06.01.2013 Views

A handbbok on Weed Control in Rice.pdf

A handbbok on Weed Control in Rice.pdf

A handbbok on Weed Control in Rice.pdf

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

1991<br />

P.O. Box 933, 1099 Manila, Philipp<strong>in</strong>es


The Internati<strong>on</strong>al <strong>Rice</strong> Research Institute (IRRI) was established <strong>in</strong> 1960 by the Ford<br />

and Rockefeller Foundati<strong>on</strong>s with the help and approval of the Government of the<br />

Philipp<strong>in</strong>es. Today IRRI is <strong>on</strong>e of the 13 n<strong>on</strong>profit <strong>in</strong>ternati<strong>on</strong>al research and<br />

tra<strong>in</strong><strong>in</strong>g centers supported by the C<strong>on</strong>sultative Group <strong>on</strong> Internati<strong>on</strong>al Agricultural<br />

Research (CGIAR). The CGIAR is sp<strong>on</strong>sored by the Food and Agriculture Organi-<br />

zati<strong>on</strong> of the United Nati<strong>on</strong>s, the Internati<strong>on</strong>al Bank for Rec<strong>on</strong>structi<strong>on</strong> and Devel-<br />

opment (World Bank), and the United Nati<strong>on</strong>s Development Programme (UNDP).<br />

The CGIAR c<strong>on</strong>sists of 50 d<strong>on</strong>or countries, <strong>in</strong>ternati<strong>on</strong>al and regi<strong>on</strong>al organizati<strong>on</strong>s,<br />

and private foundati<strong>on</strong>s.<br />

IRRI receives support, through the CGIAR, from a number of d<strong>on</strong>ors <strong>in</strong>clud-<br />

<strong>in</strong>g the Asian Development Bank, the European Ec<strong>on</strong>omic Community, the Ford<br />

Foundati<strong>on</strong>, the Internati<strong>on</strong>al Development Research Centre, the Internati<strong>on</strong>al<br />

Fund for Agricultural Development, the OPEC Special Fund, the Rockefeller<br />

Foundati<strong>on</strong>, UNDP, the World Bank, and the <strong>in</strong>ternati<strong>on</strong>al aid agencies of the<br />

follow<strong>in</strong>g governments: Australia, Belgium, Brazil, Canada, Ch<strong>in</strong>a, Denmark, F<strong>in</strong>-<br />

land, France, Germany, India, Iran, Italy, Japan, Republic of Korea, Mexico, The<br />

Netherlands, New Zealand, Norway, the Philipp<strong>in</strong>es, Saudi Arabia, Spa<strong>in</strong>, Sweden,<br />

Switzerland, United K<strong>in</strong>gdom, and United States.<br />

The resp<strong>on</strong>sibility for this publicati<strong>on</strong> rests with the Internati<strong>on</strong>al <strong>Rice</strong><br />

Research Institute.<br />

Copyright © Internati<strong>on</strong>al <strong>Rice</strong> Research Institute 1991<br />

All rights reserved. Except for quotati<strong>on</strong>s of short passages for the purpose<br />

of criticism and review, no part of this publicati<strong>on</strong> may be reproduced, stored <strong>in</strong><br />

retrieval systems, or transmitted <strong>in</strong> any form or by any means, electr<strong>on</strong>ic, mechani-<br />

cal, photocopy<strong>in</strong>g, record<strong>in</strong>g, or otherwise, without prior permissi<strong>on</strong> of IRRI. This<br />

permissi<strong>on</strong> will not be unreas<strong>on</strong>ably withheld for use for n<strong>on</strong>commercial purposes.<br />

IRRI does not require payment for the n<strong>on</strong>commercial use of its published works,<br />

and hopes that this copyright declarati<strong>on</strong> will not dim<strong>in</strong>ish the b<strong>on</strong>a fide use of its<br />

research f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> agricultural research and development.<br />

The designati<strong>on</strong>s employed <strong>in</strong> the presentati<strong>on</strong> of the material <strong>in</strong> this publi-<br />

cati<strong>on</strong> do not imply the expressi<strong>on</strong> of any op<strong>in</strong>i<strong>on</strong> whatsoever <strong>on</strong> the part of IRRI<br />

c<strong>on</strong>cern<strong>in</strong>g the legal status of any country, territory, city, or area, or of its authorities,<br />

or the delimitati<strong>on</strong> of its fr<strong>on</strong>tiers or boundaries.<br />

ISBN 971-22-0020-5


Foreword<br />

Farmers everywhere search for ways to widen the narrow marg<strong>in</strong> of profit<br />

between producti<strong>on</strong> costs and crop returns. <strong>Weed</strong>s cause more yield losses <strong>in</strong><br />

ricefields than any other pest. Cost-effective methods for c<strong>on</strong>troll<strong>in</strong>g weeds<br />

could help preserve profits and <strong>in</strong>crease yields.<br />

The authors have designed this book to provide practical <strong>in</strong>formati<strong>on</strong> <strong>on</strong><br />

c<strong>on</strong>troll<strong>in</strong>g weeds <strong>in</strong> the many different rice cultural systems, us<strong>in</strong>g an <strong>in</strong>te-<br />

grated management approach. It is excepti<strong>on</strong>ally comprehensive, and can be<br />

used as a textbook, as a field guide, and as a manual for mak<strong>in</strong>g decisi<strong>on</strong>s <strong>in</strong><br />

crop management.<br />

The handbook has been especially designed to facilitate <strong>in</strong>expensive trans-<br />

lati<strong>on</strong> and copublicati<strong>on</strong>. C<strong>on</strong>tact Communicati<strong>on</strong> and Publicati<strong>on</strong>s Services,<br />

IRRI Informati<strong>on</strong> Center, for permissi<strong>on</strong> and assistance, at no charge, <strong>in</strong> any<br />

activities to extend its benefits to rice workers who read languages other than<br />

English.<br />

Klaus Lampe<br />

Director General


Preface<br />

<strong>Weed</strong>s are an important c<strong>on</strong>stra<strong>in</strong>t to <strong>in</strong>creas<strong>in</strong>g yields wherever rice is grown,<br />

and rice researchers have created a great amount of useful scientific <strong>in</strong>formati<strong>on</strong><br />

<strong>on</strong> weed c<strong>on</strong>trol. That <strong>in</strong>formati<strong>on</strong>, however, is scattered am<strong>on</strong>g many<br />

journals, books, and reports that are not always accessible <strong>in</strong> tropical<br />

countries. The result is no readily-available source of practical <strong>in</strong>formati<strong>on</strong> <strong>on</strong><br />

weed c<strong>on</strong>trol for many nati<strong>on</strong>al agricultural development program workers.<br />

This handbook summarizes important <strong>in</strong>formati<strong>on</strong> <strong>on</strong> weed c<strong>on</strong>trol <strong>in</strong> rice.<br />

Our <strong>in</strong>tent was to provide essential, practical, up-to-date <strong>in</strong>formati<strong>on</strong> for use<br />

by rice researchers, extensi<strong>on</strong> workers, farmers, teachers, and students.<br />

Publicati<strong>on</strong> of this handbook would have been impossible without the<br />

assistance and susta<strong>in</strong><strong>in</strong>g <strong>in</strong>terest of so many people, it is impossible to<br />

menti<strong>on</strong> them all here. It is with profound gratitude that we acknowledge<br />

those who helped us compile the material and those who c<strong>on</strong>tributed to<br />

improv<strong>in</strong>g the presentati<strong>on</strong>.<br />

We specifically thank Dr. James E. Hill, extensi<strong>on</strong> agr<strong>on</strong>omist, University of<br />

California at Davis, USA; Dr. Shooichi Matsunaka, professor of pesticide<br />

science, Kobe University, Japan; Dr. Marcos R. Vega, visit<strong>in</strong>g professor <strong>in</strong><br />

weed science, University of the Philipp<strong>in</strong>es at Los Baños (UPLB); Dr. Aurora<br />

M. Baltazar, affiliate assistant professor <strong>in</strong> weed science, UPLB; and Dr. D. H.<br />

Drennan, Department of Agricultural Botany, University of Read<strong>in</strong>g, U. K., for<br />

extensive reviews of the manuscript and for their valuable suggesti<strong>on</strong>s for its<br />

improvement.<br />

We thank Dr. Keith Moody, Ms. Marian Llagas, Mr. Paul Bernaso, and<br />

Mr. Teodoro Migo of the Internati<strong>on</strong>al <strong>Rice</strong> Research Institute (IRRI) for their<br />

assistance <strong>in</strong> compil<strong>in</strong>g the material.<br />

We are greatly appreciative of Bill B. Fischer, farm advisor, Fresno, California,<br />

USA, author of Growers <strong>Weed</strong> Identificati<strong>on</strong> Handbook, and Dr. Hill for their<br />

help <strong>in</strong> secur<strong>in</strong>g photographs of important weeds.<br />

Our s<strong>in</strong>cere appreciati<strong>on</strong> goes to Mr. Walter Rockwood for the f<strong>in</strong>al edit<strong>in</strong>g<br />

of the manuscript and for <strong>in</strong>sightful suggesti<strong>on</strong>s that made the handbook<br />

more readable.<br />

We also acknowledge the help of Gemma Q. Lucero for <strong>in</strong>itial edit<strong>in</strong>g and<br />

proofread<strong>in</strong>g; Coraz<strong>on</strong> Bambase and Rosal<strong>in</strong>a Gabriel for careful typ<strong>in</strong>g<br />

through several drafts; and Ram<strong>on</strong> Quiz<strong>on</strong> for prepar<strong>in</strong>g the illustrati<strong>on</strong>s.<br />

F<strong>in</strong>ally, our thanks to the staff of the Informati<strong>on</strong> Center, IRRI, for<br />

produc<strong>in</strong>g this book.<br />

Kwesi Amp<strong>on</strong>g-Nyarko<br />

S. K. De Datta<br />

IRRI July 1990


C<strong>on</strong>tents<br />

FOREWORD<br />

PREFACE<br />

1 S IGNIFICANCE OF WEEDS IN RICE FARMING 1<br />

Effects of weeds 1<br />

<strong>Rice</strong>-weed competiti<strong>on</strong> 2<br />

Growth requirements of rice 3<br />

Factors of weed competiti<strong>on</strong> 3<br />

Characteristics of successful weeds 4<br />

2 RICE WEEDS OF WORLD IMPORTANCE 7<br />

Life cycles 7<br />

Morphology 7<br />

Habitat 8<br />

Approved computer codes for weeds 8<br />

Lowland rice weeds 9<br />

Upland rice weeds 25<br />

Deepwater rice weeds 38<br />

3 WEED CONTROL<br />

Plann<strong>in</strong>g effective c<strong>on</strong>trol 41<br />

C<strong>on</strong>trol methods 41<br />

Ec<strong>on</strong>omics of c<strong>on</strong>trol 46<br />

Integrated weed management 46<br />

4 PRINCIPLES OF HERBICIDE USE 49<br />

Types of herbicides 49<br />

Herbicide selectivity 49<br />

Herbicide movement <strong>in</strong> plants 50<br />

Tim<strong>in</strong>g of herbicide applicati<strong>on</strong> 50<br />

Behavior of herbicides <strong>in</strong> soil 51<br />

Effect of envir<strong>on</strong>ment <strong>on</strong> herbicidal activity 52<br />

Properties of herbicides 52<br />

Herbicide formulati<strong>on</strong>s 53<br />

Herbicide labels 54<br />

Herbicide applicators 55<br />

Operati<strong>on</strong> of the knapsack sprayer 56<br />

Field techniques for us<strong>in</strong>g herbicides 60<br />

Safe use of herbicides 62<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

PRINCIPAL RICE HERBICIDES 65<br />

Herbicide mixtures, rotati<strong>on</strong>s, and sequences 65<br />

Herbicide classificati<strong>on</strong> and uses 65<br />

Differences <strong>in</strong> herbicide tolerance<br />

am<strong>on</strong>g rice cultivars 72<br />

WEED CONTROL IN IRRIGATED RICE 73<br />

Transplanted <strong>in</strong> puddled soil 73<br />

Direct seeded <strong>on</strong> puddled soil 76<br />

Direct seeded <strong>on</strong> dry soil 78<br />

Water seeded 80<br />

WEED CONTROL IN RAINFED LOWLAND RICE 83<br />

Transplanted <strong>in</strong> puddled soil 83<br />

Direct seeded <strong>on</strong> puddled soil 85<br />

Direct seeded <strong>on</strong> dry soil 87<br />

WEED CONTROL IN UPLAND RICE 91<br />

WEED CONTROL IN DEEPWATER AND<br />

FLOATING RICE 95<br />

Deepwater and float<strong>in</strong>g rice cultures 95<br />

<strong>Weed</strong> c<strong>on</strong>trol before flood<strong>in</strong>g 95<br />

<strong>Weed</strong> c<strong>on</strong>trol after flood<strong>in</strong>g 98<br />

MANAGEMENT OF SOME DIFFICULT WEEDS<br />

IN RICE 99<br />

Scirpus maritimus 99<br />

Paspalum distichum 100<br />

Ech<strong>in</strong>ochloa species 100<br />

Wild rice 101<br />

Cyperus rotundus 102<br />

Imperata cyl<strong>in</strong>drica 102<br />

Rottboellia coch<strong>in</strong>ch<strong>in</strong>ensis 103<br />

REFERENCES CITED 104<br />

APPENDICES 107<br />

INDEX 110


Chapter 1<br />

Significance of weeds<br />

<strong>in</strong> rice farm<strong>in</strong>g<br />

<strong>Weed</strong>s are plants grow<strong>in</strong>g where<br />

they are not wanted. A weed <strong>in</strong> <strong>on</strong>e<br />

place may be a useful food, feed, or<br />

medic<strong>in</strong>e <strong>in</strong> another. Thus, a plant<br />

species cannot be classified as a weed<br />

under all c<strong>on</strong>diti<strong>on</strong>s. Many plants,<br />

however, are classified as weeds<br />

everywhere they occur, because they<br />

comm<strong>on</strong>ly grow <strong>on</strong> regularly tilled<br />

areas such as ricefields.<br />

Many weeds co-evolved with<br />

crops and, <strong>in</strong> some cases, were<br />

ancestors of cultivated plant species.<br />

For example, the wild rices Oryza<br />

barthii and O. l<strong>on</strong>gistam<strong>in</strong>ata are<br />

ancestors of cultivated O. glaberrima<br />

<strong>in</strong> Africa. The wild rices O. rufipog<strong>on</strong><br />

and O. nivara are ancestors of<br />

cultivated O. sativa <strong>in</strong> Asia<br />

(Table 1.1).<br />

The prevalent weeds <strong>in</strong> ricefields<br />

are often legacies of previous years’<br />

crops—seeds, rhizomes, tubers, and<br />

bulbs surviv<strong>in</strong>g <strong>in</strong> the soil. The weed<br />

flora <strong>in</strong> a ricefield is greatly <strong>in</strong>flu-<br />

enced by the rice culture practiced.<br />

C<strong>on</strong>t<strong>in</strong>uous rice with an unchanged<br />

cultural system encourages the<br />

buildup of weeds adapted to that<br />

system. In c<strong>on</strong>trast, where crop<br />

rotati<strong>on</strong> is practiced, a diverse weed<br />

flora will result. Perennial weeds<br />

<strong>in</strong>crease <strong>in</strong> n<strong>on</strong>tilled ricefields.<br />

Table 1.1. Cultivated species of rice evolved from weedy wild species (adapted from Chang<br />

1976).<br />

South and Southeast Asia Tropical Africa<br />

Wild perennial O. rufipog<strong>on</strong> Griff.<br />

Wild annual O. nivara Sharma & Shastry<br />

Cultivated annual O. sativa<br />

Table 1.2. Yield losses due to unc<strong>on</strong>trolled<br />

weed growth <strong>in</strong> different types of rice culture <strong>in</strong><br />

the Philipp<strong>in</strong>es (sources: IRRI 1977 to 1988).<br />

Yield Experi-<br />

Type of rice culture loss ments<br />

(mean %) (no.)<br />

lrrigated<br />

Transplanted 48 42<br />

Water seeded 44 1<br />

Direct seeded<br />

Ra<strong>in</strong>fed lowland<br />

55 28<br />

Direct seeded (dry seeds) 74 11<br />

Direct seeded <strong>on</strong><br />

puddled soil<br />

61 7<br />

Transplanted <strong>in</strong> puddled<br />

soil<br />

Ra<strong>in</strong>fed upland<br />

51 9<br />

Broadcast or drilled 96 16<br />

Effects of weeds<br />

<strong>Weed</strong> <strong>in</strong>festati<strong>on</strong>s primarily c<strong>on</strong>stra<strong>in</strong><br />

rice producti<strong>on</strong> by reduc<strong>in</strong>g gra<strong>in</strong><br />

yield. Yield reducti<strong>on</strong>s caused by<br />

unc<strong>on</strong>trolled weed growth through-<br />

out a crop seas<strong>on</strong> have been esti-<br />

mated to be from 44 to 96%, depend-<br />

<strong>in</strong>g <strong>on</strong> the rice culture (Table 1.2). In<br />

practice, almost all farmers c<strong>on</strong>trol<br />

weeds <strong>in</strong> their ricefields. Worldwide,<br />

some 10% loss of rice yield can be<br />

attributed just to weeds that grow<br />

O. l<strong>on</strong>gistam<strong>in</strong>ata A. Chev. & Roehr.<br />

O. barthii A. Chev.<br />

O. glaberrima<br />

after weed c<strong>on</strong>trol. These losses can<br />

amount to 46 milli<strong>on</strong> t (based <strong>on</strong> 1987<br />

world rough rice producti<strong>on</strong>). There<br />

is c<strong>on</strong>siderable variati<strong>on</strong> <strong>in</strong> yield loss<br />

to weeds am<strong>on</strong>g countries.<br />

There is a need to improve farm-<br />

ers’ weed c<strong>on</strong>trol practices. Improved<br />

weed management will c<strong>on</strong>tribute<br />

significantly to future ga<strong>in</strong>s <strong>in</strong> rice<br />

yield <strong>in</strong> many countries.<br />

Increase <strong>in</strong> rice producti<strong>on</strong> costs<br />

The cost of rice weed c<strong>on</strong>trol, <strong>in</strong>clud-<br />

<strong>in</strong>g herbicides, cultural and mechani-<br />

cal practices, and hand weed<strong>in</strong>g, is<br />

estimated to be about 5% of world<br />

rice producti<strong>on</strong> and amount to<br />

US$3.5 billi<strong>on</strong> annually. When the<br />

10% loss of rough rice gra<strong>in</strong> yield is<br />

added to this cost, the world’s total<br />

estimated cost for rice weeds and<br />

their c<strong>on</strong>trol amounts to 15% of total<br />

annual producti<strong>on</strong>—valued at<br />

US$10.5 billi<strong>on</strong> (based <strong>on</strong> 1987<br />

average export prices at Bangkok,<br />

Thailand, for 5% brokens white rice<br />

US$230/t, IRRI 1988b).<br />

Significance of weeds 1


Table 1.3. <strong>Weed</strong>s as sec<strong>on</strong>dary hosts for diseases, <strong>in</strong>sects, and nematodes of rice.<br />

Disease/<strong>in</strong>sect Host weeds Reference<br />

<strong>Rice</strong> dwarf disease (vlrus) Ech<strong>in</strong>ochloa crus-galli Ou (1985)<br />

<strong>Rice</strong> stripe disease (virus) E. crus-gall;<br />

Cynod<strong>on</strong> dactyl<strong>on</strong><br />

Setaria v<strong>in</strong>dis<br />

Digitaria adscendens<br />

Ou (1985)<br />

<strong>Rice</strong> yellow dwarf (virus) Paspalum distichum<br />

Leptochloa ch<strong>in</strong>ensis<br />

Leersia hexandra<br />

lmperata cyl<strong>in</strong>drica<br />

Ou (1985)<br />

<strong>Rice</strong> hoja blanca (virus)<br />

Leptochloa spp.<br />

Digitaria spp.<br />

Ou (1985)<br />

Bacterial leaf blight<br />

(Xanthom<strong>on</strong>as campestris pv. oryzae)<br />

L. ch<strong>in</strong>ensis Ou (1985)<br />

Brown spot C. dactyl<strong>on</strong><br />

(Cochliobolus miyabeanus) L. hexandra<br />

Digitaria sangu<strong>in</strong>alis<br />

Ou (1985)<br />

Whlte tip<br />

S. viridis Ou (1985)<br />

(Aphelenchoides oryzae) Cyperus iria<br />

I. cyl<strong>in</strong>drica<br />

Meloidogyne (nematodes) Fimbristylis miliacea<br />

Ech<strong>in</strong>ochloa col<strong>on</strong>a<br />

Ou (1985)<br />

Rlce grassy stunt virus L. hexandra IRRI (1988a)<br />

(transmltted by brown C. dactyl<strong>on</strong><br />

planthopper Nilaparvata lugens) Cyperus rotundus<br />

E. col<strong>on</strong>a<br />

M<strong>on</strong>ochoria vag<strong>in</strong>alis<br />

<strong>Rice</strong> tungro assoclated viruses C. rotundus<br />

F. miliacea<br />

Oryza l<strong>on</strong>gistam<strong>in</strong>ata<br />

Oryza barthii<br />

IRRI (1988a)<br />

Nymphula depunctalis (Avenee) L. ch<strong>in</strong>ensis IRRI (1986)<br />

(caseworm)<br />

L. hexandra<br />

lschaemum rugosum<br />

<strong>Weed</strong>s as sec<strong>on</strong>dary<br />

hosts for pests<br />

<strong>Weed</strong>s <strong>in</strong>directly limit producti<strong>on</strong> by<br />

serv<strong>in</strong>g as hosts for organisms that<br />

adversely affect rice. <strong>Weed</strong>s provide<br />

food, shelter, and reproducti<strong>on</strong> sites<br />

for <strong>in</strong>sects, nematodes, pathogens,<br />

and rodents. Table 1.3 lists weeds<br />

that serve as alternate hosts to rice<br />

pests. This <strong>in</strong>dicates the importance<br />

of recogniz<strong>in</strong>g weeds as sec<strong>on</strong>dary<br />

hosts for pests and of remov<strong>in</strong>g<br />

weeds from the marg<strong>in</strong>s of ricefields<br />

to prevent c<strong>on</strong>t<strong>in</strong>ued <strong>in</strong>fecti<strong>on</strong> of the<br />

rice crop.<br />

2 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Effects <strong>on</strong> harvest<strong>in</strong>g and<br />

gra<strong>in</strong> quality<br />

<strong>Weed</strong>s hamper rice harvest<strong>in</strong>g and<br />

<strong>in</strong>crease harvest costs through direct<br />

<strong>in</strong>terference with the harvest<strong>in</strong>g<br />

operati<strong>on</strong> and by caus<strong>in</strong>g lodg<strong>in</strong>g.<br />

<strong>Weed</strong> seeds c<strong>on</strong>tam<strong>in</strong>ate rough rice,<br />

thus reduc<strong>in</strong>g gra<strong>in</strong> quality and<br />

market value. For example, the weed<br />

red rice has a pigmented layer that<br />

shatters easily and readily<br />

c<strong>on</strong>tam<strong>in</strong>ates rough rice. Remov<strong>in</strong>g<br />

all traces of the pigmented layer<br />

requires <strong>in</strong>tense mill<strong>in</strong>g and results <strong>in</strong><br />

decreased gra<strong>in</strong> quality and lower<br />

mill<strong>in</strong>g rates.<br />

Social costs of weed c<strong>on</strong>trol<br />

The drudgery of weed<strong>in</strong>g and labor<br />

shortages have made rice farm<strong>in</strong>g<br />

unattractive. In most tropical coun-<br />

tries, farmers spend more time <strong>on</strong><br />

~~<br />

weed<strong>in</strong>g, by hand or with simple<br />

tools, than <strong>on</strong> any other farm<strong>in</strong>g task.<br />

Hand weed<strong>in</strong>g 1 ha of rice requires<br />

from 100 to 780 labor-hours per crop,<br />

depend<strong>in</strong>g <strong>on</strong> the rice culture.<br />

Aquatic weed problems<br />

Nutrient availability and favorable<br />

temperatures throughout the year,<br />

especially <strong>in</strong> the tropics, allow luxuri-<br />

ant aquatic weed growth <strong>in</strong> flooded<br />

ricefields. Noxious aquatic weeds<br />

have <strong>in</strong>creas<strong>in</strong>gly <strong>in</strong>fested<br />

impounded water <strong>in</strong> the tropics.<br />

Heavy aquatic weed <strong>in</strong>festati<strong>on</strong><br />

causes excessive water loss through<br />

evaporati<strong>on</strong> and impedes water flow<br />

<strong>in</strong> irrigati<strong>on</strong> canals. In some cases,<br />

aquatic weeds may be a health<br />

hazard to pers<strong>on</strong>s liv<strong>in</strong>g near<br />

impounded water. For example, the<br />

associati<strong>on</strong> of the weed Ceratophyllum<br />

demersum with the <strong>in</strong>termediate host<br />

snail of schistosomiasis (bilharzia)<br />

Bul<strong>in</strong>us sp. is well documented.<br />

<strong>Rice</strong>-weed competiti<strong>on</strong><br />

<strong>Weed</strong>s <strong>in</strong>terfere with rice growth by<br />

compet<strong>in</strong>g for <strong>on</strong>e or more growth-<br />

limit<strong>in</strong>g resources, such as light,<br />

nutrients, and water. Allelopathy<br />

(chemical producti<strong>on</strong> by liv<strong>in</strong>g or<br />

decay<strong>in</strong>g weed plant tissues) may<br />

also adversely affect the growth of a<br />

neighbor<strong>in</strong>g rice plant.<br />

<strong>Rice</strong> and rice weeds have similar<br />

requirements for growth and devel-<br />

opment. Competiti<strong>on</strong> occurs when<br />

<strong>on</strong>e of the limit<strong>in</strong>g resources falls<br />

short of the comb<strong>in</strong>ed requirements<br />

of both. The degree of rice-weed<br />

competiti<strong>on</strong> depends <strong>on</strong> ra<strong>in</strong>fall, rice<br />

variety, soil factors, weed density,<br />

durati<strong>on</strong> of rice and weed growth,<br />

crop age when weeds started to<br />

compete, and nutrient resources,<br />

am<strong>on</strong>g other variables.


Cultural practices greatly alter the<br />

competitive relati<strong>on</strong>ship between rice<br />

and weeds. Thus, different cultures<br />

(irrigated, ra<strong>in</strong>fed lowland, upland,<br />

and deepwater) will be subjected to<br />

different k<strong>in</strong>ds and degrees of weed<br />

competiti<strong>on</strong>. To understand this<br />

competiti<strong>on</strong>, it is essential to know<br />

the growth requirements of rice and<br />

helpful to know the growth require-<br />

ments of weeds.<br />

Growth requirements<br />

of rice<br />

<strong>Rice</strong> growth varies with climatic and<br />

cultural c<strong>on</strong>diti<strong>on</strong>s. Growth dur<strong>in</strong>g<br />

the first 6 wk is slow. Depend<strong>in</strong>g <strong>on</strong><br />

moisture availability and tempera-<br />

ture, a seed may take 5-20 d to<br />

germ<strong>in</strong>ate and 14-22 additi<strong>on</strong>al days<br />

to reach the 4-leaf seedl<strong>in</strong>g stage. The<br />

total leaf area of a stand<strong>in</strong>g rice crop<br />

at flower<strong>in</strong>g determ<strong>in</strong>es its photo-<br />

synthetic capacity for spikelet fill<strong>in</strong>g,<br />

and thus determ<strong>in</strong>es the gra<strong>in</strong> yield.<br />

Tiller<strong>in</strong>g capacity is also important<br />

because number of panicles is a<br />

pr<strong>in</strong>cipal comp<strong>on</strong>ent <strong>in</strong> determ<strong>in</strong><strong>in</strong>g<br />

gra<strong>in</strong> yield.<br />

Light<br />

The light requirement of rice varies<br />

with crop growth stage. Shad<strong>in</strong>g<br />

dur<strong>in</strong>g the seedl<strong>in</strong>g stage greatly<br />

decreases rice growth. Low light from<br />

10 d before to 20 d after full bloom<br />

<strong>in</strong>duces high spikelet sterility, result-<br />

<strong>in</strong>g <strong>in</strong> poor gra<strong>in</strong> yield. Low light<br />

after flower<strong>in</strong>g reduces rice dry<br />

matter because of decreased photo-<br />

synthesis—75-80% of gra<strong>in</strong> carbohy-<br />

drate is photosynthesized after<br />

flower<strong>in</strong>g.<br />

Water<br />

The water requirement of rice<br />

depends <strong>on</strong> the soil, climate, variety,<br />

growth stage, and durati<strong>on</strong> of plant<br />

growth. Plant stress from water<br />

shortage at any stage reduces yield,<br />

more so if the water shortage occurs<br />

dur<strong>in</strong>g the reproductive phase.<br />

Drought stress symptoms <strong>in</strong>clude leaf<br />

roll<strong>in</strong>g, leaf scorch<strong>in</strong>g, reduced<br />

tiller<strong>in</strong>g, stunted growth, delayed<br />

flower<strong>in</strong>g, and spikelet sterility.<br />

C 3 and C 4 photosynthetic pathways<br />

S<strong>in</strong>ce its discovery <strong>in</strong> the late 1960s,<br />

<strong>in</strong>terest <strong>in</strong> the C 4 photosynthetic<br />

pathway has been high. The C 4<br />

photosynthetic pathway is a mecha-<br />

nism for c<strong>on</strong>centrat<strong>in</strong>g atmospheric<br />

CO 2 at the ultimate site of fixati<strong>on</strong><br />

with<strong>in</strong> the leaf before enter<strong>in</strong>g the C 3<br />

photosynthetic pathway (Patters<strong>on</strong><br />

1985). Some plants are C 4 types,<br />

others C 3 . <strong>Rice</strong> is a C 3 plant, as are the<br />

weeds M<strong>on</strong>ochoria vag<strong>in</strong>alis, Cyperus<br />

difformis, Eichhornia crassipes, Ipomoea<br />

spp., and Ageratum c<strong>on</strong>yzoides.<br />

Examples of C 4 plants are maize,<br />

sugarcane, Sorghum bicolor,<br />

Amaranthus spp., Brachiaria spp.,<br />

Cynod<strong>on</strong> dactyl<strong>on</strong>, Cyperus rotundus,<br />

Digitaria spp., Ech<strong>in</strong>ochloa spp.,<br />

Eleus<strong>in</strong>e <strong>in</strong>dica, Leptochloa ch<strong>in</strong>ensis,<br />

Rottboellia coch<strong>in</strong>ch<strong>in</strong>ensis, and<br />

lmperata cyl<strong>in</strong>drica.<br />

It has been suggested that the C 4<br />

photosynthetic pathway provides its<br />

greatest advantage under hot, arid,<br />

high light c<strong>on</strong>diti<strong>on</strong>s. C 4 plants have<br />

higher water-use efficiency than C 3<br />

plants, and their nitrogen use effi-<br />

ciency may also be greater.<br />

Competiti<strong>on</strong> between C 3 and C 4<br />

weeds has been exam<strong>in</strong>ed <strong>in</strong> relati<strong>on</strong><br />

to soil moisture regime (Matsunaka<br />

1983). C 3 plants were dom<strong>in</strong>ant <strong>in</strong><br />

submerged soils; C 4 plants were<br />

dom<strong>in</strong>ant <strong>in</strong> dryland soils. This<br />

expla<strong>in</strong>s why submergence protects<br />

rice plants from severe competiti<strong>on</strong><br />

with C 4 weeds. On the other hand,<br />

upland rice and ra<strong>in</strong>fed lowland rice<br />

with limited precipitati<strong>on</strong> face severe<br />

competiti<strong>on</strong> with C 4 weeds.<br />

Nutrients<br />

Nitrogen (N) is the most important<br />

nutrient for rice, and N deficiency<br />

occurs almost everywhere. Deficien-<br />

cies of phosphorus (P) and potassium<br />

(K) that may also occur greatly<br />

reduce rice plant tiller<strong>in</strong>g. In the<br />

tropics, the harvest of a t<strong>on</strong> of rice<br />

straw and gra<strong>in</strong> removes an average<br />

16 kg N, 3 kg P, and 17 kg K/ha.<br />

Factors of weed<br />

competiti<strong>on</strong><br />

The availability of light, water, and<br />

nutrients affects the growth and<br />

competitiveness of plants. In theory,<br />

the amount of these resources <strong>in</strong> a<br />

given rice envir<strong>on</strong>ment is fixed-<br />

whatever is used by <strong>on</strong>e plant species<br />

is not available for another. This<br />

means that resources taken by weeds<br />

are lost to rice, and vice versa. In<br />

general, rice dry matter yield will be<br />

reduced by 1 kg for every kilogram of<br />

weeds produced <strong>in</strong> the same area.<br />

Light<br />

Competiti<strong>on</strong> for light can occur<br />

throughout rice growth. Most weeds<br />

and rice have maximum photosyn-<br />

thesis and growth <strong>in</strong> full sunlight.<br />

Competiti<strong>on</strong> for light occurs when<br />

<strong>on</strong>e leaf shades another. <strong>Weed</strong>s<br />

compete with rice by grow<strong>in</strong>g faster<br />

and by shad<strong>in</strong>g rice with large,<br />

Significance of weeds 3


horiz<strong>on</strong>tal leaves. Tall plants have<br />

an advantage over short plants.<br />

For example, when Rottboellia<br />

coch<strong>in</strong>ch<strong>in</strong>ensis was allowed to grow<br />

with rice, R. coch<strong>in</strong>ch<strong>in</strong>ensis was 150<br />

cm tall and rice was 50 cm tall at 8 wk<br />

after seed<strong>in</strong>g. The amount of light<br />

received at 25 cm with<strong>in</strong> the rice<br />

canopy was <strong>on</strong>ly 3% of the light at<br />

the top of the weed canopy. In this<br />

situati<strong>on</strong>, the weed clearly had an<br />

advantage.<br />

Water<br />

<strong>Rice</strong> yield losses from water deficit<br />

depend <strong>on</strong> the severity and durati<strong>on</strong><br />

of the deficit, envir<strong>on</strong>mental c<strong>on</strong>di-<br />

ti<strong>on</strong>s, cultivar, and growth stage<br />

when drought stress occurs. Drought<br />

stress reduces photosynthesis by<br />

reduc<strong>in</strong>g leaf expansi<strong>on</strong> and caus<strong>in</strong>g<br />

loss of leaf turgor, which leads to<br />

stomatal closure. Transpirati<strong>on</strong> and<br />

photosynthesis by leaves are greatly<br />

reduced when stomata close.<br />

Resp<strong>on</strong>ses to drought stress <strong>in</strong>clude<br />

wilt<strong>in</strong>g and <strong>in</strong>creased leaf mortality.<br />

<strong>Rice</strong> and weeds differ <strong>in</strong> their<br />

tolerance for drought because of<br />

differences <strong>in</strong> their root distributi<strong>on</strong>,<br />

root el<strong>on</strong>gati<strong>on</strong> rate, genetic tolerance<br />

for low water availability <strong>in</strong> plant<br />

tissue, and c<strong>on</strong>trol of water loss<br />

through transpirati<strong>on</strong>. C 4 weeds have<br />

lower water requirements than those<br />

of C 3 rice and are able to tolerate<br />

more drought stress than rice.<br />

4 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Nutrients<br />

The three most comm<strong>on</strong> yield-<br />

limit<strong>in</strong>g nutrients are N, P, and K.<br />

Competiti<strong>on</strong>, however, may occur for<br />

any nutrient required for plant<br />

growth. Many weed species have a<br />

nutrient uptake similar to that of rice,<br />

but have higher nutrient-use<br />

efficiency than rice. In general, factors<br />

that give a plant a competitive<br />

advantage <strong>in</strong> water uptake also give<br />

the plant a competitive advantage <strong>in</strong><br />

nutrient uptake.<br />

Critical period of weed competiti<strong>on</strong><br />

Competiti<strong>on</strong> between weed seedl<strong>in</strong>gs<br />

and direct seeded rice seedl<strong>in</strong>gs<br />

usually beg<strong>in</strong>s as competiti<strong>on</strong> for<br />

light. The effect of shad<strong>in</strong>g <strong>on</strong> rice<br />

growth is most severe dur<strong>in</strong>g the<br />

seedl<strong>in</strong>g stage, but rice can recover<br />

from weed competiti<strong>on</strong> if weeds are<br />

elim<strong>in</strong>ated early <strong>in</strong> the seas<strong>on</strong>. <strong>Weed</strong>s<br />

will not further reduce the gra<strong>in</strong> yield<br />

of a mature rice crop ready for har-<br />

vest<strong>in</strong>g.<br />

The so-called critical period lies<br />

between the seedl<strong>in</strong>g and harvest<br />

stages, the 30-45 d when weed<br />

competiti<strong>on</strong> is most damag<strong>in</strong>g to rice.<br />

To avoid gra<strong>in</strong> yield losses, it is<br />

important to c<strong>on</strong>troI weeds through-<br />

out this critical period. At 45- to<br />

60-d-old, well-established, weed-free<br />

rice plants are able to suppress later<br />

germ<strong>in</strong>at<strong>in</strong>g weed seedl<strong>in</strong>gs. When<br />

herbicides are used, their persistence<br />

should be l<strong>on</strong>g enough to cover the<br />

critical period of competiti<strong>on</strong>.<br />

Characteristics of<br />

successful weeds<br />

<strong>Weed</strong>s and crops may have comm<strong>on</strong><br />

orig<strong>in</strong>s, and hence, may have similar<br />

characteristics. <strong>Weed</strong>s often have<br />

evolved adaptive traits that <strong>in</strong>crease<br />

their persistence or competitiveness,<br />

or both. Traits c<strong>on</strong>tribut<strong>in</strong>g to<br />

successful weeds fall under three<br />

categories: 1) weed competitiveness<br />

and growth, 2) weed reproducti<strong>on</strong><br />

and dispersal, and 3) similarities<br />

between weed and rice.<br />

<strong>Weed</strong> competitiveness and growth<br />

Some weeds have large seeds which<br />

allow for rapid seedl<strong>in</strong>g growth.<br />

Some weeds are climbers; others are<br />

tall. Some weeds have higher rates of<br />

photosynthesis, faster growth, larger<br />

leaves, and deeper root systems than<br />

rice and other crops. Deep root<br />

systems enable a weed to exploit<br />

nutrients essential for crop growth.<br />

<strong>Weed</strong>s are highly adaptable to<br />

chang<strong>in</strong>g envir<strong>on</strong>ments (phenotypic<br />

plasticity). Under favorable c<strong>on</strong>di-<br />

ti<strong>on</strong>s, weeds become large and<br />

produce many seeds. Under unfavor-<br />

able c<strong>on</strong>diti<strong>on</strong>s, weeds rema<strong>in</strong> small<br />

and produce <strong>on</strong>ly a few seeds.<br />

Reproducti<strong>on</strong> and dispersal<br />

Many weeds produce large quantities<br />

of seed <strong>in</strong> favorable envir<strong>on</strong>ments.<br />

For example, Eck<strong>in</strong>ochloa col<strong>on</strong>a may<br />

produce 100,000 seeds/plant; Eleus<strong>in</strong>e<br />

<strong>in</strong>dica, 50,000 seeds/plant; Commel<strong>in</strong>a<br />

benghalensis, 1,600 seeds/plant;<br />

Trianthema portulacastrum, 52,000<br />

seeds/plant; and Amaranthus spp.,<br />

196,000 seeds/plant. Producti<strong>on</strong> of a<br />

large number of seeds ensure species


survival even <strong>in</strong> adverse envir<strong>on</strong>ments.<br />

<strong>Weed</strong> seeds ripen n<strong>on</strong>synchr<strong>on</strong>ously—viable<br />

seeds are<br />

produced and shatter before the rice<br />

crop matures.<br />

Some annual weeds have short life<br />

cycles and may produce several<br />

generati<strong>on</strong>s a year when moisture is<br />

not limit<strong>in</strong>g, particularly <strong>in</strong> the<br />

tropics.<br />

Perennial weeds reproduce both<br />

sexually and vegetatively. Vegetative<br />

reproducti<strong>on</strong> <strong>in</strong>cludes rhizomes,<br />

tubers, corms, bulbs, and stol<strong>on</strong>s.<br />

Such weeds are highly adaptive.<br />

Vegetative organs depend <strong>on</strong> the<br />

parent plant for their supply of<br />

nutrients and water dur<strong>in</strong>g development<br />

and use stored reserves to<br />

support later establishment. Vegetative<br />

structures, which are normally<br />

larger and c<strong>on</strong>ta<strong>in</strong> more stored food<br />

than seeds, grow fast and emerge<br />

from greater soil depths than seeds.<br />

Examples of these weeds are Cynod<strong>on</strong><br />

dactyl<strong>on</strong>, lmperata cycl<strong>in</strong>drica, Cyperus<br />

rotundus, and Commel<strong>in</strong>a benghalensis.<br />

Many viable weed seeds<br />

rema<strong>in</strong> dormant even under favor-<br />

able c<strong>on</strong>diti<strong>on</strong>s, and dormancy pre-<br />

vents weed seeds from germ<strong>in</strong>at<strong>in</strong>g<br />

under unfavorable c<strong>on</strong>diti<strong>on</strong>s. Seed<br />

dormancy may be genetic or arise<br />

from envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s such<br />

as deep burial, unfavorable tempera-<br />

tures, low oxygen supply, or water-<br />

logg<strong>in</strong>g. <strong>Weed</strong> seeds <strong>in</strong> the soil may<br />

be <strong>in</strong> different states of dormancy<br />

and may germ<strong>in</strong>ate at different<br />

times, mak<strong>in</strong>g weed eradicati<strong>on</strong><br />

through weed c<strong>on</strong>trol practices<br />

difficult. The high seed producti<strong>on</strong><br />

ability and l<strong>on</strong>g dormancy periods<br />

result <strong>in</strong> large reserves of viable weed<br />

seeds <strong>in</strong> the soil, <strong>in</strong>clud<strong>in</strong>g many<br />

seeds that can survive for several<br />

years.<br />

<strong>Weed</strong> seed dispersal also c<strong>on</strong>trib-<br />

utes to the survival of weed species.<br />

Mature seeds and fruits of weeds are<br />

dispersed by w<strong>in</strong>d and water, and by<br />

animals and man. Mov<strong>in</strong>g water is an<br />

important pathway <strong>in</strong> the spread of<br />

weed seeds, particularly <strong>in</strong> the<br />

<strong>in</strong>terc<strong>on</strong>nected canals of irrigated and<br />

ra<strong>in</strong>fed lowland ricefields.<br />

Similarities between weeds and rice<br />

The growth requirements and habits<br />

of many weeds resemble those of rice.<br />

These adaptati<strong>on</strong>s <strong>in</strong>clude similarities<br />

<strong>in</strong> seed size, seed maturity, morphol-<br />

ogy, and physiology. Wild rice<br />

species, for example, are very similar<br />

to cultivated rice species. A classic<br />

example is the rice mimic Ech<strong>in</strong>ochloa<br />

oryzoides (Ard.) Fritsch; hundreds of<br />

years of hand weed<strong>in</strong>g is thought to<br />

be the selective agent resp<strong>on</strong>sible for<br />

its vegetative mimicry. It is rarely<br />

found outside the rice envir<strong>on</strong>ment.<br />

Significance of weeds 5


Chapter 2<br />

<strong>Rice</strong> weeds of worldwide<br />

importance<br />

Nati<strong>on</strong>al and regi<strong>on</strong>al methods of<br />

classify<strong>in</strong>g rice cultures can vary<br />

widely, depend<strong>in</strong>g <strong>on</strong> rice-grow<strong>in</strong>g<br />

c<strong>on</strong>diti<strong>on</strong>s and purposes of the classi-<br />

ficati<strong>on</strong> system. A classificati<strong>on</strong><br />

system may be based <strong>on</strong> general<br />

surface hydrology, source of water,<br />

landform and soil units, ecological<br />

factors, or crop seas<strong>on</strong>. For weed<br />

c<strong>on</strong>trol, general surface hydrology<br />

and rice seed<strong>in</strong>g method are more<br />

important than other factors (De Datta<br />

1981).<br />

A classificati<strong>on</strong> based <strong>on</strong> surface<br />

hydrology and seed<strong>in</strong>g method is<br />

used here to discuss weed problems<br />

and the <strong>in</strong>tegrated methods available<br />

for weed c<strong>on</strong>trol <strong>in</strong> each type of rice<br />

culture. <strong>Rice</strong> culture is classified <strong>on</strong><br />

the basis of water management as<br />

lowland, upland, or deepwater; it may<br />

be irrigated or ra<strong>in</strong>fed. This is further<br />

subdivided <strong>on</strong> the basis of rice estab-<br />

lishment method.<br />

This chapter covers weeds of<br />

worldwide importance <strong>in</strong> lowland,<br />

upland, and deepwater ricefields. The<br />

weeds <strong>in</strong> each ecosystem are arranged<br />

alphabetically <strong>on</strong> the basis of family.<br />

Photographs show seed, seedl<strong>in</strong>g,<br />

mature plant, and flower for each<br />

weed, and each weed’s characteristics<br />

and agricultural importance are<br />

described. Local names of weeds <strong>in</strong><br />

the countries where they are of major<br />

c<strong>on</strong>cern are provided to compliment<br />

the photographs for weed identifica-<br />

ti<strong>on</strong>. (We know the list of local names<br />

is not complete, and the spell<strong>in</strong>g used<br />

for the local names may not be the <strong>on</strong>e<br />

preferred. Readers are <strong>in</strong>vited to send<br />

the authors the correct local names.)<br />

<strong>Weed</strong>s <strong>in</strong> rice are classified by their<br />

life cycle, habitat, and morphological<br />

characteristics.<br />

Life cycles<br />

<strong>Weed</strong>s are classified as annual or<br />

perennial, or both. Where moisture or<br />

temperature is not limit<strong>in</strong>g and life<br />

cycle is short, an annual weed may<br />

complete more than <strong>on</strong>e life cycle <strong>in</strong> a<br />

year. Annuals produce many seeds,<br />

some of which rema<strong>in</strong> dormant and<br />

buffer a species aga<strong>in</strong>st weed c<strong>on</strong>trol<br />

measures.<br />

Perennial weeds propagate by<br />

vegetative structures such as bulbs,<br />

corms, rhizomes, stol<strong>on</strong>s, and tubers.<br />

A bulb is an underground bud.<br />

Rhizomes are underground shoots<br />

with short, thick <strong>in</strong>ternodes buried <strong>in</strong><br />

the soil. They have specialized buds<br />

that can rema<strong>in</strong> dormant. These<br />

shoots are rich <strong>in</strong> stored food and<br />

enable plants to survive from year to<br />

year. Imperata cyl<strong>in</strong>drica and Cynod<strong>on</strong><br />

dactyl<strong>on</strong> are rhizomatous weeds.<br />

Stol<strong>on</strong>s are horiz<strong>on</strong>tally grow<strong>in</strong>g<br />

stems with l<strong>on</strong>g slender <strong>in</strong>ternodes;<br />

adventitious roots form at the nodes<br />

when <strong>in</strong> c<strong>on</strong>tact with soil. Paspalum<br />

distichum is a weed with stol<strong>on</strong>s.<br />

A tuber is a specialized structure<br />

that results from the swell<strong>in</strong>g of the<br />

term<strong>in</strong>al porti<strong>on</strong> of an underground<br />

stem or root; it c<strong>on</strong>ta<strong>in</strong>s stored food.<br />

Cyperus rotundus produces tubers.<br />

Morphology<br />

<strong>Weed</strong>s are also classified as m<strong>on</strong>o-<br />

cotyled<strong>on</strong>ous or dicotyled<strong>on</strong>ous.<br />

M<strong>on</strong>ocotyled<strong>on</strong>s<br />

The seeds of m<strong>on</strong>ocotyled<strong>on</strong>ous<br />

weeds have a s<strong>in</strong>gle cotyled<strong>on</strong> (seed<br />

leaf). A m<strong>on</strong>ocotyled<strong>on</strong>’s mature<br />

leaves are l<strong>on</strong>g and narrow with<br />

parallel ve<strong>in</strong>s. The stem or culm is<br />

cyl<strong>in</strong>drical and the grow<strong>in</strong>g po<strong>in</strong>t is<br />

protected by a sheath. The root<br />

systems arise adventitiously and are<br />

usually fibrous. Examples of families<br />

of m<strong>on</strong>ocotyled<strong>on</strong>eae are<br />

Potamoget<strong>on</strong>aceae, P<strong>on</strong>tederiaceae,<br />

Cyperaceae, Poaceae, and<br />

Commel<strong>in</strong>aceae. Sedges (Cyperaceae)<br />

resemble grasses but differ from<br />

grasses <strong>in</strong> that their stems are<br />

unjo<strong>in</strong>ted, solid, and often triangular<br />

<strong>in</strong> cross secti<strong>on</strong>.<br />

<strong>Weed</strong>s worldwide 7


Dicotyled<strong>on</strong>s<br />

The seeds of dicotyled<strong>on</strong>ous weeds<br />

have two cotyled<strong>on</strong>s. Mature leaves<br />

are broad and usually net-ve<strong>in</strong>ed. The<br />

root systems have tap roots. The<br />

dicotyled<strong>on</strong>s have a branched growth<br />

form. Not all broadleaf weeds how-<br />

ever, are dicotyled<strong>on</strong>ous. Commel<strong>in</strong>a<br />

benghalensis, M<strong>on</strong>ochoria vag<strong>in</strong>alis, and<br />

Eichhornia crassipes have broad leaves<br />

but are m<strong>on</strong>ocotyled<strong>on</strong>ous weeds.<br />

Habitat<br />

<strong>Weed</strong>s <strong>in</strong> rice can be grouped <strong>on</strong> the<br />

basis of their adaptati<strong>on</strong> to submerged<br />

c<strong>on</strong>diti<strong>on</strong>s as lowland or upland<br />

weeds. Lowland weeds may be<br />

semiaquatic or aquatic; upland weeds<br />

are adapted to dry sites.<br />

Informati<strong>on</strong> <strong>on</strong> yield loss from<br />

unc<strong>on</strong>trolled weeds from different<br />

experiments around the world is<br />

given when available to <strong>in</strong>dicate the<br />

weed's potential competitive ability.<br />

The losses will differ from <strong>on</strong>e locality<br />

to another because they are affected<br />

by envir<strong>on</strong>mental factors such as nu-<br />

trient, moisture, temperature, time of<br />

weed emergence, and density. The<br />

yield loss <strong>in</strong>formati<strong>on</strong> is not meant to<br />

show the relative competitiveness<br />

am<strong>on</strong>g the different weeds, and the<br />

yield loss figures should not be used<br />

to target particular weeds for c<strong>on</strong>trol,<br />

leav<strong>in</strong>g others to compete with the<br />

crop.<br />

8 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

For further <strong>in</strong>formati<strong>on</strong> <strong>on</strong> the<br />

biology of the weeds listed <strong>in</strong> this<br />

chapter, and <strong>on</strong> other weeds that may<br />

be of <strong>in</strong>terest, readers can refer to the<br />

book The world's worst weeds - distribu-<br />

ti<strong>on</strong> and biology (1977) by L.G. Holm<br />

and colleagues. Other references<br />

<strong>in</strong>clude Krantz et al (1977), Moody<br />

(1981), and Moody et al (1984).<br />

Approved computer<br />

codes for weeds<br />

Computer codes for weeds now<br />

available (Bayer Agrochemicals<br />

Divisi<strong>on</strong> 1986) are useful for univer-<br />

sal identificati<strong>on</strong> <strong>in</strong> bibliographies<br />

and data bases. An approved com-<br />

puter code is a five-letter abbrevia-<br />

ti<strong>on</strong> based <strong>on</strong> the scientific name of<br />

each plant. In general, the first three<br />

letters refer to the genus and the last<br />

two denote the species, the subspe-<br />

cies, or the variety. For example, the<br />

code for Ech<strong>in</strong>ochloa col<strong>on</strong>a is ECHCO;<br />

for Ech<strong>in</strong>ochloa crus-galli, ECHCG;<br />

and for Ech<strong>in</strong>ochloa crus-galli P.B. var.<br />

kasaharae Ohwi, ECHCK.


Lowland rice weeds<br />

ASTERACEAE (Compositae, sunflower family)<br />

<strong>Weed</strong> name: Eclipta prostrata (L.) L.<br />

Syn<strong>on</strong>yms: Eclipta alba (L.) Hassk.,<br />

Eclipta erecta L., Verbes<strong>in</strong>a alba,<br />

Verbes<strong>in</strong>a prostrata L.<br />

Local names:<br />

Country Comm<strong>on</strong> name<br />

Argent<strong>in</strong>a yerba de tago (Spanish)<br />

Bangladesh keshuti (Bengali)<br />

France eclipte blanche<br />

India bhangra, kesadura, ghuzi<br />

Ind<strong>on</strong>esia urang-ar<strong>in</strong>g (Javanese)<br />

Japan takasaburo<br />

Malaysia ar<strong>in</strong>g-ar<strong>in</strong>g<br />

Mexico hierba-prieta (Spanish)<br />

Myanmar kyeik-hman<br />

Pakistan daryai buti<br />

Peru florcita (Spanish)<br />

Philipp<strong>in</strong>es higis manok (Tagalog)<br />

Sri Lanka s<strong>in</strong>du kir<strong>in</strong>di (S<strong>in</strong>halese)<br />

kaikechi (Tamil)<br />

Sudan tamar el ghanam<br />

Thailand ka-meng (Thai)<br />

USA eclipta<br />

Vietnam co muc<br />

Life cycle: An annual or perennial<br />

broadleaf weed that can grow as tall as<br />

90 cm. Propagates by seeds, which<br />

show no dormancy. In the tropics, the<br />

seed germ<strong>in</strong>ates throughout the year.<br />

Habitat: Thrives <strong>in</strong> c<strong>on</strong>t<strong>in</strong>uously wet<br />

soils but can grow at dry sites. Also<br />

found <strong>in</strong> poorly dra<strong>in</strong>ed wet areas.<br />

<strong>Weed</strong>y nature: An adaptable weed<br />

with fast vegetative growth.<br />

Agricultural c<strong>on</strong>cern: Prevalent <strong>in</strong><br />

lowland and upland ricefields. <strong>Rice</strong><br />

yield losses of 25% have been<br />

recorded <strong>in</strong> the Philipp<strong>in</strong>es.<br />

Seedl<strong>in</strong>g<br />

Mature plant<br />

Seed, magnified<br />

Flower<br />

<strong>Weed</strong>s worldwide 9


Lowland rice weeds / CYPERACEAE (sedge family)<br />

<strong>Weed</strong> name: Cyperus difformis L.<br />

Syn<strong>on</strong>yms: N<strong>on</strong>e<br />

Local names:<br />

Country Comm<strong>on</strong> name<br />

Australia dirty dora<br />

France souchet a petites fleurs<br />

Japan tamagayatsuri<br />

Korea albang d<strong>on</strong>g sani<br />

Malaysia rumput air<br />

Nigeria imeremere (Yoruba)<br />

Philipp<strong>in</strong>es baki-baki (Il<strong>on</strong>go)<br />

ballayang (Tagalog)<br />

Sierra Le<strong>on</strong>e a-kek-a-pot<br />

Thailand kok ka-narg<br />

USA smallflower, umbrella<br />

sedge<br />

Life cycle: An annual sedge that can<br />

grow as tall as 75 cm. Normally propa-<br />

gates by seeds.<br />

Habitat: Adapted to moist lowland<br />

soils or flooded areas.<br />

<strong>Weed</strong>y nature: A heavy seed<br />

producer. Can complete <strong>on</strong>e life cycle<br />

<strong>in</strong> about 30 d. Through high seed<br />

producti<strong>on</strong> and short life cycle, can<br />

spread rapidly to become a dom<strong>in</strong>ant<br />

weed <strong>in</strong> a ricefield.<br />

Agricultural c<strong>on</strong>cern: Produces a<br />

dense stand with<strong>in</strong> a short time, thus<br />

compet<strong>in</strong>g with rice for moisture and<br />

nutrients. Has caused rice yield reduc-<br />

ti<strong>on</strong>s of 12-50%.<br />

10 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Seedl<strong>in</strong>g<br />

Inflorescence<br />

Seed, magnified<br />

Mature plant


Lowland rice weeds / CYPERACEAE (sedge family)<br />

<strong>Weed</strong> name: Cyperus iria L.<br />

Syn<strong>on</strong>yms: N<strong>on</strong>e<br />

Local names:<br />

Country Comm<strong>on</strong> name<br />

Bangladesh barachucha (Bengali)<br />

Brazil tiririca-do-brejo<br />

(Portuguese)<br />

Cambodia kak kangkep (Khmer)<br />

India morphula (Assamese)<br />

Ind<strong>on</strong>esia djekeng (Javanese)<br />

Japan<br />

Korea<br />

Pakistan<br />

kogomegayatsuri<br />

chambang-d<strong>on</strong>sani<br />

khana<br />

Philipp<strong>in</strong>es al<strong>in</strong>ang (Bicolano)<br />

paiung-paiung (Tagalog)<br />

Thailand kok huadaeng<br />

USA rice flatsedge<br />

Life cycle: An annual sedge that<br />

grows as tall as 60 cm. Propagates by<br />

seeds, which may be dormant but can<br />

germ<strong>in</strong>ate about 75 d after shedd<strong>in</strong>g.<br />

Habitat: Grows well <strong>in</strong> moist to wet<br />

soil.<br />

<strong>Weed</strong>y nature: A prolific seed<br />

producer and spreads quickly.<br />

Agricultural c<strong>on</strong>cern: Can be very<br />

competitive for nutrients and reduce<br />

rice yields 40%.<br />

Inflorescence<br />

Seedl<strong>in</strong>g<br />

Mature plant<br />

Seed, magnified<br />

<strong>Weed</strong>s worldwide 11


Lowland rice weeds / CYPERACEAE (sedge family)<br />

<strong>Weed</strong> name: Fimbristylis miliacea (L.)<br />

Vahl<br />

Syn<strong>on</strong>ym: Fimbristylis littoralis Gaud.<br />

Local names:<br />

Country Comm<strong>on</strong> name<br />

Bangladesh bara javani (Bengali)<br />

Brazil com<strong>in</strong>ho (Portuguese)<br />

Cambodia kâk phenk kdam (Khmer)<br />

Ind<strong>on</strong>esia adas-adawan (Javanese)<br />

Japan hideriko<br />

Korea barambaneulgiji<br />

Malaysia rumput tahiker bau<br />

Myanmar m<strong>on</strong>hny<strong>in</strong><br />

Philipp<strong>in</strong>es ubod-ubod (Tagalog)<br />

Thailand agor<br />

USA globe f<strong>in</strong>gerush<br />

Life cycle: An annual sedge that<br />

grows as tall as 60 cm. Propagates by<br />

seeds. Large proporti<strong>on</strong> of seeds have<br />

no dormancy and can germ<strong>in</strong>ate<br />

immediately after reach<strong>in</strong>g maturity.<br />

Seed requires light for germ<strong>in</strong>ati<strong>on</strong>.<br />

Habitat: Adapted to moist soils and<br />

areas of occasi<strong>on</strong>al flood<strong>in</strong>g. Does not<br />

establish <strong>in</strong> submerged soils.<br />

<strong>Weed</strong>y nature: Produces many<br />

seeds, which germ<strong>in</strong>ate throughout the<br />

year. Thus, some weeds escape the<br />

weed c<strong>on</strong>trol measures. Can become a<br />

dom<strong>in</strong>ant weed with<strong>in</strong> a short time.<br />

Agricultural c<strong>on</strong>cern: Competiti<strong>on</strong><br />

is ma<strong>in</strong>ly for nutrients and water. Can<br />

reduce rice gra<strong>in</strong> yields 50%.<br />

12 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Seedl<strong>in</strong>g<br />

Seed, magnified<br />

Mature plant<br />

Inflorescence


Lowland rice weeds / CYPERACEAE (sedge family)<br />

<strong>Weed</strong> name: Scirpus maritimus L.<br />

Syn<strong>on</strong>yms: N<strong>on</strong>e<br />

Local names:<br />

County Comm<strong>on</strong> name<br />

France scirpe maritime<br />

Peru coco grande (Spanish)<br />

Philipp<strong>in</strong>es apulid (Tagalog)<br />

Life cycle: A perennial sedge that<br />

spreads by tubers.<br />

Habitat: Grows <strong>in</strong> wet and flooded<br />

soils.<br />

<strong>Weed</strong>y nature: Tubers have<br />

dormancy. Stems grow rapidly dur<strong>in</strong>g<br />

early rice growth and may severely<br />

shade semidwarf rice cultivars dur<strong>in</strong>g<br />

the first 40 d. Difficult to c<strong>on</strong>trol<br />

because of apical bud dormancy and<br />

capacity to produce numerous tubers.<br />

Establishes, spreads, and becomes a<br />

dom<strong>in</strong>ant weed with<strong>in</strong> a short time.<br />

Agricultural c<strong>on</strong>cern: Very competi-<br />

tive <strong>in</strong> lowland rice. <strong>Rice</strong> yield losses of<br />

60-80% can occur. Difficult to eradi-<br />

cate because of dormant tubers and<br />

buds.<br />

Mature plants <strong>in</strong> the field<br />

Mature plant<br />

Tubers and rhizomes<br />

Vegetative shoot<br />

<strong>Weed</strong>s worldwide 13


Lowland rice weeds /MARSILEACEAE<br />

<strong>Weed</strong> name: Marsilea m<strong>in</strong>uta L.<br />

Syn<strong>on</strong>ym: Marsilea crenata Presl.<br />

Local names:<br />

Country Comm<strong>on</strong> name<br />

France marsilea a quatre feuilles<br />

Japan denjiso<br />

Malaysia tapak itek (Malay)<br />

Philipp<strong>in</strong>es kaya-kayapuan (Tagalog)<br />

Thailand phakwaen<br />

USA airy pepperwort<br />

Life cycle: An aquatic fern that<br />

reproduces by rhizomes and spores.<br />

Habitat: Grows well <strong>in</strong> lowland fields<br />

and al<strong>on</strong>g irrigati<strong>on</strong> canals.<br />

Agricultural c<strong>on</strong>cern: Persistent<br />

and very competitive <strong>in</strong> rice. Yield<br />

reducti<strong>on</strong> of 70% has been recorded.<br />

14 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Seedl<strong>in</strong>g<br />

Mature plant


Lowland rice weeds / ONAGRACEAE (even<strong>in</strong>g-primrose family)<br />

<strong>Weed</strong> name: Ludwigia octovalvis<br />

(Jacq.) Raven<br />

Syn<strong>on</strong>ym: Jussiaea suffruticosa L.<br />

Local names:<br />

Country Comm<strong>on</strong> name<br />

Brazil cruz-de-malta (Portuguese)<br />

Malaysia j<strong>in</strong>aleh<br />

Philipp<strong>in</strong>es balakbak, malapako<br />

(Tagalog)<br />

Thailand phak phaeng phuai<br />

USA l<strong>on</strong>g fruited primrosewillow<br />

Life cycle: An annual aquatic broadleaf<br />

weed that can grow as tall as<br />

100 cm. Propagates by seeds, some<br />

of which will germ<strong>in</strong>ate immediately <strong>in</strong><br />

wet or flooded soils.<br />

Habitat: Adapted to wet and aquatic<br />

c<strong>on</strong>diti<strong>on</strong>s.<br />

<strong>Weed</strong>y nature: Very competitive<br />

with rice.<br />

Agricultural c<strong>on</strong>cern: Can reduce<br />

rice yields 50-80%.<br />

Seedl<strong>in</strong>g<br />

Seed, magnified<br />

Mature plant<br />

Flower<br />

<strong>Weed</strong>s worldwide 15


Lowland rice weeds /POACEAE (grass family)<br />

<strong>Weed</strong> name: Ech<strong>in</strong>ochloa crus-galli (L.)<br />

Beauv. E. crus-galli species is c<strong>on</strong>sid-<br />

ered to <strong>in</strong>clude two subspecies, each<br />

with two varieties (Michael 1983):<br />

E. crus-galli ssp. crus-galli var.<br />

crus-galli,<br />

E. crus-galli ssp. crus-galli var.<br />

praticola,<br />

E. crus-galli ssp. hispidula var.<br />

hispidula, and<br />

E. crus-galli sp. hispidula var.<br />

austro-jap<strong>on</strong>ensis<br />

E. crus-galli var. crus-galli is<br />

abundant <strong>in</strong> the more temperate rice-<br />

grow<strong>in</strong>g areas such as the Indian<br />

subc<strong>on</strong>t<strong>in</strong>ent, Ch<strong>in</strong>a, Japan, Southern<br />

Europe, North and South America, and<br />

Australia.<br />

E. crus-galli var. praticola is an<br />

upland rice weed <strong>in</strong> eastern Asia.<br />

E. crus-galli var. hispidula is an<br />

abundant rice weed throughout<br />

Southeast Asia, parts of the Indian<br />

subc<strong>on</strong>t<strong>in</strong>ent, and Sri Lanka.<br />

16 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

E. crus-galli var. austro-jap<strong>on</strong>ensis<br />

is essentially found <strong>in</strong> eastern Asia,<br />

extend<strong>in</strong>g south from Taiwan, Ch<strong>in</strong>a,<br />

and adjacent parts of ma<strong>in</strong>land Asia to<br />

the high, cool areas of Southeast Asia.<br />

Syn<strong>on</strong>yms: N<strong>on</strong>e<br />

Local names:<br />

Country Comm<strong>on</strong> name<br />

Bangladesh shama<br />

Brazil capimp-da-col<strong>on</strong>ia<br />

(Portuguese)<br />

France panic, pied-de-coq<br />

India kauada, sawant<br />

(Malayalam)<br />

Ind<strong>on</strong>esia djawan (Javanese)<br />

Korea pi<br />

Malaysia<br />

sambau<br />

Peru mijo jap<strong>on</strong>es<br />

Philipp<strong>in</strong>es daua-daua (Tagalog)<br />

Sri Lanka martu<br />

Thailand ya-pl<strong>on</strong>g<br />

USA comm<strong>on</strong> barnyard grass<br />

Life cycle: An annual grass that can<br />

grow as tall as 150 cm. Propagates by<br />

seeds, which may rema<strong>in</strong> dormant<br />

3-4 mo.<br />

Habitat: Adapted to wet soils.<br />

Grows best at soil moisture of 80%<br />

water-hold<strong>in</strong>g capacity. Optimum<br />

germ<strong>in</strong>ati<strong>on</strong> occurs at 70-90% of water-<br />

hold<strong>in</strong>g capacity. Seeds can also<br />

germ<strong>in</strong>ate under water. Growth<br />

becomes <strong>in</strong>creas<strong>in</strong>gly poor with<br />

<strong>in</strong>creased depth of submergence.<br />

<strong>Weed</strong>y nature: A prolific seed<br />

producer; <strong>on</strong>e plant may produce<br />

40,000 seeds. Tillers profusely and<br />

germ<strong>in</strong>ates throughout the year.<br />

Ecologically similar to rice. Dur<strong>in</strong>g early<br />

vegetative phase, almost <strong>in</strong>dist<strong>in</strong>guish-<br />

able from rice plants.<br />

Agricultural c<strong>on</strong>cern: Very competi-<br />

tive with rice. Can reduce rice yields<br />

100%.<br />

Seedl<strong>in</strong>g


Mature plant<br />

Inflorescence<br />

Seed, magnified<br />

<strong>Weed</strong>s worldwide 17


Lowland rice weeds / POACEAE (grass family)<br />

<strong>Weed</strong> name: Ech<strong>in</strong>ochloa glabrescens<br />

Munro ex Hook.f.<br />

Syn<strong>on</strong>yms: N<strong>on</strong>e<br />

Local names:<br />

Country Comm<strong>on</strong> name<br />

Japan <strong>in</strong>ubie<br />

Philipp<strong>in</strong>es bayakibok, daua-daua<br />

(Tagalog)<br />

Life cycle: An annual grass that<br />

grows 0.5-1.0 m tall. Propagates by<br />

seeds.<br />

Habitat: Adapted to wet soils.<br />

Distributi<strong>on</strong> extends from the Indian<br />

subc<strong>on</strong>t<strong>in</strong>ent through ma<strong>in</strong>land<br />

Southeast Asia and Ch<strong>in</strong>a to Korea,<br />

southern Japan, and the Philipp<strong>in</strong>es<br />

(Michael 1983).<br />

<strong>Weed</strong>y nature: Ecologically similar<br />

to rice.<br />

Agricultural c<strong>on</strong>cern: Very competi-<br />

tive with rice. When E. glabrescens<br />

seedl<strong>in</strong>gs were transplanted with rice,<br />

yield losses ranged from 7% when 5%<br />

of the rice hills were <strong>in</strong>fested to 87%<br />

when 50% of the rice hills were<br />

<strong>in</strong>fested (IRRI 1987).<br />

18 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Seedl<strong>in</strong>g<br />

Seed, magnified<br />

Mature plant<br />

Inflorescence


Lowland rice weeds/POACEAE (grass family)<br />

<strong>Weed</strong> name: Ischaemurn rugosum<br />

Salisb.<br />

Syn<strong>on</strong>yms: N<strong>on</strong>e<br />

Local names:<br />

Country Comm<strong>on</strong> name<br />

Bangladesh moran (Bengali)<br />

Brazil cap<strong>in</strong> macho (Portuguese)<br />

Colombia trigillo (Spanish)<br />

Dom<strong>in</strong>ican<br />

Republic yerba de papo (Spanish)<br />

Fiji<br />

comura<strong>in</strong>a<br />

India mararo (Bengali)<br />

Ind<strong>on</strong>esia blemben (Javanese)<br />

Malaysia rumput ekor jawi (Malay)<br />

Myanmar ka-gyi-the-myet<br />

Peru mozorquilla (Spanish)<br />

Philipp<strong>in</strong>es t<strong>in</strong>itrigo (Tagalog)<br />

Sri Lanka kudukedu (S<strong>in</strong>halese)<br />

Thailand yah daeng<br />

USA saramollagrass<br />

Life cycle: An annual grass that<br />

grows to 120 cm tall. Propagates by<br />

seeds, which may rema<strong>in</strong> dormant.<br />

Habitat: Prefers wet soils and<br />

swampy areas.<br />

<strong>Weed</strong>y nature: A vigorous, aggressive<br />

weed. Seeds shatter easily, so<br />

that there is a c<strong>on</strong>stant source of<br />

<strong>in</strong>festati<strong>on</strong>. Dur<strong>in</strong>g vegetative growth,<br />

resembles the rice plant, mak<strong>in</strong>g it<br />

difficult to recognize as a weed.<br />

I. rugosum, however, has deep reddish-brown<br />

to purple leaf sheaths, a<br />

color <strong>on</strong>ly weakly developed <strong>in</strong> rice.<br />

Agricultural c<strong>on</strong>cern: Very competitive:<br />

5 plants/m 2 reduced rice yields<br />

15% and 80 plants/m 2 reduced yields<br />

82% <strong>in</strong> IRRl trials (IRRI 1987).<br />

Mature plant<br />

Inflorescence<br />

Seed, magnified<br />

<strong>Weed</strong>s worldwide 19


Lowland rice weeds / POACEAE (grass family)<br />

<strong>Weed</strong> name: Leersia hexandra Sw.<br />

Syn<strong>on</strong>yms: N<strong>on</strong>e<br />

Local names:<br />

Country Comm<strong>on</strong> name<br />

Australia swamp ricegrass<br />

Bangladesh araila (Bengali)<br />

Brazil arroz-bravo (Portuguese)<br />

Ind<strong>on</strong>esia kalamenta<br />

Malaysia rumput lidah<br />

(Malay)<br />

riman<br />

Myanmar thaman-myet<br />

Philipp<strong>in</strong>es<br />

Sur<strong>in</strong>am<br />

barit (Tagalog)<br />

alesi grasie<br />

Thailand yah-sai<br />

USA southern cutgrass<br />

Venezuela lamedora<br />

Vietnam có bac<br />

Life cycle: An aquatic perennial<br />

grass that can grow as tall as 100 cm.<br />

Propagates by seeds, rhizomes, and<br />

stol<strong>on</strong>s.<br />

Habitat: Grows <strong>in</strong> c<strong>on</strong>stantly<br />

flooded or marshy habitats.<br />

Agricultural c<strong>on</strong>cern: In some<br />

habitats, resembles rice plants.<br />

Because it propagates by both seeds<br />

and vegetatively, has a tremendous<br />

ability to survive and proliferate. Can<br />

cause 60% rice yield losses.<br />

20 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Mature plant<br />

Seed, magnified<br />

Mature plants <strong>in</strong> the field<br />

Inflorescence


Lowland rice weeds / POACEAE (grass family)<br />

<strong>Weed</strong> name: Leptochloa ch<strong>in</strong>ensis (L.)<br />

Nees<br />

Syn<strong>on</strong>yms: N<strong>on</strong>e<br />

Local names:<br />

Country Comm<strong>on</strong> name<br />

Colombia plumilla (Spanish)<br />

El Salvador cola de buey (Spanish)<br />

Ind<strong>on</strong>esia beb<strong>on</strong>tengan (Javanese)<br />

Japan azegaya<br />

Philipp<strong>in</strong>es palay-maya (Tagalog)<br />

Thailand yoa y<strong>on</strong> hun<br />

USA Ch<strong>in</strong>ese sprangle top<br />

Vietnam có duöi phung<br />

Life cycle: An annual or perennial<br />

grass that can grow as tall as 120 cm.<br />

Propagates by seeds.<br />

Habitat: Grows well <strong>in</strong> marshy fields<br />

but will not survive c<strong>on</strong>t<strong>in</strong>uous flood-<br />

<strong>in</strong>g. Can also grow <strong>in</strong> upland fields.<br />

<strong>Weed</strong>y nature: Propagates from<br />

cutt<strong>in</strong>gs of the culm or rootstocks,<br />

therefore establishes and spreads<br />

easily under tillage.<br />

Agricultural c<strong>on</strong>cern: A serious<br />

weed <strong>in</strong> rice. Competes with rice for<br />

nutrients and light and can reduce<br />

yields more than 40%.<br />

Seedl<strong>in</strong>g<br />

Seed, magnified<br />

Mature plant<br />

Inflorescence<br />

<strong>Weed</strong>s worldwide 21


Lowland rice weeds / POACEAE (grass family)<br />

<strong>Weed</strong> name : Paspalurn distichurn L.<br />

Syn<strong>on</strong>ym: Paspalurn paspalodes<br />

(Michx.) Scribn.<br />

Local names:<br />

Country Comm<strong>on</strong> name<br />

Australia water couch<br />

Ind<strong>on</strong>esia lamhani (Sundanese)<br />

Japan kishusuzuuenchie<br />

Malaysia rumput mas<strong>in</strong><br />

Philipp<strong>in</strong>es luya-luyang dagat,<br />

pagetpet (Tagalog)<br />

USA knotgrass<br />

Life cycle: A perennial grass that<br />

can grow as tall as 30-60 cm.<br />

Propagates ma<strong>in</strong>ly by creep<strong>in</strong>g stol<strong>on</strong>s<br />

and, to some extent, by seeds (flowers<br />

but produces few viable seeds).<br />

Habitat: Grows well <strong>in</strong> moist to wet<br />

soils.<br />

<strong>Weed</strong>y nature: Spreads aggres-<br />

sively by means of stol<strong>on</strong>s. Difficult to<br />

c<strong>on</strong>trol because detached stol<strong>on</strong><br />

fragments regenerate easily. Tolerant<br />

of many herbicides.<br />

Agricultural c<strong>on</strong>cern: Can be very<br />

competitive <strong>in</strong> rice, reduc<strong>in</strong>gyields up<br />

to 85%.<br />

22 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Mature plants <strong>in</strong> the field<br />

Mature plant<br />

Inflorescence


Lowland rice weeds / PONTEDERIACEAE (pickerel-weed family)<br />

<strong>Weed</strong> name: M<strong>on</strong>ochoria vag<strong>in</strong>alis<br />

(Burm. f.) Presl<br />

Syn<strong>on</strong>yms: N<strong>on</strong>e<br />

Local names:<br />

Country Comm<strong>on</strong> name<br />

Bangladesh panee kachu<br />

Cambodia chrach (Khmer)<br />

India neerthomarai (Tamil)<br />

Ind<strong>on</strong>esia et jeng padi<br />

Korea mooldalgebi<br />

Malaysia keladi agas (Malay)<br />

Philipp<strong>in</strong>es biga-bigaan (Tagalog)<br />

Thailand n<strong>in</strong>lab<strong>on</strong><br />

USA m<strong>on</strong>ochoria<br />

Vietnam rau mác lá th<strong>on</strong><br />

Life cycle: A perennial aquatic<br />

m<strong>on</strong>ocotyled<strong>on</strong>ous plant. May behave<br />

like an annual <strong>in</strong> flooded ricefields,<br />

where it grows as tall as 50 cm.<br />

Propagates by seeds.<br />

Habitat: A lowland weed that grows<br />

well <strong>in</strong> subaquatic to aquatic c<strong>on</strong>diti<strong>on</strong>s.<br />

<strong>Weed</strong>y nature: In saturated soils,<br />

seeds germ<strong>in</strong>ate throughout the<br />

grow<strong>in</strong>g seas<strong>on</strong>, enabl<strong>in</strong>g seedl<strong>in</strong>gs to<br />

emerge and establish after earlyseas<strong>on</strong><br />

weed c<strong>on</strong>trol. A very aggressive<br />

weed <strong>in</strong> soils with high N levels.<br />

Agricultural c<strong>on</strong>cern: Can reduce<br />

rice yields 85%.<br />

Seedl<strong>in</strong>g<br />

Mature plant<br />

Inflorescence<br />

Seed, magnified<br />

<strong>Weed</strong>s worldwide 23


Lowland rice weeds / SPHENOCLEACEAE (sphenoclea family)<br />

<strong>Weed</strong> name: Sphenoclea zeylanica<br />

Gaertn.<br />

Syn<strong>on</strong>yms: N<strong>on</strong>e<br />

Local names:<br />

Country Comm<strong>on</strong> name<br />

Ind<strong>on</strong>esia goenda<br />

Malaysia cabaikera<br />

Pakistan mirch booti<br />

Philipp<strong>in</strong>es silisilihan (Tagalog)<br />

Thailand phak-pot<br />

USA gooseweed<br />

Vietnam xa bông<br />

Life cycle: An annual broadleaf that<br />

grows as tall as 150 cm. Propagates<br />

by seeds.<br />

Habitat: Grows <strong>in</strong> wet soils; prefers<br />

stagnant water.<br />

<strong>Weed</strong>y nature: Grows and flowers<br />

throughout the year.<br />

Agricultural c<strong>on</strong>cern: In dense<br />

populati<strong>on</strong>s, competes with rice for<br />

light and nutrients and can cause 45%<br />

yield loss.<br />

24 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Seedl<strong>in</strong>g<br />

Inflorescence<br />

Mature plant<br />

Seed, magnified


Upland rice weeds<br />

AIZOACEAE (carpet-weed family)<br />

<strong>Weed</strong> name: Trianthema<br />

portulacastrum L.<br />

Syn<strong>on</strong>ym: Trianthema m<strong>on</strong>ogyna L.<br />

Local names:<br />

Country Comm<strong>on</strong> name<br />

Australia giant pigweed<br />

Cambodia pti thmâr (Khmer)<br />

France pourpier courant<br />

Ghana adwera-akoa (Twi)<br />

India pasalikeera (Malayalam)<br />

saranai (Tamil)<br />

verrugoligeru (Telegu)<br />

Mexico verdolaga de hoja ancha<br />

Nigeria dáabur<strong>in</strong> sa aniyaá<br />

(Hausa)<br />

Philipp<strong>in</strong>es tost<strong>on</strong> (Tagalog)<br />

Thailand phak bia h<strong>in</strong><br />

USA horse purslane<br />

Life cycle: An annual broadleaf<br />

weed that can grow 40 cm tall. Propa-<br />

gates by seeds, which may be dormant<br />

for as l<strong>on</strong>g as 4 mo.<br />

Habitat: Grows well <strong>in</strong> dry to moist<br />

soils.<br />

<strong>Weed</strong>y nature: A prolific seed pro-<br />

ducer with a short life cycle.<br />

Completes several life cycles with<strong>in</strong> a<br />

year. Early vegetative growth is very<br />

rapid, especially <strong>in</strong> fertile soils.<br />

Agricultural c<strong>on</strong>cern: If c<strong>on</strong>trol <strong>in</strong><br />

upland rice is delayed, can smother<br />

rice seedl<strong>in</strong>gs with<strong>in</strong> 2-3 wk. Normally<br />

succumbs to <strong>in</strong>sects after about 5 wk<br />

but can reduce rice yields 30%.<br />

Seedl<strong>in</strong>g<br />

Seed, magnified<br />

Inflorescence<br />

Mature plants <strong>in</strong> the field<br />

<strong>Weed</strong>s worldwide 25


Upland rice weed / AMARANTHACEAE (amaranth family)<br />

<strong>Weed</strong> name: Amaranthus sp<strong>in</strong>osus L.<br />

Syn<strong>on</strong>yms: N<strong>on</strong>e<br />

Local names:<br />

Country Comm<strong>on</strong> name<br />

Argent<strong>in</strong>a atato esp<strong>in</strong>ado<br />

Australia needle burr<br />

Bangladesh katanata (Bengali)<br />

Brazil caruru-de-es p<strong>in</strong>ho<br />

(Portuguese)<br />

Cambodia pti banla (Khmer)<br />

El Salvador huisquilite<br />

France amarante epi neuse, blette<br />

ep<strong>in</strong>euse<br />

Ghana sraha nsoe (Twi)<br />

India kataili chauli<br />

(Gujrati)<br />

kantaneutia (Orya)<br />

Ind<strong>on</strong>esia<br />

Mexico<br />

bajem duri (Javanese)<br />

quelite esp<strong>in</strong>osa (Spanish)<br />

Myanmar tsu-gyi<br />

Nigeria tete elegun (Yoruba)<br />

Philipp<strong>in</strong>es<br />

USA<br />

oray, kulitis (Tagalog)<br />

sp<strong>in</strong>y amaranth, sp<strong>in</strong>y<br />

pigweed<br />

Zimbabwe imbowa<br />

Life cycle: An annual broad leaf with<br />

red stems and sp<strong>in</strong>y leaves. Can grow<br />

as tall as 120 cm. Propagates by<br />

glossy, dark-brown seeds, which are<br />

dispersed by w<strong>in</strong>d and water. Germ<strong>in</strong>ati<strong>on</strong><br />

may occur from a few days after<br />

harvest to about 5 mo. Germ<strong>in</strong>ates<br />

throughout the year when moisture is<br />

available.<br />

Habitat: Grows best <strong>in</strong> soils with no<br />

stand<strong>in</strong>g water.<br />

<strong>Weed</strong>y nature: A prolific seed<br />

producer.<br />

Agricultural c<strong>on</strong>cern: Very competitive<br />

<strong>in</strong> rice, can cause 80% yield loss.<br />

26 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Seedl<strong>in</strong>g<br />

Inflorescence<br />

Seed, magnified<br />

Mature plant


Upland rice weeds / ASTERACEAE (sunflower family)<br />

<strong>Weed</strong> name: Ageratum c<strong>on</strong>yzoides L.<br />

Syn<strong>on</strong>yms: N<strong>on</strong>e<br />

Local names:<br />

Country Comm<strong>on</strong> name<br />

Australia billygoat weed<br />

Brazil erva-de-sao-joao<br />

Colombia hierba de chivo<br />

France agerate a feuilles<br />

de c<strong>on</strong>yza<br />

Ghana efoe momoe (Fanti)<br />

India gundhuab<strong>on</strong>, mahakaua<br />

Ind<strong>on</strong>esia ban do tan<br />

Malaysia ruptahi-ayam<br />

Nigeria imiesu (Yoruba)<br />

Philipp<strong>in</strong>es bulak-manok (Tagalog)<br />

Sri Lanka hulantala<br />

Thailand ya-tabsua<br />

USA tropic ageratum<br />

Zambia kabalakila (Chit<strong>on</strong>ga)<br />

Life cycle: An annual broadleaf that<br />

can grow as tall as 120 cm at flower-<br />

<strong>in</strong>g. Propagates by seeds. Seed germi-<br />

nates throughout the year. In some<br />

areas, 50% of the seeds germ<strong>in</strong>ate<br />

with<strong>in</strong> 2 wk after shedd<strong>in</strong>g; <strong>in</strong> other<br />

areas, the seed has a pr<strong>on</strong>ounced<br />

dormancy with about 1% of the seeds<br />

germ<strong>in</strong>at<strong>in</strong>g after some m<strong>on</strong>ths.<br />

Habitat: Grows <strong>in</strong> dry to moist soils.<br />

<strong>Weed</strong>y nature: Am<strong>on</strong>g the most<br />

comm<strong>on</strong> weeds found <strong>in</strong> rice. Rapidly<br />

col<strong>on</strong>izes cultivated areas. Has a short<br />

life cycle and completes several cycles<br />

<strong>in</strong> a year. Produces enormous amounts<br />

of seeds, which are dispersed by w<strong>in</strong>d<br />

and water. Seeds germ<strong>in</strong>ate <strong>in</strong> a wide<br />

range of envir<strong>on</strong>ments. As so<strong>on</strong> as the<br />

first stand is destroyed, another flush<br />

of seedl<strong>in</strong>gs grows.<br />

Agricultural c<strong>on</strong>cern: Can achieve a<br />

dense growth and compete with rice<br />

for nutrients and moisture. Can reduce<br />

rice yields 40%.<br />

Inflorescence<br />

Seedl<strong>in</strong>g<br />

Seed, magnified<br />

Mature plant<br />

<strong>Weed</strong>s worldwide 27


Upland rice weeds / COMMELINACEAE (spiderwort family)<br />

<strong>Weed</strong> name: Commel<strong>in</strong>a<br />

benghalensis L.<br />

Syn<strong>on</strong>yms: N<strong>on</strong>e<br />

Local names:<br />

Country Comm<strong>on</strong> name<br />

Angola ndakala<br />

Bangladesh kanaibashi (Bengali)<br />

Ghana nyame-bowu-an amewu<br />

(Fanti)<br />

India k<strong>on</strong>a simolu (Assamese)<br />

kena (Marathi)<br />

kanchara kankaua (Orya)<br />

Ind<strong>on</strong>esia gewor<br />

Mauritius herbe aux coch<strong>on</strong>s<br />

Myanmar myet-cho<br />

Philipp<strong>in</strong>es alikbang<strong>on</strong> (Tagalog)<br />

Samoa Mauutoga<br />

Thailand phak plaap<br />

USA tropical spider wort<br />

Zambia nkumbaile<br />

Life cycle: A creep<strong>in</strong>g annual or<br />

perennial broadleaf that grows as tall<br />

as 40 cm. Propagates by seeds and<br />

stol<strong>on</strong>s.<br />

Habitat: Grows best <strong>in</strong> wet soil.<br />

<strong>Weed</strong>y nature: Able to grow rapidly<br />

from stem cutt<strong>in</strong>gs. Shows rapid<br />

vegetative growth under favorable<br />

c<strong>on</strong>diti<strong>on</strong>s and forms dense pure<br />

stands, smother<strong>in</strong>g low-grow<strong>in</strong>g rice<br />

crop. Difficult to c<strong>on</strong>trol because<br />

vegetative fragments regenerate easily<br />

and because it is resistant to many<br />

soil-applied herbicides.<br />

Agricultural c<strong>on</strong>cern: Can cause<br />

50% yield loss.<br />

28 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Seedl<strong>in</strong>g<br />

Inflorescence<br />

Seed, magnified<br />

Mature plant


Upland rice weeds / CYPERACEAE (sedge family)<br />

<strong>Weed</strong> name: Cyperus rotundus L.<br />

Syn<strong>on</strong>yms: N<strong>on</strong>e<br />

Local names:<br />

Country Comm<strong>on</strong> name<br />

Argent<strong>in</strong>a cebollita<br />

Bangladesh motha (Bengali)<br />

Brazil tiririca-comum<br />

(Portuguese)<br />

Cambodia smav kravanh chrouk<br />

(Khmer)<br />

France souchet r<strong>on</strong>d<br />

Ghana hyia-me-n<strong>on</strong>um (Fanti)<br />

India nagar, motha (Orya)<br />

korai (Tamil)<br />

dila (Telegu)<br />

Ind<strong>on</strong>esia teki<br />

Malaysia rumput haliyahitan<br />

(Malay)<br />

Mexico coquillo (Spanish)<br />

Pakistan deela (Urdu)<br />

Philipp<strong>in</strong>es mutha (Tagalog)<br />

Senegal ndidan (Wolof)<br />

Sri Lanka kalanthi (S<strong>in</strong>halese)<br />

Thailand haew moo (Thai)<br />

USA purple nutsedge<br />

Life cycle: A perennial sedge that<br />

can grow as tall as 75 cm. Propagates<br />

ma<strong>in</strong>ly by tubers and produces few<br />

seeds.<br />

Habitat: Grows well <strong>in</strong> moist soils.<br />

<strong>Weed</strong>y nature: Persistent and<br />

difficult to c<strong>on</strong>trol. Enormous amounts<br />

of tubers may be produced. Tubers,<br />

which have dormancy, can survive l<strong>on</strong>g<br />

periods of envir<strong>on</strong>mental stress.<br />

Difficult to c<strong>on</strong>trol by cultivati<strong>on</strong><br />

because cultivati<strong>on</strong> breaks the<br />

dormancy <strong>in</strong> the <strong>in</strong>terc<strong>on</strong>nected tuber<br />

lead<strong>in</strong>g to more vigorous sprout<strong>in</strong>g.<br />

Agricultural c<strong>on</strong>cern: Limits rice<br />

producti<strong>on</strong> by compet<strong>in</strong>g for water and<br />

nutrients. Can reduce rice yields 50%.<br />

Inflorescence<br />

Seedl<strong>in</strong>g<br />

Mature plant<br />

Rhizomes and tubers<br />

<strong>Weed</strong>s worldwide 29


Upland rice weeds / EUPHORBIACEAE (spurge family)<br />

<strong>Weed</strong> name: Euphorbia hirta L.<br />

Syn<strong>on</strong>yms: Chamesyce hirta (L.)<br />

Millsp., Euphorbia pilulifera L.<br />

Local names:<br />

Country Comm<strong>on</strong> name<br />

Bangladesh bara dudhia (Bengali)<br />

Brazil erva-de-Santa-Luzia<br />

(Portuguese)<br />

France euphorbe poilue<br />

Ghana ah<strong>in</strong>kogye (Twi)<br />

India dudhi (Marathi)<br />

baridhudhi (Orya)<br />

amman paccharisi (Tamil)<br />

Ind<strong>on</strong>esia gend<strong>on</strong>g anak (Javanese)<br />

Malaysia ara tanah (Malay)<br />

Mexico hierba dela gol<strong>on</strong> dr<strong>in</strong>a<br />

(Spanish)<br />

Myanmar majo<br />

Nigeria buje (Yoruba)<br />

Philipp<strong>in</strong>es gatas-gatas, botobot<strong>on</strong>is<br />

(Tagalog)<br />

Thailand namnom raatchasee<br />

(Thai)<br />

USA garden spurge<br />

Vietnam cô sua lông<br />

Life cycle: An annual broadleaf that<br />

grows as tall as 30 cm. Propagates by<br />

seeds.<br />

Habitat: Grows <strong>in</strong> dry or moist soils.<br />

<strong>Weed</strong>y nature: A prolific seed<br />

producer with a life cycle of about<br />

1 mo. Flowers throughout the year.<br />

Dense stands develop easily with<strong>in</strong> a<br />

short time.<br />

Agricultural c<strong>on</strong>cern: Can reduce<br />

rice yields 30%.<br />

30 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Seedl<strong>in</strong>g Inflorescence<br />

Seed, magnified<br />

Mature plant


Upland rice weeds / POACEAE (grass family)<br />

<strong>Weed</strong> name: Cynod<strong>on</strong> dactyl<strong>on</strong> (L.)<br />

Pers.<br />

Syn<strong>on</strong>yms: N<strong>on</strong>e<br />

Local names:<br />

Country Comm<strong>on</strong> name<br />

Angola usila<br />

Argent<strong>in</strong>a chepica (Spanish)<br />

Brazil capim deburro<br />

(Portuguese)<br />

Cambodia smav anchien (Khmer)<br />

Chile pasto gall<strong>in</strong>a (Spanish)<br />

France herbe des bemu das<br />

India arugampulu, doob (Tamil)<br />

garika (Telugu)<br />

Ind<strong>on</strong>esia<br />

Mauritius<br />

gigir<strong>in</strong>t<strong>in</strong>g<br />

chiendent<br />

Pakistan dub<br />

Philipp<strong>in</strong>es kotatai, kawad-kawad<br />

(Tagalog)<br />

Sudan nagil<br />

USA bermudagrass<br />

Vietnam co chi<br />

Zambia kap<strong>in</strong>ga<br />

Life cycle: A creep<strong>in</strong>g perennial<br />

grass. Can grow as tall as 40 cm.<br />

Propagates almost exclusively by<br />

stol<strong>on</strong>s and rhizomes and produces<br />

few seeds. Seeds are very small but<br />

can survive about 50 d submergence.<br />

As l<strong>on</strong>g as moisture is present, seeds<br />

can germ<strong>in</strong>ate throughout the year.<br />

Habitat: Adapted to dry or moist<br />

well-dra<strong>in</strong>ed soils.<br />

<strong>Weed</strong>y nature: Rhizomes and<br />

stol<strong>on</strong>s root easily at the nodes and<br />

reestablish immediately after cutt<strong>in</strong>g.<br />

Rhizomes grow deeply <strong>in</strong> the soil,<br />

enabl<strong>in</strong>g the weed to withstand<br />

extreme envir<strong>on</strong>ments. A comm<strong>on</strong> and<br />

persistent weed, very competitive, with<br />

rapid shoot growth. Difficult to c<strong>on</strong>trol<br />

because detached fragments regener-<br />

ate easily.<br />

Agricultural c<strong>on</strong>cern: Can reduce<br />

rice yields by 55%.<br />

Inflorescence<br />

Seedl<strong>in</strong>g<br />

Mature plant <strong>in</strong> the field<br />

<strong>Weed</strong>s worldwide 31


Upland rice weeds / POACEAE (grass family)<br />

<strong>Weed</strong> name: Digitaria sangu<strong>in</strong>alis (L.)<br />

Scop.<br />

Syn<strong>on</strong>yms: N<strong>on</strong>e<br />

Local names:<br />

Country Comm<strong>on</strong> name<br />

Brazil milha-de-pendao<br />

(Portuguese)<br />

Colombia c<strong>on</strong>ejo<br />

France digitaire sun gu<strong>in</strong>e, panic<br />

sangu<strong>in</strong><br />

Ind<strong>on</strong>esia suket djrempak<br />

Myanmar myet-naya<br />

Nicaragua manga larga (Spanish)<br />

Peru digitaria (Spanish)<br />

Philipp<strong>in</strong>es pagpagai (B<strong>on</strong>toc)<br />

Thailand yaa teenka<br />

USA large crabgrass<br />

Venezuela pendejuelo (Spanish)<br />

Life cycle: An annual grass that can<br />

grow as tall as 70 cm. Propagates by<br />

seeds, which have a short dormancy<br />

after shedd<strong>in</strong>g.<br />

Habitat: Grows <strong>in</strong> moist to wet<br />

soils.<br />

<strong>Weed</strong>y nature: A prolific seed<br />

producer with enormous tiller<strong>in</strong>g<br />

ability. A few plants can spread to<br />

occupy a large area. An elaborate root<br />

system gives it an advantage <strong>in</strong> belowground<br />

competiti<strong>on</strong>. Regrowth after<br />

weed<strong>in</strong>g is rapid.<br />

Agricultural c<strong>on</strong>cern: Very competitive<br />

<strong>in</strong> rice; can reduce yield 70%.<br />

32 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Seedl<strong>in</strong>g<br />

Inflorescence<br />

Seed, magnified<br />

Mature plant


Upland rice weeds / POACEAE (grass family)<br />

<strong>Weed</strong> name: Ech<strong>in</strong>ochloa col<strong>on</strong>a (L.)<br />

L<strong>in</strong>k<br />

Syn<strong>on</strong>yms: N<strong>on</strong>e<br />

Local names:<br />

Country Comm<strong>on</strong> name<br />

Argent<strong>in</strong>a grama p<strong>in</strong>tada (Spanish)<br />

Australia awnless barn yardgrass<br />

Egypt<br />

France<br />

abu-rokba (Arabic)<br />

ble de dekkan<br />

India kauada, sawank<br />

(Malayalarn)<br />

Ind<strong>on</strong>esia roernpoet bebek<br />

Iraq dahnan<br />

Malaysia padi bur<strong>on</strong>g, rumput<br />

kusa-kusa<br />

Philipp<strong>in</strong>es<br />

Sri Lanka<br />

Sudan<br />

pulang puit (Tagalog)<br />

gira-taro (S<strong>in</strong>halese)<br />

difera<br />

Thailand<br />

USA<br />

Zambia<br />

ya-pl<strong>on</strong>g<br />

junglerice<br />

zibaila (Chit<strong>on</strong>ga)<br />

Life cycle: An annual grass that can<br />

grow as tall as 90 cm. Propagates by<br />

oval, tan to brownish seeds. In the<br />

tropics, seed has little or no dormancy<br />

and germ<strong>in</strong>ates throughout the year<br />

when moisture is available.<br />

Habitat: Normally grows under<br />

dryland c<strong>on</strong>diti<strong>on</strong>s: does not thrive <strong>in</strong><br />

c<strong>on</strong>t<strong>in</strong>uously flooded soils.<br />

<strong>Weed</strong>y nature: A prolific seed<br />

producer; has a short life cycle and can<br />

complete several life cycles <strong>in</strong> a year.<br />

Easily adapts to the envir<strong>on</strong>ment-for<br />

example, grows erect when <strong>in</strong> competiti<strong>on</strong><br />

with rice and prostrate when not <strong>in</strong><br />

competiti<strong>on</strong>. Young plants resemble<br />

rice, which makes hand weed<strong>in</strong>g<br />

difficult at early weed stages.<br />

Agricultural c<strong>on</strong>cern: Competitive<br />

<strong>in</strong> rice; can reduce yields 85%.<br />

Mature plant<br />

Seedl<strong>in</strong>g<br />

Seed, magnified<br />

<strong>Weed</strong>s worldwide 33


Upland rice weeds / POACEAE (grass family)<br />

<strong>Weed</strong> name: Eleus<strong>in</strong>e <strong>in</strong>dica (L.)<br />

Gaertn.<br />

Syn<strong>on</strong>yms: N<strong>on</strong>e<br />

Local names:<br />

Country Comm<strong>on</strong> name<br />

Australia crowsfootgrass<br />

Brazil capim-pe-de-gal<strong>in</strong>ha<br />

Cambodia smav choeung kras<br />

(Khmer)<br />

France eleus<strong>in</strong>e des <strong>in</strong>des<br />

India kodai, mandla<br />

Ind<strong>on</strong>esia god<strong>on</strong>g ula (Javanese)<br />

Malaysia rumput sambou (Malay)<br />

Mexico pata de gallo (Spanish)<br />

Myanmar s<strong>in</strong>-ngo-let-kya<br />

Nigeria gbegi (Yoruba)<br />

Philipp<strong>in</strong>es sabung-sabungan<br />

(Tagalog)<br />

Sri Lanka bela-tana (S<strong>in</strong>ghala)<br />

Thailand yah teenka<br />

Uganda kasibanti<br />

USA<br />

Zambia<br />

goosegrass<br />

lukata (Chit<strong>on</strong>ga)<br />

Zimbabwe rapoko<br />

Life cycle: An annual grass that<br />

grows as tall as 60 cm. Propagates by<br />

brownish-black seeds that germ<strong>in</strong>ate<br />

throughout the year when moisture is<br />

available.<br />

Habitat: Grows best <strong>in</strong> moist to wet<br />

soils.<br />

<strong>Weed</strong>y nature: Produces enormous<br />

amounts of seeds—40,000 seeds per<br />

plant have been recorded. Flowers<br />

after 30 d and can complete several<br />

life cycles <strong>in</strong> a year, which leads to<br />

heavy populati<strong>on</strong> buildup. Develops an<br />

extensive root system.<br />

Agricultural c<strong>on</strong>cern: Competitive<br />

<strong>in</strong> rice; can reduce yields 80%.<br />

34 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Seedl<strong>in</strong>g<br />

Inflorescence<br />

Mature plant<br />

Seed,<br />

magnified


Upland rice weeds / POACEAE (grass family)<br />

<strong>Weed</strong> name: lmperata cyl<strong>in</strong>drica (L.)<br />

Raeuschel<br />

Syn<strong>on</strong>yms: N<strong>on</strong>e<br />

Local names:<br />

Country Comm<strong>on</strong> name<br />

Argent<strong>in</strong>a carrizo marciego (Spanish)<br />

Cambodia sbauv (Khmer)<br />

Camero<strong>on</strong> baya<br />

Fiji pi<br />

France imperate<br />

Ghana segogro (Twi)<br />

India dabh<br />

Ind<strong>on</strong>esia alang-alang<br />

Ivory Coast nse<br />

Kenya nyeki<br />

Madagascar tena<br />

Mauritius lalang<br />

Nigeria ekan (Yoruba)<br />

Philipp<strong>in</strong>es kog<strong>on</strong> (Tagalog)<br />

Tanzania motomoto<br />

Thailand yoa khaa<br />

USA cog<strong>on</strong>grass<br />

Zimbabwe ibamba<br />

Llfe cycle: A perennial grass that<br />

grows as tall as 120 cm. Propagates<br />

by seeds and creep<strong>in</strong>g rhizomes.<br />

Seeds have little or no dormancy.<br />

Habitat: Adapted to dry and moist<br />

soils.<br />

<strong>Weed</strong>y nature: Produces large<br />

amounts of seeds and a tremendous<br />

mass of rhizomes, which make weed<br />

c<strong>on</strong>trol by any means difficult.<br />

Agricultural c<strong>on</strong>cern: A serious<br />

weed <strong>in</strong> upland areas. Many <strong>in</strong>fested<br />

ricefields are aband<strong>on</strong>ed.<br />

Rhizomes<br />

Mature plant<br />

Inflorescence<br />

Seed, magnified<br />

<strong>Weed</strong>s worldwide 35


Upland rice weeds / POACEAE (grass family)<br />

<strong>Weed</strong> name: Rottboellia coch<strong>in</strong>ch<strong>in</strong>en-<br />

sis (Lour.) W.D. Clayt<strong>on</strong><br />

Syn<strong>on</strong>ym: Rottboellia exaltata L.f.<br />

Local names:<br />

Country Comm<strong>on</strong> name<br />

France herbe bettle-elise<br />

Ghana nkyenkyemma (Twi)<br />

Ind<strong>on</strong>esia bandjangan<br />

Philipp<strong>in</strong>es agu<strong>in</strong>gay (Tagalog)<br />

Spa<strong>in</strong> cam<strong>in</strong>adora<br />

Thailand yaa pr<strong>on</strong>g khaai<br />

USA itchgrass<br />

Zambia mulungwe<br />

Zimbabwe shamvagrass<br />

Life cycle: An annual grass that can<br />

grow as tall as 3 m. Propagates by<br />

seeds, which have a dormancy of<br />

1-4 mo.<br />

Habitat: Prefers well-dra<strong>in</strong>ed soils.<br />

<strong>Weed</strong>y nature: Produces many<br />

seeds, which shatter easily. Grows and<br />

flowers throughout the year. These<br />

characteristics, comb<strong>in</strong>ed with rapid<br />

growth and sharp irritat<strong>in</strong>g hairs, make<br />

it very competitive.<br />

Agricultural c<strong>on</strong>cern: Very aggres-<br />

sive <strong>in</strong> upland areas, where it can<br />

completely shade out rice. Total yield<br />

loss is normal.<br />

36 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Seedl<strong>in</strong>g<br />

Seed, magnified<br />

Mature plant<br />

<strong>in</strong>florescence


Upland rice weeds / PORTULACACEAE (purslane family)<br />

<strong>Weed</strong> name: Portulaca oleracea L.<br />

Syn<strong>on</strong>yms: N<strong>on</strong>e<br />

Local names:<br />

Country Comm<strong>on</strong> name<br />

Brazil beldroega<br />

Cambodia kbetchoun (Khmer)<br />

France comun pourpier<br />

Ghana adwera (Twi)<br />

India baralunia, kufa (Orya)<br />

karie, keerai (Tamil)<br />

Ind<strong>on</strong>esia gelang<br />

Malaysia gelang pasir<br />

Mauritius pourpier<br />

Mexico verdolaga comun (Spanish)<br />

Myanmar mya-byit<br />

Nigeria esan omode (Yoruba)<br />

Pakistan kulfa, lunak<br />

Philipp<strong>in</strong>es ulasiman (Tagalog)<br />

Thailand phak bia yai<br />

Vietnam rausam<br />

Zambia yelele (Chit<strong>on</strong>ga)<br />

Life cycle: An annual broadleaf with<br />

succulent and fleshy stems that are<br />

sometimes reddish brown. Grows as<br />

tall as 50 cm. Propagates by seeds<br />

and stem cutt<strong>in</strong>gs. Produces<br />

numerous black seeds that normally<br />

are not dormant.<br />

Habitat Grows <strong>in</strong> upland fields.<br />

<strong>Weed</strong>y nature: A prolific seed<br />

producer that grows quickly and<br />

flowers and produces seeds throughout<br />

the year. Difficult to c<strong>on</strong>trol by<br />

cultivati<strong>on</strong> because plants with flower<br />

buds have enough water stored <strong>in</strong> the<br />

stems and leaves to complete seed<br />

producti<strong>on</strong> after they have been cut.<br />

Cut fleshy stems root easily up<strong>on</strong><br />

c<strong>on</strong>tact with soil. Under drought<br />

stress, sheds its leaves and survives<br />

until water becomes available. Can<br />

complete its life cycle with<strong>in</strong> 6 wk.<br />

Seeds can rema<strong>in</strong> viable for a l<strong>on</strong>g<br />

time.<br />

Agricultural c<strong>on</strong>cern: Can cause<br />

30% yield loss.<br />

Seedl<strong>in</strong>g<br />

Seed, magnified<br />

Inflorescence<br />

Mature plant<br />

<strong>Weed</strong>s worldwide 37


Deepwater rice weeds<br />

PONTEDERIACEAE (pickerel-weed family)<br />

<strong>Weed</strong> name: Eichhornia crassipes<br />

(Mart.) Solms<br />

Syn<strong>on</strong>yms: N<strong>on</strong>e<br />

Local names:<br />

Country Comm<strong>on</strong> name<br />

Bangladesh kachuripana<br />

Brazil aquapede-flor-roxa<br />

Cambodia kamphlok (Khmer)<br />

France eichhornie, jac<strong>in</strong>the d’eau<br />

India jalkumbhi, kulauoli<br />

(Malayalam)<br />

akasa-thamarai, neithama<br />

rai (Tamil)<br />

Ind<strong>on</strong>esia etjeng padi<br />

Malaysia keladi bunt<strong>in</strong>g<br />

Myanmar<br />

beda-b<strong>in</strong><br />

Thailand phak top chawaa<br />

USA water hyac<strong>in</strong>th<br />

Vietnam luc-b<strong>in</strong>h<br />

Life cycle: A perennial, flower<strong>in</strong>g,<br />

aquatic, m<strong>on</strong>ocotyled<strong>on</strong>ous, broadleaf<br />

plant. It spreads by produc<strong>in</strong>g vegetative<br />

offshoots and seeds.<br />

Habitat: Adapted to fresh water; .<br />

found <strong>in</strong> rivers, canals, and reservoirs.<br />

Moves <strong>in</strong>to deepwater rice with water<br />

currents or str<strong>on</strong>g w<strong>in</strong>ds.<br />

<strong>Weed</strong>y nature: Grows quickly and<br />

crowds out rice through shad<strong>in</strong>g.<br />

Impedes water flow <strong>in</strong> irrigati<strong>on</strong> canals<br />

and causes large amount of water loss<br />

through evapotranspirati<strong>on</strong>.<br />

Agricultural c<strong>on</strong>cern: Can<br />

completely destroy deepwater rice by<br />

crowd<strong>in</strong>g the rice plants.<br />

38 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Mature plant<br />

Inflorescence


Deepwater weeds / CONVOLVULACEAE (morn<strong>in</strong>g glory family)<br />

<strong>Weed</strong> name: lpomoea aquatica<br />

Forssk.<br />

Syn<strong>on</strong>ym: lpomoea reptans (L.) Poir.<br />

Local names:<br />

Country Comm<strong>on</strong> name<br />

Cambodia trâku<strong>on</strong> (Khmer)<br />

India vellai keerai, kaladana,<br />

nilkalami (Tamil)<br />

tooti koora (Telugu)<br />

Peru camotillo<br />

Philipp<strong>in</strong>es kangk<strong>on</strong>g (Tagalog)<br />

USA swamp morn<strong>in</strong>g glory<br />

Life cycle: A perennial broadleaf<br />

v<strong>in</strong>e that propagate by seeds and<br />

stem cutt<strong>in</strong>gs.<br />

Habitat: Requires aquatic or wet<br />

c<strong>on</strong>diti<strong>on</strong>s.<br />

<strong>Weed</strong>y nature: Fast-grow<strong>in</strong>g and<br />

wide-spread<strong>in</strong>g. Roots at the nodes.<br />

Also floats <strong>on</strong> water.<br />

Agricultural c<strong>on</strong>cern: Can cause<br />

30% yield loss. Mature plant<br />

Flower<br />

<strong>Weed</strong>s worldwide 39


Chapter 3<br />

<strong>Weed</strong> c<strong>on</strong>trol<br />

<strong>Weed</strong>s have always reduced rice<br />

yields. As a result, many different<br />

weed c<strong>on</strong>trol methods have evolved.<br />

Farmers c<strong>on</strong>sider f<strong>in</strong>ancial resources<br />

and availability of labor <strong>in</strong> decid<strong>in</strong>g<br />

what weed c<strong>on</strong>trol method to use.<br />

Problems of <strong>in</strong>put availability, avail-<br />

ability of new technologies, specific<br />

weed problems, farm size, and<br />

availability of family labor are basic<br />

management factors they take <strong>in</strong>to<br />

account <strong>in</strong> mak<strong>in</strong>g weed c<strong>on</strong>trol<br />

decisi<strong>on</strong>s.<br />

Plann<strong>in</strong>g effective<br />

c<strong>on</strong>trol<br />

Plann<strong>in</strong>g is important <strong>in</strong> mak<strong>in</strong>g<br />

appropriate decisi<strong>on</strong>s <strong>on</strong> weed<br />

c<strong>on</strong>trol. Unfortunately, weed c<strong>on</strong>trol<br />

often is not planned. The decisi<strong>on</strong> to<br />

c<strong>on</strong>trol is not made until the problem<br />

has become serious, when c<strong>on</strong>trol<br />

may be unec<strong>on</strong>omical, <strong>in</strong>effective, or<br />

even impossible.<br />

Advance knowledge of weed<br />

problems can be obta<strong>in</strong>ed by survey-<br />

<strong>in</strong>g and record<strong>in</strong>g the weed species <strong>in</strong><br />

a ricefield after rice emergence, at<br />

midseas<strong>on</strong>, and at harvest. This<br />

record is useful <strong>in</strong> plann<strong>in</strong>g weed<br />

c<strong>on</strong>trol and crop rotati<strong>on</strong> programs.<br />

C<strong>on</strong>trol methods<br />

<strong>Weed</strong> c<strong>on</strong>trol methods can be<br />

grouped <strong>in</strong>to cultural, manual,<br />

mechanical, chemical, and biological<br />

techniques. Each c<strong>on</strong>trol method has<br />

advantages and disadvantages, and a<br />

s<strong>in</strong>gle method is rarely adequate for<br />

effective and ec<strong>on</strong>omical c<strong>on</strong>trol.<br />

Cultural methods<br />

A basic pr<strong>in</strong>ciple of cultural c<strong>on</strong>trol is<br />

to <strong>in</strong>crease the competitive ability of<br />

rice and enable it to suppress weed<br />

growth. A vigorous rice crop com-<br />

petes more effectively with weeds<br />

than does a less vigorous crop.<br />

Cultural c<strong>on</strong>trol methods <strong>in</strong>clude<br />

preventi<strong>on</strong> of weed <strong>in</strong>troducti<strong>on</strong>,<br />

land preparati<strong>on</strong>, crop rotati<strong>on</strong>,<br />

cultivar selecti<strong>on</strong>, time of seed<strong>in</strong>g,<br />

plant<strong>in</strong>g method, plant populati<strong>on</strong>,<br />

fertilizati<strong>on</strong>, and water management.<br />

Preventi<strong>on</strong> of weed <strong>in</strong>troducti<strong>on</strong>.<br />

Although weed seeds may be <strong>in</strong>tro-<br />

duced <strong>in</strong> ways bey<strong>on</strong>d a farmer's<br />

c<strong>on</strong>trol, many aspects of weed disper-<br />

sal are c<strong>on</strong>trollable. C<strong>on</strong>trol <strong>in</strong>volves<br />

prevent<strong>in</strong>g the <strong>in</strong>troducti<strong>on</strong>, estab-<br />

lishment, and spread of weeds, seeds,<br />

tubers, and rhizomes <strong>in</strong> a crop or<br />

between two crops. In rice, this is best<br />

achieved by plant<strong>in</strong>g rice seeds free<br />

of weed seeds <strong>in</strong> weed-free seedbeds<br />

and by seed<strong>in</strong>g rice or transplant<strong>in</strong>g<br />

seedl<strong>in</strong>gs <strong>in</strong> weed-free fields. Field<br />

borders not cropped or not kept clean<br />

are a c<strong>on</strong>stant source of weed seeds.<br />

Levees and irrigati<strong>on</strong> canals also<br />

must be kept weed free. <strong>Weed</strong> seeds<br />

can be <strong>in</strong>troduced <strong>in</strong>to a clean area by<br />

mach<strong>in</strong>ery or tillage equipment that<br />

are carry<strong>in</strong>g weed seed-c<strong>on</strong>tam<strong>in</strong>ated<br />

soil.<br />

Land preprati<strong>on</strong>. Land preparati<strong>on</strong><br />

<strong>in</strong>cludes plow<strong>in</strong>g, disk<strong>in</strong>g, harrow<strong>in</strong>g,<br />

soil puddl<strong>in</strong>g, and land level<strong>in</strong>g.<br />

A well-prepared field allows the rice<br />

crop optimal early growth. Careful<br />

land preparati<strong>on</strong> primarily provides<br />

weed-free c<strong>on</strong>diti<strong>on</strong>s at plant<strong>in</strong>g.<br />

In general, tillage practices most<br />

affect plant growth dur<strong>in</strong>g germ<strong>in</strong>ati<strong>on</strong>,<br />

seedl<strong>in</strong>g emergence, and stand<br />

establishment stages. Plow<strong>in</strong>g buries<br />

weed seeds to depths from which<br />

they cannot emerge, but it also br<strong>in</strong>gs<br />

some weed seeds to the soil surface<br />

where c<strong>on</strong>diti<strong>on</strong>s favor germ<strong>in</strong>ati<strong>on</strong>.<br />

Thus, a new flush of weed seedl<strong>in</strong>gs<br />

occurs after each cultivati<strong>on</strong>.<br />

To destroy as many weeds as<br />

possible, the <strong>in</strong>terval between successive<br />

cultivati<strong>on</strong>s should be l<strong>on</strong>g<br />

enough to allow many weed seeds to<br />

germ<strong>in</strong>ate and be killed by later<br />

harrow<strong>in</strong>gs. This can reduce a weed<br />

seed populati<strong>on</strong> about 50%. Tillage<br />

dur<strong>in</strong>g the dry seas<strong>on</strong> is a practical<br />

method of c<strong>on</strong>troll<strong>in</strong>g perennial<br />

grasses such as Paspalum distichum,<br />

Cynod<strong>on</strong> dactyl<strong>on</strong>, Oryza l<strong>on</strong>gistam<strong>in</strong>ata,<br />

and Imperata cyl<strong>in</strong>drica; it<br />

desiccates the perennial structures. In<br />

temperate areas, tubers and rhizomes<br />

brought to the soil surface are killed<br />

dur<strong>in</strong>g cold, dry periods.<br />

The type of land preparati<strong>on</strong><br />

needed for rice depends <strong>on</strong> the water<br />

management system. Land prepara-<br />

ti<strong>on</strong> can be classified broadly as<br />

wetland tillage, dryland tillage, and<br />

limited tillage.<br />

<strong>Weed</strong> c<strong>on</strong>trol 41


Wetland tillage is comm<strong>on</strong> <strong>in</strong><br />

most tropical Asian countries. Tradi-<br />

ti<strong>on</strong>ally, it <strong>in</strong>volves plow<strong>in</strong>g and pud-<br />

dl<strong>in</strong>g the soil. The processes <strong>in</strong>volved<br />

are<br />

flood<strong>in</strong>g the field for about 7 d.<br />

plow<strong>in</strong>g the soil to 10- to 20-cm<br />

depth, to bury the weed seeds and<br />

weed and rice stubble.<br />

harrow<strong>in</strong>g to break up big clods <strong>in</strong><br />

the soil. Two to three harrow<strong>in</strong>gs<br />

are d<strong>on</strong>e at 7- to 10-d <strong>in</strong>tervals.<br />

level<strong>in</strong>g the field.<br />

Puddl<strong>in</strong>g hastens crop establish-<br />

ment and tiller<strong>in</strong>g of transplanted<br />

rice seedl<strong>in</strong>gs. This results <strong>in</strong> vigor-<br />

ous rice growth and <strong>in</strong>creases the<br />

crop’s competitive ability aga<strong>in</strong>st<br />

weeds. Dur<strong>in</strong>g transplant<strong>in</strong>g, weed<br />

seedl<strong>in</strong>gs also are trampled and<br />

<strong>in</strong>corporated <strong>in</strong>to the soil.<br />

Dryland tillage is the basis of<br />

many rice culture systems. Almost all<br />

rice-grow<strong>in</strong>g areas <strong>in</strong> the United<br />

States and southern Australia, most<br />

of Lat<strong>in</strong> America and West Africa,<br />

and parts of tropical Asia and Europe<br />

use dryland tillage. In dryland prepa-<br />

rati<strong>on</strong>, soil clods are broken up so<br />

they do not <strong>in</strong>terfere with seed<strong>in</strong>g<br />

and seedl<strong>in</strong>g emergence. The seedbed<br />

is left rough because germ<strong>in</strong>ati<strong>on</strong> of<br />

weed seeds, which are usually much<br />

smaller than rice, is encouraged by<br />

f<strong>in</strong>e tilth. <strong>Rice</strong> is seeded immediately<br />

follow<strong>in</strong>g the last tillage operati<strong>on</strong>, to<br />

give rice an even start with weeds.<br />

Limited tiIlage covers a range of<br />

land preparati<strong>on</strong> techniques, from<br />

zero tillage to elim<strong>in</strong>ati<strong>on</strong> of <strong>on</strong>e<br />

preseed<strong>in</strong>g cultivati<strong>on</strong>. Herbicides<br />

replace the omitted tillage operati<strong>on</strong>s.<br />

Limited tillage has soil c<strong>on</strong>servati<strong>on</strong><br />

advantages.<br />

Smallholders who use slash-and-<br />

burn land preparati<strong>on</strong> are practic<strong>in</strong>g<br />

limited tillage. <strong>Rice</strong> is planted <strong>in</strong> a<br />

dead mulch with <strong>on</strong>ly enough soil<br />

disturbance to cover the seed.<br />

M<strong>in</strong>imum and zero tillage techniques<br />

can result <strong>in</strong> timely land preparati<strong>on</strong><br />

and sav<strong>in</strong>gs <strong>in</strong> labor, water, power,<br />

and capital.<br />

42 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Under limited tillage, perennial<br />

weed problems <strong>in</strong>crease over time.<br />

Where perennial weeds are c<strong>on</strong>trolled,<br />

limited tillage can be used for<br />

both upland and lowland rice culture.<br />

Herbicide use is an <strong>in</strong>tegral part of<br />

a limited tillage system. However, if<br />

<strong>in</strong>appropriate herbicides are used,<br />

perennial broadleaf weeds and<br />

grasses comm<strong>on</strong> <strong>in</strong> fallow <strong>in</strong> the<br />

tropics are not c<strong>on</strong>trolled and significant<br />

yield losses can occur. Plow<strong>in</strong>g<br />

and harrow<strong>in</strong>g more often does not<br />

elim<strong>in</strong>ate the need for direct weed<br />

c<strong>on</strong>trol. Farmers still must follow<br />

land preparati<strong>on</strong> with other weed<br />

c<strong>on</strong>trol methods. It is more costeffective<br />

to reduce preplant<strong>in</strong>g<br />

harrow<strong>in</strong>gs and comb<strong>in</strong>e those with<br />

direct weed c<strong>on</strong>trol methods.<br />

Crop rotati<strong>on</strong>. <strong>Weed</strong>s adapt to the<br />

grow<strong>in</strong>g c<strong>on</strong>diti<strong>on</strong>s of rice. A ricefield<br />

that is tilled regularly has more<br />

annual weeds than many undisturbed<br />

habitats, which have more<br />

perennial weeds. C<strong>on</strong>t<strong>in</strong>uous cropp<strong>in</strong>g<br />

encourages the buildup of<br />

difficult weeds.<br />

Each rice culture is associated with<br />

a characteristic weed problem,<br />

<strong>in</strong>fluenced by the cultural practices<br />

used. Lowland rice has predomi-<br />

nantly water-tolerant weeds, upland<br />

rice has mostly dryland weeds.<br />

Rotati<strong>on</strong> of lowland rice with an<br />

upland crop reduces <strong>in</strong>festati<strong>on</strong> by<br />

water-tolerant weeds <strong>in</strong> the rice and<br />

by upland weeds <strong>in</strong> the upland crop.<br />

Grow<strong>in</strong>g a broadleaf crop <strong>in</strong> rotati<strong>on</strong><br />

with rice allows the use of herbicides<br />

effective aga<strong>in</strong>st grassy weeds, which<br />

are difficult to c<strong>on</strong>trol <strong>in</strong> rice.<br />

Varietal selecti<strong>on</strong>. Improved rice<br />

cultivars resistant to diseases and<br />

<strong>in</strong>sects are more competitive aga<strong>in</strong>st<br />

weeds than are traditi<strong>on</strong>al rices.<br />

Traditi<strong>on</strong>al, tall varieties with droopy<br />

leaves are thought to be more com-<br />

petitive aga<strong>in</strong>st weeds, but research<br />

has failed to measure competitive<br />

differences that are due to cultivar.<br />

The height advantage of traditi<strong>on</strong>al<br />

varieties is offset by the high-tiller<strong>in</strong>g<br />

capacity of modern high-yield<strong>in</strong>g<br />

cultivars. Traditi<strong>on</strong>al varieties also<br />

have other attributes, such as susceptibility<br />

to lodg<strong>in</strong>g, that make them<br />

undesirable.<br />

Modern rice cultivars, although<br />

competitive aga<strong>in</strong>st weeds, can have<br />

more weed problems than traditi<strong>on</strong>al<br />

rice cultivars. The erect leaves and<br />

short stature of modern rices allow<br />

light to reach the soil and stimulate<br />

weed seed germ<strong>in</strong>ati<strong>on</strong>. With<strong>in</strong> the<br />

crop canopy, small differences <strong>in</strong><br />

crop height affect the quantity and<br />

quality of light received by weeds.<br />

The high nitrogen rates used <strong>on</strong><br />

modern cultivars also aggravate<br />

weed problems. This makes competitiveness<br />

with weeds a breed<strong>in</strong>g<br />

objective for modern rices. When<br />

available, such cultivars should be<br />

used.<br />

Time of seed<strong>in</strong>g. When soil moisture<br />

is not limit<strong>in</strong>g, allow<strong>in</strong>g weeds to<br />

germ<strong>in</strong>ate before till<strong>in</strong>g and seed<strong>in</strong>g<br />

rice reduces weed populati<strong>on</strong>s. <strong>Rice</strong><br />

seed<strong>in</strong>g, however, should not be<br />

delayed bey<strong>on</strong>d the optimum time of<br />

plant<strong>in</strong>g.<br />

In ra<strong>in</strong>fed rice crops, time of<br />

seed<strong>in</strong>g is critical. <strong>Rice</strong> plants affected<br />

by drought become stunted and<br />

cannot compete effectively with<br />

weeds that are more tolerant of<br />

drought. Dry weather after sow<strong>in</strong>g<br />

can reduce the number of weeds that<br />

germ<strong>in</strong>ate near the soil surface, but<br />

rice seed germ<strong>in</strong>ati<strong>on</strong> will also be<br />

delayed. Perennial and large weed<br />

seeds from deeper soil depths are still<br />

able to germ<strong>in</strong>ate and compete<br />

str<strong>on</strong>gly with the rice crop.<br />

Plant<strong>in</strong>g method. Plant<strong>in</strong>g method<br />

affects the ability of rice to compete<br />

with weeds. <strong>Rice</strong> may be transplanted<br />

or drill seeded <strong>in</strong> straight<br />

rows, or broadcast seeded. Straightrow<br />

plant<strong>in</strong>g is necessary for hand<br />

weed<strong>in</strong>g and for us<strong>in</strong>g mechanical<br />

weeders. In a broadcast crop,<br />

mechanical and hand weed<strong>in</strong>g<br />

damage the rice plants.


Transplant<strong>in</strong>g rice <strong>in</strong> a weed-free<br />

field gives seedl<strong>in</strong>gs a head start<br />

aga<strong>in</strong>st weeds. If water management<br />

is adequate, this competitive advan-<br />

tage is ma<strong>in</strong>ta<strong>in</strong>ed throughout most<br />

of the transplanted rice’s growth. Age<br />

of seedl<strong>in</strong>gs at transplant<strong>in</strong>g, how-<br />

ever, affects the crop’s competitive<br />

ability. The older the seedl<strong>in</strong>gs, the<br />

more competitive they are. With<br />

<strong>in</strong>adequate weed c<strong>on</strong>trol, older<br />

seedl<strong>in</strong>gs (20- to 30-d-old) are more<br />

desirable than younger seedl<strong>in</strong>gs.<br />

With young seedl<strong>in</strong>gs, flood<strong>in</strong>g the<br />

crop to c<strong>on</strong>trol weeds risks drown<strong>in</strong>g<br />

the seedl<strong>in</strong>gs.<br />

Deep drill<strong>in</strong>g rice seed, which<br />

delays seedl<strong>in</strong>g emergence, enables<br />

weed seeds near the soil surface to<br />

germ<strong>in</strong>ate earlier than the rice,<br />

mak<strong>in</strong>g the weeds more competitive.<br />

Plant populati<strong>on</strong>. <strong>Rice</strong> plant spac<strong>in</strong>g<br />

is an important producti<strong>on</strong> factor.<br />

Density per unit area determ<strong>in</strong>es the<br />

amount of shade created to help rice<br />

compete with weeds. Light penetrati<strong>on</strong><br />

<strong>in</strong>to the rice canopy <strong>in</strong>creases as<br />

row spac<strong>in</strong>g <strong>in</strong>creases. That stimulates<br />

weed growth and reduces rice<br />

gra<strong>in</strong> yields.<br />

The optimum spac<strong>in</strong>g essential for<br />

proper rice crop development and<br />

high gra<strong>in</strong> yields depends <strong>on</strong> culti-<br />

var, soil fertility, and seas<strong>on</strong>. In the<br />

Philipp<strong>in</strong>es, the maximum return<br />

(above variable costs) has been<br />

obta<strong>in</strong>ed with manual transplant<strong>in</strong>g<br />

at 20- x 20-cm spac<strong>in</strong>g.<br />

In broadcast seeded flooded rice,<br />

high seed<strong>in</strong>g rates are usually used to<br />

help c<strong>on</strong>trol weeds, but high seed<strong>in</strong>g<br />

rates cannot substitute for direct<br />

3.1 Recommended times to apply N<br />

fertilizer <strong>in</strong> different rice cultures.<br />

Fertilizer is applied basally and<br />

<strong>in</strong>corporated, or placed 10-cm deep <strong>in</strong> the<br />

soil (deep placement) at transplant<strong>in</strong>g or,<br />

for direct seeded rice, before seed<strong>in</strong>g.<br />

Fertilizer is topdressed 3-9 d before<br />

panicle <strong>in</strong>itiati<strong>on</strong> (48-57 d after sow<strong>in</strong>g<br />

[DAS] for 110- to 115-d durati<strong>on</strong> varieties,<br />

or 11-14 d before panicle <strong>in</strong>itiati<strong>on</strong> [56-64<br />

DAS] for 125 to 130-d durati<strong>on</strong> varieties).<br />

c<strong>on</strong>trol methods. No weed c<strong>on</strong>trol<br />

benefit is obta<strong>in</strong>ed when seed<strong>in</strong>g rate<br />

is <strong>in</strong>creased bey<strong>on</strong>d the optimum 100<br />

kg/ha that will give adequate crop<br />

stand establishment.<br />

Fertilizati<strong>on</strong>. Nitrogen (N), phos-<br />

phorus (P), potassium (K), and z<strong>in</strong>c<br />

(Zn) are the nutrients most commoly<br />

applied by rice farmers. Nitrogen<br />

encourages rapid vegetative growth<br />

(<strong>in</strong>creased height, tiller number, and<br />

<strong>Weed</strong> c<strong>on</strong>trol 43


leaf size), with the resultant shade<br />

help<strong>in</strong>g to suppress late-germ<strong>in</strong>at<strong>in</strong>g<br />

weeds. Phosphorus encourages rice<br />

root development and <strong>in</strong>creases<br />

tiller<strong>in</strong>g. Vigorous rice root growth is<br />

advantageous <strong>in</strong> below-ground<br />

competiti<strong>on</strong> with weeds for moisture<br />

and nutrients.<br />

<strong>Weed</strong>s take up nutrients <strong>in</strong> large<br />

quantities, however, and sometimes<br />

absorb fertilizer faster than rice.<br />

When weeds are not c<strong>on</strong>trolled<br />

effectively, however, fertilizati<strong>on</strong> is of<br />

little significance. There is little or no<br />

resp<strong>on</strong>se to N by rice <strong>in</strong> shade, and P<br />

and N left <strong>on</strong> the soil surface will<br />

stimulate growth of shallow weed<br />

seeds. At high fertilizati<strong>on</strong> levels, it is<br />

not possible to produce high rice<br />

yields without weed<strong>in</strong>g.<br />

Early- to midseas<strong>on</strong> N applicati<strong>on</strong>s<br />

are beneficial to rice, but weeds must<br />

be c<strong>on</strong>trolled to maximize the effect<br />

of N <strong>on</strong> gra<strong>in</strong> yield. Figure 3.1 shows<br />

the best time to apply N <strong>in</strong> various<br />

rice cultures.<br />

Water management. S<strong>in</strong>ce ancient<br />

times, water has been used to manage<br />

weeds <strong>in</strong> ricefields. Many n<strong>on</strong>aquatic<br />

weeds do not survive <strong>in</strong> submerged<br />

envir<strong>on</strong>ments and many aquatic<br />

weeds do not survive <strong>in</strong> upland<br />

envir<strong>on</strong>ments.<br />

Water c<strong>on</strong>trol dur<strong>in</strong>g the early rice<br />

growth stages has a major effect <strong>on</strong><br />

weed c<strong>on</strong>trol. As weeds become<br />

established, c<strong>on</strong>troll<strong>in</strong>g them through<br />

water management is more difficult.<br />

Grassy weeds can be largely elimi-<br />

nated by c<strong>on</strong>t<strong>in</strong>uous flood<strong>in</strong>g to<br />

15-cm depth ma<strong>in</strong>ta<strong>in</strong>ed throughout<br />

crop growth. The resp<strong>on</strong>se of broad-<br />

leaf weeds and sedges to different<br />

water depths varies. After c<strong>on</strong>t<strong>in</strong>uous<br />

flood<strong>in</strong>g, C3 weeds (see page 3) will<br />

be dom<strong>in</strong>ant.<br />

44 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

<strong>Weed</strong> problems <strong>in</strong>tensify <strong>in</strong><br />

irrigated and ra<strong>in</strong>fed lowland rice<br />

when water supply is <strong>in</strong>adequate.<br />

Increased weed c<strong>on</strong>trol benefits are<br />

obta<strong>in</strong>ed with improved water<br />

supply and c<strong>on</strong>trol, high levels of<br />

fertilizer, and improved cultivars<br />

used <strong>in</strong> c<strong>on</strong>cert.<br />

Increas<strong>in</strong>g water depth to c<strong>on</strong>trol<br />

weeds as part of <strong>in</strong>tegrated weed<br />

management is cost effective. When<br />

comb<strong>in</strong>ed with other direct weed<br />

c<strong>on</strong>trol methods, <strong>in</strong>creased water<br />

depth can give c<strong>on</strong>siderable sav<strong>in</strong>gs<br />

<strong>in</strong> producti<strong>on</strong> costs.<br />

Timely and thorough dra<strong>in</strong>age of<br />

flooded fields reduces aquatic weed<br />

problems.<br />

Manual methods<br />

Manual weed c<strong>on</strong>trol <strong>in</strong>cludes<br />

burn<strong>in</strong>g, hand pull<strong>in</strong>g, and mechani-<br />

cal hand weed<strong>in</strong>g. These labor-<br />

<strong>in</strong>tensive methods are the oldest and,<br />

<strong>in</strong> many cases, the farmer’s <strong>on</strong>ly<br />

means of c<strong>on</strong>troll<strong>in</strong>g weeds <strong>in</strong> rice,<br />

and are highly effective.<br />

Several hand tools are still the<br />

pr<strong>in</strong>cipal means of rice weed c<strong>on</strong>trol<br />

<strong>in</strong> many develop<strong>in</strong>g countries. But<br />

manual methods are slow,<br />

unattractive, and tedious, and are<br />

often carried out after the rice crop<br />

has been severely damaged by<br />

weeds. Hand weed<strong>in</strong>g is often<br />

<strong>in</strong>effective <strong>on</strong> weeds with special<br />

survival mechanisms such as the rice<br />

mimics (e.g., I. rugosum ) and deep-<br />

rooted perennial weeds. <strong>Rice</strong> mimics<br />

are difficult to dist<strong>in</strong>guish from rice<br />

at the early growth stage. Repeated<br />

hand weed<strong>in</strong>gs are necessary to<br />

effectively c<strong>on</strong>trol all weeds.<br />

Burn<strong>in</strong>g. Burn<strong>in</strong>g, comm<strong>on</strong> under<br />

the slash-and-burn system of land<br />

preparati<strong>on</strong>, kills weed seeds and<br />

weed seedl<strong>in</strong>gs, gets rid of unwanted<br />

vegetati<strong>on</strong>, and reduces the amount<br />

of weed seeds returned to the soil. It<br />

also encourages germ<strong>in</strong>ati<strong>on</strong> of weed<br />

seeds near the soil surface. Thorough<br />

burn<strong>in</strong>g can keep the ricefield free of<br />

weeds for the first 2-3 wk.<br />

Burn<strong>in</strong>g saves labor, is low cost,<br />

and adds neutraliz<strong>in</strong>g ash to low-pH<br />

soils. On the other hand, widespread<br />

unc<strong>on</strong>trolled burn<strong>in</strong>g leaves the soil<br />

bare, <strong>in</strong>creas<strong>in</strong>g soil erosi<strong>on</strong> and loss<br />

of N and other nutrients. Careful<br />

plann<strong>in</strong>g and rati<strong>on</strong>al use can<br />

m<strong>in</strong>imize the adverse effects of<br />

burn<strong>in</strong>g. Local regulati<strong>on</strong>s <strong>on</strong><br />

burn<strong>in</strong>g should be followed.<br />

Hand pull<strong>in</strong>g. Hand pull<strong>in</strong>g<br />

c<strong>on</strong>trols weed seedl<strong>in</strong>gs grow<strong>in</strong>g<br />

near and between rice plants where<br />

implements are difficult to use. Hand<br />

pull<strong>in</strong>g is not effective <strong>in</strong> dry soil,<br />

where weed seedl<strong>in</strong>gs break and<br />

resprout easily. Frequent hand<br />

pull<strong>in</strong>g is necessary for effective<br />

weed c<strong>on</strong>trol because very small<br />

weed seedl<strong>in</strong>gs that are not removed<br />

grow quickly to re<strong>in</strong>fest the ricefield.<br />

This method is the most labor <strong>in</strong>tensive<br />

of all weed c<strong>on</strong>trol measures,<br />

and is best suited to small farms.<br />

In some places, lowland rice<br />

farmers trample weeds <strong>in</strong>stead of<br />

hand pull<strong>in</strong>g.<br />

Mechanical weed<strong>in</strong>g. <strong>Weed</strong><strong>in</strong>g us<strong>in</strong>g<br />

hand tools is comm<strong>on</strong> <strong>in</strong> almost all<br />

tropical rice-grow<strong>in</strong>g areas. But the<br />

degree of weed<strong>in</strong>g and the problems<br />

associated with it largely depend <strong>on</strong><br />

the type of rice culture. In many<br />

countries, hand tools such as the hoe,<br />

narrow spade, Swiss hoe, knife,<br />

machete, and po<strong>in</strong>ted sticks are<br />

primarily used to remove weeds <strong>in</strong><br />

upland rice. <strong>Weed</strong>s with<strong>in</strong> rows must<br />

be removed by hand. The amount of<br />

labor required to weed 1 ha ranges<br />

from 10 to 30 d.


<strong>Weed</strong><strong>in</strong>g by mach<strong>in</strong>e <strong>in</strong>volves the<br />

use of hand-pushed or powered<br />

weeders, and is feasible <strong>on</strong>ly where<br />

rice is planted <strong>in</strong> straight rows.<br />

C<strong>on</strong>venti<strong>on</strong>al s<strong>in</strong>gle-row rotary<br />

weeders require 80-90 labor h to<br />

weed 1 ha, and are difficult to use<br />

because they must be moved back<br />

and forth. The IRRI-developed c<strong>on</strong>o<br />

weeder uses a c<strong>on</strong>ical-shaped rotor to<br />

uproot and bury weeds. It smothers<br />

weeds satisfactorily <strong>in</strong> a s<strong>in</strong>gle pass.<br />

The s<strong>in</strong>gle-row c<strong>on</strong>o weeder is about<br />

2 times faster (40-50 labor-hours/ha)<br />

and the two-row c<strong>on</strong>o weeder 3-4<br />

times faster (25-35 labor-h/ha) than<br />

the c<strong>on</strong>venti<strong>on</strong>al push-pull rotary<br />

weeder.<br />

<strong>Weed</strong>s with<strong>in</strong> the crop rows are<br />

difficult to remove with a c<strong>on</strong>o<br />

weeder. If the soil is too dry, the<br />

weeder rolls over the soil surface<br />

without bury<strong>in</strong>g the weeds. The c<strong>on</strong>o<br />

weeder is also <strong>in</strong>effective <strong>in</strong> stand<strong>in</strong>g<br />

water. To achieve the best results <strong>in</strong><br />

transplanted rice, a weeder should be<br />

run <strong>in</strong> two directi<strong>on</strong>s, at right angles<br />

to each other. Mechanical weed<strong>in</strong>g<br />

should be supplemented by hand<br />

pull<strong>in</strong>g the weeds that are close to the<br />

rice plants. The time required for<br />

weed<strong>in</strong>g by this comb<strong>in</strong>ati<strong>on</strong> is less<br />

than for hand pull<strong>in</strong>g al<strong>on</strong>e.<br />

Biological methods<br />

Several biological agents, such as<br />

<strong>in</strong>sects, mites, and fungi, have been<br />

used successfully to c<strong>on</strong>trol rice<br />

weeds. Biological agents are selective<br />

<strong>in</strong> their c<strong>on</strong>trol acti<strong>on</strong> and their<br />

activity may be restricted to a s<strong>in</strong>gle<br />

weed.<br />

Biological c<strong>on</strong>trol programs may<br />

be applicable to an <strong>in</strong>troduced<br />

perennial weed grow<strong>in</strong>g <strong>in</strong> areas that<br />

are seldom disturbed, such as<br />

pastures, forests, and water bodies. In<br />

a rice cropp<strong>in</strong>g situati<strong>on</strong> with a<br />

mixed weed flora, the selective<br />

c<strong>on</strong>trol of a s<strong>in</strong>gle weed will not solve<br />

the weed problem. The biological<br />

agents also work slowly and may<br />

take from 30 d to 10 yr to c<strong>on</strong>trol the<br />

weeds. For these reas<strong>on</strong>s, biological<br />

weed c<strong>on</strong>trol usually is not used by<br />

rice farmers.<br />

The possibility of us<strong>in</strong>g tadpole<br />

shrimp ( Triopus l<strong>on</strong>gicaudatus,<br />

T. granaris, and T. cancriformis) for<br />

n<strong>on</strong>selective weed c<strong>on</strong>trol <strong>in</strong> trans-<br />

planted rice has been dem<strong>on</strong>strated<br />

<strong>in</strong> Japan. The small crustaceans feed<br />

<strong>on</strong> weed seedl<strong>in</strong>gs and disturb their<br />

roots by mechanical agitati<strong>on</strong> of the<br />

soil. Labor for hand weed<strong>in</strong>g <strong>in</strong> farm-<br />

ers’ fields was reduced 70-80% <strong>in</strong><br />

<strong>in</strong>itial field trials with tadpole<br />

shrimp. Unfortunately, the shrimp is<br />

n<strong>on</strong>selective and becomes a pest <strong>in</strong><br />

areas where rice is direct seeded<br />

(Matsunaka 1975).<br />

The ability of a thick Azolla mat to<br />

suppress weed development has l<strong>on</strong>g<br />

been observed. In rice, a 79% reduc-<br />

ti<strong>on</strong> <strong>in</strong> total weed weight at 50 d after<br />

transplant<strong>in</strong>g has been measured.<br />

Growth of Azolla reduced the<br />

amount of light and oxygen c<strong>on</strong>tent<br />

of water; this has been suggested as<br />

an explanati<strong>on</strong> of how Azolla<br />

suppresses weeds (IRRI 1987). Some<br />

weeds can push through an Azolla<br />

mat, however, and weeds grow<strong>in</strong>g<br />

above the water surface are not<br />

affected.<br />

Chemical methods<br />

Herbicide use is <strong>on</strong>e of the most<br />

labor-sav<strong>in</strong>g <strong>in</strong>novati<strong>on</strong>s that have<br />

been <strong>in</strong>troduced <strong>in</strong> rice farm<strong>in</strong>g. For<br />

successful and ec<strong>on</strong>omical use, it is<br />

important to understand how these<br />

chemicals work and their limitati<strong>on</strong>s.<br />

These aspects of herbicide use are<br />

discussed <strong>in</strong> detail <strong>in</strong> later chapters.<br />

Herbicides, like other comp<strong>on</strong>ents<br />

of an <strong>in</strong>tegrated approach to weed<br />

c<strong>on</strong>trol, have advantages and disadvantages.<br />

Herbicides applied before<br />

rice germ<strong>in</strong>ates provide good weed<br />

c<strong>on</strong>trol dur<strong>in</strong>g the early rice growth<br />

stages when rice is most susceptible<br />

to weed competiti<strong>on</strong>. Herbicides can<br />

also be applied over large areas <strong>in</strong> a<br />

short time, mak<strong>in</strong>g them suitable for<br />

large farms. Apply<strong>in</strong>g herbicides<br />

avoids much of the drudgery of<br />

weed<strong>in</strong>g and makes farm<strong>in</strong>g more<br />

attractive. Appropriate herbicide<br />

applicati<strong>on</strong> to fallow vegetati<strong>on</strong> also<br />

can replace the need to plow and<br />

harrow.<br />

In <strong>in</strong>dustrialized countries, herbi-<br />

cides are often essential <strong>in</strong>puts <strong>in</strong> rice<br />

farm<strong>in</strong>g. Their adopti<strong>on</strong> <strong>in</strong>creases<br />

with <strong>in</strong>creases <strong>in</strong> labor cost and<br />

profits. Profits <strong>in</strong>crease when farmers<br />

adopt improved technological<br />

packages.<br />

On the other hand, herbicides have<br />

several disadvantages. First, most<br />

develop<strong>in</strong>g countries import<br />

herbicides. With mount<strong>in</strong>g debt<br />

problems and foreign exchange<br />

shortages, sufficient quantities of the<br />

more effective herbicides often are<br />

not available to meet the grow<strong>in</strong>g<br />

demand. Herbicide applicati<strong>on</strong><br />

requires appropriate equipment, such<br />

as a knapsack sprayer. The <strong>in</strong>itial<br />

capital expenditure maybe bey<strong>on</strong>d a<br />

small farmer’s f<strong>in</strong>ancial resources.<br />

Another disadvantage is that herbi-<br />

cide use, unlike the use of hoes and<br />

sticks, requires skill. Careless herbi-<br />

cide applicati<strong>on</strong>, sometimes due to<br />

ignorance, may result <strong>in</strong> <strong>in</strong>adequate<br />

weed c<strong>on</strong>trol and damage or<br />

completely kill the crop, or may<br />

adversely affect the envir<strong>on</strong>ment.<br />

Improper applicati<strong>on</strong> of herbicides<br />

can create health hazards for humans<br />

and animals.<br />

<strong>Weed</strong> c<strong>on</strong>trol 45


Ec<strong>on</strong>omics of c<strong>on</strong>trol<br />

The ec<strong>on</strong>omic benefit of weed c<strong>on</strong>trol<br />

must exceed the cost. The primary<br />

aim of a rati<strong>on</strong>al farmer is to optimize<br />

profits. One way to achieve that is to<br />

reduce weed c<strong>on</strong>trol costs. It is<br />

logical, therefore, that where <strong>on</strong>e or a<br />

comb<strong>in</strong>ati<strong>on</strong> of methods exists, and<br />

both are equally effective, the farmer<br />

will choose the least costly.<br />

<strong>Weed</strong> c<strong>on</strong>trol costs <strong>in</strong>clude direct<br />

costs (labor, herbicides, sprayers, etc.)<br />

and hidden costs. Management time<br />

wasted dur<strong>in</strong>g frequent visits to the<br />

field to take weed <strong>in</strong>ventories to use<br />

<strong>in</strong> weed c<strong>on</strong>trol plann<strong>in</strong>g is a hidden<br />

cost. A farmer who cleans weed seeds<br />

from c<strong>on</strong>tam<strong>in</strong>ated rice seeds before<br />

plant<strong>in</strong>g will <strong>in</strong>cur hidden costs but<br />

will avoid future additi<strong>on</strong>al weed<br />

c<strong>on</strong>trol costs.<br />

Select<strong>in</strong>g the weed c<strong>on</strong>trol<br />

methods to comb<strong>in</strong>e <strong>in</strong> an <strong>in</strong>tegrated<br />

system will depend <strong>on</strong> the effective-<br />

ness and cost of each method. In<br />

some situati<strong>on</strong>s, hand weed<strong>in</strong>g is<br />

more expensive than apply<strong>in</strong>g<br />

herbicides; <strong>in</strong> other situati<strong>on</strong>s, hand<br />

weed<strong>in</strong>g costs less than herbicide<br />

applicati<strong>on</strong>. Sometimes a comb<strong>in</strong>a-<br />

ti<strong>on</strong> of herbicides, or herbicides<br />

supplemented by hand weed<strong>in</strong>g, is<br />

more ec<strong>on</strong>omical than hand weed<strong>in</strong>g<br />

or use of herbicide al<strong>on</strong>e (Tables 3.1<br />

and 3.2).<br />

Integrated weed<br />

management<br />

The resilience of weed populati<strong>on</strong>s<br />

under <strong>in</strong>tensive herbicide use,<br />

buildup of weed species tolerant of<br />

the c<strong>on</strong>trol methods used, and<br />

<strong>in</strong>creas<strong>in</strong>g public c<strong>on</strong>cern about<br />

<strong>in</strong>discrim<strong>in</strong>ate pesticide use and its<br />

effects <strong>on</strong> the envir<strong>on</strong>ment and<br />

human health have led to widespread<br />

appreciati<strong>on</strong> of the <strong>in</strong>tegrated weed<br />

management c<strong>on</strong>cept (Fryer and<br />

Matsunaka 1977, Fryer 1983).<br />

46 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Table 3.1. Ec<strong>on</strong>omic acceptability a of direct weed c<strong>on</strong>trol methods <strong>in</strong> irrigated transplanted rice<br />

<strong>in</strong> the Philipp<strong>in</strong>es (data for analysis obta<strong>in</strong>ed from Moody et al 1983).<br />

C<strong>on</strong>trol method<br />

No weed<strong>in</strong>g<br />

One hand weed<strong>in</strong>g<br />

Two hand weed<strong>in</strong>gs<br />

Two rotary weed<strong>in</strong>gs<br />

2,4-D (0.8 kg/ha)<br />

Thiobencarb/2,4-D<br />

(1.0 + 0.5 kg/ha)<br />

Gra<strong>in</strong><br />

yield<br />

(t/ha)<br />

1.5<br />

3.6<br />

3.7<br />

2.9<br />

3.1<br />

3.3<br />

Total<br />

variable<br />

cost (US$)<br />

0<br />

50<br />

90<br />

44<br />

10.3<br />

19.0<br />

Total Return above Marg<strong>in</strong>al<br />

return variable cost benefit-<br />

(US$) (US$) cost ratio<br />

263 263<br />

630 580 6.3<br />

648 558<br />

3.3<br />

508 463<br />

4.5<br />

543<br />

532 26<br />

578 559 16.0<br />

a Assumpti<strong>on</strong>s: Labor = US$2.09/d; First hand weed<strong>in</strong>g = 24 d/ha: Sec<strong>on</strong>d hand weed<strong>in</strong>g = 19 d/ha: First rotary<br />

weed<strong>in</strong>g = 11 d/ha; Sec<strong>on</strong>d rotary weed<strong>in</strong>g = 10 d/ha: Herbicide = 2,4-D (0.8 kg/ha) = US$10.30. Thiobencarb/<br />

2,4-D = US$19.<br />

Table 3.2. Ec<strong>on</strong>omic acceptability a of direct weed c<strong>on</strong>trol methods <strong>in</strong> broadcast seeded flooded<br />

rice (De Datta and Amp<strong>on</strong>g-Nyarko 1988).<br />

(US$)<br />

Rate <strong>Weed</strong> Gra<strong>in</strong> Marg<strong>in</strong>al<br />

C<strong>on</strong>trol method (kg ai/ha) biomass yield Total Total Return benefit-<br />

(g/m 2 ) (t/ha) variable return above cost<br />

cost variable ratio<br />

cost<br />

No weed<strong>in</strong>g 287<br />

Butachlor 1.0 238<br />

Butachlor + 1 0.5 21<br />

hand weed<strong>in</strong>g<br />

2.1 0<br />

2.7 18.4<br />

4.2 110<br />

350 350<br />

473 455<br />

735 625<br />

a<br />

Assumpti<strong>on</strong>s: Labor = US$2.09/d, One hand weed<strong>in</strong>g = 48 d/ha. Herbicide = butachlor (1.0 kg ai/ha) =<br />

US$18.40.<br />

Integrated weed management is<br />

the rati<strong>on</strong>al use of direct and <strong>in</strong>direct<br />

c<strong>on</strong>trol methods to provide cost-<br />

effective weed c<strong>on</strong>trol. A further<br />

ref<strong>in</strong>ement, implied <strong>in</strong> the terms<br />

<strong>in</strong>tegrated weed management and<br />

<strong>in</strong>tegrated pest management (IPM), is<br />

that, whenever possible, weed c<strong>on</strong>trol<br />

should be <strong>in</strong>tegrated with measures<br />

that further protect crops from<br />

<strong>in</strong>sects, diseases, nematodes, and<br />

other <strong>in</strong>jurious organisms, and<br />

should be practiced with an under-<br />

stand<strong>in</strong>g of the <strong>in</strong>terrelati<strong>on</strong>ships<br />

between weed populati<strong>on</strong>s and those<br />

organisms. An illustrated guide to<br />

<strong>in</strong>tegrated pest management (Reissig<br />

et al 1985) is available from IRRI.<br />

–<br />

5.7<br />

2.5<br />

Several cultural methods have<br />

been suggested to complement direct<br />

methods <strong>in</strong> an <strong>in</strong>tegrated approach.<br />

However, researchers often do not<br />

provide an ec<strong>on</strong>omic assessment of<br />

these <strong>in</strong>direct methods. As a result,<br />

farmers and their agents frequently<br />

misjudge the ec<strong>on</strong>omic significance of<br />

the new methods whose adopti<strong>on</strong><br />

they are c<strong>on</strong>sider<strong>in</strong>g. Am<strong>on</strong>g the<br />

comm<strong>on</strong>ly suggested <strong>in</strong>direct meth-<br />

ods for rice are land preparati<strong>on</strong>,<br />

water management, plant spac<strong>in</strong>g,<br />

seed rate, cultivar use, and fertilizer<br />

applicati<strong>on</strong>. Direct methods <strong>in</strong>clude<br />

hand weed<strong>in</strong>g and use of herbicides.


The essential factor <strong>in</strong> any<br />

<strong>in</strong>tegrated weed management<br />

program is the number of <strong>in</strong>direct<br />

and direct methods that can be<br />

comb<strong>in</strong>ed ec<strong>on</strong>omically <strong>in</strong> a given<br />

situati<strong>on</strong>. Farmers are <strong>in</strong>terested <strong>in</strong><br />

net benefits and <strong>in</strong> protect<strong>in</strong>g them-<br />

selves aga<strong>in</strong>st risks. A critical assess-<br />

ment of the <strong>in</strong>direct weed c<strong>on</strong>trol<br />

methods suggested for use <strong>in</strong><br />

<strong>in</strong>tegrated weed management—their<br />

cost-benefit ratio and their relative<br />

c<strong>on</strong>tributi<strong>on</strong> to l<strong>on</strong>g- and short-term<br />

weed c<strong>on</strong>trol—should be provided to<br />

put the <strong>in</strong>tegrated weed management<br />

c<strong>on</strong>cept <strong>in</strong> perspective. For example,<br />

<strong>in</strong>creased frequency of plow<strong>in</strong>g and<br />

harrow<strong>in</strong>gs does not elim<strong>in</strong>ate the<br />

need for direct weed c<strong>on</strong>trol. Farmers<br />

still have to follow land preparati<strong>on</strong><br />

with direct weed c<strong>on</strong>trol. It is, there-<br />

fore, more cost-effective to use fewer<br />

pre-plant<strong>in</strong>g harrow<strong>in</strong>gs and<br />

comb<strong>in</strong>e them with direct weed<br />

c<strong>on</strong>trol methods than to carry out<br />

more harrow<strong>in</strong>gs, with or without<br />

direct c<strong>on</strong>trol measures. A high<br />

seed<strong>in</strong>g rate cannot substitute for<br />

direct c<strong>on</strong>trol. No benefit is obta<strong>in</strong>ed<br />

when seed<strong>in</strong>g rate is <strong>in</strong>creased<br />

bey<strong>on</strong>d the optimum needed to give<br />

adequate stand establishment. It is<br />

also not ec<strong>on</strong>omical to produce high<br />

rice yields by substitut<strong>in</strong>g high<br />

fertilizati<strong>on</strong> for weed<strong>in</strong>g. Fertilizer<br />

efficiency is maximized when weeds<br />

are c<strong>on</strong>trolled.<br />

Maximum rice yields at m<strong>in</strong>imum<br />

cost should determ<strong>in</strong>e the relative<br />

mixture of <strong>in</strong>direct and direct<br />

measures <strong>in</strong> an <strong>in</strong>tegrated weed<br />

management system. Agr<strong>on</strong>omic<br />

practices such as water management,<br />

which <strong>in</strong>directly suppresses weeds,<br />

and fertilizer applicati<strong>on</strong>, which<br />

<strong>in</strong>creases the competitive ability of<br />

rice, are highly ec<strong>on</strong>omical.<br />

Comb<strong>in</strong>ed with any of the direct<br />

weed c<strong>on</strong>trol methods, these<br />

practices can c<strong>on</strong>stitute an ec<strong>on</strong>omi-<br />

cally viable producti<strong>on</strong> system.<br />

Indirect weed c<strong>on</strong>trol methods, if<br />

proven to be biologically feasible,<br />

should be subjected to partial budget-<br />

<strong>in</strong>g us<strong>in</strong>g relevant prices of major<br />

<strong>in</strong>puts. Farm-level resources,<br />

c<strong>on</strong>stra<strong>in</strong>ts, and other limitati<strong>on</strong>s<br />

should also be recognized. Cost-<br />

effective <strong>in</strong>tegrated weed manage-<br />

ment practices should be c<strong>on</strong>sistent<br />

and compatible with other rice<br />

producti<strong>on</strong> practices. That can be<br />

designated <strong>in</strong>tegrated crop<br />

management.<br />

<strong>Weed</strong> c<strong>on</strong>trol 47


Chapter 4<br />

Pr<strong>in</strong>ciples of herbicide use<br />

Herbicides are chemical substances or<br />

cultured biological organisms that kill<br />

or suppress plant growth by affect<strong>in</strong>g<br />

<strong>on</strong>e or more of the processes—cell<br />

divisi<strong>on</strong>, tissue development,<br />

chlorophyll formati<strong>on</strong>, photosynthesis,<br />

respirati<strong>on</strong>, nitrogen metabolism,<br />

enzyme activity—that are vital to plant<br />

survival. In general, herbicides applied<br />

at high rates kill all plants. At low rates,<br />

some herbicides kill some plants<br />

without damag<strong>in</strong>g other plants.<br />

Herbicides with such an ability are said<br />

to be selective. Use of selective<br />

herbicides for weed c<strong>on</strong>trol has be-<br />

come popular am<strong>on</strong>g rice farmers<br />

because of <strong>in</strong>creas<strong>in</strong>g labor costs for<br />

hand or mechanical weed<strong>in</strong>g.<br />

Types of herbicides<br />

Herbicides are comm<strong>on</strong>ly referred to as<br />

c<strong>on</strong>tact or translocated.<br />

C<strong>on</strong>tact herbicides<br />

C<strong>on</strong>tact herbicides c<strong>on</strong>trol weeds by<br />

kill<strong>in</strong>g the tissues <strong>in</strong> direct c<strong>on</strong>tact with<br />

the herbicide. They are normally<br />

applied to leaves and stems. Because<br />

they affect <strong>on</strong>ly the plant parts they<br />

come <strong>in</strong>to c<strong>on</strong>tact with, they are less<br />

effective <strong>on</strong> perennial weeds than <strong>on</strong><br />

annual weeds. Thorough coverage of<br />

the plant is essential for c<strong>on</strong>tact herbi-<br />

cides to be effective. A c<strong>on</strong>tact herbi-<br />

cide may be selective, such as oxyfluor-<br />

fen and propanil, or n<strong>on</strong>selective, such<br />

as paraquat.<br />

Translocated herbicides<br />

Translocated (systemic) herbicides<br />

move from the po<strong>in</strong>t where the<br />

herbicide comes <strong>in</strong>to c<strong>on</strong>tact with the<br />

plant to other plant parts. Systemic<br />

herbicides may be applied to stems and<br />

leaves or to the soil (those applied to<br />

soil are known as residual herbicides).<br />

Butachlor, 2,4-D, and glyphosate are<br />

examples of translocated herbicides.<br />

Glyphosate is a systemic herbicide<br />

when applied to stems and leaves, but<br />

it has no activity when applied to the<br />

soil. Translocated herbicides may be<br />

either selective or n<strong>on</strong>selective.<br />

Herbicide selectivity<br />

Herbicide selectivity is very important<br />

<strong>in</strong> crop producti<strong>on</strong>. Through selectiv-<br />

ity, it is possible to use a herbicide to<br />

kill a grassy weed, such as Ech<strong>in</strong>ochloa<br />

crus-galli, <strong>in</strong> a grassy crop such as rice.<br />

In practice, to avoid kill<strong>in</strong>g the rice<br />

plants and for good weed c<strong>on</strong>trol,<br />

selective herbicides should be used at<br />

recommended rates. Reduced rates<br />

result <strong>in</strong> poor weed c<strong>on</strong>trol. N<strong>on</strong>selec-<br />

tive herbicides, such as paraquat, are<br />

harmful to rice even at low rates.<br />

Herbicide selectivity can also be<br />

achieved dur<strong>in</strong>g applicati<strong>on</strong>, by<br />

direct<strong>in</strong>g the spray away from the crop<br />

or by us<strong>in</strong>g protective shields. Chemi-<br />

cal antidotes may be used to prevent<br />

the herbicide from kill<strong>in</strong>g a susceptible<br />

plant. For example, pretilachlor can<br />

<strong>on</strong>ly be used <strong>in</strong> direct seeded rice <strong>in</strong><br />

c<strong>on</strong>juncti<strong>on</strong> with an antidote (e.g.,<br />

fenclorim).<br />

Physical factors of selectivity<br />

To be effective, herbicides must come<br />

<strong>in</strong>to c<strong>on</strong>tact with the target plant and<br />

be reta<strong>in</strong>ed <strong>on</strong> its surfaces (root or<br />

shoot) l<strong>on</strong>g enough and <strong>in</strong> amounts<br />

large enough to kill the plant. The<br />

physical factors of selectivity are those<br />

that affect c<strong>on</strong>tact between the herbicide<br />

applied and the plant surfaces and<br />

the retenti<strong>on</strong> of the herbicides. Plants<br />

absorb soil-applied herbicides through<br />

roots and shoots of seedl<strong>in</strong>gs push<strong>in</strong>g<br />

upward through the soil. Selectivity is<br />

affected by herbicide dosage, formulati<strong>on</strong>,<br />

and placement and by the plant<br />

growth stage.<br />

Herbicide dosage. The amount of a<br />

herbicide absorbed by rice is critical for<br />

selectivity. Most herbicides are<br />

n<strong>on</strong>selective at high applicati<strong>on</strong> rates.<br />

Herbicide formulati<strong>on</strong>. Selectivity may<br />

be achieved through applicati<strong>on</strong> of<br />

herbicides as granular formulati<strong>on</strong>s.<br />

The granules that would be harmful to<br />

rice if reta<strong>in</strong>ed <strong>on</strong> its leaves bounce off<br />

and fall to the soil.<br />

Herbicide placement. To be effective,<br />

herbicides must first enter the plant.<br />

Selectivity based <strong>on</strong> placement is<br />

achieved by prevent<strong>in</strong>g herbicides<br />

from com<strong>in</strong>g <strong>in</strong>to c<strong>on</strong>tact with sites of<br />

entry <strong>in</strong>to the rice plant. This is<br />

Herbicide use 49


achieved by apply<strong>in</strong>g herbicides to the<br />

soil surface, by band applicati<strong>on</strong>, or by<br />

us<strong>in</strong>g shields. Selectivity of soilapplied<br />

herbicides may be lost if the<br />

herbicides leach through the soil and<br />

come <strong>in</strong>to c<strong>on</strong>tact with rice roots and<br />

shoots.<br />

Plant growth stage. In general, plants<br />

are most susceptible to herbicides at<br />

the seedl<strong>in</strong>g stage. As plants grow,<br />

they become less susceptible. In direct<br />

seeded rice, there is no difference <strong>in</strong><br />

growth stage between rice and weeds,<br />

and selectivity cannot be achieved<br />

through plant growth stage. In trans-<br />

planted rice, however, differences <strong>in</strong><br />

growth stage and positi<strong>on</strong> of grow<strong>in</strong>g<br />

po<strong>in</strong>ts of rice and weeds can be used to<br />

achieve selectivity. Plants grow<strong>in</strong>g<br />

under drought c<strong>on</strong>diti<strong>on</strong>s are less<br />

affected by herbicides than plants<br />

grow<strong>in</strong>g with normal soil moisture.<br />

Biological factors of selectivity<br />

Biological factors of herbicide selectiv-<br />

ity <strong>in</strong>clude differences <strong>in</strong> morphology,<br />

physiology, and metabolism am<strong>on</strong>g<br />

plant species. Leaf surfaces that are<br />

waxy, smooth, or densely hairy are<br />

wetted less readily by aqueous sprays<br />

than are surfaces that are less waxy or<br />

moderately hairy. Vertical leaves reta<strong>in</strong><br />

less spray than do horiz<strong>on</strong>tal leaves.<br />

Once absorbed by a plant cell, the<br />

herbicide may be immobilized with<strong>in</strong><br />

the cell; that also c<strong>on</strong>tributes to herbi-<br />

cide selectivity. Selectivity am<strong>on</strong>g<br />

plant species may be achieved when<br />

some plant species are able to detoxify<br />

a particular herbicide, while others are<br />

unable to do so and are killed. For<br />

example, rice plants are 40 times more<br />

tolerant of propanil than Ech<strong>in</strong>ochloa<br />

50 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

crus-galli. This is due to differences <strong>in</strong><br />

plant enzyme levels. <strong>Rice</strong> plants have a<br />

high level of aryl acylamidase, an<br />

enzyme that hydrolyzes propanil to<br />

n<strong>on</strong>phytotoxic 3,4-dichloroanil<strong>in</strong>e and<br />

propi<strong>on</strong>ic acid. E. crus-galli has a low<br />

level of this enzyme and is unable to<br />

hydrolyze propanil; therefore it is<br />

easily killed. This detoxificati<strong>on</strong><br />

process can be <strong>in</strong>hibited by organo-<br />

phosphorus and carbamate <strong>in</strong>secti-<br />

cides.<br />

Herbicide movement<br />

<strong>in</strong> plants<br />

Herbicides must enter the plant before<br />

their toxic effect can be <strong>in</strong>duced.<br />

Herbicides applied to leaf surfaces and<br />

buds penetrate the plant by diffusi<strong>on</strong>.<br />

Higher temperatures <strong>in</strong>crease the rate<br />

of penetrati<strong>on</strong>. Herbicide absorpti<strong>on</strong><br />

takes place <strong>in</strong> the guard cells of the<br />

stomata and through the cuticle.<br />

In the soil, herbicides move <strong>in</strong> the<br />

soil soluti<strong>on</strong> to the seed and roots, or<br />

are <strong>in</strong>tercepted by the root tips. Herbi-<br />

cides may penetrate the walls of root<br />

epidermal cells by mass flow.<br />

Once <strong>in</strong> plants, herbicides move via<br />

the phloem and the xylem systems to<br />

cells and tissues remote from the site of<br />

uptake. The phloem c<strong>on</strong>veys sugar<br />

from the green tissues of the plant<br />

(where sugar is manufactured) to<br />

storage tissues. Very young leaves do<br />

not export sugar, so herbicides applied<br />

to them rema<strong>in</strong> there. If the transport of<br />

sugar is restricted, as when plants are<br />

under low light <strong>in</strong>tensity, redistribu-<br />

ti<strong>on</strong> of herbicides will not occur. As a<br />

result, the general recommendati<strong>on</strong> for<br />

many translocated herbicides is that<br />

the weeds should be <strong>in</strong> active growth.<br />

Glyphosate and MCPA are examples<br />

of herbicides translocated <strong>in</strong> the<br />

phloem.<br />

The xylem is the plant system<br />

through which water and dissolved<br />

m<strong>in</strong>eral nutrients pass to the leaves.<br />

Herbicides taken up by the root move<br />

al<strong>on</strong>g this stream. Herbicide uptake is<br />

therefore affected by factors affect<strong>in</strong>g<br />

transpirati<strong>on</strong> rate, such as light, temperature,<br />

w<strong>in</strong>d speed, humidity, and<br />

soil moisture. The triaz<strong>in</strong>e herbicides<br />

are good examples of herbicides transported<br />

up <strong>in</strong> the system.<br />

For a more detailed discussi<strong>on</strong> of the<br />

pr<strong>in</strong>ciples of herbicide acti<strong>on</strong>, refer to<br />

<strong>Weed</strong> science pr<strong>in</strong>ciples by W.P. Ander-<br />

s<strong>on</strong> (1983).<br />

Tim<strong>in</strong>g of herbicide<br />

applicati<strong>on</strong><br />

<strong>Weed</strong>s should be removed from rice as<br />

early as possible. Thus, herbicides<br />

should be applied dur<strong>in</strong>g early crop<br />

growth stages. The time to apply a<br />

herbicide depends <strong>on</strong> the properties of<br />

the herbicide and the target weeds,<br />

weather, and cultural practices. Herbi-<br />

cides can be applied at several periods<br />

before and dur<strong>in</strong>g the crop grow<strong>in</strong>g<br />

period. In general, herbicides are<br />

applied at preplant<strong>in</strong>g, preemergence,<br />

or postemergence.<br />

Preplant<strong>in</strong>g herbicide applicati<strong>on</strong><br />

A preplant<strong>in</strong>g herbicide applicati<strong>on</strong> is<br />

made before the rice crop is sown. This<br />

applicati<strong>on</strong> helps <strong>in</strong> land preparati<strong>on</strong><br />

<strong>in</strong> a m<strong>in</strong>imum tillage cropp<strong>in</strong>g system.<br />

Translocated foliar herbicides (such as<br />

glyphosate) kill perennial broadleaf<br />

weeds and grasses found <strong>in</strong> the fallow<br />

vegetati<strong>on</strong>. Where annual weeds<br />

predom<strong>in</strong>ate, paraquat is adequate.<br />

Where volatile preplant<strong>in</strong>g herbicides<br />

are used, they must be <strong>in</strong>corporated<br />

<strong>in</strong>to the soil before plant<strong>in</strong>g, to avoid<br />

damage to the rice crop.


Preemergence herbicide applicati<strong>on</strong><br />

Preemergence herbicides are applied to<br />

the soil surface after plant<strong>in</strong>g but<br />

before rice and weeds emerge for direct<br />

seeded rice, and before weeds emerge<br />

for transplanted rice. These are also<br />

known as residual herbicides. Selective<br />

systemic herbicides are normally used<br />

this way. N<strong>on</strong>selective c<strong>on</strong>tact herbi-<br />

cides, such as paraquat, can be used to<br />

kill germ<strong>in</strong>ated weeds, but they must<br />

be applied before rice germ<strong>in</strong>ates.<br />

Residual herbicides form a th<strong>in</strong>,<br />

protective, c<strong>on</strong>t<strong>in</strong>uous layer 2 cm or so<br />

deep <strong>on</strong> the soil surface. Roots of weed<br />

seedl<strong>in</strong>gs or emerg<strong>in</strong>g shoots take up<br />

the herbicide when they pass through<br />

this layer and are killed <strong>in</strong> the process.<br />

Moisture is necessary to carry the<br />

herbicide to weeds germ<strong>in</strong>at<strong>in</strong>g below<br />

the soil surface. Good weed c<strong>on</strong>trol<br />

cannot be achieved when a residual<br />

herbicide is applied to dry soil and the<br />

weather rema<strong>in</strong>s dry. Residual herbi-<br />

cides for dry seeded rice cultures<br />

should, therefore, be applied to moist<br />

soil or dur<strong>in</strong>g light ra<strong>in</strong>, or irrigati<strong>on</strong><br />

should follow a few days after herbi-<br />

cide spray<strong>in</strong>g.<br />

Postemergence herbicide applicati<strong>on</strong><br />

Postemergence herbicides are applied<br />

after rice and weeds have germ<strong>in</strong>ated<br />

or after rice has been transplanted. The<br />

herbicide must, therefore, be selective<br />

or rice seedl<strong>in</strong>gs will be killed. If the<br />

herbicide is selective, it can be applied<br />

over the foliage to kill the weeds<br />

without harm<strong>in</strong>g the rice. Examples<br />

are 2,4-D, propanil, and bentaz<strong>on</strong>. Se-<br />

lectivity also can be achieved by direct-<br />

<strong>in</strong>g applicati<strong>on</strong> away from the crop to<br />

prevent the herbicides from com<strong>in</strong>g<br />

<strong>in</strong>to c<strong>on</strong>tact with the rice foliage.<br />

Behavior of herbicides<br />

<strong>in</strong> soil<br />

The envir<strong>on</strong>ment of a flooded ricefield<br />

differs from that of an upland ricefield<br />

<strong>in</strong> physical, chemical, and biological<br />

properties of soil, as well as <strong>in</strong> prevail-<br />

<strong>in</strong>g aquatic c<strong>on</strong>diti<strong>on</strong>s and the k<strong>in</strong>ds<br />

and ecology of animals and plants<br />

found, <strong>in</strong>clud<strong>in</strong>g weeds. Soils <strong>in</strong><br />

flooded fields differ from upland soils<br />

<strong>in</strong> aerobic and redox c<strong>on</strong>diti<strong>on</strong>s and<br />

soil pH. Because of these differences,<br />

the degradati<strong>on</strong> rate of herbicides<br />

differs between upland and flooded<br />

soils.<br />

A large amount of the herbicides<br />

applied to floodwater enters the soil<br />

layer with the percolat<strong>in</strong>g water. Many<br />

herbicides are reta<strong>in</strong>ed <strong>in</strong> the soil<br />

surface layer, where they are mostly<br />

degraded by soil microorganisms. The<br />

degradati<strong>on</strong> rate depends <strong>on</strong> the<br />

properties of the soil and the herbicide.<br />

Microorganisms <strong>in</strong> a submerged soil<br />

deplete oxygen. The soil is, therefore,<br />

reduced (redox) except for the 0.5-1 cm<br />

surface layer, which is kept <strong>in</strong> an<br />

oxidized state by oxygen that diffuses<br />

from the floodwater to the soil surface.<br />

Thus, <strong>in</strong> flooded soils, except for the<br />

uppermost layer, ferric ir<strong>on</strong> is reduced<br />

to ferrous ir<strong>on</strong>, soil pH reaches 6-7,<br />

aerobic organisms are <strong>in</strong>active, and<br />

anaerobes are abundant. These result<br />

<strong>in</strong> differences <strong>in</strong> herbicide degradati<strong>on</strong><br />

between the oxidative and reductive<br />

layers of the soil, and between upland<br />

and flooded soils.<br />

Adsorpti<strong>on</strong><br />

When herbicides reach the soil surface,<br />

some herbicide is taken up and b<strong>on</strong>ded<br />

to the surface of soil colloids (ad-<br />

sorbed) due to electrical attracti<strong>on</strong><br />

between the herbicide and the colloids.<br />

Adsorpti<strong>on</strong> occurs <strong>in</strong> the clay and<br />

organic matter fracti<strong>on</strong> of the soil.<br />

Weakly adsorbed herbicides rema<strong>in</strong><br />

active aga<strong>in</strong>st germ<strong>in</strong>at<strong>in</strong>g weed seedl<strong>in</strong>gs<br />

and buds pass<strong>in</strong>g through the<br />

herbicide layer. Weak adsorpti<strong>on</strong><br />

prevents the herbicide from leach<strong>in</strong>g<br />

<strong>in</strong>to layers where the grow<strong>in</strong>g po<strong>in</strong>t of<br />

rice is located. This is an example of<br />

selectivity by physical separati<strong>on</strong>.<br />

In practice, herbicides are applied at<br />

a higher rate to soils high <strong>in</strong> clay and<br />

organic matter than to sandy soils,<br />

because more herbicide is adsorbed <strong>in</strong><br />

clayey than <strong>in</strong> sandy soils.<br />

Leach<strong>in</strong>g<br />

Leach<strong>in</strong>g causes movement of herbi-<br />

cides through soil with the flow of<br />

water. The extent of leach<strong>in</strong>g varies<br />

with the water solubility of the herbi-<br />

cide and with soil texture. When a<br />

residual herbicide is applied to the soil<br />

surface, it must move evenly 2-5 cm<br />

<strong>in</strong>to the soil, to the area where most<br />

weed seeds germ<strong>in</strong>ate. Hence, soil<br />

moisture after herbicide applicati<strong>on</strong> is<br />

important. As was po<strong>in</strong>ted out earlier,<br />

preemergence residual herbicides<br />

applied to dry soil will not be effective.<br />

However, too much water or leach<strong>in</strong>g<br />

will carry the herbicide too deeply <strong>in</strong>to<br />

the soil, below the z<strong>on</strong>e where weed<br />

seeds are found. This also reduces the<br />

effectiveness of the herbicide.<br />

Herbicides <strong>in</strong> flooded ricefields are<br />

c<strong>on</strong>t<strong>in</strong>uously leached with percolat<strong>in</strong>g<br />

water. Fortunately, many rice herbi-<br />

cides are readily adsorbed to the soil<br />

comp<strong>on</strong>ents. Such herbicides are<br />

reta<strong>in</strong>ed <strong>in</strong> the soil l<strong>on</strong>g enough for<br />

residual activity to c<strong>on</strong>trol weeds.<br />

Herbicide use 51


Runoff<br />

Runoff is <strong>on</strong>e of the ma<strong>in</strong> pathways of<br />

herbicide loss from flooded ricefields.<br />

Herbicides are usually transported as<br />

solutes <strong>in</strong> soil water; their movement<br />

will depend <strong>on</strong> solubility and adsorp-<br />

tive capacity. In runoff water, however,<br />

herbicides are transported both as<br />

solutes and <strong>on</strong> soil sediment particles.<br />

An irrigati<strong>on</strong> system needs to be well-<br />

regulated to reta<strong>in</strong> herbicides with<strong>in</strong><br />

the system. Irrigati<strong>on</strong> dra<strong>in</strong>age and<br />

overflow should be avoided, to reduce<br />

herbicide losses and to protect down-<br />

stream water from polluti<strong>on</strong>.<br />

Volatilizati<strong>on</strong><br />

All herbicides are volatile (have a<br />

tendency to change from a solid or<br />

liquid to a gaseous state). Volatility,<br />

however, varies am<strong>on</strong>g herbicides and<br />

<strong>in</strong>creases with higher temperature.<br />

Volatile herbicides should be mechani-<br />

cally <strong>in</strong>corporated <strong>in</strong>to the soil to avoid<br />

excessive chemical loss.<br />

Volatilizati<strong>on</strong> from the floodwater<br />

<strong>in</strong>to the atmosphere is an important<br />

route of herbicide loss from lowland<br />

ricefields. The volatilizati<strong>on</strong> rate<br />

depends <strong>on</strong> water evaporati<strong>on</strong> rate,<br />

water depth, water solubility, and<br />

vapor pressure of the herbicide.<br />

Volatilizati<strong>on</strong> loss of herbicides from a<br />

shallow, warm water flooded field can<br />

be highly significant. Volatilizati<strong>on</strong><br />

from the soil surface of upland rice<br />

may be much greater than that from<br />

the floodwater of lowland rice.<br />

Thiocarbamate herbicides are volatile<br />

<strong>in</strong> floodwater.<br />

52 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Photodegradati<strong>on</strong><br />

Photochemical and biochemical<br />

degradati<strong>on</strong> of herbicides govern their<br />

fate <strong>in</strong> a flooded envir<strong>on</strong>ment. For<br />

example, the high pH of the water<br />

<strong>in</strong>duces hydrolysis of carboxylic esters.<br />

Some herbicides adsorb ultraviolet<br />

radiati<strong>on</strong>. The presence of humic acids<br />

<strong>in</strong> floodwater may also <strong>in</strong>duce photo-<br />

chemical degradati<strong>on</strong> of herbicides<br />

that do not adsorb ultraviolet radiati<strong>on</strong><br />

(Yar<strong>on</strong> et al 1985).<br />

Persistence<br />

Herbicide persistence is the length of<br />

time a herbicide rema<strong>in</strong>s active <strong>in</strong> the<br />

soil. Persistence depends <strong>on</strong> the<br />

amount of herbicide applied, the rate at<br />

which it is broken down, properties of<br />

the particular herbicide, and leach<strong>in</strong>g.<br />

Herbicides with l<strong>on</strong>g persistence keep<br />

a crop weed-free for a l<strong>on</strong>ger time than<br />

do herbicides with short persistence.<br />

Persistence of a herbicide bey<strong>on</strong>d the<br />

rice-grow<strong>in</strong>g seas<strong>on</strong>, however, is<br />

undesirable because other crops<br />

sensitive to that herbicide cannot be<br />

grown <strong>on</strong> the same land for some time.<br />

Effect of envir<strong>on</strong>ment <strong>on</strong><br />

herbicidal activity<br />

Several envir<strong>on</strong>mental factors affect<br />

the success of weed c<strong>on</strong>trol by soil or<br />

foliar-applied herbicides. Temperature,<br />

relative humidity, soil moisture, and<br />

w<strong>in</strong>d are important.<br />

Temperature<br />

Absorpti<strong>on</strong> and translocati<strong>on</strong> of herbi-<br />

cides <strong>in</strong>crease as temperature<br />

<strong>in</strong>creases, and selectivity can be<br />

changed by differences <strong>in</strong> absorpti<strong>on</strong><br />

and translocati<strong>on</strong>. For example, if<br />

propanil is applied to rice when the<br />

temperature is above 38 °C, phytotoxic-<br />

ity may occur. At high temperatures,<br />

simetryn will cause <strong>in</strong>jury, even <strong>in</strong><br />

jap<strong>on</strong>ica rice, as a result of higher<br />

absorpti<strong>on</strong> through the roots. In<br />

general, the rate at which herbicide<br />

degrades <strong>in</strong>creases with <strong>in</strong>creas<strong>in</strong>g<br />

temperature.<br />

Relative humidity<br />

At high relative humidity, leaf stomata<br />

are open, which <strong>in</strong>creases absorpti<strong>on</strong> of<br />

herbicide <strong>in</strong>to the leaf. Evaporati<strong>on</strong> of<br />

herbicides from leaf surfaces is slowed<br />

at high relative humidity. Slow evapo-<br />

rati<strong>on</strong> lengthens the time the herbicide<br />

can enter the plant.<br />

Soil moisture<br />

Soil moisture affects herbicide effec-<br />

tiveness by <strong>in</strong>fluenc<strong>in</strong>g the amount of<br />

herbicide <strong>in</strong> the soil soluti<strong>on</strong> and the<br />

depth of herbicide movement <strong>in</strong> the<br />

soil profile. When a residual herbicide<br />

is applied to a dry soil, it relies <strong>on</strong> soil<br />

moisture (from ra<strong>in</strong> or from irrigati<strong>on</strong>)<br />

to move it to the root z<strong>on</strong>e. Inadequate<br />

movement is a comm<strong>on</strong> cause of the<br />

failure of herbicides <strong>in</strong> upland fields.<br />

W<strong>in</strong>d<br />

W<strong>in</strong>d adversely affects the absorpti<strong>on</strong><br />

of foliar-applied herbicides by <strong>in</strong>creas-<br />

<strong>in</strong>g the evaporati<strong>on</strong> of spray droplets<br />

and the volatilizati<strong>on</strong> of herbicide<br />

residue from the leaf surfaces.<br />

Properties of herbicides<br />

When the probable behavior of a<br />

herbicide can be predicted from its<br />

properties, that <strong>in</strong>formati<strong>on</strong> can be<br />

used to design safer and more effective<br />

applicati<strong>on</strong>. Some properties of herbi-<br />

cides that affect their biological activity


and behavior <strong>in</strong> the crop envir<strong>on</strong>ment<br />

<strong>in</strong>clude partiti<strong>on</strong> coefficient, vapor<br />

pressure, and water solubility. Parti-<br />

ti<strong>on</strong> coefficient describes the relative<br />

distributi<strong>on</strong> of a compound between a<br />

fatlike layer and water when shaken<br />

together. Compounds that accumulate<br />

<strong>in</strong> the fatlike layer are likely to be<br />

stored <strong>in</strong> the fat of animals.<br />

Vapor pressure<br />

Most organic chemicals tend to change<br />

to vapor. This tendency is measured as<br />

vapor pressure and is affected by<br />

temperature. As temperature <strong>in</strong>-<br />

creases, vapor pressure also <strong>in</strong>creases.<br />

A liquid with a high vapor pressure is<br />

recognized as a volatile compound,<br />

<strong>on</strong>e that evaporates rapidly. In c<strong>on</strong>-<br />

trast, herbicides with high boil<strong>in</strong>g<br />

po<strong>in</strong>ts have lower vapor pressures, and<br />

thus are less volatile (Davies et al 1988).<br />

Thiocarbamate herbicides have a high<br />

vapor pressure.<br />

When herbicides with high vapor<br />

pressure are applied to the soil surface,<br />

they can evaporate so rapidly they are<br />

<strong>in</strong>effective. Such herbicides should be<br />

<strong>in</strong>corporated <strong>in</strong> the soil. It has been<br />

frequently observed that more herbi-<br />

cide is lost from a moist soil than from<br />

a dry soil.<br />

Water solubility<br />

Practically all herbicides have a meas-<br />

urable solubility <strong>in</strong> water. Water<br />

solubility is important <strong>in</strong> determ<strong>in</strong><strong>in</strong>g<br />

leach<strong>in</strong>g, degree of adsorpti<strong>on</strong>, and<br />

mobility <strong>in</strong> the envir<strong>on</strong>ment. Herbi-<br />

cides that are water soluble leach<br />

readily. Where a herbicide is less<br />

soluble, sorpti<strong>on</strong> <strong>on</strong>to suspended<br />

matter <strong>in</strong> the water tends to take the<br />

chemical out of most of the water.<br />

Herbicide formulati<strong>on</strong>s<br />

Herbicides are not sold as 100% active<br />

<strong>in</strong>gredient. Powders, solvents, stickers,<br />

or wett<strong>in</strong>g agents usually are added to<br />

help disperse the active <strong>in</strong>gredient<br />

throughout a carrier. The f<strong>in</strong>al product<br />

is a formulated herbicide that may<br />

have a number of names and may<br />

c<strong>on</strong>ta<strong>in</strong> different proporti<strong>on</strong>s of active<br />

<strong>in</strong>gredient.<br />

A small amount of herbicide (about<br />

2.0 kg) mixed with about 200 liters of<br />

water carrier is sufficient to cover a<br />

hectare. It is essential that the herbicide<br />

be uniformly distributed <strong>in</strong> the spray<br />

water.<br />

Some of the types of formulati<strong>on</strong>s<br />

are expla<strong>in</strong>ed below.<br />

Water-soluble c<strong>on</strong>centrate (S). The<br />

active <strong>in</strong>gredient <strong>in</strong> a water-soluble<br />

c<strong>on</strong>centrate dissolves readily <strong>in</strong> water.<br />

Wettable powder (WP or W). When an<br />

active <strong>in</strong>gredient does not dissolve<br />

readily <strong>in</strong> standard solvents, a wettable<br />

powder is prepared. The formulati<strong>on</strong><br />

c<strong>on</strong>sists of the dry herbicide plus<br />

another <strong>in</strong>ert solid, such as clay,<br />

together with agents that allow disper-<br />

sal and suspensi<strong>on</strong> of f<strong>in</strong>e particles <strong>in</strong><br />

liquid. Wettable powders mix readily<br />

with water, but tend to settle at the<br />

bottom of the spray tank. Wettable<br />

powders are be<strong>in</strong>g replaced by flow-<br />

ables and water-dispersible granules<br />

that overcome many of the storage and<br />

spray<strong>in</strong>g problems that have occurred<br />

<strong>in</strong> wettable powder.<br />

Emulsifiable c<strong>on</strong>centrate (EC or E). An<br />

emulsifiable c<strong>on</strong>centrate is used for<br />

herbicides that are not water soluble<br />

but are soluble <strong>in</strong> organic solvents. An<br />

emulsifier is added to form a stable oil-<br />

<strong>in</strong>-water emulsi<strong>on</strong> when the herbicide<br />

is mixed with water.<br />

Flowables (F). In flowable herbicides,<br />

the active <strong>in</strong>gredient is not readily<br />

soluble <strong>in</strong> water or an organic solvent.<br />

The flowable c<strong>on</strong>sists of a f<strong>in</strong>ely<br />

ground wettable powder suspended <strong>in</strong><br />

a small amount of liquid and mixed<br />

with emulsifiers.<br />

Granules (G or g). Granules are a<br />

ready-to-use, dry formulated product<br />

with a carrier, usually clay. Granules,<br />

which may c<strong>on</strong>ta<strong>in</strong> 2-20% active<br />

<strong>in</strong>gredient, can be broadcast <strong>on</strong> flood-<br />

water to c<strong>on</strong>trol weeds grow<strong>in</strong>g <strong>in</strong> the<br />

water (submerged weeds). Granules<br />

are usually designed to improve<br />

handl<strong>in</strong>g and applicati<strong>on</strong> properties<br />

(e.g., selectivity). An advantage of<br />

granules is that there is less drift than<br />

with f<strong>in</strong>e sprays under w<strong>in</strong>dy c<strong>on</strong>di-<br />

ti<strong>on</strong>s. Granules, however, are bulky<br />

and often have higher handl<strong>in</strong>g costs.<br />

Adjuvant. Adjuvants are materials<br />

that facilitate the acti<strong>on</strong> of herbicides or<br />

modify characteristics of the herbicide<br />

formulati<strong>on</strong>. Examples of adjuvants<br />

are surfactants and wett<strong>in</strong>g agents, oils,<br />

stickers, thicken<strong>in</strong>g agents, emulsifiers,<br />

and stabiliz<strong>in</strong>g agents.<br />

Surfactants are comm<strong>on</strong>ly used to<br />

improve the emulsify<strong>in</strong>g, dispers<strong>in</strong>g,<br />

spread<strong>in</strong>g, or wett<strong>in</strong>g ability of the<br />

herbicide formulati<strong>on</strong> by modify<strong>in</strong>g its<br />

surface characteristics. A surfactant<br />

<strong>in</strong>creases retenti<strong>on</strong> of the herbicide <strong>on</strong><br />

the leaf surface after spray<strong>in</strong>g. It also<br />

helps entry of the herbicide <strong>in</strong>to leaves<br />

and stems.<br />

Herbicide use 53


Surfactants are often added to<br />

herbicide formulati<strong>on</strong>s by the manu-<br />

facturer, but additi<strong>on</strong>al surfactants<br />

may be needed for some postemer-<br />

gence herbicides or <strong>in</strong> some envir<strong>on</strong>-<br />

mental c<strong>on</strong>diti<strong>on</strong>s (e.g., bentaz<strong>on</strong><br />

under low temperatures). The herbi-<br />

cide label <strong>in</strong>dicates how much<br />

surfactant to use when an additi<strong>on</strong>al<br />

surfactant is required. When surfac-<br />

tants are not recommended, their use<br />

with foliage-applied herbicides can<br />

result <strong>in</strong> loss of selectivity.<br />

Herbicide labels<br />

The best source of <strong>in</strong>formati<strong>on</strong> c<strong>on</strong>-<br />

cern<strong>in</strong>g safe and effective herbicide use<br />

is the product label (Fig. 4.1) pr<strong>in</strong>ted<br />

<strong>on</strong> or attached to the herbicide c<strong>on</strong>-<br />

ta<strong>in</strong>er. It gives directi<strong>on</strong>s <strong>on</strong> effective,<br />

safe use of the herbicide. The label<br />

should be read carefully and under-<br />

stood before any herbicide is used. The<br />

herbicide label is a legal document that<br />

<strong>in</strong> many countries has government<br />

approval. Every herbicide product<br />

label should c<strong>on</strong>ta<strong>in</strong> the follow<strong>in</strong>g<br />

<strong>in</strong>formati<strong>on</strong>:<br />

Trade or brand name. The trade or<br />

brand name identifies a herbicide of<br />

<strong>on</strong>e company and differentiates it from<br />

those of other companies. Like com-<br />

m<strong>on</strong> weed names, trade names of<br />

herbicides may change from country to<br />

country. Thus, the trade name is not<br />

always adequate for identify<strong>in</strong>g a<br />

herbicide or determ<strong>in</strong><strong>in</strong>g correct rates<br />

of applicati<strong>on</strong>. When an applicati<strong>on</strong><br />

rate is recommended with a trade<br />

name, the rate normally refers to the<br />

amount of formulated product, and<br />

not the rate of active <strong>in</strong>gredient or the<br />

acid equivalent.<br />

Chemical and comm<strong>on</strong> names. Herbi-<br />

cides have complex chemical names.<br />

Rules for select<strong>in</strong>g suitable chemical<br />

names are given by appropriate<br />

chemical associati<strong>on</strong>s (e.g., the Interna-<br />

54 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

ti<strong>on</strong>al Uni<strong>on</strong> of Pure and Applied<br />

Chemistry [IUPAC]). The chemical<br />

name refers to the active <strong>in</strong>gredient. In<br />

additi<strong>on</strong> to the chemical name, each<br />

herbicide is given a comm<strong>on</strong> name<br />

which also applies to the active <strong>in</strong>gre-<br />

dient. The comm<strong>on</strong> name is not the<br />

same as the trade name of the same<br />

herbicide. Comm<strong>on</strong> names for herbi-<br />

cides are approved by appropriate pro-<br />

fessi<strong>on</strong>al bodies, such as the Interna-<br />

ti<strong>on</strong>al Standardizati<strong>on</strong> Organizati<strong>on</strong><br />

4.1 All herbicide labels are required to<br />

provide important <strong>in</strong>formati<strong>on</strong>. Users should<br />

read and understand the label before open<strong>in</strong>g<br />

any herbicide c<strong>on</strong>ta<strong>in</strong>er.


Table 4.1. Mean<strong>in</strong>gs of signal words found <strong>on</strong> herbicide formulati<strong>on</strong> labels, to state danger to<br />

humans.<br />

Lethal oral dose<br />

Approximate lethal (LD 50 ) for rats<br />

Signal word Acute toxicity oral dose for an (mg/kg body<br />

adult human weight) (See p. 62<br />

for discussi<strong>on</strong> <strong>on</strong><br />

Danger/Pois<strong>on</strong><br />

Warn<strong>in</strong>g<br />

Cauti<strong>on</strong><br />

No signal word<br />

Highly toxic<br />

Moderately toxic<br />

Low to relatively<br />

n<strong>on</strong>toxic<br />

Relatively n<strong>on</strong>toxic<br />

(ISO). A herbicide may be produced or<br />

formulated by more than <strong>on</strong>e company<br />

and thus be sold under several brand<br />

names, but the comm<strong>on</strong> name or<br />

chemical name should always be the<br />

same <strong>on</strong> all products. For example:<br />

Trade or brand names: Machete,<br />

Butanex, Lambast<br />

Chemical name: N-(buthoxymethyl)-2-<br />

chloro-N-(2,6diethylphenyl)<br />

acetamide<br />

Comm<strong>on</strong> name: butachlor<br />

Active <strong>in</strong>gredient. Each label specifi-<br />

cally names the active <strong>in</strong>gredient<br />

present <strong>in</strong> the herbicide. The amount of<br />

active <strong>in</strong>gredient may be given <strong>in</strong><br />

percentage by weight or <strong>in</strong> grams per<br />

liter, and may be listed by its comm<strong>on</strong><br />

name or by its chemical name. The<br />

<strong>in</strong>ert <strong>in</strong>gredients need not be named,<br />

but the label should specify their per-<br />

centage of c<strong>on</strong>tent.<br />

Formulati<strong>on</strong>. Some labels spell out<br />

the formulati<strong>on</strong>, others use abbrevia-<br />

ti<strong>on</strong>s, such as EC or E for emulsifiable<br />

c<strong>on</strong>centrates; WP or W for wettable<br />

powder; FW, F, or L for flowables; G<br />

for granules; and S for solubles.<br />

C<strong>on</strong>tent. Each label gives the total<br />

amount of herbicide <strong>in</strong> the c<strong>on</strong>ta<strong>in</strong>er<br />

(eg, <strong>in</strong> liters [L] or kilograms [kg]).<br />

A taste to <strong>on</strong>e<br />

teaspo<strong>on</strong>ful (5 ml)<br />

One teaspo<strong>on</strong>ful to 2<br />

tablespo<strong>on</strong>fuls (30 ml)<br />

30-450 ml<br />

LD 50 )<br />

5-50<br />

50-500<br />

500-5,000<br />

Signal words and symbols. Herbicide<br />

labels state how pois<strong>on</strong>ous the<br />

product is, us<strong>in</strong>g specific signal words<br />

and symbols. Examples are shown <strong>in</strong><br />

Table 4.1.<br />

Labels of all highly toxic products<br />

have, <strong>in</strong> additi<strong>on</strong> to the word pois<strong>on</strong>,<br />

the skull and cross-b<strong>on</strong>es symbol.<br />

Pictograms-graphically def<strong>in</strong>itive<br />

symbols-are also recommended for<br />

<strong>in</strong>clusi<strong>on</strong> <strong>on</strong> agrochemical labels (Info<br />

Letter 1988). Examples of pictograms<br />

are draw<strong>in</strong>gs of a pair of pants <strong>in</strong> boots<br />

and a pair of hands <strong>in</strong> gloves, to c<strong>on</strong>vey<br />

the need to wear footwear and gloves<br />

for safe handl<strong>in</strong>g of chemicals. These<br />

labels also <strong>in</strong>clude the statement Keep<br />

out of reach of children.<br />

Directi<strong>on</strong>s for use. Directi<strong>on</strong>s for use<br />

provide <strong>in</strong>structi<strong>on</strong>s <strong>on</strong> how to use the<br />

herbicide. This <strong>in</strong>cludes <strong>in</strong>formati<strong>on</strong> <strong>on</strong><br />

weeds that the herbicide c<strong>on</strong>trols,<br />

crops <strong>on</strong> which applicati<strong>on</strong> of the<br />

herbicide is safe, applicati<strong>on</strong> rates,<br />

applicati<strong>on</strong> time, and applicati<strong>on</strong><br />

method. All directi<strong>on</strong>s for use must be<br />

followed.<br />

Name of manufacturer. The name and<br />

address of the manufacturer or<br />

distributor of the product often is<br />

required by law to be <strong>on</strong> the label.<br />

Hazards to humans and domestic<br />

animals. The hazards porti<strong>on</strong> of a label<br />

<strong>in</strong>dicates how the herbicide may be<br />

harmful to man and domestic animals.<br />

It gives <strong>in</strong>formati<strong>on</strong> <strong>on</strong> how to avoid<br />

pois<strong>on</strong><strong>in</strong>g or c<strong>on</strong>tam<strong>in</strong>ati<strong>on</strong>, such as<br />

the type of protective cloth<strong>in</strong>g re-<br />

quired.<br />

Envir<strong>on</strong>mental hazards. To help<br />

reduce undesirable effects <strong>on</strong> the<br />

envir<strong>on</strong>ment, the label also provides<br />

envir<strong>on</strong>mental precauti<strong>on</strong>s. It may<br />

<strong>in</strong>clude warn<strong>in</strong>gs that it is harmful to<br />

birds, fish, and wildlife, and advice <strong>on</strong><br />

how to avoid c<strong>on</strong>tam<strong>in</strong>at<strong>in</strong>g water<br />

bodies.<br />

Harvest<strong>in</strong>g statement. A harvest<strong>in</strong>g<br />

statement is pr<strong>in</strong>ted <strong>on</strong> labels when<br />

there is a chance that the treated crop<br />

may be fed to animals or handled by<br />

humans. Because residues of a herbi-<br />

cide require a m<strong>in</strong>imum number of<br />

days to degrade, a harvest<strong>in</strong>g state-<br />

ment specifies the number of days<br />

between the last herbicide applicati<strong>on</strong><br />

and the time when the crop can be<br />

safely cut, threshed, or eaten.<br />

Herbicide applicators<br />

A herbicide applicator is any device<br />

used to apply herbicides <strong>on</strong> plant and<br />

soil surfaces. Applicators distribute an<br />

exact quantity of a herbicide uniformly<br />

over a given area. They can be classi-<br />

fied as n<strong>on</strong>pressurized or pressurized.<br />

N<strong>on</strong>pressurized applicators <strong>in</strong>clude<br />

the water can, granular applicator,<br />

c<strong>on</strong>trolled-droplet applicator, and<br />

direct-c<strong>on</strong>tact applicators such as rope<br />

wicks and wipers.<br />

Hydraulic (pressurized) applicators<br />

usually need water to work. A pressur-<br />

ized applicator may be manually<br />

operated (such as the lever-operated<br />

knapsack sprayer), motorized, or<br />

ground-driven (Fig 4.2).<br />

Herbicide use 55


C<strong>on</strong>trolled-droplet applicator<br />

A c<strong>on</strong>trolled-droplet applicator (CDA)<br />

produces uniform-sized droplets of<br />

spray. <strong>Weed</strong>s may be effectively<br />

c<strong>on</strong>trolled with as little as 18 liters<br />

water/ha. Droplet size is c<strong>on</strong>trolled<br />

with<strong>in</strong> narrow limits by sp<strong>in</strong>n<strong>in</strong>g discs<br />

<strong>in</strong>side the applicator. C<strong>on</strong>trolled-<br />

droplet applicators are lightweight.<br />

They have a plastic spray head, a small<br />

motor that drives the rotat<strong>in</strong>g disc, a<br />

liquid reservoir, a handle, and a power<br />

supply (e.g., <strong>on</strong>e to eight 1.5-volt dry-<br />

cell batteries). Models that use a<br />

manually operated air pump (Fig. 4.3)<br />

(e.g., Birky sprayer) have been <strong>in</strong>tro-<br />

duced. This elim<strong>in</strong>ates the cost of<br />

batteries for the first-generati<strong>on</strong> CDA.<br />

Granular applicator<br />

Herbicides sold as granules are applied<br />

us<strong>in</strong>g granular applicators. Whatever<br />

its size, a granular applicator c<strong>on</strong>sists<br />

of a hopper to c<strong>on</strong>ta<strong>in</strong> the granules, a<br />

meter<strong>in</strong>g device to c<strong>on</strong>trol flow rate,<br />

and a distributi<strong>on</strong> mechanism. Granu-<br />

lar herbicides that are soluble <strong>in</strong> water<br />

may not require the same uniformity of<br />

distributi<strong>on</strong> as those that are not<br />

soluble <strong>in</strong> water.<br />

Granules are often applied by hand,<br />

especially <strong>in</strong> the tropics. Because<br />

broadcast<strong>in</strong>g granules by hand is not<br />

precise, the quantity of herbicide used<br />

will be higher than with other<br />

applicati<strong>on</strong> techniques. More uniform<br />

applicati<strong>on</strong> can be achieved <strong>on</strong> small<br />

areas by shak<strong>in</strong>g the granules from a<br />

c<strong>on</strong>ta<strong>in</strong>er with a perforated lid.<br />

Hydraulic applicator (pressurized)<br />

Hydraulic applicators comm<strong>on</strong>ly<br />

c<strong>on</strong>sist of a tank, pump, and nozzle.<br />

Other comp<strong>on</strong>ents <strong>in</strong>clude an agitator,<br />

pressure gauge, pressure regulator,<br />

hose, and boom. The tank that holds<br />

the spray soluti<strong>on</strong> is made of a<br />

56 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

corrosi<strong>on</strong>-resistant material, such as<br />

sta<strong>in</strong>less steel, polyv<strong>in</strong>yl material, or<br />

fiber glass. The tank has a special lid<br />

through which it is filled. The lid<br />

c<strong>on</strong>ta<strong>in</strong>s a stra<strong>in</strong>er to remove debris<br />

that might clog the nozzle. The pump<br />

drives the soluti<strong>on</strong> through the pres-<br />

sure chamber to the nozzle. The most<br />

widely used small hydraulic applicator<br />

is the lever-operated knapsack sprayer<br />

(Fig. 4.4). For a detailed discussi<strong>on</strong>, see<br />

Pesticide applicati<strong>on</strong> methods (Matthews<br />

1979).<br />

4.2 Top, a leverage-operated<br />

knapsack sprayer; bottom, a<br />

c<strong>on</strong>trolled-droplet applicator.<br />

Operati<strong>on</strong> of the<br />

knapsack sprayer<br />

Herbicide and water are poured <strong>in</strong>to<br />

the sprayer tank. The lever is moved<br />

up and down, caus<strong>in</strong>g the pump to<br />

draw spray liquid from the tank <strong>in</strong>to a<br />

special chamber <strong>in</strong>side the tank called<br />

the pressure chamber. Air trapped <strong>in</strong>


4.3 C<strong>on</strong>trolled-droplet applicators that<br />

use a manually operated air pump are<br />

available.<br />

4.4 Simplified draw<strong>in</strong>g of a lever-operated<br />

knapsack sprayer.<br />

the pressure chamber is compressed as<br />

the liquid is forced <strong>in</strong>. On <strong>on</strong>e side of<br />

the pressure chamber is the hose,<br />

which is c<strong>on</strong>nected to the trigger<br />

handle, and the <strong>on</strong>-and-off switch<br />

known as the cutoff valve. Compressed<br />

air forces the liquid from the pressure<br />

chamber through the hose to the<br />

nozzle. The nozzle turns the liquid <strong>in</strong>to<br />

droplets, which aid <strong>in</strong> uniform cover-<br />

age of the weed or soil.<br />

The faster the lever is moved, the<br />

higher the pressure becomes. High<br />

pressure makes the herbicide droplets<br />

smaller and <strong>in</strong>creases the speed with<br />

which the soluti<strong>on</strong> comes out of the<br />

nozzle (flow rate). For herbicide<br />

spray<strong>in</strong>g, where coarse spray droplets<br />

are desired, 5-6 lever strokes per<br />

m<strong>in</strong>ute are adequate.<br />

Select<strong>in</strong>g the nozzle<br />

The flow rate through a nozzle de-<br />

pends <strong>on</strong> the size of the nozzle open<strong>in</strong>g<br />

and the spray pressure. Increas<strong>in</strong>g the<br />

nozzle size (diameter of open<strong>in</strong>g) and<br />

<strong>in</strong>creas<strong>in</strong>g the pressure will <strong>in</strong>crease<br />

the flow rate. A pressure of 70-275 kPa<br />

(see Appendix A) is recommended for<br />

herbicide applicati<strong>on</strong>. The best way to<br />

regulate the flow rate is to change<br />

nozzle tips and to <strong>in</strong>crease or decrease<br />

walk<strong>in</strong>g speed.<br />

Herbicide use 57


58 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

It is important to select the proper<br />

type of nozzle for each activity<br />

(Fig. 4.5). For residual herbicides<br />

applied to the soil, impact nozzles (e.g.,<br />

Polijet) should be used because they<br />

cause less drift problems. For systemic,<br />

translocated herbicides, where thor-<br />

ough wett<strong>in</strong>g of stems and leaves is<br />

not required, an impact nozzle or fan<br />

nozzle is recommended. For c<strong>on</strong>tact<br />

herbicides, use a hollow c<strong>on</strong>e nozzle,<br />

an impact nozzle, or a fan nozzle<br />

operated at 275 kPa.<br />

Sprayer calibrati<strong>on</strong><br />

Sprayer calibrati<strong>on</strong> determ<strong>in</strong>es the<br />

volume of water that will be applied <strong>on</strong><br />

a given area by a given applicator<br />

under given c<strong>on</strong>diti<strong>on</strong>s. The volume of<br />

water applied by a sprayer depends <strong>on</strong><br />

walk<strong>in</strong>g speed, sprayer pressure, and<br />

nozzle size.<br />

Walk<strong>in</strong>g speed. An <strong>in</strong>crease <strong>in</strong> walk-<br />

<strong>in</strong>g speed results <strong>in</strong> less spray mixture<br />

applied to a given area. C<strong>on</strong>versely, a<br />

decrease <strong>in</strong> walk<strong>in</strong>g speed results <strong>in</strong><br />

applicati<strong>on</strong> of a greater volume applied<br />

per unit area.<br />

Sprayer pressure. Increas<strong>in</strong>g sprayer<br />

pressure results <strong>in</strong> a greater volume of<br />

spray mixture applied to a given area.<br />

C<strong>on</strong>versely, a lower spray pressure<br />

results <strong>in</strong> less spray mixture applied.<br />

The sprayer should be operated to give<br />

as steady a pressure as possible. A<br />

pressure gauge may be fitted to the<br />

sprayer.<br />

Nozzle size. The use of a large nozzle<br />

open<strong>in</strong>g <strong>in</strong>creases the volume of spray<br />

mixture applied to a given area.<br />

Smaller open<strong>in</strong>gs deliver a smaller<br />

spray volume.<br />

4.5 Select<strong>in</strong>g the appropriate nozzle for<br />

each spray<strong>in</strong>g task is important. Types<br />

<strong>in</strong>clude top, hydraulic nozzle (shown <strong>in</strong><br />

the nozzle body, left, and <strong>in</strong> parts, right)<br />

and, bottom, a fan nozzle, left, and<br />

impact nozzle, right.<br />

There are several ways to f<strong>in</strong>d out<br />

how much spray is applied to a given<br />

area for a given time. A well-tested<br />

technique for calibrat<strong>in</strong>g a sprayer<br />

(Fraser and Burrill 1979) is as follows:<br />

Step 1. Make sure the sprayer is <strong>in</strong><br />

good work<strong>in</strong>g c<strong>on</strong>diti<strong>on</strong> (no leaks, no<br />

blocked nozzles, etc.). Calibrati<strong>on</strong><br />

should be d<strong>on</strong>e <strong>on</strong> a surface similar to<br />

the field to be sprayed. Measure and<br />

mark out an area of 100 m 2 (10 m x<br />

10 m). Trace with a stick the rows <strong>on</strong><br />

which rice normally would be sown <strong>in</strong><br />

the field. The row width should be the<br />

<strong>on</strong>e you will use <strong>in</strong> plant<strong>in</strong>g rice.<br />

Step 2. Place the sprayer <strong>on</strong> level<br />

ground and put <strong>in</strong> 10 liters of clean<br />

water. Mark the outl<strong>in</strong>e of the sprayer<br />

<strong>on</strong> the ground so the same spot can be<br />

found later. Put the sprayer <strong>on</strong> your<br />

back. Positi<strong>on</strong> the nozzle above the first<br />

seed row mark. Pump the sprayer to<br />

develop pressure. Beg<strong>in</strong> spray<strong>in</strong>g the<br />

plot you have marked, adjust<strong>in</strong>g the<br />

height of the nozzle to cover whatever<br />

swath width you desire. Ma<strong>in</strong>ta<strong>in</strong> a<br />

c<strong>on</strong>stant nozzle height. Walk at a<br />

comfortable pace, which you must<br />

ma<strong>in</strong>ta<strong>in</strong> throughout the calibrati<strong>on</strong>,<br />

and later <strong>in</strong> actually spray<strong>in</strong>g the field.<br />

Spray the 100-m 2 plot <strong>on</strong>ce. When you<br />

have completed spray<strong>in</strong>g the plot,<br />

place the sprayer back <strong>on</strong> the ground <strong>in</strong><br />

its outl<strong>in</strong>ed positi<strong>on</strong> and measure the<br />

water level.<br />

Step 3. Determ<strong>in</strong>e the applicati<strong>on</strong><br />

rate by subtract<strong>in</strong>g the volume of water<br />

rema<strong>in</strong><strong>in</strong>g <strong>in</strong> the sprayer from the<br />

amount you started with. For example,<br />

if the amount of water <strong>in</strong> the tank<br />

before spray<strong>in</strong>g was 10 liters and the


amount after spray<strong>in</strong>g is 8 liters, then<br />

the amount of water used was 2 liters.<br />

The sprayer output per hectare<br />

(10,000 m 2 ) is then calculated as<br />

A simpler calculati<strong>on</strong> is to multiply the<br />

number of liters you sprayed <strong>on</strong> the<br />

10-m x 10-m plot by 100, to get applica-<br />

ti<strong>on</strong> rate <strong>in</strong> liters per hectare.<br />

Step 4. Make sure your walk<strong>in</strong>g pace<br />

is uniform by repeat<strong>in</strong>g Step 2 a few<br />

times, until you are putt<strong>in</strong>g exactly<br />

2 liters of water <strong>on</strong> the calibrati<strong>on</strong> plot<br />

every time you spray it. If you use<br />

more than 2 liters, you should <strong>in</strong>crease<br />

your walk<strong>in</strong>g pace while spray<strong>in</strong>g. If<br />

you use less than 2 liters, you should<br />

walk more slowly. If the rate rema<strong>in</strong>s<br />

<strong>on</strong> the 2-liter mark, your walk<strong>in</strong>g pace<br />

is uniform. Remember: sprayer output<br />

for a given area may be adjusted by<br />

chang<strong>in</strong>g walk<strong>in</strong>g pace or nozzle size,<br />

or pressure, or any comb<strong>in</strong>ati<strong>on</strong> of<br />

these.<br />

Amount of water to use<br />

Mix<strong>in</strong>g a herbicide with water enables<br />

spread<strong>in</strong>g the herbicide evenly over a<br />

large area. The amount of water used<br />

affects the herbicide's effectiveness and<br />

the ease of applicati<strong>on</strong>. Usually a<br />

medium volume of water—200-300<br />

liters/ha—is adequate for bare soil or<br />

small weeds. More water is needed for<br />

c<strong>on</strong>tact herbicide applicati<strong>on</strong> because<br />

the weeds must be wetted thoroughly<br />

for effective treatment. Whatever<br />

volume of water is used, the amount of<br />

active <strong>in</strong>gredient (ai) per hectare<br />

should always be the same (i.e., 2.0 kg<br />

of butachlor/ ha can be applied <strong>in</strong><br />

200 liters or 300 liters water/ha,<br />

depend<strong>in</strong>g <strong>on</strong> the sprayer calibrati<strong>on</strong>).<br />

C<strong>on</strong>trolled-droplet applicators and<br />

certa<strong>in</strong> very low-volume nozzles fitted<br />

to the knapsack sprayers can use as<br />

low as 10-40 liters water/ha. When <strong>in</strong><br />

doubt, check the herbicide label. Most<br />

manufacturers <strong>in</strong>dicate the volume<br />

rate to be used under certa<strong>in</strong> c<strong>on</strong>di-<br />

ti<strong>on</strong>s.<br />

Herbicide dosage calculati<strong>on</strong><br />

Before calculat<strong>in</strong>g herbicide dosage, a<br />

herbicide or herbicide comb<strong>in</strong>ati<strong>on</strong><br />

should be chosen for the best results<br />

under the particular set of c<strong>on</strong>diti<strong>on</strong>s.<br />

To calculate the amount of herbicide to<br />

be applied to a given area, the follow-<br />

<strong>in</strong>g <strong>in</strong>formati<strong>on</strong> is needed:<br />

Recommended dosage of the<br />

herbicide to be used.<br />

Amount of herbicide (ai) <strong>in</strong> a given<br />

quantity of the commercial product<br />

(formulati<strong>on</strong>) to be used.<br />

The product label shows the<br />

amount, <strong>in</strong> ai, present <strong>in</strong> the formula-<br />

ti<strong>on</strong>. The percentage ai for liquid<br />

formulati<strong>on</strong>s may be given <strong>in</strong> weight<br />

per volume (e.g., g/liter), or as a<br />

weight:weight ratio (percentage).<br />

C<strong>on</strong>versi<strong>on</strong> factors can be used to<br />

calculate the correct percent ai <strong>in</strong> a<br />

liquid herbicide formulati<strong>on</strong> from the<br />

weight per volume c<strong>on</strong>centrati<strong>on</strong>, as<br />

follows:<br />

Divide a c<strong>on</strong>centrati<strong>on</strong> given <strong>in</strong><br />

grams per liter (g/liter) by 10.<br />

Example: 600 grams of 100% bu-<br />

tachlor per liter<br />

Multiply a c<strong>on</strong>centrati<strong>on</strong> given <strong>in</strong><br />

imperial pounds (lb) per imperial<br />

gall<strong>on</strong> by 10.<br />

Example: 2 Ib/imperial gall<strong>on</strong><br />

Multiply a c<strong>on</strong>centrati<strong>on</strong> given <strong>in</strong><br />

pounds (lb) per US gal by 12.<br />

Example: 2 lb/US gall<strong>on</strong><br />

The follow<strong>in</strong>g general formula may<br />

be used to calculate most herbicide<br />

dosage determ<strong>in</strong>ati<strong>on</strong>s:<br />

Example: Apply 2.0 kg ai/ ha of Ma-<br />

chete, which has 60% ai as butachlor.<br />

Under many c<strong>on</strong>diti<strong>on</strong>s, the area to<br />

be sprayed will not be exactly 1 ha.<br />

Also, the sprayer tank may not be big<br />

enough to hold all the herbicide and<br />

water required for 1 ha. This makes it<br />

necessary to calculate the amount of<br />

herbicide and water required for an<br />

Herbicide use 59


area less than 1 ha or for a tankful. The<br />

amount of water needed to spray a<br />

given area can be calculated as<br />

If the area to be sprayed is 1,000 m 2 and<br />

the sprayer output is 200 liters/ha<br />

(from the calibrati<strong>on</strong> described earlier),<br />

then the amount of water required to<br />

spray this area is :<br />

When the area to be sprayed is de-<br />

term<strong>in</strong>ed <strong>on</strong> the basis of sprayer<br />

capacity, area can be calculated as<br />

If a knapsack sprayer has a capacity<br />

of 15 liters and the sprayer output is<br />

200 liters/ha, then the area covered by<br />

<strong>on</strong>e full tank (15 liters) is<br />

The total amount of formulated<br />

product to be used <strong>in</strong> the examples<br />

above can be calculated as<br />

60 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

To summarize, the steps required to<br />

arrive at the amount of herbicide and<br />

water to be sprayed <strong>on</strong> a given area are<br />

1. Determ<strong>in</strong>e sprayer output per<br />

hectare (calibrate the sprayer).<br />

2. Determ<strong>in</strong>e the quantity of formu-<br />

lated product required per hectare<br />

(from label or other recommendati<strong>on</strong>s).<br />

3. Use the size of the area to be<br />

sprayed or the sprayer capacity<br />

(whichever is smaller) to determ<strong>in</strong>e the<br />

amount of water needed.<br />

4. Calculate the formulated product<br />

needed for the quantity of water.<br />

Appendix B gives calculated dosage<br />

rates per hectare for different formula-<br />

ti<strong>on</strong>s, so that you can cross check your<br />

own calculati<strong>on</strong>s.<br />

Calculati<strong>on</strong> of dosage <strong>in</strong> acid<br />

equivalents of salts and esters<br />

Herbicide dosage recommendati<strong>on</strong>s<br />

computed <strong>in</strong> kilograms of active<br />

<strong>in</strong>gredient per hectare refer to the<br />

unaltered chemical molecule. But <strong>in</strong><br />

herbicide molecules that are acids, the<br />

acidic porti<strong>on</strong> is normally transformed<br />

to a salt or ester, to improve such<br />

characteristics as solubility <strong>in</strong> water or<br />

oil and foliar penetrati<strong>on</strong>. In general,<br />

the parent acid porti<strong>on</strong> of the herbicide<br />

molecule rema<strong>in</strong>s as the herbicidally<br />

active porti<strong>on</strong>, while the ester or salt<br />

attached to the parent acid satisfies the<br />

functi<strong>on</strong>s for <strong>in</strong>creased solubility or<br />

<strong>in</strong>creased penetrati<strong>on</strong>. The acid equiva-<br />

lent of a salt or ester form of a herbi-<br />

cide, therefore, is that porti<strong>on</strong> of the<br />

molecule represent<strong>in</strong>g the orig<strong>in</strong>al acid<br />

form of the molecule. The dosage rec-<br />

ommendati<strong>on</strong> for such herbicides is<br />

given as kilograms of acid equivalent<br />

of the active <strong>in</strong>gredient per hectare.<br />

The recommended dosage of herbi-<br />

cides applied as salts or esters is often<br />

based <strong>on</strong> the herbicidal porti<strong>on</strong> of the<br />

salt or ester molecule, and excludes the<br />

herbicidally <strong>in</strong>active porti<strong>on</strong><br />

(Anders<strong>on</strong> 1983).<br />

The product labels of most commercial<br />

herbicide formulati<strong>on</strong>s c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g<br />

salts and esters specify the amount of<br />

acid equivalent present <strong>in</strong> the formulati<strong>on</strong>.<br />

The acid equivalent is equal to the<br />

difference <strong>in</strong> weight, expressed as percent,<br />

between the parent acid molecule<br />

(m<strong>in</strong>us a value of 1, represent<strong>in</strong>g the<br />

loss of the H + ) and that of the salt or<br />

ester molecule. It is always less than<br />

l00%, and is calculated by the<br />

follow<strong>in</strong>g formula:<br />

Molecular weight (mol/wt) of<br />

acid<br />

Example: The molecular weight of<br />

2,4-D is 221. The molecular weight of<br />

its isopropyl ester is 263. The acid<br />

equivalent of the isopropyl ester of<br />

2,4-D is determ<strong>in</strong>ed as<br />

Field techniques for<br />

us<strong>in</strong>g herbicides<br />

Proper field techniques are important<br />

to get good weed c<strong>on</strong>trol from herbi-<br />

cides. Read all labels before us<strong>in</strong>g a<br />

herbicide, and follow the directi<strong>on</strong>s. To<br />

kill the weeds and not the rice, us<strong>in</strong>g<br />

the correct dosage is essential. C<strong>on</strong>tact<br />

herbicides work best when they are<br />

applied <strong>in</strong> a high volume of water.


The decisi<strong>on</strong> to spray should be<br />

made after c<strong>on</strong>sider<strong>in</strong>g<br />

the degree of weed species and<br />

weed growth,<br />

the recommendati<strong>on</strong> for weed<br />

c<strong>on</strong>trol,<br />

the c<strong>on</strong>trol measures available,<br />

the correct tim<strong>in</strong>g of herbicide applicati<strong>on</strong>,<br />

the previous experience <strong>in</strong> spray<strong>in</strong>g,<br />

the probable cost-benefit of apply<strong>in</strong>g<br />

the herbicide, and<br />

safety.<br />

Always follow the chemical<br />

manufacturer’s <strong>in</strong>structi<strong>on</strong>s <strong>on</strong> safety<br />

precauti<strong>on</strong>s.<br />

A few days before spray<strong>in</strong>g, ensure<br />

that<br />

chemical supplies <strong>on</strong> the farm are<br />

adequate for the job at hand,<br />

a readily accessible water supply for<br />

fill<strong>in</strong>g the sprayer is available, and<br />

the sprayer is clean and <strong>in</strong> good<br />

work<strong>in</strong>g c<strong>on</strong>diti<strong>on</strong>.<br />

On the day of spray<strong>in</strong>g, check to see<br />

that<br />

appropriate protective cloth<strong>in</strong>g is<br />

worn,<br />

the calibrati<strong>on</strong> used is correct,<br />

weeds are <strong>in</strong> suitable c<strong>on</strong>diti<strong>on</strong> for<br />

treatment,<br />

ground c<strong>on</strong>diti<strong>on</strong>s are satisfactory,<br />

weather c<strong>on</strong>diti<strong>on</strong>s and forecasts are<br />

satisfactory, and<br />

the pers<strong>on</strong> to do the spray<strong>in</strong>g is<br />

healthy and fit.<br />

Mix<strong>in</strong>g<br />

The c<strong>on</strong>centrated active <strong>in</strong>gredient of a<br />

herbicide must be mixed thoroughly<br />

with water (the carrier). When us<strong>in</strong>g a<br />

wettable powder, agitate the soluti<strong>on</strong><br />

to prevent the herbicide from settl<strong>in</strong>g<br />

out. That would plug nozzles and give<br />

n<strong>on</strong>-uniform applicati<strong>on</strong> rates. The<br />

water used should be clean and free<br />

from clay, mud, organic matter, and<br />

dissolved salts.<br />

Do not guess the amount of herbi-<br />

cide to use. Always measure or weigh<br />

the exact calculated amount. Fill the<br />

sprayer tank about half-full with water.<br />

Add the measured herbicide to the<br />

tank, then fill the tank completely with<br />

water. Be sure both herbicide and<br />

water pass through the stra<strong>in</strong>er <strong>in</strong> the<br />

tank. Mix the c<strong>on</strong>tents of a knapsack<br />

sprayer tank by shak<strong>in</strong>g it.<br />

Herbicide selecti<strong>on</strong><br />

Most herbicides are suitable for use<br />

<strong>on</strong>ly <strong>in</strong> selected crops; they would kill<br />

other crops. To assure the safety of the<br />

rice crop, use <strong>on</strong>ly herbicides recom-<br />

mended for rice. Some herbicide<br />

groups tend to c<strong>on</strong>trol certa<strong>in</strong> families<br />

of weeds better than others. C<strong>on</strong>sider<br />

the weeds <strong>on</strong> your farm and select the<br />

herbicide that will c<strong>on</strong>trol those weeds.<br />

Nozzles<br />

Select the most suitable nozzle size and<br />

type. In general, use<br />

a c<strong>on</strong>e nozzle for applicati<strong>on</strong>s where<br />

it is important to cover the crop<br />

foliage (e.g., for foliar herbicides),<br />

and<br />

a low-pressure fan nozzle for<br />

residual herbicides.<br />

Spray<strong>in</strong>g<br />

Do not spray when the w<strong>in</strong>d is too<br />

str<strong>on</strong>g. If you must spray when it is<br />

w<strong>in</strong>dy, hold the nozzle close to the<br />

ground to prevent the droplets from<br />

be<strong>in</strong>g blown away dur<strong>in</strong>g calibrati<strong>on</strong><br />

of the sprayer and dur<strong>in</strong>g actual field<br />

spray<strong>in</strong>g. Always walk downw<strong>in</strong>d, so<br />

that any spray blown off the crop is<br />

carried away from you.<br />

Always carry a spare nozzle. Check<br />

the sprayer nozzle often for possible<br />

blockage (this would be <strong>in</strong>dicated by a<br />

poor spray pattern) and clean it when<br />

necessary. A faulty nozzle delivers the<br />

wr<strong>on</strong>g dosage. If a faulty nozzle<br />

develops, attend to it at the end of the<br />

field. Use a soft material to clean<br />

blocked nozzles. Never clean a nozzle<br />

with a wire or p<strong>in</strong>.<br />

Ma<strong>in</strong>ta<strong>in</strong> a c<strong>on</strong>stant nozzle height<br />

above the target weeds <strong>in</strong> the field. A<br />

nozzle height of about 50 cm from the<br />

target to the ground is ideal.<br />

Avoid miss<strong>in</strong>g strips or overlapp<strong>in</strong>g<br />

spray swaths.<br />

Use rice rows as a measure (spac<strong>in</strong>g<br />

from 25 to 30 cm). Walk over every<br />

third or fourth row to give a 1-m<br />

spray width.<br />

Place sticks or sight<strong>in</strong>g poles at<br />

swath width <strong>in</strong>tervals before<br />

start<strong>in</strong>g to spray.<br />

While spray<strong>in</strong>g, ma<strong>in</strong>ta<strong>in</strong> a c<strong>on</strong>stant<br />

walk<strong>in</strong>g speed. When you slow your<br />

pace, the amount of herbicide applied<br />

<strong>in</strong>creases. When you walk faster, the<br />

amount decreases. Underapplicati<strong>on</strong><br />

results <strong>in</strong> unsatisfactory weed c<strong>on</strong>trol;<br />

apply<strong>in</strong>g more than the recommended<br />

amount may result <strong>in</strong> <strong>in</strong>jury or death to<br />

the rice crop. Overapplicati<strong>on</strong> also<br />

wastes a costly <strong>in</strong>put.<br />

Clean<strong>in</strong>g the sprayer<br />

Do not leave herbicide soluti<strong>on</strong>s <strong>in</strong> the<br />

sprayer overnight. Whether spray<strong>in</strong>g<br />

research plots or large areas, it is<br />

important to thoroughly clean the<br />

sprayer before us<strong>in</strong>g a different herbi-<br />

cide. Herbicides reta<strong>in</strong>ed <strong>in</strong> the pump,<br />

hose, boom, or sprayer tank, if sprayed<br />

later <strong>on</strong> sensitive plants, will cause<br />

crop <strong>in</strong>jury. To clean the sprayer,<br />

1. R<strong>in</strong>se the sprayer with clean water<br />

to remove most of the chemical. A<br />

household detergent can be added to<br />

water used for clean<strong>in</strong>g. Pour this out<br />

and add clean water aga<strong>in</strong>.<br />

2. Operate the pump for at least 10<br />

strokes and pour out the rema<strong>in</strong><strong>in</strong>g<br />

water.<br />

3. Repeat these procedures two more<br />

times.<br />

Herbicide use 61


Granular herbicide applicati<strong>on</strong><br />

Most farmers apply granular herbicides<br />

by broadcast<strong>in</strong>g. Whatever the method<br />

used, safety and uniformity of applicati<strong>on</strong><br />

are important. Unlike liquid formulati<strong>on</strong>s,<br />

where the amount of water used<br />

is not critical as l<strong>on</strong>g as the sprayer has<br />

been calibrated to deliver a certa<strong>in</strong> rate,<br />

granular formulati<strong>on</strong>s are not further<br />

diluted with a carrier. Thus the formulated<br />

product is c<strong>on</strong>stant and the<br />

amount applied is determ<strong>in</strong>ed by the<br />

recommended applicati<strong>on</strong> rate per<br />

hectare. It is important to follow this<br />

calibrati<strong>on</strong> method:<br />

1. Determ<strong>in</strong>e the amount of formulated<br />

product per hectare us<strong>in</strong>g the formula<br />

<strong>on</strong> page 59.<br />

Example: To apply 2.0 kg ai/ha of<br />

Machete with 5% ai, multiply 2 kg by<br />

100, then divide by 5 = 40 kg/ha.<br />

2. Measure and mark out a 5-m × 5-m<br />

area and determ<strong>in</strong>e the amount of<br />

granules required for the area. The<br />

amount of butachlor required for<br />

25 m2 is<br />

25<br />

× 40 kg = 0.1 kg = 100 g<br />

10,000<br />

3. Walk at a comfortable pace and<br />

practice apply<strong>in</strong>g the herbicide several<br />

times, until you achieve a 100 g/25 m2 applicati<strong>on</strong> rate.<br />

When the granules are to be mixed <strong>in</strong><br />

a carrier such as sand, use a different<br />

calibrati<strong>on</strong> method, as follows:<br />

1. Measure and mark out a length of 100<br />

m.<br />

2. Weigh enough herbicide to cover this<br />

area. Walk at a comfortable pace and<br />

practice apply<strong>in</strong>g herbicide uniformly<br />

over this area.<br />

3. Reweigh the herbicide rema<strong>in</strong><strong>in</strong>g.<br />

The difference will give the amount of<br />

herbicide applied.<br />

4. Measure the swath width.<br />

62 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

To calculate the applicati<strong>on</strong> rate, use<br />

the follow<strong>in</strong>g formula:<br />

Granules applied<br />

Applicati<strong>on</strong> rate<br />

<strong>in</strong> kg/ha =<br />

<strong>in</strong> g per 100 m<br />

Swath width<br />

<strong>in</strong> cm<br />

× 10<br />

Example: If the weight of granules<br />

used over a 100-m length with a swath<br />

diameter of 40 cm is 120 g, then the<br />

applicati<strong>on</strong> rate is<br />

120 × 10<br />

40<br />

= 30 kg/ha<br />

Granular herbicides, although about<br />

twice as costly as n<strong>on</strong>granular <strong>on</strong>es,<br />

can be applied <strong>on</strong>ce by hand, <strong>in</strong> asso-<br />

ciati<strong>on</strong> with fertilizer. They can also be<br />

applied us<strong>in</strong>g any <strong>on</strong>e of a number of<br />

mechanical spreaders. In small plots,<br />

granules can be applied by shak<strong>in</strong>g<br />

them from a bottle with perforated lid<br />

(IRRI, unpublished circular).<br />

Safe use of herbicides<br />

Improper herbicide use can harm<br />

crops, humans, wildlife, domestic<br />

animals, and the envir<strong>on</strong>ment. There<br />

are two types of herbicide toxicity:<br />

acute (a s<strong>in</strong>gle oral dose) and chr<strong>on</strong>ic<br />

(a sublethal dose repeated over time).<br />

LD 50 and LC 50<br />

LD 50 is the expressi<strong>on</strong> for a s<strong>in</strong>gle dose<br />

that, when taken orally, kills 50% of a<br />

group of test animal. It is usually<br />

expressed <strong>in</strong> milligrams of herbicide<br />

per kilogram of body weight of test<br />

animal. The higher the herbicide toxi-<br />

city, the lower the LD 50 . For example,<br />

the LD 50 of paraquat is 150 mg/kg; that<br />

of butachlor is 2,000 mg/kg.<br />

We emphasize that the LD 50 is NOT<br />

the safe dose level—50% of test ani-<br />

mals die at that dose.<br />

LC 50 is the c<strong>on</strong>centrati<strong>on</strong> required to<br />

kill 50% of the test organisms <strong>in</strong> an<br />

envir<strong>on</strong>ment (usually water). The LC 50<br />

[96 h] for carp is 0.32 mg/liter.<br />

Indiscrim<strong>in</strong>ate herbicide use <strong>in</strong><br />

irrigated rice can adversely affect wild-<br />

life, humans, and the envir<strong>on</strong>ment.<br />

Improper herbicide use will c<strong>on</strong>tami-<br />

nate local water bodies. Inappropriate<br />

herbicide use or use of herbicides<br />

highly toxic to fish will kill or c<strong>on</strong>tami-<br />

nate the fish <strong>in</strong> that water, which will<br />

affect the fish c<strong>on</strong>sumers.<br />

Safe handl<strong>in</strong>g of herbicides<br />

Handl<strong>in</strong>g an undiluted herbicide is<br />

more dangerous than handl<strong>in</strong>g the<br />

diluted product. Herbicides can enter<br />

the human body through the sk<strong>in</strong>,<br />

mouth, nose, and eyes. Absorpti<strong>on</strong><br />

through sk<strong>in</strong> is comm<strong>on</strong> and can occur<br />

from chemical spill<strong>in</strong>g and splash<strong>in</strong>g,<br />

and from drift<strong>in</strong>g of spray. Absorpti<strong>on</strong><br />

through the nose and mouth can occur<br />

from <strong>in</strong>hal<strong>in</strong>g spray droplets, vapors,<br />

or chemical dust. Safety tips for herbi-<br />

cide use are as follows:<br />

Mix herbicides or other pesticides <strong>in</strong><br />

the open air, never <strong>in</strong> enclosed<br />

places with <strong>in</strong>adequate ventilati<strong>on</strong>.<br />

Read the label <strong>on</strong> the herbicide<br />

c<strong>on</strong>ta<strong>in</strong>er and make sure any special<br />

<strong>in</strong>structi<strong>on</strong>s are understood.<br />

Leaks from a badly ma<strong>in</strong>ta<strong>in</strong>ed<br />

sprayer may <strong>in</strong>crease c<strong>on</strong>tact<br />

between the herbicide and the sk<strong>in</strong>,<br />

permitt<strong>in</strong>g the herbicide to enter the<br />

body. Tighten leak<strong>in</strong>g sprayer parts<br />

and check seals and washers to<br />

avoid leakage.<br />

Wear protective cloth<strong>in</strong>g. Special<br />

protective cloth<strong>in</strong>g is heavy and<br />

expensive, and uncomfortable when<br />

used <strong>in</strong> the tropics. For small-scale<br />

farmers who use herbicides occa-<br />

si<strong>on</strong>ally, a complete set of protective<br />

cloth<strong>in</strong>g may not be necessary. All


farmers, however, should wear<br />

cloth<strong>in</strong>g and footwear that will<br />

m<strong>in</strong>imize any sk<strong>in</strong> c<strong>on</strong>tact with<br />

herbicide. For operators who spray<br />

regularly, protective cloth<strong>in</strong>g is re-<br />

quired. Basic protective cloth<strong>in</strong>g <strong>in</strong>-<br />

cludes rubber boots, l<strong>on</strong>g trousers,<br />

l<strong>on</strong>g-sleeved shirt, and rubber<br />

gloves. When open<strong>in</strong>g herbicide<br />

c<strong>on</strong>ta<strong>in</strong>ers, or pour<strong>in</strong>g and mix<strong>in</strong>g<br />

herbicides, goggles should also be<br />

worn. When spray<strong>in</strong>g tall weeds, a<br />

waterproof hat and face shield<br />

should be worn.<br />

Wash yourself and your clothes<br />

after spray<strong>in</strong>g is d<strong>on</strong>e and all<br />

spray<strong>in</strong>g equipment has been<br />

cleaned.<br />

Herbicide drift<br />

Herbicide drift occurs when the<br />

smaller drops <strong>in</strong> the spray are carried<br />

away from the target by w<strong>in</strong>d, or when<br />

vapor from a volatile herbicide is<br />

carried away dur<strong>in</strong>g or after spray<strong>in</strong>g.<br />

Growth regulator herbicides (such as<br />

2,4-D or MCPA) cause the greatest drift<br />

damage. Crops such as tomato, cott<strong>on</strong>,<br />

lettuce, and tree fruits are particularly<br />

sensitive to them. Herbicide drift can<br />

be avoided by<br />

Spray<strong>in</strong>g <strong>on</strong>ly when a light w<strong>in</strong>d is<br />

blow<strong>in</strong>g away from susceptible<br />

crops.<br />

Us<strong>in</strong>g large nozzle tips, thus apply<strong>in</strong>g<br />

larger size droplets and larger<br />

spray volumes (more than 100<br />

liters/ha).<br />

Us<strong>in</strong>g the m<strong>in</strong>imum pressure<br />

required for the nozzles to operate<br />

properly.<br />

Hold<strong>in</strong>g sprayer nozzles close to<br />

the target.<br />

Leav<strong>in</strong>g a 10-m-wide strip<br />

unsprayed between the rice and any<br />

field where sensitive crops are<br />

grow<strong>in</strong>g. Other weed c<strong>on</strong>trol<br />

methods can be applied to the<br />

unsprayed strip.<br />

Storage of herbicides<br />

Herbicides should be stored <strong>in</strong> a safe<br />

place, preferably <strong>in</strong> a separate build<strong>in</strong>g<br />

or <strong>in</strong> a place that can be locked at all<br />

times, to prevent unauthorized per-<br />

s<strong>on</strong>s-especially children-from<br />

enter<strong>in</strong>g. A complete <strong>in</strong>ventory of all<br />

herbicides <strong>in</strong> the storage area is essen-<br />

tial.<br />

Herbicides should not be stored<br />

near food, animal feed, or other items<br />

that could be c<strong>on</strong>tam<strong>in</strong>ated by spilled<br />

or volatile herbicides. Always store all<br />

herbicides, however small the quan-<br />

tity, <strong>in</strong> the orig<strong>in</strong>al, labeled c<strong>on</strong>ta<strong>in</strong>er.<br />

Herbicides must never be stored <strong>in</strong> any<br />

other c<strong>on</strong>ta<strong>in</strong>ers, especially not <strong>in</strong> old<br />

bottles or other c<strong>on</strong>ta<strong>in</strong>ers where they<br />

could be mistaken for food, beverage,<br />

or drugs for humans or animals.<br />

Liquid herbicide products, espe-<br />

cially those c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g organic solvents<br />

with low temperature flash po<strong>in</strong>ts,<br />

present special hazards because of<br />

their flammability. Highly flammable<br />

products will readily ignite and burn,<br />

or explode when overheated. Some dry<br />

powder formulati<strong>on</strong>s may also present<br />

fire or explosi<strong>on</strong> hazards. These<br />

dangers are important c<strong>on</strong>siderati<strong>on</strong>s<br />

<strong>in</strong> select<strong>in</strong>g and us<strong>in</strong>g storage areas for<br />

herbicides.<br />

Disposal of empty herbicide c<strong>on</strong>ta<strong>in</strong>ers<br />

Empty herbicide c<strong>on</strong>ta<strong>in</strong>ers pose a<br />

health hazard to the general public,<br />

especially to children. No matter how<br />

well empty c<strong>on</strong>ta<strong>in</strong>ers are cleaned, the<br />

chemicals can never be removed<br />

completely. All empty herbicide<br />

c<strong>on</strong>ta<strong>in</strong>ers should be destroyed. Bury<br />

them <strong>in</strong> a pit away from p<strong>on</strong>ds and<br />

other water bodies. Bottles and t<strong>in</strong>s<br />

should be crushed or broken before<br />

bury<strong>in</strong>g.<br />

Pois<strong>on</strong><strong>in</strong>g by herbicides<br />

Pois<strong>on</strong><strong>in</strong>g may result from absorpti<strong>on</strong><br />

of herbicides through the sk<strong>in</strong> and<br />

eyes, through the gastro-<strong>in</strong>test<strong>in</strong>al tract<br />

by swallow<strong>in</strong>g, and by the lungs<br />

through <strong>in</strong>hal<strong>in</strong>g vapor, spray, or<br />

dusts. In case of pois<strong>on</strong><strong>in</strong>g accidents,<br />

take the follow<strong>in</strong>g first aid measures:<br />

1. Remove the affected pers<strong>on</strong> from<br />

the sprayed area.<br />

2. Keep the patient at rest and warm,<br />

but avoid overheat<strong>in</strong>g.<br />

3. Remove all protective cloth<strong>in</strong>g and<br />

other wet or c<strong>on</strong>tam<strong>in</strong>ated cloth<strong>in</strong>g.<br />

Wash any affected body parts thoroughly<br />

with soap and water. When the<br />

eyes are c<strong>on</strong>tam<strong>in</strong>ated, wash them<br />

with plenty of clean water, normal<br />

sal<strong>in</strong>e, or phosphate buffer for about<br />

15 m<strong>in</strong> and cover them with<br />

sterilized pads.<br />

4. Make sure the patient is breath<strong>in</strong>g<br />

and be prepared to give artificial<br />

respirati<strong>on</strong>.<br />

5. If a herbicide has been swallowed,<br />

and the patient is awake, <strong>in</strong>duce vomit<strong>in</strong>g<br />

by tickl<strong>in</strong>g the back of the pers<strong>on</strong>’s<br />

throat with a clean f<strong>in</strong>ger or by giv<strong>in</strong>g<br />

warm salty water (2 tablespo<strong>on</strong>s of salt<br />

<strong>in</strong> a glass of water). Vomit<strong>in</strong>g can be<br />

<strong>in</strong>duced <strong>on</strong>ly <strong>in</strong> a c<strong>on</strong>scious pers<strong>on</strong>.<br />

Reta<strong>in</strong> samples of vomit for analysis <strong>in</strong><br />

the hospital.<br />

6. Do not attempt to adm<strong>in</strong>ister<br />

anyth<strong>in</strong>g by mouth to an unc<strong>on</strong>scious<br />

patient.<br />

7. If the patient is c<strong>on</strong>vuls<strong>in</strong>g, ensure<br />

that cloth<strong>in</strong>g is loose around the neck<br />

and that air passages are free. Place<br />

someth<strong>in</strong>g str<strong>on</strong>g between the teeth to<br />

prevent bit<strong>in</strong>g the t<strong>on</strong>gue.<br />

8. Obta<strong>in</strong> medical help as so<strong>on</strong> as<br />

possible. Depend<strong>in</strong>g <strong>on</strong> the severity of<br />

exposure, the patient should either be<br />

exam<strong>in</strong>ed by a doctor immediately or<br />

taken to hospital. In most cases of<br />

pois<strong>on</strong><strong>in</strong>g or overexposure to chemicals<br />

<strong>in</strong> the field, it is most practical to<br />

take the patient to the nearest casualty<br />

or emergency unit. In all cases, the<br />

chemical <strong>in</strong>volved should be<br />

identified.<br />

For more <strong>in</strong>formati<strong>on</strong> <strong>on</strong> agropesti-<br />

cides and their management, refer to<br />

Agro-pesticides: their management and<br />

applicati<strong>on</strong> by Oudejans (1982).<br />

Herbicide use 63


Chapter 5<br />

Pr<strong>in</strong>cipal rice herbicides<br />

Herbicides play an important role <strong>in</strong><br />

<strong>in</strong>tegrated weed management <strong>in</strong> rice.<br />

Early-seas<strong>on</strong> weed competiti<strong>on</strong><br />

significantly reduces rice gra<strong>in</strong> yield,<br />

and preemergence herbicide treat-<br />

ments are widely used. But most weed<br />

seeds germ<strong>in</strong>ate over a l<strong>on</strong>g time, and<br />

preemergence herbicides, with their<br />

relatively short residual life, may not<br />

c<strong>on</strong>trol weeds l<strong>on</strong>g enough to opti-<br />

mize rice yields. Then, postemergence<br />

herbicides may be needed al<strong>on</strong>g with<br />

other c<strong>on</strong>trol measures. Moreover, any<br />

<strong>on</strong>e herbicide may not c<strong>on</strong>trol all the<br />

weeds present <strong>in</strong> a ricefield. Herbicide<br />

mixtures are used to obta<strong>in</strong> a wider<br />

range of weed c<strong>on</strong>trol.<br />

Herbicide mixtures,<br />

rotati<strong>on</strong>s, and<br />

sequences<br />

Mix<strong>in</strong>g herbicides and spray<strong>in</strong>g them<br />

simultaneously <strong>in</strong>creases the range of<br />

weed c<strong>on</strong>trol. Us<strong>in</strong>g herbicide mix-<br />

tures can also save time and reduce<br />

applicati<strong>on</strong> costs. A broadleaf herbi-<br />

cide and a grass herbicide are often<br />

mixed together (e.g., bensulfur<strong>on</strong> +<br />

butachlor). Residual and foliar c<strong>on</strong>tact<br />

herbicides may be comb<strong>in</strong>ed (e.g.,<br />

thiobencarb + 2,4-D).<br />

Herbicides that may be comb<strong>in</strong>ed<br />

often are sold as formulated products.<br />

When these are not available, two or<br />

more herbicides may be mixed <strong>in</strong> the<br />

spray tank at the time of applicati<strong>on</strong>-<br />

a tank-mix comb<strong>in</strong>ati<strong>on</strong>. Comb<strong>in</strong>a-<br />

ti<strong>on</strong>s must be selected carefully and<br />

comply with manufacturers’ recom-<br />

mendati<strong>on</strong>s to avoid product<br />

<strong>in</strong>compatibility.<br />

Herbicide classificati<strong>on</strong><br />

and uses<br />

The herbicides comm<strong>on</strong>ly used for<br />

weed c<strong>on</strong>trol <strong>in</strong> rice are described<br />

here. Table 5.1 lists the weeds c<strong>on</strong>-<br />

trolled by the herbicides. Details <strong>on</strong><br />

their use are discussed <strong>in</strong> Chapters 6-9.<br />

Every effort has been made to ensure<br />

that the <strong>in</strong>formati<strong>on</strong> presented is<br />

correct (Roberts 1982, Swarbrick 1984,<br />

Attwood 1985, Chemical and Pharma-<br />

ceutical Press 1986, Thoms<strong>on</strong> 1986,<br />

Worth<strong>in</strong>g 1987). But because herbicide<br />

activity varies from locality to locality,<br />

<strong>on</strong>ly general recommendati<strong>on</strong>s are<br />

given. Specific recommendati<strong>on</strong>s<br />

should be obta<strong>in</strong>ed from weed special-<br />

ists <strong>in</strong> the reader’s locality.<br />

Most herbicides are organic com-<br />

pounds. Herbicides are c<strong>on</strong>sidered<br />

ideal if they are toxicologically safe,<br />

selective to rice, cost-effective, effective<br />

<strong>on</strong> weeds, and have no last<strong>in</strong>g adverse<br />

effects <strong>on</strong> the envir<strong>on</strong>ment. Herbicides<br />

may be classified, for c<strong>on</strong>venience, by<br />

method and tim<strong>in</strong>g of applicati<strong>on</strong>. Or<br />

they may be classified by chemical<br />

group, which also gives an <strong>in</strong>dicati<strong>on</strong><br />

about how the herbicide may be used.<br />

Anilides<br />

Anilides are used to c<strong>on</strong>trol germ<strong>in</strong>at-<br />

<strong>in</strong>g annual weeds, especially grasses.<br />

They often are most active as surface<br />

preemergence treatments. The primary<br />

mechanism of acti<strong>on</strong> is through <strong>in</strong>ter-<br />

ference with nucleic acid and prote<strong>in</strong><br />

synthesis. Butachlor, pretilachlor, and<br />

propanil are examples of this group.<br />

Butuchlor. Butachlor is absorbed<br />

primarily through germ<strong>in</strong>at<strong>in</strong>g shoots<br />

and sec<strong>on</strong>darily through roots. Its<br />

mode of acti<strong>on</strong> is <strong>in</strong>hibiti<strong>on</strong> of prote<strong>in</strong><br />

synthesis. It is used at 2-3 kg ai/ha for<br />

preemergence c<strong>on</strong>trol of most annual<br />

grasses at the 1- to 2-leaf stages and of<br />

certa<strong>in</strong> broadleaf weeds, and can be<br />

applied postemergence. For trans-<br />

planted rice, it is applied 3-7 d after<br />

transplant<strong>in</strong>g. For direct seeded rice, it<br />

is applied 10-12 d after emergence.<br />

Pr<strong>in</strong>cipal herbicides 65


Table 5.1. Susceptibilitles a of important rice weeds to comm<strong>on</strong> rice herbicides (treatment at recommended doses and applicati<strong>on</strong> times).<br />

Herbicide<br />

<strong>Weed</strong><br />

Acanthospennum hispidum<br />

Aeschynomene vig<strong>in</strong>ica<br />

Ageratum c<strong>on</strong>yzoides<br />

Altemanthera sessilis<br />

Amaranthus sp<strong>in</strong>osus<br />

Ammannia cocc<strong>in</strong>ea<br />

Bidens pilosa<br />

Brachiaria mutica<br />

Commel<strong>in</strong>a benghalensis<br />

Cynod<strong>on</strong> dactyl<strong>on</strong><br />

Cyperus difformis<br />

Cyperus esculentus<br />

Cyperus iria<br />

Dactyloctenium aegyptium<br />

Digitaria sangu<strong>in</strong>alis<br />

Ech<strong>in</strong>ochloa col<strong>on</strong>a<br />

Ech<strong>in</strong>ochloa crus-galli<br />

Ech<strong>in</strong>ochloa glabrescens<br />

Eclipta alba<br />

Eichhornia crassipes<br />

Eleus<strong>in</strong>e <strong>in</strong>dica<br />

Eleocharis acicularis<br />

Euphorbia hirta<br />

Fimbristylis miliacea<br />

lmperata cyl<strong>in</strong>drica<br />

Ipomoea aquatica<br />

Ischaemum rugosum<br />

Leersia hexandra<br />

Leptochloa ch<strong>in</strong>ensis<br />

Ludwigia octovalvis<br />

Marsilea m<strong>in</strong>uta<br />

M<strong>on</strong>ochoria vag<strong>in</strong>alis<br />

Nymphaea stellata<br />

Cyperus rotundus<br />

S<br />

R<br />

S<br />

S<br />

R<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

R<br />

S<br />

R<br />

S<br />

S<br />

S<br />

MS<br />

R<br />

R<br />

R<br />

R<br />

R<br />

S<br />

R<br />

S<br />

S<br />

R<br />

R<br />

R<br />

R<br />

S<br />

S<br />

S<br />

MR<br />

S<br />

S<br />

R<br />

S<br />

MS<br />

S<br />

R<br />

MR<br />

MR<br />

MR<br />

MS<br />

S<br />

R<br />

S<br />

MR<br />

R<br />

S<br />

S<br />

S<br />

R<br />

R<br />

R<br />

S<br />

MS<br />

S<br />

R<br />

S<br />

S<br />

S<br />

S<br />

MR<br />

S<br />

S<br />

S<br />

R<br />

R<br />

S<br />

R<br />

S<br />

S<br />

S<br />

S<br />

S<br />

R<br />

S<br />

S<br />

R<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

R<br />

R<br />

S<br />

S<br />

S<br />

s<br />

R<br />

S<br />

S<br />

S<br />

S<br />

R<br />

S<br />

MS<br />

S<br />

S<br />

S<br />

R<br />

S<br />

R<br />

MS<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

R<br />

MR<br />

R<br />

S<br />

MS<br />

S<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

S<br />

S<br />

R<br />

MS<br />

S<br />

R<br />

S<br />

R<br />

R<br />

R<br />

S<br />

S<br />

S<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

S<br />

R<br />

MS<br />

R<br />

R<br />

R<br />

R<br />

S<br />

S<br />

S<br />

S<br />

S<br />

R<br />

R<br />

S<br />

R<br />

R<br />

MR<br />

R<br />

S<br />

S<br />

S<br />

R<br />

MR<br />

R<br />

R<br />

R<br />

S<br />

S<br />

R<br />

MR<br />

R<br />

S<br />

S<br />

S<br />

S<br />

MR<br />

MR<br />

MR<br />

MR<br />

S<br />

S<br />

R<br />

R<br />

S<br />

S<br />

R<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

MS<br />

MS<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

R<br />

R<br />

S<br />

MS<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

S<br />

S<br />

R<br />

MS<br />

S<br />

R<br />

R<br />

R<br />

R<br />

S<br />

S<br />

S<br />

S<br />

R<br />

MS<br />

MR<br />

S<br />

R<br />

S<br />

S<br />

S<br />

S<br />

S<br />

MS<br />

R<br />

R<br />

S<br />

MR<br />

MS<br />

S<br />

S<br />

S<br />

MR<br />

R<br />

MR<br />

R<br />

MS<br />

S<br />

R<br />

S<br />

S<br />

S<br />

S<br />

S<br />

MR<br />

S<br />

R<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

R<br />

S<br />

R<br />

S<br />

S<br />

R<br />

R<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

R<br />

S<br />

R<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

MR<br />

MR<br />

R<br />

S<br />

S<br />

S<br />

R<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

MS<br />

S<br />

S<br />

S<br />

S<br />

R<br />

MR<br />

S<br />

S<br />

S<br />

S<br />

S<br />

R<br />

S<br />

R<br />

R<br />

R<br />

S<br />

R<br />

S<br />

R<br />

S<br />

S<br />

S<br />

S<br />

S<br />

R<br />

S<br />

MR<br />

S<br />

R<br />

S<br />

R<br />

S<br />

S<br />

S<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

S<br />

R<br />

S<br />

R<br />

S<br />

S<br />

S<br />

R<br />

R<br />

S<br />

R<br />

R<br />

R<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

R<br />

S<br />

S<br />

S<br />

S<br />

R<br />

R<br />

R<br />

S<br />

R<br />

S<br />

R<br />

S<br />

MR<br />

S<br />

S<br />

S<br />

MR<br />

MS<br />

S<br />

S<br />

R<br />

S<br />

MR<br />

S<br />

S<br />

MS<br />

MS<br />

MR<br />

MR<br />

MR<br />

S<br />

S<br />

S<br />

MR<br />

MS<br />

R<br />

MS<br />

R<br />

R<br />

R<br />

MR<br />

MR<br />

R<br />

S<br />

R<br />

S<br />

R<br />

R<br />

S<br />

S<br />

S<br />

S<br />

MR<br />

S<br />

S<br />

R<br />

S<br />

R<br />

MS<br />

MR<br />

S<br />

MS<br />

MS<br />

S<br />

S<br />

S<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

S<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

S


Butachlor <strong>in</strong> soil is broken down by<br />

microbial activity. In soil or water, it is<br />

rapidly c<strong>on</strong>verted to water-soluble<br />

derivatives. It may persist for 6-10 wk.<br />

Formulati<strong>on</strong>s available <strong>in</strong>clude<br />

granules and emulsifiable c<strong>on</strong>centrate.<br />

When applied postemergence, it can<br />

be tank-mixed with propanil.<br />

Water solubility is 20 mg/liter at<br />

20 °C. LD 50 for rats is 2,000 mg/kg.<br />

C<strong>on</strong>tact causes irritati<strong>on</strong> to sk<strong>in</strong> and<br />

eyes. It has high fish toxicity-LC 50<br />

(96 h) for carp is 0.32 mg/liter.<br />

Pretilachlor. Pretilachlor is a selective<br />

chloroacetamide rice herbicide<br />

that can be applied before transplant<strong>in</strong>g<br />

or any time between transplant<strong>in</strong>g<br />

and weed emergence. Pretilachlor at<br />

0.6 kg ai/ha is well-tolerated by transplanted<br />

rice, but it cannot be used for<br />

direct seeded rice without an antidote.<br />

<strong>Rice</strong> can be protected aga<strong>in</strong>st <strong>in</strong>jury by<br />

apply<strong>in</strong>g fenclorim <strong>on</strong>e day before, at<br />

the same time as, or up to 3 d after,<br />

pretilachlor applicati<strong>on</strong> (Christ 1985).<br />

Fenclorim is also effective <strong>in</strong> protect<strong>in</strong>g<br />

water seeded rice, but is not<br />

suitable for use <strong>on</strong> upland rice.<br />

Water solubility is 50 mg/liter at<br />

20 °C. LD 50 is 6,099 mg/kg. It has high<br />

fish toxicity-LC<br />

50 (96 h) for ra<strong>in</strong>bow<br />

trout is 0.9 mg/liter.<br />

Propanil. Propanil is a c<strong>on</strong>tact<br />

herbicide that can be applied post-<br />

emergence. It is effective aga<strong>in</strong>st<br />

several grassy and broadleaf weeds at<br />

the 2- to 3-leaf stages, and has no<br />

residual effects. Its effectiveness<br />

decreases <strong>on</strong> grasses to negligible at<br />

the tiller<strong>in</strong>g stage. <strong>Rice</strong> is extremely<br />

tolerant of propanil because rice plants<br />

have high levels of the hydrolyz<strong>in</strong>g<br />

enzyme aryl acylamidase, which<br />

detoxifies propanil.<br />

Pr<strong>in</strong>cipal herbicides 67


Propanil can be used at 3-4 kg ai/ha<br />

<strong>in</strong> irrigated and ra<strong>in</strong>fed rice. It should<br />

be applied when most weeds have<br />

emerged. The water level <strong>in</strong> a flooded<br />

ricefield should be lowered to expose<br />

weeds about 24 h before propanil<br />

applicati<strong>on</strong>. Raise the water level aga<strong>in</strong><br />

1-3 d after treatment, before any new<br />

weeds emerge. A slight leaf burn may<br />

occur <strong>on</strong> rice after applicati<strong>on</strong>, but the<br />

rice plant normally recovers quickly.<br />

Propanil should not be applied if<br />

ra<strong>in</strong> threatens to fall with<strong>in</strong> 5-6 h after<br />

applicati<strong>on</strong>. It should not be applied to<br />

rice at the late tiller<strong>in</strong>g stage, about<br />

60 d after plant<strong>in</strong>g. Propanil-treated<br />

rice crops should not be treated with<br />

organophosphorus or carbamate <strong>in</strong>-<br />

secticides with<strong>in</strong> 14 d before or after<br />

treatment because those <strong>in</strong>secticides<br />

<strong>in</strong>hibit the detoxificati<strong>on</strong> of propanil<br />

by rice. Commercial mixtures <strong>in</strong>clude<br />

propanil + mol<strong>in</strong>ate, propanil +<br />

bentaz<strong>on</strong>, and propanil + bifenox.<br />

Water solubility is 0.2 g/liter at<br />

25 °C. LD 50 is 1,400 mg/kg. It has high<br />

fish toxicity-LC<br />

50 (96 h) is<br />

13 mg/liter, <strong>in</strong>dicat<strong>in</strong>g that streams<br />

and lakes should be protected from<br />

c<strong>on</strong>tam<strong>in</strong>ati<strong>on</strong>.<br />

Bipyridyliums<br />

Herbicides from this group are<br />

primarily postemergence, foliar-act<strong>in</strong>g<br />

compounds with no soil activity.<br />

Paraquat and diquat are generally<br />

n<strong>on</strong>selective. On treated plants,<br />

toxicity symptoms are a characteristic<br />

rapid scorch and desiccati<strong>on</strong>. Light,<br />

oxygen, and chlorophyll are required<br />

for maximum manifestati<strong>on</strong> of<br />

phytotoxicity.<br />

68 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Paraquat. Paraquat is n<strong>on</strong>selective,<br />

with fast c<strong>on</strong>tact acti<strong>on</strong> when applied<br />

postemergence. It kills most annual<br />

weeds and grasses, <strong>in</strong>clud<strong>in</strong>g rice. It<br />

can be used <strong>in</strong> zero tillage or m<strong>in</strong>i-<br />

mum tillage systems and <strong>in</strong> stale<br />

seedbed land preparati<strong>on</strong>, at applica-<br />

ti<strong>on</strong> rates of 140 to 840 g ai/ha. It is<br />

rapidly <strong>in</strong>activated <strong>on</strong> c<strong>on</strong>tact with soil<br />

by str<strong>on</strong>g adsorpti<strong>on</strong> to clay.<br />

Water solubility is 70 g/liter at<br />

20 °C. LD 50 for rats is 150 mg<br />

paraquat/kg. It has medium fish<br />

toxicity, depend<strong>in</strong>g <strong>on</strong> the formulati<strong>on</strong><br />

used-LC<br />

50 (96 h) for ra<strong>in</strong>bow trout is<br />

32 mg/liter.<br />

D<strong>in</strong>itroanil<strong>in</strong>es<br />

Butral<strong>in</strong> and pendimethal<strong>in</strong> are<br />

examples of d<strong>in</strong>itroanil<strong>in</strong>es. Members<br />

of this family are active when applied<br />

to the soil and must be applied before<br />

weed seed germ<strong>in</strong>ati<strong>on</strong>. In general,<br />

d<strong>in</strong>itroanil<strong>in</strong>e herbicides do not<br />

c<strong>on</strong>trol established weeds. Their mode<br />

of acti<strong>on</strong> is <strong>in</strong>hibiti<strong>on</strong> of both root and<br />

shoot development (mitotic pois<strong>on</strong>).<br />

Butral<strong>in</strong>. Butral<strong>in</strong> is a preemergence<br />

herbicide. It is selective to upland rice<br />

when applied pre-emergence and to<br />

pregerm<strong>in</strong>ated rice at the 1- to 4-leaf<br />

stages (4-6 d after seed<strong>in</strong>g). It is active<br />

aga<strong>in</strong>st many broadleaf weeds.<br />

Water solubility is 1 mg/liter at<br />

24 °C. LD 50 for alb<strong>in</strong>o rats is 12,600<br />

mg/kg. It has high fish toxicity-LC<br />

50<br />

(48 h) for ra<strong>in</strong>bow trout is 3.4 mg/liter.<br />

Pendimethal<strong>in</strong>. Pendimethal<strong>in</strong> used<br />

as a preemergence herbicide <strong>in</strong>hibits<br />

germ<strong>in</strong>ati<strong>on</strong> and seedl<strong>in</strong>g develop-<br />

ment of susceptible weeds. Where<br />

grasses are expected to be a problem, it<br />

should be applied after plant<strong>in</strong>g and<br />

before emergence of rice and weeds. It<br />

can also be applied as a postemer-<br />

gence treatment with propanil, which<br />

comb<strong>in</strong>es the direct c<strong>on</strong>tact acti<strong>on</strong> of<br />

propanil and the residual activity of<br />

pendimethal<strong>in</strong>. Because soil and<br />

weeds must be completely exposed to<br />

spray coverage, no floodwater should<br />

be <strong>on</strong> the field at the time of applica-<br />

ti<strong>on</strong>. The residual activity of<br />

pendimethal<strong>in</strong> is activated by mois-<br />

ture. It is most effective when ade-<br />

quate ra<strong>in</strong>fall or irrigati<strong>on</strong> is received<br />

with<strong>in</strong> 7 d after applicati<strong>on</strong>.<br />

Water solubility is 0.3 mg/liter at<br />

20 ºC. LD 50 for alb<strong>in</strong>o rats is 1,050-1,250<br />

mg/kg. It has high fish toxicity-<br />

LC 50 (96 h) for channel catfish is<br />

0.42 mg/liter.<br />

Diphenyl ethers<br />

This group <strong>in</strong>cludes bifenox,<br />

fluorodifen, oxyfluorfen, and<br />

chlomethoxynil. Diphenyl ether<br />

herbicides are classified as c<strong>on</strong>tact<br />

herbicides. When applied preemer-<br />

gence, they <strong>in</strong>hibit seed germ<strong>in</strong>ati<strong>on</strong><br />

and early seedl<strong>in</strong>g growth. They are<br />

relatively <strong>in</strong>soluble <strong>in</strong> water, and do<br />

not readily leach. They are used<br />

pr<strong>in</strong>cipally preemergence or early pos-<br />

temergence to c<strong>on</strong>trol broadleaf weeds<br />

and grassy weed seedl<strong>in</strong>gs. In general,<br />

these herbicides more effectively<br />

c<strong>on</strong>trol broadleaf seedl<strong>in</strong>gs than<br />

grassy seedl<strong>in</strong>gs.<br />

Bifenox. Bifenox is primarily a<br />

broadleaf herbicide. It can be applied<br />

at 2 kg ai/ha as preemergence or<br />

postemergence up to the 2-leaf stage of<br />

rice. Bifenox has been found to be<br />

highly toxic to direct seeded flooded<br />

rice, result<strong>in</strong>g <strong>in</strong> low gra<strong>in</strong> yields (IRRI<br />

1974). Mixtures <strong>in</strong>clude bifenox +<br />

2,4-D and bifenox + propanil.


LD 50 for rats is more than 6,400 mg/<br />

kg. It has high fish toxicity-LC 50<br />

(96 h) for ra<strong>in</strong>bow trout is 27 mg/liter.<br />

Glyphosate is absorbed through the<br />

foliage and translocated throughout<br />

the plant. The additi<strong>on</strong> of certa<strong>in</strong> salts<br />

Fluorodifen. Fluorodifen is a<br />

to glyphosate formulati<strong>on</strong>s can<br />

preemergence and postemergence substantially <strong>in</strong>crease phytotoxicity <strong>in</strong><br />

c<strong>on</strong>tact herbicide. It can be used at some cases. Amm<strong>on</strong>ium salts are<br />

3-4 kg ai/ha to c<strong>on</strong>trol some broadleaf c<strong>on</strong>sistently effective <strong>in</strong> <strong>in</strong>creas<strong>in</strong>g<br />

weeds and grasses.<br />

performance. Glyphosate is <strong>in</strong>acti-<br />

LD 50 for rats is 9,000 mg/kg. It has<br />

high fish toxicity-LC 50 (96 h) for<br />

ra<strong>in</strong>bow trout is 0.18 mg/liter.<br />

vated <strong>on</strong> c<strong>on</strong>tact with soil (Duke 1988).<br />

Translocati<strong>on</strong> to underground organs<br />

of perennials prevents regrowth from<br />

Oxyfluorfen. Oxyfluorfen is used these sites and results <strong>in</strong> their subseeither<br />

preemergence or postemer- quent destructi<strong>on</strong>. For best c<strong>on</strong>trol of<br />

gence. It is a c<strong>on</strong>tact herbicide<br />

perennial weeds, the plant should not<br />

requir<strong>in</strong>g light for activity. It is be disturbed by tillage until translocaabsorbed<br />

more readily by shoots than ti<strong>on</strong> is completed-about 2 wk.<br />

by roots. Most annual broadleaf weeds Visible effects of glyphosate<br />

and grasses are c<strong>on</strong>trolled at relatively normally occur <strong>in</strong> 2-4 d <strong>in</strong> annual<br />

low rates of 0.15-2.25 kg ai/ha. It is species and <strong>in</strong> 7-20 d <strong>in</strong> perennial<br />

more effective <strong>on</strong> broadleaf weeds species. Ra<strong>in</strong>fall occurr<strong>in</strong>g with<strong>in</strong> 6 h<br />

than <strong>on</strong> grasses, and is most active as a after treatment may reduce effectivepostemergence<br />

treatment when weeds ness.<br />

are small.<br />

Glyphosate can be used <strong>in</strong> zero-<br />

Water solubility is 0.1 mg/liter at tillage or m<strong>in</strong>imum-tillage system of<br />

20 °C. LD 50 for dogs is at least 5,000 rice producti<strong>on</strong>, especially where<br />

mg/kg. It is highly toxic to aquatic perennial weeds are a problem. It<br />

<strong>in</strong>vertebrates and fish.<br />

should not be applied to grow<strong>in</strong>g rice.<br />

Water solubility is 10 g/liter at<br />

25°C. LD 50 for rats is 5,000 mg/kg.<br />

Fish toxicity-LC 50 (96 h) for trout is<br />

86 mg/liter.<br />

Organophosphorus compounds<br />

Organophosphorus herbicides are<br />

primarily foliar act<strong>in</strong>g; they have no<br />

activity through the soil. A major<br />

example is glyphosate.<br />

Glyphosate. Glyphosate is a broad-<br />

spectrum, postemergence, n<strong>on</strong>selec-<br />

tive, translocated herbicide. It is<br />

effective <strong>in</strong> deep-rooted perennial<br />

weeds and annual grasses, sedges, and<br />

broadleaf weeds. Applicati<strong>on</strong> rates<br />

range from 0.5 to 4.0 kg ai/ha, with<br />

most perennials requir<strong>in</strong>g<br />

1.5-2.5 kg ai/ha.<br />

Phenoxy acetic acids<br />

Phenoxys are a type of growth<br />

horm<strong>on</strong>e, generally used as foliar-<br />

applied, translocated herbicides.<br />

Phenoxy acetic acid herbicides tend to<br />

accumulate <strong>in</strong> the grow<strong>in</strong>g po<strong>in</strong>ts of<br />

plants. Result<strong>in</strong>g abnormal cell divi-<br />

si<strong>on</strong> and growth <strong>in</strong>terfere with nucleic<br />

acid metabolism and disrupt the trans-<br />

locati<strong>on</strong> system. Most phenoxy herbi-<br />

cides are formulated as salts and esters<br />

of their parent acids. Members of the<br />

group <strong>in</strong>clude 2,4-D, fenoprop (silvex),<br />

MCPA, and 2,4,5-T. Phenoxys are used<br />

selectively to c<strong>on</strong>trol annual and<br />

perennial broadleaf weeds. Grass<br />

seedl<strong>in</strong>gs also may be c<strong>on</strong>trolled, but<br />

there is little or no c<strong>on</strong>trol of estab-<br />

lished grassy weeds.<br />

2,4-D. 2,4-D is a systemic herbicide.<br />

Postemergence applicati<strong>on</strong> of 2,4-D<br />

c<strong>on</strong>trols sedges and broadleaf and<br />

aquatic weeds. It normally does not<br />

c<strong>on</strong>trol grasses. It can be applied <strong>in</strong><br />

rice at 0.4-0.8 kg ai/ha 3-4 wk after<br />

weeds have emerged. It can also be<br />

applied 4 d after transplant<strong>in</strong>g at<br />

0.8 kg ai/ha to c<strong>on</strong>trol some annual<br />

grasses <strong>in</strong> additi<strong>on</strong> to sedges and<br />

broadleaf weeds. 2,4-D mixtures with<br />

bifenox, piperophos, butachlor, and<br />

thiobencarb are available for use <strong>in</strong><br />

rice. Butachlor + 2,4-D mixture has<br />

been found extremely toxic to irrigated<br />

wet seeded rice (IRRI 1985). <strong>Rice</strong> is<br />

susceptible to 2,4-D at emergence,<br />

<strong>in</strong>cipient tiller<strong>in</strong>g, boot<strong>in</strong>g, and<br />

head<strong>in</strong>g.<br />

Water solubility is 620 mg/liter at<br />

20 °C. LD 50 for rats is 375 mg/kg. 2,4-D<br />

is not toxic to fish. LC 50 (24 h) of the<br />

sodium salt for ra<strong>in</strong>bow trout is<br />

1,160 mg/liter.<br />

MCPA. MCPA is a postemergence,<br />

selective, translocated broadleaf<br />

herbicide. In rice, it is similar to 2,4-D<br />

but is more selective at the same<br />

applicati<strong>on</strong> rate. It is normally applied<br />

at 0.2-1.2 kg ai/ha. Mixtures available<br />

<strong>in</strong>clude MCPA + bentaz<strong>on</strong>. MCPA<br />

should be applied to rice from<br />

midtiller<strong>in</strong>g to maximum tiller<strong>in</strong>g<br />

stages. It should not be sprayed at the<br />

boot<strong>in</strong>g stage.<br />

Water solubility is 825 mg/liter at<br />

20 °C. LD 50 for rats is 700 mg/kg.<br />

LC 50 (96 h) for ra<strong>in</strong>bow trout is<br />

232 mg/liter.<br />

Pr<strong>in</strong>cipal herbicides 69


Thiocarbamates<br />

Thiocarbamates are active when<br />

applied to the soil. Some are highly<br />

volatile, which makes soil <strong>in</strong>corpora-<br />

ti<strong>on</strong> necessary. Thiocarbamate herbi-<br />

cides c<strong>on</strong>trol germ<strong>in</strong>at<strong>in</strong>g annual<br />

grassy and broadleaf weeds. The<br />

process of lipid biosynthesis appears<br />

to be the most sensitive to thiocar-<br />

bamates. Examples of this group are<br />

thiobencarb and mol<strong>in</strong>ate. Most<br />

thiocarbamate herbicides have a<br />

relatively short soil persistence. Recent<br />

evidence (Roeth 1986) has shown<br />

<strong>in</strong>creased breakdown of some thiocar-<br />

bamate herbicides <strong>in</strong> soils with a<br />

history of thiocarbamates applicati<strong>on</strong>.<br />

Mol<strong>in</strong>ate. Mol<strong>in</strong>ate is a herbicide for<br />

selective weed c<strong>on</strong>trol <strong>in</strong> rice at<br />

2-4 kg ai/ha. It is particularly effective<br />

for c<strong>on</strong>troll<strong>in</strong>g Ech<strong>in</strong>ochloa weed<br />

species. It can be applied as a granular<br />

formulati<strong>on</strong> to the water <strong>in</strong> flooded<br />

rice. Emulsifiable c<strong>on</strong>centrates<br />

applied to the soil surface are<br />

extremely volatile and must be<br />

<strong>in</strong>corporated immediately. Mol<strong>in</strong>ate<br />

can be applied before sow<strong>in</strong>g rice, at<br />

postemergence preflood, at flood<strong>in</strong>g,<br />

or postflood. Moisture is required to<br />

activate mol<strong>in</strong>ate. In pre-flood treat-<br />

ment, the area should be flooded as<br />

so<strong>on</strong> as possible. Once applied, a<br />

c<strong>on</strong>t<strong>in</strong>uous water cover must be ma<strong>in</strong>-<br />

ta<strong>in</strong>ed. <strong>Rice</strong> is extremely tolerant of<br />

this herbicide. Cool temperatures will<br />

cause less than optimal weed c<strong>on</strong>trol.<br />

Commercial mixtures <strong>in</strong>clude<br />

mol<strong>in</strong>ate + propanil.<br />

Water solubility is 880 mg/liter at<br />

20 ºC. LD 50 for male rats is 369 mg/kg.<br />

LC 50 (96 h) for goldfish is 30 mg/liter.<br />

At recommended rates, mol<strong>in</strong>ate had<br />

no detectable effects <strong>on</strong> fish <strong>in</strong> ditches<br />

dra<strong>in</strong><strong>in</strong>g water from treated ricefields<br />

<strong>in</strong> California.<br />

70 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Thiobencarb. Thiobencarb is more<br />

effective <strong>on</strong> grasses and sedges than<br />

<strong>on</strong> broadleaf weeds. Thiobencarb<br />

<strong>in</strong>terferes with prote<strong>in</strong> synthesis and<br />

<strong>in</strong>hibits photosynthesis. Prote<strong>in</strong><br />

synthesis and amylase biosynthesis are<br />

<strong>in</strong>hibited more <strong>in</strong> susceptible grass<br />

species than <strong>in</strong> rice.<br />

In transplanted rice, thiobencarb<br />

shows maximum herbicidal selectivity<br />

by tak<strong>in</strong>g advantage of differences <strong>in</strong><br />

growth between rice seedl<strong>in</strong>gs at the<br />

3- to 6-leaf stages and germ<strong>in</strong>at<strong>in</strong>g<br />

weeds. Thiobencarb (2-3 kg ai/ha) is<br />

distributed <strong>in</strong> the top soil after applica-<br />

ti<strong>on</strong> and is readily leached from the<br />

soil. <strong>Rice</strong> plant <strong>in</strong>jury symptoms<br />

<strong>in</strong>clude dwarf malformati<strong>on</strong> and deep<br />

green<strong>in</strong>g. In some cases, leaf scorch<strong>in</strong>g<br />

appears.<br />

Thiobencarb should be applied<br />

between preemergence and the 2-leaf<br />

stage of Ech<strong>in</strong>ochloa spp. because<br />

herbicidal activity decreases after this<br />

stage. For post-emergence applicati<strong>on</strong>,<br />

thiobencarb should be applied after<br />

the 1.5-leaf stage of rice to the 2- to<br />

3-leaf stage of Ech<strong>in</strong>ochloa spp. to<br />

obta<strong>in</strong> the best weed kill without<br />

damag<strong>in</strong>g the rice. Cool temperatures<br />

may delay <strong>on</strong>set of herbicidal activity.<br />

Commercial mixtures available<br />

<strong>in</strong>clude thiobencarb + propanil and<br />

thiobencarb + simetryn.<br />

Water solubility is 30 mg/liter at<br />

20 °C. LD 50 for rats is 1,300 mg/kg.<br />

LC 50 (48 h) is 3.6 mg/liter for carp.<br />

Triaz<strong>in</strong>es<br />

The triaz<strong>in</strong>es are a large group of<br />

herbicides. They are applied preemer-<br />

gence and postemergence to c<strong>on</strong>trol<br />

seedl<strong>in</strong>g grasses and broadleaf weeds.<br />

They c<strong>on</strong>trol broadleaf weeds better<br />

than grasses and do not c<strong>on</strong>trol estab-<br />

lished annual or perennial weeds.<br />

Their mode of acti<strong>on</strong> is through<br />

<strong>in</strong>hibiti<strong>on</strong> of photosynthesis <strong>in</strong> plants.<br />

Simetryn and dimethametryn are<br />

triaz<strong>in</strong>es.<br />

Simetryn. Simetryn is used as a<br />

mixture with thiobencarb to c<strong>on</strong>trol<br />

broadleaf weeds <strong>in</strong> rice. LD 50 for rats is<br />

1,830 mg/kg.<br />

Dimethametryn. Dimethametryn is a<br />

triaz<strong>in</strong>e compound used as a selective,<br />

preemergence, and postemergence<br />

herbicide. It c<strong>on</strong>trols annual broadleaf<br />

weeds and grasses.<br />

Sulf<strong>on</strong>ylureas<br />

Sulf<strong>on</strong>ylureas have very high biolgical<br />

activity, and rates as low as<br />

0.002 kg ai/ha have been used.<br />

Although weed seed germ<strong>in</strong>ati<strong>on</strong> is<br />

not usually affected, subsequent root<br />

and shoot growth are severely <strong>in</strong>hib-<br />

ited <strong>in</strong> sensitive seedl<strong>in</strong>gs. <strong>Weed</strong><br />

growth <strong>in</strong>hibiti<strong>on</strong> is rapid, with visual<br />

symptoms with<strong>in</strong> 1-2 d <strong>in</strong> rapidly<br />

grow<strong>in</strong>g plants. The site of acti<strong>on</strong> of<br />

the sulf<strong>on</strong>ylureas is the enzyme<br />

acetolactate synthase. Inhibiti<strong>on</strong> of this<br />

enzyme, which is needed for the<br />

producti<strong>on</strong> of the essential am<strong>in</strong>o acid<br />

build<strong>in</strong>g blocks val<strong>in</strong>e and isoleuc<strong>in</strong>e,<br />

results <strong>in</strong> rapid cessati<strong>on</strong> of growth<br />

and eventual plant death. All plants<br />

c<strong>on</strong>ta<strong>in</strong> this target enzyme, but the<br />

ability of some plants to rapidly<br />

c<strong>on</strong>vert the herbicide to an <strong>in</strong>active<br />

product is the basis for selectivity<br />

(Beyer et al 1988).<br />

Bensulfur<strong>on</strong>. Bensulfur<strong>on</strong> (0.05 kg<br />

ai/ha) is a sulf<strong>on</strong>ylurea herbicide used<br />

<strong>in</strong> direct seeded and transplanted rice.<br />

It has good crop safety <strong>on</strong> <strong>in</strong>dica rice<br />

varieties, but less crop safety <strong>on</strong><br />

jap<strong>on</strong>ica types. Indica rices metabolize<br />

the herbicide more rapidly than<br />

jap<strong>on</strong>ica rices. Thiocarbamates<br />

herbicides, except mol<strong>in</strong>ate, show an<br />

antidote effect <strong>on</strong> bensulfur<strong>on</strong> through<br />

the accelerati<strong>on</strong> of detoxificati<strong>on</strong> by<br />

rice.


Bensulfur<strong>on</strong> c<strong>on</strong>trols many broadleaf<br />

weeds and sedges. It can be<br />

applied as preemergence or early<br />

postemergence treatment. When used<br />

<strong>in</strong> comb<strong>in</strong>ati<strong>on</strong> with a grass herbicide<br />

such as thiobencarb, mol<strong>in</strong>ate, or<br />

butachlor, bensulfur<strong>on</strong> provides<br />

excellent weed c<strong>on</strong>trol. Applicati<strong>on</strong><br />

can be made up to the 3-leaf stage of<br />

the weeds. Bensulfur<strong>on</strong> provides good<br />

c<strong>on</strong>trol of S. maritimus when applied<br />

6-12 d after emergence of the weed<br />

(Bernasor and De Datta 1986).<br />

Water solubility at 25 °C is<br />

120 mg/liter. LD 50 <strong>in</strong> rats is<br />

75,000 mg/kg. LC 50 (96 h) for ra<strong>in</strong>bow<br />

trout is >150 mg/liter.<br />

Polycyclic alkanoic acids<br />

Polycyclic alkanoic acids c<strong>on</strong>trol grass<br />

weeds. In general, polycyclic alkanoic<br />

acids are lost from the soil through<br />

biodegradati<strong>on</strong>, rather than through<br />

leach<strong>in</strong>g or volatilizati<strong>on</strong>. Ra<strong>in</strong>fall after<br />

foliar applicati<strong>on</strong> can greatly reduce<br />

herbicide absorpti<strong>on</strong> because of a<br />

reduced amount of herbicide <strong>in</strong><br />

c<strong>on</strong>tact with the plant. One example of<br />

the group is fenoxaprop. Herbicides<br />

such as MCPA, 2,4-D, and bentaz<strong>on</strong><br />

antag<strong>on</strong>ize polycyclic alkanoic acids.<br />

Fenoxaprop. Fenoxaprop<br />

(0.03-0.05 kg ai/ha) is a postemergence,<br />

selective herbicide for c<strong>on</strong>trol<br />

of annual and perennial grassy weeds.<br />

It is a c<strong>on</strong>tact herbicide that is partly<br />

systemic. <strong>Rice</strong> is tolerant from the<br />

3-leaf stage to early tiller<strong>in</strong>g.<br />

Fenoxaprop has no soil activity. It<br />

should not be applied with phenoxy<br />

compounds.<br />

Water solubility at 25 °C is<br />

0.8 mg/liter. LD 50 is 2,357 mg/kg.<br />

Miscellaneous herbicides<br />

Several herbicides do not clearly fall<br />

<strong>in</strong>to any of the group<strong>in</strong>gs. These<br />

herbicides differ <strong>in</strong> chemistry, selectivity,<br />

and mode of acti<strong>on</strong>. Bentaz<strong>on</strong>,<br />

chlomethoxynil, c<strong>in</strong>methyl<strong>in</strong>,<br />

oxadiaz<strong>on</strong>, and qu<strong>in</strong>clorac are<br />

examples.<br />

Bentaz<strong>on</strong>. Bentaz<strong>on</strong> (1-2 kg ai/ha)<br />

selectively c<strong>on</strong>trols a number of broadleaf<br />

weeds and sedges, primarily by<br />

c<strong>on</strong>tact acti<strong>on</strong>. Broadleaf weeds at the<br />

2- to 10-leaf stage are c<strong>on</strong>trolled most<br />

readily. Delay <strong>in</strong> applicati<strong>on</strong> will result<br />

<strong>in</strong> <strong>in</strong>adequate c<strong>on</strong>trol. In irrigated rice,<br />

bentaz<strong>on</strong> should be applied <strong>on</strong>ly to<br />

weeds that have emerged above the<br />

water level. Bentaz<strong>on</strong> does not c<strong>on</strong>trol<br />

grasses and has no known preemergence<br />

activity. Available commercial<br />

mixtures <strong>in</strong>clude bentaz<strong>on</strong> + MCPA<br />

and bentaz<strong>on</strong> + propanil.<br />

Water solubility is 500 mg/liter.<br />

LD 50 for rats is about 1,100 mg/kg. It<br />

has low fish toxicity. LC 50 (96 h) for<br />

ra<strong>in</strong>bow trout is 510 mg/liter.<br />

Chlomethoxynil (chlometoxyfen).<br />

Chlomethoxynil is used at<br />

1.5-2.5 kg ai/ha <strong>in</strong> transplanted and<br />

upland rice. It is applied 3-8 d after<br />

transplant<strong>in</strong>g rice.<br />

Water solubility is 0.3 mg/liter at<br />

15 °C. LD 50 for mice is 3,300 mg/kg.<br />

LC 50 (40 h) for carp is 237 mg/liter.<br />

C<strong>in</strong>methyl<strong>in</strong>. C<strong>in</strong>methyl<strong>in</strong> provides<br />

excellent c<strong>on</strong>trol of grasses and<br />

moderate suppressi<strong>on</strong> of broadleaf<br />

weeds and sedges. It has been tested at<br />

100-200 g ai/ha for transplanted rice<br />

4-9 d after transplant<strong>in</strong>g and at<br />

100 g ai/ha for direct seeded rice<br />

7-9 d after seed<strong>in</strong>g.<br />

Water solubility is 61 mg/liter.<br />

LD 50 is 3,900 mg/kg.<br />

Oxadiaz<strong>on</strong>. Oxadiaz<strong>on</strong> is a preemergence<br />

herbicide applied at<br />

0.5-0.75 kg ai/ha. Uptake by weed<br />

seedl<strong>in</strong>g shoots causes plant death<br />

because root uptake is low. Its<br />

postemergence activity aga<strong>in</strong>st grasses<br />

is limited. Because it has low water<br />

solubility and high adsorpti<strong>on</strong>,<br />

oxadiaz<strong>on</strong> is not leached and has good<br />

persistence. It can be used <strong>in</strong> transplanted<br />

and direct seeded rice.<br />

Commercial mixed formulati<strong>on</strong>s<br />

<strong>in</strong>clude oxadiaz<strong>on</strong> + 2,4-D and<br />

oxadiaz<strong>on</strong> + propanil.<br />

Oxadiaz<strong>on</strong> can be specifically<br />

formulated to be applied directly <strong>on</strong>to<br />

the surface of the ricefield floodwater.<br />

A shaker bottle with a calibrated<br />

stopper is used to spread oxadiaz<strong>on</strong><br />

directly <strong>on</strong>to the water without any<br />

diluti<strong>on</strong>. The field should be flooded<br />

3-5 cm at applicati<strong>on</strong> and water should<br />

not be disturbed for 2-5 d after<br />

applicati<strong>on</strong>.<br />

Water solubility is 0.7 mg/liter at<br />

20 °C. LD 50 for rats is more than<br />

8,000 mg/kg. LC 50 (96 h) for ra<strong>in</strong>bow<br />

trout is 1-9 mg/liter; for catfish,<br />

³15.4 mg/liter.<br />

Piperophos. Piperophos is a<br />

piperid<strong>in</strong>e compound used as a<br />

preemergence and postemergence<br />

herbicide. It c<strong>on</strong>trols annual grasses<br />

and sedges. The commercial product<br />

c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g piperophos + dimethame-<br />

tryn <strong>in</strong> the ratio 4:l is used <strong>in</strong> rice to<br />

c<strong>on</strong>trol most annual weeds. It is<br />

applied at 1-2 kg ai/ha at the 2- to<br />

4-leaf stage of weed. It has good selec-<br />

tivity <strong>in</strong> transplanted and upland rice.<br />

Pr<strong>in</strong>cipal herbicides 71


Qu<strong>in</strong>clorac. Qu<strong>in</strong>clorac is a ch<strong>in</strong>o-<br />

l<strong>in</strong>e-carboxylic acid compound used as<br />

a selective preplant, preemergence,<br />

and postemergence herbicide. It has<br />

been experimentally tested <strong>in</strong> rice at<br />

125-300 g ai/ha for grass weed c<strong>on</strong>trol.<br />

Organic matter <strong>in</strong> the soil will decrease<br />

herbicidal activity. Early postemer-<br />

gence applicati<strong>on</strong> when grass weeds<br />

are at the 1- to 3-leaf stage will give the<br />

best results. Although results are best<br />

when qu<strong>in</strong>clorac is applied <strong>on</strong>to<br />

saturated soil, it can also be applied<br />

<strong>on</strong>to dry soil or <strong>in</strong>to stand<strong>in</strong>g water<br />

not deeper than 5 cm. Qu<strong>in</strong>clorac can<br />

be safely used <strong>in</strong> dry seeded and water<br />

seeded rice when applicati<strong>on</strong> is made<br />

postemergence, from the 1- to 2-leaf<br />

stage <strong>on</strong>ward. It may be tank-mixed<br />

with other rice herbicides.<br />

Oral LD 50 , is 2,610 mg/kg.<br />

Differences <strong>in</strong> herbicide<br />

tolerance am<strong>on</strong>g rice<br />

cultivars<br />

<strong>Rice</strong> cultivars may vary <strong>in</strong> their<br />

tolerance for or susceptibility to<br />

herbicides. Broadleaf herbicides are<br />

expected to have little effect <strong>on</strong> rice.<br />

The differences <strong>in</strong> sensitivity to 2,4-D<br />

and MCPA (phenoxy acetic acid<br />

herbicides) that has been observed is<br />

due to differences <strong>in</strong> the growth stage<br />

of the cultivars at the time of herbicide<br />

applicati<strong>on</strong>.<br />

72 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Susceptibility of rice cultivars to<br />

grass herbicides has been observed<br />

with propanil, butachlor, thiobencarb,<br />

pendimethal<strong>in</strong>, mol<strong>in</strong>ate, and<br />

piperophos-dimethametryn. For<br />

example, IR5, IR28, and IR46 are<br />

susceptible to thiobencarb (Sh<strong>in</strong> et a1<br />

1989). Indica varieties are usually more<br />

susceptible to simetryn than are jap<strong>on</strong>-<br />

ica varieties. On the other hand, ben-<br />

sulfur<strong>on</strong> has good crop safety <strong>on</strong><br />

<strong>in</strong>dica rice varieties but less crop safety<br />

<strong>on</strong> jap<strong>on</strong>ica types. Cultivar tolerance<br />

may be due to differences <strong>in</strong> growth<br />

rate, growth stage, morphology, physi-<br />

ology, and biochemistry.<br />

Herbicide selectivity is relative and<br />

can be overcome by <strong>in</strong>creas<strong>in</strong>g dosage<br />

and by changes <strong>in</strong> envir<strong>on</strong>mental<br />

c<strong>on</strong>diti<strong>on</strong>s. Herbicide label <strong>in</strong>forma-<br />

ti<strong>on</strong> should be followed at all times to<br />

prevent severe damage to the rice<br />

crop.


Chapter 6<br />

<strong>Weed</strong> c<strong>on</strong>trol <strong>in</strong> irrigated rice<br />

About 77 milli<strong>on</strong> ha of rice (53% of the<br />

world’s rice area) are partially or fully<br />

irrigated throughout the grow<strong>in</strong>g<br />

seas<strong>on</strong> (IRRI 1988b). In South and<br />

Southeast Asia, irrigated rice com-<br />

prises 33% of the rice-grow<strong>in</strong>g area; <strong>in</strong><br />

temperate Asia, most ricelands are<br />

irrigated. In Europe, Australia, Egypt,<br />

Pakistan, and USA, ricelands are<br />

entirely irrigated.<br />

Irrigated rice is classified <strong>in</strong>to four<br />

culture groups accord<strong>in</strong>g to the crop<br />

establishment technique used.<br />

Transplanted <strong>in</strong> puddled soil.<br />

Direct seeded <strong>on</strong> puddled soil<br />

(broadcast or drill seeded us<strong>in</strong>g<br />

pregerm<strong>in</strong>ated seed).<br />

Direct seeded <strong>on</strong> dry soil (broadcast<br />

or drill seeded us<strong>in</strong>g n<strong>on</strong>germi-<br />

nated seed.<br />

Water seeded.<br />

Transplanted <strong>in</strong><br />

puddled soil<br />

Am<strong>on</strong>g irrigated rice cultures, trans-<br />

planted rice has the lowest potential<br />

loss to weeds, because of the head start<br />

rice seedl<strong>in</strong>gs have over weeds and<br />

because of the weed c<strong>on</strong>trol effects of<br />

floodwater. Despite these advantages,<br />

unc<strong>on</strong>trolled weeds can reduce rice<br />

yields by an average 48%, through<br />

competiti<strong>on</strong> for light and nutrients.<br />

<strong>Weed</strong> problems<br />

The weeds comm<strong>on</strong> <strong>in</strong> transplanted<br />

rice (M<strong>on</strong>ochoria vag<strong>in</strong>alis, Ech<strong>in</strong>ochloa<br />

crus-galli, Cyperus difformis, Cyperus<br />

iria, and Scirpus maritimus) are <strong>in</strong><br />

general highly competitive. They have<br />

disc<strong>on</strong>t<strong>in</strong>uous germ<strong>in</strong>ati<strong>on</strong> and rapid<br />

growth and are adapted to aquatic<br />

c<strong>on</strong>diti<strong>on</strong>s. <strong>Weed</strong>s grow and <strong>in</strong>fest an<br />

irrigated field if optimum water depth<br />

is not ma<strong>in</strong>ta<strong>in</strong>ed. In poorly flooded<br />

ricefields, most semiaquatic lowland<br />

rice weeds can germ<strong>in</strong>ate and survive.<br />

Stand establishment method<br />

Twenty- to 30-d-old rice seedl<strong>in</strong>gs are<br />

normally transplanted <strong>in</strong>to a puddled<br />

soil. In the irrigated rice-grow<strong>in</strong>g areas<br />

of Asia, seedl<strong>in</strong>gs are raised <strong>in</strong> wet<br />

bed, dapog, or dry bed nurseries. In<br />

the wet bed method, pregerm<strong>in</strong>ated<br />

seeds are broadcast uniformly <strong>on</strong> a<br />

raised bed of puddled soil. Seedl<strong>in</strong>gs<br />

are ready for transplant<strong>in</strong>g 20-25 d<br />

after sow<strong>in</strong>g. In the dry bed method,<br />

seedl<strong>in</strong>gs are grown similarly, but the<br />

soil is not puddled and dra<strong>in</strong>age is<br />

provided.<br />

<strong>Weed</strong>s <strong>in</strong> rice seedl<strong>in</strong>g nurseries can<br />

cause the complete failure of the<br />

nursery. Nurseries used to raise rice<br />

seedl<strong>in</strong>gs should be kept weed free to<br />

prevent transplant<strong>in</strong>g grassy look-<br />

alike weeds al<strong>on</strong>g with the rice seed-<br />

l<strong>in</strong>gs. Transplanted weeds are highly<br />

competitive and extremely difficult to<br />

c<strong>on</strong>trol by hand weed<strong>in</strong>g or by<br />

selective herbicides.<br />

Because nursery areas are small<br />

(about 21 × 21 m will provide enough<br />

seedl<strong>in</strong>gs for 1 ha rice) and seedl<strong>in</strong>g<br />

establishment takes <strong>on</strong>ly 20-25 d,<br />

c<strong>on</strong>troll<strong>in</strong>g weeds is easy. Propanil,<br />

thiobencarb, butachlor, qu<strong>in</strong>clorac,<br />

bensulfur<strong>on</strong>, pretilachlor + fenclorim,<br />

and pendimethal<strong>in</strong> give good weed<br />

c<strong>on</strong>trol <strong>in</strong> rice seedl<strong>in</strong>g nurseries.<br />

Doubl<strong>in</strong>g the seed rate, hand<br />

weed<strong>in</strong>g, or remov<strong>in</strong>g large weed<br />

seedl<strong>in</strong>gs from rice seedl<strong>in</strong>g bundles<br />

resulted <strong>in</strong> less than 50% c<strong>on</strong>trol of<br />

weeds. Careful exam<strong>in</strong>ati<strong>on</strong> of each<br />

plant to ensure that most weeds are<br />

removed from the seedl<strong>in</strong>g bundles is<br />

laborious, time-c<strong>on</strong>sum<strong>in</strong>g, and more<br />

expensive than herbicide treatment<br />

(Moody et al 1988).<br />

Land preparati<strong>on</strong><br />

Mechanical land preparati<strong>on</strong> should<br />

provide a weed-free field to allow<br />

optimal early rice growth. The <strong>in</strong>itial<br />

plow<strong>in</strong>g buries weeds and crop<br />

stubble from the previous crop.<br />

Puddl<strong>in</strong>g uproots weeds that grow<br />

after plow<strong>in</strong>g and buries them <strong>in</strong> the<br />

layers of mud. The field is leveled after<br />

puddl<strong>in</strong>g to elim<strong>in</strong>ate <strong>in</strong>adequately<br />

flooded areas that are ideal for the<br />

growth and development of difficult-<br />

to-kill semiaquatic weeds.<br />

Irrigated rice 73


Plant<strong>in</strong>g method<br />

Transplant<strong>in</strong>g <strong>in</strong>to well-puddled soil<br />

helps rice seedl<strong>in</strong>gs to establish<br />

quickly. Healthy 20- to 30-d-old rice<br />

seedl<strong>in</strong>gs transplanted <strong>in</strong> rows <strong>in</strong> a<br />

well-prepared weed-free field will<br />

have a head start over weeds. Small<br />

rice seedl<strong>in</strong>gs are not competitive<br />

aga<strong>in</strong>st weeds.<br />

Plant populati<strong>on</strong><br />

Most modern early-matur<strong>in</strong>g rices,<br />

which have a short vegetative period<br />

that limits tiller<strong>in</strong>g, do best when<br />

transplanted at close spac<strong>in</strong>g. No<br />

s<strong>in</strong>gle spac<strong>in</strong>g recommendati<strong>on</strong>,<br />

however, is best for all rice cultivars.<br />

In the absence of lodg<strong>in</strong>g and weeds,<br />

yields of most varieties do not change<br />

much with plant<strong>in</strong>g distances between<br />

25 and 10 cm <strong>in</strong> rows or hills. Dense<br />

plant<strong>in</strong>g <strong>in</strong>creases the competitiveness<br />

of rice aga<strong>in</strong>st weeds by reduc<strong>in</strong>g later<br />

germ<strong>in</strong>at<strong>in</strong>g weed seedl<strong>in</strong>gs through<br />

shad<strong>in</strong>g. <strong>Rice</strong> should be transplanted<br />

<strong>in</strong> straight rows, to allow mechanical<br />

weeders to be used for weed<strong>in</strong>g.<br />

Water management<br />

Good water management will elimi-<br />

nate all normal upland weeds <strong>in</strong> trans-<br />

planted irrigated rice. The anaerobic<br />

c<strong>on</strong>diti<strong>on</strong>s prevail<strong>in</strong>g <strong>in</strong> soil under<br />

5 cm of water <strong>in</strong>hibit most weed<br />

growth. Reducti<strong>on</strong>s <strong>in</strong> water level<br />

expose the soil surface, which leads to<br />

aerobic c<strong>on</strong>diti<strong>on</strong>s that allow weed<br />

seed germ<strong>in</strong>ati<strong>on</strong>. A field should be<br />

flooded 2-3 d after transplant<strong>in</strong>g and a<br />

5-cm water depth should be ma<strong>in</strong>-<br />

ta<strong>in</strong>ed throughout the grow<strong>in</strong>g seas<strong>on</strong>.<br />

Fertilizer<br />

<strong>Rice</strong> resp<strong>on</strong>se to fertilizer nitrogen is<br />

markedly <strong>in</strong>creased by good weed<br />

c<strong>on</strong>trol, with maximum yields when<br />

weeds are c<strong>on</strong>trolled before fertilizer is<br />

applied.<br />

74 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

6.1 S<strong>in</strong>gle and 2-row c<strong>on</strong>o weeders.<br />

Draw<strong>in</strong>gs, design <strong>in</strong>formati<strong>on</strong>, and limited<br />

technical supported are provided free to<br />

manufacturers who want to produce IRRI<br />

designs <strong>on</strong> a commercial basis. IRRI reta<strong>in</strong>s<br />

worldwide distributi<strong>on</strong> and patent rights for<br />

all designs developed by the Institute, and<br />

does not grant exclusive manufactur<strong>in</strong>g<br />

rights or licenses <strong>in</strong> any country or regi<strong>on</strong>.<br />

6.2 <strong>Rice</strong> growth stages<br />

when herbicides can be<br />

applied <strong>in</strong> transplanted<br />

irrigated rice. Bars (-) show<br />

periods dur<strong>in</strong>g which a<br />

particular herbicide is<br />

applied. *Tim<strong>in</strong>g of herbicide<br />

applicati<strong>on</strong> is based <strong>on</strong> weed<br />

emergence and growth stage<br />

with<strong>in</strong> the rice growth stage.


Hand weed<strong>in</strong>g<br />

Hand weed<strong>in</strong>g is the most comm<strong>on</strong><br />

weed c<strong>on</strong>trol method <strong>in</strong> irrigated<br />

transplanted rice. The first 6 wk after<br />

transplant<strong>in</strong>g is the critical time of<br />

weed competiti<strong>on</strong>. Two or three timely<br />

weed<strong>in</strong>gs will provide adequate weed<br />

c<strong>on</strong>trol.<br />

<strong>Weed</strong><strong>in</strong>g by mach<strong>in</strong>e is possible<br />

when irrigated rice is transplanted <strong>in</strong><br />

rows. Hand weed<strong>in</strong>g requires about<br />

120 labor-hours per ha. That is<br />

reduced to 30-90 labor-hours when<br />

mechanical weeders are used. The<br />

c<strong>on</strong>venti<strong>on</strong>al s<strong>in</strong>gle-row rotary<br />

weeders require 80-90 labor-hours, but<br />

they are difficult to push and must be<br />

moved back and forth for proper<br />

operati<strong>on</strong>.<br />

The IRRI c<strong>on</strong>o weeder (Fig. 6.1)<br />

uproots and buries weeds with c<strong>on</strong>ical<br />

shaped rotors. Forward movement of<br />

the weeder creates a horiz<strong>on</strong>tal back-<br />

and-forth soil movement <strong>in</strong> the top<br />

3-cm layer, and the c<strong>on</strong>o weeder<br />

weeds satisfactorily <strong>in</strong> a s<strong>in</strong>gle pass.<br />

Power requirements are low because<br />

<strong>on</strong>ly a small quantity of soil is moved.<br />

IRRI’s two-row c<strong>on</strong>o weeder can weed<br />

three to four times faster than c<strong>on</strong>ven-<br />

ti<strong>on</strong>al s<strong>in</strong>gle-row rotary weeders.<br />

<strong>Weed</strong>s with<strong>in</strong> or close to rice hills<br />

must be hand-pulled.<br />

Herbicides<br />

In fields where heavy weed <strong>in</strong>festati<strong>on</strong>s<br />

are expected, weed competiti<strong>on</strong><br />

can be prevented by a wide range of<br />

herbicides. <strong>Rice</strong> herbicides show<br />

maximum selectivity <strong>in</strong> transplanted<br />

rice because of differences <strong>in</strong> growth<br />

between rice seedl<strong>in</strong>gs transplanted at<br />

the 3- to 6-leaf stage and the germ<strong>in</strong>at<strong>in</strong>g<br />

weeds. Several herbicides and<br />

herbicide comb<strong>in</strong>ati<strong>on</strong>s can be used <strong>in</strong><br />

transplanted rice. Apply<strong>in</strong>g a preemergence<br />

herbicide together with<br />

effective water management will<br />

provide seas<strong>on</strong>-l<strong>on</strong>g weed c<strong>on</strong>trol.<br />

Some important rice herbicides and<br />

their times of applicati<strong>on</strong> <strong>in</strong> irrigated<br />

rice are given <strong>in</strong> Table 6.1 and<br />

Figure 6.2.<br />

Table 6.1. Herbicides suitable for use <strong>in</strong> transplanted irrigated rice.<br />

Herbicide<br />

Bensulfur<strong>on</strong><br />

Bentaz<strong>on</strong><br />

Bifenox + 2,4-D<br />

Butachlor<br />

2,4-D or MCPA<br />

Mol<strong>in</strong>ate<br />

Oxadiaz<strong>on</strong><br />

Oxyfluorfen<br />

Pendimethal<strong>in</strong><br />

Piperophos +<br />

dimethametryn<br />

Piperophos + 2,4-D<br />

Propanil<br />

Qu<strong>in</strong>clorac<br />

Thiobencarb<br />

Thiobencarb + 2,4-D<br />

Rate<br />

(kg ai/ha)<br />

0.05<br />

1.0-2.0<br />

2.0 + 0.5<br />

1.0-2.0<br />

0.8-1.0<br />

2.0-4.0<br />

0.5-0.75<br />

0.15-0.25<br />

0.75<br />

0.5<br />

0.3 + 0.2<br />

3.0-4.0<br />

0.3<br />

1.5-4.0<br />

1.0 + 0.5<br />

Comments and source of <strong>in</strong>formati<strong>on</strong><br />

Apply 3-5 d after transplant<strong>in</strong>g (DT)<br />

(IRRI 1986).<br />

Apply postemergence to c<strong>on</strong>trol<br />

broadleaf weeds and sedges<br />

(IRRI 1979). Dra<strong>in</strong> before applicati<strong>on</strong>,<br />

if necessary to expose weeds.<br />

Apply preemergence to weeds 4 DT<br />

(IRRI 1981).<br />

Apply 3-6 DT. Water depth of 5-10 cm<br />

at applicati<strong>on</strong> and for 3-5 d after<br />

(IRRI 1974).<br />

Apply 3-4 wk after weeds have emerged<br />

to c<strong>on</strong>trol sedges, broadleaf weeds,<br />

and aquatic weeds. Dra<strong>in</strong> before<br />

applicati<strong>on</strong> to expose weeds. Reflood<br />

with<strong>in</strong> 2-3 d after applicati<strong>on</strong>. Can also<br />

be applied at 4-5 DT, before weeds<br />

emerge. Granular herbicides can be<br />

broadcast directly <strong>in</strong>to floodwater<br />

(IRRI 1973, 1981).<br />

For preflood appllcati<strong>on</strong>, flood as<br />

so<strong>on</strong> as possible. For postflood<br />

applicati<strong>on</strong>, deepen water at<br />

applicati<strong>on</strong> to cover weed foliage,<br />

then lower water after 4-6 d. No need to<br />

<strong>in</strong>corporate granular formulati<strong>on</strong><br />

(COPR 1976).<br />

Apply 2-8 DT to c<strong>on</strong>trol annual grasses<br />

and broadleaf weeds. Field should be<br />

flooded 3-5 cm and ma<strong>in</strong>ta<strong>in</strong>ed at that<br />

level for 2-5 d after treatment<br />

(COPR 1976).<br />

Apply 4 DT (IRRI 1979, 1983).<br />

Apply 4 DT to c<strong>on</strong>trol annual grasses<br />

(IRRI 1979, 1983).<br />

Apply 2-5 DT to c<strong>on</strong>trol annual<br />

grasses, sedges, and broadleaf weeds<br />

(IRRI 1977).<br />

Apply 2-8 DT to c<strong>on</strong>trol annual grasses,<br />

sedges, and broadleaf weeds<br />

(IRRI 1986).<br />

Apply as postemergence spray to<br />

c<strong>on</strong>trol several annual grasses and<br />

broadleaf weeds at the 2- to 3-leaf<br />

stages. Draln flooded fields 24 h<br />

before applicati<strong>on</strong> and reflood 3-5 d<br />

after treatment. Do not spray organophosphorus<br />

and carbamate<br />

<strong>in</strong>secticides with<strong>in</strong> 14 d after<br />

appllcati<strong>on</strong> (COPR 1976).<br />

Apply 3-5 DT (IRRI 1986).<br />

Apply 4-8 DT at the 1- to 2-leaf stages of<br />

weeds. Water should not be dra<strong>in</strong>ed<br />

or overflowed for 3-5 d after<br />

appltcati<strong>on</strong> (IRRI 1971).<br />

Apply 4-5 DT (IRRI 1971).<br />

Irrigated rice 75


Direct seeded <strong>on</strong><br />

puddled soil<br />

In direct seeded irrigated rice culture,<br />

the field is leveled after puddl<strong>in</strong>g and<br />

pregerm<strong>in</strong>ated seeds are broadcast or<br />

mach<strong>in</strong>e-drilled <strong>on</strong>to the puddled soil.<br />

Direct seed<strong>in</strong>g, also known as wet<br />

seed<strong>in</strong>g, is practiced <strong>in</strong> parts of India,<br />

Bangladesh, and Sri Lanka and has<br />

become an <strong>in</strong>creas<strong>in</strong>gly important rice<br />

crop establishment method <strong>in</strong> South-<br />

east Asia. Broadcast seeded flooded<br />

rice is also practiced <strong>in</strong> several ra<strong>in</strong>fed<br />

areas <strong>in</strong> South and Southeast Asia<br />

(De Datta and Fl<strong>in</strong>n 1986).<br />

Direct seed<strong>in</strong>g has become an<br />

acceptable alternative to transplant<strong>in</strong>g<br />

as labor costs have <strong>in</strong>creased, less<br />

expensive herbicides have become<br />

available, and irrigated area has<br />

<strong>in</strong>creased. However, root anchorage is<br />

poor, and lodg<strong>in</strong>g can be more serious<br />

<strong>in</strong> direct seeded than <strong>in</strong> transplanted<br />

rice.<br />

<strong>Weed</strong> problems<br />

Unc<strong>on</strong>trolled weeds <strong>in</strong> direct seeded<br />

flooded rice can reduce yields about<br />

53%. The culture requires shallow<br />

flood<strong>in</strong>g, which results <strong>in</strong> more<br />

exposed soil areas and aerobic c<strong>on</strong>diti<strong>on</strong>s.<br />

Because rice and weeds germ<strong>in</strong>ate<br />

and emerge together, competiti<strong>on</strong><br />

is more <strong>in</strong>tense than <strong>in</strong> transplanted<br />

rice. The range of herbicides that can<br />

be used safely is also limited, because<br />

rice and the weeds are at the same<br />

development stages.<br />

Lowland weeds such as E. crus-gall,<br />

Ischaemum rugosum, Leptochloa<br />

ch<strong>in</strong>ensis, Cyperus difformis, Fimbristylis<br />

miliacea, and Scirpus maritimus are<br />

adapted to the wet c<strong>on</strong>diti<strong>on</strong>s of direct<br />

seeded flooded rice.<br />

76 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Land preparati<strong>on</strong><br />

Thorough land preparati<strong>on</strong> is essential<br />

<strong>in</strong> direct seeded flooded rice. Land<br />

preparati<strong>on</strong> is similar to that for trans-<br />

planted flooded rice. However, the<br />

f<strong>in</strong>al level<strong>in</strong>g of the field is even more<br />

critical than for transplanted rice<br />

because the water level <strong>in</strong> direct<br />

seeded fields is kept shallow. An<br />

uneven land surface results <strong>in</strong> areas<br />

where the soil surface is exposed to air.<br />

That creates an ideal c<strong>on</strong>diti<strong>on</strong> for<br />

weed germ<strong>in</strong>ati<strong>on</strong> and growth. <strong>Rice</strong><br />

stands <strong>in</strong> areas that have deeper<br />

flood<strong>in</strong>g will be reduced.<br />

Plant<strong>in</strong>g method<br />

<strong>Rice</strong> seeds are pregerm<strong>in</strong>ated (soaked<br />

<strong>in</strong> water for 24 h, then <strong>in</strong>cubated for<br />

48 h) before they are sown <strong>in</strong> the field.<br />

This assures a quick and even stand.<br />

Pregerm<strong>in</strong>ated rice seeds may be<br />

broadcast or mach<strong>in</strong>e drilled. Mechan-<br />

ical weed<strong>in</strong>g is possible when seeds<br />

are drilled <strong>in</strong> rows.<br />

Cultivar<br />

The cultivar used should have excel-<br />

lent seedl<strong>in</strong>g vigor and good tiller<strong>in</strong>g<br />

capacity. IRRI and nati<strong>on</strong>al programs<br />

have released several such rices.<br />

Plant populati<strong>on</strong><br />

Close spac<strong>in</strong>g is essential to reduce<br />

weed <strong>in</strong>festati<strong>on</strong> and for high gra<strong>in</strong><br />

yields. In wet seeded rice, less weed<br />

competiti<strong>on</strong> has been observed with<br />

seed<strong>in</strong>g rates of 100 kg/ha and higher.<br />

Where weeds are not a problem, no<br />

rice gra<strong>in</strong> yield advantage has been<br />

observed at these seed<strong>in</strong>g rates.<br />

Water management<br />

Good water management is an important<br />

factor <strong>in</strong> weed c<strong>on</strong>trol <strong>in</strong> direct<br />

seeded flooded rice. Seeds are broadcast<br />

<strong>on</strong>to puddled soil with little or no<br />

stand<strong>in</strong>g water. The water level is<br />

<strong>in</strong>creased gradually as the rice grows.<br />

Because the field cannot be flooded<br />

until seedl<strong>in</strong>gs are established, some<br />

weeds will grow al<strong>on</strong>g with the rice.<br />

After rice establishment, the water<br />

level should be raised as rapidly as<br />

possible without damag<strong>in</strong>g the young<br />

rice seedl<strong>in</strong>gs, then kept uniform and<br />

c<strong>on</strong>t<strong>in</strong>uous. <strong>Weed</strong> emergence and the<br />

type of weeds that emerge are closely<br />

related to floodwater depth. Shallow<br />

(less than 2.5 cm), c<strong>on</strong>t<strong>in</strong>uous flood<strong>in</strong>g<br />

facilitates weed growth.<br />

For preemergence herbicide applicati<strong>on</strong><br />

<strong>in</strong> direct seeded flooded rice,<br />

the follow<strong>in</strong>g water management is<br />

suggested.<br />

Keep the field saturated from<br />

sow<strong>in</strong>g to herbicide applicati<strong>on</strong>. If<br />

the soil dries with<strong>in</strong> this period, add<br />

enough water to resaturate the<br />

plots.<br />

Flood the field to 2-3 cm deep and<br />

apply herbicide directly <strong>in</strong>to the<br />

water.<br />

Raise water depth to 5 cm 1 wk<br />

after herbicide applicati<strong>on</strong> and<br />

ma<strong>in</strong>ta<strong>in</strong> that depth until 1 wk<br />

before harvest.<br />

Fertilizer<br />

High fertilizer applicati<strong>on</strong> to <strong>in</strong>crease<br />

yields of modern improved rice<br />

cultivars enhances weed growth.<br />

Incorporat<strong>in</strong>g N <strong>in</strong>to the seedbed at<br />

5-10 cm reduces N losses and at the<br />

same time reduces the availability of N<br />

to weed seedl<strong>in</strong>gs that germ<strong>in</strong>ate near<br />

the soil surface.


6.3 <strong>Rice</strong> growth stages when<br />

herbicides can be applied <strong>in</strong> wet-<br />

seeded irrigated rice. Bars (—) show<br />

periods dur<strong>in</strong>g which a particular<br />

herbicide is applied. *Tim<strong>in</strong>g of<br />

herbicide applicati<strong>on</strong> is based <strong>on</strong><br />

weed emergence and growth stage<br />

with<strong>in</strong> the rice growth stage.<br />

Hand weed<strong>in</strong>g<br />

The first 6 wk after seed<strong>in</strong>g is the<br />

critical period of weed competiti<strong>on</strong> <strong>in</strong><br />

direct seeded flooded rice. Hand<br />

weed<strong>in</strong>g <strong>in</strong> drill seeded and hand<br />

pull<strong>in</strong>g <strong>in</strong> broadcast seeded rice<br />

should be d<strong>on</strong>e early, although it may<br />

be difficult to dist<strong>in</strong>guish grassy weed<br />

seedl<strong>in</strong>gs from rice seedl<strong>in</strong>gs at such<br />

an early stage. Two to three hand<br />

weed<strong>in</strong>gs are sufficient to prevent<br />

yield losses due to weeds. The first<br />

weed<strong>in</strong>g can be d<strong>on</strong>e with<strong>in</strong> 3 wk after<br />

seed<strong>in</strong>g. <strong>Weed</strong><strong>in</strong>g will take less time if<br />

rice seeds are sown <strong>in</strong> rows rather than<br />

broadcast. The use of row weeders <strong>in</strong><br />

broadcast seeded fields is limited<br />

because of the random distributi<strong>on</strong> of<br />

seedl<strong>in</strong>gs (see figure 6.1, p. 74 for<br />

<strong>in</strong>formati<strong>on</strong> <strong>on</strong> row weeders).<br />

Herbicides<br />

Because hand weed<strong>in</strong>g is difficult <strong>in</strong><br />

direct seeded flooded rice, chemical<br />

weed c<strong>on</strong>trol comb<strong>in</strong>ed with other<br />

cultural practices (such as water<br />

c<strong>on</strong>trol) is an alternative that may be<br />

practiced to reduce weed competiti<strong>on</strong>,<br />

crop losses, and labor costs. Several<br />

herbicides offer effective weed c<strong>on</strong>trol,<br />

but because weeds and rice germ<strong>in</strong>ate<br />

at the same time, the number of herbi-<br />

cides that can be used safely may be<br />

limited. In the tropics, butachlor,<br />

thiobencarb, butral<strong>in</strong>, and propanil<br />

effectively c<strong>on</strong>trol weeds and have<br />

been widely tested <strong>in</strong> direct seeded<br />

flooded rice.<br />

Irrigated rice 77


Table 6.2. Herbicides suitable for use <strong>in</strong> irrigated rice direct seeded <strong>on</strong> puddled soil.<br />

Herbicide<br />

Bensulfur<strong>on</strong><br />

Bentaz<strong>on</strong><br />

Bifenox + 2,4-D<br />

Butachlor<br />

Butral<strong>in</strong><br />

2,4-D or MCPA<br />

Mol<strong>in</strong>ate<br />

Oxadiaz<strong>on</strong><br />

Qu<strong>in</strong>clorac<br />

Thiobencarb<br />

Thiobencarb + 2,4-D<br />

Rate<br />

(kg ai/ha)<br />

0.05<br />

2.0<br />

2.0 + 0.6<br />

0.75<br />

2.0<br />

0.5-1.0<br />

3.0<br />

0.75-1.0<br />

Oxyfluorfen<br />

0.15-0.25<br />

Pendimethal<strong>in</strong><br />

0.75-2.0<br />

Piperophos + dimethame tryn 0.4 + 0.1<br />

Piperophos + 2,4-D<br />

0.3 + 0.2<br />

Pretilachlor + antidote<br />

0.3-0.4<br />

Propanil<br />

3.0-4.0<br />

78 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

0.3<br />

1.5-2.0<br />

1.0 + 0.5<br />

Comments and source of <strong>in</strong>formati<strong>on</strong><br />

Apply 6-8 d after seed<strong>in</strong>g (DAS)<br />

(IRRI 1985).<br />

Apply postemergence to c<strong>on</strong>trol<br />

broadleaf weeds and sedges,<br />

<strong>in</strong>clud<strong>in</strong>g S. maritimus. Water level<br />

must be lowered for good coverage.<br />

Annual weeds must be small—2- to<br />

7-leaf stages (IRRI 1984).<br />

Apply at early postemergence of<br />

weeds, about 4-6 DAS (IRRI 1981).<br />

Apply 6 DAS to c<strong>on</strong>trol annual grasses<br />

and sedges. Soil should be saturated<br />

at applicati<strong>on</strong> and rema<strong>in</strong> n<strong>on</strong>flooded<br />

for 3 d after applicati<strong>on</strong> (IRRI 1983).<br />

Granular butachlor applied 3 DAS<br />

gives better weed c<strong>on</strong>trol, less stand<br />

reducti<strong>on</strong>, and higher yields than when<br />

applied 6 DAS (IRRI 1986).<br />

Apply 2-3 DAS to c<strong>on</strong>trol annual<br />

grasses (COPR 1976).<br />

Apply 3-4 wk after seed<strong>in</strong>g to c<strong>on</strong>trol<br />

annual broadleaf weeds and sedges.<br />

Lower water level to expose weeds<br />

before spray<strong>in</strong>g and reflood with<strong>in</strong> a<br />

few days (COPR 1976).<br />

Apply 6-7 DAS. Raise water level after<br />

applicati<strong>on</strong> (IRRI 1977).<br />

Apply preemergence 4-6 DAS. Soil<br />

must rema<strong>in</strong> moist after applicati<strong>on</strong> to<br />

ma<strong>in</strong>ta<strong>in</strong> herbicide activity (IRRI 1985).<br />

Apply 3-6 DAS (IRRI 1978, 1982).<br />

Apply up to 6 DAS (IRRI 1975, 1982).<br />

Apply 4-6 DAS (IRRI 1977).<br />

Apply 6-8 DAS (IRRI 1987).<br />

Apply 3 DAS (IRRI 1987).<br />

Apply postemergence to c<strong>on</strong>trol grass<br />

and broadleaf weeds at the 2- to 5-leaf<br />

stages (about 10 DAS). Water level<br />

should be lowered before applicati<strong>on</strong><br />

and the field reflooded as so<strong>on</strong> as<br />

possible (IRRI 1980).<br />

Apply 6-8 DAS (IRRI 1986).<br />

Apply about 6 DAS, when grasses have<br />

1-2 leaves but before the 3-leaf stage of<br />

grasses and sedges. Keep water low<br />

enough to avoid submerg<strong>in</strong>g the rice<br />

plants (IRRI 1972).<br />

Apply 6-8 DAS (IRRI 1986).<br />

Herbicides can be soil-<strong>in</strong>corporated<br />

before sow<strong>in</strong>g rice, applied preemer-<br />

gence to water a few days after sow-<br />

<strong>in</strong>g, or applied postemergence before<br />

weeds reach the 3- to 4-leaf stage.<br />

Table 6.2 and Figure 6.3 outl<strong>in</strong>e<br />

various herbicides and their applica-<br />

ti<strong>on</strong> times for this rice culture.<br />

Direct seeded <strong>on</strong><br />

dry soil<br />

Dry seeded irrigated rice culture is<br />

practiced <strong>in</strong> Africa, Australia, Europe,<br />

and the USA. N<strong>on</strong>germ<strong>in</strong>ated seeds<br />

are broadcast or drill seeded <strong>in</strong> dry or<br />

moist soil. Broadcast seeds are covered<br />

by harrow<strong>in</strong>g. More seeds are required<br />

for broadcast than for drill seed<strong>in</strong>g,<br />

and stand establishment is poorer with<br />

broadcast seed<strong>in</strong>g than with drill<br />

seed<strong>in</strong>g.<br />

<strong>Weed</strong> problems<br />

After broadcast or drill seed<strong>in</strong>g rice<br />

<strong>in</strong>to dry soil, the field is irrigated just<br />

enough to provide the soil moisture<br />

that allows the seeds to germ<strong>in</strong>ate.<br />

Flood<strong>in</strong>g the soil would prevent rice<br />

seedl<strong>in</strong>g emergence. Thus, aerobic<br />

c<strong>on</strong>diti<strong>on</strong>s rema<strong>in</strong> ideal for the germi-<br />

nati<strong>on</strong> of upland and aquatic weeds,<br />

and weed problems are much worse <strong>in</strong><br />

dry seeded irrigated than <strong>in</strong> wet<br />

seeded rice. Because the water level is<br />

<strong>in</strong>creased gradually, it is 2-6 wk before<br />

a c<strong>on</strong>t<strong>in</strong>uous flood at 5 cm depth can<br />

be achieved. Many well-established<br />

upland weeds will survive, mak<strong>in</strong>g<br />

weed competiti<strong>on</strong> more <strong>in</strong>tense <strong>in</strong><br />

this rice culture than <strong>in</strong> the cultures<br />

described earlier. The fact that rice and<br />

weeds germ<strong>in</strong>ate together restricts the<br />

number of herbicides that can be<br />

used safely.<br />

Land preparati<strong>on</strong><br />

Land preparati<strong>on</strong> should provide<br />

weed-free c<strong>on</strong>diti<strong>on</strong>s at plant<strong>in</strong>g and<br />

favorable c<strong>on</strong>diti<strong>on</strong>s for rice growth<br />

and development. Land preparati<strong>on</strong><br />

and level<strong>in</strong>g should be thorough<br />

because large soil clods will reduce<br />

germ<strong>in</strong>ati<strong>on</strong> of rice seedl<strong>in</strong>gs and<br />

cause irregularity <strong>in</strong> herbicidal<br />

efficacy. As clods melt down, the<br />

<strong>in</strong>ner, unexposed soil will allow weeds<br />

to germ<strong>in</strong>ate.


Reduc<strong>in</strong>g weeds <strong>in</strong> dry seeded rice<br />

culture is possible by practic<strong>in</strong>g a stale<br />

seedbed. After land preparati<strong>on</strong>,<br />

weeds are allowed to emerge follow-<br />

<strong>in</strong>g ra<strong>in</strong> or irrigati<strong>on</strong>, then destroyed<br />

by shallow cultivati<strong>on</strong> or applicati<strong>on</strong><br />

of a n<strong>on</strong>residual c<strong>on</strong>tact herbicide. The<br />

herbicide should be applied or cultiva-<br />

ti<strong>on</strong> d<strong>on</strong>e when most of the weeds<br />

have reached the 2- to 5-leaf stage. <strong>Rice</strong><br />

is then seeded <strong>in</strong>to the weed-free field.<br />

Plant<strong>in</strong>g method<br />

<strong>Rice</strong> seeds are broadcast seeded <strong>in</strong>to<br />

dry or moist soil and covered by<br />

harrow<strong>in</strong>g, or drilled 3-5 cm deep <strong>in</strong>to<br />

the soil. High seed<strong>in</strong>g rates can sup-<br />

press weeds, but the cost of seeds<br />

should be c<strong>on</strong>sidered aga<strong>in</strong>st other<br />

direct c<strong>on</strong>trol measures available<br />

because there is no yield advantage <strong>in</strong><br />

<strong>in</strong>creas<strong>in</strong>g seed rates above 100 kg/ha.<br />

Cultivar<br />

Both short- and <strong>in</strong>termediate-statured<br />

cultivars are used for rice broadcast or<br />

drilled <strong>in</strong>to dry soil. For broadcast<br />

seeded rice, the cultivar used should<br />

be stiff-strawed to avoid severe<br />

lodg<strong>in</strong>g.<br />

Water management<br />

Good water management is important<br />

<strong>in</strong> c<strong>on</strong>troll<strong>in</strong>g weeds <strong>in</strong> broadcast or<br />

drill seeded flooded rice. After dry<br />

seed<strong>in</strong>g, the soil may be <strong>in</strong>termittently<br />

flooded and dra<strong>in</strong>ed to allow for rice<br />

emergence. The water level is then<br />

<strong>in</strong>creased gradually for a few weeks<br />

until a c<strong>on</strong>t<strong>in</strong>uous flood of 5-cm depth<br />

is ma<strong>in</strong>ta<strong>in</strong>ed.<br />

Table 6.3 Herbicides suitable for use <strong>in</strong> broadcast or drill seeded, dry-sown irrigated rice.<br />

Herbicide<br />

Bentaz<strong>on</strong><br />

Butachlor<br />

Butral<strong>in</strong><br />

2,4-D or MCPA<br />

Mol<strong>in</strong>ate<br />

Oxadiaz<strong>on</strong><br />

Pendimethal<strong>in</strong><br />

Piperophos +<br />

dimethametryn<br />

Propanil<br />

Thiobencarb<br />

Rate<br />

(kg ai/ha)<br />

2.0<br />

1.5-2.0<br />

2.0<br />

0.5-1.0<br />

3.0-5.0<br />

0.75-1.0<br />

2.0<br />

0.75-1.25<br />

3.0-4.0<br />

3.0<br />

Hand weed<strong>in</strong>g<br />

Interrow mechanical weed<strong>in</strong>g is not<br />

possible <strong>in</strong> broadcast seeded rice. Even<br />

when seeds are drilled, the <strong>in</strong>terrow<br />

spac<strong>in</strong>g is so narrow that <strong>on</strong>ly hand or<br />

hoe weed<strong>in</strong>g is possible. In this rice<br />

culture, two to three-timely hand<br />

weed<strong>in</strong>gs are sufficient to ensure<br />

optimum yields. The soil disturbance<br />

<strong>in</strong>volved, however, can cause as much<br />

damage to rice as to weeds. The first<br />

weed<strong>in</strong>g may be d<strong>on</strong>e between 14 and<br />

21 d, depend<strong>in</strong>g <strong>on</strong> weed growth,<br />

followed by subsequent weed<strong>in</strong>gs<br />

when necessary.<br />

Comments and source of <strong>in</strong>formati<strong>on</strong><br />

Apply as a postemergence herbicide<br />

to c<strong>on</strong>trol broadleaf weeds and<br />

sedges. Apply when weeds have<br />

germ<strong>in</strong>ated but are still small. Water<br />

level may be lowered to expose weeds<br />

24 h. Raise water level after treatment<br />

(COPR 1976).<br />

Apply as preemergence spray 0-3 d<br />

after sow<strong>in</strong>g (DAS) to c<strong>on</strong>trol annual<br />

grasses and sedges (IRRI 1977).<br />

Apply as preemergence spray 2-3 DAS<br />

to c<strong>on</strong>trol annual grasses (IRRI 1977).<br />

Apply 3-4 wk after seed<strong>in</strong>g to c<strong>on</strong>trol<br />

annual broadleaf weeds and sedges<br />

(COPR 1976).<br />

Apply from presow<strong>in</strong>g to early post-<br />

emergence to c<strong>on</strong>trol grassy weeds<br />

(Smith 1971).<br />

Preemergence applicati<strong>on</strong> should be<br />

2-3 DAS (IRRI 1977).<br />

Apply at preemergence of rice<br />

(IRRI 1977).<br />

Apply early postemergence to c<strong>on</strong>trol<br />

annual weeds (Green and Ebner<br />

1972).<br />

Apply postemergence at the 2- to 3-leaf<br />

stages to c<strong>on</strong>trol grasses and broad-<br />

leaf weeds (COPR 1976).<br />

Apply preemergence immediately<br />

after cover<strong>in</strong>g the seeds with soil but<br />

before the first irrigati<strong>on</strong> or ram.<br />

Irrigate 3-5 d after applicati<strong>on</strong><br />

(IRRI 1979).<br />

Herbicides<br />

The effects of herbicides are similar for<br />

broadcast seeded or drilled dry-sown<br />

rice and wet-sown flooded rice.<br />

Because of water management prob-<br />

lems and difficulties <strong>in</strong> hand weed<strong>in</strong>g,<br />

herbicides are particularly important<br />

<strong>in</strong> this rice culture. Cover<strong>in</strong>g the seeds<br />

with soil after drill or broadcast<br />

seed<strong>in</strong>g <strong>in</strong>creases the tolerance of rice<br />

for herbicides but decreases a rice<br />

seedl<strong>in</strong>g’s flood<strong>in</strong>g tolerance.<br />

Butachlor, mol<strong>in</strong>ate, oxadiaz<strong>on</strong>,<br />

propanil, and thiobencarb are used as<br />

Irrigated rice 79


6.4 <strong>Rice</strong> growth stages when<br />

herbicides can be applied <strong>in</strong> dry-seeded<br />

irrigated rice. Bars (–) show periods<br />

dur<strong>in</strong>g which a particular herbicide is<br />

applied. *Tim<strong>in</strong>g of herbicide<br />

applicati<strong>on</strong> is based <strong>on</strong> weed<br />

emergence and growth stage with<strong>in</strong><br />

the rice growth stage.<br />

preplant, preemergence, postemer-<br />

gence, or postflood treatment.<br />

Propanil is widely used as a<br />

postemergence herbicide, either <strong>in</strong><br />

additi<strong>on</strong> to or <strong>in</strong> place of a preemer-<br />

gence treatment. Preplant<strong>in</strong>g herbi-<br />

cidal treatments, such as with<br />

glyphosate, may also c<strong>on</strong>trol perennial<br />

weeds. Table 6.3 and Figure 6.4 outl<strong>in</strong>e<br />

the comm<strong>on</strong> herbicides and their times<br />

of applicati<strong>on</strong> for this culture.<br />

80 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Water seeded<br />

Water seed<strong>in</strong>g of rice is practiced <strong>in</strong><br />

several parts of Asia, <strong>in</strong>clud<strong>in</strong>g India,<br />

Sri Lanka, Malaysia, and Thailand.<br />

It is widely practiced <strong>in</strong> the USA,<br />

southern Europe, USSR, and Australia.<br />

Pregerm<strong>in</strong>ated rice is broadcast<br />

directly <strong>on</strong>to the flooded field. The<br />

rice, which is seeded <strong>in</strong>to water 7-10<br />

cm deep, s<strong>in</strong>ks to the soil, germ<strong>in</strong>ates,<br />

and emerges from the water. The field<br />

rema<strong>in</strong>s flooded at a depth of 7-10 cm<br />

until a few weeks before maturity. In<br />

the USA, seed<strong>in</strong>g <strong>in</strong>to c<strong>on</strong>t<strong>in</strong>uously<br />

flooded fields began <strong>in</strong> the 1930s as a<br />

cultural method to c<strong>on</strong>trol E. crus-galli<br />

and later as part of a program to<br />

c<strong>on</strong>trol red rice.<br />

<strong>Weed</strong> problems<br />

Many weeds and rice will germ<strong>in</strong>ate<br />

through either soil or water, but not<br />

through both. Water seed<strong>in</strong>g takes<br />

advantage of that by establish<strong>in</strong>g an<br />

early water cover<strong>in</strong>g to suppress<br />

weeds. C<strong>on</strong>t<strong>in</strong>uous flood<strong>in</strong>g <strong>in</strong> water<br />

seeded rice culture, however, encour-<br />

ages aquatic weeds. Where c<strong>on</strong>t<strong>in</strong>uous<br />

flood<strong>in</strong>g is not ma<strong>in</strong>ta<strong>in</strong>ed, many<br />

semiaquatic weeds typical of<br />

disc<strong>on</strong>t<strong>in</strong>uously flooded, dry seeded<br />

fields can be found <strong>in</strong> water seeded<br />

ricefields. Under such c<strong>on</strong>diti<strong>on</strong>s.<br />

E. crus-galli, Lepfochloa sp.,<br />

Aeschynomene virg<strong>in</strong>ica, and Sesbania<br />

exaltata are weed problems.


Land preparati<strong>on</strong><br />

For better and more uniform stands of<br />

water seeded rice, the seedbed should<br />

be rough or grooved to help anchor<br />

rice seeds and seedl<strong>in</strong>gs. Large soil<br />

clods that rema<strong>in</strong> exposed above the<br />

water level allow the growth and sur-<br />

vival of grass weeds. Land level<strong>in</strong>g<br />

elim<strong>in</strong>ates the high spots <strong>on</strong> the<br />

seedbed that favor weed growth, and<br />

is especially important if a shallow<br />

water depth is to be ma<strong>in</strong>ta<strong>in</strong>ed for<br />

grow<strong>in</strong>g modern, semidwarf, rice<br />

cultivars.<br />

Plant populati<strong>on</strong><br />

To compete with weeds, a rice crop<br />

density of 150-200 plants/m 2 at<br />

the 3- to 4-leaf stage is desirable.<br />

Water management<br />

Appropriate water management is the<br />

most important factor <strong>in</strong> successful<br />

weed c<strong>on</strong>trol <strong>in</strong> water seeded rice. The<br />

management of floodwater affects the<br />

density, vigor, and uniformity of rice<br />

stands, the severity of weed competi-<br />

ti<strong>on</strong>, and the effectiveness of herbi-<br />

cides. <strong>Weed</strong>s are a problem when they<br />

germ<strong>in</strong>ate <strong>in</strong> moist soil after land<br />

preparati<strong>on</strong> and grow before flood<strong>in</strong>g<br />

and rice plant<strong>in</strong>g.<br />

Flood<strong>in</strong>g to 7-10 cm deep early <strong>in</strong><br />

the seas<strong>on</strong> will provide partial weed<br />

c<strong>on</strong>trol. Timely, rapid dra<strong>in</strong>age and<br />

reflood<strong>in</strong>g will encourage rice stands<br />

and help c<strong>on</strong>trol aquatic weeds with-<br />

out support<strong>in</strong>g the growth of<br />

semiaquatic weeds. It is important that<br />

some parts of the rice plant be above<br />

the water surface by at least the 4-leaf<br />

stage, and fields must be kept flooded<br />

through the head<strong>in</strong>g stage. The water<br />

should be dra<strong>in</strong>ed <strong>on</strong>ly when<br />

6.5 <strong>Rice</strong> growth stages when<br />

herbicides can be applied <strong>in</strong> water-<br />

seeded irrigated rice. Bars (—) show<br />

periods dur<strong>in</strong>g which a particular<br />

herbicide is applied. *Tim<strong>in</strong>g of herbicide<br />

applicati<strong>on</strong> is based <strong>on</strong> weed emergence<br />

and growth stage with<strong>in</strong> the rice growth<br />

stage.<br />

absolutely necessary, such as when<br />

weeds requir<strong>in</strong>g c<strong>on</strong>tact herbicides<br />

need to be treated.<br />

Exposure of the soil to air, if it lasts<br />

l<strong>on</strong>g enough to allow E. crus-galli<br />

seedl<strong>in</strong>gs to develop sec<strong>on</strong>dary roots,<br />

reduces the effectiveness of most<br />

herbicides. Sedges and broadleaf<br />

weeds are favored by shallow water or<br />

when the field is dra<strong>in</strong>ed.<br />

Irrigated rice 81


Fertilizer<br />

Incorporat<strong>in</strong>g N and P fertilizers to<br />

5- to 10-cm soil depth reduces their<br />

availability to weed seedl<strong>in</strong>gs that<br />

germ<strong>in</strong>ate near the soil surface. Fertil-<br />

izer so applied rema<strong>in</strong>s available to<br />

rice plants throughout the seas<strong>on</strong> if a<br />

7- to 10-cm flood is ma<strong>in</strong>ta<strong>in</strong>ed. If the<br />

field is dra<strong>in</strong>ed and air reaches the N,<br />

it will change form and be rapidly lost<br />

<strong>in</strong>to the air. If N is applied to flood<br />

water early <strong>in</strong> the seas<strong>on</strong>, 50% or more<br />

of it will be rapidly lost. Topdressed N<br />

and P applicati<strong>on</strong>s <strong>in</strong>to water also<br />

encourage weed growth. <strong>Weed</strong>s must<br />

be c<strong>on</strong>trolled before topdress<strong>in</strong>g with<br />

any fertilizer.<br />

Hand weed<strong>in</strong>g<br />

Avoid<strong>in</strong>g weed competiti<strong>on</strong> is impor-<br />

tant dur<strong>in</strong>g the first 30 d or so after<br />

water seed<strong>in</strong>g of rice. Early weed<br />

removal, when the rice is still at the<br />

early vegetative phase, is desirable to<br />

maximize yields. One to two hand<br />

weed<strong>in</strong>gs at 3 wk and at about 6-7 wk<br />

after seed<strong>in</strong>g will give adequate<br />

c<strong>on</strong>trol. Aga<strong>in</strong>, as <strong>in</strong> broadcast or dry<br />

seeded flooded rice, mechanical<br />

methods are difficult to use.<br />

Herbicides<br />

Use of herbicides is essential to<br />

<strong>in</strong>crease the efficiency of other crop<br />

management practices to c<strong>on</strong>trol<br />

weeds. Because water seeded rice is<br />

grown under c<strong>on</strong>t<strong>in</strong>uous flood<strong>in</strong>g, the<br />

ideal times of herbicide applicati<strong>on</strong> are<br />

preflood, preplant<strong>in</strong>g; postplant<strong>in</strong>g<br />

<strong>in</strong>to the water; and postplant<strong>in</strong>g, post-<br />

emergence above the water.<br />

For foliar-applied herbicides such<br />

as MCPA, bentaz<strong>on</strong>, and propanil, the<br />

weed foliage must be exposed to the<br />

herbicide. The water level may have to<br />

be decreased for 24-48 h to avoid<br />

wash<strong>in</strong>g the herbicide off the leaf, to<br />

allow sufficient uptake of the herbi-<br />

cide. The water level should then be<br />

reestablished. Comm<strong>on</strong> herbicides of<br />

importance <strong>in</strong> water seeded rice are<br />

listed <strong>in</strong> Table 6.4. Time of applicati<strong>on</strong><br />

is <strong>in</strong>dicated <strong>in</strong> Figure 6.5.<br />

82 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Table 6.4. Herbicides suitable for use <strong>in</strong> water seeded irrigated rice.<br />

Herbicide<br />

Rate<br />

(kg ai/ha)<br />

Comments and source of <strong>in</strong>formati<strong>on</strong><br />

Bentaz<strong>on</strong> 2.0 Apply as a postemergence. <strong>Weed</strong><br />

foliage must be exposed dur<strong>in</strong>g<br />

applicati<strong>on</strong>, but avoid dra<strong>in</strong><strong>in</strong>g field<br />

completely (UC 1983).<br />

2,4-D or MCPA 0.5-1.0 Apply as postemergence. Lower<br />

Endothal 1.0-6.0<br />

water level to expose foliage of small<br />

weeds, but do not allow soil to dry<br />

(UC 1983).<br />

Apply as postemergence 25-60 d after<br />

sow<strong>in</strong>g to c<strong>on</strong>trol water weeds. Do not<br />

apply before rice has emerged above<br />

water surface. Do not draw water for<br />

3-5 d after applicati<strong>on</strong>. Do not apply<br />

after rice starts head<strong>in</strong>g (UC 1983,<br />

California <strong>Weed</strong> C<strong>on</strong>ference 1985).<br />

Mol<strong>in</strong>ate 3.0-5.0 Incorporate preplant<strong>in</strong>g or preflood.<br />

Postflood applicati<strong>on</strong> can be preemergence<br />

or postemergence. For<br />

postflood applicatt<strong>on</strong>s, raise water<br />

depth to cover all weeds. Lower water<br />

level 4-6 d later (UC 1983).<br />

Propanil 3.0-4.0 Apply postemergence. Lower water<br />

level to expose weed foliage. Raise<br />

water level after applicati<strong>on</strong> (UC 1983).<br />

Thiobencarb 1.5 Apply postemergence at the 2-leaf<br />

stage of rice. Do not expose soil<br />

surface after applicati<strong>on</strong> (IRRI 1986).


Chapter 7<br />

<strong>Weed</strong> c<strong>on</strong>trol <strong>in</strong><br />

ra<strong>in</strong>fed lowland rice<br />

Ra<strong>in</strong>fed lowland rice is grown <strong>on</strong><br />

about 23% of the world’s rice area<br />

(IRRI 1988b). It accounts for about<br />

45% of the rice area <strong>in</strong> South and<br />

Southeast Asia, 22% <strong>in</strong> Africa, and<br />

6% <strong>in</strong> Lat<strong>in</strong> America (De Datta 1981).<br />

In South and Southeast Asia, ra<strong>in</strong>fed<br />

lowland rice dom<strong>in</strong>ates the area,<br />

although its importance differs<br />

am<strong>on</strong>g countries. For example, 76%<br />

of the rice area <strong>in</strong> Bhutan is ra<strong>in</strong>fed<br />

lowland, 69% <strong>in</strong> Thailand, 56% <strong>in</strong><br />

Bangladesh, 56% <strong>in</strong> Myanmar, 43% <strong>in</strong><br />

Philipp<strong>in</strong>es, 37% <strong>in</strong> India, and 17% <strong>in</strong><br />

Ind<strong>on</strong>esia (IRRI 1988b).<br />

Most of the ra<strong>in</strong>fed lowland rice<br />

area of Southeast Asia is <strong>in</strong> major rice<br />

deltas, such as the Mek<strong>on</strong>g <strong>in</strong> Vietnam,<br />

the Chao Phraya <strong>in</strong> Thailand,<br />

the Irrawaddy <strong>in</strong> Myanmar, and the<br />

Ganges-Brahmaputra <strong>in</strong> India and<br />

Bangladesh.<br />

Ra<strong>in</strong>fed lowland rice is not<br />

irrigated, but the soil is flooded to a<br />

maximum depth of less than 50 cm<br />

dur<strong>in</strong>g a porti<strong>on</strong> of the crop cycle.<br />

Water is supplied by frequent ra<strong>in</strong>s<br />

dur<strong>in</strong>g the grow<strong>in</strong>g seas<strong>on</strong>. Soil<br />

moisture is usually ma<strong>in</strong>ta<strong>in</strong>ed<br />

between field capacity and satura-<br />

ti<strong>on</strong>. When there is no ra<strong>in</strong>fall,<br />

however, moisture c<strong>on</strong>tent may drop<br />

below field capacity. With excessive<br />

ra<strong>in</strong>fall, deepwater c<strong>on</strong>diti<strong>on</strong>s may<br />

develop.<br />

Ra<strong>in</strong>fed lowland rice is classified<br />

<strong>in</strong>to three culture groups accord<strong>in</strong>g to<br />

the crop establishment technique<br />

used.<br />

Transplanted <strong>in</strong> puddled soil.<br />

Direct seeded <strong>on</strong> puddled soil<br />

(broadcast or drill seeded us<strong>in</strong>g<br />

pregerm<strong>in</strong>ated seed).<br />

Direct seeded <strong>on</strong> dry soil (broad-<br />

cast or drill seeded us<strong>in</strong>g n<strong>on</strong>ger-<br />

m<strong>in</strong>ated seed).<br />

Transplanted <strong>in</strong><br />

puddled soil<br />

Transplant<strong>in</strong>g is the major crop estab-<br />

lishment method for ra<strong>in</strong>fed lowland<br />

rice <strong>in</strong> most of tropical Asia.<br />

Primarily grown as a m<strong>on</strong>so<strong>on</strong>al<br />

crop, ra<strong>in</strong>fed lowland rice is known<br />

as kharif <strong>in</strong> India and as aman <strong>in</strong><br />

northeastern India and Bangladesh.<br />

Seedl<strong>in</strong>gs raised by a wet bed, dapog,<br />

or dry bed technique are transplanted<br />

<strong>in</strong>to a puddled soil.<br />

<strong>Weed</strong> problems<br />

Because the amount and distributi<strong>on</strong><br />

of ra<strong>in</strong>fall for grow<strong>in</strong>g ra<strong>in</strong>fed low-<br />

land rice are uncerta<strong>in</strong>, fields may not<br />

rema<strong>in</strong> flooded from plant<strong>in</strong>g to<br />

maturity. In Asia, most ra<strong>in</strong>fed low-<br />

land ricefields change from upland to<br />

submerged c<strong>on</strong>diti<strong>on</strong>s dur<strong>in</strong>g the<br />

m<strong>on</strong>so<strong>on</strong> seas<strong>on</strong>. Lack of water<br />

c<strong>on</strong>trol reduces the effectiveness of<br />

us<strong>in</strong>g water as a tool <strong>in</strong> weed man-<br />

agement. Upland, semiaquatic, and<br />

aquatic weeds all present problems.<br />

C<strong>on</strong>diti<strong>on</strong>s favorable for weed germi-<br />

nati<strong>on</strong> and growth, such as exposure<br />

of the soil surface (aerobic c<strong>on</strong>diti<strong>on</strong>s)<br />

and high soil moisture, occur for<br />

extended periods. Once weeds<br />

become established, deeper flood<strong>in</strong>g<br />

is needed to reduce weed growth<br />

substantially (Moody et al 1986).<br />

Transplant<strong>in</strong>g gives rice a head start<br />

over weeds, but unc<strong>on</strong>trolled weeds<br />

can still reduce rice yields as much as<br />

50%.<br />

<strong>Weed</strong> species of importance <strong>in</strong> this<br />

rice culture <strong>in</strong>clude Ech<strong>in</strong>ochloa spp.,<br />

lschaemum rugosum, M<strong>on</strong>ochoria<br />

vag<strong>in</strong>alis, Sphenoclea zeylanica, Cyperus<br />

difformis, Cyperus iria, Fimbristylis<br />

miliacea, and Scirpus maritimus.<br />

Ra<strong>in</strong>fed lowland rice 83


Nurseries<br />

Seedl<strong>in</strong>g nurseries should be kept<br />

weed free to prevent transplant<strong>in</strong>g<br />

grassy weeds al<strong>on</strong>g with rice. <strong>Weed</strong>s<br />

<strong>in</strong> the nursery also compete with the<br />

rice seedl<strong>in</strong>gs and can cause complete<br />

nursery crop failure. Herbicide such<br />

as thiobencarb, propanil, oxadiaz<strong>on</strong>,<br />

and butachlor can be used to c<strong>on</strong>trol<br />

weeds <strong>in</strong> the nursery.<br />

Land preparati<strong>on</strong><br />

Mechanical land preparati<strong>on</strong> can<br />

provide a weed-free field that is<br />

optimal for early rice growth. The<br />

land should be leveled after puddl<strong>in</strong>g<br />

the soil. Unevenness <strong>in</strong> the field<br />

results <strong>in</strong> areas of <strong>in</strong>adequate flood-<br />

<strong>in</strong>g. Dikes, to c<strong>on</strong>ta<strong>in</strong> and c<strong>on</strong>trol an<br />

undependable water supply, are<br />

essential. In India, Sesbania aculeata<br />

grown dur<strong>in</strong>g the dry seas<strong>on</strong> as a<br />

green manure crop is plowed <strong>in</strong><br />

before transplant<strong>in</strong>g rice (Mukho-<br />

padhyay 1983). This practice results<br />

<strong>in</strong> less weed <strong>in</strong>festati<strong>on</strong> <strong>in</strong> the ma<strong>in</strong><br />

rice crop.<br />

Cultivar<br />

Water depths largely determ<strong>in</strong>e the<br />

type of rice grown. In general, mod-<br />

ern semidwarf cultivars are grown <strong>in</strong><br />

shallow ra<strong>in</strong>fed rice-grow<strong>in</strong>g areas.<br />

In medium-deep ra<strong>in</strong>fed rice-grow-<br />

<strong>in</strong>g areas, tall cultivars that are<br />

mostly photoperiod-sensitive are<br />

grown.<br />

Plant populati<strong>on</strong><br />

Close spac<strong>in</strong>g, between 10 and 25 cm<br />

<strong>in</strong> rows or hills, <strong>in</strong>creases the ability<br />

of rice plants to compete with weeds.<br />

<strong>Rice</strong> should be transplanted <strong>in</strong><br />

straight rows to allow the use of<br />

mechanical weeders.<br />

84 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Table 7.1. Herbicides suitable for use <strong>in</strong> transplanted ra<strong>in</strong>fed lowland rice.<br />

Herbicide<br />

Bensulfur<strong>on</strong><br />

Bentaz<strong>on</strong><br />

Butachlor<br />

2,4-D or MCPA<br />

Mol<strong>in</strong>ate<br />

Oxadiaz<strong>on</strong><br />

Oxyfluorfen<br />

Pendimethal<strong>in</strong><br />

Piperophos +<br />

dimethametryn<br />

Piperophos + 2,4-D<br />

Propanil<br />

Qu<strong>in</strong>clorac<br />

Thiobencarb<br />

Thiobencarb + 2,4-D<br />

Rate<br />

(kg ai/ha)<br />

0.05<br />

1.0-2.0<br />

1.0<br />

0.5-1.0<br />

2.5-3.0<br />

0.5-0.75<br />

0.25<br />

0.75<br />

0.5<br />

0.3 + 0.2<br />

3.0-4.0<br />

0.3<br />

3.0<br />

1.0 + 0.5<br />

Water management<br />

Keep<strong>in</strong>g the ra<strong>in</strong>fed lowland field<br />

flooded after transplant<strong>in</strong>g kills some<br />

weeds and reduces the growth of<br />

others. In most ricefields, c<strong>on</strong>t<strong>in</strong>uous<br />

flood<strong>in</strong>g to a 5-cm depth is seldom<br />

achieved because of problems <strong>in</strong><br />

regulat<strong>in</strong>g water depth and dra<strong>in</strong>age.<br />

With good land preparati<strong>on</strong> and<br />

good water c<strong>on</strong>trol, weed problems<br />

will be m<strong>in</strong>imal. Other weed c<strong>on</strong>trol<br />

methods are necessary when ra<strong>in</strong>fall<br />

is not enough to provide c<strong>on</strong>t<strong>in</strong>uous<br />

flood<strong>in</strong>g.<br />

Comments and source of <strong>in</strong>formati<strong>on</strong><br />

Apply 3-5 d after transplant<strong>in</strong>g (DT)<br />

(IRRI 1986).<br />

Apply postemergence to c<strong>on</strong>trol<br />

broadleaf weeds and sedges. <strong>Weed</strong><br />

foliage must be exposed at applicati<strong>on</strong><br />

(IRRI 1973).<br />

Apply 3-6 DT (IRRI 1987).<br />

Apply 3-4 wk after weed emergence to<br />

c<strong>on</strong>trol sedges, broadleaf, and aquatic<br />

weeds. Lower water level to expose<br />

foliage of small plants before spray<strong>in</strong>g.<br />

Also may be applied 4-5 DT<br />

(IRRI 1973).<br />

Apply 4-8 DT.<br />

Apply 2-6 DT to c<strong>on</strong>trol annual grasses<br />

and broadleaf weeds (IRRI 1980).<br />

Apply 4 DT (IRRI 1980, 1983, 1988a).<br />

Apply preemergence about 6 DT to<br />

c<strong>on</strong>trol grasses and broadleaf weeds<br />

(IRRI 1980).<br />

Apply 2-5 DT to c<strong>on</strong>trol annual grasses,<br />

sedges, and broadleaf weeds<br />

(COPR 1976).<br />

Apply 2-8 DT to c<strong>on</strong>trol grasses,<br />

sedges, and broadleaf weeds<br />

(IRRI 1986).<br />

Apply postemergence to c<strong>on</strong>trol<br />

several grasses and broadleaf weeds<br />

at the 2- to 3-leaf stage. Lower water<br />

level of flooded fields about 24 h before<br />

applicati<strong>on</strong> to expose weed foliage<br />

(COPR 1976).<br />

Apply 3-5 DT (IRRI 1986).<br />

Apply 5-8 DT. Water should be shallow<br />

at applicati<strong>on</strong>. Avoid dra<strong>in</strong><strong>in</strong>g or overflow<strong>in</strong>g<br />

for 3-5 d after herbicide applicati<strong>on</strong>,<br />

but do not expose soil surface<br />

after treatment.<br />

Apply about 5 DT (IRRI 1983).<br />

Fertilizer<br />

Nitrogen applicati<strong>on</strong> should be timed<br />

to provide the maximum benefit to<br />

rice but the least benefit to the weeds.<br />

Apply<strong>in</strong>g fertilizer to a rice crop with<br />

poor weed c<strong>on</strong>trol could be worse<br />

than apply<strong>in</strong>g no fertilizer.


7.1 <strong>Rice</strong> growth stages when herbicides<br />

can be applied <strong>on</strong> ra<strong>in</strong>fed lowland rice<br />

transplanted <strong>on</strong> puddled soil. Bars (—)<br />

show periods when a particular herbicide is<br />

applied. *Tim<strong>in</strong>g of herbicide applicati<strong>on</strong> is<br />

based <strong>on</strong> weed emergence and growth<br />

stage with<strong>in</strong> the rice growth stages.<br />

Hand weed<strong>in</strong>g<br />

Hand weed<strong>in</strong>g is the most comm<strong>on</strong><br />

weed c<strong>on</strong>trol method <strong>in</strong> ra<strong>in</strong>fed<br />

lowland transplanted rice. The field<br />

should be weed free for 30 d after<br />

transplant<strong>in</strong>g (DT) to prevent yield<br />

losses caused by weeds. Two to three<br />

properly timed hand weed<strong>in</strong>gs, the<br />

first about 21 DT, comb<strong>in</strong>ed with<br />

good water management will ensure<br />

optimum rice yields. Mechanical<br />

weeders can be used <strong>in</strong> rice trans-<br />

planted <strong>in</strong> rows, but weeds with<strong>in</strong><br />

the rows still have to be removed by<br />

hand.<br />

Herbicides<br />

The efficiency of herbicides <strong>on</strong> trans-<br />

planted ra<strong>in</strong>fed lowland rice depends<br />

<strong>on</strong> water management. If the water<br />

depth <strong>in</strong> the field exceeds 10 cm<br />

dur<strong>in</strong>g the first week after herbicide<br />

applicati<strong>on</strong>, herbicidal efficacy will be<br />

reduced due to diluti<strong>on</strong> and leach<strong>in</strong>g.<br />

Despite water management limita-<br />

ti<strong>on</strong>s, however, weeds <strong>in</strong> ra<strong>in</strong>fed<br />

lowland rice can be adequately<br />

c<strong>on</strong>trolled by herbicides.<br />

Herbicides that can be used as an<br />

alternative or supplement to manual<br />

or mechanical weed<strong>in</strong>g <strong>in</strong>clude 2,4-D,<br />

MCPA, butachlor, thiobencarb,<br />

propanil, oxadiaz<strong>on</strong>, pendimethal<strong>in</strong>,<br />

piperophos, and oxyfluorfen. Table<br />

7.1 and Figure 7.1 provide <strong>in</strong>forma-<br />

ti<strong>on</strong> <strong>on</strong> available herbicides and<br />

tim<strong>in</strong>g of their applicati<strong>on</strong>.<br />

Direct seeded <strong>on</strong><br />

puddled soil<br />

Direct seed<strong>in</strong>g rice <strong>on</strong> puddled soils<br />

is comm<strong>on</strong> <strong>in</strong> some ra<strong>in</strong>fed areas of<br />

the Asian tropics (Sri Lanka, Bangla-<br />

desh, and Philipp<strong>in</strong>es). Pregermi-<br />

nated rice seeds are broadcast <strong>on</strong>to<br />

puddled fields without much<br />

stand<strong>in</strong>g water.<br />

<strong>Weed</strong> problems<br />

Direct seeded ra<strong>in</strong>fed rice is more<br />

susceptible to weed competiti<strong>on</strong> than<br />

is transplanted ra<strong>in</strong>fed rice. Although<br />

soil puddl<strong>in</strong>g reduces the weed<br />

problem, unc<strong>on</strong>trolled weeds still<br />

reduce rice yields about 60%. In some<br />

cases, a puddled lowland field may<br />

be saturated but without any stand-<br />

<strong>in</strong>g water, because of lack of water<br />

c<strong>on</strong>trol. The moist, warm, aerobic soil<br />

c<strong>on</strong>diti<strong>on</strong> created promotes germ<strong>in</strong>a-<br />

ti<strong>on</strong> and rapid growth of many<br />

upland, semiaquatic, and aquatic<br />

weeds which are little affected by<br />

later flood<strong>in</strong>g. Deeper-than-normal<br />

flood<strong>in</strong>g is often required to signifi-<br />

cantly reduce weed growth. Because<br />

<strong>in</strong> this culture, rice and weeds germi-<br />

nate at the same time, competiti<strong>on</strong> by<br />

weeds is more <strong>in</strong>tense than it is <strong>in</strong><br />

transplanted rice.<br />

<strong>Weed</strong>s of importance <strong>in</strong> this<br />

culture <strong>in</strong>clude E. crus-galli and other<br />

Ech<strong>in</strong>ochloa spp., I. rugosum,<br />

M. vag<strong>in</strong>alis, S. zeylanica, C. difformis,<br />

C. iria, F. miliacea, and Scirpus spp.<br />

Ra<strong>in</strong>fed lowland rice 85


Land preparati<strong>on</strong><br />

Level<strong>in</strong>g the puddled soil is critical <strong>in</strong><br />

direct seeded rice; poor dra<strong>in</strong>age<br />

results <strong>in</strong> poor germ<strong>in</strong>ati<strong>on</strong> of rice<br />

seeds. An uneven land surface also<br />

results <strong>in</strong> exposed areas which are<br />

ideal for germ<strong>in</strong>ati<strong>on</strong> and growth of<br />

weeds.<br />

Plant<strong>in</strong>g method<br />

Pregerm<strong>in</strong>ated rice seeds are broad-<br />

cast or drilled <strong>on</strong>to puddled soil.<br />

Pregerm<strong>in</strong>ati<strong>on</strong> ensures quick growth<br />

and even, rapid crop establishment.<br />

Hand or mechanical weed<strong>in</strong>g is<br />

enhanced when pregerm<strong>in</strong>ated seeds<br />

are drilled <strong>in</strong> rows.<br />

Cultivar<br />

Traditi<strong>on</strong>ally, ra<strong>in</strong>fed lowland rice<br />

farmers <strong>in</strong> tropical Asia depend <strong>on</strong><br />

tall, vigorously tiller<strong>in</strong>g plants to<br />

provide weed competiti<strong>on</strong>. Early-<br />

matur<strong>in</strong>g semidwarf rices, such as<br />

IR28, IR30, and IR36, have been<br />

grown successfully when direct<br />

seeded.<br />

Plant populati<strong>on</strong><br />

As <strong>in</strong> other rice cultures, close spac-<br />

<strong>in</strong>g is essential to m<strong>in</strong>imize weed<br />

<strong>in</strong>festati<strong>on</strong>. Higher seed<strong>in</strong>g rates are<br />

beneficial when heavy weed <strong>in</strong>festa-<br />

ti<strong>on</strong>s are expected. Seed<strong>in</strong>g rates of<br />

100-200 kg/ha have been used. A<br />

higher seed<strong>in</strong>g rate helps c<strong>on</strong>trol<br />

weeds but does not necessarily<br />

<strong>in</strong>crease rice gra<strong>in</strong> yield.<br />

86 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Table 7.2. Herbicides suitable for use <strong>in</strong> rice direct seeded <strong>on</strong> puddled soil.<br />

Herbicide<br />

Bentaz<strong>on</strong><br />

Bifenox + 2,J-D<br />

Butachlor<br />

Butachlor + 2,4-D<br />

Butral<strong>in</strong><br />

2,4-D or MCPA<br />

Oxadiaz<strong>on</strong><br />

Oxyfluorfen<br />

Pendimethal<strong>in</strong><br />

Piperophos +<br />

dimethametryn<br />

Piperophos + 2,4-D<br />

Pretilachlor + antidote<br />

Propanil<br />

Qu<strong>in</strong>clorac<br />

Thiobencarb<br />

Thiobencarb + 2,4-D<br />

Rate<br />

(kg ai/ha)<br />

2.0<br />

2.0 + 0.66<br />

1.0<br />

0.75 + 0.6<br />

2.0<br />

0.5-1.0<br />

0.75-1.0<br />

0.10-0.25<br />

0.75-2.0<br />

0.4 + 0.1<br />

0.3 + 0.2<br />

0.3-0.4<br />

3.0-4.0<br />

0.3<br />

1.5-2.0<br />

1.0 + 0.5<br />

Water management<br />

Good water management often<br />

reduces weed competiti<strong>on</strong> and elim-<br />

<strong>in</strong>ates some weeds <strong>in</strong> direct seeded<br />

ra<strong>in</strong>fed lowland fields. C<strong>on</strong>t<strong>in</strong>uous<br />

flood<strong>in</strong>g at 5-cm depth is desirable<br />

but seldom achieved. Puddl<strong>in</strong>g<br />

enhances water-use efficiency. Water<br />

c<strong>on</strong>trol can be improved by the use<br />

of dikes.<br />

Comments and source of Informati<strong>on</strong><br />

Apply postemergence to c<strong>on</strong>trol<br />

broadleaf weeds and sedges at the<br />

2- to 10-leaf stages. <strong>Weed</strong> foliage must<br />

be exposed at applicati<strong>on</strong> (IRRI 1984).<br />

Apply at early postemergence of<br />

weeds (about 6 d after seed<strong>in</strong>g [DAS]).<br />

Apply 6-8 DAS to c<strong>on</strong>trol annual<br />

grasses and sedges. Soil should be<br />

saturated at applicati<strong>on</strong> (IRRI 1981).<br />

Apply 6-8 DAS (IRRI 1981).<br />

Apply 4-6 DAS pregerm<strong>in</strong>ated rice<br />

(1- to 4-leaf stages) (COPR 1976).<br />

Apply 3-4 wk after seed<strong>in</strong>g to c<strong>on</strong>trol<br />

annual broadleaf weeds and sedges.<br />

Expose weeds before spray<strong>in</strong>g.<br />

Apply preemergence 6-8 DAS. Slight<br />

phytotoxicity has been observed <strong>in</strong> rice<br />

seeded <strong>on</strong> puddled soil (IRRI 1975).<br />

Apply 5-10 DAS. May <strong>in</strong>itially be toxic<br />

to rice (IRRI 1981, 1983).<br />

Apply up to 6 DAS (IRRI 1982).<br />

Apply 4-6 DAS (IRRI 1977).<br />

Apply 6-8 DAS (IRRI 1977).<br />

Apply 3 DAS (IRRI 1987).<br />

Apply postemergence to grassy and<br />

broadleaf weeds at the 2- to 3-leaf<br />

stages (IRRI 1980).<br />

Apply 6-8 DAS (IRRI 1986).<br />

Can be used preemergence or early<br />

postemergence. Postemergence<br />

applicati<strong>on</strong> should be d<strong>on</strong>e after the<br />

1- to 2-leaf stage of rice but before the<br />

3-leaf stage of grasses and sedges,<br />

about 10 DAS (IRRI 1980).<br />

Apply 6 DAS (IRRI 1980).<br />

Fertilizer<br />

Modern improved cultivars resp<strong>on</strong>d<br />

better to nitrogen than do tall tradi-<br />

ti<strong>on</strong>al cultivars. Therefore, modern<br />

improved cultivars are normally<br />

grown with high fertilizer rates <strong>in</strong><br />

order to realize their full yield poten-<br />

tial. This high fertilizati<strong>on</strong>, however,<br />

enhances weed growth.


7.2 <strong>Rice</strong> growth stages when<br />

herbicides can be applied <strong>on</strong> wet-seeded<br />

ra<strong>in</strong>fed lowland rice. Bars (—) show<br />

periods when a particular herbicide is<br />

applied. *Tim<strong>in</strong>g of herbicide applicati<strong>on</strong><br />

is based <strong>on</strong> weed emergence and growth<br />

stage with<strong>in</strong> the rice growth stage.<br />

Hand weed<strong>in</strong>g<br />

Hand pull<strong>in</strong>g of weeds can be d<strong>on</strong>e<br />

<strong>in</strong> broadcast or drill seeded rice;<br />

mechanical weed<strong>in</strong>g is feasible <strong>on</strong>ly<br />

when rice is planted <strong>in</strong> rows. Two to<br />

three hand weed<strong>in</strong>gs at 2-3 wk after<br />

sow<strong>in</strong>g are usually sufficient to<br />

ensure optimum yields.<br />

Herbicides<br />

The use of herbicides for weed<br />

c<strong>on</strong>trol has proved effective and<br />

ec<strong>on</strong>omical <strong>in</strong> direct seeded ra<strong>in</strong>fed<br />

lowland rice. Because weeds and rice<br />

germ<strong>in</strong>ate together, the number of<br />

herbicides that can be used safely is<br />

limited. The efficacy of herbicides is<br />

dependent <strong>on</strong> soil moisture c<strong>on</strong>di-<br />

ti<strong>on</strong>s and is markedly reduced by dry<br />

or deep flood<strong>in</strong>g c<strong>on</strong>diti<strong>on</strong>s immedi-<br />

ately after herbicide applicati<strong>on</strong>. In<br />

the tropics, butachlor, thiobencarb,<br />

butral<strong>in</strong>, and propanil have been<br />

used <strong>in</strong> direct seeded rice. Table 7.2<br />

and Figure 7.2 provide herbicide<br />

<strong>in</strong>formati<strong>on</strong> for this rice culture.<br />

Direct seeded<br />

<strong>on</strong> dry soil<br />

Direct seed<strong>in</strong>g <strong>on</strong> dry soil provides<br />

an opportunity to <strong>in</strong>crease cropp<strong>in</strong>g<br />

<strong>in</strong>tensity <strong>in</strong> ra<strong>in</strong>fed lowland rice.<br />

Elim<strong>in</strong>at<strong>in</strong>g puddl<strong>in</strong>g shortens land<br />

use time. In this culture, dry seed is<br />

sown directly <strong>in</strong>to moist, n<strong>on</strong>puddled<br />

soil at the beg<strong>in</strong>n<strong>in</strong>g of the ra<strong>in</strong>y<br />

seas<strong>on</strong>. The field may be bunded to<br />

accumulate water as the ra<strong>in</strong>y seas<strong>on</strong><br />

progresses and the crop may end its<br />

cycle under flood<strong>in</strong>g.<br />

Direct seeded dry rice culture is<br />

practiced <strong>in</strong> Africa, South America,<br />

and <strong>in</strong> parts of tropical Asia. In<br />

Africa, direct seeded rice is grown <strong>in</strong><br />

valley bottoms and <strong>on</strong> hydromorphic<br />

soils—soils <strong>on</strong> transiti<strong>on</strong>al slopes<br />

between upland soils and valley-<br />

bottom soils, with the groundwater<br />

table <strong>in</strong> the root z<strong>on</strong>e for most of the<br />

grow<strong>in</strong>g period. Direct seeded<br />

ra<strong>in</strong>fed lowland rice is known as aus<br />

cropp<strong>in</strong>g <strong>in</strong> northeastern India and<br />

Bangladesh. In Ind<strong>on</strong>esia, it is called<br />

gogorantja (gogorancah).<br />

<strong>Weed</strong> problems<br />

Am<strong>on</strong>g ra<strong>in</strong>fed lowland rice cultures,<br />

weed problems <strong>in</strong> direct seeded rice<br />

are more <strong>in</strong>tense and wider <strong>in</strong> range<br />

than those <strong>in</strong> transplanted or broad-<br />

cast rice where puddl<strong>in</strong>g reduces<br />

weed problems. <strong>Rice</strong> yield losses<br />

from unc<strong>on</strong>trolled weeds can be as<br />

high as 74%. <strong>Rice</strong>-weed competiti<strong>on</strong><br />

for moisture is heavy dur<strong>in</strong>g the early<br />

growth stage, when there is no<br />

stand<strong>in</strong>g water. Dry rice seeds germ-<br />

<strong>in</strong>ate 3-5 d later than pregerm<strong>in</strong>ated<br />

rice seeds. <strong>Weed</strong>s germ<strong>in</strong>ate and<br />

establish faster than rice.<br />

The prevail<strong>in</strong>g moist, aerobic<br />

c<strong>on</strong>diti<strong>on</strong> for direct seeded rice<br />

encourages the growth of upland,<br />

semiaquatic, and aquatic weeds.<br />

Dom<strong>in</strong>ance of any of these weed<br />

communities depends <strong>on</strong> the availa-<br />

bility and depth of stand<strong>in</strong>g water.<br />

Many well-established upland weeds<br />

c<strong>on</strong>t<strong>in</strong>ue to survive under flood<strong>in</strong>g<br />

later <strong>in</strong> the crop cycle. Lowland<br />

weeds that are important <strong>in</strong>clude<br />

E. crus-galli, I. rugosum, L. ch<strong>in</strong>ensis,<br />

C. difformis, F. miliacea, and<br />

S. maritimus.<br />

Ra<strong>in</strong>fed lowland rice 87


Land preparati<strong>on</strong><br />

Land preparati<strong>on</strong> should be d<strong>on</strong>e to<br />

provide weed-free c<strong>on</strong>diti<strong>on</strong>s at<br />

plant<strong>in</strong>g. Land level<strong>in</strong>g is essential to<br />

improve water c<strong>on</strong>trol. Large soil<br />

clods must be broken up so that they<br />

do not <strong>in</strong>terfere with rice seedl<strong>in</strong>g<br />

emergence. A stale seedbed may be<br />

practiced, but it gives no advantage if<br />

plant<strong>in</strong>g is delayed until after the<br />

start of ra<strong>in</strong>s.<br />

Plant<strong>in</strong>g method<br />

For most direct seeded ra<strong>in</strong>fed<br />

lowland rice, comm<strong>on</strong> establishment<br />

methods <strong>in</strong>clude broadcast<strong>in</strong>g <strong>on</strong> a<br />

leveled field, broadcast<strong>in</strong>g over<br />

shallow furrows and pass<strong>in</strong>g a spike-<br />

toothed harrow at an angle to c<strong>on</strong>cen-<br />

trate seed <strong>in</strong> rows, drill<strong>in</strong>g, and<br />

dibbl<strong>in</strong>g seeds for uniformly spaced<br />

seedl<strong>in</strong>gs <strong>in</strong> hills. In all plant<strong>in</strong>g<br />

methods, close spac<strong>in</strong>g will <strong>in</strong>crease<br />

the competitive ability of rice aga<strong>in</strong>st<br />

weeds. Seed rates of 100-150 kg/ha<br />

are often used, with higher seed rates<br />

where weed problems are expected.<br />

Cultivar<br />

Early-matur<strong>in</strong>g, drought-tolerant rice<br />

cultivars are desirable.<br />

Water management<br />

There may be no stand<strong>in</strong>g water <strong>in</strong><br />

the early crop growth stages of direct<br />

seeded ra<strong>in</strong>fed lowland rice. Later,<br />

when water from ra<strong>in</strong>s has accumu-<br />

lated, water is an important tool <strong>in</strong><br />

suppress<strong>in</strong>g weed growth. However,<br />

c<strong>on</strong>t<strong>in</strong>uous flood<strong>in</strong>g to a 5-cm depth<br />

is seldom achieved. If weeds establish<br />

because of lack of stand<strong>in</strong>g water<br />

early <strong>in</strong> the seas<strong>on</strong>, deep flood<strong>in</strong>g at<br />

10-20 cm is necessary to reduce weed<br />

growth. Where ra<strong>in</strong>fall is not enough<br />

to ma<strong>in</strong>ta<strong>in</strong> c<strong>on</strong>t<strong>in</strong>uous submergence,<br />

other weed c<strong>on</strong>trol methods are<br />

essential.<br />

88 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Table 7.3. Herbicides suitable for use <strong>in</strong> rice direct seeded <strong>on</strong> dry soil.<br />

Herbicide<br />

Bentaz<strong>on</strong><br />

Butachlor<br />

Butral<strong>in</strong><br />

2,4-D or MCPA<br />

Oxadiaz<strong>on</strong><br />

Oxyfluorfen<br />

Pendimethal<strong>in</strong><br />

Pretilachlor + antidote<br />

Propanil<br />

Qu<strong>in</strong>clorac<br />

Thiobencarb<br />

Rate<br />

(kg ai/ha) Comments and source of <strong>in</strong>formati<strong>on</strong><br />

1.0-2.0<br />

2.0<br />

2.0<br />

0.5-1.0<br />

0.75-1.0<br />

0.14-0.20<br />

0.75-2.0<br />

0.3-0.4<br />

2.0-4.0<br />

0.3<br />

3.0<br />

Fertilizer<br />

Nitrogen applicati<strong>on</strong> should be timed<br />

to prevent weed proliferati<strong>on</strong> and to<br />

obta<strong>in</strong> maximum benefit from the<br />

fertilizer applied. In direct seeded<br />

ra<strong>in</strong>fed lowland rice, applicati<strong>on</strong> of<br />

fertilizer after thorough weed<strong>in</strong>g<br />

gives maximum benefits.<br />

Hand weed<strong>in</strong>g<br />

Two to three well-timed hand weed-<br />

<strong>in</strong>gs should provide adequate weed<br />

c<strong>on</strong>trol. An advantage of early hand<br />

weed<strong>in</strong>g is that it requires less time.<br />

Early-seas<strong>on</strong> hand weed<strong>in</strong>g, espe-<br />

cially where there is no stand<strong>in</strong>g<br />

water, reduces the competiti<strong>on</strong> of<br />

Apply postemergence to c<strong>on</strong>trol<br />

broadleaf weeds and sedges at the 2-<br />

to 10-leaf stages (IRRI 1984).<br />

Apply as preemergence spray 0-3 d<br />

after sow<strong>in</strong>g (DAS) to c<strong>on</strong>trol annual<br />

grasses and sedges (IRRI 1988).<br />

Apply preemergence 2-3 DAS to<br />

c<strong>on</strong>trol annual grasses (IRRI 1978).<br />

Spray 3-4 wk after seed<strong>in</strong>g to c<strong>on</strong>trol<br />

annual broadleaf weeds and sedges<br />

(COPR 1976).<br />

Apply preemergence 6-8 DAS<br />

(IRRI 1978).<br />

Apply preemergence 3-5 DAS<br />

(IRRI 1982).<br />

Apply preemergence (IRRI 1982).<br />

Apply 3 DAS (IRRI 1987).<br />

Apply postemergence at the 2- to 3-leaf<br />

stages to c<strong>on</strong>trol grasses and broadleaf<br />

weeds. Decrease water level of<br />

flooded fields 24 h before applicati<strong>on</strong><br />

to expose weeds (IRRI 1982).<br />

Apply 6-8 DAS (IRRI 1986).<br />

Apply preemergence Immediately<br />

after cover<strong>in</strong>g rice seeds with soil,<br />

before ra<strong>in</strong>s (IRRI 1982).<br />

weeds for nutrients and moisture.<br />

The first weed<strong>in</strong>g should be d<strong>on</strong>e<br />

15-21 d after seed<strong>in</strong>g. Hand weed<strong>in</strong>g<br />

later than this will reduce rice yields.<br />

Mechanical weeders can be used if<br />

seed is drilled or dibbled <strong>in</strong> straight<br />

rows.<br />

Herbicides<br />

In fields with no stand<strong>in</strong>g water,<br />

ra<strong>in</strong>fall after herbicide applicati<strong>on</strong> is<br />

needed for preemergence herbicides<br />

to be effective. The persistence of<br />

residual preemergence herbicides<br />

under warm, moist, or flooded<br />

c<strong>on</strong>diti<strong>on</strong>s may be too low to provide<br />

a weed-free rice crop. Follow-up<br />

hand weed<strong>in</strong>g or postemergence<br />

herbicide applicati<strong>on</strong> may be<br />

necessary.


The use of herbicides has proved<br />

beneficial <strong>in</strong> direct seeded ra<strong>in</strong>fed<br />

lowland rice, c<strong>on</strong>sider<strong>in</strong>g the crop’s<br />

high labor requirements and<br />

unfavorable weather at weed<strong>in</strong>g<br />

time. Herbicide comb<strong>in</strong>ati<strong>on</strong>s,<br />

whether as tank mixtures or sequen-<br />

tial sprays, will improve weed<br />

c<strong>on</strong>trol where the weed spectrum is<br />

too diverse for any <strong>on</strong>e herbicide.<br />

Propanil plus butachlor, thiobencarb,<br />

or pendimethal<strong>in</strong> applied early pos-<br />

temergence provide good broad-<br />

spectrum c<strong>on</strong>trol of weeds.<br />

Sequential applicati<strong>on</strong>s of residual<br />

preemergence herbicides followed by<br />

2,4-D perform better than do residual<br />

herbicides al<strong>on</strong>e. Table 7.3 and<br />

Figure 7.3 provide <strong>in</strong>formati<strong>on</strong> <strong>on</strong> the<br />

comm<strong>on</strong> herbicides available for<br />

direct seeded ra<strong>in</strong>fed lowland rice.<br />

7.3 <strong>Rice</strong> growth stages when herbicides<br />

can be applied <strong>on</strong> dry-seeded ra<strong>in</strong>fed<br />

lowland rice. Bars (—) show periods when<br />

a particular herbicide is applied. *Tim<strong>in</strong>g of<br />

herbicide applicati<strong>on</strong> is based <strong>on</strong> weed<br />

emergence and growth stage with<strong>in</strong> the<br />

rice growth stage.<br />

Ra<strong>in</strong>fed lowland rice 89


Chapter 8<br />

<strong>Weed</strong> c<strong>on</strong>trol <strong>in</strong> upland rice<br />

Upland rice, also known as dryland or<br />

pluvial rice, is grown <strong>on</strong> ra<strong>in</strong>fed,<br />

naturally well-dra<strong>in</strong>ed soils. Strictly<br />

def<strong>in</strong>ed, upland ricefields are not<br />

bunded and no surface water accumulates.<br />

About 13% (18.8 milli<strong>on</strong> ha) of the<br />

world's rice area is upland (IRRI<br />

1988b). About 11.9 milli<strong>on</strong> ha is <strong>in</strong><br />

Asia, 4.5 milli<strong>on</strong> ha <strong>in</strong> Lat<strong>in</strong> America,<br />

and 2.2 milli<strong>on</strong> ha <strong>in</strong> Africa. It is the<br />

dom<strong>in</strong>ant rice culture <strong>in</strong> Lat<strong>in</strong> America<br />

and West Africa.<br />

Upland rice is grown under a wide<br />

range of management practices that<br />

vary from shift<strong>in</strong>g cultivati<strong>on</strong>-as<br />

practiced <strong>in</strong> Malaysia, Philipp<strong>in</strong>es,<br />

Peru, and West Africa-to the mechanized<br />

cultivati<strong>on</strong> practiced <strong>in</strong> Brazil.<br />

Most of the world’s upland rice is<br />

grown <strong>on</strong> poor soils <strong>in</strong> areas with<br />

uncerta<strong>in</strong> ra<strong>in</strong>fall by small farmers<br />

us<strong>in</strong>g traditi<strong>on</strong>al, low-<strong>in</strong>put technology.<br />

<strong>Weed</strong> problems<br />

<strong>Weed</strong>s rank sec<strong>on</strong>d to drought stress<br />

<strong>in</strong> reduc<strong>in</strong>g upland rice gra<strong>in</strong> yields<br />

and quality (Sankaran and De Datta<br />

1985). Yield losses caused by unc<strong>on</strong>-<br />

trolled weeds <strong>in</strong> upland rice are about<br />

96%.<br />

Upland rice, like all upland crops, is<br />

planted <strong>in</strong> moist soil, that, <strong>in</strong> general,<br />

does not reta<strong>in</strong> moisture bey<strong>on</strong>d field<br />

capacity. Water is supplied by ra<strong>in</strong>s<br />

dur<strong>in</strong>g the grow<strong>in</strong>g seas<strong>on</strong>. Optimum<br />

temperature, sufficient aerati<strong>on</strong>, and<br />

ideal moisture for weed germ<strong>in</strong>ati<strong>on</strong><br />

and growth exist at plant<strong>in</strong>g time. This<br />

enables weeds to germ<strong>in</strong>ate earlier and<br />

grow more vigorously than the rice<br />

crop.<br />

<strong>Weed</strong> competiti<strong>on</strong> is more <strong>in</strong>tense<br />

<strong>in</strong> upland rice than <strong>in</strong> irrigated and<br />

ra<strong>in</strong>fed lowland rice because upland<br />

fields do not have stand<strong>in</strong>g water to<br />

suppress weed growth. Some weeds <strong>in</strong><br />

upland rice can withstand drought<br />

better than rice because their roots<br />

penetrate deeper <strong>in</strong>to the soil to tap<br />

moisture. Poor rice germ<strong>in</strong>ati<strong>on</strong> due to<br />

drought results <strong>in</strong> excessive weed<br />

growth, especially if semidwarf<br />

varieties are grown.<br />

Because weeds <strong>in</strong> upland rice<br />

germ<strong>in</strong>ate throughout the seas<strong>on</strong>,<br />

dense weed growth may reoccur after<br />

hand weed<strong>in</strong>g or after the residual<br />

effects of herbicides have worn off.<br />

A mixture of annuals and peren-<br />

nials, and grasses and broadleaf<br />

weeds, <strong>in</strong>tensifies the competitive<br />

effects of weeds <strong>in</strong> upland rice. C4<br />

weeds, which have higher water-use<br />

efficiency than rice, prevail (Amp<strong>on</strong>g-<br />

Nyarko and De Datta 1989). Comm<strong>on</strong><br />

upland weeds <strong>in</strong>clude Cyperus rotun-<br />

dus, Ech<strong>in</strong>ochloa col<strong>on</strong>a, Eleus<strong>in</strong>e <strong>in</strong>dica,<br />

Rottboellia<br />

coch<strong>in</strong>ch<strong>in</strong>ensis, Cynod<strong>on</strong> dactyl<strong>on</strong>,<br />

Digitaria sangu<strong>in</strong>alis, Imperata cyl<strong>in</strong>drica,<br />

Amaranthus sp<strong>in</strong>osus, Commel<strong>in</strong>a<br />

benghalensis, Trianthema portulacastrum,<br />

Ageratum c<strong>on</strong>yzoides, Portulaca oleracea,<br />

and Euphorbia hirta.<br />

Land preparati<strong>on</strong><br />

Land preparati<strong>on</strong> for upland rice<br />

varies greatly am<strong>on</strong>g regi<strong>on</strong>s. In West<br />

Africa, where shift<strong>in</strong>g cultivati<strong>on</strong> is<br />

comm<strong>on</strong>, slash-and-burn is practiced<br />

with hand tools. In South Asia, upland<br />

fields are plowed by bullocks and <strong>in</strong><br />

Southeast Asia, by water buffalo.<br />

Deep plow<strong>in</strong>g (25 cm or deeper)<br />

moist soil at the end of the ra<strong>in</strong>y<br />

seas<strong>on</strong> is recommended for upland<br />

rice grown <strong>in</strong> the West African savan-<br />

nahs (FAO 1976). Deep plow<strong>in</strong>g and<br />

subsoil<strong>in</strong>g c<strong>on</strong>serve soil moisture <strong>in</strong><br />

the ra<strong>in</strong>y seas<strong>on</strong> and enhance root<br />

growth and extracti<strong>on</strong> of soil moisture<br />

from deeper soil layers. It also will<br />

bury weed seeds deep enough to pre-<br />

vent them from emerg<strong>in</strong>g. Subsequent<br />

tillage operati<strong>on</strong>s must be shallow.<br />

Upland rice 91


An upland field should be<br />

harrowed to break up soil clods, but<br />

field level<strong>in</strong>g is not critical. <strong>Rice</strong><br />

should be planted as so<strong>on</strong> as possible<br />

follow<strong>in</strong>g the last harrow<strong>in</strong>g to pro-<br />

vide rice an even start with the weeds.<br />

The stale seedbed technique can<br />

reduce weed problems <strong>in</strong> upland rice.<br />

After land preparati<strong>on</strong>, weeds that<br />

grow are killed at the 2- to 5-leaf stage<br />

by herbicides or us<strong>in</strong>g mechanical<br />

methods. Germ<strong>in</strong>ati<strong>on</strong> of most of the<br />

viable weed seeds is essential to the<br />

success of the stale seedbed technique.<br />

Under unfavorable c<strong>on</strong>diti<strong>on</strong>s for<br />

weed seed germ<strong>in</strong>ati<strong>on</strong> (e.g., dry<br />

soils), no weed c<strong>on</strong>trol advantage may<br />

be achieved.<br />

Use of the stale seedbed technique<br />

should not delay rice seed<strong>in</strong>g bey<strong>on</strong>d<br />

the optimum time. Plant<strong>in</strong>g at the<br />

optimum time assures more ra<strong>in</strong>fall<br />

from seed<strong>in</strong>g through spikelet fill<strong>in</strong>g;<br />

late-planted rice is likely to suffer<br />

drought and reduced solar radiati<strong>on</strong><br />

dur<strong>in</strong>g the reproductive stage, which<br />

can substantially reduce yields.<br />

Zero tillage can be used to establish<br />

an upland rice crop where no difficult-<br />

to-c<strong>on</strong>trol perennial weeds are found<br />

<strong>in</strong> the fallow vegetati<strong>on</strong> or when<br />

appropriate herbicides are available.<br />

But zero tillage may not be successful<br />

under all soil c<strong>on</strong>diti<strong>on</strong>s; restricted<br />

root development and reduced gra<strong>in</strong><br />

yield have been observed (St<strong>on</strong>e et a1<br />

1980).<br />

Plant<strong>in</strong>g methods<br />

Broadcast<strong>in</strong>g, dibbl<strong>in</strong>g, and drill<strong>in</strong>g<br />

are the comm<strong>on</strong> seed<strong>in</strong>g practices for<br />

upland rice. Broadcast<strong>in</strong>g is comm<strong>on</strong><br />

<strong>in</strong> many countries <strong>in</strong> Asia, Africa, and<br />

92 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Lat<strong>in</strong> America. Dibbl<strong>in</strong>g, or hill<strong>in</strong>g, is<br />

practiced <strong>in</strong> Africa and Asia by farmers<br />

us<strong>in</strong>g slash-and-burn systems. A<br />

po<strong>in</strong>ted stick is used to make holes <strong>in</strong><br />

the soils; 4-8 unsprouted seeds are<br />

dropped <strong>in</strong> and covered with soil. In<br />

Lat<strong>in</strong> America, mechanized drill<strong>in</strong>g is<br />

becom<strong>in</strong>g <strong>in</strong>creas<strong>in</strong>gly popular.<br />

Row drill<strong>in</strong>g or dibbl<strong>in</strong>g <strong>in</strong> rows<br />

makes weed<strong>in</strong>g and other management<br />

practices easier. Timely sow<strong>in</strong>g<br />

and rapid canopy closure m<strong>in</strong>imize<br />

weed growth and ensure good stand<br />

establishment.<br />

<strong>Weed</strong> problems <strong>in</strong> broadcast seeded<br />

fields are higher because mechanical<br />

hand weed<strong>in</strong>g cannot be d<strong>on</strong>e, and<br />

weed<strong>in</strong>g must be delayed because it is<br />

difficult to tell grassy weeds from rice<br />

at early growth stages.<br />

Cultivar<br />

Upland rice cultivars with drought<br />

avoidance (through deep root sys-<br />

tems) and drought recovery abilities<br />

are preferred. Intermediate-statured<br />

cultivars with moderate tiller<strong>in</strong>g, big<br />

panicles, blast resistance, and tolerance<br />

for ir<strong>on</strong> deficiency and alum<strong>in</strong>um<br />

toxicity are also desirable.<br />

Plant populati<strong>on</strong><br />

Seed<strong>in</strong>g rate and spac<strong>in</strong>g for upland<br />

rice vary with plant<strong>in</strong>g method and<br />

the rice cultivar used. A high plant<br />

populati<strong>on</strong> is important for upland<br />

rice to quickly develop a canopy that<br />

will suppress weed growth. Seed<strong>in</strong>g<br />

rates vary from 80 to 150 kg/ha,<br />

depend<strong>in</strong>g <strong>on</strong> the seed<strong>in</strong>g method.<br />

Row spac<strong>in</strong>g also varies between 20<br />

and 30 cm. Broadcast seed<strong>in</strong>g requires<br />

more seeds than drill<strong>in</strong>g or dibbl<strong>in</strong>g.<br />

Tall leafy cultivars should be planted<br />

at wider spac<strong>in</strong>g than semidwarf culti-<br />

vars. Grow<strong>in</strong>g tall cultivars at narrow<br />

spac<strong>in</strong>g <strong>in</strong>creases lodg<strong>in</strong>g.<br />

Crop rotati<strong>on</strong> is practiced to pre-<br />

vent the buildup of weeds adapted to<br />

upland ricefields, but easy to c<strong>on</strong>trol <strong>in</strong><br />

other crops. Herbicides that c<strong>on</strong>trol<br />

problem weeds but are toxic to rice<br />

also can be used <strong>on</strong> a tolerant crop <strong>in</strong><br />

the rotati<strong>on</strong>. That will reduce the rice<br />

weed problem.<br />

Fertilizer<br />

Nitrogen resp<strong>on</strong>se is high for modern<br />

short- to medium-statured upland rice<br />

cultivars that are resistant to lodg<strong>in</strong>g.<br />

In most soils, split applicati<strong>on</strong> of N<br />

gives higher gra<strong>in</strong> yield than does<br />

s<strong>in</strong>gle basal applicati<strong>on</strong>.<br />

Apply<strong>in</strong>g fertilizer to upland rice,<br />

however, will reduce gra<strong>in</strong> yield if the<br />

field is not weeded. The first applica-<br />

ti<strong>on</strong> should be delayed until after<br />

weed<strong>in</strong>g. Subsequent topdress<strong>in</strong>gs of<br />

N after weed<strong>in</strong>g will maximize fertil-<br />

izer-use efficiency. The N applicati<strong>on</strong><br />

rate should be reduced <strong>in</strong> drought-<br />

pr<strong>on</strong>e areas.<br />

Phosphorus deficiency is comm<strong>on</strong><br />

<strong>in</strong> upland rice, especially <strong>in</strong> Oxisols<br />

and Ultisols <strong>in</strong> Brazil, West Africa, and<br />

some parts of South and Southeast<br />

Asia (Gupta and O'Toole 1986). In the<br />

Philipp<strong>in</strong>es, 18 kg P/ha is recom-<br />

mended for upland rice (PCARR<br />

1977). Some coarse-textured soils <strong>in</strong><br />

high-ra<strong>in</strong>fall areas are affected by<br />

potassium deficiency. Apply<strong>in</strong>g<br />

33 kg K/ha has been adequate <strong>in</strong> some<br />

African countries (IRCN 1982). Z<strong>in</strong>c,<br />

ir<strong>on</strong>, and sulfur deficiencies also occur<br />

<strong>in</strong> upland rice. Deficiency of any of<br />

these nutrients will reduce the vigor of<br />

rice and, hence, its competitiveness<br />

aga<strong>in</strong>st weeds.


Hand weed<strong>in</strong>g<br />

The weed-free period required by<br />

upland rice is from 10 to 60 d after<br />

seed<strong>in</strong>g (DAS). By and large, keep<strong>in</strong>g<br />

the crop weed free for the first 60 DAS<br />

will give optimum yields. <strong>Weed</strong>s<br />

germ<strong>in</strong>ate earlier and grow more<br />

vigorously than upland rice dur<strong>in</strong>g the<br />

first 5 wk after plant<strong>in</strong>g. <strong>Weed</strong>s should<br />

be removed 15-25 d after plant<strong>in</strong>g to<br />

obta<strong>in</strong> good rice yields.<br />

Two or three well-timed weed<strong>in</strong>gs<br />

are enough to meet the weed-free<br />

requirement. <strong>Weed</strong><strong>in</strong>g dur<strong>in</strong>g early<br />

weed growth stages requires less labor<br />

than weed<strong>in</strong>g after weeds have<br />

matured. Wet soil may reduce the<br />

effectiveness of hoe weed<strong>in</strong>g because<br />

most weeds will be merely trans-<br />

planted. Improved mechanical meth-<br />

ods such as push-type and motorized<br />

weeders may be as effective as hand<br />

weed<strong>in</strong>g <strong>in</strong> a row-seeded rice crop.<br />

When comb<strong>in</strong>ed with hand removal of<br />

weeds with<strong>in</strong> the row, these methods<br />

can also save time.<br />

8.1 <strong>Rice</strong> growth stages when herbicides<br />

can be applied <strong>on</strong> upland rice. Bars (—)<br />

show periods when a particular herbicide is<br />

applied. *Tim<strong>in</strong>g of herbicide applicati<strong>on</strong> is<br />

based <strong>on</strong> weed emergence and growth<br />

stage with<strong>in</strong> the rice growth stage.<br />

Upland rice 93


Herbicides<br />

Chemical weed c<strong>on</strong>trol <strong>in</strong> upland rice<br />

is ec<strong>on</strong>omical and effective under<br />

certa<strong>in</strong> c<strong>on</strong>diti<strong>on</strong>s. It may be the <strong>on</strong>ly<br />

weed c<strong>on</strong>trol method feasible for<br />

large-scale rice farms. Herbicides can<br />

complement other weed c<strong>on</strong>trol<br />

methods or can be used <strong>in</strong> comb<strong>in</strong>a-<br />

ti<strong>on</strong> with hand weed<strong>in</strong>g to give<br />

acceptable weed c<strong>on</strong>trol.<br />

For optimum effectiveness of pre-<br />

emergence herbicides, which require<br />

moist or wet soil, timely ra<strong>in</strong>s after<br />

applicati<strong>on</strong> are essential. When resid-<br />

ual herbicides are applied to soils that<br />

have rema<strong>in</strong>ed dry for a l<strong>on</strong>g time,<br />

they give variable results. The persis-<br />

tence of many preemergence herbi-<br />

cides is so short, they cannot c<strong>on</strong>trol<br />

successive flushes of weed seedl<strong>in</strong>gs.<br />

This makes follow-up hand weed<strong>in</strong>g<br />

or applicati<strong>on</strong> of a postemergence<br />

herbicide necessary.<br />

Am<strong>on</strong>g the preemergence<br />

herbicides, butachlor, oxadiaz<strong>on</strong>,<br />

d<strong>in</strong>itram<strong>in</strong>e, pendimethal<strong>in</strong>,<br />

thiobencarb, fluorodifen, and<br />

piperophos-dimethametryn have been<br />

widely tested. Postemergence herbi-<br />

cides such as propanil and MCPA are<br />

also effective. Herbicide comb<strong>in</strong>ati<strong>on</strong>s<br />

are often more effective than a s<strong>in</strong>gle<br />

herbicide. Apply<strong>in</strong>g a preemergence<br />

herbicide such as oxadiaz<strong>on</strong>,<br />

butachlor, or thiobencarb, followed by<br />

propanil 15-25 d later will provide<br />

better weed c<strong>on</strong>trol than will any of<br />

these herbicides applied al<strong>on</strong>e. Early<br />

postemergence applicati<strong>on</strong> of a poste-<br />

mergence herbicide (eg, propanil)<br />

comb<strong>in</strong>ed with a residual herbicide,<br />

d<strong>on</strong>e at the time the postemergence<br />

herbicide is most effective, has the<br />

advantages of provid<strong>in</strong>g seas<strong>on</strong>-l<strong>on</strong>g<br />

c<strong>on</strong>trol and sav<strong>in</strong>g time and labor by<br />

comb<strong>in</strong><strong>in</strong>g two spray<strong>in</strong>g operati<strong>on</strong>s.<br />

Table 8.1 and Figure 8.1 provide<br />

<strong>in</strong>formati<strong>on</strong> <strong>on</strong> comm<strong>on</strong> herbicides<br />

that may be used <strong>in</strong> upland rice.<br />

94 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Table 8.1. Herbicides suitable for use <strong>in</strong> upland rice.<br />

Herbicide<br />

Bentaz<strong>on</strong><br />

Bifenox<br />

Butachlor<br />

Butral<strong>in</strong><br />

2,4-D or MCPA<br />

D<strong>in</strong>itram<strong>in</strong>e<br />

Fluorodifen<br />

Oxadiaz<strong>on</strong><br />

Oxyfluorfen<br />

Pendimethal<strong>in</strong><br />

Piperophos +<br />

dimethametryn<br />

Propanil<br />

Thiobencarb<br />

Rate<br />

(kg ai/ha)<br />

1.0-2.0<br />

2.0<br />

2.0<br />

2.0<br />

0.5<br />

1.5<br />

2.5-4.0<br />

0.75-1.5<br />

0.35<br />

2.0<br />

1.0-2.0<br />

3.0-6.0<br />

3.0<br />

Comments and source of <strong>in</strong>formati<strong>on</strong><br />

Selective postemergence c<strong>on</strong>trol of<br />

certa<strong>in</strong> broadleaf weeds and sedges<br />

(IRRI 1982). Does not c<strong>on</strong>trol grasses.<br />

Apply postemergence when weeds are<br />

at the 4- to 10-leaf stages. Delayed<br />

applicati<strong>on</strong> allows the weeds to exceed<br />

maximum size, result<strong>in</strong>g <strong>in</strong> <strong>in</strong>adequate<br />

c<strong>on</strong>trol.<br />

Apply preemergence from seed<strong>in</strong>g to<br />

early spikelet stage. Apply to moist<br />

soils for best results. Bifenox +<br />

propanil can be applied post-<br />

emergence when rice has 2-3 leaves<br />

and weeds are 2.5 cm high (Akobundu<br />

1987).<br />

Effective aga<strong>in</strong>st grasses and broad-<br />

leaf weeds; less effective aga<strong>in</strong>st<br />

perennial sedges (IRRI 1975).<br />

Apply preemergence to c<strong>on</strong>trol annual<br />

grasses (IRRI 1976).<br />

Apply as postemergence spray after<br />

tiller <strong>in</strong>itiati<strong>on</strong>, about 21-30 d after<br />

seed<strong>in</strong>g (DAS) (Dixit and S<strong>in</strong>gh 1981).<br />

Apply preemergence (IRRI 1978).<br />

Apply 0-3 DAS for residual pre-<br />

emergence c<strong>on</strong>trol of annual grasses<br />

(De Datta 1972).<br />

Apply preemergence 0-2 DAS. <strong>Rice</strong><br />

growth depressi<strong>on</strong> has been observed<br />

15-20 d after emergence (IRRI 1975).<br />

Apply preemergence. May be<br />

moderately toxic to rice (IRRI 1983).<br />

Apply preemergence or early post-<br />

emergence,<br />

comb<strong>in</strong>ed with propanil (IRRI 1975).<br />

Excellent for c<strong>on</strong>trol of Rottboellia<br />

coch<strong>in</strong>ch<strong>in</strong>ensis.<br />

Apply 4-6 DAS (Dubey et al 1980).<br />

Apply at 2- to 3-leaf stages of grass.<br />

High temperatures <strong>in</strong>crease c<strong>on</strong>tact<br />

burn and may <strong>in</strong>jure rice (IRRI 1980).<br />

Apply before 2-leaf stage of weeds<br />

and after 1-leaf stage of rice<br />

(IRRI 1988a).


Chapter 9<br />

<strong>Weed</strong> c<strong>on</strong>trol <strong>in</strong> deepwater<br />

and float<strong>in</strong>g rice<br />

Deepwater and float<strong>in</strong>g rice c<strong>on</strong>stitute<br />

about 11% of the world’s rice area<br />

(IRRI 1988b). They are grown <strong>in</strong> the<br />

deltas, estuaries, and river valleys of<br />

Bangladesh, Cambodia, India,<br />

Ind<strong>on</strong>esia, Myanmar, Thailand, and<br />

Vietnam. In Africa, deepwater and<br />

float<strong>in</strong>g rice-grow<strong>in</strong>g areas are found<br />

<strong>in</strong> the <strong>in</strong>land Niger River delta <strong>in</strong> Mali,<br />

<strong>in</strong> the Niger River delta, Nigeria, and<br />

<strong>in</strong> <strong>in</strong>land swamps.<br />

Deepwater and float<strong>in</strong>g<br />

rice cultures<br />

Deepwater rice is grown <strong>in</strong> areas<br />

where the maximum depth of stand-<br />

<strong>in</strong>g water exceeds 50 cm for a signifi-<br />

cant period of rice growth. Where<br />

water depth is greater than 100 cm, the<br />

culture is referred to as float<strong>in</strong>g rice or<br />

very deep water rice. Fields are not<br />

bunded and flood<strong>in</strong>g usually occurs<br />

<strong>on</strong>ly dur<strong>in</strong>g the later part of the grow-<br />

<strong>in</strong>g seas<strong>on</strong>. <strong>Rice</strong> may grow under<br />

drought c<strong>on</strong>diti<strong>on</strong>s for 40-60 d before<br />

flood<strong>in</strong>g occurs.<br />

<strong>Weed</strong> problems<br />

<strong>Weed</strong>s are a major problem <strong>in</strong> deep-<br />

water and float<strong>in</strong>g rice because rice<br />

normally is seeded <strong>in</strong>to soils that may<br />

rema<strong>in</strong> dry for 6-12 wk. Fields may<br />

also be flash flooded. The dry soil and<br />

<strong>in</strong>termittent flash flood<strong>in</strong>g result <strong>in</strong> a<br />

broad spectrum of weeds-from<br />

upland to semiaquatic and aquatic-<br />

that successively compete with the rice<br />

crop. <strong>Weed</strong>s adapted to dryland<br />

compete at early crop stages, die up<strong>on</strong><br />

flood<strong>in</strong>g, and are succeeded by aquatic<br />

weeds.<br />

Before flood<strong>in</strong>g, deepwater and<br />

float<strong>in</strong>g rice may be <strong>in</strong>fested by<br />

Ech<strong>in</strong>ochloa col<strong>on</strong>a, Eleus<strong>in</strong>e <strong>in</strong>dica,<br />

Cyperus rotundus, C. iria, and<br />

C. difformis. These weeds also may<br />

compete with rice dur<strong>in</strong>g the early<br />

stages of flood<strong>in</strong>g.<br />

Deepwater and float<strong>in</strong>g rice may<br />

suffer severe weed <strong>in</strong>festati<strong>on</strong>s dur<strong>in</strong>g<br />

the preflood period. <strong>Weed</strong> problems<br />

are often aggravated by poor stand<br />

establishment due to drought. At the<br />

preflood stage, weeds reduce growth<br />

and tiller<strong>in</strong>g of rice plants and can<br />

reduce gra<strong>in</strong> yield as much as 33% (De<br />

Datta and Hoque 1982). Total crop loss<br />

can occur if flood<strong>in</strong>g is below normal.<br />

M<strong>in</strong>imiz<strong>in</strong>g competiti<strong>on</strong> from<br />

weeds at early rice growth stages<br />

largely determ<strong>in</strong>es how well deep-<br />

water and float<strong>in</strong>g rice will tolerate<br />

stresses caused by flood<strong>in</strong>g at later<br />

stages. Aquatic weeds that occur up<strong>on</strong><br />

flood<strong>in</strong>g are less a problem when<br />

stand establishment is good and rice<br />

tiller<strong>in</strong>g is adequate than when early<br />

weed competiti<strong>on</strong> is severe. In small<br />

cropp<strong>in</strong>g areas where farmers wet<br />

seed or transplant deepwater rice,<br />

puddl<strong>in</strong>g reduces weed <strong>in</strong>festati<strong>on</strong>.<br />

Amphibious weeds, such as the<br />

wild rices, Scirpus sp., Sesbania sp., and<br />

Leersia hexandra, can compete with rice<br />

under dryland or flooded c<strong>on</strong>diti<strong>on</strong>s.<br />

Eichhornia crassipes, Ipomoea aquatica,<br />

M<strong>on</strong>ochoria vag<strong>in</strong>alis, and Pistia<br />

stratiotes are found <strong>in</strong> deepwater rice<br />

after flood<strong>in</strong>g has occurred.<br />

<strong>Weed</strong>s such as the wild rices<br />

possess flood tolerance and el<strong>on</strong>gati<strong>on</strong><br />

ability, and grow with rice <strong>in</strong> ris<strong>in</strong>g<br />

floodwater. Therefore, they are able to<br />

cause c<strong>on</strong>siderable yield losses. Masses<br />

of E. crassipes are usually <strong>in</strong>troduced to<br />

the ricefield by water currents or<br />

str<strong>on</strong>g w<strong>in</strong>ds. When this occurs, E.<br />

crassipes can completely smother the<br />

rice crop with<strong>in</strong> a few days. In West<br />

Africa, the most troublesome weeds<br />

<strong>in</strong>clude E. stagn<strong>in</strong>a and E. pyramidalis,<br />

and the wild rices Oryza l<strong>on</strong>gistam<strong>in</strong>ata<br />

and O. barthii.<br />

<strong>Weed</strong> c<strong>on</strong>trol before<br />

flood<strong>in</strong>g<br />

The deepwater rice cycle has two<br />

dist<strong>in</strong>ct phases—before flood<strong>in</strong>g and<br />

after flood<strong>in</strong>g. <strong>Weed</strong> c<strong>on</strong>trol methods<br />

can be described best with<strong>in</strong> these<br />

phases. Deepwater rice before flood<strong>in</strong>g<br />

is treated either as ra<strong>in</strong>fed lowland rice<br />

or as upland rice, us<strong>in</strong>g the same weed<br />

c<strong>on</strong>trol methods.<br />

Deepwater and float<strong>in</strong>g rice 95


Land preparati<strong>on</strong><br />

Land preparati<strong>on</strong> for dry seeded deep-<br />

water and float<strong>in</strong>g rice is similar to<br />

that for upland rice. At plant<strong>in</strong>g, the<br />

seed bed should be weed free. Deep<br />

plow<strong>in</strong>g and harrow<strong>in</strong>g are recom-<br />

mended <strong>in</strong> the dry seas<strong>on</strong> if rhizo-<br />

matous perennials are a problem.<br />

Many deepwater and float<strong>in</strong>g rice soils<br />

have a high clay c<strong>on</strong>tent, and, the <strong>on</strong>ly<br />

time to plow them is often when they<br />

are dry and very hard. Cultivati<strong>on</strong><br />

must start early because the crop,<br />

which draws first <strong>on</strong> residual moisture<br />

and moisture from occasi<strong>on</strong>al show-<br />

ers, must reach the stage where it can<br />

el<strong>on</strong>gate before flood<strong>in</strong>g starts. The<br />

stale seedbed technique can be used to<br />

reduce weed problems, particularly<br />

<strong>in</strong>festati<strong>on</strong> by wild rices.<br />

Plant<strong>in</strong>g method<br />

Broadcast seed<strong>in</strong>g rice <strong>in</strong>to dry soil is<br />

comm<strong>on</strong> <strong>in</strong> deepwater and float<strong>in</strong>g<br />

rices. Transplant<strong>in</strong>g or broadcast<strong>in</strong>g<br />

pregerm<strong>in</strong>ated seeds <strong>in</strong>to puddled soil<br />

is also practiced <strong>in</strong> some areas. If early<br />

flash floods occur, however, trans-<br />

plant<strong>in</strong>g <strong>in</strong>volves a greater risk of crop<br />

failure than does broadcast seed<strong>in</strong>g.<br />

The rice seedl<strong>in</strong>g grows as an upland<br />

crop for 4-20 wk before flood<strong>in</strong>g<br />

occurs. As the floodwaters rise, deep-<br />

water rice plants el<strong>on</strong>gate to as tall as<br />

6 m and form a dense mat <strong>on</strong> the<br />

water surface.<br />

Cultivar<br />

<strong>Rice</strong> cultivars with el<strong>on</strong>gati<strong>on</strong> ability,<br />

photoperiod sensitivity, drought toler-<br />

ance at the seedl<strong>in</strong>g stage, and<br />

tolerance for stagnant water c<strong>on</strong>diti<strong>on</strong>s<br />

at later growth stages are ideal for<br />

deepwater and float<strong>in</strong>g rice.<br />

96 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Table 9.1. Herbicides suitable for use <strong>in</strong> deepwater and float<strong>in</strong>g rice.<br />

Herbicide<br />

Rate<br />

(kg ai/ha)<br />

Bentaz<strong>on</strong> 2.0<br />

Butachlor<br />

Butral<strong>in</strong><br />

2,4-D or MCPA<br />

Fluorodifen<br />

Oxadiaz<strong>on</strong><br />

Piperophos +<br />

dimethametryn<br />

Propanil<br />

Thiobencarb<br />

1.0-2.0<br />

2.0<br />

0.5<br />

2.5-4.0<br />

0.75-1.0<br />

1.0-2.0<br />

3.0<br />

2.0-4.0<br />

Plant populati<strong>on</strong><br />

Because of poor stand establishment,<br />

seed<strong>in</strong>g rates tend to be high-<br />

80-200 kg/ha. The crop produces<br />

nodal tillers at low plant densities,<br />

however, and a high seed<strong>in</strong>g rate does<br />

not necessarily <strong>in</strong>crease f<strong>in</strong>al gra<strong>in</strong><br />

yield. Nevertheless, the high seed<strong>in</strong>g<br />

rate is a good agr<strong>on</strong>omic practice<br />

because a high plant populati<strong>on</strong><br />

allows rice to develop a canopy that<br />

suppresses weed growth.<br />

Crop rotati<strong>on</strong>s can help c<strong>on</strong>trol or<br />

prevent the buildup of difficult-to-<br />

c<strong>on</strong>trol weeds. In Bangladesh, farmers<br />

<strong>on</strong> the higher ridges of deepwater rice<br />

areas grow a crop of jute after <strong>on</strong>e or<br />

more deepwater rice crops. The jute<br />

crop suppresses wild rice and other<br />

weeds.<br />

Comments and source of <strong>in</strong>formati<strong>on</strong><br />

Selective c<strong>on</strong>trol of certa<strong>in</strong> broadleaf<br />

weeds and sedges. Does not c<strong>on</strong>trol<br />

grasses. Apply postemergence early,<br />

when weeds are at the 4- to 10-leaf<br />

stages. Delayed applicati<strong>on</strong> allows<br />

weeds to exceed maximum size and<br />

results <strong>in</strong> <strong>in</strong>adequate c<strong>on</strong>trol (COPR<br />

1976).<br />

Effective aga<strong>in</strong>st grasses and broad-<br />

leaf weeds. Less effective aga<strong>in</strong>st<br />

perennial sedges (COPR 1976).<br />

Apply preemergence to c<strong>on</strong>trol annual<br />

grasses (COPR 1976).<br />

Apply as postemergence spray after<br />

rice tiller<strong>in</strong>g, 21-30 d after seed<strong>in</strong>g<br />

(DAS) (COPR 1976).<br />

Apply preemergence 0-3 DAS to<br />

c<strong>on</strong>trol residual annual grasses<br />

(COPR 1976).<br />

Apply 6-8 d after applicati<strong>on</strong><br />

(COPR 1976).<br />

Apply 4-6 DAS (COPR 1976).<br />

Apply at 2- to 3-leaf stages of grass<br />

(IRRI 1980).<br />

Apply before 2-leaf stage of weeds and<br />

after 1-leaf stage of rice (COPR 1976).<br />

Fertilizer<br />

Deposits of the silt carried by rivers<br />

dur<strong>in</strong>g their annual floods provide<br />

high fertility for most deepwater and<br />

float<strong>in</strong>g rice soils. The high soil fertility<br />

improves stand establishment and<br />

el<strong>on</strong>gati<strong>on</strong> ability of rice, but weeds<br />

also grow quickly and compete<br />

aggressively for nutrients, moisture,<br />

and light. <strong>Weed</strong>s must be c<strong>on</strong>trolled to<br />

maximize the nutrient uptake<br />

efficiency of the rice crop.


Hand weed<strong>in</strong>g<br />

Hand weed<strong>in</strong>g is the most effective<br />

weed c<strong>on</strong>trol method <strong>in</strong> deepwater<br />

and float<strong>in</strong>g rice. <strong>Weed</strong><strong>in</strong>g should be<br />

d<strong>on</strong>e 15-25 d after plant<strong>in</strong>g. Two to<br />

three hand weed<strong>in</strong>gs may be neces-<br />

sary, depend<strong>in</strong>g <strong>on</strong> the time of flood-<br />

<strong>in</strong>g. <strong>Weed</strong>s germ<strong>in</strong>ate earlier and grow<br />

more vigorously than rice dur<strong>in</strong>g the<br />

preflood period. Mechanical weed<strong>in</strong>g,<br />

comb<strong>in</strong>ed with hand weed<strong>in</strong>g for<br />

weed removal with<strong>in</strong> the rows, may<br />

be effective when rice is row-seeded.<br />

Herbicides<br />

Most comm<strong>on</strong> weeds present before<br />

flood<strong>in</strong>g can be c<strong>on</strong>trolled by the<br />

herbicides recommended for upland<br />

rice. Butachlor, oxadiaz<strong>on</strong>,<br />

pendimethal<strong>in</strong>, thiobencarb, pipero-<br />

phos-dimethametryn, and oxyfluorfen<br />

are effective when applied preemer-<br />

gence. Postemergence herbicides such<br />

as propanil, 2-4D, and MCPA are also<br />

effective <strong>in</strong> c<strong>on</strong>troll<strong>in</strong>g weeds such as<br />

I. aquatica. Residual herbicides give<br />

variable results when applied to dry<br />

soils or when flash floods occur so<strong>on</strong><br />

after applicati<strong>on</strong>. Glyphosate can be<br />

9.1 <strong>Rice</strong> growth stages when herbicides<br />

can be applied <strong>on</strong> deepwater and float<strong>in</strong>g<br />

rice. Bars (—) show periods when a<br />

particular herbicide can be applied. *Tim<strong>in</strong>g<br />

of herbicide applicati<strong>on</strong> is based <strong>on</strong> weed<br />

emergence and growth stage with<strong>in</strong> the<br />

rice growth stage.<br />

used to c<strong>on</strong>trol O. l<strong>on</strong>gistam<strong>in</strong>ata<br />

dur<strong>in</strong>g fallow. Table 9.1 and Figure 9.1<br />

provide <strong>in</strong>formati<strong>on</strong> <strong>on</strong> herbicides and<br />

their appropriate times of applicati<strong>on</strong>.<br />

Deepwater and float<strong>in</strong>g rice 97


<strong>Weed</strong> c<strong>on</strong>trol after<br />

flood<strong>in</strong>g<br />

<strong>Weed</strong> c<strong>on</strong>trol after flood<strong>in</strong>g <strong>in</strong> deep<br />

water and float<strong>in</strong>g rice is ma<strong>in</strong>ly d<strong>on</strong>e<br />

by hand. Farmers <strong>in</strong> some areas grow<br />

a strip of Sesbania aculeata or<br />

Aeschynomene aspera al<strong>on</strong>g the borders<br />

of deepwater and float<strong>in</strong>g ricefields to<br />

provide a barrier aga<strong>in</strong>st the entry of<br />

E. crassipes and other weeds <strong>in</strong>to the<br />

fields. Barricades of bamboo poles and<br />

bars are sometimes <strong>in</strong>stalled.<br />

Hand weed<strong>in</strong>g<br />

Attempts to weed deepwater and<br />

float<strong>in</strong>g rice from boats-a difficult<br />

task-have been made <strong>in</strong> cases of<br />

severe weed <strong>in</strong>festati<strong>on</strong>. In Mali,<br />

farmers hand weed after flood<strong>in</strong>g to<br />

m<strong>in</strong>imize competiti<strong>on</strong> from<br />

O. l<strong>on</strong>gistam<strong>in</strong>ata and O. barthii.<br />

Perennial E. stagn<strong>in</strong>a is also removed<br />

by hand.<br />

Herbicides<br />

Herbicides are effective <strong>in</strong> deepwater<br />

and float<strong>in</strong>g rice <strong>on</strong>ly before flood<strong>in</strong>g.<br />

98 <strong>Weed</strong> c<strong>on</strong>trol handbook


Chapter 10<br />

Management of some<br />

difficult weeds <strong>in</strong> rice<br />

Many weeds can be c<strong>on</strong>trolled effec-<br />

tively <strong>on</strong>ly by us<strong>in</strong>g a comb<strong>in</strong>ati<strong>on</strong> of<br />

methods. Us<strong>in</strong>g <strong>on</strong>ly <strong>on</strong>e weed c<strong>on</strong>trol<br />

method leads to a buildup of weed<br />

problems. This chapter gives <strong>in</strong>forma-<br />

ti<strong>on</strong> <strong>on</strong> how <strong>in</strong>tractable rice weeds can<br />

be managed through an <strong>in</strong>tegrated<br />

approach.<br />

Scirpus maritimus<br />

Scirpus maritimus, a perennial sedge<br />

that spreads by tubers, is widespread<br />

<strong>in</strong> lowland rice <strong>in</strong> several countries <strong>in</strong><br />

Asia, Europe, and temperate climate<br />

USA (see page 000). S. maritimus is a<br />

very competitive weed: it produces<br />

numerous tubers, has fast shoot<br />

growth, is able to emerge through<br />

fields with stand<strong>in</strong>g water, and has<br />

rapid nutrient uptake. Seas<strong>on</strong>-l<strong>on</strong>g<br />

competiti<strong>on</strong> from S. maritimus can<br />

reduce rice yields 60-100%. Its tubers<br />

and buds can rema<strong>in</strong> dormant <strong>in</strong> the<br />

soil, mak<strong>in</strong>g this weed difficult to<br />

eradicate. S. maritimus is most<br />

competitive from its early growth<br />

stages to 80 d after germ<strong>in</strong>ati<strong>on</strong>. The<br />

S. maritimus -free period required <strong>in</strong><br />

rice is the first 4 wk.<br />

Cultural c<strong>on</strong>trol<br />

Cultural c<strong>on</strong>trol of S. maritimus<br />

<strong>in</strong>volves tillage, crop rotati<strong>on</strong>, and<br />

water management.<br />

Depth and type of primary cultiva-<br />

ti<strong>on</strong> greatly affect the S. maritimus<br />

populati<strong>on</strong>. Shallow cultivati<strong>on</strong> and<br />

zero tillage encourage emergence of<br />

tubers reta<strong>in</strong>ed <strong>on</strong> the soil surface,<br />

result<strong>in</strong>g <strong>in</strong> rapid populati<strong>on</strong> buildup.<br />

Deep plow<strong>in</strong>g buries the tubers and<br />

results <strong>in</strong> growth of fewer seedl<strong>in</strong>gs.<br />

The practice of zero tillage leads to<br />

the buildup of a S. maritimus popula-<br />

ti<strong>on</strong>, but m<strong>in</strong>imum tillage can be as<br />

effective as c<strong>on</strong>venti<strong>on</strong>al tillage <strong>in</strong><br />

limit<strong>in</strong>g its growth. The weed persists<br />

under c<strong>on</strong>t<strong>in</strong>uously wet c<strong>on</strong>diti<strong>on</strong>s but<br />

dim<strong>in</strong>ishes dramatically with time<br />

under c<strong>on</strong>t<strong>in</strong>uously dry c<strong>on</strong>diti<strong>on</strong>s. A<br />

year of rotati<strong>on</strong> of an upland crop with<br />

lowland rice will reduce the preva-<br />

lence of S. maritimus.<br />

Hand weed<strong>in</strong>g<br />

Hand weed<strong>in</strong>g is effective <strong>in</strong> c<strong>on</strong>trol-<br />

l<strong>in</strong>g S. maritimus. The rice crop should<br />

be kept weed-free for at least the first<br />

4 wk. This makes several hand weed-<br />

<strong>in</strong>gs necessary, because S. maritimus<br />

tubers germ<strong>in</strong>ate with<strong>in</strong> 5 d after<br />

harrow<strong>in</strong>g and grow rapidly.<br />

Herbicides<br />

Herbicides effective aga<strong>in</strong>st<br />

S. maritimus <strong>in</strong> transplanted and direct<br />

seeded flooded rice <strong>in</strong>clude bentaz<strong>on</strong>,<br />

fenoxaprop, propanil, 2,4-D, and<br />

bensulfur<strong>on</strong>. 2,4-D at 0.5 kg ai/ha is<br />

best applied when S. maritimus has<br />

6-8 leaves. 2,4-D applied preemergence<br />

does not c<strong>on</strong>trol the weed, although it<br />

may reduce the stand of annual<br />

grasses. Bentaz<strong>on</strong> at 1-2 kg ai/ha<br />

should be applied at the 6- to 8-leaf<br />

stage (about 25 d after sow<strong>in</strong>g [DASI).<br />

Bensulfur<strong>on</strong> at 50 g ai/ ha applied at<br />

6-8 DAS or DT (2- to 3-leaf stage of the<br />

weed) effectively c<strong>on</strong>trols S. maritimus<br />

and annual weeds.<br />

Integrated c<strong>on</strong>trol<br />

Integrati<strong>on</strong> of all workable weed<br />

c<strong>on</strong>trol practices can provide effective<br />

and ec<strong>on</strong>omical c<strong>on</strong>trol of S. maritimus.<br />

Such <strong>in</strong>tegrati<strong>on</strong> should beg<strong>in</strong> by<br />

creat<strong>in</strong>g an envir<strong>on</strong>ment favorable to<br />

rice growth but unfavorable to weed<br />

growth. This <strong>in</strong>cludes us<strong>in</strong>g well-<br />

adapted, high-yield<strong>in</strong>g rice cultivars;<br />

appropriate fertilizers; good manage-<br />

ment; and crop rotati<strong>on</strong>. <strong>Weed</strong> c<strong>on</strong>trol<br />

efficiency is improved by <strong>in</strong>tegrat<strong>in</strong>g<br />

the use of herbicides and hand weed-<br />

<strong>in</strong>g. The rotati<strong>on</strong>al crops used depend<br />

<strong>on</strong> the regi<strong>on</strong>; maize, sorghum, and<br />

soybean are becom<strong>in</strong>g <strong>in</strong>creas<strong>in</strong>gly<br />

important.<br />

Difficult weeds 99


Paspalum distichum<br />

Paspalum distichum is a creep<strong>in</strong>g peren-<br />

nial grass found <strong>in</strong> lowland ricefields<br />

(see page 22). Its underground growth<br />

system c<strong>on</strong>sists of adventitious roots<br />

and rhizomes. It tends to resist c<strong>on</strong>-<br />

venti<strong>on</strong>al weed c<strong>on</strong>trol measures,<br />

<strong>in</strong>clud<strong>in</strong>g the use of herbicides, but is<br />

sensitive to shad<strong>in</strong>g.<br />

Cultural c<strong>on</strong>trol<br />

Thorough land preparati<strong>on</strong> is <strong>on</strong>e way<br />

of c<strong>on</strong>troll<strong>in</strong>g P. distichum. Frequent<br />

tillage reduces P. distichum problems.<br />

Cutt<strong>in</strong>g up rhizomes by tillage encour-<br />

ages dormant buds to sprout, deplet-<br />

<strong>in</strong>g the weeds food reserves. For l<strong>on</strong>g-<br />

term c<strong>on</strong>trol, its rhizome must be<br />

killed.<br />

Because P. distichum is sensitive to<br />

shade, closely spaced, vigorous rice<br />

plants offer better competiti<strong>on</strong> aga<strong>in</strong>st<br />

this weed than do widely spaced<br />

plants.<br />

Herbicides<br />

P. distichum is resistant to many pre-<br />

emergence herbicides used <strong>on</strong> rice. It<br />

is, however, susceptible to glyphosate<br />

applied at 2.0 kg ai/ha and moder-<br />

ately susceptible to paraquat. A pre-<br />

plant herbicide, such as glyphosate,<br />

used <strong>in</strong> comb<strong>in</strong>ati<strong>on</strong> with land prepa-<br />

rati<strong>on</strong>, improves c<strong>on</strong>trol. Translocati<strong>on</strong><br />

of glyphosate <strong>in</strong>to the rhizomes is best<br />

achieved when the glyphosate is<br />

applied <strong>on</strong> actively grow<strong>in</strong>g<br />

P. distichum with maximum leaf area.<br />

Integrated c<strong>on</strong>trol<br />

Integrati<strong>on</strong> of cultural c<strong>on</strong>trol and<br />

herbicides will give good c<strong>on</strong>trol of<br />

P. distichum.<br />

100 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Ech<strong>in</strong>ochloa species<br />

The genus Ech<strong>in</strong>ochloa, which <strong>in</strong>cludes<br />

about 50 weed species, <strong>in</strong>cludes some<br />

of the most important rice weeds. The<br />

most comm<strong>on</strong> are E. crus-galli,<br />

E. glabrescens, E. oryzoides,<br />

E. pyramidalis, and E. col<strong>on</strong>a.<br />

E. crus-galli grows widely <strong>in</strong> both<br />

temperate and tropical regi<strong>on</strong>s (see<br />

page 16). Its world distributi<strong>on</strong> ranges<br />

from 50° N to 40º S latitude. E. col<strong>on</strong>a<br />

(see page 33) occurs <strong>in</strong> tropical and<br />

subtropical regi<strong>on</strong>s. E. glabrescens is<br />

found <strong>in</strong> the Indian subc<strong>on</strong>t<strong>in</strong>ent,<br />

Southeast Asia, Ch<strong>in</strong>a, and southern<br />

Japan. E. pyramidalis is abundant <strong>in</strong> the<br />

float<strong>in</strong>g rice areas of West Africa.<br />

E. crus-galli prefers moist c<strong>on</strong>diti<strong>on</strong>s<br />

and c<strong>on</strong>t<strong>in</strong>ues to grow when<br />

submerged; E. col<strong>on</strong>a ceases to grow<br />

when submerged.<br />

<strong>Rice</strong> yield losses from seas<strong>on</strong>-l<strong>on</strong>g<br />

competiti<strong>on</strong> with Ech<strong>in</strong>ochloa spp. can<br />

be as high as 90%. Ech<strong>in</strong>ochloa spp. are<br />

troublesome <strong>in</strong> rice because their<br />

ecological requirements are similar: at<br />

early growth stages, they resemble<br />

rice, and they accumulate c<strong>on</strong>siderable<br />

amounts of nutrients, to the disadvantage<br />

of rice. Moreover, these weeds<br />

compete with rice for light and<br />

moisture.<br />

Ech<strong>in</strong>ochloa spp. germ<strong>in</strong>ate earlier<br />

than direct seeded rice. Dur<strong>in</strong>g the<br />

first 3 wk of weed growth, profuse<br />

emergence of new leaves and vegeta-<br />

tive growth of tillers and adventitious<br />

roots occur. Ech<strong>in</strong>ochloa spp. produce<br />

extremely large numbers of seeds,<br />

which ensure the weeds dispersal and<br />

reestablishment.<br />

Cultural c<strong>on</strong>trol<br />

Crop rotati<strong>on</strong> can effectively reduce<br />

Ech<strong>in</strong>ochloa spp. populati<strong>on</strong>s.<br />

Hand weed<strong>in</strong>g<br />

Hand weed<strong>in</strong>g is effective if d<strong>on</strong>e<br />

repeatedly, to remove succeed<strong>in</strong>g<br />

flushes of weeds and weeds over-<br />

looked earlier due to their similarity to<br />

rice.<br />

Herbicides<br />

Several herbicides can selectively<br />

c<strong>on</strong>trol Ech<strong>in</strong>ochloa spp. This <strong>in</strong>clude<br />

butachlor, oxadiaz<strong>on</strong>, oxyfluorfen,<br />

pendimethal<strong>in</strong>, thiobencarb, simetryn,<br />

mol<strong>in</strong>ate, propanil, chlomethoxynil,<br />

pretilachlor, and qu<strong>in</strong>clorac. Preemergence<br />

and early postemergence applicati<strong>on</strong>s<br />

are most effective because the<br />

weeds are most susceptible at the<br />

seedl<strong>in</strong>g stage. <strong>Weed</strong> resistance to<br />

herbicides <strong>in</strong>creases with age.<br />

Butachlor applied preemergence<br />

<strong>in</strong>hibits the enzyme activity of<br />

Ech<strong>in</strong>ochloa spp., delays radicle<br />

emergence, and <strong>in</strong>hibits emergence of<br />

the root and primary leaf. Selectivity<br />

for propanil depends <strong>on</strong> the different<br />

levels of the hydrolyz<strong>in</strong>g enzyme,<br />

which is high <strong>in</strong> rice but low <strong>in</strong><br />

Ech<strong>in</strong>ochloa spp.<br />

Integrated c<strong>on</strong>trol<br />

Ech<strong>in</strong>ochloa spp. can be managed<br />

effectively through an <strong>in</strong>tegrated<br />

approach. Because the weed is sensi-<br />

tive to shade, a vigorous rice stand<br />

(achieved with high plant<strong>in</strong>g density<br />

and high fertilizer applicati<strong>on</strong>),<br />

comb<strong>in</strong>ed with hand weed<strong>in</strong>g or with<br />

preemergence or early postemergence<br />

herbicide, will lead to early rice<br />

canopy closure. Late-germ<strong>in</strong>at<strong>in</strong>g<br />

Ech<strong>in</strong>ochloa spp. can be c<strong>on</strong>trolled by<br />

herbicides. A 10-20 cm water depth<br />

will generally suppress Ech<strong>in</strong>ochloa<br />

spp. weeds.


Wild rices<br />

The important wild rices are Oryza<br />

rufipog<strong>on</strong> Griff., O. nivara Sharma &<br />

Shastry, O. l<strong>on</strong>gistam<strong>in</strong>ata A. Chev. &<br />

Roehr., O. barthii A. Chev., O. punctata<br />

Kotschy ex Steud., and O. offic<strong>in</strong>alis<br />

Wall. ex Watt. These wild rices<br />

resemble cultivated rice O. sativa. They<br />

are adapted to the envir<strong>on</strong>ment of<br />

cultivated rice, are competitive, and<br />

have gra<strong>in</strong>s that are highly dormant<br />

and shatter easily.<br />

O. rufipog<strong>on</strong> is a problem <strong>in</strong> areas <strong>in</strong><br />

Bangladesh, Brazil, Colombia,<br />

Guyana, India, Ind<strong>on</strong>esia, Malaysia,<br />

Sur<strong>in</strong>am, Thailand, southern USA,<br />

Venezuela, and West Indies. A peren-<br />

nial weed, its mature seed has a l<strong>on</strong>g<br />

dormancy, shatters easily, and has a<br />

pigmented aleur<strong>on</strong>e layer.<br />

O. nivara is an annual weed that<br />

occurs <strong>in</strong> dra<strong>in</strong>age ditches and shallow<br />

p<strong>on</strong>ds. Its seeds are highly dormant<br />

and shatter easily.<br />

O. l<strong>on</strong>gistam<strong>in</strong>ata (syn<strong>on</strong>ym: Oryza<br />

perennis Moench) is a serious weed <strong>in</strong><br />

most of West Africa. As a rhizomatous<br />

perennial grass, it propagates almost<br />

exclusively by vegetative multiplica-<br />

ti<strong>on</strong> of rhizomes, which are produced<br />

prolifically. It thrives <strong>in</strong> medium to<br />

deep parts of flooded ricefields and <strong>in</strong><br />

deep parts of poorly irrigated fields. It<br />

is very competitive and can reduce rice<br />

yields as much as 90%.<br />

O. barthii is widely distributed <strong>in</strong><br />

Africa. It is an annual weed that<br />

closely resembles O. glaberrima.<br />

Characteristics such as early maturity,<br />

shatter<strong>in</strong>g before rice maturity, and<br />

seed dormancy make it difficult to<br />

c<strong>on</strong>trol.<br />

O. punctata and O. offic<strong>in</strong>alis are<br />

both annual weeds. O. punctata is<br />

native to Africa, O. offic<strong>in</strong>alis origi-<br />

nated <strong>in</strong> Asia. Both have small gra<strong>in</strong>s.<br />

Some of the wild rices are photo-<br />

period sensitive. This <strong>in</strong>fluences their<br />

growth durati<strong>on</strong>, with later emerg<strong>in</strong>g<br />

plants tak<strong>in</strong>g less time. Wild rice stalks<br />

are generally weak, result<strong>in</strong>g <strong>in</strong><br />

lodg<strong>in</strong>g not <strong>on</strong>ly of the weeds but also<br />

of the rice around them.<br />

Cultural c<strong>on</strong>trol<br />

Us<strong>in</strong>g clean rice seed, free of wild rice<br />

seeds, will prevent the <strong>in</strong>troducti<strong>on</strong> or<br />

re<strong>in</strong>troducti<strong>on</strong> of wild rices to n<strong>on</strong>-<br />

<strong>in</strong>fested areas. After rice harvest, fields<br />

should be managed to kill wild rice<br />

seeds (e.g., straw burn<strong>in</strong>g). Early-<br />

seas<strong>on</strong> cultivati<strong>on</strong> and harrow<strong>in</strong>g<br />

stimulate red rice germ<strong>in</strong>ati<strong>on</strong> and<br />

may allow the mechanical destructi<strong>on</strong><br />

of several flushes of wild rice growth<br />

before rice or rotati<strong>on</strong>al crops are<br />

planted.<br />

High seed<strong>in</strong>g rates of rice reduce<br />

tiller<strong>in</strong>g of wild rice. When rice is<br />

seeded or transplanted <strong>in</strong> rows, it is<br />

easy to differentiate wild rice grow<strong>in</strong>g<br />

between the rows.<br />

Crop rotati<strong>on</strong> may reduce <strong>in</strong>festa-<br />

ti<strong>on</strong>s of wild rices. Wild rice is easy to<br />

c<strong>on</strong>trol <strong>in</strong> upland crops. The length of<br />

rotati<strong>on</strong> depends <strong>on</strong> how severely the<br />

field is <strong>in</strong>fested with wild rice. Typical<br />

rotati<strong>on</strong>al crops for red rice <strong>in</strong> south-<br />

ern USA are maize, gra<strong>in</strong> sorghum,<br />

and soybean. Depend<strong>in</strong>g <strong>on</strong> the<br />

rotati<strong>on</strong>al crop, herbicides comm<strong>on</strong>ly<br />

used <strong>in</strong>clude propaz<strong>in</strong>e, alachlor,<br />

metolachlor, triflural<strong>in</strong>, pendi-<br />

methal<strong>in</strong>, metribuz<strong>in</strong>, bentaz<strong>on</strong>, and<br />

atraz<strong>in</strong>e.<br />

Buried seeds of wild rice do not<br />

germ<strong>in</strong>ate when the soil is flooded or<br />

water-saturated. However, the peren-<br />

nial wild rices O. l<strong>on</strong>gistam<strong>in</strong>ata and<br />

O. rufipog<strong>on</strong> propagate through bud<br />

germ<strong>in</strong>ati<strong>on</strong> of stem cutt<strong>in</strong>gs or<br />

rhizomes under such c<strong>on</strong>diti<strong>on</strong>s. Dry<br />

seed<strong>in</strong>g with delayed flood<strong>in</strong>g results<br />

<strong>in</strong> a much higher <strong>in</strong>festati<strong>on</strong> of wild<br />

rice than does seed<strong>in</strong>g <strong>on</strong> a puddled<br />

field and keep<strong>in</strong>g the soil saturated.<br />

C<strong>on</strong>t<strong>in</strong>uous flood<strong>in</strong>g effectively<br />

c<strong>on</strong>trols wild rice.<br />

Hand weed<strong>in</strong>g<br />

When crops are planted <strong>in</strong> rows, the<br />

wild rice between the rows can be<br />

weeded out easily. In some areas, wild<br />

rice is eaten. This not <strong>on</strong>ly augments<br />

the food supply but also helps reduce<br />

the spread of the weed. Wild rice<br />

mostly shatters before cultivated rice<br />

matures, and gra<strong>in</strong>s of wild rice must<br />

be harvested before they shatter. Its<br />

growth for food should be discour-<br />

aged, however.<br />

The perennial rhizomatous deep<br />

water wild rice O. l<strong>on</strong>gistam<strong>in</strong>ata is<br />

c<strong>on</strong>trolled by underwater mow<strong>in</strong>g of<br />

rhizomes twice dur<strong>in</strong>g the grow<strong>in</strong>g<br />

seas<strong>on</strong>.<br />

Herbicides<br />

Herbicides comm<strong>on</strong>ly used <strong>in</strong> rice do<br />

not selectively c<strong>on</strong>trol wild rice<br />

because of the similar growth systems.<br />

Mol<strong>in</strong>ate at 1-2 kg ai/ha applied pre-<br />

plant<strong>in</strong>g and <strong>in</strong>corporated selectively<br />

c<strong>on</strong>trols the annual wild rices. For best<br />

c<strong>on</strong>trol, mol<strong>in</strong>ate should be comb<strong>in</strong>ed<br />

with c<strong>on</strong>t<strong>in</strong>uous flood<strong>in</strong>g. Preplant<strong>in</strong>g<br />

applicati<strong>on</strong> of glyphosate at 2-3 kg<br />

ai/ha also effectively c<strong>on</strong>trols wild<br />

rices. For red rice c<strong>on</strong>trol, thiobencarb<br />

is surface-applied preplant<strong>in</strong>g, just<br />

before br<strong>in</strong>g<strong>in</strong>g <strong>on</strong> the flood (<strong>Rice</strong><br />

Journal 1988).<br />

Integrated c<strong>on</strong>trol<br />

Wild rices are best c<strong>on</strong>trolled through<br />

an <strong>in</strong>tegrated approach that <strong>in</strong>cludes<br />

germ<strong>in</strong>ati<strong>on</strong> preventi<strong>on</strong>, crop rotati<strong>on</strong>,<br />

water management, herbicides, and<br />

other cultural methods.<br />

Difficult weeds 101


Cyperus rotundus<br />

C. rotundus, a perennial sedge, is a<br />

persistent, aggressive weed wherever<br />

upland rice is grown. It has been<br />

reported to <strong>in</strong>fest fields <strong>in</strong> tropical<br />

areas of Africa, Asia, and Lat<strong>in</strong> Amer-<br />

ica (see page 29). Under <strong>in</strong>tensive<br />

cultivati<strong>on</strong>, it becomes a serious weed.<br />

C. rotundus has an extensive under-<br />

ground system of basal bulbs, roots,<br />

rhizomes, and tubers, which permit<br />

rapid and vigorous vegetative propa-<br />

gati<strong>on</strong>. Buds <strong>in</strong> a tuber and tubers<br />

with<strong>in</strong> a cha<strong>in</strong> exhibit apical domi-<br />

nance. That apical dom<strong>in</strong>ance can be<br />

broken dur<strong>in</strong>g cultivati<strong>on</strong> by sever<strong>in</strong>g<br />

any tuber from the cha<strong>in</strong>. This stimu-<br />

lates dormant tubers to sprout.<br />

C. rotundus germ<strong>in</strong>ates before, or<br />

simultaneously with, upland rice and<br />

competes for nutrients and moisture,<br />

caus<strong>in</strong>g yield reducti<strong>on</strong>s as high as<br />

50%.<br />

Cultural c<strong>on</strong>trol<br />

Adequate fertilizer, optimum plant<br />

density, and optimum time of plant<strong>in</strong>g<br />

are good cultural practices for<br />

manag<strong>in</strong>g C. rotundus.<br />

Hand weed<strong>in</strong>g<br />

C. rotundus emerges with the rice crop<br />

and outgrows it dur<strong>in</strong>g the early<br />

growth stages. Because of the rapid<br />

regenerati<strong>on</strong> of C. rotundus, hand<br />

weed<strong>in</strong>g has to be d<strong>on</strong>e at frequent<br />

<strong>in</strong>tervals to effectively prevent the<br />

smother<strong>in</strong>g of rice by the weed. Hand<br />

weed<strong>in</strong>g should c<strong>on</strong>t<strong>in</strong>ue until the rice<br />

canopy closes-when shade will<br />

suppress C. rotundus growth.<br />

102 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Herbicides<br />

Glyphosate applied preplant<strong>in</strong>g is best<br />

to c<strong>on</strong>trol C. rotundus. Other herbicides<br />

that can be used are bentaz<strong>on</strong> at 2.0-<br />

3.0 kg ai/ha and 2,4-D at 0.5 kg ai/ha<br />

applied postemergence, 3 wk after<br />

seed<strong>in</strong>g. These selectively kill<br />

C. rotundus, but c<strong>on</strong>trol is temporary.<br />

Integrated c<strong>on</strong>trol<br />

Management practices, such as apply-<br />

<strong>in</strong>g adequate fertilizer after weed<br />

c<strong>on</strong>trol, optimum plant density, and<br />

optimum time of plant<strong>in</strong>g to avoid<br />

drought, comb<strong>in</strong>ed with hand<br />

weed<strong>in</strong>g or herbicides, will reduce<br />

C. rotundus and maximize upland rice<br />

yields.<br />

Comb<strong>in</strong>ati<strong>on</strong>s of tillage and<br />

chemical methods have proven more<br />

effective <strong>in</strong> c<strong>on</strong>troll<strong>in</strong>g C. rotundus<br />

than tillage or herbicides al<strong>on</strong>e. In an<br />

<strong>in</strong>tegrated c<strong>on</strong>trol scheme, C. rotundus<br />

is allowed to grow as l<strong>on</strong>g as possible<br />

(at least 3-4 wk) after plow<strong>in</strong>g and<br />

harrow<strong>in</strong>g have stimulated dormant<br />

buds to sprout. Then, systemic<br />

herbicides, such as glyphosate, that<br />

have no residual soil activity are<br />

applied. <strong>Rice</strong> is planted with<strong>in</strong> a week<br />

without further land preparati<strong>on</strong>. This<br />

will provide seas<strong>on</strong>-l<strong>on</strong>g c<strong>on</strong>trol of<br />

C. rotundus and, if c<strong>on</strong>t<strong>in</strong>ued over<br />

several seas<strong>on</strong>s, may elim<strong>in</strong>ate the<br />

weed altogether.<br />

lmperata cyl<strong>in</strong>drica<br />

Imperata cyl<strong>in</strong>drica, a perennial<br />

rhizomatous grass, is a major weed <strong>in</strong><br />

tropical Africa, Australia, South Asia,<br />

South America, and the Pacific islands<br />

(see page 35). It grows under a wide<br />

range of ecological c<strong>on</strong>diti<strong>on</strong>s rang<strong>in</strong>g<br />

from l<strong>on</strong>g dry spells to waterlogg<strong>in</strong>g.<br />

I. cyl<strong>in</strong>drica produces extensive<br />

rhizomes, which readily regenerate. It<br />

has a high tiller<strong>in</strong>g capacity and<br />

establishes quickly to cover a large<br />

area. Tiller<strong>in</strong>g is encouraged by<br />

burn<strong>in</strong>g, cutt<strong>in</strong>g, or graz<strong>in</strong>g.<br />

Apart from compet<strong>in</strong>g directly with<br />

upland rice for nutrients, moisture,<br />

and light, I. cyl<strong>in</strong>drica limits upland<br />

rice producti<strong>on</strong> by reduc<strong>in</strong>g the total<br />

land area available for cropp<strong>in</strong>g; lands<br />

badly <strong>in</strong>fested by the weed are<br />

aband<strong>on</strong>ed.<br />

Cultural c<strong>on</strong>trol<br />

Rhizomes of I. cyl<strong>in</strong>drica are suscep-<br />

tible to partial desiccati<strong>on</strong> even <strong>in</strong> the<br />

wet seas<strong>on</strong>. Effective c<strong>on</strong>trol is<br />

obta<strong>in</strong>ed when the weed is frag-<br />

mented by plow<strong>in</strong>g to depths of<br />

15-20 cm at the beg<strong>in</strong>n<strong>in</strong>g of the dry<br />

seas<strong>on</strong>, when the fragments have time<br />

to dry before the <strong>on</strong>set of ra<strong>in</strong>. This<br />

dry seas<strong>on</strong> plow<strong>in</strong>g should be<br />

repeated every year until I. cyl<strong>in</strong>drica is<br />

c<strong>on</strong>trolled. Tractor-drawn implements<br />

are needed for adequate plow<strong>in</strong>g. The<br />

ec<strong>on</strong>omics of repeated plow<strong>in</strong>g need<br />

to be exam<strong>in</strong>ed.<br />

Hand weed<strong>in</strong>g<br />

Hand weed<strong>in</strong>g has to be d<strong>on</strong>e at<br />

frequent <strong>in</strong>tervals for good c<strong>on</strong>trol of<br />

I. cyl<strong>in</strong>drica.


Herbicides<br />

For effective c<strong>on</strong>trol of I. cyl<strong>in</strong>drica, a<br />

herbicide that is translocated to the<br />

underground rhizomes to destroy all<br />

viable buds is best. Applicati<strong>on</strong> of<br />

glyphosate preplant<strong>in</strong>g gives good<br />

c<strong>on</strong>trol. A mixture of glufos<strong>in</strong>ate at<br />

1.0 kg ai/ha and imazapyr at<br />

0.25 kg ai/ha has been reported to give<br />

better and more last<strong>in</strong>g c<strong>on</strong>trol than<br />

glyphosate <strong>in</strong> plantati<strong>on</strong> crops. Both<br />

should be applied to actively grow<strong>in</strong>g<br />

plants with mature leaves. Glyphosate<br />

has no residual activity.<br />

Integrated c<strong>on</strong>trol<br />

A comb<strong>in</strong>ati<strong>on</strong> of cultural and herbi-<br />

cide methods will effectively c<strong>on</strong>trol<br />

I. cyl<strong>in</strong>drica.<br />

Rottboellia<br />

coch<strong>in</strong>ch<strong>in</strong>ensis<br />

Rottboellia coch<strong>in</strong>ch<strong>in</strong>ensis is an annual<br />

grass that reproduces by seeds. It is<br />

very competitive <strong>in</strong> upland rice (see<br />

page 36) because it grows taller than<br />

the rice and completely shades it.<br />

Complete rice yield loss is comm<strong>on</strong>.<br />

Although R. coch<strong>in</strong>ch<strong>in</strong>ensis prefers<br />

moist, well-dra<strong>in</strong>ed soil, it possesses<br />

c<strong>on</strong>siderable drought tolerance. It<br />

cannot tolerate submergence.<br />

R. coch<strong>in</strong>ch<strong>in</strong>ensis has <strong>in</strong>creased <strong>in</strong> im-<br />

portance because it is tolerant of many<br />

herbicides. Most rice herbicides that<br />

selectively c<strong>on</strong>trol this weed do not<br />

have l<strong>on</strong>g enough persistence to<br />

prevent succeed<strong>in</strong>g flushes from<br />

germ<strong>in</strong>at<strong>in</strong>g.<br />

Cultural c<strong>on</strong>trol<br />

Rotate upland rice with broadleaf<br />

crops <strong>in</strong> which R. c<strong>on</strong>ch<strong>in</strong>ch<strong>in</strong>ensis is<br />

easy to c<strong>on</strong>trol. This prevents buildup<br />

of the weed.<br />

Hand weed<strong>in</strong>g<br />

Two to three well-timed hand weed-<br />

<strong>in</strong>gs of R. coch<strong>in</strong>ch<strong>in</strong>ensis will give<br />

maximum rice yield.<br />

Herbicides<br />

Many residual herbicides that c<strong>on</strong>trol<br />

R. coch<strong>in</strong>ch<strong>in</strong>ensis are not selective <strong>in</strong><br />

rice. Pendimethal<strong>in</strong> at 1.5-2.0 kg ai/ha<br />

is the best herbicide for c<strong>on</strong>trol <strong>in</strong><br />

upland rice. Pendimethal<strong>in</strong> will not<br />

c<strong>on</strong>trol weeds that have germ<strong>in</strong>ated<br />

before herbicide applicati<strong>on</strong>.<br />

Integrated c<strong>on</strong>trol<br />

R. coch<strong>in</strong>ch<strong>in</strong>ensis is shade-<strong>in</strong>tolerant<br />

and susceptible to competiti<strong>on</strong> by the<br />

rice crop. Use of N fertilizer; high rice<br />

plant density; and tall, fast-grow<strong>in</strong>g<br />

rice cultivars will give early canopy<br />

closure and suppress weed emergence.<br />

Crop rotati<strong>on</strong> comb<strong>in</strong>ed with herbi-<br />

cides and hand rogu<strong>in</strong>g reduces weed<br />

populati<strong>on</strong>s and gives maximum rice<br />

yields.<br />

Difficult weeds 103


References cited<br />

Akobundu I O (1987) <strong>Weed</strong> science <strong>in</strong> the<br />

tropics: pr<strong>in</strong>ciples and practices. John<br />

Wiley & S<strong>on</strong>s, New York. 522 p.<br />

Amp<strong>on</strong>g-Nyarko K, De Datta S K (1989)<br />

Ecophysiological studies <strong>in</strong> relati<strong>on</strong> to<br />

weed management strategies <strong>in</strong> rice.<br />

Pages 31 -45 <strong>in</strong> Proceed<strong>in</strong>gs of the 12th<br />

Asian-Pacific <strong>Weed</strong> Science Society<br />

C<strong>on</strong>ference, Seoul, Republic of Korea.<br />

Anders<strong>on</strong> W P (1983) <strong>Weed</strong> science<br />

pr<strong>in</strong>ciples. 2d ed. West Publish<strong>in</strong>g<br />

Company, St. Paul, M<strong>in</strong>nesota. 655 p.<br />

Attwood P J (1985) Crop protecti<strong>on</strong><br />

handbook-cereals. British Crop Protec-<br />

ti<strong>on</strong> Council. The Lavenham Press Ltd.,<br />

Lavenham, Sutfolk, Great Brita<strong>in</strong>.<br />

Bayer Agrochemicals Divisi<strong>on</strong> (1986)<br />

Important crops of the world and their<br />

weeds (Scientific and comm<strong>on</strong> names,<br />

syn<strong>on</strong>yms, and WSSA and WSSJ<br />

approved computer codes). Lever<br />

kusen Federal Republic of Germany.<br />

1465 p.<br />

Bernasor P C, De Datta S K (1986) Chemi-<br />

cal and cultural c<strong>on</strong>trol of bulrush<br />

( Scirpus maritimus L.) and annual weeds<br />

<strong>in</strong> lowland rice ( Oryza sativa L.). <strong>Weed</strong><br />

Res.26:233-244.<br />

Beyer E M Jr., Duffy M J, Hay J V, Schlueter<br />

D D (1988) Sulf<strong>on</strong>ylureas. Pages<br />

117-189 <strong>in</strong> Herbicides: chemistry, degradati<strong>on</strong><br />

and mode of acti<strong>on</strong>. Vol. 3. P. C.<br />

Kearney and D. D. Kaufman, eds.<br />

Mercel Dekker Inc., New York and<br />

Basel.<br />

California <strong>Weed</strong> C<strong>on</strong>ference (1985)<br />

Pr<strong>in</strong>ciples of weed c<strong>on</strong>trol <strong>in</strong> California.<br />

Thoms<strong>on</strong> Publicati<strong>on</strong>s, Fresno, Califor-<br />

nia, USA.<br />

COPR—Center for Overseas Pest Research<br />

(1976) Pest c<strong>on</strong>trol <strong>in</strong> rice. PANS<br />

Manual No. 3. L<strong>on</strong>d<strong>on</strong>.<br />

Chang T T (1976) The orig<strong>in</strong>, evoluti<strong>on</strong>,<br />

cultivati<strong>on</strong>, dissem<strong>in</strong>ati<strong>on</strong> and diversifi-<br />

cati<strong>on</strong> of Asian and African rices.<br />

Euphytica 25:425-441.<br />

Chemical and Pharmaceutical Press (1986)<br />

Crop protecti<strong>on</strong> chemicals reference. 2d<br />

ed. John Wiley & S<strong>on</strong>s, New York,<br />

Chichester, Brisbane, Tor<strong>on</strong>to, S<strong>in</strong>-<br />

gapore.<br />

104 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Christ R A (1985) Effect of CGA 123407 as a<br />

safener for pretilachlor <strong>in</strong> rice ( Oryza<br />

sativa L.). Record<strong>in</strong>gs of el<strong>on</strong>gati<strong>on</strong> rates<br />

of s<strong>in</strong>gle rice leaves. <strong>Weed</strong> Res. 25:193-<br />

200.<br />

Davies J E, Freed V H, Whittemore F W<br />

(1988) An agromedical approach to<br />

pesticide management - some health<br />

and envir<strong>on</strong>mental c<strong>on</strong>siderati<strong>on</strong>s.<br />

C<strong>on</strong>sortium for Internati<strong>on</strong>al Crop<br />

Protecti<strong>on</strong>, University of Miami, School<br />

of Medic<strong>in</strong>e, Miami, Florida. 320 p.<br />

De Datta S K (1972) Chemical weed c<strong>on</strong>trol<br />

<strong>in</strong> tropical rice <strong>in</strong> Asia. PANS 18(4):433-<br />

440.<br />

De Datta S K (1981) Pr<strong>in</strong>ciples and practices<br />

of rice producti<strong>on</strong>. John Wiley &<br />

S<strong>on</strong>s, New York, Chichester, Brisbane,<br />

Tor<strong>on</strong>to. 618 p.<br />

De Datta S K, Zahidul Hoque M (1982)<br />

<strong>Weed</strong>s, weed problems, and weed<br />

c<strong>on</strong>trol <strong>in</strong> deepwater rice areas. Pages<br />

427-442 <strong>in</strong> Proceed<strong>in</strong>gs of the 1981<br />

<strong>in</strong>ternati<strong>on</strong>al deepwater rice workshop.<br />

Internati<strong>on</strong>al <strong>Rice</strong> Research Institute,<br />

P.O. Box 933, Manila, Philipp<strong>in</strong>es.<br />

De Datta S K, Fl<strong>in</strong>n J C (1986) Technology<br />

and ec<strong>on</strong>omics of weed c<strong>on</strong>trol <strong>in</strong><br />

broadcast-seeded flooded tropical rice.<br />

Pages 51-74 <strong>in</strong> <strong>Weed</strong>s and the envir<strong>on</strong>ment<br />

<strong>in</strong> the tropics. Proceed<strong>in</strong>gs of the<br />

10th C<strong>on</strong>ference of Asian-Pacific <strong>Weed</strong><br />

Science Society, Chiang Mai, Thailand,<br />

Nov 1985. K. Noda and B.L. Mercado,<br />

eds. Asian-Pacific <strong>Weed</strong> Science Society.<br />

De Datta S K, Amp<strong>on</strong>g-Nyarko K (1988)<br />

Cost-effective <strong>in</strong>tegrated weed manage-<br />

ment practices for irrigated rice.<br />

Proceed<strong>in</strong>gs of the Plenary Sessi<strong>on</strong> of<br />

the 19th Annual C<strong>on</strong>venti<strong>on</strong> of Pest<br />

C<strong>on</strong>trol Council of the Philipp<strong>in</strong>es, 3-7<br />

May 1988, Sacred Heart Center, Cebu<br />

City, Philipp<strong>in</strong>es.<br />

Dixit A N, S<strong>in</strong>gh M M (1981) Studies <strong>on</strong><br />

different weed c<strong>on</strong>trol measures <strong>in</strong><br />

direct seeded upland ra<strong>in</strong>fed paddy.<br />

Int. <strong>Rice</strong> Comm. Newsl. 30(1):38-42.<br />

Dubey A N, Manna G B, Rao M V (1980)<br />

Selectivity of some new herbicides for<br />

direct seeded rice. Riso 29(1):53-59.<br />

Duke S O (1988) Glyphosate. Pages 1-70 <strong>in</strong><br />

Herbicidal chemistry, degradati<strong>on</strong>, and<br />

mode of acti<strong>on</strong>. Vol. 3. P. C. Kearney<br />

and D. D. Kaufman, eds. Mercel Dekker<br />

Inc., New York and Basel.<br />

FAO-Food and Agriculture Organizati<strong>on</strong><br />

of the United Nati<strong>on</strong>s (1976) Mechanizati<strong>on</strong><br />

of rice producti<strong>on</strong>; India-Nigeria-<br />

Senegal, an Internati<strong>on</strong>al Coord<strong>in</strong>ated<br />

Research Project: 1970-1 976. Rome.<br />

152 p.<br />

Fraser F, Burrill L C (1979) Knapsack<br />

sprayers: use, ma<strong>in</strong>tenance, accessories.<br />

Internati<strong>on</strong>al Plant Protecti<strong>on</strong> Center,<br />

Oreg<strong>on</strong> State University, Corvallis,<br />

Oreg<strong>on</strong>, USA.<br />

Fryer J D (1983) Recent research <strong>on</strong> weed<br />

management: new light <strong>on</strong> old practice.<br />

Pages 180-198 <strong>in</strong> Recent advances <strong>in</strong><br />

weed research. W. W. Fletcher, ed.<br />

Comm<strong>on</strong>wealth Agricultural Bureaux.<br />

The Gresham Press, Old Work<strong>in</strong>g<br />

Survey, England.<br />

Fryer J D, Matsunaka S (1977) Integrated<br />

c<strong>on</strong>trol of weeds. University of Tokyo<br />

Press, Japan. 262 p.<br />

Green D H, Ebner L (1972) A new selective<br />

herbicide for rice S-(2-methyl-lpiperidyl-carb<strong>on</strong>ylmethyl)-0,0-di-Npropyl<br />

dithiophosphate, for use al<strong>on</strong>e<br />

or <strong>in</strong> mixtures. Pages 822-829 <strong>in</strong><br />

Proceed<strong>in</strong>gs of the 11th British <strong>Weed</strong><br />

C<strong>on</strong>trol C<strong>on</strong>ference, England.<br />

Gupta P C, O'Toole J C (1986) Upland rice:<br />

a global perspective. Internati<strong>on</strong>al <strong>Rice</strong><br />

Research Institute, P.O. Box 933, Manila,<br />

Philipp<strong>in</strong>es. 360 p.<br />

Holm L G, Plucknett D L, Pancho J V,<br />

Herberger J P (1977) The world’s worst<br />

weeds-distributi<strong>on</strong> and biology. University<br />

of Hawaii Press, Hawaii. 609 p.<br />

Info Letter (1988) Pictograms urged for<br />

agrochemical labels. Info Letter Bull.<br />

No. 68 (August). Internati<strong>on</strong>al Plant<br />

Protecti<strong>on</strong> Center, Oreg<strong>on</strong> State<br />

University, Corvallis, Oreg<strong>on</strong>, USA.<br />

Internati<strong>on</strong>al Plant Protecti<strong>on</strong> Center (1986)<br />

Instructors’ manual for weed management.<br />

FAO Tra<strong>in</strong><strong>in</strong>g Series No. 12. Food<br />

and Agriculture Organizati<strong>on</strong> of the<br />

United Nati<strong>on</strong>s, Rome.<br />

IRCN—Internati<strong>on</strong>al <strong>Rice</strong> Commissi<strong>on</strong><br />

Newsletter (1982) Technology for<br />

ra<strong>in</strong>fed rice producti<strong>on</strong> <strong>in</strong> Africa. Vol.<br />

2:l-14.<br />

IRRI-Internati<strong>on</strong>al <strong>Rice</strong> Research Institute<br />

(1971) Annual report for 1970. Los<br />

Baños, Philipp<strong>in</strong>es.


IRRI-Internati<strong>on</strong>al <strong>Rice</strong> Research Institute<br />

(1972) Annual report for 1971. Los<br />

Baños, Philipp<strong>in</strong>es.<br />

IRRI-Internati<strong>on</strong>al <strong>Rice</strong> Research Institute<br />

(1973) Annual report for 1972. Los<br />

Baños, Philipp<strong>in</strong>es. 246 p.<br />

IRRI-Internati<strong>on</strong>al <strong>Rice</strong> Research Institute<br />

(1974) Annual report for 1973. Los<br />

Baños, Philipp<strong>in</strong>es. 266 p.<br />

IRRI-Internati<strong>on</strong>al <strong>Rice</strong> Research Institute<br />

(1975) Annual report for 1974. Los<br />

Baños, Philipp<strong>in</strong>es. 384 p.<br />

IRRI-Internati<strong>on</strong>al <strong>Rice</strong> Research Institute<br />

(1976) Annual report for 1975. Los<br />

Baños, Philipp<strong>in</strong>es. 479 p.<br />

IRRI-Internati<strong>on</strong>al <strong>Rice</strong> Research Institute<br />

(1977) Annual report for 1976. Los<br />

Baños, Philipp<strong>in</strong>es. 418 p.<br />

IRRI-Internati<strong>on</strong>al <strong>Rice</strong> Research Institute<br />

(1978) Annual report for 1977. Los<br />

Baños, Philipp<strong>in</strong>es. 548 p.<br />

IRRI-Internati<strong>on</strong>al <strong>Rice</strong> Research Institute<br />

(1979) Annual report for 1978. Los<br />

Baños, Philipp<strong>in</strong>es. 478 p.<br />

IRRI-Internati<strong>on</strong>al <strong>Rice</strong> Research Institute<br />

(1980) Annual report for 1979. Los<br />

Baños, Philipp<strong>in</strong>es. 538 p.<br />

IRRI-Internati<strong>on</strong>al <strong>Rice</strong> Research Institute<br />

(1981) Annual report for 1980. Los<br />

Baños, Philipp<strong>in</strong>es. 467 p.<br />

IRRI-Internati<strong>on</strong>al <strong>Rice</strong> Research Institute<br />

(1982) Annual report for 1981. Los<br />

Baños, Philipp<strong>in</strong>es. 585 p.<br />

IRRI-Internati<strong>on</strong>al <strong>Rice</strong> Research Institute<br />

(1983) Annual report for 1982. Los<br />

Baños, Philipp<strong>in</strong>es. 532 p.<br />

IRRI-Internati<strong>on</strong>al <strong>Rice</strong> Research Institute<br />

(1984) Annual report for 1983. Los<br />

Baños, Philipp<strong>in</strong>es. 497 p.<br />

IRRI-Internati<strong>on</strong>al <strong>Rice</strong> Research Institute<br />

(1985) Annual report for 1984. Los<br />

Baños, Philipp<strong>in</strong>es. 504 p.<br />

IRRI-Internati<strong>on</strong>al <strong>Rice</strong> Research Institute<br />

(1986) Annual report for 1985. Los<br />

Baños, Philipp<strong>in</strong>es. 555 p.<br />

IRRI-Internati<strong>on</strong>al <strong>Rice</strong> Research Institute<br />

(1987) Annual report for 1986. Los<br />

Baños, Philipp<strong>in</strong>es. 639 p.<br />

IRRI-Internati<strong>on</strong>al <strong>Rice</strong> Research Institute<br />

(1988a) Annual report for 1987. Los<br />

Baños, Philipp<strong>in</strong>es. 640 p.<br />

IRRI-Internati<strong>on</strong>al <strong>Rice</strong> Research Institute<br />

(1988b) World rice statistics 1987. Los<br />

Baños, Philipp<strong>in</strong>es.<br />

IRRI-Internati<strong>on</strong>al <strong>Rice</strong> Research Institute<br />

(1989) Annual report for 1988. Los<br />

Baños, Philipp<strong>in</strong>es.<br />

Kranz J, Schmutterer H, Koch W (1977)<br />

Diseases, pests and weeds <strong>in</strong> tropical<br />

crops. Verlag Paul Parey, Berl<strong>in</strong> and<br />

Hamburg. 666 p.<br />

Matthews G A (1979) Pesticide applicati<strong>on</strong><br />

methods. L<strong>on</strong>d<strong>on</strong>. L<strong>on</strong>gman.<br />

Matsunaka S (1983) Evoluti<strong>on</strong> of rice weed<br />

c<strong>on</strong>trol practices and research: World<br />

perspective. Pages 5-18 <strong>in</strong> <strong>Weed</strong> c<strong>on</strong>trol<br />

<strong>in</strong> rice. Internati<strong>on</strong>al <strong>Rice</strong> Research<br />

Institute, P.O. Box 933, Manila, Philipp<strong>in</strong>es.<br />

Matsunaka S (1975) Tadpole shrimp: a<br />

biological tool of weed c<strong>on</strong>trol <strong>in</strong><br />

transplanted rice fields. Pages 439-443<br />

<strong>in</strong> Proceed<strong>in</strong>gs of the 5th Asian-Pacific<br />

<strong>Weed</strong> Science Society C<strong>on</strong>ference,<br />

Tokyo, Japan.<br />

Michael P W (1983) Tax<strong>on</strong>omy and<br />

distributi<strong>on</strong> of Ech<strong>in</strong>ochloa species with<br />

special reference to their occurrence as<br />

weeds of rice. Pages 291-306 <strong>in</strong> <strong>Weed</strong><br />

c<strong>on</strong>trol <strong>in</strong> rice. Internati<strong>on</strong>al <strong>Rice</strong><br />

Research Institute, P.O. Box 933, Manila,<br />

Philipp<strong>in</strong>es.<br />

Moody K (1981) Major weeds of rice <strong>in</strong><br />

South and Southeast Asia. Internati<strong>on</strong>al<br />

<strong>Rice</strong> Research Institute, P.O. Box 933,<br />

Manila, Philipp<strong>in</strong>es. 79 p.<br />

Moody K, Estorn<strong>in</strong>os Jr. L E, Navarez D C,<br />

Roa L L (1983) Effect of weed c<strong>on</strong>trol<br />

practices applied to transplanted rice<br />

( Oryza sativa ) <strong>on</strong> succeed<strong>in</strong>g crops.<br />

Philipp. J. <strong>Weed</strong> Sci. 10:65-76.<br />

Moody K, Munroe C E, Lubigan R T, Paller<br />

Jr. E C (1984) Major weeds of the<br />

Philipp<strong>in</strong>es. <strong>Weed</strong> Science Society of the<br />

Philipp<strong>in</strong>es, College, Laguna, Philip-<br />

p<strong>in</strong>es.<br />

Moody K, De Datta S K, Bhan V M, Manna<br />

G B (1986) <strong>Weed</strong> c<strong>on</strong>trol <strong>in</strong> ra<strong>in</strong>fed<br />

lowland rice. Pages 371-383 <strong>in</strong> Progress<br />

<strong>in</strong> ra<strong>in</strong>fed lowland rice. Internati<strong>on</strong>al<br />

<strong>Rice</strong> Research Institute, P.O. Box 933,<br />

Manila, Philipp<strong>in</strong>es.<br />

Moody K, Elliot PC, Rao A N (1988) Cost-<br />

effective weed management <strong>in</strong> a rice-<br />

based cropp<strong>in</strong>g systems program.<br />

Proceed<strong>in</strong>gs of the 19th Pest C<strong>on</strong>trol<br />

Council of the Philipp<strong>in</strong>e C<strong>on</strong>venti<strong>on</strong>,<br />

3-7 May 1988, Sacred Heart Center,<br />

Cebu City, Philipp<strong>in</strong>es.<br />

Mukhopadhyay S (1983) <strong>Weed</strong> c<strong>on</strong>trol<br />

technology <strong>in</strong> ra<strong>in</strong>fed wetland rice.<br />

Pages 109-118 <strong>in</strong> <strong>Weed</strong> c<strong>on</strong>trol <strong>in</strong> rice.<br />

Internati<strong>on</strong>al <strong>Rice</strong> Research Institute,<br />

P.O. Box 933, Manila, Philipp<strong>in</strong>es.<br />

Ou S H (1985) <strong>Rice</strong> diseases. Comm<strong>on</strong>-<br />

wealth Agricultural Bureaux, The<br />

Cambrian News (Aberystwyth) Ltd.,<br />

Great Brita<strong>in</strong>. 380 p.<br />

Oudejans J H (1982) Agro-pesticides: Their<br />

management and applicati<strong>on</strong>. United<br />

Nati<strong>on</strong>s Ec<strong>on</strong>omic and Social Commis-<br />

si<strong>on</strong> for Asia and the Pacific, Bangkok,<br />

Thailand. 205 p.<br />

Patters<strong>on</strong> D T (1985) Comparative eco-<br />

physiology of weeds. Pages 101-132 <strong>in</strong><br />

<strong>Weed</strong> physiology: reproducti<strong>on</strong> and<br />

ecophysiology. S. O. Duke, ed. CRC<br />

Press, Inc., Boca Rat<strong>on</strong>, Florida.<br />

PCARR—Philipp<strong>in</strong>e Council for Agriculture<br />

and Resources Research (1977) The<br />

Philipp<strong>in</strong>es recommends for rice. Los<br />

Baños, Philipp<strong>in</strong>es. 186 p.<br />

Reissig W H, He<strong>in</strong>richs E A, Lits<strong>in</strong>ger J A,<br />

Moody K, Fielder F, Mew T W, Barri<strong>on</strong><br />

A T (1985) Illustrated guide to <strong>in</strong>tegrated<br />

pest management <strong>in</strong> tropical<br />

Asia. Internati<strong>on</strong>al <strong>Rice</strong> Research<br />

Institute, P.O. Box 933, Manila, Philipp<strong>in</strong>es.<br />

411 p.<br />

<strong>Rice</strong> Journal (1988) Technical report: Red<br />

rice. Vol. 91(2):6-13.<br />

Roberts H A, ed. (1982) <strong>Weed</strong> c<strong>on</strong>trol<br />

handbook: Pr<strong>in</strong>ciples. British Crop<br />

Protecti<strong>on</strong> Council. Blackwell Scientific<br />

Publicati<strong>on</strong>s, Oxford. 533 p.<br />

Roeth F W (1986) Enhanced herbicide<br />

degradati<strong>on</strong> <strong>in</strong> soil with repeat applica-<br />

ti<strong>on</strong>. Reviews of weed science. Vol. 2.<br />

<strong>Weed</strong> Science Society of America, 309<br />

West Clark St., Champaign, Ill<strong>in</strong>ois.<br />

Sankaran S, De Datta S K (1985) <strong>Weed</strong>s<br />

and weed management <strong>in</strong> upland rice.<br />

Adv. Agr<strong>on</strong>. 38:283-337.<br />

Sh<strong>in</strong> D H, Moody K, Zapata F J, Kim K U<br />

(1989) Differences <strong>in</strong> resp<strong>on</strong>se of rice<br />

( Oryza sativa L.) cultivars to herbicides.<br />

Pages 393-403 <strong>in</strong> Proceed<strong>in</strong>gs of the 12th<br />

Asian-Pacific <strong>Weed</strong> Science Society<br />

C<strong>on</strong>ference, Seoul, Republic of Korea.<br />

Smith R J Jr. (1971) Red rice c<strong>on</strong>trol <strong>in</strong> rice.<br />

Proceed<strong>in</strong>gs of the 24th Annual Meet-<br />

<strong>in</strong>g of the Southern <strong>Weed</strong> Science<br />

Society, 19-21 Jan 1971, Memphis,<br />

Tennessee.<br />

St<strong>on</strong>e L F, Santos A B, Ste<strong>in</strong>metz S (1980)<br />

Upland rice affected by cultural<br />

practices. Preq. Agropec. Bros. 15(1):<br />

63-68.<br />

Swarbrick J T (1984) Australian weed<br />

c<strong>on</strong>trol handbook. Plant Press,<br />

Toowoomba, Australia. 418 p.<br />

Thoms<strong>on</strong> W T (1986) Agricultural chemicals.<br />

Book II. Herbicides. Thoms<strong>on</strong><br />

Publicati<strong>on</strong>s, Fresno, California, USA.<br />

301 p.<br />

UC—University of California (1983)<br />

Integrated pest management for rice.<br />

Statewide Integrated Pest Management<br />

Project. Divisi<strong>on</strong> of Agricultural<br />

Sciences Publicati<strong>on</strong> 3280, Berkeley,<br />

USA. 94 p.<br />

Worth<strong>in</strong>g C R (1987) The pesticide manual.<br />

A world compendium. British Crop<br />

Protecti<strong>on</strong> Council, ed. The Lavenham<br />

Press Ltd., Lavenham, Sutfolk, Great<br />

Brita<strong>in</strong>. 1081 p.<br />

Yar<strong>on</strong> B, Gerstl Z, Spencer W F (1985)<br />

Behavior of herbicides <strong>in</strong> irrigated soils.<br />

Pages 121-212 <strong>in</strong> Advances <strong>in</strong> soil<br />

science. Vol. 3. B. A. Stewart, ed.<br />

Spr<strong>in</strong>ger-Verlag, New York, USA.<br />

References 105


Appendices<br />

A. Useful c<strong>on</strong>versi<strong>on</strong>s<br />

Weights<br />

1 gram = 0.03527 ounces<br />

1 ounce = 28.4 grams<br />

1 kilogram = 2.2 pounds<br />

1 pound = 454 grams (0.454 kilogram)<br />

1 metric t<strong>on</strong> = 2,204.6 pounds (1,000 kilograms)<br />

Area<br />

1 acre = 4,840 sq yards = 43,560 sq feet = 0.405 hectare = 4,050 sq meters<br />

1 hectare = 2.41 acres<br />

Volume<br />

1 gall<strong>on</strong> (Imperial) = 4.546 liters<br />

1 gall<strong>on</strong> (Imperial) = 1.2 U.S. gall<strong>on</strong>s<br />

1 gall<strong>on</strong> (U.S.) = 3.785 liters<br />

1 fluid ounce = 28.4 milliliters<br />

1 liter = 0.22 gall<strong>on</strong>s = 1.76 p<strong>in</strong>ts<br />

Measurements<br />

1 <strong>in</strong>ch<br />

1 foot<br />

1 yard<br />

1 mile<br />

1 centimeter<br />

1 meter<br />

1 meter<br />

1 kilometer<br />

1 kilopascal (kpa)<br />

2.54 centimeters<br />

0.305 meter<br />

0.914 meter<br />

1.609 kilometers<br />

0.394 <strong>in</strong>ch<br />

3.281 feet<br />

1.094 yards<br />

0.621 mile<br />

0.145 pound per square <strong>in</strong>ch (psi)<br />

Quick c<strong>on</strong>versi<strong>on</strong>s<br />

1 liter/hectare = 0.089 gall<strong>on</strong>/acre<br />

1 kilogram/hectare = 0.892 pound/acre<br />

1 kilogram/liter = 8.33 pounds/gall<strong>on</strong><br />

B. C<strong>on</strong>versi<strong>on</strong> table for liquid formulati<strong>on</strong>s<br />

Desired Percent c<strong>on</strong>centrati<strong>on</strong> of active <strong>in</strong>gredient <strong>in</strong> formulati<strong>on</strong><br />

active<br />

<strong>in</strong>gredients 100 90 80 75 70 60 50 40 30 25<br />

(<strong>in</strong> kg/ha) (liters of formulati<strong>on</strong> needed to spray 1 ha)<br />

1.0<br />

1.5<br />

2.0<br />

2.5<br />

3.0<br />

3.5<br />

4.0<br />

4.5<br />

5.0<br />

5.5<br />

6.0<br />

1.0<br />

1.5<br />

2.0<br />

2.5<br />

3.0<br />

3.5<br />

4.0<br />

4.5<br />

5.0<br />

5.5<br />

6.0<br />

=<br />

=<br />

=<br />

=<br />

=<br />

=<br />

=<br />

=<br />

=<br />

1.11<br />

1.66<br />

2.22<br />

2.78<br />

3.33<br />

3.89<br />

4.44<br />

5.0<br />

5.55<br />

6.11<br />

6.66<br />

1.25<br />

1.87<br />

2.5<br />

3.13<br />

3.75<br />

4.38<br />

5.0<br />

5.63<br />

6.25<br />

6.88<br />

7.5<br />

1.33<br />

2.0<br />

2.66<br />

3.33<br />

4.0<br />

4.66<br />

5.32<br />

6.0<br />

6.67<br />

7.32<br />

7.98<br />

1.45<br />

2.18<br />

2.9<br />

3.63<br />

4.35<br />

5.08<br />

5.80<br />

6.53<br />

7.14<br />

8.0<br />

8.7<br />

1.66<br />

2.49<br />

3.32<br />

4.15<br />

4.98<br />

5.81<br />

6.64<br />

7.5<br />

8.33<br />

9.13<br />

7.96<br />

2.0<br />

3.0<br />

4.0 a<br />

5.0<br />

6.0<br />

7.0<br />

8.0<br />

9.0<br />

10.0<br />

11.0<br />

12.0<br />

2.5<br />

3.75<br />

5.0<br />

6.25<br />

7.5<br />

8.75<br />

10.0<br />

11.25<br />

12.5<br />

13.75<br />

15.0<br />

3.33<br />

5.0<br />

6.60<br />

8.33<br />

9.99<br />

11.66<br />

13.32<br />

15.0<br />

16.67<br />

18.32<br />

10.0<br />

a For example, to apply 2.0 kg ai/ha us<strong>in</strong>g a formulati<strong>on</strong> c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g 50% active <strong>in</strong>gredient, use 4.0 liters of the formulated product.<br />

4.0<br />

6.0<br />

8.0<br />

10.0<br />

12.0<br />

14.0<br />

16.0<br />

18.0<br />

20.0<br />

22.0<br />

24.0<br />

20<br />

5.0<br />

7.5<br />

10.0<br />

12.5<br />

15.0<br />

17.5<br />

20.0<br />

22.5<br />

25.0<br />

27.5<br />

30.0<br />

Appendices 107


B. C<strong>on</strong>versi<strong>on</strong> table for granular formulati<strong>on</strong>s<br />

Desired Percent c<strong>on</strong>centrati<strong>on</strong> of active <strong>in</strong>gredient <strong>in</strong> formulati<strong>on</strong><br />

active<br />

<strong>in</strong>gredients 20 15 10 7.5 5 4 3 2 1<br />

(<strong>in</strong> kg/ha) (kg of formulati<strong>on</strong> required to spray 1 ha)<br />

0.5 2.5 3.33 5.0<br />

1.0 5.0 6.67 10.0<br />

1.5 7.5 10.0 15.0<br />

2.0 10.0 13.3 20.0<br />

2.5 12.5 16.6 25.0<br />

3.0 15.0 20.0 30.0<br />

3.5 17.5 23.3 35.0<br />

4.0 20.0 26.6 40.0<br />

4.5 22.5 30.0 45.0<br />

5.0 25.0 33.3 50.0<br />

5.5 27.5 36.3 55.0<br />

6.0 30.0 40.0 60.0<br />

6.67 10.0 12.5 16.67<br />

13.3 20.0 25.0 33.3<br />

20.0 30.0 37.5 50.0<br />

26.6 40.0 a 50 66.7<br />

33.3 50 62.5 83.3<br />

40.0 60 75.0 100.0<br />

46.6 70 87.5 116.7<br />

53.3 80 100.0 133.3<br />

60.0 90 112.5 150.0<br />

66.6 100 125.0 166.7<br />

73.3 110 137.5 183.3<br />

80 120 150.0 200.0<br />

25.0 50.0<br />

50.0 100.0<br />

75.0 150.0<br />

100.0 200.0<br />

125.0 250.0<br />

150.0 300.0<br />

175.0 350.0<br />

200.0 400.0<br />

225.0 450.0<br />

250.0 500.0<br />

275.0 550.0<br />

300.0 600.0<br />

a<br />

For example, to apply 2.0 kg ai/ha us<strong>in</strong>g granules c <strong>on</strong>ta<strong>in</strong><strong>in</strong>g 5% active <strong>in</strong>gredient, use 40 kg of formulated product.<br />

C. Comm<strong>on</strong> and chemical names of herbicides<br />

Chemical names of herbicides vary, depend<strong>in</strong>g <strong>on</strong> the standard adopted. The comm<strong>on</strong> standards are<br />

CHEMICAL ABSTRACTS (CA) and Internati<strong>on</strong>al Uni<strong>on</strong> of Pure and Applied Chemistry (IUPAC). When<br />

possible. this handbook used CA (which is also followed by the <strong>Weed</strong> Science Society of America).<br />

Comm<strong>on</strong> name Chemical name<br />

Bentaz<strong>on</strong><br />

Bensulfur<strong>on</strong><br />

Bifenox<br />

Butachlor<br />

Butral<strong>in</strong><br />

Chlometoxynil<br />

C<strong>in</strong>methyl<strong>in</strong><br />

2,4-D<br />

Dimethametryn<br />

Fenoxaprop<br />

Fluorodifen<br />

Glufos<strong>in</strong>ate<br />

Glyphosate<br />

MCPA<br />

Mol<strong>in</strong>ate<br />

Oxadiaz<strong>on</strong><br />

Oxyfluorfen<br />

Paraquat<br />

Pendimethal<strong>in</strong><br />

Piperophos<br />

Pretilachlor<br />

Propanil<br />

Qu<strong>in</strong>clorac<br />

Simetryn<br />

Tiocarbazil<br />

Thiobencarb<br />

108 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

3- (1-methylethyl)-(l H )-2,1,3-benzothiadiaz<strong>in</strong>-4(3 H )-<strong>on</strong>e 2,2-dioxide<br />

(methyl 2-[[(4,6-dimethoxypyrimid<strong>in</strong>-2-yl) am<strong>in</strong>ocarb<strong>on</strong>yl]<br />

am<strong>in</strong>osulf<strong>on</strong>ylmethyl] benzoate)<br />

methyl 5-(2,4-dichlorophenoxy)-2-nitrobenzoate<br />

N -(buthoxymethyl)-2-chloro- N -(2,6-diethylphenyl) acetamide<br />

4-(1,1-dimethylethyl)-N-(1-methyl propyl)-2, 6-d<strong>in</strong>itrobenzenam<strong>in</strong>e<br />

2,4-dichlorphenyl 3-methoxy-4-nitrophenyl-ether<br />

exo -1-methyl-4-(1-methylethyl)-2-[(2-methylphenyl)<br />

methoxy]-7-oxabicyclo [2.2.1] heptane<br />

(2,4-dichlorophenoxy) acetic acid<br />

2-(1,2-dimethylpropylam<strong>in</strong>o)-4-ethylam<strong>in</strong>o-6-methylthio- 1,3,5-triazlne<br />

(±)-2-[4-[(6-chloro-2-benzoxazolyl)oxy]phenoxy] propanoic acid<br />

4-nitrophenyl 2-nitro-4-trifluoromethylphenyl ether<br />

DL-homoalan<strong>in</strong>-4-yl (methyl)phosph<strong>in</strong>ic acid<br />

N-(phosph<strong>on</strong>omethyl)glyc<strong>in</strong>e<br />

(4-chloro-2-methylphenoxy) acetic acid<br />

S -ethyl hexahydro-1 H -azep<strong>in</strong>e-1-carbothioate<br />

3-[2,4-dichloro-5-(1-methylethoxy) phenyl]-5-(1,1-dimethylethyl)-<br />

1,3,4-oxadiaz<strong>on</strong>-2 (3 H )-<strong>on</strong>e<br />

2-chIoro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl) benzene<br />

1,1'-dimethyl-4,4'-bipyrid<strong>in</strong>ium i<strong>on</strong><br />

N -(1-ethylpropyl)-3,4-dimethyl-2,6-d<strong>in</strong>itrobenzenam<strong>in</strong>e<br />

S -2-methyl-1-piperidylcarb<strong>on</strong>ylmethyl 0,0 -di-n-propyl<br />

phosphorodithioate<br />

a-chloro-2,6-diethyl-N-(2-propoxyethyl) acetanilide<br />

N -(3,4-dichlorophenyI) propanamide<br />

3,7-dichlor-8-qu<strong>in</strong>ol<strong>in</strong>ecarboxylic acid<br />

4,6-bisethylam<strong>in</strong>o-2-methylthio-1,3,5-triaz<strong>in</strong>e<br />

S -benzyl N,N-di-sec-butylthiocarbamate<br />

S [(4-chlorophenyl)methyl]diethylcarbamothioate


D. Comm<strong>on</strong> names, trade names, and orig<strong>in</strong>al manufacturers of herbicides.<br />

Comm<strong>on</strong> name Trade names<br />

Bensulfur<strong>on</strong><br />

Bentaz<strong>on</strong><br />

Bifenox<br />

Butachlor<br />

Butral<strong>in</strong><br />

Chlomethoxynil<br />

C<strong>in</strong>methyl<strong>in</strong><br />

2,4-D<br />

Dimethametryn + piperophos<br />

Fenoxaprop<br />

Fluorodifen<br />

Glyphosate<br />

MCPA<br />

Mol<strong>in</strong>ate<br />

Oxadiaz<strong>on</strong><br />

Oxyfluorfen<br />

Paraquat<br />

Pendimethal<strong>in</strong><br />

Piperophos<br />

Pretilachlor<br />

Propanil<br />

Qu<strong>in</strong>clorac<br />

Thiobencarb<br />

L<strong>on</strong>dax<br />

Basagran<br />

Modown<br />

Machete, Butanex,<br />

Lambast, Pillarsete<br />

Amex, Tamex<br />

Ekkusug<strong>on</strong>i<br />

C<strong>in</strong>ch, Argold<br />

Aqua Kleen, Demise,<br />

Ester<strong>on</strong>, <strong>Weed</strong>-B-G<strong>on</strong>,<br />

<strong>Weed</strong><strong>on</strong>e<br />

Avirosan<br />

Whip<br />

Preforan<br />

Roundup, Rodeo,<br />

Shackle, Spas<strong>on</strong><br />

Agrox<strong>on</strong>e, Agritox,<br />

Zelan, Chiptox,<br />

Frasan, Vacate<br />

Ordram, Arrosolo<br />

R<strong>on</strong>star<br />

Goal, Koltar<br />

Gramox<strong>on</strong>e, Paracol,<br />

Cekuquat, Scythe,<br />

Sweep<br />

Prowl, Herbadox,<br />

Gogosan, Stomp<br />

Rilof<br />

Sofit, Rifit. Solnet<br />

Stam F-34, Surcopur,<br />

Riselect, Dipram,<br />

Stampede<br />

Facet<br />

Saturn, Tamariz,<br />

Bolero. Siacarb,<br />

Saturno<br />

Year Orig<strong>in</strong>al<br />

<strong>in</strong>troduced manufacturer<br />

1984<br />

1970<br />

1970<br />

1969<br />

1971<br />

1972<br />

1982<br />

1942<br />

1969<br />

1982<br />

1968<br />

1971<br />

1945<br />

1964<br />

1969<br />

1974<br />

1958<br />

1972<br />

1969<br />

1982<br />

1953<br />

1984<br />

1965<br />

DuP<strong>on</strong>t<br />

BASF<br />

Rh<strong>on</strong>e-Poulenc<br />

M<strong>on</strong>santo<br />

Uni<strong>on</strong> Carbide<br />

Nih<strong>on</strong> Nohyaku Co.<br />

DuP<strong>on</strong>t<br />

Amchem Products<br />

Inc.<br />

Ciba-Geigy<br />

Hoechst-Roussel<br />

Ciba-Geigy<br />

M<strong>on</strong>santo<br />

ICI<br />

Stauffer<br />

Rh<strong>on</strong>e-Poulenc<br />

Rohm & Haas<br />

ICI<br />

American<br />

Cyanamid<br />

Ciba-Geigy<br />

Ciba-Geigy<br />

Rohm & Haas<br />

BASF<br />

Kumiai Chemical<br />

Industry, Chevr<strong>on</strong><br />

Chemical<br />

Appendices 109


Index<br />

A<br />

Absorpti<strong>on</strong> of herbicide, 50, 52, 62, 63<br />

Acanthospermum hispidum, 66<br />

Acetolactase synthase, 70<br />

Acid equivalents, 60<br />

Active <strong>in</strong>gredient, 53, 55, 61<br />

Adjuvant, 53<br />

Adsorpti<strong>on</strong> of herbicide, 51<br />

Aeschynomene aspera, 98<br />

Aeschynomene virg<strong>in</strong>ica, 66, 80<br />

Africa, 42, 78, 83, 87, 91, 92, 95, 100, 101, 102<br />

Ageratum c<strong>on</strong>yzoides L., 3, 27, 66, 91<br />

Aizoaceae, 25<br />

Alachlor, 101<br />

Allelopathy, 2<br />

Alternanthera sessilis, 66<br />

Aman, 83<br />

Amaranthaceae, 26<br />

Amaranthus sp<strong>in</strong>osus L., 26, 66, 91<br />

Amaranthus spp., 3,4<br />

Ammania cocc<strong>in</strong>ea, 66<br />

Angola, 28, 31<br />

Anilides, 65<br />

Annual weeds, 1, 65<br />

herbicide effects <strong>on</strong>, 50<br />

life cycles, 5<br />

Antidotes, 49, 78, 86, 88<br />

Aphelenchoides oryzae, 2<br />

Applicators for herbicides<br />

hydraulic, 56<br />

granular, 56<br />

n<strong>on</strong>pressurized, 55-56<br />

pressurized, 55-56<br />

Aquatic weeds, 2<br />

dra<strong>in</strong>age effect <strong>on</strong>, 44<br />

Argent<strong>in</strong>a, 9, 26, 29, 31, 33, 35<br />

Aryl acylamidase, 50, 67<br />

Asia, 18, 42, 73, 76, 80, 83, 87, 92, 99, 100, 102<br />

Asteraceae, 9, 27<br />

Atraz<strong>in</strong>e, 101<br />

Australia, 10, 20, 22, 25, 26, 27, 42, 73, 78, 80, 102<br />

Azolla, 45<br />

B<br />

Bacterial leaf blight, 2<br />

Bangladesh, 9, 11, 12, 16, 19, 20, 23, 26, 28, 29, 30,<br />

38, 76, 83, 85, 87, 95, 101<br />

Bensulfur<strong>on</strong>, 66, 67, 70, 71, 72, 73, 75, 78, 84, 85, 99<br />

Bentaz<strong>on</strong>, 51, 65, 66, 67, 68, 69, 71, 75, 77, 78, 79, 80,<br />

81, 82, 84, 85, 86, 87, 88, 89, 93, 94, 96, 97, 99,<br />

101,102<br />

Bhutan, 83<br />

Bidens pilosa, 66<br />

Bifenox, 66, 67, 68, 69, 75, 78, 86, 93, 94, 97<br />

Biological c<strong>on</strong>trol, 45<br />

Brachiara mutica, 66<br />

Brachiara spp., 3<br />

Brazil, 11, 12, 15, 16, 19, 20, 26, 27, 29, 30, 31, 32, 34,<br />

37, 38, 91, 92, 101<br />

Broadcast seeded rice, 73, 83<br />

hand weed<strong>in</strong>g <strong>in</strong>, 77,<br />

optimum seed<strong>in</strong>g rate, 43<br />

110 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

yield less due to weeds, 1<br />

Brown spot, 2<br />

Bul<strong>in</strong>us spp., 2<br />

Burn<strong>in</strong>g, 44<br />

Butachlor, 49, 55, 59, 62, 65, 66, 67, 69, 71, 72, 73,<br />

75, 77, 78, 79, 80, 84, 85, 86, 87, 88, 89, 93, 94, 96,<br />

97,100<br />

Butanex, 55<br />

Butral<strong>in</strong>, 66, 67, 68, 77, 78, 79, 80, 86, 87, 88, 89, 93,<br />

94, 96, 97<br />

Bypiridiliums, 68<br />

C<br />

C3 plants, 3<br />

drought tolerance, 4<br />

C4 plants, 3<br />

drought tolerance, 4<br />

Cambodia, 11, 12, 23, 25, 26, 29, 31, 34, 35, 37, 38,<br />

39, 95<br />

Camero<strong>on</strong>, 35<br />

Carbamate, 50<br />

Carboxylic esters, 52<br />

Carp, 62, 67, 70, 71<br />

Catfish, 68, 71<br />

Ceratophyllum demersum, 2<br />

Chamysyce hirta (L.) Millsp., 30<br />

Chile, 31<br />

Ch<strong>in</strong>a, 18,100<br />

Chlomethoxynil, 66, 67, 71<br />

Chlometoxyfen, see Chlomethoxynil<br />

C<strong>in</strong>methyl<strong>in</strong>, 66, 67, 71<br />

Cochliobolus miyabeanus, 2<br />

Colombia, 19, 21, 27, 32, 101<br />

Commel<strong>in</strong>aceae, 7, 28<br />

Commel<strong>in</strong>a benghalensis, 4, 5, 8, 28, 66<br />

Competiti<strong>on</strong><br />

between rice and weeds, 3-4<br />

critical period, 4<br />

Compositae, 9<br />

C<strong>on</strong>tact herbicides, 49<br />

water requirement, 59<br />

C<strong>on</strong>tent of herbicides, 55<br />

C<strong>on</strong>t<strong>in</strong>uous rice, 1<br />

C<strong>on</strong>trolled-droplet applicator, 55, 56-57, 59<br />

C<strong>on</strong>volvulaceae, 39<br />

Crop rotati<strong>on</strong>, 1, 42<br />

Cultivar, 76, 79, 84, 86, 88, 91, 96<br />

Cultural practices, 2<br />

Cynod<strong>on</strong> dactyl<strong>on</strong> (L.) Pers., 3, 5, 31, 41, 66<br />

Cyperaceae, 7, 10-13, 29<br />

Cyperus difformis L., 3, 10, 66, 73, 83, 85, 87<br />

Cyperus esculentus, 66<br />

Cyperus iria L., 2, 11, 66, 73, 83, 85<br />

Cyperus rotundus L., 3, 5, 7, 29, 66, 102<br />

2,4-D, 49, 51, 60, 63, 66, 67, 69, 75, 77, 78, 80, 81, 82,<br />

84, 85, 86, 87, 88, 89, 93, 94, 97, 99, 102<br />

D<br />

Dactyloctenium aegyptium, 66<br />

Deepwater rice, 96<br />

cultivar, 96<br />

fertilizer, 96<br />

hand weed<strong>in</strong>g, 97, 98<br />

herbicides, 97, 98<br />

land preparati<strong>on</strong>, 96<br />

N applicati<strong>on</strong> tim<strong>in</strong>g, 43<br />

plant<strong>in</strong>g method, 96<br />

plant populati<strong>on</strong>, 96<br />

weed c<strong>on</strong>trol <strong>in</strong>, 95-98<br />

weed problems, 95<br />

Density of plant<strong>in</strong>g, 43<br />

Detoxificati<strong>on</strong>, 50<br />

Dicotyled<strong>on</strong>s, 8<br />

Diffusi<strong>on</strong> of herbicides, 50<br />

Digitaria adscendens, 2<br />

Digitaria sangu<strong>in</strong>alis (L.) Scop., 2, 32, 66<br />

Digitaria spp., 3<br />

Dimethametryn, 66, 67, 70, 75, 78, 79, 84, 85, 86,<br />

93, 95, 96, 97<br />

D<strong>in</strong>itroanil<strong>in</strong>es, 68<br />

Diphenyl ethers, 68<br />

Direct seeded rice<br />

herbicide relativity <strong>in</strong>, 50<br />

N applicati<strong>on</strong> tim<strong>in</strong>g, 43<br />

<strong>on</strong> dry soil, for weed c<strong>on</strong>trol, 78-79, 88<br />

cultivar, 79, 88<br />

fertilizer, 88<br />

hand weed<strong>in</strong>g, 77, 79, 88<br />

herbicides, 79, 88<br />

herbicide use, 77, 88<br />

land preparati<strong>on</strong>, 78, 88<br />

plant<strong>in</strong>g method, 79, 88<br />

water management, 79, 88<br />

weed problems, 78, 87<br />

<strong>on</strong> puddled soil, for weed c<strong>on</strong>trol, 76, 85-86<br />

cultivar, 76, 86<br />

fertilizer, 76, 86<br />

hand weed<strong>in</strong>g, 77, 87<br />

herbicides, 77, 87<br />

herbicide use, 77, 78, 86<br />

land preparati<strong>on</strong>, 76, 86<br />

plant<strong>in</strong>g method, 76, 86<br />

plant populati<strong>on</strong>, 76, 86<br />

water management, 76, 86<br />

weed problems, 76, 85<br />

yield loss due to weeds, 1<br />

Diseases, 2<br />

Dom<strong>in</strong>ican Republic, 19<br />

Drill seeded rice, 73, 83<br />

deep drill<strong>in</strong>g seeds, 43<br />

hand weed<strong>in</strong>g <strong>in</strong>, 77<br />

N applicati<strong>on</strong> tim<strong>in</strong>g, 43<br />

residual herbicide applicati<strong>on</strong> <strong>in</strong>, 51<br />

yield loss due to weeds, 1<br />

Drought, stress symptoms, 3<br />

effects <strong>on</strong> crop growth, 4, 42<br />

effects <strong>on</strong> herbicide activity, 50<br />

E<br />

Ech<strong>in</strong>ochloa col<strong>on</strong>a (L.) L<strong>in</strong>k, 2, 4, 8, 33, 66, 100<br />

Ech<strong>in</strong>ochloa crus-galli (L.) Beauv., 2, 8, 16, 49, 50,<br />

66, 73, 80, 81, 85, 87, 100<br />

Ech<strong>in</strong>ochloa crus-galli ssp. crus-galli var. crus-galli,<br />

16


Ech<strong>in</strong>ochloa crus-galli ssp. crus-galli var. praticola,<br />

16<br />

Ech<strong>in</strong>ochloa crus-galli ssp. hispidula var. austrojap<strong>on</strong>ensis,<br />

16<br />

Ech<strong>in</strong>ochloa crus-galli ssp. hispidula var. hispidula,<br />

16<br />

Ech<strong>in</strong>ochloa crus-galli P.B. var. kasaharae Ohwi, 8<br />

Ech<strong>in</strong>ochloa glabrescens Munro ex Hook.f., 18, 66,<br />

100<br />

Ech<strong>in</strong>ochloa oryzoides (Ard) Fritsch, 5<br />

Ech<strong>in</strong>ochloa phyllopog<strong>on</strong>, 5<br />

Ech<strong>in</strong>ochloa pyramidalis, 95, 100<br />

Ech<strong>in</strong>ochloa spp., 3, 83, 85, 100<br />

Ech<strong>in</strong>ochloa stagn<strong>in</strong>a, 95, 98<br />

Eclipta alba (L.) Hassk., 9, 66<br />

Eclipta erecta L., 9<br />

Eclipta prostrata (L.), 9<br />

Egypt, 33, 73<br />

Eichhornia crassipes (Mart.) Solms, 3, 8, 66, 38, 98<br />

Eleocharis acicularis, 66<br />

Eleus<strong>in</strong>e <strong>in</strong>dica (L.) Gaertn., 3, 4, 34, 66<br />

El Salvador, 21, 26<br />

Emulsifiable c<strong>on</strong>centrate, 53<br />

Emulsifier, 53<br />

Endothal, 81, 82<br />

Euphorbiaceae, 30<br />

Euphorbia hirta, 30, 66<br />

Euphorbia pilulifera L., 30<br />

Europe, 42, 73, 78, 80, 99<br />

Evaporati<strong>on</strong>, of herbicide, 52<br />

F<br />

Fenclorim, 49, 73<br />

Fenoxaprop, 66, 67, 71, 99<br />

Fertilizati<strong>on</strong>, 43<br />

Fertilizer, 74, 76, 82, 84, 86, 88, 91, 96<br />

Fiji, 19, 35<br />

Fimbristylis littoralis Gaud., 12<br />

Fimbristylis miliacea (L.) Vahl, 2, 12, 66, 83, 85, 87<br />

Float<strong>in</strong>g rice, weed c<strong>on</strong>trol <strong>in</strong>, 95-98<br />

Also see Deepwater rice<br />

Flowables, 53<br />

Flourodifen, 66, 67, 69, 93, 94, 96, 97<br />

Formulati<strong>on</strong> of herbicides, 47, 53, 55<br />

France, 9, 10, 13, 14, 16, 25, 26, 27, 29, 30, 31, 32, 33,<br />

34, 35, 36, 37, 38<br />

G<br />

Ghana, 25, 26, 27, 28, 29, 30, 35, 36, 37<br />

Glufos<strong>in</strong>ate, 103<br />

Glyphosate 49, 50, 66, 67, 69, 97, 101, 102, 103<br />

Gogorantja, 87<br />

Goldfish, 70<br />

Granular herbicide, 53<br />

applicati<strong>on</strong>, 62<br />

applicators, 55, 56<br />

Growth stages,<br />

effect <strong>on</strong> herbicide selectivity, 50<br />

for herbicide applicati<strong>on</strong>, 50, 65, 77, 80, 81, 85,<br />

87, 89, 93, 97<br />

Guyana, 101<br />

H<br />

Hand pull<strong>in</strong>g, see Hand weed<strong>in</strong>g<br />

Hand weed<strong>in</strong>g, 2, 44, 82,<br />

<strong>in</strong> deepwater and float<strong>in</strong>g rice, 97, 98<br />

<strong>in</strong> direct seeded rice, 77, 79, 87, 88<br />

<strong>in</strong> drill seeded rice, 77<br />

<strong>in</strong> transplanted rice, 75, 84,<br />

<strong>in</strong> upland rice, 93<br />

<strong>in</strong> water seeded rice, 82<br />

labor for, 45<br />

Harvest<strong>in</strong>g, effects of weeds, 2<br />

statements <strong>in</strong> labels, 55<br />

Hazards of herbicide use, 62<br />

as <strong>in</strong>dicated <strong>in</strong> labels, 55<br />

Herbicide, 45, 49-63, 65-71, 75, 84<br />

absorpti<strong>on</strong>, 50, 52, 62, 63<br />

adsorpti<strong>on</strong>, 51<br />

antidote for, 49, 78, 86, 88<br />

applicati<strong>on</strong> tim<strong>in</strong>g, 50<br />

applicators, 55, 56, 57<br />

behavior <strong>in</strong> soil, 51<br />

brand names, 54<br />

calibrati<strong>on</strong>, 62<br />

chemical names, 54-55<br />

classificati<strong>on</strong>, 65-72<br />

c<strong>on</strong>tact, 49, 58, 59<br />

c<strong>on</strong>ta<strong>in</strong>er disposal, 63<br />

dosage, 49, 55, 59-61<br />

evaporati<strong>on</strong> of, 52<br />

for deepwater and float<strong>in</strong>g rice, 97, 98<br />

for direct seeded rice, 77, 79, 87, 88<br />

for transplanted rice, 75, 84<br />

for upland rice, 94<br />

for water seeded rice, 82<br />

granular, 62<br />

leach<strong>in</strong>g, 51<br />

lethal dose (LD50), 62<br />

loss, 51-52<br />

manufacturer of, 55<br />

mix<strong>in</strong>g, 59, 61, 62<br />

mixtures, 65<br />

n<strong>on</strong>selective, 49, 50, 51<br />

persistence, 52<br />

photodegradati<strong>on</strong>, 52<br />

properties, 52-54<br />

residual, 51, 52, 58<br />

rotati<strong>on</strong>s, 65<br />

runoff, 52<br />

safe handl<strong>in</strong>g of, 62<br />

selecti<strong>on</strong> of, 61<br />

selective, 49, 50, 51<br />

spray<strong>in</strong>g, 61<br />

storage, 63<br />

systemic, 49, 50, 51, 58<br />

tolerance, 72<br />

trade or brand name, 54-55<br />

translocated, 49, 58<br />

uptake, 50<br />

volatilizati<strong>on</strong>, 52<br />

weeds c<strong>on</strong>trolled, 66<br />

Herbicide activity<br />

depth of, 52<br />

effects of relative humidity, 52<br />

soil factors, 51-52<br />

soil moisture, 52<br />

temperature, 52<br />

w<strong>in</strong>d, 52<br />

<strong>in</strong> plants and soil, 50<br />

Herbicide drift, 63<br />

Herbicide formulati<strong>on</strong>, 49, 53, 55<br />

Herbicide label, 54-55<br />

Herbicide selectivity, 49-50, 51<br />

physical factors, 49<br />

biological factors, 50<br />

loss of, 54<br />

postemergence, 51<br />

Herbicide toxicity, 55, 62<br />

Herbicide use,<br />

advantages, 45<br />

directi<strong>on</strong>s, 54, 55<br />

disadvantages, 45<br />

field techniques, 60-62<br />

<strong>in</strong> deepwater and float<strong>in</strong>g rice, 96<br />

<strong>in</strong> direct seeded rice, 77, 78, 86, 88<br />

<strong>in</strong> transplanted rice, 75, 84<br />

<strong>in</strong> upland rice, 94<br />

<strong>in</strong> water seeded rice, 82<br />

pr<strong>in</strong>ciples of, 49-63<br />

protective cloth<strong>in</strong>g, 62<br />

safety, 62<br />

Humic acids, 52<br />

Hydraulic applicator, 55-56<br />

I<br />

Imazapyr, 103<br />

Imperata cyl<strong>in</strong>drica (L.)Raeuschel, 3, 5, 35, 39, 41,<br />

66, 91, 102<br />

India, 9, 11, 16, 19, 23, 25, 27, 28, 29, 30, 31, 33, 34,<br />

35, 37, 38, 39, 76, 80, 83, 84, 95, 101<br />

Indica rices, 70, 72<br />

Ind<strong>on</strong>esia, 9, 11, 12, 16, 19, 20, 21, 22, 23, 24, 26, 27,<br />

28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 83, 87, 95,<br />

101<br />

Insects, 2<br />

Isoleuc<strong>in</strong>e, 70<br />

Integrated crop management, 47<br />

Integrated pest management, 46<br />

Integrated weed management, 44, 46-47<br />

ec<strong>on</strong>omics, 47<br />

of C. rotundus, 102<br />

of I. cyl<strong>in</strong>drica, 102<br />

of P. distichum, 100<br />

of R. cochich<strong>in</strong>ensis, 103<br />

of S. maritimus, 99<br />

of wild rices, 101<br />

Internati<strong>on</strong>al Standardizati<strong>on</strong> Organizati<strong>on</strong> (ISO),<br />

54-55<br />

Internati<strong>on</strong>al Uni<strong>on</strong> of Pure and Applied<br />

Chemistry (IUPAC), 54<br />

Ipomoea aquatica Forssk., 66, 95, 97<br />

Ipomoea reptans (L.) Poir., 39<br />

Ipomoea spp., 3<br />

Iraq, 33<br />

Irrigated rice,<br />

best N applicati<strong>on</strong> tim<strong>in</strong>g, 43<br />

classificati<strong>on</strong>, 73<br />

yield loss due to weeds, 1<br />

herbicide behavior <strong>in</strong> soil, 51<br />

weed c<strong>on</strong>trol <strong>in</strong>, 73-82<br />

Irrigati<strong>on</strong>, dra<strong>in</strong>age and overflow, 52<br />

herbicide effectiveness, 51, 52<br />

Ir<strong>on</strong>, 92<br />

Ischaemum rugosum Salisb., 2, 19, 44, 66<br />

Ivory Coast, 35<br />

J<br />

Japan, 9, 10, 11, 12, 14, 18, 21, 22, 100<br />

Jap<strong>on</strong>ica rices, 52, 70, 72<br />

Jussiaea suffruticosa L., 15<br />

K<br />

Kenya, 35<br />

Kharif, 83<br />

Knapsack sprayer, 55, 56-57<br />

Korea, 10, 11, 12, 16, 18, 23<br />

L<br />

Labels for herbicide, 59, 60<br />

Lambast, 55<br />

Land preparati<strong>on</strong>, 73<br />

mechanical, 73<br />

to c<strong>on</strong>trol weeds, 41<br />

<strong>in</strong> direct seeded rice, 76, 78, 86, 88<br />

<strong>in</strong> transplanted rice, 73, 84<br />

<strong>in</strong> water seeded rice, 81<br />

<strong>in</strong> upland rice, 91<br />

Index 111


<strong>in</strong> deepwater and float<strong>in</strong>g rice, 96<br />

<strong>in</strong> dryland, 42<br />

<strong>in</strong> wetland, 42<br />

limited, 42<br />

Lat<strong>in</strong> America, 42, 83, 91, 92, 102<br />

Leach<strong>in</strong>g of herbicides, 51, 53<br />

Leersia hexandra Sw., 2, 20, 66<br />

Leptochloa ch<strong>in</strong>ensis (L.)Nees., 3, 21, 66, 87<br />

Leptochlou spp., 2, 80<br />

Light,<br />

for rice growth, 3<br />

rice-weed competiti<strong>on</strong>, 3<br />

penetrati<strong>on</strong>, 43<br />

Lodg<strong>in</strong>g,<br />

Lowland rice weeds, 9-24, 42<br />

Ludwigia octovalvis (Jacq.) Raven, 15, 66<br />

M<br />

Machete, 55, 59, 62<br />

Madagascar, 35<br />

Malaysia, 9, 10, 12, 14, 15, 16, 19, 20, 22, 23, 24, 27,<br />

29, 30, 33, 34, 37, 38, 80, 91, 101<br />

Mali, 95<br />

Manufacturer of herbicides, 55<br />

Marsileaceae, 14<br />

Marsilea crenata Presl., 14<br />

Marsilea m<strong>in</strong>uta L., 14, 66<br />

Mauritius, 28, 31, 35, 37<br />

MCPA, 50, 63, 66, 67, 69, 71, 72, 75, 77, 78, 80, 81,<br />

82, 84, 85, 86, 87, 88, 89, 93, 94, 96, 97<br />

Mechanical transplanters,<br />

Mechanical weed<strong>in</strong>g, 44<br />

Meloidogyne, 2<br />

Metolachlor, 101<br />

Metribuz<strong>in</strong>e, 101<br />

Mexico, 9, 25, 26, 29, 30, 34, 37<br />

Mimics of rice, 5,44<br />

M<strong>in</strong>imum tillage,<br />

Mol<strong>in</strong>ate, 66, 67, 68, 70, 71, 75, 78, 79, 80, 81, 82, 84,<br />

100,101<br />

M<strong>on</strong>ochoria vag<strong>in</strong>alis (Burm.f.)Presl, 2, 3, 23, 66,<br />

73,83,85,95<br />

M<strong>on</strong>ocotyled<strong>on</strong>s, 7<br />

Myanmar, 9, 12, 19, 20, 26, 28, 30, 32, 34, 37, 38, 83,<br />

95<br />

N<br />

Nematodes, 2<br />

Nicaragua, 32<br />

Niger,<br />

Nigeria, 10, 25, 26, 27, 30, 34, 35, 37, 95<br />

Nilapurvata lugens, 2<br />

Nitrogen, 3, 4, 74, 76, 84, 86, 88<br />

recommended tim<strong>in</strong>g of applicati<strong>on</strong>, 43<br />

N<strong>on</strong>tilled rice fields, 92<br />

effect <strong>on</strong> weed flora, 1<br />

Nozzles, 56, 57, 58, 61, 63<br />

Nurseries, 84<br />

Nutrient uptake, 3, 4, 43, 44<br />

Nymphae stellata, 66<br />

Nymphula depunctalis, 2<br />

O<br />

Onagraceae, 15<br />

Organophosphorus compounds, 69<br />

<strong>in</strong>secticides, 50<br />

Oryza barthii A.Chev., 1, 2, 67, 95, 98, 101<br />

Oryza glaberrima, 1, 101<br />

Oryza l<strong>on</strong>gistam<strong>in</strong>ata A.Chev. & Roehr., 1, 2, 41,<br />

67,95,97,98,101<br />

Oryza nivara Sharma & Shastry, 1, 101<br />

Oryza offic<strong>in</strong>alis Wall. ex Watt., 101<br />

Oryza punctata Kotschy ex Steud., 101<br />

112 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Oryza rufipog<strong>on</strong> Griff., 1,101<br />

Oryza sativa L., 1,101<br />

Oxadiaz<strong>on</strong>, 66, 67, 71, 75, 77, 78, 79, 80, 84, 85, 86,<br />

87, 88, 89, 93, 94, 96, 97, 100<br />

Oxisols, 92<br />

Oxyflourfen, 49, 66, 67, 69, 75, 77, 78, 84, 85, 86, 87,<br />

88, 89, 93, 94, 97, 100<br />

P<br />

Pacific Islands, 102<br />

Pakistan, 9, 11, 24, 29, 31, 37, 73<br />

Paraquat, 49, 50, 62, 66, 67, 68<br />

Partiti<strong>on</strong> coefficient, 53<br />

Paspalum paspalodes (Michx)Scribn., 22<br />

Paspalum distichum L., 2, 7, 22, 41, 66, 67, 100<br />

Pendimethal<strong>in</strong>, 66, 67, 68, 72, 73, 75, 78, 79, 80, 84,<br />

85, 86, 88, 89, 93, 94, 97, 100, 101, 103<br />

Perennial weeds, 1<br />

effect of herbicide, 50<br />

reproducti<strong>on</strong>, 5<br />

under limited tillage, 42<br />

Persistence of herbicide, 52<br />

Peru, 9, 13, 16, 19, 32, 39, 91<br />

Pest,<br />

Phenoxy acetic acids, 69,72<br />

Philipp<strong>in</strong>es, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20,<br />

21, 22, 23, 24, 25, 26, 27<br />

28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 43, 83, 85,<br />

91,92<br />

Phloem, 50<br />

Phosphoms, 3, 4, 43-44, 92<br />

Photodegradatio of herbicide, 52<br />

Photosynthesis, 3<br />

C 3 pathway, 3,4<br />

C 4 pathway, 3,4<br />

Physalis angulata, 66, 67<br />

Phytotoxicity, 52, 68<br />

Pictograms, 55<br />

Piperophos, 66, 67, 69, 71, 72, 75, 78, 79, 84, 85, 86,<br />

93, 94, 96, 97, 98<br />

Pistia stratiotes, 95<br />

Placement of herbicide, 49<br />

Plant height, advantages of, 4, 42<br />

Plant<strong>in</strong>g method, 42, 74, 76, 79, 86, 88, 91, 96<br />

Plant populati<strong>on</strong>, 74, 76, 81, 84, 86, 91, 96<br />

Poaceae, 16-22, 31-36<br />

Pois<strong>on</strong><strong>in</strong>g, 63<br />

Polycyclic alkanoic acids, 71<br />

P<strong>on</strong>tederiaceae, 7, 23, 38<br />

Portulacaceae, 37<br />

Portulaca oleracea L., 37, 66, 67,91<br />

Postemergence herbicides, 51, 65<br />

Potamoget<strong>on</strong>aceae, 7<br />

Potassium, 3, 4, 43, 92<br />

Preemergence herbicides, 51, 65, 76<br />

Preplant<strong>in</strong>g herbicides, 50<br />

Pressure chamber, 57<br />

Pretilachlor, 49, 50, 66, 67, 73, 78, 85, 86, 88, 100<br />

Preventi<strong>on</strong> of weed <strong>in</strong>troducti<strong>on</strong>, 41<br />

Propanil, 49, 51, 52, 66, 67, 68, 69, 71, 72, 73, 75, 77,<br />

78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 93, 94, 97,<br />

96, 99, 100<br />

Propaz<strong>in</strong>e, 101<br />

Protective cloth<strong>in</strong>g, 62-63<br />

Q<br />

Quality,<br />

Qu<strong>in</strong>clorac, 66, 67, 72, 73, 75, 78, 84, 86, 88, l00c<br />

R<br />

Radiati<strong>on</strong> from ultraviolet, 52<br />

Ra<strong>in</strong>fed rice<br />

N applicati<strong>on</strong> tim<strong>in</strong>g,<br />

classificati<strong>on</strong>, 83<br />

distributi<strong>on</strong>, 87<br />

time of seed<strong>in</strong>g, 42<br />

yield loss due to weeds, 1<br />

weed c<strong>on</strong>trol <strong>in</strong>, 83-89<br />

Ra<strong>in</strong>bow trout, 67, 68, 69, 71<br />

Rats, 68, 69, 70,71<br />

Red rice, 2,80,101<br />

Residual herbicide, 52<br />

nozzle type for, 61,58<br />

<strong>Rice</strong><br />

diseases, 2<br />

drought tolerance, 4<br />

growth requirements, 3<br />

herbicide tolerance, 72<br />

modern varieties, 42<br />

mutati<strong>on</strong>, 3<br />

susceptibility to herbicide, 50, 72<br />

similarities with weeds, 4, 5<br />

traditi<strong>on</strong>al varieties, 42<br />

wild species of, 2<br />

<strong>Rice</strong> culture classificati<strong>on</strong>, 7<br />

effect <strong>on</strong> weed flora, 1<br />

<strong>Rice</strong> dwarf, 2<br />

<strong>Rice</strong> grassy stunt virus, 2<br />

<strong>Rice</strong> maja blanca, 2<br />

<strong>Rice</strong> mimics, 5,44<br />

<strong>Rice</strong> producti<strong>on</strong> cost, 1<br />

<strong>Rice</strong> stripe, 2<br />

<strong>Rice</strong> tungro virus, 2<br />

<strong>Rice</strong>-weed competiti<strong>on</strong>, 2<br />

critical periods, 4<br />

factors, 3-3<br />

<strong>in</strong> direct seeded flooded rice, 77<br />

factors, 3-4<br />

<strong>Rice</strong> yellow dwarf, 2<br />

Rottboellia exaltata L.f., 36<br />

Rottboellia coch<strong>in</strong>ch<strong>in</strong>ensis (Lour.)W.D. Clayt<strong>on</strong>,<br />

3,4,36,66,67,91,103<br />

Runoff of herbicide, 52<br />

S<br />

Safety,<br />

Samoa, 28<br />

Scirpus maritimus L., 13, 66, 67, 71, 73, 83, 87, 99<br />

Scirpus spp., 85, 95<br />

Seed, dispersal, 4-5<br />

dormancy, 5<br />

growth, 3<br />

l<strong>on</strong>gevity,<br />

producti<strong>on</strong>, 4-5<br />

Seed<strong>in</strong>g, methods for rice, 7<br />

rate, 79<br />

tim<strong>in</strong>g, 42<br />

Selectivity of herbicide, 49-50, 51, 54<br />

Senegal, 29<br />

Sequential applicati<strong>on</strong>, 65<br />

Sesbania aculeata, 84, 98<br />

Sesbania exaltata, 80<br />

Sesbania sp., 95<br />

Setaria glauca, 66, 67<br />

Setaria viridis, 2<br />

Shad<strong>in</strong>g, 3<br />

effect <strong>on</strong> rice growth, 4<br />

Sierra Le<strong>on</strong>e, 10<br />

Signal words, 55<br />

Simetryn, 52, 70, 100<br />

Slash and burn, 91<br />

Soil, effect <strong>on</strong> C 3 -C 4 competiti<strong>on</strong>, 3<br />

herbicide activity,<br />

moisture, 51, 52<br />

pH,<br />

residual herbicide activity,


Sorghum bicolor, 3<br />

South America, 87<br />

Spac<strong>in</strong>g, dense plant<strong>in</strong>g, 74, 76<br />

optimum for rice plants, 43<br />

Spa<strong>in</strong>, 36<br />

Sphenocleaceae, 24<br />

Sphenoclea zeylanica Gaertn., 83, 85, 24, 66, 67<br />

Sprayer,<br />

Birky, 56<br />

calibrati<strong>on</strong> of, 58<br />

care of, 61<br />

leaks, 62<br />

nozzles, 63<br />

pressure, 58<br />

Spray<strong>in</strong>g, 61, 84<br />

Stale seedbed, 79, 88, 92<br />

Sri Lanka, 9, 16, 19, 27, 29, 33, 34, 76, 80, 85<br />

Sudan, 9, 31, 33<br />

Sugarcane, 2<br />

Sulf<strong>on</strong>ylureas, 70<br />

Sulfur, 92<br />

Sur<strong>in</strong>am, 20, 101<br />

Symbols, 55<br />

Systemic herbicides, 49, 50, 51<br />

nozzle type for, 58<br />

T<br />

Tadpole shimp,<br />

Tank-mix, 65<br />

Tanzania, 35<br />

Temperature<br />

45<br />

effect <strong>on</strong> herbicide activity, 50<br />

effect of vapor pressure, 53<br />

Thailand, 9, 10, 11, 12, 14, 15, 16, 19, 20, 21, 23, 24,<br />

25, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 80, 83,<br />

95, 101,<br />

Thiobencarb, 65, 66, 67, 69, 70, 71, 72, 73, 75, 77, 78,<br />

79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 93, 94, 96, 97,<br />

98, 100, 101<br />

Thiocarbamates,<br />

Tillage, 41<br />

dryland, 42<br />

52, 53, 70<br />

effect <strong>on</strong> weed flora, 41<br />

limited, 42<br />

wetland, 42<br />

Tim<strong>in</strong>g,<br />

of herbicide applicati<strong>on</strong>,<br />

82, 85, 87, 89, 93, 97<br />

of rice seed<strong>in</strong>g, 42<br />

50, 77, 78, 79, 80, 81,<br />

Toxicity of herbicide, 55, 62, 67-72<br />

Translocated herbicides,<br />

nozzle type for, 58<br />

49, 50, 52<br />

Transplanted rice, 73, 83<br />

applicati<strong>on</strong> tim<strong>in</strong>g, 43<br />

cultivar, 84<br />

fertilizer, 74, 84<br />

handweed<strong>in</strong>g, 75, 84<br />

herbicides, 75,84<br />

herbicide selectivity <strong>in</strong>, 50<br />

herbicide use, 75, 84<br />

land preparati<strong>on</strong>,<br />

nurseries, 84<br />

73, 84<br />

plant<strong>in</strong>g methods, 74<br />

plant populati<strong>on</strong>, 74, 84<br />

stand establishment, 73<br />

water management <strong>in</strong>, 74, 84<br />

weed problems, 73, 83<br />

Transplant<strong>in</strong>g, manual optimum spray<strong>in</strong>g, 43<br />

yield loss due to weeds, 1<br />

Trianthema m<strong>on</strong>ogyna L., 25<br />

Trianthema portulacastrum,<br />

Triaz<strong>in</strong>es, 50, 70<br />

4, 25, 66, 67, 91<br />

Triopus cancriformis, 4.5<br />

Triopus granaris, 45<br />

Triopus l<strong>on</strong>gicaudatus, 45<br />

U<br />

Uganda, 34<br />

Ultisols, 92<br />

Upland rice,<br />

C4 weeds, 91<br />

cultivar, 91<br />

fertilizer, 91<br />

handweed<strong>in</strong>g, 42, 93<br />

herbicide behavior <strong>in</strong> soil, 51<br />

herbicide use, 94<br />

land preparati<strong>on</strong>, 91<br />

N applicati<strong>on</strong> tim<strong>in</strong>g, 43<br />

plant populati<strong>on</strong>, 91<br />

plant<strong>in</strong>g methods, 91<br />

weed competit<strong>on</strong>, 91<br />

weed c<strong>on</strong>trol <strong>in</strong>, 91-94<br />

weeds <strong>in</strong>, 25-37, 42<br />

weed problems, 91<br />

USA, 9, 10, 11, 12, 14, 15, 16, 19, 20, 21, 22, 23, 24,<br />

25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39,<br />

42, 73, 78, 80, 99, 101<br />

USSR, 80<br />

V<br />

Val<strong>in</strong>e, 70<br />

Vapor pressure, 53<br />

effect of temperature, 53<br />

Variety,<br />

tolerance to herbicide, 72<br />

herbicide susceptibility,<br />

modern rice, 42<br />

selecti<strong>on</strong> for weed c<strong>on</strong>trol, 42<br />

traditi<strong>on</strong>al rice, 42<br />

Venezuela, 20, 32, 101<br />

Verbes<strong>in</strong>a alba, 9<br />

Verbes<strong>in</strong>a prostrata L., 9<br />

Vietnam, 9, 20, 21, 23, 24, 30, 31, 37, 38, 83, 95<br />

Virus <strong>in</strong> rice, 2<br />

Volatilizati<strong>on</strong> of herbicide, 52<br />

W<br />

Walk<strong>in</strong>g speed, 58, 59, 61<br />

Water<br />

depth effects <strong>on</strong> rice type, 84<br />

factor <strong>in</strong> rice-weed comp., 4<br />

for mix<strong>in</strong>g herbicides, 59, 61<br />

for rice growth, 3<br />

<strong>in</strong>creas<strong>in</strong>g depth, 44, 95<br />

Water management, 1, 44, 74, 76, 79, 81, 84, 86, 88<br />

Water seeded rice, 73, 80<br />

fertilizer, 82<br />

hand weed<strong>in</strong>g, 82<br />

herbicides, 82<br />

herbicide use, 82<br />

land preparati<strong>on</strong>, 81<br />

N applicati<strong>on</strong> tim<strong>in</strong>g, 43<br />

plant populati<strong>on</strong>, 81<br />

water management, 81<br />

weed problems, 80<br />

yield loss due to weeds, 1<br />

Water solubility, 53, 67-72<br />

Water soluble c<strong>on</strong>centrate, 53<br />

Water uptake, 4<br />

<strong>Weed</strong>ers, 45, 74, 75, 88<br />

<strong>Weed</strong><strong>in</strong>g,<br />

by mach<strong>in</strong>e, 44, 45<br />

hand tools for, 44<br />

labor requirements, 44<br />

mechanical <strong>in</strong>terr<strong>on</strong>, 79<br />

<strong>Weed</strong>s,<br />

annual, 1, 5<br />

as alternate host, 2<br />

as ancestors of cultivated rice, 1<br />

aquatic, 2<br />

C 3 , 3, 44<br />

C 4 , 3<br />

characteristics, 4<br />

competitiveness, 4<br />

computer codes, 8<br />

def<strong>in</strong>iti<strong>on</strong>, 1<br />

dispersal, 4-5<br />

drought tolerance, 4<br />

effects, 1<br />

<strong>on</strong> gra<strong>in</strong> quality, 2<br />

<strong>on</strong> gra<strong>in</strong> yield, 1, 3-4<br />

<strong>on</strong> harvest<strong>in</strong>g, 2<br />

growth, 4<br />

habitat, 8<br />

<strong>in</strong> deep water rice, 95, 38-39<br />

<strong>in</strong> lowland rice, 9-24, 42<br />

<strong>in</strong> upland rice, 25-37<br />

life cycles, 7<br />

morphology, 7<br />

orig<strong>in</strong>, 1<br />

perennial, 1, 5, 16<br />

reproducti<strong>on</strong>, 4-5<br />

seeds, 4-5<br />

similarities with rice, 4, 5<br />

<strong>Weed</strong>-rice competiti<strong>on</strong><br />

critical periods, 4<br />

factors, 3-4<br />

<strong>in</strong> upland rice, 91<br />

<strong>Weed</strong> c<strong>on</strong>trol, 41-47<br />

biological methods, 45<br />

chemical methods, 45<br />

cultivar methods, 41, 46<br />

direct methods, 46-47<br />

ec<strong>on</strong>omics of, 1, 46<br />

<strong>in</strong> deepwater and float<strong>in</strong>g rice, 95-98<br />

<strong>in</strong>direct methods, 46-47<br />

<strong>in</strong> irrigated rice, 73-82<br />

<strong>in</strong> ra<strong>in</strong>fed lowland rice, 83-89<br />

<strong>in</strong> upland rice, 91-94<br />

manual methods, 44<br />

nursery,<br />

plann<strong>in</strong>g for, 41<br />

social aspect, 2<br />

<strong>Weed</strong> populati<strong>on</strong>, 1<br />

<strong>Weed</strong> problems, 73, 76, 78, 80, 83, 85, 87, 80, 91, 95<br />

West lndies, 101<br />

Wet seeded rice, N applicati<strong>on</strong> tim<strong>in</strong>g, 43<br />

Wettable powder, 53<br />

mix<strong>in</strong>g, 61<br />

White tip, 2<br />

Wild rices, 1, 5, 101<br />

X<br />

Xanthom<strong>on</strong>as campestris pv. oryzae, 2<br />

Xylem, 50<br />

Y<br />

Yield loss, due to weeds, 1<br />

Z<br />

Zambia, 27, 28, 31, 33, 34, 36, 37,<br />

Zimbabwe, 26, 34, 35, 36<br />

Z<strong>in</strong>c, 43, 92<br />

Index 113

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!