20.08.2015 Views

process

K-theory and Noncommutative Geometry.pdf

K-theory and Noncommutative Geometry.pdf

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

316 U. Bunke, T. Schick, M. Spitzweck, and A. Thom5.1.4 Let now P 2 PIC.S/ be a Picard stack. Recall Definition 2.11, where we definethe internal HOM between two Picard stacks.Definition 5.4. We define the dual stack byD.P / WD HOM PIC.S/ .P; BT/:We hope that using the same symbol D for the dual in the case of Picard stacks andthe case of a sheaf of abelian groups will not cause confusion.5.1.5 This definition is compatible with Definition 5.1 of the dual of a sheaf of abeliangroups in the following sense.Lemma 5.5. If F 2 Sh Ab S, then we have a natural isomorphismch.D.F // Š D.BF/:Proof. First observe that by definition D.BF/D HOM PIC.S/ .ch.F Œ1/; ch.TŒ1//. Weuse Lemma 2.18 in order to calculate H i .D.BF//.WehaveandH 1 .D.BF//Š R 1 Hom ShAb S .F Œ1; TŒ1/ Š 0H 0 .D.BF//Š R 0 Hom ShAb S .F Œ1; TŒ1/ Š Hom Sh Ab S .F; T/ Š D.F /:The composition of this isomorphism with the projection D.BF/! ch.H 0 .D.BF ///from the stack D.BF/ onto its sheaf of isomorphism classes (considered as Picardstack) provides the asserted natural isomorphism.5.1.6 A sheaf of groups F 2 Sh Ab S can also be considered as a complex F 2C.Sh Ab S/ with non-trivial entry F 0 WD F . It thus gives rise to a Picard stack ch.F /.Recall the definition of an admissible sheaf 4.1.Lemma 5.6. We have natural isomorphismsH 1 .D.ch.F /// Š D.F /;H 0 .D.ch.F /// Š Ext 1 Sh Ab S .F; T/:In particular, if F is admissible, then D.ch.F // Š B.D.F //.Proof. We use again Lemma 2.18. We haveH 1 .D.ch.F /// Š R 1 Hom ShAb S .F; TŒ1/ Š Hom Sh Ab S .F; T/ Š D.F /:Furthermore,H 0 .D.ch.F /// Š R 0 Hom ShAb S .F; TŒ1/ Š Ext1 Sh Ab S .F; T/:

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!