29.08.2015 Views

Hypothesis Testing (One-Sample Tests)

Hypothesis Testing (One-Sample Tests)

Hypothesis Testing (One-Sample Tests)

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Hypothesis</strong> <strong>Testing</strong><br />

(<strong>One</strong>-<strong>Sample</strong> <strong>Tests</strong>)


What is a <strong>Hypothesis</strong>?<br />

•A hypothesis is a<br />

claim (assumption)<br />

about the population<br />

parameter<br />

–Examples of parameters<br />

are population mean<br />

or proportion<br />

–The parameter must<br />

be identified before<br />

analysis<br />

I claim the mean GPA of<br />

this class is 3.5!<br />

µ =<br />

©1984-1994 T/Maker Co.


The Null <strong>Hypothesis</strong>, H 0<br />

•States the assumption (numerical) to be<br />

tested<br />

–e.g.: The average number of TV sets in U.S.<br />

Homes is at least three ( )<br />

H : µ ≥ 3<br />

0<br />

•Is always about a population parameter<br />

( H : µ ≥ 3 ), not about a sample statistic<br />

0<br />

( H : X ≥ 3 )<br />

0


The Null <strong>Hypothesis</strong>, H 0<br />

•Begins with the assumption that the null<br />

hypothesis is true<br />

–Similar to the notion of innocent until<br />

proven guilty<br />

•Always contains the “=” sign<br />

•May or may not be rejected<br />

(continued)


The Alternative <strong>Hypothesis</strong>, H 1<br />

•Is the opposite of the null hypothesis<br />

–e.g.: The average number of TV sets in<br />

U.S. homes is less than 3 ( )<br />

H<br />

1<br />

: µ < 3<br />

•Never contains the “=” sign<br />

•May or may not be accepted<br />

•Is generally the hypothesis that is<br />

believed (or needed to be proven) to<br />

be true by the researcher


<strong>Hypothesis</strong> <strong>Testing</strong> Process<br />

Assume the<br />

population<br />

mean age is 50.<br />

( )<br />

0 : 50<br />

Identify the Population<br />

H µ =<br />

( )<br />

X<br />

= 20 likely if =50<br />

Is µ ?<br />

No, not likely!<br />

Take a <strong>Sample</strong><br />

REJECT<br />

Null <strong>Hypothesis</strong><br />

X = 20


Reason for Rejecting H 0<br />

Sampling Distribution of<br />

X<br />

It is unlikely that<br />

we would get a<br />

sample mean of<br />

this value ...<br />

... Therefore,<br />

we reject the<br />

null hypothesis<br />

that m = 50.<br />

... if in fact this were<br />

the population mean.<br />

20<br />

m<br />

= 50<br />

If H 0 is true<br />

X


Level of Significance,<br />

α<br />

•Defines unlikely values of sample statistic<br />

if null hypothesis is true<br />

–Called rejection region of the sampling<br />

distribution<br />

•Is designated by<br />

α<br />

–Typical values are .01, .05, .10<br />

, (level of significance)<br />

•Is selected by the researcher at the<br />

beginning<br />

•Provides the critical value(s) of the test


Level of Significance<br />

and the Rejection Region<br />

H 0 : m ‡ 3<br />

H 1 : m < 3<br />

a<br />

Critical<br />

Value(s)<br />

H 0 : m £ 3<br />

H 1 : m > 3<br />

H 0 : m = 3<br />

H 1 : m „ 3<br />

Rejection<br />

Regions<br />

0<br />

0<br />

0<br />

a<br />

a/2


Errors in Making Decisions<br />

•Type I Error<br />

–Rejects a true null hypothesis<br />

–Has serious consequences<br />

The probability of Type I Error is<br />

•Called level of significance<br />

•Set by researcher<br />

•Type II Error<br />

–Fails to reject a false null hypothesis<br />

–The probability of Type II Error is β<br />

–The power of the test is 1−<br />

β<br />

( )<br />

α


Errors in Making Decisions<br />

•Probability of not making Type I Error<br />

–<br />

1−α<br />

( )<br />

–Called the confidence coefficient<br />

(continued)


Result Probabilities<br />

The Truth<br />

H 0 : Innocent<br />

Jury Trial <strong>Hypothesis</strong> Test<br />

The Truth<br />

Verdict Innocent Guilty Decision H 0 True H 0 False<br />

Innocent Correct Error<br />

Guilty Error Correct<br />

Do Not<br />

Reject<br />

H 0<br />

Reject<br />

H 0<br />

1 - a<br />

Type I<br />

Error<br />

(a )<br />

Type II<br />

Error (b )<br />

Power<br />

(1 - b )


How to Choose between<br />

Type I and Type II Errors<br />

•Choice depends on the cost of the errors<br />

•Choose smaller Type I Error when the<br />

cost of rejecting the maintained<br />

hypothesis is high<br />

–A criminal trial: convicting an innocent person<br />

•Choose larger Type I Error when you<br />

have an interest in changing the status<br />

–A decision in a startup company about a new<br />

piece of software


Critical Values<br />

Approach to <strong>Testing</strong><br />

•Convert sample statistic (e.g.: X ) to test<br />

statistic (e.g.: Z, t or F –statistic)<br />

•Obtain critical value(s) for a specified<br />

from a table or computer<br />

–If the test statistic falls in the critical region,<br />

reject H 0<br />

–Otherwise do not reject H 0<br />

α


p-Value Approach to <strong>Testing</strong><br />

•Convert <strong>Sample</strong> Statistic (e.g. ) to Test<br />

Statistic (e.g. Z, t or F –statistic)<br />

•Obtain the p-value from a table or computer<br />

–p-value: Probability of obtaining a test statistic<br />

more extreme ( or ) than the observed<br />

sample value given H 0 is true<br />

X<br />

≤ ≥<br />

α<br />

–If p-value , do not reject H 0<br />

–If p-value ≤ , reject H 0<br />

–Called observed level of significance<br />

–Smallest value of α that an H 0 can be rejected<br />

•Compare the p-value with<br />

≥ α<br />

α


General Steps in<br />

<strong>Hypothesis</strong> <strong>Testing</strong><br />

e.g.: Test the assumption that the true mean<br />

number of of TV sets in U.S. homes is at least<br />

three ( σ Known)<br />

1. State the H 0<br />

2. State the H 1<br />

3. Choose<br />

α<br />

4. Choose n<br />

5. Choose Test<br />

H<br />

H<br />

α<br />

n<br />

Z<br />

0<br />

1<br />

: µ ≥ 3<br />

: µ < 3<br />

=.05<br />

= 100<br />

test


General Steps in<br />

<strong>Hypothesis</strong> <strong>Testing</strong><br />

6. Set up critical value(s)<br />

Reject H 0<br />

a<br />

(continued)<br />

7. Collect data<br />

8. Compute test statistic<br />

and p-value<br />

9. Make statistical decision<br />

-1.645<br />

100 households surveyed<br />

Computed test stat =-2,<br />

p-value = .0228<br />

Reject null hypothesis<br />

Z<br />

10. Express conclusion<br />

The true mean number of TV<br />

sets is less than 3


<strong>One</strong>-tail Z Test for Mean<br />

( σ Known)<br />

•Assumptions<br />

–Population is normally distributed<br />

–If not normal, requires large samples<br />

–Null hypothesis has or sign only<br />

• Z test statistic<br />

–<br />

Z<br />

X<br />

≤<br />

≥<br />

X − µ X − µ<br />

=<br />

X<br />

=<br />

σ σ / n


Rejection Region<br />

H 0 : m ‡ m 0<br />

H 1 : m < m 0<br />

H 0 : m £ m 0<br />

H 1 : m > m 0<br />

Reject H 0<br />

α<br />

Reject H 0<br />

α<br />

0<br />

Z Must Be Significantly<br />

Below 0 to reject H 0<br />

Z<br />

0<br />

Small values of Z don’t<br />

contradict H 0<br />

Don’t Reject H 0 !<br />

Z


Example: <strong>One</strong> Tail Test<br />

Q. Does an average box<br />

of cereal contain more<br />

than 368 grams of<br />

cereal? A random<br />

sample of 25 boxes<br />

showed X = 372.5.<br />

The company has<br />

specified s to be 15<br />

grams. Test at the a =<br />

0.05 level.<br />

368 gm.<br />

H 0 : m £ 368<br />

H 1 : m > 368


Finding Critical Value: <strong>One</strong> Tail<br />

What is Z given α = 0.05?<br />

Standardized Cumulative<br />

Normal Distribution Table<br />

(Portion)<br />

σ =<br />

Z<br />

1<br />

.95<br />

α = .05<br />

Z .04 .05 .06<br />

1.6 .9495 .9505 .9515<br />

1.7 .9591 .9599 .9608<br />

Critical Value<br />

= 1.645<br />

0 1.645<br />

Z<br />

1.8 .9671 .9678 .9686<br />

1.9 .9738 .9744 .9750


Example Solution: <strong>One</strong> Tail Test<br />

H 0 : m £ 368<br />

H 1 : m > 368<br />

a = 0.5<br />

n = 25<br />

Critical Value: 1.645<br />

Reject<br />

.05<br />

0 1.645<br />

1.50<br />

Z<br />

Test Statistic:<br />

X −µ<br />

Z = = 1.50<br />

σ<br />

n<br />

Decision:<br />

Do Not Reject at α = .05<br />

Conclusion:<br />

No evidence that true<br />

mean is more than 368


p -Value Solution<br />

p-Value is P(Z ‡ 1.50) = 0.0668<br />

Use the<br />

alternative<br />

hypothesis<br />

to find the<br />

direction of<br />

the rejection<br />

region.<br />

From Z Table:<br />

Lookup 1.50 to<br />

Obtain .9332<br />

0 1.50<br />

P-Value =.0668<br />

Z<br />

1.0000<br />

- .9332<br />

.0668<br />

Z Value of <strong>Sample</strong><br />

Statistic


p -Value Solution<br />

(p-Value = 0.0668) ‡ (a = 0.05)<br />

Do Not Reject.<br />

(continued)<br />

p Value = 0.0668<br />

Reject<br />

a = 0.05<br />

0<br />

1.645<br />

1.50<br />

Test Statistic 1.50 is in the Do Not Reject Region<br />

Z


Example: Two-Tail Test<br />

Q. Does an average<br />

box of cereal<br />

contain 368 grams<br />

of cereal? A<br />

random sample of<br />

25 boxes showed<br />

X = 372.5. The<br />

company has<br />

specified s to be 15<br />

grams. Test at the<br />

a = 0.05 level.<br />

368 gm.<br />

H 0 : m = 368<br />

H 1 : m „ 368


Example Solution: Two-Tail Test<br />

H 0 : m = 368<br />

H 1 : m „ 368<br />

a= 0.05<br />

n = 25<br />

Critical Value: ±1.96<br />

.025<br />

-1.96<br />

0 1.96<br />

1.50<br />

Reject<br />

.025<br />

Z<br />

Z<br />

Test Statistic:<br />

X −µ<br />

372.5−368 = = = 1.50<br />

σ 15<br />

n 25<br />

Decision:<br />

Do Not Reject at α = .05<br />

Conclusion:<br />

No Evidence that True<br />

Mean is Not 368


p-Value Solution<br />

(p Value = 0.1336) ‡ (a = 0.05)<br />

Do Not Reject.<br />

p Value = 2 x 0.0668<br />

Reject<br />

Reject<br />

a = 0.05<br />

0 1.50<br />

Z<br />

1.96<br />

Test Statistic 1.50 is in the Do Not Reject Region


Connection to<br />

Confidence Intervals<br />

For X = 372.5, σ = 15 and n=<br />

25,<br />

the 95% confidence interval is:<br />

372.5− 1.96 15/ 25≤µ<br />

≤ 372.5+<br />

1.96 15/ 25<br />

( ) ( )<br />

or<br />

366.62≤µ<br />

≤378.38<br />

If this interval contains the hypothesized mean (368),<br />

we do not reject the null hypothesis.<br />

It does. Do not reject.


t -Test:<br />

σ<br />

Unknown<br />

•Assumption<br />

–Population is normally distributed<br />

–If not normal, requires a large sample<br />

• T -test statistic with n-1 degrees of<br />

freedom<br />

–<br />

t<br />

=<br />

X − µ<br />

S/<br />

n


Example: <strong>One</strong>-Tail t -Test<br />

Does an average box of<br />

cereal contain more than<br />

368 grams of cereal? A<br />

random sample of 36<br />

boxes showed X = 372.5,<br />

and s = 15. Test at the a =<br />

0.01 level.<br />

s<br />

is not given<br />

368 gm.<br />

H 0 : m £ 368<br />

H 1 : m > 368


Example Solution: <strong>One</strong>-Tail<br />

H 0 : m £ 368<br />

H 1 : m > 368<br />

a = 0.01<br />

n = 36, df = 35<br />

Critical Value: 2.4377<br />

Reject<br />

0 2.4377<br />

1.80<br />

.01<br />

t 35<br />

t<br />

Test Statistic:<br />

X −µ<br />

372.5−368 = = = 1.80<br />

S 15<br />

n 36<br />

Decision:<br />

Do Not Reject at a = .01<br />

Conclusion:<br />

No evidence that true<br />

mean is more than 368


p -Value Solution<br />

(p Value is between .025 and .05) ‡ (a = 0.01).<br />

Do Not Reject.<br />

p Value = [.025, .05]<br />

Reject<br />

a = 0.01<br />

0 1.80<br />

t 35<br />

2.4377<br />

Test Statistic 1.80 is in the Do Not Reject Region

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!