06.12.2012 Views

ferritic rolling to produce deep-drawable hot strips of steel - metal 2013

ferritic rolling to produce deep-drawable hot strips of steel - metal 2013

ferritic rolling to produce deep-drawable hot strips of steel - metal 2013

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

FERRITIC ROLLING TO PRODUCE DEEP-DRAWABLE HOT STRIPS<br />

OF STEEL<br />

Radko Kaspar<br />

Andreas Tomitz<br />

a) MAX-PLANCK-INSTITUT FÜR EISENFORSCHUNG GmbH, Düsseldorf, Germany<br />

b) HOESCH HOHENLIMBURG GmbH, Hohenlimburg, Germany<br />

Abstract<br />

The aspired good <strong>deep</strong>-drawability (high r- and n-values, Δr . 0) is basically achieved by a<br />

definite anisotropic flow mechanism. Such necessary anisotropy can be ensured in a <strong>deep</strong><strong>drawable</strong><br />

<strong>steel</strong> sheet by a preferential {111}||ND-texture. In a conventional production, a <strong>hot</strong><br />

<strong>rolling</strong> in austenite and a cold <strong>rolling</strong> at room temperature <strong>to</strong>gether with a subsequent recrystallization<br />

annealing are applied for such texture development in the final cold strip. As a cost saving<br />

replacement for this, a thin-gauge <strong>hot</strong> strip with a required <strong>deep</strong>-drawability can be employed.<br />

As a promising realization <strong>of</strong> cost saving thin-gauge <strong>deep</strong>-<strong>drawable</strong> <strong>hot</strong> <strong>strips</strong> <strong>of</strong> <strong>steel</strong>, a <strong>ferritic</strong><br />

<strong>rolling</strong> can be implemented. In this new practice the finishing is shifted down in<strong>to</strong> the temperature<br />

region <strong>of</strong> ferrite. To optimize the process parameters, extensive labora<strong>to</strong>ry tests on IF <strong>steel</strong><br />

were carried out by using the <strong>hot</strong> deformation simula<strong>to</strong>r WUMSI. By the measurements <strong>of</strong> the<br />

texture development as well as by the computing <strong>of</strong> r-values, the texture formation could be<br />

optimized achieving a <strong>deep</strong>-drawability in <strong>hot</strong> <strong>strips</strong> comparable <strong>to</strong> that <strong>of</strong> a cold strip after a<br />

conventional austenitic <strong>rolling</strong>.<br />

1. DEEP-DRAWABILITY OF STEEL<br />

A good cold workability (low pro<strong>of</strong> strength, high uniform elongation) additionally <strong>to</strong> a<br />

sufficient strength (after cold forming) and, particularly, a good <strong>deep</strong>-drawability are the properties<br />

that are <strong>of</strong> a large importance for many flat products <strong>of</strong> <strong>steel</strong>. The aspired good <strong>deep</strong>drawability<br />

can be realized by a favorable anisotropic material flow during the <strong>deep</strong>-drawing<br />

process.<br />

For the anisotropic flow behavior <strong>of</strong> a polycrystalline material the distribution <strong>of</strong> the orientations<br />

<strong>of</strong> individual grains plays a decisive<br />

role and is determining for the r-values 1,2) .<br />

Outgoing from a statistic disorderly<br />

distributed grain orientations, r-value<br />

increases with increasing fraction <strong>of</strong><br />

{111}-oriented grains and decreasing<br />

amount <strong>of</strong> those with {100} orientation<br />

parallel <strong>to</strong> sheet plane, Fig. 1 3) 3.0<br />

parallel <strong>to</strong> sheet plane<br />

2.0<br />

.<br />

{111} {100}<br />

2. DEEP-DRAWABLE STRIPS<br />

PRODUCED BY CONVENTIONAL<br />

ROLLING<br />

To realize the requirements for <strong>deep</strong><strong>drawable</strong><br />

<strong>steel</strong>s with a pronounced {111}texture<br />

by a conventional route, <strong>hot</strong> <strong>rolling</strong><br />

is traditionally carried out in the austenite<br />

range followed by cold <strong>rolling</strong> with a<br />

r -value [-]<br />

m<br />

1.0<br />

0.0<br />

orientation:<br />

rm-value theoretical:<br />

{111}<br />

2.9<br />

{554}<br />

0.1 1 10 100 1000<br />

Volume ratio <strong>of</strong> {111} and {100} grains (I {111} / I {100} )<br />

2.8<br />

{211}<br />

2.3<br />

{110}<br />

1.8<br />

{100}<br />

Figure 1. Effect <strong>of</strong> texture on the mean r-value r m.<br />

I{111} and I{100} are the texture intensities <strong>of</strong> the<br />

corresponding orientations<br />

0.1


sufficient deformation (70 - 80 %) and a<br />

subsequent batch or continuous annealing for<br />

recrystallization. A cold strip is a final product<br />

in such case. In order <strong>to</strong> reduce production<br />

costs there is a tendency <strong>to</strong> achieve a sufficient<br />

<strong>deep</strong>-drawability without cold <strong>rolling</strong>, that<br />

means already with a <strong>hot</strong> strip as a final<br />

product. Fast developments <strong>of</strong> the <strong>rolling</strong><br />

technique make it possible <strong>to</strong> <strong>produce</strong> so-called<br />

thin-gauge <strong>hot</strong> <strong>strips</strong> with minimum<br />

thicknesses that are nowadays within the range<br />

<strong>of</strong> those <strong>of</strong> cold <strong>strips</strong>, Fig. 2 4) . Such<br />

production requires unavoidably lowering<br />

finishing temperatures because <strong>of</strong> large heat<br />

losses <strong>of</strong> thin <strong>hot</strong> <strong>strips</strong>. But, the austenitic<br />

<strong>rolling</strong> with low finishing temperatures is not<br />

easy <strong>to</strong> perform because <strong>of</strong> high transformation<br />

temperatures <strong>of</strong> extra low carbon <strong>steel</strong>s (ELC),<br />

ultra low carbon <strong>steel</strong>s (ULC) and low carbon<br />

interstitial free (IF) <strong>steel</strong>s with manganese<br />

content less than 0.2 %. The reheating<br />

temperatures above 1250 °C would be<br />

necessary for thicknesses <strong>of</strong> 2 - 5 mm. Hot<br />

<strong>strips</strong> thinner than 1.8 mm are not producible at<br />

all by a conventional “austenitic” <strong>hot</strong> <strong>rolling</strong>.<br />

3. DEEP-DRAWABLE THIN-GAUGE<br />

HOT STRIPS PRODUCED BY FERRITIC<br />

ROLLING<br />

The difference in the processing routes <strong>of</strong><br />

a conventional austenitic <strong>rolling</strong> and a novel<br />

<strong>ferritic</strong> <strong>rolling</strong> is apparent from Fig. 3.<br />

Consider-able cost reductions may be<br />

achieved in different way. The most evident<br />

is a reduced reheating temperature in the<br />

<strong>ferritic</strong> <strong>rolling</strong> practice, which gives also the<br />

potential for an increased throughput <strong>of</strong> the<br />

furnace. Lower reheating temperatures for<br />

<strong>ferritic</strong> <strong>rolling</strong> (between 950 and 1050 °C)<br />

result <strong>to</strong> a reduced AlN dissolution<br />

(enhancing ferrite recrystallization kinetics)<br />

and a smaller initial austenite grain size.<br />

This low <strong>rolling</strong> temperature practice leads<br />

also <strong>to</strong> an im-proved <strong>hot</strong> rolled product<br />

Flow stress, MPa<br />

Minimum <strong>hot</strong> strip thickness, mm<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

1.6<br />

0.9<br />

60% <strong>of</strong><br />

cold strip<br />

production<br />

0.7<br />

1995 1998 future<br />

Figure 2. Minimum thicknesses <strong>of</strong> <strong>hot</strong> strip as a<br />

potential substitution <strong>of</strong> cold strip<br />

a)<br />

roughing<br />

�<br />

b)<br />

finishing<br />

260<br />

220<br />

180<br />

140<br />

100<br />

60<br />

ELC<br />

IF<br />

���� - transformation ELC<br />

���� - transformation IF<br />

700 800 900 1000 1100 1200<br />

Deformation temperature, °C<br />

Figure 4. Flow stress for � = 0.8 <strong>of</strong> ELC and IF <strong>steel</strong><br />

over the range <strong>of</strong> deformation temperatures (strain<br />

-1<br />

rate 10 s )<br />

quality with less surface defects, improved flatness <strong>of</strong> the <strong>hot</strong> <strong>strips</strong> due <strong>to</strong> reduced internal<br />

stresses owing <strong>to</strong> the fact that <strong>steel</strong> <strong>strips</strong> are already transformed prior <strong>to</strong> cooling on the run-out<br />

table.<br />

Temperature<br />

�����<br />

�<br />

C Mn<br />

coiling<br />

Time Time<br />

Figure 3. Comparison <strong>of</strong> conventional austenitic (a)<br />

and <strong>ferritic</strong> (b) <strong>rolling</strong><br />

�����<br />

�<br />

roughing<br />

coiling<br />

�<br />

finishing


Fortunately, moderate <strong>rolling</strong> loads in the<br />

finishing mill enable the application <strong>of</strong><br />

<strong>ferritic</strong> <strong>rolling</strong> even on existing mills. As<br />

shown in Fig. 4 5) , the flow stresses - and so<br />

the <strong>rolling</strong> loads - <strong>of</strong> the IF <strong>steel</strong> are lower in<br />

the temperature range between 870 and<br />

700 °C than those at 950 °C in the<br />

conventional austenitic temperature region.<br />

At lower temperatures higher flow stresses<br />

<strong>of</strong> ELC <strong>steel</strong> are measured presumably due<br />

<strong>to</strong> dynamic strain aging in these <strong>steel</strong> grades.<br />

Two different groups <strong>of</strong> <strong>ferritic</strong> rolled <strong>deep</strong><strong>drawable</strong><br />

thin-gauge <strong>hot</strong> <strong>strips</strong> can be<br />

<strong>produce</strong>d, Fig. 5:<br />

“S<strong>of</strong>t” <strong>hot</strong> strip: In this product group<br />

the coiling condition must guarantee a<br />

complete recrystallization in the coil<br />

(becoming s<strong>of</strong>t), Fig. 5a. For this, the<br />

finishing and coiling temperatures must<br />

be appropriate high.<br />

`HardA <strong>hot</strong> strip annealed: By further<br />

lowering finishing temperatures in this<br />

processing, compared <strong>to</strong> the production<br />

<strong>of</strong> s<strong>of</strong>t <strong>hot</strong> strip, thinner <strong>hot</strong> <strong>strips</strong> can<br />

be <strong>produce</strong>d (< 1 mm). Such <strong>hot</strong> strip<br />

does not recrystallize in coil (becoming<br />

hard) and must additionally be recrystallized<br />

by annealing, Fig. 5b.<br />

Temperature<br />

a) ����� b)<br />

finishing � annealing<br />

coiling<br />

Time<br />

Time<br />

�����<br />

�<br />

Figure 5. Production <strong>of</strong> „s<strong>of</strong>t“ <strong>hot</strong> strip (a) and<br />

„hard“ <strong>hot</strong> strip additionally annealed (b)<br />

�<br />

� -fibre<br />

� 1<br />

� 2<br />

{111}<br />

{111}<br />

{111}<br />

{ 11 0}<br />

{001}<br />

{112}<br />

� -fibre<br />

Figure 6. Eulerian space showing the position <strong>of</strong> �-<br />

and �-fibres<br />

(a)<br />

4. TEXTURE DESCRIPTION<br />

For the description <strong>of</strong> texture development the method <strong>of</strong> grain orientation distribution (ODF)<br />

is the most applied way. 6) In a so-called Eulerian space each point corresponds <strong>to</strong> one orientation,<br />

defined by three Eulerian angles Φ, ν1 and ν2, Fig. 6. For practical purposes the key textures in<br />

<strong>steel</strong> sheets can be followed by the focusing<br />

only some special lines in this space,<br />

so-called fibres, in the Eulerian space. For<br />

<strong>deep</strong>-<strong>drawable</strong> <strong>steel</strong> sheets two fibres are<br />

important: α-fibre ( || RD) and γ-fibre<br />

({111} || ND). In this way the pole densities can<br />

be expressed only along these two fibres in the<br />

form <strong>of</strong> two 2D-diagrams.<br />

The texture development in simulated warm<br />

(<strong>ferritic</strong>) rolled <strong>strips</strong> was the main objective <strong>of</strong><br />

this work. The study was focused on the<br />

potential final products mentioned above: a<br />

“s<strong>of</strong>t” <strong>hot</strong> strip and a “hard” <strong>hot</strong> strip<br />

additionally annealed.<br />

Finishing temperature, °C<br />

840<br />

800<br />

760<br />

720<br />

partially<br />

recrystallized<br />

completely<br />

recrystallized<br />

680<br />

hardly<br />

recrystallized<br />

not realizable<br />

640<br />

600 620 640 660 680 700 720 740<br />

Coiling temperature, °C<br />

Figure 7. The region <strong>of</strong> a complete ferrite<br />

recrystallization <strong>of</strong> the IF <strong>steel</strong> presented in the<br />

coordinate system <strong>of</strong> finishing temperature and<br />

coiling temperature


5. MATERIAL AND EXPERIMENTAL<br />

TECHNIQUE<br />

The investigations were done on an IF-<strong>steel</strong> as a<br />

typical representative <strong>of</strong> <strong>deep</strong>-<strong>drawable</strong> <strong>steel</strong>s. The<br />

chemical composition was as follow (in mass %):<br />

C: 0.002%, Si: 0.007%, Mn: 0.097%, P: 0.010%,<br />

S: 0.004%, N: 0.003%, Al: 0.042%, Ti: 0.038%,<br />

Nb: 0.007%. The labora<strong>to</strong>ry tests were done on the<br />

<strong>hot</strong> deformation simula<strong>to</strong>r WUMSI 7) by using the<br />

plane strain <strong>hot</strong> compression test as a simulation<br />

<strong>of</strong> <strong>rolling</strong>. The texture was measured on a Siemens<br />

D500 texture goniometer. The r-values were<br />

computed from the texture measurements by an<br />

“ANIS-MPI” program <strong>of</strong> the University Birmingham.<br />

8)<br />

Texture intensity<br />

Texture intensity<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

� - fibre : ||RD<br />

0 15 30 45 60 75 90<br />

�<br />

- fibre: {111} ||ND<br />

{001} {112} {111} {110} <br />

710°C<br />

710°C<br />

810°C<br />

760°C<br />

austenite<br />

940°C<br />

10<br />

60 75 90<br />

� [°] � 1 [°]<br />

Figure 8. Deformation texture for different finishing<br />

temperatures<br />

6. RESULTS AND DISCUSSION<br />

For the design <strong>of</strong> the <strong>rolling</strong> schedules in ferrite region the determination <strong>of</strong> the range <strong>of</strong> the γα-transformation<br />

temperatures as well as the knowledge <strong>of</strong> the recrystall-ization behavior <strong>of</strong><br />

ferrite is indispensable. Fig. 7 shows the range <strong>of</strong> coiling temperatures in which ferrite can<br />

recrystallize completely in coil in the production <strong>of</strong> “s<strong>of</strong>t” <strong>hot</strong> <strong>strips</strong>. Coiling bellow this temperatures<br />

leads <strong>to</strong> a “hard” <strong>hot</strong> strip that has <strong>to</strong> be additionally annealed <strong>to</strong> achieve a designed<br />

texture.<br />

6.1. Deep-<strong>drawable</strong> "s<strong>of</strong>t" <strong>hot</strong> strip<br />

In the development <strong>of</strong> texture during the production <strong>of</strong> <strong>deep</strong>-<strong>drawable</strong> <strong>hot</strong> strip, the deformation<br />

texture just after finishing is decisive for the quality <strong>of</strong> the recrystallized texture after coiling.<br />

Generally, the deformation texture should involve a sufficient intensity <strong>of</strong> γ-fibre including<br />

typically some component <strong>of</strong> {001} as well. After finishing with ε = 4 x 0.3 the deformation<br />

texture was measured for various finishing<br />

temperatures in ferrite and compared with<br />

that after finishing in austenite, Fig. 8. The<br />

high finishing temperature in ferrite<br />

(810 °C) leads <strong>to</strong> an unfavorable <strong>rolling</strong><br />

texture with a poor coverage <strong>of</strong> {111} and<br />

� - fibre : ||RD<br />

{001} {112} {111}<br />

10<br />

after finishing<br />

8 at 710 °C<br />

� - fibre: {111} ||ND<br />

{110} <br />

10<br />

8<br />

the maximum amount <strong>of</strong> grains with α-fibre<br />

near <strong>to</strong>{001} component. By reducing<br />

6<br />

6<br />

finishing temperature (760 °C or lower) a<br />

more distinctive γ-fibre components with a<br />

4<br />

4<br />

strongest coverage <strong>of</strong> α-fibre in the range <strong>of</strong> 2<br />

2<br />

{112} can be observed. In contrast <strong>to</strong> <strong>ferritic</strong><br />

rolled specimens, there is nearly irregular 0<br />

after coiling at 670 °C<br />

0<br />

texture with random oriented grains after the<br />

γ-α-transformation <strong>of</strong> austenitic rolled <strong>steel</strong>,<br />

as also reported in.<br />

0 15 30 45 60 75 90 60 75 90<br />

� [°]<br />

� [°]<br />

1<br />

Figure 9. Texture development in the simulated “s<strong>of</strong>t”<br />

<strong>hot</strong> strip showing the change <strong>of</strong> the deformation<br />

texture just after finishing in<strong>to</strong> a recrystallized texture<br />

after coiling (see arrows)<br />

9)<br />

Fig. 9 displays the texture development <strong>of</strong><br />

a favorable deformation texture (a low<br />

8<br />

6<br />

4<br />

2<br />

0


finishing temperature <strong>of</strong> 710 °C) due <strong>to</strong> the recrystallization<br />

in coil. The formation <strong>of</strong> a typical annealing texture with a<br />

strong γ-fibre orientation and a reduced coverage <strong>of</strong> {001}<br />

component <strong>of</strong> α-fibre can be observed. There is a striking<br />

increase in the component <strong>of</strong> γ-fibre.<br />

As observed, the lowering finishing temperature improves<br />

the deformation texture with an increasing amount <strong>of</strong> {111}<br />

oriented grains which supports the formation <strong>of</strong> a sharper<br />

{111} recrystallized texture after coiling. This is reflected by<br />

a significant increase in r-values (as computed from the<br />

texture measurements) with decreasing finishing temperature,<br />

Fig. 10.<br />

6.2. Deep-<strong>drawable</strong> “hard” <strong>hot</strong> strip<br />

By a further lowering <strong>of</strong> finishing temperature thinner <strong>hot</strong><br />

<strong>strips</strong> with a more favorable <strong>rolling</strong> texture can be <strong>produce</strong>d.<br />

r-value [-]<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

ferrite deformation: � = 1.2<br />

finishing at 710°C<br />

760°C<br />

860°C<br />

0<br />

0(r) 0 45 (r 45)<br />

90 (r 90)<br />

Angle <strong>to</strong> <strong>rolling</strong> direction [°]<br />

Figure 10. Effect <strong>of</strong> finishing<br />

temperature on the r-values <strong>of</strong><br />

simulated “s<strong>of</strong>t” <strong>hot</strong> <strong>strips</strong><br />

Nevertheless, the coiling temperature becomes <strong>to</strong>o low for a complete recrystall-ization <strong>of</strong> the<br />

warm deformed material in the coil and, therefore, an additional recrystallization annealing is<br />

necessary by using batch or continuous processing.<br />

The texture development during a batch annealing <strong>of</strong> specimens finished at 660 °C with two<br />

different coiling temperatures is given in Fig. 11. Whereas the higher coiling temperature <strong>of</strong><br />

550 °C leads <strong>to</strong> a rather low γ-fibre coverage, the lower coiling temperature <strong>of</strong> 400 °C brings<br />

about a significant improvement in texture with a high level <strong>of</strong> γ-fibre showing a maximum at<br />

the {111} component. This is supposed <strong>to</strong> reflect the recovery processes during the coiling<br />

at higher temperatures that reduce the s<strong>to</strong>red energy surplus <strong>of</strong> {111}-oriented grains and so<br />

diminish their amount after recrystallization.<br />

The r-value distributions after the simulation both <strong>of</strong> the possible annealing processes (batch<br />

and continuous), are displayed in Fig 12. The<br />

distribution <strong>of</strong> r-values as a function <strong>of</strong> the<br />

angle <strong>to</strong> RD shows considerably higher values,<br />

especially in RD (r 0), in comparison <strong>to</strong> those <strong>of</strong><br />

“s<strong>of</strong>t” <strong>hot</strong> <strong>strips</strong>. So the form <strong>of</strong> the curves is<br />

more similar <strong>to</strong> that <strong>of</strong> cold <strong>strips</strong>. The mean rvalues<br />

> 1.5, Δr < 0.6 as well as other<br />

mechanical properties (elongation A > 50 %,<br />

0.2%-pro<strong>of</strong> strength Rp0.2


G By reducing finishing temperature <strong>of</strong> <strong>ferritic</strong> <strong>rolling</strong><br />

a more favorable initial <strong>rolling</strong> texture can be<br />

generated as a pre-condition for a beneficial final<br />

recrystallized texture.<br />

G A minimum coiling temperature (670 °C for the IF<strong>steel</strong><br />

tested) must be met if producing <strong>deep</strong><strong>drawable</strong><br />

“s<strong>of</strong>t” <strong>hot</strong> <strong>strips</strong> directly after coiling.<br />

G By a further lowering <strong>of</strong> finishing and coiling<br />

temperature (<strong>to</strong> achieve even lower <strong>hot</strong> strip<br />

thicknesses) “hard” (not recrystallized) <strong>hot</strong> <strong>strips</strong><br />

must additionally be annealed after coiling <strong>to</strong><br />

guarantee a complete recrystall-ization. Lower<br />

coiling temperatures are more desirable for these<br />

products.<br />

r-value [-]<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

batch annealing<br />

at 700 °C<br />

continuous annealing<br />

at 780 °C<br />

0<br />

0(r) 0 45 (r 45)<br />

90 (r 90)<br />

Angle <strong>to</strong> <strong>rolling</strong> direction [°]<br />

Figure 12. r-values after different<br />

simulated annealing procedures<br />

applied on the “hard” <strong>hot</strong> strip<br />

(finishing at 660°C, coiling at<br />

400°C)<br />

REFERENCES<br />

[1] SCHLIPPENBACH, U. v.; LÜCKE, K.: Deformation and recrystallization tex-tures in a low-C<strong>steel</strong>,<br />

ICOTOM 7, Holland, 1984, pp. 159 - 164.<br />

[2] PLUTKA, B.: Untersuchungen zu Vorgängen bei der Bildung von Rekristallisationstexturen<br />

in Tiefzieh-stählen, Dissertation RWTH Aachen, Germany, 1991.<br />

[3] RAY, R. K.; JONAS, J. J.; HOOK, R, R. E.: Cold <strong>rolling</strong> and annealing textur-es in low carbon<br />

and extra low carbon <strong>steel</strong>s, Int. Mat. Rev. 39 (1994) 4, pp. 129-172.<br />

[4] BALD, W.; KNEPPE, G.; ROSENTHAL, D.; SUDAU, P.: Innovative Techno-logie zur Banderzeugung,<br />

stahl und eisen 119 (1999) 9, pp.77-85.<br />

[5] TOMITZ, A.; KASPAR, R.: Laborsimulation zur Optimierung der Prozeßparameter und der<br />

Produktqualität von Tiefziehstählen beim Warmwalzen im Ferritgebiet, Proc. <strong>of</strong> the 13.<br />

Aachener Stahlkolloquium Umformtechnik Stahl- und NE-Werks<strong>to</strong>ffe, Ed. by R. Kopp, Verlag<br />

Mainz, Wissenschaftsverlag, Aachen, Germany, 1998, pp. 5.4-1 - 5.4-4.<br />

[6] BUNGE, H.-J.: Mathematische Methoden der Texturanalyse; Akademie-Verlag, Berlin, 1969.<br />

[7] KASPAR, R.; STREIßELBERGER, A.; PEICHL, L.; PAWELSKI, O.: Fortgeschrittene Technik der<br />

Warmumformsimulation. Z. Werks<strong>to</strong>fftech. 14 (1983), pp. 272 - 277.<br />

[8] BATE, P. S.: Manual for ANSI-MPI, University <strong>of</strong> Birmingham, 1997:<br />

[9] RAY, R.K.; JONAS, J.J.: Transformation textures in Steels. Int. Mat. Rev. 35 (1990) 1, pp. 1<br />

- 35.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!