06.12.2012 Views

Bibliography for Modelbooks - NXP Semiconductors

Bibliography for Modelbooks - NXP Semiconductors

Bibliography for Modelbooks - NXP Semiconductors

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

March 2006 <strong>Bibliography</strong><br />

B <strong>Bibliography</strong><br />

TOC Index<br />

▼<br />

▼<br />

▼<br />

Quit<br />

file<br />

359


March 2006 <strong>Bibliography</strong><br />

360<br />

[1] R. S. Muller and T. I. Kamins, Device electronics <strong>for</strong> integrated circuits. Wiley,<br />

New York, 2nd ed., 1986.<br />

[2] S.M. Sze, Physics of Semiconductor Devices. Wiley, New York, 2 ed., 1981.<br />

[3] P. A. H. Hart, Bipolar and bipolar-mos integration. Elsevier, Amsterdam, 1994.<br />

[4] H. C. de Graaff and F.M. Klaassen, Compact transistor modelling <strong>for</strong> circuit<br />

design. Springer-Verlag, Wien, 1990.<br />

[5] J. Lindmayer and C. Y. Wrigley, Fundamentals of semiconductor devices. Van<br />

Nostrand, Princeton, 1965.<br />

[6] I. E. Getreu, Modeling the bipolar transistor. Elsevier Sc. Publ. Comp., Amsterdam,<br />

1978.<br />

[7] A. van der Ziel, Noise. Sources, characterization, measurement. Prentice- Hall,<br />

Englewood Cliffs, 1970.<br />

[8] J. Berkner, Kompaktmodelle f¨ur Bipolartransistoren. Praxis der Modellierung,<br />

Messung und Parameterbestimmung — SGP, VBIC, HICUM und MEXTRAM<br />

(Compact models <strong>for</strong> bipolar transistors. Practice of modelling, measurement and<br />

parameter extraction — SGP, VBIC, HICUM und MEXTRAM). Expert Verlag, Renningen,<br />

2002. (In German).<br />

[9] M. Reisch, High-Frequency Bipolar Transistors. Springer, Berlin, 2003.<br />

[10] G. A. M. Hurkx, H. C. de Graaff, W. J. Kloosterman, and M. P. G. Knuvers, A<br />

new analytical diode model including tunneling and avalanche breakdown, IEEE<br />

Trans. Elec. Dev., vol. 39, pp. 2090–2098, 1992.<br />

[11] J. J. Ebers and J. L. Moll, Large signal behaviour of junction transistors, Proc.<br />

IRE, vol. 42, p. 1761, 1954.<br />

[12] H. K. Gummel and H. C. Poon, An integral charge control model of bipolar<br />

transistors,” Bell Sys. Techn. J., vol. May-June, pp. 827–852, 1970.<br />

[13] J. L. Moll and I. M. Ross, The dependence of transistor parameters on the distribution<br />

of base layer resistivity, Proc. IRE, vol. 44, pp. 72–78, Jan. 1956.<br />

[14] H. K. Gummel, A charge control relation <strong>for</strong> bipolar transistors, Bell Sys.<br />

Techn. J., vol. January, pp. 115–120, 1970.<br />

[15] F. G. O’Hara, J. J. H. van den Biesen, H. C. de Graaff, and J. B. Foley, A new<br />

physical compact model <strong>for</strong> lateral PNP transistors, in Proc. of the Bipolar Circuits<br />

and Technology Meeting, pp. 102–105, 1990.<br />

TOC Index<br />

▼<br />

▼<br />

▼<br />

Quit<br />

file


March 2006 <strong>Bibliography</strong><br />

[16] F. G. O’Hara, J. J. H. van den Biesen, H. C. de Graaff, W. J. Kloosterman, and<br />

J. B. Foley, MODELLA—A new physics-based compact model <strong>for</strong> lateral p-n-p transistors,<br />

IEEE Trans. Elec. Dev., vol. 39, pp. 2553–2561, 1992.<br />

[17] A. van der Ziel and D. Agouridis, The cutoff frequency falloff in uhf transistors<br />

at high currents, Proc. IEEE, vol. 54, pp. 411–412, 1966.<br />

[18] C. T. Kirk, A theory of transistor cutoff frequency ( fT ) falloff at high current<br />

densities, IRE trans. electr. dev., vol. ED-9, pp. 164–174, 1962.<br />

[19] G. M. Kull, L. W. Nagel, S. Lee, P. Lloyd, E. J. Prendergast, and H. Dirks, A<br />

unified circuit model <strong>for</strong> bipolar transistors including quasi-saturation effects, IEEE<br />

Trans. Elec. Dev., vol. ED-32, no. 6, pp. 1103–1113, 1985.<br />

[20] R. Beaufoy and J. J. Sparkes, The junction transistor as a charge-controlled<br />

device, ATE Journal, vol. 13, pp. 310–324, 1957.<br />

[21] H. Kroemer, Two integral relations pertaining to the electron transport<br />

through a bipolar transistor with a non-uni<strong>for</strong>m energy gap in the base region,<br />

Solid-State Elec., vol. 28, pp. 1101–1103, 1985.<br />

[22] J. R. A. Beale and J. A. G. Slatter, Equivalent circuit of a transistor with a<br />

lightly doped collector operating in saturation, Solid-State Elec., vol. 11, pp. 241–<br />

252, 1968.<br />

[23] M. Schr¨oter and T.-Y. Lee, Physics-based minority charge and transit time<br />

modeling <strong>for</strong> bipolar transistors, IEEE Trans. Elec. Dev., vol. ED-46, pp. 288–300,<br />

1999.<br />

[24] J. R. Hauser, The effects of distributed base potential on emitter-current injection<br />

density and effective base resistance <strong>for</strong> stripe transistor geometries, IEEE<br />

Trans. Elec. Dev., vol. May, pp. 238–242, 1964.<br />

[25] H. Groendijk, Modeling base crowding in a bipolar transistor, IEEE Trans.<br />

Elec. Dev., vol. ED-20, pp. 329–330, 1973.<br />

[26] J. A. Pals, On the noise of a transistor with d.c. current crowding, Philips. Res.<br />

Repts, vol. 26, pp. 91–102, 1971.<br />

[27] J. C. J. Paasschens, Compact modeling of the noise of a bipolar transistor<br />

under DC and AC current crowding conditions, IEEE Trans. Elec. Dev., vol. 51, pp.<br />

1483–1495, 2004.<br />

[28] A. G. Chynoweth, Ionization rates <strong>for</strong> electrons and holes in silicon, Physical<br />

Review, vol. 109, pp. 1537–1540, 1958.<br />

TOC Index<br />

▼<br />

▼<br />

▼<br />

Quit<br />

file<br />

361


March 2006 <strong>Bibliography</strong><br />

362<br />

[29] H. C. de Graaff and W. J. Kloosterman, New <strong>for</strong>mulation of the current and<br />

charge relations in bipolar transistor modeling <strong>for</strong> CACD purposes, IEEE Trans.<br />

Elec. Dev., vol. ED-32, p. 2415, 1985.<br />

[30] H. C. de Graaff, W. J. Kloosterman, J. A. M. Geelen, and M. C. A. M. Koolen,<br />

Experience with the new compact Mextram model <strong>for</strong> bipolar transistors, in Proc. of<br />

the Bipolar Circuits and Technology Meeting, pp. 246– 249, 1989.<br />

[31] M. P. J. G. Versleijen, Distributed high frequency effects in bipolar transistors,<br />

in Proc. of the Bipolar Circuits and Technology Meeting, pp. 85–88, 1991.<br />

[32] H. C. de Graaff and W. J. Kloosterman, Modeling of the collector epilayer of a<br />

bipolar transistor in the Mextram model, IEEE Trans. Elec. Dev., vol. ED-42, pp.<br />

274–282, Feb. 1995.<br />

[33] L. C. N. de Vreede, H. C. de Graaff, K. Mouthaan, M. de Kok, J. L. Tauritz,<br />

and R. G. F. Baets, Advanced modeling of distortion effects in bipolar transistors<br />

using the Mextram model, IEEE J. of Solid-State Circuits, vol. 31, pp. 114–121, Jan.<br />

1996.<br />

[34] L. C. N. de Vreede, H. C. de Graaff, J. L. Tauritz, and R. G. F. Baets, Extension<br />

of the collector charge description <strong>for</strong> compact bipolar epilayermodels, IEEE Trans.<br />

Elec. Dev., vol. ED-42, pp. 277–285, 1998.<br />

[35] J. C. J. Paasschens, W. J. Kloosterman, R. J. Havens, and H. C. de Graaff,<br />

Improved modeling of ouput conductance and cut-off frequency of bipolar transistors,<br />

in Proc. of the Bipolar Circuits and Technology Meeting, pp. 62– 65, 2000.<br />

[36] J. C. J. Paasschens, W. J. Kloosterman, R. J. Havens, and H. C. de Graaff,<br />

Improved compact modeling of ouput conductance and cutoff frequency of bipolar<br />

transistors, IEEE J. of Solid-State Circuits, vol. 36, pp. 1390–1398, 2001.<br />

[37] J. C. J. Paasschens, W. J. Kloosterman, and R. J. Havens, Modelling two SiGe<br />

HBT specific features <strong>for</strong> circuit simulation, in Proc. of the Bipolar Circuits and<br />

Technology Meeting, pp. 38–41, 2001.<br />

[38] W. J. Kloosterman and H. C. de Graaff, Avalanche multiplication in a compact<br />

bipolar transistor model <strong>for</strong> circuit simulation, IEEE Trans. Elec. Dev., vol. ED-36,<br />

pp. 1376–1380, 1989.<br />

[39] W. J. Kloosterman, J. C. J. Paasschens, and R. J. Havens, A comprehensive<br />

bipolar avalanche multiplication compact model <strong>for</strong> circuit simulation, in Proc. of<br />

the Bipolar Circuits and Technology Meeting, pp. 172–175, 2000.<br />

[40] J. C. J. Paasschens, R. J. Havens, and L. F. Tiemeijer, Modelling the correla-<br />

TOC Index<br />

▼<br />

▼<br />

▼<br />

Quit<br />

file


March 2006 <strong>Bibliography</strong><br />

tion in the high-frequency noise of (heterojunction) bipolar transistors using chargepartitioning,”<br />

in Proc. of the Bipolar Circuits and Technology Meeting, pp. 221–224,<br />

2003.<br />

[41] J. C. J. Paasschens and R. de Kort, Modelling the excess noise due to avalanche<br />

multiplication in (heterojunction) bipolar transistors, in Proc. of the Bipolar<br />

Circuits and Technology Meeting, pp. 108–111, 2004.<br />

[42] J. C. J. Paasschens, S. Harmsma, and R. van der Toorn, Dependence of thermal<br />

resistance on ambient and actual temperature, in Proc. of the Bipolar Circuits and<br />

Technology Meeting, pp. 96–99, 2004.<br />

[43] F. O’Hara, Physically based compact modelling of lateral pnp transistors,<br />

Unclassified Report 2001/804, Philips Nat.Lab., 2001. Original report is from 1990.<br />

[44] H. C. de Graaff and W. J. Kloosterman, The Mextram bipolar transistor model,<br />

level 503.2, Unclassified Report 006/94, Philips Nat.Lab., June 1995. See Ref. [54].<br />

[45] W. J. Kloosterman and J. A. M. Geelen, Parameter extraction methodology <strong>for</strong><br />

the Mextram bipolar transistor model, Unclassified Report 003/96, Philips Nat.Lab.,<br />

1996. See Ref. [54].<br />

[46] W. J. Kloosterman, High frequency validation of the Mextram bipolar transistor<br />

model at small collector-emitter voltages, Report 6966, Philips Nat.Lab., 1996.<br />

[47] W. J. Kloosterman, The base resistance in the QUBiC2, OBIC100 and<br />

BIMOS3 process, Report 6997, Philips Nat.Lab., 1997.<br />

[48] W. J. Kloosterman, The geometric scaling of the Mextram parameters in the<br />

QUBiC3 process, Report 7021, Philips Nat.Lab., 1998.<br />

[49] W. J. Kloosterman, Comparison of Mextram and the Vbic95 bipolar transistor<br />

model, Unclassified Report 034/96, Philips Nat.Lab., 1996. See Ref. [54].<br />

[50] J. C. J. Paasschens and W. J. Kloosterman, Derivation of the model equations<br />

of Mextram, level 503, Unclassified Report NL-UR 2002/808, Philips Nat.Lab.,<br />

2002. See Ref. [54].<br />

[51] J. C. J. Paasschens and W. J. Kloosterman, The Mextram bipolar transistor<br />

model, level 504, Unclassified Report NL-UR 2000/811, Philips Nat.Lab., 2000. See<br />

Ref. [54].<br />

[52] J. C. J. Paasschens, W. J. Kloosterman, and R. J. Havens, Parameter extraction<br />

<strong>for</strong> the bipolar transistor model Mextram, level 504, Unclassified Report NL-UR<br />

2001/801, Philips Nat.Lab., 2001. See Ref. [54].<br />

TOC Index<br />

▼<br />

▼<br />

▼<br />

Quit<br />

file<br />

363


March 2006 <strong>Bibliography</strong><br />

364<br />

[53] J. C. J. Paasschens,W. J. Kloosterman, and R. van der Toorn, Model derivation<br />

of Mextram 504. The physics behind the model, Unclassified Report NL-UR<br />

2002/806, Philips Nat.Lab., 2002. See Ref. [54].<br />

[54] For the most recent model descriptions, source code, and documentation, see<br />

the web-site http://www.semiconductors.philips.com/Philips Models.<br />

[55] V. Palankovski, R. Schultheis, and S. Selberherr, Simulation of power heterojunction<br />

bipolar transistor on gallium arsenide, IEEE Trans. Elec. Dev., vol 48,<br />

pp.1264-1269, 2001. Note: the paper uses α = 1.65 <strong>for</strong> Si, but α = 1.3 gives a better<br />

fit; also κ300 <strong>for</strong> GaAs is closer to 40 than to the published value of 46 (Palankovski,<br />

personal communication).<br />

[56] Pstar User Manual.<br />

TOC Index<br />

▼<br />

▼<br />

▼<br />

Quit<br />

file


March 2006 <strong>Bibliography</strong><br />

<strong>Bibliography</strong> <strong>for</strong> <strong>Modelbooks</strong><br />

Books [1, 2, 3, 4, 5, 6, 7, 8, 9]<br />

Diode [10]<br />

Basic articles [11, 12, 13, 14]<br />

LPNP [15, 16]<br />

Epilayer model [17, 18, 19]<br />

Charge modelling [20, 21, 22, 23]<br />

Current crowding [24, 25, 26, 27]<br />

Avalanche [28]<br />

Mextram articles [29, 30, 31, 32] [33, 34] [35, 36, 37] [38, 39] [40, 41, 42]<br />

LPNP reports [43]<br />

Mextram reports [44, 45, 46, 47] [48, 49, 50] [51, 52, 53]<br />

TOC Index<br />

▼<br />

▼<br />

▼<br />

Quit<br />

file<br />

365


March 2006 <strong>Bibliography</strong><br />

366<br />

TOC Index<br />

▼<br />

▼<br />

▼<br />

Quit<br />

file

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!