Ecosystem<br />

Rice <strong>of</strong>fers unique ecological conditions <strong>in</strong> the root zone <strong>of</strong> the plants compared to other irrigated dry<br />

crops <strong>in</strong>clud<strong>in</strong>g wheat, maize, sorghum, bajra etc. In an irrigated <strong>rice</strong> crop, the root system is present <strong>in</strong><br />

45


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

anaerobic conditions after the oxygen is depleted. The PH <strong>of</strong> the soil shows a tendency to reach the near<br />

neutral, although may not exactly be neutral. The anaerobic bacteria and other microbes take the position<br />

<strong>of</strong> aerobic bacteria and other organisms present under aerobically grown crops.<br />

Under these conditions if <strong><strong>in</strong>secticide</strong> or urea fertilizer is placed <strong>in</strong> the root zone <strong>of</strong> <strong>rice</strong> plants, these are<br />

not subjected to oxidation which usually renders them to rapid degradation. Instead, these rema<strong>in</strong> <strong>in</strong> the<br />

same state for longer period. These chemicals are also near the root system, and hence are more easily<br />

absorbed <strong>in</strong>to the plant. The chemicals are not subjected to losses through volatilization, and leach<strong>in</strong>g.<br />

Therefore, several attempts were made to develop practical methods <strong>of</strong> plac<strong>in</strong>g the <strong><strong>in</strong>secticide</strong>s <strong>in</strong> the<br />

root zone <strong>of</strong> <strong>rice</strong> plants. Pathak et. al. (1974) at IRRI took <strong>in</strong>itiative <strong>in</strong> this l<strong>in</strong>e <strong>of</strong> work. Forty one<br />

<strong><strong>in</strong>secticide</strong>s were evaluated under greenho<strong>use</strong> conditions as granules, tablets or capsules placed at a<br />

depth <strong>of</strong> 2.5 cm at a rate equivalent <strong>of</strong> 2 kg a.i./ha <strong>in</strong> the root zone <strong>of</strong> potted <strong>rice</strong> plants by us<strong>in</strong>g<br />

Nephotettix virescens, Nilaparvata lugens and Chilo suppressalis as test <strong>in</strong>sects. In their <strong>in</strong>itial evaluation,<br />

about 25 compounds were effective aga<strong>in</strong>st N. virescens, while a lesser number exhibited good efficacy<br />

aga<strong>in</strong>st N. lugens and C. suppressalis. In further field trials, it was observed that a s<strong>in</strong>gle application <strong>of</strong><br />

carb<strong>of</strong>uran, cartap or chlordimeform even at 0.5 kg a.i./ha controlled the <strong>in</strong>sect pests equal to 3-4<br />

applications <strong>of</strong> the same <strong><strong>in</strong>secticide</strong>s <strong>in</strong> the stand<strong>in</strong>g water.<br />

Encouraged by these results, attempts were <strong>in</strong>itiated at DRR (formerly AICRIP) where several <strong><strong>in</strong>secticide</strong>s<br />

were tested by root-zone application method both <strong>in</strong> lead research and coord<strong>in</strong>ation (AICRIP 1977-80).<br />

Similar attempts were also made <strong>in</strong> other countries like Indonesia (Shagir and Van, 1976), Korea (Choi et<br />

al., 1977), India (Krishnaiah et. al, 1988b; Reddy and Krishnaiah, 1993) and Ch<strong>in</strong>a (Chiu et. al, 1980).<br />

In the beg<strong>in</strong>n<strong>in</strong>g, the <strong><strong>in</strong>secticide</strong> granules were mixed <strong>in</strong> a suitable soil, and mud balls were prepared and<br />

these mud-balls were placed <strong>in</strong> the root zone @ 1 for each hill or 1 for 2 or 4 hills. However, this method<br />

was laborious, time consum<strong>in</strong>g and many a situations uneconomical.<br />

LIQUID INJECTORS FOR ROOT ZONE PLACEMENT<br />

Liquid <strong>in</strong>jector<br />

46<br />

As an alternative, mix<strong>in</strong>g the <strong><strong>in</strong>secticide</strong>s <strong>in</strong> water and <strong>in</strong>ject<strong>in</strong>g the emulsions<br />

or solutions <strong>in</strong>to the root zone was preferred. This necessitated the development<br />

<strong>of</strong> mach<strong>in</strong>es to <strong>in</strong>ject the liquid <strong>in</strong>to the root zone. Many types <strong>of</strong> <strong>in</strong>ject<strong>in</strong>g<br />

mach<strong>in</strong>es were developed and tested at IRRI. Reddy (1989) designed, developed<br />

and tested a simple liquid <strong>in</strong>ject<strong>in</strong>g device for the purpose. This consisted <strong>of</strong><br />

attach<strong>in</strong>g a lance with 4 delivery po<strong>in</strong>ts suitable for <strong>in</strong>ject<strong>in</strong>g the liquid <strong>in</strong>to a<br />

depth <strong>of</strong> 2.5 cm <strong>in</strong> the root zone to the ord<strong>in</strong>ary hand compression sprayer.<br />

First the liquid is placed <strong>in</strong> the sprayer tank and held at suitable pressure. The<br />

operator can carry the spray tank with modified attachment; place the <strong>in</strong>ject<strong>in</strong>g<br />

po<strong>in</strong>ts <strong>in</strong> the soil <strong>in</strong> such a way that it covers eight rows at a time. Then the<br />

liquid is released for few seconds, which enable the <strong><strong>in</strong>secticide</strong> solution/emulsion<br />

to be placed <strong>in</strong> the root zone. The lance is lifted and placed for the next set <strong>of</strong>


Liquid <strong>in</strong>jector <strong>in</strong> action<br />

Insecticides <strong>in</strong> Rice IPM (DRR)<br />

<strong>in</strong>jections <strong>in</strong> a forward position. Thus the operator can cont<strong>in</strong>uously<br />

move forward. This is easy economical and practicable. Further<br />

urea alone or <strong>in</strong> comb<strong>in</strong>ation with carb<strong>of</strong>uran can be placed <strong>in</strong><br />

the root zone by this simple device. Another advantage with this<br />

applicator is that it is feasible to apply the <strong><strong>in</strong>secticide</strong> even <strong>in</strong><br />

randomly planted crop, which is the most common practice among<br />

farmers <strong>in</strong> many areas.<br />

ROOT ZONE PLACEMENT OF INSECTICIDES AS COATINGS ON UREA SUPER GRANULES<br />

Root zone placement <strong>of</strong> urea super granules as a fertilizer conserv<strong>in</strong>g method has been attempted for a<br />

long time. A s<strong>in</strong>gle application <strong>of</strong> urea super granules <strong>in</strong> the root zone at the time <strong>of</strong> plant<strong>in</strong>g or 5 days<br />

later was an efficient method result<strong>in</strong>g <strong>in</strong> season long supply <strong>of</strong> nitrogen to the crop. By tak<strong>in</strong>g this as a<br />

lead idea, attempts were made to coat carb<strong>of</strong>uran WP on urea super granules with either coal-tar or neem<br />

oil and placed <strong>in</strong> the root zone to enable root zone placement <strong>of</strong> both urea and <strong><strong>in</strong>secticide</strong> simultaneously.<br />

(Krishnaiah et al., 1988). The results for 2 seasons clearly showed that s<strong>in</strong>gle root zone placement with<br />

<strong><strong>in</strong>secticide</strong> coated super granules resulted <strong>in</strong> an effect similar to that with 3 broadcast applications <strong>of</strong><br />

carb<strong>of</strong>uran granules aga<strong>in</strong>st stem borers, gall midge, whorl maggot and case worm. Comparative studies<br />

with MIPC, UC-54229, carb<strong>of</strong>uran, carbosulfan and carbaryl suggested that carb<strong>of</strong>uran was the best<br />

<strong><strong>in</strong>secticide</strong> followed by carbosulfan. This method was <strong>use</strong>ful for simultaneous placement <strong>of</strong> urea also <strong>in</strong><br />

the root zone. Hence it is economical and labour sav<strong>in</strong>g technique.<br />

Nursery protection with <strong><strong>in</strong>secticide</strong>s<br />

Insect pests such as stem borer, gall midge, thrips, hispa etc start attack<strong>in</strong>g the crop right from nursery.<br />

If these pests are checked right <strong>in</strong> nursery stage their carry over to the ma<strong>in</strong> field is greatly m<strong>in</strong>imized.<br />

Seed treatment with suitable <strong><strong>in</strong>secticide</strong>(s) before sow<strong>in</strong>g and application <strong>of</strong> granules or sprays after<br />

sow<strong>in</strong>g and nursery establishment are the two major methods for nursery protection.<br />

SEED TREATMENT<br />

Treat<strong>in</strong>g the unsprouted seed with <strong><strong>in</strong>secticide</strong> wettable powders and sow<strong>in</strong>g did not give encourag<strong>in</strong>g<br />

results for the control <strong>of</strong> gall midge. Hence, sprouted seed was coated with wettable powders <strong>of</strong> <strong><strong>in</strong>secticide</strong>s<br />

@ 16 g a.i./kg <strong>of</strong> the seed and evaluated for their effectiveness aga<strong>in</strong>st gall midge. Is<strong>of</strong>enphos gave<br />

complete control <strong>of</strong> gall midge through out the nursery period and the effectiveness has extended even<br />

<strong>in</strong> transplanted crop <strong>in</strong>dicat<strong>in</strong>g high degree <strong>of</strong> persistence <strong>of</strong> is<strong>of</strong>enphos <strong>in</strong> <strong>rice</strong> plant. Soak<strong>in</strong>g the sprouted<br />

seed <strong>in</strong> 0.2% suspensions or emulsions <strong>of</strong> is<strong>of</strong>enphos or chlorpyriphos for 3 hrs prior to sow<strong>in</strong>g also<br />

effectively checked gall midge for 30 days after sow<strong>in</strong>g (Krishnaiah and Kalode 1983). Shi et. al. (2001)<br />

observed that mix<strong>in</strong>g 1kg <strong>of</strong> dry seed with 12-20 g <strong>of</strong> carbosulfan 35 DC gave significant control <strong>of</strong> thrips<br />

(Stenchaetothrips biformis) upto 24 days after sow<strong>in</strong>g.<br />

47


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

NURSERY TREATMENT WITH GRANULES OR SPRAYS<br />

Application <strong>of</strong> granular <strong><strong>in</strong>secticide</strong>s like carb<strong>of</strong>uran or cartap @ 2.0 kg a.i./ha <strong>of</strong> nursery at 15 days after<br />

sow<strong>in</strong>g is normally sufficient to take care <strong>of</strong> all the major pests like stem borer, thrips and gall midge<br />

throughout the nursery period. However, if gall midge is the major problem, then carb<strong>of</strong>uran is preferable<br />

over cartap.<br />

Methods and tim<strong>in</strong>g <strong>of</strong> <strong><strong>in</strong>secticide</strong> application for BPH management<br />

As BPH conf<strong>in</strong>es to basal portion <strong>of</strong> the <strong>rice</strong> plant, it is obvious that the spray application <strong>of</strong> <strong><strong>in</strong>secticide</strong>s<br />

should be directed towards basal portion <strong>in</strong>stead <strong>of</strong> upper foliage. This fact was recognized s<strong>in</strong>ce 1975<br />

(Aqu<strong>in</strong>o and He<strong>in</strong>richs 1980). Liu (1979) also observed that sprays applied to stems from either a hand<br />

operated knapsack sprayer or a mobile type high pressure mist blower with multiple hand nozzles were<br />

7-40% more efficient than the sprays applied to the leaf canopy. There were attempts to utilize other<br />

methods that can selectively take more proportion <strong>of</strong> the applied <strong><strong>in</strong>secticide</strong> to the base <strong>of</strong> the plant.<br />

Broadcast<strong>in</strong>g granules <strong>in</strong> stand<strong>in</strong>g water was not as effective as broadcast<strong>in</strong>g on soil just kept at saturation<br />

(Liu and Chang 1984). Low drift micro granules <strong>of</strong> BPMC were found to be more effective than traditional<br />

dust application with power duster (Oh et al., 1987).<br />

Salam et. al. (1986) from India reported that the field effectiveness <strong>of</strong> polyethylene based and encapsulated<br />

formulations <strong>of</strong> carb<strong>of</strong>uran granules was better than non-encapsulated carb<strong>of</strong>uran granules.<br />

CONTROLLED DROPLET APPLICATION OF INSECTICIDES AGAINST BPH<br />

Pick<strong>in</strong> et. al. (1981) observed that controlled droplet application (c.d.a) technique with an optimum<br />

droplet size <strong>of</strong> 127 milli microns was superior to conventional knapsack spray<strong>in</strong>g. This c.d.a. technique<br />

gave predicted 30-40% reduction <strong>in</strong> applied dosage when sprayed on the canopy, but no reduction was<br />

predicted for applications aga<strong>in</strong>st the planthoppers which feed at the basal portion <strong>of</strong> the plants.<br />

TIMING OF INSECTICIDE APPLICATION IN BPH MANAGEMENT<br />

Brown planthopper starts appear<strong>in</strong>g <strong>in</strong> <strong>rice</strong> crop about 15 to 20 days after transplant<strong>in</strong>g. However, the<br />

population will be very sparse, i.e. 2 to 5 adults for 100 hills. With<strong>in</strong> 20 to 25 days the <strong>in</strong>sect will complete<br />

one life cycle and multiply approximately 25-50 times and spread to neighbour<strong>in</strong>g hills. At this stage, on<br />

an average one or two adults per hill can be seen. In the next generation, these will multiply and give rise<br />

to 10 to 40 <strong>in</strong>sects per hill. Cont<strong>in</strong>uation <strong>of</strong> this condition will lead to further build up result<strong>in</strong>g <strong>in</strong> 100 to<br />

1000 <strong>in</strong>sects per hill and <strong>of</strong>ten caus<strong>in</strong>g hopper burn. By that time, the crop will reach flower<strong>in</strong>g stage.<br />

Thus, there are undulat<strong>in</strong>g population levels <strong>of</strong> BPH with ascend<strong>in</strong>g trend dur<strong>in</strong>g the crop growth period.<br />

A critical analysis <strong>of</strong> the population structure over the entire period start<strong>in</strong>g from the completion <strong>of</strong> the<br />

first generation upto the period <strong>of</strong> peak population, approximately 80 to 90% <strong>of</strong> the population will be <strong>in</strong><br />

nymphal stage. Hence, the tim<strong>in</strong>g <strong>of</strong> <strong><strong>in</strong>secticide</strong> application is very important and critical for the management<br />

48


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

<strong>of</strong> BPH under practical conditions. Nagata et. al. (1973) made an attempt to determ<strong>in</strong>e the optimum time<br />

<strong>of</strong> treatment with f<strong>in</strong>e granules <strong>of</strong> MIPC. These were applied at four times viz. 1. beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> the third<br />

generation, 2. peak <strong>of</strong> the third generation, 3. end <strong>of</strong> the third generation and 4. beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> fourth<br />

generation. Treatment at the beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> third generation or fourth generation gave better results<br />

compared to the peak or end <strong>of</strong> the third generation. Thus, for carbamates or organophosphates, which<br />

are effective aga<strong>in</strong>st adults and nymphs, application at the beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> nymphal emergence is more<br />

effective as both adults and nymphs are killed. It also takes care <strong>of</strong> further emerg<strong>in</strong>g nymphs after<br />

application.<br />

Nagata (1986) cont<strong>in</strong>ued his studies on optimal tim<strong>in</strong>g for application <strong>of</strong> <strong><strong>in</strong>secticide</strong>s. In case <strong>of</strong> bupr<strong>of</strong>ez<strong>in</strong><br />

an <strong>in</strong>sect growth regulator, the optimal tim<strong>in</strong>g was found to be mid nymphal stages <strong>of</strong> the second generation,<br />

7 to 14 days after the peak emergence <strong>of</strong> nymphs. On the contrary, applications dur<strong>in</strong>g early nymphal<br />

stages were relatively <strong>in</strong>effective. As bupr<strong>of</strong>ez<strong>in</strong> is <strong>in</strong>effective aga<strong>in</strong>st adults and kills the nymphs at the<br />

time <strong>of</strong> mout<strong>in</strong>g, application at peak nymphal population can wipe out the whole <strong>of</strong> nymphal population,<br />

leav<strong>in</strong>g only the surviv<strong>in</strong>g adults on the plant which will also eventually die <strong>in</strong> a short span <strong>of</strong> time. This<br />

reveals that the optimum tim<strong>in</strong>g for <strong><strong>in</strong>secticide</strong> application for BPH management vary with the type <strong>of</strong> the<br />

<strong><strong>in</strong>secticide</strong> and its mode <strong>of</strong> action. Hirao et. al. (1983) observed that when a mixture conta<strong>in</strong><strong>in</strong>g 1%<br />

bupr<strong>of</strong>ez<strong>in</strong> and 2% BPMC was applied immediately after the ma<strong>in</strong> wave <strong>of</strong> immigration <strong>of</strong> BPH, it significantly<br />

reduced the grassy stunt disease transmitted by BPH compared to later applications. This is understandable<br />

as the freshly settl<strong>in</strong>g BPH <strong>in</strong> <strong>rice</strong> fields must be killed before they transmit grassy stunt virus to healthy<br />

young <strong>rice</strong> plants. As BPMC is effective aga<strong>in</strong>st adults and the emerg<strong>in</strong>g nymphs are checked by bupr<strong>of</strong>ez<strong>in</strong>,<br />

this completely suppresses the population build up <strong>of</strong> BPH and thereby transmission <strong>of</strong> grassy stunt<br />

virus.<br />

CONCLUSIONS<br />

l For manag<strong>in</strong>g <strong>in</strong>sect pests <strong>in</strong> nursery, soak<strong>in</strong>g sprouted seed <strong>in</strong> 0.2% chlorpyriphos or is<strong>of</strong>enphos for<br />

3 hours before sow<strong>in</strong>g is effective aga<strong>in</strong>st stem borer, gall midge and whorl maggot through the<br />

nursery period.<br />

l Seedl<strong>in</strong>g root dip <strong>in</strong> 0.02% chlorpyriphos for 12 hours can protect <strong>rice</strong> crop <strong>in</strong> early stages <strong>of</strong><br />

transplant<strong>in</strong>g.<br />

l Root-zone placement <strong>of</strong> carb<strong>of</strong>uran WP @ 1.0 kg a.i. /ha as coated urea super granules or liquid<br />

<strong>in</strong>jection <strong>of</strong> carb<strong>of</strong>uran + urea with applicators, <strong>of</strong>fers protection equal to 3 granular applications at<br />

the same dose each time.<br />

l Tim<strong>in</strong>g <strong>of</strong> <strong><strong>in</strong>secticide</strong> application for BPH management is crucial and depends on type <strong>of</strong> <strong><strong>in</strong>secticide</strong>.<br />

For organophosphates and carbamtes, application at the beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> nymphal emergence is more<br />

advantageous while for growth regulators like bupr<strong>of</strong>ez<strong>in</strong> application at the time <strong>of</strong> peak population <strong>of</strong><br />

BPH nymphs is more effective.<br />

49


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

SYSTEMIC NATURE OF INSECTICIDES IN RICE:<br />

THE CONCEPT AND PRACTICE<br />

Traditional classification <strong>of</strong> <strong><strong>in</strong>secticide</strong>s<br />

Traditionally <strong><strong>in</strong>secticide</strong>s are classified as stomach poisons, contact poisons and systemic <strong><strong>in</strong>secticide</strong>s<br />

based on their nature <strong>of</strong> entry <strong>in</strong>to the plant system and the <strong>in</strong>sect system. An <strong><strong>in</strong>secticide</strong> when applied on<br />

the plant cont<strong>in</strong>ues to rema<strong>in</strong> on the surface where it was applied and when an <strong>in</strong>sect feeds on the treated<br />

portion <strong>of</strong> the plant, the poison gets entry <strong>in</strong>to the alimentary canal, absorbed <strong>in</strong>to the haemocoel and<br />

f<strong>in</strong>ally br<strong>in</strong>gs about some biochemical change either <strong>in</strong> the alimentary canal, haemocoel or nervous system,<br />

thereby, result<strong>in</strong>g <strong>in</strong> the death <strong>of</strong> the <strong>in</strong>sect. Such <strong><strong>in</strong>secticide</strong> is called as stomach poison as it br<strong>in</strong>gs<br />

about death <strong>of</strong> the <strong>in</strong>sect only after gett<strong>in</strong>g entry <strong>in</strong>to the stomach.<br />

An <strong><strong>in</strong>secticide</strong> is called a contact poison when it is applied to the plant surface, rema<strong>in</strong>s on the surface <strong>of</strong><br />

the plant but when an <strong>in</strong>sect comes <strong>in</strong> touch with the chemical, the <strong><strong>in</strong>secticide</strong> is capable <strong>of</strong> penetrat<strong>in</strong>g<br />

through the <strong>in</strong>sect cuticle, enter <strong>in</strong>to the haemocoel and then nervous system there by br<strong>in</strong>g<strong>in</strong>g about<br />

death <strong>of</strong> the <strong>in</strong>sect by <strong>in</strong>teract<strong>in</strong>g with appropriate physiological loci.<br />

An <strong><strong>in</strong>secticide</strong> is said to be systemic <strong><strong>in</strong>secticide</strong> when it can penetrate <strong>in</strong>to the plant system, get translocated<br />

<strong>in</strong>to the plant parts other than those where the <strong><strong>in</strong>secticide</strong> was orig<strong>in</strong>ally applied. When <strong>in</strong>sects feed either<br />

on the portion, which was treated or orig<strong>in</strong>ally untreated, the <strong><strong>in</strong>secticide</strong> enters <strong>in</strong>to the alimentary canal<br />

<strong>of</strong> the <strong>in</strong>sect system, then to the haemocoel and f<strong>in</strong>ally the nervous system result<strong>in</strong>g <strong>in</strong> the death <strong>of</strong> the<br />

<strong>in</strong>sect.<br />

The above traditional classification <strong>of</strong> <strong><strong>in</strong>secticide</strong>s was based on old situation where the <strong>in</strong>organic <strong><strong>in</strong>secticide</strong>s<br />

like arsenicals were purely stomach poisons and organic <strong><strong>in</strong>secticide</strong>s like nicot<strong>in</strong>oids and pyrethr<strong>in</strong>s were<br />

contact poisons. However, after the advent <strong>of</strong> purely synthetic <strong><strong>in</strong>secticide</strong>s start<strong>in</strong>g from organochlor<strong>in</strong>es,<br />

organophosphates, carbamates, synthetic pyrethroids, and the latest class <strong>of</strong> neonicot<strong>in</strong>oids, majority <strong>of</strong><br />

these <strong><strong>in</strong>secticide</strong>s can act both as stomach poisons as well as contact poisons. However, all the members<br />

<strong>of</strong> these groups are not systemic as far as plant system is concerned. There are systemic <strong><strong>in</strong>secticide</strong>s <strong>in</strong><br />

many <strong>of</strong> these modern groups <strong>of</strong> <strong><strong>in</strong>secticide</strong>s along with others, which are contact <strong><strong>in</strong>secticide</strong>s, and only<br />

a few are stomach poisons.<br />

Potential toxicity vs. expressed toxicity<br />

Potential toxicity <strong>of</strong> an <strong><strong>in</strong>secticide</strong> is the ability to br<strong>in</strong>g about death <strong>of</strong> an <strong>in</strong>sect at low dosages and <strong>in</strong> a<br />

shorter period, when the poison is either applied topically on the <strong>in</strong>sect or given through its food. This<br />

depends upon the ability <strong>of</strong> an <strong><strong>in</strong>secticide</strong> to move <strong>in</strong>to the <strong>in</strong>sect system, low rate <strong>of</strong> degradation <strong>of</strong> the<br />

chemical <strong>in</strong> <strong>in</strong>sect system or high potentiation <strong>in</strong> the <strong>in</strong>sect system and high aff<strong>in</strong>ity <strong>of</strong> the molecule to the<br />

specific physiological loci <strong>in</strong> nervous system, which results <strong>in</strong> the death <strong>of</strong> the <strong>in</strong>sect. Generally one, two or<br />

all these factors may contribute for this potential toxicity <strong>of</strong> an <strong><strong>in</strong>secticide</strong> towards a pest species. And this<br />

50


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

may be the reason why neonicot<strong>in</strong>oids are extremely effective aga<strong>in</strong>st planthoppers and leafhoppers and<br />

almost have no practical toxicity towards lepidopterans. On the other hand, <strong><strong>in</strong>secticide</strong>s like flubendiamide,<br />

sp<strong>in</strong>osad and <strong>in</strong>doxacarb have excellent toxicity towards lepidopterans and have no practical toxicity to<br />

homopterans like leaf and plant hoppers.<br />

The realized toxicity is the ability <strong>of</strong> an <strong><strong>in</strong>secticide</strong> to effectively check a given pest species under practical<br />

field conditions. This depends upon not only the potential or <strong>in</strong>nate toxicity but also the method <strong>of</strong> application,<br />

the time <strong>of</strong> application, and other environmental factors, which determ<strong>in</strong>e the extent <strong>of</strong> accessibility <strong>of</strong><br />

the chemical to the <strong>in</strong>sect. This also depends on the position <strong>of</strong> the <strong>in</strong>sect <strong>in</strong> the plant, for <strong>in</strong>stance <strong>in</strong>side<br />

the stem, or on the leaf sheath and the type <strong>of</strong> mouthparts and the amount <strong>of</strong> plant material consumed<br />

by the <strong>in</strong>sect. For <strong>in</strong>stance monocrotophos has high potential toxicity to leaf hoppers and plant hoppers<br />

but fails to check them when given as a seedl<strong>in</strong>g root dip or when applied to soil as granules.<br />

Systemic action: differences among various <strong><strong>in</strong>secticide</strong> groups<br />

The <strong><strong>in</strong>secticide</strong>s like carb<strong>of</strong>uran, MIPC, and BPMC among the carbamates, phorate, disulfoton, fenthion,<br />

and isazophos among organophosphates are <strong>use</strong>d only as granules applied to stand<strong>in</strong>g water on the soil<br />

surface. These get entry <strong>in</strong>to the plant through root system, move upwards, through xylem <strong>in</strong>to the stem<br />

and then <strong>in</strong>to the leaves and f<strong>in</strong>ally get distributed <strong>in</strong>to other plant cells <strong>in</strong>clud<strong>in</strong>g phloem. That is why they<br />

are able to kill even the phloem feeders among the <strong>rice</strong> pests like BPH and WBPH.<br />

Other <strong><strong>in</strong>secticide</strong>s like qu<strong>in</strong>alphos, ethoprop and chlorpyriphos among organophosphates can be applied<br />

as granules to the soil but have got limited translocation <strong>in</strong> the plant system and are probably concentrated<br />

<strong>in</strong> the grow<strong>in</strong>g portions <strong>of</strong> the <strong>rice</strong> plant. Hence, these are effective aga<strong>in</strong>st <strong>in</strong>ternal feeders like stem<br />

borer, gall midge, and whorl maggot and exert very little <strong>in</strong>fluence on leaf feeders like leaf folder and <strong>rice</strong><br />

hispa although they have good potential contact toxicity aga<strong>in</strong>st these two <strong>in</strong>sect pests when applied as<br />

foliar sprays.<br />

In case <strong>of</strong> cartap and thiocyclam, which are neiristox<strong>in</strong>s, these have translocation <strong>in</strong> <strong>rice</strong> plant reach<strong>in</strong>g<br />

the leaf even when applied as granules to the soil. This together with their high <strong>in</strong>nate toxicity to leaf<br />

folders might be contribut<strong>in</strong>g for their excellent field effectiveness aga<strong>in</strong>st leaf folder.<br />

Monocrotophos: systemic action <strong>in</strong> <strong>rice</strong> vs. coconut<br />

Monocrotophos, which has excellent contact toxicity aga<strong>in</strong>st leaf- and planthoppers, is generally considered<br />

to be hav<strong>in</strong>g systemic action <strong>in</strong> the plants. However, <strong>in</strong> case <strong>of</strong> <strong>rice</strong> it failed to be translocated <strong>in</strong>to <strong>rice</strong><br />

plant either as a granule or as a seedl<strong>in</strong>g root dip treatment as it exercised poor control <strong>of</strong> stem borer<br />

and whorl maggot <strong>in</strong> spite <strong>of</strong> it’s high <strong>in</strong>nate toxicity to these pests. It also showed no appreciable toxicity<br />

to plant hoppers and leaf hoppers when given as a seedl<strong>in</strong>g rood dip <strong>in</strong> spite <strong>of</strong> its high potential contact<br />

toxicity to leaf and plant hoppers <strong>in</strong> <strong>rice</strong>. This reveals that it is not really gett<strong>in</strong>g translocated <strong>in</strong> sufficient<br />

quantities <strong>in</strong> the <strong>rice</strong> plant system and gett<strong>in</strong>g distributed <strong>in</strong>to the entire plant system <strong>in</strong>clud<strong>in</strong>g phloem. In<br />

contrast, monocrotophos has exercised excellent systemic action and translocation <strong>in</strong> another<br />

51


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

monocotyledonous plant the coconut. In coconut, root feed<strong>in</strong>g with monocrotophos has resulted <strong>in</strong> excellent<br />

control <strong>of</strong> black headed cater pillar, <strong>of</strong> coconut. This emphasizes the po<strong>in</strong>t that an <strong><strong>in</strong>secticide</strong> may not be<br />

truly systemic <strong>in</strong> one plant but may exercise true systemic action <strong>in</strong> another plant ow<strong>in</strong>g to the differences<br />

<strong>in</strong> the molecular translocation physiology among different plants.<br />

Chlorpyriphos has limited translocation<br />

Chlorpyriphos has shown excellent efficacy aga<strong>in</strong>st stem borer, gall midge and whorl maggot when given<br />

as a seedl<strong>in</strong>g root dip before transplant<strong>in</strong>g <strong>of</strong> <strong>rice</strong> plants. It has also shown good control <strong>of</strong> gall midge <strong>in</strong><br />

the nursery when sprouted seeds <strong>of</strong> <strong>rice</strong> were soaked <strong>in</strong> chlorpyriphos emulsion for 3 hours before<br />

sow<strong>in</strong>g. However, chlorpyriphos failed to check effectively the leaf feed<strong>in</strong>g <strong>in</strong>sects like leaf folder and <strong>rice</strong><br />

hispa, or the suck<strong>in</strong>g pests like plant hoppers and leafhoppers. This throws the light that chlorpyriphos is<br />

gett<strong>in</strong>g accumulated only <strong>in</strong> the young grow<strong>in</strong>g parts <strong>of</strong> the plants and thus exercis<strong>in</strong>g its effectiveness<br />

aga<strong>in</strong>st stem borer, gall midge and whorl maggot whose larvae conf<strong>in</strong>e to the grow<strong>in</strong>g portions <strong>of</strong> <strong>rice</strong><br />

plant.<br />

Carbosulfan: a true systemic <strong><strong>in</strong>secticide</strong> <strong>in</strong> <strong>rice</strong><br />

When several <strong><strong>in</strong>secticide</strong>s <strong>in</strong>clud<strong>in</strong>g monocrotophos, have been evaluated for their effectiveness as seedl<strong>in</strong>g<br />

root dip treatments aga<strong>in</strong>st whitebacked planthopper, brown planthopper and green leafhopper, only<br />

carbosulfan has exercised effective control <strong>of</strong> all the leaf and plant hoppers. This reveals that carbosulfan<br />

has excellent translocation <strong>in</strong> the plant system mov<strong>in</strong>g through xylem from lower to upper portions <strong>of</strong> the<br />

plant and then disburs<strong>in</strong>g <strong>in</strong>to the phloem through other tissues, which alone can br<strong>in</strong>g about excellent<br />

control <strong>of</strong> BPH and WBPH which are purely phloem feeders. High <strong>in</strong>nate toxicity <strong>of</strong> carbosulfan to leaf and<br />

planthoppers might be considered as the reason for its effectiveness but monocrotophos <strong>in</strong> spite <strong>of</strong> its<br />

high <strong>in</strong>nate toxicity to BPH and WBPH failed to check leaf and planthoppers as a seedl<strong>in</strong>g root dip<br />

treatment.<br />

Downward translocation <strong>of</strong> <strong><strong>in</strong>secticide</strong>s <strong>in</strong> <strong>rice</strong><br />

When we talk <strong>of</strong> the systemic action <strong>in</strong> <strong>rice</strong> plant, it is not merely the upward movement or translocation <strong>of</strong><br />

<strong><strong>in</strong>secticide</strong>s when applied either to soil or seedl<strong>in</strong>g root dip but, a true systemic <strong><strong>in</strong>secticide</strong> should also<br />

have downward translocation as well when applied to the upper parts <strong>of</strong> foliage like leaves. This property<br />

can be effectively evaluated by spray<strong>in</strong>g the <strong><strong>in</strong>secticide</strong>s to the leaves and conf<strong>in</strong><strong>in</strong>g the <strong>in</strong>sects to the<br />

base <strong>of</strong> the plant, which is uncontam<strong>in</strong>ated. When several <strong><strong>in</strong>secticide</strong>s have been evaluated <strong>in</strong> this manner<br />

for their downward translocation property <strong>in</strong> <strong>rice</strong> plant, only BPMC could exercise good <strong>in</strong>itial kill <strong>of</strong> BPH.<br />

However, the persistence lasted only for five days <strong>in</strong>dicat<strong>in</strong>g that a small proportion <strong>of</strong> BPMC applied to<br />

the foliage has really been translocated downwards to effectively check BPH. None <strong>of</strong> the other <strong><strong>in</strong>secticide</strong>s<br />

<strong>in</strong>clud<strong>in</strong>g monocrotophos, which have high <strong>in</strong>nate toxicity to BPH, could show such a downward translocation<br />

<strong>in</strong> <strong>rice</strong> plant.<br />

52


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

When the <strong><strong>in</strong>secticide</strong>s like neonicot<strong>in</strong>oids have been evaluated for downward translocation property <strong>in</strong><br />

<strong>rice</strong> plant <strong>in</strong> a similar manner, the <strong><strong>in</strong>secticide</strong>s like imidacloprid, thiamethoxam, and clothianid<strong>in</strong>, which<br />

have very high potential toxicity aga<strong>in</strong>st BPH and WBPH, could not kill the <strong>in</strong>sects present at the basal<br />

uncontam<strong>in</strong>ated portion <strong>of</strong> the <strong>rice</strong> plant. This shows that there is no real downward translocation <strong>of</strong><br />

neonicot<strong>in</strong>oids <strong>in</strong> the <strong>rice</strong> plant when applied to the foliage. The extreme effectiveness <strong>of</strong> neonicot<strong>in</strong>oids,<br />

which is realized under field conditions even at a dosage as low as 25 g a.i/ha, might be ma<strong>in</strong>ly through<br />

contact action <strong>of</strong> these neonicot<strong>in</strong>oids when sprayed on the plant system.<br />

53


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

MOLECULAR AND BIOCHEMICAL APPROACHES<br />

FOR INSECTICIDE UTILIZATION IN RICE<br />

After the adverse ecological effects associated with chlor<strong>in</strong>ated hydrocarbon <strong><strong>in</strong>secticide</strong>s such as<br />

biomagnification and high level <strong>of</strong> persistence <strong>in</strong> the ecosystem were documented and recognized, the<br />

organophosphates and carbamates were <strong>use</strong>d for <strong>rice</strong> <strong>in</strong>sect pest management s<strong>in</strong>ce early seventies.<br />

However, other problems associated with <strong><strong>in</strong>secticide</strong> <strong>use</strong> such as toxicity to natural enemies, non-target<br />

organisms and the operator cont<strong>in</strong>ue to exist even with OPs and carbamates. The major reason is that the<br />

biochemical loci <strong>in</strong> the mode <strong>of</strong> action <strong>of</strong> OPs and carbamates are the same <strong>in</strong> <strong>in</strong>sects and mammals.<br />

Further, lack <strong>of</strong> selectivity among different groups <strong>of</strong> <strong>in</strong>sects is another reason. Hence attention was paid<br />

by researchers world over to device the <strong><strong>in</strong>secticide</strong>s that attack the biochemical loci, which are specific to<br />

<strong>in</strong>sects and also have reasonable selectivity among different orders <strong>of</strong> <strong>in</strong>sects. As far as <strong>rice</strong> is concerned,<br />

the major lead <strong>in</strong> this area <strong>of</strong> research comes from Japanese scientists work<strong>in</strong>g <strong>in</strong> both government and<br />

private organizations <strong>in</strong> Japan.<br />

A wide variety <strong>of</strong> approaches for this problem have been followed. These <strong>in</strong>clude<br />

1. Identification and isolation <strong>of</strong> naturally occurr<strong>in</strong>g plant lect<strong>in</strong>s and their <strong>in</strong>corporation <strong>in</strong> <strong>rice</strong> through<br />

molecular approaches<br />

2. Synthesis <strong>of</strong> new groups <strong>of</strong> chemicals on empirical basis and select<strong>in</strong>g suitable molecules after bioassay,<br />

utiliz<strong>in</strong>g the typical <strong>in</strong>sects <strong>of</strong> economic importance.<br />

3. Modify<strong>in</strong>g the structure <strong>of</strong> the already exist<strong>in</strong>g carbamates and OPs and identify<strong>in</strong>g the molecules with<br />

more selectivity among different <strong>in</strong>sect orders.<br />

4. Design<strong>in</strong>g new molecules to act as synergists to overcome the problem <strong>of</strong> <strong><strong>in</strong>secticide</strong> resistance<br />

5. Synthesis<strong>in</strong>g new molecules, which can attack different active sites <strong>in</strong> the enzymes, like acetyl<br />

chol<strong>in</strong>e-esterases present <strong>in</strong> <strong>in</strong>sects resistant to OP s and carbamates.<br />

1. Identification and isolation <strong>of</strong> naturally occurr<strong>in</strong>g plant lect<strong>in</strong>s<br />

Powell et. al. (1993) <strong>in</strong> U.K. isolated the lect<strong>in</strong>s viz., Galanthus nivalis agglut<strong>in</strong><strong>in</strong> (GNA), wheat germ<br />

agglut<strong>in</strong><strong>in</strong> (WGA) and the enzyme soybean lipoxygenase (LPO) and bioassayed on BPH and GLH Nephotettix<br />

c<strong>in</strong>cticeps after <strong>in</strong>corporat<strong>in</strong>g <strong>in</strong>to artificial diets. These substances at 0.08 to 0.1% exhibited significant<br />

antimetabolic effects on 1 st and 3 rd <strong>in</strong>star nymphs <strong>of</strong> BPH and 3 rd <strong>in</strong>star nymphs <strong>of</strong> GLH. Later attempts<br />

were made to isolate the genes responsible for these lect<strong>in</strong>s and enzymes and <strong>in</strong>corporate <strong>in</strong>to <strong>rice</strong><br />

(Nagadara et. al. 2003).<br />

2. Synthesis <strong>of</strong> new groups <strong>of</strong> chemicals on empirical basis and select<strong>in</strong>g suitable molecules<br />

Kato et. al. (1989a) studied the structure activity relationships <strong>of</strong> 2-alkyl thio-4-thiazolyl methane sulfonates<br />

54


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

and their toxicity to BPH and GLH (N. c<strong>in</strong>cticeps). The branched C3-C4 alkyl thio derivatives and their<br />

oxidized equivalents were most active aga<strong>in</strong>st susceptible as well as OP and carbamate resistant GLH.<br />

Another group <strong>of</strong> molecules viz., 6-alkylthio-2-pyridyl alkanesulfonates and their sulfoxides and sulfones<br />

were also observed for their toxicity to the above two species <strong>of</strong> <strong>in</strong>sects (Kato et al., 1989b). In a series<br />

<strong>of</strong> 6-isobutylthio-2-pyridyl alkanesulfonates and their sulfoxides and sulfones, the methane-, ethane-, and<br />

chloromethane sulfonates showed stronger <strong>in</strong>secticidal activity than higher alkane sulfonates. Some <strong>of</strong><br />

these were also <strong>in</strong>hibitory to acetyl chol<strong>in</strong>esterase from OP resistant stra<strong>in</strong>s <strong>of</strong> GLH.<br />

Yagi et. al. (1999) observed that 4-tert-butyl-2- (2, 6-dichloro-4-trifluoromethylphenyl)-1,3,4-oxadiazol<strong>in</strong>-<br />

5-one gave the highest activity aga<strong>in</strong>st N. c<strong>in</strong>cticeps among a series <strong>of</strong> derivatives. Obata et. al. (1992)<br />

<strong>in</strong> a similar study observed that N- (3-phenoxybenzyl)-4-pyrimid<strong>in</strong>am<strong>in</strong>e was effective aga<strong>in</strong>st BPH.<br />

PYMETROZINE: A NOVEL CONTACT INSECTICIDE<br />

Sato et. al. (1996) <strong>in</strong> Japan, observed excellent control <strong>of</strong> both BPH and WBPH under field conditions due<br />

to application <strong>of</strong> pymetroz<strong>in</strong>e at as low as 63 g a.i./ha. Laboratory studies revealed that paralysis <strong>of</strong> legs<br />

<strong>of</strong> treated <strong>in</strong>sects followed by reduced or complete <strong>in</strong>hibition <strong>of</strong> feed<strong>in</strong>g and reproduction <strong>in</strong> BPH was<br />

responsible for population reduction <strong>in</strong> field conditions. In case <strong>of</strong> WBPH also more or less similar effect<br />

was observed.<br />

MUSCARINIC AGONISTS AS INSECTICIDES<br />

Dick et. al. (1997) from USA reported that the agonists <strong>of</strong> muscar<strong>in</strong>ic receptor <strong>in</strong> <strong>in</strong>sects proved to be<br />

extremely active aga<strong>in</strong>st N. lugens and N. c<strong>in</strong>cticeps <strong>in</strong> laboratory bioassays.<br />

ETHOFENPROX, A NOVEL ETHER DERIVATIVE INSECTICIDE & ITS RELATIVES<br />

Eth<strong>of</strong>enprox is very similar <strong>in</strong> its structure to synthetic pyrethroids but it is proved to be extremely effective<br />

aga<strong>in</strong>st planthoppers and leafhoppers <strong>in</strong> <strong>rice</strong>. In addition, it has moderate toxicity to Lepidoptera and<br />

Coleoptera. Eth<strong>of</strong>enprox proved to be effective aga<strong>in</strong>st OP and carbamate resistant BPH, WBPH and GLH<br />

and does not ca<strong>use</strong> resurgence <strong>of</strong> BPH under field conditions. This molecule has extreme <strong>in</strong>built safety to<br />

mammals (Yoshimoto et al., 1989).<br />

By tak<strong>in</strong>g clue about the desirable properties <strong>of</strong> eth<strong>of</strong>enprox, another derivative called flufenprox has<br />

been synthesized and evaluated. This molecule proved to be effective aga<strong>in</strong>st wide range <strong>of</strong> pests belong<strong>in</strong>g<br />

to orders <strong>of</strong> Lepidoptera and Coleoptera with <strong>in</strong>built safety to mammals and also fish, earthworms and<br />

spiders (Gordon et al., 1992).<br />

Another derivative <strong>of</strong> eth<strong>of</strong>enprox, synthesized by replac<strong>in</strong>g quaternary carbon atom with silicon atom<br />

proved to have broad-spectrum <strong>in</strong>secticidal activity with extremely low toxicity to fish and mammals. This<br />

even gives the clue that by substitut<strong>in</strong>g carbon atom <strong>in</strong> <strong><strong>in</strong>secticide</strong> molecules <strong>of</strong> other groups it can be<br />

possible to get derivatives, which are safer to environment with less toxicity to fish and mammals (Ohtsuka,<br />

1993).<br />

55


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

INSECT GROWTH REGULATORS<br />

A new compound (4-chloro-5-(6-chloro-3-pyridylmethoxy)-2-(3,4-dichlorophenyl)-pyridaz<strong>in</strong>-3-(2H)-one)<br />

was observed to exhibit juvenile hormone activity and <strong>in</strong>hibited metamorphosis selectively aga<strong>in</strong>st the<br />

most important suck<strong>in</strong>g pests like BPH and GLH. Residues <strong>of</strong> 1mg a.i./l <strong>in</strong>hibited development. The affected<br />

<strong>in</strong>sects could not complete their development from one nymph to next nymphal <strong>in</strong>star or nymph to adult<br />

and died. The compound was persistent for about 40 days on sprayed <strong>rice</strong> plants (Miyake et al., 1988).<br />

DIFLUBENZURON: A SELECTIVE INSECT GROWTH REGULATOR FOR LEPIDOPTERA<br />

Diflubenzuron <strong>in</strong>hibits chit<strong>in</strong> synthesis <strong>in</strong> immature caterpillars, kills eggs and sterilizes adults. The detailed<br />

studies on the <strong>rice</strong> pest S. mauritia by Beevi and Dale (1980 & 1984) <strong>in</strong> India revealed that early <strong>in</strong>star<br />

larvae were more susceptible than late <strong>in</strong>stars. The malformations that occurred <strong>in</strong> treated larvae were<br />

<strong>in</strong>ability to moult or partial moult<strong>in</strong>g, reduction <strong>of</strong> pupal size, larval-pupal <strong>in</strong>termediates, deformation <strong>of</strong><br />

w<strong>in</strong>gs and body <strong>of</strong> adults when late larvae were treated. When diflubenzuron at 100 to 1000 ppm <strong>in</strong><br />

honey solution was fed to adults <strong>of</strong> S. mauritia, it resulted <strong>in</strong> immediate death <strong>of</strong> some adults, shorter life<br />

span for all the adults, deposition <strong>of</strong> fewer eggs, where none hatched. Diflubenzuron even at 10 ppm<br />

when fed to adults ca<strong>use</strong>d 64% sterility <strong>of</strong> the eggs laid by treated adults.<br />

With regard to <strong>rice</strong> leaf folder, C. med<strong>in</strong>alis, the results were not encourag<strong>in</strong>g. The feed<strong>in</strong>g <strong>in</strong>hibition <strong>of</strong><br />

larvae was less than 50% even at as high as 500 ppm (Rao et al., 1987). The field observations made by<br />

the senior author (unpublished) at DRR farm also showed that diflubenzuron was not effective aga<strong>in</strong>st C.<br />

med<strong>in</strong>alis.<br />

BUPROFEZIN, A CHITIN INHIBITOR AND GROWTH REGULATOR FOR HOMOPTERA<br />

Bupr<strong>of</strong>ez<strong>in</strong> is an <strong>in</strong>hibitor <strong>of</strong> chit<strong>in</strong> synthesis <strong>in</strong> <strong>in</strong>sects and also acts as a growth regulator. It was synthesized<br />

as a chance product <strong>of</strong> systematic synthesis programme for fungicidal development. The treated immature<br />

<strong>in</strong>sects are unaffected until the start<strong>in</strong>g <strong>of</strong> moult<strong>in</strong>g process and the <strong>in</strong>sects fail to shed the exuviae at the<br />

time <strong>of</strong> moult<strong>in</strong>g. Bupr<strong>of</strong>ez<strong>in</strong> is specific to homoptera particularly delphacidae and cicadellidae. In adults,<br />

normal ovarian development was affected and the number <strong>of</strong> eggs laid was drastically reduced with<br />

<strong>in</strong>crease <strong>in</strong> concentration <strong>of</strong> the <strong><strong>in</strong>secticide</strong>. As it targets the <strong>in</strong>sect specific loci <strong>of</strong> moult<strong>in</strong>g process, it is<br />

safe to mammals, fish and also spares predators <strong>of</strong> homopteran pests like spiders and mirid bugs (Kajihara<br />

et al., 1982; He<strong>in</strong>richs et al., 1984). Field trials <strong>in</strong> Japan and other countries showed high reduction <strong>of</strong><br />

BPH populations <strong>in</strong> bupr<strong>of</strong>ez<strong>in</strong> treated plots.<br />

Asai et. al. (1983 and 1985) made detailed studies on mode <strong>of</strong> action <strong>of</strong> bupr<strong>of</strong>ez<strong>in</strong> <strong>in</strong> BPH. Apart from<br />

its known effects on nymphs and adults, the eggs treated <strong>in</strong> situ by spray<strong>in</strong>g on plants conta<strong>in</strong><strong>in</strong>g eggs at<br />

250 ppm resulted <strong>in</strong> 43.3% hatch<strong>in</strong>g compared to 100% <strong>in</strong> untreated check. The life span <strong>of</strong> treated<br />

adults was also reduced drastically.<br />

When 5 th <strong>in</strong>star nymphs <strong>of</strong> BPH were treated at 50 ppm <strong>of</strong> bupr<strong>of</strong>ez<strong>in</strong> with <strong>in</strong> 1hr <strong>of</strong> their last moult, the<br />

treated nymphs began to die after 84 hrs <strong>of</strong> treatment and none emerged as adults. The histological<br />

56


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

observations showed no differences <strong>in</strong> the cuticle between treated <strong>in</strong>sects and untreated <strong>in</strong>sects upto 72<br />

hrs after treatment <strong>in</strong>ferr<strong>in</strong>g that the time <strong>of</strong> action <strong>of</strong> bupr<strong>of</strong>ez<strong>in</strong> is at the time <strong>of</strong> moult<strong>in</strong>g only (Uchida<br />

et al., 1985). Further the reduction <strong>in</strong> oviposition by adults as well as mortality <strong>in</strong> bupr<strong>of</strong>ez<strong>in</strong> treated<br />

nymphs could be countered by treatment with the classical moult<strong>in</strong>g hormone, the 20-hydroxy ecdysterone,<br />

suggest<strong>in</strong>g that bupr<strong>of</strong>ez<strong>in</strong> adversely affects the moult<strong>in</strong>g hormone <strong>in</strong> treated <strong>in</strong>sects (Uchida et al.,<br />

1986; Kuriyama and Yamaguchi, 2000).<br />

Bei et. al. (1996) from Ch<strong>in</strong>a reported that bupr<strong>of</strong>ez<strong>in</strong> was not translocated from root to stem but significantly<br />

translocated from leaves to stem. Bupr<strong>of</strong>ez<strong>in</strong> kills BPH nymphs by contact with dorsal thorax, or tarsus <strong>in</strong><br />

legs or through mouthparts (rostrum).<br />

DIAPAUSE BREAKING MOLECULES<br />

Occurrence <strong>of</strong> diapa<strong>use</strong> or <strong>in</strong>active stage <strong>in</strong> <strong>rice</strong> stem borers <strong>in</strong> northern parts <strong>of</strong> India dur<strong>in</strong>g w<strong>in</strong>ter is<br />

well known. If we can break diapa<strong>use</strong> earlier than normal time through chemicals, the emerg<strong>in</strong>g adults will<br />

not f<strong>in</strong>d host plants i.e. <strong>rice</strong> and hence die without lay<strong>in</strong>g eggs. Chakravorthy et. al. (1985) topically<br />

treated the field collected diapaus<strong>in</strong>g larvae <strong>of</strong> YSB with juvenile hormone mimics such as hydroprene,<br />

methoprene and precocene-II (6,7-dimethoxy-2, 2-dimethyl-2H-1-benzpyran) at 10 to 200 micrograms<br />

per larva and ma<strong>in</strong>ta<strong>in</strong>ed at 23 0 C. The development <strong>of</strong> larvae was accelerated lead<strong>in</strong>g to early emergence<br />

<strong>of</strong> adults.<br />

3. Modify<strong>in</strong>g the structure <strong>of</strong> already exist<strong>in</strong>g carbamates and OPs<br />

Carbosulfan, a derivative <strong>of</strong> carb<strong>of</strong>uran was synthesized <strong>in</strong> 1982 and widely tested aga<strong>in</strong>st <strong>rice</strong> <strong>in</strong>sect<br />

pests. It is systemic <strong>in</strong> <strong>rice</strong> similar to carb<strong>of</strong>uran, extremely effective aga<strong>in</strong>st hoppers even as seedl<strong>in</strong>g<br />

root dip method. Unlike carb<strong>of</strong>uran, which is <strong>use</strong>ful as a soil <strong><strong>in</strong>secticide</strong>, carbosulfan is a good foliage<br />

<strong><strong>in</strong>secticide</strong> as well as soil <strong><strong>in</strong>secticide</strong>. It has better <strong>in</strong>built safety to mammals and natural enemies compared<br />

to carb<strong>of</strong>uran. It was recommended aga<strong>in</strong>st hoppers as well as lepidopteran pests <strong>in</strong> <strong>rice</strong> (Riddell et al.,<br />

1982; Krishnaiah and Kalode, 1986a).<br />

Goto et. al. (1988) synthesized a number <strong>of</strong> new am<strong>in</strong>o-sulf<strong>in</strong>yl derivatives <strong>of</strong> carb<strong>of</strong>uran, l<strong>in</strong>k<strong>in</strong>g different<br />

N-substituted am<strong>in</strong>o acid-esters and its analogs to the carbamyl nitrogen atom <strong>of</strong> carb<strong>of</strong>uran through a<br />

sulfur bridge and evaluated aga<strong>in</strong>st the <strong>rice</strong> pest N. c<strong>in</strong>cticeps. Majority <strong>of</strong> the derivatives showed good<br />

<strong>in</strong>secticidal activity aga<strong>in</strong>st the hopper. Some <strong>of</strong> them were as effective as carb<strong>of</strong>uran.<br />

4. Design<strong>in</strong>g new molecules to act as synergists to overcome the problem <strong>of</strong> <strong><strong>in</strong>secticide</strong><br />

resistance<br />

The major method <strong>of</strong> counter<strong>in</strong>g the <strong><strong>in</strong>secticide</strong> resistance <strong>in</strong> <strong>in</strong>sect pests is by utilization <strong>of</strong> synergists. In<br />

general synergists block the enzymes responsible for the degradation <strong>of</strong> the <strong><strong>in</strong>secticide</strong> molecules <strong>in</strong> the<br />

resistant stra<strong>in</strong>s there by more toxicant will reach the target <strong>of</strong> action. Some synergists may possess<br />

slight toxicity to the target pests or may be completely non-toxic by themselves but enhance the toxicity <strong>of</strong><br />

57


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

the <strong><strong>in</strong>secticide</strong> when <strong>use</strong>d <strong>in</strong> comb<strong>in</strong>ation. Konno and Shishido (1990) synthesized one hundred non<strong>in</strong>secticidal<br />

carbamates and evaluated their synergistic activity to fenitrothion and primiphos methyl resistant<br />

5 th <strong>in</strong>star larvae <strong>of</strong> Chilo suppressalis. The N, N-dimethyl carbamates with substituted phenyl and heterocyclic<br />

groups had synergistic activity to fenitrothion. Among all, 2-dimethylam<strong>in</strong>o-6-methyl-4-pyrimid<strong>in</strong>ylesters<br />

were extremely synergistic to fenitrothion <strong>in</strong> resistant C. suppressalis and reduced the resistance level<br />

from 1202 to 1.1.fold by strong <strong>in</strong>hibition <strong>of</strong> fenitroxon detoxification by prote<strong>in</strong> b<strong>in</strong>d<strong>in</strong>g and hydrolysis.<br />

5. Synthesis<strong>in</strong>g new molecules, which can attack different active sites <strong>in</strong> the enzymes, like<br />

acetyl chol<strong>in</strong>e-esterases present <strong>in</strong> <strong>in</strong>sects resistant to OP s and carbamates :<br />

N. c<strong>in</strong>cticeps, the most important GLH species <strong>in</strong> Japan has developed resistance to many OPs and<br />

carbamates. The ma<strong>in</strong> mechanism <strong>of</strong> resistance was <strong>in</strong>sensitivity <strong>of</strong> the target site <strong>of</strong> action, the acetyl<br />

chol<strong>in</strong>esterase enzyme (AChE) <strong>in</strong> nervous system <strong>of</strong> the <strong>in</strong>sects. Kyomura and Takahashi (1979) attempted<br />

to develop new carbamate compunds that could control such resistant hoppers. The major aim was to<br />

<strong>in</strong>crease the <strong>in</strong>teraction between the AChE <strong>in</strong> resistant stra<strong>in</strong>s and the molecules <strong>of</strong> new <strong><strong>in</strong>secticide</strong>s. The<br />

comb<strong>in</strong>ation <strong>of</strong> N-propyl carbamate with N-methyl carbamate with the same or different phenyl group<br />

resulted <strong>in</strong> potent synergistic activity and it was exhibited even under field conditions. The biochemical<br />

evaluation revealed that AChE from resistant leafhoppers had an additional site sensitive to N-propyl<br />

carbamates that was dist<strong>in</strong>ct from N-methyl carbamate sensitive site present <strong>in</strong> AChE from susceptible<br />

leafhoppers. A s<strong>in</strong>gle <strong>in</strong>hibitor could not <strong>in</strong>hibit both the sites but when two <strong>in</strong>hibitors were comb<strong>in</strong>ed each<br />

<strong>in</strong>teracted with the preferred site. This appeared to be the rational basis <strong>of</strong> synergism between N-propyl<br />

carbamates and N-methyl carbamates.<br />

58


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

TOXICITY OF INSECTICIDES TO NATURAL<br />

ENEMIES IN RICE ECOSYSTEM<br />

Toxicity <strong>of</strong> <strong><strong>in</strong>secticide</strong>s to natural enemies <strong>of</strong> planthoppers<br />

In <strong>rice</strong> ecosystem, green mirid bug Cyrtorhynus lividipennis, brown mirid bug Tytthus parviceps and velid<br />

predator or water strider Microvelia douglassii atrol<strong>in</strong>eata and large number <strong>of</strong> species <strong>of</strong> spiders constitute<br />

the natural enemy complex aga<strong>in</strong>st the leaf and planthoppers viz., brown planthopper, white backed plant<br />

hopper, and green leafhopper.<br />

Use <strong>of</strong> <strong><strong>in</strong>secticide</strong>s cont<strong>in</strong>ues to be one <strong>of</strong> the major tactics employed by farmers to m<strong>in</strong>imize the yield<br />

losses <strong>in</strong> <strong>rice</strong> from these pests. Conservation <strong>of</strong> natural enemies is an important component <strong>of</strong> modern<br />

<strong>in</strong>tegrated pest management (IPM). Pesticides that are not harmful to natural enemies can be effective<br />

tools for IPM. There are several <strong>in</strong>stances where the <strong>use</strong> <strong>of</strong> some <strong><strong>in</strong>secticide</strong> molecules, particularly<br />

synthetic pyrethroids led to resurgence <strong>of</strong> N. lugens and S. furcifera result<strong>in</strong>g <strong>in</strong> ‘hopper burn’ and<br />

complete loss <strong>of</strong> <strong>rice</strong> crop. Destruction <strong>of</strong> natural enemies has been observed to be responsible for BPH<br />

resurgence (He<strong>in</strong>richs et al., 1982; Krishnaiah and Kalode, 1987).<br />

TOXICITY TO SPIDERS<br />

Chen and chiu (1979) from Ch<strong>in</strong>a observed that among the three <strong><strong>in</strong>secticide</strong>s that were commonly <strong>use</strong>d<br />

aga<strong>in</strong>st BPH, viz. acephate, carb<strong>of</strong>uran and monocrotophos aga<strong>in</strong>st two species <strong>of</strong> spiders viz., Oedothorax<br />

<strong>in</strong>secticeps and Lycosa pseudoannulata, acephate was found to be relatively safer than the other two<br />

<strong><strong>in</strong>secticide</strong>s aga<strong>in</strong>st both the species. Later, Kumar and Velusamy (1996) reported that, <strong>of</strong> the 7 <strong><strong>in</strong>secticide</strong>s<br />

Oxyopes sp. Tetragnatha sp.<br />

viz., acephate (500g a.i./ha), BPMC (500 g a.i./ha), eth<strong>of</strong>enprox (50 g a.i./ha), qu<strong>in</strong>alphos (750 g a.i./<br />

ha), chlorpyriphos (500 g a.i./ha), monocrotophos (500g a.i./ha) and carbaryl (750 g a.i./ha), acephate,<br />

BPMC and eth<strong>of</strong>enprox were less toxic to three species <strong>of</strong> spiders viz., Lycosa psedoannulata, Tetragnatha<br />

javanica and Oxyopes javanus. These results were also confirmed by calculat<strong>in</strong>g LC 50 values for these<br />

<strong><strong>in</strong>secticide</strong>s. Acephate was also observed to be less toxic to spiders <strong>in</strong> their later studies (Kumar and<br />

59


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

Velusamy 1999 and 2000). Yoo et. al. (1984) from Korea observed that BPMC and MIPC were relatively<br />

less toxic to spider, Pirata subpiraticus compared to BPH.<br />

Tanaka et. al. (1990) from Japan reported that among the most commonly occurr<strong>in</strong>g spiders <strong>in</strong> <strong>rice</strong><br />

ecosystem viz., Paradosa pseudoannulata, Ummelliata <strong>in</strong>secticeps and Gnathonarium exsiccatum, all the<br />

species were susceptible to eth<strong>of</strong>enprox, while P. pseudoannulata was more susceptible to phenthoate<br />

and carbaryl. The other <strong><strong>in</strong>secticide</strong>s tested were diaz<strong>in</strong>on and BPMC. The <strong><strong>in</strong>secticide</strong>s were tested by<br />

dipp<strong>in</strong>g method to 1st <strong>in</strong>star spiderl<strong>in</strong>gs <strong>in</strong> the laboratory and the toxicities were expressed based on LC<br />

50 values. However, the field trials <strong>in</strong> India and other countries clearly showed that eth<strong>of</strong>enprox is safer to<br />

spiders but the dosage required is one tenth <strong>of</strong> other <strong><strong>in</strong>secticide</strong>s. Even, Tanaka. et al., (2000) observed<br />

that eth<strong>of</strong>enprox was 35 times less toxic to adult spiders compared to 1st <strong>in</strong>star spiderl<strong>in</strong>gs.<br />

In field trials, <strong>in</strong> India, Patel et. al. (2004) observed that endosulfan was relatively safer than other<br />

<strong><strong>in</strong>secticide</strong>s like, dichlorvos, triazophos, cartap, carb<strong>of</strong>uran, imidacloprid and BPMC. By us<strong>in</strong>g dipp<strong>in</strong>g<br />

method aga<strong>in</strong>st first <strong>in</strong>stars <strong>of</strong> four species <strong>of</strong> spiders, viz. Lycosa pseudoannulata, Tetragnatha maxillosa,<br />

Ummelliata <strong>in</strong>secticeps and Gnathonarium exsiccatum with n<strong>in</strong>e <strong><strong>in</strong>secticide</strong>s, Tanaka et. al. (2000) observed<br />

that T. maxillosa was the most susceptible species. Raman and Uthamasamy (1983) observed least<br />

mortality <strong>of</strong> L.psuedoannulata with carbosulfan (0.04%) by contact toxicity tests on <strong>rice</strong> seedl<strong>in</strong>gs compared<br />

to fenthion, methamidophos, phosphamidon (all at 0.04%), deltamethr<strong>in</strong>, fenvalerate and cypermethr<strong>in</strong><br />

(all at 0.002%). Based on field observations, Bhavani and Rao (2005) reported that imidacloprid was<br />

also safe to spiders.<br />

BUPROFEZIN, A SELECTIVE INSECTICIDE TO NATURAL ENEMIES OF BPH<br />

Bupr<strong>of</strong>ez<strong>in</strong>, an <strong>in</strong>sect growth regulator has shown excellent toxicity to BPH and safety to almost all natural<br />

enemies <strong>of</strong> the pest viz., Cyrtorh<strong>in</strong>us lividipennis, and the parasitoids Paracentrobia andoi and<br />

Haplogonotopus sp. apart from spiders (Kanaoka et. al. 1994; Choi et. al. 1996)<br />

60<br />

Haplogonotopus sp.


STUDIES AT DRR<br />

Insecticides <strong>in</strong> Rice IPM (DRR)<br />

Cont<strong>in</strong>uous programme <strong>of</strong> evaluat<strong>in</strong>g <strong><strong>in</strong>secticide</strong>s for their relative toxicity to important natural enemies<br />

<strong>of</strong> BPH at DRR under greenho<strong>use</strong> conditions showed that acephate (1200 ppm) was least toxic to green<br />

mirid bug C.lividipennis and brown mirid bug T. parviceps followed by fipronil (100ppm). Both imidacloprid<br />

and thiamethoxam were relatively more toxic even at 25 to 50 ppm. This was based on conf<strong>in</strong><strong>in</strong>g nymphs<br />

and adults <strong>of</strong> these predators to sprayed plants (Jhansi Lakshmi et al., 2001a & b). However, <strong>in</strong> similar<br />

studies with velid predator, Microvelia douglasi atrol<strong>in</strong>eata, it was found that fipronil followed by acephate<br />

were safer than thiamethoxam and imidacloprid (Krishnaiah et al., 2001) (Table 11).<br />

C. lividipennis T. parviceps Microvelia sp.<br />

In case <strong>of</strong> comb<strong>in</strong>ation products aga<strong>in</strong>st mirid bugs viz., C. lividipennis and T. parviceps acephate +<br />

cypermethr<strong>in</strong> and chlorpyriphos + cypermethr<strong>in</strong> exhibited less persistent toxicity compared to beta cyfluthr<strong>in</strong><br />

+ chlorpyriphos and imidacloprid + beta cyfluthr<strong>in</strong>. But all the comb<strong>in</strong>ation products were more toxic<br />

than s<strong>in</strong>gle compound <strong><strong>in</strong>secticide</strong>s like acephate and monocrotophos. Similar results were obta<strong>in</strong>ed <strong>in</strong><br />

case <strong>of</strong> velid predator. (Jhansi lakshmi et. al. 2003; 2004 and 2006a) (Table 9).<br />

In another study on the safety <strong>of</strong> <strong><strong>in</strong>secticide</strong>s to natural enemies, the three comb<strong>in</strong>ation products viz.,<br />

ethiprole+imidacloprid, thiamethoxam+lambdacyhalothr<strong>in</strong> and flubendiamide + fipronil were highly toxic<br />

to all the three natural enemies viz., green mirid bug, brown mirid bug and veliid predator. The s<strong>in</strong>gle<br />

compound <strong><strong>in</strong>secticide</strong>s viz. ethiprole, sp<strong>in</strong>osad, flubendiamide were less toxic to the veliid predator than<br />

<strong>in</strong>doxacarb and check <strong><strong>in</strong>secticide</strong>, acephate. Flubendiamide was least toxic to green mirid bug compared<br />

to acephate and other <strong><strong>in</strong>secticide</strong>s. All the s<strong>in</strong>gle compound <strong><strong>in</strong>secticide</strong>s were toxic to brown mirid bug<br />

(Jhansi Lakshmi et. al. 2008) (Table 9).<br />

Among twelve acaricides tested for their safety to three hemipteran predators viz., C. lividipennis,<br />

T. parviceps and M. douglasi atrol<strong>in</strong>eata, fenpropathr<strong>in</strong> and diafenthiuron were highly toxic, spiromesifen,<br />

pyriproxifen, milbemect<strong>in</strong> and dic<strong>of</strong>ol were less toxic whereas other acaricides such as pr<strong>of</strong>enophos,<br />

ethion, propargite, abamect<strong>in</strong> and fenazaqu<strong>in</strong> were moderately toxic to these predators (Jhansi lakshmi<br />

et al., 2006b) (Table 10).<br />

61


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

Table 9: Toxicity <strong>of</strong> selected comb<strong>in</strong>ation products <strong>of</strong> <strong><strong>in</strong>secticide</strong>s to hopper predators<br />

(persistent toxicity at 72 h after exposure)<br />

Treatment Conc. <strong>of</strong> a.i.<br />

(ppm)<br />

Persistent toxicity<br />

T. parviceps<br />

M. atrol<strong>in</strong>eata C. lividipennis<br />

Adults Nymphs<br />

Chlorpyriphos 50% +<br />

Cypermethr<strong>in</strong> 5%<br />

(Nurelle D 505)<br />

344 2800 1526 2031 1294<br />

Betacyfluthr<strong>in</strong> 12.5g +<br />

Chlorpyriphos 250g<br />

(Bulldock star 262.5EC)<br />

393 2800 1823 2800 2730<br />

Acephate 45%+<br />

Cypermethr<strong>in</strong> 5%<br />

(Upacy 50DF)<br />

500 2758 936 2532 910<br />

Imidacloprid 50g+<br />

Betacyfluthr<strong>in</strong> 50g<br />

(Confidar Ultra 100 EC)<br />

30 2800 2800 2788 2800<br />

Ethiprole 40% +<br />

imidacloprid 40%<br />

100 2800 2800 2800 2716<br />

Thiamethoxam 12.6% +<br />

lamdacyhalothr<strong>in</strong> 9.4 %<br />

(Alika 247 ZC)<br />

44 2800 2800 2800 2800<br />

Flubendiamide 36%+<br />

Fipronil 30%<br />

(50 g product)<br />

50 567 2723 2800 2800<br />

Betacyfluthr<strong>in</strong><br />

(Bulldock 25 EC)<br />

12.5 2800 1733 2772 2436<br />

Thiacloprid<br />

(Calypso 240 SC)<br />

120 2607 2800 2772 1313<br />

Monocrotophos<br />

(Nuvacron 36 WSC)<br />

500 1666 100 511 198<br />

Acephate<br />

(Starthene 75 WP)<br />

750 1382 317 1310 300<br />

Sp<strong>in</strong>osad 45 SC 56 255 1897 2086 1394<br />

Flubendiamide<br />

(Ril 038 20 WDP)<br />

25 329 48 1958 1598<br />

Ethiprole 10EC 50 14 1948 2478 986<br />

Indoxacarb<br />

(K<strong>in</strong>gdoxa 14.5 SC)<br />

29 928 2429 2632 1877<br />

62<br />

(Jhansi lakshmi et. al. 2003; 2004, 2006a, 2008)


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

Table 10 : Relative persistent toxicity <strong>of</strong> selected acaricides to the predators<br />

at 72 hours after exposure<br />

Acaricide<br />

Conc. <strong>of</strong> a.i<br />

(ppm)<br />

Cyrtorh<strong>in</strong>us.<br />

lividipennis<br />

Tytthus<br />

parviceps<br />

Microvelia<br />

douglassi<br />

Pr<strong>of</strong>enophos (Car<strong>in</strong>a 50EC) 500 403 de 1407c 793de<br />

Ethion (Fosmite 50 EC) 500 812 c 1918b 927d<br />

Propargite (Omite 57 EC) 500 371 c 1047cde 732de<br />

Propargite (Simba 57 EC) 500 353 c 766f 1449c<br />

Spiromesifen (Oberon 240 SC) 72 476 dc 1323cd 532c<br />

Fenpropathr<strong>in</strong> (Meothr<strong>in</strong> 30 EC) 150 2296a 2800a 2800a<br />

Milbemect<strong>in</strong> (Milbeknock 1%) 2.5 392 de 845ef 894d<br />

Abamect<strong>in</strong> (Vertimec 1.9 EC) 10 1078bc 1146cde 2205b<br />

Pyreproxifen (Admiral 10EC) 75 560 d 681def 714de<br />

Fenazaqu<strong>in</strong> (Magister 10 EC) 125 1162b 1374c 1855b<br />

Diafenthiuron (Polo 50 WP) 450 2142a 2107b 2800a<br />

Dic<strong>of</strong>ol (Kelthane 18.5 EC) 500 476 de 1257cd 1260e<br />

Untreated control 55 f 251g 151f<br />

Figures <strong>in</strong> a column followed by the same letter are not significantly different at P=0.05 by DMRT.<br />

(Jhansi lakshmi et. al. 2006b)<br />

INSECTICIDAL INFLUENCE ON GALL MIDGE PARASITES<br />

It is pa<strong>in</strong>ful to admit that there is very less <strong>in</strong>formation available on the effect <strong>of</strong> <strong><strong>in</strong>secticide</strong> treatments on<br />

Platygaster oryzae, the larval pupal parasite <strong>of</strong> <strong>rice</strong> gall midge. A field observation by Samalo et. al.<br />

(1983) revealed that seedl<strong>in</strong>g root dip with 0.02% chlorpyriphos followed by one application <strong>of</strong> ethoprophos<br />

Parasitized gall<br />

Platygaster sp.<br />

63


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

granules 1.0 kg a.i./ha at 30 DAT exhibited very little adverse effect on the P.oryzae at the same time<br />

ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g good control <strong>of</strong> the pest. Patnaik and Sathpathy (1983) observed less adverse effect on<br />

P.oryzae by granular <strong><strong>in</strong>secticide</strong>s like carb<strong>of</strong>uran, and phorate but the later was preferable based on<br />

effectiveness on gall midge.<br />

Although sprays are <strong>in</strong> general not effective aga<strong>in</strong>st gall midge, they are <strong>in</strong>evitable aga<strong>in</strong>st the pests like<br />

leaf folder. Hence, studies were conducted to see their toxicity to gall midge parasite P. oryzae. Among the<br />

sprays, phosalone was the least harmful to the parasitoid, followed by phosphamidon and endosulfan.<br />

EFFECT ON COCCINELLID PREDATORS IN RICE ECOSYSTEM<br />

Among the <strong><strong>in</strong>secticide</strong>s viz., chlorpyriphos, fenitrothion, formothion, phosphamidon, and qu<strong>in</strong>alphos, tested<br />

for their toxicity to three cocc<strong>in</strong>ellid predators which are commonly found <strong>in</strong> <strong>rice</strong> ecosystem viz., Cocc<strong>in</strong>ella<br />

rependa, Micraspis discolor and M.v<strong>in</strong>cta, fenitrothion was least toxic to C. repanda, and chlorpyriphos to<br />

M. discolor (Patnaik, 1983). Rabbi et. al. (1993) from Bangladesh observed that cypermethr<strong>in</strong>, alpha<br />

cypermethr<strong>in</strong>, diaz<strong>in</strong>on, malathion, fenitrothion and phosphamidon ca<strong>use</strong>d low mortalities <strong>of</strong> the cocc<strong>in</strong>ellid<br />

predator, M. discolor among 28 <strong><strong>in</strong>secticide</strong> formulations tested under field conditions. The predatory<br />

carabid beetle, Ophionea <strong>in</strong>dica, which is predatory on BPH, was numerically affected by need-based<br />

application <strong>of</strong> carb<strong>of</strong>uran or schedule based application <strong>of</strong> carb<strong>of</strong>uran and monocrotophos (Ullah and<br />

Jahan 2004).<br />

EFFECT OF INSECTICIDES ON NATURAL ENEMIES OF LEAF FOLDER<br />

Methamidophos was recommended aga<strong>in</strong>st leaf folder <strong>in</strong> Ch<strong>in</strong>a. However, the proper tim<strong>in</strong>g <strong>of</strong> the <strong><strong>in</strong>secticide</strong><br />

is very essential. Zhuge (1982) suggested that peak <strong>of</strong> the 3 rd <strong>in</strong>star <strong>of</strong> C. med<strong>in</strong>alis was the most<br />

opportune time for maximum effectiveness aga<strong>in</strong>st the unparasitized larvae and m<strong>in</strong>imum mortality <strong>of</strong><br />

parasitized larvae. However, Zhu et al., (2000) observed that the rate <strong>of</strong> parasitism by Trichogramma<br />

spp. was significantly affected <strong>in</strong> plots treated with methamidophos.<br />

64<br />

Cocc<strong>in</strong>ellid Adult Cocc<strong>in</strong>ellid Grub


Tetrastichus sp.<br />

Trichogramma japonicum<br />

Insecticides <strong>in</strong> Rice IPM (DRR)<br />

Effect <strong>of</strong> <strong><strong>in</strong>secticide</strong>s on egg parasitoides <strong>of</strong> stem borers<br />

Among various parasitoids, which have been recorded on eggs <strong>of</strong><br />

various stem borers <strong>in</strong> <strong>rice</strong> ecosystem, Trichogramma japonicum,<br />

Trichogramma chilonis, Telenomus dignoides and Tetrastichus<br />

schoenobi are the most important ones. Hence, an attempt has been<br />

made to present the <strong>in</strong>formation available on the toxicity <strong>of</strong> various<br />

<strong><strong>in</strong>secticide</strong>s on these parasitoids separately.<br />

A long-term data <strong>of</strong> 10 years were utilized for evolv<strong>in</strong>g the effect <strong>of</strong><br />

chlordimeform, an <strong><strong>in</strong>secticide</strong> rout<strong>in</strong>ely <strong>use</strong>d <strong>in</strong> Ch<strong>in</strong>a for suppress<strong>in</strong>g<br />

the populations <strong>of</strong> YSB, on the egg parasite T. japonicum (Hong<br />

1990). The results showed that spray<strong>in</strong>g <strong>of</strong> the <strong><strong>in</strong>secticide</strong> was more<br />

harmful to the parasite than drench<strong>in</strong>g or soil application. The<br />

hatch<strong>in</strong>g <strong>of</strong> the parasite was more adversely affected if spray<strong>in</strong>g<br />

was done 2 days earlier to hatch<strong>in</strong>g <strong>of</strong> host eggs. Ye (1988) from<br />

Nanchang, Jiangxi Ch<strong>in</strong>a observed that <strong>of</strong> the 8 pesticides commonly Trichogramma sp.<br />

<strong>use</strong>d aga<strong>in</strong>st YSB, az<strong>in</strong>phos-methyl, and tetrachlorv<strong>in</strong>phos ca<strong>use</strong>d<br />

lower mortality <strong>of</strong> the egg parasitoid while piperiphos ca<strong>use</strong>d the greatest mortality. Other <strong><strong>in</strong>secticide</strong>s<br />

which exhibited moderate adverse effect on T. japonicum were chlormephos-ethyl, primiphos-ethyl,<br />

methamidophos. In general <strong>in</strong> areas where large quantities <strong>of</strong> pesticides were <strong>use</strong>d, the egg parasitism<br />

was 1-5 % compared to 24% <strong>in</strong> areas <strong>of</strong> lower pesticide usage. Adults <strong>of</strong> the parasitoid were more<br />

susceptible than the larvae or pupae <strong>of</strong> the parasitoid.<br />

A detailed laboratory study <strong>in</strong> DRR (India) based on rate <strong>of</strong> parasitisation, and emergence <strong>of</strong> adults <strong>of</strong><br />

the parasite revealed that chlorpyriphos and qu<strong>in</strong>alphos at recommended concentration (0.05%) adversely<br />

affected parasitization. (Jhansi lakshmi et al., 1997b). However, comparatively less adverse effect was<br />

observed with regard to neem formulations. A field cum laboratory study by Samanta et. al. (2005) to<br />

evaluate the persistence <strong>of</strong> synthetic pyrethroid <strong><strong>in</strong>secticide</strong>s aga<strong>in</strong>st YSB egg parasitoids, T. japonicum<br />

and T. chilonis revealed that fluval<strong>in</strong>ate recorded higher persistency aga<strong>in</strong>st T. japonicum compared to T.<br />

chilonis, while, reverse trend was observed <strong>in</strong> case <strong>of</strong> deltamethr<strong>in</strong>. Among the others, l<strong>in</strong>dane showed<br />

highest persistency while monocrotophos and qu<strong>in</strong>alphos exhibited moderate persistence.<br />

Telenomus dignoides<br />

Cont<strong>in</strong>uous efforts by the scientists <strong>of</strong> Punjab Agricultural University, Ludhiana, India to evaluate the<br />

adverse effects <strong>of</strong> <strong><strong>in</strong>secticide</strong>s on T. dignoides, revealed that <strong>in</strong> general, granular formulations <strong>of</strong> phorate,<br />

carb<strong>of</strong>uran, qu<strong>in</strong>alphos and cartap (35-40% parasitism) were less toxic than the spray formulations <strong>of</strong><br />

chlorpyriphos, monocrotophos and qu<strong>in</strong>alphos and acephate (5-25%) (S<strong>in</strong>gh et al., 1994; S<strong>in</strong>gh and<br />

Sharma 1998). In detailed further <strong>in</strong>vestigations, S<strong>in</strong>gh et. al. (2003) observed that granules <strong>of</strong> cartap<br />

65


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

Table 11 : Relative safety <strong>of</strong> selected <strong><strong>in</strong>secticide</strong>s to predators <strong>of</strong> plant- and leafhoppers<br />

Thiomethoxam (Actara 25WG) 50 2800a 2800a 1573b 1817b 700a<br />

Thiomethoxam (Actara 25WG) 25 2688ab 2576ab 1253c 1722bc 700a<br />

Thiomethoxam (‘Actara 25WG) 12 2338b 2366b 1072c 1479c 665a<br />

Imidacloprid (Confidor 200SL) 50 2800a 2450ab 1458b 1624bc 691a<br />

Fipronil (Regent 5SC) 100 2688ab 2716ab 2058a 2478a 126c<br />

Figures <strong>in</strong> a column followed by same letter are not significantly different at 0. 05 by DMRT<br />

66<br />

Telenomus sp.<br />

Insecticide Conc<br />

hydrochloride at 0.5 and 1.0 kg a.i./ha was selective and<br />

safer to T.dignoides apart from other granular <strong><strong>in</strong>secticide</strong>s<br />

like carb<strong>of</strong>uran, phorate and monocrotophos and<br />

chlorpyriphos sprays. Cartap granules recorded a mean<br />

parasitism <strong>of</strong> 62 -82% compared to 40-59% <strong>in</strong> carb<strong>of</strong>uran,<br />

33-54% <strong>in</strong> phorate and 86.55% <strong>in</strong> untreated control.<br />

DEVELOPMENT OF INSECTICIDE RESISTANT STRAINS OF T. japonicum<br />

It is generally suggested that by us<strong>in</strong>g <strong><strong>in</strong>secticide</strong> resistant stra<strong>in</strong>s <strong>of</strong> the parasitoids, it is possible to<br />

suppress <strong>in</strong>sect populations <strong>of</strong> pests, by <strong>in</strong>tegrat<strong>in</strong>g <strong><strong>in</strong>secticide</strong> application with <strong>in</strong>undative release <strong>of</strong><br />

effective egg parasitoids. In detailed <strong>in</strong>vestigations <strong>in</strong> Ch<strong>in</strong>a by Xu et. al. (1986), the parasites were<br />

selected <strong>in</strong> all stages with 9-14 treatments <strong>of</strong> parathion-methyl, methamidophos, phosphamidon, MIPC,<br />

fenvalerate, and deltamethr<strong>in</strong> over 16-44 generations. Towards the end <strong>of</strong> the experiment, the LC 50 <strong>of</strong><br />

eggs <strong>of</strong> resistant stra<strong>in</strong> had <strong>in</strong>creased 6.4 times to fenvalerate, 4.03 times to deltamethr<strong>in</strong>, 1.62 times to<br />

methamidophos and 0.82 times to phsphamidon <strong>in</strong> comparison to the concentrations <strong>of</strong> <strong><strong>in</strong>secticide</strong>s<br />

generally <strong>use</strong>d <strong>in</strong> <strong>rice</strong> ecosystem. This <strong>of</strong>fers clues that this approach is not a practical proposition for<br />

management <strong>of</strong> YSB.<br />

C. lividipennis T. parviceps M.atrol<strong>in</strong>eata<br />

Nymphs Adults Nymphs Adults Adults<br />

24h 24h 24h 24h 24h<br />

(Jhansi lakshmi et. al. 2001a&b)


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

INSECTICIDE RESISTANCE IN RICE PESTS<br />

“Insecticide resistance” has been def<strong>in</strong>ed as the ability <strong>of</strong> a stra<strong>in</strong> or a population <strong>of</strong> a pest species to<br />

survive and multiply at a dose <strong>of</strong> an <strong><strong>in</strong>secticide</strong>, which is lethal to majority <strong>of</strong> the <strong>in</strong>dividuals <strong>of</strong> a normal<br />

population <strong>of</strong> that pest species´ It is a phenomenon that results due to varied biochemical mechanisms <strong>in</strong><br />

the resistant population although the behavioral mechanisms like avoid<strong>in</strong>g the <strong><strong>in</strong>secticide</strong> treated surface<br />

by the pest cannot be ruled out. The biological mechanisms might be<br />

1) Reduced penetration <strong>of</strong> <strong><strong>in</strong>secticide</strong> through <strong>in</strong>tegument or body wall <strong>of</strong> the <strong>in</strong>sect species.<br />

2) Reduced transportation <strong>of</strong> the <strong><strong>in</strong>secticide</strong> through the body cavity render<strong>in</strong>g lesser quantity <strong>of</strong> the<br />

<strong><strong>in</strong>secticide</strong> reach<strong>in</strong>g the target <strong>of</strong> action.<br />

3) Enhanced metabolism <strong>of</strong> the <strong><strong>in</strong>secticide</strong> <strong>in</strong> the <strong>in</strong>sect body due to higher titers <strong>of</strong> the enzymes like<br />

carboxyl esterases, phosphatases, multi-function oxidases, glutathione s-alkyl transferases which are<br />

general enzymes handl<strong>in</strong>g a variety <strong>of</strong> <strong><strong>in</strong>secticide</strong> substrates. The enzymes may be more specific ones<br />

like DDT-dehydrochlor<strong>in</strong>ase.<br />

4) Another biochemical lesion <strong>of</strong>ten associated with <strong><strong>in</strong>secticide</strong> resistance <strong>in</strong> <strong>in</strong>sect pests is reduced<br />

sensitivity <strong>of</strong> target <strong>of</strong> action. In case <strong>of</strong> organophosphates and carbamates it could be less sensitive<br />

acetyl chol<strong>in</strong>esterase or <strong>in</strong> case <strong>of</strong> nicot<strong>in</strong>oids and neiris-tox<strong>in</strong>s it could be reduced b<strong>in</strong>d<strong>in</strong>g <strong>of</strong> these<br />

<strong><strong>in</strong>secticide</strong>s with nicot<strong>in</strong>ic acetylchol<strong>in</strong>e receptors. In case <strong>of</strong> organochlor<strong>in</strong>e <strong><strong>in</strong>secticide</strong>s like endosulfan,<br />

DDT or HCH it could be change <strong>in</strong> nerve membranes <strong>of</strong> <strong>in</strong>sects lead<strong>in</strong>g to lesser b<strong>in</strong>d<strong>in</strong>g <strong>of</strong> these <strong><strong>in</strong>secticide</strong>s<br />

to specific sites. In case <strong>of</strong> synthetic pyrethroids the lesser b<strong>in</strong>d<strong>in</strong>g with target sites <strong>in</strong> nerve membranes<br />

may lead to lower knockdown resistance (kdr).<br />

5) The selection pressure on <strong>in</strong>sect pest species which depends aga<strong>in</strong> on <strong><strong>in</strong>secticide</strong> dosage, method and<br />

frequency <strong>of</strong> application and the mobility <strong>of</strong> target <strong>in</strong>sect pest, plays an important role <strong>in</strong> the development<br />

<strong>of</strong> <strong><strong>in</strong>secticide</strong> resistance. In general, low selection pressure leads to slower resistance development. But,<br />

it is not always necessary that high selection pressure will lead to faster resistance development. Usually,<br />

it is optimum selection pressure that may lead to faster resistance development <strong>in</strong> target pest species<br />

aga<strong>in</strong>st the particular <strong><strong>in</strong>secticide</strong> or a group <strong>of</strong> <strong><strong>in</strong>secticide</strong>s. This aga<strong>in</strong> depends on frequency <strong>of</strong> gene<br />

alleles conferr<strong>in</strong>g resistance mechanism(s) present <strong>in</strong> a given population <strong>of</strong> the pest species <strong>in</strong> an area.<br />

6) Same mechanism <strong>of</strong> resistance may not always be responsible <strong>in</strong> all populations <strong>of</strong> pest species<br />

present <strong>in</strong> different areas even aga<strong>in</strong>st the same <strong><strong>in</strong>secticide</strong>. Therefore, it is very important to understand<br />

the basic mechanism(s) <strong>of</strong> resistance present <strong>in</strong> different species <strong>of</strong> <strong>in</strong>sect pests to a particular <strong><strong>in</strong>secticide</strong><br />

or a group <strong>of</strong> <strong><strong>in</strong>secticide</strong>s. It is <strong>in</strong> this complex background <strong>of</strong> <strong><strong>in</strong>secticide</strong> resistance, we have to view and<br />

understand the importance <strong>of</strong> collect<strong>in</strong>g and arrang<strong>in</strong>g the <strong>in</strong>formation available on <strong><strong>in</strong>secticide</strong> resistance<br />

to various <strong>in</strong>sect pests <strong>of</strong> <strong>rice</strong> crop.<br />

S<strong>in</strong>ce the <strong>in</strong>ception <strong>of</strong> synthetic pesticide <strong>use</strong> <strong>in</strong> agriculture after Second World War, organochlor<strong>in</strong>es,<br />

organophosphates, carbamates have been very extensively <strong>use</strong>d aga<strong>in</strong>st many <strong>in</strong>sect pest species <strong>in</strong> <strong>rice</strong>.<br />

Therefore, the <strong>in</strong>sect pests might have developed some mechanisms like reduced penetration and enhanced<br />

67


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

metabolism and target <strong>in</strong>sensitivity, which might be common with other <strong><strong>in</strong>secticide</strong>s. In such cases, the<br />

development <strong>of</strong> resistance <strong>in</strong> a target population to new <strong><strong>in</strong>secticide</strong>s could be faster.<br />

Cross resistance and multiple resistance<br />

At this juncture, it is very important to clarify the terms cross resistance and multiple resistance. If a<br />

population <strong>of</strong> an <strong>in</strong>sect pest is exposed cont<strong>in</strong>uously to an <strong><strong>in</strong>secticide</strong>, the population gets selected and<br />

becomes resistant to that particular <strong><strong>in</strong>secticide</strong>. If that particular population or stra<strong>in</strong> also exhibits resistance<br />

to an <strong><strong>in</strong>secticide</strong> to which that particular population was never exposed, then the phenomenon is called<br />

“cross resistance”. For <strong>in</strong>stance, if <strong>rice</strong> brown planthopper is cont<strong>in</strong>uously sprayed with an<br />

organophosphate, monocrotophos <strong>in</strong> a given area, the population is likely to become resistant to<br />

monocrotophos. If the mechanism <strong>of</strong> resistance <strong>in</strong> that brown planthopper population or stra<strong>in</strong> happens<br />

to be <strong>in</strong>sensitivity <strong>of</strong> the target <strong>of</strong> action i.e., acetyl chol<strong>in</strong>esterase enzyme <strong>in</strong> <strong>in</strong>sect nervous system, then<br />

there will be resistance to other organophosphates like phosphamidon, triazophos, dicrotophos etc or<br />

even to carbamates like carbaryl and carb<strong>of</strong>uran. Then, it is said, that particular population <strong>of</strong> BPH has<br />

exhibited cross resistance to these organophosphates and carbamates. At the same time, the BPH<br />

population may not exhibit cross resistance to synthetic pyrethroids, neiristox<strong>in</strong>s and neonicot<strong>in</strong>oids with<br />

entirely different mode <strong>of</strong> action.<br />

Multiple resistance is a phenomenon that exists when a population <strong>of</strong> an <strong>in</strong>sect pest is simultaneously<br />

exposed to two or more <strong><strong>in</strong>secticide</strong>s usually belong<strong>in</strong>g to groups with different modes <strong>of</strong> action, then the<br />

population may develop resistance to all those <strong><strong>in</strong>secticide</strong>s to which the <strong>in</strong>sect population was exposed.<br />

For <strong>in</strong>stance, whitebacked planthopper, Sogatella furcifera is selected with carbaryl (a carbamate <strong><strong>in</strong>secticide</strong>),<br />

whose target <strong>of</strong> action is acetylchol<strong>in</strong>esterase enzyme <strong>in</strong> <strong>in</strong>sect nervous system and imidacloprid (a<br />

neonicot<strong>in</strong>oid <strong><strong>in</strong>secticide</strong>) or cartap hydrochloride (a neiris tox<strong>in</strong> <strong><strong>in</strong>secticide</strong>) which block the nicot<strong>in</strong>ic<br />

acetyl chol<strong>in</strong>e receptors <strong>in</strong> <strong>in</strong>sect nervous system, then that population <strong>of</strong> whitebacked planthopper may<br />

become resistant to both carbamates (may be even to organophosphates) and imidacloprid or cartap (or<br />

even to other <strong><strong>in</strong>secticide</strong>s with similar mode <strong>of</strong> action). This happens only, when the resistant population<br />

has acquired resistance through the target <strong>in</strong>sensitivity as the major mechanism <strong>of</strong> resistance. Then it is<br />

said to have developed multiple resistance.<br />

Brown planthopper Nilaparvata lugens<br />

The detailed <strong>in</strong>formation on <strong><strong>in</strong>secticide</strong> resistance <strong>in</strong> BPH is available elsewhere (Krishnaiah et al., 2006).<br />

Hence, only abridged <strong>in</strong>formation on this aspect is presented below.<br />

1. SURVEY OF INSECTICIDE RESISTANCE IN FIELD POPULATIONS<br />

Studies In Ch<strong>in</strong>a And Taiwan:<br />

Insecticide resistance <strong>in</strong> field collected BPH, to MIPC and MTMC was reported as early as 1978 by L<strong>in</strong> and<br />

Sun. In further studies, Sun et al., (1984a) showed that populations <strong>of</strong> N. lugens collected on <strong>rice</strong> <strong>in</strong><br />

68


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

Taiwan were found to possess a high level <strong>of</strong> resistance to malathion and various levels <strong>of</strong> resistance to<br />

isoprocarb and some other <strong><strong>in</strong>secticide</strong>s. Wang and Ku (1984) compared the toxicities <strong>of</strong> 14 <strong><strong>in</strong>secticide</strong>s<br />

<strong>in</strong> 1977-83 with those <strong>in</strong> 1976. In 1980, resistance to carbaryl <strong>in</strong>creased 8.4 fold and that to carb<strong>of</strong>uran<br />

14.8 fold, resistance to malathion and monocrotophos reached a record high level. In 1981 and 1982,<br />

resistance to most carbamates and organophosphates decreased gradually, but <strong>in</strong> 1983 resistance to all<br />

14 <strong><strong>in</strong>secticide</strong>s was aga<strong>in</strong> high. In 1982, resistance to 4 <strong><strong>in</strong>secticide</strong>s varied from 2.4- to 15.5- fold <strong>in</strong> 6<br />

localities and <strong>in</strong> 1983 the variation was from 2.4 to 6.4 fold. Monthly changes <strong>in</strong> <strong><strong>in</strong>secticide</strong> resistance <strong>in</strong><br />

planthoppers collected <strong>in</strong> September-November 1983 varied significantly, suggest<strong>in</strong>g that migration was<br />

one <strong>of</strong> the factors affect<strong>in</strong>g resistance.<br />

Wang et al., (1988a) studied the local variations <strong>in</strong> resistance to the <strong><strong>in</strong>secticide</strong>s carbaryl, carb<strong>of</strong>uran,<br />

malathion and monocrotophos between 1982 and 1984 <strong>in</strong> the <strong>rice</strong> delphacid N. lugens, <strong>of</strong> Central Taiwan.<br />

The ratio <strong>of</strong> maximum to m<strong>in</strong>imum LC50 varied from 2.4- to 15.5- fold for BPH collected dur<strong>in</strong>g the<br />

autumn <strong>in</strong> 1982-84, but only 2.3 to 2.9 fold <strong>in</strong> surveys carried out dur<strong>in</strong>g the spr<strong>in</strong>g crop <strong>of</strong> 1984. In<br />

further studies, Cheng and Wang (1993) monitored <strong><strong>in</strong>secticide</strong> resistance <strong>of</strong> N. lugens <strong>in</strong> Ch<strong>in</strong>a <strong>in</strong> 1986-<br />

89, consider<strong>in</strong>g the local and annual variations. Wang et al., (1997) monitored the susceptibility <strong>of</strong> N. lugens<br />

to <strong><strong>in</strong>secticide</strong>s <strong>in</strong> the lower Yangtze valley from 1991-1995 and concluded that the resistance varied little<br />

though there was fluctuation <strong>in</strong> the LD S0 values.<br />

B) Studies <strong>in</strong> Japan:<br />

Nagata (1983) observed resistance <strong>in</strong> immigrants <strong>of</strong> brown planthopper possibly result<strong>in</strong>g from changes <strong>in</strong><br />

the orig<strong>in</strong> <strong>of</strong> the migrants. Knowledge <strong>of</strong> geographical variation <strong>in</strong> this species was important to determ<strong>in</strong>e<br />

the source <strong>of</strong> migration. Nagata (1984) further noted that among <strong>in</strong>sect pests <strong>of</strong> <strong>rice</strong> <strong>in</strong> Japan N. lugens has<br />

been relatively slow <strong>in</strong> develop<strong>in</strong>g resistance to <strong><strong>in</strong>secticide</strong>s. Comparisons <strong>of</strong> various immigrant populations<br />

revealed differences <strong>in</strong> <strong><strong>in</strong>secticide</strong> resistance among immigrants.<br />

Endo et al., (1988a) studied the susceptibility <strong>of</strong> N. lugens to various <strong><strong>in</strong>secticide</strong>s us<strong>in</strong>g population<br />

collected <strong>in</strong> Japan <strong>in</strong> 1980 and 1987. A comparison <strong>of</strong> the results obta<strong>in</strong>ed <strong>in</strong> these experiments with previous<br />

data collected <strong>in</strong> 1967 showed that the susceptibility <strong>of</strong> N. lugens to organophosphates <strong>in</strong> 1987 was<br />

greater than <strong>in</strong> 1980.<br />

Hirai (1993) studied recent trends <strong>of</strong> <strong><strong>in</strong>secticide</strong> susceptibility <strong>in</strong> the BPH <strong>in</strong> Japan. The susceptibility to BPMC<br />

[fenobucarb] MTMC [metolcarb], MIPC [isoprocarb], carbaryl, carb<strong>of</strong>uran, diaz<strong>in</strong>on, malathion and propaphos<br />

fluctuated greatly at levels which <strong>in</strong>dicated some degree <strong>of</strong> resistance. Hirai (1994) reviewed current status<br />

<strong>of</strong> <strong><strong>in</strong>secticide</strong> susceptibility to BPMC [fenobucarb], MTMC [metolcarb], carbaryl, carb<strong>of</strong>uran, diaz<strong>in</strong>on, malathion<br />

and propaphos for immigrant N. lugens on <strong>rice</strong> <strong>in</strong> Nagasaki, Kyushu, Japan. The pest had developed<br />

resistance to carbamates and organophosphates <strong>in</strong> the second half <strong>of</strong> the 1970’s and had rema<strong>in</strong>ed<br />

moderately resistant from the beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> the 1980's to 1993.<br />

69


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

C) Studies <strong>in</strong> Philipp<strong>in</strong>es:<br />

A field stra<strong>in</strong> <strong>of</strong> N. lugens at the 1RRI <strong>in</strong> the Philipp<strong>in</strong>es, exposed to carb<strong>of</strong>uran for several years had developed<br />

resistance to the compound. Both sexes were seven times as resistant to carb<strong>of</strong>uran as compared to a<br />

greenho<strong>use</strong> stra<strong>in</strong> not exposed to <strong><strong>in</strong>secticide</strong>s and 2-5 times as resistant as the greenho<strong>use</strong> stra<strong>in</strong> to<br />

other <strong><strong>in</strong>secticide</strong>s <strong>use</strong>d to vary<strong>in</strong>g extents on the IRRI farm, <strong>in</strong>clud<strong>in</strong>g monocrotophos and isoprocarb<br />

[MIPC]. (He<strong>in</strong>richs and Tetangco, 1978).<br />

Mochida and Basilio (1983) found that <strong><strong>in</strong>secticide</strong> <strong>in</strong>duced mortality among populations <strong>of</strong> the BPH collected<br />

from IRRI farm <strong>in</strong> the Philipp<strong>in</strong>es is much lower than that among greenho<strong>use</strong> populations. The development<br />

<strong>of</strong> resistance among the field populations has undoubtedly been favoured by the applications <strong>of</strong> a mixture <strong>of</strong><br />

chlorpyriphos and BPMC s<strong>in</strong>ce 1978 and <strong>of</strong> acephate s<strong>in</strong>ce 1981. Fabellar and Mochida (1985) reported<br />

that field collected populations which had prior exposure to <strong><strong>in</strong>secticide</strong>s showed significant level <strong>of</strong> resistance to<br />

BPMC (Fenobucarb) but did not appear to have developed resistance to carbaryl, carb<strong>of</strong>uran or MTMC<br />

(metolcarb) as compared to greenho<strong>use</strong> populations.<br />

II. MECHANISM OF RESISTANCE AND STRATEGIES FOR OVERCOMING RESISTANCE IN BPH<br />

Studies <strong>in</strong> Ch<strong>in</strong>a and Taiwan:<br />

Dai and Sun (1984) found that, Taiwanese field stra<strong>in</strong>s <strong>of</strong> BPH resistant to many organophosphates<br />

(OPs) and carbamate <strong><strong>in</strong>secticide</strong>s, developed much higher resistance to pyrethroids without an alphacyano<br />

group. High esterase activity associated with OPs and carbamate resistance <strong>in</strong> Nilaparvata lugens conferred<br />

a major part <strong>of</strong> the resistance to permethr<strong>in</strong> and other primary alcohol ester pyrethroids. In addition, the<br />

ester l<strong>in</strong>kage <strong>of</strong> these pyrethroids without an alpha cyanogroup might be vulnerable to oxidative cleavage.<br />

Permethr<strong>in</strong>, phenothr<strong>in</strong> and fenpropathr<strong>in</strong> were synergized by piperonyl butoxide and TBPT <strong>in</strong> the<br />

resistant stra<strong>in</strong>s, while only phenothr<strong>in</strong> was synergized <strong>in</strong> the susceptible stra<strong>in</strong>. Cypermethr<strong>in</strong> was<br />

synergized only to a very limited extent, thus suggest<strong>in</strong>g limited metabolism <strong>in</strong> these stra<strong>in</strong>s.<br />

Wang et al., (1988b) showed that the frequency <strong>of</strong> <strong>in</strong>dividuals with high aliesterase [carboxyl esterase]<br />

activity <strong>in</strong>creased gradually <strong>in</strong> each generation selected by carb<strong>of</strong>uran. In stra<strong>in</strong>s selected successively<br />

with carbaryl and malathion, carb<strong>of</strong>uran and malathion, carbaryl and monocrotophos and carb<strong>of</strong>uran<br />

and monocrotophos over 8 generations, the LC values were the same as that <strong>of</strong> the orig<strong>in</strong>al susceptible<br />

50<br />

stra<strong>in</strong>. The LC <strong>in</strong>creased by 5 and 6.5 fold after selection-for 8 generations with methamidophos<br />

50<br />

and bupr<strong>of</strong>ez<strong>in</strong>, respectively on Hybrid Shanyou 63 (Liu-Xianj<strong>in</strong> et al., 1996).<br />

Sun and Chen (1993) reported more than 10 molecular forms <strong>of</strong> carboxyl esterases with a -naphthyl<br />

acetate as a substrate <strong>in</strong> the delphacid. It was proposed that gene encod<strong>in</strong>g the enzymes was expressed<br />

to a greater extent <strong>in</strong> resistant than <strong>in</strong> susceptible planthoppers. The resistant stra<strong>in</strong> had higher activity<br />

and quantity <strong>of</strong> carboxyl esterases (preferably <strong>of</strong> the El type <strong>of</strong> active form) than the susceptible <strong>in</strong>sects.<br />

The carboxyl esterases <strong>of</strong> N. lugens be<strong>in</strong>g unable to hydrolyse parathion could b<strong>in</strong>d strongly to the<br />

potent anti-chol<strong>in</strong>e esterases paraoxon and oxon <strong>of</strong> several organophosphate compounds (Chen and<br />

Sun. 1994).<br />

70


Studies <strong>in</strong> Japan:<br />

Insecticides <strong>in</strong> Rice IPM (DRR)<br />

Endo et. al. (1988a) studied the development and mechanism <strong>of</strong> <strong><strong>in</strong>secticide</strong> resistance <strong>in</strong> the N.<br />

lugens, which was collected, from the field <strong>in</strong> Japan and selected with malathion or MTMC (metolcarb). The<br />

susceptibility <strong>of</strong> malathion and metolcarb selected stra<strong>in</strong> to malathion decreased to 1/39 and 1/25,<br />

respectively <strong>of</strong> the <strong>in</strong>itial level after 45 selections, while that to metolcarb decreased to 1/2.5 and 1/<br />

4.2. Several synergists were tested with these <strong><strong>in</strong>secticide</strong>s, and <strong>of</strong> these 2-phenyl-4 H-l, 3,2 -<br />

benzodioxaphosphor<strong>in</strong> 2-oxide and 2-phenoxy-4H-l,3,2benzo-dioxaphosphor<strong>in</strong> 2-oxide were most<br />

effective and <strong>in</strong>hibited the decomposition <strong>of</strong> malaoxon. Malathion resistance is ca<strong>use</strong>d by high degradative<br />

activity to malathion and malaoxon and metolcarb resistance by low sensitivity <strong>of</strong> acetyl chol<strong>in</strong>esterase.<br />

Aliesterase activity and <strong>in</strong>sensitivity to AchE were related to resistance <strong>in</strong> BPH to OP and carbamate<br />

compounds, respectively (Hama and Hosoda, 1983).<br />

Studies <strong>in</strong> Korea:<br />

Kim and Hwang (1987) <strong>in</strong>vestigated biochemical differences between stra<strong>in</strong>s <strong>of</strong> N. lugens resistant<br />

to organophosphorus <strong><strong>in</strong>secticide</strong>s, susceptible to them or hybrids between resistant and susceptible<br />

stra<strong>in</strong>s <strong>in</strong> the laboratory. Esterase isoenzyme activity was much greater <strong>in</strong> the resistant than <strong>in</strong> the<br />

susceptible stra<strong>in</strong>. Esterase activity <strong>in</strong> delphacids treated with diaz<strong>in</strong>on, fenitrothion or BPMC<br />

[fenobucarb] was not decreased <strong>in</strong> the resistant stra<strong>in</strong> or <strong>in</strong> the F1 hybrids but was markedly decreased<br />

<strong>in</strong> the susceptible stra<strong>in</strong>, as compared with untreated delphacid.<br />

III Neonicot<strong>in</strong>oid resistance <strong>in</strong> N. lugens and cross-resistance patterns<br />

Liu et al., (2003) from Nanj<strong>in</strong>g, Ch<strong>in</strong>a, collected the field population <strong>of</strong> BPH and selected for imidacloprid<br />

resistance <strong>in</strong> the laboratory. The resistance <strong>in</strong>creased by 11.35 times <strong>in</strong> 25 generations <strong>in</strong> the field<br />

collected population and the resistance ratio reached 72.83 compared with a laboratory susceptible<br />

stra<strong>in</strong>. The selected resistant stra<strong>in</strong> showed cross resistance to all the acetylchol<strong>in</strong>e receptor target<strong>in</strong>g<br />

<strong><strong>in</strong>secticide</strong>s like monosultap (1.44 fold), acetamiprid (1.61 fold) and imidacloprid homologues JS599<br />

(2.46 fold) and JS598 (3.17 fold). But there was no cross resistance to other groups <strong>of</strong> <strong><strong>in</strong>secticide</strong>s. They<br />

demonstrated that Triphenyl phosphate (TPP) and Diethyl maleate (DEM) had no synergism with<br />

imidacloprid. However, PBO displayed significant synergism <strong>in</strong> some different stra<strong>in</strong>s and the synergism<br />

<strong>in</strong>creased with resistance (S stra<strong>in</strong> 1.2 fold; field population 1.43 fold; R stra<strong>in</strong> 2.93 fold). PBO synergism<br />

to cross resistant <strong><strong>in</strong>secticide</strong>s was also found <strong>in</strong> the resistant stra<strong>in</strong> (monosultap 1.25 fold; acetamiprid<br />

1.39 fold; JS598 1.94 fold; JS599 2.02 fold). It was concluded that esterase and glutathione S-transferase<br />

play little role <strong>in</strong> imidacloprid detoxification. The <strong>in</strong>crease <strong>of</strong> P450-monoxygenases detoxification is an<br />

important mechanism for imidacloprid resistance and target <strong>in</strong>sensitivity may also exist <strong>in</strong> N. lugens.<br />

Krishnaiah et al., (2002) <strong>in</strong> their green ho<strong>use</strong> studies on resistance development to monocrotophos and<br />

a neem formulation (NG-4 with 300 ppm azadiracht<strong>in</strong>) <strong>in</strong> green ho<strong>use</strong> stra<strong>in</strong> <strong>of</strong> BPH (N. lugens) exposed<br />

the <strong>in</strong>sect to LD 50 - LD 80 levels <strong>of</strong> these materials for 26 generations. Mono stra<strong>in</strong> <strong>of</strong> BPH developed cross<br />

71


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

resistance to NG-4; eth<strong>of</strong>enprox and imidacloprid but rema<strong>in</strong>ed susceptible to BPMC and cartap, while<br />

NG-4 stra<strong>in</strong>s <strong>of</strong> BPH cont<strong>in</strong>ued to be susceptible to monocrotophos, eth<strong>of</strong>enprox, BPMC, cartap and<br />

imidacloprid.<br />

Krishnaiah et al., (2006) exposed susceptible glassho<strong>use</strong> populations and field populations <strong>of</strong> BPH from<br />

the endemic areas <strong>of</strong> East and West Godavari districts <strong>of</strong> Andhra Pradesh to neonicot<strong>in</strong>oids like imidacloprid,<br />

thiamethoxam and clothianid<strong>in</strong> and phenyl pyrazole compounds like fipronil and ethiprole. The LC (ppm) 50<br />

aga<strong>in</strong>st greenho<strong>use</strong> populations for imidacloprid, thiamethoxam and clothianid<strong>in</strong> were 0.411, 0.369 and<br />

1.175 respectively while the LC (ppm) values for East Godavari populations were 14.44, 3.979 and<br />

50<br />

5.814 respectively. This showed the resistance ratios <strong>of</strong> 35.13; 10.78; 4.948 for imidacloprid, thiamethoxam<br />

and clothianid<strong>in</strong> <strong>in</strong> East Godavari populations. The LC (ppm) values for glassho<strong>use</strong> populations aga<strong>in</strong>st<br />

50<br />

fipronil and ethiprole were 0.383 and 0.569 ppm respectively while for East Godavari populations the<br />

correspond<strong>in</strong>g values were 0.351 and 0.353 ppm respectively. The resistance ratios for fipronil and<br />

ethiprole <strong>in</strong> East Godavari populations were 0.916 and 0.623 respectively. These results reveal that East<br />

Godavari populations <strong>of</strong> BPH exhibited considerable resistance aga<strong>in</strong>st all the three neonicot<strong>in</strong>oid<br />

<strong><strong>in</strong>secticide</strong>s at the same time there was no cross resistance to the phenyl pyrazole compounds (fipronil<br />

and ethiprole) <strong>in</strong> these East Godavari populations (Table 12 ).<br />

Biological Fitness <strong>of</strong> Imidacloprid Resistant Stra<strong>in</strong> <strong>of</strong> BPH<br />

Liu et al., (2003a) studied the effect <strong>of</strong> imidacloprid resistance on the fitness <strong>of</strong> BPH <strong>in</strong> terms <strong>of</strong><br />

developmental and reproductive characteristics by construct<strong>in</strong>g and compar<strong>in</strong>g the life tables <strong>of</strong> the two<br />

resistant stra<strong>in</strong>s (R 1 , R 2 ) with those <strong>of</strong> the susceptible stra<strong>in</strong>. The results showed that both R1 and R 2<br />

stra<strong>in</strong>s had developmental disadvantages, <strong>in</strong>clud<strong>in</strong>g a lower larval survival rate from neonate to 2 nd<br />

<strong>in</strong>star, a lower adult emergence rate and shorter female life span. The reproductive disadvantages <strong>in</strong>cluded<br />

72<br />

Table 12 : LC 50 (ppm) values for <strong><strong>in</strong>secticide</strong>s aga<strong>in</strong>st East Godavari and greenho<strong>use</strong><br />

populations <strong>of</strong> BPH<br />

Insecticide Group<br />

East Godavari<br />

population<br />

LC50 (ppm)<br />

Greenho<strong>use</strong><br />

population<br />

Resistance<br />

ratio<br />

Imidacloprid NN 14.44 0.411 35.13<br />

Thiamethoxam NN 3.979 0.369 10.78<br />

Clothianididn NN 5.814 1.175 4.948<br />

Fipronil PP 0.351 0.383 0.916<br />

Ethiprole PP 0.353 0.569 0.623<br />

NN: neonicot<strong>in</strong>oid PP: phenyl pyrazole<br />

(Krishnaiah et. al. 2006)


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

lower copulation rate, fecundity and hatchability. In addition, the R 2 stra<strong>in</strong> had prolonged egg duration<br />

and a lower larval survival rate from the 3 rd to 5 th <strong>in</strong>star. The fastigium <strong>of</strong> R 2 was lower than that <strong>of</strong> S and<br />

F 2. The fitness <strong>of</strong> the two resistant stra<strong>in</strong>s was determ<strong>in</strong>ed by compar<strong>in</strong>g the population number tendency<br />

<strong>in</strong>dex (I) with the susceptible stra<strong>in</strong> as standard. The relative fitness value for R 1 stra<strong>in</strong> was calculated to<br />

be 0.609 and the R 2 stra<strong>in</strong> was only 0.245.<br />

White backed planthopper, Sogatella furcifera<br />

The reports <strong>of</strong> <strong><strong>in</strong>secticide</strong> resistance <strong>in</strong> WBPH are ma<strong>in</strong>ly from Japan and Ch<strong>in</strong>a. Hosoda (1989) compared<br />

the topical LD 50s <strong>of</strong> 7 field collected stra<strong>in</strong>s from different parts <strong>in</strong> Japan with the reference stra<strong>in</strong> <strong>in</strong> the<br />

laboratory by topical application and observed 9 to 37 fold resistance to OPs like fenitrothion, malathion,<br />

fenthion, and phorate and relatively low level <strong>of</strong> resistance (2 to 3 fold) to carbamates like carbaryl and<br />

BPMC. Few years later, Hirai (1994) reported widespread and high level <strong>of</strong> resistance <strong>in</strong> WBPH to<br />

malathion but relatively low resistance to other OPs as well as carbamates.<br />

In studies <strong>in</strong> Ch<strong>in</strong>a, Yao et al., (2000) evaluated four populations from different prov<strong>in</strong>ces <strong>in</strong> Ch<strong>in</strong>a to three<br />

<strong><strong>in</strong>secticide</strong>s viz. malathion, methamidophos, and isoprocarb and the activity <strong>of</strong> 4 enzymes (esterases,<br />

carboxyl esterase, glutathione S-transferase, and acetyl chol<strong>in</strong>esterase) related to <strong><strong>in</strong>secticide</strong> resistance<br />

were determ<strong>in</strong>ed. They observed 16 to 137 times resistance to malathion and 10 to16 times resistance<br />

to isoprocarb compared to 1969 levels. Liu et al., (2001) evaluated six methods <strong>of</strong> selection for resistance<br />

<strong>in</strong> WBPH viz., topical treatment us<strong>in</strong>g hand microapplicator, topical application us<strong>in</strong>g capillary tube, spray<strong>in</strong>g<br />

on <strong>rice</strong> seedl<strong>in</strong>gs, spray<strong>in</strong>g on planthoppers, spray<strong>in</strong>g on <strong>rice</strong> and planthoppers, soak<strong>in</strong>g <strong>rice</strong> stems and<br />

concluded that spray<strong>in</strong>g on <strong>rice</strong> and planthoppers was the best and most efficient method.<br />

(ii) Neonicot<strong>in</strong>oid resistance <strong>in</strong> WBPH<br />

Xa<strong>of</strong>ei P<strong>in</strong>g et al., (2001) determ<strong>in</strong>ed the <strong><strong>in</strong>secticide</strong> susceptibility <strong>of</strong> WBPH collected from Ch<strong>in</strong>a and<br />

Japan <strong>in</strong> 1997 by topical application. The <strong><strong>in</strong>secticide</strong> susceptibility <strong>of</strong> WBPH was not much different<br />

among the populations from Nagasaki (South West Japan), Hangzhou (Zhejiang, Ch<strong>in</strong>a) and J<strong>in</strong>ghong<br />

(Yunnan, Ch<strong>in</strong>a). The LD 50 s for WBPH were 0.047 – 0.062 mg/g for nitenpyram, 0.067 – 0.18mg/g for<br />

imidacloprid, 0.72 – 1.5 mg/g for silaflu<strong>of</strong>en and 0.89 – 1.6 mg/g for eth<strong>of</strong>enprox, <strong>in</strong> contrast to 96 –<br />

130 mg/g for malathion and 100 mg/g for fenithrothion. Thus, the LD 50 s <strong>of</strong> chloronicot<strong>in</strong>yl and pyrethroids<br />

were much smaller than those <strong>of</strong> the organophosphates and organochlor<strong>in</strong>es. The LD 50 <strong>of</strong> monocrotophos<br />

was 1/17 – 1/3 as large as that <strong>of</strong> the other organophosphates. The LD 50 s <strong>of</strong> isoprocarb and propoxur<br />

for WBPH populations collected <strong>in</strong> 1997 were 5 times as large as <strong>in</strong> 1989. Nagata et. al. (2002) from<br />

Ibaraki University, Ibaraki Japan simultaneously monitored the <strong><strong>in</strong>secticide</strong> susceptibility <strong>of</strong> the long range<br />

migrat<strong>in</strong>g <strong>rice</strong> planthoppers like WBPH <strong>in</strong> Japan, Ch<strong>in</strong>a (3 locations) and Malaysia by standardized topical<br />

application method on 10 <strong><strong>in</strong>secticide</strong>s <strong>in</strong> 2000. The LD 50 <strong>of</strong> Japanese WBPH dur<strong>in</strong>g 2000 co<strong>in</strong>cided with<br />

those for the two Ch<strong>in</strong>ese populations, but one <strong>of</strong> the Ch<strong>in</strong>ese populations gave remarkably larger LD 50 for<br />

imidacloprid. The Malaysian population <strong>of</strong> WBPH gave LD 50 almost equal to those <strong>of</strong> the Japanese WBPH<br />

dur<strong>in</strong>g 2000.<br />

73


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

Small brown planthopper Laodelphax striatellus<br />

Small brown planthopper is one <strong>of</strong> the most important pests <strong>in</strong>fest<strong>in</strong>g <strong>rice</strong> <strong>in</strong> Japan and transmitt<strong>in</strong>g stripe<br />

virus. Nagata and Ohiro (1986) observed 89 to 272 fold resistance to malathion, and 20 to 70 fold<br />

resistance to fenitrothion, diaz<strong>in</strong>on, MTMC, carbaryl and MIPC. In five populations collected from different<br />

regions <strong>of</strong> Japan. Kassai and Ozaki (1984) made an attempt to observe the changes <strong>in</strong> level <strong>of</strong> resistance<br />

to different groups <strong>of</strong> <strong><strong>in</strong>secticide</strong>s when a SBPH population with 370 fold resistance was selected with the<br />

synthetic pyrethroid, fenvalerate. The restance to malathion decreased markedly, dur<strong>in</strong>g the first 5-6<br />

generations and to one quarter <strong>of</strong> the orig<strong>in</strong>al level by 19 th generation. Dur<strong>in</strong>g this period, the level <strong>of</strong><br />

resistance to fenvalerate has <strong>in</strong>creased 5 fold. Thus this shows the possibility <strong>of</strong> shift<strong>in</strong>g to other groups<br />

<strong>of</strong> <strong><strong>in</strong>secticide</strong>s as a strategy to conta<strong>in</strong> the <strong>in</strong>crease <strong>in</strong> the level <strong>of</strong> resistance to orig<strong>in</strong>ally <strong>use</strong>d <strong><strong>in</strong>secticide</strong>s.<br />

Neonicot<strong>in</strong>oid Resistance <strong>in</strong> SBPH<br />

The smaller brown planthopper, Laodelphax striatellus Fallen (Homoptera: Delphacidae) is one <strong>of</strong> the<br />

most important <strong>in</strong>sect pests <strong>in</strong>fest<strong>in</strong>g <strong>rice</strong> plants <strong>in</strong> Japan and transmitt<strong>in</strong>g the stripe virus. However,<br />

fortunately this hopper pest was not reported from any part <strong>of</strong> Indian subcont<strong>in</strong>ent <strong>in</strong>clud<strong>in</strong>g Bangladesh<br />

and Pakistan except a stray observation at Punjab Agricultural University, Ludhiana dur<strong>in</strong>g 1980. S<strong>in</strong>ce<br />

this pest also belongs to the same Delphacidae family to which BPH and WBPH belong, the <strong>in</strong>formation on<br />

the development <strong>of</strong> neonicot<strong>in</strong>oid resistance <strong>in</strong> SBPH and the possible mechanisms can give us <strong>in</strong>sights <strong>in</strong><br />

tackl<strong>in</strong>g neonicot<strong>in</strong>oid resistance <strong>in</strong> BPH and WBPH <strong>in</strong> India.<br />

Endo et al., (2002) from Ibaraki, Japan exam<strong>in</strong>ed the <strong><strong>in</strong>secticide</strong> susceptibility <strong>of</strong> L. striatellus collected<br />

from East Asia <strong>in</strong> 1992 – 1994 by topical application method. The LD values <strong>of</strong> organophosphorus<br />

50<br />

<strong><strong>in</strong>secticide</strong>s for the Northern Vietnam populations (HAI, HAN, VIN) and the JIN population (Yunan prov<strong>in</strong>ce,<br />

Ch<strong>in</strong>a) were lower than those <strong>of</strong> the FU (Zhejiang Prov<strong>in</strong>ce, Ch<strong>in</strong>a) IB (Central Japan) and KU (South<br />

western Japan) populations. The LD values <strong>of</strong> organophosphorus and carbamate <strong><strong>in</strong>secticide</strong>s for the<br />

50<br />

northern Vietnam populations were almost the same as that for Fukuoka (Western Japan) population<br />

exam<strong>in</strong>ed <strong>in</strong> 1967. The LD values <strong>of</strong> organophosphorus <strong><strong>in</strong>secticide</strong>s did not differ among the FU (Zhejiang<br />

50<br />

Prov<strong>in</strong>ce, Ch<strong>in</strong>a), IB (Central Japan) and KU (South Western Japan) populations. The LD values <strong>of</strong><br />

50<br />

carbamates for the KU population were the largest and those for northern Vietnam populations were the<br />

smallest. The carbamate susceptibility <strong>of</strong> acetylchol<strong>in</strong>esterase <strong>in</strong> the KU population was lower than that <strong>in</strong><br />

the HAI population. Therefore, it was concluded that the <strong>in</strong>sensitivity <strong>of</strong> acetylchol<strong>in</strong>esterase for carbamate<br />

was one <strong>of</strong> the carbamate resistant factors <strong>in</strong> the KU population. LD values <strong>of</strong> eth<strong>of</strong>enprox, fenvalerate<br />

50<br />

and imidacloprid showed no differences among all the populations tested. This showed that there was no<br />

cross resistance to ether derivatives (eth<strong>of</strong>enprox), synthetic pyrethroids (fenvalerate) and neonicot<strong>in</strong>oids<br />

(imidacloprid) <strong>in</strong> these carbamate resistant KU population <strong>of</strong> L. striatellus.<br />

Green leaf hopper Nephotettix c<strong>in</strong>cticeps<br />

This <strong>in</strong>sect pest, which is very important <strong>in</strong> Japan, has long been managed with organophosphate and<br />

carbamate <strong><strong>in</strong>secticide</strong>s till 1970s. Hama and Iwata (1971) reported that <strong>in</strong>sensitivity <strong>of</strong> chol<strong>in</strong>esterase<br />

74


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

enzyme, the target <strong>of</strong> these <strong><strong>in</strong>secticide</strong>s was observed to be the major ca<strong>use</strong> <strong>of</strong> resistance. Hama and his<br />

group cont<strong>in</strong>ued their studies on this aspect. Faster degradation <strong>of</strong> propoxur, a carbamate <strong><strong>in</strong>secticide</strong> <strong>in</strong><br />

resistant stra<strong>in</strong> was found to be the ca<strong>use</strong> <strong>of</strong> resistance. (Hama et al., 1979; Hama, 1980; Hama et al.,<br />

1980). In case <strong>of</strong> organophosphate resistance, particularly with regard to diaz<strong>in</strong>on and fenitrothion,<br />

degradation <strong>of</strong> either the parent compounds or their oxons was observed to be the major ca<strong>use</strong> <strong>of</strong><br />

resistance and consequently <strong>use</strong> <strong>of</strong> synergists like IBP, piperonyl butoxide and sesamex enhanced the<br />

toxicity <strong>of</strong> these molecules <strong>in</strong> resistant stra<strong>in</strong>s. However, the enhancement was more pronounced <strong>in</strong> case<br />

<strong>of</strong> IBP than other synergists.<br />

Later studies by Motoyama et al., (1984) revealed that, <strong>in</strong> case <strong>of</strong> OP resistant stra<strong>in</strong>s also, degradation<br />

by carboxyesterases was the major factor for resistance to malathion but these carboxyesterases could<br />

also play a role as b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong>s for maloxon, the oxygen analog <strong>of</strong> malathion, thus reduc<strong>in</strong>g the<br />

amount <strong>of</strong> the toxicant available to the site <strong>of</strong> action, the chol<strong>in</strong>esterase enzyme <strong>in</strong> nervous system. When<br />

attempts were made to suppress the development <strong>of</strong> resistance to OP and carbamate resistance <strong>in</strong> GLH,<br />

N. c<strong>in</strong>cticeps, it was observed that a remarkable synergism was shown by mixtures <strong>of</strong> fenvalerate and<br />

malathion (1:1) and fenvalerate and diaz<strong>in</strong>on (1:1) aga<strong>in</strong>st OP and carbamate resistant stra<strong>in</strong>s. Other<br />

synthetic pyrethroids like fenpropathr<strong>in</strong> and permethr<strong>in</strong> could also act as synergists <strong>in</strong> comb<strong>in</strong>ation with<br />

OP and carbamates resistant <strong>in</strong>sects (Yamamoto et al., 1993).<br />

Green leafhopper, Nephotettix virescens<br />

In case <strong>of</strong> another species <strong>of</strong> GLH, which is more important <strong>in</strong> India and Philipp<strong>in</strong>es, there are rare<br />

<strong>in</strong>stances <strong>of</strong> resistance development to <strong><strong>in</strong>secticide</strong>s. Fabellar et. al. (1981) observed 1.32 to 2.02 fold<br />

resistance to acephate, parathion methyl and monocrotophos <strong>in</strong> populations collected from different<br />

regions <strong>in</strong> Philipp<strong>in</strong>es. Fabellar and Mochida (1985) observed that the resistance level rang<strong>in</strong>g from 1.47<br />

to 3.22 to BPMC, carbaryl, carb<strong>of</strong>uran, diaz<strong>in</strong>on and monocrotophos <strong>in</strong> similar populations. Thus, the<br />

<strong><strong>in</strong>secticide</strong> resistance problem is not acute <strong>in</strong> N. virescens <strong>in</strong> Philipp<strong>in</strong>es.<br />

Leaf folder, Cnaphalocrocis med<strong>in</strong>alis<br />

If one observes the <strong>in</strong>formation on <strong><strong>in</strong>secticide</strong> resistance <strong>in</strong> case <strong>of</strong> leaf folder, there are no systematic<br />

studies <strong>in</strong> any country probably beca<strong>use</strong> <strong><strong>in</strong>secticide</strong> resistance is not a serious problem <strong>in</strong> leaf folder. The<br />

first report was by Endo et al., (1987) from Japan. They monitored the level <strong>of</strong> <strong><strong>in</strong>secticide</strong> resistance by<br />

leafdip method for chlorpyriphos-methyl, dimethylv<strong>in</strong>phos, diaz<strong>in</strong>on, acephate, monocrotophos and cartap.<br />

Moderate resistance (RR <strong>of</strong> 9.4) was observed <strong>in</strong> case <strong>of</strong> diaz<strong>in</strong>on, but it was negligible for other <strong><strong>in</strong>secticide</strong>s<br />

(RR <strong>of</strong> 1.2 to 2.7). In another report from Ch<strong>in</strong>a, Xiang et al., (1994) observed low level <strong>of</strong> resistance (RR<br />

<strong>of</strong> 4.06) <strong>in</strong> Guangdong prov<strong>in</strong>ce to cartap and acephate. From India, the only report available is by<br />

Anandan and Regupathy (2002) where 4 th <strong>in</strong>star larvae were topically applied with monocrotophos,<br />

qu<strong>in</strong>alphos, chlorpyriphos, and phosphamidon and noticed gradual <strong>in</strong>crease <strong>in</strong> <strong><strong>in</strong>secticide</strong> susceptibility<br />

with successive generations when field collected population was reared under glass ho<strong>use</strong> conditions.<br />

However, the level <strong>of</strong> resistance was negligible (0 to 22.4%) for different <strong><strong>in</strong>secticide</strong>s.<br />

75


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

Thus, the overall situation reveals the <strong><strong>in</strong>secticide</strong> resistance is not a serious problem <strong>in</strong> <strong>rice</strong> leaf folder any<br />

where <strong>in</strong> the world.<br />

Yellow stem borer, Scirpophaga <strong>in</strong>certulas:<br />

There are two recent reports on assessment <strong>of</strong> <strong><strong>in</strong>secticide</strong> resistance <strong>in</strong> YSB from Ch<strong>in</strong>a. Han et al.,<br />

(1988) observed 2.5 to 3.6 times resistance to methamidophos and methyl parathion <strong>in</strong> shanghai<br />

populations compared to Jianxi populations by topical application on 3rd <strong>in</strong>star larvae. Shen et al., (1999)<br />

collected the egg masses <strong>of</strong> the pest from different locations and <strong>in</strong>oculated 3rd <strong>in</strong>star larva on 50 day old<br />

<strong><strong>in</strong>secticide</strong> sprayed <strong>rice</strong> plants. The LC 50 values for methamidophos varied from 1.62 to 13.17 while it<br />

was negligible for other <strong><strong>in</strong>secticide</strong>s. The above <strong>in</strong>formation clearly shows that <strong><strong>in</strong>secticide</strong> resistance is<br />

not a serious problem <strong>in</strong> the management <strong>of</strong> YSB. But this should be viewed with caution due to the<br />

follow<strong>in</strong>g reasons.<br />

1. There are no artificial rear<strong>in</strong>g methods for yellow stem borer and rear<strong>in</strong>g on natural host (<strong>rice</strong>) is very<br />

tedious and time consum<strong>in</strong>g.<br />

2. The survival <strong>of</strong> <strong><strong>in</strong>secticide</strong> treated larvae after <strong>in</strong>oculation <strong>in</strong> <strong>rice</strong> plants is very low. Hence, the<br />

assessment on real toxicity levels <strong>of</strong> <strong><strong>in</strong>secticide</strong>s under laboratory conditions is very difficult.<br />

3. Assessment <strong>of</strong> level <strong>of</strong> <strong><strong>in</strong>secticide</strong> resistance under field conditions is not accurate or also not easily<br />

possible.<br />

Hence, there appears to be no serious attempts on the part <strong>of</strong> <strong>rice</strong> entomologists to assess the level <strong>of</strong><br />

<strong><strong>in</strong>secticide</strong> resistance <strong>in</strong> YSB.<br />

Striped stem borer, Chilo suppressalis:<br />

Unlike <strong>in</strong> YSB, there is ample <strong>in</strong>formation available on <strong><strong>in</strong>secticide</strong> resistance <strong>in</strong> case <strong>of</strong> SSB. The resistance<br />

is wide spread and the efforts put <strong>in</strong> also appears to be relatively very high ow<strong>in</strong>g o the ease with which<br />

this <strong>in</strong>sect can be reared, handled and assessed for toxicity <strong>of</strong> <strong><strong>in</strong>secticide</strong>s. Konno et al., (1986) collected<br />

an organophosphate <strong><strong>in</strong>secticide</strong> resistant stra<strong>in</strong> <strong>of</strong> SSB from Japan and studied 61 organophosphates<br />

with vary<strong>in</strong>g structural groups. There was no resistance to OPs with ester bond hav<strong>in</strong>g aliphatic enol or<br />

thioalcohol such as malathion, phenthoate, az<strong>in</strong>phos-methyl and monocrotophos <strong>in</strong> contrast to high level<br />

<strong>of</strong> resistance to those with aryl ester bond or heterocyclic esters. Konno and Kajihara (1985) observed<br />

a high degree <strong>of</strong> synergism between, fenitrothion and a carbamate pirimicarb (an aphicide). The team<br />

under the leadership <strong>of</strong> Konno cont<strong>in</strong>ued <strong>in</strong>vestigations on OP resistance with special reference to<br />

fenitrothion. The penetration rates <strong>of</strong> fenitrothion <strong>in</strong> susceptible and resistant stra<strong>in</strong>s were similar but the<br />

detoxification <strong>of</strong> the toxic metabolite <strong>of</strong> fenitrothion viz. fenoxon <strong>in</strong> resistant stra<strong>in</strong> appeared to be the<br />

major resistant mechanism to fenitrothion <strong>in</strong> resistant stra<strong>in</strong>s (Konno and Shishido, 1987 and 1991).<br />

Later studies showed that sequester<strong>in</strong>g activity <strong>of</strong> carboxyl esterase enzyme for fenitroxon <strong>in</strong> fenitrothion<br />

resistant stra<strong>in</strong> was highly correlated with resistance (Konno, 1996).<br />

However, simultaneous studies <strong>in</strong> Ch<strong>in</strong>a by Han et al., (1995) showed that resistance to fenitrothion was<br />

76


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

due to high activity <strong>of</strong> carboxyl esterases, mixed function oxidases, enhanced O-demethylation by MFO<br />

and <strong>in</strong>sensitivity <strong>of</strong> acetyl chol<strong>in</strong>esterase the target enzyme <strong>of</strong> the compound. The later studies by Ch<strong>in</strong>ese<br />

group revealed that the populations <strong>of</strong> C. supressalis collected from different regions <strong>in</strong> ch<strong>in</strong>a exhibited<br />

vary<strong>in</strong>g levels <strong>of</strong> resistance to different compounds. The populations from Zhejiang were moderately<br />

resistant to triazophos and the population from Hunan exhibited very low level <strong>of</strong> resistance to triazophos<br />

(Cao et al., 2001). Later, triazophos resistance became wide spread. A field collected population <strong>of</strong> C.<br />

supressalis with a resistance level <strong>of</strong> 203 <strong>in</strong>creased resistance level to 787 fold after cont<strong>in</strong>uous selection<br />

with triazophos <strong>in</strong> the laboratory for eight generations. However, there was no cross resistance either to<br />

isocarbophos or methamydophos. The resistant stra<strong>in</strong> had higher activity <strong>of</strong> esterase and microsomal<br />

o-demethylase than susceptible stra<strong>in</strong> (Qu et al., 2003) .<br />

STRATEGIES TO OVERCOME INSECTICIDE RESISTANCE:<br />

The follow<strong>in</strong>g are the basic strategies to retard the development <strong>of</strong> <strong><strong>in</strong>secticide</strong> resistance <strong>in</strong> an <strong>in</strong>sect<br />

pest.<br />

l Alternate application <strong>of</strong> effective <strong><strong>in</strong>secticide</strong>s belong<strong>in</strong>g to different groups and different modes <strong>of</strong><br />

action.<br />

l Adoption <strong>of</strong> other methods <strong>of</strong> pest management like cultural, biological and varietal means and utiliz<strong>in</strong>g<br />

<strong><strong>in</strong>secticide</strong>s to the m<strong>in</strong>imum.<br />

l Use <strong>of</strong> suitable synergists along with effective <strong><strong>in</strong>secticide</strong>s to block the metabolic degradation <strong>of</strong><br />

<strong><strong>in</strong>secticide</strong>s <strong>in</strong> <strong>in</strong>sect system.<br />

l Cont<strong>in</strong>uation <strong>of</strong> <strong><strong>in</strong>secticide</strong> evaluation programmes as a part <strong>of</strong> co-ord<strong>in</strong>ated entomology agenda to<br />

identify new <strong><strong>in</strong>secticide</strong>s with different modes <strong>of</strong> action. This will help a great deal <strong>in</strong> overcom<strong>in</strong>g the<br />

problem <strong>of</strong> <strong><strong>in</strong>secticide</strong> resistance <strong>in</strong> <strong>rice</strong> pests <strong>in</strong> particular and all crop pests <strong>in</strong> general.<br />

CONCLUSIONS AND FUTURE THRUST<br />

l Among the <strong>in</strong>sect pests <strong>of</strong> <strong>rice</strong>, detailed field surveys and studies on mechanism <strong>of</strong> <strong><strong>in</strong>secticide</strong> resistance<br />

are available <strong>in</strong> case <strong>of</strong> BPH, N. lugens from japan and Ch<strong>in</strong>a. In India the <strong>in</strong>formation available on<br />

<strong><strong>in</strong>secticide</strong> resistance <strong>in</strong> BPH is very limited. In view <strong>of</strong> wide spread occurrence <strong>of</strong> this pest <strong>in</strong> India,<br />

there is a need to identify the monitor<strong>in</strong>g <strong>of</strong> <strong><strong>in</strong>secticide</strong> resistance <strong>in</strong> BPH <strong>in</strong> different agro-ecological<br />

zones <strong>of</strong> <strong>rice</strong> by creat<strong>in</strong>g a permanent fund<strong>in</strong>g mechanism at least <strong>in</strong> National Centers <strong>of</strong> Rice Research<br />

like DRR and CRRI along with a few State Agricultural Universities (SAUs) where BPH is a major<br />

problem.<br />

l Yellow stem borer S. <strong>in</strong>certulas is still the most important <strong>in</strong>sect pest <strong>of</strong> <strong>rice</strong>. In the absence <strong>of</strong> any<br />

dependable sources <strong>of</strong> host plant resistance to this pest, <strong><strong>in</strong>secticide</strong>s are widely <strong>use</strong>d as the major<br />

means <strong>of</strong> check<strong>in</strong>g YSB <strong>in</strong>festation. For <strong>in</strong>stance, <strong>in</strong> states like Punjab as many as 5 sprays <strong>of</strong><br />

77


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

recommended <strong><strong>in</strong>secticide</strong>s like cartap, monocrotophos, chlorpyriphos etc. are applied dur<strong>in</strong>g a crop<br />

season. Under these circumstances, there must be slow development <strong>of</strong> <strong><strong>in</strong>secticide</strong> resistance <strong>in</strong> this<br />

species. There is no basel<strong>in</strong>e data <strong>of</strong> <strong><strong>in</strong>secticide</strong>s effectiveness aga<strong>in</strong>st yellow stem borer to judge the<br />

level <strong>of</strong> <strong><strong>in</strong>secticide</strong> resistance. Even the methodology for detection and quantification <strong>of</strong> resistance<br />

level to most commonly <strong>use</strong>d <strong><strong>in</strong>secticide</strong>s is lack<strong>in</strong>g. Therefore, this should also form a part <strong>of</strong> research<br />

agenda <strong>of</strong> <strong><strong>in</strong>secticide</strong> resistance monitor<strong>in</strong>g team <strong>of</strong> scientists.<br />

l Leaf folder, C. med<strong>in</strong>alis is another important <strong>in</strong>sect pest from <strong><strong>in</strong>secticide</strong> resistance po<strong>in</strong>t <strong>of</strong> view.<br />

This is becom<strong>in</strong>g serious <strong>in</strong> traditional areas and also spread<strong>in</strong>g to new areas. Here also <strong><strong>in</strong>secticide</strong>s<br />

are the major means <strong>of</strong> manag<strong>in</strong>g the pest. Further very effective <strong><strong>in</strong>secticide</strong>s like cartap,<br />

monocrotophos are be<strong>in</strong>g widely <strong>use</strong>d. Hence the chances <strong>of</strong> leaf folder becom<strong>in</strong>g resistant to these<br />

<strong><strong>in</strong>secticide</strong>s are high. Therefore, leaf folder should also be monitored for <strong><strong>in</strong>secticide</strong> resistance<br />

development after evolv<strong>in</strong>g suitable methodology for detection and determ<strong>in</strong>ation <strong>of</strong> base l<strong>in</strong>e data.<br />

This can be easily done <strong>in</strong> <strong>in</strong>stitutes where glassho<strong>use</strong> facilities are available.<br />

l Basic studies on one or more <strong>of</strong> these pests regard<strong>in</strong>g the fastness <strong>of</strong> resistance development,<br />

mechanism <strong>of</strong> resistance and strategies for management <strong>of</strong> <strong><strong>in</strong>secticide</strong> resistance have to be conducted,<br />

when there is evidence <strong>of</strong> resistance development.<br />

l In view <strong>of</strong> high degree <strong>of</strong> effectiveness <strong>of</strong> neonicot<strong>in</strong>oids and lower cost <strong>in</strong>volved per unit area, these<br />

<strong><strong>in</strong>secticide</strong>s are likely to be over<strong>use</strong>d and ab<strong>use</strong>d by <strong>rice</strong> farmers <strong>in</strong> BPH endemic areas. This will<br />

further hasten the process <strong>of</strong> resistance development.<br />

l The <strong>in</strong>formation available on the practical methods for detect<strong>in</strong>g and monitor<strong>in</strong>g neonicot<strong>in</strong>oid resistance<br />

<strong>in</strong> <strong>rice</strong> planthoppers is <strong>in</strong>adequate and a lot <strong>of</strong> research efforts need to go <strong>in</strong>to this aspect.<br />

l The biochemical mechanisms <strong>in</strong>volved and cross-resistance patterns are very poorly understood and<br />

hence emphasis should also be laid on this aspect <strong>of</strong> neonicot<strong>in</strong>oid resistance.<br />

l The meager evidence <strong>in</strong>dicates ma<strong>in</strong>ly the role <strong>of</strong> m.f.o. <strong>in</strong> degrad<strong>in</strong>g neonicot<strong>in</strong>oids <strong>in</strong> resistant<br />

stra<strong>in</strong>s <strong>of</strong> planthoppers. As m.f.o. are general degrad<strong>in</strong>g enzymes for all xenobiotics, it is likely that<br />

there will be cross resistance to other groups <strong>of</strong> <strong><strong>in</strong>secticide</strong>s <strong>in</strong> neonicot<strong>in</strong>oid resistant populations <strong>of</strong><br />

planthoppers. Hence, this aspect also needs emphasis as a future thrust area <strong>of</strong> research.<br />

78


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

INSECTICIDE INDUCED INSECT RESURGENCE<br />

‘Pest resurgence’ or ‘flareback’ <strong>of</strong> the target and non-target organisms <strong>in</strong> a crop ecosystem is one <strong>of</strong> the<br />

harmful effects <strong>of</strong> <strong><strong>in</strong>secticide</strong> <strong>use</strong> along with others like, environmental pollution, destruction <strong>of</strong> natural<br />

enemies, and harmful effects on domestic and wild life, harmful residues on food and fodder,<br />

biomagnification <strong>in</strong> terrestrial and aquatic ecosystems etc (Krishnaiah and Kalode, 1985).<br />

‘Resurgence’, <strong>in</strong> general, means a statistically significant <strong>in</strong>crease <strong>in</strong> population <strong>of</strong> or damage by the<br />

target pests follow<strong>in</strong>g pesticide application (He<strong>in</strong>richs et al., 1982 a and b). This appears to be the<br />

resultant effect <strong>of</strong> multiplicity <strong>of</strong> factors.<br />

Factors for resurgence:<br />

l Application <strong>of</strong> <strong><strong>in</strong>secticide</strong>s <strong>in</strong> an agro-ecosystem, where the target pest is killed to some extent reduces<br />

competition among survivors lead<strong>in</strong>g to <strong>in</strong>creased multiplication.<br />

l Direct physiological stimulation <strong>of</strong> growth and reproduction <strong>of</strong> target pest may also occur (Hart and<br />

Ingle, 1971)<br />

l The effect on the target organism may be <strong>in</strong>directly through the alteration <strong>in</strong> nutritional quality <strong>of</strong> the<br />

host plant. This may lead to favourable biological effects on target pests such as<br />

v shorten<strong>in</strong>g <strong>of</strong> the developmental period,<br />

v formation <strong>of</strong> vigorous and able bodied <strong>in</strong>sects, which <strong>in</strong> turn survive better even <strong>in</strong> the<br />

adverse environment, and<br />

v <strong>in</strong>creased rate <strong>of</strong> reproduction lead<strong>in</strong>g to better survival potential (He<strong>in</strong>richs and<br />

Mochida, 1983).<br />

l Destruction <strong>of</strong> natural enemies such as parasites and predators has been reported to be the major<br />

ca<strong>use</strong> for <strong><strong>in</strong>secticide</strong> <strong>in</strong>duced resurgence <strong>of</strong> some, <strong>in</strong>sect pests (Krishnaiah and Kalode, 1987).<br />

l Removal <strong>of</strong> alternate hosts <strong>of</strong> parasites, which act as reserves <strong>of</strong> food dur<strong>in</strong>g the <strong>of</strong>f season may<br />

occasionally lead to resurgence <strong>of</strong> target pests (lyatomi, 1951).<br />

l Agronomic practices such as excessive <strong>use</strong> <strong>of</strong> nitrogenous fertilizers and high plant density, which are<br />

generally favourable to pests, and <strong>use</strong> <strong>of</strong> susceptible varieties or hybrids may also result <strong>in</strong> resurgence<br />

<strong>of</strong> <strong>in</strong>sect pests.<br />

l Favourable climatic conditions such as optimum temperature and humidity also aggravate the problem.<br />

In <strong>rice</strong>, <strong><strong>in</strong>secticide</strong>-<strong>in</strong>duced resurgence has been reported <strong>in</strong> case <strong>of</strong> the follow<strong>in</strong>g:<br />

a) Brown planthopper (BPH) Nilaparvata lugens (Stal.),<br />

b) White backed planthopper (WBPH), Sogatella furcifera (Horvath),<br />

c) Leaf folder (LF), Cnaphalocrocis med<strong>in</strong>alis Guenee,<br />

79


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

d) Green leafhopper (GLH), Nephotettix c<strong>in</strong>cticeps Jhler,<br />

e) Small brown planthopper (SBP), Laodelphax striatellus Fallon,<br />

f) Blue leafhopper (BLH), Zyg<strong>in</strong>a maculifrons Matsch,<br />

g) Striped stem borer (SSB), Chilo suppressalis Walker.<br />

However, most <strong>of</strong> the <strong>in</strong>formation on <strong><strong>in</strong>secticide</strong> <strong>in</strong>duced resurgence has been generated <strong>in</strong> case <strong>of</strong><br />

BPH, WBPH and leaf folder.<br />

History <strong>of</strong> Insecticide Induced Resurgence <strong>in</strong> Rice<br />

The first <strong>in</strong>stance <strong>of</strong> <strong>in</strong>creased BPH population <strong>in</strong> tropics due to <strong><strong>in</strong>secticide</strong> application was reported<br />

<strong>in</strong> 1968 <strong>in</strong> the experimental fields <strong>of</strong> International Rice Research Institute, Philipp<strong>in</strong>es, where the plots<br />

treated with gamma-HCH at the rate <strong>of</strong> 2.0 kg a.i./ha recorded approximately three times higher population <strong>of</strong><br />

BPH than the untreated control (IRRI, 1969). Test<strong>in</strong>g <strong>of</strong> synthetic pyrethroid, NRDC 161 (deltamethr<strong>in</strong>) <strong>in</strong><br />

1976 resulted <strong>in</strong> dramatic <strong>in</strong>crease <strong>in</strong> the population <strong>of</strong> BPH, show<strong>in</strong>g a resurgence ratio <strong>of</strong> 56:1 with<br />

100 percent hopper burn (IRRI, 1977). Later on an <strong>in</strong>creas<strong>in</strong>g number <strong>of</strong> reports on the resurgence <strong>of</strong><br />

BPH have been published from many tropical <strong>rice</strong> grow<strong>in</strong>g countries. BPH resurgence has been reported<br />

from Bangladesh (Alam and Karim, 1977), India (Varadarajan et al., 1977; AICRIP, 1978), Indonesia<br />

(Oka, 1978; Soekarna, 1979) and Solomon islands (Stapley, 1976).<br />

Ca<strong>use</strong>s <strong>of</strong> BPH Resurgence<br />

Insecticides caus<strong>in</strong>g resurgence have been identified and these <strong>in</strong>clude organophosphates, carbamates<br />

and synthetic pyrethroids. Several laboratory and field studies have <strong>in</strong>dicated that reproductive stimulation<br />

<strong>in</strong> females receiv<strong>in</strong>g sub-lethal doses <strong>of</strong> <strong><strong>in</strong>secticide</strong>s and selective removal <strong>of</strong> natural enemies are major<br />

factors caus<strong>in</strong>g BPH resurgence. Degree <strong>of</strong> resurgence is affected by <strong><strong>in</strong>secticide</strong> management practices<br />

such as rate, number, method, and time <strong>of</strong> application and by the level <strong>of</strong> varietal resistance to <strong>in</strong>sects.<br />

Enhancement <strong>of</strong> Reproductive Rate under Laboratory conditions<br />

Direct effect <strong>of</strong> <strong><strong>in</strong>secticide</strong>s on reproductive rate <strong>of</strong> BPH has been measured by topically treat<strong>in</strong>g fifth<strong>in</strong>star<br />

nymphs with doses <strong>of</strong> LD 5 to LD 50 <strong>of</strong> deltamethr<strong>in</strong>, methyl parathion and perthane. Highest<br />

reproductive stimulation occurred at the LD 25 dosage for methyl parathion and LD 50 for deltamethr<strong>in</strong><br />

(Chelliah et al., 1980). Perthane did not ca<strong>use</strong> reproductive stimulation at any <strong>of</strong> the dosages tested.<br />

However, the reasons for such reproductive stimulation could not be elucidated. Increase <strong>in</strong> reproductive<br />

rate can occur through changes <strong>in</strong> host plant for better nutritive quality. When plants were sprayed with<br />

deltamethr<strong>in</strong>, diaz<strong>in</strong>on, methylparathion and perthane at 10 day <strong>in</strong>terval, followed by conf<strong>in</strong>ement <strong>of</strong> BPH<br />

adults after the toxic effect was lost, there was a significant <strong>in</strong>crease <strong>in</strong> the reproductive rate <strong>of</strong> the<br />

hoppers conf<strong>in</strong>ed on plants treated with methylparathion, deltamethr<strong>in</strong>, and diaz<strong>in</strong>on (Chelliah and He<strong>in</strong>richs,<br />

1980). However, hoppers on perthane treated plants had significantly fewer nymphs than on the untreated<br />

control.<br />

80


Resurgence <strong>of</strong> BPH under Field conditions<br />

Insecticides <strong>in</strong> Rice IPM (DRR)<br />

The amount <strong>of</strong> toxicant that comes <strong>in</strong> contact with N. lugens and its predators is <strong>in</strong>fluenced by several<br />

factors. The density <strong>of</strong> the crop canopy <strong>in</strong>creases with age <strong>of</strong> the crop, limit<strong>in</strong>g the spray material reach<strong>in</strong>g<br />

the base <strong>of</strong> the plant, where BPH feeds. Ra<strong>in</strong>fall, which washes the <strong><strong>in</strong>secticide</strong> from the plant, and degree<br />

<strong>of</strong> resistance to <strong><strong>in</strong>secticide</strong>s are additional factors <strong>in</strong>fluenc<strong>in</strong>g BPH resurgence under field conditions<br />

(He<strong>in</strong>richs et al., 1982b). The situation is further complicated beca<strong>use</strong> the <strong><strong>in</strong>secticide</strong> application rates,<br />

application methods, time <strong>of</strong> application and degree <strong>of</strong> varietal resistance could also <strong>in</strong>fluence the level<br />

<strong>of</strong> BPH resurgence (He<strong>in</strong>richs and Mochida, 1983).<br />

Effect <strong>of</strong> Rates <strong>of</strong> Insecticide Application on BPH and its Predators<br />

When foliar sprays <strong>of</strong> methyl parathion, deltamethr<strong>in</strong>, diaz<strong>in</strong>on and carbosulfan (FMC 35001) were applied<br />

at different dosages, higher concentrations <strong>of</strong> carbosulfan <strong>in</strong> general led to greater populations <strong>of</strong> BPH<br />

(He<strong>in</strong>richs et al., 1982 b). Among the three predators <strong>of</strong> BPH (spiders, Microvelia atrol<strong>in</strong>eata Bergoth<br />

and Cyrtorh<strong>in</strong>us lividipennis Reuter), deltamethr<strong>in</strong> was the most toxic to spiders even at low rates;<br />

deltamethr<strong>in</strong> and carbosulfan were toxic to M. atrol<strong>in</strong>eata, while diaz<strong>in</strong>on was less toxic to both spiders<br />

and M. atrol<strong>in</strong>eata. High rates <strong>of</strong> all the <strong><strong>in</strong>secticide</strong>s resulted <strong>in</strong> lowest populations <strong>of</strong> C. lividipennis<br />

(He<strong>in</strong>richs and Mochida, 1983). Krishnaiah and Kalode (1987) observed that <strong><strong>in</strong>secticide</strong>s such as<br />

monocrotophos, phosalone and phosphamidon at recommended concentrations (0.05%) checked BPH<br />

build-up while monocrotophos and phosphamidon at suboptimal concentrations (0.02%) resulted <strong>in</strong><br />

resurgence. Among the other <strong><strong>in</strong>secticide</strong>s deltamethr<strong>in</strong> at recommended concentration (0.01% and<br />

0.005%) recorded highest BPH population whereas methylparathion and fenvalerate exhibited a tendency<br />

towards BPH resurgence. Deltamethr<strong>in</strong> also showed high degree <strong>of</strong> adverse affect on natural enemies<br />

such as mirid bug, C. lividipennis and spiders. S<strong>in</strong>ce, resurgence is a dose dependant phenomenon,<br />

emphasis should be placed on the application <strong>of</strong> correct dosage <strong>of</strong> effective and recommended <strong><strong>in</strong>secticide</strong>s<br />

<strong>in</strong> addition to select<strong>in</strong>g the right <strong><strong>in</strong>secticide</strong> (Krishnaiah and Kalode, 1987).<br />

Number, time and Method <strong>of</strong> <strong><strong>in</strong>secticide</strong> Application and Pest Resurgence<br />

In the tropics, the most popular method <strong>of</strong> <strong><strong>in</strong>secticide</strong> application is by foliar spray<strong>in</strong>g. Accord<strong>in</strong>g to<br />

He<strong>in</strong>richs et al., (1982a} application <strong>of</strong> <strong><strong>in</strong>secticide</strong>s through foliar spray<strong>in</strong>g <strong>in</strong>duces high degree <strong>of</strong> BPH<br />

resurgence when compared to application as root zone placement, and as broadcast<strong>in</strong>g. Under field<br />

conditions, dust formulations control BPH, but foliar spray<strong>in</strong>g with <strong><strong>in</strong>secticide</strong>s results <strong>in</strong> resurgence<br />

(Raman, 1981). Application <strong>of</strong> granular gamma HCH, diaz<strong>in</strong>on, Sevidol (Chelliah and He<strong>in</strong>richs, 1979),<br />

mephospholan, and qu<strong>in</strong>alphos (Varadarajan et al., 1977) was observed to ca<strong>use</strong> BPH resurgence.<br />

Resurgence was also <strong>in</strong>fluenced by the time <strong>of</strong> application. Sprays <strong>of</strong> methyl parthion and deltamethr<strong>in</strong><br />

applied at 50 and 65 days after transplant<strong>in</strong>g <strong>in</strong>duced resurgence, while earlier applications had little<br />

effect. Further, plots receiv<strong>in</strong>g only one application had low BPH population as compared to those<br />

sprayed 2, 3 or 4 times (He<strong>in</strong>richs and Mochida, 1983).<br />

81


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

Number <strong>of</strong> Sprays and Feed<strong>in</strong>g<br />

The excretion <strong>of</strong> honeydew by BPH has been directly correlated to the rate <strong>of</strong> feed<strong>in</strong>g (Sogawa and Pathak,<br />

1970). Chelliah and He<strong>in</strong>richs (1980} observed that spray<strong>in</strong>g with deltamethr<strong>in</strong>, methyl parathion, and<br />

diaz<strong>in</strong>on <strong>in</strong>creased BPH feed<strong>in</strong>g rate by 61, 43, and 33 percent, respectively compared to check.<br />

Raman and Uthamasamy (1983a) reported that the feed<strong>in</strong>g rate is high <strong>in</strong> plants treated with deltamethr<strong>in</strong>,<br />

methyl- parathion, qu<strong>in</strong>alphos, cypermethr<strong>in</strong>, fenthion, and permethr<strong>in</strong>. On the contrary, <strong>in</strong> fenvalerate,<br />

phosphamidon, BPMC, carbosulfan, and methamidophos treated plants, the feed<strong>in</strong>g rate is lower than<br />

that <strong>of</strong> untreated check.<br />

Resurgence and Sex Ratio<br />

The sex ratio <strong>of</strong> adults result<strong>in</strong>g from nymphs reared on <strong><strong>in</strong>secticide</strong>-treated plants was <strong>in</strong> favour <strong>of</strong><br />

females compared to those on untreated control. The sex ratio <strong>of</strong> methyl-parathion and deltamethr<strong>in</strong><br />

treated plants is 1.26 and 1.46 respectively, compared to 1.00 on untreated plants (Chelliah, 1979).<br />

Raman and Uthamasamy (1983a) observed that, <strong>of</strong> the eight <strong><strong>in</strong>secticide</strong>s evaluated for pest resurgence,<br />

the sex ratio was <strong>in</strong> favour <strong>of</strong> females <strong>in</strong> all, except <strong>in</strong> phosphamidon treated plants.<br />

Resurgence through Population Changes <strong>in</strong> Natural Enemies<br />

Reduction <strong>in</strong> the population <strong>of</strong> natural enemies follow<strong>in</strong>g <strong><strong>in</strong>secticide</strong> application has been suggested as<br />

an important factor for BPH resurgence (Kobayashi 1961; Miyashita 1963; Kiritani et al., 1971; Kiritani,<br />

1972; 1975; Raman and Uthamasamy, 1983b, Krishnaiah and Kalode, 1987). Dyck and Orlido (1977)<br />

reported that reduction <strong>in</strong> the population <strong>of</strong> mirid predator, C. lividipennis after regular spray<strong>in</strong>g with<br />

methyl-parathion ca<strong>use</strong>s BPH resurgence. However, under field conditions, <strong>in</strong>crease <strong>in</strong> populations<br />

<strong>of</strong> spiders, C. lividipennis and M. atrol<strong>in</strong>eata was not proportionate to the reduction <strong>in</strong> BPH population<br />

(Reissig et al., 1982a). However, Chelliah (1979) and He<strong>in</strong>richs et al., (1982b) concluded that natural<br />

enemy destruction is a m<strong>in</strong>or factor <strong>in</strong> BPH resurgence. Field studies conducted by Krishnaiah and<br />

Kalode (1993a) showed that the population <strong>of</strong> mirid bug (MB) C. lividipennis depended on the population<br />

<strong>of</strong> BPH. However, BPH/MB ratio was the highest <strong>in</strong> deltamethr<strong>in</strong> (1311) and the lowest <strong>in</strong> eth<strong>of</strong>enprox (an<br />

ether derivative) at 100 g a.i./ha (9.8), which did not ca<strong>use</strong> resurgence.<br />

Resurgence through varietal Interaction and Plant Architecture<br />

When IR 29, IR 40, and IR 42 (respectively susceptible, moderately resistant, and resistant to BPH <strong>in</strong> the<br />

Philipp<strong>in</strong>es) were tested for their’ <strong>in</strong>fluence on deltamethr<strong>in</strong> <strong>in</strong>duced BPH resurgence, the maximum<br />

population <strong>in</strong>creases were 74 : 50, and 5 fold, respectively as compared to check. This demonstrated<br />

the value <strong>of</strong> host plant resistance <strong>in</strong> lower<strong>in</strong>g the BPH resurgence (Reissig et al., 1982b). Chelliah (1979)<br />

reported that the reproductive rate and BPH feed<strong>in</strong>g on the susceptible TN1 sprayed with deltamethr<strong>in</strong><br />

and methyl-parathion were markedly greater than those feed<strong>in</strong>g on unsprayed plants. However, <strong>in</strong> all the<br />

three resistant cultivars (IR 26, Mudgo, and ASD 7) tested, the <strong><strong>in</strong>secticide</strong>s did not ca<strong>use</strong> resurgence <strong>of</strong> the<br />

pest.<br />

82


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

Effect <strong>of</strong> <strong><strong>in</strong>secticide</strong>s <strong>in</strong> <strong>in</strong>fluenc<strong>in</strong>g the plant growth is one <strong>of</strong> the factors for the resurgence <strong>of</strong> <strong>in</strong>sects.<br />

Cheiliah and He<strong>in</strong>richs (1979) reported that carbosulfan, perthane, and methylparathion <strong>in</strong>creased<br />

the number <strong>of</strong> tillers. Diaz<strong>in</strong>on and perthane sprayed plants grow taller than the unsprayed plants.<br />

Raman and Uthamasamy (1983a) observed that foliar application <strong>of</strong> deltamethr<strong>in</strong> and methyl parathion<br />

resulted <strong>in</strong> <strong>in</strong>creased numbers <strong>of</strong> tillers and leaves, and stimulated plant growth. Thus, the changes <strong>in</strong><br />

plant architecture as a result <strong>of</strong> phytotonic effect <strong>of</strong> certa<strong>in</strong> <strong><strong>in</strong>secticide</strong>s may attract more macropterous<br />

hoppers immigrat<strong>in</strong>g <strong>in</strong>to the <strong>rice</strong> fields. Increased alight<strong>in</strong>g followed by <strong>in</strong>creased feed<strong>in</strong>g, reproduction<br />

and longevity augment BPH resurgence.<br />

Hormonal Influence <strong>of</strong> Resurgence through Increased Reproduction<br />

Accord<strong>in</strong>g to Roan and Hopk<strong>in</strong>s (1961), sub-lethal doses <strong>of</strong> toxicants might excite nerve activity and<br />

could br<strong>in</strong>g about a favourable neurohormonal <strong>in</strong>fluence on <strong>in</strong>sect reproduction. The liberation <strong>of</strong> massive<br />

amounts <strong>of</strong> hormone is a lethal step <strong>of</strong> <strong>in</strong>secticidal action. A sub-lethal amount <strong>of</strong> an <strong><strong>in</strong>secticide</strong> can<br />

result <strong>in</strong> the production <strong>of</strong> a neurohormone, which <strong>in</strong> turn can stimulate the reproductive potential <strong>of</strong> an<br />

<strong>in</strong>sect lead<strong>in</strong>g to <strong>in</strong>sect resurgence. However, critical <strong>in</strong>vestigations are essential to determ<strong>in</strong>e the specific<br />

hormonal <strong>in</strong>fluence on the reproductive system <strong>of</strong> the <strong>in</strong>sects.<br />

Resurgence <strong>of</strong> whitebacked planthopper, Sogatella furcifera (Horvath)<br />

Although, <strong>in</strong>tensive field studies on synthetic pyrethroid <strong>in</strong>duced resurgence <strong>of</strong> WBPH are lack<strong>in</strong>g <strong>in</strong><br />

literature, a number <strong>of</strong> observations have been made <strong>in</strong> recent years that the synthetic pyrethroids like<br />

deltamethr<strong>in</strong> (25 g a.i./ ha), lambda cyhalothr<strong>in</strong> (12.5g a.i./ha), betacyfluthr<strong>in</strong> (12.5 g a.i./ha),<br />

registered significantly higher populations <strong>of</strong> WBPH than untreated control (DRR, 1998 - 2002). The<br />

neonicot<strong>in</strong>oid <strong><strong>in</strong>secticide</strong>s like imidacloprid (25 g a.i./ha) and thiamethoxam (25 g a.i./ha) and <strong>in</strong>sect<br />

growth regulator bupr<strong>of</strong>ez<strong>in</strong> (100-200g a.i./ha) could effectively check WBPH populations when <strong>use</strong>d<br />

alone and also suppressed the resurgence caus<strong>in</strong>g property <strong>of</strong> synthetic pyrethroids, when <strong>use</strong>d as<br />

comb<strong>in</strong>ation formulations (one neonicot<strong>in</strong>oid + one synthetic pyrethroid) or as tank mix<strong>in</strong>g <strong>of</strong> straight<br />

formulations (DRR, 1998-2002). A greenho<strong>use</strong> study at IRRI on the <strong>in</strong>fluence <strong>of</strong> varietal resistance on<br />

resurgence caus<strong>in</strong>g property <strong>of</strong> deltamethr<strong>in</strong> revealed that the <strong><strong>in</strong>secticide</strong> ca<strong>use</strong>d a significant <strong>in</strong>crease<br />

<strong>in</strong> population growth <strong>of</strong> WBPH <strong>in</strong> highly resistant (IR 2035-117-3), resistant (ARC 10239) and susceptible<br />

(TN1) cuitivars and <strong>in</strong>crease <strong>in</strong> nymphal survival and growth <strong>in</strong>dex on TN1 (Salim and He<strong>in</strong>richs, 1987).<br />

Resurgence <strong>in</strong> Rice Leaf folder Cnaphalocrocis med<strong>in</strong>alis Guenee<br />

Chelliah and He<strong>in</strong>richs (1984) reported that resurgence <strong>of</strong> leaf folder could be noticed after the application<br />

<strong>of</strong> phorate 10G coupled with adoption <strong>of</strong> close plant spac<strong>in</strong>g and application <strong>of</strong> high dose <strong>of</strong> nitrogen<br />

fertilizer. This might be due to promotion <strong>of</strong> plant growth lead<strong>in</strong>g to heavy leaf folder <strong>in</strong>festation. Insecticide<br />

<strong>in</strong>duced leaf folder <strong>in</strong>festation has also been reported by Subramanian et al., (1985). Seedl<strong>in</strong>g root dip <strong>in</strong><br />

chlorpyriphos (0.02%) for 12 h, followed by broadcast<strong>in</strong>g <strong>of</strong> carb<strong>of</strong>uran 3G (1.0 kg a.i./ha) at 20, 40,<br />

and 60 DAT (days after transplant<strong>in</strong>g) showed high levels <strong>of</strong> leaf folder <strong>in</strong>festation at 75 DAT compared<br />

83


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

with the untreated plots. At Pondicherry, broadcast application <strong>of</strong> phorate 10G @ 1.0 kg a.i./ha at 20 and<br />

40 DAT resulted <strong>in</strong> build up <strong>of</strong> leaf folder, record<strong>in</strong>g 990 damaged leaves/20 hills as compared to 164<br />

damaged leaves/20 hills <strong>in</strong> untreated control (DRR, 1994). However, broadcast<strong>in</strong>g <strong>of</strong> carb<strong>of</strong>uran 3G @<br />

0.75 kg a.i./ha at 20 and 40 DAT did not ca<strong>use</strong> resurgence <strong>of</strong> leaf folder (43.3 damaged leaves/ 20<br />

hills). Aga<strong>in</strong>st leaf folder, broadcast application <strong>of</strong> cartap granules @ 1.0 kg a.i./ha or spray<strong>in</strong>g with<br />

cartap WP @ 300 g a.i. /ha could successfully check the build up <strong>of</strong> the pest when <strong>use</strong>d at 60 DAT as a<br />

follow up treatment to phorate @ 1.0 kg a.i./ha applied at 20 and 40 DAT (DRR, 1994 and Krishnaiah et<br />

al., 1995).<br />

Of late, the spray <strong>of</strong> neonicot<strong>in</strong>oids like imidacloprid (20 g a.i./ha) registered significantly higher<br />

leaf folder damage (177 to 232 ADL /10 hills) than untreated control (28 to 56 ADL/10 hills) as observed<br />

at Jagtial dur<strong>in</strong>g kharif 2001 (DRR, 2001). In the same experiment, the synthetic pyrethroid<br />

betacyfluthr<strong>in</strong> @ 12.5 g a.i./ha (10 to 22 ADL /10 hills) and the comb<strong>in</strong>ation <strong>of</strong> betacyfluthr<strong>in</strong> + imidacloprid<br />

@ 15 + 15 g a.i./ha (18 to 39 ADL / 10 hills) could effectively check leaf folder damage reveal<strong>in</strong>g the<br />

possibility <strong>of</strong> comb<strong>in</strong><strong>in</strong>g neonicot<strong>in</strong>oids with synthetic pyrethroids for the management <strong>of</strong> both leaf folder<br />

and BPH and / or WBPH (DRR, 2001).<br />

Resurgence <strong>in</strong> Other Insect Pests<br />

Mani and Jayaraj (1976) reported resurgence <strong>of</strong> blue leafhopper, Zyg<strong>in</strong>a maculifrons (Motch) when acephate,<br />

dicrotophos, and monocrotophos were applied as seed and seedl<strong>in</strong>g root dip treatments. Lower contents<br />

<strong>of</strong> carbohydrates and calcium, and higher contents <strong>of</strong> nitrogen and phosphorus and narrow C: N ratio<br />

observed <strong>in</strong> treated plots were suggested to be responsible for resurgence <strong>of</strong> the <strong>in</strong>sect. In Japan,<br />

<strong><strong>in</strong>secticide</strong> <strong>in</strong>duced resurgences <strong>of</strong> green leafhopper, Nephotettix c<strong>in</strong>cticeps has been attributed to the<br />

destruction <strong>of</strong> natural enemies, particularly spiders (Kiritani et al., 1971; Kiritani, 1979). The populations<br />

<strong>of</strong> striped stem borer Chilo suppressalis Walker <strong>in</strong> many areas <strong>in</strong> Japan <strong>in</strong>creased after large scale <strong>use</strong><br />

<strong>of</strong> HCH and parathion until late 1960s (Miyashita, 1963). This was reported to be due to large scale<br />

destruction <strong>of</strong> trichogrammatid egg parasites, particularly Trichogramma japonicum Ashm (Nozoato and<br />

Kiritani, 1976). Apart from direct lethal effects, exterm<strong>in</strong>ation <strong>of</strong> Naranga aenescens Moore, an alternate<br />

host <strong>of</strong> T. japonicum, dur<strong>in</strong>g the absence <strong>of</strong> Chilo eggs <strong>in</strong> the <strong>rice</strong> fields seemed to be responsible for C.<br />

suppressalis resurgence (Iyatomi, 1951).<br />

Strategies to Overcome Resurgence <strong>of</strong> BPH<br />

The strategies described below, may be followed to m<strong>in</strong>imize the <strong><strong>in</strong>secticide</strong>-<strong>in</strong>duced resurgence <strong>of</strong><br />

BPH <strong>in</strong> <strong>rice</strong> ecosystem.<br />

Selection <strong>of</strong> Proper Insecticide(s)<br />

Among the <strong><strong>in</strong>secticide</strong>s evaluated <strong>in</strong> the national programme, those with high degree <strong>of</strong> toxicity to BPH<br />

and very low toxicity to natural enemies, particularly Cyrtorh<strong>in</strong>us spp, Microvelia sp. and spiders could be<br />

84


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

selected after test<strong>in</strong>g, and recommended for BPH control. Krishnaiah and Kalode (1987) recognized<br />

that monocrotophos and phosphamidon (500g a.i./ha) as sprays could effectively check BPH build up.<br />

On the other hand, methyl parathion, fenvalerate, deltamethr<strong>in</strong>, chlorpyriphos, and qu<strong>in</strong>alphos exhibited<br />

a tendency towards BPH resurgence. Further, spray<strong>in</strong>g <strong>of</strong> a resurgence caus<strong>in</strong>g <strong><strong>in</strong>secticide</strong> such as<br />

qu<strong>in</strong>alphos <strong>in</strong> early stages <strong>of</strong> crop growth (upto 56 DAT), followed by monocrotophos spray (70 to 98<br />

DAT) could avert resurgence <strong>of</strong> BPH. Krishnaiah and Kalode (1993a) reported that eth<strong>of</strong>enprox (an<br />

ether derivative <strong><strong>in</strong>secticide</strong>) @ 100 g a.i./ha sprayed at fortnightly <strong>in</strong>tervals could successfully check<br />

BPH build up without adversely affect<strong>in</strong>g mirid bug C. lividipennis and spiders, and produced gra<strong>in</strong> yields<br />

similar to monocrotophos treatment. Under similar conditions, deltamethr<strong>in</strong> treated plots resulted <strong>in</strong><br />

70% hopper burn (Table 13). Further, studies have shown that tank mix<strong>in</strong>g <strong>of</strong> bupr<strong>of</strong>ez<strong>in</strong> (a growth<br />

regulator) @ 100 g.a.i./ha with deltamethr<strong>in</strong> (25 g a.i./ha) completely prevented the resurgence caus<strong>in</strong>g<br />

effect <strong>of</strong> the later and controlled BPH effectively (Krishnaiah et al., 1996). Further, the populations <strong>of</strong><br />

mirid bug and spiders could be ma<strong>in</strong>ta<strong>in</strong>ed favourably with a mixture <strong>of</strong> bupr<strong>of</strong>ez<strong>in</strong> + deltamethr<strong>in</strong>,<br />

similar to plots treated with bupr<strong>of</strong>ez<strong>in</strong> alone under field conditions (Table 14).<br />

Table 13 : Efficacy <strong>of</strong> Eth<strong>of</strong>enprox aga<strong>in</strong>st BPH and safety to natural enemies under field conditions<br />

Insecticide<br />

Rate<br />

(g a.i./ha)<br />

BPHMB BPH / MB Spiders<br />

Hopper<br />

burn (%)<br />

Yield<br />

(t/ha)<br />

Eth<strong>of</strong>enprox 25 306ab 129a 3.1b 2.3a 2.9bc 3.4bc<br />

Eth<strong>of</strong>enprox 50 109bc 50ab 2.6b 2.8a 1.1bc 3.2c<br />

Eth<strong>of</strong>enprox 100 24cd 15b 1.6b 3.3a 0.8bc 4.6a<br />

Eth<strong>of</strong>enprox 200 15cd 20bc 1.0b 1.8a 0.6c 4.2ab<br />

Deltamethr<strong>in</strong> 50 1301a 1.5d 864.8a 1.8a 70.7a 0.7e<br />

Monocrotophos 500 24d 4.5cd 23.6b 2.8a 1.4bc 4.2ab<br />

Untreated control - 214ab 111a 1.9b 1.3a 11.4b 2.0d<br />

(Krishnaiah and kalode 1993a)<br />

Note: The values <strong>in</strong> a column followed by same letter are not significantly different at P=0.05 accord<strong>in</strong>g<br />

to l.s.d method MB= mirid bug<br />

Among the most recent <strong><strong>in</strong>secticide</strong>s, the neonicot<strong>in</strong>oids like imidacloprid and thiamethoxam (25 g a.i./<br />

ha) and phenyl pyrazoles like fipronil and ethiprole (50 g a.i./ha) were found to be highly effective aga<strong>in</strong>st BPH<br />

and WBPH under glassho<strong>use</strong> (Krishnaiah et al., 2004) and field conditions (DRR 1999-2003).<br />

Intensive field studies to utilize thiamethoxam and imidacloprid (25 g a.i./ha) <strong>in</strong> comb<strong>in</strong>ation with synthetic<br />

pyrethroids like betacyfluthr<strong>in</strong> (12.5 g a.i./ha) were proved to be <strong>use</strong>ful <strong>in</strong> the management <strong>of</strong><br />

BPH and leaf folder similar to or better than monocrotophos (500 g a.i./ha) (Krishnaiah et al., 2003).<br />

The comb<strong>in</strong>ation treatments although reduced the mirid bugs (MB), the predators <strong>of</strong> BPH <strong>in</strong> absolute<br />

numbers, ma<strong>in</strong>ta<strong>in</strong>ed favourable BPH/MB ratio on par with untreated control. These results have been<br />

confirmed <strong>in</strong> coord<strong>in</strong>ated experiments also (Krishnaiah et al., 2003) (Table 15).<br />

85


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

Table 14 : Influence <strong>of</strong> bupr<strong>of</strong>ez<strong>in</strong> <strong>in</strong> management <strong>of</strong> BPH resurgence due to synthetic pyrethroids<br />

Insecticide<br />

Cypermethr<strong>in</strong> 100 1710a 89.3a 18.8a 8.5a 5.61a<br />

Deltamethr<strong>in</strong> 50 1835a 91.0a 21.0a 9.0a 4.83b<br />

Bupr<strong>of</strong>ez<strong>in</strong><br />

Cypermethr<strong>in</strong> +<br />

200 32c 48.5b 0.7b 4.5bc 4.16b<br />

Bupr<strong>of</strong>ez<strong>in</strong><br />

Deltamethr<strong>in</strong> +<br />

100 +200 16c 32.8bc 0.5b 1.5d 5.88a<br />

Bupr<strong>of</strong>ez<strong>in</strong> 50 +200 17c 27.3c 0.7b 2.0cd 5.88a<br />

Monocrotophos 500 185b 96.3a 1.9b 6.0ab 4.50b<br />

Untreated control 154b 102.5a 1.3b 7.0ab 4.33b<br />

Dosage and Application Methods<br />

As discussed earlier dosage and method <strong>of</strong> application also <strong>in</strong>fluence the degree <strong>of</strong> resurgence.<br />

Therefore, it is necessary to recommend correct dosage <strong>of</strong> the effective <strong><strong>in</strong>secticide</strong>. This is particularly<br />

important <strong>in</strong> case <strong>of</strong> BPH as it feeds at the basal portion <strong>of</strong> the plant, and is mostly sedentary. It seldom<br />

comes <strong>in</strong> contact with the <strong><strong>in</strong>secticide</strong> sprayed. Application <strong>of</strong> high volume spray is drudgery and <strong>in</strong>volves<br />

high cost. Therefore, farmers <strong>use</strong> too little spray fluid result<strong>in</strong>g <strong>in</strong> poor coverage. Pick<strong>in</strong> et. al. (1980)<br />

suggested that the deposition <strong>of</strong> <strong><strong>in</strong>secticide</strong> at the feed<strong>in</strong>g site <strong>of</strong> BPH with ULV application is very<br />

effective. They also reported that controlled droplet application technique could provide, effective<br />

control <strong>of</strong> BPH. Usually, <strong><strong>in</strong>secticide</strong>s applied as foliar sprays, when exposed <strong>in</strong> the field have residual<br />

toxicity for short period only. Accord<strong>in</strong>g to Mochida and He<strong>in</strong>richs (1983), micro-encapsulation <strong>of</strong><br />

<strong><strong>in</strong>secticide</strong>s may provide means <strong>of</strong> slow release thus <strong>in</strong>creas<strong>in</strong>g residual toxicity.<br />

Botanical Insecticides<br />

Use <strong>of</strong> <strong>in</strong>digenous plant products such as neem oil will go a long way <strong>in</strong> overcom<strong>in</strong>g the problem <strong>of</strong><br />

resurgence. Krishnaiah and Kalode (1993b) reported that some <strong>of</strong> the neem formulations (Neemark,<br />

Nimbosol, Nimba (IARI), Neemta 2100, and Repel<strong>in</strong>) are effective aga<strong>in</strong>st BPH under greenho<strong>use</strong> conditions.<br />

It has also been documented that Neem oil at 1% and 4% concentrations does not ca<strong>use</strong> resurgence <strong>of</strong><br />

86<br />

Rate<br />

g a.i./ha<br />

BPH<br />

Mirid bugs/<br />

10 hills<br />

BPH/MB<br />

BPH/MB<br />

83 DAT 83 DAT 83 DAT 83 DAT<br />

Spiders/<br />

10 hills Yield<br />

(t/ha)<br />

(Krishnaiah et al., 1996)<br />

NB: Values <strong>in</strong> the same column followed by a common letter do not differ significantly at P = 0.05<br />

accord<strong>in</strong>g to l.s.d method.


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

Table 15 : Efficacy <strong>of</strong> synthetic pyrethroid and neonicot<strong>in</strong>oid <strong><strong>in</strong>secticide</strong>s and their comb<strong>in</strong>ations aga<strong>in</strong>st<br />

BPH, stem borer and leaf folder and safety to natural enemies under field conditions, wet season, 2001<br />

Insecticide<br />

Rate<br />

(g a.i./ha)<br />

BPH Mirid bugs<br />

(AN/10 h) (AN/10 h)<br />

BPH/MB<br />

(AN/10 h)<br />

Stem<br />

LFDL/10 h<br />

borer(%DH)<br />

61 DAT 61 DAT 61 DAT 51 DAT 75 DAT<br />

Yield<br />

(t/ha)<br />

Betacyfluthr<strong>in</strong> 12.5 2218d 335a 6.6d 7.5b 8a 1.8<br />

Thiamethoxam 25 64a 29d 2.2abc 4.4a 28bc 3.1<br />

Imidacloprid 25 47a 25d 2.0ab 7.4b 28bc 3.5<br />

Betacyfluthr<strong>in</strong> +<br />

Thiamethoxam<br />

12.5 + 25 64a 44d 1.9a 6.6ab 17ab 3.8<br />

Betacyfluthr<strong>in</strong> +<br />

Imidacloprid<br />

12.5 + 25 290b 87c 3.2bc 5.2ab 22b 3.7<br />

Monocrotophos 500 294b 103c 2.9abc 6.0ab 17ab 3.5<br />

Untreated Control 684c 212b 3.3c 17.4c 39c 3.2<br />

(Krishnaiah et. al. 2003)<br />

AN = Average number, DAT = Days after transplantation, BPH = Brown planthopper, DH = Dead hearts,<br />

NB: All the <strong><strong>in</strong>secticide</strong> treatments were given at 34, 45, 54 and 66 DAT.<br />

The values <strong>in</strong> a column followed by the same letter are not significantly different at P=0.05 accord<strong>in</strong>g to<br />

l. s.d method.<br />

BPH when there was a complete hopper burn <strong>in</strong> deltamethr<strong>in</strong> treated plants (Krishnaiah and Kalode,<br />

1992).<br />

Further <strong>in</strong>tensive field studies revealed that the neem formulations viz., Neemgold and Nimbecid<strong>in</strong>e<br />

which are oil based with low azadiracht<strong>in</strong> content (300 ppm) when <strong>use</strong>d at 4% concentration (12 ppm<br />

azadiracht<strong>in</strong>) prevented the resurgence <strong>of</strong> BPH ca<strong>use</strong>d by synthetic pyrethroid deltamethr<strong>in</strong> (25 g a.i. /<br />

ha) as tank mix before spray<strong>in</strong>g, or as alternate applications with deltamethr<strong>in</strong>. However, Neem Azal T/S<br />

hav<strong>in</strong>g 10,000 ppm azadiracht<strong>in</strong> at 0.5% concentrations (50 ppm <strong>of</strong> azadiracht<strong>in</strong>) could not prevent<br />

resurgence <strong>of</strong> BPH ca<strong>use</strong>d by deltamethr<strong>in</strong> <strong>in</strong> similar applications (Krishnaiah et al., 2000). Thus,<br />

suggest<strong>in</strong>g that the constituents other than azadiracht<strong>in</strong> present <strong>in</strong> oil based neem formulations appeared<br />

to be responsible for prevent<strong>in</strong>g resurgence <strong>of</strong> BPH ca<strong>use</strong>d by deltamethr<strong>in</strong> under field conditions <strong>in</strong> <strong>rice</strong>.<br />

Resistant Varieties<br />

Resistant varieties have tremendous capacity to lower the degree <strong>of</strong> resurgence. Therefore, these<br />

must be propagated for cultivation <strong>in</strong> large areas to keep the BPH problem under check. However, the<br />

87


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

problem <strong>of</strong> biotypes needs to be considered and sequential release <strong>of</strong> varieties must be followed to keep<br />

pace with the development <strong>of</strong> biotypes. This appears to be a practical and sound way <strong>of</strong> overcom<strong>in</strong>g the<br />

resurgence problem.<br />

Insecticide Resistance<br />

Development <strong>of</strong> <strong><strong>in</strong>secticide</strong> resistance <strong>in</strong> BPH aga<strong>in</strong>st the commonly <strong>use</strong>d <strong><strong>in</strong>secticide</strong>s could lead to<br />

resurgence. Therefore, cont<strong>in</strong>uous monitor<strong>in</strong>g <strong>of</strong> the field populations for their level <strong>of</strong> <strong><strong>in</strong>secticide</strong> resistance<br />

is a practical necessity. Careful selection <strong>of</strong> alternatives from among the available <strong><strong>in</strong>secticide</strong>s must be<br />

based on cross resistance pattern <strong>of</strong> the local populations to <strong><strong>in</strong>secticide</strong>s.<br />

88


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

BOTANICAL INSECTICIDES IN RICE<br />

PEST MANAGEMENT<br />

Farmers <strong>in</strong> oriental region were us<strong>in</strong>g simple plant products such as pyrethrum, derris, tobacco and neem<br />

for controll<strong>in</strong>g <strong>in</strong>sect pests prior to the <strong>in</strong>troduction <strong>of</strong> synthetic pesticides. Neem leaves were mixed with<br />

gra<strong>in</strong> before storage to protect from <strong>in</strong>sect pests. The development <strong>of</strong> the concept <strong>of</strong> <strong>in</strong>tegrated pest<br />

management and environmental concern among scientists, adm<strong>in</strong>istrators and general public led to renewed<br />

emphasis on utilization <strong>of</strong> plant products particularly neem <strong>in</strong> pest management. Neem, Azadiracta <strong>in</strong>dica<br />

A. Juss. is grown extensively <strong>in</strong> tropical and subtropical regions <strong>of</strong> the world. Every part <strong>of</strong> the plant is<br />

bitter but maximum concentration <strong>of</strong> bitter is present <strong>in</strong> seed. Neem oil, which is expelled from decorticated<br />

neem seed by mechanical means and the rema<strong>in</strong><strong>in</strong>g solid residue called neem cake have been extensively<br />

tested for f<strong>in</strong>d<strong>in</strong>g their efficiency <strong>in</strong> controll<strong>in</strong>g <strong>rice</strong> pests. Other plant species such as p<strong>in</strong>nai (Calophyllum<br />

<strong>in</strong>ophyllum) and mahua (Madhuca longifolia var latifolia) have also undergone a limited test<strong>in</strong>g. Greenho<strong>use</strong><br />

studies have been conducted on the effect <strong>of</strong> botanicals on repellency, feed<strong>in</strong>g <strong>in</strong>hibition, growth,<br />

metamorphosis disruption, oviposition and egg hatchability and followed by field <strong>in</strong>vestigation. Of late<br />

some commercial neem formulations are also available (Table 16).<br />

Table 16 : Details <strong>of</strong> some commercially exploited neem formulations<br />

Neem formulation Azadiracht<strong>in</strong> Conc. (ppm) Source<br />

Achook 300 M/s. Godrej Agrovet Ltd,<br />

Chennai - 600098.<br />

Neemax 300 M/s. Ecomax Agrosystems,<br />

Hyderabad - 500 029<br />

Nimbicid<strong>in</strong>e 300 M/s. T. StaRes & Co. Ltd,<br />

Coimbatore-641 018<br />

Neemgold / 300 M/s. SPIC Bioproducts,<br />

Neemgold 4 Chennai - 600 116.<br />

Rakshak 1500 Murkumbi Manufactur<strong>in</strong>g,<br />

Belgaum - 590 002.<br />

Fortune Aza 1500 M/s. Fortune Biotech Ltd,<br />

Secunderabad - 500 380.<br />

Econeem 3000 M/s. P. J. Margo Pvt. Ltd,<br />

Bangalore - 560 058.<br />

Neem Azal TIS 10000 M/s. E.LD. Parry (India) Ltd,<br />

Chennai - 600001.<br />

89


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

GREENHOUSE STUDIES<br />

Orientation and settl<strong>in</strong>g behaviour<br />

Neem oil possesses a strong repellance activity to brown planthopper (BPH). Only a very low number <strong>of</strong><br />

BPH settled on treated plants. Even at 3% concentration <strong>of</strong> oil, the spray treated plants attracted not<br />

more than 36% <strong>of</strong> <strong>in</strong>sects (Saxena et al., 1980a). There was a progressive decrease <strong>in</strong> arrivals <strong>of</strong> BPH<br />

and WBPH to treated plants with an <strong>in</strong>crease <strong>in</strong> concentrations <strong>of</strong> neem oil. When neem oil treated leaves<br />

were <strong>of</strong>fered to leaf folder <strong>in</strong> a choice test, it significantly lowered the number <strong>of</strong> larvae that arrived on<br />

treated leaves, particularly at 12% or higher concentration (Saxena et al., 1980b). However, similar<br />

effects were not observed <strong>in</strong> case <strong>of</strong> green leafhopper females (Heyde et al., 1983).<br />

In a comparative study (Krishnaiah and Kalode 1988b), with other non-edible oils, neem oil and p<strong>in</strong>nai oil<br />

applied as spray exhibited more or less similar repellency to BPH adults while mahua oil was <strong>in</strong>ferior.<br />

However, neem cake applied to soil did not restra<strong>in</strong> BPH settl<strong>in</strong>g response on TN 1 <strong>in</strong> a choice test.<br />

(Saxena et al., 1984). The soil applied neem cake might not have released sufficient voaltiles to show<br />

repellency to <strong>in</strong>sects arriv<strong>in</strong>g on leaves.<br />

Feed<strong>in</strong>g behaviour<br />

Feed<strong>in</strong>g deterrency <strong>of</strong> neem oil was observed <strong>in</strong> many <strong>in</strong>sect pests. On treated plants, BPH adults were<br />

restless, took longer time to locate feed<strong>in</strong>g sites and <strong>in</strong>gested smaller quantities <strong>of</strong> food. Such effects<br />

were not observed <strong>in</strong> vegetable oil treated plants (Saxena et al., 1980a). Significant reduction <strong>in</strong> quantity<br />

<strong>of</strong> food <strong>in</strong>gested by BPH, WBPH and GLH occurred even at 1% concentration <strong>of</strong> neem oil (Heyde et al.,<br />

1983). Custard apple oil was relatively more effective as antifeedant than neem oil aga<strong>in</strong>st BPH, WBPH<br />

and GLH (Saxena et al., 1983). Among others, p<strong>in</strong>nai and mahua oils were comparable to neem oil <strong>in</strong><br />

reduc<strong>in</strong>g BPH feed<strong>in</strong>g as <strong>in</strong>dicated by significantly less honeydew excretion on TN 1 plants even at 3%<br />

concentration (Krishnaiah and Kalode, 1988b). Reduced phloem feed<strong>in</strong>g <strong>in</strong>creased xylem feed<strong>in</strong>g, repeated<br />

prob<strong>in</strong>g and pr<strong>of</strong><strong>use</strong> salivation <strong>of</strong> Nephotettix virescens on plants sprayed with 10% neem oil was<br />

demonstrated by Saxena and Khan (1985).<br />

Significant reduction <strong>in</strong> duration <strong>of</strong> phloem feed<strong>in</strong>g by GLH was observed with neem seed bitters (NSB) at<br />

2500 ppm (Kareem et al., 1988). On neem oil (50%) treated plants feed<strong>in</strong>g duration <strong>in</strong> BPH also was<br />

decreased to 6 m<strong>in</strong>. <strong>in</strong> contrast to 53 m<strong>in</strong> <strong>in</strong> control (Rajasekharan et al., 1987).<br />

Antifeedant activity <strong>of</strong> neem oil aga<strong>in</strong>st leaf folder was higher with an <strong>in</strong>crease <strong>in</strong> concentration <strong>of</strong> neem<br />

oil spray on plants, as measured by quantum <strong>of</strong> excreta. However, even neem oil spray at 25% was<br />

similar to control when treated plants were exposed to 2 to 4 days light (Saxena et al., 1980b). Reduced<br />

feed<strong>in</strong>g period <strong>of</strong> leaf folder on NSB treated leaf cuts was shown by Kareem et al., (1988).<br />

90


Gr Growth Gr wth and and metamor metamorphosis<br />

metamor phosis<br />

EFFECT EFFECT OF OF NEEM NEEM OIL OIL AND AND O OOTHER<br />

O THER OILS<br />

OILS<br />

Insecticides <strong>in</strong> Rice IPM (DRR)<br />

In case <strong>of</strong> leaf- and planthoppers, disruption <strong>of</strong> growth was ma<strong>in</strong>ly assessed <strong>in</strong> terms <strong>of</strong> proportion <strong>of</strong><br />

first <strong>in</strong>star nymphs reach<strong>in</strong>g adult stage. While <strong>in</strong> case <strong>of</strong> lepidopterous <strong>in</strong>sects irregularities <strong>in</strong> the form<br />

<strong>of</strong> larval and pupal <strong>in</strong>termediaries were observed.<br />

On plants treated with neem oil at 3%, only 3 to 9% <strong>of</strong> BPH nymphs became adults as compared to 67 to<br />

88% reach<strong>in</strong>g adult stage <strong>in</strong> relatively shorter periods <strong>in</strong> untreated control (Saxena et al., 1980a).<br />

Similarly, neem oil retarted the growth and development <strong>of</strong> first <strong>in</strong>star WBPH and GLH nymphs also. Only<br />

12% <strong>of</strong> WBPH and 2% <strong>of</strong> GLH nymphs became adults (Heyde et al., 1983) at 3% concentration. Among<br />

other oils, custard apple oil was more toxic to BPH, WBPH and GLH than ch<strong>in</strong>aberry oil and neem oil<br />

(Saxena et al., 1983).<br />

Mahua and p<strong>in</strong>nai oils exhibited more toxicity to BPH than maravetty (Hydnocarpus weightiana) oil. In<br />

further studies, p<strong>in</strong>nai oil was similar to neem oil <strong>in</strong> affect<strong>in</strong>g the growth <strong>of</strong> first <strong>in</strong>star nymphs <strong>of</strong> BPH and<br />

GLH while mahua oil was <strong>in</strong>ferior. However, an oil concentration <strong>of</strong> 6% was required to obta<strong>in</strong> a considerable<br />

adverse effect on the growth <strong>of</strong> these homopetrans (Krishnaiah and Kalode, 1988b).<br />

Regard<strong>in</strong>g lepidopteran <strong>in</strong>sects, conf<strong>in</strong>ement <strong>of</strong> 5th <strong>in</strong>star leaf folder (Cnaphalocrocis med<strong>in</strong>alis) larvae to<br />

cut leaves treated with 12% or more neem oil resulted <strong>in</strong> pronounced aberrations <strong>in</strong> behaviour and form,<br />

and enhanced mortality dur<strong>in</strong>g metamorphosis (Saxena et al., 1980b). Some larvae became dark <strong>in</strong><br />

colour, while others failed to fold leaves or developed <strong>in</strong>to larval-pupal <strong>in</strong>termediaries.<br />

EFFECT OF NEEM SEED BITTERS<br />

When neem seed kernel water extract (neem bitters) was dried at low temperatures and <strong>use</strong>d as an<br />

aqueous spray at 2500 to 10,000 ppm, it completely <strong>in</strong>hibited the growth <strong>of</strong> BPH and GLH (Kareem et al.,<br />

1987). Krishnaiah and Kalode (1988b) found neem seed bitters to be more effective as seedl<strong>in</strong>g root dip<br />

than as spray. Green leafhopper was more susceptible to neem seed kernel water extract than BPH as<br />

spray as well as root dip treatments. Although neem seed bitters, as a formulation appeared to be far<br />

superior to oils, production <strong>in</strong> bulk quantities pose problems (Table 17).<br />

EFFECT OF COMMERCIAL NEEM FORMULATIONS<br />

When commercial neem formulations such as Neemax, Neemgold, Rakshak, Neem Azal T/S, were evaluated<br />

aga<strong>in</strong>st BPH nymphs for their direct toxicity and LC 50 values were calculated, the results clearly <strong>in</strong>dicated<br />

that the oil based neem formulations with lower azadiracht<strong>in</strong> content (300 ppm) exhibited relatively lower<br />

toxicity than formulations with higher azadiracht<strong>in</strong> content on formulation basis. But, when assessed<br />

based on azadiracht<strong>in</strong> concentration, the oil based formulations exhibited relatively higher toxicity. This<br />

showed that constituents other than azadiracht<strong>in</strong> are also play<strong>in</strong>g role <strong>in</strong> exercis<strong>in</strong>g toxic effect aga<strong>in</strong>st<br />

BPH (Table 18) (Krishnaiah, 2000).<br />

91


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

Table 17 : Effect <strong>of</strong> neem bitters (neem seed kernel water extract) on nymphal survival<br />

<strong>of</strong> brown planthopper (BPH) and green leafhoppers (GLH)<br />

Neem bitters<br />

concentration (ppm)<br />

100 95a 80a 65b 58b<br />

500 83ab 42b 20c 0c<br />

2,500 40c 0c 0d 0c<br />

5,000 1d 0c 0d 0c<br />

10,000 0d 0c 0d 0c<br />

0 (Control) 84ab 87a 84a 68a<br />

EFFECT OF RICIN FROM CASTOR<br />

Kwon et. al. (1991) from Korea republic observed high <strong>in</strong>secticidal activity <strong>of</strong> ric<strong>in</strong> (a compound isolated<br />

from castor leaves and identified as 1,2-dihydro-4-methyl-2-oxo-3-pyrid<strong>in</strong>e carbonitrile) to BPH.<br />

92<br />

Brown planthoppers Green leafhoppers<br />

Spray Root dip Spray Root dip<br />

Figures <strong>in</strong> a column followed by common letter are not significantly different at P = 0.05;<br />

(Krishnaiah and Kalode, 1988b)<br />

Table 18 : Relative Efficacy <strong>of</strong> neem formulations aga<strong>in</strong>st BPH<br />

Neem formulations LC 50 (% Conc.)<br />

Azadiracht<strong>in</strong> Conc.<br />

(ppm) <strong>in</strong> formulation<br />

LC 50 as Conc. Of<br />

Azadiracht<strong>in</strong> (ppm)<br />

Nimbecid<strong>in</strong>e* 1.695 300 5.09<br />

Neem Azal T/S 0.962 10000 96.16<br />

Econeem 2.114 3000 63.42<br />

Neemgold 4* 0.529 300 1.59<br />

Fortune Aza 0.973 1500 14.59<br />

Rakshak 1.454 1500 21.81<br />

Achook* 1.317 300 3.95<br />

Neemax* 0.854 300 2.56<br />

* oil based neem formulations<br />

(Krishnaiah, 2000)


Oviposition and egg sterility<br />

Insecticides <strong>in</strong> Rice IPM (DRR)<br />

Earlier studies <strong>in</strong>dicated that oviposition by BPH was deterred when gravid females were conf<strong>in</strong>ed to<br />

plants treated with 12% or higher concentration <strong>of</strong> neem oil (Saxena et al., 1980a). But there was no<br />

significant difference between 12 and 100% neem oil concentrations (Kalode and Krishnaiah, 1987).<br />

Similarly, some differences <strong>in</strong> fecundity and egg hatchability <strong>of</strong> BPH were observed <strong>in</strong> studies at IRRI. But<br />

studies at DRR showed that such differences among concentrations were not significant <strong>in</strong> case <strong>of</strong> BPH<br />

and GLH (Kalode and Krishnaiah 1987). When roots <strong>of</strong> 7 day old TN 1 seedl<strong>in</strong>gs were soaked <strong>in</strong> 5%<br />

neem seed kernel extract (NSKE) and 1% urea for 3 to 24 h, and GLH were allowed to oviposit, the<br />

number <strong>of</strong> eggs deposited were significantly less than water but higher than urea treated controls (Kareem<br />

et al., 1988). The results obta<strong>in</strong>ed <strong>in</strong> such studies therefore, showed no consistency on the effect <strong>of</strong><br />

NSKE on oviposition <strong>of</strong> GLH.<br />

Dipp<strong>in</strong>g the eggs <strong>of</strong> leaf folder, C. med<strong>in</strong>alis <strong>in</strong> neem oil (at 12, 25 and 50% concentration) largely<br />

prevented the emergence <strong>of</strong> first <strong>in</strong>star larvae (Saxena et al., 1980b). Such <strong>in</strong>hibitory action most<br />

probably was ca<strong>use</strong>d by a chok<strong>in</strong>g effect <strong>of</strong> the oil but not by growth regulat<strong>in</strong>g properties <strong>of</strong> the <strong>in</strong>gredients<br />

(Schmutterer 1990).<br />

Behaviour <strong>of</strong> exposed <strong>in</strong>sects<br />

In homopterous <strong>in</strong>sects, such as BPH, WBPH and GLH, the longevity was adversely affected by application<br />

<strong>of</strong> neem derivatives. Insect survival was greatly reduced when caged <strong>in</strong> pairs on plants treated with neem<br />

oil at 6% or higher concentrations. The pre-ovipositional period <strong>of</strong> BPH, WBPH and GLH was prolonged by<br />

2 to 8 days at higher levels <strong>of</strong> neem oil, there by considerably reduc<strong>in</strong>g effective oviposition period<br />

(Heyde et al., 1983). Females <strong>of</strong> BPH topically treated with 2.5 to 5.0 mg neem oil per <strong>in</strong>sect or caged on<br />

plants sprayed with 3% neem oil, failed to produce normal courtship signals. At higher concentrations,<br />

most females did not emit signals and therefore, males could not locate them (Saxena et al., 1989;<br />

Schmutterer 1990).<br />

SYSTEMIC ACTION OF NEEM FORMULATIONS IN RICE<br />

Studies on systemic action <strong>of</strong> Neem Azal T/S and Rakshak revealed that follow<strong>in</strong>g application through<br />

foliar sprays and seedl<strong>in</strong>g root dip, the <strong>rice</strong> seedl<strong>in</strong>gs showed significantly high mortality <strong>of</strong> BPH, WBPH<br />

and GLH conf<strong>in</strong>ed to untreated portions <strong>of</strong> the plant thereby confirm<strong>in</strong>g downward and upward translocation<br />

<strong>of</strong> active pr<strong>in</strong>ciples <strong>in</strong> neem formulation. Results also showed that 6 hours was the optimum period for<br />

seedl<strong>in</strong>g root dip with Neem Azal T/S for gett<strong>in</strong>g good mortality <strong>of</strong> GLH (Table 19) (Krishnaiah, 2000).<br />

FIELD EVALUATION<br />

In India, neem oil was evaluated aga<strong>in</strong>st <strong>in</strong>sect pests attack<strong>in</strong>g <strong>rice</strong> fields as early as 1978 <strong>in</strong> comparison<br />

93


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

with synthetic <strong><strong>in</strong>secticide</strong>s such as qu<strong>in</strong>alphos, phosalone, chlorpyriphos, monocrotophos, etc. (Krishnaiah<br />

and Kalode 1984). At IRRI, field evaluation <strong>of</strong> neem oil was <strong>in</strong>itiated <strong>in</strong> 1978. Incidence <strong>of</strong> ragged stunt<br />

virus (RGSV) disease transmitted by BPH was significantly reduced with 12% ultra low volume (ULV 5 to<br />

10 l/ha spray fluid) spray <strong>of</strong> neem oil, applied five times at an <strong>in</strong>terval <strong>of</strong> 20 days (Saxena et al., 1980a).<br />

Application <strong>of</strong> 120 kg N/ha as a mixture <strong>of</strong> neem cake and urea (3: 10) generally lowered the <strong>in</strong>cidence<br />

<strong>of</strong> grassy stunt virus and its vector BPH, and tungro virus. However, other pests such as whorl maggot,<br />

stem borer and gundhi bug were not affected by neem cake. The plots treated with neem cake yielded<br />

significantly more than control. However, this might partly be due to a more efficient utilization <strong>of</strong> applied<br />

nitrogen through a reduction <strong>in</strong> nitrification by neem cake than through any pest control properties <strong>of</strong> the<br />

material.<br />

In Ch<strong>in</strong>a, basal application <strong>of</strong> neem cake (150 kg/ha) followed by 2% neem oil and custard apple oil spray<br />

(4 l/ha) resulted <strong>in</strong> a moderate control <strong>of</strong> planthoppers, N. lugens, S. furcifera and leaf folder, C. med<strong>in</strong>alis<br />

(Chiu et al., 1988). Green leafhopper population was significantly lowered by a mixture <strong>of</strong> 2% neem oil<br />

and custard apple oil (4:1) when applied at 10 day <strong>in</strong>terval <strong>in</strong> Philipp<strong>in</strong>es (Atienza et al., 1988). A mixture<br />

<strong>of</strong> 50% neem oil and custard apple oil (4:1) alone (6 l/ha) or <strong>in</strong> comb<strong>in</strong>ation with a basal application <strong>of</strong><br />

neem cake, checked white head <strong>in</strong>cidence (Kareen et al., 1987). In India, low volume (LV – 50 to 100 l/<br />

ha spray fluid) spray <strong>of</strong> 10% neem oil at 10, 30, 45 and 60 days after transplant<strong>in</strong>g <strong>in</strong> Tamil Nadu<br />

significantly reduced white ear head (stem borer) damage to 2.8% as aga<strong>in</strong>st 6.5% <strong>in</strong> control (Murugesan<br />

et al., 1987). However, a high volume application (500 to 1000 l/ha) <strong>of</strong> 2% neem oil or a ULV application<br />

<strong>of</strong> 50% neem oil was <strong>in</strong>effective aga<strong>in</strong>st stem borers. High volume application <strong>of</strong> 1% or 3% neem oil or<br />

LV application <strong>of</strong> 5% or 10% neem oil reduced both BPH population and leaf folder damage, equal to<br />

monocrotophos. These treatments were superior to ULV (Rajasekaran et al., 1987).<br />

Basal application <strong>of</strong> neem cake (100 kg/ha) followed by neem oil spray at 10 and 30 days after plant<strong>in</strong>g<br />

proved effective aga<strong>in</strong>st stem borers (Samalo, 1988). A second round <strong>of</strong> spray application co<strong>in</strong>cid<strong>in</strong>g<br />

with moth emergence was considered as deterrent for oviposition and there by result<strong>in</strong>g <strong>in</strong> less larval<br />

damage. However, studies at DRR showed that neem treatments were not as effective as monocrotophos<br />

94<br />

Table 19 : Upward translocation <strong>of</strong> active pr<strong>in</strong>ciples <strong>in</strong> neem formulations<br />

when given as seedl<strong>in</strong>g root dip<br />

Treatment<br />

2<br />

% Mortality <strong>of</strong> GLH (at days after exposure)<br />

3 4 5 7<br />

Neem Azal T/S 200 ppm 13b 44b 56b 62b 66b<br />

Neem Azal T/S 300 ppm 21b 46b 59b 60b 61b<br />

Rakshak 100 ppm 20b 42b 50b 55b 60b<br />

Control 0a 0a 0a 0a 0.8a<br />

Note: Figures <strong>in</strong> a column followed by same letter are not significantly different at 5% accord<strong>in</strong>g to lsd


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

aga<strong>in</strong>st dead heart damage ca<strong>use</strong>d by stem borers. As ULV, neem oil along with neem cake as basal<br />

application gave gra<strong>in</strong> yields lower than monocrotophos (Kalode and Krishnaiah 1987). Similar superiority<br />

<strong>of</strong> monocrotophos over neem oil was reported from Punjab also (Jaswant S<strong>in</strong>gh et al., 1990).<br />

INEFFECTIVENESS OF NEEM PRODUCTS AGAINST GALL MIDGE<br />

Gall midge <strong>in</strong>cidence was lowered <strong>in</strong> Orissa, from 27% <strong>in</strong> untreated control to 20% <strong>in</strong> neem cake-urea<br />

mixture (1:3 w/w) treated plots at 75 kg N/ha. However, the differences were not significant (Panda,1987).<br />

In another study (Samalo, 1988) from Orissa, neem cake (100 kg/ha) and 3% neem oil spray recorded<br />

a slightly less <strong>in</strong>cidence <strong>of</strong> gall midge (21.2% to 21.5% silver shoots). In Chattisgarh, neem oil spray at<br />

4% as high volume was <strong>in</strong>effective aga<strong>in</strong>st gall midge (Shukla et al., 1987). These results showed that<br />

neem products are more or less <strong>in</strong>effective aga<strong>in</strong>st gall midge under field conditions.<br />

LOW EFFICACY OF NEEM PRODUCTS IN MULTIPEST SITUATIONS<br />

Green leafhopper population and tungro virus <strong>in</strong>fection were significantly reduced <strong>in</strong> plots planted with<br />

seedl<strong>in</strong>gs treated with neem bitters followed by weekly foliar sprays at 2500 ppm, but was not comparable<br />

to monocrotophos (0.75 kg a.i./ha) (Kareem et al., 1988). Basal application <strong>of</strong> neem cake (150 kg/ha)<br />

followed by 3% spray <strong>of</strong> oils (neem, mahua, p<strong>in</strong>nai or neem seed kernel suspension) were <strong>in</strong>ferior<br />

(Krishnaiah and Kalode, 1988b) to monocrotophos (0.50 kg a.i./ha) <strong>in</strong> check<strong>in</strong>g leaf folder damage.<br />

Shukla and Kaushik (1994) observed <strong>in</strong> a field experiment that NSKE (5%) resulted <strong>in</strong> 80% reduction <strong>in</strong><br />

population <strong>of</strong> WBPH <strong>in</strong> kharif compared to 53% reduction <strong>in</strong> rabi. Neem oil (3%) could reduce 77% and<br />

32% respectively as compared to 91% and 66% <strong>in</strong> case <strong>of</strong> monocrotophos (0.5 kg a.i./ha). Korat et al.,<br />

(1999a) evaluated the commercial neem formulations with different levels <strong>of</strong> azadiracht<strong>in</strong> like, Nimbicid<strong>in</strong>e,<br />

Neemax, Neem Gold, Econeem, Neem Azal T/S and Fortune-Aza and compared with chlorpyriphos. They<br />

observed that these formulations were as good as chlorpyriphos aga<strong>in</strong>st leaf folder, stem borer and<br />

WBPH. Sudhakar (2000) from Rajendranagar observed that Neemorate, a granular neem formulation @<br />

20kg /ha was more effective aga<strong>in</strong>st stem borer, gall midge, whorl maggot and thrips, compared to two<br />

spray formulations <strong>of</strong> neem viz. Repel<strong>in</strong> and Neemax. The effectiveness <strong>of</strong> all the formulations <strong>in</strong>creased<br />

when comb<strong>in</strong>ed with chlorpyriphos.<br />

SAFETY TO NATURAL ENEMIES<br />

CRUDE FORMULATIONS OF NEEM<br />

Botanicals such as neem oil, neem cake and other non-edible oils and cakes are considered to be safer to<br />

natural enemies than synthetic <strong><strong>in</strong>secticide</strong>s.<br />

Predators <strong>of</strong> leaf and planthoppers such as spiders, particularly Lycosa pseudoannulata and mirid bug,<br />

Cyrtorh<strong>in</strong>us lividipennis were found unaffected by neem cake and urea (3:10) application to <strong>rice</strong> fields at<br />

IRRI (Saxena et al., 1984). Neem oil (10 l/ha) as a high volume spray emulsified with detergent registered<br />

95


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

marg<strong>in</strong>ally higher population <strong>of</strong> mirid bug (Krishnaiah and Kalode 1984). In Ch<strong>in</strong>a, basal application <strong>of</strong><br />

neem cake (150 kg/ha) followed by 2% neem oil and custard apple oil mixture (150 l/ha) was reported<br />

to be safe for Lycosa as well as egg parasite, Trichogramma (Chiu et al., 1988). In the Philipp<strong>in</strong>es, plots<br />

planted with seedl<strong>in</strong>gs systematically treated with neem seed bitters followed by weekly foliar spray<br />

ma<strong>in</strong>ta<strong>in</strong>ed predatory mirid bug and spider populations similar to untreated check, while monocrotophos<br />

(0.75 kg a.i./ha) significantly lowered the natural enemies (Kareem et al., 1988). Raguraman and<br />

Rajasekharan (1996) observed better colonization <strong>of</strong> predatory wolf spider, Lycosa pseudoannulata <strong>in</strong><br />

neem treatments like NO, NSKE, and neemcake extract compared to monocrotophos. Dash et al., (2001)<br />

also reported better recolonization <strong>of</strong> all the predatory spider populations viz. Lycosa pseudoannulata,<br />

Tetragnatha maxillosa, and Argiope catenulata and mirid bugs, Cyrtorh<strong>in</strong>us lividipennis.<br />

COMMERCIAL FORMULATIONS OF NEEM<br />

Experiments on safety <strong>of</strong> neem formulations to velid predator, Microvelia douglasi atrol<strong>in</strong>eata showed that<br />

Neemax and Rakshak were the safest neem formulations followed by Fortune Aza. Studies on safety <strong>of</strong><br />

neem formulations to mirid bug Cyrtorh<strong>in</strong>us lividipennis revealed that Neemgold at 0.5% and Neemax at<br />

2% were the safest while 100% mortality was recorded <strong>in</strong> <strong><strong>in</strong>secticide</strong> treatments (Jhansi Lakshmi et. al.<br />

1998). Laboratory tests on the safety <strong>of</strong> neem formulations to egg parasite Trichogramma japonicum<br />

revealed that % parasitization as well as emergence <strong>of</strong> adults was affected to a lower degree by neem<br />

Table 20 : Potential toxicity <strong>of</strong> neem formulations to Trichogramma japonicum<br />

Neem fomulation<br />

Neemax 300 ppm 40 64.8e 100.0a 38.3h 83.4e<br />

Achook 300 ppm 40 56.9e 73.8bc 47.5e 100.0a<br />

FortuneAza 500ppm 5 74.4cd 48.9de 53.5fg 92.0c<br />

Neem Azal T/S 10000 ppm 5 60.6e 52.0e 66.1ncde 86.8de<br />

Econeem 3000 ppm 5 75.4c 100.0a 57.5ef 100.0a<br />

Neem gold 300 ppm 5 42.9fg 28.1f 7.2mn 57.8hi<br />

Rakshak 1500 ppm 5 76.1c 86.6abc 24.4jkl 30.3k<br />

NG-4 300 ppm 2 47.9f 24.5g<br />

Nimbicid<strong>in</strong>e 300ppm 6.0i 16.0g 24.6kjl 32.9k<br />

96<br />

Dosage<br />

(g or ml / l)<br />

Treatment one day<br />

after releas<strong>in</strong>g for<br />

parasitization<br />

Parasitism<br />

(%)<br />

Adult emergence<br />

(%)<br />

T. japonicum<br />

Treatment before<br />

releas<strong>in</strong>g for<br />

parasitization<br />

Parasitism<br />

(%)<br />

Adult emergence<br />

(%)<br />

(Jhansi Lakshmi et. al. 1997 b)


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

formulations (Table 20) than <strong><strong>in</strong>secticide</strong>s like qu<strong>in</strong>alphos and chlorpyriphos (Jhansi Lakshmi et al., 1997b).<br />

When eight neem formulations were tested <strong>in</strong> the greenho<strong>use</strong> aga<strong>in</strong>st the veliid predator, Microvelia<br />

douglasi, it was found that Neemax and Rakshak were the safest neem formulations followed by Fortune<br />

Aza and Econeem at lower dosage whereas Neem Azal, Neemgold, NG4 treatments resulted <strong>in</strong> high<br />

mortality <strong>of</strong> Microvelia (Jhansi Lakshmi et al., 1997a) (Table 21).<br />

Table 21 : Potential toxicity <strong>of</strong> neem formulations to C. lividipennis and M. atrol<strong>in</strong>eata<br />

Neem fomulation / Insecticide Dosage<br />

(g or ml / l)<br />

C. lividipennis M. atrol<strong>in</strong>eata<br />

Percent mortality after<br />

24h 48h 72h 1h 24h<br />

Neemax 300 ppm 40 13.3cd 43.3ab 56.7b 2(3.7) 4(7.4)<br />

Achook 300 ppm 40 53.3b 93.3a 100.0a 0(0) 30(32.9)<br />

FortuneAza 500ppm 5 0(0) 10(16.4)<br />

Neem Azal T/S 10000 ppm 5 20.0c 43.3ab 63.3abd 6(8.9) 100(89.9)<br />

Econeem 3000 ppm 5 16.7cd 76.7ab 83.3ab 0(0) 34(32.4)<br />

Neem gold 300 ppm 5 43.3b 53.3ab 90.0a 2(3.7) 100(89.9)<br />

Rakshak 1500 ppm 5 0(0) 2(3.7)<br />

NG-4 300 ppm 2 36.7bc 83.3a 90.0a 10(16.4) 90(73.6)<br />

Neem oil 40 100(89.9) 100(89.9)<br />

Neem Seed Kernel Extract 2 2(3.7) 76(61.2)<br />

qu<strong>in</strong>alphos 25EC 2 10(14.3) 100(89.9)<br />

Chlorpyriphos 20EC 2.5 100a 100a 100a 100(89.9) 100(89.9)<br />

Monocrotophos 36 WSC 1.5 100a 100a 100a 40(39.2) 60(50.8)<br />

Carb<strong>of</strong>uran 3 G 60 16(20.7) 84(69.3)<br />

Phorate 10 G 20 0(0) 6(11.5)<br />

lsd 0.05 12.24 16.8<br />

Note: figures <strong>in</strong> a column followed by same letter are not significantly different at 0.05% level as per DMRT<br />

(Jhansi Lakshmi et. al. 1997 a)<br />

DISEASE TRANSMISSION<br />

In greenho<strong>use</strong> studies, neem oil was highly effective <strong>in</strong> a concentration dependent manner <strong>in</strong> reduc<strong>in</strong>g the<br />

survival <strong>of</strong> BPH and <strong>in</strong> suppress<strong>in</strong>g transmission <strong>of</strong> both grassy stunt and ragged stunt viral diseases<br />

(Saxena and Khan, 1985). Neem oil and custard apple oil when sprayed at 5, 10, 20, 30 or 50%<br />

concentration significantly reduced GLH survival and tungro virus transmission as compared to Teepol<br />

97


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

(liquid detergent) 0.1%. The <strong>in</strong>sects failed to survive and transmit tungro to plants sprayed with oil<br />

beyond 3 days <strong>of</strong> exposure, while <strong>in</strong> control, the <strong>in</strong>sects survived for 20 days and transmitted tungro for<br />

5 days (Mariappan and Saxena, 1983). Further, a synergistic effect <strong>of</strong> the neem oil and custard apple oil<br />

was also observed. Even at 5% concentration, a mixture <strong>of</strong> neem oil and custard apple oil (4:1) was as<br />

effective as 20% custard apple oil <strong>in</strong> reduc<strong>in</strong>g GLH survival and transmission <strong>of</strong> tungro (Mariappan and<br />

Saxena, 1984). Both survival <strong>of</strong> GLH and tungro virus transmission were significantly reduced by soil<br />

treatment with neem cake and mahua cake (200 kg/ha). Sprays with neem cake extracts (5%), mahua<br />

cake extract (5%), neem bitters (2%) and Repel<strong>in</strong> (2%) significantly lowered GLH survival and tungro<br />

transmission at Coimbatore (Gurubasavaraj et. al, 1988). In Bangladesh, neem oil (3%) was superior to<br />

NSKE (5%) and neem cake <strong>in</strong> reduc<strong>in</strong>g GLH populations and reduc<strong>in</strong>g RTD <strong>in</strong>cidence (Karim, 1999). In<br />

another field trial, lowest population <strong>of</strong> GLH vector and lowest RTD <strong>in</strong>cidence were observed <strong>in</strong> plots<br />

treated with neem cake @ 5 kg / 0.032 ha <strong>of</strong> nursery followed by foliar spray <strong>of</strong> NSKE (5%) (Rajappan et<br />

al., 2000). Considerable reduction <strong>in</strong> populations <strong>of</strong> GLH and tungro <strong>in</strong>fection was reported <strong>in</strong> plots<br />

treated with neem seed bitters before transplant<strong>in</strong>g followed by spray<strong>in</strong>g with 10,000 ppm neem seed<br />

bitters at two week <strong>in</strong>tervals after transplant<strong>in</strong>g (Saxena et al., 1988). Rajappan et al., (1999) observed<br />

reduction <strong>in</strong> <strong>rice</strong> yellow dwarf disease (RYD) transmitted by GLH, follow<strong>in</strong>g the application <strong>of</strong> neem and<br />

pungamia oils but to a lower level compared to <strong><strong>in</strong>secticide</strong> monocrotophos.<br />

EFFECT ON LEAF FOLDER AND STEM BORER<br />

Leaf folder appeared to be more sensitive to neem products compared to stem borer. Rajasekharan et<br />

al., (1987) observed considerable reduction <strong>in</strong> damage ca<strong>use</strong>d by leaf folder larvae under field conditions<br />

followed by application <strong>of</strong> seed oils <strong>of</strong> mahua (Bassia latifolia), maravetty (Hydnocarpus wightiana) and<br />

p<strong>in</strong>nai (Calophyllum <strong>in</strong>ophyllum). Mayab<strong>in</strong>i Jena (1997) reported that neem bark decoction was very<br />

effective <strong>in</strong> reduc<strong>in</strong>g feed<strong>in</strong>g and rate <strong>of</strong> pupation <strong>of</strong> leaf folder compared to neem oil, neem leaf extract<br />

and leaf decoction. Dhaliwal et al., (2002) reported high potency <strong>of</strong> neem based commercial formulations<br />

viz. Rakshak (1%), Neem Azal (5%) <strong>in</strong> reduc<strong>in</strong>g the damage by leaf folder and stem borer under field<br />

conditions. Zhu et al. (2004) from Ch<strong>in</strong>a studied the biological activity <strong>of</strong> azadiracht<strong>in</strong>, the active pr<strong>in</strong>cipal<br />

<strong>in</strong> neem aga<strong>in</strong>st Chilo suppressalis, and observed that the mortality <strong>of</strong> newly hatched larvae was 100%<br />

with<strong>in</strong> 24 hours after treatment follow<strong>in</strong>g the application at 6, 3, and 2 mg azadiracht<strong>in</strong> per litre <strong>of</strong> spray.<br />

DEVELOPMENT AND TESTING OF NEW FORMULATIONS OF NEEM<br />

Considerable effort was put <strong>in</strong> the development <strong>of</strong> formulations from neem at Indian Agricultural Research<br />

Institute, New Delhi and consequently neem powder; an emulsion and a solution were developed. Neem<br />

powder, when mixed with wheat flour and tested aga<strong>in</strong>st Tribolium castaneum and Corcyra cephalonica, at<br />

2% concentration, <strong>in</strong>hibited the development <strong>of</strong> larvae to adults. Neem emulsion exhibited LC 50 <strong>of</strong><br />

0.328% aga<strong>in</strong>st the aphid, Lipaphis erysimi Kalt. Neem solution completely <strong>in</strong>hibited the development <strong>of</strong><br />

BPH nymphs at a concentration <strong>of</strong> 0.1 to 0.3% (S<strong>in</strong>gh 1988). At IRRI, a water soluble neem formulation<br />

98


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

called neem seed bitters (NSB), with systemic property, was developed by extraction <strong>of</strong> neem seed<br />

kernels with water followed by freeze dry<strong>in</strong>g. NSB has been tested aga<strong>in</strong>st both leaf and planthoppers <strong>of</strong><br />

<strong>rice</strong> extensively <strong>in</strong> greenho<strong>use</strong> and field trials at many research centres (Saxena et al., 1987; Kareem et<br />

al., 1988; Krishnaiah and Kalode 1988b). Consider<strong>in</strong>g the advantages <strong>of</strong> us<strong>in</strong>g botanicals, a number <strong>of</strong><br />

private organizations have developed ready to <strong>use</strong> formulations <strong>of</strong> botanical pesticides. Such private<br />

sector research has resulted <strong>in</strong> the development <strong>of</strong> product; RD-9 (Repel<strong>in</strong>, Indian Tobacco Company<br />

Ltd.) by tak<strong>in</strong>g commonly <strong>use</strong>d safe plant materials available locally such as neem (Azadiracta <strong>in</strong>dica),<br />

karanjia (Pongamia glabra), castor (Ric<strong>in</strong>us communis), mahua (Madhuca longifolia var. latifolia) and<br />

g<strong>in</strong>gelly (Sesamum <strong>in</strong>dicaum). Repel<strong>in</strong> acts as a repellent and antifeedant. Similarly other formulations<br />

such as Wellgro, Neemta 2100, Neemark, Neem Guard, have been developed by different companies. The<br />

National Chemical Laboratory, Pune developed two formulations called Margoside C.K and Margoside O.K.<br />

Our recent greenho<strong>use</strong> evaluation demonstrated excellent growth <strong>in</strong>hibit<strong>in</strong>g property <strong>of</strong> Margoside C.K<br />

aga<strong>in</strong>st green leafhopper. Later on, a number <strong>of</strong> other private concerns started manufactur<strong>in</strong>g the neem<br />

formulations like Neemax, Neemgold, Nimbicid<strong>in</strong>e, Neemazal T/S, etc. with vary<strong>in</strong>g azadiracht<strong>in</strong> contents<br />

(Table1) (Krishnaiah, 2000).<br />

PRACTICAL PROBLEMS WITH BOTANICALS<br />

l Under field conditions, botanicals showed limited persistence. Temperature, ultraviolet light, pH <strong>of</strong> the<br />

treated surface, ra<strong>in</strong>fall and other environmental factors may degrade active pr<strong>in</strong>cipals. Therefore,<br />

the residual life <strong>of</strong> botanical is around 3 to 5 days. This short residual period necessitates more<br />

frequent applications <strong>of</strong> botanicals as compared to <strong><strong>in</strong>secticide</strong>s, which are generally persistent for 7 –<br />

10 days.<br />

l Generally farmers are accustomed to quick knockdown effects <strong>of</strong> pesticides. Therefore, they may not<br />

be satisfied with usual slow action <strong>of</strong> botanicals. There is a need to educate farmers and create<br />

awareness on the special antifeedant effects <strong>of</strong> these materials.<br />

l Ra<strong>in</strong>s follow<strong>in</strong>g foliar spray application may wash <strong>of</strong>f the plant products before they reach the targets<br />

<strong>of</strong> actions. Therefore, these are likely to show better effectiveness dur<strong>in</strong>g dry season. Botanicals are<br />

also normally less effective than synthetic pesticides. However, this should not ca<strong>use</strong> concern beca<strong>use</strong><br />

the natural enemies, which are <strong>of</strong>ten spared by botanicals, may take care <strong>of</strong> any rema<strong>in</strong><strong>in</strong>g population<br />

<strong>of</strong> pest species.<br />

l Generally, adult <strong>in</strong>sects, such as bugs and beetles are not killed by botanicals, but their fecundity is<br />

reduced. Therefore, the population <strong>in</strong> the next generation is expected to be well below economic<br />

threshold level with adult populations <strong>of</strong> <strong>rice</strong> hispa, leaf hoppers and planthoppers, the damage<br />

cont<strong>in</strong>ues to occur even after application <strong>of</strong> botanicals.<br />

l Except certa<strong>in</strong> formulations like neem seed bitters, botanicals <strong>in</strong> general are not systemic. Therefore,<br />

care should be taken for thorough coverage <strong>of</strong> plant surface when they are <strong>use</strong>d as sprays.<br />

99


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

ADVANTAGES OF PLANT PRODUCTS<br />

l As botanicals are primarily feed<strong>in</strong>g poisons for nymphs and larvae <strong>of</strong> phytophagous <strong>in</strong>sects, they<br />

show considerable selectivity towards natural enemies particularly parasitoids and predators.<br />

Therefore, these can be <strong>in</strong>tegrated with other control tactics <strong>in</strong> <strong>in</strong>tegrated pest management.<br />

l Botanicals are <strong>in</strong> general compatible with other bio-products such as microbial <strong><strong>in</strong>secticide</strong>s.<br />

l Farmers <strong>of</strong> Asia and Africa, who are generally poor, can benefit greatly, if they can be educated<br />

about proper utilization <strong>of</strong> botanicals available <strong>in</strong> these cont<strong>in</strong>ents <strong>in</strong> great abundance.<br />

l Cont<strong>in</strong>ued and persistent research on identification <strong>of</strong> active pr<strong>in</strong>ciples <strong>of</strong> botanicals would go a<br />

long way <strong>in</strong> synthesiz<strong>in</strong>g new groups <strong>of</strong> pesticides which may be environmentally safe and possess<br />

effectiveness for reasonable period.<br />

l The relatively shorter duration <strong>of</strong> persistence <strong>of</strong> botanicals under field conditions may not yield<br />

the desired short-term economic ga<strong>in</strong>s. But the <strong>use</strong> <strong>of</strong> botanicals will prevent secondary pest<br />

out-breaks, a common feature associated with synthetic <strong><strong>in</strong>secticide</strong> application.<br />

l Synthetic pesticides with s<strong>in</strong>gle active pr<strong>in</strong>ciple are likely to <strong>in</strong>duce the development <strong>of</strong> resistance<br />

<strong>in</strong> <strong>in</strong>sects. Botanicals on the other hand conta<strong>in</strong> complex array <strong>of</strong> compounds with multiple effects<br />

and are unlikely to lead to pesticide resistance. Therefore, wherever possible, botanicals can be<br />

alternated with synthetic pesticides to h<strong>in</strong>der the development <strong>of</strong> <strong><strong>in</strong>secticide</strong> resistance.<br />

100


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

BIO-PESTICIDES AND THEIR USE IN RICE IPM<br />

Biopesticides (also known as biological pesticides) are certa<strong>in</strong> types <strong>of</strong> pesticides derived from such<br />

natural materials as animals, plants, bacteria and certa<strong>in</strong> materials. For example, garlic, m<strong>in</strong>t and bak<strong>in</strong>g<br />

soda all have pesticidal applications and are considered as biopesticides. There are approximately 175<br />

registered biopesticide active <strong>in</strong>gredients and 700 products. Biopesticides fall <strong>in</strong>to three major categories.<br />

1) microbial pesticides 2) plant pesticides and 3) biochemical pesticides. Microbial pesticides conta<strong>in</strong> a<br />

microorganism (bacterium, fungus, virus, protozoan, algae or nematode). The most widely known microbial<br />

pesticides are varieties <strong>of</strong> the bacterium Bacillus thur<strong>in</strong>giensis or Bt, which can control certa<strong>in</strong> <strong>in</strong>sects <strong>in</strong><br />

some crops. Bt produces a prote<strong>in</strong> that is harmful to specific <strong>in</strong>sect pests. Certa<strong>in</strong> other microbial pesticides<br />

act by out-compet<strong>in</strong>g pest organisms. Microbial pesticides need to be cont<strong>in</strong>uously monitored to ensure<br />

that they do not become capable <strong>of</strong> harm<strong>in</strong>g non-target organisms <strong>in</strong>clud<strong>in</strong>g humans. These biopesticides<br />

are less harmful than conventional pesticides, specific to the target organism, safe to non-target organisms,<br />

effective <strong>in</strong> small quantities, decompose quickly, do not ca<strong>use</strong> environmental pollution, and can be <strong>use</strong>d as<br />

alternatives to conventional pesticides.<br />

Fungal pathogens aga<strong>in</strong>st <strong>rice</strong> pests<br />

Rice crop ecosystem provides a favorable environment for the exploitation <strong>of</strong> fungi as myco<strong><strong>in</strong>secticide</strong>s;<br />

but sufficient efforts were not put <strong>in</strong> for exploit<strong>in</strong>g this potential <strong>in</strong> <strong>rice</strong> pest management. The major mycopesticides<br />

that have been attempted for the management <strong>of</strong> <strong>rice</strong> <strong>in</strong>sect pests <strong>in</strong>clude the entomopathogenic<br />

fungi Beauveria bassiana and Metarhyzium anisopliae, which are pathogenic to leafhoppers and<br />

planthoppers. Gillespie et al., (1990) outl<strong>in</strong>ed a rational programme <strong>of</strong> stra<strong>in</strong> selection for exploitation <strong>of</strong><br />

the potential <strong>of</strong> these entomo-pathogenic fungi from the two major homopteran pests viz. Nephotettix<br />

virescens and Nilaparvata lugens. Feng and Johnson (1990) observed that two isolates <strong>of</strong> B.bassiana<br />

derived from N. lugens were less virulent to the aphid pest Diuraphis noxia compared to the isolate<br />

derived from Schizaphis gram<strong>in</strong>um, <strong>in</strong>dicat<strong>in</strong>g the host specificity among the isolates with <strong>in</strong> the same<br />

species <strong>of</strong> the fungus. Aguda et al., (1988a &b) observed that B.bassiana and M.anisopliae were <strong>in</strong>fective<br />

to BPH <strong>in</strong> Philipp<strong>in</strong>es at a concentration <strong>of</strong> 102 to 108 conidia/ml under green ho<strong>use</strong> conditions at 15-<br />

300 C.<br />

The fungus Beauveria bassiana has wide host range and has been observed to be <strong>in</strong>fect<strong>in</strong>g other <strong>rice</strong><br />

pests like <strong>rice</strong> hispa, Dicladispa armigera <strong>in</strong> Assam, India (Hazarika and Puzari (1990). Garcia et. al.<br />

(1990a) from Cuba observed both B.bassiana and M. anisopliae to be <strong>in</strong>fective to <strong>rice</strong> pest, Sogatodes<br />

orizicola. Conidial suspensions <strong>of</strong> M.anisopliae were also pathogenic to Japanese root weevil,<br />

Lissorhopterous brevirostris (Garcia et al., 1990b).<br />

Factors affect<strong>in</strong>g pathogenecity <strong>of</strong> fungi<br />

Among the factors that affect the pathogenecity <strong>of</strong> these fungi, maximum <strong>in</strong>fection <strong>of</strong> the fungus, M.<br />

anisopliae was observed at a temperature <strong>of</strong> 25 0 C, 100% RH, and PH 7.0. aga<strong>in</strong>st small brown planthopper,<br />

101


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

L. strietella (Lee and Hou 1989). The spore concentration <strong>of</strong> the fungus required for 50% <strong>in</strong>fectivity to<br />

L.strietella was 2.57*105 conidia/ml. Among the agrochemicals that affect the pathogenicity <strong>of</strong> the fungus,<br />

M.anisopliae, the fungicides, benomyl and edifenphos and the <strong><strong>in</strong>secticide</strong> carbaryl <strong>in</strong>hibited the germ<strong>in</strong>ation<br />

<strong>of</strong> the conidia <strong>of</strong> the fungus while the <strong><strong>in</strong>secticide</strong> bupr<strong>of</strong>ez<strong>in</strong> did not affect the <strong>in</strong>fectivity <strong>of</strong> M. anisopliae<br />

(Aguda et al.,1988a; Lee and Hou, 1989).<br />

Prelim<strong>in</strong>ary studies were conducted on pathogenecity <strong>of</strong> the fungus, Fusarium palledoroseum towards<br />

leaf folder Cnaphalocrocis med<strong>in</strong>alis and observed that LD 50 concentration was 5.49*103 conidia/ml <strong>of</strong><br />

the suspension by larval dipp<strong>in</strong>g method (Mnisegarane et al., 1997).<br />

Evaluation <strong>of</strong> Bt formulations<br />

Many commercial Bt formulations have been evaluated for their effectiveness aga<strong>in</strong>st ma<strong>in</strong>ly leaf folder<br />

and sometimes aga<strong>in</strong>st stem borers. Rath (1997) studied the effectiveness <strong>of</strong> four B.t. formulations<br />

aga<strong>in</strong>st <strong>rice</strong> yellow stem borer and observed that BTK II and Dipel 3.5% were more effective than the<br />

other two formulations viz. Delf<strong>in</strong> 85% and Biolep. Roshan Lal (2001) also evaluated four B.t. formulations<br />

<strong>of</strong> var. kurstaki viz. BTKII, Delf<strong>in</strong>, Dipel and Biolep at 2000 g <strong>of</strong> formulation /ha and compared their<br />

effectiveness with <strong><strong>in</strong>secticide</strong>s aga<strong>in</strong>st leaf folder and yellow stem borer under field conditions <strong>in</strong> Haryana,<br />

India. These were as effective as chlorpyriphos @ 250 g a.i./ha. Panda et al., (1999) from Orissa, India<br />

also observed that Bioasp, Biolep, Biotox, Dipel, and Delf<strong>in</strong> @ 2000 g <strong>of</strong> formulation /ha were highly<br />

effective aga<strong>in</strong>st leaf folder and moderately effective aga<strong>in</strong>st yellow stem borer and comparable to the<br />

<strong><strong>in</strong>secticide</strong> monocrotophos @ 500 ml <strong>of</strong> formulation/ha.<br />

Under All-India Coord<strong>in</strong>ated Rice Improvement Programme (AICRIP) <strong>of</strong> DRR, three commercially available<br />

B.t. formulations viz. Delf<strong>in</strong> 85%, Dipel 3.5% and BTKII have been evaluated @ 1500 g and 2000g <strong>of</strong> the<br />

product per hectare; for four seasons i.e. kharif 1995, 1996 and rabi 1996 and 1997 (DRR 1995, 1996,<br />

1997). These have been ma<strong>in</strong>ly aimed aga<strong>in</strong>st leaf folder complex and to see if at all they are moderately<br />

effective aga<strong>in</strong>st stem borer or not. The results revealed that all the three formulations were almost<br />

similar <strong>in</strong> moderately lower<strong>in</strong>g leaf folder damage over locations, but the effectiveness aga<strong>in</strong>st stem borer<br />

was marg<strong>in</strong>al (Table 22). The Bt formulations were, <strong>in</strong> general, registered better effectiveness at higher<br />

dose than at lower dose. However, these were <strong>in</strong>ferior to check <strong><strong>in</strong>secticide</strong> chlorpyriphos @ 500 g a.i. /ha.<br />

Synergism <strong>of</strong> biopesticides with chemicals<br />

Rao et. al. (2003) <strong>in</strong> the field experiments at New Delhi noticed that the Bt formulation Biobit DF @ 750<br />

g a.i. /ha alone recorded moderate reduction <strong>in</strong> leaf folder damage but harboured highest predator<br />

populations. In comb<strong>in</strong>ation with the <strong><strong>in</strong>secticide</strong>s like flufenoxuron (100 g a.i./ha) pr<strong>of</strong>enophos (750 g<br />

a.i./ha). Biobit exhibited excellent control <strong>of</strong> leaf folder and also conserved natural enemies. Gu et al.,<br />

(1993) from Shanghai Academy <strong>of</strong> Agricultural Sciences, Ch<strong>in</strong>a observed a synergistic activity <strong>of</strong> aqueous<br />

concentrate <strong>of</strong> Bt with 25% dimethypo (thiosulfuric acids, S-[-2-(dimethylam<strong>in</strong>o)-1,3-propanediyl] ester<br />

sodium salt], aga<strong>in</strong>st leaf folder, Cnaphalocrocis med<strong>in</strong>alis under laboratory conditions with a toxicity<br />

102


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

coefficient <strong>of</strong> 265 to 298 at 3:1 and 1:1 ratios. Exploit<strong>in</strong>g this k<strong>in</strong>d <strong>of</strong> synergism with non traditional<br />

chemicals will go a long way <strong>in</strong> commercial exploitation <strong>of</strong> B.t. formulations under practical field conditions.<br />

Feed<strong>in</strong>g deterrency has been observed to be the major mode <strong>of</strong> effectiveness <strong>of</strong> Bt formulations like<br />

Dipel and Thuricide (Rombach et al., 1989). A method was standardised for test<strong>in</strong>g this phenomenon by<br />

<strong>in</strong>corporat<strong>in</strong>g Bt formulations <strong>in</strong>to the artificial diet <strong>of</strong> Asiatic <strong>rice</strong> borer, Chilo supressalis, allow<strong>in</strong>g the<br />

larvae to feed on the diet and weigh<strong>in</strong>g both the larvae and artificial diet along with requisite standard<br />

controls.<br />

Nuclear polyhedrosis virus<br />

Mathai et al., (1986) from kerala, India made an attempt to exploit the synergism between nuclear<br />

polyhedrosis virus and traditional <strong><strong>in</strong>secticide</strong>s <strong>in</strong> the management <strong>of</strong> the <strong>rice</strong> swarm<strong>in</strong>g caterpillar,<br />

Spodoptera marutia and observed the virus <strong>in</strong> comb<strong>in</strong>ation with the <strong><strong>in</strong>secticide</strong>s like qu<strong>in</strong>alphos, fenthion,<br />

and permethr<strong>in</strong> exhibited better performance than the <strong><strong>in</strong>secticide</strong>s or the virus alone.<br />

Table 22 : Effect <strong>of</strong> Bt formulations on <strong>in</strong>cidence <strong>of</strong> leaf folder and stem borer, rabi 1997<br />

Biopesticide<br />

Rate <strong>of</strong><br />

formulation/ha<br />

LF (ADL/10<br />

hills (2)<br />

% DH (8)<br />

Stem borer<br />

% WE (4)<br />

Yield t / ha<br />

Delf<strong>in</strong> 85% 2000 23.2 8.7 7.6 4.9<br />

Delf<strong>in</strong> 85% 1500 25.3 9.8 8.2 4.6<br />

Dipel 3.5% 2000 25.3 9.6 7.6 4.8<br />

Dipel 3.5% 1500 29.5 8.8 8.0 4.5<br />

Biolep 2000 26.6 9.7 7.1 4.9<br />

Biolep 1500 26.4 11.3 8.0 4.6<br />

Chlorpyriphos 500 g a.i./ha 20.6 8.0 6.9 5.1<br />

Untreated control 57.5 12.2 10.7 3.9<br />

NB: The values <strong>in</strong> parenthesis <strong>in</strong>dicate the number <strong>of</strong> observations on which the values <strong>in</strong> a column are<br />

based.<br />

(DRR, 1998)<br />

103


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

MANAGEMENT OF GREEN LEAFHOPPER, VECTOR<br />

OF RICE TUNGRO DISEASE WITH INSECTICIDES<br />

In India, two species <strong>of</strong> green leafhoppers viz., Nephoteitix virescens and Nephottetix nigropictus act as<br />

vectors <strong>of</strong> the most important viral disease <strong>of</strong> <strong>rice</strong> namely <strong>rice</strong> tungro disease (RTD). The ma<strong>in</strong> host plant<br />

for Nephotettix virescens is <strong>rice</strong>, although, it can also survive on many grassy weed hosts. For Nephotettix<br />

nigropictus, the grass, Leersia hexandra is the ma<strong>in</strong> host and <strong>rice</strong> is only an alternate host although it can<br />

feed and multiply on <strong>rice</strong>.<br />

RTD is ca<strong>use</strong>d by two types <strong>of</strong> viral particles viz., <strong>rice</strong> tungro bacilliform virus (RTBV) and <strong>rice</strong> tungro<br />

spherical virus (RTSV) particles. The presence <strong>of</strong> both the particles <strong>in</strong> the host plant, <strong>rice</strong> ca<strong>use</strong>s the full<br />

expression <strong>of</strong> the symptoms <strong>of</strong> RTD. The presence <strong>of</strong> only RTSV cannot express any symptom, while the<br />

presence <strong>of</strong> only RTBV may produce mild symptoms. However, the presence <strong>of</strong> RTSV is very much essential<br />

for acquisition and transmission <strong>of</strong> the disease from one plant to another.<br />

TRANSMISSION OF THE RTD BY VECTOR<br />

The viral particles caus<strong>in</strong>g RTD are stylet-born <strong>in</strong> nature and are present only <strong>in</strong> the stylet <strong>of</strong> GLH. When<br />

a viruliferous <strong>in</strong>sect starts feed<strong>in</strong>g on the healthy host, the RTBV and RTSV are transmitted to the plant.<br />

The virus particles do not multiply <strong>in</strong> the body <strong>of</strong> the vector. Both the nymphs and adults <strong>of</strong> GLH are<br />

104<br />

GLH Adults RTD Infected field<br />

capable <strong>of</strong> transmitt<strong>in</strong>g RTD but <strong>in</strong> nymphs the virus particles are lost along with the exuvae at the time <strong>of</strong><br />

moult<strong>in</strong>g. Hence, the acquisition <strong>of</strong> the virus is essential after moult<strong>in</strong>g for the vector to become viruliferous.<br />

In case <strong>of</strong> adults, the virus is transmitted until the <strong>in</strong>oculum gets exhausted <strong>in</strong> the stylet <strong>of</strong> GLH. The<br />

acquisition period i.e. the m<strong>in</strong>imum period <strong>of</strong> feed<strong>in</strong>g required for the vector to acquire the virus from<br />

diseased plant, <strong>in</strong> case <strong>of</strong> RTD, is approximately 6 hours. The transmission period i.e. the m<strong>in</strong>imum time<br />

<strong>of</strong> feed<strong>in</strong>g required for the viruliferous vector to transmit the viral particles <strong>in</strong>to a healthy host is only 1-<br />

2 m<strong>in</strong>utes <strong>in</strong> case <strong>of</strong> RTD. The viruliferous vector after acquir<strong>in</strong>g the virus can transmit the disease upto<br />

about 3 days without further acquisition.


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

The transmission <strong>of</strong> RTD from weed hosts to <strong>rice</strong> appeared to be ma<strong>in</strong>ly by N. nigropictus while the<br />

transmission from one <strong>rice</strong> plant to another i.e. the spread <strong>of</strong> the <strong>in</strong>fection after sow<strong>in</strong>g and plant<strong>in</strong>g <strong>of</strong><br />

<strong>rice</strong> crop appeared to be ma<strong>in</strong>ly by N. virescens.<br />

PLANT AGE IN RELATION TO SYMPTOM EXPRESSION<br />

Rice tungro disease (RTD) is systemic <strong>in</strong> nature <strong>in</strong> <strong>rice</strong> plant and also other weed hosts. It multiplies<br />

several fold immediately after <strong>in</strong>oculation. The period between the <strong>in</strong>oculation and expression <strong>of</strong> the<br />

symptoms is about 5 to 7 days. If the virus is transmitted to a young plant <strong>of</strong> 10-15 days old; then, with<strong>in</strong><br />

15 to 20 days the plants will become orange yellow and stunted with reduced tiller<strong>in</strong>g. Similar symptoms<br />

are observed if the <strong>in</strong>fection occurs <strong>in</strong> 25-30 days seedl<strong>in</strong>gs (just before transplant<strong>in</strong>g). These symptoms<br />

appear at the time <strong>of</strong> crop establishment <strong>in</strong> the ma<strong>in</strong> field and the crop may not mature properly and may<br />

not produce any gra<strong>in</strong>. If the <strong>in</strong>fection occurs at /after about 40 to 50 days after transplant<strong>in</strong>g or <strong>in</strong> grown<br />

up crop, full expression may not be visible and the plants may turn orange yellow only towards harvest.<br />

Thus, the extent <strong>of</strong> losses ca<strong>use</strong>d by RTD <strong>in</strong> <strong>rice</strong> depends ma<strong>in</strong>ly on the age <strong>of</strong> the <strong>rice</strong> plant at the time<br />

<strong>of</strong> <strong>in</strong>oculation <strong>of</strong> virus <strong>in</strong>to the plant.<br />

Integrated management <strong>of</strong> RTD<br />

Among the components <strong>of</strong> IPM available for management <strong>of</strong> RTD, host-plant resistance to the vector, the<br />

virus and both is the chief component. Host-plant resistance to the vector has been exploited to some<br />

extent by traditional breed<strong>in</strong>g approaches. However, it was not successful <strong>in</strong> conta<strong>in</strong><strong>in</strong>g the spread <strong>of</strong><br />

RTD. Hence, molecular approaches / immunological approaches to conta<strong>in</strong> the multiplication <strong>of</strong> the virus<br />

<strong>in</strong> the host-plant have been attempted but with limited success.<br />

Cultural management <strong>of</strong> the vector by keep<strong>in</strong>g the bunds free from weeds act<strong>in</strong>g as alternate hosts to<br />

both the vector and the vir<strong>use</strong>s appear to be a logical strategy. Synchronous plant<strong>in</strong>g <strong>of</strong> the crop <strong>in</strong><br />

endemic areas can also conta<strong>in</strong> the disease spread. Nitrogen management can also play some role <strong>in</strong><br />

conta<strong>in</strong><strong>in</strong>g the losses ca<strong>use</strong>d by RTD. Like <strong>in</strong> the case <strong>of</strong> any other <strong>in</strong>sect pest, nitrogen application can<br />

enhance the multiplication <strong>of</strong> the vector and <strong>in</strong>directly enhance the spread <strong>of</strong> RTD. But, there are claims<br />

that nitrogen application can mask the effect <strong>of</strong> RTD at symptom expression level thus, can help the<br />

affected crop to produce slightly higher yield. But the virologists do not accept this claim and cont<strong>in</strong>ue to<br />

argue that excess nitrogen may temporarily mask the symptom expression, but, the yield enhancement<br />

will not be there beca<strong>use</strong> the excess N will f<strong>in</strong>ally get converted <strong>in</strong>to excess viral coat prote<strong>in</strong>.<br />

Utilization <strong>of</strong> <strong><strong>in</strong>secticide</strong>s for management <strong>of</strong> the vector<br />

Dur<strong>in</strong>g late 1960’s and 1970’s when RTD was rampant <strong>in</strong> many <strong>rice</strong> grow<strong>in</strong>g tracts <strong>in</strong> India and also <strong>in</strong><br />

many other countries <strong>in</strong> the world, it was thought that management <strong>of</strong> the vector with the help <strong>of</strong> <strong><strong>in</strong>secticide</strong>s<br />

can lead to successful management <strong>of</strong> RTD. Based on the available technology at that time, granular<br />

105


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

<strong><strong>in</strong>secticide</strong>s like phorate and carb<strong>of</strong>uran were recommended for application <strong>in</strong> the nursery as well as <strong>in</strong><br />

the ma<strong>in</strong> field. The dosages are <strong>in</strong> the range <strong>of</strong> 1000 to 1500 g a.i. /ha. The application was done <strong>in</strong><br />

stand<strong>in</strong>g water and the water was <strong>in</strong>undated for three to four days to enhance the uptake <strong>of</strong> the active<br />

pr<strong>in</strong>ciples <strong>of</strong> the <strong><strong>in</strong>secticide</strong>s <strong>in</strong>to the <strong>rice</strong> plant, thereby, GLH feed<strong>in</strong>g on the foliage is controlled effectively.<br />

In many <strong>of</strong> the cases, this was helpful for conta<strong>in</strong><strong>in</strong>g the multiplication <strong>of</strong> GLH but not the virus transmitt<strong>in</strong>g<br />

ability <strong>of</strong> the virulent <strong>in</strong>sects liv<strong>in</strong>g <strong>in</strong> <strong>rice</strong> fields.<br />

ORGANOPHOSPHATES AND CARBAMATES<br />

Dur<strong>in</strong>g late 70’s and 80’s sprays <strong>of</strong> organophosphates like monocrotophos, acephate and carbamates<br />

like carbaryl were extensively employed for the management <strong>of</strong> vector <strong>in</strong> RTD endemic areas. These<br />

<strong><strong>in</strong>secticide</strong>s also can conta<strong>in</strong> the multiplication <strong>of</strong> the vector but cannot prevent the transmission ability<br />

from one plant to other. Moreover, the sprays <strong>in</strong> general are less persistent than granular <strong><strong>in</strong>secticide</strong>s.<br />

Hence, more frequent applications <strong>of</strong> these <strong><strong>in</strong>secticide</strong>s were necessary. All the above <strong><strong>in</strong>secticide</strong>s do not<br />

have the quick knockdown kill <strong>of</strong> the vector, which is very much essential for successful prevention <strong>of</strong> the<br />

transmission <strong>of</strong> RTD vir<strong>use</strong>s <strong>in</strong>to healthy plants.<br />

SYNTHETIC PYRETHROIDS<br />

Dur<strong>in</strong>g 90’s, a thorough search was made to observe the effectiveness <strong>of</strong> later groups <strong>of</strong> <strong><strong>in</strong>secticide</strong>s<br />

available dur<strong>in</strong>g those periods. Synthetic pyrethroids possess good knockdown kill as well as excellent<br />

persistent toxicity aga<strong>in</strong>st GLH. The notable among the synthetic pyrethroids were the deltamethr<strong>in</strong>,<br />

cypermethr<strong>in</strong>, fenvalerate, chlothianid<strong>in</strong>, beta-cyfluthr<strong>in</strong> and lambda-cyhalothr<strong>in</strong>. These can be applied at<br />

dosages as low as 10 to 25 g a.i./ha. This strategy was economical and effective <strong>in</strong> tungro epidemic<br />

situations where outbreaks can be conta<strong>in</strong>ed <strong>in</strong> the localized pockets. But later studies revealed that<br />

synthetic pyrethroids <strong>in</strong>variably ca<strong>use</strong> resurgence <strong>of</strong> BPH and WBPH. This acted as a great deterrent for<br />

recommendations <strong>of</strong> synthetic pyrethroids for rout<strong>in</strong>e management <strong>of</strong> the vector and RTD <strong>in</strong> endemic<br />

areas. Hence, there was search for other groups <strong>of</strong> <strong><strong>in</strong>secticide</strong>s, which can conta<strong>in</strong> GLH but do not ca<strong>use</strong><br />

BPH resurgence.<br />

ETHOFENPROX DOES NOT CAUSE BPH RESURGENCE<br />

Dur<strong>in</strong>g late 1990’s and early years <strong>of</strong> 21 st century there were new groups <strong>of</strong> <strong><strong>in</strong>secticide</strong>s like ether<br />

derivatives, neonicot<strong>in</strong>oids and phenyl-pyrazoles. The evaluation <strong>of</strong> the ether derivative eth<strong>of</strong>enprox<br />

revealed that this <strong><strong>in</strong>secticide</strong> is effective at 50 g a.i./ha aga<strong>in</strong>st green leafhopper, the vector <strong>of</strong> RTD but at<br />

the same time almost equally effective aga<strong>in</strong>st BPH and WBPH and does not ca<strong>use</strong> the resurgence <strong>of</strong><br />

plant hoppers. Hence, this became an ideal choice for <strong>rice</strong> entomologists and pathologists for<br />

recommendation aga<strong>in</strong>st GLH and RTD for rout<strong>in</strong>e application <strong>in</strong> endemic areas. This <strong><strong>in</strong>secticide</strong> has<br />

extreme mammalian safety and also safety to predators <strong>of</strong> leaf- and planthoppers like spiders and mirid<br />

bugs.<br />

106


NEONICOTINOIDS AND COMBINATION PRODUCTS<br />

Insecticides <strong>in</strong> Rice IPM (DRR)<br />

Simultaneously neonicot<strong>in</strong>oids like imidacloprid, thiamethoxam and clothianid<strong>in</strong> and phenyl pyrazoles like<br />

fipronil and ethiprole have been evaluated aga<strong>in</strong>st GLH as well as BPH and WBPH. Neonicot<strong>in</strong>oids are<br />

effective aga<strong>in</strong>st GLH at as low as 20 – 25 g a.i./ha. These possess quick knockdown effect aga<strong>in</strong>st GLH<br />

and also excellent persistent toxicity. However, the knock-down effect <strong>of</strong> neonicot<strong>in</strong>oids is not as high as<br />

synthetic pyrethroids. Hence, a further ref<strong>in</strong>ement has been <strong>in</strong>troduced <strong>in</strong>to RTD management technologies<br />

with the help <strong>of</strong> <strong><strong>in</strong>secticide</strong>s by evaluat<strong>in</strong>g and recommend<strong>in</strong>g comb<strong>in</strong>ation products <strong>in</strong>volv<strong>in</strong>g synthetic<br />

pyrethroids and neonicot<strong>in</strong>oids. The tank mix<strong>in</strong>g <strong>of</strong> synthetic pyrethroids and neonicot<strong>in</strong>oids before spray<strong>in</strong>g<br />

at recommended dosages was also found to be successful for conta<strong>in</strong><strong>in</strong>g the RTD by controll<strong>in</strong>g the vector<br />

and also manag<strong>in</strong>g BPH and WBPH problem <strong>in</strong> <strong>rice</strong> ecosystem. In addition, such comb<strong>in</strong>ations have an<br />

added advantage <strong>of</strong> exploit<strong>in</strong>g the beneficial effects <strong>of</strong> synthetic pyrethroids like their extreme effectiveness<br />

aga<strong>in</strong>st lepidopteran pests like leaf folder, case worm and to some extent stem borers. This strategy can<br />

also be successfully employed <strong>in</strong> endemic areas as well as <strong>in</strong> rout<strong>in</strong>e epidemic situations.<br />

ROLE OF BUPROFEZIN IN VECTOR MANAGEMENT<br />

In addition to the comb<strong>in</strong>ations <strong>in</strong>volv<strong>in</strong>g neonicot<strong>in</strong>oids with synthetic pyrethroids, comb<strong>in</strong>ation products<br />

conta<strong>in</strong><strong>in</strong>g synthetic pyrethroids and the <strong>in</strong>sect growth regulator bupr<strong>of</strong>ez<strong>in</strong> are highly <strong>use</strong>ful <strong>in</strong> manag<strong>in</strong>g<br />

the vector without BPH resurgence. Synthetic pyrethroids @ 10 g a.i./ha coupled with bupr<strong>of</strong>ez<strong>in</strong> @ 80-<br />

100 g a.i./ha either as a formulation or tank mix<strong>in</strong>g before spray<strong>in</strong>g is highly <strong>use</strong>ful and desirable for RTD<br />

management through vector control. This does not ca<strong>use</strong> BPH resurgence and is also <strong>use</strong>ful to check<br />

lepidopteran pests like leaf folder.<br />

MECHANICAL REMOVAL OF RTD INFECTED PLANTS<br />

If there is RTD <strong>in</strong>fection <strong>in</strong> young plants immediately after transplant<strong>in</strong>g and the <strong>in</strong>fected plants are few,<br />

then removal <strong>of</strong> the <strong>in</strong>fected plants followed by burn<strong>in</strong>g can greatly m<strong>in</strong>imize the available <strong>in</strong>oculum to the<br />

vector. This followed by application <strong>of</strong> effective <strong><strong>in</strong>secticide</strong>s will be an excellent strategy <strong>in</strong> conta<strong>in</strong><strong>in</strong>g the<br />

disease <strong>in</strong> endemic areas.<br />

CROP ROTATION AND INSECTICIDAL MANAGEMENT<br />

Apart from utiliz<strong>in</strong>g the <strong><strong>in</strong>secticide</strong> strategy for management <strong>of</strong> RTD and the vector, the plann<strong>in</strong>g <strong>of</strong><br />

<strong><strong>in</strong>secticide</strong> applications <strong>in</strong> the aftermath <strong>of</strong> epidemics is very much essential. If <strong>rice</strong> crop is followed by<br />

another <strong>rice</strong> crop, then crop rotation with other crops like ground nut or other legume crops like black<br />

gram, green gram and red gram can be grown to break the disease cycle and vector multiplication. If the<br />

<strong>rice</strong> crop is followed by another <strong>rice</strong> crop then the next <strong>rice</strong> crop should be protected very heavily start<strong>in</strong>g<br />

from the emergence <strong>of</strong> seedl<strong>in</strong>gs <strong>in</strong> the nursery up to about 50 days after transplant<strong>in</strong>g. This is very<br />

107


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

much essential as <strong>in</strong>troduction <strong>of</strong> the virus <strong>in</strong>oculum <strong>in</strong> the nursery can aga<strong>in</strong> ca<strong>use</strong> the same epidemic<br />

situation.<br />

CONCLUSIONS<br />

l The basic strategy for management <strong>of</strong> RTD should be by implement<strong>in</strong>g IPM i.e. crop rotation, utilization<br />

<strong>of</strong> varieties resistant to vector and RTD, clean cultivation by remov<strong>in</strong>g the grasses act<strong>in</strong>g as alternate<br />

ghosts for virus and vector as well as mechanical removal <strong>of</strong> RTD <strong>in</strong>fected plants and burn<strong>in</strong>g them.<br />

l In endemic locations, the above methods should be supplemented with the <strong>use</strong> <strong>of</strong> effective <strong><strong>in</strong>secticide</strong>s<br />

like eth<strong>of</strong>enprox or comb<strong>in</strong>ation products conta<strong>in</strong><strong>in</strong>g neonicot<strong>in</strong>oids and synthetic pyrethroids or<br />

bupr<strong>of</strong>ez<strong>in</strong> and synthetic pyrethroids either ready to <strong>use</strong> formulations or tank mix<strong>in</strong>g.<br />

l If there is outbreak <strong>of</strong> RTD <strong>in</strong> non-endemic areas, crop rotation with legumes and heavy protection <strong>in</strong><br />

the succeed<strong>in</strong>g <strong>rice</strong> crop should be adopted.<br />

108


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

FUTURE STRATEGIES FOR INSECTICIDE<br />

USE IN RICE IPM<br />

v It is quite unfortunate that some <strong>of</strong> the <strong>in</strong>ternational organizations like IRRI have discont<strong>in</strong>ued their<br />

programs on <strong><strong>in</strong>secticide</strong> evaluation <strong>in</strong> <strong>rice</strong>. This trend would prove disastrous <strong>in</strong> achiev<strong>in</strong>g susta<strong>in</strong>able<br />

<strong>rice</strong> production <strong>in</strong> the develop<strong>in</strong>g countries.<br />

v As new <strong><strong>in</strong>secticide</strong>s are developed from time to time by the pesticide <strong>in</strong>dustry, it is <strong>in</strong> the best <strong>in</strong>terest<br />

<strong>of</strong> <strong>rice</strong> farmers and <strong>rice</strong> entomologists to cont<strong>in</strong>ue to evaluate <strong><strong>in</strong>secticide</strong>s aga<strong>in</strong>st major and sporadic<br />

<strong>in</strong>sect pests to assess their spectrum <strong>of</strong> effectiveness aga<strong>in</strong>st <strong>rice</strong> pests. Thus, the entire responsibility<br />

<strong>of</strong> <strong><strong>in</strong>secticide</strong> evaluation <strong>in</strong> <strong>rice</strong> rests with national <strong>rice</strong> test<strong>in</strong>g programs <strong>in</strong> all major <strong>rice</strong> grow<strong>in</strong>g<br />

countries <strong>in</strong>clud<strong>in</strong>g India.<br />

v New <strong><strong>in</strong>secticide</strong>s have to be evaluated <strong>in</strong> as many locations as possible to assess their entire spectrum<br />

<strong>of</strong> effectiveness aga<strong>in</strong>st the whole range <strong>of</strong> <strong>in</strong>sect pests <strong>in</strong>fest<strong>in</strong>g at all stages <strong>of</strong> crop growth and <strong>in</strong><br />

all parts <strong>of</strong> <strong>rice</strong> plant. For the last ten to twelve years ICAR is <strong>in</strong>sist<strong>in</strong>g on the <strong><strong>in</strong>secticide</strong> evaluation on<br />

payment basis as a part <strong>of</strong> resource generation strategy at the <strong>in</strong>stitute level. This <strong>in</strong> fact has <strong>in</strong>hibited<br />

many Indian companies to get their products evaluated <strong>in</strong> All-India Coord<strong>in</strong>ated Rice Improvement<br />

Program, as the costs <strong>in</strong>volved are very high compared to their limited resources. Hence, it is advisable<br />

to reduce the present rates <strong>of</strong> <strong><strong>in</strong>secticide</strong> evaluation <strong>in</strong> AICRIP Entomology programs to levels that<br />

are affordable by majority <strong>of</strong> the companies.<br />

v In the past, several methods <strong>of</strong> <strong><strong>in</strong>secticide</strong> evaluation like nursery treatment, seedl<strong>in</strong>g root dip, rootzone<br />

application etc have been attempted, and some <strong>of</strong> them were found to be technically superior<br />

over traditional broadcast<strong>in</strong>g <strong>of</strong> granules <strong>in</strong> stand<strong>in</strong>g water or spray applications. In view <strong>of</strong> spread <strong>of</strong><br />

<strong>in</strong>sect pests like BPH and WBPH <strong>in</strong> new areas and the special ecological niche they occupy <strong>in</strong> the <strong>rice</strong><br />

ecosystem i.e. basal portion <strong>of</strong> <strong>rice</strong> stems; new methods <strong>of</strong> <strong><strong>in</strong>secticide</strong> evaluation like control droplet<br />

application (CDA) and applications <strong>of</strong> <strong><strong>in</strong>secticide</strong> spread-oils <strong>of</strong> the most effective <strong><strong>in</strong>secticide</strong>s like<br />

bupr<strong>of</strong>ez<strong>in</strong> and application <strong>of</strong> <strong><strong>in</strong>secticide</strong>s along with irrigation water wherever possible must be explored<br />

as a part <strong>of</strong> <strong><strong>in</strong>secticide</strong> evaluation program <strong>in</strong> <strong>rice</strong>.<br />

v Insecticide <strong>in</strong>duced <strong>in</strong>sect resurgence <strong>in</strong> <strong>rice</strong> has been well documented particularly <strong>in</strong> case <strong>of</strong> BPH,<br />

WBPH and leaf folder. This phenomenon may occur <strong>in</strong> case <strong>of</strong> other pests like yellow stem borer, gall<br />

midge, leafhoppers etc., as new molecules with restricted spectrum <strong>of</strong> activity will be developed <strong>in</strong><br />

future. Therefore, a special program on assess<strong>in</strong>g the <strong><strong>in</strong>secticide</strong>-<strong>in</strong>duced resurgence <strong>of</strong> new molecules<br />

with respect to all the major <strong>in</strong>sect pests <strong>of</strong> <strong>rice</strong> should form a part <strong>of</strong> Rice Co-ord<strong>in</strong>ated Entomology<br />

Programme.<br />

v A rich diversity <strong>of</strong> natural enemies has been reported to be present, as part <strong>of</strong> <strong>rice</strong> ecosystem. These<br />

natural enemies play an important role <strong>in</strong> push<strong>in</strong>g down the population levels <strong>of</strong> major pests under<br />

normal conditions. Hence, the <strong><strong>in</strong>secticide</strong>s that are recommended aga<strong>in</strong>st major <strong>in</strong>sect pests must be<br />

109


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

with as m<strong>in</strong>imum toxicity as possible, to natural enemies <strong>of</strong> all the pests present <strong>in</strong> <strong>rice</strong> ecosystem.<br />

Therefore, facilities for evaluat<strong>in</strong>g the toxicity <strong>of</strong> all the recommended <strong><strong>in</strong>secticide</strong>s to natural enemies<br />

under controlled conditions must be developed at few selected AICRIP Centers and data should be<br />

generated. Simultaneously field observations on natural enemy-<strong>in</strong>sect pest dynamics/prevalence should<br />

also be made to evaluate the safety <strong>of</strong> new <strong><strong>in</strong>secticide</strong>s to natural enemies <strong>of</strong> major <strong>in</strong>sect pests.<br />

v Development <strong>of</strong> <strong><strong>in</strong>secticide</strong> resistance <strong>in</strong> any <strong>in</strong>sect pest control program is an unavoidable consequence.<br />

Therefore, assessment <strong>of</strong> <strong><strong>in</strong>secticide</strong> resistance development should be a part <strong>of</strong> <strong>rice</strong> entomology<br />

program <strong>in</strong> future. This work can be undertaken at few selected centers, with each centre tackl<strong>in</strong>g the<br />

problem with respect to one or two major pests. It is pa<strong>in</strong>ful to admit that there are no <strong><strong>in</strong>secticide</strong><br />

resistance studies with respect to three major <strong>in</strong>sect pests like yellow stem borer, leaf folder and gall<br />

midge. Although the practical difficulties <strong>in</strong>volved <strong>in</strong> generat<strong>in</strong>g suitable <strong>in</strong>formation on these pests is<br />

understandable, attempts should be made to overcome these difficulties and keep a watch on <strong><strong>in</strong>secticide</strong><br />

resistance development <strong>in</strong> these major <strong>in</strong>sect pests. The very fact that many <strong><strong>in</strong>secticide</strong>s recommended<br />

aga<strong>in</strong>st yellow stem borer are not show<strong>in</strong>g high degree <strong>of</strong> effectiveness <strong>in</strong> the present day scenario<br />

compared to that 20 – 25 years back, when the <strong><strong>in</strong>secticide</strong>s were first <strong>in</strong>troduced <strong>in</strong>to the market is<br />

an <strong>in</strong>direct <strong>in</strong>dication that slow process <strong>of</strong> <strong><strong>in</strong>secticide</strong> resistance development is go<strong>in</strong>g on <strong>in</strong> case <strong>of</strong><br />

yellow stem borer.<br />

v In areas where organic <strong>rice</strong> is grown, botanical pesticides and bio-pesticides should form an <strong>in</strong>tegral<br />

part <strong>of</strong> package <strong>of</strong> practices for <strong>rice</strong> cultivation. However, with regard to botanical pesticides the work<br />

done so far <strong>in</strong>dicated that the neem products are moderately effective aga<strong>in</strong>st leaf folder, leafhoppers<br />

and planthoppers. Hence, recommendation aga<strong>in</strong>st these pests can be made with either neem<br />

formulations or <strong>in</strong>digenously made neem seed kernel extract (NSKE). However, the problems relat<strong>in</strong>g<br />

to standardization <strong>of</strong> commercial neem formulations still persists. Bioassay techniques for the most<br />

susceptible <strong>in</strong>sect species can form an effectiveness assessment strategy <strong>in</strong>stead <strong>of</strong> merely depend<strong>in</strong>g<br />

on azadiracht<strong>in</strong> concentration <strong>in</strong> the formulation. In many <strong>in</strong>stances, oil based neem formulations with<br />

lower azadiracht<strong>in</strong> concentration have shown higher effectiveness per unit concentration <strong>of</strong> azadiracht<strong>in</strong><br />

compared to the water based formulations with high azadiracht<strong>in</strong> content <strong>in</strong> the formulation.<br />

v Among the bio-pesticides, B.t formulations are the most effective and well documented aga<strong>in</strong>st<br />

lepidopteran pests like leaf folder and stem borer <strong>in</strong> <strong>rice</strong>. Commercial formulations <strong>of</strong> B.t show<br />

moderate effectiveness compared with <strong><strong>in</strong>secticide</strong>s but these can be formulated as a part <strong>of</strong> organic<br />

<strong>rice</strong> culture. Exploratory attempts to f<strong>in</strong>d new stra<strong>in</strong>s <strong>of</strong> B.t are already underway and they should be<br />

encouraged. Development <strong>of</strong> trans-genics with new and effective B.t stra<strong>in</strong>s should also be cont<strong>in</strong>ued.<br />

v Studies on compatibility <strong>of</strong> <strong><strong>in</strong>secticide</strong>s with fungicides should also be cont<strong>in</strong>ued <strong>in</strong> view <strong>of</strong> new pestdisease<br />

complexes emerg<strong>in</strong>g <strong>in</strong> different <strong>rice</strong> grow<strong>in</strong>g areas. As the <strong><strong>in</strong>secticide</strong>s specific to different<br />

groups <strong>of</strong> pests and fungicides specific to different fungal diseases are emerg<strong>in</strong>g, the studies on<br />

compatibility <strong>of</strong> the latest recommended <strong><strong>in</strong>secticide</strong>-fungicide comb<strong>in</strong>ations should be attempted both<br />

under greenho<strong>use</strong> conditions as well as field conditions so that they can form the ready made<br />

recommendation strategies aga<strong>in</strong>st <strong>in</strong>sect pest and diseases situations.<br />

110


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

v Soil factors greatly <strong>in</strong>fluence the effectiveness <strong>of</strong> soil applied granular <strong><strong>in</strong>secticide</strong>s <strong>in</strong> <strong>rice</strong> ecosystem.<br />

Among the soil factors, soil p H , soil EC, organic carbon as well as other physico-chemical properties<br />

are important. Hence, relative effectiveness <strong>of</strong> selected granular <strong><strong>in</strong>secticide</strong>s <strong>in</strong> soil with extreme<br />

physico- chemical properties must be studied to ensure the effectiveness <strong>of</strong> granular <strong><strong>in</strong>secticide</strong>s<br />

under diverse edaphic situations <strong>in</strong> which <strong>rice</strong> is grown. In view <strong>of</strong> the emerg<strong>in</strong>g <strong>rice</strong> grow<strong>in</strong>g strategies<br />

like SRI, where soil moisture lies below saturation level, the adverse effects <strong>of</strong> soil properties on<br />

effectiveness <strong>of</strong> granular <strong><strong>in</strong>secticide</strong>s must be assessed before the granular <strong><strong>in</strong>secticide</strong>s are<br />

recommended.<br />

v Dur<strong>in</strong>g kharif season, ra<strong>in</strong>fall frequently washes <strong>of</strong>f the <strong><strong>in</strong>secticide</strong> sprays applied to <strong>rice</strong> crop. Therefore,<br />

detailed <strong>in</strong>formation on extent <strong>of</strong> loss <strong>of</strong> <strong><strong>in</strong>secticide</strong> efficacy due to ra<strong>in</strong>fall must be generated. This<br />

gives <strong>in</strong>dications regard<strong>in</strong>g the m<strong>in</strong>imum time <strong>in</strong>terval required between spray<strong>in</strong>g and ra<strong>in</strong> fall for<br />

realiz<strong>in</strong>g full effectiveness <strong>of</strong> applied <strong><strong>in</strong>secticide</strong> aga<strong>in</strong>st the pest or pests.<br />

v In IPM it should be remembered that <strong><strong>in</strong>secticide</strong> <strong>use</strong> should be the last option for any given pest<br />

situation. The cultural, biological and mechanical options must be explored first as short-term strategies,<br />

while varietal resistance must be the long-term strategy. However, the pr<strong>in</strong>ciple <strong>of</strong> least possible<br />

disturbance <strong>in</strong> <strong>rice</strong> ecosystem should be the most important guidel<strong>in</strong>e <strong>in</strong> <strong><strong>in</strong>secticide</strong> <strong>use</strong> <strong>in</strong> <strong>rice</strong> IPM.<br />

111


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

112<br />

REFERENCES<br />

Aguda RM, Rombach MC and Roberts DW. 1988a. Effect <strong>of</strong> pesticides on germ<strong>in</strong>ation and growth <strong>of</strong> three<br />

fungi <strong>of</strong> <strong>rice</strong> <strong>in</strong>sects. International Rice Research Newsletter, 13(6): 39-40.<br />

Aguda RM, Rombach MC and Shepard BM. 1988b. Infection <strong>of</strong> brown planthopper (BPH) with <strong>in</strong>sect fungi<br />

<strong>in</strong> the laboratory. International Rice Research Newsletter, 13(5): 34.<br />

Alam S. and Karim ANMR. 1977. Brown Planthopper, a probable threat to <strong>rice</strong> cultivation <strong>in</strong> Bangladesh.<br />

Paper presented at the 2nd Bangladesh Annual Scientific. Conference, Bangladesh Agricultural<br />

University, Mymens<strong>in</strong>gh, Bangladesh.<br />

All India Coord<strong>in</strong>ated Rice Improvement Project (AICRIP) 1978. All India Coord<strong>in</strong>ated Rice Improvement<br />

Project, Progress Report for kharif 1977. Indian Council <strong>of</strong> Agricultural research, New Delhi, India.<br />

Anandan GK and Regupathy A. 2002. Insecticide resistance <strong>in</strong> <strong>rice</strong> leaffolder Cnaphalocrocis med<strong>in</strong>alis<br />

(Guenee) <strong>in</strong> Tamil Nadu. Pest Research Journal, 14(1): 169-173.<br />

Aqu<strong>in</strong>o GB and He<strong>in</strong>richs EA. 1980. Base vs canopy <strong><strong>in</strong>secticide</strong> spray for brown planthopper control.<br />

International Rice Research Newsletter, 3(3): 19.<br />

Asai T, Fukada M, Maekawa S, Ikeda K and Kanno H. 1983. Studies on the mode <strong>of</strong> action <strong>of</strong> bupr<strong>of</strong>ez<strong>in</strong><br />

I, Nymphicidal and ovicidal activities on the brown <strong>rice</strong> planthopper, Nilaparvata lugens Stal<br />

(Homoptera: Delphacidae). Applied Entomology and Zoology, 18(4): 550-552.<br />

Asai T, Kajihara O, Fukada M and Maekawa S. 1985. Studies on the mode <strong>of</strong> action <strong>of</strong> bupr<strong>of</strong>ez<strong>in</strong>. II.<br />

Effects on reproduction <strong>of</strong> the brown planthopper, Nilaparvata lugens Stal (Homoptera: Delphacidae).<br />

Applied Entomology and Zoology, 20(2): 111-117.<br />

Ashok Reddy and Krishnaiah NV. 1993. Efficacy and economics <strong>of</strong> root-zone application <strong>of</strong> carb<strong>of</strong>uran<br />

with liquid applicator <strong>in</strong> irrigated <strong>rice</strong>. Indian Journal <strong>of</strong> Plant Protection, 21(1): 34-38.<br />

Atienza EC, Rejesus BM and Saxena RC. 1988. Field evaluation <strong>of</strong> neem, custard apple, makabuhay and<br />

kakawate aga<strong>in</strong>st the major <strong>in</strong>sect pests <strong>of</strong> <strong>rice</strong> and their effects on natural enemies. Paper presented<br />

at F<strong>in</strong>al workshop, IRRI-ADB-EWC Project on Botanical pest control <strong>in</strong> <strong>rice</strong> based cropp<strong>in</strong>g systems,<br />

December 12-16 1988. Int. Rice Res. Inst, Philipp<strong>in</strong>es.<br />

Babu AR, Sudhakar TR, Babu TR, Sreeramulu M and Satyanarayana A. 2000. Efficacy <strong>of</strong> imidacloprid<br />

applied <strong>in</strong> nursery aga<strong>in</strong>st leaf folder and stem borer <strong>in</strong> <strong>rice</strong>. Indian Journal <strong>of</strong> plant Protection,<br />

28(2): 180-183.<br />

Babu K, Reghunath P, Mohandas N and Wilson KI. 1993. Compatibility <strong>of</strong> <strong><strong>in</strong>secticide</strong>s and fungicides on the<br />

mortality <strong>of</strong> Nilaparvata lugens (Stal) and on the <strong>in</strong>hibition <strong>of</strong> Rhizoctonia solani Kuhn. Journal <strong>of</strong><br />

Tropical Agriculture, 31(1): 86-90.<br />

Bae YH and Hyun JS. 1989. Studies on the effects <strong>of</strong> systemic applications <strong>of</strong> several <strong><strong>in</strong>secticide</strong>s on the


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

population <strong>of</strong> the brown planthopper Nilaparvata lugens Stal.II. Some properties <strong>of</strong> bupr<strong>of</strong>ez<strong>in</strong><br />

(Applaud) and isoprothiolane (Fuji-one) <strong>in</strong> their effects upon the BPH population. Korean Journal<br />

<strong>of</strong> Applied Entomology, 28(2): 61-68.<br />

Bae YH, Lee JH and Hyun JS. 1994. A systematic application <strong>of</strong> <strong><strong>in</strong>secticide</strong>s to manage early season <strong>in</strong>sect<br />

pests and migratory planthoppers <strong>in</strong> <strong>rice</strong>. Korean Journal <strong>of</strong> Applied Entomology, 33(4): 270-280.<br />

Bahadir M and Pfister G. 1987. Uptake <strong>of</strong> carb<strong>of</strong>uran 14C by <strong>rice</strong> plants after root- zone application as a<br />

controlled release formulation. Chemosphere, 16(6): 1273-1279.<br />

Bandong JP and Lits<strong>in</strong>ger JA. 1981a.Field control <strong>of</strong> <strong>rice</strong> caseworm with foliar <strong><strong>in</strong>secticide</strong>s. International<br />

Rice Research Newsletter, 6(3): 18-19.<br />

Bandong JP and Lits<strong>in</strong>ger JA. 1981b. Evaluation <strong>of</strong> foliar <strong><strong>in</strong>secticide</strong>s to control <strong>rice</strong> caseworm Nymphula<br />

depunctalis <strong>in</strong> the field. International Rice Research Newsletter, 6(1): 18-19.<br />

Bandong JP and Lits<strong>in</strong>ger JA. 1981c. Ovicidal activity <strong>of</strong> <strong><strong>in</strong>secticide</strong>s on the <strong>rice</strong> caseworm Nymphula<br />

depunctalis. International Rice Research Newsletter, 6(1): 17-18.<br />

Barman HK and Hussa<strong>in</strong> S. 2001. Time and method <strong>of</strong> <strong><strong>in</strong>secticide</strong> application to manage stem borer and<br />

gall midge at early growth stage <strong>of</strong> <strong>rice</strong>. Journal <strong>of</strong> Agricultural Science, Society <strong>of</strong> North-East-India,<br />

14(1): 62-66.<br />

Barwal RN and Rao NS. 1983. Chemical control <strong>of</strong> thrips <strong>in</strong> the <strong>rice</strong> nursery. International Rice Research<br />

Newsletter, 8(6): 15.<br />

Basilio RP and He<strong>in</strong>richs EA. 1981. Insecticides sprayed on brown planthopper eggs. International Rice<br />

Research Newsletter, 6(3): 16-17.<br />

Basilio RP and Mochida O. 1985. Evaluation <strong>of</strong> 26 <strong><strong>in</strong>secticide</strong>s for armyworm Mythimna separata (Walker)<br />

control. International Rice Research Newsletter, 10(5): 23.<br />

Baskaran P, Narayanasamy P, Balasubramaniam M and Ragunathan V. 1976. Field evaluation <strong>of</strong> <strong><strong>in</strong>secticide</strong>fungicide<br />

spray comb<strong>in</strong>ations aga<strong>in</strong>st <strong>rice</strong> pests. Rice Entomology Newsletter, 4: 37.<br />

Beevi SP and Dale D. 1980. Effect <strong>of</strong> diflubenzuron on the larvae <strong>of</strong> <strong>rice</strong> swarm<strong>in</strong>g caterpillar, Spodoptera<br />

Mauritia Boisd. (Lepidoptera: Noctuidae). Journal <strong>of</strong> Entomological Research, 4(2): 157-160.<br />

Beevi SP and Dale D. 1984. Sterilant and ovicidal actions <strong>of</strong> diflubenzuron on the <strong>rice</strong> swarm<strong>in</strong>g caterpillar.<br />

Pesticides, 18(10): 54-55.<br />

Bei-YaWei, Gu-XiuHui, Chen HuaP<strong>in</strong>g, Gao ChunXian, Bei YW, Gu XH, Chen HP and Gao CX. 1996. Studies on<br />

the action way <strong>of</strong> <strong>in</strong>sect growth regulator, bupr<strong>of</strong>ez<strong>in</strong> for the brown planthopper, Nilaparvata lugens<br />

Stal. Acta Agriculturae Zhejiangensis, 8(1): 30-33.<br />

Bhavani B and Rao PRM. 2005. Bioefficacy <strong>of</strong> certa<strong>in</strong> <strong><strong>in</strong>secticide</strong>s aga<strong>in</strong>st <strong>rice</strong> planthoppers vis-à-vis<br />

natural enemies under irrigated field conditions. Indian Journal <strong>of</strong> Plant Protection, 33(1): 64-67.<br />

113


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

Bora HK and Hazarika LK. 2001. Effect <strong>of</strong> neem seed oil on fecundity and oviposition <strong>of</strong> Dicladispa<br />

armigera (Coleoptera: Chrysomelidae). Pesticide Research Journal, 13(2): 218-222.<br />

Cao M<strong>in</strong>gZhang and Shen J<strong>in</strong>Liang. 2005. Realized heritability and <strong>in</strong>heritance mode <strong>of</strong> monosultap<br />

resistance <strong>in</strong> Chilo supperssalis (Lepidoptera: Pyralidae). Ch<strong>in</strong>ese Journal <strong>of</strong> Rice Science, 19(5):<br />

447-452.<br />

Cao M<strong>in</strong>gZhang, Shen J<strong>in</strong>Liang, Liu Xiao Yu and Li Mei. 2001. The <strong><strong>in</strong>secticide</strong> resistance <strong>in</strong> striped stem<br />

borer, Chilo supperssalis (Walker). Ch<strong>in</strong>ese Rice Research Newsletter, 9(1): 6.<br />

Chelliah S. 1979. Insecticide application and brown planthopper, Nilaparvata lugens (Stal) resurgence <strong>in</strong><br />

<strong>rice</strong>. In: A Report <strong>of</strong> Research conducted from July 8, 1977 to July 7, 1979. International Rice<br />

Research Institute, Los Banos, Philipp<strong>in</strong>es 69 pp.<br />

Cheiliah S Fabellar LT and He<strong>in</strong>richs EA. 1980. Effect <strong>of</strong> sublethal doses <strong>of</strong> three <strong><strong>in</strong>secticide</strong>s on the<br />

reproductive rate <strong>of</strong> the brown planthopper, Nilaparvata lugens on <strong>rice</strong>. Environmental Entomology,<br />

9: 778-780.<br />

Chelliah S and He<strong>in</strong>richs EA. 1979. Identification <strong>of</strong> <strong><strong>in</strong>secticide</strong>s that <strong>in</strong>duce brown planthopper resurgence<br />

when applied as granules to <strong>rice</strong>. International Rice Research Newsletter, 4:14.<br />

Chelliah S and He<strong>in</strong>richs EA. 1980. Factors affect<strong>in</strong>g <strong><strong>in</strong>secticide</strong> <strong>in</strong>duced resurgence <strong>of</strong> the brown<br />

planthopper, Nilaparvata lugens <strong>in</strong> <strong>rice</strong>. Environmental Entomology, 9: 773-777.<br />

Chelliah S and He<strong>in</strong>richs EA. 1984. Factors contribut<strong>in</strong>g to brown planthopper resurgence. In: Proceed<strong>in</strong>gs<br />

<strong>of</strong> the FAO/IRRI Workshop on Judicious and Efficient Use <strong>of</strong> Insecticides on Rice. International Rice<br />

Research Institute. Los Banos, Philipp<strong>in</strong>es Pp. 107-115.<br />

Chelliah S and Uthamasamy S. 1986. Insecticide <strong>in</strong>duced resurgence <strong>of</strong> <strong>in</strong>sect pests <strong>of</strong> <strong>rice</strong>. Oryza,, 23:<br />

71-82.<br />

Chakravorty S, Ghosh MK and Roychoudhury N. 1985. Acclerative effect <strong>of</strong> juvenoids and precoceme-II<br />

on diapa<strong>use</strong> break<strong>in</strong>g <strong>of</strong> the larvae <strong>of</strong> three stem borers (SB). International Rice Research Newsletter,<br />

10(1): 22.<br />

Chen BH and Chiu SC. 1979. The annual occurrence <strong>of</strong> Lycosa and Oedothorax spiders and their response<br />

to <strong><strong>in</strong>secticide</strong>s. Journal <strong>of</strong> Agricultural Research <strong>of</strong> Ch<strong>in</strong>a, 28(4): 285-290.<br />

Chen CK, Li XF, Han ZJ, Li GQ and Wang YC. 2000. Method for monitor<strong>in</strong>g <strong><strong>in</strong>secticide</strong> resistance <strong>in</strong> <strong>rice</strong> stem<br />

borer (Chilo supperssalis Walker) and relative susceptible basel<strong>in</strong>e data. Journal <strong>of</strong> Nanj<strong>in</strong>g Agricultural<br />

University, 23(4): 25-28.<br />

Chen W and Sun C. 1994. Purification and characterization <strong>of</strong> carboxylesterases <strong>of</strong> a <strong>rice</strong> brown planthopper,<br />

Nilaparvata lugens Stal. Insect Biochemistry and Molecular Biology, 24(4): 347-355.<br />

Cheng X and Wang YC. 1993. Resistance <strong>of</strong> brown planthopper <strong>in</strong> Ch<strong>in</strong>a, part two. Resistant Pest<br />

Management, 5(1): 13-14<br />

114


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

Chiu SF. 1985. Experiments on root-zone application <strong>of</strong> systemic <strong><strong>in</strong>secticide</strong>s for the control <strong>of</strong> <strong>rice</strong> <strong>in</strong>sects<br />

<strong>in</strong> Ch<strong>in</strong>a. Insect Science and its Application, 6(1): 1-5.<br />

Chiu SF, Huang Zhang X<strong>in</strong>, Huang B<strong>in</strong>g-Qiu and Hu Mei-Y<strong>in</strong>. 1988. Evaluation and utilization <strong>of</strong> neem oil,<br />

ch<strong>in</strong>aberry oil, neem cake and custard apple oil aga<strong>in</strong>st brown and white backed planthopper, <strong>rice</strong><br />

thrip and leaf folder <strong>in</strong> ch<strong>in</strong>a. Paper presented at F<strong>in</strong>al workshop, IRRI-ADB-EWC Project on Botanical<br />

pest control <strong>in</strong> <strong>rice</strong> based cropp<strong>in</strong>g systems, December 12-16 1988. International Rice Research<br />

Institute, Philipp<strong>in</strong>es.<br />

Chiu SF, Huang ZX, Huang BQ and Xu MC. 1980. Root-zone application <strong>of</strong> systemic <strong><strong>in</strong>secticide</strong>s for <strong>in</strong>sect<br />

control <strong>in</strong> Ch<strong>in</strong>a. International Rice Research Newsletter, 5(4): 21-22.<br />

Choi BR, Heong KL, Lee JO, Yoo JK and Ark CG. 1996. Effects <strong>of</strong> sublethal doses <strong>of</strong> <strong><strong>in</strong>secticide</strong>s on the<br />

brown planthopper, Nilaparvata lugens Stal (Homoptera: Delphacidae) and mirid predator, Cyrtorh<strong>in</strong>us<br />

lividipennis Reuter (Hemiptera: Miridae). Korean Journal <strong>of</strong> Applied Entomology, 35(1): 52-57.<br />

Choi SY, Lee HR and Ryu JK. 1977. Placement <strong>of</strong> <strong><strong>in</strong>secticide</strong>s <strong>in</strong> the root zone <strong>of</strong> the plants for <strong>rice</strong> plant<br />

<strong>in</strong>sect control, Korean Journal <strong>of</strong> Plant Protection, 16(3): 155-161.<br />

Costa EC and Lonk D. 1988. Effectiveness <strong>of</strong> <strong><strong>in</strong>secticide</strong>s for the control <strong>of</strong> Spodoptera frugiperda (J.E.<br />

Smith) <strong>in</strong> <strong>rice</strong> crop. Anais, Reuniao da Cultura do Arroz Irrigado, 17, 235-239.<br />

Dai SM and Sun CN. 1984. Pyrethroid resistance and synergism <strong>in</strong> Nilaparvata lugens Stal (Homoptera:<br />

Delphacidae) <strong>in</strong> Taiwan. Journal <strong>of</strong> Economic Entomology, 77(4): 891-897.<br />

Dalvi CS, Dumbre RB and Khanvilkar VG 1985. Efficacy <strong>of</strong> some <strong><strong>in</strong>secticide</strong>s for the control <strong>of</strong> <strong>rice</strong> blue<br />

beetle, Leptispa pygmaea Baly. Pesticides, 19(7): 11-12.<br />

Dash AN and Mukherjee SK. 2003. Insecticidal control <strong>of</strong> major <strong>in</strong>sect pests <strong>of</strong> <strong>rice</strong>. Pest Management<br />

and Economic Zoology, 11(2): 147-151.<br />

Dash AN, Mukherjee SK and Sontakke BK. 2001. Efficacy <strong>of</strong> some commercial neem formulations aga<strong>in</strong>st<br />

major pests <strong>of</strong> <strong>rice</strong> and their safety to natural enemies. Pest Management and Economic Zoology,<br />

9(1): 59-64.<br />

Dash AN, Senapati B and Mishra PR.1996. Efficacy <strong>of</strong> neem derivatives <strong>in</strong> comb<strong>in</strong>ation with synthetic<br />

<strong><strong>in</strong>secticide</strong>s aga<strong>in</strong>st population <strong>of</strong> brown and white backed plant hoppers and their natural enemies<br />

<strong>in</strong> <strong>rice</strong>. Journal <strong>of</strong> Insect Science, 9(2): 137-142.<br />

Dash AN, Sontakke BK, Rath LK and Mishra PR.2001. Effect <strong>of</strong> nursery applied granular <strong><strong>in</strong>secticide</strong>s<br />

aga<strong>in</strong>st early stage <strong>in</strong>sect pests transplanted <strong>rice</strong>. Annals <strong>of</strong> Plant Protection Sciences, 9(2): 308-<br />

310.<br />

Dhaliwal GS, Multani JS, Sandeep S<strong>in</strong>gh, Gagandeep Kaur, Dilawari VK and Jaswant S<strong>in</strong>gh. 2002. Field<br />

evaluation <strong>of</strong> azaditracht<strong>in</strong>-rich neem formulations aga<strong>in</strong>st Cnaphalocrocis med<strong>in</strong>alis (Guenee)<br />

and Scirpophaga <strong>in</strong>certulas (Walker) <strong>in</strong> <strong>rice</strong>. Pesticide Research Journal, 14(1): 69-76.<br />

115


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

Dhaliwal GS and S<strong>in</strong>gh J. 1986a. Further studies on the efficacy <strong>of</strong> foliar and granular <strong><strong>in</strong>secticide</strong>s for the<br />

control <strong>of</strong> <strong>rice</strong> stem borers <strong>in</strong> Punjab. Indian Journal <strong>of</strong> Entomology, 48(3): 312-318.<br />

Dhaliwal GS and S<strong>in</strong>gh J. 1986b. Chemical control <strong>of</strong> ear-cutt<strong>in</strong>g caterpillar <strong>in</strong> Punjab. Indian Journal <strong>of</strong><br />

Entomology, 48(4): 388-390.<br />

Dhaliwal GS and S<strong>in</strong>gh J. 1988. Effect <strong>of</strong> dosage and method <strong>of</strong> application <strong>of</strong> <strong><strong>in</strong>secticide</strong>s on the <strong>in</strong>cidence<br />

<strong>of</strong> <strong>rice</strong> hispa. Journal <strong>of</strong> Insect Science, 1(1): 79-82.<br />

Dh<strong>in</strong>gra MR, S<strong>in</strong>gh SB and Bhagat DV. 2003. Field efficacy <strong>of</strong> some <strong><strong>in</strong>secticide</strong>s aga<strong>in</strong>st Leptocorisa<br />

varicornis Fabr. (Coreidae: Hemiptera) <strong>in</strong> <strong>rice</strong>. Journal <strong>of</strong> Soils and Crops, 13(1): 29-32.<br />

Dick MR, Dripps JE and Orr N. 1997. Muscar<strong>in</strong>ic agonists as <strong><strong>in</strong>secticide</strong>s and acaricides. Pesticide Science,<br />

49(3): 268-276.<br />

Directorate <strong>of</strong> Rice Research (DRR). 1994-2005. Progress Report <strong>of</strong> All India Coord<strong>in</strong>ated Rice Improvement<br />

Programme, Kharif 1993-2004. Directorate <strong>of</strong> Rice Research, Hyderabad 500030 Andhra Pradesh,<br />

India.<br />

Directorate <strong>of</strong> Rice Research (DRR). 1995-97. Progress Report, Kharif and Rabi: Vol 2., Entomology and<br />

Pathology, All-India Coord<strong>in</strong>ated Rice Improvement Programme (ICAR), Directorate <strong>of</strong> Rice Research<br />

,Rajendranagar, Hyderabad 500030: Andhra Pradesh India.<br />

Dodan DS, Roshan Lal and Ram S<strong>in</strong>gh. 1997. Effect <strong>of</strong> comb<strong>in</strong>ed application <strong>of</strong> fungicides and <strong><strong>in</strong>secticide</strong>s<br />

on their efficacy aga<strong>in</strong>st neck blast and stem borer <strong>in</strong> paddy. Haryana Agricultural University Journal<br />

<strong>of</strong> Research, 27(2): 133-135.<br />

Durairaj C, Babu PCS and Venugopal MS. 1989. Toxicity <strong>of</strong> <strong><strong>in</strong>secticide</strong>s to <strong>rice</strong> gall midge, (Orseolia<br />

oryzae) and its parasitoid (Platygaster oryzae). Indian Journal <strong>of</strong> Agricultural Sciences, 59(10):<br />

683-684.<br />

Dutta BC, Bairagi PP and Bhattacharyya B. 1997. Bioefficacy <strong>of</strong> certa<strong>in</strong> <strong><strong>in</strong>secticide</strong>s aga<strong>in</strong>st <strong>rice</strong> hispa,<br />

Dicladispa armigera (Oliv.). Journal <strong>of</strong> the Agricultural Science Society <strong>of</strong> North East India, 10(2):<br />

202-205.<br />

Dyck, V.A. and Orlido, G.C. 1977. Control <strong>of</strong> brown planthopper Nilaparvata lugens by natural enemies and<br />

timely application <strong>of</strong> narrow-spectrum <strong><strong>in</strong>secticide</strong>s. In: The Rice Brown Planthopper, FFTC, ASPAC,<br />

Taipei pp. 59-72.<br />

Endo S. 1997. Differences <strong>in</strong> <strong><strong>in</strong>secticide</strong> susceptibility between adult and larval Cnaphalocrocis med<strong>in</strong>alis<br />

Guenee (Lepidoptera: Pyralidae). Japanese Journal <strong>of</strong> Applied Entomology and Zoology, 41(1): 27-<br />

31.<br />

Endo S, Kazano H and Masuda T. 1987. Insecticide susceptibility <strong>of</strong> the <strong>rice</strong> leaf roller larvae, Cnaphalocrocis<br />

med<strong>in</strong>alis Guenee (Lepidoptera:Pyrelidae). Applied Entomology and Zoology, 22(2): 145-152.<br />

Endo S and Masuda T. 1981a. Cartap concentrations <strong>in</strong> <strong>rice</strong> plant treated with three formulation types and<br />

116


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

toxic effect to the <strong>rice</strong> leaf roller, Cnaphalocrocis med<strong>in</strong>alis Guenee. Journal <strong>of</strong> Pesticide Science,<br />

6(3): 287-292.<br />

Endo S and Masuda T. 1981b. Evaluation <strong>of</strong> <strong><strong>in</strong>secticide</strong>s applied to <strong>rice</strong> plant for control <strong>of</strong> <strong>rice</strong> leaf roller,<br />

Cnaphalocrocis med<strong>in</strong>alis Guenee. Proceed<strong>in</strong>gs <strong>of</strong> the Association for Plant Protection <strong>of</strong> Kyushu,<br />

27: 87-89.<br />

Endo S, Nagata T, Kawabe S and Kazano H. 1988a. Changes <strong>of</strong> <strong><strong>in</strong>secticide</strong> susceptibility <strong>of</strong> the white<br />

backed planthopper Sogatella furcifera Horvath (Homoptera: Delphacidae) and the brown planthopper<br />

Nilaparvata lugens Stal (Homoptera: Delphacidae). Applied Entomology and Zoology, 23(4): 417-<br />

421.<br />

Endo S, Takahashi A. and Tsurumachi M. 2002. Insecticide susceptibility <strong>of</strong> the small brown planthopper,<br />

Laodelphax striatellus Fallen (Homoptera: Delphacidae) collected from East Asia. Applied Entomology<br />

and Zoology, 37(1): 79-84.<br />

Fabellar L, He<strong>in</strong>richs EA and Rapusas H. 1981. Response to <strong><strong>in</strong>secticide</strong>s <strong>of</strong> green learhoppers from four<br />

sites <strong>in</strong> the Philipp<strong>in</strong>es. International Rice Research Newsletter, 6(6): 8.<br />

Fabellar LT and Mochida O. 1985. Sensitivity levels <strong>of</strong> green leafhopper (GLH) populations to <strong><strong>in</strong>secticide</strong>s<br />

at IRRI <strong>in</strong> 1983-84. International Rice Research Newsletter, 10(3): 30-31.<br />

Fan JQ, Wang YC and You ZP. 1993. Physiological effects <strong>of</strong> bupr<strong>of</strong>ez<strong>in</strong> on the brown planthopper, Nilaparvata<br />

lugens Stal and its host plant: <strong>rice</strong>. Journal <strong>of</strong> Nanj<strong>in</strong>g Agricultural University, 16(2): 23-27.<br />

Fang JC, Sun JZ, Xia LY and Du ZW. 1995. Studies on pr<strong>of</strong>iles <strong>of</strong> toxicity and efficacy <strong>of</strong> prothiophos aga<strong>in</strong>st<br />

the <strong>rice</strong> yellow stem borer Tryporyza <strong>in</strong>certulas. Scientia Agricultura S<strong>in</strong>ica, 28(2): 66-72.<br />

Feng MG and Johnson JB. 1990. Relative virulence <strong>of</strong> six isolates <strong>of</strong> Beauveria bassiana on Diuraphis<br />

noxia (Homoptera: Aphididae). Environmental Entomology, 19(3): 785-790.<br />

Fer<strong>in</strong>o MP and Bal<strong>in</strong>git CG. 1971. Comparative effectiveness <strong>of</strong> ultra-low-volume (ULV) and high-volume<br />

sprays <strong>of</strong> Ambithion for <strong>rice</strong> stem borer control. Philipp<strong>in</strong>e Entomologist, 2(1): 75-81.<br />

Gargav VP and Patel RK. 1973. Evaluation <strong>of</strong> modern <strong><strong>in</strong>secticide</strong>s aga<strong>in</strong>st <strong>rice</strong> case worm (Nymphula<br />

depunctalis Guen.). Indian Journal <strong>of</strong> Entomology, 35(4): 349-350.<br />

Gaikwad YH and Dalvi CS. 1987. Bionomics, seasonal <strong>in</strong>cidence and chemical control <strong>of</strong> <strong>rice</strong> skipper.<br />

Journal <strong>of</strong> Maharashtra Agricultural Universities, 12(3): 300-303.<br />

Ganesh Kumar M and Velusamy R. 1997. Toxicity <strong>of</strong> <strong><strong>in</strong>secticide</strong>s to three spiders <strong>in</strong> <strong>rice</strong> fields. Madras<br />

Agricultural Journal, 84(7): 366-368.<br />

Gangwar SK and Kumar D. 1989. Effect <strong>of</strong> stickers on persistence <strong>of</strong> endosulfan on <strong>rice</strong> <strong>in</strong> high ra<strong>in</strong>fall<br />

areas. Indian Journal <strong>of</strong> Plant Protection. 17(1): 143-146.<br />

Garcia A, Vazquez T, Perez T, Lujan M and Arias E. 1990a. Effect <strong>of</strong> the entomopathogenic fungi Beauveria<br />

bassiana and Metarhizium anisopliae (Deuteromycot<strong>in</strong>a: Hyphomycetes) aga<strong>in</strong>st Sogatodes orizicola<br />

117


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

(Homoptera: Delphacidae) under controlled conditions. Ciencia y Tecnica en la Agricultura Arroz,<br />

13(1-2): 21-28.<br />

Garcia A, Vazquez T, Perez T and Lujan M. 1990b. Effectiveness <strong>of</strong> the entomopathogenic fungi Metarhizium<br />

anisopliae and Beauveria bassiana applied <strong>in</strong> conidial suspensions <strong>in</strong>dividually or <strong>in</strong> mixtures aga<strong>in</strong>st<br />

Lissorhoptrus brevirostris. Ciencia y Tecnica en la Agricultura Arroz, 13(1-2): 29-38.<br />

Gillespie A, Jimenz J and Garyson BT. 1990. The potential <strong>of</strong> fungi for control <strong>of</strong> <strong>rice</strong> pests. Pest management<br />

<strong>in</strong> <strong>rice</strong> (conference held by the Society <strong>of</strong> Chemical Industry, London, UK 4-7 June, 1990, 177-180.<br />

Gopalan M, Raja NC and Balasubramanian G. 1987. Ovicidal activity <strong>of</strong> <strong><strong>in</strong>secticide</strong>s on eggs <strong>of</strong> Brevennia<br />

rehi L<strong>in</strong>d<strong>in</strong>ger. Madras Agricultural Journal, 74(2): 94-98.<br />

Gordon RFS, Bushell MJ, Pascoe R and Enoyoshi T. 1992. Flufenprox – a new <strong><strong>in</strong>secticide</strong> for <strong>rice</strong>. Proceed<strong>in</strong>gs<br />

<strong>of</strong> Brighton Crop Protection Conference on Pests and Diseases, 81-88.<br />

Goto T, Yasudomi N, Tanaka AK, Osali N, Takao H, Kawata M, Imada J, Endo Y and Umetsu N. 1988.<br />

Synthesis and biological activity <strong>of</strong> new am<strong>in</strong>osulfenyl derivatives <strong>of</strong> the methyl carbamate <strong><strong>in</strong>secticide</strong>,<br />

carb<strong>of</strong>uran. Journal <strong>of</strong> Pesticide Science, 13(1): 39-47.<br />

Gu XH, Bei YW and Gao CX. 1993. Biological activity and physiological effects <strong>of</strong> bupr<strong>of</strong>ez<strong>in</strong> on brown<br />

planthopper, Nilaparvata lugens (Stal). Acta Agriculturae Zhejiangensis, 5(1): 11-15.<br />

Gu ZR, Ma CZ, Zhou AN, Wang DS, Qian ZG and Qi DG. 1993. Synergistic effect <strong>of</strong> Bacillus thur<strong>in</strong>giensis<br />

preparation and dimethypo <strong>in</strong> controll<strong>in</strong>g Cnaphalocrocis med<strong>in</strong>alis (Lep: Pyralidae). Ch<strong>in</strong>ese Journal<br />

<strong>of</strong> Biological Control, 9(4): 160- 162.<br />

Gubbaiah, Revanna HP and Channappagowdar BB. 1988. Efficacy <strong>of</strong> certa<strong>in</strong> systemic foliar <strong><strong>in</strong>secticide</strong>s<br />

aga<strong>in</strong>st <strong>rice</strong> thrips <strong>in</strong> Visvesvarya Canal tract. Current Research, University <strong>of</strong> Agricultural Sciences,<br />

Bangalore, 17(6): 77-78.<br />

Gubbaiah, Revanna HP and Javaregowde. 1995. Efficacy <strong>of</strong> cartap 4G aga<strong>in</strong>st <strong>rice</strong> stem borer. Current<br />

Research, 24(12): 229-331.<br />

Gurubasavaraj TM, Mariappan V, Jayaraj S, Srimannarayana SM and Narasimhan V. 1988. Effect <strong>of</strong> neem<br />

derivatives on the survival <strong>of</strong> GLH and RTV transmission. Paper presented at F<strong>in</strong>al workshop, IRRI-<br />

ADB-ECW Project on Botanical pest control <strong>in</strong> <strong>rice</strong> based cropp<strong>in</strong>g systems, December 12-16 1988.<br />

International Rice Research Institute, Philipp<strong>in</strong>es.<br />

Hama H. 1980. Studies on the mechanism <strong>of</strong> resistance to <strong><strong>in</strong>secticide</strong>s <strong>in</strong> green <strong>rice</strong> leafhopper, Nephotettix<br />

c<strong>in</strong>cticeps Uhler, with particular reference to reduced sensitivity <strong>of</strong> acetylchol<strong>in</strong>esterase. Bullet<strong>in</strong> <strong>of</strong><br />

the National Institute <strong>of</strong> Agricultural Sciences, 34: 75-138.<br />

Hama H. 1984. Mechanism <strong>of</strong> fenitrothion and diaz<strong>in</strong>on resistance <strong>in</strong> the green <strong>rice</strong> leafhopper, Nephotettix<br />

c<strong>in</strong>cticeps Uhler (Hemiptera: Deltocephalidae) – the role <strong>of</strong> aliesterase. Japanese Journal <strong>of</strong> Applied<br />

Entomology and Zoology, 28(3): 143-149.<br />

118


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

Hama H and Hosoda A. 1983. High aliesterase activity and low acetylchol<strong>in</strong>esterase sensitivity <strong>in</strong>volved <strong>in</strong><br />

organophosphorus and carbamate resistance <strong>of</strong> the brown planthopper, Nilaparvata lugens Stal<br />

(Homoptera: Delphacidae). Applied Entomology and Zoology, 18(4): 475-485.<br />

Hama H and Iwata T. 1971. Insensitive chol<strong>in</strong>esterase <strong>in</strong> the Nakagawara stra<strong>in</strong> <strong>of</strong> the green <strong>rice</strong> leafhopper,<br />

Nephotettix c<strong>in</strong>cticeps Uhler (Hemiptera: Cicadellidae), as a ca<strong>use</strong> <strong>of</strong> resistance to carbamate<br />

<strong><strong>in</strong>secticide</strong>s. Applied Entomology and Zoology, 6(4): 183-191.<br />

Hama H, Iwata T, Miyata T and Saito T. 1980. Some properties <strong>of</strong> acetylchol<strong>in</strong>esterases partially purified<br />

from susceptible and resistant green <strong>rice</strong> leaf hoppers, Nephotettix c<strong>in</strong>cticeps Uhler (Hemiptera:<br />

Deltocephalidae). Applied Entomology and Zoology, 15(3): 249-261.<br />

Hama H, Iwata T and Tomizawa C. 1979. Absorption and degradation <strong>of</strong> propoxur <strong>in</strong> susceptible and<br />

resistant green <strong>rice</strong> leaf hoppers, Nephotettix c<strong>in</strong>cticeps Uhler (Homoptera: Cicadellidae). Applied<br />

Entomology and Zoology, 14(3): 333-339.<br />

Han Q, Zhuang PJ and Tang ZH. 1988. Monitor<strong>in</strong>g and measurement <strong>of</strong> resistance to organophosphorus<br />

<strong><strong>in</strong>secticide</strong>s by the paddy borer. Contributions from Shanghai Institute <strong>of</strong> Entomology, 8:17-22.<br />

Han Q, Zhuang PJ and Tang ZH. 1995. The mechanism <strong>of</strong> resistance to fenitrothion <strong>in</strong> the <strong>rice</strong> stem borer,<br />

Chilo supperssalis Walker. Acta Entomologica S<strong>in</strong>ica, 38(3): 266-271.<br />

Han ZK and Han ZJ. 2002. Clon<strong>in</strong>g and sequence <strong>of</strong> nicot<strong>in</strong>ic acetylchol<strong>in</strong>e receptor alpha subunit from<br />

Chilo supperssalis. Zoological Research, 23(1): 7-13.<br />

Hart, W.G. and Ingle, S. 1971. Increases <strong>in</strong> fecundity <strong>of</strong> brown s<strong>of</strong>t scale exposed to methyl parathion.<br />

Journal <strong>of</strong> Economic Entomology, 64: 204-208.<br />

Hazarika LK and Baishya RL. 1996. Effects <strong>of</strong> methoprene and diflubenzuron on <strong>rice</strong> hispa, Dicladispa<br />

armigera (Oliver) (Coleoptera, Chrysomelidae). Pesticide Research Journal, 8(1): 93-95.<br />

Hazarika LK and Puzari KC. 1990. Beauveria bassiana (Bals.) Vuill for biological control <strong>of</strong> <strong>rice</strong> hispa (RH)<br />

<strong>in</strong> Assam, India. International Rice Research Newsletter, 11(1): 31.<br />

He<strong>in</strong>richs EA, Antonio LC and Elesango M. 1986. Field evaluation <strong>of</strong> commercial <strong><strong>in</strong>secticide</strong>s for controll<strong>in</strong>g<br />

yellow stem borer (YSB) <strong>in</strong> the Philipp<strong>in</strong>es. International Rice Research Newsletter, 11(2): 27-28.<br />

Hegde Mahabaleshwar. 2005. Efficacy <strong>of</strong> new chemicals aga<strong>in</strong>st brown planthopper on <strong>rice</strong>. Journal <strong>of</strong><br />

Maharashtra Agricultural University, 30(1): 107-109.He<strong>in</strong>richs EA, Aqu<strong>in</strong>o GB and Arce R. 1978.<br />

Root-zone application <strong>of</strong> carb<strong>of</strong>uran <strong>in</strong> <strong>rice</strong>- fish culture. International Rice Research Newsletter,<br />

3(5): 16-17.<br />

He<strong>in</strong>richs EA., Aqu<strong>in</strong>o GB., Chelliah S., Valencia SL and Reissig, WH. 1982. Resurgence <strong>of</strong> Nilaparvata<br />

lugens (Stal) populations as <strong>in</strong>fluenced by methods and tim<strong>in</strong>g <strong>of</strong> <strong><strong>in</strong>secticide</strong> application <strong>in</strong> lowland<br />

<strong>rice</strong>. Environmental Entomology, 11: 78-84.<br />

He<strong>in</strong>richs EA, Basilio RP and Valencia SL. 1984. Bupr<strong>of</strong>ez<strong>in</strong>, a selective <strong><strong>in</strong>secticide</strong> for the management <strong>of</strong><br />

119


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

<strong>rice</strong> planthoppers (Homoptera: Delphacidae) and leafhoppers (Homoptera: Cicadellidae).<br />

Environmental Entomology, 13(2): 515-521.<br />

He<strong>in</strong>richs EA. and Mochida O. 1983. From Secondary to major pest status: The case <strong>of</strong> <strong><strong>in</strong>secticide</strong> <strong>in</strong>duced<br />

<strong>rice</strong> brown planthopper, Nilaparvata lugens resurgence. Paper Presented at the Rice Pest<br />

Management Symposium, Section J, Entomology, XV Pacific Science Congress. 1-11 February 1983.<br />

Duned<strong>in</strong>, New Zealand.<br />

He<strong>in</strong>richs EA and Tetangco L. 1978. Resistance <strong>of</strong> brown planthopper to various <strong><strong>in</strong>secticide</strong>s at IRRI.<br />

International Rice Research Newsletter, 3(3):20.<br />

He<strong>in</strong>richs EA, Aqu<strong>in</strong>o GB, Chelliah S, Valencia SL and Reissig WH. 1982. Resurgence <strong>of</strong> Nilaparvata lugens<br />

(Stal) populations as <strong>in</strong>fluenced by method and tim<strong>in</strong>g <strong>of</strong> <strong><strong>in</strong>secticide</strong> applications <strong>in</strong> lowland <strong>rice</strong>.<br />

Environmental Entomology, 11(1): 78-84.<br />

He<strong>in</strong>richs EA, Reissig WH, Valencia S and Chelliah S. 1982. Rates and effect <strong>of</strong> resurgence-<strong>in</strong>duc<strong>in</strong>g<br />

<strong><strong>in</strong>secticide</strong>s on populations <strong>of</strong> Nilaparvata lugens (Homoptera: Delphacidae) and its predators.<br />

Environmental Entomology, 11(6): 1269-1273.<br />

He<strong>in</strong>richs EA, Reissig WH, Valencia SL. and Chefliah S. 1982. Rates and effect <strong>of</strong> resurgence <strong>in</strong>duc<strong>in</strong>g<br />

<strong><strong>in</strong>secticide</strong>s on population <strong>of</strong> Nilaparvata lugens (Homoptera: Delphacidae) and its predators.<br />

Environmental Entomology, 11(1): 69-73.<br />

He<strong>in</strong>richs EA and Valencia SL. 1978. Ovicidal activity <strong>of</strong> <strong><strong>in</strong>secticide</strong>s for brown planthopper control.<br />

International Rice Research Newsletter, 3(3): 18-19.<br />

He<strong>in</strong>richs EA and Valencia SL. 1981. Ovicidal activity <strong>of</strong> <strong><strong>in</strong>secticide</strong>s aga<strong>in</strong>st planthoppers <strong>in</strong> <strong>rice</strong>. Journal<br />

<strong>of</strong> Economic Entomology, 74(1): 49-53.<br />

He<strong>in</strong>richs EA, Valencia SL and Basilio RP. 1982. Insect evaluation <strong>of</strong> <strong><strong>in</strong>secticide</strong>s to control <strong>rice</strong> st<strong>in</strong>k bugs.<br />

International Rice Research Newsletter, 7(2): 12.<br />

Heyde JVD, Saxena RC and Schmutterer H. 1983. Neem oil and neem extracts as potential <strong><strong>in</strong>secticide</strong>s for<br />

control <strong>of</strong> hemipterous <strong>rice</strong> pests. Proceed<strong>in</strong>gs <strong>of</strong> 2nd International Neem Conference,<br />

Rauischolzha<strong>use</strong>n, pp 377-390.<br />

Hirai K. 1993. Recent trends <strong>of</strong> <strong><strong>in</strong>secticide</strong> susceptibility <strong>in</strong> the brown planthopper, Nilaparvata lugens Stal<br />

(Hemiptera: Delphacidae), <strong>in</strong> Japan. Applied Entomology and Zoology, 28(3): 339-346.<br />

Hirai K. 1994. Current status <strong>of</strong> <strong><strong>in</strong>secticide</strong> susceptibility <strong>in</strong> the brown planthopper, Nilaparvata lugens<br />

Stal, <strong>in</strong> Japan. Journal <strong>of</strong> Pesticide Science. 19(3): 225-227.<br />

Hirao J, Inoue H, Fukamachi S and Yamashita S, 1983. Field tests with bupr<strong>of</strong>ez<strong>in</strong> for the control <strong>of</strong> grassy<br />

stunt disease <strong>of</strong> <strong>rice</strong> transmitted by the brown planthopper. Proceed<strong>in</strong>gs <strong>of</strong> the Association for<br />

Plant Protection <strong>of</strong> Kyushu, 29: 64-67.<br />

Hiremath IG, Bhuti SG and L<strong>in</strong>gappa S. 1992. Ecobiology and management <strong>of</strong> Mythimna separata (Walker).<br />

Karnataka Journal <strong>of</strong> Agricultural Sciences, 5(1): 38-44.<br />

120


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

Hong SY. 1990. Relationship between spray<strong>in</strong>g <strong>of</strong> chlordimeform <strong>in</strong> paddy fields and population changes<br />

<strong>of</strong> Trichogramma japonicum. Agro Environmental Protection, 9(3): 45-56.<br />

Hosoda A. 1989. Incidence <strong>of</strong> <strong><strong>in</strong>secticide</strong> resistance <strong>in</strong> the white-backed planthopper, Sogatella furcifera<br />

Horvath (Homoptera: Delphacidae) to organophosphates. Japanese Journal <strong>of</strong> Applied Entomology<br />

and Zoology, 33(4): 193-197.<br />

Huang FK and Pang XF. 1992. Effects <strong>of</strong> several <strong><strong>in</strong>secticide</strong>s on the <strong>rice</strong> brown planthopper after controll<strong>in</strong>g<br />

the white backed planthopper. Journal <strong>of</strong> South Ch<strong>in</strong>a Agricultural University 13(1): 10-13.<br />

Huang FK, Wu WJ and Pang XF. 1989. Studies on the efficacy <strong>of</strong> several <strong><strong>in</strong>secticide</strong> <strong>in</strong> controll<strong>in</strong>g populations<br />

<strong>of</strong> the <strong>rice</strong> brown planthopper, Nilaparvata lugens. Journal <strong>of</strong> South Ch<strong>in</strong>a Agricultural University<br />

10(4): 6-12.<br />

Huang ShouHorng, Cheng Ch<strong>in</strong>gHuan, Cheng YungHsiung. 2005. Evaluation on the nursery box <strong>in</strong>secticidal<br />

treatment for control <strong>of</strong> early season <strong>in</strong>sect pests <strong>of</strong> <strong>rice</strong> and its effect on predatory natural enemies.<br />

Journal <strong>of</strong> Taiwan Agricultural Research, 54(1): 1-14.<br />

International Rice Research Institute (IRRI) 1969. Annual Report, 1968. International Rice Research<br />

Institute, Los Banos, Laguna, Philipp<strong>in</strong>es.<br />

International Rice Research Institute (IRRI) 1977. Annual Report 1976, 1nternational Rice Research<br />

Institute, Los Banos, Laguna, Philipp<strong>in</strong>es.<br />

International Rice Research Newsletter, 8(3): 12.<br />

lyatomi, K. 1951. Problems around natural enemies. Nogyo Oyobi Enge, 26: 129-132.<br />

Iwaya K, Maruyama M, Nakanishi H and Kurogochi S. 1998. Concentration <strong>of</strong> imidacloprid <strong>in</strong> <strong>rice</strong> plants<br />

and biological effect on Nilaparvata lugens (Stal). Journal <strong>of</strong> Pesticide Science, 23(4): 419-421.<br />

Jaswant S<strong>in</strong>gh, Dhaliwal GS, Sajjan SS, S<strong>in</strong>gh J, 1986. Chemical control <strong>of</strong> whitebacked planthopper, Sogatella<br />

furcifera Horvath on <strong>rice</strong> <strong>in</strong> the Punjab. Indian Journal <strong>of</strong> Entomology, 48(3): 319-323.<br />

Jaswant S<strong>in</strong>gh, Sukhija HS and Paramjit S<strong>in</strong>gh. 1990. Evaluation <strong>of</strong> neem oil aga<strong>in</strong>st <strong>rice</strong> leaf folder and<br />

stem borer; National. Symposium on Problems and prospects <strong>of</strong> botanical pesticides <strong>in</strong> <strong>in</strong>tegrated<br />

pest management, January 21-22 1990. Central Tobacco Research Institute, Rajahmundry, India,<br />

pp 19-20.<br />

Jhansi Lakshmi V, Katti G Krishnaiah NV. 1997a. Safety <strong>of</strong> neem formulations and <strong><strong>in</strong>secticide</strong>s to Microvelia<br />

douglasi atrol<strong>in</strong>eata Bergroth (Heteroptera: Veliidae), a predator <strong>of</strong> planthoppers <strong>in</strong> <strong>rice</strong> ecosystem.<br />

Journal <strong>of</strong> Biological Control, 11(1&2): 33-36.<br />

Jhansi Lakshmi V, Katti G Krishnaiah NV and L<strong>in</strong>gaiah T. 1997b. Laboratory evaluation <strong>of</strong> commercial<br />

neem formulations vis-a-vis <strong><strong>in</strong>secticide</strong>s aga<strong>in</strong>st egg parasitoid, Trichogramma japonicum Ashmead<br />

(Hymenoptera: Trichogrammatidae). Journal <strong>of</strong> Biological Control, 11(1&2): 29-32.<br />

Jhansi Lakshmi V, Katti G, Krishnaiah NV and Mahesh Kumar K. 1998. Safety <strong>of</strong> neem formulations vis-a-<br />

121


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

Vis <strong><strong>in</strong>secticide</strong>s to Cyrtorh<strong>in</strong>us lividipennis Reuter, a predator <strong>of</strong> brown plant hopper <strong>in</strong> <strong>rice</strong>. Journal<br />

<strong>of</strong> Biological Control, 12(2): 119-122.<br />

Jhansi Lakshmi V, Krishnaiah NV and Pasalu IC. 2006a. Relative safety <strong>of</strong> comb<strong>in</strong>ation products to Tytthus<br />

parviceps (Reuter), a predator <strong>of</strong> planthoppers and leafhoppers <strong>in</strong> <strong>rice</strong>. Journal <strong>of</strong> Biological Control,<br />

20(1): 69-72.<br />

Jhansi Lakshmi V, Krishnaiah NV and Pasalu IC. 2006b. Relative safety <strong>of</strong> selected acaricides to three<br />

hemipteran natural enemies <strong>of</strong> planthoppers <strong>in</strong> <strong>rice</strong> ecosystem. Journal <strong>of</strong> Biological Control, 20(2):<br />

141-146.<br />

Jhansi Lakshmi V, Krishnaiah NV, Pasalu IC and L<strong>in</strong>gaiah T. 2003. Safety <strong>of</strong> comb<strong>in</strong>ation products and<br />

s<strong>in</strong>gle compound <strong><strong>in</strong>secticide</strong>s to Microvelia douglasi atrol<strong>in</strong>eata, a predator <strong>of</strong> planthoppers <strong>in</strong> <strong>rice</strong>.<br />

Journal <strong>of</strong> Biological Control, 17(2): 121-124.<br />

Jhansi Lakshmi V, Krishnaiah NV, Pasalu IC. and L<strong>in</strong>gaiah T. 2004. Relative safety <strong>of</strong> comb<strong>in</strong>ation products<br />

to green mirid bug, Cyrtorh<strong>in</strong>us lividipennis Reuter, a major predator <strong>of</strong> brown planthopper Nilaparvata<br />

lugens (Stal) <strong>in</strong> <strong>rice</strong>. Indian Journal <strong>of</strong> Plant Protection, 32(1): 132-134.<br />

Jhansi Lakshmi V, Krishnaiah NV, Pasalu IC, L<strong>in</strong>gaiah T. and Krishnaiah K. 2001a. Safety <strong>of</strong> thiamethoxam<br />

to Cyrtorh<strong>in</strong>us lividipennis Reuter, (Hemiptera: Miridae) a predator <strong>of</strong> brown planthopper, Nilaparvata<br />

lugens (Stal) <strong>in</strong> <strong>rice</strong>. Journal <strong>of</strong> Biological Control, 15(1): 53-58.<br />

Jhansi Lakshmi V, Krishnaiah NV, Pasalu IC, L<strong>in</strong>gaiah T. and Krishnaiah K. 2001b. Safety <strong>of</strong> some <strong><strong>in</strong>secticide</strong>s<br />

to brown mirid bug, Tytthus parviceps (Reut) (Hemiptera: Miridae) a predator <strong>of</strong> brown planthopper,<br />

Nilaparvata lugens (Stal) <strong>in</strong> <strong>rice</strong>. Journal <strong>of</strong> Biological Control, 15(1): 43-48.<br />

Jhansi Lakshmi V, Krishnaiah NV, Pasalu IC and Katti G. 2008. Potential toxicity <strong>of</strong> selected <strong><strong>in</strong>secticide</strong>s to<br />

<strong>rice</strong> leafhoppers and planthoppers and their important natural enemies. Paper presented <strong>in</strong><br />

International symposium on Agrochemicals protect<strong>in</strong>g crop, health and natural environment,<br />

conducted by society for pesticide science, IARI, New Delhi 8-11 January 2008.<br />

Jena M, Dani RC and Rajamani S. 1990. Effectiveness <strong>of</strong> <strong><strong>in</strong>secticide</strong>s aga<strong>in</strong>st <strong>rice</strong> gundhi bug. Oryza,<br />

27(1): 96-98.<br />

Jena M, Dani RC and Rajamani S. 1992. Effectiveness <strong>of</strong> <strong><strong>in</strong>secticide</strong>s aga<strong>in</strong>st the <strong>rice</strong> leaf folder,<br />

Cnaphalocrocis med<strong>in</strong>alis Guenee. Indian Journal <strong>of</strong> Plant Protection, 20(1): 43-46.<br />

Jena M, Pasalu IC, Rajamani S. 1985. Toxicity and persistence <strong>of</strong> <strong><strong>in</strong>secticide</strong>s <strong>use</strong>d for <strong>rice</strong> seedl<strong>in</strong>g root<br />

dip and shoot dip aga<strong>in</strong>st the brown plant hopper, Nilaparvata lugens Stal. Indian Journal <strong>of</strong> Plant<br />

Protection, 11(1-2): 112-114.<br />

Jena M, Pasalu IC and Rajamani S. 1989. Evaluation <strong>of</strong> <strong><strong>in</strong>secticide</strong>s aga<strong>in</strong>st <strong>rice</strong> ear cutt<strong>in</strong>g caterpillar,<br />

Mythimna venalba (Moore). Indian Journal <strong>of</strong> Plant Protection, 17(2): 227-231.<br />

Kajihara O, Asai T, Ikeda K, Lim SS, Heong KL, Lee BS, Lim TM, Teoh CH and Ibrahim Y. 1982. Bupr<strong>of</strong>ez<strong>in</strong>,<br />

122


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

a new <strong><strong>in</strong>secticide</strong> for control <strong>of</strong> brown planthopper, Nilaparvata lugens. Proceed<strong>in</strong>gs <strong>of</strong> the<br />

International Conference on Plant Protection <strong>in</strong> the Tropics, pp. 711.<br />

Kalode MB and Krishnaiah NV. 1987. Evaluation <strong>of</strong> botanicals aga<strong>in</strong>st <strong>rice</strong> <strong>in</strong>sect pests. Paper presented<br />

at Mid-term review workshop on Botanical pest control <strong>in</strong> <strong>rice</strong> based cropp<strong>in</strong>g systems, June 1-6<br />

1987, Tamil Nadu Agricultural University, Coimbatore, India.<br />

Kalode MB, Krishnaiah NV and Kormaty YF. 1982a. New trends <strong>in</strong> chemical control <strong>of</strong> <strong>rice</strong> gall midge,<br />

Orseolia oryzae (Wood Mason). Indian Journal <strong>of</strong> Plant Protection, 9(1): 34-44.<br />

Kalode MB, Krishnaiah NV and Kormaty YF. 1982b. Chemical control <strong>of</strong> gall midge. International Rice<br />

Research Newsletter, 7(1): 12.<br />

Kanaoka A, Kodama H, Yamaguchi R, Konno T, Kajihara O and Maekawa S. 1994. Influence <strong>of</strong> bupr<strong>of</strong>ez<strong>in</strong><br />

on natural enemies and non-target <strong>in</strong>sects <strong>in</strong> the paddy field. Journal <strong>of</strong> Pesticide Science, 19(4):<br />

309-312.<br />

Kao HL, Liu MY and Sun CN. 1981.Green <strong>rice</strong> leafhopper resistance to malathion, methyl parathion,<br />

carbaryl, permethr<strong>in</strong> and fenvalerate <strong>in</strong> Taiwan. International Rice Research Newsletter, 6(5): 19.<br />

Kareem AA, Saxena RC and Justo HD Jr. 1987. Cost effectiveness <strong>of</strong> neem oil and BPMC <strong><strong>in</strong>secticide</strong> aga<strong>in</strong>st<br />

<strong>rice</strong> tungro virus (RTV). Paper presented at Mid-term review workshop on Botanical pest control <strong>in</strong><br />

<strong>rice</strong> based cropp<strong>in</strong>g systems, June 1-6 1987, Tamil Nadu Agric. Univ, Coimbatore, India.<br />

Kareem AA, Saxena RC, Palang<strong>in</strong>an EL, Boncod<strong>in</strong> EM and Malayaba MT. 1988. Neem derivatives. Effects<br />

on <strong>in</strong>sect pests <strong>of</strong> <strong>rice</strong> and certa<strong>in</strong> other crops <strong>in</strong> the Philipp<strong>in</strong>es (Laboratory and field evaluations<br />

1986-88). Paper presented at F<strong>in</strong>al workshop, IRRI-ADB-EWC Project on Botanical pest control <strong>in</strong><br />

<strong>rice</strong> based cropp<strong>in</strong>g systems, December 12-16, 1988. International Rice Research Institute,<br />

Philipp<strong>in</strong>es.<br />

Karim R and Hoque NMM. 1999. Evaluation <strong>of</strong> certa<strong>in</strong> neem products aga<strong>in</strong>st some <strong>rice</strong> <strong>in</strong>sect pests <strong>in</strong><br />

Bangladesh. Bangladesh Journal <strong>of</strong> Entomology, 9(1/2): 1-7.<br />

Karthikeya K and Purushothaman SM. 2000. Efficacy <strong>of</strong> carbosulfan aga<strong>in</strong>st <strong>rice</strong> yellow stem borer,<br />

Scirphphaga <strong>in</strong>certulas Walker (Pyralidae: Lepidoptera). Indian Journal <strong>of</strong> Plant Protection, 28(2):<br />

212-214.<br />

Kassai T and Ozaki K. 1984. Resistance patterns <strong>in</strong> the <strong>rice</strong> brown planthopper, Nilaparvata lugens Stal<br />

(Hemiptera: Delphacidae), after selection with carbaryl and propoxur. Japanese Journal <strong>of</strong> Applied<br />

Entomology and Zoology, 28(1): 20-24.<br />

Kato S, Masui A and Ishida S. 1989. Chemical structures and <strong>in</strong>secticidal, acaricidal activities <strong>of</strong> 6-alkylthio-<br />

2-pyridyl alkanesulfonates. Journal <strong>of</strong> Pesticide Science, 14(1): 11-22.<br />

Kato Y, Nomura M and Miyata T. 1999. Negatively correlated cross-resistance between N-Methyl carbamate<br />

and monocrotophos <strong>in</strong> green <strong>rice</strong> leafhopper, Nephotettix c<strong>in</strong>cticeps. Uhler. Journal <strong>of</strong> Pesticide<br />

Science, 24(4): 364-368.<br />

123


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

Kato S, Shimano S, Masui A and Ishida S, 1989. Insecticidal activity <strong>of</strong> 2-alkylthio-4-thiazolyl<br />

methanesulfonates. Journal <strong>of</strong> Pesticide Science, 14(3): 307-313.<br />

Kato Y, Tanaka T and Miyata T. 2004. Comparison <strong>of</strong> k<strong>in</strong>etic properties <strong>of</strong> a hydrophilic form <strong>of</strong><br />

acetylchol<strong>in</strong>esterase purified from stra<strong>in</strong>s susceptible and resistant to carbamate and<br />

organophosphorus <strong><strong>in</strong>secticide</strong>s <strong>of</strong> green <strong>rice</strong> leaf hopper (Nephotettix c<strong>in</strong>cticeps Uhler). Pesticide<br />

Biochemistry and Physiology, 79(2): 64-73.<br />

Khan L and Khaliq A. 1989. Field evaluation <strong>of</strong> some granular <strong><strong>in</strong>secticide</strong>s for the control <strong>of</strong> <strong>rice</strong> stem<br />

borers. Pakistan Journal <strong>of</strong> Scientific and Industrial Research, 32(12): 824.<br />

Khan MS and Kushwaha KS. 1990. Effect <strong>of</strong> <strong>in</strong>secticidal fumes on the population <strong>of</strong> whitebacked planthopper,<br />

Sogatella furcifera (Horv.) <strong>in</strong>fest<strong>in</strong>g <strong>rice</strong>. Journal <strong>of</strong> Insect Science, 3(2): 196-199.<br />

Kim JW and Hwang TG. 1987. Studies on resistance to organophosphorus <strong><strong>in</strong>secticide</strong>s <strong>in</strong> the brown<br />

planthopper, Nilaparvata lugens Stal (II) Difference <strong>of</strong> the biochemical characteristic. Korean Journal<br />

<strong>of</strong> Plant Protection, 26(3): 165-170.<br />

Kiritani K. 1972. Strategy <strong>in</strong> Integrated control <strong>of</strong> <strong>rice</strong> pests. Review <strong>of</strong> Plant Protection Research, 5:76-<br />

104.<br />

Kiritani K. 1975. Pesticides and ecosystem. Japanese Pesticide Science Commemoration Issue: 69-75.<br />

Kiritani, K. 1979. Pest management <strong>in</strong> <strong>rice</strong>. Annual Review <strong>of</strong> Entomology, 24: 279-312.<br />

Kiritani K, Kawahara S, Sasaba T and Nakasuji F. 1971. An attempt <strong>of</strong> <strong>rice</strong> pest control by<br />

Kobayashi T. 1961. The effect <strong>of</strong> <strong>in</strong>secticidal applications to the <strong>rice</strong> stem borer on the ieafhopper<br />

population.Special Report on Prediction<strong>of</strong> Pests, M<strong>in</strong>istry <strong>of</strong> Agriculture and Forestry 2:1-126.<br />

Kobayashi M, Uchida M. and Kuriyama K. 1989. Evaluation <strong>of</strong> 20-hydroyecdysone level by bupr<strong>of</strong>ez<strong>in</strong> <strong>in</strong><br />

Nilaparvata lugens Stal nymphs. Pesticide Biochemistry and Physiology, 34(1): 9-16.<br />

Konno Y. 1989. Studies on the resistance mechanism and synergism <strong>in</strong> the OP resistant <strong>rice</strong> stem borer,<br />

Chilo suppressalis Walker. Journal <strong>of</strong> Pesticide Science, 14(3): 373-381.<br />

Konno Y. 1996. Carboxylesterase <strong>of</strong> the <strong>rice</strong> stem borer, Chilo supperssalis Walker (Lepidoptera: Pyralidae)<br />

responsible for fenitrothion resistance as a sequester<strong>in</strong>g prote<strong>in</strong>. Journal <strong>of</strong> Pesticide Science,<br />

21(4): 425-429.<br />

Konno Y. 1999. Insecticide susceptibility <strong>of</strong> adults <strong>of</strong> water strider, Gerris latiabdom<strong>in</strong>is (Hemiptera:<br />

Gerridae). Japanese Journal <strong>of</strong> Applied Entomology and Zoology, 43(3): 137-138.<br />

Konno T and Kajihara O. 1985. Synergism <strong>of</strong> pirimicarb and organophosphorus <strong>in</strong>csecticides aga<strong>in</strong>st the<br />

resistance <strong>rice</strong> stem borer, Chilo supperssalis Walker (Lepidoptera: Pyralidae). Applied Entomology<br />

and Zoology, 20(4): 403-410.<br />

Konno Y and Shishido T. 1987. Metabolism <strong>of</strong> fenitrothion <strong>in</strong> the organophosphorus resistant and susceptible<br />

stra<strong>in</strong>s <strong>of</strong> <strong>rice</strong> stem borers, Chilo suppressalis. Journal <strong>of</strong> Pesticide Science, 12(3): 469-476.<br />

124


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

Konno Y and Shishido T. 1990. Aryl N, N-dimethylcarbamates, synergists for organophosphorus <strong><strong>in</strong>secticide</strong>s<br />

aga<strong>in</strong>st organophosphorus resistant <strong>rice</strong> stem borers. Journal <strong>of</strong> Pesticide Science, 15(2): 175-<br />

187.<br />

Konno Y and Shishido T. 1991. Inheritance <strong>of</strong> resistance to fenitrothion and pirimiphos methyl <strong>in</strong> the <strong>rice</strong><br />

stem borer, Chilo supperssalis Walker (Lepidoptera: Pyralidae). Applied Entomology and Zoology,<br />

26(4): 535-541.<br />

Konno Y, Shishido T and Tanaka F. 1986. Structure resistance relationship <strong>in</strong> the organophosphorus<br />

resistant <strong>rice</strong> stem borer, Chilo suppressalis. Journal <strong>of</strong> Pesticide Science. 11(3): 393-399.<br />

Korat DM, Dodia JF, Patel MC and Pathak AR. 1999a. Evaluation <strong>of</strong> some neem formulations aga<strong>in</strong>st<br />

<strong>in</strong>sect pests <strong>of</strong> paddy. Gujarat Agricultural University Research Journal, 25(1): 112-116.<br />

Korat DM, Patel MC, Dodia JF and Pathak AR. 1999b. Evaluation <strong>of</strong> some new <strong><strong>in</strong>secticide</strong>s aga<strong>in</strong>st major<br />

paddy pests. Gujarat Agricultural University Research Journal, 24(2): 68-73.<br />

Krishnaiah N.V. 2000. Bioefficacy and environmental impact on neem formulations <strong>in</strong> <strong>rice</strong> ecosystem. F<strong>in</strong>al<br />

report <strong>of</strong> the ICAR adhoc scheme, ICAR, New Delhi.<br />

Krishnaiah NV, Ashok Reddy A and Rama Prasad AS. 1996. Studies on bupr<strong>of</strong>ez<strong>in</strong> and synthetic<br />

pyrethroids aga<strong>in</strong>st hoppers <strong>in</strong> <strong>rice</strong>. Indian Journal <strong>of</strong> Plant Protection, 24 (1 & 2): 53-60.<br />

Krishnaiah NV, Ashok Reddy A, Sr<strong>in</strong>ivas PR, and Pasalu IC. 1995. Studies on <strong><strong>in</strong>secticide</strong> <strong>in</strong>duced resurgence<br />

<strong>in</strong> <strong>rice</strong> leaf folder, Cnaphalocrocis med<strong>in</strong>alis (Guenee). Indian Journal <strong>of</strong> Plant Protection, 23(1): 23-30.<br />

Krishnaiah K and Buchaiah SL 1987. Effectiveness <strong>of</strong> BPMC for the control <strong>of</strong> brown planthopper Nilaparvata<br />

lugens Stal and its residues <strong>in</strong> paddy. Pesticides, 21(7): 25-26.<br />

Krishnaiah NV, Jhansi Lakshmi V and Pasalu IC. 2006. Status <strong>of</strong> neonicot<strong>in</strong>oid resistance <strong>in</strong> <strong>rice</strong> planthoppers:<br />

A review. Agricultural Reviews, 27(4): 298-302.<br />

Krishnaiah NV, Jhansi Lakshmi V and Pasalu IC, L<strong>in</strong>gaiah T and Krishnaiah. K. 2001. Relative safety <strong>of</strong><br />

some new <strong><strong>in</strong>secticide</strong>s to Microvelia douglasi atrol<strong>in</strong>eata Bergroth, an aquatic predator <strong>of</strong> hoppers<br />

<strong>in</strong> <strong>rice</strong> ecosystem. Journal <strong>of</strong> Biological Control, 15(1): 49-52.<br />

Krishnaiah NV, Jhansi Lakshmi V, Pasalu IC. and Prabhakar P. 2006. Feasibility <strong>of</strong> utiliz<strong>in</strong>g imidacloprid as<br />

granular formulation aga<strong>in</strong>st <strong>rice</strong> brown planthopper, Nilaparvata lugens (Stal). Indian Journal <strong>of</strong><br />

Plant Protection, 34(2): 195–197.<br />

Krishnaiah NV and Kalode MB. 1983. Effect <strong>of</strong> simulated ra<strong>in</strong>fall on <strong><strong>in</strong>secticide</strong> spray effectiveness.<br />

International Rice Research Newsletter, 8(3): 12.<br />

Krishnaiah NV and Kalode MB. 1984. Evaluation <strong>of</strong> neem oil, neem cake and other non-edible oil cakes<br />

aga<strong>in</strong>st <strong>rice</strong> pests. Indian Journal <strong>of</strong> Plant Protection, 12: 101-107.<br />

Krishnaiah NV and Kalode MB. 1985. Resurgence <strong>of</strong> arthropod pests <strong>in</strong> crop plants. Asian Farm Chemicals,<br />

1: 13-20.<br />

125


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

Krishnaiah NV and Kalode MB. 1986a. Factors <strong>in</strong>fluenc<strong>in</strong>g effectiveness <strong>of</strong> <strong><strong>in</strong>secticide</strong>s aga<strong>in</strong>st brown<br />

planthopper and green leafhopper <strong>in</strong> <strong>rice</strong>. Indian Journal <strong>of</strong> Entomology, 48(4): 399-405.<br />

Krishnaiah NV and Kalode MB. 1986b. Toxicological <strong>in</strong>vestigations aga<strong>in</strong>st <strong>rice</strong> green leafhopper, Nephotettix<br />

virescens (Distant). Tropical Pest Management, 32(1): 44-48.<br />

Krishnaiah NV and Kalode MB. 1986c. Comparative efficacy <strong>of</strong> spray and granular <strong><strong>in</strong>secticide</strong>s aga<strong>in</strong>st<br />

whitebacked planthopper, Sogatella furcifera Horvath <strong>in</strong> <strong>rice</strong>. Indian Journal <strong>of</strong> Plant Protection,<br />

14(1): 69-73.<br />

Krishnaiah NV and Kalode MB. 1987. Studies on resurgence <strong>in</strong> <strong>rice</strong> brown planthopper, Nilaparvata<br />

lugens (Stal). Indian Journal <strong>of</strong> Entomology, 49: 220-229.<br />

Krishnaiah NV and Kalode MB. 1988b. Recent research on botanical pesticides at DRR. Paper presented<br />

at F<strong>in</strong>al workshop, IRRI-ADB-EWC Project on Botanical pest control <strong>in</strong> <strong>rice</strong> based cropp<strong>in</strong>g systems,<br />

December 12-16 1988. International Rice Research Institute, Philipp<strong>in</strong>es.<br />

Krishnaiah NV and Kalode MB. 1988a. Comparative toxicity <strong>of</strong> synthetic pyrethroid, organophosphate<br />

and carbamate <strong><strong>in</strong>secticide</strong>s aga<strong>in</strong>st Nephotettix virescens (Distant) and Nilaparvata lugens (Stal) <strong>in</strong><br />

<strong>rice</strong>. Crop Protection, 7(1): 66-71.<br />

Krishnaiah NV and Kalode MB. 1992a. Persistent toxicity <strong>of</strong> selected granular <strong><strong>in</strong>secticide</strong>s aga<strong>in</strong>st <strong>rice</strong><br />

brown planthopper, Nilaparvata lugens (Stal) <strong>in</strong> different soils. Indian Journal <strong>of</strong> Plant Protection,<br />

20(2): 208-211.<br />

Krishnaiah, NV and Kalode MB. 1992b. Environmental impact studies on neem. In: Proceed<strong>in</strong>gs <strong>of</strong> IRRI-<br />

.ADB F<strong>in</strong>al Workshop on Botanical Pest Control, 28-31 July 1992, International Rice Research Institute<br />

(IRRI), Los Banos, Laguna, Philipp<strong>in</strong>es, pp. 50-53.<br />

Krishnaiah NV and Kalode MB. 1993a. Efficacy <strong>of</strong> eth<strong>of</strong>enprox aga<strong>in</strong>st leafhoppers and planthoppers with<br />

emphasis <strong>in</strong> prevent<strong>in</strong>g resurgence <strong>of</strong> brown planthopper Nilaparvata lugens (Stal) <strong>in</strong> <strong>rice</strong>. Crop<br />

Protection, 12(7): 532-538.<br />

Krishnaiah NV and Kalode MB. 1993b. Environmental impact and bioefficacy <strong>of</strong> botanicals aga<strong>in</strong>st <strong>in</strong>sect<br />

pests <strong>in</strong> <strong>rice</strong>. In: Fourth World Neem Conference, Feb 1993, Bangalore, Karnataka, India.<br />

Krishnaiah NV and Kalode MB. 1993. Effectiveness <strong>of</strong> some granular and spray formulations aga<strong>in</strong>st <strong>rice</strong><br />

hispa. Pesticides, 17(7): 25-28.<br />

Krishnaiah NV, Kalode MB and Ashok Reddy A. 1988. Recent approaches <strong>in</strong> root zone placement <strong>of</strong><br />

<strong><strong>in</strong>secticide</strong>s for effective <strong>rice</strong> pest control. Tropical Pest Management, 34(1): 68-71.<br />

Krishnaiah NV, Kalode MB and Sarma YRB. 1982a. Evaluation <strong>of</strong> <strong><strong>in</strong>secticide</strong>s for toxicity to brown planthopper<br />

eggs and nymphs. International Rice Research Newsletter, 7(2): 14-15.<br />

Krishnaiah NV, Kalode MB and Sarma YRB. 1982b. Toxicological <strong>in</strong>vestigations aga<strong>in</strong>st brown planthopper,<br />

Nilaparvata lugens (Stal) <strong>in</strong> <strong>rice</strong>. Indian Journal <strong>of</strong> Entomology, 44(1): 13-20.<br />

126


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

Krishnaiah NV, Pasalu IC and Jhansi Lakshmi V. 2006. Neonicot<strong>in</strong>oid <strong><strong>in</strong>secticide</strong> resistance <strong>in</strong> agricultural<br />

pests. DRR Technical Bullet<strong>in</strong> No. 19, 48 pp.<br />

Krishnaiah NV, Pasalu lC, Katti G, Mahesh Kumar and L<strong>in</strong>gaiah T. 2000. Effect <strong>of</strong> neem formulations on<br />

resurgence <strong>of</strong> brown planthopper, Nilaparvata lugens (Stal) under field conditions. Indian Journal<br />

<strong>of</strong> Plant Protection, 28(2): 143-147.<br />

Krishnaiah NV, Pasalu IC, L<strong>in</strong>gaiah T, Prasad ASR and Varma NRG. 2003a. Evaluation <strong>of</strong> selected <strong><strong>in</strong>secticide</strong><br />

granules, spray formulations and comb<strong>in</strong>ation products aga<strong>in</strong>st <strong>in</strong>sect pests <strong>of</strong> <strong>rice</strong> under field<br />

conditions. Indian Journal <strong>of</strong> Plant Protection, 31(2): 34-37.<br />

Krishnaiah NV, Pasalu IC, Reddy AA and Krishnaiah K. 1996. Evaluation <strong>of</strong> selected granular and spray<br />

formulations <strong>of</strong> <strong><strong>in</strong>secticide</strong>s aga<strong>in</strong>st <strong>in</strong>sect pests <strong>in</strong> <strong>rice</strong>. Indian Journal <strong>of</strong> Plant Protection, 24(1-2):<br />

69-75.<br />

Krishnaiah NV, Rama Prasad AS, Lakshmi Narayanamma V, Raju G and Sr<strong>in</strong>ivas S. 2004. Comparative<br />

toxicity <strong>of</strong> neonicot<strong>in</strong>oid and phenyl pyrazole <strong><strong>in</strong>secticide</strong>s aga<strong>in</strong>st <strong>rice</strong> hoppers. Indian Journal <strong>of</strong><br />

Plant Protection, 32(1): 24-30.<br />

Krishnaiah NV, Rama Prasad AS, L<strong>in</strong>gaiah T and Mahesh Kumar K. 2003b. Utilization <strong>of</strong> thiamethoxam and<br />

imidacioprid for the management <strong>of</strong> <strong>in</strong>sect pest complex <strong>in</strong> <strong>rice</strong>. Indian Journal <strong>of</strong> Plant Protection,<br />

31(1): 51-55.<br />

Krishnaiah NV, Rama Prasad AS, Pasalu IC, Mahesh Kumar K and L<strong>in</strong>gaiah T. 2002. Development <strong>of</strong><br />

resistance <strong>in</strong> <strong>rice</strong> brown planthopper Nilaparvata lugens (Stai) and green leafhopper Nephotettix<br />

virescens (Dist) to Neem formulations. Pesticide Research Journal, 14(1): 1-7.<br />

Krishnaiah NV and Reddy CS. 1992. Compatibility and co-toxicity <strong>of</strong> selected <strong><strong>in</strong>secticide</strong>s and fungicides<br />

aga<strong>in</strong>st brown planthopper and sheath blight <strong>in</strong> <strong>rice</strong>. Indian Journal <strong>of</strong> Plant Protection, 20(1): 99-<br />

101.<br />

Krishnaiah NV, Sa<strong>in</strong> M and Pasalu IC. 1988. Efficacy <strong>of</strong> synthetic pyrethroids aga<strong>in</strong>st <strong>rice</strong> hispa (Dicladispa<br />

armigera) <strong>in</strong> field. Indian Journal <strong>of</strong> Agricultural Sciences, 58(10): 781-783.<br />

Krishnaiah PV, Rao PS, Rao NHP and Narasimham V. 1987. Insecticides to control <strong>rice</strong> hispa. International<br />

Rice Research Newsletter, 12(4): 43.<br />

Krishnakumar R and Visalakshi R.1989. Relative toxicity <strong>of</strong> <strong><strong>in</strong>secticide</strong>s to <strong>rice</strong> bug, Leptocorisa acuta<br />

Thunb. Entomon, 14(3-4): 365-366.<br />

Kumar MG and Velusamy R. 1996. Safety <strong>of</strong> <strong><strong>in</strong>secticide</strong>s to spiders <strong>in</strong> <strong>rice</strong> fields. Madras Agricultural<br />

Journal, 83(6): 371-375.<br />

Kumar MG and Velusamy R. 1999. Impact <strong>of</strong> monocrotophos application on the mirid bug, Cyrtorh<strong>in</strong>us<br />

lividipennis Reuter. Insect Environment, 5(2): 66-68.<br />

Kumar MG and Velusamy R. 2000. Impact <strong>of</strong> <strong><strong>in</strong>secticide</strong>s on predatory arthropods <strong>of</strong> the <strong>rice</strong> ecosystem.<br />

Madras Agricultural Journal, 87(7-9): 452-455.<br />

127


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

Kuriyama K and Yamaguchi R. 2000. Changes <strong>in</strong> susceptibility to bupr<strong>of</strong>ez<strong>in</strong> follow<strong>in</strong>g ecdysis <strong>in</strong> nymphs<br />

<strong>of</strong> brown planthopper, Nilaparvata lugens. Japanese Journal <strong>of</strong> Applied Entomology and Zoology,<br />

44(2): 134-137.<br />

Kushwaha KS. 1995. Chemical control <strong>of</strong> <strong>rice</strong> stem borer, Scirpophaga <strong>in</strong>certulas Walker and leaf folder,<br />

Cnaphalocrocis med<strong>in</strong>alis Guenee on basmati. Journal <strong>of</strong> Insect Science, 8(2): 225-226.<br />

Kushwaha KS, Zile S<strong>in</strong>gh, Sharma SK and S<strong>in</strong>gh Z. 1983. Efficacy <strong>of</strong> some <strong><strong>in</strong>secticide</strong>s aga<strong>in</strong>st <strong>rice</strong><br />

rootweevils. Indian Journal <strong>of</strong> Entomology, 45(1): 10-15.<br />

Kwon OK, Seong KS, Kim YK, Lee HS and Hwang BS. 1992. Development <strong>of</strong> botanical pesticides aga<strong>in</strong>st<br />

the brown planthopper from the castor oil plant. Research Reports <strong>of</strong> the Rural Development<br />

Adm<strong>in</strong>istration, Crop Protection, 34(2): 127-137.<br />

Kwon OK, Song BH, Park HM and Jeong YH. 1991. Identification <strong>of</strong> <strong>in</strong>secticidal <strong>in</strong>gredient <strong>in</strong> castor oil<br />

plant aga<strong>in</strong>st the brown planthopper. Research Reports <strong>of</strong> the Rural Development Adm<strong>in</strong>istration,<br />

Crop Protection, 33(2): 74-79.<br />

Kyomura N and Takahashi Y. 1979. Jo<strong>in</strong>t <strong>in</strong>secticidal effect <strong>of</strong> N-propyl and N-methylcarbamates on the<br />

green <strong>rice</strong> leafhopper, resistant to N-methylcarbamates. Journal <strong>of</strong> Pesticide Science, 4(3): 401-<br />

409.<br />

Lee PC and Hou RF. 1989. Factors affect<strong>in</strong>g pathogenicity <strong>of</strong> Metarhizium anisopliae var. anisopilae to the<br />

smaller brown planthopper, Laodelphax striatellus. Plant Protection Bullet<strong>in</strong>, Taiwan, 31(1): 1-9.<br />

Li XF, Han ZJ, Chen CK, Li GQ and Wang YC. 2001. Resistance <strong>of</strong> <strong>rice</strong> stem borer (Chilo supperssalis<br />

Walker) to monosultap and other 3 conventional <strong><strong>in</strong>secticide</strong>s. Journal <strong>of</strong> Nanj<strong>in</strong>g Agricultural University,<br />

24(1):43-46.<br />

Lim GS. 1971. Screen<strong>in</strong>g <strong>of</strong> <strong><strong>in</strong>secticide</strong>s aga<strong>in</strong>st Nilaparvata lugens (Stal). Malaysian Agricultural Journal,<br />

48(2): 104-121.<br />

L<strong>in</strong> YH and Sun CN. 1978. Brown planthopper resistance to MIPC and MTMC <strong>in</strong> Taiwan. International Rice<br />

Research Newsletter, 3(5): 19.<br />

Liu TS. 1979. Comparison between the efficacy and efficiency <strong>of</strong> different application methods on control<br />

<strong>of</strong> the brown planthopper <strong>in</strong> paddy <strong>rice</strong>. Plant Protection Bullet<strong>in</strong>, Taiwan. 21(3): 257-266.<br />

Liu TS and Chang TC. 1984. The assessment <strong>of</strong> the efficacy and pr<strong>of</strong>it <strong>of</strong> chemical control <strong>of</strong> brown<br />

planthopper. Plant Protection Bullet<strong>in</strong>, Taiwan, 26(2): 109-120.<br />

Liu XJ, Du ZW, Xu DG. 1989. Biological and toxicological activities <strong>of</strong> bupr<strong>of</strong>ez<strong>in</strong> <strong>in</strong> brown planthopper<br />

nymphs. Jiangsu Journal <strong>of</strong> Agricultural Sciences, 5(4): 26-31.<br />

Liu XJ and Gu ZY. 1996. Resistance <strong>of</strong> brown planthopper to methamidophos and bupr<strong>of</strong>ez<strong>in</strong> and its<br />

development. Plant Protection. 22(2): 23-26.<br />

128


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

Liu ZW, Han ZJ, Zhang LC and Wang YC. 2001. Insecticide resistance selection <strong>in</strong> <strong>rice</strong> planthoppers. Ch<strong>in</strong>ese<br />

Rice Research Newsletter, 9(4): 7-8.<br />

Liu ZW, Han ZJ, Wang YC, Zhang LC, Zhang HW and Liu CJ. 2003b. Selection for imidacloprid resistance <strong>in</strong><br />

Nilaparvata lugens: cross-resistance patterns and possible mechanisms. Pest Management Science,<br />

59(12): 1355-1359.<br />

Liu ZW, Han ZJ and Zhang LC. 2002. Cross resistance <strong>of</strong> methamidophos resistant stra<strong>in</strong> <strong>of</strong> brown<br />

planthopper and the biochemical mechanism responsible. Acta Entomologica S<strong>in</strong>ica, 45(4): 447-<br />

452.<br />

Liu ZW, Liu CJ, Zhang HW and Han ZJ. 2003a. Relative biological fitness <strong>of</strong> imidacloprid resistant stra<strong>in</strong>s <strong>of</strong><br />

Nilaparvata lugens. Entomological Knowledge, 40(5): 419-422.<br />

Liu ZW, Zhang LC, Han ZJ and Dong ZA. 2002. Method for monitor<strong>in</strong>g <strong>of</strong> Imidacloprid resistance <strong>in</strong> brown<br />

planthopper, Nilaparvata lugens. Entomological Knowledge, 39(6): 424-427.<br />

Logiswaran G, Durairaj C and Babu PCS. 1987. Effect <strong>of</strong> <strong><strong>in</strong>secticide</strong>s on <strong>rice</strong> gall midge (GM) and its<br />

parasite Platygaster sp. International Rice Research Newsletter, 12(6): 31.<br />

Logiswaran G and Venugopal MS. 1995. Persistent toxicity <strong>of</strong> neem cake – carb<strong>of</strong>uran pellets aga<strong>in</strong>st <strong>rice</strong><br />

whitebacked planthopper. Madras Agricultural Journal, 82(9-10): 560.<br />

Lu XK and Gong CG. 1990. Experiment on the control <strong>of</strong> Nilaparvata lugens Stal by Applaud. Insect<br />

Knowledge, 27(5): 269-271.<br />

Macatula RF and Mochida O. 1987. M<strong>in</strong>imum levels <strong>of</strong> three commonly <strong>use</strong>d <strong><strong>in</strong>secticide</strong>s to control five<br />

<strong>in</strong>sect pests <strong>of</strong> <strong>rice</strong> <strong>in</strong> the Philipp<strong>in</strong>es. International Rice Research Newsletter, 12(4): 39.<br />

Mani C and Gopalan M. 1991. Effect <strong>of</strong> flufenoxuron on the development <strong>of</strong> <strong>rice</strong> white backed planthopper,<br />

Sogatella furcifera Horv. and <strong>rice</strong> green leafhopper, Nephotettix virescens (Dist.). Indian Journal <strong>of</strong><br />

Entomology, 53(1): 50-58.<br />

Mani M. and Jayaraj S. 1976. Biological <strong>in</strong>vestigations on the resurgence <strong>of</strong> the <strong>rice</strong> blue leafhopper<br />

Zyg<strong>in</strong>a maculifrons (Motch). Indian Journal <strong>of</strong> Experimental Biology, 14: 636-637.<br />

Manisegarane S, Letchoumanane S, Hanifa AM, Subramanian M and Ramadoss N. 1997. Bioassay <strong>of</strong><br />

Fusarium pallidoroseum (Cooke) Sacc., (Deuteromycot<strong>in</strong>a: Hyphomycetes) aga<strong>in</strong>st leaf folder.<br />

International Rice Research Notes, 22(2): 44.<br />

Manjunatha M and Shivanna BK. 2001. Field evaluation <strong>of</strong> RIL 18 20 SL (Imidacloprid) aga<strong>in</strong>st <strong>rice</strong> brown<br />

planthopper and green leafhopper. Insect Environment, 6(4): 177-178.<br />

Mariappan V and Saxena RC. 1983. Effect <strong>of</strong> custard apple oil and neem oil on survival <strong>of</strong> Nephotettix<br />

virescens (Homoptera: Cicadellidae) and on <strong>rice</strong> tungro virus transmission. Journal <strong>of</strong> Economic<br />

Entomology, 76: 573-576.<br />

129


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

Mariappan V and Saxena RC. 1984. Effect <strong>of</strong> mixtures <strong>of</strong> custard apple oil and neem oil on survival <strong>of</strong><br />

Nephotettix virescens (Homoptera: Cicadellidae) and on <strong>rice</strong> tungro virus transmission. Journal <strong>of</strong><br />

Economic Entomology, 77: 519-521.<br />

Mathai S, Nair MRGK and Mohandas N. 1986. Jo<strong>in</strong>t action <strong>of</strong> nuclear polyhedrosis virus (NPV) and<br />

<strong><strong>in</strong>secticide</strong>s aga<strong>in</strong>st the <strong>rice</strong> swarm<strong>in</strong>g caterpillar, Spodoptera mauritia (Boisduval). Indian Journal<br />

<strong>of</strong> Plant Protection, 14(2): 13-17.<br />

Mattioda H and Jousseaume C. 1999. Tebufenozide: control <strong>of</strong> the <strong>rice</strong> borer <strong>in</strong> Spa<strong>in</strong> and Camargue.<br />

Proceed<strong>in</strong>gs <strong>of</strong> the Fifth International Conference on Pests <strong>in</strong> Agriculture, France, pp. 827-834.<br />

Mayab<strong>in</strong>i Jena. 1997. Efficacy <strong>of</strong> some neem products aga<strong>in</strong>st <strong>rice</strong> leaf folder, Cnaphalocrocis med<strong>in</strong>alis<br />

Guenee. Indian Journal <strong>of</strong> Plant Protection, 25(2): 160-161.<br />

Mayab<strong>in</strong>i Jena. 2004. Efficacy <strong>of</strong> new <strong><strong>in</strong>secticide</strong>s as seedl<strong>in</strong>g root dip treatment aga<strong>in</strong>st yellow stem<br />

borer <strong>in</strong> rabi <strong>rice</strong>. Indian Journal <strong>of</strong> Plant Protection, 32(2): 37-29.<br />

Misra HP and Parida TK. 2004. Field screen<strong>in</strong>g <strong>of</strong> comb<strong>in</strong>ation <strong><strong>in</strong>secticide</strong>s aga<strong>in</strong>st <strong>rice</strong> stem borer and<br />

leaf folder. Indian Journal <strong>of</strong> Plant Protection, 32(2): 133-135.<br />

Misra US, Shukla BC, Kosta VK and Dubey AK. 1981. Effectiveness <strong>of</strong> seedl<strong>in</strong>g root dip for control <strong>of</strong> gall<br />

midge. International Rice Research Newsletter, 6(2): 15-16.<br />

Miyake T, Kudo M, Umehara T, Hirata K, Kawamura Y and Oguru T. 1988. NC-170, a new compound<br />

<strong>in</strong>hibit<strong>in</strong>g the development <strong>of</strong> leafhoppers and planthoppers. Brighton Crop Protection Conference,<br />

Pests and Diseases, 2: 535-542.<br />

Miyashita K. 1963. Outbreaks and population fluctuations <strong>of</strong> <strong>in</strong>sects with special reference to agricultural<br />

<strong>in</strong>sect pests <strong>in</strong> Japan. Bullet<strong>in</strong> <strong>of</strong> National Institute <strong>of</strong> Agricultural Science Series C, 15: 99-170.<br />

Mochida O and Basilio RP. 1983. Insecticide-resistant brown planthopper populations at the IRRI farm.<br />

International Rice Research Newsletter, 8(6): 17.<br />

Mochida O and He<strong>in</strong>richs EA. 1983. Strategies for the development <strong>of</strong> an <strong>in</strong>tegrated approach to <strong>rice</strong><br />

brown planthopper control <strong>in</strong>: Rice Research Strategies for the future. International Rice Research<br />

Institute (IRRI), Los Banos, Laguna, Philipp<strong>in</strong>es, pp. 77-127.<br />

Mochizuki A. 1993. Antifeedant activity <strong>of</strong> neem oil to the <strong>rice</strong> water weevils, Lissorhoptrus oryzophilus<br />

Kuschel (Coleoptera: Curculionidae). Applied Entomology and Zoology, 28(2): 254-256.<br />

Mohamed Ali AB, Mohandas N, Visalakshi A and Rajaram KP. 1981. Carb<strong>of</strong>uran and its metabolites <strong>in</strong> <strong>rice</strong><br />

plants treated at different growth stages and its relation with the toxicity to Nilaparvata lugens Stal.<br />

Entomon, 6(2): 155-157.<br />

Motoyama N. 1998. Biological properties <strong>of</strong> the chloronicot<strong>in</strong>yl <strong><strong>in</strong>secticide</strong> imidacloprid: high selectivity<br />

and safer <strong>use</strong> <strong>in</strong> practice. In Iwaya K, Kagabu S and Kuhr RJ (ed), Pesticides and the future :<br />

m<strong>in</strong>imiz<strong>in</strong>g chronic exposure <strong>of</strong> humans and the environment, pp. 121-132.<br />

130


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

Motoyama N, Kao LR, L<strong>in</strong> PT and Dauterman WC. 1984. Dual role <strong>of</strong> esterases <strong>in</strong> <strong><strong>in</strong>secticide</strong> resistance <strong>in</strong><br />

the green <strong>rice</strong> leafhopper. Pesticide Biochemistry and Physiology, 21(2): 139-147.<br />

Murugesan S, Venugopal MS and Bharati M. 1987. Thrips control at tiller<strong>in</strong>g <strong>of</strong> transplanted <strong>rice</strong>.<br />

International Rice Research Newsletter, 12(5): 25.<br />

Nadarajan L 1996. Evaluation <strong>of</strong> <strong><strong>in</strong>secticide</strong>s for the control <strong>of</strong> leaf folder <strong>in</strong> <strong>rice</strong>. Journal <strong>of</strong> Tropical<br />

Agriculture, 34(2): 152-153.<br />

Nagadara D, Ramesh S, Pasalu IC, Kondala Rao Y, Kishnaiah NV, Sharma NP, Brown DP, Gateho<strong>use</strong> JA,<br />

Reddy VD and Rao KV. 2003. Transgenic <strong>in</strong>dica <strong>rice</strong> resistant to sap suck<strong>in</strong>g <strong>in</strong>sects. Plant<br />

Biotechnology Journal, 1: 231-240.<br />

Naganagoud A, Sreenivasa AG, Rahman SM and Patil BV. 1997. Toxicity <strong>of</strong> some <strong><strong>in</strong>secticide</strong>s on predatory<br />

population <strong>of</strong> Cyrtorh<strong>in</strong>us lividipennis Reuter (Hemiptera: Miridae) and Lycosa pseudoannulata (Boest.<br />

Et Str) (Acar<strong>in</strong>a: Lycosidae) <strong>in</strong> paddy crop. Karnataka Journal <strong>of</strong> Agricultural Sciences, 10(4): 1200-<br />

1203.<br />

Nagata T. 1983. Insecticide resistance <strong>in</strong> <strong>rice</strong> pests, with special emphasis on the brown planthopper,<br />

(Nilaparvata lugens Stal). 10th International Congress <strong>of</strong> Plant Protection 1983. Volume 2.<br />

Proceed<strong>in</strong>gs <strong>of</strong> a conference held at Brighton, England, 20-25 November, 1983. Plant protection<br />

for human welfare. 1983, 599-607.<br />

Nagata T. 1984. Insecticide resistance <strong>in</strong> the brown planthopper. Ch<strong>in</strong>ese Journal <strong>of</strong> Entomology, 4(2):<br />

117-124.<br />

Nagata T. 1986. Tim<strong>in</strong>g <strong>of</strong> bupr<strong>of</strong>ez<strong>in</strong> application for control <strong>of</strong> the brown planthopper, Nilaparvata lugens<br />

Stal (Homoptera: Delphacidae). Applied Entomology and Zoology, 21(3): 357-362.<br />

Nagata T, Kamimuro T, Wang YC, Han SG and Nik Mohd Noor. 2002. Recent status <strong>of</strong> <strong><strong>in</strong>secticide</strong> resistance<br />

<strong>of</strong> long-distance migrat<strong>in</strong>g <strong>rice</strong> planthoppers monitored <strong>in</strong> Japan, Ch<strong>in</strong>a and Malaysia. Journal-<strong>of</strong>-<br />

Asia-Pacific-Entomology, 5(1): 113-116.<br />

Nagata T, Maeda Y, Moriya S and Kisimoto R. 1973. On the time <strong>of</strong> control for the brown planthopper,<br />

Nilaparvata lugens Stal. Japanese Journal <strong>of</strong> Applied Entomology and Zoology, 17(2): 71-76.<br />

Nagata T and Ohira Y. 1986. Insecticide resistance <strong>of</strong> the small brown planthopper, Laodelphax striatellus<br />

Fallen (Hemiptera: Delphacidae), collected <strong>in</strong> Kyushu and on the East Ch<strong>in</strong>a Sea. Applied Entomology<br />

and Zoology, 21(2): 216-219.<br />

Naik K, Panda P, Sontakke BK and Panda N. 1993. Bioassay <strong>of</strong> some selected <strong><strong>in</strong>secticide</strong>s aga<strong>in</strong>st the<br />

fourth <strong>in</strong>star larvae <strong>of</strong> <strong>rice</strong> leaf folder, Cnaphalocrocis med<strong>in</strong>alis Guenee. Indian Journal <strong>of</strong> Entomology,<br />

55(2): 191-196.<br />

Natarajan K and Chandy KC. 1979. Oftanol – a promis<strong>in</strong>g root dip <strong><strong>in</strong>secticide</strong> for <strong>rice</strong>. Indian Journal <strong>of</strong><br />

Plant Protection,, 6(2): 93-94.<br />

131


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

Neyra M, Rodriguez R and Masso E. 1997. Evaluation <strong>of</strong> a seed treatment <strong>of</strong> furathiocarb before sow<strong>in</strong>g<br />

<strong>of</strong> Oryza sativa aga<strong>in</strong>st Lissorhoptrus brevirostris and Sogatodes orizicola. Agrotecnia de Cuba,<br />

27(1): 73-76.<br />

Nomura M, Kato Y and Miyata T. 1999. Monitor<strong>in</strong>g <strong>of</strong> organophosphate and carbamate resistance and<br />

identify<strong>in</strong>g a comb<strong>in</strong>ation <strong>of</strong> <strong><strong>in</strong>secticide</strong>s show<strong>in</strong>g negatively correlated cross resistance <strong>in</strong> the green<br />

<strong>rice</strong> leafhopper (Nephotettix c<strong>in</strong>cticeps Uhler) (Hemiptera: Deltocephalidae). Applied Entomology<br />

and Zoology, 34(4): 525-530.<br />

Nomura M, Kato Y and Miyata T. 2000. The genotype and heredity <strong>of</strong> modified acetylchol<strong>in</strong>e-esterase <strong>of</strong><br />

the green <strong>rice</strong> leafhopper (Nephotettix c<strong>in</strong>cticeps Uhler). Pesticide Biochemistry and Physiology,<br />

66(2): 73-82.<br />

Nozoato K. and Kiritani K. 1976. To what extent natural enemies were responsible for the decrease <strong>of</strong> <strong>rice</strong><br />

stem borer population. Shokubutsu Boeki, 30: 259-263.<br />

Obata T, Fujii K, Yoshiya H and Tsutsumiuchi K. 1992. Synthesis and <strong>in</strong>secticidal and acaricidal activity <strong>of</strong><br />

new N-(alpha-substituted phenoxybenzyl)-4-pyrimid<strong>in</strong>am<strong>in</strong>es. Pesticide Science, 34(2): 133-138.<br />

Odum Eugene P. 1953. Fundamentals <strong>of</strong> Ecology. (3rd edition 1971). W.B. Saunders Co, Philadelphia and<br />

London.<br />

Oh BY, Kim JH Park YS, Yoo JK and Sh<strong>in</strong> YH. 1987. Development <strong>of</strong> low-drifted microgranule <strong><strong>in</strong>secticide</strong> for<br />

brown planthopper control <strong>in</strong> later growth stage <strong>of</strong> <strong>rice</strong>. 2. Micro granule utiliz<strong>in</strong>g a mixture <strong>of</strong><br />

wasted talc and diatomaceous earth as carrier. Research Reports <strong>of</strong> the Rural Development<br />

Adm<strong>in</strong>istration, Plant Environment, Mycology and Farm Products Utilization, Korea Republic, 29(1):<br />

259-265.<br />

Ohtsuka T. 1993. Synthesis and <strong>in</strong>secticidal activity <strong>of</strong> silicon-conta<strong>in</strong><strong>in</strong>g pyrethroids with low fish toxicity.<br />

Journal <strong>of</strong> Pesticide Science, 18(3): S145-S153.<br />

Oka IN. 1978. FAO Panel <strong>of</strong> Experts on Integrated Control <strong>of</strong> Pests, Food and Agriculture Organisation,<br />

Rome, Italy, 28 pp.<br />

Ozaki K, Georghiou GP and Saito T. 1983. Suppression <strong>of</strong> resistance through synergistic comb<strong>in</strong>ations<br />

with emphasis on planthoppers and leafhoppers <strong>in</strong>fest<strong>in</strong>g <strong>rice</strong> <strong>in</strong> Japan. Pest Resistance to Pesticides,<br />

595-613.<br />

Ozaki K, Sasaki Y and Kassai T. 1984. The <strong>in</strong>secticidal activity <strong>of</strong> mixtures <strong>of</strong> pyrethroids and<br />

organophosphates or carbamates aga<strong>in</strong>st the <strong><strong>in</strong>secticide</strong> resistant green <strong>rice</strong> leafhopper, Nephotettix<br />

c<strong>in</strong>cticeps Uhler. Journal <strong>of</strong> Pesticide Science, 9(1): 67-72.<br />

Padmakumari AP, Sarupa M and Krishnaiah NV. 2002. Status <strong>of</strong> <strong><strong>in</strong>secticide</strong> resistance <strong>in</strong> <strong>rice</strong> brown<br />

planthopper, Nilaparvata lugens – A review. Agricultural Reviews, 23(4): 262-271.<br />

Pan WL and Chiu SF. 1989. Mode <strong>of</strong> action <strong>of</strong> bupr<strong>of</strong>ez<strong>in</strong> aga<strong>in</strong>st Nilaparvata lugens nymphs and its<br />

132


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

application <strong>in</strong> <strong>rice</strong> fields for the control <strong>of</strong> planthoppers. Journal <strong>of</strong> South Ch<strong>in</strong>a Agricultural University,<br />

10(4): 13-18.<br />

Panda N. 1987. Use <strong>of</strong> botanicals aga<strong>in</strong>st pests <strong>in</strong> <strong>rice</strong> based cropp<strong>in</strong>g systems. Paper presented at Midterm<br />

review workshop on Botanical pest control <strong>in</strong> <strong>rice</strong> based cropp<strong>in</strong>g systems, June 1-6 1987,<br />

Tamil Nadu Agricultural University, Coimbatore, India.<br />

Panda SK and Mishra DS. 1999. Relative toxicity <strong>of</strong> low, medium and high doses <strong>of</strong> granular <strong><strong>in</strong>secticide</strong>s<br />

aga<strong>in</strong>st Sogatella furcifera (Horvath) and its predators. Shashpa, 6(1): 75-83.<br />

Panda SK, Nayak SK and Behera UK. 1999. Field efficacy <strong>of</strong> five commercial formulations <strong>of</strong> Bacillus<br />

thur<strong>in</strong>giensis var. kurstaki aga<strong>in</strong>st the <strong>rice</strong> stem borer and leaf folder. Pest Management and Economic<br />

Zoology, 7(2): 143-146.<br />

Panda SK, Nayak SK and Behera UK 1999. Field efficacy <strong>of</strong> some <strong><strong>in</strong>secticide</strong>s aga<strong>in</strong>st the <strong>rice</strong> leaffolder,<br />

Cnaphalocrocis med<strong>in</strong>alis (Guenee) and whorl maggot, Hydrellia philipp<strong>in</strong>a (Fer<strong>in</strong>o). Pest Management<br />

and Economic Zoology, 7(1): 55-59.<br />

Panda SK, Nayak SK and Behera UK. 2002. Field evaluation <strong>of</strong> few chemicals aga<strong>in</strong>st <strong>rice</strong> stem borers<br />

and brown planthopper. Shashpa, 9(1): 97-99.<br />

Panda SK and Shi N. 1988. Chemical control <strong>of</strong> whitebacked planthopper (WBPH). International Rice<br />

Research Newsletter, 13(3): 40-41.<br />

Panda SK and Shi N. 1988. Chemical control <strong>of</strong> thrips and gall midge (GM) <strong>in</strong> rianfed low land <strong>rice</strong>.<br />

International Rice Research Newsletter, 13(6): 36-37.<br />

Pandey RK and Tiwari JN. 1999. Field efficacy <strong>of</strong> some <strong><strong>in</strong>secticide</strong>s aga<strong>in</strong>st Mythimna separata (Walker)<br />

and the effect <strong>of</strong> larval control on gra<strong>in</strong> yield <strong>in</strong> <strong>rice</strong>. Pest Management and Economic Zoology, 7(2):<br />

147-150.<br />

Pandya HV, Shah AH and Purohit MS. 1987. Effect <strong>of</strong> some <strong><strong>in</strong>secticide</strong> formulations aga<strong>in</strong>st newly emerged<br />

yellow stem borer (YSB) larvae. International Rice Research Newsletter, 12(6): 27-28.<br />

Pangtey VS. 1985. Efficacy <strong>of</strong> selected <strong><strong>in</strong>secticide</strong>s aga<strong>in</strong>st gundhi bug, Leptocorisa acuta (YHUNB) at<br />

Jharnapani, Kohima, Nagaland. Pesticides, 19(1): 36-37.<br />

Patel ML, Patel KG and Pandya HV. 2004. Effect <strong>of</strong> <strong><strong>in</strong>secticide</strong>s commonly <strong>use</strong>d for the control <strong>of</strong> <strong>in</strong>sect<br />

pests <strong>of</strong> paddy on spiders. Insect Environment, 10(4): 171-174.<br />

Pathak MD, Encarnacion D and Dupo H. 1974. Application <strong>of</strong> <strong><strong>in</strong>secticide</strong>s <strong>in</strong> the root zone <strong>of</strong> <strong>rice</strong> plants.<br />

Indian Journal <strong>of</strong> Plant Protection, 1(2): 1-16.<br />

Patnaik NC. 1983. Toxicity <strong>of</strong> some organophosphorus <strong><strong>in</strong>secticide</strong>s to predatory cocc<strong>in</strong>ellids <strong>of</strong> <strong>rice</strong><br />

fields. Oryza, 20(4): 237-239.<br />

Patnaik NC and Satpathy JM. 1983. Effect <strong>of</strong> some pesticide schedules on the <strong>in</strong>cidence <strong>of</strong> <strong>rice</strong> gall midge<br />

133


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

and its parasite, Platygaster oryzae (Cameron). Journal <strong>of</strong> Entomological Research, 7(2): 166-<br />

168.<br />

Peter C, David BV, Sundararajan R and Gov<strong>in</strong>darajalu V. 1989. Compatibility <strong>of</strong> eth<strong>of</strong>enprox <strong>in</strong> relation to<br />

the control <strong>of</strong> the <strong>rice</strong> brown planthopper, Nilaparvata lugens (Stal). Pestology, 13(12): 17-20.<br />

Pick<strong>in</strong> SR, He<strong>in</strong>richs EA and Mathews GA. 1980. CDA as a technique for optimis<strong>in</strong>g <strong><strong>in</strong>secticide</strong> deposition<br />

<strong>in</strong> <strong>rice</strong> for control <strong>of</strong> the brown planthopper. Symposium on Spray<strong>in</strong>g Systems for the 1980s. March<br />

1980, London, UK.<br />

Pick<strong>in</strong> SR, He<strong>in</strong>richs EA and Matthews GA. 1981. Assessment <strong>of</strong> water based controlled droplet application<br />

<strong>of</strong> <strong><strong>in</strong>secticide</strong>s on lowland <strong>rice</strong>. Tropical Pest Management, 27(2): 257-261.<br />

Powell KS, Gateho<strong>use</strong> AMR, Hilder VA and Gateho<strong>use</strong> JA. 1993. Antimetabolic effects <strong>of</strong> plant lect<strong>in</strong>s and<br />

plant fungal enzymes on the nymphal stages <strong>of</strong> two important <strong>rice</strong> pests, Nilaparvata lugens and<br />

Nephotettix c<strong>in</strong>cticeps. Entomologia Experimentalis et Applicata, 66(2): 119-126.<br />

Prabal S and Parameswaran S. 2002. Eco-friendly strategies for the management <strong>of</strong> <strong>rice</strong> leaffolder,<br />

Cnaphalocrocis med<strong>in</strong>alis Guenee. Annals <strong>of</strong> Plant Protection Sciences, 10(1): 12-16.<br />

Prakash A and Bhattacharya R. 1993. Investigations on downward translocation <strong>of</strong> BPMC <strong>in</strong> <strong>rice</strong>. Journal<br />

<strong>of</strong> Insect Science, 6(1): 146-147.<br />

Qu MJ, Han ZJ, Xu XJ, Shao XL, Tian XZ and Fu ML. 2005. Dynamics and risk assessment <strong>of</strong> triazophos<br />

resistance <strong>in</strong> <strong>rice</strong> stem borer (Chilo supperssalis Walker). Journal <strong>of</strong> Nanj<strong>in</strong>g Agricultural University,<br />

28(3): 38-42.<br />

Qu MJ, Han ZJ, Xu XJ and Yue L. 2003. Triazophos resistance mechanisms <strong>in</strong> the <strong>rice</strong> stem borer Chilo<br />

supperssalis (Walker). Pesticide Biochemistry and Physiology, 77(3): 99-105.<br />

Rabbi MF, Haq M, Karim ANMR and Kamal NQ. 1993. Efficacy <strong>of</strong> some <strong><strong>in</strong>secticide</strong>s aga<strong>in</strong>st <strong>rice</strong> green<br />

leafhopper, Nephotettix virescens (Distant) and their effect on ladybird beetle, Micraspis discolour<br />

Fab. Bangladesh Journal <strong>of</strong> Entomology, 3(2): 59-65.<br />

Radja NC, Gopalan M and Balasubramanian G 1988. Control <strong>of</strong> <strong>rice</strong> mealy bug, Brevennia rehi (L<strong>in</strong>d<strong>in</strong>ger)<br />

with <strong><strong>in</strong>secticide</strong>s. Indian Journal <strong>of</strong> Plant Protection, 16(1): 59-61.<br />

Raguraman S and Rajasekaran B. 1996. Effect <strong>of</strong> neem products on <strong>in</strong>sect pests <strong>of</strong> <strong>rice</strong> and the predatory<br />

spider. Madras Agricultural Journal, 83(8): 510-515.<br />

Rajamani S, Kulshreshtha JP, Pasalu IC and Dani RC. 1985. Seedl<strong>in</strong>g root soak<strong>in</strong>g, an effective and economic<br />

measure to control <strong>rice</strong> <strong>in</strong>sect pests at vegetative stage. Indian Journal <strong>of</strong> Plant Protection, 12(1):<br />

35-41.<br />

Rajamani S, Pasalu IC, Kulshreshtha JP and Mathur KC. 1981. Effect <strong>of</strong> <strong><strong>in</strong>secticide</strong>s as seedl<strong>in</strong>g root dip.<br />

Pesticides, 15(4): 25-26.<br />

134


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

Rajappan K, Mal<strong>in</strong>i, CU, Narasimhan V and Kareem AA. 1999. Effect <strong>of</strong> solvent free EC formulations <strong>of</strong><br />

neem and pungam oils on the survival <strong>of</strong> Nephotettix virescens and <strong>rice</strong> yellow drawf transmission.<br />

Annals <strong>of</strong> Plant Protection Sciences, 7(2): 220-222.<br />

Rajappan K, Ushamal<strong>in</strong>i C, Subramanian N, Narasimhan V and Kareem AA. 2000. Effect <strong>of</strong> botanicals on<br />

the population dynamics <strong>of</strong> Nephotettix virescens, <strong>rice</strong> tungro disease <strong>in</strong>cidence and yield <strong>of</strong> <strong>rice</strong>.<br />

Phytoparasitica, 28(2): 109-113.<br />

Rajasekaran B, Jayaraj S, Raguraman S and Narayana Swamy T. 1987. Use <strong>of</strong> neem products for the<br />

management <strong>of</strong> certa<strong>in</strong> <strong>rice</strong> <strong>in</strong>sects and diseases. Paper presented at Mid-term review workshop<br />

on Botanical pest control <strong>in</strong> <strong>rice</strong> based cropp<strong>in</strong>g systems, June 1-6 1987, Tamil Nadu Agricultural<br />

University, Coimbatore, India.<br />

Rajasekaran B, Rajendran R, Velusamy R and Babu PCS. 1987. Effect <strong>of</strong> vegetable oil on <strong>rice</strong> leaffolder<br />

(LF) feed<strong>in</strong>g behaviour. International Rice Research Newsletter, 12(2): 34.<br />

Rajendran R and Chelliah S. 1987. Effect <strong>of</strong> 8 <strong><strong>in</strong>secticide</strong>s on <strong>rice</strong> bug eggs. International Rice Research<br />

Newsletter, 12(4): 42.<br />

Raju N, Gopalan M and Balasubramanian G. 1988. Ovicidal activity <strong>of</strong> synthetic pyrethroids and diflubenzuron<br />

on the eggs <strong>of</strong> yellow stem borer <strong>of</strong> <strong>rice</strong>. Madras Agricultural Journal, 75(11-12): 423-425.<br />

Raman K. 1981. Studies on the Influence <strong>of</strong> Foliar Application <strong>of</strong> Insecticides on the Resurgence <strong>of</strong> Brown<br />

Planthopper, Nilaparvata lugens (Stal) <strong>in</strong> Rice. M.Sc. (Ag.) Thesis, Tamil Nadu Agricultural University,<br />

Coimbatore, Tamil Nadu, India.<br />

Raman K and Uthamasamy S. 1983. Insecticide toxicity to natural brown planthopper enemies. International<br />

Rice Research Newsletter, 8(4): 20.<br />

Raman K and Uthamasamy S. 1983a. Influence <strong>of</strong> foliar application <strong>of</strong> <strong><strong>in</strong>secticide</strong>s on the resurgence <strong>of</strong><br />

brown planthopper, Nilaparvata lugens (Stal.) <strong>in</strong> <strong>rice</strong>. Entomon, 8: 41-45.<br />

Ramaraju K, Gunathilagaraj K and Babu PCS. 1987. Effects <strong>of</strong> <strong><strong>in</strong>secticide</strong>s on the egg hatch<strong>in</strong>g and<br />

reproductive rate <strong>of</strong> the white backed planthopper (WBPH) <strong>in</strong> <strong>rice</strong>. Rice Research Newsletter, 8(4):<br />

2-3.<br />

Rao AS, Kumaraswamy T and Balasubramanian M. 1987. Effect <strong>of</strong> diflubenzuron (Dimil<strong>in</strong>) on the feed<strong>in</strong>g<br />

behaviour <strong>of</strong> Cnaphalocrocis med<strong>in</strong>alis Guenee (Pyralidae: Lepidoptera). Journal <strong>of</strong> Research, APAU,<br />

15(2): 119-123.<br />

Rao NBVC, S<strong>in</strong>gh VS and Subash Chander. 2003. Studies on efficacy <strong>of</strong> various <strong><strong>in</strong>secticide</strong>s and biopesticides<br />

on <strong>rice</strong> leaf folder, Cnaphalocrocis med<strong>in</strong>alis (Guenee). Journal <strong>of</strong> Entomological Research, 27(4):<br />

297-303.<br />

Rao NHP. 2003. Bioefficacy <strong>of</strong> <strong><strong>in</strong>secticide</strong>s aga<strong>in</strong>st <strong>in</strong>ternal feed<strong>in</strong>g <strong>in</strong>sects <strong>in</strong> <strong>rice</strong>. Journal <strong>of</strong> Entomological<br />

Research, 27(1): 89-91.<br />

135


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

Rao N Venugopal, Rao VLV Prasada, Reddy PS and Reddy S. 1984. Performance <strong>of</strong> some granular<br />

<strong><strong>in</strong>secticide</strong>s aga<strong>in</strong>st <strong>in</strong>sect pests <strong>of</strong> paddy. Pesticides, 18(6): 28-30.<br />

Rao PRM and Prakasa Rao PS. 1979. Fumigation effect <strong>of</strong> certa<strong>in</strong> granular <strong><strong>in</strong>secticide</strong>s aga<strong>in</strong>st the<br />

brown planthopper. International Rice Research Newsletter, 4(4): 14-15.<br />

Rao PRM and Prakasa Rao PS. 1981. Control <strong>of</strong> the brown planthopper Nilaparvata lugens, by carb<strong>of</strong>uran<br />

and BPMC applied at <strong>rice</strong> root zone. Oryza, 18(3): 170-172.<br />

Rao PRM and Prakasa Rao PS. 1982. Studies on ovicidal action <strong>of</strong> granular <strong><strong>in</strong>secticide</strong>s aga<strong>in</strong>st eggs <strong>of</strong><br />

Nilaparvata lugens Stal <strong>in</strong> <strong>rice</strong>. Pesticides, 16(2): 30-31.<br />

Rath PC. 1999. Evaluation <strong>of</strong> some Bacillus thur<strong>in</strong>giensis and neem formulations aga<strong>in</strong>st yellow stem<br />

borer or <strong>rice</strong> under ra<strong>in</strong>fed lowlands. Oryza, 36(4): 398-399.<br />

Razvi SA, Rao CS, Rao NV, Subba Rao C and Venugopal Rao N. 1983. Efficacies <strong>of</strong> new granular and spray<br />

<strong><strong>in</strong>secticide</strong>s on <strong>rice</strong> pests. International Rice Research Newsletter, 8(1): 15-16.<br />

Reddy AA. 1989. A root zone liquid urea applicator for wetland <strong>rice</strong>. International Rice Research Newsletter,<br />

14(5): 33-34.<br />

Reddy A and Krishnaiah NV. 1993. Efficacy and economics <strong>of</strong> rootzone application <strong>of</strong> carb<strong>of</strong>uran with<br />

liquid applicator <strong>in</strong> irrigated <strong>rice</strong>. Indian Journal <strong>of</strong> Plant Protection, 21(1): 34-38.<br />

Reddy CS and Krishnaiah NV. 1997. Compatibility and toxicity <strong>of</strong> Bupr<strong>of</strong>ez<strong>in</strong> with selected fungicides aga<strong>in</strong>st<br />

brown planthopper and sheath blight <strong>in</strong> <strong>rice</strong>. Indian Journal <strong>of</strong> Plant Protection, 25(2): 137-139.<br />

Reddy CS, Krishnaiah NV and Rama Prasad AS. 2002. Efficacy <strong>of</strong> <strong><strong>in</strong>secticide</strong>s aga<strong>in</strong>st leafhopper Nephotettix<br />

virescens and <strong>rice</strong> tungro disease. Indian Phytopathology, 55(1): 114-116.<br />

Reghunath P, Premila KS, Mathew TB and Nandakumar, C. 1988. Chemical control <strong>of</strong> thrips Stenchaetothrips<br />

biformis Bagnall us<strong>in</strong>g synthetic pyrethroids <strong>in</strong> <strong>rice</strong> nursery. Agricultural Research Journal <strong>of</strong> Kerala,<br />

26(2): 298-300.<br />

Reissig WH, He<strong>in</strong>richs EA and Valencia SL. 1982a. Effect <strong>of</strong> <strong><strong>in</strong>secticide</strong>s on Nilparvarta lugens and its<br />

predatory spiders, Microvelia atrol<strong>in</strong>eata and Cyrtorh<strong>in</strong>us lividipennis. Environmental Entomology,<br />

11: 193- 199.<br />

Reissig WH, He<strong>in</strong>richs EA and Valencia SL. 1982b. Insecticide <strong>in</strong>duced resurgence <strong>of</strong> the brown planthopper,<br />

Nilaparvata lugens on <strong>rice</strong> varieties with different levels <strong>of</strong> resistance. Environmental Entomology,<br />

11: 165-168.<br />

Riddell JA, Heong KL, Lee BS, Lim TM, Teoh CH and Ibrahim Y. 1982. Carbosulfan, a versatile new <strong><strong>in</strong>secticide</strong>.<br />

Proceed<strong>in</strong>gs <strong>of</strong> the International Conference on Plant Protection <strong>in</strong> the Tropics, Pp. 712.<br />

Rizvi SMA and S<strong>in</strong>gh HM. 1981. Chemical control <strong>of</strong> paddy cutworm (Mythimna separata Wlk). Oryza,<br />

18(2): 112-113.<br />

136


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

Roan CC and Hopk<strong>in</strong>s TL. 1961. Mode <strong>of</strong> action <strong>of</strong> <strong><strong>in</strong>secticide</strong>s. Annual Review <strong>of</strong> Entomology, 6: 333 -<br />

346.<br />

Rombach MC, Aguda RM, picard L and Roberts DW. 1989. Arrested feed<strong>in</strong>g <strong>of</strong> the Asiatic <strong>rice</strong> borer<br />

(Lepidoptera: Pyralidae) by Bacillus thur<strong>in</strong>giensis.Journal <strong>of</strong> Economic Entomology, 82(2): 416-<br />

419.<br />

Roshan Lal. 2000. Evaluation <strong>of</strong> some granular <strong><strong>in</strong>secticide</strong>s aga<strong>in</strong>st whitebacked and brown planthopper<br />

<strong>in</strong> <strong>rice</strong>. Pesticide Research Journal, 12(1): 96-98.<br />

Roshan Lal. 2001. Field evaluation <strong>of</strong> some biopesticides for management <strong>of</strong> <strong>rice</strong> leaf folder, Cnaphalocrocis<br />

med<strong>in</strong>alis Guenee <strong>in</strong> Haryana. Pesticide Research Journal, 13(1): 62-65.<br />

Sa<strong>in</strong> M, Krishnaiah NV and Kalode MB. 1987. Effectiveness <strong>of</strong> spray formulations aga<strong>in</strong>st <strong>rice</strong> leaf folder<br />

Cnaphalocrocis med<strong>in</strong>alis Guenee (Lepidoptera: Pyralidae). Entomon, 12(1): 17-19.<br />

Sa<strong>in</strong> M, Krishnaiah NV and Kalode MB. 1994. Relative efficacy <strong>of</strong> new granular formulations aga<strong>in</strong>st <strong>rice</strong><br />

hispa, Dicladispa armigera Oliv. Entomon, 19(1/2): 73-75.<br />

Sakai M. 1971. The chemistry and action <strong>of</strong> cartap. Japan Pesticide Information, 6: 15-19.<br />

Saljoqi AUR, Muhammad Khan, Khalid Abdullah and Abdul Latif. 2002. Evaluation <strong>of</strong> fipronil for the<br />

management <strong>of</strong> <strong>rice</strong> stem borer, Tryporyza <strong>in</strong>certulas (Lepidoptera: Pyralidae). Sarhad Journal <strong>of</strong><br />

Agriculture, 18(1): 59-61.<br />

Salam MA, Mathew TB, Sasidhar VK and Das NM. 1986. Persistent toxicity <strong>of</strong> three modified formulations<br />

<strong>of</strong> carb<strong>of</strong>uran to brown planthopper (BPH) <strong>in</strong> India. International Rice Research Newsletter, 11(6):<br />

21.<br />

Salim M and He<strong>in</strong>richs EA. 1987. Insecticide <strong>in</strong>duced changes <strong>in</strong> levels <strong>of</strong> resistance <strong>of</strong> <strong>rice</strong> cultivars to<br />

the white backed planthopper, Sogatella furcifera (Horvath) (Homoptera: Delphacdae). Crop<br />

Protection, 6(1): 28-32.<br />

Samalo AP. 1988. Phytoproducts on pest control <strong>in</strong> <strong>rice</strong> based cropp<strong>in</strong>g systems. Paper presented at F<strong>in</strong>al<br />

workshop, IRRI-ADB-EWC Project on Botanical pest control <strong>in</strong> <strong>rice</strong> based cropp<strong>in</strong>g systems, December<br />

12-16, 1988. International Rice Research Institute, Philipp<strong>in</strong>es.<br />

Samalo AP, Parida PB and Mishra GC. 1983. Effects <strong>of</strong> <strong><strong>in</strong>secticide</strong>s on the <strong>rice</strong> gall midge, Orseolia oryzae<br />

and its parasite, Platygaster oryzae. Tropical Pest Management, 29(2): 173-176.<br />

Samanta A, Somchoudhury AK and Sarkar B. 2005. Persistent toxicity <strong>of</strong> some <strong><strong>in</strong>secticide</strong>s to Trichogramma<br />

chilonis and T. japonicum on paddy. Annals <strong>of</strong> Plant Protection Sciences, 13(2): 369-372.<br />

Sankpal VB, Dumre RB and Khanvilkar VG. 1980. Efficacy <strong>of</strong> some granular <strong><strong>in</strong>secticide</strong>s aga<strong>in</strong>st <strong>rice</strong> gall<br />

midge Orseolia oryzae (Wood Mason) Mani (Diptera: Cecidomyiidae). Pesticides, 14(12): 9-10.<br />

Sathiyanandam VKR, Venugopal MS, Logiswaran G, Babu PCS and Gopalan M. 1987. Efficacy <strong>of</strong> <strong>in</strong>secticidal<br />

seed treatments aga<strong>in</strong>st thrips. International Rice Research Newsletter, 8(1): 2-3.<br />

137


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

Sato Y, Nojiri M and Hash<strong>in</strong>o Y. 1996. The <strong>use</strong> <strong>of</strong> pymetroz<strong>in</strong>e for the control <strong>of</strong> homopterous <strong>in</strong>sect pests<br />

<strong>in</strong> paddy <strong>rice</strong>. Brighton Crop Protection Conference, Pests and Diseases, Vol. 1, 355-360.<br />

Saxena RC, Ep<strong>in</strong>o PB, Tee CW and Puma BC. 1983. Neem, ch<strong>in</strong>aberry and custard apple: Antifeedant and<br />

<strong>in</strong>secticidal effects <strong>of</strong> seed oils on leaf hopper and planthopper pests <strong>of</strong> <strong>rice</strong>. Proceed<strong>in</strong>gs <strong>of</strong> the<br />

2nd International Neem conference. Rauischholzha<strong>use</strong>n, pp 403-412.<br />

Saxena RC, Jilani G and Abdul Kareem A. 1989. Effects <strong>of</strong> neem on stored gra<strong>in</strong> <strong>in</strong>sects. In M. Jacobson,<br />

ed, Focus on Phytochemical Pesticides, Vol. 1. The Neem Tree. Boca Raton, RC Press, pp 97-111.<br />

Saxena RC, Justo HD Jr and Ep<strong>in</strong>o PB. 1984. Evaluation and utilization <strong>of</strong> neem cake aga<strong>in</strong>st the <strong>rice</strong><br />

brown planthopper Nilaparvata lugens (Homoptera: Delphacidac). Journal <strong>of</strong> Economic Entomology,<br />

77: 502-507.<br />

Saxena RC, Kareem A, Palang<strong>in</strong>an EL, Malayaba MT and Kareem AA. 1988. Systemic and foliar applications<br />

<strong>of</strong> neem (Azadirachta <strong>in</strong>dica) seed bitters (NSB) to control green leafhopper (GLH) and <strong>rice</strong> tungro<br />

virus (RTV) disease. International Rice Research Newsletter, 14(1): 31.<br />

Saxena RC and Khan ZR. 1985. Effect <strong>of</strong> neem oil on survival <strong>of</strong> Nilaparvata lugens (Homoptera:<br />

Delphacidae) and on grassy stunt and ragged stunt virus transmission. Journal <strong>of</strong> Economic<br />

Entomology, 78: 647-651.<br />

Saxena RC, Liquido NJ and Justo HD. 1980. Neem seed oil, a potential antifeedant for the control <strong>of</strong> the<br />

<strong>rice</strong> brown planthopper Nilaparvata lugens. Proceed<strong>in</strong>gs <strong>of</strong> the 1st International Neem Conference,<br />

Rottach Egem, Pp. 171-188.<br />

Saxena RC, Rueda BP, Justo HD Jr, Boncod<strong>in</strong> MEM and AA Barrion. 1987. Neem seed bitters (NSB) for<br />

management <strong>of</strong> planthopper and leafhopper pests <strong>of</strong> <strong>rice</strong>. Paper presented at Mid-term review<br />

workshop on Botanical pest control <strong>in</strong> <strong>rice</strong> based cropp<strong>in</strong>g systems, June 1-6 1987, Tamil Nadu<br />

Agricultural University, Coimbatore, India.<br />

Saxena RC, Waldbauer GP, Liquido NJ and Puma BC. 1980. Effects <strong>of</strong> neem seed oil on the <strong>rice</strong> leaf folder<br />

Cnaphalocrocis med<strong>in</strong>alis. Proceed<strong>in</strong>gs <strong>of</strong> the 1st International Neem Conference, Rottach Egem, Pp<br />

189-204.<br />

Schmutterer H. 1990. Properties and potential <strong>of</strong> natural pesticides from the neem tree, Azadiracta<br />

<strong>in</strong>dica. Annual Review <strong>of</strong> Entomology, 35: 271-297.<br />

Shagir S and Van HP. 1976. Additional <strong>in</strong>vestigations on the application <strong>of</strong> <strong><strong>in</strong>secticide</strong>s to the root zone <strong>of</strong><br />

<strong>rice</strong> plants. Contributions, Central Research Institute for Agriculture, No. 18, 15 pp.<br />

Sellammal Murugesan, Venugopal MS, Chelliah S and Anil Kumar C. 1987. Effects <strong>of</strong> neem seed derivatives<br />

on <strong>rice</strong> <strong>in</strong>sect pests and the wolf spider. Paper presented at Mid term review workshop on Botanical<br />

pest control <strong>in</strong> <strong>rice</strong> based cropp<strong>in</strong>g systems, June 1-6 1987. Tamil Nadu Agricultural University,<br />

Coimbatore, India.<br />

138


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

Sharma DR and S<strong>in</strong>gh DP. 1995. Ovicidal effect <strong>of</strong> some <strong><strong>in</strong>secticide</strong>s aga<strong>in</strong>st <strong>rice</strong> stem borer, Scirpophaga<br />

<strong>in</strong>certulas Walker. Journal <strong>of</strong> Insect Science, 8(1): 114-115.<br />

Sheng CF, Sun JM, Wei G, Xia Q, L<strong>in</strong> SZ, Chen YG, Ji YL and Xuan WJ. 2003. Performance <strong>of</strong> monosultap,<br />

fipronil and their mixtures for control <strong>of</strong> the <strong>rice</strong> stem borer, Chilo suppressalis. Entomological<br />

Knowledge, 40(5): 440 – 442.<br />

Shen GuoQ<strong>in</strong>g, Zhou FuCai, Fang JiChao, Li PeiYuan, Li Xiang, Yang DaiFeng and Zhang Q<strong>in</strong>g. 1999. Study<br />

on <strong><strong>in</strong>secticide</strong> tolerance <strong>in</strong> <strong>rice</strong> borer Tryporyza <strong>in</strong>certulas Walker. Jiangsu Agricultural Research,<br />

20(1): 39-41.<br />

Shi GenSheng, Zhang Xiao Xi, Shi GS and Zhang XX. 1998. Simulation and optimal management <strong>of</strong> the<br />

pest natural enemy <strong><strong>in</strong>secticide</strong> system <strong>of</strong> paddy fields <strong>in</strong> middle season <strong>rice</strong> cropp<strong>in</strong>g region.<br />

Entomologica S<strong>in</strong>ica, 5(3): 272-282.<br />

Shi JiCheng, Peng ZhengWen, Huang XiaoM<strong>in</strong>g, Cai ShengB<strong>in</strong>, Xu ZhengWen and Huang ShiWen, 2001.<br />

Control <strong>of</strong> <strong>in</strong>sects pests <strong>of</strong> late <strong>rice</strong> with carbosulfan DS. Plant Protection, 27(1): 40-41.<br />

Shrivastava SK, Gupta R and Agrawal RK. 1985. Relative efficacy <strong>of</strong> Mocap and some granular <strong><strong>in</strong>secticide</strong>s<br />

aga<strong>in</strong>st paddy gall midge. Pesticides, 19(10): 38-39.<br />

Shukla BC and Kaushik UK. 1983. Effect <strong>of</strong> some granular <strong><strong>in</strong>secticide</strong>s on <strong>rice</strong> gall midge. International<br />

Rice Research Newsletter, 8(6): 14.<br />

Shukla BC and Kaushik UK. 1994. Field evaluation <strong>of</strong> neem products aga<strong>in</strong>st two <strong>in</strong>sect pests <strong>of</strong> <strong>rice</strong>. Pest<br />

Management and Economic Zoology, 2(2): 115-18.<br />

Shukla BC, Srivastava SK and Gupta R. 1987. Evaluation <strong>of</strong> neem oil aga<strong>in</strong>st WBPH and gall midge pests<br />

<strong>of</strong> <strong>rice</strong>. Paper presented at mid term review workshop on Botanical pest control <strong>in</strong> <strong>rice</strong> based<br />

cropp<strong>in</strong>g systems, June 1-6 1987. Tamil Nadu Agric. Univ, Coimbatore, India.<br />

S<strong>in</strong>gh DP, Dhaliwal GS and Jaswant S<strong>in</strong>gh. 1983. Rice thrips control by foliar <strong><strong>in</strong>secticide</strong>s. International<br />

Rice Research Newsletter, 8(2): 15.<br />

S<strong>in</strong>gh DP and Sharma DR. 1998. Selectivity <strong>of</strong> different <strong><strong>in</strong>secticide</strong>s to egg parasitoid, Telenomus dignoides<br />

(Nixon) <strong>of</strong> yellow stem borer. Indian Journal <strong>of</strong> Ecology, 25(1): 74-76.<br />

S<strong>in</strong>gh DP, Sharma DR, Jaswant S<strong>in</strong>gh and Narang DD. 2003. Field efficacy <strong>of</strong> cartap hydrochloride on<br />

basmati aga<strong>in</strong>st Scirpophaga <strong>in</strong>certulas Walker and its egg parasitoid Telenomus dignoides Nixon.<br />

Journal <strong>of</strong> Research, PAU, 40(1): 27-32.<br />

S<strong>in</strong>gh J, Sukhija HS, S<strong>in</strong>gh P and Dhaliwal GS. 1994. Effect <strong>of</strong> <strong><strong>in</strong>secticide</strong>s on Telenomus dignoides Nixon,<br />

an egg parasitoid <strong>of</strong> yellow stem borer, Scirpophaga <strong>in</strong>certulas (Walker) <strong>of</strong> <strong>rice</strong>. Pest Management<br />

and Economic Zoology, 2(2): 147-149.<br />

S<strong>in</strong>gh J and Dhaliwal GS. 1981. Evaluation <strong>of</strong> granular <strong><strong>in</strong>secticide</strong>s to control <strong>rice</strong> root weevil. International<br />

Rice Research Newsletter, 6(6):20.<br />

139


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

S<strong>in</strong>gh KM, S<strong>in</strong>gh MP and S<strong>in</strong>gh TK. 2000. Bioefficacy <strong>of</strong> nursery application, seedl<strong>in</strong>g root dip and posttransplant<strong>in</strong>g<br />

application <strong>of</strong> certa<strong>in</strong> <strong><strong>in</strong>secticide</strong>s aga<strong>in</strong>st <strong>rice</strong> gall midge, Orseolia oryzae. Indian<br />

Journal <strong>of</strong> Entomology, 62(2): 191-195.<br />

S<strong>in</strong>gh OP and Rawat RR. 1980. Efficacy <strong>of</strong> some <strong><strong>in</strong>secticide</strong>s aga<strong>in</strong>st m<strong>in</strong><strong>in</strong>g grubs and pupae <strong>of</strong> the <strong>rice</strong><br />

hispa. Oryza, 17(1): 68-69.<br />

S<strong>in</strong>gh RP. 1988. Development <strong>of</strong> neem (Azadiracta <strong>in</strong>dica and A. Juss) formulations and their evaluations<br />

aga<strong>in</strong>st a few <strong>in</strong>sect pests. Paper presented at F<strong>in</strong>al workshop, IRRI-ADB-EWC Project on Botanical<br />

pest control <strong>in</strong> <strong>rice</strong> based cropp<strong>in</strong>g systems, December 12-16, 1988. International Rice Research<br />

Institute, Philipp<strong>in</strong>es.<br />

Smith KA, Grigarick AA, Lynch JH and Oraze MJ. 1985. Effect <strong>of</strong> alsyst<strong>in</strong> and diflubenzuron on the <strong>rice</strong><br />

water weevil (Coleoptera: Curculionidae). Journal <strong>of</strong> Economic Entomology, 78(1): 185-189.<br />

Soekarna D. 1979. Time <strong>of</strong> <strong><strong>in</strong>secticide</strong> application aga<strong>in</strong>st Nilaparvata lugens based on population density<br />

and the occurrence <strong>of</strong> resurgence. In: Proceed<strong>in</strong>gs, Kongress Entomology, 9-11, Jan 1979. Jakarta,<br />

Indonesia (mimeographed).<br />

Sogawa K and Pathak MD. 1970. Mechanism <strong>of</strong> brown planthopper Nilaparvata lugens (Homoptera;<br />

Defphacidae) resistance <strong>in</strong> Mudgo variety <strong>of</strong> <strong>rice</strong>. Applied Entomology and Zoology, 5: 145-148.<br />

Sone S, Hattori Y, Tsuboi S. and Otsu Y. 1995. Difference <strong>in</strong> susceptibility to imidacloprid <strong>of</strong> the populations<br />

<strong>of</strong> the small brown planthopper, Laodelphax striatellus Fallen, from various localities <strong>in</strong> Japan. Journal<br />

<strong>of</strong> Pesticide Science, 20(4): 541-543.<br />

Sone S, Tsuboi S, Otsu Y and Shono T. 1997. Mechanisms <strong>of</strong> low susceptibility to imidacloprid <strong>in</strong> a laboratory<br />

stra<strong>in</strong> <strong>of</strong> the small brown planthopper, Laodelphax striatellus Fallen. Journal <strong>of</strong> Pesticide Science,<br />

22(3): 236-237.<br />

Song BH, Jeong YH, Hong MK, Ryu GH and Lee HR. 1985. Development <strong>of</strong> comb<strong>in</strong>ed emulsifiable<br />

concentrates for simultaneous control <strong>of</strong> <strong>rice</strong> blast and brown planthopper. Research Reports <strong>of</strong><br />

the Rural Development, Adm<strong>in</strong>istration, Plant Environment, Mycology and Farm Products Utilization,<br />

27(1): 114-120.<br />

Song BH, Jeong YH, Kang CS and Park HM. 1987. Stability and efficacy <strong>of</strong> mixed pesticides to control<br />

sheath blight and brown planthopper. Research Reports <strong>of</strong> the Rural Development Adm<strong>in</strong>istration,<br />

Plant Environment Mycology and Farm Products Utilization, 29(1): 266-272.<br />

Sontakke BK and Dash AN. 2000. Field efficacy <strong>of</strong> some new granular <strong><strong>in</strong>secticide</strong>s aga<strong>in</strong>st major pests <strong>of</strong><br />

<strong>rice</strong>. Indian Journal <strong>of</strong> Entomology, 62(4): 353-357.<br />

Sontakke BK and Senapati B.1996. Efficacy <strong>of</strong> carb<strong>of</strong>uran at different growth stages <strong>of</strong> <strong>rice</strong> varieties<br />

aga<strong>in</strong>st major <strong>in</strong>sect pests. Pest Management and Economic Zoology, 4(1-2): 45-49.<br />

Sontakke BK and Senapati B. 1997. Persistent toxicity <strong>of</strong> carb<strong>of</strong>uran aga<strong>in</strong>st whitebacked planthopper<br />

140


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

(WBPH), Sogatella furcifera Horvath <strong>in</strong> different soils. Indian Journal <strong>of</strong> Plant Protection, 25(2):<br />

149-153.<br />

Sridevi D, Gour TB and Rao BN. 1995. Persistence <strong>of</strong> carb<strong>of</strong>uran <strong>in</strong> different soil types <strong>in</strong> relation to<br />

control <strong>of</strong> brown planthopper, Nilaparvata lugens (Stal). Journal <strong>of</strong> Entomological Research, 19(2):<br />

161-169.<br />

Sr<strong>in</strong>ivas K and Madhumathi T. 2004. Efficacy <strong>of</strong> certa<strong>in</strong> selected <strong><strong>in</strong>secticide</strong>s aga<strong>in</strong>st the <strong>rice</strong> gall midge,<br />

Orseolia oryzae (Wood Mason). Pest Management and Economic Zoology, 12(2): 187-191.<br />

Srivastava AS, Prasad R, S<strong>in</strong>gh YP and S<strong>in</strong>gh BDN. 1975. Persistence <strong>of</strong> malathion residues <strong>in</strong> paddy<br />

plants (Oryza sativa). Current Science, 44(9): 317-319.<br />

Stapley JH. 1976. Brown planthopper and Cyrtort<strong>in</strong>us spp. <strong>in</strong> the Solomon islands. Rice Entomology<br />

Newsletter, 4:15-16.<br />

Subramaniam A, Sellamma Murugesan, Sundara Babu PC and Chelliah S. 1985. Insecticide <strong>in</strong>duced leaf<br />

folder <strong>in</strong>cidence. Tamil Nadu Agricultural University Newsletter, 5:1.<br />

Subramanian R, Sarma PV and Murthy GRK. 1981. Evaluation <strong>of</strong> BPMC – <strong><strong>in</strong>secticide</strong> for the control <strong>of</strong><br />

paddy stem borer. Pesticides, 15(11): 26-27.<br />

Sudhakar TR. 2000. Evaluation <strong>of</strong> neem products <strong>in</strong> <strong>rice</strong> <strong>in</strong>sect pest control. Indian Journal <strong>of</strong> Plant<br />

Protection, 28(1): 48-50.<br />

Sundararaju D. 1985. Chemical control <strong>of</strong> <strong>rice</strong> gall midge (GM) and leaf folder (LF). International Rice<br />

Research Newsletter, 10(4): 17.<br />

Sun CN and Chen WL. 1993. Carboxylesterases <strong>of</strong> susceptible and resistant brown planthopper. Resistant<br />

Pest Management, 5(2): 9-10.<br />

Sun CN and Dai SM 1984. Brown planthopper (BPH) resistance to a synthetic pyrethroid. International<br />

Rice Research Newsletter, 9(4): 12.<br />

Sun CN, Dai SM and Chung TC. 1984. Synthetic pyrethroid resistance <strong>in</strong> the brown planthopper. Ch<strong>in</strong>ese<br />

Journal <strong>of</strong> Entomology, 4(2): 125-130.<br />

Sun JZ, Fan JC, Xia LR, Yang JS and Shen XS. 1996. Studies on the <strong>in</strong>secticidal activity <strong>of</strong> imidacloprid and<br />

its application <strong>in</strong> paddy fields aga<strong>in</strong>st the brown planthopper Nilaparvata lugens (Homoptera:<br />

Delphacidae). Acta-Entomologica-S<strong>in</strong>ica, 39(1): 37-45.<br />

Sun JM, Wei G, Wang WW, X<strong>in</strong>g CS, Xu T, Sheng CF. 2004. Performances <strong>of</strong> the mixtures <strong>of</strong> chlorpyrifos,<br />

bupr<strong>of</strong>ez<strong>in</strong> and imidacloprid for control <strong>of</strong> the complex <strong>of</strong> planthoppers and <strong>rice</strong> stem borer <strong>in</strong> field.<br />

Entomological Knowledge, 41(6): 541-544.<br />

Suresh S, Anilkumar C and Kareem AA 1985. Efficacy <strong>of</strong> three synthetic pyrethroids for caseworm control.<br />

International Rice Research Newsletter, 10(6):22-23.<br />

141


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

Tanaka K, Kazano H and Endo S. 1990. Insecticide susceptibility <strong>of</strong> three spiders <strong>in</strong> paddy field. Proceed<strong>in</strong>gs<br />

<strong>of</strong> the Association for Plant Protection <strong>of</strong> Kyushu, 36: 97-99.<br />

Tanaka K, Endo S and Kazano H. 2000. Toxicity <strong>of</strong> <strong><strong>in</strong>secticide</strong>s to predators <strong>of</strong> <strong>rice</strong> planthoppers: spiders,<br />

the mirid bug and the dry<strong>in</strong>id wasp. Applied Entomology and Zoology, 35(1): 177-187.<br />

Tao L<strong>in</strong>gMei, Wang XiaoJun and Jiang Hui. 2005. Co-efficient <strong>of</strong> mixed imidacloprid and monosultap to<br />

Nilaparvata lugens and Chilo supperssalis. Entomological Knowledge, 42(1): 47-50.<br />

Tomita T, Hidoh O and Kono Y. 2000. Absence <strong>of</strong> prote<strong>in</strong> polymorphism attributable to <strong><strong>in</strong>secticide</strong> <strong>in</strong>sensitivity<br />

<strong>of</strong> acetylchol<strong>in</strong>esterase <strong>in</strong> the green <strong>rice</strong> leafhopper, Nephotettix c<strong>in</strong>cticeps. Insect Biochemistry<br />

and Molecular Biology, 30(4): 325-333.<br />

Tripathy MK, Setapati B, Acharya S and Patnaik HP. 1999. Evaluation <strong>of</strong> certa<strong>in</strong> <strong><strong>in</strong>secticide</strong>s aga<strong>in</strong>st <strong>rice</strong><br />

gall midge and yellow stem borer. Journal <strong>of</strong> Applied Zoological Researches, 10(2): 123-125.<br />

Uchida M, Asai T and Sugimoto T. 1985. Inhibition <strong>of</strong> cuticle deposition and chit<strong>in</strong> biosynthesis by a new<br />

<strong>in</strong>sect growth regulator, bupr<strong>of</strong>ez<strong>in</strong> <strong>in</strong> Nilaparvata lugens Stal. Agricultural and Biological Chemistry,<br />

49(4): 1233-1234.<br />

Uchida M, Izawa Y and Sugimoto T. 1986. Antagonistic effect <strong>of</strong> 20-hydroxyecdysone to an <strong>in</strong>sect growth<br />

regulator, bupr<strong>of</strong>ez<strong>in</strong> <strong>in</strong> Nilaparvata lugens Stal. Agricultural and Biological Chemistry, 50(8): 1913-<br />

1915.<br />

Ul Haq E and Inayatullah C. 1990. Efficacy <strong>of</strong> <strong><strong>in</strong>secticide</strong>s aga<strong>in</strong>st overw<strong>in</strong>ter<strong>in</strong>g <strong>rice</strong> stem borer (SB)<br />

larvae. International Rice Research Newsletter, 15(4): 31.<br />

Ullah MS and Mahabuba Jahan. 2004. Schedule and need based chemical control <strong>of</strong> brown planthopper<br />

and their impact on the predator Ophionea <strong>in</strong>dica (Thunberg). Asian Journal <strong>of</strong> Plant Sciences,<br />

3(6): 687-689.<br />

Uthamasamy S and Jayaraj S. 1985. Efficacy <strong>of</strong> certa<strong>in</strong> newer <strong><strong>in</strong>secticide</strong>s <strong>in</strong> the control <strong>of</strong> major pests <strong>of</strong><br />

<strong>rice</strong>. Pesticides, 19(9) 37- 46.<br />

Uthamasamy S and Suresh S 1986. Granular <strong><strong>in</strong>secticide</strong>s for controll<strong>in</strong>g brown planthopper and green<br />

leafhopper. International Rice Research Newsletter, 11(3): 22.<br />

Valencia SL and He<strong>in</strong>richs EA. 1979. Laboratory evaluation <strong>of</strong> <strong><strong>in</strong>secticide</strong>s as foliar sprays for control <strong>of</strong><br />

the <strong>rice</strong> leaf folder. International Rice Research Newsletter, 4(1): 14.<br />

Valencia SL and He<strong>in</strong>richs EA. 1979. Ovicidal and larval activity <strong>of</strong> some <strong><strong>in</strong>secticide</strong>s on leaf folder.<br />

International Rice Research Newsletter, 4(3): 19-20.<br />

Valencia SL and He<strong>in</strong>richs EA. 1981. Toxicity <strong>of</strong> selected <strong><strong>in</strong>secticide</strong>s to the <strong>rice</strong> leaf folder Cnaphalocrocis<br />

med<strong>in</strong>alis, Guenee. Philipp<strong>in</strong>e Entomologist, 5(2): 239-245.<br />

Valencia SL, He<strong>in</strong>richs EA, Tan CL and Hwang CY. 1979. Ovicidal activity <strong>of</strong> foliar sprayed <strong><strong>in</strong>secticide</strong>s on<br />

brown planthopper eggs. International Rice Research Newsletter, 4(4): 19-20.<br />

142


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

Varadarajan G, Sathyanandan VKR, Kandaswamy S. and Krishnan M. 1977. Possibility <strong>of</strong> resurgence <strong>of</strong><br />

the brown planthopper after <strong><strong>in</strong>secticide</strong> treatment. Report <strong>of</strong> Rice Research Station, Aduthurai Nov,<br />

1977: Tamil Nadu Agricultural University, Rice Research Station, Aduthurai, Tamil Nadu, India. Pp.<br />

108-11 0.<br />

Varma NRG, Zaheruddeen SM, Bhavani B and Rao PRM. 2003. Efficacy <strong>of</strong> certa<strong>in</strong> new <strong><strong>in</strong>secticide</strong>s aga<strong>in</strong>st<br />

<strong>rice</strong> planthoppers under field conditions. Indian Journal <strong>of</strong> Plant Protection, 31(2): 31-33.<br />

Vavadia LD, Shah AH, Pandya HV, Purohit MS, Patel CB and Rai AB. 1996. Chemical control <strong>of</strong> <strong>rice</strong> yellow<br />

stem borer, Scirpophaga <strong>in</strong>certulas (Wlk.) and its carryover <strong>in</strong> Gujarat. Gujarat Agricultural University<br />

Research Journal, 21(2): 37-40.<br />

Venkataswamy V and Kalode MB. 1980. Effectiveness <strong>of</strong> various <strong><strong>in</strong>secticide</strong> formulations aga<strong>in</strong>st brown<br />

planthopper, Nilaparvata lugens (Stal). Pesticides, 14(11): 10-14.<br />

Velusamy R, Rajendran R and Babu PCS. 1987. Effect <strong>of</strong> three neem products on brown planthopper<br />

(BPH) oviposition. International Rice Research Newsletter, 12(2): 36.<br />

Wang Q, Han LJ, Huang QL, Gu ZY and Xu XL. 1995. Contact toxicities <strong>of</strong> imidacloprid on <strong>rice</strong> brown<br />

planthopper (Nilaparvata lugens Stal). Ch<strong>in</strong>ese Rice Research Newsletter, 3(4): 6-7.<br />

Wang SC, Ku TY and Chu YI. 1988a. Local differences <strong>in</strong> <strong><strong>in</strong>secticide</strong> resistance <strong>of</strong> brown planthopper,<br />

(Nilaparvata lugens) <strong>in</strong> central Taiwan. Plant Protection Bullet<strong>in</strong>, Taiwan. 30(1): 52-58.<br />

Wang SC, Ku TY and Chu YI. 1988b. Resistance patterns <strong>in</strong> the brown planthopper Nilaparvata lugens<br />

(Homoptera: Delphacidae) after selection with four <strong><strong>in</strong>secticide</strong>s and their comb<strong>in</strong>ations. Plant<br />

Protection Bullet<strong>in</strong>, Taiwan, 1988, 30(1): 59-67.<br />

Wang YC, Li GQ, Deng XH, D<strong>in</strong> SY, Su JK and Li XH. 1997. Susceptibility to <strong><strong>in</strong>secticide</strong>s <strong>of</strong> brown planthopper<br />

Nilaparvata lugens <strong>in</strong> the lower Yangtze Valley. International Rice Research Notes, 22(2): 41-42.<br />

Waqas Wakil, Mansoor-ul-Hasan, Rizwan Akbar and Assam Gulzar. 2001. Evaluation <strong>of</strong> different <strong><strong>in</strong>secticide</strong>s<br />

aga<strong>in</strong>st <strong>rice</strong> stem borer and <strong>rice</strong> leaf folder. Pakistan Journal <strong>of</strong> Agricultural Sciences, 38(3-4): 49-<br />

50.<br />

Wei YB, Zhu CQ, Xiong YW and Liu MX. 2001. Applied studies <strong>of</strong> fipronil (regent) <strong>in</strong> the control <strong>of</strong> <strong>rice</strong> pest<br />

<strong>in</strong>sects. Entomological Knowledge, 38(5): 345-347.<br />

Wilk<strong>in</strong>s RM, Batterby S, He<strong>in</strong>richs EA, Aqu<strong>in</strong>o GB and Valencia SL. 1984. Management <strong>of</strong> the <strong>rice</strong> tungro<br />

virus vector Nephotettix virescens (Homoptera: Cicadellidae) with controlled-release formulations<br />

<strong>of</strong> carb<strong>of</strong>uran. Journal <strong>of</strong> Economic Entomology, 77(2): 495-499.<br />

Yagi K, Numata A, Mimori N, Miyake T, Arai K and Ishii S. 1999. Synthesis and <strong>in</strong>secticidal activity <strong>of</strong> novel<br />

1,3,4-oxadiazol<strong>in</strong>-5-one and pyrazol<strong>in</strong>-5-one derivatives. Pesticide Science, 55(2): 161-165.<br />

Yao HW, Ye GY, Cheng JA, 2000. Insecticide resistance <strong>in</strong> different populations <strong>of</strong> the white-backed<br />

planthopper. Ch<strong>in</strong>ese Journal <strong>of</strong> Rice Science, 14(3): 183-184.<br />

143


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

Xa<strong>of</strong>ei P<strong>in</strong>g, Endo, S., Suzuki, K. and Ohtsu, K. 2001. The <strong><strong>in</strong>secticide</strong> susceptibility <strong>of</strong> the brown planthopper,<br />

Nilaparvata lugens, and white-backed planthopper, Sogatella furcifera collected from Ch<strong>in</strong>a and<br />

Japan. Kyushu-Plant-Protection-Research, 47: 54-57.<br />

Xiao ZY, Huang ZX and Huang DP. 1994. Resistance <strong>of</strong> the <strong>rice</strong> leaf folder (Cnaphalocrocis med<strong>in</strong>alis) to<br />

<strong><strong>in</strong>secticide</strong>s <strong>in</strong> Guangdong. Guangdong Agricultural Sciences, 3: 35-37.<br />

Xu X, Li KH, Li YF, Meng QZ and Li LY. 1986. Development <strong>of</strong> a stra<strong>in</strong> <strong>of</strong> Trichogramma japonicum resistant<br />

to <strong><strong>in</strong>secticide</strong>s. Natural Enemies <strong>of</strong> Insects, 8(3): 150-154.<br />

Yamamoto I, Kyomura N and Takahashi Y. 1993. Negatively correlated cross resistance: comb<strong>in</strong>ations <strong>of</strong><br />

N-methylcarbamate with N-propylcarbamate or oxadiazolone for green <strong>rice</strong> leafhopper. Archives <strong>of</strong><br />

Insect Biochemistry and Physiology, 22(1-2): 277-288.<br />

Yan RX, Sheng JL, Cai FY and Huang XH. 1992. Control strategy and techniques applied aga<strong>in</strong>st the ma<strong>in</strong><br />

damag<strong>in</strong>g generation <strong>of</strong> <strong>rice</strong> planthoppers. Plant Protection, 18(3): 2-4.<br />

Ye ZX. 1988. The effect <strong>of</strong> pesticides on Trichogramma japonicum. Brighton Crop Protection Conference.<br />

Pests and Diseases, 3: 1143-1147.<br />

Y<strong>in</strong>g Xue Yang, Chen MeiRong and Huang JiP<strong>in</strong>g. 2000. Control <strong>of</strong> whitebacked planthopper (Sogatella<br />

furcifera) with water surface expand<strong>in</strong>g oil preparation <strong>of</strong> 8% bupr<strong>of</strong>ez<strong>in</strong>. Plant Protection, 26(4):<br />

41-43.<br />

Yoo JK, Kwon YW, Park HM and Lee HR. 1984. Studies on the selective toxicity <strong>of</strong> <strong><strong>in</strong>secticide</strong>s for <strong>rice</strong> <strong>in</strong>sect<br />

pests between some dom<strong>in</strong>ant <strong>rice</strong> <strong>in</strong>sect pests and a predacious spider, Pirata subpiraticus. Korean<br />

Journal <strong>of</strong> Plant protection, 23(3): 166-171.<br />

Yoshimoto T, Ogawa S, Udagawa T and Numata S. 1989. Development <strong>of</strong> a new <strong><strong>in</strong>secticide</strong>, eth<strong>of</strong>enprox.<br />

Journal <strong>of</strong> Pesticide Science, 14(2): 259-268.<br />

Zafar MA. 1982. Chemical control <strong>of</strong> the whitebacked planthopper <strong>in</strong> Pakistan. International Rice Research<br />

Newsletter, 7(2): 13-14.<br />

Zheng J, Liu XJ and Du ZW. 1993. Study on the application methods <strong>of</strong> bupr<strong>of</strong>ez<strong>in</strong> for control <strong>of</strong> Nilaparvata<br />

lugens Stal. Entomological Knowledge, 30(2): 68-71.<br />

Zhuge Z. 1982. Studies on the adjustment <strong>of</strong> the optimum time for chemical control <strong>of</strong> Cnaphalocrocis<br />

med<strong>in</strong>alis for the protection <strong>of</strong> its parasites. Zhejiang Agricultural Science Zhejiang Nongye Kexue,<br />

250: 268-271.<br />

Zhu SD, Gao-ZX, J<strong>in</strong>-DQ, Xu-DJ, Chang Y and Liu F. 2004. Control effects and biological activity <strong>of</strong> azadiracht<strong>in</strong><br />

on <strong>rice</strong> stem borer, Chilo suppressalis <strong>in</strong> paddy fields. Ch<strong>in</strong>ese Journal <strong>of</strong> Rice Science, 18(6): 551-<br />

556.<br />

Zhu WD, Wan ZY and Guo SB. 2002. Efficacy <strong>of</strong> fipronil (Regent) aga<strong>in</strong>st <strong>rice</strong> pests and its effect on <strong>rice</strong><br />

yield. Acta Phytophylacica S<strong>in</strong>ica, 29(3): 265-271.<br />

144


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

Zhu ZR, Shang HW, Cheng JA and Chen X. 2000. Effects <strong>of</strong> methamidophos to Cnaphalocrocis med<strong>in</strong>alis on<br />

<strong>rice</strong> and its natural enemies. Plant Protection, 26(4): 7-9.<br />

145


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

146<br />

The authors are grateful to Dr.<br />

B.C.Viraktamath,<br />

The authors are grateful to Dr.<br />

B.C.Viraktamath, ACKNOWLEDGEMENTS<br />

Project Director, DRR for his<br />

encouragement, provid<strong>in</strong>g<br />

Project<br />

facilities<br />

Director,<br />

and<br />

DRR for<br />

for<br />

his<br />

his<br />

<strong>in</strong>spir<strong>in</strong>g<br />

encouragement, provid<strong>in</strong>g facilities and for his<br />

The foreword. authors are The grateful authors to Dr. are B.C.Viraktamath, thankful to<br />

Dr.<br />

<strong>in</strong>spir<strong>in</strong>g foreword. The authors are thankful to<br />

Project T. Ramesh Director, Babu, DRR for Pr<strong>of</strong>essor his encouragement, and Head, provid<strong>in</strong>g Department facilities <strong>of</strong><br />

Entomology,<br />

Dr. T. Ramesh Babu, Pr<strong>of</strong>essor and Head, Department <strong>of</strong><br />

and for his ANGRAU <strong>in</strong>spir<strong>in</strong>g for his foreword. critical comments. The authors The authors are thankful gratefully to<br />

acknowledge<br />

Entomology, ANGRAU for his critical comments. The authors gratefully<br />

Dr. T. Ramesh the Babu, contributions Pr<strong>of</strong>essor <strong>of</strong> and Rice Head, Entomologists Department under <strong>of</strong> the Entomology, All India<br />

Coord<strong>in</strong>ated<br />

acknowledge the contributions <strong>of</strong> Rice Entomologists under the All India<br />

ANGRAU for Rice his Improvement critical comments. Programme The authors (AICRIP) gratefully for evaluat<strong>in</strong>g acknowledge different<br />

<strong><strong>in</strong>secticide</strong>s<br />

Coord<strong>in</strong>ated Rice Improvement Programme (AICRIP) for evaluat<strong>in</strong>g different<br />

the contributions and generat<strong>in</strong>g <strong>of</strong> Rice valuable Entomologists <strong>in</strong>formation. under Mrs. the Aparna All India Das, Coord<strong>in</strong>ated Personal<br />

Assistant<br />

<strong><strong>in</strong>secticide</strong>s and generat<strong>in</strong>g valuable <strong>in</strong>formation. Mrs. Aparna Das, Personal<br />

Rice Improvement Gr. III who Programme typed the manuscript (AICRIP) for deserves evaluat<strong>in</strong>g appreciation. different <strong><strong>in</strong>secticide</strong>s Special<br />

thanks<br />

Assistant<br />

are due<br />

Gr.<br />

to<br />

III<br />

Senior<br />

who typed<br />

Technical<br />

the manuscript<br />

<strong>of</strong>ficers Sri.<br />

deserves<br />

Y. Kondala<br />

appreciation.<br />

Rao, for his help<br />

Special<br />

and generat<strong>in</strong>g valuable <strong>in</strong>formation. Mrs. Aparna Das, Personal Assistant<br />

<strong>in</strong><br />

thanks<br />

photographic<br />

are due<br />

work<br />

to Senior<br />

and Sri<br />

Technical<br />

A.S. Rama<br />

<strong>of</strong>ficers<br />

Prasadfor<br />

Sri. Y.<br />

for<br />

Kondala<br />

edit<strong>in</strong>g,<br />

Rao,<br />

page<br />

for<br />

sett<strong>in</strong>g<br />

his help<br />

Gr. III who typed the manuscript deserves appreciation. Special thanks<br />

and<br />

<strong>in</strong> photographic<br />

cover design.<br />

work<br />

Drs.T.<br />

and<br />

L<strong>in</strong>gaiah<br />

Sri A.S. Rama<br />

and V.<br />

Prasadfor<br />

Laksmi Narayanamma<br />

for edit<strong>in</strong>g, page<br />

who<br />

sett<strong>in</strong>g<br />

are due to Senior Technical <strong>of</strong>ficers Sri. Y. Kondala Rao, for his help <strong>in</strong><br />

worked<br />

and cover<br />

as Senior<br />

design.<br />

Research<br />

Drs.T. L<strong>in</strong>gaiah<br />

Fellows <strong>in</strong><br />

and<br />

various<br />

V. Laksmi<br />

schemes<br />

Narayanamma<br />

and helped<br />

who<br />

photographic work and Sri A.S. Rama Prasad for edit<strong>in</strong>g and page<br />

<strong>in</strong><br />

worked<br />

the conduct<br />

as Senior<br />

<strong>of</strong><br />

Research<br />

Insecticide<br />

Fellows<br />

evaluation<br />

<strong>in</strong> various<br />

experiments<br />

schemes and<br />

are<br />

helped<br />

sett<strong>in</strong>g. Drs.T. L<strong>in</strong>gaiah and V. Laksmi Narayanamma who worked<br />

thankfully<br />

<strong>in</strong> the conduct<br />

acknowledged.<br />

<strong>of</strong> Insecticide evaluation experiments are<br />

as Senior Research Fellows <strong>in</strong> various schemes and helped<br />

thankfully acknowledged.<br />

<strong>in</strong> the conduct <strong>of</strong> Insecticide evaluation experiments<br />

are thankfully acknowledged.


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

147


Insecticides <strong>in</strong> Rice IPM (DRR)<br />

148

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!