06.12.2012 Views

th  - 1987 - 51st ENC Conference

th  - 1987 - 51st ENC Conference

th  - 1987 - 51st ENC Conference

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

28 <strong>th</strong> ���� - <strong>1987</strong> Asilomar<br />

Chair: Lynn Jelinski<br />

Local Arrangements: Lynne Batchelder<br />

A summary of <strong>th</strong>e 28 <strong>th</strong> <strong>ENC</strong>, presented as a “virtual interview:”<br />

Ted Becker: The 28 <strong>th</strong> in <strong>1987</strong> had some curious aspects. For<br />

example, why did <strong>th</strong>e technical program begin on Sunday night? In<br />

all <strong>th</strong>e previous years it had started on Monday morning.<br />

Lynn Jelinski: I was afraid you’d ask about <strong>th</strong>at. The early start<br />

was to fix a faux pas on my part. Somehow we neglected to invite<br />

Richard Ernst to speak until all of <strong>th</strong>e slots were full.<br />

Ted: Having him speak was a good idea; Richard went on to win<br />

<strong>th</strong>e Nobel Prize in Chemistry in 1991 for his pioneering work in high<br />

resolution NMR.<br />

Lynn: It turns out <strong>th</strong>at <strong>th</strong>ree future Nobel Prize winners attended <strong>th</strong>e 28 <strong>th</strong> <strong>ENC</strong>. Kurt Wü<strong>th</strong>rich<br />

would go on to win <strong>th</strong>e Nobel Prize in Chemistry in 2002 for his contributions for <strong>th</strong>e determination<br />

of <strong>th</strong>e 3D structure of biological macromolecules in solution, and Paul Lauterbur in Physiology or<br />

Medicine for his pioneering work on MRI. Active participation by all <strong>th</strong>ree future Nobel Prize<br />

winners underscores <strong>th</strong>e high profile and value of <strong>th</strong>e <strong>ENC</strong> as a vehicle for communicating new<br />

developments in NMR.<br />

Ted: What were some of <strong>th</strong>e firsts of <strong>th</strong>e 28 <strong>th</strong> <strong>ENC</strong>? Things <strong>th</strong>at an attendee might not have<br />

noticed?<br />

Lynn: It was <strong>th</strong>e first year <strong>th</strong>at <strong>th</strong>e <strong>ENC</strong> employed a professional conference organizer, wi<strong>th</strong><br />

somewhat mixed results. That was before Judi<strong>th</strong>, of course. We also introduced <strong>th</strong>e Monterey<br />

cypress logo, which I clipped from a California tourism magazine and Xeroxed onto <strong>th</strong>e cover of<br />

<strong>th</strong>e program. (Ed Stejskal hand-lettered <strong>th</strong>e cover in his famous calligraphy.) I’ve been worried<br />

ever since <strong>1987</strong> <strong>th</strong>at someone would nab me for copyright infringement. I’m delighted to see <strong>th</strong>at<br />

<strong>th</strong>e <strong>ENC</strong>’s logo today still retains <strong>th</strong>e spirit of our first logo.<br />

28 <strong>th</strong><br />

<strong>ENC</strong><br />

Ted: The symbolism is powerful as we celebrate <strong>th</strong>e 50 <strong>th</strong> <strong>ENC</strong>. As I recall, you wrote: “The<br />

Monterey cypress, an evergreen <strong>th</strong>at <strong>th</strong>rives on <strong>th</strong>e Monterey Peninsula, …, symbolizes a special


location where people in a never-dormant field return year after year to discuss <strong>th</strong>e newest<br />

developments in NMR.”<br />

Lynn: You can tell <strong>th</strong>at I was heavily influenced by <strong>th</strong>e Jiri Jonas, Herb Gutowsky monograph,<br />

NMR, an Evergreen.<br />

Ted: There must be some o<strong>th</strong>er interesting behind-<strong>th</strong>e-scenes vignettes you’d like to share about<br />

<strong>th</strong>e 28 <strong>th</strong> <strong>ENC</strong>.<br />

Lynn: Let’s see – <strong>th</strong>ere were a couple of exciting <strong>th</strong>ings. The fire alarm went off during one of<br />

<strong>th</strong>e talks. Even <strong>th</strong>ough we guessed <strong>th</strong>at it was a false alarm, we couldn’t take a chance and<br />

evacuated anyway. Then <strong>th</strong>ere was <strong>th</strong>e quip I overhead <strong>th</strong>e first night after what turned out to be an<br />

unintentional (on my part) parade of women leading off <strong>th</strong>e <strong>ENC</strong>. It began wi<strong>th</strong> me welcoming<br />

everyone to <strong>th</strong>e 28 <strong>th</strong> <strong>ENC</strong>, Lynne Batchelder serving as <strong>th</strong>e all-important local arrangements<br />

coordinator, Linda Sweeting chairing <strong>th</strong>e first technical session, and Mary Baum running <strong>th</strong>e brief<br />

oral summaries of <strong>th</strong>e posters. I overheard someone say, “Oh, my goodness. What happened to <strong>th</strong>e<br />

men?”<br />

Ted: Those were changing times. What about <strong>th</strong>e historical context of <strong>th</strong>e conference?<br />

Lynn: It’s hard to believe <strong>th</strong>at <strong>1987</strong> was before widespread use of e-mail, and <strong>th</strong>at PowerPoint<br />

1.0 was introduced in April of <strong>th</strong>at year. But some <strong>th</strong>ings were prophetic for our current times. For<br />

example, one of <strong>th</strong>e sessions dealt wi<strong>th</strong> “NMR for <strong>th</strong>e Detection of Explosives,” and <strong>1987</strong> would be<br />

<strong>th</strong>e year of Black Monday, when <strong>th</strong>e Dow Jones Industrial Average dropped 22.6% of its value in<br />

one day.<br />

Ted: Do you have any parting comments as we celebrate <strong>th</strong>e 50 <strong>th</strong> <strong>ENC</strong>?<br />

Lynn: I am heartened to see <strong>th</strong>at <strong>th</strong>e <strong>ENC</strong> continues to attract really talented people driven to<br />

make new contributions to NMR. I can recall my first <strong>ENC</strong> (<strong>th</strong>e 19<strong>th</strong>, in Blacksburg, in 1978)<br />

where one of <strong>th</strong>e talks was entitled “2D or not 2D?” Hard to imagine, isn’t it? The preponderance<br />

of new people at <strong>th</strong>e 50 <strong>th</strong> <strong>ENC</strong> and <strong>th</strong>e strong history of past programs underlie <strong>th</strong>at fact <strong>th</strong>at NMR<br />

truly is an evergreen.


i<br />

28tb<br />

Expcr menz t<br />

NhAR<br />

Cortfcrcnc¢<br />

o ilomar, CA<br />

Pro, qrarn<br />

~4b.¢tract$<br />

Acte~


I<br />

Contributors to <strong>th</strong>e 28<strong>th</strong> <strong>ENC</strong><br />

The Organizing Committee is extremely grateful to <strong>th</strong>e following vendors for<br />

<strong>th</strong>eir financial support of <strong>th</strong>is <strong>ENC</strong>.<br />

Academic Press<br />

Aldrich Chemical Company<br />

Amplifier Research<br />

Bruker Instruments, Inc.<br />

Cambridge Isotopes, Inc.<br />

Doty Scientific, Inc.<br />

Eastern Analytical Symposium<br />

Electronic Navigation Industries, Inc. (ENI)<br />

General Electric Company, Medical Systems Group<br />

ICN Biochemicals<br />

ICON Services, Inc.<br />

JEOL (USA) Inc.<br />

John Wiley and Sons<br />

Marcel Decker Press<br />

Merck Sharpe and Dohme, Isotopes<br />

M-R Resources<br />

New ERA Enterprises<br />

New Me<strong>th</strong>ods Research<br />

N'MR Concepts<br />

NOVEX, Inc.<br />

Oxford Instruments Nor<strong>th</strong> America, Inc.<br />

Pergammon Press<br />

Phospho-Energetics, Inc.<br />

Programmed Test Sources (PTS)<br />

Scientific Information Services<br />

Sciteq Electronics, Inc.<br />

Siemens Medical Systems<br />

Spectral Data Services<br />

Strawberry Fields<br />

Tecmag, Inc.<br />

Trident Computer Corporation<br />

Varian Associates<br />

Wilmad Glass Company<br />

cover deaign by Ed Stejskai: The Monterey<br />

cypress, an evergreen <strong>th</strong>at <strong>th</strong>rives on <strong>th</strong>e<br />

Monterey Peninsula, against <strong>th</strong>e color of <strong>th</strong>e<br />

Pacific Ocean, symbolizes a special location<br />

where people in a never-dormant field return<br />

year after year to discuss <strong>th</strong>e newest<br />

developments in N-IVIR.


Program for <strong>th</strong>e 28<strong>th</strong> <strong>ENC</strong><br />

April 5-0, <strong>1987</strong><br />

Asilomar, California<br />

Chair: Lynn IV. Jelinski<br />

Local Arrwzgements Chair: Lynne S. Batchelder<br />

• Regular sessions will take place in Merrill Hall, wi<strong>th</strong> simultaneous video transmission to<br />

<strong>th</strong>e Chapel for overflow.<br />

• Posters should be set-up on Sunday afternoon in Firelight Forum and Kiln, and will remain<br />

up for <strong>th</strong>e entire conference. There will be two poster sessions, one on Monday afternoon,<br />

and <strong>th</strong>e o<strong>th</strong>er on Wednesday afternoon.<br />

• Breakfast will be served continuously from 7:00 -9:00 am. There will be two seatings for<br />

Lunch (12:00 n and 1:00 pm) and two seatings for Dinner (5:30 pm and 6:30 pm). The<br />

Banquet will be held on Wednesday evening at 7:00. Tickets may be purchased for $15.<br />

Sunday Afternoon<br />

3:00-6:00<br />

Sunday Evening<br />

7:30<br />

7:40<br />

8:30-0:30<br />

Lyre1 IV. Jelinski<br />

Linda Sweeting, Chair<br />

R. R. Ernst<br />

A. Schweiger<br />

R. Briischweiler<br />

C. Biihlmann<br />

J.-M. Fau<strong>th</strong><br />

C. Gemperle<br />

C. Griesinger<br />

R. Kreis<br />

Z. Mddi<br />

J. C. Madsen<br />

B. U. Meier<br />

S. Pfenninger<br />

C. Radloff<br />

C. Sch6nenberger<br />

O. W. Sorensen<br />

W. Studer<br />

A. Thomas<br />

Mary Baurn, Chair<br />

Jewl Baum<br />

C. M. Dobson<br />

C. Hanley<br />

P. A. Evans<br />

Registration; registration mixer in Viewpoint<br />

Welcoming Remarks<br />

Opening Session<br />

Time Domain Magnetic Resonance. An Appreciation<br />

of Current Trends in NMR and ESR<br />

POSTERS (Preview Of STellar PostERS)<br />

NMR Studies of a-Lactalbumin: Characterization of a<br />

Partially Unfolded State. Poster MKI


Monday Morning<br />

8:30 - 10:00<br />

10:00 - 10:30<br />

10:30 - 12:00<br />

Monday Afternoon<br />

James E. Roberts<br />

T. G. Neiss<br />

Ronald M. Jarret<br />

M. Saunders<br />

Oded Gonen<br />

P. Kuhns<br />

P. C. Hammel<br />

J. S. Waugh<br />

Karen K. Gleason<br />

M. A. Petrich<br />

J. A. Reimer<br />

Start Opella, Chair<br />

K. Wfi<strong>th</strong>rich<br />

C. M. Dobson<br />

A. M. Gronenborn<br />

G. M. Clore<br />

-- break --<br />

Mike Maddox, Chair<br />

Thomas L. James<br />

Brandan Borgias<br />

Ei-ichiro Suzuki<br />

Ning Zhou<br />

Anna Maria Biannuci<br />

Gerald Zon<br />

Neils Anderson<br />

Hugh L. Eaton<br />

Khe Nguyen<br />

Philip H. Bolton<br />

2:00 - 5:00 Mary Baum, Chair<br />

--wine and cheese--<br />

Increased Resolution for Proton NMR Spectra of Solid<br />

Materials. Poster MF33<br />

Di-xaC Labeling: A Means to Measure 12C-~aC Isotopic<br />

Equilibria in <strong>th</strong>e 2- Norbornyl Cation. Poster MF53<br />

NMR Spectroscopy Below I K. Poster MF3<br />

NMR Investigations of Atomic Microstructure in<br />

Amorphous Semiconductors. Poster MF23<br />

Protein NMR<br />

Determination of Protein Structures in Solution by<br />

NMR<br />

Protein Dynamics and Folding Studied by<br />

Magnetization Transfer NMR<br />

Determination of Three-Dimensional Structures of<br />

Proteins in Solution<br />

Determination of Molecular Conformation in Solution<br />

by 2-Dimensional NMR Spectroscopy.<br />

Structure and Dynamics Using Complete Relaxation<br />

Matrix Analysis of 2D NOE Spectra.<br />

Conformations of Molecules in <strong>th</strong>e Protein--Bound<br />

State<br />

NOE Studies<br />

Presenters of Poster Session M will be available for<br />

discussion in Firelight Forum and Kiln


Monday Evening<br />

7:30 - 9:00 A. N. Garroway, Chair<br />

Tuesday Morning<br />

8:30 - 10:00<br />

10:00 - 10:30<br />

10:30 - 12:00<br />

Ann T. Nicol<br />

Robert M. Pearson<br />

Lyn Ream<br />

Constantin Job<br />

IV. L. Rollwitz<br />

Armando De Los Santos<br />

George A. Matzkanin<br />

J. Derwin King<br />

Andy Byrd, Chair<br />

Jeffrey C. Hoch<br />

Ernest D. Laue<br />

G. Bodenhausen<br />

Peter Pfiindler<br />

Marjana Novic<br />

Hartmut Oschkinat<br />

Steve Wimperis<br />

Guy Jaccard<br />

Urs Eggenberger<br />

Dominique Limat<br />

-- break --<br />

Ad Bax, Chair<br />

David Cowburn<br />

William M. Westler<br />

John L. Markley<br />

NMR in Mobile Systems: Mobile Samples and Mobile<br />

Spectrometers<br />

The NIVIR Gyro: Application of NMR in a Slowly<br />

Rotating Frame<br />

Industrial Magnetic Resonance (IMR): A Magnetic<br />

Resonance Spectrometer Built as an Industrial Process<br />

Controller<br />

NMR for <strong>th</strong>e Detection of Explosives<br />

Current Applications of Computing in NMR<br />

Spectroscopy: Utilization of Mini- and Main-Frames<br />

for Data Analysis by Conventional and Non-<br />

conventional Approaches<br />

Why Is Software So Hard? A Contrary View of NMR<br />

Data Processing<br />

Selective Data Sampling: Application to 2D NMR<br />

Pattern Recognition in High-Resolution 2D NMR<br />

Spectra: A Closer Look at Cross-Peaks<br />

How to Sense Your Low Gammas<br />

Indirect Detection of lSN and x3C: Instrumental<br />

Considerations and Biochemical Applications<br />

Proton-Detected Heteronuclear One-and Two-<br />

Dimensional NMR Spectra of Biomolecules: Shift<br />

Correlation and Relaxation Measurements


C. Griesinger Novel Approaches to Three-Dimensional NIVlR<br />

Tuesday Afternoon -- free time --<br />

Tuesday Evening<br />

7:30 - 8:30<br />

8:30 - 9:30<br />

Wednesday Morning<br />

N. Zumbulyadis, Chair<br />

J. S. Waugh<br />

C-G. Tang<br />

Robert A. Wind<br />

Steven F. Dec<br />

Gary E. Maciel<br />

D. Suter<br />

Mary Baum, Chair<br />

Bernhard Bliimich<br />

C. Schmidt<br />

S. Kaufmann<br />

S. Wefing<br />

D. Theimer<br />

H. W. Spiess<br />

Ole W. Sorensen<br />

C. Griesinger<br />

C. Gemperle<br />

R. R. Ernst<br />

Peter A. Mirau<br />

Malcolm Levitt<br />

M. F. Roberts<br />

Charles L. Dumoulin<br />

S. P. Souza<br />

H. R. Hart, Jr.<br />

Gauss Meets Angstrom: Spatial and Spectral Spin<br />

Diffusion<br />

Spatial and Spectral Diffusion of Magnetization<br />

Suppression of Dipolar Broadening by Magic Angle<br />

Spinning<br />

Diffusion of Spin Order in Resolved Solid State NMR<br />

Spectra<br />

POSTERS<br />

2D Exchange NMR in Non-Spinning Powders. Poster<br />

WF54<br />

Symmetry and Antisymmetry in 2D NMR Spectra.<br />

Poster WKI4<br />

Quantitative Interpretation of a Single 2D NOE<br />

Spectrum. PosterWK12<br />

Solvent Suppression Wi<strong>th</strong>out Phase Distortion. Poster<br />

WK22<br />

NMR Flow Imaging. Poster WF64<br />

8:30 - 10:00 Ed Stejskal, Chair CPMAS, And Then Some


10:00 - 10:30<br />

10:30 - 12:00<br />

C. S. Yannoni<br />

H. Seidel<br />

R. D. Kendrick<br />

M. E. Galvin<br />

J. P. Yes#~owski<br />

H. Eckert<br />

A. Nayeem<br />

G. S. Harbison<br />

V.-D. Vogt<br />

C. Boeffel<br />

B. Bluemich<br />

H. W. Spiess<br />

R. G. Griffin<br />

A. C. Kolbert<br />

D. P. Raleigh<br />

M. H. Levitt<br />

-- break --<br />

L. S. Batchelder, Chair<br />

J. L. Ragle<br />

Ann M. Thayer<br />

Paul D. Ellis<br />

Paul D. Majors<br />

Thomas E. Raidy<br />

Paul S. Marchetti<br />

Alan Benesi<br />

Doug Morris<br />

Shelton Bank<br />

Richard Adams<br />

IF. S. Veemmz<br />

R. Janssen<br />

E. Tijink<br />

A. P. M. Kentgens<br />

Surface-Selective NMR by Dynamic Nuclear<br />

Polarization. Exploration at <strong>th</strong>e Polymer Interface.<br />

High-speed 1H MAS--NMR of Inorganic Solids and<br />

Paramagnetic Compounds<br />

The Determination of <strong>th</strong>e Structure of Partially-<br />

Oriented Solids Using 2D--Magic-Angle-Spinning<br />

NMR.<br />

Multiple Pulse Echo Trains in Rotating Solids<br />

Quadrupolar Interactions in <strong>th</strong>e Solid State.<br />

Field Cycling NMR at a Tool for NQR Spectroscopy<br />

of Weakly Quadrupole-Couoled Nuclei: Pyridine,<br />

Imidazole, and <strong>th</strong>e Nucleosides Adenosine, Guanosine<br />

and Inosine.<br />

Applications of Zero Field NMR to <strong>th</strong>e Study of Solids<br />

and Liquid Crystals<br />

Applications of Solid State NMR Me<strong>th</strong>ods to Problems<br />

of Interest to Surface Chemistry<br />

Quadrupole Nutation NMR, NQR in <strong>th</strong>e Rotating<br />

Frame


Wednesday Afternoon<br />

2:00 - 5:00 Mary Baum, Chair<br />

Wednesday Evening<br />

-- refreshments --<br />

6:00 Cocktail Hour<br />

7:00 Banquet<br />

Thursday Morning<br />

H. S. Gutowsky<br />

8:30 - 10:00 Robert Bryant, Chair<br />

D. I. Hoult<br />

G. Glover<br />

Peter R. Luyten<br />

Jan A. den Hollander<br />

10:00 - 10:30 --break --<br />

10:30 - 12:00 N. Szeverenyi, Chair<br />

Warren S. Warren<br />

D. P. Weitekamp<br />

David Andrew<br />

Presenters of Poster Session W will be available for<br />

discussion in Firelight Forum and Kiln<br />

Merrill Hall<br />

"... no sign of slackening"<br />

Spatially Resolved Spectroscopy<br />

An Overview of Spatially Resolved Spectroscopy<br />

Transient Gradient Effects<br />

Image Guided Localized NMR Spectroscopy at 1.5 T.<br />

Gizmos<br />

Pulse Shaping for Two-Dimensional and Multiple Pulse<br />

Spectroscopy<br />

Coherence Augmentation by Limiting <strong>th</strong>e Entropy in<br />

Catalytic Hydrogenation<br />

Active Shield Magnets for Magnetic Resonance<br />

Imaging


Sunday - PM<br />

TIME DOMAIN MAGNETIC RESONANCE<br />

AN APPRECIATION OF CURRENT TRENDS IN NMR AND ESR<br />

R.R. Ernst, A. Schweiger, R. BrUschweiler,<br />

C. BUhlmann, J.-M. Fau<strong>th</strong>, C. Gemperle,<br />

C. Griesinger, R. Kreis, Z. M~di, J.C. Madsen,<br />

B.U. Meier, S. Pfenninger, C. Radloff,<br />

C. Sch~nenberger, O.W. S~rensen, W, Stude~, A. Thomas<br />

Laboratorium fur Physikalische Chemie<br />

Eidgen~ssische Technische Hochschule<br />

8092 ZUrich, Switzerland<br />

A few introductory remarks are made in order to high-<br />

light <strong>th</strong>e importance of time domain experiments in magnetic<br />

resonance. A comparison of features of NMR and ESR relevant<br />

in <strong>th</strong>is context is given. In particular <strong>th</strong>e challenges, op-<br />

portunities and limitations of pulse ESR are discussed in<br />

view of <strong>th</strong>e nowadays well established pulse technology of<br />

NMR.<br />

A potpourrie of techniques recently developed at ETH is<br />

presented including ESR techniques such as electron spin echo<br />

spectroscopy wi<strong>th</strong> jumping field vectors, Mz-detection, hyper-<br />

fine-selective pulse ENDOR, and NMR techniques such as com-<br />

puter pattern recognition, 2D rotating frame experiments,<br />

selective 2D spectroscopy and rf pulse-excited zero field<br />

magnetic resonance.


Sunday - PM<br />

MKI - POSTERS<br />

STUDIES OF Q-LAC'I"ALB~IIN:<br />

(~A~ZATTON OF A PARTIALLY I~rP~LD~ STATE<br />

J. Baum; C.M. Dobson, C. Hanley<br />

Inorganic Chemistry Laboratory<br />

University of Oxford<br />

Oxford, ENGLAND<br />

P.A. Evans<br />

Middlesex Hospital Medical School<br />

London, ENGLAND<br />

To understand <strong>th</strong>e folding mechanism of proteins, it is<br />

important to characterize, at <strong>th</strong>e molecular level, <strong>th</strong>e<br />

structures of states "intermediate between <strong>th</strong>e folded and<br />

unfolded conformations. Incompletl¥ folded proteins tend to<br />

have very small IS chemical shift dispersions, <strong>th</strong>erefore<br />

me<strong>th</strong>ods have been developed to probe <strong>th</strong>ese intermediate states<br />

indirectly via <strong>th</strong>e well-resolved IH spectrum of <strong>th</strong>e native<br />

protein. Guinea-pig G-lactalbumin provides an especially<br />

favourable system for <strong>th</strong>e investigation of folding due to its<br />

sensitivity to solution conditions; wi<strong>th</strong>in certain ranges of pH<br />

and temperature <strong>th</strong>ere exists a stable partially unfolded<br />

intermediate which we can study by NMR. PH-jump hydrogen<br />

exchange experiments are being developed to assign indirectly,<br />

<strong>th</strong>rough <strong>th</strong>e native protein, <strong>th</strong>e labile protons of <strong>th</strong>e unfolded<br />

state, and magnetization transfer experiments are used to<br />

correlate <strong>th</strong>e resonances of <strong>th</strong>e unfolded protein wi<strong>th</strong> <strong>th</strong>ose of<br />

<strong>th</strong>e native protein. These and o<strong>th</strong>er experiments have allowed<br />

us to identify regions of localized structure at <strong>th</strong>e individual<br />

residue level in <strong>th</strong>e unfolded form of G-lactalbumin.


Sunday - PM<br />

MF33 - POSTERS<br />

INCREASED RESOLUTION FOR PROTON NMR SPECTRA OF SOLID MATERIALS<br />

Thomas G. Neiss and James E. Roberts<br />

Department of Chemistry #6<br />

Lehigh University<br />

Be<strong>th</strong>lehem, PA 18015<br />

Sophisticated multiple-pulse techniques must be used to<br />

obtain "high resolution" proton spectra of most solid<br />

materials, or a single broad peak is observed as a consequence<br />

of <strong>th</strong>e large homonuclear couplings of <strong>th</strong>e proton reservoir.<br />

When Magic Angle Sample Spinning (MASS) is included wi<strong>th</strong> <strong>th</strong>e<br />

multiple-pulse experiment, <strong>th</strong>e typical proton peak wid<strong>th</strong> is<br />

still between 1 and 2 ppm. When several isotropic chemical<br />

shifts are present, <strong>th</strong>e resulting spectrum is often not<br />

interpretable due to significant spectral overlap. Two more<br />

complicated experiments are available for increasing <strong>th</strong>e<br />

resolution obtained in proton NMR spectra of solid materials.<br />

Two-dimensional heteronuclear chemical shift correlation<br />

NMR has been applied to liquids to connect <strong>th</strong>e proton and<br />

carbon chemical shifts <strong>th</strong>rough J couplings. The J couplings<br />

in solids are usually not resolved. However, wi<strong>th</strong> appropriate<br />

implementation during MASS, <strong>th</strong>e 2-D experiment correlates <strong>th</strong>e<br />

proton and carbon chemical shifts, yielding better overall<br />

resolution in <strong>th</strong>e proton dimension, even <strong>th</strong>ough <strong>th</strong>e proton<br />

linewid<strong>th</strong>s are still 1 to 2 ppm.<br />

An alternative to <strong>th</strong>e full two dimensional technique<br />

utilizes selective coherence transfer to observe only specific<br />

spin systems in a one-dimensional experiment. The selective<br />

coherence transfer occurs <strong>th</strong>rough <strong>th</strong>e strong heteronuclear<br />

dipolar interaction between bonded spins, so some protons are<br />

not readily observed wi<strong>th</strong> <strong>th</strong>is technique. The gain in proton<br />

spectrum resolution is comparable to <strong>th</strong>at obtained wi<strong>th</strong><br />

two-dimensional chemical shift correlation, but data<br />

accumulation and processing takes less time. Al<strong>th</strong>ough several<br />

I-D selective experiments might be needed to fully<br />

characterize a molecule, it is still a viable approach in many<br />

situations.<br />

Acknowledgement is made to <strong>th</strong>e donors of <strong>th</strong>e Petroleum<br />

Research Fund for partial support of <strong>th</strong>is work. Supported by<br />

NSF-Solid State Chemistry program grant # DMR-8553275.<br />

Additional support <strong>th</strong>rough <strong>th</strong>e Presidential Young Investigator<br />

program was obtained from Cambridge Isotope Laboratories; Doty<br />

Scientific; General Electric Corporate Research and<br />

Development; General Electric NMR Instruments; IBM<br />

Instruments; Merck, Sharp and Dohme; and Monsanto Company.


Sunday - PM<br />

MF53 - POSTERS<br />

DI-13C-LABELING: A MEANS TO MEASURE 12C-13C<br />

ISOTOPIC EQUILIBRIA IN 2-NORBORNYL CATION.<br />

Ronald M. Jarret*, Department of Chemistry, College of <strong>th</strong>e<br />

Holy Cross, Worcester, MA 01610.<br />

Martin Saunders, Department of Chemistry, Yale University<br />

New Haven, CT 06511.<br />

2,3-Di-13C-norborn-2-yl chloride was prepared and '<br />

ionized (wi<strong>th</strong> SbF~) to 2-norbornyl cation. In solution<br />

at -65°C, rap~ r~arrangements occur which completely<br />

scramble <strong>th</strong>e C-labels. The proton-decoupled cmr<br />

rspectrum (62.7 MHz) contains <strong>th</strong>ree signals: C-4, C-I,2,6<br />

(averaged), and C-3,5,7 (averaged). The 13C-labels are<br />

<strong>th</strong>us equilibrated over nonrequivalent sites wi<strong>th</strong>in<br />

2-norbornyl cation. This IZC-13C equilibrium isotope<br />

effect alters <strong>th</strong>e proportion of di-13C-labeled isomers<br />

from statistical values. The non-statistical isotopic<br />

isomer population is manifested as an asymmetric<br />

multiplet for <strong>th</strong>e averaged C-3,5,7 peak in <strong>th</strong>e cmr<br />

spectrum. The relatively sharp lines of <strong>th</strong>e multiplet<br />

can be reproduced wi<strong>th</strong>in ± 0 . 1 ppm, wi<strong>th</strong> isotopic<br />

equilibrium constants of K-3,5,7 = 1.010 ± 0.005 and<br />

K-I,2,6 = 1.039 ± 0.005.<br />

7 4<br />

5 3<br />

6 CI(H)<br />

H(CI)


Sunday - PM<br />

MF3 - POSTERS<br />

NMR SPECTROSCOPY BELOW 1K<br />

Oded Gonen*, P. Kuhns, P. C. Hammel and J. S. Waugh<br />

Department of Chemistry<br />

Massachusetts Institute of Technology<br />

Cambridge, Massachusetts 02139<br />

L. Boltzmann tells us <strong>th</strong>at large (>104 ) gains in NMR sensitivity can be<br />

obl;ained by lowering <strong>th</strong>e temperature to -yhBo/k, a few millikelvin. We will<br />

present a selection of results obtained in pursuit of <strong>th</strong>is goal, to illustrate<br />

<strong>th</strong>e following points:<br />

>T1, previously expected to be astronomically large, is quite acceptably<br />

short in powdered samples immersed in liquid 3He.<br />

>Signals are indeed large: sometimes nearly a volt directly from <strong>th</strong>e<br />

probe. Monolayers of adsorbed species give strong spectra in a single shot.<br />

mometer.<br />

>The shape of <strong>th</strong>e spectrum provides a convenient self-calibrating <strong>th</strong>er-<br />

>The usual FT relation between <strong>th</strong>e FID and <strong>th</strong>e spectrum is modified at<br />

low temperatures.<br />

>Spin-spin relaxation is sometimes anomalously slow.


Sunday - PM<br />

MF23 - POSTERS<br />

NMR INVESTIGATIONS OF ATOMIC MICROSTRUCTURE<br />

IN AMORPHOUS SEMICONDUCTORS<br />

Q<br />

Karen K. Gleason , Mark A. Petrich, and Jeffrey A. Reimer,<br />

Department of Chemical Engineering, University of California,<br />

Berkeley, CA 94720-9989.<br />

The microstructure of amorphous semiconductors has important<br />

implications for <strong>th</strong>eir electronic properties. Nuclear magnetic<br />

resonance (NMR) can examine <strong>th</strong>e microstructure of <strong>th</strong>ese materials<br />

on an atomic scale. Previous NMR results have indicated <strong>th</strong>at <strong>th</strong>e<br />

hydrogen in <strong>th</strong>ese materials exists bo<strong>th</strong> as isolated hydrogen atoms<br />

and as clusters of hydrogen. Using Multiple Quantum NMR, a<br />

technique which is able to "count" <strong>th</strong>e number of hydrogen atoms in a<br />

cluster, we have studied <strong>th</strong>e effects of deposition temperature,<br />

dopant atoms, and annealing on <strong>th</strong>e clustering of hydrogen in<br />

amorphous silicon. Our results indicate <strong>th</strong>at electronic device<br />

quality amorphous silicon films contain small clusters of<br />

approximately six hydrogen atoms, while nondevice quality films<br />

contain larger hydrogen atom clusters. We have also extended <strong>th</strong>e<br />

multiple quantum NMR technique to study a series of amorphous<br />

silicon carbide alloys, systematically varied in carbon content. We<br />

have found <strong>th</strong>at small amounts of carbon decrease <strong>th</strong>e total hydrogen<br />

content of <strong>th</strong>e alloy, but increase hydrogen clustering. Carbon-13<br />

and silicon-29 magic-angle spinning NMR spectra, taken wi<strong>th</strong> and<br />

wi<strong>th</strong>out proton decoupling, allow us to probe local bonding<br />

configurations. These studies have shown <strong>th</strong>at bo<strong>th</strong> sp 2 and sp 3<br />

carbon bonding environments are important in <strong>th</strong>ese materials. It is<br />

especially interesting <strong>th</strong>at nearly all <strong>th</strong>e hydrogenated carbon are<br />

in <strong>th</strong>e sp 3 bonding configuration.<br />

By comparing our NMR results wi<strong>th</strong> data from o<strong>th</strong>er analytical<br />

techniques such as infrared and optical absorption spectroscopy,<br />

Ru<strong>th</strong>erford backscattering, and conductivity measurements, we hope<br />

to elucidate <strong>th</strong>e relationships between deposition chemistry, atomic<br />

microstructure, and optoelectronic properties of <strong>th</strong>is<br />

technologically important class of materials.<br />

Supported by NSF grant DMR-8304163.<br />

8


Monday - AM<br />

Determination of Protein Structures in Solution by NMR<br />

K. Wa<strong>th</strong>rich<br />

Institut fClr Molecularbiologie und Biophysik<br />

E.T.H.-H~nggerberg<br />

CH-8093 Z~'ich, Switzerland<br />

During <strong>th</strong>e period 1979-83 me<strong>th</strong>ods were introduced for efficient sequence-specific<br />

assignment of <strong>th</strong>e 1H NMR spectra of proteins and nucleic acids in solution. This now provides<br />

<strong>th</strong>e basis for determination of <strong>th</strong>e <strong>th</strong>ree dimensional structure of <strong>th</strong>ese biological macromolecules<br />

(K. Wg<strong>th</strong>rich, NMR of Proteins and Nucleic Acids, Wiley, New York, 1986). This me<strong>th</strong>od for<br />

structure determination will be surveyed, and novel approaches making use of isotope labeling and<br />

X-filtering techniques will be described.


Monday - AM<br />

Protein Dynamics and Foldlng Studied by Magnetization Transfer NMR<br />

Christopher M. Dobson<br />

Inorganic Chemistry Laboratory<br />

University of Oxford<br />

Sou<strong>th</strong> Parks Road<br />

Oxford OXI 3QR<br />

England<br />

NMR provides an experimental basis for investigating in<br />

considerable detall <strong>th</strong>e structures and dynamics of biological molecules<br />

in solutlon. As part of our studies of <strong>th</strong>e folding and unfolding of<br />

globular proteins, we have been explolting magnetization transfer<br />

processes in bo<strong>th</strong> one- and two-dlmenslonal NMR experiments.<br />

The procedures have been establlshed in studies of lysozyme, where<br />

accurate rate constants for bo<strong>th</strong><br />

determined by following <strong>th</strong>e time<br />

saturation transfer experlments I.<br />

effects in two-dlmensional NOESY<br />

folding and unfolding have been<br />

developments of one-dlmenslonal<br />

In addition, chemical exchange<br />

experiments have permitted <strong>th</strong>e<br />

correlation of resonances in folded and unfolded states, permitting<br />

assignment and interpretation of <strong>th</strong>e spectrum of <strong>th</strong>e unfolded state<br />

<strong>th</strong>rough <strong>th</strong>e extensive knowledge of <strong>th</strong>e spectrum of <strong>th</strong>e folded state 2.<br />

These techniques have been applied to <strong>th</strong>e study of a number of<br />

o<strong>th</strong>er proteins. In <strong>th</strong>e case of one of <strong>th</strong>ese, staphylococcal nuclease,<br />

two distinct conformations of <strong>th</strong>e folded form exist in equillbrium.<br />

One- and two-dimenslonal magnetization transfer experiments have<br />

demonstrated <strong>th</strong>e interconversion of <strong>th</strong>ese two states wi<strong>th</strong> each o<strong>th</strong>er and<br />

wi<strong>th</strong> two unfolded states 3. Fur<strong>th</strong>er, one dlmenslonal multlple saturation<br />

techniques have been used to explore <strong>th</strong>e kinetics of <strong>th</strong>e interconverslon<br />

of <strong>th</strong>e different states, and to explore <strong>th</strong>e re]atlve significance of<br />

different pa<strong>th</strong>ways of folding and unfolding. A structural basis for <strong>th</strong>e<br />

observed behaviour has been proposed and is supported by <strong>th</strong>e results of


slte-dlrected mutagenesls experlments 4. The experiments have <strong>th</strong>erefore<br />

permitted specific dynamical events in <strong>th</strong>e foldlng of a protein to be<br />

defined.<br />

I.<br />

2.<br />

3.<br />

4.<br />

C.M. Dobson and P.A. Evans, Biochemistry 2_~3, 4267 (1984)<br />

C.M. Dobson, P.A. Evans and K.L. Willlamson, FEBS Letters 168, 331<br />

(1984); C.M. Dobson, P.A. Evans, C. Redfleld and K.D. Topping, to<br />

be published.<br />

R.O. Fox, P.A. Evans and C.M. Dobson, Nature 320, 192 (1986)<br />

C.M. Dobson, P.A. Evans and R.0. Fox, to be publlshed.


Monday - AM<br />

Abstract" 28<strong>th</strong> <strong>ENC</strong>, Asilomar, April 5-9, <strong>1987</strong><br />

DETERMINATION OF THREE-DIMENSIONAL STRUCTURES OF PROTEINS IN<br />

SOLUTION<br />

A.M. Gronenborn and G.M. Clore<br />

Max-Planck Institut fur Biochemie, ~8033 Martinsried bei Munchen,<br />

F.R.G.<br />

The determination of 3D-structures of proteins in solution using<br />

NMR spectroscopy comprises <strong>th</strong>ree stages: (i) <strong>th</strong>e assignment of<br />

proton resonances by 2D-techniques to demonstrate <strong>th</strong>rough-bond and<br />

<strong>th</strong>rough-space connectivities; (ii) <strong>th</strong>e determination of a large<br />

number of short (< 5A) interproton distances using nuclear<br />

Overhauser effect (NOE) measurements; and (iii) <strong>th</strong>e determination<br />

of <strong>th</strong>e 3D-structure on <strong>th</strong>e basis of <strong>th</strong>ese distances. Our approach<br />

for step (iii) has involved <strong>th</strong>e use of restrained molecular<br />

dynamics. The principles of <strong>th</strong>e restrained dynamics approach will<br />

be illustrated for model calculations on crambin (1,2) and examples<br />

from <strong>th</strong>e set of 3D-structures in solution <strong>th</strong>at we have determined<br />

to date will be presented: puro<strong>th</strong>ionin (3), phoratoxin (4), hirudin<br />

(5), <strong>th</strong>e globular domain of histone H5 (6), grow<strong>th</strong> hormone<br />

releasing factor (7), secretin and potato carboxypeptidase<br />

inhibitor.<br />

References:<br />

I. Brunger, A.T., Clore, G.M., Gronenborn, A.M. & Karplus, M.<br />

(1986) Proc° Natl. Acad. Sci. U.S.A. 83, 3801-3805<br />

2 Clore, G.M. Brunger, A.T., Karplus, M. & Gronenborn, A.M. (1986)<br />

J. Mol. Biol. 191, 523-551<br />

3 Clore, G.M., Nilges, M., Sukumaran, D.K., Brunger, A.T.,<br />

Karplus, M. & Gronenborn, A.M. (1986) EMBO J. 5, 2729-2735<br />

4 Clore, G.M., Sukumaran, D.K., Nilges, M. & Gronenborn, A.M.<br />

(<strong>1987</strong>) Biochemistry in press<br />

5 Clore, G.M., Nilges, M., Sukumaran, D.K., Zarbock, J &<br />

Gronenborn, A.M. (<strong>1987</strong>) EMBO J. in press<br />

6 Zarbock, J, Clore, G.M. & Gronenborn, A.M. (1986) Proc. Natl.<br />

Acad. Sci. U.S.A. 83, 7628-7632<br />

7 Clore, G.M., Martin, S.R. & Gronenborn, A.M. (1986)<br />

J. Mol. Biol. 191, 553-561


Monday - AM<br />

STRUCTURE AND DYNAMICS USING COMPLETE RELAXATION MATRIX<br />

ANALYSIS OF 2D NOE SPECTRA<br />

Thomas L. James, Brandan Borgias, Ei-ichiro Suzuki, Ning Zhou, Anna Mafia Biannuci and<br />

Gerald Zon, Departments of Pharmaceutical Chemistry and Radiology, University of California,<br />

San Francisco, CA 94143<br />

Of all possible techniques, 2D NMR has <strong>th</strong>e greatest capability for structural charac-<br />

terization of moderate size molecules (_


Monday - AM<br />

CONFORMATIONS OF MOLECULES IN THE PROTEIN-BOUND STATE<br />

Niels H. Andersen*, Hugh L. Eaton and Khe Nguyen<br />

Department of Chemistry, University of Washington, Seattle, WA 98195<br />

The pure absorption phase 2D spin-exchange experiment (PS-NOESY) is<br />

ideally suited for measuring exchange-transferred NOEs (which reflect <strong>th</strong>e<br />

bound-state geometry) for small molecules in rapid exchange wi<strong>th</strong> a<br />

protein-ligand complex. The 2D data matrix holds wi<strong>th</strong>in it all possible<br />

control spectra and frequency-tailored streak correction me<strong>th</strong>ods (using<br />

sums and differences of columns and rows) can remove spin-diffusion<br />

"artifacts" associated wi<strong>th</strong> <strong>th</strong>e perturbation of frequency coincident<br />

protein resonances. We will show how bound-state cross-relaxation rates<br />

can be derived from 2D experiments <strong>th</strong>at require less <strong>th</strong>an <strong>th</strong>ree hours of<br />

data accumulation at 6-10mM_ ligand concentrations. The techniques will<br />

be illustrated wi<strong>th</strong> NAD/oxidoreductrase complexes and wi<strong>th</strong> tryptophan and<br />

prostaglandin Fp~ bound at <strong>th</strong>eir specific receptors sites on serum<br />

albumin. In <strong>th</strong>e case of L-tryptophan, a single bound-state conformation<br />

(which does not correspond to <strong>th</strong>e major conformer in free aqueous<br />

solution) has been determined. The conformation elucidation utilized<br />

NOE data at <strong>th</strong>e complete r_elaxation_matrix a__nalysis (CORMA) level ra<strong>th</strong>er<br />

<strong>th</strong>an making <strong>th</strong>e linear limit "isolated spin pair" assumption.<br />

Data reduction strategies suitable for 2D NOESY experiments acquired<br />

wi<strong>th</strong> severely truncated preparatory delays will be presented. The<br />

me<strong>th</strong>ods include multispin effects and provide an alternative to CORMA for<br />

initial estimated of relaxation and cross-relaxation rates. Computer<br />

simulations <strong>th</strong>at reveal <strong>th</strong>e "errors" associated wi<strong>th</strong> <strong>th</strong>e "isolated spin<br />

pair" and "two step cross-relaxation" approximations will be presented.


Monday - AM<br />

NOE STUDIES<br />

Philip H. Bolton<br />

Department of Chemistry<br />

Wesleyan University<br />

Middletown, CT 06457<br />

This talk will contain overviews of our progress in <strong>th</strong>ree projects which<br />

involve ei<strong>th</strong>er <strong>th</strong>e use of NOEs to determine conformational features of<br />

proteins, <strong>th</strong>e development of novel NOE experiments or <strong>th</strong>e analysis of <strong>th</strong>e<br />

data from NOE experiments.<br />

Staphylococcal nuclease and proteins formed by single site amino acid re-<br />

placement of residues at <strong>th</strong>e active site have been investigated by two-<br />

dimensional NOE spectroscopy. The use of residue specific labeling has been<br />

crucial to progress in <strong>th</strong>is area as it is <strong>th</strong>e only means available for<br />

unambiguous assignment of <strong>th</strong>e NOE cross-peaks of <strong>th</strong>e proteins which contain<br />

149 amino acids.<br />

Low field NMR is a procedure by which <strong>th</strong>e NOEs are generated in a very low<br />

field, typically 60 MHz, whereas <strong>th</strong>e equilibration and detection are at 400<br />

MHz. When <strong>th</strong>e NOE transfer occurs in such a low field <strong>th</strong>ere are no compli-<br />

cations due to multiple correlation times or spin diffusion and <strong>th</strong>e NOEs<br />

from macromolecules are as simple to interpret as <strong>th</strong>e high field NOEs of<br />

small molecules.<br />

Image analysis of two-dimensional data sets can exploit bo<strong>th</strong> <strong>th</strong>e global and<br />

local symmetry of <strong>th</strong>e signals to arrive at enhanced signal-to-noise as well<br />

as to determine which spin systems are present.


Notes


Monday - PM<br />

The NMR Gyro: An Application of NMR in a<br />

Slowly Rotating Frame<br />

Ann T. Nicol<br />

Litton Guidance and Control Systems<br />

5500 Canoga Avenue<br />

Woodland Hills, CA 91367<br />

The NMR gyro is a device which senses rotations <strong>th</strong>rough<br />

changes in frequency (or phase) of an NMR signal as a result of<br />

rotations relative to <strong>th</strong>e inertial precession of a nuclear<br />

magnetic moment. Mechanization of such a device requires <strong>th</strong>at<br />

<strong>th</strong>e entire NMR ',spectrometer" undergoes <strong>th</strong>e rotation and <strong>th</strong>at<br />

<strong>th</strong>is "spectrometer" be compact, occupying only a few cubic<br />

inches. This condition is realized in systems where a fairly<br />

high degree of nuclear polarization is achieved in very low<br />

fields (less <strong>th</strong>an I gauss). The approach uses isotopes of noble<br />

gases and <strong>th</strong>e nuclear polarization is achieved <strong>th</strong>rough a cross<br />

polarization wi<strong>th</strong> optically pumped alkalis. This presentation<br />

will discuss <strong>th</strong>e basic physical principles of <strong>th</strong>e NMR gyro and<br />

will present experimental results on <strong>th</strong>e processes and<br />

interactions governing nuclear polarization and relaxation in<br />

such systems.<br />

References<br />

I. A.T. Nicol, Phys. Rev. B 29, 2397 (1984).<br />

2. T.M. Kwon, J.G. Mark, and C.H. Volk, Phys. Rev A 24, 1894<br />

(1981).


Monday - PM<br />

Industrial Magnetic Resonance (IMR)<br />

A Magnetic Resonance Spectrometer built as an<br />

Industrial Process Controller<br />

Robert M. Pearson, Lyn Ream and Constantin Job<br />

IMR Division of Auburn International, Inc.<br />

4473 Willow Road, Suite IZ5<br />

Pleasanton, California 64566<br />

Industrial Magnetic Resonance (IMR), a new process control<br />

technique, is defined as magnetic resonance designed for in-<br />

plant use. An IMR spectrometer is an NMR spectrometer equipped<br />

wi<strong>th</strong> <strong>th</strong>e hardware, software and me<strong>th</strong>odology necessary to control<br />

a specific industrial process under actual plant conditions. In<br />

order to be successful, an IMR spectrometer must be able to<br />

operate in a plant for extended periods of time wi<strong>th</strong>out operator<br />

adjustment or intervention. It must also change its own sample<br />

and make measurements precise enough to control <strong>th</strong>e process<br />

stream.<br />

In <strong>th</strong>is talk, we will describe IMR spectrometers used in two<br />

different industrial applications. One being used to measure <strong>th</strong>e<br />

moisture content of aluminum oxide as it exits a rotary kiln. The<br />

o<strong>th</strong>er application controls <strong>th</strong>e addition of water to wheat prior<br />

to its being milled into flour. This process is known as wheat<br />

tempering and is an essential step in <strong>th</strong>e milling process. The<br />

spectrometer, which will be described, is light, portable and<br />

self-calibrating. The complete IMR spectrometer will be<br />

described, including <strong>th</strong>e sampling system, pneumatic control<br />

system and <strong>th</strong>e me<strong>th</strong>odology used.


Monday - PM<br />

NMR for <strong>th</strong>e Detection of Explosives<br />

William L. Rollwitz, Armando De Los Santos, George A. Matzkanin,<br />

and J. DerwinKing<br />

Sou<strong>th</strong>west Research Institute<br />

Division of Instrumentation and Space Research<br />

6220 Culebra Road<br />

San Antonio, TX 78213<br />

High energy explosives have hydrogen NMR characteristics which are unique<br />

and include very short values of T, and very long values of T,. These<br />

characteristics cause problems when NMR is used to detect <strong>th</strong>e presence of high<br />

energy explosives in baggage, letters, packages, and soils when <strong>th</strong>ese items or<br />

<strong>th</strong>e NMR detection head are moving rapidly. The level crossing technique<br />

(NMR/NQR) is used to reduce <strong>th</strong>e long T, values of <strong>th</strong>e explosives so <strong>th</strong>at <strong>th</strong>ey<br />

can be detected rapidly. By using <strong>th</strong>e hydrogen NMR signal, <strong>th</strong>e level-crossing<br />

technique and o<strong>th</strong>er discrimination me<strong>th</strong>ods it is possible to detect <strong>th</strong>e<br />

presence of almost all explosives hidden in baggage, letters, packages and<br />

soils using magnetic fields of less <strong>th</strong>an 0.I Tesla and to discriminate rapidly<br />

<strong>th</strong>e hydrogen NMR signal caused by <strong>th</strong>e explosives from <strong>th</strong>e hydrogen NMR signal<br />

from <strong>th</strong>e o<strong>th</strong>er hydrogen containing materials <strong>th</strong>at may be present in <strong>th</strong>e<br />

baggage, mail, packages and soils. It is even practical to consider portal-<br />

type NMR detection heads to detect <strong>th</strong>e presence of explosives hidden on or in<br />

people.


Tuesday - AM<br />

WHY IS SOFTWARE SO HARD?<br />

A CONTRARY VIEW OF NMR DATA PROCESSING<br />

Jeffrey C. Hoch<br />

Rowland Institute for Science<br />

100 Cambridge Parkway<br />

Cambridge, Massachusetts 02142<br />

New techniques for processing NMR data appear wi<strong>th</strong> increasing frequency.<br />

Notewor<strong>th</strong>y examples include non-FFT spectral estimates 1-4, symmetry filters s,<br />

and pattern recognition 6 . Despite <strong>th</strong>e fact <strong>th</strong>at <strong>th</strong>e operations required by <strong>th</strong>ese<br />

me<strong>th</strong>ods are often simple, <strong>th</strong>eir implementation on a spectrometer can be a difficult<br />

task. This stands in stark contrast to <strong>th</strong>e ease wi<strong>th</strong> which new pulse programs are<br />

implemented on modern spectrometers. Turn-key NMR software packages, available<br />

for general purpose computers, provide environments which are somewhat more<br />

hospitable toward <strong>th</strong>e implementation of new processing me<strong>th</strong>ods. Much of <strong>th</strong>is<br />

flexibility is simply due to <strong>th</strong>e software development tools found on general purpose<br />

computers, however.<br />

A software environment for NMR data processing designed explicitly for <strong>th</strong>e<br />

purpose of providing programming flexibility is described. The goal of <strong>th</strong>is software<br />

Is to make <strong>th</strong>e implementation of a new data processing program as straightfor-<br />

ward as <strong>th</strong>e implementation of a new pulse program. Design decisions have been<br />

made in favor of simplicity ra<strong>th</strong>er <strong>th</strong>an performance whenever <strong>th</strong>ose two goals are<br />

in conflict. A toolkit approach has been utilized, in which many small, independent<br />

programs perform simple operations on a common data structure. The implemen-<br />

tation of a procedure for performing symmetry recognition on 2D spectra provides<br />

an illustrative example.<br />

1. E. Laue, M. Mayger, J. Skilling, and J. Staunton J. Magn. Reson. 68, 14<br />

(1988).<br />

2. H. Barkhuijsen, J. DeBeer, W. Bovee, and D. Van Ormondt J. Magn. Reson.<br />

61, 46s (1985).<br />

3. J. Tang, C. Lin, M. Bowman, and J. Norris J. Magn. Reson. 62, 167 (1985).<br />

4. J. Tang and J. Norris J. Chem. Phys. 84, 5210 (1986).<br />

5. P. Bolton J. Magn. Reson. 70, 344 (1986).<br />

6. P. Pf/indler and G. Bodenhausen J. Magn. Reson. 70, 71 (1986).


Tuesday - AM<br />

SELECTIVE DATA SAMPLING: APPLICATION TO 2D NMR<br />

Ernest D. Laue, Department of Biochemistry, University of Cambridge,<br />

Tennis Court Road, Cambridge, CB2 I QW, U.K.<br />

Novel me<strong>th</strong>ods for selectively sampling NMR data, e.g. exponential<br />

sampling 1'2 will be discussed. Such me<strong>th</strong>ods are of particular interest<br />

in 2D NMR where, for reasons of sensitivity, data often have to be<br />

truncated in <strong>th</strong>e second dimension (tl). Selective sampling, in<br />

conjunction wi<strong>th</strong> me<strong>th</strong>ods such as maximum entropy for reconstructing spectra<br />

from incomplete time domain data, offers a way of obtaining better<br />

resolution in <strong>th</strong>e second dimension (Wl), for a given recording time. This<br />

gives an improvement on maximum entropy reconstructions from<br />

conventionally sampled (but truncated) data 5.<br />

In exponential sampling, data points are measured wi<strong>th</strong> exponentially<br />

decreasing frequency. When only selected time domain data points are<br />

recorded, <strong>th</strong>e data processing in effect bo<strong>th</strong> extrapolates beyond and<br />

interpolates between <strong>th</strong>e measured points. Exponential sampling is<br />

applicable to exponentially decaying data which is cosine modulated in t I.<br />

For different data, alternative sampling schemes would be possible.<br />

I.<br />

.<br />

.<br />

Such me<strong>th</strong>ods might also be of use in o<strong>th</strong>er areas, such as NMR imaging.<br />

J.C.J. Barna, E.D. Laue, M.R. Mayger, J. Skilling and S.J.P. Worrall,<br />

Biochem. Soc. Trans., 1986, 14, 1262.<br />

J.O.J. Barna, E.D. Laue, M.R. Mayger, J. Skilling and S.J.P. Worrall,<br />

J. MaKn. Reson. in press.<br />

E.D. Laue, M.R. Mayger, J. Skilling and J. Staunton, J.<br />

Reson., 1986, 68, 14.<br />

EDLmc ?<br />

12 January, 198'/


Tuesday - AM<br />

Pattern Recognition in High-Resolution 2D NMR Spectra :<br />

A Closer Look at Cross-Peaks.<br />

Peter Pf'~ndler, Marjana Novi~', Hartmut Oschkinat, Steve Wimperis,<br />

Guy Jaccard, Urs Eggenberger, Dominique Limat and Geoffrey Bodenhausen,<br />

Institut de chimie organique, Universit~ de Lausanne,<br />

Rue de la Barre 2, CH-IO05 Lausanne, Switzerland.<br />

In favourable systems, it is now possible to analyze 2D correlation spectra and<br />

2D double-quantum spectra entirely wi<strong>th</strong>out human intervention by means of<br />

pattern recognition procedures. The shifts and couplings can be identified<br />

regardless of <strong>th</strong>e number of protons in <strong>th</strong>e molecule, provided <strong>th</strong>e coupling<br />

topology is reasonably simple (current strategies are designed for systems<br />

where each proton has at most five coupling partners), and provided <strong>th</strong>e effects<br />

of strong coupling are not too pronounced. Algori<strong>th</strong>ms will be described which<br />

can handle multiplets in bo<strong>th</strong> COSY and double-quantum spectra wi<strong>th</strong> essentially<br />

<strong>th</strong>e same logic, despite of <strong>th</strong>e apparent lack of similarity. Complex multiplets<br />

can be identified and <strong>th</strong>e relevant splittings can be measured by checking for<br />

symmetry relationships.<br />

Structural information can be obtained from 2D exchange experiments wi<strong>th</strong> small<br />

flip angles, where one observes (in addition to COSY-like signals) a variety of<br />

peaks due to dipolar and o<strong>th</strong>er relaxation processes. The analysis of <strong>th</strong>ese<br />

signals allows one to determine <strong>th</strong>e W-matrix of transition probabilities.<br />

Recently, we have predicted and confirmed experimentally <strong>th</strong>at unusual COSY<br />

cross-peaks can arise between spins <strong>th</strong>at do not have a mutual scalar coupling.<br />

These are due to coherence transfer induced by correlated relaxation<br />

mechanisms. Such anomalous cross-peaks not only present a challenge for pattern<br />

recognition, but lead us to question some fundamental assumptions used in <strong>th</strong>e<br />

interpretation of COSY spectra.


Tuesday - AM<br />

INDIRECT DETECTION OF lSN and 13C:<br />

INSTRUMENTAL CONSIDERATIONS AND BIOCHEMICAL APPLICATIONS.<br />

David Cowburn<br />

The Rockefeller University,<br />

New York, New York, 10021<br />

Biochemical applications of NMR are usually limited by sensitivity of detection, and selectivity<br />

and resolution of signals from individual groups. Indirect detection, via protons, of hetronuclei like ~SN,<br />

t3C, and 113Cd permit gains of sensitivity of <strong>th</strong>e order of <strong>th</strong>e ratios ~'n/)'x to more <strong>th</strong>an <strong>th</strong>e power of 2,<br />

and selectivity and resolution are increased by <strong>th</strong>e usual advantages of two-dimensional NMR me<strong>th</strong>ods.<br />

For natural abundence samples, <strong>th</strong>ese experiments are especially demanding of instrumental precision<br />

and stability. Me<strong>th</strong>ods for evaluating and improving probe, radiofreqency, and numerical processing<br />

performance will be described. The various pulse sequences for indirect detection differ in <strong>th</strong>eir<br />

sensitivity to instrumental factors, and choice of sequence should be tailored to application.<br />

These me<strong>th</strong>ods have, however, some apparent disadvantages. Relatively long evolution and<br />

preparation times may permit excessive transverse relaxation, limiting f~ resolution. For natural<br />

abundence studies for lSN and ~3C, <strong>th</strong>ere is an apparent disadvantage compared to direct detection<br />

me<strong>th</strong>ods wi<strong>th</strong> proton decoupling. In indirect detection experiments, <strong>th</strong>e abundent protons' homonuclear<br />

couplings are superimposed on <strong>th</strong>e spectra, while in more conventional direct detection, <strong>th</strong>e signals are<br />

decoupled from protons, and show only low intensity homonuclear satellites. These and o<strong>th</strong>er apparent<br />

disadvantages can be alleviated in part by use of Linear Predictive Singular Value Decomposition<br />

0__,PSVD) analysis, and recombination of filtered roots(I).<br />

Supported by grants from NSF, and NIH.<br />

1. Schussheim, A. E., Cowbum, D. <strong>1987</strong> J. Magn. Res., in press.


Tuesday - AM<br />

Proton-Detected Reteronuclear One- and Two-Dimensional NMR Spectra of<br />

Biomolecules: Shift Correlation and Relaxation Measurements.<br />

William M. Westler and ~ohn L. Markley<br />

Department of Biochemistry<br />

College of Agricultural and Life Sciences<br />

University of Wisconsin-Madison<br />

420 Henry Mall<br />

Madison, Wisconsin 53?06, U.S.A.<br />

Indirect detection of a heteronucleus by scalar coupled protons is a<br />

powerful technique <strong>th</strong>at extends <strong>th</strong>e range of 13C and IsN NMR spectroscopy to<br />

include samples of limited quantity or solubility. Since <strong>th</strong>e relative<br />

sensitivity for detection of NMR active nuclei is proportional to <strong>th</strong>e cube of<br />

<strong>th</strong>e magnetogyric ratio, <strong>th</strong>e maximum sensitivity in a he teronucl ear correlation<br />

experiment can be obtained by detecting <strong>th</strong>e nucleus wi<strong>th</strong> <strong>th</strong>e larger<br />

magnetogyric ratio in <strong>th</strong>e coupled spin system. The sample requirement for<br />

proton-detected heteronuclear correlation spectroscopy is at least an order of<br />

magnitude lower <strong>th</strong>an <strong>th</strong>at for conventional heteronuclear experiments. We have<br />

collected one- and two-dimensional proton-detected heteronuclear NMR spectra of<br />

selectively and uniformly ISC and ISN labeled proteins [Anabaena 7120<br />

ferrodoxin (10,000 dalton); Staphylococcus aureus nuclease (17,000 dalton); and<br />

Anabaena 7120 flavodoxin (23,000 dalton)]. Two proteins have been studied at<br />

natural abundance [turkey ovomucoid <strong>th</strong>ird domain (6,000 dalton) and summer<br />

squash trypsin inhibitor (3,000 dalton)]. A promising experiment is one <strong>th</strong>at<br />

we call "HOTRAT u (_Hydrogen Observation of Transferred RAre _Tl'S). This me<strong>th</strong>od,<br />

which allows one to measure longitudinal relaxation times of rare nuclei in<br />

samples of limited quantity or solubility, is useful in light of <strong>th</strong>e current<br />

interest in <strong>th</strong>e dynamics of biomacromolecules.<br />

[This research was carried out at <strong>th</strong>e National Magnetic Resonance<br />

Facility at Madison (NMRFAM) and was supported by NIH grant RR 02301.]


Tuesday - AM<br />

NOVEL APPROACHES TO THREE-DIMENSIONAL NMR<br />

C. Griesinger, R. Br~schweiler, O.W. S~rensen<br />

and R.R. Ernst<br />

Laboratorium fur Physikalische Chemie<br />

Eidgen~ssische Technische Hochschule<br />

8092 Z~rich, Switzerland<br />

Extensions of NMR spectroscopy to <strong>th</strong>ree dimensions<br />

will be described. Useful 3D techniques can be<br />

obtained by combining building blocks of known 2D<br />

pulse techniques. In order to achieve tolerable<br />

sizes of data matrices and measuring times new<br />

approaches have been developed for <strong>th</strong>e extraction of<br />

restricted volumes of <strong>th</strong>e 3D spectrum.<br />

3D NMR presents considerable potential for NMR<br />

investigations of large biological macromolecules in<br />

solution where overlap of cross peaks is becoming a<br />

limiting factor.


Tuesday - PM<br />

Spatial and Spectral Diffusion of Magnetization<br />

J. S. Waugh* and C-G. Tang<br />

Department of Chemistry<br />

Massachusetts Institute of Technology<br />

I. The spatial diffusion of Zeeman energy in a rigid crystal ("spin<br />

diffusion") is <strong>th</strong>e simplest experimentally realizable example of a trans-<br />

port process and is <strong>th</strong>erefore of fundamental <strong>th</strong>eoretical interest. How-<br />

ever no "proper" experimental measurement has yet been made. We will out-<br />

line an approach <strong>th</strong>rough computational spin dynamics based on a classical<br />

model. Results will be presented for <strong>th</strong>e magnitude and anisotropy of<br />

diffusion in a cubic lattice (CaF2) and on a randomly diluted lattice,<br />

complementing and extending an alternative earlier approach by Lowe and<br />

Gade.<br />

2. Two separated resonances which overlap slightly because of dipolar<br />

broadening are expected to cross-relax to a common spin temperature: <strong>th</strong>e<br />

expected rate may be estimated from a Gaussian overlap integral. On <strong>th</strong>is<br />

basis <strong>th</strong>e two components of <strong>th</strong>e Pake doublet in gypsum are expected to<br />

communicate in timms of <strong>th</strong>e order of seconds. Experiments will be des-<br />

cribed which show <strong>th</strong>at <strong>th</strong>e actual rate is ~1000 times slower.


Tuesday - PM<br />

SUPPRESSION OF DIPOLAR BROADENING BY MAGIC ANGLE SPINNING<br />

Robert A. Wind, Steven F. Dec and Gary E. Maciel<br />

Department of Chemistry<br />

Colorado State University<br />

Fort Collins, CO 80523<br />

We have developed a Magic Angle Spinning system <strong>th</strong>at operates over a<br />

large range of rotor diameters and corresponding rotor velocities, <strong>th</strong>e<br />

latter reaching a maximum of 85% of <strong>th</strong>e velocity of sound wi<strong>th</strong> air as a<br />

driving gas, and a maximum of 105% of <strong>th</strong>e velocity of sound (in air)<br />

using a combination of He and air as driving gases. A spinning system<br />

wi<strong>th</strong> a 4.5-mm o.d. rotor, which can be rotated at a frequency of up to 23<br />

kHz, has been used to investigate <strong>th</strong>e line-narrowing possibilities of<br />

abundant-spin spectra in solids via MAS. Results will be shown of 1H and<br />

19F spectra of a variety of solid compounds wi<strong>th</strong> static linewid<strong>th</strong>s<br />

varying from 12 to 30 kHz. The residual linewid<strong>th</strong>s obtained as a func-<br />

tion of spinning speed will be discussed, and <strong>th</strong>e prospects of obtaining<br />

chemical shift information from <strong>th</strong>e narrowed spectra will be considered.<br />

Finally, results will be shown of 13C spectra obtained via cross polari-<br />

zation at high spinning speeds.


Tuesday - PM<br />

DIFFUSION OF SPIN ORDER IN RESOLVED SOLID STATE NMR SPECTRA<br />

D. Suter<br />

University of California, Berkeley<br />

Polarisation of individual spins in a solid is not a constant of motion,<br />

but gets dispersed over all coupled spins under <strong>th</strong>e influence of <strong>th</strong>e so<br />

called flip flop terms of <strong>th</strong>e dipole-dipole interaction. In large spin<br />

systems <strong>th</strong>e process of redistribution of spin order bears <strong>th</strong>e<br />

characteristics of a diffusion process and is <strong>th</strong>erefore called spin<br />

diffusion. The rate at which order is tranferred from one spin to<br />

ano<strong>th</strong>er depends on <strong>th</strong>e streng<strong>th</strong> of <strong>th</strong>eir dipole-dipole interaction and<br />

<strong>th</strong>erefore contains information about nuclear distances. O<strong>th</strong>er<br />

parameters influencing <strong>th</strong>e diffusion rate are differences of resonance<br />

frequencies and couplings to spins <strong>th</strong>at do not participate in <strong>th</strong>e<br />

exchange process. By measuring <strong>th</strong>e diffusion of different types of spin<br />

order, it is possible to distinguish between different diffusion<br />

mechanisms.<br />

Diffusion of Zeeman - Order Diffusion of Ouadrupolar Order<br />

Figure: Diffusion of Zeeman and quadrupolar order in a single crystal of<br />

deuterated malonic acid.<br />

Reference:<br />

D. Suter and R.R. Ernst, Physical Review B 32, 5608 (1985).


Tuesday - PM<br />

WF54 - POSTERS<br />

2D EXCHANGE NMR IN NON-SPINNING POWDERS<br />

C. Schmidt, S. Kaufmann, S. Wefing~ D. Theimer~<br />

B. Bl~mich" and H. W. Spiess~<br />

Max-Planck-Institut f~r Polymerforschung~<br />

Postfach 31489 D-6500 Mainz<br />

Information about molecular motions in isotropic<br />

solids is typically derived from lineshape analyses of<br />

wideline NMR spectra~ while in liquid samples 2D exchange<br />

NMR has become an accepted me<strong>th</strong>od. In 2D exchange spectra<br />

some of <strong>th</strong>e information hidden in <strong>th</strong>e lineshapes of 1D<br />

spectra is reencoded into frequency coordinates of<br />

exchange signals~ where it is accessible more accurately<br />

and in a model-independent fashion.<br />

We have studied deuteron and C-13 2D exchange NMR<br />

for <strong>th</strong>e characterization of molecular motions in powders<br />

and amorphous solid samples. The deuteron quadrupole<br />

coupling tensor is axially symmetric~ so <strong>th</strong>at particu-<br />

larly simple exchange signals result. Discrete jumps are<br />

characterized by elliptical exchange singularitiesp where<br />

<strong>th</strong>e excentricity of <strong>th</strong>e ellipse is a direct measure of<br />

<strong>th</strong>e jump angle. Diffusive motions result in homogeneous<br />

broadening wi<strong>th</strong>.characteristic 2D lineshapes discrimina-<br />

ting different stages of partial diffusion towards <strong>th</strong>e<br />

full diffusion limit. For short mixing times pure<br />

diffusion~ diffusion in connection wi<strong>th</strong> discrete jumps,<br />

and pure jump motions can be distinguished.<br />

The 2D exchange experiment can also be performed in<br />

C-13 NMR on selectively labelled compounds. The asymmetry<br />

of <strong>th</strong>e chemical shielding tensor~ however, leads to more<br />

complicated 2D exchange patterns. Experimental and <strong>th</strong>eo-<br />

retical data demonstrate <strong>th</strong>at <strong>th</strong>e wideline 2D exchange<br />

experiment produces a direct image of <strong>th</strong>e jump angle<br />

distribution.<br />

References:<br />

1) C. Schmidt, S. Wefing~ B. Bl~mich and H.~W. Spiess~<br />

Chem. Phys. Left. 130, 84 (198b).<br />

2) M. Linder, A. H~hener and R. R. Ernst~ J. Chem. Phys.<br />

73~ 4959 (1980).


Tuesday - PM<br />

WKI4 - POSTERS<br />

SYMMETRY AND ANTISYMMETRY IN 2D NMR SPECTRA<br />

O.W. S6rensen, C. Griesinger, C. Gemperle<br />

and R.R. Ernst<br />

Laboratorium f~r Physikalische Chemie<br />

EidgenSssische Technische Hochschule<br />

8092 Z~rich, Switzerland<br />

The conditions for obtaining 2D spectra symmetric or<br />

antisymmetric wi<strong>th</strong> respect to reflection about <strong>th</strong>e<br />

diagonal have been extended and generalized. They<br />

can be formulated ei<strong>th</strong>er in terms of <strong>th</strong>e structure<br />

of pulse sequences or in terms of <strong>th</strong>e coherence<br />

transfer pa<strong>th</strong>ways selected.<br />

Recent results indicate <strong>th</strong>at new experimental<br />

techniques producing antisymmetric or asymmetric 2D<br />

spectra can be of advantage in certain practical<br />

situations. For example, experiments leading to<br />

antisymmetric spectra often result in suppression of<br />

uninformative and disturbing diagonal peaks.


Tuesday - PM<br />

WKI2- POSTERS<br />

QUANTITATIVE INTERPRETATION OF A SINGLE 2D NOE SPECTRUM<br />

Peter A. Mirau<br />

AT&T Bell Laboratories<br />

Murray Hill, NJ 07974<br />

A new me<strong>th</strong>od is suggested for <strong>th</strong>e quantitative in-<br />

terpretation of 2D NOE data using selective relaxation rates<br />

and matrix techniques. This approach reduces <strong>th</strong>e experimen-<br />

tal time from one week to one day, gives proton-proton dis-<br />

tances wi<strong>th</strong> a precision of 10.1 A, and can be used to<br />

characterize <strong>th</strong>e internal dynamics. Wi<strong>th</strong> <strong>th</strong>is approach <strong>th</strong>e<br />

structural and dynamic properties of Gramicidin S were<br />

determined from a single 2D NOE spectrum wi<strong>th</strong> a mixing time<br />

of 0.2 s. The peak volumes in <strong>th</strong>e 2D experiment were scaled<br />

via <strong>th</strong>e measured selective relaxation of Phe NH and Orn<br />

protons and <strong>th</strong>e matrix of scaled peak volumes was solved to<br />

yield <strong>th</strong>e relaxation rate matrix. The distances measured by<br />

<strong>th</strong>is approach were indistinguishable (~0.1 A ) from <strong>th</strong>ose<br />

measured from 1D NOE experiments, <strong>th</strong>e buildup of cross peaks<br />

in <strong>th</strong>e 2D NOE experiments, and <strong>th</strong>e distances expected from<br />

<strong>th</strong>e crystal structure. The dynamics were determined from<br />

<strong>th</strong>e ratio of <strong>th</strong>e sum of all <strong>th</strong>e cross relaxation rates to<br />

<strong>th</strong>e rate of decay of <strong>th</strong>e diagonal peak which, for isotropic<br />

motion, depends only <strong>th</strong>e <strong>th</strong>e correlation time. This<br />

analysis showed a correlation time for <strong>th</strong>e NH and H ~ protons<br />

of 0.9~0.1 nsec; <strong>th</strong>e close correspondence between <strong>th</strong>e ob-<br />

served and expected values show <strong>th</strong>at <strong>th</strong>e peptide backbone is<br />

rigid in solution over <strong>th</strong>e time scale of molecular tumbling.<br />

Internal motions of make a significant contribution to <strong>th</strong>e<br />

relaxation of some side chain groups. The implications and<br />

limitations of <strong>th</strong>is approach and <strong>th</strong>e applications to DNA<br />

structure determination will be discussed.


Tuesday - PM<br />

WK22 - POSTERS<br />

SOLVENT SUPPRESSION WITHOUT PHASE DISTORTION<br />

Malcolm H. Levitt* and Mary F. Roberts<br />

M.I.T., NN14-5122, Cambridge, MA 02139<br />

Ve describe a new class of pulse sequences, NERO (Non-linear Excitation<br />

Rejecting 0n-Resonance), which allow wideband excitation of an<br />

spectrum except for a deep, flat section near <strong>th</strong>e carrier where <strong>th</strong>e<br />

response is zero. The novel feature of <strong>th</strong>e new sequences is <strong>th</strong>at phase<br />

distortion of excited resonances is negligible, in contrast to usual<br />

me<strong>th</strong>ods based on linear response. Ve will show numerical simulations<br />

and experimental results for <strong>th</strong>e following sequence, called NER0-1:<br />

D B N<br />

120°-~1-115°-T2-115 °-2~3-115"-~2-115 °-~1-120°-~ r<br />

where pulses 180 ° out of phase have an overbar, and delays ~k are given<br />

by<br />

~1 = 0" 139/(~exc/2n)<br />

~2 = O. 625/( ~exc/2 n)<br />

2~ 3 = 0.428/(~exc12n )<br />

~r = 0"222/(~exc/2n)<br />

Here (~exc/2n) is <strong>th</strong>e offset frequency (Hz) of <strong>th</strong>e center of <strong>th</strong>e<br />

excited spectral region. This class of pulse sequence is capable of<br />

providing solvent suppression almost free from undesirable phase<br />

distortions.


Tuesday - PM<br />

WF64 - POSTERS<br />

FLOW IMACINC<br />

C. L. Dumoulln*, S. P. Sou=a, H. R. Hart Jr.<br />

Ceneral Electric Research and Development Center<br />

P0 Box 8, Schenectady, New York 12301<br />

Many flow sensitive NMR procedures have been proposed and demonstrated.<br />

All of <strong>th</strong>ese me<strong>th</strong>ods rely on ei<strong>th</strong>er longitudinal magnetization or transverse<br />

magnetization for flow discrimination. Time-of-flight and spin washout are<br />

examples of flow sensitive techniques which make use of longitudinal magneti-<br />

zation. In <strong>th</strong>ese me<strong>th</strong>ods, <strong>th</strong>e longitudinal magnetization is changed in one<br />

location and monitored in ano<strong>th</strong>er downstream from <strong>th</strong>e first. Techniqdes which<br />

make use of transverse magnetization such as <strong>th</strong>e one described below typically<br />

monitor <strong>th</strong>e phase of spin magnetization and <strong>th</strong>us are not constrained by <strong>th</strong>e<br />

geometry of flow.<br />

The most significant problem in blood flow imaging in animals or humans<br />

is <strong>th</strong>e suppression of signals arising from non-moving spins. This is a par-<br />

ticularly severe problem because blood vessels are relatively small when com-<br />

pared to <strong>th</strong>e volume of <strong>th</strong>e surrounding tissue and blood flow is usually pulsa-<br />

tile ra<strong>th</strong>er <strong>th</strong>an constant. The rapid-scan, phase contrast technique presented<br />

here circumvents <strong>th</strong>ese problems and has proven very useful in obtaining non-<br />

invasive angiograms of heal<strong>th</strong>y and diseased patients.<br />

The flow-induced phase shift of a hi-polar gradient pulse is simply<br />

- ~VTA G<br />

where • is <strong>th</strong>e flow-induced phase shift, 7 is <strong>th</strong>e gryomagnetic ratio, V is <strong>th</strong>e<br />

component of spin velocity in <strong>th</strong>e direction of <strong>th</strong>e applied magnetic field gra-<br />

dient, T is <strong>th</strong>e time between <strong>th</strong>e centers of <strong>th</strong>e lobes of <strong>th</strong>e bipolar gradient<br />

and A G is <strong>th</strong>e area of <strong>th</strong>e first lobe in <strong>th</strong>e bi-polar pulse (<strong>th</strong>e area of <strong>th</strong>e<br />

second lobe is -AG). To selectively detect flow in an imaging or spectroscopy<br />

procedure one can simply acquire two sets of data under different conditions<br />

of V, T or A G. We have found <strong>th</strong>at <strong>th</strong>e inversion of <strong>th</strong>e bi-polar gradient<br />

pulse gives <strong>th</strong>e best results. Thus, two echoes are obtained, one wi<strong>th</strong><br />

- 7VTA G and <strong>th</strong>e o<strong>th</strong>er wi<strong>th</strong> ~ - 7VT(-Ac). Moving spins are selectively<br />

detected and stationary spins suppresse~ by taking <strong>th</strong>e difference of <strong>th</strong>e two<br />

echoes. Since <strong>th</strong>e flow sensitivity of such a procedure is only in <strong>th</strong>e direc-<br />

tion of <strong>th</strong>e applied field gradient, two flow images are obtained wi<strong>th</strong> or<strong>th</strong>ogo-<br />

hal flow sensitivities and combined to give <strong>th</strong>e total flow image. The inten-<br />

sity of each pixel in <strong>th</strong>e image is a quantitative measure of flow provided <strong>th</strong>e<br />

flow-induced phase shift, #, is less <strong>th</strong>an about I radian.<br />

Suppression of non-moving spins can be enhanced by a weak dephasing gra-<br />

dient applied in <strong>th</strong>e direction of <strong>th</strong>e image projection. Such a gradient<br />

dephases spin magnetization over <strong>th</strong>e large volume of non-moving spins and has<br />

little effect in <strong>th</strong>e relatively small vessels. Additional suppression can be<br />

obtained by acquiring data very quickly and wi<strong>th</strong> short pulse-to-pulse inter-<br />

vals. Rapid scanning saturates non-moving spins while spins which move into<br />

<strong>th</strong>e detection region are fully relaxed. Fast scanning also makes <strong>th</strong>e flow<br />

imaging procedure much less sensitive to patient motion since differences of<br />

data acquired in very short intervals are taken.


Wednesday - AM<br />

SURFACE-SELECTIVE NMR BY DYNAMIC NUCLEAR POLARIZATION<br />

EXPLORATION AT THE POLYMER INTERFACE<br />

H. Seidei, l" R. D. Kendrick and C. S. Yannoni<br />

IBM Almaden Research Center, San Jose, CA<br />

and<br />

M. E. Galvin<br />

AT&T Bell Laboratories, Murray Hill, NJ<br />

One of our primary motivations for initiating a program in solid state NMR of<br />

dynamically polarized nuclei is <strong>th</strong>e belief <strong>th</strong>at <strong>th</strong>is can be a useful new me<strong>th</strong>od for <strong>th</strong>e<br />

study of structure and dynamics of molecules at surfaces. To explore <strong>th</strong>is possibility,<br />

we have built a 60 MHz DNP-NMR spectrometer based on an electromagnet probe<br />

which uses a quasi-optical (Fabry-Perot) cavity to pump <strong>th</strong>e ESR at 40 GHz. l<br />

Al<strong>th</strong>ough DNP has traditionally been viewed as a means for obtaining high nuclear<br />

polarization, °" <strong>th</strong>e spatial selectivity of DNP will be emphasized here. We intend to use <strong>th</strong>is<br />

selectivity to preferentially polarize nuclei in molecules near <strong>th</strong>e surface of a material<br />

which contains unpaired electron spins. The selectivity arises from <strong>th</strong>e dependence of <strong>th</strong>e<br />

Overhauser enhancement on <strong>th</strong>e inverse six<strong>th</strong> power of <strong>th</strong>e electron-nuclear distance.<br />

Generally, since <strong>th</strong>e sample will be in <strong>th</strong>e bulk form commonly used in NMR<br />

experiments, <strong>th</strong>e surface will be internal i.e. interfacial regions between <strong>th</strong>e material of<br />

interest and <strong>th</strong>e material containing <strong>th</strong>e source of unpaired spins. As a demonstration<br />

of <strong>th</strong>e efficacy of <strong>th</strong>is approach, we will discuss results obtained in a composite of<br />

polyacetylene in polye<strong>th</strong>ylene. 3 This polymer composite provides not only a reasonable<br />

spin dynamical model for a molecule (polye<strong>th</strong>ylene) at <strong>th</strong>e surface of a "metal" particle<br />

(polyacetylene), 4 but also introduces <strong>th</strong>e possibility of using DNP-NMR as a tool for<br />

studying intimacy of mixing in polymer blends, one component of which contains<br />

unpaired spins. We have observed 1H as well as IH-decoupled carbon-13 spectra for <strong>th</strong>is<br />

material, wi<strong>th</strong> and wi<strong>th</strong>out DNP, using bo<strong>th</strong> <strong>th</strong>ermal and cross polarization. The results<br />

indicate <strong>th</strong>at selective NMR spectra of polye<strong>th</strong>ylene carbons in <strong>th</strong>e interfacial regions can<br />

be obtained.<br />

Since <strong>th</strong>e unpaired electron spins responsible for <strong>th</strong>e polarization are confined to very<br />

small island structures (


.<br />

.<br />

.<br />

4.<br />

-2-<br />

D. J. Singel, R. D. Kendrick and C. S. Yannoni, 26<strong>th</strong> ElqC, April 1985, Asilomar,<br />

California; R. D. Kendrick, H. Seidel, D. J. Singel and C. S. Yannoni (manuscript<br />

in preparation).<br />

We have recently achieved very large 13C polarization via <strong>th</strong>e Overhauser effect in<br />

a one-dimensional organic charge transfer conductor wi<strong>th</strong> a narrow ESR spectrum<br />

("30 milligauss wid<strong>th</strong>) which has permitted o~ervation of 1016 carbon-13 spins wi<strong>th</strong><br />

a single pulse at room temperature after a 1-second polarization period "High<br />

Resolution DNP-NMR and Knight Shift Suppression in a One Dimensional Charge<br />

Transfer Conductor"; R. D. Kendrick, H. Seidel, D. J. Singel, W St6cklein" and C.<br />

S. Yannoni, poster to be presented on Monday, April 6 at <strong>th</strong>e 28<strong>th</strong> <strong>ENC</strong>.<br />

M. E. Galvin and G. E. Wnek, Polymer 23, 795 (1982).<br />

In <strong>th</strong>e trans form present in <strong>th</strong>ese composites, polyacetylene is a semiconductor<br />

containing unpaired electron spins which exhibit-fast one-dimensional diffusion.<br />

This leads to an Overhauser enhancement of <strong>th</strong>e kind one might expect from a<br />

metal: M. Nechstein, F. Devreux and R. L. Greene, Phys. Rev. Lett, 44, 356 (1980);<br />

M. Manenschijn, M. Duijvestijn, J. Smidt, R. A. Wind, C. S. Yannoni and T. C.<br />

Clarke, Chem. Phys. Lett. 112, 99 (1984).<br />

5. M.E. Galvin, dissertation, Massachusetts Institute of Technology (1984).


Wednesday - AM<br />

~FIFTY-FOUR-FORTY OR FIGHTI" l<br />

High-speed IH MAS-NNtR of Inorganic Solids<br />

and Paramagnetic Compounds<br />

James P. Yesinowski," Hellmut Eckert, and Akbar Nayeem<br />

Division of Chemistry and Chemical Engineering<br />

California Institute of Technology<br />

Pasadena, CA 91125<br />

High-resolution IH 1V[AS-N1VIR spectra of solids have generally been obtained<br />

using multiple-pulse line-narrowing techniques (CRAMPS) or isotopic dilution wi<strong>th</strong><br />

deuterium to reduce <strong>th</strong>e strong homonuclear dipolar interactions. We will show exper-<br />

imental results from 1H MAS-NMR at 200 and 500 MHz indicating <strong>th</strong>at high speed<br />

spinning alone (at ca. 8 kHz) results in high-resolution spectra for many inorganic<br />

solids and minerals. Even in cases where <strong>th</strong>e homonuclear dipolar coupling greatly<br />

exceeds <strong>th</strong>e spinning speed, <strong>th</strong>e inhomogeneous character of <strong>th</strong>e interaction can result<br />

in sharp spectra wi<strong>th</strong> many spinning sidebands. Experimental considerations will be<br />

discussed, and examples of structural characterization in minerals, glasses, and cal-<br />

cified tissue such as bone and tee<strong>th</strong> will be given. The correlation of <strong>th</strong>e isotropic<br />

proton chemical shift wi<strong>th</strong> <strong>th</strong>e streng<strong>th</strong> of hydrogen-bonding will be discussed, and<br />

correlated wi<strong>th</strong> 2H NMR results.<br />

The MAS-NMR of paramagnetic compounds is ano<strong>th</strong>er area of interest. We will<br />

demonstrate <strong>th</strong>at high-resolution IH MAS-NMR spectra of paramagnetic transition-<br />

metal compounds can be obtained. As a consequence of <strong>th</strong>e electron-nuclear dipolar<br />

coupling such spectra exhibit intense spinning sidebands extending over tens or hun-<br />

dreds of kilohertz. We will discuss <strong>th</strong>e <strong>th</strong>eoretical treatment developed to account for<br />

<strong>th</strong>e spinning sideband intensities and <strong>th</strong>e peak shape, which includes <strong>th</strong>e effect of <strong>th</strong>e<br />

electron g-anisotropy.<br />

IThis bellicose slogan was <strong>th</strong>e rallying cry of supporters of James Polk in <strong>th</strong>e U.S. Presidential<br />

election of 1844. It referred to <strong>th</strong>e disputed nor<strong>th</strong>ern boundary of <strong>th</strong>e Oregon territory, which<br />

expansionist Americans wanted set at a latitude of 54040 ', wi<strong>th</strong>in 5' of <strong>th</strong>e magic angle. This slogan<br />

is <strong>th</strong>us still relevant for solid-state NMR spectroscopists in <strong>th</strong>eir daily fight for increased resolution.


Wednesday - AM<br />

THE DETERmiNATION OF THE STRUCTURE OF PARTIALLY-ORIENTED SOLIDS<br />

USING 2D-MAGIC-ANGLE-SPINNING N}~<br />

Gerard S. Harbison<br />

Department of Chemistry, SUNY Stony Brook, Stony Brook, NY 11794.<br />

V.-D. Vogt, C. Boeffel, B. Bluemich and H.W. Spiess<br />

Max-Planck-Institut fuer Polymerforschung, Postfach 3148, D-6500 Mainz, FRG.<br />

High-field magic-angle-spinning (MAS) spectra of oriented samples display<br />

variations in <strong>th</strong>e phases and intensities of <strong>th</strong>e MAS centerbands and sidebands,<br />

which depend on <strong>th</strong>e position of <strong>th</strong>e sample order axis about <strong>th</strong>e rotor axis at<br />

<strong>th</strong>e time <strong>th</strong>e precession of <strong>th</strong>e nuclear magnetization begins. This phenomenon<br />

may be observed by synchronizing <strong>th</strong>e spectral excitation wi<strong>th</strong> <strong>th</strong>e sample<br />

rotation (I), and we have shown (2) <strong>th</strong>at it may be made <strong>th</strong>e basis of a 2D-NMR<br />

experiment, in which <strong>th</strong>e first time dimension is <strong>th</strong>e (time-dependent) rotor<br />

position, and <strong>th</strong>e second is routine unrestricted acquisition. The 2D spectra<br />

<strong>th</strong>us obtained consist of MAS centerbands and sidebands in two dimensions,<br />

whose intensities depend on <strong>th</strong>e size of <strong>th</strong>e chemical shielding tensor, its<br />

orientation relative to <strong>th</strong>e sample order axis, and <strong>th</strong>e degree of disorder of<br />

<strong>th</strong>e sample about <strong>th</strong>at axis. Using a spherical harmonic expansion of <strong>th</strong>e<br />

shielding tensor orientation about two Euler angles in <strong>th</strong>e frame of reference<br />

of <strong>th</strong>e order axis (3), we can, wi<strong>th</strong>out recourse to model-building, determine<br />

<strong>th</strong>e complete orientational distribution function of <strong>th</strong>e residue in question<br />

relative to <strong>th</strong>e sample axis. Thus, for each distinct, resolvable resonance in<br />

a complex sample, we can determine <strong>th</strong>e preferred orientation of <strong>th</strong>at residue,<br />

and its statistical distribution about <strong>th</strong>at preferred orientation. Obviously,<br />

determining <strong>th</strong>ese quantities for a real sample, coupled wi<strong>th</strong> <strong>th</strong>e geometrical<br />

restrictions imposed by <strong>th</strong>e laws of chemistry, is tantamount to determining<br />

its structure on <strong>th</strong>e atomic scale.<br />

We have applied our experimental and <strong>th</strong>eoretical protocols to a number of<br />

oriented polymers, among <strong>th</strong>em polye<strong>th</strong>ylene tereph<strong>th</strong>alate (PET) and several<br />

liquid-crystalline polymers. We shall illustrate <strong>th</strong>eir use wi<strong>th</strong> a discussion<br />

of <strong>th</strong>e structure of <strong>th</strong>e crystalline and amorphous phases of PET, in which <strong>th</strong>e<br />

results obtained by our me<strong>th</strong>od are in close agreement wi<strong>th</strong> existing x-ray<br />

studies. We shall also consider <strong>th</strong>eir potential application to o<strong>th</strong>er systems.<br />

(1) M. blaricq & J.S. Waugh (1979) J. Chem. Phys. 70:3300<br />

(2) G.S. Harblson & H.W. Spiess (1986) Chem. Phys. Lett. 124:128<br />

(3) G.S. Harbison, V-D. Vogt & H.W. Spiess (<strong>1987</strong>) J. Chem. Phys., in press.


Wednesday - AM<br />

MULTIPLE PULSE ECHO TRAINS<br />

IN<br />

ROTATING SOLIDS<br />

A.C. KOLBERT, D.P RALEIGH, M.H. LEVITT, and R.G. GRIFFIN<br />

Francis Bitter National Magnet Laboratory<br />

and<br />

Department of Chemistry<br />

Massachusetts Institute of Technology<br />

Cambridge, MA 02139<br />

One of <strong>th</strong>e most useful and pedagogically important pulse<br />

NMR experiments is <strong>th</strong>e Hahn spin echo. Today <strong>th</strong>is experiment is<br />

employed extensively in NMR imaging and an understanding of <strong>th</strong>e<br />

basic principles of echo formation permits an understanding of a<br />

large variety of o<strong>th</strong>er phenomena in magnetic resonance. The<br />

importance of echoes has provided <strong>th</strong>e impetus for us to<br />

investigate <strong>th</strong>e effects of ~ pulses and K pulse trains in magic<br />

angle sample spinning experiments, particularily in <strong>th</strong>e slow<br />

spinning regime. We first review <strong>th</strong>e effects of a single and two<br />

pulses on rotational echo trains and <strong>th</strong>en discuss a number of<br />

interesting new effects. These include a new class of multiple<br />

pulse trains, <strong>th</strong>e effects of r.f. phase shifts on <strong>th</strong>e phases of<br />

<strong>th</strong>e echo train, and a combination of bo<strong>th</strong>. In addition, we will<br />

also describe a 2D version of one of <strong>th</strong>e experiments which may<br />

prove useful in measuring small shift anisotropies.


Wednesday - AM<br />

Field Cycling NMR as a Tool for NQ~RSpectroscopy of Weakly<br />

Quadrupole-Coupled Nuclei: Pyridine, Imidazole, and <strong>th</strong>e<br />

Nucleosides Adenosine, Guanosine and Inosine. J. L. Ragle,<br />

Department of Chemistry, University of Massachusetts,<br />

Amherst, MA 01003.<br />

NMR experiments which cycle wi<strong>th</strong> B ° or Brf have been used<br />

for over 3 decades for various purposes. In <strong>th</strong>e case of<br />

integer spin nuclei and in <strong>th</strong>e weak quadrupole coupling<br />

regime, very high resolution zero field spectra may be<br />

obtained in ei<strong>th</strong>er <strong>th</strong>e time or frequency domain by several<br />

of <strong>th</strong>ese techniques.<br />

This talk discusses use of <strong>th</strong>e simplest of <strong>th</strong>ese, adiabatic<br />

field cycling between high field and zero field, to measure<br />

NQR spectra in several sets of molecules: imidazole and<br />

imidazolium salts, and <strong>th</strong>ree nucleosides. Quadrupole<br />

coupling constants will be discussed in <strong>th</strong>e light of<br />

structures and MO calculations on <strong>th</strong>ese species.


Wednesday - AM<br />

APPLICATIONS OF ZERO FIELD NMR TO THE STUDY<br />

OF SOLIDS AND LIQUID CRYSTALS<br />

Ann M. Thayer*<br />

University of California, Berkeley<br />

Time domain zero field NMR me<strong>th</strong>ods provide a means of obtaining<br />

high resolution spectra of polycrystalline or amorphous materials.<br />

Recent experiments will be discussed which include <strong>th</strong>e observation of<br />

small motionally induced asymmetries in dipolar coupled systems. From<br />

such observations, one can obtain a measure of small amplitude libra-<br />

tional motions or <strong>th</strong>e onset of biaxiality in smectic liquid crystalline<br />

phases. In addition, experiments involving <strong>th</strong>e use of pulsed dc<br />

magnetic fields in zero field will also be presented. The behavior of<br />

a nuclear spin system can be coherently manipulated and probed in zero<br />

field wi<strong>th</strong> dc magnetic field pulses which are employed in a similar<br />

manner to radiofrequency pulses in high field NMR experiments. DC<br />

pulse sequences can be used as composite pulses for increased spatial<br />

homogeneity and for selectivity between isotopic species.<br />

*Present Address: AT&T Bell Laboratories<br />

Hurray Hill, New Jersey


Wednesday - AM<br />

Applications of Solid State NMR Me<strong>th</strong>ods to<br />

Problems of Interest to Surface Chemistry<br />

by<br />

Paul D. Ellis, Paul D. Majors, ~ Thomas E. Raidy, 2 Paul S. Marchetti,<br />

Alan Benesi, 3 Doug Morris and Shelton Bank, W and Richard Adams<br />

Department of Chemistry<br />

University of Sou<strong>th</strong> Carolina<br />

Columbia, Sou<strong>th</strong> Carolina 29208<br />

For <strong>th</strong>e past several mon<strong>th</strong>s our group has been interested in <strong>th</strong>e ap-<br />

plication of multinuclear solid state nmr me<strong>th</strong>ods to surface chemistry. These<br />

problems include studies of simple amines, via 2H and ~SN nmr s'6 on Y-alumina.<br />

The purpose of <strong>th</strong>ese studies is to probe <strong>th</strong>e number of acid sites on <strong>th</strong>e sur-<br />

face and to extract via indirect me<strong>th</strong>ods <strong>th</strong>e surface distribution of AI 3+<br />

atoms on Y-alumina. If <strong>th</strong>e experimental gods are willing we will also discuss<br />

our attempts at <strong>th</strong>e direct observation of <strong>th</strong>~ A1 s+ distribution via 2~AI nmr.<br />

Additional studies have involved 9SMo nmr of Molybdenum-Alumina Hydrodesul-<br />

furization catalysts. Our work is only beginning wi<strong>th</strong> <strong>th</strong>ese systems, but we<br />

will summarize our work to date. The work summarized here has been supported<br />

by <strong>th</strong>e NSF <strong>th</strong>rough CHE 86-11306.<br />

I. Current Address: Lovelace Medical Foundation, Research Division, 2425<br />

Ridgecrest Dr., SE, Albuquerque, NM 87108.<br />

2. Current Address: General Electric Co., NMR Instruments, Fremont, CA<br />

94539.<br />

3. Current Address: Department of Chemistry, Penn State University,<br />

University Park, PA 16802.<br />

4. On Sabbatical leave from SUNY, Albany.<br />

5. P.D. Majors, T.E. Raidy, and P.D. Ellis, J. Amer. Chem. Soc., 108, 8123<br />

{1986).<br />

6. P.D. Majors and P.D. Ellis, ibid, in press.


Wednesday - AM<br />

Quadrupole Nutation NMR. NQR in <strong>th</strong>e Rotating Frame<br />

W. S. Veeman, R. Janssen, E. Tijink, A. P. M. Kentgens<br />

Department of Molecular Spectroscopy, Faculty of Science<br />

University of Nijmegen, Toernooiveld, 6525 ED NIJMEGEN, The Ne<strong>th</strong>erlands<br />

The principle of nutation NMR for quadrupolar spins in solids<br />

will be outlined. Various applications of nutation NMR for 23Na in<br />

zeolites, aluminates and silicates will be shown, at room<br />

temperature and at higher and lower temperatures.<br />

The combination of rotary echoes wi<strong>th</strong> nutation NMR makes it<br />

possible to demonstrate <strong>th</strong>e existence of fast relaxation processes in<br />

<strong>th</strong>e rotating frame, related to dynamical processes in <strong>th</strong>e above<br />

mentioned materials.


Notes


Thursday - AM<br />

AN OVERVIEW OF SPATIALLY LOCALIZED SPECTROSCOPY<br />

by<br />

D.I. Houit<br />

Biomedical Engineering and Instrumentation Branch<br />

Division of Research Services<br />

Building 13, Room 3W13<br />

National institutes of Heal<strong>th</strong><br />

Be<strong>th</strong>esda, Maryland 20892<br />

Obtaining spectra from a localized region is a difficult task which is<br />

fur<strong>th</strong>er complicated by a number of practical problems which defy easy<br />

solution. The actual act of localization is accomplished wi<strong>th</strong> <strong>th</strong>e aid<br />

of gradients in <strong>th</strong>e B 0 and/or B 1 fields in concert wi<strong>th</strong> a variety<br />

of selective pulses and cycling schemes. However, as <strong>th</strong>e volume of<br />

interest may be small in comparison to <strong>th</strong>e volume which is capable of<br />

generating signal, suppression of <strong>th</strong>e latter must be excellent, leaving<br />

very little room for experimental imperfection. When one considers<br />

<strong>th</strong>at <strong>th</strong>e sample i5 often alive and may move, <strong>th</strong>at switched-field<br />

gradients may leave residual eddy currents which generate changing<br />

fields during data acquisition, <strong>th</strong>at shimming may be well-nigh<br />

impossible if <strong>th</strong>e volume is remote from <strong>th</strong>e origin of <strong>th</strong>e shim coil set<br />

and <strong>th</strong>at several transmitting and/or receiving coils may be needed, a<br />

headache of royal proportions is clearly made manifest. Thus <strong>th</strong>e talk<br />

will outline in more detail <strong>th</strong>e origins of <strong>th</strong>e- problems, and briefly<br />

summarize progress made in solving <strong>th</strong>em.


Thursday - AM<br />

Gradient Transient Effects in Large Bore MR Imaging Systems<br />

G. H. Glover<br />

Applied Science Laboratory<br />

General Electric Medical Systems<br />

P.O. Box 414, W875<br />

Milwaukee, WI 53201<br />

The measured temporal response of <strong>th</strong>e field excited by a whole body MR imaging gradient is<br />

found to differ from <strong>th</strong>e exciting current. The error field derives from eddy currents induced<br />

in <strong>th</strong>e magnet and cryostat, and from interactions wi<strong>th</strong> <strong>th</strong>e shim coil and <strong>th</strong>eir power supplies.<br />

The impulse response of <strong>th</strong>is spurious field in an Oxford one meter bore magnet can be<br />

approximated by_B(t,r) = Bo (t) + ~ (t) • 7, where Bo(t) is a spatially invariant transient<br />

component and G(t) is a linear gradient transient whose direction parallels <strong>th</strong>e exciting<br />

gradient. The field errors degrade performance and can induce artifacts in imaging sequences<br />

by causing poor selective excitation and by creating unintentional dephasing during<br />

evolutionary periods. The effect of spurious gradient transients on imaging sequences is<br />

examined and examples are given.<br />

An NMR technique for measuring B(t) is presented. The technique uses two small probes to<br />

sample <strong>th</strong>e field in two locations following application of a gradient pulse. Analysis of <strong>th</strong>e<br />

data shows <strong>th</strong>at Bo(t) and G-(t) can be adequately represented as a superposition of several<br />

exponential processes wi<strong>th</strong> time constants from a few msec. to several minutes.<br />

Correction techniques are presented for cancelling bo<strong>th</strong> G(t) and Bo(t). The former correction<br />

is effected by appropriately modifying <strong>th</strong>e gradient coil excitation current, while Bo<br />

compensation is obtained by actively driving <strong>th</strong>e Zo shim coil. Adjustment of <strong>th</strong>ese filters is<br />

facilitated by software which calculates <strong>th</strong>e required coefficients from <strong>th</strong>e measured B(t).<br />

Application of <strong>th</strong>ese techniques is found to provide reductions by factors of <strong>th</strong>e order of 50 in<br />

<strong>th</strong>e spurious response, which is deemed adequate for most present imaging and spectroscopy<br />

sequences.<br />

Finally, <strong>th</strong>e use of actively shielded gradient coils for large bore MR systems is discussed.<br />

Results indicate field reduction by factors of 10-20. When combined wi<strong>th</strong> compensation<br />

techniques, <strong>th</strong>ese coils <strong>th</strong>us yield essentially ideal performance.


Thursday - AM<br />

IMAGE GUIDED LOCALIZED NMR SPECTROSCOPY AT 1.5 T<br />

Peter R. Luyten and Jan A. den Hollander<br />

Philips Medical Systems, P.O. Box I0000, NL-5680 DA Best,<br />

The Ne<strong>th</strong>erlands<br />

We have explored localization techniques to obtain high<br />

resolution spectra of human tissues in situ on a 1.5 T whole body<br />

MR imager. These techniques use switched field gradients to<br />

define one or more volumes of interest from which NMR spectra can<br />

be obtained. By using gradients for volume selection <strong>th</strong>e exact<br />

coordinates of <strong>th</strong>e selected volumes can easily be determined from<br />

a standard NMR image.<br />

For optimal results different nuclei may require different<br />

pulse sequences, in order to meet <strong>th</strong>e typical NMR characteristics<br />

of each particular nucleus. To obtain localized IH spectra we<br />

use a technique in which magnetization in <strong>th</strong>e volume of interest<br />

is retained along <strong>th</strong>e z axis, wheras all signal outside <strong>th</strong>is<br />

volume is dephased in <strong>th</strong>e xy plane. The advantage of <strong>th</strong>is<br />

technique is <strong>th</strong>at it allows for localization in one single shot.<br />

This can be used for shimming <strong>th</strong>e volume of interest. When <strong>th</strong>is<br />

technique is combined wi<strong>th</strong> an appropriate phase cycling scheme a<br />

very good suppression of unwanted signal from outside <strong>th</strong>e volume<br />

of intererest is achieved. The disadvantage is <strong>th</strong>at <strong>th</strong>e<br />

technique relies on relatively long T2 values and small homo<br />

nuclear J couplings. Therefore, localized 31P spectra have been<br />

obtained by a different localization technique which avoids<br />

transversal magnetization during <strong>th</strong>e localization pulse sequence.<br />

In stead, selected volumes are obtained by using selective<br />

frequency modulated inversion pulses in combination wi<strong>th</strong> an<br />

appropriate add-subtract scheme.<br />

Bo<strong>th</strong> localization sequences can be easily combined wi<strong>th</strong><br />

established pulse sequences to measure relaxation rates or to<br />

perform water suppression and spin editing techniques. Some<br />

results <strong>th</strong>at were obtained wi<strong>th</strong> <strong>th</strong>ese techniques and <strong>th</strong>e<br />

technical difficulties <strong>th</strong>at may be encountered in <strong>th</strong>ese<br />

experiments will be discussed.


Thursday - AM<br />

PULSE SHAPING FOR TWO-DIMENSIONAL AND MULTIPLE<br />

PULSE SPECTROSCOPY<br />

Warren S. Warren<br />

Department of Chemistry, Princeton University, Princeton, NJ 08544<br />

Applications of shaped radiofrequency pulses to solvent<br />

suppression in COSY spectra, excitation of two separate resonance<br />

frequencies, and uniform spin-1 excitation will be presented. We will<br />

also experimentally demonstrate <strong>th</strong>e tradeoffs between symmetric<br />

amplitude modulation, asymmetric amplitude modulation, and<br />

simultaneous phase/amplitude modulation. Recent results of new<br />

analytical solutions to <strong>th</strong>e Bloch equations, derived for atomic laser<br />

spectroscopy, will also be experimentally tested.<br />

I will discuss <strong>th</strong>e tradeoffs between different approaches to<br />

computerized pulse shape optimization, and show <strong>th</strong>e importance of<br />

including spectral information to refine shapes. Examples from<br />

magnetic resonance imaging, high resolution NMR, and perhaps even<br />

(gasp) laser spectroscopy will be included.


Thursday - AM<br />

COHER<strong>ENC</strong>E AUGMENTATION BY LIMITING<br />

THE ENTROPY IN CATALYTIC HYDROGENATION<br />

Daniel P. Weitekamp<br />

Ar<strong>th</strong>ur Amos Noyes Laboratory of Chemical Physics<br />

California Institute of Technology 127-72<br />

Pasadena, CA 91125<br />

The small equilibrium population differences between nuclear spin<br />

energy levels at ambient temperatures restrict <strong>th</strong>e size of NMR signals to less<br />

<strong>th</strong>an 10 -4 of <strong>th</strong>eir <strong>th</strong>eoretical maxima. Such well-known me<strong>th</strong>ods of signal<br />

enhancement as <strong>th</strong>e Overhauser effect, ClDNP, and optical nuclear<br />

polarization create large nonequilibrium nuclear magnetizations by taking<br />

advantage of <strong>th</strong>e coupling to unpaired electron spins. This talk will present<br />

a fundamentally different approach to very large nonequilibrium<br />

polarizations, which may be viewed as a coupling of nuclear spins to<br />

rotational population differences <strong>th</strong>rough chemical reaction.<br />

A consequence of <strong>th</strong>e symmetrization postulate of quantum mechanics is<br />

<strong>th</strong>at in molecules wi<strong>th</strong> equivalent nuclei <strong>th</strong>ere is a strict correlation between<br />

nuclear spin state and rotational state. In molecular hydrogen <strong>th</strong>e even<br />

rotational states have <strong>th</strong>e singlet nuclear spin wavefunction (para-H2) and<br />

may be prepared as a low-entropy room-temperature chemical reagent.<br />

Symmetry-breaking molecular addition of para-H2 results in highly J-<br />

ordered spin states in <strong>th</strong>e product molecule, which upon rf irradiation give<br />

rise to extremely large NMR signals.<br />

The apparatus1 built to perform such reactions in <strong>th</strong>e spectrometer will<br />

be described. Experimental results at ambient temperatures show<br />

enhancements of at least several hundred relative to equilibrium signals for<br />

products and intermediates of homogeneous hydrogenation catalysis.<br />

These results will be compared wi<strong>th</strong> <strong>th</strong>e predictions of <strong>th</strong>e density operator<br />

<strong>th</strong>eory of <strong>th</strong>is phenomenon2 modified to include relaxation effects.<br />

1. C.R. Bowers and D. P. Weitekamp, in preparation.<br />

2. C. R. Bowers and D. P. Weitekamp, Phys. Rev. Lett. 57, 2645 (1986).


Thursday - AM<br />

ACTIVE SHIELD MAGNETS<br />

FOR MAGNETIC RESONANCE IMAGING<br />

David E. Andrews, Ph.D<br />

OXFORD SUPERCONDUCTING TECHNOLOGY<br />

600 Milik Street<br />

Carteret, New Jersey 07008<br />

Clinical installations of magnetic resonance imaging and spectroscopy<br />

systems must contend wi<strong>th</strong> <strong>th</strong>e interaction of <strong>th</strong>e magnet wi<strong>th</strong> its environment.<br />

In particular, <strong>th</strong>e fringe field of <strong>th</strong>e magnet can restrict choices of<br />

acceptable sites or require cumbersome and expensive steel shielding. A new<br />

class of magnets, termed Active Shield magnets, solve <strong>th</strong>is problem. Active<br />

Shield magnets consist of a novel solenoidal coil configuration which includes<br />

counter running currents to cancel <strong>th</strong>e fringe field. Design principles,<br />

performance specifications and economic considerations will be discussed.


Poster Session<br />

M<br />

2:00- 5:00<br />

Mondayj April 6j <strong>1987</strong>


o<br />

u<br />

i.Z<br />

o<br />

Kiln - Poster Session Layout<br />

WK8<br />

Flynn<br />

MK7<br />

Fesik<br />

WK6<br />

Fesik<br />

MK5<br />

Davis<br />

WK4<br />

Brown<br />

MK3<br />

Borgias<br />

WK2<br />

Bogusky<br />

MK1<br />

Baum<br />

MK9<br />

Takegoshi<br />

WKIO<br />

McLennan<br />

MK11<br />

Poulsen<br />

WK12<br />

Mlrau<br />

MK13<br />

Holak<br />

WK14<br />

Seranaen<br />

MK15<br />

Rooney<br />

WK16<br />

Hiyama<br />

Chalkboard<br />

WK24<br />

Surer<br />

MK23<br />

Sklenkar<br />

WK22<br />

Levlttl<br />

MK21<br />

WK,?.O<br />

Ziessow<br />

MK19<br />

Yu<br />

WK18<br />

Narula<br />

MK17<br />

Wang<br />

MK25<br />

Ackerman<br />

WK26<br />

Barker<br />

MK27<br />

Nelson<br />

WK28<br />

Brown<br />

MK29<br />

Darba<br />

WK30<br />

Grahn<br />

MK31<br />

Hoch<br />

WK32<br />

Johnson<br />

WK40 MK41<br />

Warren Bowers<br />

MK39 WK42<br />

Ohuchi Bodenhausen<br />

WK38 MK43<br />

Mao Boyd<br />

MK37 WK44<br />

Bermel Coxon<br />

WK36 MK45<br />

Tang Jue<br />

MK35 WK46<br />

Stephens Meyerhoff<br />

wK~ MK4Z<br />

Picart Pearson<br />

MK33 WK48<br />

Craig Rance


Firelight Forum - Poster Session Layout<br />

WF10<br />

Chu<br />

MF9<br />

Williamson<br />

WF8<br />

Pines<br />

MF7<br />

Eckert<br />

WF6<br />

Kay<br />

MF5<br />

Pekar<br />

WF4<br />

Lamb<br />

M_E_3_<br />

Gonen<br />

WF2<br />

LaMar<br />

MF1<br />

Allen<br />

MF11<br />

Be.shah<br />

WF12<br />

Bork<br />

MF13<br />

Bryant<br />

WF14<br />

Bryant<br />

MF15<br />

Carduner<br />

WF16<br />

Duncan<br />

MF 17<br />

Earl<br />

WF18<br />

Dec<br />

MF19<br />

Jiang<br />

WF20<br />

Jakobsen<br />

WF30<br />

Nissan<br />

MF29<br />

Merrill<br />

WF28<br />

Wind<br />

MF27<br />

Quinting<br />

WF26<br />

Limbach<br />

MF25<br />

Hill<br />

WF24<br />

Campbell<br />

MF23<br />

Gleason<br />

WF22<br />

Hartzell<br />

MF21<br />

Garbow<br />

MF31<br />

Oldfield<br />

WF32.<br />

Opella<br />

MF33<br />

Roberts<br />

WF34<br />

Simonsen<br />

MF35<br />

Stebbins<br />

WF36<br />

Vander-<br />

Hart<br />

MF37<br />

Williams<br />

WF38<br />

Lock<br />

MF39<br />

St6cklein<br />

WF40<br />

Jarvie<br />

Chalkboard I<br />

MF51<br />

Kopelevich<br />

MF49,~ WF52<br />

Ronemus Maple<br />

WF% =~<br />

Muir Jarret<br />

MF47[I WF54<br />

Nicholson IE]lOmlch<br />

WF46 N MF55<br />

Beshah Johnston<br />

MF45, H WF56<br />

Brandes Mattingly<br />

WF44 H MF'57<br />

Santini Bendall<br />

MF43H WF58<br />

Johnson Black-<br />

ledge<br />

w%<br />

Hornak Briggs<br />

MF41 I"1 WF60<br />

Behlingll Thoma<br />

Kormos Lowe<br />

MF0'IIW<br />

Keller He<strong>th</strong>erington<br />

James Mateescu<br />

Schmalo Karczmar<br />

brock<br />

Geoffrion Matsui<br />

MF6511WF76<br />

Garwood Metz<br />

v_E_~ I MF"<br />

Dumoulin Miller<br />

MF~IWF~8<br />

Dixon Saarinen<br />

WF62 H MF79<br />

Cockman Warren<br />

MF'IlIWF<br />

Brown, Szeverenyi<br />

Women's Rm Men's Rrn<br />

(J<br />

03<br />

P<br />

LL<br />

0<br />

o


MF01<br />

MF03<br />

MF05<br />

MF07<br />

MF09<br />

MFll<br />

MF13<br />

MF15<br />

MF17<br />

MF19<br />

MF21<br />

MF23<br />

MF25<br />

MF27<br />

MF29<br />

Presenter<br />

Allen, L.<br />

Gonen, O.<br />

Pekar, J.<br />

Eckert, H.<br />

Williamson, K. L.<br />

Beshah, K.<br />

Bryant, R. G.<br />

Carduner, K. R.<br />

Earl, W. L.<br />

Jiang, Y. J.<br />

Garbow, J. R.<br />

Poster Session<br />

Monday, April 6, <strong>1987</strong><br />

Title<br />

How NMR Studies of Supercritical Fluids<br />

NMR Spectroscopy Below 1K<br />

Multiple-Quantum Spectroscopy of Biological Sodium<br />

51V NMR: A New Probe of Metal Ion Binding in<br />

Metalloproteins<br />

NMR of Xenon Absorbed in Solid Polymers: A Probe<br />

of <strong>th</strong>e Amorphous State<br />

Tellurium- 125 and Cadmium-111 NMR Study of<br />

Bonding Properties of Cd(1.x)Zn(x)Te<br />

Semiconductors<br />

43Ca NMR In <strong>th</strong>e Solid State<br />

Phosphorus Poisoning of <strong>th</strong>e Auto Emissions Catalytic<br />

Converter Studied by 31p NMR<br />

A Double Quantum Filter for Rotating Solids and<br />

Some Observations on Labelling in Solids<br />

An Efficient Stator/Rotor Assembly for Magic Angle<br />

Spinning NMR<br />

Solid-State 13C and 15N NMR Studies of Crosslinking<br />

in Bacterial Cell Walls<br />

Gleason, K.K. NMR Investigations of Atomic Microstructure<br />

in Amorphous Semiconductors<br />

Hill, L. E.<br />

Quinting, G.<br />

Merrill, R. A.<br />

Cesium-133 Solid State NMR of Alkalides and<br />

Eleclrides<br />

Multinuclear Solid-State NMR Studies of Derivatized<br />

Silica Gels<br />

Magic Angle Spinning of Matrix Isolated Reactive<br />

Intermediates<br />

* Location Numbering Scheme: M for Monday, F for Firelight Forum, K for<br />

Kiln followed by <strong>th</strong>e Poster number. Boldfaced type for featured posters.


MF31<br />

MF33<br />

MF35<br />

MF37<br />

MF39<br />

MF41<br />

MF43<br />

MF45<br />

MF47<br />

MF49<br />

MF51<br />

MF53<br />

MF55<br />

MF57<br />

Presenter<br />

Oldfield, E.<br />

Roberts, J. E.<br />

Stebbins, J. F.<br />

Williams, E. H.<br />

Sttcldein, W.<br />

Behling, R. W.<br />

Johnson, K.M.<br />

Brandes, R.<br />

Nicholson, L. K.<br />

Ronemus, A. D.<br />

Kopelevich, M.<br />

Jarret, R. M.<br />

Johnston, E. R.<br />

Bendall,. M. R.<br />

Title<br />

Second Observation of IH MASS NMR of Lipids and<br />

Membranes; and 170 Cross Polarization of<br />

Inorganic Solids<br />

Increased Resolution for Proton NMR<br />

Spectra of Solid Materials<br />

Relaxation Mechanisms and Effects of Motion in<br />

NaAISi308 Liquid and Glass: A High Temperature<br />

NMR Study<br />

A Unique Me<strong>th</strong>od for <strong>th</strong>e Quantitative Determination of<br />

Mixed Liquid and Solid Phases Using Solid-State<br />

NMR Techniques<br />

High Resolution DNP-NMR and Knight Shift<br />

Suppression in a One-Dimensional Charge<br />

Transfer Conductor<br />

Acetylcholine Receptor-Agonist Binding. Results<br />

from Selective Relaxation NMR Experiments<br />

Design and Use of a Pulse Shaper for High Resolution<br />

NMR<br />

The Use of D20 as a Molecular Probe in Determining<br />

DNA Solid State Packing<br />

Solid State NMR Studies of IsotopicaUy Labeled<br />

Gamicidin A in an Oriented Lipid Bilayer<br />

Solid State 2H NMR Studies of Biphenyl in <strong>th</strong>e 13-<br />

cyclodextrin Cla<strong>th</strong>rate Complex<br />

Ultra-High Resolution in IH Spectra at 500 MHz:<br />

Chlorine Isotope Effects<br />

Di-13C Labeling: A Means to Measure 12C-<br />

13C Isotopic Equilibria in <strong>th</strong>e 2-Norbornyl<br />

Cation<br />

Dynamic Parameters from Nonselectively Generated<br />

1D Exchange Speclra<br />

Calibrated Decoupling of Tightly-Coupled Concentric<br />

Surface Coils for In Vivo NMR<br />

* Location Numbering Scheme: M for Monday, F for Firelight Forum, K for<br />

Kiln followed by <strong>th</strong>e Poster number. Boldfaced type for featured posters.


1MF59<br />

MF61<br />

MF63<br />

MF65<br />

MF67<br />

MF69<br />

MF71<br />

MF73<br />

MF75<br />

MF77<br />

MF79<br />

MK01<br />

MK03<br />

MK05<br />

MK07<br />

MK09<br />

MKll<br />

presenter<br />

Briggs, R. W.<br />

Brown, T. R.<br />

Dixon, T.<br />

Garwood, M.<br />

Schmalbrock, P.<br />

Keller, P. J.<br />

Lowe, I. J.<br />

Mateescu, G. D.<br />

Matsui, S.<br />

Miller, J. B.<br />

Warren, W. S.<br />

Title<br />

The Cone Coil - An RF Gradient Coil for Spatial<br />

Encoding Along <strong>th</strong>e B 0 Axis in Rotating Frame<br />

Imaging Experiments<br />

An Imaging Me<strong>th</strong>od of Shimming for Spectroscopy<br />

Non-Invasive Spin Labeling of Blood by Adiabatic<br />

Fast Passage<br />

NMR Imaging wi<strong>th</strong> Extremely Inhomogeneous B 1<br />

Fields<br />

Magnetic Resonance Imaging wi<strong>th</strong> Phase-Modulated<br />

Stored Waveforms<br />

Double Quantum Filtered NMR Imaging: Progress<br />

Toward Metabolite Specific Images<br />

A Design of Homogeneous Self-Shielding Gradient<br />

Coils<br />

Oxygen- 17 Magnetic Resonance Imaging (OMR.I)<br />

NMR Imaging Using Circular Signals in <strong>th</strong>e Spatial<br />

Frequency Domain<br />

NMR Imaging of Solids wi<strong>th</strong> a Surface Coil<br />

Imaging and In Vivo Spectroscopic Applications of<br />

Computer Optimized Pulse Sequences<br />

Baum, J. NMR Studies of ct-Lactalbumin: Char-<br />

acterization of a Partially Unfolded State<br />

Borgias, B. A.<br />

Davis, D. G.<br />

Fesik, S. W.<br />

Takegoshi, K.<br />

Poulsen, F. M.<br />

Oligonucleotide Structure Ref'mement Based on<br />

Quantitative 2DNOE Spectra<br />

Internuclear Distances and Correlation Times from<br />

Transverse and Longitudinal Cross-Relaxation<br />

Rates<br />

Improvements of <strong>th</strong>e 2-D Transferred NOE Experiment<br />

and Application in <strong>th</strong>e Conformational Analysis of<br />

Inhibitors Bound to CMP-KDO Syn<strong>th</strong>etase<br />

A 2D-Exchange Separated Local Field (EXSLF)<br />

Experiment<br />

The Structure of <strong>th</strong>e Subtilisin Inhibitor 2 from Barley<br />

Determined by 1H NMR Spectroscopy, Distance<br />

Location Numbering Scheme: M for Monday, F for Firelight Forum, K for<br />

Kiln followed by <strong>th</strong>e Poster number. Boldfaced type for featured posters.


MK13<br />

MK15<br />

MK17<br />

MK19<br />

MK21<br />

MK23<br />

MK25<br />

MK27<br />

MK29<br />

MK31<br />

MK33<br />

MK35<br />

MK37<br />

MK39<br />

MK41<br />

Presenter<br />

Holak, T. A.<br />

Rooney, W. D.<br />

Wang, C.<br />

Yu, C.<br />

Zuiderweg, E. R. P.<br />

Sklenkar, V.<br />

Ackerman, J. L.<br />

Nelson, S. J.<br />

Darba, P.<br />

Hoch, J. C.<br />

Craig, E. C.<br />

Stephens, R. L.<br />

Bermel, W.<br />

Ohuchi, M.<br />

Bowers, C. R.<br />

Title<br />

Geometry Calculations and Restrained Molecular<br />

Dynamics<br />

2-D NMR - Pseudoenergy Approach to <strong>th</strong>e Three-<br />

Dimensional Structure of Acyl Carrier Protein<br />

23Na MR-Invisibility in Living Systems: 2D<br />

Multiple Quantum NMR and Nutation Dimension<br />

Effects<br />

Structures of DNA Oligomers Determined by 2D NMR<br />

and Distance Geometry Techniques<br />

Sequential Individual IH NMR Resonance<br />

Assignments of Cardiotoxin HI from Formosan<br />

Cobra Venom<br />

Aspects of Protein Structure Determinations wi<strong>th</strong> NMR<br />

Water Suppression Techniques for <strong>th</strong>e Generation of<br />

Pure Phase Two-Dimensional NMR Spectra<br />

Optimization of Quantitative Performance of Spectral<br />

Analysis by Minimal Sampling<br />

Quantitation of 1-D Spectra wi<strong>th</strong> Low Signal to Noise<br />

Ratio<br />

ANALYS2D - Graphics Software for Processing and<br />

Analysis of 2D NMR Data<br />

Symmetry Recognition Applied to Two Dimensional<br />

1H NMR Spectra of Peptides and Proteins<br />

DISPA-Based Rapid Automated Phasing of FT-NMR<br />

Spectra<br />

Networking and Automation in <strong>th</strong>e High-Volume<br />

Laboratory<br />

Improvement of Inverse Correlation Experiments by<br />

Shaped Pulses<br />

A Partial Excitation Me<strong>th</strong>od in Two-Dimensional<br />

Nuclear Magnetic Resonance Spectroscopy Using<br />

a Tailored Pulse Having a Sinc Function Shape<br />

Parahydrogen and Syn<strong>th</strong>esis Allows Dramatically<br />

Enhanced Nuclear Alignment<br />

* Location Numbering Scheme: M for Monday, F for Firelight Forum, K for<br />

Kiln followed by <strong>th</strong>e Poster number. Boldfaced type for featured posters.


0.* Presenter<br />

MK43 Boyd, J.<br />

MK45 Jue, T.<br />

MK47 Pearson, G. A.<br />

Mechanisms of Coherence Transfer in Liquids:<br />

Antiphase and Inphase Transfer<br />

Simultaneously Observing <strong>th</strong>e Homonuclcar and<br />

Hctcronuclear Edited Signals wi<strong>th</strong>out an X<br />

Nucleus Dccouplcr<br />

An Improved Chortle Pulse Sequence<br />

* Location Numbering Scheme: M for Monday, F for Firelight Forum, K for<br />

Kiln followed by <strong>th</strong>e Poster number. Boldfaced type for featured posters.


MFI<br />

FLOW NMR STUDIES OF SUPERCRITICAL FLUIDS<br />

by<br />

L. Allen*, T. Glass, and H.C. Dorn<br />

Department of Chemistry<br />

Virginia Polytechnic Institute<br />

And State University<br />

B1acksburg, Virginia 24061<br />

PH (703) g61-5953<br />

Supercrltlcal (SC) fluids (e.g, CO 2) have become increasing important in<br />

chromatographic separations. The physical characteristics of <strong>th</strong>ese dense<br />

gases (e.g., hlgh density and low viscosity) a11ow studies of different<br />

dynamic flow patterns. That is, It is readily possible to vary pressure,<br />

temperature, and flow rates for SC fluids, <strong>th</strong>ereby, allowing studies of flow<br />

patterns ranging from laminar to turbulent flow. In addition, previous<br />

studies in our laboratory I allow accurate ma<strong>th</strong>ematical modeling of a given<br />

flow pattern provtded <strong>th</strong>at spin lattice relaxation (T1) data is known. To<br />

<strong>th</strong>is end, we have also developed techniques for conveniently measuring (T1'2)<br />

tn flowing liquids.<br />

It should also be noted <strong>th</strong>at supercritical fluids are potentially useful<br />

for studying quadrupolar nuclei (e.g., 14N and 170) and significant<br />

enhancements in resolution are feasible. That Is, <strong>th</strong>e lower viscosities of SC<br />

fluids (and corresponding change in correlation times, FC) reduce <strong>th</strong>e<br />

efficiency of quadrupolar relaxation as recently reported 2.<br />

In <strong>th</strong>is presentation, we wlll report 200 MHz IHNMR data (including T 1<br />

relaxation times) for several compounds in flowing supercritical liquids.<br />

Also various SC flow patterns will be presented and compared wi<strong>th</strong> normal<br />

liquid results.<br />

1. James F. Haw, Ph.D. Thesis, Virginia Tech, (1982).<br />

2. Robert, J.M.; Evtlta, R.F.J. Am. Chem. Soc. (1984), 107,<br />

3733.


MF3- POSTERS<br />

NMR SPECTROSCOPY BELOW 1K<br />

Oded Gonen*, P. Kuhns, P. C. Hammel and J. S. Waugh<br />

Department of Chemistry<br />

Massachusetts Institute of Technology<br />

Cambridge, Massachusetts 02139<br />

L. Boltzmann tells us <strong>th</strong>at large (>104 ) gains in NMR sensitivity can be<br />

obtained by lowering <strong>th</strong>e temperature to ~YbBo/k, a few millikelvin. We will<br />

present a selection of results obtained in pursuit of <strong>th</strong>is goal, to illustrate<br />

<strong>th</strong>e following points:<br />

>T1, previously expected to be astronomically large, is quite acceptably<br />

short in powdered samples immersed in liquid 3He.<br />

>Signals are indeed large: sometimes nearly a volt directly from <strong>th</strong>e<br />

probe. Monolayers of adsorbed species give strong spectra in a single shot.<br />

mometer.<br />

>The shape of <strong>th</strong>e spectrum provides a convenient self-calibrating <strong>th</strong>er-<br />

>The usual FT relation between <strong>th</strong>e FID and <strong>th</strong>e spectrum is modified at<br />

low temperatures.<br />

>Spin-spin relaxation is sometimes anomalously slow.


MF5<br />

]dULTIPI, E-QUANT1JN SPECTROSCOPY OF BIOLOGICAL SODIUM<br />

James pelutr" tad John S. Leigh. Jr.<br />

Department of" Biochemistry and Biophysics<br />

University of Pennsylvania<br />

Philadelphia, Pennsylvania 19104-6089<br />

In many systems of biological interest, <strong>th</strong>e transverse relaxation of sodium-23 is<br />

<strong>th</strong>e sum of (at least) two expontatiab. Biexponential relaxation occurs when<br />

interactions between <strong>th</strong>e nuclear electric qusdrupole moment and fluctuating electric<br />

field gradients at sodium binding sites cause <strong>th</strong>e "outer" (m - i3/2 ~ m -~1/2)<br />

trtasitions of <strong>th</strong>e spin-3/2 sodium-23 nucleus to relax fester <strong>th</strong>an <strong>th</strong>e "central"<br />

( m--1/2 +. re-I/2) transition. Ve have demonstrated <strong>th</strong>at biexponentially-relszed<br />

sodium can be pessased <strong>th</strong>rough a state of deuble-qutatum coherence by • double-<br />

qutatum filter (1). The filter places <strong>th</strong>e two relaxation components in antiphsse, tad<br />

yields • signal proportional to <strong>th</strong>e difference between <strong>th</strong>e two components at <strong>th</strong>e end of<br />

<strong>th</strong>e filter preparation time.<br />

For on-resontace biexponen<strong>th</strong>dly-relaxed sodium in an isotropic environment.<br />

<strong>th</strong>e detected signals for single 90" pulses tad <strong>th</strong>e phase-cycled INADEQUATE double-<br />

quantum filter ( 90" -T/2 - 180" - X/2 - qO" - 8 - 90" - acquire) are. respectively:<br />

s(t)me-pus.e" MO (1/5) (3 exp(-t/T~) ,2 exp(-t/T2.)) Ill<br />

s(t)liltm,ed - M 0 (3/20) (ezp(-~/T2f) - exp(-~/T28)) exp(-SdqS)<br />

• (exp(-t/T2f) - exp(-t/Tas)) 12]<br />

Here T2f is <strong>th</strong>e "fast" T 2 of <strong>th</strong>e "outer" transitions. Tax is <strong>th</strong>e "siov" T 2 of <strong>th</strong>e "central"<br />

transition. Sdq is <strong>th</strong>e transverse relaxation rue of rtak-two deuble-qutatum coherence.<br />

ud ld 0 is <strong>th</strong>e equilibrium longitudinal sns41netization.<br />

Because <strong>th</strong>e coherence-trtasi'er experiment is sensitive to differences, ra<strong>th</strong>er<br />

<strong>th</strong>an sums, of <strong>th</strong>e biexpenential decay, it allows more accurate measurement of<br />

relaxation rates, Indeed. by varying <strong>th</strong>e Utter preparation time. <strong>th</strong>e relaxation rate of<br />

<strong>th</strong>e "outer" transitions can be indirectly measured (1) even if <strong>th</strong>eir decay is fsuter <strong>th</strong>an<br />

<strong>th</strong>e spectrometer deadtimeT<br />

Multiple-qutatum ~ may alloy non-invMive discrimination among pools of<br />

sodium in different physiological compartments. In • laboratory cell suspension, where<br />

only <strong>th</strong>e intrsceUuhtr sodium relaxed biexponentislly, we have recently demonstrated<br />

selective detection of intrscelluiar sodium wi<strong>th</strong> • double-qutatum filter (2). In more<br />

complex biologics, systems, <strong>th</strong>e technique of two-dimensional multiple-qutatum<br />

spectroscopy promises to aid in elucidating bo<strong>th</strong> <strong>th</strong>e distribution of sodium among<br />

dilTerent physiological compartments, and <strong>th</strong>e nature of <strong>th</strong>e spin Hamiltenian in each.<br />

by highlighting any static qusdrupoiar splittings or dynamic frequency shifts (3).<br />

Finally, application to o<strong>th</strong>er biologically important spin-3/2 nuclei is possible.<br />

1. j. pek~ and J. S. Leigh. Jr.. J. ~n. Rosen. 69.'582 (1986).<br />

2. J. pekar. P. F. Rtash.v. and J. S. Leigh, Jr., J. ~n. Rosen., In Press. <strong>1987</strong>.<br />

3. G. Jscard. S. Wimperis, tad G. Bodenhausen, J. Chem. Phys. 85.~2S2 (1986).


MF7<br />

slV NMR: A NEW PROBE OF METAL ION BINDING<br />

IN METALLOPROTEINS<br />

Alison Butler~ Michael Danz|tz~ and Hel]mut Eckert*<br />

Department o[ Chemistry, University o[ CalJ[ornia at Santa Barbara and Division o[<br />

Chem~try and ChemJca/EnE/neering, Ca~/ornia/nstitute o[ TechnoloEy<br />

High detection sensitivity due to a large magnetic moment, high natural abun-<br />

dance (99.76 ~) and rapid quadrupolar relaxation in solution render 5iV one of <strong>th</strong>e<br />

most favorable nuclei for NIVIR studies. In addition, <strong>th</strong>e 51V NMR chemical shifts are<br />

extremely sensitive to changes in <strong>th</strong>e nature and <strong>th</strong>e symmetry of <strong>th</strong>e ligand coor-<br />

dination, <strong>th</strong>ereby providing an excellent diagnostic tool for detailed investigations of<br />

vanadium(V) bonding environments. However, in spite of <strong>th</strong>ese advantageous features<br />

and <strong>th</strong>e fact <strong>th</strong>at vanadium is widely recognized as a biologically important element,<br />

no 51V NMR data relating to vanadium bound to proteins have been published in<br />

<strong>th</strong>e literature. In <strong>th</strong>is poster, we report <strong>th</strong>e first 5]V NMR study of a V(V)-protein<br />

complex: V(V) 2-human transferrin.<br />

The 11.7T 51V NMR spectrum of a solution containing 2 equivalents of vanadate<br />

per protein is characterized by two partly resolved resonances at -529.5 and -531.5<br />

ppm (vs. VOCI3) wi<strong>th</strong> a total linewid<strong>th</strong> of 420 Hz. Linewid<strong>th</strong>s and chemical shifts are<br />

independent of concentration (range 10 -4 to 10-3M), pH (5-9), nature of <strong>th</strong>e buffer<br />

solution, and <strong>th</strong>e presence of excess free vanadate. On <strong>th</strong>is basis we assign <strong>th</strong>ese reso-<br />

nances to protein-bound vanadium which is present in two chemically distinct binding<br />

sites and which is in <strong>th</strong>e limit of slow metal ion exchange on <strong>th</strong>e NMR timescale (2.5,<br />

10 -4 s). Absolute intensity measurements indicate <strong>th</strong>at <strong>th</strong>e protein-bound vanadium<br />

is in <strong>th</strong>e slow-motion limit (wrc >> I), and <strong>th</strong>at only <strong>th</strong>e central (1/2 --* -1/2) tran-<br />

sition is observed. In consonance wi<strong>th</strong> <strong>th</strong>is interpretation, measurements at different<br />

magnetic field streng<strong>th</strong>s reveal <strong>th</strong>e presence of second-order frequency shifts. Several<br />

examples of <strong>th</strong>e use of 51V NMR to monitor chemical modifications at <strong>th</strong>e binding<br />

site of V(V)2-human transferrin are discussed.


MF9<br />

NMR OF XENON ABSORBED IN SOLID POLYMERS<br />

A PROBE OF THE AMORPHOUS STATE<br />

Thomas R. Stengle<br />

Dept. of Chemistry, Univ. of Massachusetts, Amherst, MA 01003<br />

Kenne<strong>th</strong> L. Williamson*<br />

Dept. of Chemistry, Mount Holyoke College, So. Hadley, MA 01075<br />

Gaseous xenon is readily taken up into <strong>th</strong>e amorphous regions of<br />

solid polymers. In <strong>th</strong>is state <strong>th</strong>e 12eXe spectrum can be easily<br />

obtained. In earlier work we have shown <strong>th</strong>at <strong>th</strong>e 120Xe resonance<br />

is exceptionally sensitive to <strong>th</strong>e nature of its surroundings,<br />

and <strong>th</strong>at it can be used to probe <strong>th</strong>e structure of liquids and<br />

lipid bilayers.1 Here we report on its application to <strong>th</strong>e<br />

amorphous regions of solid polymers. When contained wi<strong>th</strong>in low<br />

density polye<strong>th</strong>ylene, <strong>th</strong>e chemical shift of xenon is ca. 200<br />

ppm downfield from <strong>th</strong>e pure gas. The NMR lines are broad, and<br />

<strong>th</strong>eir shape is especially sensitive to <strong>th</strong>e surrounding<br />

structure. In particular, <strong>th</strong>e glass transition of polye<strong>th</strong>yl-<br />

me<strong>th</strong>acrylate is clearly observed by its effect on bo<strong>th</strong> chemical<br />

shift and lineshape of <strong>th</strong>e xenon signal. The application of<br />

xenon NMR to several polymers will be discussed.<br />

IK. W. Miller, N.V. Reo, A. J. M. Schoot Uiterkamp, D. P.<br />

Stengle, T. R. Stengle and K. L. Wlliamson, Proc. Natl. Acad.<br />

Sci. USA, 78, 4946 (1981).


MF11<br />

TELLURI~-I~5 AND CADMIUM-Ill NMR STUDY OF BONDING PROPERTIES<br />

OF Cd(l-x)Zn(x)Te SEMICONDUCTORS<br />

K. Beshah, D. Zamir, P. Beola, P. A. Wolff, R. G. Griffin<br />

G<br />

Francis Bitter National Magnet Laboratory<br />

Massachusetts Institute of Technology<br />

Cambridge. MA 02139<br />

The ternary alloy Cd(1-x)Zn(x)Te has a zinc blend structure<br />

whose properties are dependent on <strong>th</strong>e relative composition x.<br />

Even<strong>th</strong>ough elaborate <strong>th</strong>eoretical calculations have been done on<br />

<strong>th</strong>ese materials,experimental verifications are scarce. Recently<br />

EXAFS has been used to verify <strong>th</strong>e bimodal distribution of bond<br />

leng<strong>th</strong>s in similar alloys. X-Ray diffraction teohnlque averages<br />

over many unit cells which makes it difficult to probe looallzed<br />

properties.<br />

We have applied solid state NMR techniques to determine<br />

first, second, and <strong>th</strong>ird nearest neighbors effect on tellurium<br />

and o~Imium nuclei from analysis of chemical shifts and linewid<strong>th</strong>s<br />

of <strong>th</strong>e NMR spectra for various compositions, x. From <strong>th</strong>ese results<br />

we were able to draw conclusions about charge transfer between<br />

various atoms,<strong>th</strong>e relation between change in bond leng<strong>th</strong> and<br />

chemical shift as a function of x. and existence of clustering.<br />

The later was determined by comparing intensities of experimental<br />

data to <strong>th</strong>eoretically calculated spectra assuming random<br />

distribution.


MF13<br />

4=Ca NMR In The Solid State<br />

S. D. Kennedy, S. Swanson, S. Ganapa<strong>th</strong>y, R. G. Bryant<br />

Department of Biophysics, University of Rocheste~<br />

Rochester, New York 14642<br />

Calcium ion like o<strong>th</strong>er group IIA metals has a significant<br />

nuclear electric quadrupole moment <strong>th</strong>at limits <strong>th</strong>e resolution<br />

possible in solution phase NMR. The poor resolution becomes<br />

Norse when <strong>th</strong>e ion interacts wi<strong>th</strong> large ligands such as<br />

proteins which provide a large increase in <strong>th</strong>e correlation<br />

time for <strong>th</strong>e line broadening interactions. The dynamical<br />

broadening may be defeated in <strong>th</strong>e solid, but o<strong>th</strong>er broadening<br />

interactions remain <strong>th</strong>at may be defeated by application of<br />

<strong>th</strong>e appropriate rf fields. The price is signal to noise~<br />

since in such odd integral spin spectra narrowed by strong<br />

proton decoupling and rapid sample rotation at <strong>th</strong>e magic<br />

angle, <strong>th</strong>e central transition is observed, but usually not<br />

<strong>th</strong>e o<strong>th</strong>ers. The signal to noise may be improved<br />

significantly by exploiting magnetization transfer from <strong>th</strong>e<br />

protons. Since <strong>th</strong>e ratio of <strong>th</strong>e magnetogyric ratios is<br />

14.86, <strong>th</strong>e ma>:imum gain is significant. We have observed CP-<br />

MASS spectra of 4=Ca and found <strong>th</strong>at not only is <strong>th</strong>e<br />

e~:periment possible, but <strong>th</strong>e spectra obtained hold promise<br />

for excellent resolution among different calcium sites. This<br />

poster presents representative CP-MASS calcium spectra, and<br />

<strong>th</strong>e conditions required to obtain <strong>th</strong>em. Since <strong>th</strong>e contact<br />

times required for maximum signal are long, and <strong>th</strong>e effective<br />

gain in <strong>th</strong>e signal streng<strong>th</strong> for <strong>th</strong>e rare spin may be severely<br />

limited by <strong>th</strong>e decay of <strong>th</strong>e proton magnetization in <strong>th</strong>e<br />

rotating frame.


MF15<br />

PHOSPHORUS POISONING OF THE AUTO EMISSIONS<br />

CATALYTIC CONVERTER STUDIED BY 3xp NMR<br />

K. R. Carduner* and R. O. Carter III<br />

Research Staff, Ford Motor Company, Dearborn, Michigan 48121<br />

ABSTRACT<br />

Magic Angle Spinning 31p NNR spectroscopy is an informative<br />

technique for <strong>th</strong>e identification of solid state phosphates. The<br />

technique is applied to study <strong>th</strong>e extent and chemistry of<br />

phosphorus poisoning of <strong>th</strong>e <strong>th</strong>ree-way catalytic converter (TWC)<br />

used to control auto emissions. Al<strong>th</strong>ough it is well-known <strong>th</strong>at<br />

<strong>th</strong>e source of phosphous is zinc dialklydi<strong>th</strong>iophosphate (ZDPT) oil<br />

additive, <strong>th</strong>e chemistry of catalysts deactivation is only<br />

incompletely understood and, as reveiled by <strong>th</strong>e NMR, apparently<br />

quite complex. NNR of bo<strong>th</strong> used and fresh catalysts indicates<br />

<strong>th</strong>at phosphorus is extraneous to <strong>th</strong>e fresh catalyst and associated<br />

wi<strong>th</strong> <strong>th</strong>e reduced catalytic activity of <strong>th</strong>e aged converter. At<br />

least <strong>th</strong>ree different types of phosphorus compounds are observed<br />

and identified by <strong>th</strong>e parameters of <strong>th</strong>e isotropic chemical shift<br />

and chemical shift anisotropy as derived from <strong>th</strong>e envelope of<br />

spinning sidebands. An overview of isotropic chemical shifts and<br />

chemical shift anisotropies of condensed phosphates is also<br />

presented.<br />

daytime phone 313-337-5454


MFI7<br />

A DOUBLE QUANTUM FILTER FOR ROTATING SOLIDS<br />

AND SOME OBSERVATIONS ON LABELLING IN SOLIDS<br />

William L. Earl" and Beat H. Meier t<br />

Los Alamos National Laboratory<br />

Mail Stop C345<br />

Los Alamos, New Mexico 87545<br />

For several years we have been investigating <strong>th</strong>e use of 13C labelling in solid samples.<br />

In our studies of multiple quantum coherence in solids, it occurred to us <strong>th</strong>at it would<br />

be interesting to use a solid state equivalent of <strong>th</strong>e INADEQUATE experiment to trace<br />

carbon connectivities. The difficulty wi<strong>th</strong> <strong>th</strong>is experiment is <strong>th</strong>at <strong>th</strong>e dipole coupling,<br />

used to generate <strong>th</strong>e double quantum coherence, changes sign upon sample rotation. Last<br />

year we demonstrated a pulse sequence which will generate and detect multiple quantum<br />

coherences in <strong>th</strong>e proton NMR of adamantane wi<strong>th</strong> MAS. The logical extension of <strong>th</strong>at<br />

experiment is a double quantum filter for 13C NMR of a rotating solid.<br />

We will demonstrate <strong>th</strong>e pulse sequence for such a double quantum filter. Since such a<br />

filter selects for resonances wi<strong>th</strong> a homonuchar dipole coupling, we run into <strong>th</strong>e problem<br />

of commutation of <strong>th</strong>e dipole coupling tensor wi<strong>th</strong> <strong>th</strong>e chemical shift tensor, a problem<br />

<strong>th</strong>at has been addressed by Maricq and Waugh 1. We will show several 13C spectra which<br />

demonstrate distortions in <strong>th</strong>e NMR spectrum as a function of <strong>th</strong>e extent of overlap of <strong>th</strong>e<br />

shift tensors of <strong>th</strong>e dipolar coupled resonances.<br />

1. M.M. Maricq and J.S. Waugh, J. Chem. Phys. 70, 3300 (1979).<br />

t Present Address: Laboratorium ffr Physikalische Chemie, ETH-Zentrum, 8092 Zfirich,<br />

Switzerland.


MFI9<br />

AN EFFICIENT STATOR/ROTOR ASSEMBLY<br />

FOR MAGIC ANGLE SPINNING I~R<br />

by<br />

Yt Jtn Jtang .1, Warner R. Woolfenden 1, Donald W. Alderman 1,<br />

Charles L. Rayne 1, Rona]d J. Pugmire 2, and David M. Grant 1<br />

(1) Department of Chemistry<br />

(2) Department of Fuels Engineering<br />

University of Utah<br />

Salt Lake City, Utah ~I12<br />

ABSTRACT<br />

A newlydesigned stator assembly for cylindrical spinners used in<br />

magic angle spinning nuclear magnetic resonance experiments is<br />

described. Separate driving and bearing gas chambers allow variable<br />

and stable spinning speeds and <strong>th</strong>ts design permits easy starting and<br />

stopping of <strong>th</strong>e rotor. Isolation of <strong>th</strong>e chambers is achieved wi<strong>th</strong> <strong>th</strong>e<br />

application of pressure screws ra<strong>th</strong>er <strong>th</strong>an o-rings or glue lines to<br />

avoid leakage at htgh gas pressures. The overall dimensions are opti-<br />

mal to facilitate easy assembly. Some significant modifications have<br />

been made to an earlter spinner design. These improvements gtve<br />

better efficiency and concentricity of <strong>th</strong>e spinner. Applications are<br />

illustrated wi<strong>th</strong> carbon-13 CP/MAS spectra carried out at different<br />

rotor spinning rates.


MF21<br />

SOLID-STATE 13C AND 15N NMR STUDIES OF CROSSLINKING IN<br />

BACTERIAL CELL WALLS<br />

Joel R. Garbow*<br />

Life Sciences NMR Center<br />

Monsanto Company<br />

St. Louis, 140 63198.<br />

Jacob Schaefer<br />

Department of Chemistry<br />

Washington University<br />

St. Louis, 140 63130.<br />

The cell walls of many Gram-positive bacteria are composed of glycan<br />

backbones wi<strong>th</strong> attached short peptide stems. Crosslinks can form<br />

between amino acids on adjacent peptide stems, contributing to <strong>th</strong>e<br />

structural integrity of <strong>th</strong>e cell wall; We are using cross-polarization<br />

magic-angle spinning 13C and 15N NMR to measure <strong>th</strong>e extent and mobility<br />

of peptidoglycan crosslinks in <strong>th</strong>e cell wall of <strong>th</strong>e bacterium Aerococcus<br />

viridans. In lyophillzed samples, we use double cross-polarization<br />

NMR,a technique which detects quantitatively 13C-15N chemical bonds,<br />

to observe directly <strong>th</strong>e crosslink. Motions of <strong>th</strong>e protein backbone<br />

and of <strong>th</strong>e crosslink site in bo<strong>th</strong> lyophilized and wet-cell samples<br />

are measured <strong>th</strong>rough measurements of NH dipolar and 15N chemical-shift<br />

tensors.<br />

The partial collapse of dipolar and chemical-shift tensors for peptide<br />

NH and for <strong>th</strong>e amide NH at cell-wall crossllnk sites, of intact lyophi-<br />

lized A. vlrldans cells, indicate NH-vector root-mean-square angular<br />

fluctuations of 23 °. This result is consistent wi<strong>th</strong> <strong>th</strong>e local mobility<br />

calculated in typical psec-regime computer simulations of protein<br />

dynamics in <strong>th</strong>e solid state. The experimental root-mean-square angular<br />

fluctuations for bo<strong>th</strong> types of NH vectors increase to 37 ° for viable<br />

wet cells at I0 ° C. The similarity in mobilities for bo<strong>th</strong> general<br />

protein and cell-wall peptidoglycan suggests <strong>th</strong>at <strong>th</strong>e additional motion<br />

in wet cells does not involve independent local motions of individual<br />

cell components.


MF23 - POSTERS<br />

NMR INVESTIGATIONS OF ATOMIC MICROSTRUCTURE<br />

IN AMORPHOUS SEMICONDUCTORS<br />

Q<br />

Karen K. Gleason , Mark A. Petrich, and Jeffrey A. Reimer,<br />

.Department of Chemical Engineering, University of California,<br />

Berkeley, CA 94720-9989.<br />

The microstructure of amorphous semiconductors has important<br />

implications for <strong>th</strong>eir electronic properties. Nuclear magnetic<br />

resonance (NMR) can examine <strong>th</strong>e microstructure of <strong>th</strong>ese materials<br />

on an atomic scale. Previous NMR results have indicated <strong>th</strong>at <strong>th</strong>e<br />

hydrogen in <strong>th</strong>ese materials exists bo<strong>th</strong> as isolated hydrogen atoms<br />

and as clusters of hydrogen. Using Multiple Quantum NMR, a<br />

technique which is able to "count" <strong>th</strong>e number of hydrogen atoms in a<br />

cluster, we have studied <strong>th</strong>e effects of deposition temperature,<br />

dopant atoms, and annealing on <strong>th</strong>e clustering of hydrogen in<br />

amorphous silicon. Our results indicate <strong>th</strong>at electronic device<br />

quality amorphous silicon films contain small clusters of<br />

approximately six hydrogen atoms, while nondevice quality films<br />

contain larger hydrogen atom clusters. We have also extended <strong>th</strong>e<br />

multiple quantum NMR technique to study a series of amorphous<br />

silicon carbide alloys, systematically varied in carbon content. We<br />

have found <strong>th</strong>at small amounts of carbon decrease <strong>th</strong>e total hydrogen<br />

content of <strong>th</strong>e alloy, but increase hydrogen clustering. Carbon-13<br />

and silicon-29 magic-angle spinning NMR spectra, taken wi<strong>th</strong> and<br />

wi<strong>th</strong>out proton decoupling, allow us to probe local bonding<br />

configurations. These studies have shown <strong>th</strong>at bo<strong>th</strong> sp 2 and sp 3<br />

carbon bonding environments are important in <strong>th</strong>ese materials. It is<br />

especially interesting <strong>th</strong>at nearly all <strong>th</strong>e hydrogenated carbon are<br />

in <strong>th</strong>e sp 3 bonding configuration.<br />

By comparing our NMR results wi<strong>th</strong> data from o<strong>th</strong>er analytical<br />

techniques such as infrared and optical absorption spectroscopy,<br />

Ru<strong>th</strong>erford backscattering, and conductivity measurements, we hope<br />

to elucidate <strong>th</strong>e relationships between deposition chemistry, atomic<br />

microstructure, and optoelectronic properties of <strong>th</strong>is<br />

technologically important class of materials.<br />

Supported by NSF grant DMR-8304163.


MF23<br />

CESIUM-133 SOLID STATE NMR OF ALKALIDES AND ELECTRIDES<br />

Lauren E. Hill," Steven B. Dawes and James L. Dye, Department of<br />

Chemistry, Michigan State University, East Lansing, HI 48824<br />

Alkalldes and electrldes are crystalline salts In which metal<br />

cations are complexed wi<strong>th</strong> cyclic polye<strong>th</strong>ers or polyamines and <strong>th</strong>e<br />

resultant anions are ei<strong>th</strong>er alkali metal anions or trapped electrons.<br />

Solid state NMR spectroscopy has been extremely useful as a means of<br />

Identlfying a particular compound and as a probe of <strong>th</strong>e types of<br />

interactions between an ion and its environment. For example, NMR<br />

data in combination wi<strong>th</strong> structural data on Cs (18C6)2.e" may be used<br />

to better understand <strong>th</strong>e nature of <strong>th</strong>e trapped electron. The<br />

temperature dependence gives <strong>th</strong>e contact density of <strong>th</strong>e cesium<br />

nucleus. A s~udy of <strong>th</strong>e mixed alkalide-electride salt<br />

Cs (18C6)^.Na e. revealed spectra which consisted of five lines, two<br />

of which are ~ue To Cs (.8C6) 2 In <strong>th</strong>e pure sodide (-61 ppm) and in <strong>th</strong>e<br />

pure electrlde (+73 ppm). The o<strong>th</strong>er <strong>th</strong>ree peaks are evenly spaced<br />

between <strong>th</strong>~ electrlde peak a~d sodlde posltions. Since <strong>th</strong>e structures<br />

of bo<strong>th</strong> Cs (18C6)~-e and Cs (18C6)2.Na are known, a superlattice<br />

which includes ~raered substitution of sodium anions into anionic<br />

sites in <strong>th</strong>e Cs (18C6)p.e- lattice has been postulated$ Ano<strong>th</strong>er<br />

example of <strong>th</strong>e utility-of NMR me<strong>th</strong>ods is <strong>th</strong>e ceside CS C222.Cs- in<br />

which <strong>th</strong>e NMR spectrum consists of two peaks_whlch have been assigned<br />

to an inclusive and exclusive cation. No Cs peak has been observed.<br />

The system probably contains a mixture of crystallltes, one type<br />

having inclusive complexed cations, <strong>th</strong>e o<strong>th</strong>er exclusive complexed<br />

cations. The absence of a Cs signal can be rationalized from <strong>th</strong>e<br />

structure of <strong>th</strong>ls ceside. These are some examples of how NMR<br />

spectroscopy in conjunction wi<strong>th</strong> x-ray crystallography can be used to<br />

investigate <strong>th</strong>e nature of <strong>th</strong>ese compounds.


MF27<br />

MULTINUCLEAR SOLID-STATE NMR STUDIES OF DERIVATIZED SILICA GELS<br />

Robert Zeigler, Greg Quinting, Charle~ E. Bronnimann<br />

and Gary E. Maciel<br />

Department of Chemistry<br />

Colorado State University<br />

Ft. Collins, CO 80523<br />

Solid-state NMR has been demonstrated to be an extremely powerful<br />

technique for probing <strong>th</strong>e structure and dynamics of molecules bound to a<br />

solid surface (1,2). IH, 15N, 29Si and 13C CP/MAS spectra will be pre-<br />

sented for silica gels derivatized wi<strong>th</strong> APTS (aminopropyltrie<strong>th</strong>oxysi-<br />

lane). 13C, 15N, IH (CRAMPS) spectra provide evidence regarding <strong>th</strong>e<br />

nature of <strong>th</strong>e interaction between <strong>th</strong>e amine group of APTS-derivatized<br />

silica gels and <strong>th</strong>e silica gel surface.<br />

13C and 29Si NMR techniques have been used to explore <strong>th</strong>e conforma-<br />

tions and dynamics of dime<strong>th</strong>yloctadecylchlorosilane(C18)-modified silica<br />

gel. The effects of bo<strong>th</strong> C18 surface concentration and <strong>th</strong>e presence of<br />

solvents on <strong>th</strong>e C18 chain dynamics have been explored using TCH and<br />

dipolar dephasing experiments.<br />

IH CRAMPS, 29Si and 13C NMR are being used to study <strong>th</strong>e nature<br />

of <strong>th</strong>e silica surface and silica silylation. Several different species<br />

of protons have been observed on <strong>th</strong>e silica surface and a variety of<br />

instrumental and chemical techniques are being used to characterize <strong>th</strong>e<br />

silica surface.<br />

References<br />

1. Solid State NMR Studies of Aminopropyltrie<strong>th</strong>oxysilane Modified Silica;<br />

G.S. Caravajal, D.E. Leyden, G.E. Maciel, p. 283 in Silanes, Surfaces,<br />

and Interfaces Symposium, D.E. Leyden (ed.) Gordon and Breach Science<br />

Publ. (1986).<br />

2. NMR Studies of cl~-Derivatized Silica Systems; G.E. Maciel, R.C.<br />

Zeigler, R.K. TaTt, p. 413 in Silanes, Surfaces, and Interfaces<br />

Symposium, D.E. Leyden (ed.) Gordon and Breach Science Publ. (1986).


MF29<br />

MAGIC ANGLE SPINNING OF MATRIX ISOLATED REACTIVE INTERMEDIATES<br />

Kurt W. Zilm, Ronald A. Merrill , Marc M. Greenburg, and Jerome A. Berson<br />

Department of Chemistry, Yale University, P.O. Box 66~6<br />

New Haven, Corm 06511<br />

Isolation in inert gas matrices or rigid glasses is widely<br />

"recognized as an invaluable tool for direct spectroscopic investigation<br />

of reactive intermediates. CP/MAS NMR has proven to be a most powerful<br />

technique for studying <strong>th</strong>e structure of amorphous and polycrysta~llne<br />

solids. However, until now combining MAS technology wi<strong>th</strong> matrix<br />

isolation techniques for <strong>th</strong>e study of ground state slnglet reactive<br />

intermediates by NMR has proven to be problematic.<br />

We have developed a CP/MAS probe deslgn which allows rapid transfer<br />

and subsequent magic angle spinning of sealed 5 mm NMR tubes while<br />

maintaining <strong>th</strong>e samples temperature at 77 K. The MAS turbine design is<br />

similar to <strong>th</strong>at reported by Gay in 1984, except <strong>th</strong>at <strong>th</strong>e sample tube<br />

extends 3 cm below <strong>th</strong>e turbine. The maximum spinning rate obtained wi<strong>th</strong><br />

our current implementation of <strong>th</strong>is design is 3 kHz. The spinning is very<br />

stable and remarkably forgiving of imbalances in <strong>th</strong>e tube, bo<strong>th</strong> at <strong>th</strong>e<br />

sample end and at <strong>th</strong>e seal. The unique aspect of <strong>th</strong>is probe design is<br />

<strong>th</strong>e use of separate gas supplies for cooling and spinning <strong>th</strong>e sample.<br />

Unlike previous low temperature MAS designs, <strong>th</strong>is MAS probe allows rapid<br />

transfer of samples prepared outside <strong>th</strong>e probe into <strong>th</strong>e precooled probe<br />

wi<strong>th</strong>out warming <strong>th</strong>e sample or exposing it to <strong>th</strong>e atmosphere. Wi<strong>th</strong> a<br />

probe of <strong>th</strong>is design one can employ typical photochemical or pyrolytic<br />

gas phase deposition techniques for preparing intermediates. Virtually<br />

any ground state slnglet species which can be prepared and is long lived<br />

at 77 K, can now be investigated by CP/MAS NMR.<br />

Using <strong>th</strong>is probe design we have observed <strong>th</strong>e first C-13 CP/HAS NHR<br />

spectrum of a matrix isolated reactive intermediate. The species is <strong>th</strong>e<br />

singlet biradical 3,4-dlme<strong>th</strong>ylenefuran which gives a single resonance at<br />

100ppm relative to TMS for <strong>th</strong>e me<strong>th</strong>ylene carbons. The biradical, which<br />

is deep purple, was prepared by photolysis of <strong>th</strong>e corresponding C-13<br />

labeled(98% at bo<strong>th</strong> me<strong>th</strong>ylene carbons) azo precursor at 77 K in a 2-MTHF<br />

glass. After photolysis <strong>th</strong>e decrease in <strong>th</strong>e intensity of <strong>th</strong>e precursor<br />

peak at 58ppm agrees well wi<strong>th</strong> intensity of <strong>th</strong>e new resonance at 100ppm.<br />

Conclusive assignment of <strong>th</strong>is llne to <strong>th</strong>e biradical can be made on <strong>th</strong>e<br />

basis of <strong>th</strong>is observation, photobleachlng, and chemical trapping<br />

experiments. The presence of <strong>th</strong>e NMIR signal demonstrates directly and<br />

unambiguously <strong>th</strong>e singlet nature of <strong>th</strong>e biradical. Applications to o<strong>th</strong>er<br />

reactive species will also be presented.


MF31<br />

SECOND OBSERVATION OF IH MASS NMR OF LIPIDS AND MEMBRANES;<br />

AND 170 CROSS POLARIZATION OF INORGANIC SOLIDS<br />

by<br />

Eric O1dfleld,* John Bowers, Jeff Forbes ,. Cyn<strong>th</strong>la Husted,<br />

Thomas H. Walter and Xi Shan<br />

University of llllnois at Urbana-Champalgn, 505 Sou<strong>th</strong> Ma<strong>th</strong>ews Avenue,<br />

Urbana, Illlnols 61801, USA<br />

We have obtained very high resolution solid-state IH MASS NMR<br />

spectra of unsonicated liquid crystalline lipid bilayers, and selected<br />

biological membranes (e.g. rod outer sesments). Resolution is as good<br />

as wi<strong>th</strong> sonlcated, single bllayer vesicles. T1s , linewid<strong>th</strong>s, order<br />

parameters and 2D experiments wlll be presented. A typical 2D (NOESY)<br />

experiment on DMPC(I, 2-dimyrlstoyl-sn-glycero-B-phosphocholine) is shown<br />

below, on <strong>th</strong>e left:<br />

• • 4' "q<br />

"'° ~ °<br />

]p, ,. ~,o<br />

~:',. •<br />

| 4 | | 1<br />

PPM FROM TM$<br />

Drug binding and o<strong>th</strong>er studies, will also be outlined.<br />

--I<br />

~mzo<br />

We have also investigated 170 cross polarization in a variety of<br />

inorganic solids. The type of resolution of overlapping second-order<br />

quadrupolar broadened powder patterns achievable in complex inorganic<br />

solids is illustrated by <strong>th</strong>e static and CP results on talc shown above,<br />

on <strong>th</strong>e right.<br />

-an<br />

m


MF33 - POSTERS<br />

INCREASED RESOLUTION FOR PROTON NMR SPECTRA OF SOLID MATERIALS<br />

Thomas G. Neiss and James E. Roberts<br />

Department of Chemistry #6<br />

Lehigh University<br />

Be<strong>th</strong>lehem, PA 18015<br />

Sophisticated multiple-pulse techniques must be used to<br />

obtain "high resolution" proton spectra of most solid<br />

materials, or a single broad peak is observed as a consequence<br />

of <strong>th</strong>e large homonuclear couplings of <strong>th</strong>e proton reservoir.<br />

When Magic Angle Sample Spinning (MASS) is included wi<strong>th</strong> <strong>th</strong>e<br />

multiple-pulse experiment, <strong>th</strong>e typical proton peak wid<strong>th</strong> is<br />

still between 1 and 2 ppm. When several isotropic chemical<br />

shifts are present, <strong>th</strong>e resulting spectrum is often not<br />

interpretable due to significant spectral overlap. Two more<br />

complicated experiments are available for increasing <strong>th</strong>e<br />

resolution obtained in proton NMR spectra of solid materials.<br />

Two-dimensional heteronuclear chemical shift correlation<br />

NMR has been applied to liquids to connect <strong>th</strong>e proton and<br />

carbon chemical shifts <strong>th</strong>rough J couplings. The J couplings<br />

in solids are usually not resolved. However, wi<strong>th</strong> appropriate<br />

implementation during MASS, <strong>th</strong>e 2-D experiment correlates <strong>th</strong>e<br />

proton and carbon chemical shifts, yielding better overall<br />

resolution in <strong>th</strong>e proton dimension, even <strong>th</strong>ough <strong>th</strong>e proton<br />

linewid<strong>th</strong>s are still 1 to 2 ppm.<br />

An alternative to <strong>th</strong>e full two dimensional technique<br />

utilizes selective coherence transfer to observe only specific<br />

spin systems in a one-dimensional experiment. The selective<br />

coherence transfer occurs <strong>th</strong>rough <strong>th</strong>e strong heteronuclear<br />

dipolar interaction between bonded spins, so some protons are<br />

not readily observed wi<strong>th</strong> <strong>th</strong>is technique. The gain in proton<br />

spectrum resolution is comparable to <strong>th</strong>at obtained wi<strong>th</strong><br />

two-dimensional chemical shift correlation, but data<br />

accumulation and processing takes less time. Al<strong>th</strong>ough several<br />

1-D selective experiments might be needed to fully<br />

characterize a molecule, it is still a viable approach in many<br />

situations.<br />

Acknowledgement is made to <strong>th</strong>e donors of <strong>th</strong>e Petroleum<br />

Research Fund for partial support of <strong>th</strong>is work. Supported by<br />

NSF-Solid State Chemistry program grant # DMR-8553275.<br />

Additional support <strong>th</strong>rough <strong>th</strong>e Presidential Young Investigator<br />

program was obtained from Cambridge Isotope Laboratories; Dory<br />

Scientific; General Electric Corporate Research and<br />

Development; General Electric NMR Instruments; IBM<br />

Instruments; Merck, Sharp and Dohme; and Monsanto Company.


MF35<br />

RELAXATION MECHANISMS AND EFFECTS OF MOTION IN NaAISi30 s<br />

LIQUID AND GLASS: A HIGH TEMPERATURE NMR STUDY.<br />

S.-B. Liu, A. Pines (Dept. of Chemistry, University of California,<br />

Berkeley, CA 94720)<br />

*J. F. Stebbins (Dept. of Geology, Stanford University, Stanford, CA 94305)<br />

The dynamics of atomic or "molecular" motion in molten silicates are poorly known<br />

"but are of central importance in <strong>th</strong>e understanding of bo<strong>th</strong> <strong>th</strong>e <strong>th</strong>ermodynamic and tran-<br />

sport properties of <strong>th</strong>ese complex materials. Despite severe technical problems, l~%,I~R<br />

spectroscopy on <strong>th</strong>e liquids <strong>th</strong>emselves is potentially a very powerful and perhaps unique<br />

tool for studying <strong>th</strong>ese dynamics. NMR lineshape mad relaxation time studies of 23Na<br />

and ~Si at temperatures as high as 1200°C have begun to reveal <strong>th</strong>e details of <strong>th</strong>is mo-<br />

tion, and in particular <strong>th</strong>e local dynamical cause of <strong>th</strong>e macroscopic glass transition.<br />

For NaA1Si30 s (corresponding to <strong>th</strong>e mineral albite), all 23Na T 1 data from 600 to<br />

1200°C are above <strong>th</strong>e minimum, indicating <strong>th</strong>e relative high mobility of <strong>th</strong>is "network<br />

modifying" cation. The dominant spin-lattice relaxation mechanism is found to be qua-<br />

drupolar interaction which arises from <strong>th</strong>e sodium ion diffusion. The activation energy is<br />

71-1-3 k J/tool, in close agreement wi<strong>th</strong> <strong>th</strong>e results of electrical conductivity and Na tracer<br />

diffusion data. The correlation time of <strong>th</strong>e Na motion is estimated to be about 8.5x10-11s<br />

at 1100°C. Relatively minor anomalies in T 1 and T 2 for 23Na are seen at <strong>th</strong>e bulk glass<br />

transition temperature, indicating <strong>th</strong>at above T s, some Na motion is correlated wi<strong>th</strong><br />

structural motion of <strong>th</strong>e silicate framework.<br />

In contrast, all T 1 data for 2gSi in <strong>th</strong>e same temperature range are below <strong>th</strong>e<br />

minimum, because of <strong>th</strong>e relative immobility of <strong>th</strong>is "network former". Most<br />

significantly, dramatic changes in <strong>th</strong>e ~Si T 1 slope, and in <strong>th</strong>e relaxation mechanism,<br />

occur at <strong>th</strong>e bulk glass transition temperature, indicating a ra<strong>th</strong>er abrupt increase in <strong>th</strong>e<br />

extent of structural motion at <strong>th</strong>e same point where abrupt changes in <strong>th</strong>ermodynamic<br />

properties occur. Bo<strong>th</strong> dipole-dipole interactions and <strong>th</strong>e chemical shift anisotropy<br />

known from crystals and glasses contribute to <strong>th</strong>e 2QSi spin-lattice relaxation above <strong>th</strong>e<br />

glass transition, but are insufficient to completely account for <strong>th</strong>e observed T 1 values.<br />

Relaxation may <strong>th</strong>erefore involve short lived distortions of <strong>th</strong>e structure which cause<br />

temporary excursions in chemical shift several times greater <strong>th</strong>an <strong>th</strong>ose which can be<br />

quenched into <strong>th</strong>e glass.


MF37<br />

A Unique Me<strong>th</strong>od for <strong>th</strong>e Quantitative Determination of Mixed Liquid<br />

and Solid Phases Using Solid-State NMR Techniques<br />

Evan H. Williams<br />

Varian Associates, 611 Hansen Way, Palo Alto, California 94303<br />

Many apparently solid materials axe, in fact, mixtures of bo<strong>th</strong> solid and liquid<br />

phase components. It is not easy to investigate <strong>th</strong>e morphology of such systems,<br />

particularly in a non-invasivc way. NMR provides such a means for bo<strong>th</strong> solid and<br />

liquid phases, but suffers from a lack of a readily acccssiblc, absolute quantitation.<br />

An NMR technique has been developed <strong>th</strong>at overcomes <strong>th</strong>is problem, allowing<br />

simultaneous observation of bo<strong>th</strong> phases in a manner <strong>th</strong>at allows quantitation. Among<br />

o<strong>th</strong>er possibilities, use of spectral editing allows <strong>th</strong>e separation of <strong>th</strong>e two phases into<br />

separate subspectra. Such subspectra allow <strong>th</strong>e observation of adsorption in <strong>th</strong>e<br />

presence of excess material in a quantitative way. Ano<strong>th</strong>er use of <strong>th</strong>e technique has<br />

been found in <strong>th</strong>e investigation of <strong>th</strong>e kinetics of curing of network polymers 1.<br />

A detailed description of <strong>th</strong>e me<strong>th</strong>odology and its application to a number of<br />

representative systems will be presented.<br />

1p.E.M. Allen, etal, Eur. Polym. J., 22. 549, (1986).


MF39<br />

HIGH RESOLUTION DNP-NMR AND KNIGHT SHIFt SUPPRESSION IN A<br />

ONE DIMENSIONAL CHARGE TRANSFER CONDUCTOR<br />

R. D. Kendrick, H. Seidel? a, D. A. Singel, TM<br />

W. StOcklein, lc* and C. S. Yannoni<br />

IBM Almaden Research Center, San Jose, CA<br />

Over <strong>th</strong>e last few years, a wide variety of magnetic resonance experiments have been<br />

performed on a new class of charge transfer complexes which exhibit high one-dimensional<br />

conductivity (~100 (~2 cm)'l). 2 Since <strong>th</strong>e linewid<strong>th</strong> of <strong>th</strong>e ESR due to <strong>th</strong>e conducting spins<br />

is extremely narrow (~10 milligauss at 9 GHz), proton Overhauser enhancements as high<br />

as 525 have been achieved in <strong>th</strong>is material. 2a<br />

We report here a 13C NMR study of <strong>th</strong>e fluoran<strong>th</strong>enyl (FA) radical cation salt (FA):PF 6.<br />

Using a 60 MHz DNP spectrometer based on a Fabry-.Perot cavity? we have been able to<br />

observe signals from as few as 1016 carbon-13 nuclei in a single scan at room temperature.<br />

The Knight shift of <strong>th</strong>e 13C spins 2c depends on <strong>th</strong>e difference in population between<br />

electron Zeeman levels: <strong>th</strong>us, by saturating <strong>th</strong>e ESR line, we have been able to suppress <strong>th</strong>e<br />

Knight shift. A study of <strong>th</strong>e power dependence of <strong>th</strong>is suppression permits correlation of<br />

<strong>th</strong>e Knight and chemical shifts.<br />

The ramifications of a variety of o<strong>th</strong>er interactions such as <strong>th</strong>e shift of <strong>th</strong>e ESR line due<br />

to saturation wi<strong>th</strong> microwaves (Overhauser shift 2a) or to <strong>th</strong>e proton and fluorine<br />

decoupling fields (Bloch-Siegert shift) will be discussed.<br />

_ --'4-<br />

m -- 2<br />

(FA) 2PF 6<br />

PF 6"<br />

1. Current address: (a) Physics Department, Stuttgart University; b) Chemistry<br />

Department, Harvard University; (c) Physics Department, Bayreu<strong>th</strong> University.<br />

2. (a) W. St0cklein and G. Derminger, Mol. Cryst. Liq. Cryst. 136, 335 (1986) and<br />

references <strong>th</strong>erein; (b) H. Brunner, K. H. Hausser, H. J. Keller and D. Schweitzer,<br />

Solid State Comm. 51,107 (1984); (c) M. Mehring, M. Helmle, D. KOngeter, G. G.<br />

Maresch and S. Demu<strong>th</strong>, Proc. of <strong>th</strong>e Intl. Conf. on Syn<strong>th</strong>etic Metals, ICSM86, Kyoto,<br />

Japan, 1986 (to be published in Syn<strong>th</strong>etic Metals).<br />

3. R.D. Kendrick, H. Seidel, D. A. Singel and C. S. Yannoni (to be published).


MF41<br />

ACETYLCHOLINE RECEPTOR --AGONIST BINDING.<br />

RESULTS FROM SELECTIVE RELAXATION NMR EXPERIMENTS.<br />

Ronald W. Behling °, Tetsuo Yarnane, Gil Navon t,<br />

Michael J. Samrnon, and Lynn W. Jelinski<br />

AT~T Bell Laboratories Murray Hill, New Jersey 07974<br />

t Tel-Aviv University, Israel<br />

Selective proton NMR relaxation mea-~urements were used wi<strong>th</strong> nicotine<br />

titrations to obtain relative binding constants for nicotine, acetylcholine,<br />

muscarine, and carbamylcholine binding to purified acetylcholine receptors from<br />

Torpedo californica. The results show (1) <strong>th</strong>at <strong>th</strong>e binding constants are in <strong>th</strong>e<br />

order acetylcholine > nicotine > carbamyl choline > muscarine; (2) <strong>th</strong>at<br />

selective and non-selective NMR measurements provide a rapid and direct<br />

me<strong>th</strong>od for monitoring bo<strong>th</strong> <strong>th</strong>e specific and non-specific binding of agonists to<br />

<strong>th</strong>ese receptors; (3) <strong>th</strong>at a-bungarotoxin can be used to distinguish between<br />

specific and non-specific binding to <strong>th</strong>e receptor; (4) <strong>th</strong>at <strong>th</strong>e receptor-substrate<br />

interaction produces a large change in <strong>th</strong>e selective relaxation time of <strong>th</strong>e<br />

agonists even at concentrations 100x greater <strong>th</strong>an <strong>th</strong>at of <strong>th</strong>e receptor. This<br />

latter observation means <strong>th</strong>at <strong>th</strong>ese measurements provide a rapid way to<br />

measure drug binding when only small amounts of receptor are available, and<br />

<strong>th</strong>at <strong>th</strong>ey may be useful for determining <strong>th</strong>e conformation of <strong>th</strong>e small ligand in<br />

its bound state.


MF43<br />

DESIGN AND USE OF A PULSE SHAPER FOR HIGH RESOLUTION NMR.<br />

Kermit M. Johnson* and Klaas Hallenga<br />

Michigan State University, Department of Chemistry<br />

East Lansing, MI 48824<br />

Al<strong>th</strong>ough <strong>th</strong>e use of tailored excitation in high resolution NMR has<br />

been suggested on several occasions, <strong>th</strong>e me<strong>th</strong>od has been used only<br />

sporadically due to <strong>th</strong>e poor performance of existing circuitry.<br />

The solution of <strong>th</strong>e Bloch equations for perfect frequency<br />

selective inversion by Hoult et al (I) and <strong>th</strong>e possibility of computer<br />

designed highly selective excitation makes it desirable to have pulse<br />

shaping capability routinely available.<br />

We have implemented a flexible pulse shaping circuit on our<br />

spectrometer (Bruker WM-250 wi<strong>th</strong> Aspect 2000) which will deliver<br />

amplitude and phase modulated pulses. The device uses two IK x 12 bit<br />

buffers feeding two identical 12 bit D/A converters. The rate at<br />

which <strong>th</strong>e waveform is read out of <strong>th</strong>e buffers is controlled by a<br />

variable frequency clock.<br />

The outputs of <strong>th</strong>e DAC's control separately <strong>th</strong>e amplitudes of<br />

quadrature radio-frequency signals which are recombined to form a<br />

shaped pulse which may <strong>th</strong>us vary in bo<strong>th</strong> amplitude and phase.<br />

Additionally, <strong>th</strong>is circuit could be easily modified to perform phase<br />

shifting of <strong>th</strong>e rf pulse after <strong>th</strong>e me<strong>th</strong>od of Sears (2). The device is<br />

easily loadable under computer control wi<strong>th</strong> any desired waveform.<br />

Finally, no spectrometer hardware or software modifications were<br />

required to use <strong>th</strong>e pulse shaper.<br />

Details of <strong>th</strong>e circuitry, test results, and some applications to<br />

ID and 2D NMR experiments will be demonstrated.<br />

(I) M. S. Silver, R. I. Joseph and D. I. Hoult, J. Magn. Res. 59, 347<br />

(198~).<br />

(2) R. E. J. Sears, Rev. Sci. Instrum. 55, 1716 (1984).<br />

a


MF45<br />

THE USE OF D=O AS A MOLECULAR PROBE<br />

IN DETERMINING DNA SOLID STATE PACKING<br />

Rolf Brandes,* David R. Kearns, and Allan Rupprecht7<br />

Department of Chemistry, University of California-San Diego,<br />

La JoUa, CA 92093, rArrhenius Laboratory of Physical<br />

Chemistry, University of Stockholm, Stockholm, Sweden<br />

We have used high resolution =H NMR of DzO to monitor <strong>th</strong>e packing of<br />

hydrated DNA molecules in solids prepared from solution by <strong>th</strong>ree different<br />

me<strong>th</strong>ods: lyophilization, alow evaporation of <strong>th</strong>e water, and wetspinning in alcohol<br />

which produces uniaxially oriented DNA. The two latter me<strong>th</strong>ods resulted in <strong>th</strong>in<br />

films of DNA, which were also broken up to obtain macroscopically isotropic sam-<br />

pies. These five samples all showed different spectral shapes wi<strong>th</strong> different spin-<br />

spin relaxation times Tz,.<br />

Wi<strong>th</strong> lyophilized DNA, <strong>th</strong>e spectral shape can most reasonably be interpreted<br />

in terms of isotropic packing. The evaporation me<strong>th</strong>od produces spectra which are<br />

consistent wi<strong>th</strong> a spontaneous cholesteric ordering of <strong>th</strong>e DNA. The order is<br />

macroscopic, wi<strong>th</strong> <strong>th</strong>e pitch axis perpendicular to <strong>th</strong>e plane onto which <strong>th</strong>e DNA<br />

dried. Even when macroscopic order is not obtained, spin-spin relaxation experi-<br />

ments can be used to determine if <strong>th</strong>e sample consists of local domains wi<strong>th</strong><br />

cholesteric or uniaxial ordering of DNA molecules. For <strong>th</strong>e case of <strong>th</strong>e uniaxially<br />

oriented DNA prepared by wetspinning, a 2-dimensional technique is used to<br />

separate <strong>th</strong>e contributions to <strong>th</strong>e linewid<strong>th</strong> arising from DNA static disorder, mag-<br />

netic inJaomogeneities, and spin-spin relaxation. This separation enables an upper<br />

estimate of <strong>th</strong>e fiber disorder if a Gaussian distribution of <strong>th</strong>e helix axes is<br />

assumed wi<strong>th</strong> a standard deviation of ,,-12 " ^<br />

IBD-NMR spectrum of uniazially oriented DNA.


MF47<br />

SOLID STATE NMR STUDIES OF ISOTOPICALLY LABELED GAMICIDIN A<br />

IN AN ORIENTED LIPID BILAYER<br />

L.K. Nicholson*, F. Moll III, P.V. Ix)Grasso, C.A. Guy, T.A. Cross<br />

Department of Chemistry<br />

and<br />

Institute of Molecular Biophysics<br />

Florida State University, Tallahassee, FI. 32306-3006<br />

2H and ISN isotopic labels have been incorporated into <strong>th</strong>e linear<br />

polypeptide, Gramicidin A by a variety of techniques including bio-<br />

syn<strong>th</strong>esis, chemical peptide syn<strong>th</strong>esis and exchange. The labeled<br />

Gramicidins have been incorporated into lipid bilayers where a dimer<br />

of <strong>th</strong>e polypeptide forms a monovalent cation selective channel across <strong>th</strong>e<br />

syn<strong>th</strong>etic membrane. Some of <strong>th</strong>e samples have been oriented such <strong>th</strong>at<br />

<strong>th</strong>e channel axis is parallel wi<strong>th</strong> <strong>th</strong>e magnetic field. The samples have<br />

been characterized by circular dichroism, differential scanning<br />

calorimetry and NMR.<br />

Solid state NMR experiments are being used to elucidate an atomic<br />

resolution image of bo<strong>th</strong> <strong>th</strong>e dynamics and structure of <strong>th</strong>e channel.<br />

Interpretation of <strong>th</strong>e high resolution spectra of oriented samples has<br />

provided bond orientations wi<strong>th</strong> respect to <strong>th</strong>e channel axis. Analysis<br />

of powder patterns has provided data for <strong>th</strong>e large amplitude motions<br />

of <strong>th</strong>e polypeptide backbone.


MF49<br />

Solid State 2H NMR Studies of Biphenyl in <strong>th</strong>e l~-Cyclodextrin Cla<strong>th</strong>rate Complex<br />

Alan D. Ronemus*, Robert L. Void and Regitze R. Void<br />

Depamnent of Chemistry B-O14, University of California at San Diego, La JoUa, CA 92093<br />

Cyclodexu'ins are cyclic oligosaccharides comprised of D-glucose units connected by alpha-l,4-<br />

glycoside linkages, forming a hydrophobic cavity which readily binds a variety of guest molecules to<br />

make inclusion eomplexesJ The nature of guest motion in such complexes is of interest because<br />

cyclodextrins have been utilized as enzyme models and as stabilizing agents for pharmaceuticals,<br />

pesticides, flavors, and essences. Biphenyl should form a channel cla<strong>th</strong>rate wi<strong>th</strong> I]-cyclodextrin, which is<br />

of particular interest as <strong>th</strong>e guest motion may resemble processes in <strong>th</strong>e core region of <strong>th</strong>ermotropic<br />

liquid crystals. Previous studies of <strong>th</strong>e dynamics of guests in cyclodextrin cla<strong>th</strong>rates in solution have used<br />

EPR spin probes, 2 and high resolution l~'oton and lSC NMR? '4 while in <strong>th</strong>e solid state lSC CP-MAS 5 and<br />

static 2I-I NMR 6 have been employed.<br />

Solid state static 2H NMR is particularly well suited to <strong>th</strong>e study of motional dynamics as powder<br />

lineshapes are sensitive to motional processes wi<strong>th</strong> rates in <strong>th</strong>e range of 103-107 s "-1. Fur<strong>th</strong>er, <strong>th</strong>e<br />

quadrupolar interaction dominates to <strong>th</strong>e extent <strong>th</strong>at o<strong>th</strong>er interactions generally may be neglected, while<br />

being small enough as to be experimentally and <strong>th</strong>eoretically tractable.<br />

In order to obtain undistorted lineshapes it is necessary to use <strong>th</strong>e quadrupolar echo sequence. 7 A<br />

program has been developed to simulate spectra from quadrupolar echoes, including <strong>th</strong>e effects of<br />

exchange during <strong>th</strong>e delays and prises for several independent motional processes and finite pulse leng<strong>th</strong>,<br />

allowing <strong>th</strong>e determination of motional parameters for appropriate models, s<br />

Solid state 2I-I NMR powder spectra of 4,4"-d2-biphenyl and biphenyl-dl0 in ~-cyclodexlrin have<br />

been obtained over <strong>th</strong>e temperature range from 103 to 303 K at several echo delay times. The lineshape<br />

is strongly dependent on temperature over <strong>th</strong>e range measured, approaching <strong>th</strong>e fast motion limit at 303<br />

K and <strong>th</strong>e rigid limit at 103 K. The stx~tra may be interpreted in terms of two independent motional<br />

processes: libration of <strong>th</strong>e long axis of <strong>th</strong>e molecule over a restricted range of angles, and hopping of <strong>th</strong>e<br />

rings in <strong>th</strong>e four well internal torsional potential wi<strong>th</strong> two different barrier heights. 9 Rotation about <strong>th</strong>e<br />

long axis appears to be severely hindered as it occurs at rates no greater <strong>th</strong>an 100 s -~ at 303 K. The<br />

libration was modeled as all-site jumps on uniform geodesics wi<strong>th</strong> various grid spacings to approximate<br />

motion in a cone of half-angle 27.5 degrees. It was found <strong>th</strong>at a minimum of nineteen sites was required<br />

to reproduce <strong>th</strong>e experimental lineshapes for <strong>th</strong>e para-deuterated complex, wi<strong>th</strong> rates ranging from 1 ×<br />

103 s -~ at 103 K to 4 x 106 s -~ at 303 K. The internal hop was modeled as a four site nearest neighbor<br />

jumping process wi<strong>th</strong> different rates to each neighbor. The inter-ring torsion angle of 39 degrees agrees<br />

wi<strong>th</strong> <strong>th</strong>e angle determined in <strong>th</strong>e vapor phase 1° and in solution? l and wi<strong>th</strong> <strong>th</strong>eoretical calculations? At<br />

303 K <strong>th</strong>e fast rate was 4 x 107 s -1 while <strong>th</strong>e slow rate was 4 x l0 s s -l. Fur<strong>th</strong>er simulations are in<br />

progress to define <strong>th</strong>e motional parameters across <strong>th</strong>e entire range of temperatures studied. Single-crystal<br />

rotation spectra of biphenyl-d~0~-cyclodextrin have been produced which indicate <strong>th</strong>at <strong>th</strong>e structure is of<br />

<strong>th</strong>e "screw-channel" type.<br />

1. J. Szejtli, "Cyclodextrins and Their Inclusion Complexes," Akademiai Kaido, Budapest, 1982.<br />

2. K. Flohr, R. M. Patton and E. T. Kaiser, J. Am. Chem. Soc. 97, 1209 (1975).<br />

3. J. P. Behr and J. M. Lehn, J. Am. Chem. Soc. 98, 1743 (1976).<br />

4. R. J. Bergeron and M. A. Channing, J. Am. Chem. Soc. 101, 2511 (1979).<br />

5. H. Ueda and T. Nagai, Chem. Pharm. Bull. 29, 2710 (1981).<br />

6. L. D. Hall and T. K. Lira, J. Am. Chem. Soc. 106, 1858 (1984).<br />

7. J. H. Davis, K. R. Jeffrey, M. Bloom, M. I. Valic and T. P. Higgs, Chem. Phys. Len. 42, 390 (1976).<br />

8. M. Greenfield, A. Ronemus, R. L. Void, R. R. Void, P. Ellis and T. Raidy, J. Magn. Reson., 70 (1986).<br />

9. G. Haefelinger and C Regelmann, J. Comput. Chem. 6, 368 (1985).<br />

10. O. Bastiansen and S. Samdal, J. Mol. Struct. 128, 115 (1985).<br />

11. M. Barret and D. Steele, J. Mol. Struct. 11, 105 (1972).


!<br />

1.7<br />

MF51<br />

ULTRA-HIGH RESOLUTION IN IH SPECTRA AT $00 MHZ:<br />

CHLORINE ISOTOPE EFFECTS<br />

Frank A. L. Anet and Max Kopelevich*<br />

Department of Chemistry and Biochemistry<br />

University of California, Los Angeles<br />

Los Angeles, CA 90024<br />

We have observed chlorine isotope effects on <strong>th</strong>e IH nuclear shielding in chloroform<br />

and me<strong>th</strong>ylene chloride. These effects are on <strong>th</strong>e order of 0.2 ppb and are readily detectable<br />

at high fields (11.4"13 provided some care is taken in sample preparation and in optimizing<br />

field homogenuity. Application of Lorentzian-Gaussian resolution enhancement allows<br />

baseline separation of <strong>th</strong>e resonance lines wi<strong>th</strong> areas corresponding to statistical weights of<br />

<strong>th</strong>e various C135/C137 isotopic combinations, as shown below. This appears to be <strong>th</strong>e first<br />

example of chlorine isotope effects on IH shifts.<br />

We are currently undertaking studies of isotope effects in o<strong>th</strong>er halogenated<br />

me<strong>th</strong>anes, exploring <strong>th</strong>e solvent dependence of <strong>th</strong>ese effects, as well as looking into different<br />

means of obtaining ultra-high resolution spectra.<br />

' '5 ' ' ' ' '0 ' , , i<br />

HERTZ<br />

500 MHz IH{D} spectrum of 2% CHDCI 2 in CD2CI 2. Ratios of <strong>th</strong>e areas are approximately<br />

9:6:1.


MF53 - POSTERS<br />

DI-13C-LABELING: A MEANS TO MEASURE 12C-13C<br />

ISOTOPIC EQUILIBRIA IN 2-NORBORNYL CATION.<br />

Ronald M. Jarret*, Department of Chemistry, College of <strong>th</strong>e<br />

Holy Cross, Worcester, MA 01610.<br />

Martin Saunders, Department of Chemistry, Yale University,<br />

New Haven, CT 06511.<br />

2,3-Di-13C-norborn-2-yl chloride was prepared and<br />

ionized (wi<strong>th</strong> SbF 5) to 2-norbornyl cation. In solution<br />

at -65°C, rapid rearrangements occur which completely<br />

scramble <strong>th</strong>e 13C-labels. The proton-decoupled cmr<br />

spectrum (62.7 MHz) contains <strong>th</strong>ree signals: C-4, C-I,2,6<br />

(averaged), and C-3,5,7 (averaged). The 13C-labels are<br />

<strong>th</strong>us equilibrated over non-equivalent sites wi<strong>th</strong>in<br />

2-norbornyl cation. This 12C-13C equilibrium isotope<br />

effect alters <strong>th</strong>e proportion of di-13C-labeled isomers<br />

from statistical values. The non-statistical isotopic<br />

isomer population is manifested as an asymmetric<br />

multiplet for <strong>th</strong>e averaged C-3,5,7 peak in <strong>th</strong>e cmr<br />

spectrum. The relatively sharp lines of <strong>th</strong>e multiplet<br />

can be reproduced wi<strong>th</strong>in ± 0.i ppm, wi<strong>th</strong> isotopic<br />

equilibrium constants of K-3,5,7 = 1.010 t 0.005 and<br />

K-I,2,6 = 1.039 t 0.005.<br />

71<br />

6<br />

4 8<br />

CI(H)<br />

H(CI)


MF55<br />

DYNAMIC PARAMETERS FROM NONSELECTIVELY GENERATED ID EXCHANGE SPECTRA<br />

Charles G. Wade, Mark O'Neil-Johnson, and Eric R. Johnston<br />

IBM Instruments, Inc.<br />

40 Airport Parkway<br />

San Jose, California 95110<br />

We propose an experimentally and computationally simple me<strong>th</strong>od<br />

for <strong>th</strong>e direct measurement of <strong>th</strong>e elements of <strong>th</strong>e relaxation matrix<br />

R which characterize dynamics in spin systems. The usual 2D exchange<br />

pulse sequence (90 ° ) - t I - (90 ° ) - t m - (90o ) - t2(obs) is used,<br />

wi<strong>th</strong> appropriate phase cycling for <strong>th</strong>e cancellation of single quantum<br />

and higher-order coherence during t m. For a system of N spins we<br />

record spectra wi<strong>th</strong> and wi<strong>th</strong>out mixing for N arbitrarily chosen values<br />

of t I. This affords N 2 measureable intensities from which <strong>th</strong>e N 2<br />

elements of e -~tm can be generated and from which R itself can <strong>th</strong>en<br />

be calculated wi<strong>th</strong> a back-transformation me<strong>th</strong>od.<br />

The utility of <strong>th</strong>e me<strong>th</strong>od lies in <strong>th</strong>e ease and speed wi<strong>th</strong> which<br />

<strong>th</strong>e experimental data are generated. Only nonselective transmitter<br />

pulses are required so <strong>th</strong>e me<strong>th</strong>od is easier to implement <strong>th</strong>an o<strong>th</strong>er<br />

schemes which employ DANTE or decoupler inversion pulses to perturb<br />

<strong>th</strong>e spin system prior to mixing. Time-consuming 2D data acquisition<br />

and processing are similarly avoided. The me<strong>th</strong>od will be illustrated<br />

wi<strong>th</strong> applications to multisite and scalar-coupled spin systems.


MF57<br />

CALIBRATED DECOUPLING OF TIGHTLY-COUPLED CONCENTRIC SURFACE<br />

COILS FOR IN VIVO NMR<br />

M. Robin Bendall<br />

Experimental work carried out at Varian Fremont Operations, CA,<br />

whilst on leave from Griffi<strong>th</strong> University, Na<strong>th</strong>an, Qld., Australia<br />

A considerable research effort has been expended on localization<br />

me<strong>th</strong>ods for in vivo spectroscopy <strong>th</strong>at depend on using rf coils<br />

such as surface coils which provide inhomogeneous rf fields. The<br />

most complete means of signal localization utilize rf pulses (eg<br />

dep<strong>th</strong> pulses) from two coils and <strong>th</strong>is general technique requires<br />

an active me<strong>th</strong>od for detuning each coil during <strong>th</strong>e rf pulses<br />

from <strong>th</strong>e o<strong>th</strong>er coil.<br />

Recently we described <strong>th</strong>e successful implementation of an active<br />

detuning scheme which depends on <strong>th</strong>e use of I/4 cables to block<br />

rf current in a coil (I). Here we will provide fur<strong>th</strong>er experi-<br />

mental details of <strong>th</strong>is me<strong>th</strong>od and compare it experimentally to<br />

<strong>th</strong>ree o<strong>th</strong>er me<strong>th</strong>ods of active detuning.<br />

A new finding of particular importance is <strong>th</strong>e discovery <strong>th</strong>at not<br />

only can we completely detune a transmitter coil so <strong>th</strong>at it has<br />

no effect on <strong>th</strong>e rf field of a neighbouring coil, but by offsett-<br />

ing <strong>th</strong>e detuning of <strong>th</strong>e coil, a calibrated fraction of <strong>th</strong>e rf<br />

field of <strong>th</strong>e detuned coil can be added to or subtracted from <strong>th</strong>e<br />

rf field of <strong>th</strong>e neighbouring coil. This principle is general and<br />

should be applicable to any active detuning me<strong>th</strong>od which relies<br />

on <strong>th</strong>e introduction of a second circuit resonance at <strong>th</strong>e frequen-<br />

cy of interest, as for <strong>th</strong>e four schemes tested. This principle<br />

allows <strong>th</strong>e shape of <strong>th</strong>e rf field of one coil to be modified in a<br />

calibrated fashion by <strong>th</strong>e second coil. The use of two transmitter<br />

coils for signal localization depends on <strong>th</strong>e two coils having<br />

markedly different rf fields, and <strong>th</strong>is difference can obviously<br />

be increased by subtraction of a fraction of <strong>th</strong>e rf field of one<br />

coil from <strong>th</strong>e second. Experimental details of <strong>th</strong>is general me<strong>th</strong>od<br />

for controlling <strong>th</strong>e shape of <strong>th</strong>e two inhomogeneous fields<br />

provided by two tightly-coupled rf coils will also be given.<br />

(1) M.R. Bendall, D. Foxall, B.G. Nichols and J.R. Schmidt,<br />

J. Magn. Reson. 7__0,181 (1986).


MF59<br />

THE CONE COIL - AN RF GRADIENT COIL FOR SPATIAL <strong>ENC</strong>ODING ALONG<br />

THE B 0 AXIS IN ROTATING FRAME IMAGING EXPERIMENTS<br />

John P. Boehmer and Richard W. Briggs*<br />

Departments of Radiology and Biological Chemistry<br />

M. S. Hershey Medical Center, Pennsylvania State University<br />

Hershey, Pennsylvania 17033<br />

The rotating frame zeugmatography experiment (1) is a useful alternative<br />

to NMR imaging using static field gradients, especially for chemical<br />

shift imaging or for species wi<strong>th</strong> short transverse relaxation times.<br />

However, application of <strong>th</strong>e me<strong>th</strong>od and its modifications (2-4) has been<br />

limited to one-dimensional imaging. Hoult has proposed a way to achieve<br />

2D imaging by combining RF and static field gradients (1). His group has<br />

reported an algori<strong>th</strong>m for rapid reconstruction of a 2D rotating frame<br />

image (5), and Haase has described an or<strong>th</strong>ogonal coil system by which 2D<br />

rotating frame imaging (RFI) can be done (6). The first 2D rotating<br />

frame image was shown a year ago (7).<br />

Bo<strong>th</strong> ID and 2D RFI me<strong>th</strong>ods have been able to localize NMR signals<br />

only in spatial directions perpendicular to <strong>th</strong>e static field B o. This is<br />

because RF coils designed to date create gradients in RF intensity<br />

parallel to <strong>th</strong>e flux lines of <strong>th</strong>e B 1 field, and spin nutation is effected<br />

only for or<strong>th</strong>ogonal components of B o and B I flux lines.<br />

An RF coil in which <strong>th</strong>e gradient in RF field intensity is or<strong>th</strong>ogonal<br />

to <strong>th</strong>e flux lines of B 1 would permit RFI to be done along <strong>th</strong>e B o field<br />

direction, and make possible full 3D imaging wi<strong>th</strong> RF gradients alone.<br />

One design which achieves <strong>th</strong>e desired or<strong>th</strong>ogonality of <strong>th</strong>e B 1<br />

gradient and B 1 flux lines is a Helmholtz coil tapered such <strong>th</strong>at <strong>th</strong>e<br />

diameter at one end is greater <strong>th</strong>an <strong>th</strong>e diameter at <strong>th</strong>e opposite end.<br />

Sample at <strong>th</strong>e smaller end <strong>th</strong>us experiences a greater RF field intensity<br />

<strong>th</strong>an at <strong>th</strong>e larger end. Birdcage coils modified analogously also produce<br />

<strong>th</strong>e desired or<strong>th</strong>ogonality. These cone-shaped coils make full 3D RFI<br />

feasible, wi<strong>th</strong> <strong>th</strong>e attendant rotating frame advantages of retention of<br />

chemical shift information and effectively instantaneous gradient<br />

switching.<br />

I. D.I. Hoult, J. Magn. Reson. 33, 183-197 (1979).<br />

2. K.R. Metz and R.W. Briggs, J. Ma_~g~_n. Reson. 64, 172-176 (1985).<br />

3. M. Garwood, T. Schleich, B.~Ross, ~]~]--~a~on, and W.D. Winters,<br />

J. Magn. Reson. 65, 239-251 (1985).<br />

4. I~. ~o~-T]-. S~leich, M.R. Bendall, and D.T. Pegg, J__s. Magn.<br />

Reson. 65, 510-515 (1985).<br />

5. ~C~n, D.I. Hoult, and V.J. Sank, Magn. Reson. Med. i, 354-360<br />

(1984).<br />

6. A. Haase, Poster 72, 3rd Ann. Mtg. of <strong>th</strong>e Society of Magnetic<br />

Resonance in Medicine, New York, New York, August 13-17, 1984.<br />

7. J.P. Boehmer, K.R. Metz, and R.W. Briggs, Poster A18, 27<strong>th</strong> <strong>ENC</strong>,<br />

Baltimore, Maryland, April 13-17, 1986.


MF61<br />

AN IMAGING NETHOD OF SHIMMING FOR SPECTROSCOPY<br />

Truman R. Brown* • Kark S • Cohen ÷ and William J Thoma<br />

Fox,Chase Cancer Center. Philadelphia. PA 19111<br />

Siemens Nedical Systems. Aston. PA 19014<br />

The acquisition of NMR spectra from human subjects wi<strong>th</strong> adequate frequency<br />

resolution in a NMR imaging magnet requires <strong>th</strong>e magnetic field be<br />

significantly more homogeneous <strong>th</strong>an during an imaging experiment. In <strong>th</strong>e<br />

normal solution to <strong>th</strong>is problem, shimming on <strong>th</strong>e signal produced by a surface<br />

coil• <strong>th</strong>e resultant FID is weighted toward <strong>th</strong>e regions clos~ to <strong>th</strong>e surface<br />

coil which are often not <strong>th</strong>e regions of interest. It seems sensible to make<br />

use of <strong>th</strong>e imaging capabilities of <strong>th</strong>e system to determine and shape <strong>th</strong>e field<br />

distribution in <strong>th</strong>e region of interest.<br />

This can be accomplished by employing a pulse sequence before a normal<br />

imaging experiment which ~enera~es an image dependent on <strong>th</strong>e homogeneity of<br />

<strong>th</strong>e magnetic field. A 90v-r-90 v sequence in place of <strong>th</strong>e initial 90 pulse of<br />

a normal spin-echo imaging sequence generates an image in which <strong>th</strong>e phase<br />

variation across <strong>th</strong>e sample due to <strong>th</strong>e magnetic field is cony%ted into<br />

intensity variations. A 4B ° rf phase shift between <strong>th</strong>e two 90 pulses allows<br />

<strong>th</strong>e sign of <strong>th</strong>e change in <strong>th</strong>e field to be determined.<br />

A value of • greater I/vAH where AB is <strong>th</strong>e overall field inhomogeneity<br />

will result in an image wi<strong>th</strong> m~Itipl~ bards of constant intensity<br />

corresponding to a difference of 360 in phase. A shorter ~ will result in a<br />

single-valued conversion between intensity and phase which allows <strong>th</strong>e image to<br />

be directly converted into a field map.<br />

Thus, it should be possible to adjust <strong>th</strong>e homogeneity of a 1 M bore magnet<br />

for spectroscopy based on data generated in <strong>th</strong>e imaging mode. The technique<br />

should also prove useful, particularly after automation, to shim a volume<br />

selected region when <strong>th</strong>e selection procedures do not allow direct shimming.


MF63<br />

NON-INVASIVE SPIN LABELING OF BLOOD BY ADIABATIC FAST PASSAGE<br />

Thomas Dixon ~, Leila N. Du ~, and Mokhtar Gado ~<br />

~Emory University, Department of Radiology, Atlanta,<br />

Georgia<br />

~Washington University, Department of Physics, St.<br />

Louis, Missouri<br />

~Mallinkrodt Institute of Radiology, Washington<br />

University, St. Louis, Missouri<br />

Excellent images of arteries can be made usinm X-rays, if<br />

contrast is provided by injecting iodine compounds <strong>th</strong>rough<br />

ca<strong>th</strong>eters into <strong>th</strong>e arteries. Unfortunately, <strong>th</strong>ese injections<br />

make <strong>th</strong>e procedure more time consuming, expensive, painful and<br />

dangerous <strong>th</strong>an an NMR exam.<br />

While NMR has long produced excellent images of brains and<br />

even beating heartS, its use on rapidly flowing blood is in its<br />

infancy. Our approach has been to modify <strong>th</strong>e pulse sequence to<br />

resist <strong>th</strong>e problems of motion and to trigger our pulses during a<br />

phase of <strong>th</strong>e heartbeat when <strong>th</strong>e blood is still.<br />

Stationary blood can be distinguished from o<strong>th</strong>er stationary<br />

tissues if it has been labeled by spin inversion before <strong>th</strong>e image<br />

is produced. Our approach is to use an adiabatic fast passage in<br />

which nei<strong>th</strong>er <strong>th</strong>e frequency nor <strong>th</strong>e magnetic field are swept.<br />

Instead, natural motion of arterial blood in an applied field<br />

gradient causes <strong>th</strong>e Larmor frequency of <strong>th</strong>e blood to sweep past<br />

<strong>th</strong>e transmitter frequency. Stationary tissue is <strong>th</strong>us not<br />

affected. Images of blood only are produced by subtracting an<br />

image wi<strong>th</strong> fast passage from one wi<strong>th</strong>out, just as subtraction is<br />

used in <strong>th</strong>e conventional X-ray images to eliminate interfering<br />

bone shadows.<br />

Images of <strong>th</strong>e neck will be presented and<br />

o<strong>th</strong>er problems will be discussed.<br />

dynamic range and


MF65<br />

NMR IMAGING WITH EXTREMELY INHOMOGENEOUS B1 FIELDS<br />

M.Garwood', K. UgurbU, Gray Freshwater Biological Institute,<br />

UniverMty of Minnesota, Navarre, MN 55392.<br />

M.R. Bendall, School of Science, Griff<strong>th</strong> University,<br />

Na<strong>th</strong>an Queensland 4111, Australia.<br />

D.L. Foxall, A.R. Ra<strong>th</strong>, Varian Fremont Operations, 1120 Auburn Rd,<br />

Fremont, CA 94538.<br />

A critical requirement in many NMR experiments is <strong>th</strong>e ability to induce<br />

rotations of <strong>th</strong>e magnetization vectors uniformly over <strong>th</strong>e entire sample. This<br />

requirement is especially severe in NMH imaging and localized spectroscopy. Con-<br />

sequently, intense efforts are invested in designing RF coils <strong>th</strong>at generate uniform<br />

B 1 fields. An alternative approach to eliminating problems related to B 1 inhomo-<br />

geneities is to generate pulses <strong>th</strong>at are highly insensitive to B 1 variation. Two such<br />

pulses <strong>th</strong>at create transverse magnetization and carry out spin inversion have been<br />

described [1,2]. These pulses, however, cannot execute a plane rotation wi<strong>th</strong> a well<br />

defined phase. A pulse <strong>th</strong>at provides a 180 ° plane rotation is needed for experi-<br />

ments <strong>th</strong>at require refocusing. We have recently introduced amplitude and<br />

frequency/phase modulated pulses derived from <strong>th</strong>e adiabatic passage principle<br />

<strong>th</strong>at can achieve 90 ° and 180 ° plane rotations [3,4,5]. When optimized, uniform<br />

90 ° and 180 ° rotations can be obtained over a 50 to 100 fold variation in B 1 field<br />

streng<strong>th</strong> wi<strong>th</strong> <strong>th</strong>ese new pulses. This insensitivity to B 1 permits <strong>th</strong>e execution of<br />

experiments <strong>th</strong>at require uniform RF fields, such as NMR imaging, wi<strong>th</strong> coils <strong>th</strong>at<br />

generate inhomogeneous fields such as <strong>th</strong>e simple surface coil. We have success-<br />

fully made NM~ images wi<strong>th</strong> <strong>th</strong>ese new adiabatic pulses using a surface coil for<br />

bo<strong>th</strong> transmission and reception. The results to be presented include; a series of<br />

images wi<strong>th</strong> slice planes selected ei<strong>th</strong>er parallel or perpendicular to <strong>th</strong>e plane of <strong>th</strong>e<br />

coil and <strong>th</strong>e design of <strong>th</strong>e pulse sequence used for <strong>th</strong>is work.<br />

REFER<strong>ENC</strong>ES:<br />

[1] M.S. Silver, R.I. Joseph & D.I. Hoult (1984) J.Mag.Reson. 59,347.<br />

[2] M.R. Bendall & D.T. Pegg (1986) J.Mag.Reson. 67,376.<br />

[3] K. Ugurbil, M. Garwood & M.R. Bendall (<strong>1987</strong>) J.Mag.Reson (In press).<br />

[4] M.R. Bendall, M. Garwood, K. Ugurbil & D.T. Pegg (1986) (Submitted).<br />

{5] K. Ugurbil & M. Garwood (<strong>1987</strong>) (Submitted).


MF67<br />

MAGNETIC RESONANCE IMAGING WITH PHASE-MODULATED STORED WAVEFORMS<br />

Petra Schmalbrock, *,a Annjia T. Hsu, b<br />

William W. Hunter, Jr. a and Alan G. Marshall, b,c<br />

Dept. of Radiology, a (Dept. of Chemistry, b Dept. of BiochemistryC),<br />

The Ohio State University, Magnetic Resonance Imaging Facility,<br />

1630 Upham Drive, Columbus, OH 43210<br />

Slice location in magnetic resonance imaging is typically achieved<br />

by irradiation wi<strong>th</strong> narrow-bandwid<strong>th</strong> rf pulses in combination wi<strong>th</strong><br />

magnetic field gradients. However, <strong>th</strong>eoretically optimal waveforms<br />

require a large time-domain dynamic range and can perform poorly<br />

experimentally--e.g., impreci se slice definition and T 2 errors in<br />

spin-echo imaging experiments.<br />

Our recently demonstrated Stored W_aveform Inverse F_ourier T_ransform<br />

(SWIFT) technique I can generate any desired spectral profile while<br />

minimizing <strong>th</strong>e dynamic range of its time-domain representation. In <strong>th</strong>is<br />

poster, we report images in which slice selection was achieved wi<strong>th</strong><br />

SWIFT-generated waveforms on a GE 1.5 Tesla Signa ® whole-body imaging<br />

system. Time-domain waveforms were generated by quadratic phase<br />

modulation of a specified discrete excitation magnitude spectrum.<br />

followed by inverse discrete Fourier transformation and apodization to<br />

give a stored time-domain waveform <strong>th</strong>at could <strong>th</strong>en be clocked out via<br />

real-time digital-to-analog conversion to <strong>th</strong>e rf transmitter. SWIFT<br />

waveforms for slice selection will be compared to <strong>th</strong>e usual sin(x)/x<br />

slice-selective pulse and to recent computer simulations by Kunz. 2<br />

[This work was supported by N.S.F. CHE-8218998, General Electric<br />

Company, and The Ohio State University.]<br />

1. Hsu, A. T.; Hunter, W. W.. Jr.; Marshall, A. G.; Schmalbrock, P.; J.<br />

Magn. Reson. (<strong>1987</strong>), in press.<br />

2. Kunz, D.; Magn. Reson. Med._3, 377 (1986).


MF69<br />

28<strong>th</strong> <strong>ENC</strong> Poster Abstract<br />

DOUBLE QUANTUM FILTERED NMR IMAGING,<br />

PROGRESS TOWARD METABOLITE SPECIFIC IMAGES<br />

Paul J. Kellerea, Petra Schmalbrockb,and Charles Dumoulin c<br />

a) Barrow Neurological Institute, 350 W. Thomas Rd.<br />

Phoenix, AZ 85013 (602)285-3179<br />

b) Dept. of Radiolo~, Ohio State University, 1630 Upham Dr.<br />

Columbus, OH 43210<br />

c) General Electric Research and Development Center, PO Box 8<br />

Schenectady, NY 12301<br />

We are currently exploring proton double quantum<br />

filtration me<strong>th</strong>ods as <strong>th</strong>e basis for production of metabolize<br />

specific images using a clinical 1.5 Tesla MR imaging system<br />

equipped wi<strong>th</strong> a 1 meter bore solenoid. Lactic acid is an<br />

attractive target metabolite since it is formed in high<br />

concentration in ischemic tissues and its 1H-NMR pattern<br />

approaches a first order A3X system at 1.5 T. Double quantum<br />

filtration is accomplished-by <strong>th</strong>e RF sequence, 90O-TJ-180 o-<br />

TJ-9OO-TV-90 ° where TJ=I/8J and TV is <strong>th</strong>e double quantum<br />

evolution time. Double quantum selection is done by bo<strong>th</strong> RF<br />

phase cycling and by pulsed magnetic field gradients. One<br />

field gradient pulse is given during TV and a second pulse of<br />

twice She amplitude is given immediately after <strong>th</strong>e last RF<br />

pulse. ~ This sequence of RF and gradient pulses is followed<br />

by a slice selective 180 ° pulse and <strong>th</strong>e usual spin-warp phase<br />

and frequency image encoding.<br />

The suppression of water, as well as o<strong>th</strong>er non-J-coupled<br />

signals is accomplished by, a) RF phase cycling, b) gradient<br />

induced dephasing, and c) <strong>th</strong>e temporal separation of <strong>th</strong>e<br />

coherence transfer echoes arising from double and single<br />

quantum coherence during TV. Substantial suppression of<br />

lipid me<strong>th</strong>ylene signals is obtained due to <strong>th</strong>e use of 1/8J<br />

for TJ which leads to inefficient double quantum excitation<br />

of second order systems.<br />

Work <strong>th</strong>us far has been conducted using a phantom<br />

consisting of <strong>th</strong>ree bottles containing water, cooking oil and<br />

aqueous sodium lactate, respectively. Images showing only<br />

i M lactate have been obtained using a 128 x 256 image matrix<br />

and two excitations (8 min. acquisition time). Current<br />

efforts are aimed at fur<strong>th</strong>er suppression of unwanted signals<br />

arising from double quantum coherence and programing to<br />

permit smaller image matrices.<br />

1) A.Bax, P.G.de Jong~ A.F.Mehlkopf, J.Smidt, J.Phys.Lett.,<br />

6_2.567 ( 198o ).


MF71<br />

A DESIGN OF HOMOGENEOUS SELF-SHIELDING GRADIENT COILS<br />

I. J. Lowe<br />

Physics Department, University of Pittsburgh, Pittsburgh, PA<br />

15260 and Department of Biological Sciences, Carnegie Mellon<br />

University, Pittsburgh, PA 15213<br />

Magnetic field gradients are of fundamental importance in NMR<br />

imaging and volume localization techniques. For apparatuses<br />

wi<strong>th</strong> cylindrical symmetry, <strong>th</strong>ese gradients are usually<br />

generated by discrete coils wound on cylindrical formers (of<br />

radius R). These coils are usually designed using spherical<br />

harmonic or Taylor expansions of magnetic fields due to<br />

current distributions (I). The gradients are usually<br />

satisfactorily linear over a spherical volume of less <strong>th</strong>an<br />

0.5 R. Fur<strong>th</strong>er, <strong>th</strong>ese gradients are normally time dependent<br />

and <strong>th</strong>e fringing magnetic fields generate eddy currents in<br />

<strong>th</strong>e surrounding metal surfaces <strong>th</strong>at can produce undesirable<br />

magnetic field inhomogeneities and time dependences.<br />

We have developed a calculational technique based upon<br />

Maxwell's Equations along wi<strong>th</strong> conditions of rotational and<br />

translational symmetries to find <strong>th</strong>e behavior of <strong>th</strong>e desired<br />

magnetic field over all of space. From <strong>th</strong>ese fields, <strong>th</strong>e<br />

necessary current density distributions on <strong>th</strong>e surface of a<br />

cylinder of radius R I are derived for x, y, and z gradients.<br />

These gradients are perfectly homogeneous inside <strong>th</strong>e cylinder<br />

for <strong>th</strong>e described current distribution and a long enough<br />

cylinder.<br />

It has been suggested (2-5) <strong>th</strong>at a dynamically driven shield<br />

can be designed to cancel <strong>th</strong>e fringing field outside of a<br />

second cylinder of radius R 2 (R 2 > RI). We fur<strong>th</strong>er describe<br />

<strong>th</strong>e current distribution on <strong>th</strong>e surface of <strong>th</strong>is second<br />

cylinder <strong>th</strong>at perfectly shields <strong>th</strong>e fringing field of <strong>th</strong>e<br />

first cylinder.<br />

I. F. Romeo and D. I. Hoult, Hag. Res. in Med. ~, &4<br />

(1985).<br />

2. p. Mansfield and B. Chapman, J. Phys. E. Sci. Instr.<br />

I__99, 540 (1986).<br />

3. B. Chapman and P. Mansfield, J. Phys. D. Appl. Phys. I__99,<br />

L129, (1986).<br />

4. P. Mansfield and B. Chapman, J. Magn. Reson. 66, 573<br />

(1986).<br />

5. R. Turner and R. M. Bowley, J. Phys. E. Sci. Instr. I__99,<br />

876 (1986).


MF73<br />

OXYGEN-17 MAGNETIC RESONANCE IMAGING (OMRI)<br />

G. D. Mateescu and Terri Dular<br />

Department of Chemistry, Case Western Reserve University<br />

Cleveland, Ohio 44106<br />

In spite of <strong>th</strong>e primordial importance of oxygen in llfe processes and in<br />

many fields of chemistry, imaging wi<strong>th</strong> oxygen-17 has not yet been attempted.<br />

This is due to <strong>th</strong>e fact <strong>th</strong>at O-17 has generally been considered impractical for<br />

MRI, owing to its "unfavorable" properties: very low natural abundance, low<br />

natural sensitivity, and considerable quadrupolar broadening.<br />

We report <strong>th</strong>e first 170 imaging experiments and present evidence <strong>th</strong>at <strong>th</strong>e<br />

above mentioned "drawbacks" can be turned into advantages. In <strong>th</strong>e absence of<br />

specialized equipment, our approach was es-<br />

sentially <strong>th</strong>e same as in Lauterbur's histo-<br />

rical endeavor. The results shown in Figure<br />

1 are selfexplanatory . Fur<strong>th</strong>er experi-<br />

ments demonstrated <strong>th</strong>e feasibility of OMRI<br />

wi<strong>th</strong> plants, animal blood, brain, kidney,<br />

heart, muscle, fat, eggs, as well as non-<br />

biological matter. Contrasts from drastic<br />

to very subtle can be obtained in TI, T2,<br />

density, and flow measurements. A dramatic<br />

"Reverse Gradient Imaging" was obtained<br />

wi<strong>th</strong> signals from water in extreme (bound &<br />

DOG BLOOD (b)<br />

Natural a b u n ~<br />

lATER<br />

Natural abundance<br />

! t I<br />

i i i<br />

i i<br />

• I I<br />

g~<br />

Z-gradient<br />

0.2 G/cm<br />

free) states. Combining IH and 170 imaging Figure I. O*yge,-17 Magnetlc Resonance Imaging.<br />

(a) Two NH,q tubes (5mm OD) containing distilled<br />

water, placed in a 16mm tube containing CDC1].<br />

proves to be useful. 170 is a better repre- (b) Two NMR tubes containing dog blood. 1200 90 °<br />

pulses at O.l s intervals per trace. Varian XL-<br />

200 at 27.12 ~z. We expect a >80 times better<br />

sentative of <strong>th</strong>e H20 molecule. Its relaxa- resolution wi<strong>th</strong> <strong>th</strong>e 20G/cm mlcrolmager co be in-<br />

stalled In February <strong>1987</strong> on our Bruker MSL-&O0<br />

tlon depends essentially on intramolecular (local protein, nucleic acid,<br />

lipid, sugar) electric field gradients; also, 170 relaxation is mainly affected<br />

by <strong>th</strong>e exchange of <strong>th</strong>e entire water molecule and, to a lesser extent, by proton<br />

or deuteron exchange. Parallel imaging of o<strong>th</strong>er nuclei will also be presented.<br />

(a)


MF75<br />

NMR IMAGING USING CIRCULAR SIGNALS IN THE SPATIAL FREQU<strong>ENC</strong>Y DOMAIN S<br />

S. Matsul, K. Seklhara, and H. Kohno<br />

Central Research Laboratory, Hitachi, Ltd.<br />

P.O. Box 2, Kokubunji, Tokyo 185, Japan<br />

We demonstrate experlmentally a new type of me<strong>th</strong>od of imaging, in<br />

which siena1 measurements are taken during rotation of a field gradient.<br />

Detailed aspects of <strong>th</strong>e me<strong>th</strong>od will be discussed in connection wi<strong>th</strong><br />

unusual properties of <strong>th</strong>e observed slgnal.<br />

Generally, <strong>th</strong>e slgnal measured during <strong>th</strong>e gradient rotation traces<br />

a circle in <strong>th</strong>e spatlal frequency domain (so-called k space). I) Al<strong>th</strong>ough<br />

<strong>th</strong>e clrcular signal contains some information for imaging, it does not<br />

provide useful data <strong>th</strong>at can be systematlcally and efficiently process-<br />

ed to yield a spin image. This is because <strong>th</strong>e circle is not symmetric<br />

about <strong>th</strong>e origin of <strong>th</strong>e k space. However, if <strong>th</strong>e center of <strong>th</strong>e clrcle<br />

is approprlately shifted to <strong>th</strong>e k origin, useful data can be obtained.<br />

The resultant signal directly provides symmetric circular phase infor-<br />

mation. The shift can be achieved by applying, amon E many ways, a sta-<br />

tionary fleld gradient prior to <strong>th</strong>e rotation. The properties of such<br />

a circular signal are completely different from <strong>th</strong>ose of a usual FID<br />

slgnal. The unusual properties can be understood by expressing <strong>th</strong>e<br />

clrcular signal in terms of Bessel functions of <strong>th</strong>e first kind.<br />

The radius of <strong>th</strong>e circle is given by 7G/WG, where Y is <strong>th</strong>e gyromag-<br />

netic ratio, G denotes <strong>th</strong>e gradient amplitude, and ~G is <strong>th</strong>e angular<br />

frequency of <strong>th</strong>e gradient rotation. Therefore, takin E measurements<br />

after changing ei<strong>th</strong>er <strong>th</strong>e gradient amplitude or <strong>th</strong>e angular frequency<br />

permits a concentric set of clrcular signals wi<strong>th</strong> different radii to<br />

be obtained. The signal set can be converted to a spin image by suit-<br />

able data processing involving Fourier transformations along <strong>th</strong>e radii<br />

and back projections.<br />

Reference<br />

I) S. Ljunggren, J. Magn. Reson. 54, 338 (1983).<br />

§ Published in part: S. Matsui and H. Kohno, J. Magn. Reson. 70, 157<br />

(1986).


MF77<br />

NMR IMAGING OF SOLIDS<br />

WITH A SURFACE COIL<br />

J. B. Miller* and A. N. Garroway<br />

Chemistry Division, Code 6120<br />

Naval Research Laboratory<br />

Washington, DC 20375-5000<br />

A number of NMR techniques have already been<br />

demonstrated to be useful for imaging solids. These<br />

techniques are limited to small samples because<br />

traditional coil geometries require large amounts of<br />

power to generate <strong>th</strong>e B 1 fields required for solid state<br />

imaging. The use of surface coils can somewhat<br />

circumvent <strong>th</strong>is problem.<br />

Several imaging strategies are possible using<br />

surface coils, including rotating frame imaging and<br />

"dep<strong>th</strong>" sensitive excitation. Because of line broadening<br />

in solids, resolution in <strong>th</strong>e rotating frame experiment is<br />

a problem. Multiple pulse line-narrowing has been used<br />

for imaging solids; by virtue of its sensitivity to pulse<br />

amplitude/duration it is a form of dep<strong>th</strong> sensitive<br />

excitation. Multiple pulse line-narrowing generally<br />

requires large B 1 fields <strong>th</strong>us limiting its use to regions<br />

very close to <strong>th</strong>e surface coil.<br />

We will present several examples of surface coil<br />

imaging of solids employing multiple pulse line-<br />

narrowing. We will discuss <strong>th</strong>e dependence of line-<br />

narrowing efficiency and dep<strong>th</strong> sensitivity upon <strong>th</strong>e<br />

multiple pulse technique. We also introduce <strong>th</strong>e "magic<br />

angle nutation" sequence which is less sensitive to <strong>th</strong>e<br />

magnitude of <strong>th</strong>e B 1 field <strong>th</strong>an traditional line-narrowing<br />

sequences.


MF79<br />

IMAGING AND IN WVO SPECTROSCOPIC APPLICATIONS<br />

OF COMPUTER OPTIMIZED PULSE SEQU<strong>ENC</strong>ES<br />

Francisco Loaiza and Warren S. Warren*<br />

Department of Chemistry, Princeton University, Princeton, NJ 08544<br />

Michael Silver<br />

Siemens Medical Systems, 186 Wood Ave. Sou<strong>th</strong>, Iselin, NJ<br />

Computer optimization of entire pulse sequences, as opposed to<br />

individual pulses, generates substantial improvements in slice profiles<br />

for T2-weighted spin density images and o<strong>th</strong>er applications.<br />

Sensitivities to spin density or relaxation gradients are included in <strong>th</strong>e<br />

optimization. We discuss <strong>th</strong>e tradeoffs between different approaches to<br />

computerized pulse shape optimization, and present results of clinical<br />

trials which show peak power reductions and dramatically reduced<br />

distortions for multislice imaging.<br />

This work is supported by <strong>th</strong>e National Institute of Heal<strong>th</strong>, <strong>th</strong>e<br />

New Jersey Commission on Science and Technology, and Siemens<br />

Medical Systems.<br />

1. F. Loaiza, M. Levitt, M. McCoy, M. Silver and W. S. Warren, J. Chem.<br />

Phys. (submitted)<br />

2. F. Loaiza, K. T. Lim, M. Silver and W. S. Warren, J. Mag. Res. Med.<br />

(submitted)


MKI - POSTERS<br />

NNR STUDIES OF G-LACTALBU~IIN:<br />

MCTERIZATION OF A PARTIALLY UNFOLDED STATE<br />

J. Baum, C.M. Dobson, C. Hanley<br />

Inorganic Chemistry Laboratory<br />

University of Oxford<br />

Oxford, ENGLAND<br />

P.A. Evans<br />

Middlesex Hospital Medical School<br />

London, ENGLAND<br />

To understand <strong>th</strong>e folding mechanism of proteins, it is<br />

important to characterize, at <strong>th</strong>e molecular level, <strong>th</strong>e<br />

structures of states intermediate between <strong>th</strong>e folded and<br />

unfolded conformations. Incompletly folded proteins tend to<br />

have very small IH chemical shift dispersions, <strong>th</strong>erefore<br />

me<strong>th</strong>ods have been developed to probe <strong>th</strong>ese intermediate states<br />

indirectly via <strong>th</strong>e well-resolved IH spectrum of <strong>th</strong>e native<br />

protein. Guinea-pig ~-lactalbumin provides an especially<br />

favourable system for <strong>th</strong>e investigation of folding due to its<br />

sensitivity to solution conditions; wi<strong>th</strong>in certain ranges of pH<br />

and temperature <strong>th</strong>ere exists a stable partially unfolded<br />

intermediate which we can study by NMR. PH-jump hydrogen<br />

exchange experiments are being developed to assign indirectly,<br />

<strong>th</strong>rough <strong>th</strong>e native protein, <strong>th</strong>e labile protons of <strong>th</strong>e unfolded<br />

state, and magnetization transfer experiments are used to<br />

correlate <strong>th</strong>e resonances of <strong>th</strong>e unfolded protein wi<strong>th</strong> <strong>th</strong>ose of<br />

<strong>th</strong>e native protein. These and o<strong>th</strong>er experiments have allowed<br />

us to identify regions of localized structure at <strong>th</strong>e individual<br />

residue level in <strong>th</strong>e unfolded form of ~-lactalbumin.


MK3<br />

OLIGONUCLEOTIDE STRUC'I13RE ~ BASED ON QUANTITATIVE 2DNOE SPECTRA<br />

Brandan A. Borgias* and 'rnomas L. James<br />

Department of Pharmaceutical Chemistry<br />

Unive~ty of California, San Francisco, CA 94143<br />

The use of 2DNOE (two-dimensional nuclear Overhauser effect) spectroscopy in <strong>th</strong>e muc-<br />

characterization of biomolecules has generally been qualitative or semi-quantitative.<br />

Observed cross-peaks me presumed to be a consequence of <strong>th</strong>e close proximity (< 5 ~,) for <strong>th</strong>e<br />

associated protons. Distances are estimated based on <strong>th</strong>e relative intensifies and buildup of cross-<br />

peaks according to an approximate relationship between <strong>th</strong>e intensifies and <strong>th</strong>e proton-proton dis-<br />

tances. Distances obtained in <strong>th</strong>is manner have proven useful as constraints in structural determi-<br />

nations by distance geometry ! and molecular dynamics 2 calculations.<br />

The exact relationship between <strong>th</strong>e inter-proton distances and <strong>th</strong>e intensities is given by <strong>th</strong>e<br />

exponential function:<br />

aCt=a) = exp(-RCm) ;<br />

where R is <strong>th</strong>e relaxation matrix. The off-diagonal elements of <strong>th</strong>e relaxation matrix are propor-<br />

tional to I/rij6 •<br />

Rij - 0.l,yi2 7j 21~[6J(o~ i + ~j) - J((0 i - ¢~j)] / rij6.<br />

Thus, for short mixing times (Zm---~), <strong>th</strong>e inter-proton d i ~ can be estimated from <strong>th</strong>e cross-<br />

peak intensities. At longer mixing limes <strong>th</strong>is approximation breaks down due to spin diffusion.<br />

However, it is wi<strong>th</strong> mixing times of intermediate duration where one begins to observe a reason-<br />

able number of cross-peaks wi<strong>th</strong> acceptable signal/noise.<br />

In contrast to <strong>th</strong>e approximate approach, exact intensities can be calculated for a given<br />

<strong>th</strong>ree-dimensional array of pmtom after diagonalizing <strong>th</strong>e relaxation matrix:<br />

= exp(- ;<br />

where ;L is <strong>th</strong>e diagonal eigenvalue matrix and ~ is <strong>th</strong>e associated matrix of eigenveaors? We<br />

have incorporated <strong>th</strong>is exact calculation of intensifies into a least-squares program which refines<br />

oligonucleotide structure. In <strong>th</strong>e course of <strong>th</strong>is work we have investigated <strong>th</strong>e consequences of<br />

errors in <strong>th</strong>e data on <strong>th</strong>e refinement process. The major conclusions to be drawn are <strong>th</strong>e foUowing.<br />

(1) ConsWaints are necessary. Refinement of <strong>th</strong>e proton "smmure" in 3-space, wi<strong>th</strong>out con-<br />

straints due to <strong>th</strong>e molecular skeleton, is unsuccessful. In our approach each nucleotide<br />

is defined by ten parameters: 3 translational coordinates and 3 Euler angles for <strong>th</strong>e whole<br />

nucleotide, 2 internal torsion angles (<strong>th</strong>e glycosidic and C4'--C5' bonds) and <strong>th</strong>e sugar<br />

pucker phase and amplitude. The phosphodiester linkages are not included.<br />

(2) Errors in diagonal peak intensifies (easily approaching 50% in <strong>th</strong>e case of overlap) utterly<br />

destroy <strong>th</strong>e refinement if <strong>th</strong>ey are included in calculation of <strong>th</strong>e residuals. However, if<br />

<strong>th</strong>e diagonals are ignored completely, <strong>th</strong>e refinement is successful.<br />

(3) The correlation times can be successfully refined.<br />

References<br />

(1) Kline, A. D.; Braun, W.; Wfi<strong>th</strong>rich, K. J. Mol. Biol. (1986) 189, 377-382.<br />

(2) Clore, G. M.; Gronenbom, A. M.; Brfinger, A. T.; Karplus, M. J. Mol. Biol. (1985) 186,435-455.<br />

(3) Keepers, J. W., James, T. I.. J. Magn. Reson. (1984) $7, 404-426.


MK5<br />

Abstract: 28<strong>th</strong> <strong>ENC</strong>, Asilomar, CA. April 5- 9, <strong>1987</strong><br />

INTERNUCLEAR DISTANCES AND CORRELATION TIMES FROM TRANSVERSE AND<br />

LONGITUDINAL CROSS-RELAXATION RATES<br />

Donald G. Davis, NIEHS, PO Box 12233, Research Triangle Park, NC 27709<br />

A novel me<strong>th</strong>od for determining correlation times and proton-<br />

proton distances for molecules in solution is demonstrated. These<br />

experiments may be done at a single field streng<strong>th</strong> and require no<br />

priori assumptions about fixed internuclear distances or <strong>th</strong>e cor-<br />

relation functions for different pairs of spins in <strong>th</strong>e molecule.<br />

The success of <strong>th</strong>e me<strong>th</strong>od is based on <strong>th</strong>e fact <strong>th</strong>at <strong>th</strong>e longitudinal<br />

(~111) and transverse ((~'~) cross-relaxation rates have different<br />

dependencies on ~c such <strong>th</strong>at in <strong>th</strong>e range Ilog~dR~l, <strong>th</strong>e ratio of<br />

(~lltO ~goes from 1.0 to -0.5. Accurate measurements of ~require<br />

<strong>th</strong>at careful attention be given to offset corrections and to mini-<br />

mizing Hartmann- Hahn cross-polarization(I). Experimental details and<br />

data analysis for <strong>th</strong>e determination of internuclear distances and<br />

correlation times of <strong>th</strong>e cyclic peptide Gramicidin-S in DHSO-d 6 will<br />

be shown.<br />

References: A. Bax and D. G. Davis, J. Hagn. Reson. 6~, 207-213,(1985).


MK7<br />

IMPROVEMENTS OF THE 2D TRANSFERRED NOE EXPERIMENT AND APPLICATION IN THE<br />

CONFORMATIONAL ANALYSIS OF INHIBITORS BOUND TO CMP-KDO SYNTHETASE<br />

Stephen W. Fesik* , Edward T • Olejniczak • and William E • Kohlbrenner •<br />

Pharmaceutical Discovery Division, Abbott Laboratories, Abbott Park, IL 60064.<br />

Transferred nuclear Overhauser effects (TRNOE) provide a useful means of<br />

determining <strong>th</strong>e conformation of enzyme-bound ligands. However, in <strong>th</strong>e 2D<br />

version of <strong>th</strong>e experiment certain precautions must be taken to alleviate some<br />

of <strong>th</strong>e problems associated wi<strong>th</strong> <strong>th</strong>e experiment• One of <strong>th</strong>e problems is <strong>th</strong>e<br />

presence of large protein signals which, in many cases, obscures <strong>th</strong>e<br />

resonances of <strong>th</strong>e ligand. In order to suppress <strong>th</strong>ese unwanted signals, we<br />

have taken advantage of <strong>th</strong>e shorter spin-spin relaxation times (T 2) of <strong>th</strong>e<br />

protein signals compared to <strong>th</strong>e averaged signals of <strong>th</strong>e ligand. This was<br />

accomplished by inserting a Carr-Purcell-Meiboo m-Gill pulse sequence before<br />

<strong>th</strong>e evolution time (t 1) of <strong>th</strong>e conventional 2D NOE experiment, markedly<br />

improving <strong>th</strong>e quality of <strong>th</strong>e spectra. Ano<strong>th</strong>er problem, <strong>th</strong>e presence of large<br />

zero quantum peaks, were eliminated by standard means, maintaining a constant<br />

1<br />

mixing time.<br />

The modified 2D TRNOE experiment described above was applied in <strong>th</strong>e study<br />

of <strong>th</strong>e bound conformations of CMP-KDO syn<strong>th</strong>etase inhibitors. These studies<br />

were aimed at providing conformational information towards <strong>th</strong>e design of more<br />

potent inhibitors of lipopolysaccharide biosyn<strong>th</strong>esis and <strong>th</strong>e development of a<br />

new class of antibiotics• Based on 2D TRNOE experiments using several<br />

inhibitors, it was found <strong>th</strong>at <strong>th</strong>eir bound conformations depended on <strong>th</strong>e<br />

hydrophobicity of <strong>th</strong>eir side chains. The bound conformations were used to<br />

propose <strong>th</strong>e location of a hydrophobic and hydrophilic binding site.<br />

1. S. Macura, K. Wu<strong>th</strong>rich, and R.R. Ernst, J.Magn. Reson., 4__7_7, 351 (1982).


MK9<br />

A 2D-EXCHANGE SEPARATED LOCAL FIELD (EXSLF) EXPERIMENT<br />

K. Takegoshi* and C.A. McDowell, Department of C~emistry,<br />

University of British Columbia, 2036 Main Mall, Vancouver, British<br />

Columbia, Canada, V6T I¥6.<br />

Rate constants for <strong>th</strong>e flip-flop spin exchange process<br />

between a IN spin coupled wi<strong>th</strong> a '~C spin and <strong>th</strong>e surrounding 'H<br />

spins were determined in <strong>th</strong>e absence perturbing rf fields, and also<br />

under <strong>th</strong>e influence of bo<strong>th</strong> 'H and '*C rf fields. To determine <strong>th</strong>e<br />

flip-flop rate in <strong>th</strong>e absence of <strong>th</strong>e rf fields, we developed a new<br />

technique, <strong>th</strong>e Exchange Separated Local Field (EXSLF) experiment.<br />

The EXSLF experiment was applied to <strong>th</strong>e CH group in a single crystal<br />

of dimedone, for two different orientations relative to <strong>th</strong>e static<br />

magnetic field. The inverse of <strong>th</strong>e flip-flop exchange rates<br />

determined by <strong>th</strong>e EXSLF experiments are 276 and 391 ~s for <strong>th</strong>e<br />

orientations Bo//b and Bo//C*, respectively.<br />

The flip-flop exchange motion under <strong>th</strong>e influence of bo<strong>th</strong> 'H<br />

and '~C rf fields was also studied by examining <strong>th</strong>e transient<br />

oscillation phenomena occuring during a spin-locking<br />

cross-polarization experiment. The values obtained for <strong>th</strong>e inverse<br />

of <strong>th</strong>e rate constants for <strong>th</strong>e flip-flop exchange motion were 450 and<br />

540 ,s for Bo//b and Bo//C*, respectively. The observed slow<br />

flip-flop rate shows <strong>th</strong>at <strong>th</strong>e IH-'3C coupled spin system in a single<br />

crystal of dimedone is isolated from <strong>th</strong>e surrounding 'H spins.


MKI1<br />

THE STRUCTURE OF THE SUBTILISIN INHIBITOR 2 FROM BARLEY DETERMINED<br />

BY IH-NMR SPECTROSCOPY, DISTANCE GEOMETRY CALCULATIONS AND<br />

RESTRAINED MOLECULAR DYNAMICS.<br />

e<br />

Flemming M. Poulsen i) Mogens KJ~r l) and Marius Clore 2)<br />

i) Department of Chemistry, Carlsberg Laboratory, Gamle Carlsberg Vej 10,<br />

DK-2500 Copenhagen Valby, Denmark<br />

2} Max-Planck-Institut f~r Biochemie, D-8033 Martinsried bei M~nchen,<br />

Federal Republic of Germany<br />

The barley subtilisin inhibitor is a protein of 83 residues, homologous<br />

to leech eglin c. The structure of <strong>th</strong>e C-terminal part of <strong>th</strong>e protein<br />

consisting of 65 residues has been studied using 2D-NMR techniques. The<br />

secondary structure has been determined, and consists of <strong>th</strong>ree short<br />

stretches of antiparrallel ~-sheet one long stretch of parallel ~-sheet<br />

fur<strong>th</strong>ermore one helix of 12-13 residues and a long loop.<br />

On <strong>th</strong>e basis of approximately 300 assigned NOE's <strong>th</strong>e structure has<br />

been calculated using distance geometry calculations. Subsequently<br />

restrained molecular dynamics was used to refine <strong>th</strong>e structure.<br />

The structure obtained from NMR data agree's well wi<strong>th</strong> <strong>th</strong>e structure<br />

of <strong>th</strong>e inhibitor determined by X-ray crystallography of <strong>th</strong>e subtilisin-<br />

inhibitor complex.


MKI3<br />

2D NMR - PSEUDOENERGY APPROACH TO THE THREE-DIMENSIONAL<br />

STRUCTURE OF ACYL CARRIER PROTEIN<br />

T. A. Holak* and J. H. Prestegard*<br />

Department of Chemistry, Yale University<br />

New Haven, CT 06511<br />

A me<strong>th</strong>od for protein structure determination from two<br />

dimensional NMR cross-relaxation data is explored using a 77<br />

amino acid protein, acyl carrier protein. The me<strong>th</strong>od is based on<br />

an energy minimization wi<strong>th</strong> a molecular mechanics program (AMBER)<br />

and incorporates NMR distance constraints in <strong>th</strong>e form of a<br />

pseudoenergy term <strong>th</strong>at accurately reflects <strong>th</strong>e distance dependent<br />

precision of NMR cross-relaxatlon data. When used in an<br />

indiscriminant fashion, <strong>th</strong>e me<strong>th</strong>od has a tendency to produce<br />

structures representing local energy minima near starting<br />

structures, ra<strong>th</strong>er <strong>th</strong>an structures representing a global energy<br />

minimum. However, stepwise inclusion of energy terms, beginning<br />

wi<strong>th</strong> a function heavily weighted by backbone distance<br />

constraints, appears to simplify <strong>th</strong>e potential energy surface to<br />

a point where convergence to a common backbone structure from a<br />

variety of starting structures is possible.


MKI5<br />

NA-23 NMR-INVISIBILITY IN LIVING SYSTEMS:<br />

2D MULTIPLE QUANTUM NMR AND NUTATION DIMENSION EFFECTS<br />

S<br />

William D. Rooney , Thomas M. Barbara and<br />

Charles S. Springer, Jr.<br />

Department of Chemistry, State University of New York,<br />

Stony Brook, New York 11794-3400<br />

The Na + ion is ubiquitous in nature in bo<strong>th</strong> extent and<br />

amount. Its major, stable, isotope, 23Na (I00%), is magnetic<br />

and gives a strong NMR signal. However, It is well-known<br />

<strong>th</strong>at, for living systems, a portion of <strong>th</strong>is signal is not<br />

observed when high resolution acquisition conditions are<br />

employed. There is general agreement <strong>th</strong>at <strong>th</strong>is is due to <strong>th</strong>e<br />

effects of microscopic electric field gradients on <strong>th</strong>is<br />

quadrupolar (I = 3/2) nucleus. There are two mechanistic<br />

extremes: a homogeneous interaction in which fluctuations of<br />

<strong>th</strong>ese gradients average <strong>th</strong>e frequencies of <strong>th</strong>e satellite<br />

transitions (~i/2 to ~3/2) to <strong>th</strong>e same value but drastically<br />

shorten <strong>th</strong>eir T2 relaxation times, and an inhomogeneous<br />

interaction in which <strong>th</strong>ese frequencies are widely dispersed<br />

because of variations in <strong>th</strong>e orientation of <strong>th</strong>ese gradients<br />

in <strong>th</strong>e magnetic field. We have undertaken to discriminate<br />

<strong>th</strong>ese extremes wi<strong>th</strong> two kinds of multiple pulse 2D NMR<br />

experiments. In one, <strong>th</strong>e projection of <strong>th</strong>e 2D spectrum onto<br />

<strong>th</strong>e v, axis displays <strong>th</strong>e forbidden double quantum NMR<br />

spectrum. In <strong>th</strong>e o<strong>th</strong>er, <strong>th</strong>e projection onto <strong>th</strong>e wl<br />

axis displays <strong>th</strong>e effective nutatlon (Rabi) frequency of <strong>th</strong>e<br />

central transition (I/2 to -I/2). We have prepared mode]<br />

systems, mostly consisting of long chain alkyl sulfate<br />

esters, which exhibit each of <strong>th</strong>e four possible types of<br />

23Na NMR spectrum: oriented (lyotropic) liquid<br />

crystalline (same as single crystalline), unoriented liquid<br />

crystalline ("powder pattern"), homogeneously relaxed, and<br />

extreme-narrowed. The second and <strong>th</strong>ird represent <strong>th</strong>e two<br />

mechanistic extremes for NMR-invisibility possible in nature.<br />

Our two kinds of 2D NMR experiments easily discriminate <strong>th</strong>e<br />

second and <strong>th</strong>ird spectral types in <strong>th</strong>e ~2 dimension.<br />

Bo<strong>th</strong> experiments share <strong>th</strong>e property of taking advantage of<br />

<strong>th</strong>e strong, sharp, central transition. In recent studies, we<br />

have conducted <strong>th</strong>ese experiments on living systems.<br />

Supported in part from NIH GM 32125 and NSF PCM 84-08339.


MK17<br />

STRUCTURES OF DNA OLIGOMERS DETERMINED<br />

BY 2D NMR AND DISTANCE GEOMETRY TECHNIQUES.<br />

C~uan Wang* and Ar<strong>th</strong>ur Pardi<br />

Department of Chemistry<br />

Rutgers, The State University of New Jersey<br />

New Brunswick, NJ 08903<br />

The double stranded decamers d(~AATC'~) and d(GCGCGTGACG) have been<br />

investigated by 2D NMR. Three-dimensional smlcmres of <strong>th</strong>ese molecules were generated by<br />

distance geometry techniques using proton-proton internuclear distances derived from NOESY<br />

spectra. Proton resonance assignments were made for all nonexchangeable aromatic and C1'-C3'<br />

sugar protons, most exchangeable imino and cytosine amino protons, and many C4' and C5' sugar<br />

protons in <strong>th</strong>ese molecules. In bo<strong>th</strong> decamers more <strong>th</strong>an 40 inter-base pair and 50 intra-base pair<br />

proton-proton distances were calculated fi'om build-up rates derived from NOESY spectra at multiple<br />

mixing times. This distance information was <strong>th</strong>en used as input for a distance geometry program to<br />

generate <strong>th</strong>ree-dimensional structures of <strong>th</strong>e oligomers in solution. Correlations between base<br />

sequence and local variations in <strong>th</strong>e DNA smJctme will be discussed.


MKI9<br />

SEQUENTIAL INDIVIDUAL 1H NMR RESONANCES ASSIGNMENTS<br />

OF CARDIOTOXIN III FROM FORMOSAN COBRA VENOM<br />

(NaSa naja atra)<br />

• +<br />

C. Yu and T. H. Hseu<br />

Department of Chemistry, National Tsing Hua University,<br />

Hsinchu, Taiwan*<br />

Department of Life Science, National Tsing Hua<br />

University, Hsinchu, Taiwan +<br />

Cardiotoxin III is one of <strong>th</strong>e membrane active proteins<br />

from Formosan cobra (Naja naja atra). It is a small basic<br />

single polypeptide consisting of 60 amino acid residues<br />

cross-linked by four disulfide bonds. The most characte-<br />

rized biological activity of cardiotoxins is <strong>th</strong>e in vitro<br />

hemolysis of ery<strong>th</strong>ocytes. None<strong>th</strong>eless, details about <strong>th</strong>e<br />

mechanism of cardiotoxin hemolysis remain inconclusive.<br />

Knowledge of <strong>th</strong>e molecular conformation of cardiotoxins<br />

might be informative wi<strong>th</strong> regard to <strong>th</strong>is common feature of<br />

functional properties of all toxins in <strong>th</strong>is class. The<br />

assignments of IH NMR resonances is <strong>th</strong>e first first step to<br />

probe <strong>th</strong>e structure-functional relationship of carditoxin.<br />

The result of sequential assignment of IH NMR spectrum<br />

for cardiotoxin III from naja naja atra is presented. The<br />

assignments are based entirly on <strong>th</strong>e amino acid sequence and<br />

2D NMR experiment on 400 MHz. The measurements were done in<br />

bo<strong>th</strong> H20 and D20. Phase-sensitive and double quantum filter-<br />

ing 2D techniques combined wi<strong>th</strong> solvent elimination routine<br />

proved to be useful, particularly <strong>th</strong>ose cross peaks closed to<br />

diagnol area (e.g. phe-13 and phe-25). The pH tetration<br />

curves were consistent wi<strong>th</strong> <strong>th</strong>e aromatic resonances assigments<br />

of cardiotoxin III by 2D experiments.


MK21<br />

ASPECTS OF PROTEIN STRUCTURE DETERMINATIONS WITH NMR<br />

ERIK R,P, ZUIDERWEG*o DAVID G, NETTESHEIM AND<br />

EDWARD T, OLEJNICZAK<br />

NMR RESEARCH. ABBOTT LABORATORIES, ABBOTT PARK. ILLINOIS<br />

60064<br />

1H 2D NMR AND COMPUTER METHODS TO OBTAIN THE DATA NECESSARY<br />

FOR THE DETERMINATION OF THE 3D STRUCTURE OF PEPTIDES AND<br />

PROTEINS WILL BE DISCUSSED AND EXEMPLIFIED WITH RESULTS<br />

OBTAINED ON RECOMBINANT CSA, A 75 AMINO ACID PROTEIN. ToPics<br />

TOUCHED UPON WILL INCLUDE PHASE COHERENT DECOUPLING FOR<br />

SOLVENT SuPPREsSION, ZZ SPECTROSCOPY FOR COMPLETE<br />

"FINGERPRINTS", PRESATURATIONLESS HOHAHA SPECTROSCOPY OF<br />

PEPTIDES IN H20 SOLUTION AND PHASE SENSITIVE COCONOSY FOR<br />

AMIDE PROTON EXCHANGE STUDIES, SPECTRAL BASELINE DISTORTIONS<br />

AND COMPUTER BASED CORRECTION METHODS WILL BE DISCUSSED.<br />

STRATEGIES FOR NOE IDENTIFICATION IN CROWDED SPECTRA, SUCH AS<br />

THE UTILIZATION OF SPIN DIFFUSION, WILL BE ILLUSTRATED. THE<br />

USE OF THE DISMAN DISTANCE GEOMETRY PROGRAM BY W. BRAUN AND<br />

N. Go FOR THE 3D STRUCTURE DETERMINATION OF THIS PROTEIN WILL<br />

BE DESCRIBED AS WELL AS METHODOLOGY TO REFINE THE STRUCTURES<br />

OBTAINED.


MK23<br />

MATER SUPPRESSION TECHNIQUES FOR THE GENERATION OF PURE PHASE<br />

TWO-DIMENSIONALNMR SPECTRA<br />

Vladlmlr Sklenar* and Ad Bax*<br />

Laboratory of Chemical Physics, Natlonal Institute of Diabetes<br />

Digestive and Kidney Diseases, National Institutes of Heal<strong>th</strong><br />

Be<strong>th</strong>esda,MD.20892<br />

A number of different approaches has been proposed for suppression of<br />

<strong>th</strong>e intense H20 resonance in 2D NMR spectra of biological compounds. Most<br />

commonly one employs presaturatlon of <strong>th</strong>e H~O resonance using a low power<br />

irradiation prior to <strong>th</strong>e observation pulse. The main disadvantage of <strong>th</strong>is<br />

me<strong>th</strong>od is <strong>th</strong>at resonances of exchangeable protons may also be saturated.<br />

Selective excitation using pulse sequences which have a null at <strong>th</strong>e water<br />

resonance avoids <strong>th</strong>is problem. A large variety of different excitation<br />

schemes has been designed in recent years. However, all but <strong>th</strong>e slmplest<br />

90x-T-90_x sequence yield spectra <strong>th</strong>at require a large linear phase<br />

correction. The baseline roll <strong>th</strong>at result from such a phase correction can<br />

lead to intense artifacts in phase sensitive 2D NMR spectra.<br />

A new approach is described for water suppression in one- and<br />

two-dlmensional NMRwhlch generates pure absorptive spectra <strong>th</strong>at are free<br />

of baseline dlstorslons. This me<strong>th</strong>od involves <strong>th</strong>e use of a 90x-~-90_x<br />

hard pulse as a read pulse followed by a 90~-k~-90.~ refocusing pulse<br />

which is phase cycled for obtaining <strong>th</strong>e highest possible water<br />

suppression. Incorporation into several of <strong>th</strong>e most popular 2D NHR<br />

experiments (NOESY, HOHAHA, ROESY, HMQC and COSY) is discussed in detail.<br />

Examples of <strong>th</strong>is approach for selective water suppression are demonstrated<br />

by recording <strong>th</strong>e 2D spectra of <strong>th</strong>e decapeptide LH-RH and <strong>th</strong>e Dickerson<br />

dodecamer in 90% H20.


MK25<br />

OPTIMIZATION OF QUANTITATIVE PERFORMANCE OF<br />

SPECTRAL ANALYSIS BY MINIMAL SAMPLING<br />

Jerome L. Ackerman* and Vikram Janakiraman-<br />

Department of Radiology, NNR Facility,<br />

Massachusetts General Hospital, Boston, MA 02114<br />

Minimal sampling is a non-Fourier me<strong>th</strong>od of spectral<br />

analysis in vhich <strong>th</strong>e complex amplitudes of prespecified basis<br />

signals are extracted by an algebraic solution. The basis<br />

signals may be simple sine and cosine raves as in <strong>th</strong>e discrete<br />

Fourier transform. Alternatively, <strong>th</strong>ey may be oscillations wi<strong>th</strong><br />

finite decay rate, or <strong>th</strong>ey may be <strong>th</strong>e FID's corresponding to<br />

arbitrary lineshapes or subspectra. The utility of <strong>th</strong>is form of<br />

spectral analysis lies in <strong>th</strong>e principle <strong>th</strong>at for each unknown<br />

amplitude, only one sample of <strong>th</strong>e signal need be obtained. This<br />

can greatly reduce <strong>th</strong>e time of <strong>th</strong>e data acquisition process and<br />

size of <strong>th</strong>e data set in multidimensional acquisitions.<br />

For example, in <strong>th</strong>e collection of a COSY tvo-dimensional<br />

data set from a compound vi<strong>th</strong> tventy spectral lines in <strong>th</strong>e normal<br />

one-dimensional spectrum, <strong>th</strong>ere are exactly tventy possible<br />

frequencies in each of <strong>th</strong>e dimensions of <strong>th</strong>e two-dimensional<br />

spectrum (ignoring <strong>th</strong>e possible appearance of multi-quantum<br />

artifacts). It is <strong>th</strong>erefore possible, using minimal sampling, to<br />

collect <strong>th</strong>e two-dlmensional data set vl<strong>th</strong> only twenty samples in<br />

<strong>th</strong>e first time dimension. (One could also collect only twenty<br />

samples of each FID, ra<strong>th</strong>er <strong>th</strong>an <strong>th</strong>e usual 512 or so, but <strong>th</strong>at<br />

would not offer any significant savings in total acquisition<br />

time.)<br />

The drastic reduction in <strong>th</strong>e total number of data values<br />

acquired would suggest <strong>th</strong>at <strong>th</strong>e algori<strong>th</strong>m would suffer from very<br />

poor signal-to-noise performance. Sovever, <strong>th</strong>e actual<br />

performance is significantly better <strong>th</strong>an one might at first<br />

suspect. Most importantly, we have found a specific procedure<br />

for optimizing <strong>th</strong>e data collection process by maximizing <strong>th</strong>e<br />

noise immunity of <strong>th</strong>e matrix transformation which actually<br />

accomplishes <strong>th</strong>e spectral analysis.<br />

We will present an algori<strong>th</strong>m for optimizing <strong>th</strong>e<br />

quantitative performance of minimal sampling, and illustrate <strong>th</strong>e<br />

results of <strong>th</strong>is process for simulated and actual data.<br />

"Permanent address: University of Pennsylvania,<br />

Philadelphia, PA 19104


MK27<br />

QUANTITATIUN OF 1-D SPECTRA WITH LOW SIGNAL TO NOISE RATIO<br />

Sarah J. Nelson* and Truman R.,Bro~<br />

Fox Chase Cancer Center, Philadelphia, PA 1911!<br />

A new me<strong>th</strong>od of analysing 1-V spectra wi<strong>th</strong> low signal to noise ratio has<br />

been developed. In contrast to o<strong>th</strong>er techniques of noise suppression such as<br />

<strong>th</strong>e mtched filter and maximum entropy me<strong>th</strong>od, <strong>th</strong>is provides an automatic<br />

quantitation of <strong>th</strong>e spectrum. The output of <strong>th</strong>e computer algori<strong>th</strong>m which<br />

implements <strong>th</strong>e new me<strong>th</strong>od comprises estimates of (i) a slowly varying<br />

background component, (ii) <strong>th</strong>e variance of random noise, (iii) peak positions,<br />

peak heights, peak areas and (iv) <strong>th</strong>e predicted accuracy of <strong>th</strong>e peak parameter<br />

estimates. The performance of <strong>th</strong>e me<strong>th</strong>od has been investigated using a variety<br />

of simulated spectra wi<strong>th</strong> different types of background and a range of<br />

different peak heights and line wid<strong>th</strong>s. A comparison of <strong>th</strong>e filtered spectra<br />

wi<strong>th</strong> <strong>th</strong>ose obtained using <strong>th</strong>e matched filte~ and maximum entropy me<strong>th</strong>od<br />

demonstrated <strong>th</strong>e advantages of being able to directly estimate <strong>th</strong>e variable<br />

background and to use bo<strong>th</strong> peak height and peak wid<strong>th</strong> in distinguishing peaks<br />

from random noise. The me<strong>th</strong>od has also been applied to a variety of different<br />

experimental data and shows distinct advantages over <strong>th</strong>e conventional<br />

filtering techniques.


MK29<br />

ANALYS2D -GRAPHICS SOFTWARE FOR PROCESSING<br />

AND ANALYSIS OF 2D NMR DATA<br />

P. Darba* and L.R. Brown #<br />

Department of Biochemistry, University of Wisconsin-Madison,<br />

420 Benry Mall, Madison, WI-53706, U.S.A.<br />

and<br />

#Research School of Chemistry, The Australian National<br />

University, Canberra, A.C.T. 2601, Australia.<br />

ANALYS2D and its front-end package PROC2D are software packages used<br />

to process and analyze 2D NHR data on VAX and microVAX computers.<br />

Developed in FORTRAN77 and Tektronix PLOTIO GKS, it can be transported to<br />

o<strong>th</strong>er host computers wi<strong>th</strong> very little modification. PROC2D does <strong>th</strong>e<br />

number crunching part of <strong>th</strong>e operations such as 1D and 2D FFT, phase<br />

corrections, baseline corrections and display list generation. ANALYS2D<br />

provides for interactive analysis of 2D data including spin picking and<br />

bookkeepping of spin system data bases.<br />

PROC2D contains interactive routines for setting up 2D processing. It<br />

can be used in bo<strong>th</strong> interactive and batch processing modes. It is usable<br />

wi<strong>th</strong> bo<strong>th</strong> BRUKER and VARIAN data types and allows user defined 2D<br />

transform types like TPPI, States-Haberkorn-Ruben, absolute value and<br />

non-quadrature in e 1. It also includes auxillary programs <strong>th</strong>at feature<br />

linear combination procedures for efficient generation of multiple<br />

quantum and multiple quantum filtered 2D NMR spectra.<br />

ANALYS2D has been mainly designed to replace <strong>th</strong>e conventional me<strong>th</strong>od<br />

of analysis of 2D data using wall paper size plots, wi<strong>th</strong> <strong>th</strong>e concept of<br />

interactive analysis of 2D spectra on a high resolution graphics<br />

workstation. It has menu driven architecture and features display of 2D<br />

contours, selective expansions of different regions, creation of spin<br />

system data bases, cursor based auto/manual spin picking, comparison of<br />

spin system connectivities between different data sets, comparison of<br />

experimental spin multiplet patterns wi<strong>th</strong> <strong>th</strong>eoretical patterns and<br />

pattern library generation.


MK31<br />

SYMMETRY RECOGNITION APPLIED TO TWO DLMENSIOI~AL<br />

IH INMR SPECTRA OF PEPTIDES AND PROTEINS<br />

Jeffrey C. Hoch I", Flemming M. Poulson 2,<br />

Shen Hengyi 2, Mogens Kjaer 2, and Svend Ludvigsen 2<br />

I Rowland Institute for Science<br />

100 Cambridge Parkway<br />

Cambridge, Massachusetts 02142<br />

2Chemistry Department<br />

Carlsberg Laboratory<br />

Gamle Carlsbergvej 10<br />

Valby, DENMARK DK-2500<br />

A hierarchical procedure which automatically locates features in two dimen-<br />

sional NMR spectra based on <strong>th</strong>eir symmetry properties is described. The pro-<br />

cedure makes use of projection operators derived from group <strong>th</strong>eory. Results of<br />

<strong>th</strong>e procedure applied to COSY data for <strong>th</strong>e peptide hormone LHRH and barley<br />

subtilisin inhibitor protein are presented.


MK33<br />

DISPA-BASED RAPID AUTOMATED PHASING OF FT-NMR SPECTRA<br />

Edward C. Craig*, a and Alan G. Marshalla,b<br />

Department of Chemistrya<br />

(Department of Biochemistryb)<br />

The Ohio State University<br />

120 West 18<strong>th</strong> Avenue<br />

Columbus, OH 43210<br />

For a Lorentzian spectral peak, a plot of dispersion-vs.-absorption<br />

(DISPA) gives a circle, whose center is rotated about <strong>th</strong>e origin by <strong>th</strong>e<br />

angle~>(see Figure). In <strong>th</strong>is poster, we will show <strong>th</strong>at a rapid and<br />

convenient me<strong>th</strong>od for locating <strong>th</strong>e center of <strong>th</strong>e DISPA circle (and <strong>th</strong>ence<br />

<strong>th</strong>e phase misadjustment for <strong>th</strong>at peak) is to locate <strong>th</strong>e intersection of<br />

<strong>th</strong>e perpendicular bisectors of two or more chords of <strong>th</strong>e DISPA circle.<br />

Once <strong>th</strong>e phase at <strong>th</strong>e center of each of two or more peaks has been<br />

established, a linear (or quadratic) fit to a plot of~vs, frequency<br />

provides a smoo<strong>th</strong> phase-correction function for all o<strong>th</strong>er spectral peaks.<br />

Automated phasing of carbon-13 FT-NMR spectra will be demonstrated.<br />

Imaginary<br />

/<br />

Real<br />

!<br />

Frequency<br />

[This work was supported by <strong>th</strong>e National Science Foundation<br />

(CHE-8218998) and The Ohio State University.]<br />

I. Marshall, A.G. (1982) "Dispersion versus Absorption (DISPA): Hilbert<br />

Transforms in Spectral Line Shape Analysis," in Fourier, Hadamard r<br />

and Hilbert Transforms in Chemistry, ed. A.G. Ma'rshall (P|enum,<br />

N.Y.), pp. 99-123.


MK35<br />

NETVORKING AND AUTOMATION IN THE HIGH-VOLUME LABORATORY<br />

by<br />

Stephen G. Spanton, Richard L. Stephens* and David ~Jhittern<br />

Department of Analytical Research, Abbott Laboratories<br />

Nor<strong>th</strong> Chicago, Illinois 60064<br />

The linking of an NMR spectrometer equipped wi<strong>th</strong> an automatic sample<br />

changer to an external computer network has resulted in an extremely<br />

efficient system for <strong>th</strong>e acquisition, processing and archiving of NMR<br />

spectra. Spectra of a large number of samples are acquired and saved on<br />

<strong>th</strong>e ~ spectrometer using <strong>th</strong>e sample changer. The external computer <strong>th</strong>en<br />

fetches <strong>th</strong>e raw data and (1) assigns each spectrum a reference number, (2)<br />

decodes and enters various information into an archival data base, and (3)<br />

saves <strong>th</strong>e ray data on magnetic tape. Routine one-dimensional 1H spectra<br />

are <strong>th</strong>en Fourier transformed, phased, referenced, scaled, integrated and<br />

plotted by <strong>th</strong>e external computer operating in batch mode. In addition,<br />

software has been developed at Abbott to alloy <strong>th</strong>e interactive processing<br />

and plotting of one-dimensional spectra by chemists (and spectroscopists)<br />

using <strong>th</strong>e computer network and graphics terminals located in <strong>th</strong>eir ovn<br />

laboratories.


MK37<br />

IMPROVEMENT OF INVERSE CORRELATION EXPERIMENTS BY SHAPED PULSES<br />

W. Bermel* a), C. Griesinger* b) , S. Steuernagel c),<br />

K. Wagner c), H. Kessler c).<br />

a) Bruker Analytische Messtechnik GmbH, Silberstreifen,<br />

D-7512 Rheinstetten 4, West Germany<br />

b) Laboratorium fur physikalische Chemie, ETH-Zentrum,<br />

CH-8Og2 ZUrich, Switzerland<br />

c) Institut fur organische Chemie, J. W. Goe<strong>th</strong>e Universit~t,<br />

Niederurseler Hang, D-6000 Frankfurt/M, West Germany<br />

Correlation experiments via heteronuclear long range couplings provide<br />

useful information for <strong>th</strong>e assignment of resonances and about connec-<br />

tivities of substructures in oligopeptides and o<strong>th</strong>er classes of organic<br />

and bioorganic compounds.<br />

The corresponding inverse experiment, which has a better signal to noise<br />

ratio <strong>th</strong>an conventional techniques, has been introduced recently 1). For<br />

<strong>th</strong>e application to peptides mainly <strong>th</strong>e carbonyl carbons which cover a<br />

small range of chemical shifts in F 1 are of interest, whereas <strong>th</strong>e whole<br />

proton spectrum is required in F 2.<br />

The selection of a small frequency window in <strong>th</strong>e F 1 dimension is <strong>th</strong>ere-<br />

fore a prerequisite to obtain sufficient digitization wi<strong>th</strong> a reasonable<br />

amount of tl-values. This can be done wi<strong>th</strong> semiselective pulses. We used<br />

Gaussian shaped pulses for <strong>th</strong>is kind of semiselective 2D experiments.<br />

The reduction of <strong>th</strong>e F 1 frequency range of more <strong>th</strong>an 10 kHz to a few<br />

hundred Hz results in a considerable resolution gain. The sensitivity is<br />

also improved due to good digitization.<br />

Modifications of <strong>th</strong>e basic sequence will be discussed, which allow to<br />

adjust <strong>th</strong>e experiment to one's needs: ei<strong>th</strong>er to obtain a maximum number<br />

of correlation peaks or to derive qualitative information about <strong>th</strong>e size<br />

of heteronuclear coupling constants.<br />

1) L. MUller, J. Am. Chem. Soc 101, 4481 (1979);<br />

A. Bax, R. H. Griffey and B. L. Hawkins, J. Magn. Reson. 55,<br />

301 (1983)


MK39<br />

A Partial Excitation Me<strong>th</strong>od in Two-dimensional Nuclear Mag-<br />

netic Resonance Spectroscopy Using a Tailored Pulse Having<br />

a Sinc Function Shape<br />

Muneki Ohuchl, Kazuo Furlhata~ and Haruo Seto~<br />

JEOL Co., Nakagami, Akishima, Tokyo, ~lnstitute of Applied<br />

Microbiology, University of Tokyo, Bunkyo-ku, Tokyo, Japan<br />

Two-dimensional (2D) NMR spectroscopy has a disadvantage<br />

<strong>th</strong>at cross-peak patterns can not be analyzed in detail due<br />

to <strong>th</strong>e low digital resolution caused by <strong>th</strong>e limited capacity<br />

of data memory and by <strong>th</strong>e limited measurement time. This<br />

shortcoming can be eliminated by measuring a narrow spectral<br />

region using partial excitation pulses. A slnc function<br />

pulse can excite signals wi<strong>th</strong>in a narrow frequency range,<br />

while <strong>th</strong>e side lobes produced from a rectangular pulse ex-<br />

cite undesirable neighbor signals outside <strong>th</strong>e range.<br />

We have developed <strong>th</strong>e partial excitation me<strong>th</strong>od in 2D NMR<br />

spectroscopy[l] by using a tailored pulse produced from a<br />

sinc function type pulse, and <strong>th</strong>e digital resolution of 2D<br />

NMR spectra has been enhanced several times by using <strong>th</strong>is<br />

me<strong>th</strong>od. Increased digital resolution allows recognition of<br />

cross-peak patterns and coupling constants can be determined<br />

from <strong>th</strong>eir patterns.<br />

In <strong>th</strong>is paper, application of <strong>th</strong>is me<strong>th</strong>od to COSY and<br />

HMBC[2](Heteronuclear Multiple Bond Connectivity) will be<br />

reported.<br />

I) M.Ohuchi et.al., J.Magn.Reson. in press.<br />

M.Ohuchl et.al., 25<strong>th</strong> NMR <strong>Conference</strong> Tokyo (1986)<br />

2) A.Bax et.al., J.Am.Chem. Soc., I08 2093 (1986)


MK41<br />

PARAHYDROGEN AND SYNTHESIS ALLOWS<br />

DRAMATICALLY ENHANCED NUCLEAR ALIGNMENT<br />

C. Russell Bowers* and Daniel P. Weitekamp<br />

Ar<strong>th</strong>ur Amos Noyes Laboratory of Chemical Physics<br />

California Institute of Technology 127-72<br />

Pasadena, CA91125<br />

Molecular hydrogen is known to come in two forms, para-H2 and<br />

or<strong>th</strong>o-H2, which differ from one ano<strong>th</strong>er in <strong>th</strong>eir nuclear spin states. A<br />

consequence of <strong>th</strong>e symmetrization postulate of quantum mechanics is <strong>th</strong>at<br />

<strong>th</strong>ese two forms are associated only wi<strong>th</strong> specific states of molecular rotation.<br />

In particular, <strong>th</strong>e lowest energy rotational state has <strong>th</strong>e para nuclear spin<br />

state, (1/2)t(]a~ >-ilia > ), so <strong>th</strong>at low-temperature equilibration prepares <strong>th</strong>e<br />

protons predominantly in <strong>th</strong>is non-magnetic state. This para-H2 may be<br />

used even as a room temperature reagent, since conversion to <strong>th</strong>e or<strong>th</strong>o form<br />

is slow in <strong>th</strong>e absence of a catal' y st.<br />

This poster presents <strong>th</strong>e ~irst experimental demonstration of <strong>th</strong>e recent<br />

prediction1 <strong>th</strong>at <strong>th</strong>e nuclear spin order ofpara-H2 can be converted by<br />

chemical reaction into large v nonequilibrium NMR signals. The reaction<br />

studied is <strong>th</strong>e molecular addition of H2 to acrylonitrile to form propionitrile.<br />

The reaction is performed in deuterochloroform solution in a standard NMR<br />

tube at room temperature and pressure wi<strong>th</strong> <strong>th</strong>e aid of Wilkinson's catalyst,<br />

tris (triphenylphosphine) rhodium(I) chloride. The hydrogenation is initiated<br />

by bubbling H2 gas <strong>th</strong>rough <strong>th</strong>e solution containing acrylonitrile and catalyst.<br />

If <strong>th</strong>e gas has been enriched inpara-H2 by previous exposure to a<br />

paramagnetic catalyst in liquidnitrogen, a n/4 pulse elicits an f.i.d, whose<br />

Fourier transform shows antiphase multiplets at '<strong>th</strong>e expected propionitrile<br />

frequencies as shown in)artn par~ ~a) of <strong>th</strong>e figure. The amplitude of <strong>th</strong>ese lines is at<br />

least two orders of magnitude greater <strong>th</strong>an would result from <strong>th</strong>e equilibrium<br />

magnetization of <strong>th</strong>e product formed. This is evidenced by <strong>th</strong>e absence of<br />

observable product signal in part b), obtained after a delay of several times T1,<br />

even <strong>th</strong>ough <strong>th</strong>e product is chemically stable.<br />

(o)<br />

(b)<br />

f i ~ |<br />

I I I<br />

6 3 0<br />

~ ) C.R. Bowers and D. P. Weitekamp, "rhe Transformation of<br />

ppm<br />

ymmetrization Order to Nuclear Spin Magnetization By Chemical<br />

Reaction and NMR", Phys.Rev.Lett. 53, 2645 (1986).


MK43<br />

MjECHANIStCSOFCOHEREHCETRANSFER IN LIQUIDS:<br />

=ANTIPHASEmARD "IMPBASE" TRANSFER<br />

Renzo Bazzo, Jona<strong>th</strong>an Boyd, Nick $offe<br />

Department of Biochemistry, University of Oxford<br />

Oxford, ENGLAND<br />

Many NNR experiments, bo<strong>th</strong> 1 and 2 dimensional, rely on a<br />

common mechanism of coherence transfer, between weak]y coupled<br />

nut]el, which is referred to as <strong>th</strong>e "antiphase" mechanism.<br />

Free evolution can be described as a continuous exchange<br />

between inphase and anciphase terms; whereas pu]ses (usual]y<br />

assumed to be non-selective) cause coherence transfer of<br />

antiphase terms or give rise to multiple quantum coherences. A<br />

simple geometrical model will be presented which is useful to<br />

represent <strong>th</strong>e above processes.<br />

Cross polarization experiments, introduced for liquids by<br />

Braunschweiler and Ernst and fur<strong>th</strong>er developed by 8ax and Davis<br />

can give rise to "inphase" or net coherence transfer. We shall<br />

present an analysis of <strong>th</strong>e coherence transfer mechanism<br />

involved in <strong>th</strong>is class of experiments.<br />

The cross polarization experiment will be compared wi<strong>th</strong><br />

o<strong>th</strong>er two-dimensional correlation techniques which rely<br />

completely upon <strong>th</strong>e antiphase mechanism. The two mechanisms of<br />

coherence transfer will be contrasted.


MK45<br />

SIMULTANEOUSLY OBSERVING THE HOMONUCLEAR<br />

AND HETERONUCLEAR EDITED SIGNALS WITHOUT<br />

AN X NUCLEUS DECOUPLER<br />

T. Jue<br />

Dept. of Mol. Biophysics and Biochemistry<br />

Yale University<br />

New Haven, CT 06511<br />

The promise of sensitivity enhancement has spurred research<br />

efforts to edit <strong>th</strong>e *H NMR spectrum. For in vivo studies, <strong>th</strong>e<br />

metabolic pa<strong>th</strong>ways have been followed wi<strong>th</strong> ,3C precursors, but<br />

can be followed wi<strong>th</strong> enhanced sensitivy wi<strong>th</strong> |*sc}-*H editing<br />

strategies. In particular, <strong>th</strong>e one dimensional techniques based<br />

on J modulation behavior have yielded successful results in<br />

brain, liver, and muscle experiments. However, <strong>th</strong>ese extant<br />

me<strong>th</strong>ods yield only <strong>th</strong>e edited *3C-*H signals upon subtraction of<br />

<strong>th</strong>e alternate, modulated spin-echo experiments, but do not<br />

necessarily give edited *2C-*H signals upon addition -- only <strong>th</strong>e<br />

overall *2C-*H resonances which are often encumbered wi<strong>th</strong> <strong>th</strong>e<br />

endogenous background lipid signals.<br />

But in vivo studies require bo<strong>th</strong> <strong>th</strong>e *2C-*H and *3C-*H<br />

signals to probe <strong>th</strong>e important question of specific activity,<br />

which is posed by <strong>th</strong>e various sources of a metabolic pool.<br />

Consequently, we have devised a simple scheme to simultaneously<br />

obtain bo<strong>th</strong> <strong>th</strong>e homonuclear and heteronuclear edited signals<br />

wi<strong>th</strong>out a *sc decoupler. Pivotal metabolites are amenable to<br />

such a winnowing scheme.


MK47<br />

AN IMPROVED CHORTLE PULSE SEQU<strong>ENC</strong>E<br />

GERALD A. PEARSON<br />

CHEMISTRY DEPARTMENT, UNIVERSITY OF IOWA<br />

IOWA CITY, IOWA 52242<br />

We have developed s pulse sequence which substantially<br />

improves <strong>th</strong>e accuracy and resolution of <strong>th</strong>e CHORTLE (I)<br />

experiment. (Carbon-Hydrogen correlations from One-<br />

dimensional polaRization-Transfer spectra by LEast-squares<br />

analysis) One can now adjust tCH, <strong>th</strong>e net evolution time<br />

for dcm prior to polarization transfer, independently o£<br />

tM,max, <strong>th</strong>e maximum net evolution time for proton chemical<br />

shift, 6H. Using tN,max m 10 msec, CHORTLE now routinely<br />

measures 6H wi<strong>th</strong> an error ~(~H) ~ I HZ, and resolves non-<br />

equivalent geminal me<strong>th</strong>ylene protons whose chemical shifts<br />

differ by only 30 Hz. Exploratory CHORTLE experiments wi<strong>th</strong><br />

longer tH,max have achieved ¢(6H) ~ 0.2 Hz in favorable<br />

cases, and it should be possible to achieve ~(6H) s 0.02 Hz<br />

in special cases, wi<strong>th</strong> a IH spectrum wid<strong>th</strong> ~ 5000 Hzl<br />

In its orlElnal form, <strong>th</strong>e CHORTLE experiment typically<br />

yielded ~(6H) ~ 3 Hz, end frequently could not resolve non-<br />

equivalent gemlnal protons whose chemical shifts differ by<br />

less <strong>th</strong>an about 70 Hz. This was because tM.max = tCH, and<br />

tcH is restricted to values which optimize <strong>th</strong>e polarization-<br />

transfer efficiency. Wi<strong>th</strong> tcH ~ I/2JcH, tH,max was only 3.2<br />

meec. Tzeng(2) pointed out <strong>th</strong>at it is possible to<br />

circumvent <strong>th</strong>is limitation by setting tcH = 3/2JcH, 5/2dcs,<br />

etc., in exactly <strong>th</strong>e same way <strong>th</strong>at Reynolds and o<strong>th</strong>ers TM<br />

re-parameterized <strong>th</strong>e COLOC c4) sequence. Unfortunately,<br />

increasing tcs has <strong>th</strong>ree disadvantages. First of all,<br />

errors arising from unwanted long-range polarization<br />

transfer remain approximately constant, ra<strong>th</strong>er <strong>th</strong>an<br />

decreasing wi<strong>th</strong> increasinE tH,ma,. Secondly, <strong>th</strong>e desired<br />

polarization-transfer efficiency becomes more sensitive to<br />

<strong>th</strong>e value of Jcs; since Jcs can vary from 118 Hz to 220 Hz<br />

or more in some samples, <strong>th</strong>is will inevitably lead to loss<br />

of sensitivity for some signals. Finally, only certain<br />

values of ts,max are possible (ca. 10 msec, 16.5, 23, ...)<br />

wi<strong>th</strong> <strong>th</strong>is approach. The new pulse sequence permits one to<br />

choose ts,max to be a truly optimum compromise between<br />

desired accuracy and <strong>th</strong>e sensitivity losses caused by IH<br />

relaxation and IH multiplet dephasing arising from IH-IH<br />

coupling.<br />

1. G.A.F~Ju~SON, J.~oN.RZSON. 6,4, 48T (1~).<br />

2. C.S.TzENo, UNIV. (:~ C~U-IF. AT RI~ERSI2* I~IVATI[ CC]I,~I~.ATION.<br />

3. W.F.REYNOLDS, D.W.HUOMES, M.I~A,'XOK-I~, AND R.G.EN~xOUEZm<br />

J.I'IAoN.RZ~w~N. 64, 304 (1985).<br />

4. H.I~S~.~R, C.CW~IESI~R, J . ~ ( ~ , AND H.R.I-~I,<br />

J.MA(Nw. REIwmw. 6"/', 331 (1~34).


Poster Session<br />

W<br />

2:00- 5:00<br />

Wednesdayj April 8j <strong>1987</strong>


o<br />

°~<br />

tO.<br />

o<br />

.9,o<br />

Kiln - Poster Session Layout<br />

WK8 r]<br />

Flynn ~<br />

Mg7<br />

Fesik II<br />

WK6<br />

Fesik<br />

MK5<br />

Davis<br />

WK4<br />

Brown<br />

MK3<br />

Borgias<br />

WK2<br />

Bogusky<br />

MK1<br />

Baum<br />

Chalkboard<br />

MK9 WK2 MK25 WK44 MK41<br />

Takegoshi Sute Ackerman Warrer Bowers<br />

WK10 MK2:, WK26 MK3. ¢ WK42<br />

McLennan $klenka Barker Ohuch Bodenhausen<br />

MK11 WK2: MK27 WK3E MK43<br />

Poulsen Levltl Nelson Mac Boyd<br />

WK12 MK21 WK28 MK37 WK44<br />

Mlrau Zuiderw~ Brown Bermel Coxon<br />

MK13 WK2¢ MK29 WK36 MK45<br />

Holak Ziessow Darba Tang Jue<br />

WK14 MK19 WK30 MK35 WK46<br />

Snrensen Yu Grahn Stephens Meyerhoff<br />

MK15 WK18 MK31 WK34 MK47<br />

Rooney Narula Hoch Picart Pearson<br />

WK16 MK 17 WK32 MK33 WK48<br />

Hiyama Wang Johnson Craig F:lance


Firelight Forum - Poster Session Layout<br />

WF10<br />

Chu<br />

MF9<br />

Williamson<br />

WF8<br />

Pines<br />

MF7<br />

Eckert<br />

WF6<br />

Kay<br />

MF5<br />

Pekar<br />

WF4<br />

Lamb<br />

MF3<br />

Gonen<br />

WF2<br />

LaMar<br />

MF1<br />

Allen<br />

MF11<br />

Beshah<br />

WF12<br />

Bork<br />

MF13<br />

Bryant<br />

WF14<br />

Bryant<br />

MF15<br />

Carduner<br />

WF16<br />

Duncan<br />

MF17<br />

Ead<br />

WF18<br />

Dec<br />

MF19<br />

Jiang -<br />

WF20<br />

Jakobsen<br />

WF30<br />

Nissan<br />

MF29<br />

Merrill<br />

WF28<br />

Wind<br />

MF27<br />

Quinting<br />

WF26<br />

Limbach<br />

MF25<br />

Hill<br />

WF24<br />

Campbell<br />

MF23<br />

qleason<br />

WF22<br />

Hartzell<br />

MF21<br />

Garbow<br />

MF31<br />

Oldfield<br />

WF32<br />

Opella<br />

MF33<br />

Roberts<br />

WF34<br />

Simonsen<br />

MF35<br />

Stebbins<br />

WF36<br />

Vander-<br />

Hart<br />

MF37<br />

Williams<br />

WF38<br />

Lock<br />

MF39<br />

StOcklein<br />

WF40<br />

Jarvie<br />

Chalkboard I<br />

Tsang Kopelevich<br />

MF49H WF52<br />

Ronemus Maple<br />

WF,~ MFS3<br />

Muir'] Jarrel<br />

MF47HWF54<br />

Nicholson ~lOmlch<br />

MF55<br />

Johnston<br />

MF45, H WF56<br />

Brandes Mattingly<br />

WF=I] "~<br />

Santini Bendall<br />

MF43, n WF58<br />

Johnson Black-<br />

ledge<br />

MF59<br />

Briggs<br />

MF41 ~ WF60<br />

Behling Thoma<br />

Kormos Lowe<br />

Keller MF~911W~2 He<strong>th</strong>erington<br />

WF6811MF73<br />

amesi i Mateescu<br />

MF°'IIW '<br />

Schmal- Karczmar<br />

brock<br />

WF6611MFTS<br />

offrionl I Matsui<br />

MF~IIW~'<br />

Garwood Metz<br />

V-EUtlM~<br />

Dumoulin Miller<br />

MF~IIWF~B<br />

Dixon Saarinen<br />

WF62 H MF79<br />

Cockman Warren<br />

MF"IIWF~O<br />

Brown Szeverenyi<br />

Women's Rm Men's Rm<br />

~)<br />

(J<br />

03<br />

.m<br />

LI.<br />

E3<br />

o


WF02<br />

WF04<br />

WF06<br />

WF08<br />

WF10<br />

WF12<br />

WF14<br />

WF16<br />

WF18<br />

WF20<br />

WF22<br />

WF24<br />

WF26<br />

WF28<br />

Presenter<br />

LaMar, G. N.<br />

Lamb, D. M.<br />

Kay, L. E.<br />

Pines, A.<br />

Chu, S. C.-K.<br />

Bork, V.<br />

Bryant, R.G.<br />

Duncan, T. M.<br />

Dec, S. F.<br />

Jakobsen, H. J.<br />

Hartzell, C. J.<br />

Campbell, G. C.<br />

Limbach, H.-H.<br />

Wind, R. A.<br />

Poster Session<br />

Wednesday, April 8, <strong>1987</strong><br />

Title<br />

Utility of Nuclear Overhauser Experiments in <strong>th</strong>e<br />

Study of Heme Proteins<br />

Fixed Field Gradient NMR Diffusion Measurements<br />

Using Bessel Function Fits to <strong>th</strong>e Spin-Echo Signal<br />

Motional Properties from Forbidden Peak Intensities in<br />

Double Quantum Spectra of Macromolecules<br />

Multiple Quantum and 129Xe NMR Studies of <strong>th</strong>e<br />

Distribution of Molecules in a Zeolite<br />

Bulk Magnetic Susceptibility Effects in 23Na NMR<br />

Spectra of Compartmentalized Samples Containing<br />

Na ÷ and Shift Reagents<br />

Determination of Enzyme-Steroid Binding Sites by<br />

CPMAS 13C NMR and Selective Excitation<br />

The Use of Multiple Echo Acquisition and Stimulated<br />

Echos to Detect Slow Motion<br />

Characterization of Transition Metal Silicides wi<strong>th</strong> 29Si<br />

NMR Spectroscopy<br />

High-Speed MAS 19F NMR of Fluorocarbon<br />

Polymers<br />

Design of an Efficient Probe for High Field<br />

Multinuclear CP/MAS NMR of Solids<br />

Orientation of <strong>th</strong>e 15N Chemical Shift Tensor in a<br />

Polycrystalline Dipeptide<br />

VT CP/MAS NMR of Antiferromagnetic Metal<br />

Complexes<br />

Temperaturevariable Solid Solution CPMAS NMR<br />

Studies of Dyes in Glassy Polymers<br />

Dynamic Nuclear Polarization in Organic Conductors<br />

Location Numbering Scheme: W for Wednesday, F for Firelight Forum,<br />

K for Kiln followed by <strong>th</strong>e Poster number. Boldfaced type for featured<br />

posters.


WF30<br />

WF32<br />

WF34<br />

WF36<br />

WF38<br />

WF40<br />

WF42<br />

WF44<br />

WF46<br />

WF48<br />

WF50<br />

WF52<br />

WF54<br />

WF56<br />

WF58<br />

WF60<br />

WF62<br />

WF64<br />

Presenter<br />

Nissan, R. A.<br />

Opella, S.<br />

Simonsen, D. M.<br />

Vander Hart, D. L.<br />

Lock, H.<br />

Jarvie, T. P.<br />

Hornak, J. P.<br />

Santini, R.<br />

Beshah, K.<br />

Muira, H.<br />

Tsang, P.<br />

Maple, S. R.<br />

Bliimich, B.<br />

Mattingly, M.<br />

Blackledge, M. J.<br />

Thoma, W. J.<br />

Cockman, M. D.<br />

Dumoulin, C. L.<br />

Title<br />

Solid State 31p MAS NMR as a Tool for Studying 3-<br />

Dimensional Solids: The Chalcopyrites ZnSiP2,<br />

ZnSnP2, ZnGeP 2 and Related Materials<br />

Solid State NMR of Proteins<br />

13C MAS NMR Studies of Various Supported Metal<br />

Catalysts<br />

A Proton MAS NMR Me<strong>th</strong>od for Determining Intimate<br />

Mixing in Polymer Blends<br />

29Si Dynamic Nuclear Polarization Studies of<br />

Dehydrogenated Amorphous Silicon<br />

Nonaxially Symmetric Dipolar Couplings in Solids and<br />

Liquid Crystals<br />

Errors in Mapping RF Magnetic Fields<br />

Proton Detected 31 p_ 1H HETCOR of DN A Frag men ts<br />

Deuterium NMR Study of Me<strong>th</strong>yl Group Dynamics in<br />

L-Alanine<br />

Segmental Dynamics in Nylon 66 by Deuterium NMR<br />

Solid State NMR Dynamics Studies of Duplex RNA<br />

Analysis of Complex Mixtures by Ultrahigh<br />

Resolution NMR<br />

2D Exchange NMR in Non-Spinning Powders<br />

Localized Proton Density, Relaxation Times and Self<br />

Diffusion Coefficient Measurements in Single Cells<br />

by NMR Microscopy<br />

Spatial Localisation of 31p NMR Spectroscopy using<br />

Phase Modulated Rotating Frame Imaging<br />

Sensitivity of Surface Coils to Deep Lying Volumes<br />

Convolution Chemical Shift Imaging<br />

NMR Flow Imaging<br />

Location Numbering Scheme: W for Wednesday, F for Firelight Forum,<br />

K for Kiln followed by <strong>th</strong>e Poster number. Boldfaced type for featured<br />

posters.


WF66<br />

WF68<br />

WF70<br />

WF72<br />

WF74<br />

WF76<br />

WF78<br />

WF80<br />

WK02<br />

WK04<br />

WK06<br />

WK08<br />

WK10<br />

WK12<br />

WK14<br />

WK16<br />

Presenter<br />

Geoffrion, Y.<br />

James, T. L.<br />

Kormos, D. W.<br />

He<strong>th</strong>erington, H. P.<br />

Karczmar, G. S.<br />

Metz, K. R.<br />

Saarinen, T. R.<br />

Szeverenyi, N. M.<br />

Bogusky, M.<br />

Brown, S. C.<br />

Fesik, S. W.<br />

Flynn, P. F.<br />

McLennan, I. J.<br />

Mirau, P. A.<br />

SOrensen, O. W.<br />

Hiyama, Y.<br />

Title<br />

Immobilized Ferrite Particles: Selective Spoiling of a<br />

Homogeneous B 0 Field and Its Application to<br />

Surface Coil Spectroscopy<br />

The SWIFT Me<strong>th</strong>od for In Vivo Localized<br />

Spectroscopy<br />

Natural Abundance Carbon- 13 NMR Imaging in<br />

Biological Systems<br />

The Description and Elimination of Subtraction<br />

Artefacts in 1H Editing Schemes: A Phase Cycling<br />

Scheme to Eliminate Absorptive and Dispersive<br />

Errors<br />

Tailored Excitation in <strong>th</strong>e Rotating Frame<br />

Rapid Rotating-Frame Imaging<br />

A Novel Me<strong>th</strong>od for Diffusion and Flow<br />

Measurements: Imaging of Transient<br />

Magnetization Gratings<br />

Multiple Quantum Filtering: Uses in Imaging and<br />

Imaging Related Experiments<br />

15N NMR of Macromolecules: Applications to <strong>th</strong>e<br />

Study of Proteins in Solution<br />

P. E. COSY, Double Quantum Filtered Relay<br />

Spectroscopy and More<br />

Isotope-Filtered Proton NMR Experiments for<br />

Simplifying Complex Spectra<br />

Isotropic Mixing in DNA<br />

1H, 13C and 15N NMR Studies of Metal Complexes of<br />

Bleomycin<br />

Quantitative Interpretation of a Single 2D<br />

NOE Spectrum<br />

Symmetry and Antisymmetry in 2D NMR<br />

Spectra<br />

Multinuclear Solid State NMR Studies of Internal<br />

Molecular Dynamics in Fibrous and Crystalline<br />

Proteins<br />

Location Numbering Scheme: W for Wednesday, F for Firelight Forum,<br />

K for Kiln followed by <strong>th</strong>e Poster number. Boldfaced type for featured<br />

posters.


WK18<br />

WK20<br />

WK22<br />

WK24<br />

WK26<br />

WK28<br />

WK30<br />

WK32<br />

WK34<br />

WK36<br />

WK38<br />

WK40<br />

WK42<br />

WK44<br />

WK46<br />

Presenter<br />

Narula, S. S.<br />

Ziessow, D.<br />

Levitt, M. H.<br />

Suter, D.<br />

Barker, P. B.<br />

Brown, L. R.<br />

Grahn, H.<br />

Johnson, B. A.<br />

Picart, F.<br />

Tang, J.<br />

Mao, J.<br />

Warren, W. S.<br />

Bodenhausen, G.<br />

Coxon, B.<br />

Meyerhoff, D. J.<br />

Title<br />

2D NMR Me<strong>th</strong>ods for Spin System Identification in<br />

Large Proteins<br />

Recent Progress in Multidimensional Stochastic NMR<br />

Spectroscopy<br />

Solvent Suppression Wi<strong>th</strong>out Phase<br />

Distortion<br />

Broadband Heteronuclear Decoupling in <strong>th</strong>e Presence<br />

of Homonuclear Interactions<br />

Line Shapes in One-Dimensional Chemical Shift<br />

Imaging<br />

Selection of Coherence Transfer Pa<strong>th</strong>ways by Fourier<br />

Analysis: How to Improve <strong>th</strong>e Efficiency of 2D<br />

NMR Spectroscopy<br />

Pattern Recognition in 2D NMR. A Multivariate<br />

Statistical Approach wi<strong>th</strong> Logic Programming<br />

Chemical Exchange in Metal Clusters. Analysis wi<strong>th</strong><br />

2D Linear Prediction and Direct Analysis of <strong>th</strong>e<br />

Rate Matrix<br />

Deconvolution of High Resolution Two-Dimensional<br />

NMR Signals by Digital Signal Processing wi<strong>th</strong><br />

Linear Predictive Singular Value Decomposition<br />

Linear Prediction Z-Transform (LPZ) Spectral<br />

Analysis wi<strong>th</strong> Enhanced Resolution and Sensitivity<br />

Experimental Study of <strong>th</strong>e Optimized Selective RF<br />

Pulses<br />

Pulse Shaping for Solvent Suppression and Selective<br />

Excitation in Two-Dimensional and Multiple Pulse<br />

NMR Spectroscopy<br />

Relaxation-Allowed Coherence Transfer Between<br />

Spins Which Possess No Mutual Scalar Coupling<br />

Two-Dimensional POMMIE 13C NMR Spectrum<br />

Editing<br />

Multiple-Acquisition Two-Dimensional Homonuclear<br />

Shift Correlation Spectroscopy<br />

Location Numbering Scheme: W for Wednesday, F for Firelight Forum,<br />

K for Kiln followed by <strong>th</strong>e Poster number. Boldfaced type for featured<br />

posters.


WK48<br />

Presenter<br />

Rance, M.<br />

Title<br />

Improved Techniques for <strong>th</strong>e Acquisition of TOCSY<br />

and CAMEL,SPIN Spectra and Computer<br />

Simulations of <strong>th</strong>e TOCSY Experiment<br />

Location Numbering Scheme: W for Wednesday, F for Firelight Forum,<br />

K for Kiln followed by <strong>th</strong>e Poster number. Boldfaced type for featured<br />

posters.


WF2<br />

LrIII~ITY OF NUC].FAR OVERHAUSER EXPERIMENTS IN THE S'IXJDY OF<br />

]-IEME PROTEINS<br />

V. Thanabal, W. S. Smi<strong>th</strong>, M. J. Chatfield, S. D. Emerson,<br />

J. L. McGourty, J. Hauksson, D. H. Peyton, J. T. J. Lecomte,<br />

K.-B. Lee, and G. N. La Mar*<br />

Dept. of Chemistry, University of California, Davis, CA 95616<br />

The paramagnetic center of heme proteins also contributes<br />

significantly to relaxation such <strong>th</strong>at it becomes very difficult to<br />

saturate resonances which arise from protons near <strong>th</strong>e iron wi<strong>th</strong>out<br />

significantly perturbing <strong>th</strong>e rest of <strong>th</strong>e spectrum via off-resonance<br />

effects. In addition, <strong>th</strong>e systems have high molecular weights,<br />

leading to <strong>th</strong>e usual spin-diffusion effects.<br />

We have developed me<strong>th</strong>ods of using <strong>th</strong>e nuclear Overhauser<br />

effect in paramagnetic hemoproteins in <strong>th</strong>e light of <strong>th</strong>e problems<br />

mentioned above. Included in <strong>th</strong>is study are numerical solutions of<br />

<strong>th</strong>e Bloch equations evaluating <strong>th</strong>e off-resonance effects expected<br />

when using high saturating power on a system of fast-relaxing<br />

protons. Fur<strong>th</strong>er, we provide examples of uses we have found for<br />

nuclear Overhauser effect studies in paramagnetic heine proteins<br />

wi<strong>th</strong> molecular weights ranging up to greater <strong>th</strong>an 75,000.


WF4<br />

FIXED FIELD GRADIENT NMR DIFFUSION MEASUREMENTS USING<br />

BESSEL FUNCTION FITS TO THE SPIN-ECHO SIGNAL<br />

D. M. Lamb*, P. J. Grandinettl, and J. Jonas<br />

Department of Chemistry<br />

School of Chemical Sciences<br />

University of Illinois<br />

Urbana, Illinois 61801<br />

A new technique for diffusion measurement by NMR using a fixed fleld<br />

gradient is described. The me<strong>th</strong>od makes use of a Bessel function fit<br />

analysis to <strong>th</strong>e spin-echo signal in order to determine bo<strong>th</strong> <strong>th</strong>e applied<br />

gradient and <strong>th</strong>e diffusion coefficient simultaneously. Results of tests<br />

of <strong>th</strong>e me<strong>th</strong>od using water and benzene are presented, and <strong>th</strong>e utility of<br />

<strong>th</strong>e technique is demonstrated wi<strong>th</strong> a report of preliminary results for a<br />

determination of <strong>th</strong>e diffusion of naph<strong>th</strong>alene dissolved in compressed,<br />

supercritical carbon dioxide.


WF6<br />

MOTIONAL PROPERTIES FROM FORBIDDEN PEAK INTENSITIES IN DOUBLE<br />

QUANTUM SPECTRA OF MACROMOLECULES.<br />

Lewis E. Kay*, T.A. Holak, and J.H. Prestegard<br />

Department of Chemistry, Yale University, New Haven CT., 06511<br />

Typical n quantum filtered one and two dimensional spectra<br />

consist of peaks associated only wi<strong>th</strong> spins having Kesolved<br />

scalar couplings to at least (n-l) equivalent or nonequivalent<br />

spins. Consider, for example, a me<strong>th</strong>yl group connected to a<br />

tertiary carbon forming an A 3 spin system. On <strong>th</strong>e basis of a<br />

simple <strong>th</strong>eoretical formalism for multl-pulse experiments all<br />

peaks stemming from <strong>th</strong>e single resonance associated wi<strong>th</strong> <strong>th</strong>is<br />

system should be removed by a multiple quantum filter. Multiple<br />

quantum peaks associated wi<strong>th</strong> degenerate spin systems of <strong>th</strong>is<br />

type do, however, appear in spectra of macromolecules. 1"3 Despite<br />

<strong>th</strong>e potential pitfalls associated wi<strong>th</strong> interpretation of <strong>th</strong>ese<br />

additional resonances, <strong>th</strong>eir appearance, when properly<br />

understood, can provide useful information concerning <strong>th</strong>e<br />

dynamics of <strong>th</strong>e spin system involved and ultimately <strong>th</strong>e<br />

structural properties of <strong>th</strong>e parent molecule. This is due to <strong>th</strong>e<br />

fact <strong>th</strong>at <strong>th</strong>e appearance of such forbidden peaks is a direct<br />

consequence of cross correlation effects between spins.<br />

We will present an investigation of <strong>th</strong>e motional properties<br />

of an X 3 spin system found in mlcelles of deoxycholate using<br />

forbidden peak intensities from a one dimensional analogue of <strong>th</strong>e<br />

double quantum 2D experiment. Applications to <strong>th</strong>e AX 3 spin<br />

systems of alanine residues in proteins will also be discussed<br />

wi<strong>th</strong> an emphasis on how an understanding of me<strong>th</strong>yl group dynamics<br />

can aid in interpretation of NOE cross peak intensities involving<br />

<strong>th</strong>ese groups.<br />

I. Muller, N; Bodenhausen, GI Wu<strong>th</strong>rich, K: Ernst, R.R.<br />

J. Magn Reson. 1985, 65, 531.<br />

2. Muller, N; Ernst, R.R; Wu<strong>th</strong>rich, K. J. Am. Chem. Soc. 1986,<br />

108, 6482.<br />

3. Rance, M; Wright, P.E; Chem. Phys. Letters 1986, 124, 572.


WF8<br />

MULTIPLE ~ANTUH AND 129XE NMR STUDIES OF THE DISTRIBUTION OF MOLECULES<br />

IN A ZEOLITE •<br />

R. Ryoo, S.-B. Liu, L. C. de Menorval, and A. Pines<br />

University of California, Berkeley<br />

Proton multlple-quantum (MQ) NMR measurements and analyses of 129Xe<br />

NMR spectra were used to probe <strong>th</strong>e spatial distrlbutlon of simple<br />

molecules adsorbed in molecular sleves. The behavior of homogeneously<br />

chemlsorbed hexame<strong>th</strong>ylbenzene (HMB) In <strong>th</strong>e supercages of Na-Y zeolite is<br />

demonstrated. Distinct chemlcal shift llnes were observed from 129Xe<br />

NMR spectra of adsorbed xenon on Na-Y zeolite samples wi<strong>th</strong> different wt%<br />

of ehemisorbed HMB molecules. In <strong>th</strong>e absence of HMB chemisorbed in <strong>th</strong>e<br />

sample, a single llne at - 90 ppm due to xenon (300 Tort) In zeolite<br />

supercages Is obtained. When, on <strong>th</strong>e average, each zeolite supercage is<br />

occupied by one HMB molecule, a single line occurs at different chemical<br />

shift values (- 120 ppm). In <strong>th</strong>e intermediate case, when only a portion<br />

of <strong>th</strong>e supercages are occupied by <strong>th</strong>e HMB molecule, bo<strong>th</strong> llnes are<br />

present corresponding to <strong>th</strong>e two cases above.<br />

The clusterlng of HMB molecules In zeollte supercages has been<br />

confirmed by proton MQ NMR measurements. For samples below - 12 wig HMB<br />

In Na-Y zeolite, HQ NMR data glve conslstant results indicating <strong>th</strong>at<br />

only up to one HMB molecule per zeolite supercage can occur. Thls Js In<br />

accord wl<strong>th</strong> <strong>th</strong>e observations from 129Xe spectra.<br />

These techniques have proven to be useful in <strong>th</strong>e first step toward<br />

understanding <strong>th</strong>e behavior of molecules under restricted dimension.<br />

*R. Ryoo, S.-B. L1u, L.C. de Henorva], J. Fralssard and A. Pines. to be<br />

publlshed.


WFIO<br />

BULK MAGNETIC SUSCEPTIBILITY EFFECTS IN NA-23 NMR SPECTRA OF<br />

COMPARTMENTALIZED SAMPLES CONTAINING NA + AND SHIFT REAGENTS<br />

S<br />

Simon C-K. Chu , James A. Balschi, & Charles S. Springer, Jr.<br />

Department of Chemistry, State University of New York,<br />

Stony Brook, New York 11794-3400<br />

Since <strong>th</strong>e Z3Na NMR signal is by far <strong>th</strong>e second strongest<br />

arising from tissue samples in pulsed experiments,<br />

developments in 23Na NMR of living systems are occurring very<br />

rapidly. 23Na MRI has become <strong>th</strong>e second most common (e.g.,<br />

Magn. Res. Med., 3, 296, 1986). Because of <strong>th</strong>e isochronicJty<br />

of Z3Na resonances from different compartments, we and<br />

several o<strong>th</strong>er groups introduced paramagnetic shift reagents<br />

(SRs) for use wi<strong>th</strong> Z3Na (and o<strong>th</strong>er cationic resonances)<br />

in 1981-82, and we reported <strong>th</strong>e nature of <strong>th</strong>e spectra arising<br />

from SR-perfused tissue in 1985 (BiophFs. J., 48, 159, 1985).<br />

The first report of 23Na spectra from a living animal<br />

infused wl<strong>th</strong> a SR has recently appeared (J. Magn. Res., 69,<br />

523, 1986).<br />

Different SRs cause hyperfine shifts of <strong>th</strong>e Z3Na NMR<br />

signal of different magnitudes and different signs. The<br />

former is because of differing equilibrium quotients and<br />

limiting shifts (dipolar) in <strong>th</strong>e different SR-Na ÷ binding<br />

equilibria. The latter is because of differing geometric<br />

relationships between <strong>th</strong>e Na ÷ binding site(s) and <strong>th</strong>e<br />

axes of <strong>th</strong>e magnetic susceptibility tensor of <strong>th</strong>e SR<br />

molecular anion.<br />

Since, in living systems, <strong>th</strong>e distribution of <strong>th</strong>e SR<br />

will be restricted to certain tissue compartments (e.g.,<br />

vascular only, interstitial only, vascular and interstitial),<br />

bulk magnetic susceptibility (BMS) effects will be manifest<br />

in <strong>th</strong>e 23Na NMR spectrum. Bo<strong>th</strong> <strong>th</strong>e magnitude and <strong>th</strong>e<br />

sign of <strong>th</strong>e BMS shift depend on <strong>th</strong>e shape of <strong>th</strong>e compartment<br />

and its orientation wi<strong>th</strong> respect to <strong>th</strong>e static magnetic field<br />

(B0). We have conducted a <strong>th</strong>orough comparison of <strong>th</strong>e<br />

relative sizes of <strong>th</strong>e BMS and hyperfine shifts induced by<br />

<strong>th</strong>ree different SRs in cylindrical compartments (simulating<br />

ei<strong>th</strong>er blood vessels or interstitial spaces) oriented ei<strong>th</strong>er<br />

parallel or perpendicular to <strong>th</strong>e B0 field direction.<br />

For <strong>th</strong>e SRs chosen, bo<strong>th</strong> <strong>th</strong>e magnitude and <strong>th</strong>e sign of <strong>th</strong>e<br />

hyperfine shift also vary. Thus, <strong>th</strong>e ratio of <strong>th</strong>e BMS<br />

contribution to <strong>th</strong>e hyperfine contribution varies over a very<br />

wide range (-0.92 to 0.75, in <strong>th</strong>e samples chosen). These<br />

contributions are, of course, algebraically additive in any<br />

given spectrum. The local inhomogeneJties produced outside a<br />

cylindrical vessel running perpendicular to B0 also<br />

cause interesting inhomogeneous broadening patterns in <strong>th</strong>e<br />

resonances of nuclei restricted to <strong>th</strong>e space outside <strong>th</strong>e<br />

vessel when <strong>th</strong>at space is itself constrained.


WFI2<br />

DETERMINATION OF ENZYME-STEROID BINDING SITES<br />

BY CPMAS 13C NMRAND SELECTIVE EXCITATION<br />

Vincent Bork* and Jacob Schaefer<br />

Department of Chemistry, Washington University<br />

St. Louis, MO 63130<br />

Richard J. Auchus and Douglas F. Covey<br />

Department of Pharmacology, Washington University<br />

School of Medicine, St. Louis, MO 63110<br />

The spatial proximity of inequivalent 13C nuclei in solids,<br />

which have been multiply labeled wi<strong>th</strong> 13C, can be obtained from<br />

spin transfer rates in CPMAS experiments involving selective<br />

excitation. The selective excitation is used to invert just one<br />

line in <strong>th</strong>e spectrum which arises from a particular 13C label.<br />

By varying a dipolar evolution time, 13C-13C connectivity is<br />

revealed by new peaks in <strong>th</strong>e spectrum obtained as a difference<br />

between <strong>th</strong>e normal CPMAS spectrum, and <strong>th</strong>e CPMAS spectrum wi<strong>th</strong><br />

selective excitation. Confusing natural-abundance background<br />

peaks disappear in <strong>th</strong>e difference spectrum. This difference<br />

technique can be used to identify 13C-labeled chemical bonds in<br />

complex biological solids. For example, <strong>th</strong>e technique has<br />

demonstrated <strong>th</strong>at <strong>th</strong>e insoluble adduct between a [13C2]-<br />

acetylenic steroid and human estradioldehydrogenase involves<br />

binding of <strong>th</strong>e drug to bo<strong>th</strong> lysine and cystine residues.


WF14<br />

THE USE OF MULTIPLE ECHO ACQUISITION AND STIMULATED ECHO5<br />

TO DETECT SLOW MOTIONS<br />

S. D. Kennedy, S. Ganapa<strong>th</strong>y, S. Swanson, R. 8. Bryant<br />

Department of Biophysics<br />

University of Rochester Medical Center<br />

Rochester, New York 14642<br />

The use of Fourier transformed echo trains was described by<br />

Zilm at <strong>th</strong>e <strong>ENC</strong> last year. The advantages for a number of<br />

studies include increases in signal to noise, clear<br />

demonstration of heterogeneous broadening, transverse<br />

relaxation time measurements rapidly, as well as sensitivity<br />

to motions of <strong>th</strong>e spins various types. We have demonstrated<br />

<strong>th</strong>at <strong>th</strong>e me<strong>th</strong>od provides a very efficient monitor of ms<br />

motions in polymers. The techniques are equally well suited<br />

to <strong>th</strong>e study of chemical exchange in <strong>th</strong>e solid or spin<br />

exchanges caused by relaxation. In <strong>th</strong>e basic spin echo train<br />

e~:periment, <strong>th</strong>e time scale limitation i~ imposed by <strong>th</strong>e<br />

effective transverse relaxation times in <strong>th</strong>e system~ which<br />

may vary considerably from sample to sample, but are<br />

typically in <strong>th</strong>e tens of ms range.<br />

The basic e~periment may be e~:tended in time by using a<br />

stimulated echo. The spins are phase encoded during <strong>th</strong>e<br />

period ÷ollowing <strong>th</strong>e 90 degree pulse or magnetization cycle<br />

by Hartmann-Hahn contact for example, <strong>th</strong>en stored along z for<br />

a variable time during which motion or a magnetic or chemical<br />

exchange event may change <strong>th</strong>e Larmor frequency. The read-out<br />

is accomplished wi<strong>th</strong> a <strong>th</strong>ird 90 degree pulse and <strong>th</strong>e<br />

formation of a stimulated echo. This experiment extends <strong>th</strong>e<br />

time scale of <strong>th</strong>e motion observation to <strong>th</strong>e carbon T, ra<strong>th</strong>er<br />

<strong>th</strong>an <strong>th</strong>e T2. We have applied <strong>th</strong>is technique in a series of<br />

polymers to detect slow motions. In molecules containing<br />

nitrogen such as peptides~ <strong>th</strong>e "4N may complicate<br />

interpretation of <strong>th</strong>e data in terms of motions alone. The<br />

e~:periment, when combined wi<strong>th</strong> o<strong>th</strong>er rela~:ation time<br />

measurements and MASS~ provides an easy me<strong>th</strong>od for measuring<br />

<strong>th</strong>e "4N T~, a parameter of interest in its own right. We<br />

report results on a series of amino acids and peptides <strong>th</strong>at<br />

demonstrates <strong>th</strong>e me<strong>th</strong>od and indicates <strong>th</strong>e importance of<br />

nitrogen relaxation times in dynamical intrepretations.


WF16<br />

CHARACTERIZATION OF TRANSITION METAL SILICIDES<br />

WITH 2°Si NM:R SPECTROSCOPY<br />

T. M. Duncan* and D. M. Simonsen 1<br />

AT&T Bell Laboratories<br />

Murray Hill, NJ 07974.<br />

The ~Si NMR spectra of 26 silicides of transition metals (Ti, Zr, Hf, V,<br />

Nb, Ta, Cr, Mo, W, Mn, Fe, Ru, Co, Rh, N], Pd, Pt, and Cu) are reported.<br />

These metallic compounds which are used in semiconductor devices, exhibit<br />

NMR spectra wi<strong>th</strong> parameters ---10 times as large as <strong>th</strong>ose of organosilicon or<br />

silicon oxide compounds; 2%i isotropie shifts span <strong>th</strong>e range from -1650 to<br />

-I-925 ppm, relative to TMS, and 2%i anisotropies extend to 325 ppm wi<strong>th</strong><br />

most near 150 to 200 ppm. The isotropic shifts vary systematically wi<strong>th</strong> <strong>th</strong>e<br />

Group of <strong>th</strong>e metal atom, but are only weakly dependent on <strong>th</strong>e Period;<br />

silicides of Group VIII metals wi<strong>th</strong> an even number of electrons (e.g. Fe, Ru,<br />

Ni, Pd, Pt) comprise <strong>th</strong>e compounds wi<strong>th</strong> isotropic shifts greater <strong>th</strong>an 1000<br />

ppm. Interpretation of <strong>th</strong>e isotropic shifts will be presented. The shielding<br />

anisotropies are sensitive indicators of <strong>th</strong>e bonding symmetry of <strong>th</strong>e silicon<br />

site. In contrast to 13C anisotropies in which ~rs is almost exclusively<br />

downfield of all, 2%i anisotropies of metal silicides are well distributed<br />

between ~r 1 downfield and upfield of a I[. The relative position of o~ varies<br />

systematically wi<strong>th</strong> silicon site geometry, depending principally on <strong>th</strong>e degree<br />

of bonding perpendicular and parallel to <strong>th</strong>e axis of symmetry. Finally,<br />

silicides exist in several different stoichiometries for a given binary<br />

combination (e.g., TisSi3, TiSi, TiSi2). The large distribution of isotropic<br />

shifts and shielding anisotropies allows resolution of individual spectra and<br />

<strong>th</strong>us quantitative analysis of multiple phases in a inhomogeneous material<br />

I. Dep~rtrnent of Chemistry, Yale University, New Haven, Connecticut


WFlt<br />

HIGH-SPEED MAS IgF NMR OF FLUOROCARBON POLYMERS<br />

t<br />

Steven F. Dec, Robert A. Wind, and Gary E. Maciel<br />

Department of Chemistry<br />

Colorado State University<br />

Fort Collins, CO 80523<br />

A powerful tool for <strong>th</strong>e elucidation of <strong>th</strong>e microstructure of fluoro-<br />

carbon polymers is IgF NMR. Studies of <strong>th</strong>is nature have previously been<br />

limited to <strong>th</strong>e liquid state due, in part, to large homonuclear dipole-<br />

dipole interactions, which obscure any chemical shift fine structure <strong>th</strong>at<br />

may be present in <strong>th</strong>e NMR spectra of solid samples. In <strong>th</strong>is poster we<br />

show <strong>th</strong>at, by using a relatively simple magic-angle spinning system<br />

(rotational frequencies > 20 kHz), high-resolution solid-state 19F spec-<br />

tra can be obtained at high fields. Results for a number of polymers at<br />

rotational frequencies greater <strong>th</strong>an 18 kHz show <strong>th</strong>at sufficient resolu-<br />

tion is obtained at <strong>th</strong>ese spinning speeds to I) identify all major fluor-<br />

ine sites in <strong>th</strong>e polymers (i.e., small chemical shift differences for a<br />

particular fluorine group, due to nearest neighbor effects, are readily<br />

measured); 2) permit a deconvolution of overlapping peaks to obtain <strong>th</strong>e<br />

number of fluorine atoms occupying each site; and 3) determine <strong>th</strong>e rela-<br />

tive amounts of each different monomer present.<br />

next-nearest neighbor effects in <strong>th</strong>ese systems is presented.<br />

19F NMR evidence of


WF20<br />

DESIGN OF AN EFFICIENT PROBE FOR HIGH FIELD<br />

MULTINUCLEAR CP/MAS NMR OF SOLIDS<br />

Preben Daugaard, Vagn Langer, and Hans O. Oakobsen*<br />

Department of Chemistry, University of Aarhus,<br />

DK-8000 Arhus C, Denmark<br />

Very high-speed, stable spinning is a desirable technique in multi-<br />

nuclear CP/MAS, MA5, or VAS (variable angle spinning) experiments of solid<br />

materials for several reasons. For example <strong>th</strong>is applies to bo<strong>th</strong> high-field<br />

CP/MAS studies of spin-l/2 (e.g. 13C, ]SN, 31p, and ]]3Cd) and quadrupolar<br />

nuclei (e.g. liB, 2~Na, and 27AI).<br />

We describe <strong>th</strong>e design of a high speed multinuclear CP/MAS probe for<br />

<strong>th</strong>e 51 mm bore superconducting magnet of our Varian XL-300 spectrometer.<br />

The spinning speed of <strong>th</strong>e 7 mm o.d. rotors can routinely and accurately be<br />

set at any value up to at least 10 kHz wi<strong>th</strong> a stability of a few hertz.<br />

Air drive pressures of I and 4 bar are required for 4.5 and 9.0 kHz spin-<br />

ning, respectively, lhe spinner assembly employs a separate double air<br />

bearing which acquires an air pressure of only i-2 bar for a11 spinning<br />

speeds up to 10 kHz. We also expect to be able to discuss preliminary re-<br />

sults for <strong>th</strong>e design of a 15 kHz spinner assembly during <strong>th</strong>e meeting.<br />

The simplicity of <strong>th</strong>e splnner assembly, and <strong>th</strong>e high sensitivity and<br />

high electronic efficiency of <strong>th</strong>e probe wili be demonstrated along wi<strong>th</strong><br />

"real life" applications.<br />

0


WF22<br />

ORIENTATION OF THE 15N CHEMICAL SHIFT TENSOR<br />

IN A POLYCRYSTALLINE DIPEPTIDE<br />

C.J. HartF.ell., T.K. Pratum and G.P. Drobny<br />

Department o/Chemistr!t, Universitlj o/ Washington, Seattle, WA. 98195<br />

ABSTRACT<br />

In an effort to circumvent <strong>th</strong>e ambiguities inherent in a determination of <strong>th</strong>e<br />

orientation of a chemical shift tensor in <strong>th</strong>e molecular frame of a polycD'stalline solid:<br />

we have pursued a study of <strong>th</strong>e mutual orientation of <strong>th</strong>ree tensor interactions. In<br />

<strong>th</strong>is study of polycrystalline L-[1-13Ci - alanyl-lilSN ~-alanine we have oriented <strong>th</strong>e lSN<br />

chemical shift tensor in <strong>th</strong>e molecul~ frame by reference to two dipole interactions.<br />

The 13C-ISN and lSN-H dipole interactions axe probed using a modification of <strong>th</strong>e<br />

experiment of Stoll, Vega and Vaughan. The I H dipole-modulated 13C dipole-coupled<br />

lSlN spectrum is obtained as a transform of <strong>th</strong>e data in t2.<br />

From simulations of <strong>th</strong>e experimental spectra, two sets of polar angles are de-<br />

termined relating <strong>th</strong>e 13C-lSN and lSN-H dipoles to <strong>th</strong>e IsN chemical shift tensor.<br />

We have determined refined values for <strong>th</strong>e polar angles Bc~ and c~c~ describing <strong>th</strong>e<br />

orientation of <strong>th</strong>e 13c-lsN bond to <strong>th</strong>e tensor. The angle ~3cx describing <strong>th</strong>e angle<br />

between 033 and <strong>th</strong>e 13C- lSN bond is 106 = and <strong>th</strong>e angle ac.~ describing rotation<br />

about 033 is 5 c. The angle ~3~H is 19 =. This experiment verifies <strong>th</strong>e results of <strong>th</strong>e<br />

13C dipole-coupled aSN powder spectra and simulations showing <strong>th</strong>at or3 lies in <strong>th</strong>e<br />

peptide plane and o~2 is nearly perpendicular to <strong>th</strong>e plane.


WF24<br />

VT CP/MAS NMR OF ANTIFERROMAGNETIC METAL COMPLEXES<br />

Gordon. C__~. Campbell and James F. Haw<br />

Department of Chemistry, Texas A&M University<br />

College Station, TX 77843<br />

Drawing on our previous experience wi<strong>th</strong> variable-temperature (FT) CP/MAS<br />

NMR of paramagnetic species 1,2, we are now applying <strong>th</strong>e technique to <strong>th</strong>e study of<br />

antiferromagnetic materials. Antiferromagnetism is found in a wide variety of<br />

transition metal dimers and complexes in which a low-lying triplet excited<br />

electronic energy state lies above a singlet ground state. Spin pairing in <strong>th</strong>e<br />

singlet state at low temperatures leads to diamagnetism, while at higher<br />

temperatures <strong>th</strong>e triplet state is significantly populated, and <strong>th</strong>ese substances<br />

exhibit <strong>th</strong>e properties of paramagnetic materials.<br />

It is <strong>th</strong>us difficult in many cases to observe CP/MAS NMR spectra of anti-<br />

ferromagnetic solids at or above room temperature. Lowering <strong>th</strong>e sample temp-<br />

erature is found to significantly increase <strong>th</strong>e amount of information available<br />

from CP/MAS NMR data. Not only do resonances closer to metal centers become<br />

observable, but <strong>th</strong>e temperature dependence<br />

of <strong>th</strong>e chemical shifts may give quant-<br />

itative information about <strong>th</strong>e electronic<br />

character of <strong>th</strong>e species. A good example<br />

of <strong>th</strong>is is afforded by <strong>th</strong>e 13C CP/MAS NMR<br />

data for copper(ll) n-butyrate hydrate<br />

dimer presented in <strong>th</strong>e figure, where mag-<br />

netically inequivalent sites (eg., CI and<br />

CI') are also observable.<br />

1. J. F. Haw and G. C. Campbell,<br />

J__~. Ma~n. Reson., 66, 558 (1986).<br />

VARIABLE TEPdPE]u.,tTURE C-13 CP/IdAS SPECTRA<br />

OF COPPlg:I {11) N-BUTYRATE HYDRATE DIMER<br />

¢~ ~K<br />

2. G. C. Campbell, R. C. Crosby, and J. F. Haw,<br />

J. Ma~n. Reson. 69 191 (1986). I 1 i


WF26<br />

TEMPERATUREVARIABLE SOLID SOLUTION CPMAS NMR STUDIES<br />

OF DYES IN GLASSY POLYMERS<br />

Bernd Wehrle and Plans-Heinrich Limbach*<br />

Institut ffir Physikalische Chemie der Universitit Freiburg l.Br.,<br />

Albertstr.21, 7800 Freiburg, West Germany<br />

Photoreactive solids such as dyes imbedded in solid tnatrices are of<br />

considerable technical and <strong>th</strong>eoretical interest. We report here <strong>th</strong>e use of<br />

temperature variable CPMAS NMR spectroscopy for <strong>th</strong>e study of structure<br />

and dynamics of dyes dissolved in glassy polymers. As in liquid solution<br />

state NMR, solution state NMR studies are greatly aided if matrix signals<br />

are absent in <strong>th</strong>e spectra. Since most of <strong>th</strong>e known organic dyes but few<br />

polymers contain nitrogen we propose here I~N CPMAS NMR of I~N en-<br />

riched dyes. This me<strong>th</strong>od has also <strong>th</strong>e advantage <strong>th</strong>at spectra can be re-<br />

corded even at fairly low dye concentrations. Thus, interesting lnfor-<br />

mations about <strong>th</strong>e structure and <strong>th</strong>e dynamics of dyes in solid matrices<br />

can be obtained, such as fast chemical reactions inside <strong>th</strong>e dye, rotational<br />

and transverse diffusion, or slow crystallization.<br />

In particular, we present here low temperature I~,N CPMAS NMR spectra<br />

of a tetraazaannulene derivative (TTAA) dissolved to a few percent in<br />

glassy polystyrene, PMMA, etc. In crystalline TTAA fasl proton tau~o-<br />

merism leads to sharp I~N NMR lines whi<strong>th</strong> temperature dependent positi-<br />

ons. ~ By contrast, <strong>th</strong>e solid solution ~N NMR lines of TTAA in glassy po-<br />

lymers are broad but show a characteristic temperature dependence. 2D<br />

experiments reveal <strong>th</strong>at <strong>th</strong>is broadening is inhomogeneous. The lineshapes<br />

can be simulated wi<strong>th</strong> <strong>th</strong>e assumption of a broad gaussian distribution of<br />

different sites in <strong>th</strong>e glass in which dye molecules experience a differenl<br />

reaction profile of tautomerism. Wi<strong>th</strong>in <strong>th</strong>e NMR timescale <strong>th</strong>e molecu]es do<br />

not rotate nor are able to exchange sites at room temperature. Thus, dye<br />

tautomerism can be used as a novel probe for local order. Some conse-<br />

quences of for <strong>th</strong>e understandung of chemical reactions in condensed<br />

matter are discussed.<br />

1. H.H.Limbach, B.Wehrle, H.Zimmermann, R.D.Kendrick, C.S.Yannoni<br />

j.Am.Chem.Soc., in press).


WF28<br />

DYNAMIC NUCLEAR POLARIZATION IN ORGANIC CONDUCTORS<br />

t<br />

Robert A. Wind, Herman Lock and Gary E. Maciel<br />

Department of Chemistry<br />

Colorado State University<br />

Fort Collins, CO 80523<br />

In solids containing unpaired electrons, nuclear spin magnetization<br />

can be enhanced via Dynamic Nuclear Polarization (DNP). This can be used<br />

for, among o<strong>th</strong>er <strong>th</strong>ings, increasing <strong>th</strong>e signal-to-noise ratio of an NMR<br />

signal, obtaining information about <strong>th</strong>e vicinity of <strong>th</strong>e unpaired elec-<br />

trons and determination of electron mobilities. We have applied DNP in<br />

combination wi<strong>th</strong> IH and 13C NMR to two organic compounds <strong>th</strong>at become<br />

metallic by doping <strong>th</strong>em wi<strong>th</strong> a suitable agent, namely trans-polyacetylene<br />

and (fluoroan<strong>th</strong>enyl)2PF 6. The main results are:<br />

(i) Trans-polyacetylene. Even undoped trans-polyacetylene contains<br />

mobile electrons, <strong>th</strong>e so-called "solitons". We found <strong>th</strong>at electron<br />

mobility is restricted: part of <strong>th</strong>e time <strong>th</strong>e unpaired electrons can be<br />

considered as fixed in space, whereas <strong>th</strong>e rest of <strong>th</strong>e time <strong>th</strong>ey are<br />

moving over <strong>th</strong>e polymer chains wi<strong>th</strong> about <strong>th</strong>e velocity of sound. Fur-<br />

<strong>th</strong>ermore, <strong>th</strong>e influence of air oxidation has been investigated, <strong>th</strong>e<br />

effects bo<strong>th</strong> on <strong>th</strong>e amount and types of defects created by <strong>th</strong>is oxidation<br />

and on <strong>th</strong>e amount and mobility of <strong>th</strong>e unpaired electrons.<br />

(ii) (Fluoran<strong>th</strong>enyl)2PF6. This work has been done in collaboration<br />

wi<strong>th</strong> Michael Mehring. The 13 C spectrum consists of seven distinguishable<br />

lines. It has been found <strong>th</strong>at <strong>th</strong>e locations of at least four of <strong>th</strong>ese<br />

lines shift by irradiating wi<strong>th</strong> increasing microwave power at <strong>th</strong>e ESR<br />

frequency. This proves <strong>th</strong>at <strong>th</strong>ese locations are at least partially<br />

determined by a Knight shift due to <strong>th</strong>e mobile electrons.


WF30<br />

SOLID STATE ~P MAS NMR AS A TOOL FOR STUDYING 3-DIMENSIONAL<br />

SOLIDS: THE CHALCOPYRITES ZnSiPe, ZnSnPe, ZnGePe, AND<br />

RELATED MATERIALS<br />

Robin A. Nissan', and T. A. Hewston<br />

Naval Weapons Center, China Lake, CA 93555<br />

Three-dimensional solids containing phosphorus in a<br />

reduced state are of interest as tough, stable ceramic mat-<br />

erials. These materials may be syn<strong>th</strong>esized from <strong>th</strong>eir con-<br />

stituent elements or from combinations of binary materials at<br />

elevated temperatures. Phase purity and structural integrity<br />

are generally monitored by X-ray powder diffraction.<br />

Elemental analysis by wet chemical me<strong>th</strong>ods or by electron<br />

microscopy yields information on stoichiometry. Structure<br />

determinations for new materials require single crystal X-ray<br />

diffraction analyses. Phase-impure materials are difficult<br />

to analyze by <strong>th</strong>ese techniques, especially if <strong>th</strong>e materials<br />

include amorphous phases which would be transparent to X-rays<br />

and complicate elemental analyses. New me<strong>th</strong>ods for <strong>th</strong>e ana-<br />

lysis of 3-dimensional solids are required.<br />

We have initiated a program to study inorganic phos-<br />

phides by solid state ~P MAS NMR. The chalcopyrites<br />

ZnSiP~,, ZnGePe, and ZnSnPe have <strong>th</strong>e ordered zincblende<br />

structure. This family of materials was chosen for our<br />

initial studies since a series of isostructural compounds<br />

existed where one atom could be varied. In addition, we have<br />

studied a series of binary phosphides including Mg-,P;., GaP,<br />

and CaP. The most striking result here is <strong>th</strong>e spectral<br />

simplicity. Chemical shift anisotropy and dipole-dipole<br />

broadening pose no problems at 81 MHz in most cases. The<br />

lines are sharp and crystallographically unique phosphorus<br />

sites are distinguished- One notable exception is ZrP where<br />

we observe two overlapping axially symmetric powder patterns<br />

representing <strong>th</strong>e two crystallographic sites of phosphorus in<br />

<strong>th</strong>is compound. Results will also be presented for CdPS::~<br />

where <strong>th</strong>e Pe units occupy cation sites. Studies of relaxa-<br />

tion times and quantitative analysis of mixtures are<br />

presently under way.


WF32<br />

SOLID STATE NMR OF PROTEINS<br />

P. Stewart, R. McNamara, D. Chen, C. Lee, D. White, and S. Opella<br />

Department of Chemistry<br />

University of Pennsylvania<br />

Philadelphia, Pennsylvania 19104<br />

Recent results from solid state NMR studies of unoriented and oriented<br />

protein samples will be presented. The analysis of powder pattern<br />

lineshapes and relaxation parameters as a function of temperature is being<br />

used to describe backbone and sidechain dynamics of proteins. A number<br />

of different spectral parameters measured in oriented samples are being<br />

interpreted in terms of structural parameters. In particular, a general<br />

me<strong>th</strong>od for determining <strong>th</strong>e mutual orientations of adjacent peptide planes<br />

from solid state NMR measurements is being developed.<br />

The spectroscopic experiments involve <strong>th</strong>e observation of 13C, 15N and<br />

14N resonances so <strong>th</strong>at chemical shift, quadrupole, and dipole-dipole<br />

interactions can be examined in multiple sites. The samples include<br />

lysozyme, filamentous bacteriophage coat protein, and model peptides.


WF34<br />

13C MAS NMR STUDIES OF VARIOUS<br />

SUPPORTED METAL CATALYSTS<br />

°D.M.Simonsena, K.W.Zilm a, T.Root b, T.M.Duncanc, L.Bonneviotd, and G.Hallere<br />

aDept, of Chemistry, Yale University, New Haven, CT 06511<br />

The structure of small molecules chemisorbed on supported metal<br />

catalyst systems has been extensively studied by broad-line NMR. To date,<br />

relatively little work has been done on <strong>th</strong>ese systems wi<strong>th</strong> magic-angle spinning<br />

(MAS) techniques. Previous studies, especially <strong>th</strong>ose on supported Pt catalysts,<br />

have indicated <strong>th</strong>at MAS NMR experiments may be of limited utility in<br />

characterizing chemisorbed species on surfaces due to problems wi<strong>th</strong> Knight<br />

shifts and sample inhomogeneity. This poster will present bo<strong>th</strong> static powder<br />

patterns and MAS spectra of 13C-labelled e<strong>th</strong>ylene chemisorbed on platinum and<br />

palladium catalysts as well as 13CO chemisorbed on platinum, palladium,<br />

ru<strong>th</strong>enium, and rhodium catalysts. As expected 13C MAS NMR spectra show no<br />

significant line narrowing for <strong>th</strong>e 13CO/Pt system. However, MAS techniques<br />

allow <strong>th</strong>e resolution of relatively narrow individual peaks in all o<strong>th</strong>er samples<br />

studied. By using bo<strong>th</strong> F'I" and CP me<strong>th</strong>ods wi<strong>th</strong> MAS reaction chemistry can be<br />

followed in <strong>th</strong>ese systems under controlled conditions. The effects of magnetic<br />

susceptibilities and Knight shifts on <strong>th</strong>ese spectra will also be discussed.<br />

bDept, of Chemical Engineering, UW-Madison, Madison, Wl<br />

CA T & T Bell Laboratories, Murray Hill, NJ<br />

dUniversite P. et M. Curie, Paris, France<br />

eDept, of Chemical Engineering, Yale University, New Haven, CT


WF36<br />

A PROTON MAS NMR METHOD FOR DETERMINING INTIMATE MIXING IN POLYMER BLENDS<br />

D.L. VanderHart" and W.F. Manders, National Bureau of Standards, Gai<strong>th</strong>ersburg,<br />

MD 20899, and R.S. Stein and W. Hermans, Polymer Science and Engineering<br />

Department, University of Massachusetts, Amhearst, MA 01002<br />

Intimate mixing (on a scale less <strong>th</strong>an i nm) in polymers can be probed<br />

effectively by laC CP-MAS techniques as has been shown by Schaefer, et al.<br />

(Macromolecules, 1981, 14, 188). The basic idea is <strong>th</strong>at if one mixes<br />

deuterated and protonated polymers, cross polarization (CP) signals from <strong>th</strong>e<br />

carbons on <strong>th</strong>e deuterated polymers will arise only if dipolar-coupled protons<br />

are close by, say, 0.5 nm or less. A non-trivial problem in <strong>th</strong>is me<strong>th</strong>od,<br />

however, is <strong>th</strong>at perdeuterated polymers usually contain 1 - 2% residual<br />

protons, and <strong>th</strong>ese 'Impurity' protons, as well as protons on <strong>th</strong>e prononated<br />

chains, generate deuterated carbon signals.<br />

In <strong>th</strong>is poster, we show <strong>th</strong>at similar information is available by observing<br />

<strong>th</strong>e impurity protons directly. The impurity protons are different from <strong>th</strong>e<br />

protons on <strong>th</strong>e protonated chains since <strong>th</strong>eir average interaction wi<strong>th</strong> o<strong>th</strong>er<br />

protons is much weaker. In a relatively rigid polymer, at low magic angle<br />

spinning (](AS) frequencies, <strong>th</strong>e impurity proton signals in <strong>th</strong>e deuterated<br />

homopolymer will be broken up into well-defined sidebands and centerbands (see<br />

spectra A and B, non-spinning and 2.2kHz spinning, respectively, of deuterated<br />

atactic polystyrene (aPS)). In contrast, a relatively rigid protonated<br />

homopolymer will produce no narrow centerbands or sidebands because of <strong>th</strong>e<br />

stronger proton dipolar interactions and <strong>th</strong>e concurrent fast spin-exchange<br />

behavior. In a mixture of relatively rigid polymers, one deuterated and <strong>th</strong>e<br />

o<strong>th</strong>er protonated, <strong>th</strong>ere will be an attenuation of <strong>th</strong>e narrowed centerband and<br />

sidebands from <strong>th</strong>e impurity protons when mixing is intimate, i.e. when protons<br />

from <strong>th</strong>e protonated polymer lie wi<strong>th</strong>in, say, 0.8 nm of <strong>th</strong>e impurity protons.<br />

Spectrum C is <strong>th</strong>at of a protonated aPS mixed wi<strong>th</strong> <strong>th</strong>e deuterated aPS using 2.2<br />

kHz spinning and a spectral display where <strong>th</strong>e impurity protons contribute<br />

equal signals to <strong>th</strong>ose in B. An 85% attenuation, compared to B, of <strong>th</strong>e<br />

aromatic proton centerband at 7 ppm is seen in <strong>th</strong>e blend spectrum. As<br />

expected in <strong>th</strong>is blend of similar polymers wi<strong>th</strong> similar tacticities, mixing is<br />

quite intimate. Interference from <strong>th</strong>e broad and strong protonated aPS<br />

resonances is limited to a rolling baseline. Because of M.AS, and <strong>th</strong>e<br />

resonance distinctions which ensue, <strong>th</strong>is<br />

A analysis can be carried out in <strong>th</strong>e presence<br />

of varying amounts of mobile solvent residues<br />

which, in our case, contribute to <strong>th</strong>e<br />

aliphatic bands between 0 and 3 ppm. This<br />

technique offers an important sensitivity<br />

advantage over <strong>th</strong>e 13C CP technique. The<br />

requirement for two relatively rigid polymers<br />

is common to bo<strong>th</strong> techniques, so low<br />

temperature operation is sometimes mandated.<br />

Perhaps <strong>th</strong>e best news is <strong>th</strong>at <strong>th</strong>is technique<br />

represents a minor comeback for <strong>th</strong>e<br />

beleaguered single-pulse ID experiment.<br />

Bandwid<strong>th</strong> requirements should allow one to<br />

carry out <strong>th</strong>is experiment using high-<br />

resolution electronics.<br />

I I I I I I I l I<br />

40 20 0 -20 PPM


• WF38<br />

29SI DYNAMIC NUCLEAR POLARIZATION STUDIES OF<br />

DEHYDROGENATED AMORPHOUS SILICON<br />

H. Lock m, G. E. Maciel, R. A. Wind<br />

Department of Chemistry, Colorado State University<br />

and<br />

N. Zumbulyadis<br />

Corporate Research Laboratories<br />

Eastman Kodak Co., Rochester, New York 14650<br />

Dehydrogenated amorphous silicon, a-Si, contains a large number of<br />

dangllng-bond paramagnetlc centers. This opens <strong>th</strong>e possibility of<br />

performing 29Si dynamic nuclear polarization (DNP) experiments,<br />

where <strong>th</strong>e 29SI polarization is enhanced by irradiating at or near<br />

<strong>th</strong>e electron larmor frequency. We performed 29Si DNP in a-Si<br />

in an external magnetic field of 1.4 T, corresponding to 29Si<br />

larmor frequency of 11.9 MHz, and an electron larmor frequency,<br />

re, of ca. 40 GHz. The amplitude of <strong>th</strong>e microwave field, B 1, was<br />

0.06 mT (max.).<br />

The main results are:<br />

I. The 29Si DNP enhancement is antisymmetrical around re,<br />

indicating <strong>th</strong>at <strong>th</strong>e dangling bonds are fixed in space.<br />

2. The shape of <strong>th</strong>e DNP enhancement curve as a function of<br />

microwave frequency offset is independent of BI. This means <strong>th</strong>at<br />

at 40 GHz <strong>th</strong>e ESR llne is mainly inhomogeneously broadened, which<br />

is confirmed by ESR measurements at 9 and 40 GHz.<br />

3. For a B1 of 0.06 mT <strong>th</strong>e maximum 29Si DNP enhancement is 40.<br />

This value is obtained using a microwave frequency ±29 MHz away<br />

from <strong>th</strong>e electron larmor frequency. The enhancement is probably<br />

due to an unresolved solid state effect.<br />

4. The integrated intensity of <strong>th</strong>e 29Si spectrum, enhanced vi____aa<br />

DNP is <strong>th</strong>e same wi<strong>th</strong> and wi<strong>th</strong>out magic angle spinning. Hence, <strong>th</strong>e<br />

DNP effect is mainly due to direct interactions between <strong>th</strong>e 29Si<br />

nuclei and <strong>th</strong>e unpaired electrons.


WF40<br />

NONAXIALLT SYMMETRIC DIPOLAR COUPLINGS IN SOLIDS AND LIQUID CRYSTALS<br />

m<br />

T.P. Jarvie, A.M. Thayer, a J.M. Mlllar m<br />

, M. Luzar and A. Pines<br />

University of California, Berkeley<br />

Small amplitude motions in solids can induce an asymmetry in <strong>th</strong>e<br />

dipolar coupling of two spln I=I/2 nuclei. In contrast to hlgh-field<br />

NMR, such subtle motlonal effects are readily observed in <strong>th</strong>e zero field<br />

NMR spectrum. Experimental examples can be found in <strong>th</strong>e llbratlonal<br />

motions of <strong>th</strong>e water molecules In a polyerystalllne hydrate, <strong>th</strong>e proton<br />

Jumps In a hydrogen-bonded carboxyllc acid dimer, and <strong>th</strong>e diffusive Jumps<br />

of a probe molecule in an unaligned blaxlal smectlc E liquid crystal<br />

phase. An interesting experimental result shows <strong>th</strong>at <strong>th</strong>e presence of a<br />

nonzero asymmetry parameter in <strong>th</strong>e dlpolar coupling produces a quenching<br />

effect of <strong>th</strong>e coupling to small residual or local fields in analogy to a<br />

spin I=I system (I) in zero field.<br />

I. G.W. Leppelmeler and E.L. Harm, Phys. Rev. Iqi, 72~ (1966).


WF42<br />

ERRORS IN MAPPING RF MAGNETIC FIELDS<br />

Robert G. Bryant, Jerzy Szumowski, + and Joseph P. Hornak<br />

Biophysics Department<br />

University of Rochester<br />

Rochester, NY 14642<br />

÷ Radiology Department<br />

University of Rochester Medical Center<br />

Rochester, NY 14642<br />

* Chemistry Department<br />

Rochester Institute of Technology<br />

Rochester, NY 14623<br />

Homogeneous radio frequency magnetic flelds are necessary for <strong>th</strong>e<br />

production of uniform contrast nuclear magnetic resonance images and for<br />

spatlally locallzed spectroscopy, it is often tempting to map <strong>th</strong>e RF<br />

magnetic flelds of a resonator from <strong>th</strong>e image intensity of a water<br />

phantom placed wi<strong>th</strong>in <strong>th</strong>e resonator. The resultant field maps are<br />

highly dependent on <strong>th</strong>e pulse sequence used to produce <strong>th</strong>e phantom<br />

images, and not always equlvalent. RF magnetic fleld maps obtained<br />

using a pickup toll probe moved about <strong>th</strong>e resonator and spin echo and<br />

GRASS imaging sequences on a GE Signa Imager will be presented for<br />

comparison. The basis for large observed differences betveen <strong>th</strong>e<br />

techniques are discussed.<br />

4~


WF44<br />

PROTON DETECTED SIP-IH HETCOR OF DNA FRAGMENTS<br />

Robert Santini*<br />

Claude R. Jones<br />

David Gorenstein<br />

Department of Chemistry<br />

Purdue University<br />

West Lafayette, IN 47907<br />

Many spectrometers can be converted to simultaneous broad band operation<br />

of bo<strong>th</strong> <strong>th</strong>e transmit-receive and decoupler channels. Wi<strong>th</strong> some extra equipment<br />

(an additional broad band board, a PTS 160, filters, and a 10 watt amplifier) <strong>th</strong>e<br />

conversion of an XL-200A back and for<strong>th</strong> between a dual broad band configuration<br />

and a standard configuration suitable for use in a multiuser environment can be<br />

accomplished wi<strong>th</strong> a few cable changes. Proton detected sIp-~H HETCOR spectra<br />

off syn<strong>th</strong>etic DNA fragments wi<strong>th</strong> up to 14 base pairs were obtained in a dual<br />

broad band mode using a standard 5rnm probe. The proton transitions were first<br />

saturated (1) and a constant time sequence (2) was used. The pulse sequence<br />

was phase cycled to give a pure absorption phase spectrum after a hypercomplex<br />

transform.<br />

1. V. Sklenar, H. Miyashiro, G. Zon, H.T. Miles, and A. Bax,<br />

FEBS Letters (1986), 208, 94<br />

2. H. Kessler, C. Griensinger, J. Zarbock, and H.R. Loosli, J.<br />

Magn. Reson. (1984), 57, 331


WF46<br />

DEUTERIUM NMR STUDY OF METHYL GROUP DYNAMICS<br />

IN L-ALANINE<br />

Kebede Beshah*, Bdvard T. OleJniczak +, and Robert G. Griffin<br />

Francis Bitter National Nagnet Laboratory<br />

Massachusetts Institute of Technology<br />

Cambridge, NA 02139<br />

Deuterium quadrupole echo spectroscopy is used to study <strong>th</strong>e<br />

dynamics of <strong>th</strong>e CD 3 group in polycrystalline L-alanine-d 3. Temperature-<br />

dependent quadrupole echo lineshapes, <strong>th</strong>eir spectral intensities and x-<br />

dependence, and <strong>th</strong>e anisotropy of <strong>th</strong>e 2H spln-lattice relaxatlon were<br />

employed to determine <strong>th</strong>e rate and mechanism of <strong>th</strong>e -CD 3 group motion.<br />

The rigid lattice Pake pattern observed at low temperature (T < -120°C)<br />

transforms to a triplet spectrum characteristic of <strong>th</strong>reefold Jumps in <strong>th</strong>e<br />

intermediate exchange regime (-120°C to -70°C) and <strong>th</strong>is in turn to a<br />

Pake pattern of reduced bread<strong>th</strong> at higher temperatures (T > -70°C). The<br />

quadrupole echo lineshapes and <strong>th</strong>eir x-dependence, which are especially<br />

sensitive to <strong>th</strong>e rate and mechanism of <strong>th</strong>e motion, can be simulated<br />

quantitatively vi<strong>th</strong> <strong>th</strong>e <strong>th</strong>reefold jump model. Ve find ga = 20.0 kJlmole<br />

for <strong>th</strong>is process vhich is higher <strong>th</strong>an is observed for most me<strong>th</strong>yl groups,<br />

probably because of steric crowding in <strong>th</strong>e L-bla molecule. Finally, we<br />

observe a lineshape due to <strong>th</strong>e presence of multiple crystallographic<br />

forms which suggest <strong>th</strong>at <strong>th</strong>is technique can be extended to studies of <strong>th</strong>e<br />

dynamics of more complex systems.<br />

+Present address: Abbott Laboratories<br />

Nor<strong>th</strong> Chicago, IL 60046


WF4S<br />

SEGMENTAL DYNAMICS IN NYLON 66 BY DEUTERIUM NMR<br />

Hitoshi Miura* and Alan D. English<br />

Central Research and Development Department<br />

Experimental Station<br />

E. I. Dupont de Nemours & Company<br />

Wilmington, Delaware 19898<br />

The study of chain dynamics of nylon 66 by deuterium<br />

NMR is described. We prepared five selectively deuterated<br />

samples of nylon 66, for which T1 data and quadrupolar echo<br />

powder spectra were obtained at various temperatures from<br />

-I19C to 228C. By using <strong>th</strong>e difference of T1 in <strong>th</strong>e<br />

different phases, we can separate <strong>th</strong>eir spectra from each<br />

o<strong>th</strong>er. This enables us to study <strong>th</strong>e chain dynamics of each<br />

phase independently.<br />

The motion at different places in <strong>th</strong>e me<strong>th</strong>ylene<br />

segments in nylon 66 are quite different and are strongly<br />

dependent upon temperature. Line shape calculations for<br />

several kinds of models of molecular motion are compared to<br />

experimental spectra, which give important information on<br />

<strong>th</strong>e segmental motion of <strong>th</strong>e polymer at various temperatures.<br />

Models of motion in "pinned segments" composed of ei<strong>th</strong>er<br />

four or six me<strong>th</strong>ylene segments in ei<strong>th</strong>er crystalline or<br />

noncrystalline domains may be examined wi<strong>th</strong> <strong>th</strong>is system. We<br />

will present <strong>th</strong>e results and discuss <strong>th</strong>em.


WF50<br />

Solid State NMR Dynamics Studies of Duplex RNA<br />

Pearl Tsang*, Robert L. Void and Regitze R. Void<br />

Department of Chemistry B-014<br />

University of California at San Diego<br />

La Jolla, CA. 92093<br />

The results of dynamic studies of duplex RNA, obtained <strong>th</strong>rough a combination of<br />

solid state H-2 and P-31 NMR techniques, are presented in <strong>th</strong>is poster. The base pair and<br />

phosphodiester backbone motions of duplexes at various relative humidities have been<br />

separately examined using deuterium NMR to study purine-8 deuterated sites and phos-<br />

phorous NMR to study <strong>th</strong>e phosphodiester backbone, respectively. Deuterium spin-lattice<br />

relaxation rates of RNA are determined bo<strong>th</strong> at 38.4 and 76.8 MHz. P-31 NMR lineshape<br />

studies of RNA duplexes are also conducted.<br />

Deuterium spin-lattice relaxation rates for <strong>th</strong>e various purine-8 sites of <strong>th</strong>e RNA du-<br />

plexes studied show a trend of steadily decreasing T1 wi<strong>th</strong> increasing relative humidity.<br />

Based upon <strong>th</strong>e field dependence of <strong>th</strong>e RNA T1 values, it appears <strong>th</strong>at collective torsional<br />

modes may be a dominant factor in <strong>th</strong>e relaxation process.<br />

The results obtained for RNA are briefly compared to <strong>th</strong>ose obtained from analo-<br />

gous DNA samples. Significant dynamic differences between DNA and RNA have been<br />

observed, based upon <strong>th</strong>e ra<strong>th</strong>er different spin-lattice relaxation rates obtained for <strong>th</strong>e two<br />

species. P-31 NMR results for <strong>th</strong>e RNA are also compared to <strong>th</strong>ose of <strong>th</strong>e DNA.


WF52<br />

ANALYSIS OF CONPLBX NIXTURES BY ULTRAHIGH RESOLUTION NNR<br />

Steven R. Naple and Adam Allerhand<br />

Department of Chemistry, Indiana University, Bloomington, IN 47405<br />

Ultra-high resolution NNR me<strong>th</strong>odology has increased <strong>th</strong>e ability of <strong>th</strong>e<br />

NNR spectroscopist to observe minor component peaks of complex mixtures<br />

wi<strong>th</strong>out <strong>th</strong>e use of "solvent" suppression techniques. It is now possible to<br />

detect minor peaks in <strong>th</strong>e presence of laJor peaks which are 10 a times<br />

larger. Results from <strong>th</strong>e following examples will be discussed: (1) The<br />

observation and kinetics of <strong>th</strong>e aldo] condensation dimer of acetone.<br />

(2) The assignment of individual components in a complex petroleum fraction.<br />

(3) The determination of <strong>th</strong>e equilibrium anomerlc composition of<br />

carbohydrate solutions. These examples cover line wid<strong>th</strong>s ranging from very<br />

narrow to <strong>th</strong>ose typically encountered in 13C NNR of simple and complex<br />

organic molecules. We will also present information about <strong>th</strong>e<br />

Identification of instrumental artifacts and <strong>th</strong>e demands placed upon <strong>th</strong>e<br />

computer, bo<strong>th</strong> in <strong>th</strong>e horizontal (number of data points or words) and<br />

vertical (number of bits per word) directions, by ultra-high resolution NHR<br />

me<strong>th</strong>odology.


WF54 - POSTERS<br />

2D EXCHANGE NMR IN NON-SPINNING POWDERS<br />

C. Schmidt~ S. Kaufmann~ S. Wefing~ D. Theimer,<br />

B. Bl~mich" and H. W. Spiess~<br />

Max-Planck-Institut f~r Polymerforschung~<br />

Postfach 3148, D-6500 Mainz<br />

Information about molecular motions in isotropic<br />

solids is typically derived from lineshape analyses of<br />

wideline NMR spectra~ Nhile in liquid samples 2D exchange<br />

NMR has become an accepted me<strong>th</strong>od. In 2D exchange spectra<br />

some of <strong>th</strong>e information hidden in <strong>th</strong>e lineshapes of 1D<br />

spectra is reencoded into frequency coordinates of<br />

exchange signals, where it is accessible more accurately<br />

and in a model-independent fashion.<br />

We have studied deuteron and C-13 2D exchange NMR<br />

for <strong>th</strong>e characterization of molecular motions in powders<br />

and amorphous solid samples. The deuteron quadrupole<br />

coupling tensor is axially symmetric, so <strong>th</strong>at particu-<br />

larly simple exchange signals result. Discrete jumps are<br />

characterized by elliptical exchange singularities, where<br />

<strong>th</strong>e excentricity of <strong>th</strong>e ellipse is a direct measure of<br />

<strong>th</strong>e jump angle. Diffusive motions result in homogeneous<br />

broadening wi<strong>th</strong>.characteristic 2D lineshapes discrimina-<br />

ting different stages of partial diffusion towards <strong>th</strong>e<br />

full diffusion limit. For short mixing times pure<br />

diffusion~ diffusion in connection wi<strong>th</strong> discrete jumps,<br />

and pure jump motions can be distinguished.<br />

The 2D exchange experiment can also be performed in<br />

C-13 NMR on selectively labelled compounds. The asymmetry<br />

of <strong>th</strong>e chemical shielding tensor, however~ leads to more<br />

complicated 2D exchange patterns. Experimental and <strong>th</strong>eo-<br />

retical data demonstrate <strong>th</strong>at <strong>th</strong>e wideline 2D exchange<br />

experiment produces a direct image of <strong>th</strong>e jump angle<br />

distribution.<br />

Ref erences:<br />

1) C. Schmidt, S. Wefing~ B. Bl~mich and H.'W. Spiess,<br />

Chem. Phys. Lett. 130, 84 (198b).<br />

2) M. Linder, A. Hbhener and R. R. Ernst~ J. Chem. Phys.<br />

73, 4959 ~1980).


WF56<br />

LOCALIZED PROTON DENSITY. RELAXATION TIMES AND SELF DIFFUSION<br />

COEFFICIENT MEASUREMENTS IN SINGLE CELLS BY NMR MICROSCOPY.<br />

J. AEuayo, S. Blackband, J. Schoenlger and M. Mattlngly*, Division<br />

of NMR Research, Johns Hopkins University Medical School, Baltlmore,<br />

Maryland 21205.<br />

l~urDose. To obtain and intrepret localised measurements of proton<br />

density, relaxation times (T1/T2, and self diffusion coefficients of<br />

regions wi<strong>th</strong>in a single cell.<br />

Me<strong>th</strong>ods. A modified Bruker AM 400 spectrometer has been equipped<br />

wi<strong>th</strong> imaging software and hardware accessories. Using a 50 mm set<br />

of gradient coils up to 20 G/cm have been generated during imaging<br />

experiments. In order to optimize sensitivity, a 5 mm solenoid were<br />

used for <strong>th</strong>ese studies. A spin echo pulse sequence was used to<br />

obtain proton density weighted images. Multi-echo and inversion<br />

recovery programs were used to obtain T 2 and T 1 weighted images<br />

respectively. To obtain self diffusion measurements, <strong>th</strong>e spin echo<br />

and multi-echo programs were modified by adding two pulsed gradients<br />

on ei<strong>th</strong>er side of <strong>th</strong>e refocusing 180 ° pulse. In <strong>th</strong>ese programs a<br />

selective 90 ° pulse was used. Ova were obtained from Xenopus<br />

laevius.<br />

Results. The highest resolution to date has been I0 X 13 X 250<br />

microns (I). A homogeneous cell nucleus and heterogenous cytoplasm<br />

were observed. The highest proton density was in <strong>th</strong>e cell nucleus<br />

followed by <strong>th</strong>e marginal zone (region around <strong>th</strong>e nucleus) and<br />

finally <strong>th</strong>e cytoplasm. The cytoplasm has a high lipid content as<br />

evidenced by a chemically shifted component of <strong>th</strong>e signal from <strong>th</strong>is<br />

region. The cell nuclues was noted to have a long T 1 <strong>th</strong>at was<br />

similar to <strong>th</strong>e T 1 of <strong>th</strong>e surrounding buffer solution and longer <strong>th</strong>an<br />

<strong>th</strong>at of <strong>th</strong>e cytoplasm. The T 2 of <strong>th</strong>e nucleus was longer <strong>th</strong>an <strong>th</strong>at<br />

of <strong>th</strong>e cytoplasm. Diffusion studies are in <strong>th</strong>e process of being<br />

Intrepreted but indicate <strong>th</strong>at <strong>th</strong>e water in <strong>th</strong>e cell nucleus is<br />

similiar to <strong>th</strong>at of free water.<br />

Conclusion. It is now possible to obtain images of single cells and<br />

to obtain localized TI, T2, proton density and self diffusion<br />

measurements from wi<strong>th</strong>in different regions of single cells. The<br />

properties of <strong>th</strong>e cell nucleus in <strong>th</strong>e cell system <strong>th</strong>at we chose to<br />

study were significantly different <strong>th</strong>an <strong>th</strong>ose of <strong>th</strong>e surrounding<br />

cytoplasm. Fur<strong>th</strong>er study and correlation between <strong>th</strong>ese results and<br />

previous observation by o<strong>th</strong>er techniques is important in order to<br />

understand <strong>th</strong>e meaning of <strong>th</strong>ese observations.<br />

I. Aguayo J.B., Blackband S.J., Schoeniger J.S., Mattingly M.O., and<br />

Hintermann M., Nature, 322, 190-192, 1986.


WF58<br />

SPATIAL LOCALISATION OF ~lp ~LR SPECTROSCOPY USING PHASE<br />

MODULATED ROTATING FRAI~E IMAGING.<br />

Kartin J. Blackledse*, Peter Styles and Georse K. Radda<br />

X.R.C. CLINICAL NAGNETIC RESONANCE FACILITY, JOHN RADCLIFFE HOSPITAL,<br />

OXFORD ENGLAND U.K.<br />

Rotating frame imaging (R.F.I.) using <strong>th</strong>e B, field gradient of a<br />

surface coil has been shown to be a viable me<strong>th</strong>od for localislng<br />

phosphorus spectra in-vivo. Use of separate coils for transmitting and<br />

receivin E signal ensures <strong>th</strong>at <strong>th</strong>e encoding field gradient is linear and<br />

<strong>th</strong>e shape of <strong>th</strong>is field <strong>th</strong>roughout <strong>th</strong>e interrogated resion is flat and<br />

planar. As normally implemented, R.F.I. is an inherently inefficient<br />

technique; <strong>th</strong>is is because <strong>th</strong>e observation pulse is incremented, and<br />

received signal is amplitude modulated wi<strong>th</strong> respect to incremental<br />

pulse ansle. The magnetisatlon precesses about <strong>th</strong>e x-axis of <strong>th</strong>e<br />

rotatin 5 frame_, so <strong>th</strong>at of <strong>th</strong>e two components (y and z), only <strong>th</strong>e y<br />

component is detected. To overcome <strong>th</strong>is insensitivity, it i$ necessary<br />

to detect <strong>th</strong>e z component. This is achieved by 'flipping' <strong>th</strong>e<br />

masnetisation, immediately after <strong>th</strong>e incremental pulse, into <strong>th</strong>e x-y<br />

plane usin 5 a 7/2 pulse applied alon E <strong>th</strong>e y axis This signal is phase<br />

modulated, <strong>th</strong>e relative x and y component masnetisation in <strong>th</strong>e rotatin$<br />

frame varies wi<strong>th</strong> pulse angle. For <strong>th</strong>is modulation to be useful, <strong>th</strong>e<br />

phase encoding pulse (p.e.p) is required to have a bandwid<strong>th</strong> in bo<strong>th</strong><br />

B, and Bo over which it is effective in accurately transposln8 <strong>th</strong>e<br />

phase of <strong>th</strong>e mnsnetisation vector from <strong>th</strong>e y-z to <strong>th</strong>e x-y plane.<br />

Usin 5 a double coil (wi<strong>th</strong> smaller receiver coil) we receive from <strong>th</strong>e<br />

region (.2-.8) radii of <strong>th</strong>e transmitter coil away from <strong>th</strong>e surface. In<br />

<strong>th</strong>is resion, <strong>th</strong>e B, field streng<strong>th</strong> varies from >.5 to


WF60<br />

SENSITIVITY OF SURFACE COILS TO DEEP LYING VOLUMES<br />

William J. Tboma , ~ichael J. Albright ~,<br />

Piotr M. Starewicz" and Truman R. Brown<br />

Fo~Chase Cancer Center, Philadelphia, PA 19111<br />

Siemens Medical Systems, Iselin, NJ 08830<br />

Ne have acquired ri<strong>th</strong> an 8.5 cm-single turn3[urface coil in a 1M bore<br />

magnet operating at 1.5 T a single acquisition P spectrum (26 MHz) of <strong>th</strong>e<br />

human calf <strong>th</strong>at clearly displays ATP J-coupling and has a pbosphocreatine<br />

signal to noise of 25 wi<strong>th</strong> a 7 hertz gaussian filter. Obviously, <strong>th</strong>is is<br />

adequate sensitivity for <strong>th</strong>e entire volume. Unfortunately, in many cases, in<br />

order to distinquish amoung various physiological responses, it is required<br />

<strong>th</strong>at <strong>th</strong>e volume selected for observation be restricted. As <strong>th</strong>e volume from<br />

which <strong>th</strong>e signal is derived becomes smaller <strong>th</strong>e sensitivity of <strong>th</strong>e detection<br />

coil becomes critical. It is well known <strong>th</strong>at <strong>th</strong>e most important factors in<br />

coil sensitivity are <strong>th</strong>e distance from <strong>th</strong>e coil to <strong>th</strong>e volume from which <strong>th</strong>e<br />

signal originates, and <strong>th</strong>e Q of <strong>th</strong>e coil. O<strong>th</strong>er factors <strong>th</strong>at are important<br />

include <strong>th</strong>e geometric shape of <strong>th</strong>e coil, number of turns, and shielding of <strong>th</strong>e<br />

coil from dielectric losses.<br />

We have undertaken a study of <strong>th</strong>e sensitivity of surface coils for small<br />

regions as a function of <strong>th</strong>eir dep<strong>th</strong> for various surface coil designs,<br />

different turn numbers, various faraday shields, coil radius as a function of<br />

sample volume size, and coil Q. The Q of <strong>th</strong>e coil was measured by determining<br />

<strong>th</strong>e 90 ° pulse at, and <strong>th</strong>e resultant signal from, a 2 cm chamber containing<br />

phenylphosphonate in <strong>th</strong>e center of <strong>th</strong>e coil. Five and 10 cm <strong>th</strong>ick phantoms<br />

of dimensions large compared to <strong>th</strong>e surface coil diameter were filled wi<strong>th</strong><br />

solutions of differing ionic streng<strong>th</strong> and placed between <strong>th</strong>e coils and a 2S ml<br />

spherical sample.<br />

The resultant sensitivity of <strong>th</strong>e various coils rill be reported as a<br />

function of <strong>th</strong>e above parameters.


WF62<br />

CONVOLUTION CHEMICAL SHIFT IMAGING<br />

M.D. COCKMAN- (a,b) and T.H. MARECI (b,c)<br />

Departments of (a)Chemistry, (b)Radiology, and (c)Physics<br />

University of Florida, Gainesville, FL 32610<br />

One of <strong>th</strong>e challenges of NMR imaging is <strong>th</strong>e simultaneous<br />

collection of spatial and chemical information. However,<br />

non-selectlve Fourier chemical shift imaging me<strong>th</strong>ods, in<br />

which spatial information is obtained for every chemical<br />

resonance in a spectrum, hmve been time-consuming and require<br />

at least a <strong>th</strong>ree-dlmensional Fourier transformation<br />

algori<strong>th</strong>m. By a straightforward modification of <strong>th</strong>e me<strong>th</strong>od of<br />

Sepponen and coworkers (1), we have developed a new me<strong>th</strong>od of<br />

non-selectlve chemical shift imaging which requires less<br />

total data acquisition time and a simpler processing scheme.<br />

The new me<strong>th</strong>od is accomplished in part by requiring <strong>th</strong>at<br />

<strong>th</strong>e controlled inhomogeneity introduced by <strong>th</strong>e gradients be<br />

smaller <strong>th</strong>an <strong>th</strong>e inherent inhomogeneity which gives rise to<br />

<strong>th</strong>e chemical shift effect. The use of small gradient<br />

streng<strong>th</strong>s has <strong>th</strong>e benefit of increasing <strong>th</strong>e S/N ratio of <strong>th</strong>e<br />

resulting image. A second requirement of our me<strong>th</strong>od is <strong>th</strong>at<br />

<strong>th</strong>e magnitudes of a time delay, during which chemical shift<br />

encoding occurs, and a gradient, during which spatial<br />

encoding occurs, are changed in concert wi<strong>th</strong> each o<strong>th</strong>er. This<br />

simultaneous stepping has <strong>th</strong>e effect of creating a modulation<br />

function whose Fourier transform is <strong>th</strong>e convolution of a<br />

function of spatial position and a function of chemical shift<br />

frequency. Our technique has <strong>th</strong>erefore been named<br />

aconvolution chemical shift imaging'. This imaging scheme<br />

introduces spectral information into all spatial imaging<br />

dimensions. Thus a <strong>th</strong>ree-dimensional chemical shift imaging<br />

experiment can be reduced to a two-dimensional convolution<br />

chemical shift imaging experiment which retains <strong>th</strong>e same<br />

information.<br />

Convolution chemical shift imaging requires <strong>th</strong>at <strong>th</strong>e<br />

spatial field of view in frequency units must be on <strong>th</strong>e order<br />

of or smaller <strong>th</strong>an <strong>th</strong>e chemical shift separation of interest<br />

if one wishes to resolve a spatial image from each chemical<br />

shift species. Therefore <strong>th</strong>e me<strong>th</strong>od is best suited for small<br />

objects at high field.<br />

The convolution chemical shift imaging me<strong>th</strong>od has been<br />

implemented on a General Electric CSI-2 imager/spectrometer.<br />

Examples of <strong>th</strong>e imaging of phantoms using <strong>th</strong>e me<strong>th</strong>od are<br />

presented.<br />

This research was supported in part by <strong>th</strong>e NIH Biotechnology<br />

Resource Grant (P41-RR-02278) and <strong>th</strong>e Veterans Administration<br />

Medical Research Service.<br />

(1) R.E. Sepponen, J.T. Sipponen, and J.I. Tanttu,<br />

Assist. Tomogr. 8, 585 (1984).<br />

J. Comput.


WF64- POSTERS<br />

NMR FLOW IMAGING<br />

C. L. Dumoulln*, S. P. Souza, H. R. Hart Jr.<br />

General Electric Research and Development Center<br />

PO gox 8, Schenectady, New York 12301<br />

Many flow sensitive NMR procedures have been proposed and demonstrated.<br />

All of <strong>th</strong>ese me<strong>th</strong>ods rely on ei<strong>th</strong>er longitudinal magnetization or transverse<br />

magnetization for flow discrimination. Time-of-flight and spin washout are<br />

examples of flow sensitive techniques which make use of longitudinal magneti-<br />

zation. In <strong>th</strong>ese me<strong>th</strong>ods, <strong>th</strong>e longitudinal magnetization is changed in one<br />

location and monitored in ano<strong>th</strong>er downstream from <strong>th</strong>e first. Techniqdes which<br />

make use of transverse magnetization such as <strong>th</strong>e one described below typically<br />

monitor <strong>th</strong>e phase of spin magnetization and <strong>th</strong>us are not constrained by <strong>th</strong>e<br />

geometry of flow.<br />

The most significant problem in blood flow imaging in animals or humans<br />

is <strong>th</strong>e suppression of signals arising from non-moving spins. This is a par-<br />

ticularly severe problem because blood vessels are relatively small when com-<br />

pared to <strong>th</strong>e volume of <strong>th</strong>e surrounding tissue and blood flow is usually pulsa-<br />

tile ra<strong>th</strong>er <strong>th</strong>an constant. The rapid-scan, phase contrast technique presented<br />

here circumvents <strong>th</strong>ese problems and has proven very useful in obtaining non-<br />

invasive angiograms of heal<strong>th</strong>y and diseased patients.<br />

The flow-induced phase shift of a bi-polar gradient pulse is simply<br />

- vVTA G<br />

where ~ is <strong>th</strong>e flow-induced phase shift, 7 is <strong>th</strong>e gryomagnetic ratio, V is <strong>th</strong>e<br />

component of spin velocity in <strong>th</strong>e direction of <strong>th</strong>e applied magnetic field gra-<br />

dient, T is <strong>th</strong>e time between <strong>th</strong>e centers of <strong>th</strong>e lobes of <strong>th</strong>e bipolar gradient<br />

and A G is <strong>th</strong>e area of <strong>th</strong>e first lobe in <strong>th</strong>e bi-polar pulse (<strong>th</strong>e area of <strong>th</strong>e<br />

second lobe is -AG). To selectively detect flow in an imaging or spectroscopy<br />

procedure one can simply acquire two sets of data under different conditions<br />

of V, T or A G. We have found <strong>th</strong>at <strong>th</strong>e inversion of <strong>th</strong>e bi-polar gradient<br />

pulse gives <strong>th</strong>e best results. Thus, two echoes are obtained, one wi<strong>th</strong><br />

- 7VTA C and <strong>th</strong>e o<strong>th</strong>er wi<strong>th</strong> # - 7VT(-Ac). Moving spins are selectively<br />

detected ~ and stationary spins suppresse~ by taking <strong>th</strong>e difference of <strong>th</strong>e two<br />

echoes. Since <strong>th</strong>e flow sensitivity of such a procedure is only in <strong>th</strong>e direc-<br />

tion of <strong>th</strong>e applied field gradient, two flow images are obtained wi<strong>th</strong> or<strong>th</strong>ogo-<br />

nal flow sensitivities and combined to give <strong>th</strong>e total flow image. The inten-<br />

sity of each pixel in <strong>th</strong>e image is a quantitative measure of flow provided <strong>th</strong>e<br />

flow-induced phase shift, ~, is less <strong>th</strong>an about 1 radian.<br />

Suppression of non-moving spins can be enhanced by a weak dephasing gra-<br />

dient applied in <strong>th</strong>e direction of <strong>th</strong>e image projection. Such a gradient<br />

dephases spin magnetization over <strong>th</strong>e large volume of non-moving spins and has<br />

little effect in <strong>th</strong>e relatively small vessels. Additional suppression can be<br />

obtained by acquiring data very quickly and wi<strong>th</strong> short pulse-to-pulse inter-<br />

vals. Rapid scanning saturates non-moving spins while spins which move into<br />

<strong>th</strong>e detection region are fully relaxed. Fast scanning also makes <strong>th</strong>e flo~<br />

imaging procedure much less sensitive to patient motion since differences of<br />

data acquired in very short intervals are taken.


WF66<br />

IMMOBILIZED FERRITE pAirri~ 1:'~: 5ELEL'rlVE SPOILING OF A HOMOGENF.OUS B o FIELD AND<br />

ITS APplICATION TO SLrI~A~ C01L $ ~ P Y .<br />

Y. Oeoffrion'. M. Rydw. I. C. P Smi<strong>th</strong> sod H C. J~roU<br />

Division of BiololicaJ Sciences<br />

Nations/Research Council of Csosdt<br />

Ottawa, CANADA KIA 01~<br />

Ferrite pa.,'ticles on • solid support have been used to achieve selective sod<br />

lo~ spoilinj of• homogeneous Bo field. IH ~ imNLini techniques sad 3ip<br />

surface coil studies on phantoms have been used to deLineste <strong>th</strong>e proTde of <strong>th</strong>e loca/ized<br />

perturbation of <strong>th</strong>e Bo field sod to fur<strong>th</strong>er demonstrste <strong>th</strong>st in <strong>th</strong>e p~sont sppticstion<br />

<strong>th</strong>e spoifin| effect is Limited to _~ 0,5 cm •ray from <strong>th</strong>e surface of <strong>th</strong>e immobi/o.ed ferrite<br />

particles. AppLication of <strong>th</strong>is spproach to surface coU studies on a,nims/s has shoved <strong>th</strong>at<br />

itvu feasible to discrimiatte between 31p resonsoces originttiaj from tissues near <strong>th</strong>e<br />

body surface ofso soims/from <strong>th</strong>ose originttiag from tissues lyinj deeper in <strong>th</strong>e<br />

mmlmml.


WF68<br />

The SWIFT Me<strong>th</strong>od for In Vlvo Localized Spectroscopy<br />

W.M. Chew, L.-H. Chang, T.L.dames*<br />

Department of Pharmaceutical Chemistry<br />

University of California San Francisco<br />

San Francisco, California g4143<br />

Of paramount Importance in in v/vo MRS studies is <strong>th</strong>e ability to<br />

acqulre localized spectra from <strong>th</strong>e region of interest and wi<strong>th</strong> maximum<br />

signal to noise. Failure to localize can lead to false results and erroneous<br />

conclusions. Spectra obtained using localization schemes <strong>th</strong>at fail to<br />

maxlmlze signal to noise (S/N) can require long acquisition times and <strong>th</strong>us<br />

obscure <strong>th</strong>e ability to detect physiological changes. The optimal strategy<br />

during <strong>th</strong>e localization process is to keep manipulation of <strong>th</strong>e magnetization<br />

from <strong>th</strong>e region of Interest to a minimum, <strong>th</strong>ereby minimizing <strong>th</strong>e loss of<br />

S/N <strong>th</strong>at can occur due to finite T2's and Instrumental imperfections.<br />

We present a me<strong>th</strong>od of localization using <strong>th</strong>e SWIFT (Stored<br />

Waveform Inverse Fourier Transform) excitation me<strong>th</strong>od (1). Unlike most<br />

gradient localization me<strong>th</strong>ods (wl<strong>th</strong> one exception (2)), magnetization in <strong>th</strong>e<br />

region of Interest is not manipulated (volume selective nonexcitation during<br />

<strong>th</strong>e preparation period) <strong>th</strong>ereby retaining full z magnetization, an important<br />

signal to noise consideration. Magnetization outside <strong>th</strong>e region of interest is<br />

dephased and saturated using a combination of tailored SWIFT pulses and<br />

magnetic field gradients; a "read-out" pulse <strong>th</strong>en interrogates spins left on<br />

<strong>th</strong>e z axis from <strong>th</strong>e region of interest.<br />

(i) A.6. Marshal, A.T. Hsu, W.W. HunLer Jr., P. Schmalbrock, Prec. Soc. Me~. Res. Med. FirLh Annual<br />

MeeLing, Montreal (1986).<br />

(2) D.M. DoddrelI, J.M. Bulsing, GJ. 6allowiy, W~. Brooks. J. Field, M. Irving, H. Baddeley, d. Magn.<br />

Res. 70(2), 31g (1986).


WF70<br />

NATURAl, ABUNDANCE CARBON-13 NMR IMAGING<br />

IN BIOLOCICAL SYSTEMS<br />

Donald W. Kormos<br />

Department of Radiology, University Hospitals,<br />

C~RU, Cleveland, Ohio ~I06<br />

and Hong N. Yeung<br />

Technlcare Corporation, 29000 Aurora Road, Solon, Ohio 44139<br />

The feasibility of natural abundance carbon-13 NMR imaging was<br />

evaluated. Spin-echo, undecoupled images were obtained at 4.7 T (Oxford<br />

Instruments, 33-cm bore magnet) using a broadbanded Technicare Teslacon<br />

MR imaging system. A cylindrical volume coll (= 3,500 cm 3) and a single-<br />

turn surface coll (3 cm diameter), tuned to 50.6 MHz, excited and<br />

received <strong>th</strong>e carbon signals. Polypropylene spheres containing isotop-<br />

Ically enriched me<strong>th</strong>anol (= 99%) and e<strong>th</strong>ylene glycol wi<strong>th</strong> carbon-13 in<br />

natural abundance (= 1.1%) were used as phantoms for setting <strong>th</strong>e imaging<br />

parameters. Natural abundance carbon-13 images were obtained from an<br />

unfertilized chicken egg and a fresh oxtail (bo<strong>th</strong> obtained at a local<br />

supermarket!).<br />

Phantom images clearly showed =image multiplicity" due to carbon-<br />

proton J-coupllngs. The chicken egg image depicted only <strong>th</strong>e me<strong>th</strong>ylene<br />

(-CH2-) carbons of <strong>th</strong>e egg yolk. This finding was confirmed by high-<br />

resolution carbon spectra of separated egg white and egg yolk.<br />

Similarly, transverse and saglttal carbon-13 images obtained from <strong>th</strong>e<br />

oxtail phantom exclusively mapped lipid carbons. Separated fat and water<br />

proton images of <strong>th</strong>e oxtail using a modified Dixon me<strong>th</strong>od (wi<strong>th</strong> in situ<br />

inhomogeneity correction) were also obtained. A very good correlation<br />

between <strong>th</strong>e carbon-13 image and <strong>th</strong>e proton fat image was observed.<br />

We conclude <strong>th</strong>at natural abundance carbon-13 imaging is feasible at<br />

high fields wi<strong>th</strong> reasonable (= i hour) imaging times. Hardware<br />

improvements, proton decoupllng, and carbon-13 labeling will undoubtably<br />

decrease <strong>th</strong>e degree of difficulty.


WF72<br />

THE DESCI~IPTII]N AND ELIMII~TION OF SUBTRACTION ARTEFACTS IN :H<br />

EDITING SCHEMES: A PHASE CYCLING SCHEME TO ELIMINATE ABSORPTIVE<br />

AND DISPERSIVE ERRORS<br />

H.P He<strong>th</strong>erington °, D.L.Ro<strong>th</strong>man, K.L. Behar, M.R. Bendall and R.G. Shulman<br />

Dept of Molecular Biophysics and Biochemistry<br />

Yale University New Haven C.T. 06510<br />

In <strong>th</strong>e past <strong>th</strong>ree years <strong>th</strong>ere has been a rapid grow<strong>th</strong> in <strong>th</strong>e<br />

application of LH NMR to monitor in vivo metabolism. Due to <strong>th</strong>e small<br />

chemical shift dispersion of <strong>th</strong>e JH spectra, many small metabolite<br />

resonances are obscured by spectral overlap. To resolve <strong>th</strong>ese resonances<br />

a variety of homonuclear editing schemes have been proposed which rely on<br />

<strong>th</strong>e use of a selective inversion pulse or CW decoupling to alter <strong>th</strong>e 3-<br />

modulation of <strong>th</strong>e edited resonance(1). However, <strong>th</strong>ese me<strong>th</strong>ods<br />

experimentally and <strong>th</strong>eoretically fail to achieve exact cancellation of<br />

non-modulating resonances at <strong>th</strong>e frequency position of <strong>th</strong>e e~ited<br />

resonance, <strong>th</strong>ereby resulting in quantitative errors.<br />

By use of matrix me<strong>th</strong>ods(2) and <strong>th</strong>e product operator formalism (3), we<br />

have identified <strong>th</strong>e source of <strong>th</strong>ese errors as arising from<strong>th</strong>e editing<br />

pulse creating: a) perturbations in <strong>th</strong>e absorptive refocusing<br />

magnetization due to off resonance spin inversion effects and b)<br />

dispersive refocusing magnetization due primarily to <strong>th</strong>e effective field<br />

changes during <strong>th</strong>e selective inversion pulse or ~ecoupling period.<br />

HoNever, <strong>th</strong>ese errors can be <strong>th</strong>eoretically and experimentally eliminated<br />

by using <strong>th</strong>e following sequence and appropriate cycling scheme,<br />

where e and 2e form a standard spin echo sequence, ee.~ is a selective<br />

inversion pulse, ~=I/23 for doublets, and ee.~*~e=~. The selective<br />

inversion pulse, e~s~, is applied on alternate scans to <strong>th</strong>e 3-coupled<br />

spin of <strong>th</strong>e resonance to be edited and to a position symmetrically<br />

disposed to <strong>th</strong>e edited resonance to eliminate errors in absorptive<br />

refocusing magnetization. Incomplete cancellation due to dispersive<br />

refocusing magnetization is eliminated by cycling <strong>th</strong>e sequence of pulses<br />

and delays (2e.~-~e-2e-~) according to <strong>th</strong>e absorptive phase cycling<br />

described by He<strong>th</strong>erington and Ro<strong>th</strong>man(2). This scheme has been applied to<br />

<strong>th</strong>e living cat brain at 4.?T to obtain an edited spectrum of lactate.<br />

I) D.Ro<strong>th</strong>man et al, Proc. Natl. Acda. Sci, 81, 6330, (19B4)<br />

S. Williams et al, 3. Magn. Reson. bJ,40&, (19B5)<br />

2) H.He<strong>th</strong>erington and D.Ro<strong>th</strong>man, 3. Magn. Reson.,b5t 348,(1985)<br />

3) 0.Sorensen, Prog. Nucl. Magn. Reson. Spectrosc., 54,512,(1983)


WF74<br />

TAILORED EXCITATION IN THE ROTATING FRAME<br />

G.S. Karczmar*, T. Lawry, M.W. Weiner,<br />

J. Murphy-Boesch, and G.B. Matson<br />

Veterans Administration Medical Center, and<br />

University of California, San Francisco, California<br />

Shaped RF pulses are currently used in magnetic<br />

resonance imaging (MRI) to provide uniform excitation across<br />

a selected frequency interval. The distribution of<br />

frequencies across <strong>th</strong>e sample is created by a gradient in<br />

<strong>th</strong>e B 0 field. It is also possible to utilize a gradient in<br />

<strong>th</strong>e RF (B 1) field for spatial discrimination. Here we<br />

describe a new approach to localized spectroscopy based on<br />

selective excitation of precessional frequencies about an<br />

inhomogeneous B 1 field. Selective excitation is produced by<br />

a second RF field, designated B2, which is or<strong>th</strong>ogonal to <strong>th</strong>e<br />

inhomogeneous B 1 field. This approach derives from Hoult's<br />

rotating frame selective pulses (1). However, it differs<br />

in <strong>th</strong>at <strong>th</strong>e B 1 and B 2 fields are not on continuously.<br />

Fur<strong>th</strong>ermore, <strong>th</strong>e B 2 field is tailored to achieve uniform<br />

excitation over a desired frequency interval.<br />

In its simplest form, <strong>th</strong>e experiment is initiated by<br />

application of a B 1 field along <strong>th</strong>e X axis of <strong>th</strong>e rotating<br />

frame, <strong>th</strong>rough an NMR probe which produces an inhomogeneous<br />

RF field. At multiples of time tau <strong>th</strong>e B 1 field is<br />

momentarily removed and a brief B 2 pulse applied along <strong>th</strong>e Y<br />

axis. The B 2 pulses are selective for precessional<br />

frequencies about B 1 which are multiples of 1/tau, and<br />

continuation of <strong>th</strong>e sequence produces a net tipping of<br />

selected magnetization towards <strong>th</strong>e negative Y axis. Halfway<br />

<strong>th</strong>rough <strong>th</strong>e sequence <strong>th</strong>e phase of <strong>th</strong>e B 1 field is reversed,<br />

so <strong>th</strong>at <strong>th</strong>e experiment ends wi<strong>th</strong> selected magnetization<br />

along <strong>th</strong>e negative Y axis, and all o<strong>th</strong>er magnetization<br />

aligned along <strong>th</strong>e Z axis. The slice profile approaches a<br />

sine shape. Improvement of <strong>th</strong>e selection profile is<br />

obtained <strong>th</strong>rough modulation of <strong>th</strong>e duration of <strong>th</strong>e<br />

individual B 2 pulses to obtain tailored excitation<br />

equivalent to <strong>th</strong>at of shaped pulses such as <strong>th</strong>e sine pulse.<br />

Computer simulations are used to demonstrate a variety<br />

of pulse sequences which achieve acceptable slice profiles<br />

while minimizing RF power. Advantages over o<strong>th</strong>er B 1<br />

localization experiments include improved uniformity of<br />

excitation over <strong>th</strong>e selected slice, and minimal perturbation<br />

of magnetization outside of <strong>th</strong>e selected slice. This makes<br />

multiple slice experiments possible. Extension of <strong>th</strong>e<br />

me<strong>th</strong>od to <strong>th</strong>e use of o<strong>th</strong>er shaped pulses is straightforward.<br />

1. D.I. Hoult, J. Magn. Reson. 38, 369 (1980)


WF76<br />

RAPID ~ F R A M E IMAGING<br />

Kenne<strong>th</strong> R. Metz* and John P. Boehmer<br />

Department of Radiology<br />

The Pennsylvania State University College of Medicine<br />

~he M. S. Hershey Medical Center<br />

P. O. Box 850<br />

Hershey, Pennsylvania 17033<br />

Since its introduction [Hcult, J~R, 33, 183 (1979)], rotating-frame<br />

imging (RFI) has excited growing interest. This technique employs<br />

radiofrequency field (B I) gradients to produce a spatial (x) dependence<br />

of <strong>th</strong>e NMR nutation frequency: Fl(x) = ~Bl(X)/2~. Ordinarily, a one-<br />

dimensional spat/al image is formed using a t%D-dimensional pulse<br />

sequence of <strong>th</strong>e genen~l type:<br />

(Preparation - n-P - FID Acquisition - Relaxation Delay) n [RFI]<br />

where <strong>th</strong>e rf pulse wid<strong>th</strong> n-P increases wi<strong>th</strong> <strong>th</strong>e number of stored FID's.<br />

2DPT processing wi<strong>th</strong> respect to <strong>th</strong>e pulse wid<strong>th</strong> (t I) and acquisition time<br />

(t 2) yields a 2D frequency-dum~in map correlating <strong>th</strong>e NMR spectrum along<br />

<strong>th</strong>e F 2 axis wi<strong>th</strong> <strong>th</strong>e spatial position along <strong>th</strong>e F 1 axis.<br />

In many cases, <strong>th</strong>e obserut~ chemical species (e.g., IH20 or 23Na+)<br />

may exhibit only a single spectral line. ~his allows <strong>th</strong>e rotating-frame<br />

imge to be formed using <strong>th</strong>e sequence:<br />

Preparation - (P - Acquire One Point) n - Relaxation Delay [Rapid RFI]<br />

where n s~ssi~ individual points are acquired between pulses (P) in a<br />

long train. The rapid RFI me<strong>th</strong>od uses only a small fraction of <strong>th</strong>e rf<br />

power normally required, provides, good spatial resolution, and is<br />

extremely fast, as shown by <strong>th</strong>e I~ image below for a <strong>th</strong>ree-c/hamber<br />

phantcm acquired in 41 ms.<br />

l ' ' ' i ' ' ' I ' '<br />

6000 4000 2000 Hz


WF78<br />

A NOVEL METHOD FOR DIFFUSION AND FLOW MEASUREMENTS:<br />

IMAGING OF TRANSIENT MAGNETIZATION GRATINGS<br />

Timo<strong>th</strong>y R. Saarinen* and Charles S. Johnson, Jr.<br />

Department of Chemistry 045A<br />

University of Nor<strong>th</strong> Carolina<br />

Chapel Hill, NC 27514<br />

Holographic relaxation spectroscopy (HRS) is an optical<br />

me<strong>th</strong>od in which a grating pattern of photoproducts is written<br />

into a sample by a laser interference pattern. The time<br />

evolution of <strong>th</strong>e grating is determined by diffusion, flow,<br />

and relaxation rates. Analogous PFG-NMR experiments are<br />

described in which sinusoidal patterns of magnetization are<br />

"written" into samples along <strong>th</strong>e gradient direction. The<br />

time evolution of <strong>th</strong>e "grating" wi<strong>th</strong> diffusion, flow, and<br />

relaxation present is determined. To monitor <strong>th</strong>e time<br />

dependence, a "reading" gradient is applied during acqui-<br />

sition to yield an image of <strong>th</strong>e "grating" after Fourier<br />

transformation wi<strong>th</strong> respect to <strong>th</strong>e acquisition time. The<br />

Carr-Purcell sequence wi<strong>th</strong> an applied magnetic gradient is<br />

discussed along wi<strong>th</strong> applications to diffusion and flow.


WF80<br />

MULTIPLE QUANTUM FILTERING: USES IN IMAGING AND IMAGING RELATED<br />

EXPERIMENTS<br />

Nikolaus M. Szeverenyi<br />

SUNY, Heal<strong>th</strong> Science Center<br />

NMR Laboratory, Room 301<br />

708 Irving Avenue<br />

Syracuse, NY 13210<br />

Tel. (315) 473-8469<br />

The behavior of multiple quantum coherence in <strong>th</strong>e presence of<br />

magnetic field gradients can be exploited as ano<strong>th</strong>er mechanism to filter<br />

out water signal in an imaging instrument. Using a combination of<br />

r.f./receiver phase cycling and <strong>th</strong>e selection of a particular echo, one<br />

can achieve a high level of water suppression. Lactic acid and to a<br />

lesser extent fat, are biological materials <strong>th</strong>at respond to <strong>th</strong>is<br />

experiment. Results using selective pulses are displayed wi<strong>th</strong> a<br />

discussion of sensitivity considerations, field dependence and possible<br />

applications.


WK2<br />

15N NMR OF MACROMOI_F.CULF-S: APPLICATIONS TO THE<br />

b"I'UDY OF PROTEINS IN SOLUTION<br />

M. Bogusky', P. Leighton, R. Schiksnis, A. Khoury, P. Lu and S. Opella.<br />

Department of Chemistry<br />

University of Pennsylvania<br />

Philadelphia, Pennsylvania 19104<br />

One- and two-dimensional heteronuclear NMR techniques<br />

combined wi<strong>th</strong> 15N biosyn<strong>th</strong>etic labelling have been used to study a variety<br />

of globular and membrane bound proteins in solution. Five proteins<br />

including <strong>th</strong>e fd and Pfl phage coat proteins in micelles, cro repressor, lac<br />

repressor and lac headpiece, covering <strong>th</strong>e molecular weight range<br />

6-155kD have been investigated using <strong>th</strong>ese techniques. Heteronuclear<br />

correlation, bo<strong>th</strong> nitrogen and proton observe are used to resolve amide<br />

nitrogens and protons as well as sidechains containing nitrogen.<br />

Assignment of resonances to amino acid type are completed <strong>th</strong>rough <strong>th</strong>e<br />

use of single site 15N biosyn<strong>th</strong>etic labelling. Sequence specific assignments<br />

are accomplished wi<strong>th</strong> <strong>th</strong>e use of 13C-15N double labelled samples.<br />

Evaluation of <strong>th</strong>e advantages and limitations of bo<strong>th</strong> heteronuclear<br />

correlation techniques wi<strong>th</strong> regard to molecular weight are presented.<br />

Applications of polarization transfer techniques are used to<br />

increase sensitivity, assign resonances and monitor proton exchange for <strong>th</strong>e<br />

labelled proteins discussed. Protein backbone and sidechain dynamics are<br />

characterized by <strong>th</strong>e heteronuclear 15N-(IH} NOE. Qualitative<br />

determination of protein mobility on <strong>th</strong>e nanosecond timescale is readily<br />

accomplished for moderately sized proteins using <strong>th</strong>e heteronuclear NOE.<br />

Proteins dynamics are also characterized wi<strong>th</strong> <strong>th</strong>e use of "dynamic filters"<br />

inherent in several heteronuclear multipulse experiments. The combination<br />

of <strong>th</strong>e heteronuclear techniques discussed wi<strong>th</strong> <strong>th</strong>e conventional proton<br />

NMR techniques extend <strong>th</strong>e molecular weight range of protein systems<br />

which become tractable by high resolution solution NMR.


WK4<br />

P.E.COSY, DOUBLE QUANTUM FILTERED RELAY SPECTROSCOPY AND MORE.<br />

Stephen C. Brown, Paul L. Weber & Luciano Mueller<br />

Smi<strong>th</strong> Kline & French Laboratories<br />

709 Swedeland Road, Mail Code L940<br />

Swedeland, Pennsylvania 19479.<br />

Whenever one gains <strong>th</strong>e impression <strong>th</strong>at some aspect of NMR is<br />

becoming exhausted, a new twist is stumbled upon <strong>th</strong>at opens up new<br />

avenues of research. For instance, we recently found a new procedure<br />

to purge <strong>th</strong>e phases in COSY spectra, which we subsequently utilized to<br />

generate E.COSY 1 type spectra. This experiment involves <strong>th</strong>e reduction<br />

of <strong>th</strong>e flip angle in <strong>th</strong>e mixing pulse combined wi<strong>th</strong> <strong>th</strong>e said phase<br />

purging. The resulting spectra looked impressive enough to leave <strong>th</strong>e<br />

impression <strong>th</strong>at some people may want to see a name associated wi<strong>th</strong><br />

<strong>th</strong>is procedure; how about primitive or P. E.COSY 2.<br />

We also applied dual double quantum filtering procedure to <strong>th</strong>e<br />

RELAY experiment as originally proposed by O. Sorensen 3. To our<br />

delight we obtained superb results in a small protein (ubiquitin),<br />

which suggests <strong>th</strong>at <strong>th</strong>is procedure may become <strong>th</strong>e standard RELAY<br />

technique. For people who are in desperate need of names may we call<br />

<strong>th</strong>is DQFRELAY or DRECKSY (true meaning to be revealed upon request).<br />

Fur<strong>th</strong>ermore, we found an optimized combination of selective<br />

excitation and homogeneity spoiling in <strong>th</strong>e 2DNOE experiment to<br />

suppress <strong>th</strong>e solvent peak in H20 solution. These results and more we<br />

wish to present.<br />

References: 1. C. Criesinger, O. W. Sorensen and R. R.<br />

Ernst, J. Amer. Chem. Soc. 107, 6394 (1985).<br />

2. L. Mueller, J. Magn. Reson., March <strong>1987</strong>.<br />

3. O. W. Sorensen, Ph.D. <strong>th</strong>esis, ETH #7658<br />

(1984).


WK6<br />

ISOTOPE-FILTERED PROTON NHR EXPERIMENTS<br />

FOR SIMPLIFYING COMPLEX SPECTRA<br />

Stephen W. Fesik* Robert T. Gampe, Jr. Jay R. Luly, Herman H. Stein and<br />

• ' t<br />

Todd Rockway. Pharmaceutical Division, Abbott Laboratories, Abbott Park, IL<br />

60064.<br />

Extracting structural information from proton NHR spectra of large<br />

btomolecules or molecular complexes can be extremely difficult due to <strong>th</strong>e<br />

severe overlap of many signals. Recently, however• experimental approaches<br />

have been introduced to overcome some of <strong>th</strong>ese limitations by selectively<br />

detecting protons attached to an isotopically labelled nucleus (1,2) as well<br />

as <strong>th</strong>eir scalar (2) or dipolar coupled (3) partners. Isotope-filtered<br />

homonuclear Hartmann-Hahn (HLEV-17) and NOE experiments in which a spin-echo<br />

difference pulse sequence was inserted in <strong>th</strong>e experiment are presented. The<br />

approach is illustrated using an 15N-labelled dipeptide and applied in a study<br />

of <strong>th</strong>e bound conformation of an isotopically labelled pepsin inhibitor. In<br />

addition, isotope-filtered 2D NOE spectra are presented of a large, 15N-<br />

labelled cyclic peptide analog of atrial natriuretic factor incorporated into<br />

a model membrane. From <strong>th</strong>e spectral simplification achieved in <strong>th</strong>e<br />

experiment, additional proton-proton distances were obtained unambiguously,<br />

aiding our structural studies.<br />

I. R.H. Griffey, A.G., Redfield, R.E. Loomis, and F.W. Dahlquist,<br />

Biochemistry, 24, 817-822 (1985).<br />

2. J.A. Wilde, P.H.Bolton, N.J. Stolowich, and J.A. Gerlt, J. Magn. Reson.,<br />

6__88, 168-171 (1986).<br />

3. R.H. Griffey, M.A. Jarema, S. Kung, P.R. Rosevear, and A.G. Redfield,<br />

J. Am. Chem. Soc., i0___~7, 711-712 (1985).


WK8<br />

ISOTROPIC MIXING IN DNA<br />

Peter F. FIynn', Agustin Kintanar, Gary P. Drobny<br />

and Brian R. Reid<br />

Department o] Chemistry, Uniuersity of Washington<br />

Seattle, WA 98195<br />

We have investigated homonuclear coherence transfer in syn<strong>th</strong>etic DNA oligonu-<br />

cleotides using two-dimensional isotropic mixing experiments. These experiments<br />

employ broadband homonuclear decoupling techniques (MLEV-16) during <strong>th</strong>e mix-<br />

ing period to induce isotropic coupling wi<strong>th</strong>in a spin system resulting in net trans-<br />

fer of coherence. The leng<strong>th</strong> of <strong>th</strong>e mixing time determines <strong>th</strong>e extent of coherence<br />

transfer; brief mixing periods lead to COSY-like spectra and at longer mixing times,<br />

relayed coherence transfer effects are introduced.<br />

This me<strong>th</strong>od was used to determine <strong>th</strong>e scalar connectivities of sugar protons<br />

in canonical B-form, bent, and hairpin DNA structures. Cross-peaks were assigned<br />

unequivocally wi<strong>th</strong>out recourse to structural assumptions, since coherence is trans-<br />

ferred only <strong>th</strong>rough bonds. Assignments derived from <strong>th</strong>ese experiments were used<br />

to simpli~" and confirm NOESY spectrum assignments.<br />

Isotropic mixing techniques as applied to oligonucleotides differs from conven-<br />

tional relayed coherence transfer techniques in <strong>th</strong>at one can simultaneously observe<br />

shor~ and long range coherence transfer wi<strong>th</strong>in a spin system using <strong>th</strong>e former<br />

me<strong>th</strong>od. In addition, long range coherence transfer is more easily observed using<br />

isotropic mixing.


WKIO<br />

IH, IsC, AND ISN NMR STUDIES OF METAL COMPLEXES OF BLEOMYCIN<br />

Ian J. Mclennan* Michael P Gamcslk, Susanta K. Sarkar, Ad Bax t , and<br />

I °<br />

Jerry D. Gllckson, Depar ~ment of Radiology, The Johns Hopkins University<br />

School of Medicine, Baltimore MD 21205 and SNatlonal Institutes of Heal<strong>th</strong>,<br />

Be<strong>th</strong>esda MD 20892.<br />

The solution conformation of <strong>th</strong>e Zn(II) bleomycin complex has been<br />

studied by ZH, IsC, and ISN NMR. As part of <strong>th</strong>e study we have performed<br />

rotating frame NOE experiments in bo<strong>th</strong> H20 and D20. The Zn(II) bleomycln<br />

complex has been found to be partlcularly amenable to rotating frame<br />

experiments since <strong>th</strong>e TlP'S of <strong>th</strong>e complex are long (-50ms) at 4°C. The<br />

complete assignment of <strong>th</strong>e IH spectrum of <strong>th</strong>e Zn(II) bleomycln complex has<br />

been accomplished by COSY-llke experiments utilizing Hartman-Hahn<br />

polarization transfer. The complete assignment of <strong>th</strong>e IsC spectrum of <strong>th</strong>e<br />

Zn(II) bleomycin complex has been accomplished using <strong>th</strong>e RELAY me<strong>th</strong>od<br />

(Lerner and Bax (1986) J. Magn. Reson. 69, 375). The assignment of <strong>th</strong>e<br />

peptide amlde nitrogens in free bleomycin and <strong>th</strong>e Zn(II) bleomycin complex<br />

was accomplished by IH-16N multiple quantum experiments. The results from<br />

<strong>th</strong>ese experiments are discussed in terms of a probable solution<br />

conformation of <strong>th</strong>e Zn(II) bleomycln complex.


WK12 - POSTERS<br />

QUANTITATIVE INTERPRETATION OF A SINGLE 2D NOE SPECTRUM<br />

Peter A. Mirau<br />

AT&T Bell Laboratories<br />

Murray Hill, NJ 07974<br />

A new me<strong>th</strong>od is suggested for <strong>th</strong>e quantitative in-<br />

terpretation of 2D NOE data using selective relaxation rates<br />

and matrix techniques. This approach reduces <strong>th</strong>e experimen-<br />

tal time from one week to one day, gives proton-proton dis-<br />

tances wi<strong>th</strong> a precision of I0.1 ~, and can be used to<br />

characterize <strong>th</strong>e internal dynamics. Wi<strong>th</strong> <strong>th</strong>is approach <strong>th</strong>e<br />

structural and dynamic properties of Gramicidin S were<br />

determined from a single 2D NOE spectrum wi<strong>th</strong> a mixing time<br />

of 0.2 s. The peak volumes in <strong>th</strong>e 2D experiment were scaled<br />

via <strong>th</strong>e measured selective relaxation of Phe NH and Orn H ~<br />

protons and <strong>th</strong>e matrix of scaled peak volumes was solved to<br />

yield <strong>th</strong>e relaxation rate matrix. The distances measured by<br />

<strong>th</strong>is approach were indistinguishable (I0.1A ) from <strong>th</strong>ose<br />

measured from 1D NOE experiments, <strong>th</strong>e buildup of cross peaks<br />

in <strong>th</strong>e 2D NOE experiments, and <strong>th</strong>e distances expected from<br />

<strong>th</strong>e crystal structure. The dynamics were determined from<br />

<strong>th</strong>e ratio of <strong>th</strong>e sum of all <strong>th</strong>e cross relaxation rates to<br />

<strong>th</strong>e rate of decay of <strong>th</strong>e diagonal peak which, for isotropic<br />

motion, depends only <strong>th</strong>e <strong>th</strong>e correlation time. This<br />

analysis showed a correlation time for <strong>th</strong>e NH and H ° protons<br />

of 0.9~0.1 nsec; <strong>th</strong>e close correspondence between <strong>th</strong>e ob-<br />

served and expected values show <strong>th</strong>at <strong>th</strong>e peptide backbone is<br />

rigid in solution over <strong>th</strong>e time scale of molecular tumbling.<br />

Internal motions of make a significant contribution to <strong>th</strong>e<br />

relaxation of some side chain groups. The implications and<br />

limitations of <strong>th</strong>is approach and <strong>th</strong>e applications to DNA<br />

structure determination will be discussed.


WKI4 - POSTERS<br />

SYMMETRY AND ANTISYMMETRY IN 2D NMR SPECTRA<br />

O.W. S6rensen, C. Griesinger, C. Gemperle<br />

and R.R. Ernst<br />

Laboratorium fSr Physikalische Chemie<br />

EidgenSssische Technische Hochschule<br />

8092 Z~richo Switzerland<br />

The conditions for obtaining 2D spectra symmetric or<br />

antisymmetric wi<strong>th</strong> respect to reflection about <strong>th</strong>e<br />

diagonal have been extended and generalized. They<br />

can be formulated ei<strong>th</strong>er in terms of <strong>th</strong>e structure<br />

of pulse sequences or in terms of <strong>th</strong>e coherence<br />

transfer pa<strong>th</strong>ways selected.<br />

Recent results indicate <strong>th</strong>at new experimental<br />

techniques producing antisymmetric or asymmetric 2D<br />

spectra can be of advantage in certain practical<br />

situations. For example, experiments leading to<br />

antisymmetric spectra often result in suppression of<br />

uninformative and disturbing diagonal peaks.


WK16<br />

MULTINUCLEAR SOLID STATE NMR STUDIES OF INTERNAL MOLECULAR DYNAMICS IN<br />

FIBROUS AND CRYSTALLINE PROTEINS<br />

Y. Hiyama*, J. W. Hack +, S. W. Sparks** and D. A. Torchla,<br />

Natlonal Institute of Dental Research, Natlonal Institutes of Heal<strong>th</strong><br />

Be<strong>th</strong>esda, Maryland 20892<br />

Collagen*: Intact rabbit Achilles tendon collagen containing<br />

4-fluorophenylalanine (provided by Dr. J. T. Gerlg) has been studied by<br />

19F NMR at 470 MHz. Analysls of <strong>th</strong>e 19F CSA powder patterns obtained at<br />

-37°C show <strong>th</strong>at motion of all amino acid sldechains is restricted to small<br />

angle rolling or rare 180 ° fllps of <strong>th</strong>e phenyl ring. In contrast, above<br />

-4°C, <strong>th</strong>e powder pattern indicates considerable heterogenlety in <strong>th</strong>e<br />

dynamics of <strong>th</strong>e sidechaln, a result <strong>th</strong>at will be discussed wi<strong>th</strong> reference<br />

to collagen fiber structure.<br />

Keratin+: Assembled intermediate filaments of mouse epidermal<br />

keratin, labeled wi<strong>th</strong> 13C and 2H (provided by Dr. Peter Steinert) have<br />

been studied at several field streng<strong>th</strong>s. Analysls of measurements of<br />

Tl'S, llne wid<strong>th</strong>s and NOE values of filaments labeled wi<strong>th</strong> [I-13C] and<br />

[2-13C] glyclne show <strong>th</strong>at <strong>th</strong>e protein backbone, in <strong>th</strong>e non-helical N- and<br />

C-terminal domains, is Isotropically mobile on <strong>th</strong>e nanosecond timescale.<br />

Deuterium llneshapes of leucyl residues, located in <strong>th</strong>e interior helical<br />

domain of <strong>th</strong>e protein show <strong>th</strong>at motions of <strong>th</strong>ese sidechains are<br />

anisotropic. We will report on <strong>th</strong>e spatial extent and timescale of <strong>th</strong>ese<br />

sidechalr motions based on our analysis of <strong>th</strong>e 2H lineshape and relaxa-<br />

tlon data.<br />

Staphylococcal Nuclease~'#: Using genetically engineered E. Coli<br />

(provided by Dr. J. Gerlt) we have prepared crystals of S. Nuclease<br />

containing residue specific NNR spin labels. Deuterium lineshapes show<br />

<strong>th</strong>at except for me<strong>th</strong>yl rotation, molecular motion is highly restricted at<br />

temperatures below -35°C. In contrast, at 20°C, at least one half of each<br />

of <strong>th</strong>e Pro, Met, Phe and Tyr residues execute large amplitude sidechain<br />

motions. The detailed nature and timescale of <strong>th</strong>ese motions will be dis-<br />

cussed and, where possible, related to <strong>th</strong>e crystal structure. These are<br />

<strong>th</strong>e first extensive measurements of internal motions in a protein crystal<br />

and clearly show <strong>th</strong>at even in crystals proteins are dynamic structures.


WK18<br />

21) NMR METHODS FOR ~ SYSTEM IDENTIFICATIDN IN LARCE<br />

PROTEINS<br />

CLzudi~ Dalvi% S.S. Naru~* and Peter E. Wright<br />

Department of uc~ecular<br />

R ~ I m ~ of Scripps<br />

1~ Nor<strong>th</strong> Tcrr~y Pines Road<br />

Recent deve~pments in 2D NMR me<strong>th</strong>od~y now make it possible to<br />

obtain extensive and ~m~=uous spin system assignments for ~ of<br />

malecmlar weight up to- 20,O00d. Phase sensi~ve double quantum spe~:~Fy<br />

and Hartman-Hahn techniques are particularly im~l~ Appli~ticvs of <strong>th</strong>ese<br />

OdS to ]~g~emog]~l~n (M- 16,000) and myog~l~n (M ~ 18,000) wi~ be<br />

• Acc~n of dc~l~ quantum spectr~ wi'~ d~f&~nt • values<br />

impcm-tant to a.1]Dw di~erenl~ d direct and r~mote connectivj.i~.es and for<br />

spectr~ mmpl~f-ic~,',n and edii~ng. The double quan~nn experiment is<br />

well,bred for detection of weak, ]c~g-~d~ge ~ and can ~ e<br />

una.mhiguous czmuectiv'ities between <strong>th</strong>e aroma~c and alipha~c ~ of<br />

~ e spin systems. R ~ frame NOESY experiments are inva.luahle in<br />

studying exchange troces~s between different conforma~kmal suhstates of<br />

]~emq~hin. We show <strong>th</strong>at Hart~an-Hahn coherence transfer experiments<br />

can be used to ~d~ amino acid spin systems in a ~ of malecular<br />

weight 38,000; a::mv~ COSY techniques are iI~r~.~le far a ~ of<br />

size.


WK20<br />

ImQm~ss ~ M~/TIDIM~SIGNAL ~ C NMR<br />

H. Armitage, U. Bl6mer, I. Genge, A. Khuen, and D. Ziessow<br />

I.N. Stranski Institute, Technische Universit~t Berlin<br />

i000 Berlin 12, West Germany<br />

Stimulus to <strong>th</strong>e osntinuing development of M~DI~4 (MUltidimensional Stochas-<br />

tic Me<strong>th</strong>od) is <strong>th</strong>e simplicity of <strong>th</strong>e measurement process and <strong>th</strong>e prospect<br />

to obtain 2D spectra wi<strong>th</strong> high digital resolution which, wi<strong>th</strong> conventional<br />

2D techniques, ~uld require <strong>th</strong>e processing of i0 or more Giga~rds data<br />

arrays.<br />

In order to take full advantage of <strong>th</strong>e me<strong>th</strong>od, hardware and software has<br />

been developped which allows <strong>th</strong>e continuous recording of data pairs for <strong>th</strong>e<br />

excitation ( special ly designed quaternary noise) and response time func-<br />

tion, 1 Me~apair or more depending on <strong>th</strong>e amount of DRAM plugged into <strong>th</strong>e<br />

VME bus of <strong>th</strong>e 68000-based computer system for data acquisition. Spectral<br />

information is obtained by correlation of excitation and response as<br />

formed in <strong>th</strong>e frequency dom~J_n wi<strong>th</strong> <strong>th</strong>e ais of a Honeywell BulISPS 9 ~<br />

cc~puter. First order oprrelation yields <strong>th</strong>e c~mDn ID spectrum Hl(W). Ex-<br />

tremely long time records are used in order to alleviate artifacts stemming<br />

from cyclic correlation. From <strong>th</strong>e same raw data, after suitable subtraction<br />

of <strong>th</strong>e first order response, <strong>th</strong>ird ~ ~ is performed pointwise<br />

to determine a genuine 3D spectral function H3(Wl,W2,W 3) in regions of in-<br />

re_rest as indicated by <strong>th</strong>e ID spectrum. For instance, <strong>th</strong>e choice w3=-w 2 re-<br />

duces H 3 to a 2D spectrum H 3 ' (Wl,W 2) which is equivalent to <strong>th</strong>e result of<br />

<strong>th</strong>e E-COSY technique. Points my be selected such <strong>th</strong>at <strong>th</strong>e entire spectral<br />

range is assessed wi<strong>th</strong> coarse digital resolution, and narrow regions wi<strong>th</strong><br />

extremely small frequency steps.<br />

Simulated and experimental data are presented to demonstrate <strong>th</strong>e unique<br />

features of MUDI~4. As a particular case study, results for <strong>th</strong>e cyclic pep-<br />

tide cyclosporin are shown which derive frcm 80 Megapairs raw data for a<br />

total spectral range of 3246 Hz (7.5 h magnet time). A typical 2D spectrum<br />

(512x512 window at 0.4 Hz step size) is given which ~uld require <strong>th</strong>e pro-<br />

cessing of about 256 Megawords of data wi<strong>th</strong> conventional 2D techn/ques.


WK22 - POSTERS<br />

SOLVENT SUPPRESSION WITHOUT PHASE DISTORTION<br />

Malcolm H. levitt* and Hazy F. Roberts<br />

M.I.T., NN14-5122, Cambridge, MA 02139<br />

Ve describe a new class of pulse sequences, NERO (Non-linear Excitation<br />

Rejecting On-Resonance), which alloy wideband excitation of an NI~<br />

spectrum except for a deep, flat section near <strong>th</strong>e carrier vhere <strong>th</strong>e<br />

response is zero. The novel feature of <strong>th</strong>e nev sequences is <strong>th</strong>at phase<br />

distortion of excited resonances is negligible, in contrast to usual<br />

me<strong>th</strong>ods based on linear response. Ve rill shov numerical simulations<br />

and experimental results for <strong>th</strong>e following sequence, called NER0-1:<br />

120°-~1-115°-~2-115 °-2~3-115°-~2-115 °-¢1-120°-~ r<br />

where pulses 180 ° out of phase have an overbar, and delays ~k are given<br />

by<br />

~1 = 0. 1391(~0exc12n)<br />

.c 2 = 0.6251( It~xc1210<br />

2~ 3 = 0.4281(&0exc/2n)<br />

~r = 0" 2221(A~exc/2~)<br />

Here (A~0exc/2,) is <strong>th</strong>e offset frequency (Hz) of <strong>th</strong>e center of <strong>th</strong>e<br />

excited spectral region. This class of pulse sequence is capable of<br />

providing solvent suppression almost free from undesirable phase<br />

distortions.


WK24<br />

BROADBAND HETERONUCLEAR DECOUPLING<br />

IN THE PRES<strong>ENC</strong>E OF HOMONUCLEAR INTERACTIONS<br />

D. Surer*, K.V. Schenker and A. Pines<br />

University of California, Berkeley<br />

Heteronuclear decoupllng in anlsotropic systems llke solids and liquid<br />

crystals has to compete not only wi<strong>th</strong> <strong>th</strong>e offset from resonance of <strong>th</strong>e<br />

radio frequency and <strong>th</strong>e heteronuclear couplings, but also wi<strong>th</strong> strong<br />

homonuclear interactions like homonuclear dipole-dipole couplings or<br />

quadrupolar interactions. These additional interactions make <strong>th</strong>e<br />

decoupling performance of CW decoupling strongly offset dependent and<br />

are not overcome by <strong>th</strong>e composite pulse decoupling sequences developped<br />

for isotropic liquids. We have developped a <strong>th</strong>eoretical analysis of<br />

decoupling in such systems and found a class of composite pulse<br />

decoupling sequences designed for use in anisotropic systems <strong>th</strong>at are<br />

relatively insensitive to resonance offset and pulse imperfections. One<br />

of <strong>th</strong>e sequences, COMARO-2, can be written as YX YX YX YX YX ~, where<br />

each element represents a composite pulse 385 320 25.<br />

sl<br />

/ _\<br />

lg<br />

• -" .-•'"<br />

Figure : Left : <strong>th</strong>eoretical offset dependence of deuterium decoupling<br />

for a single deuteron. Right : experimental results from<br />

dime<strong>th</strong>oxybenzene-d 8 in a nematic liquid crystal.<br />

References :<br />

D. Suter, K.V. Schenker and A. Pines, J. Magn. Reson. (Hay <strong>1987</strong>).<br />

K.V. Schenker, D. Surer and A. Pines, J. Magn. Reson. (Hay <strong>1987</strong>).<br />

CW<br />

2


WK26<br />

LINE SHAPES IN ONE-DIMENSIONAL<br />

CHEMICAL SHIFT IMAGING<br />

P.B. Barker W, D. Bailes a, D. Bryant a and B.D. Ross<br />

Huntington Medical Research Institute, Pasadena, CA 91105.<br />

aplcker International, Wembley, Middlesex.<br />

It has recently been demonstrated <strong>th</strong>at <strong>th</strong>e two-dimensional NMR<br />

technique of Marecl (I) gives good spatially locallsed 31p spectra In<br />

clinical applications (2). In some instances <strong>th</strong>e spectral resolution may be<br />

degraded by <strong>th</strong>e "phase-twlst" line shape (3) which is encountered as a<br />

result of <strong>th</strong>e phase-modulation of <strong>th</strong>e NMR signals as a function of <strong>th</strong>eir<br />

spatial coordinates<br />

This poster presents a variation of <strong>th</strong>e data processing me<strong>th</strong>ods<br />

developed in conventional high-resolution NMR to retain pure absorption<br />

llneshapes (4). The me<strong>th</strong>od requires <strong>th</strong>e recording of two data sets for<br />

each phase-encode gradient amplitude; in one case <strong>th</strong>e gradient amplitude<br />

is positive, in <strong>th</strong>e o<strong>th</strong>er negative. These two data sets are <strong>th</strong>en processed<br />

conventionally using complex Fourier transformations; linear combinations<br />

• of <strong>th</strong>e two frequency domain data matrices are <strong>th</strong>en used to cancel <strong>th</strong>e<br />

dispersion components of <strong>th</strong>e line shape. O<strong>th</strong>er equivalent processing<br />

me<strong>th</strong>ods are possible; for instance, linear combinations of <strong>th</strong>e original<br />

time-domain data matrices may be used in conj.unction wi<strong>th</strong> <strong>th</strong>e<br />

processing me<strong>th</strong>od of States (5). Whilst <strong>th</strong>is is slightly more efficient in<br />

terms of processing time and disk storage, <strong>th</strong>e me<strong>th</strong>od used largely<br />

• depends on <strong>th</strong>e ease-of Implementation on <strong>th</strong>e available spectrometer<br />

system.The improvements offered are expected to be particularly<br />

noticeable In <strong>th</strong>e extension to multl-dlmenslonaI chemlcal shift Imaging.<br />

( 1 ) T.H. Mareci and H.R. Brooker, J. Magn. Reson., 57, 157 (I 984).<br />

(2) D. Bailes et. al., J. Magn. Reson., submitted for publication<br />

(3) G. Bodenhausen, R. Freeman, R. Niedermeyer and D.L. Turner, J. Magn.<br />

Reson., 26, 133 (1977).<br />

(4) J. Keeler and D. Neuhaus, J. Magn. Resort., 63, 454 ( ] 985).<br />

(5) D.J. States, R.A. Haberkorn and D.J. Ruben, J. Hagn. Resort., 48, 286<br />

(1982).


WK28<br />

SELECTION OF COHER<strong>ENC</strong>E TRANSFER PATHWAYS BY FOURIER ANALYSIS<br />

HOW TO IMPROVE THE EFFICI<strong>ENC</strong>Y OF 2D NMR SPECTROSCOPY<br />

R. Ramachandran, P. Darba and L.R. Brown*<br />

Research School of Chemistry<br />

The Australian National University<br />

Canberra, A.C.T. 2601, Australia<br />

To interpret complex 2D NffR spectra it is often necessary to run<br />

a series of complementary 2D N~ spectra which select for different<br />

kinds of information. Examples would be a series of auto correlated<br />

spectra wi<strong>th</strong> filters of different quantum orders or a series of<br />

multiple quantum correlation spectra of different quantum orders. As<br />

currently practiced, each member of <strong>th</strong>e series is recorded separately<br />

using concurrent cycling of pulse and receiver phases to select <strong>th</strong>e<br />

appropriate coherence transfer pa<strong>th</strong>way. This is a very inefficient<br />

procedure which requires large amounts of spectrometer time and which<br />

leads to spectra <strong>th</strong>at may not be strictly comparable due to<br />

instability of <strong>th</strong>e spectrometer and/or <strong>th</strong>e sample.<br />

A me<strong>th</strong>od will be shown for extracting such a series of spectra<br />

from a single data set. The new me<strong>th</strong>od involves recording a series<br />

of spectra wi<strong>th</strong> appropriate incrementation of pulse phases, but wi<strong>th</strong><br />

no variation of receiver phase. Fourier analysis of <strong>th</strong>e set of<br />

spectra by means of digital zero-order phase corrections <strong>th</strong>en allows<br />

extraction of coherence transfer pa<strong>th</strong>ways containing any specific<br />

multiple quantum order from <strong>th</strong>e same data set. Examples will be<br />

given for generation from a single data set of multiple quantum<br />

filtered COSY spectra of different quantum orders and multiple<br />

quantum spectra of different quantum orders.<br />

A major advantage of <strong>th</strong>e proposed me<strong>th</strong>od is <strong>th</strong>at every transient<br />

recorded is used in <strong>th</strong>e generation of <strong>th</strong>e spectum corresponding to<br />

each quantum order. This means, for example, <strong>th</strong>at compared to<br />

recording a COSY spectrum wi<strong>th</strong> a two-quantum filter by conventional<br />

means, <strong>th</strong>ere is no penalty in sensitivity involved in generation of<br />

multiple quantum filtered spectra wi<strong>th</strong> filters of order 2,3 and 4 (or<br />

more) by <strong>th</strong>e proposed me<strong>th</strong>od. This also makes <strong>th</strong>e new me<strong>th</strong>od highly<br />

efficient for experiments which require co-addition of spectra<br />

corresponding to different quantum orders, e.g.E. COSY or time<br />

reversal. An example will be shown for E. COSY.


WK30<br />

PATTERN RECOGNITION IN 2D NMR.<br />

A MULTIVARIATE STATISTICAL APPROACH WITH LOGIC PROGRAMMING.<br />

H. Grahn , F. Delaglio, M. A. Delsuc and G. C. Levy,<br />

NMR and Data Processing Laboratory, Bowne Hall,<br />

Syracuse University, Syracuse, NY 13244-1200<br />

A new me<strong>th</strong>od for <strong>th</strong>e analysis of two-dimensional NMR data<br />

is presented. The me<strong>th</strong>od, based on principal component<br />

analysis (PCA), is shown to be very efficient in <strong>th</strong>e<br />

modeling of different spin patterns in homonuclear shift<br />

correlation 2D spectra.<br />

The PCA me<strong>th</strong>od can be described as a graphical me<strong>th</strong>od<br />

which projects multidimensional data down on a few<br />

dimensional space (line, plane or hyperplane) and hence<br />

provides a simplified interpretation of <strong>th</strong>e clusters in an<br />

n-dimensional space. The scope of <strong>th</strong>e me<strong>th</strong>od is <strong>th</strong>at similar<br />

objects (spins) can be grouped toge<strong>th</strong>er. Based on a prior<br />

knowledge of different spin systems, new "unknown" compounds<br />

can be classified and <strong>th</strong>e spin connectivities in <strong>th</strong>e molecule<br />

can be outlined.<br />

An important difference to o<strong>th</strong>er pattern recognition<br />

me<strong>th</strong>ods is <strong>th</strong>at no previous assumptions about <strong>th</strong>e analyzed<br />

data are needed, e.g., coupling constant information. The<br />

me<strong>th</strong>od uses <strong>th</strong>e intensities of <strong>th</strong>e cross-peaks and <strong>th</strong>e<br />

chemical shifts of <strong>th</strong>e diagonal peaks as parameters. The<br />

first step in analysis is <strong>th</strong>e preprocessing of <strong>th</strong>e data. This<br />

step involves locating all peaks in <strong>th</strong>e data and scaling peak<br />

intensities to unit variance. The peak data are reduced to a<br />

system of objects and variables for <strong>th</strong>e PC analysis. In <strong>th</strong>e<br />

course of <strong>th</strong>e PC analysis, n-dimensional projections of <strong>th</strong>e<br />

data are constructed which contain patterns which will group<br />

all <strong>th</strong>e objects comprising each spin system into a<br />

characteristic pattern. Using <strong>th</strong>e logic programming language<br />

PROLOG, <strong>th</strong>e patterns can be located and <strong>th</strong>e corresponding<br />

spin systems identified.<br />

Using PC analysis in combination wi<strong>th</strong> logic programming,<br />

it is possible to identify <strong>th</strong>e different spin systems in a<br />

spectrum having mixed spin systems.<br />

We acknowledge NIH Grant RR-01317, N.A.T.O. for support of<br />

Dr. Delsuc and Troedsson Research Fund, Sweden, for support<br />

of Dr. H. Grahn.


WK32<br />

C~4IC~L EXCHANGE IN METAL £X/JSTE~.<br />

ANALYSIS WITH 2D LINEAR PREDICTION<br />

AND DIRECT ANALYSIS OF THE RATE MATRIX.<br />

Bruc~ A. ~ ' , J. A. Mallkayil, m~d Ian M. Azmltag~<br />

Depa~ :,,-~-,L,~ of Mblecular Biophysics and Biochemistry<br />

snd Diagnostic Radiology<br />

Yale Urul.ver~l.ty School of M~dicine<br />

Nma Haven, CT 06515<br />

NMR me<strong>th</strong>cKis are well suited tD <strong>th</strong>e mMsurEm~nt of c~mnical exchange<br />

~ . In many ~ , ~ , such as <strong>th</strong>e less sensitive metal<br />

nuclei <strong>th</strong>at may be found in blomolecules, low signal to noise ratio may<br />

significantly hamper <strong>th</strong>e aommrate msasure of exchange rates. To<br />

ov~-~ome <strong>th</strong>is ~ have applied ~o recen%ly repcn-hed me<strong>th</strong>ods o£ NMR data<br />

analysis in <strong>th</strong>ese areas. As an alternative to <strong>th</strong>e Fourier transform,<br />

we used <strong>th</strong>e me<strong>th</strong>od of linear prediction wi<strong>th</strong> <strong>th</strong>e s/ngular value<br />

deocmposit/nn (LPSVD) I . This me<strong>th</strong>od is potentially capable of<br />

signal fru, noise in <strong>th</strong>e time series data, resulting in<br />

a noise free result. ~ , ~ have used <strong>th</strong>e me<strong>th</strong>od for two-<br />

dimensional arm~lysis where its ability to elim/nate truncati~<br />

artifacts allows <strong>th</strong>e use of fe~.r points in t2 and in %/. This reduces<br />

<strong>th</strong>e size of <strong>th</strong>e 2D data set and minimizes experimsntal time. Analysis<br />

in <strong>th</strong>is way gives directly <strong>th</strong>e amplitude of <strong>th</strong>e peaks required for <strong>th</strong>e<br />

chemical exchange calculations wi<strong>th</strong>out <strong>th</strong>e need for integration. As<br />

apodization funct/ons are not used, <strong>th</strong>ere is no resulting distortion of<br />

peak intensity which might occur wi<strong>th</strong> normal 2D FT processed data sets.<br />

For bo<strong>th</strong> <strong>th</strong>e one and %~o dimensional analyses wi<strong>th</strong> LPSVD, we polish <strong>th</strong>e<br />

output data (frequency, dscsy, phase, and amplitude) wi<strong>th</strong> a non-lirear<br />

minimization. The calculated peaks from a single 2D data set are <strong>th</strong>en<br />

used %o form a matrix of intensities <strong>th</strong>at is analyzed using a recently<br />

described matrix dia~mLlization p r ~ .<br />

We will illustrate <strong>th</strong>e use of <strong>th</strong>is me<strong>th</strong>od wi<strong>th</strong> <strong>th</strong>e analysis of metal<br />

excha~/8 in <strong>th</strong>e dscanuclear cadmium-i±iolate complex,<br />

C~0(SO~O~O)*s(N~ )4" In <strong>th</strong>e solid state, <strong>th</strong>ree distinct Cd sites<br />

have been identified in <strong>th</strong>e sulfate form of <strong>th</strong>is complex by X-ray<br />

crystallography and by solid state 1'3Od NMR s~-troscc~py- The <strong>th</strong>ree<br />

sites, site A, site B, and site C have Oi~, OdS4, and CdS40<br />

oocrdinations respectively 3 . In solution, site B and site C are in<br />

fast exchange and <strong>th</strong>erefore a single 113 Cd resonazK~ is observed for<br />

<strong>th</strong>ese sites" The results of our 2D chemical exchange studies have<br />

fur<strong>th</strong>er established, for <strong>th</strong>e first time, metal exchange between site A<br />

and <strong>th</strong>e o<strong>th</strong>er two sites. It is <strong>th</strong>e kinetics of <strong>th</strong>e latter exchange<br />

<strong>th</strong>at we will describe using <strong>th</strong>e oombined LPSVD and <strong>th</strong>e matrix<br />

diagm~alization proosdures described above.<br />

i) ~Jsen, H. 1985, O. Mag. Res. 61:465<br />

2) Perrin C. L. and Gipe, R. K. J. Am. Chem. Soc. 106:4036<br />

Johnston, E. R. and Chert, D. 2~ h ~C ~ Abstract.<br />

Abel, E. W. et al. 1986, J. Mag. Res. 70:34<br />

3) Murphy, D.P. et al. 1981, J. Am. Chem. Soc. 103:4400 (and<br />

ref <strong>th</strong>erein)


WK34<br />

DECONVOLUTION OF HIGH RESOLUTION TWO-DIMENSIONAL<br />

NMR SIGNALS BY DIGITAL SIGNAL PROCESSING WITH"<br />

LINEAR PREDICTIVE SINGULAR VALUE DECOMPOSITION<br />

David Cowburn. Adam E. Schuasheim, and Francis Picart<br />

The Rockefeller University,<br />

New York, New York, 10021<br />

NMR signals from high resolution pulsed experiments can be adequately represented by sums of<br />

sinusoids. Normally <strong>th</strong>ese signals are transformed to <strong>th</strong>e frequency domain by FOurier transformation<br />

and <strong>th</strong>e chemical information inherent in <strong>th</strong>e frequency, damping, intensity, or phase of <strong>th</strong>e sinusoids is<br />

subsequently obtained by various deconvolutions, ranging from simple 'peak-picking' for frequency to<br />

non-linear least squares fitting to obtain all <strong>th</strong>e sinusoid properties. This deconvolution in <strong>th</strong>e frequency<br />

domain is particularly compficated by <strong>th</strong>e need to set initial parameters for <strong>th</strong>e non-linear least squares<br />

analys~. The characteristics of <strong>th</strong>e coatribufing sinusoids in <strong>th</strong>e lime domain are needed for recognition<br />

of patterns of signals and correlation wi<strong>th</strong> expected properties. We show a new me<strong>th</strong>od of analyzing<br />

two-dimensional NMR spectra for <strong>th</strong>is purpose.<br />

The technique of linear predictive singular value decomposition 0..PSVD), applied previously in<br />

NMR (1), permits <strong>th</strong>e extraction of frequency information from a time-domain signal. The technique is<br />

related to <strong>th</strong>e Fourier Transform and presents <strong>th</strong>e same information but in a sometimes more useful<br />

fashion for certain types of processing wi<strong>th</strong> some costs in initial processing speeds.<br />

In our approach, a Fourier transform is performed as a digital filter on each row in <strong>th</strong>e tl,t 2 space.<br />

The resulting interferogram is <strong>th</strong>en passed column-by-cohtmn <strong>th</strong>rough <strong>th</strong>e LPSVD algori<strong>th</strong>m. The<br />

information returned from <strong>th</strong>e procedure is stored in a linked-list data file su'ucutre containing <strong>th</strong>e<br />

amplitude, frequency, damping, and phase of <strong>th</strong>e roots extracted for each column as well as a declara-<br />

tion field. A flexible structure is developed which employs a number of routines to process <strong>th</strong>e roots<br />

and remove spurious results.<br />

We have found <strong>th</strong>at <strong>th</strong>ese procedures can provide previously unobtainable resolution enhance-<br />

men), and eliminate sinc modulation caused by signal truncation. The procedure can obviate <strong>th</strong>e need<br />

for t l-phase sensitive detection, and can substantially increase <strong>th</strong>e apparent SNR of final spectra. Addi-<br />

tionally, <strong>th</strong>e automated exwaction of chemical information can be facilitated by virtue of <strong>th</strong>e resulting<br />

linked list of roots. These points are illustrated here wi<strong>th</strong> bo<strong>th</strong> simulated data and simple sets of experi-<br />

mental data.<br />

Acknowledgments<br />

Supported by grants from NSF, NIH, <strong>th</strong>e Keck Foundation, and an equipment grant from Sperr3'<br />

Corporation. We are grateful to Dr. Dennis Hare, and to Dr. R. De Beer for provision of source codes<br />

for <strong>th</strong>eir programs, and Computing Services, Rockefeller University, for advice.<br />

481<br />

(1). H. Barkuijsen, R. de Beer, W. M. M. J. Bovee, and D. van Ormondt J. Magn. Res. 61 465-


WK3C<br />

LINEAR PREDICTION Z-TRANSFORM (LPZ) SPECTRAL ANALYSIS<br />

WITH ENHANCED RESOLUTION AND SENSITIVITY<br />

J. Tang* and J. R. Norris<br />

Chemistry Division, Argonne National Laboratory<br />

Argonne, IL 60439<br />

We have developed a new approach of spectral analysis (LPZ) l"s wi<strong>th</strong> improved<br />

resolution and sensitivity by combining <strong>th</strong>e linear prediction (l~P) <strong>th</strong>eory and <strong>th</strong>e<br />

z-transform, a combination of Fourier and Laplace transform. Instead of using <strong>th</strong>e<br />

power spectrum formula obtained by <strong>th</strong>e conventional MEM me<strong>th</strong>od, <strong>th</strong>e LPZ<br />

formula should be used to obtain a spectrum wi<strong>th</strong> phase information. The linear<br />

prediction coefficients can be calculated by <strong>th</strong>e Householder decomposition<br />

(QRD) 1-~, <strong>th</strong>e singular value decomposition (SVD), <strong>th</strong>e autoregression me<strong>th</strong>od (AR)<br />

using <strong>th</strong>e Levinson-Durbin algori<strong>th</strong>m or <strong>th</strong>e Burg's algori<strong>th</strong>m s. The LPZ me<strong>th</strong>od<br />

can overcome <strong>th</strong>e truncation artifacts and phase distortion problems. Applications<br />

of <strong>th</strong>e LPZ me<strong>th</strong>od to I-D and 2-D NMR signals will be demonstrated. In addition,<br />

<strong>th</strong>e comparisons among many variations of <strong>th</strong>e LPZ me<strong>th</strong>od (using SVD, QRD or<br />

AR) and <strong>th</strong>e o<strong>th</strong>er similar me<strong>th</strong>ods such as LPQRD 4, LPSVD s and <strong>th</strong>e ME..M 6"7<br />

me<strong>th</strong>ods will be illustrated.<br />

1. J. Tang and J.R. Norris, J. Chem. Phys. 84, 5210 (1986).<br />

2. J. Tang and J.R. Norris, J. Magn. Reson. 69, 180 (1986).<br />

3. J. Tang and J.R. Norris, Chem. Phys. Lett. 131, 252 (1986).<br />

4. J. Tang, C.P. Lin, M.K. Bowman, and J.R. Norris, J. Magn. Reson. 62, 167<br />

(1985).<br />

5. H. Barkhuijsen, J. de Beer, W.M.M.J. Bovee and D. van Ormondt, J. Magn.<br />

Reson. 61, 167 (1985).<br />

6. J.P. Burg, Thesis, Stanford University (1975).<br />

7. S. Sibisi, J. Skilling, R.G. Brereton, E.D. Laue and J. Staunton, Nature 311, a46<br />

(1984).<br />

This work was supported by <strong>th</strong>e Division of Chemical Sciences, Office of B~_~ic<br />

Energy Sciences of <strong>th</strong>e U.S. Department of Energy under contract W-31-109-Eng-38.


WK3S<br />

EXPERIMENTAL STUDY OF THE OPTIRIZED SELECTIVE RF PULSES<br />

Jintong Haoo, T.H. hreci, K.E. Scott and E.R. Andrev<br />

Departments of Radiology and Physics<br />

Gsinesvllle, FL 32611<br />

Selective rodiofrequency (rf) pulmes ore important in bo<strong>th</strong> NHR<br />

spectroscopy end imaging. Because <strong>th</strong>e magnetization equation of<br />

motion is nonlineor, <strong>th</strong>e design of <strong>th</strong>e rf pulse shapes cspoble of<br />

precisely affecting <strong>th</strong>e magnetization in a veil-defined frequency<br />

range is not s simple problem. Recently, <strong>th</strong>e concept of optimal<br />

control hob been introduced for <strong>th</strong>e design of rf pulses amplitude<br />

modulated as a function of time to provide frequency selectivity.<br />

Several selective pulse shapes hsve been developed using <strong>th</strong>ese<br />

te<strong>th</strong>ods, hoverer, very few experimental results have been presented.<br />

We have presented a detoiled description of <strong>th</strong>e use of <strong>th</strong>e conjugate<br />

gradient me<strong>th</strong>od in <strong>th</strong>e optics1 control problem to design a selective<br />

180 degree inversion pulses (1). Using <strong>th</strong>is me<strong>th</strong>od, we have found a<br />

series of <strong>th</strong>e 9e and <strong>th</strong>e 180 degree rf pulse shapes <strong>th</strong>at have very<br />

high selectivity. We have performed experiments on I GE CS1-2<br />

imager/spectrometer vhich confirm <strong>th</strong>eoretical predictions from <strong>th</strong>e<br />

application of optimal control me<strong>th</strong>ods. Bo<strong>th</strong> our computer<br />

simulations end experimental results are presented in <strong>th</strong>is poster.<br />

Also, we 8how <strong>th</strong>at <strong>th</strong>e frequency response of <strong>th</strong>e magnetization<br />

affected by a selective 180 degree inversion rf pulse is <strong>th</strong>e game as<br />

<strong>th</strong>at for a selective refocusing pulse. Computer simulations for bo<strong>th</strong><br />

a sinc and optimal pulse are presented to demonstrate <strong>th</strong>e principle<br />

and experimental results for selective refocusing pulses ire<br />

presented. Thus, I single optimal selective 180 degree rf pulse can<br />

be used is ei<strong>th</strong>er in inversion or refocusing pulse. In bo<strong>th</strong><br />

IituationI, its selectivity can be optiIlzed to fit <strong>th</strong>e desired<br />

frequency profile end we rill diicuII how to apply <strong>th</strong>lI procedure in<br />

designing selective pulses to fit various selectivity criteria.<br />

Optimal control me<strong>th</strong>ods can also be applied to <strong>th</strong>e case of<br />

selective 90 degree rf pulses. The degree of improvement possible is<br />

not as great as for selective 180 degree pulses but significant<br />

improvement is possible. Bo<strong>th</strong> experimental and computer simulation<br />

results of <strong>th</strong>e optimal selective 90 degree rf pulses will also<br />

be presented in <strong>th</strong>is poster. Thus, <strong>th</strong>e optimal control se<strong>th</strong>od has<br />

solved <strong>th</strong>e problem of designing optimized rf pulse shapes for<br />

frequency selective excitation.<br />

This research is supported by grants from <strong>th</strong>e National Znstitute of<br />

Heal<strong>th</strong> {P41-RR-e2278) and <strong>th</strong>e Veterans Administration Medical<br />

Research Service.<br />

1. Jintong Meo, T. H. Mareci, K. N. Scott and E. R. Andrev, J. MIgn.<br />

ReIon. 70, 31e (1986)


WK40<br />

PULSE SHAPING FOR SOLVENT SUPPRESSION AND<br />

SELECTIVE EXCITATION IN TWO-DIMENSIONAL AND<br />

MULTIPLE PULSE NMR SPECTROSCOPY<br />

Mark McCoy, Laura Kang and Warren S. Warren*<br />

Department of Chemistry, Princeton University, Princeton, NJ 08544<br />

Applications of shaped radiofrequency pulses to solvent<br />

suppression in COSY spectra, excitation of two separate resonance<br />

frequencies, and uniform spin-1 excitation will be presented. We will<br />

also experimentally demonstrate <strong>th</strong>e tradeoffs between symmetric<br />

amplitude modulation, asymmetric amplitude modulation, and<br />

simultaneous phase/amplitude modulation. Recent results of new<br />

analytical solutions to <strong>th</strong>e Bloch equations, derived for atomic laser<br />

spectroscopy, will also be experimentally tested.<br />

This work is supported by <strong>th</strong>e National Science Foundation<br />

under grant CHE-8502199.<br />

1. M. McCoy and W. S. Warren, Chem. Phys. Lett. (in press)<br />

2. F. Loaiza, M. Levitt, M. McCoy, M. Silver and W. S. Warren, J. Chem.<br />

Phys. (submitted)


WK42<br />

RELAXATION-ALLOWED COHER<strong>ENC</strong>E TRANSFER<br />

BETWEEN SPINS WHICH POSSESS NO MUTUAL SCALAR COUPLING<br />

Stephen Wimperis and Geoffrey Bodenhausen<br />

Institut de Chimie Organique<br />

Universite de Lausanne<br />

Rue de la Barre 2<br />

CH-1005 Lausanne<br />

switzerland<br />

In NMR of isotropic liquids it is often stated<br />

<strong>th</strong>at coherence transfer can only occur between two spins<br />

<strong>th</strong>at possess a mutual scalar coupling. This assertion is<br />

put to frequent use, for instance in two-dimensional COSY<br />

spectra where <strong>th</strong>e presence of a cross-peak - indicative of<br />

coherence transfer - is taken as proof of <strong>th</strong>e existence of<br />

a scalar coupling.<br />

We demonstrate <strong>th</strong>at, as a result of multi-<br />

exponential transverse relaxation, coherence transfer can<br />

occur between two inequivalent spins <strong>th</strong>at are not scalar<br />

coupled. Cross-peaks in COSY spectra are shown which arise<br />

solely from <strong>th</strong>is novel mechanism, and so do no__tt indicate<br />

<strong>th</strong>e existence of a scalar coupling. Since <strong>th</strong>e use of COSY<br />

spectra for <strong>th</strong>e analysis of complex spin systems has had<br />

considerable impact in chemistry and molecular biology,<br />

<strong>th</strong>e matter of <strong>th</strong>e correct interpretation of cross-peaks is<br />

one of widespread interest.


WK44<br />

TWO-DIMENSIONAL POMMIE 13C NMR SPECTRUM EDITING.<br />

Bruce Coxon<br />

Center for Analytical Chemistry<br />

National Bureau of Standards<br />

Gai<strong>th</strong>ersburg, MD 20899<br />

The one-dimensional POMMIE (Phase Oscillations to MaxiMlze<br />

Editing) technique has recently been dev~loped 1,2 as an<br />

alternative to <strong>th</strong>e DEPT me<strong>th</strong>od of spectrum editing. We have<br />

extended <strong>th</strong>e POMMIE editing me<strong>th</strong>od to <strong>th</strong>e two-dimensional domain.<br />

Our initial studies have focused on 2D POMMIE ~(CH)-resolved 13C<br />

NMR spectrum editing, using <strong>th</strong>e pulse sequence:-<br />

~/2(H)-I/2~-~(H)~/2(C)-I/2~-~/2(H)~/2(H,@)z~I/2-~(H)~(C ) -<br />

i/2~-D-~i/2-acquire 13C, decouple IH, where ~ - IJcH, D is a<br />

delay (equal to <strong>th</strong>e leng<strong>th</strong> of <strong>th</strong>e ~(H) pulse) <strong>th</strong>at was inserted<br />

to equalize <strong>th</strong>e 13C dephasing and refocusing periods, and <strong>th</strong>e<br />

pulse pair ~/2(H)~/2(H,~) consists of <strong>th</strong>e multiple quantum<br />

formation and read pulses, respectively, <strong>th</strong>e latter pulse having<br />

a variable phase shift 4.<br />

Automated acquisitions of sets of 2D POMMIE data by <strong>th</strong>ree<br />

different me<strong>th</strong>ods (a, b, and c) have been investigated. By use<br />

of <strong>th</strong>e phase angle set ~ - ~/2, ~/6, and 5~/6, sets of <strong>th</strong>ree 2D<br />

data matrices have been acquired ei<strong>th</strong>er (a) sequentially, or (b)<br />

in interleaved fashion, <strong>th</strong>e latter me<strong>th</strong>od being designed to<br />

minimize <strong>th</strong>e effects of sample or spectrometer instability.<br />

For me<strong>th</strong>ods (a) and (b), <strong>th</strong>e 2D POMMIE 13C subspectra were<br />

computed from <strong>th</strong>e relationships CH - data(~/2), CH 2 - data(~/6)<br />

data(5~/6), and CH 3 - data(~/6) + data(5~/6) - data(~/2), by<br />

using <strong>th</strong>e same Pascal software <strong>th</strong>at had been written earlier for<br />

<strong>th</strong>e purpose of 2D DEPT 13C NMR spectrum editing 3.<br />

Me<strong>th</strong>od (c) involved <strong>th</strong>e direct automated construction of<br />

<strong>th</strong>e 2D POMMIE 13C subspectra "on <strong>th</strong>e fly", by means of rotating<br />

phase shifts of <strong>th</strong>e MQ read pulse and <strong>th</strong>e receiver 2. This me<strong>th</strong>od<br />

did not require combination of <strong>th</strong>e 2D data matrices by use of<br />

software.<br />

2D POMMIE carbon-proton chemical shift correlated spectrum<br />

editing has also been implemented by using <strong>th</strong>e sequence:-<br />

~/2(H)-I~2~-~(H)~/2(C)-I/2J-tl/2-~(C)-~I/2-~/2(H)~/2(H,~ ) -<br />

i/2~-acquire 13C, decouple IH. - -<br />

The me<strong>th</strong>ods have been applied experimentally to selected<br />

peptides and carbohydrate derivatives.<br />

[I] J. M. Bulsing, W. M. Brooks, J. Field, and D. M. Doddrell,<br />

J. Magn. Reson. 56, 167-173 (1984).<br />

[2] J. M. Bulsing and D. M. Doddrell, J. Magn. Reson. 61, 197-219<br />

(1985).<br />

[3] B. Coxon, J. Magn. Reson. 66, 230-239 (1986).


WK46<br />

MULTIPLE-ACQUISITION TWO-DIMENSIONAL HOMONUCLEAR<br />

SHIFT CORRELATION SPECTROSCOPY<br />

Dieter J. Neyerhoff* and Rudi Nunlist*<br />

NMR Center<br />

Department of Chemistry<br />

University of California<br />

Berkeley, Ca. 94720<br />

Two-dimensional homonuclear shift correlation spectroscopy<br />

experiments are very powerful for molecular structure elucidation.<br />

Experiments such as COSY, delayed COSY, relayed COSY and NOESY are<br />

routinely used; in order to get reliable information <strong>th</strong>ey often<br />

have to be repeated several times wi<strong>th</strong> different parameters.<br />

Pulse sequences and programs will be given which - similar to<br />

<strong>th</strong>e CONOESY experiment* - combine such experiments into a single<br />

pulse sequence. Each dataset obtained <strong>th</strong>is way contains different<br />

information depending on <strong>th</strong>e stage of magnetization at <strong>th</strong>a time of<br />

acquisition.<br />

Application of <strong>th</strong>ese pulse-sequences eliminate <strong>th</strong>e need of<br />

repeating entire experiments wi<strong>th</strong> slightly different parameters<br />

and <strong>th</strong>us reduce experimental time and operator interference<br />

significantly.<br />

Experimental data will be presented to illustrate <strong>th</strong>e power<br />

of multiple-acquisition 2D pulse experiments.<br />

I. Haasnot, C. A. G.; van de Ven, F. J. M.; Hilbers, C. W. J.<br />

Magn. Res. 1984, 56, 343-349. Gurevich, A. Z.; Barsukov, I.<br />

L.; Arseniev, A. S.; Bystrov, V. F. J. Magn. Res. 1984, 56,<br />

471-478.


WK48<br />

IMPROVED TECHNIQUES FOR THE ACQI//SITION OF TOCSY<br />

AND CAMELSPIN SPECTRA AND COMPUTER SIMULATIONS<br />

OF THE TOCSY EXPERIMENT<br />

Mark Rance<br />

Department, of Mc~e~<br />

R e ~ Ius~t~e of ~<br />

10686 Nor<strong>th</strong> Tm"rey Pines Road<br />

La Jc~ Califcrni~ 9'2037<br />

The homonuc]ear HarCmann-Hahn coherence transfer (TOCSY) experiment<br />

and <strong>th</strong>e r~-frsme NDE (CAMELSPIN) experiment have become very<br />

im~t ~ far <strong>th</strong>e assignment of proton N MR spectra and for <strong>th</strong>e<br />

spe~c~r~u of ~ c e ~mstraints for use in structure d~m"u~,~t~rs. For<br />

optimal results bo<strong>th</strong> of <strong>th</strong>ese experiments are normally acquired in a manner<br />

which allows phas~I/ve, alm~'pt/on mode spectz-~ to be obt~ed.<br />

However, in <strong>th</strong>e most ~ ~ o ~ implemen~ of 1~hese %e~es<br />

phase anomalies greatly degra~le <strong>th</strong>e quality of <strong>th</strong>e 6pe~r'a. In addit~cm,<br />

many commercial ~ectrom~ are not ideally suited for <strong>th</strong>e<br />

hardware demands required for opt~al perfm-mance of <strong>th</strong>ese exper~ents.<br />

We will ~ a novel technique far <strong>th</strong>e ~ 1 ~ ~ of phase anomalies<br />

which is based an z-fil~ and which can be ea.~y adapted for ei<strong>th</strong>er <strong>th</strong>e<br />

TOCSY ¢r <strong>th</strong>e CAMELSPIN experiment and can be readily implemented on<br />

most. spectrometers. This technique also allows optimal pceit/m~zing of <strong>th</strong>e rf<br />

during <strong>th</strong>e mixing period in bo<strong>th</strong> experiments. Some results will<br />

also be presented from computer ~im~ of <strong>th</strong>e TO CSY experiment,<br />

involv'ing <strong>th</strong>e evaluation of various ~ schemes and <strong>th</strong>e determlua.t:m~n of<br />

optimal experiment parameters for a varie~ af spin sys~ms.


Master Index<br />

of<br />

Papers and Posters


Ackerman, J. L ........... MK25<br />

Adams, R ................. .Wed am<br />

Aguayo, J ................. WF56<br />

Albright, M. J ............ .WF60<br />

Alderman, D. W ......... NIF 19<br />

Allen, L ................... .MF1<br />

Allerhand, A .............. WF52<br />

Anderson, N ........... Mon am<br />

Andrew, D ............. .Thur am<br />

Andrew, E. R ............ .WK38<br />

Anet, F. A. L ............. MF51<br />

Armitage, H .............. .WK20<br />

Armitage, I. M ............ WK32<br />

Auchus, R. J . . . . . . . . . . . . . . WF12<br />

Bailes, D .................. .WK26<br />

Balschi, J. A ........... ...WF10<br />

Bank, Shelton ............ Wed am<br />

Barbara, T. M ............ MK15<br />

Barker, P. B .............. WK26<br />

Baum, J ................. MK01, Sun pm<br />

Bax, A ..................... WK10, MK23<br />

Bazzo, R .................. MK43<br />

Becla, P ................... MF11<br />

Behar, K. L ............... WF72<br />

Behling, R. W ............ MF41<br />

Benesi, A ................. .Wed am<br />

Bendall, M. R ............ MF57, MF65,<br />

WF72<br />

Bermel, W ................ MK37<br />

Berson, J. A .............. MF29<br />

Beshah, K ................. WF46, MF11<br />

Biannuci, A. M ........... Mort am<br />

Blackband, S ............. .WF56<br />

Blackledge, M. J ......... WF58<br />

B15mer, U ................ .WK20<br />

Bliimich, B ............. WF54, Tue pro,<br />

Wed am<br />

Bodenhausen, G ..... .WK42, Tue am<br />

Boeffel, C ................. Wed am<br />

Boehmer, J. P ........... MF59, WF76<br />

Bogusky, M... ........... .WK02<br />

BoRon, P. H .......... Mon am<br />

Bonneviot, L .............. WF34<br />

Borgias, B. A ............ NIK03, Mort am<br />

Bork, V .................... WF12<br />

Bowers, C. R ............ MK41<br />

Bowers, J . . . . . . . . . . . . . . . . . MF31<br />

Boyd, J . . . . . . . . . . . . . . . . . . . . MK43<br />

Brandes, R ................ MF45<br />

Briggs, R. W ............. MF59<br />

Bronnimann, C. E ....... MF27<br />

Brown, L. R .............. WK28, MK29<br />

Brown, S. C .............. WK04<br />

Boldface Type Indicates Speakers<br />

Brown, T. R .............. MK27, WF60,<br />

MF61<br />

Briischweiler, R .......... Sun pm<br />

Bryant, D ................. .WK26<br />

Bryant, R ................. ~IF13, WF14,<br />

WF42<br />

Biihlmann, C ............. Sun pm<br />

Butler, A .................. MF7<br />

Campbell, G. C ........... WF24<br />

Carduner, K .............. MF15<br />

Carter, R. O. HI .......... MF15<br />

Chang, L.-H .............. WF68<br />

Chaffield, M. J ............ W-F2<br />

Chen, D .................... WF32<br />

Chew, W. M .............. WF68<br />

Chu, S. C.-K ............. WF10<br />

Clore, M .................. MK 11, Mon am<br />

Cockman, M. D .......... WF62<br />

Cohen, M. S .............. MF61<br />

Covey, D. F ............... WF12<br />

Cowburn, D ........... .WK34, Tue am<br />

Coxon, B ................. .WK44<br />

Craig, E. C ............... _MK33<br />

Cross, T. A ............... IvIF47<br />

Dalvit, C .................. .WK 18<br />

Danzitz, M ................ MF7<br />

Darba, P ................... MK29, WK28<br />

Daugaard, P .............. .WF20<br />

Davis, D. G ............... MK05<br />

Dawes, S. B .............. MF25<br />

De Los Santos, A ........ Mon pm<br />

de Menorval, L. C ....... .WF8<br />

Dec, S. F .................. WF18, Tue pm<br />

Delaglio, F ................ WK30<br />

Delsuc, M. A ............. .WK30<br />

Den Hollander, J. A ...... Thur am<br />

Dixon, T .................. NIF63<br />

Dobson, C. M ......... MK1, Sun pm,<br />

Mon am<br />

Dora, H. C ............... /V[F01<br />

Drobny, G. P ............. WKS, V~/F22<br />

Du, L. N .................. MF63<br />

Dular, T ................... MF73<br />

Dumoulin, C. L ....... WF64, MF69,<br />

Tue pm<br />

Duncan, T. M ............. WF16, W-F34<br />

Dye, J. L .................. MF25<br />

Earl, W. L ................ B/IF17<br />

Eaton, H. L ............... Mon am<br />

Eckert, H .................. MF07, Wed am<br />

Eggenberger, U .......... .Tue am<br />

Ellis, P. D .............. Wed am<br />

Emerson, S. D ............ WF2<br />

English, A. D .... ......... WF48


Ernst, R. R ............ Sun pm, Tue pm<br />

Evans, P. A ............... Sun pm<br />

Fau<strong>th</strong>, J.-M ............... Sun pm<br />

Fesik, S. W ............... WK06, MK07<br />

Flynn, P. F ................ WK8<br />

Forbes, J .................. ]VIF31<br />

FoxaU, D .................. MF65<br />

Furihata, K ............... MK39<br />

Gado, M .................. .MF63<br />

Galvin, M. E ............. .Wed am<br />

Gamcsik, M. P ........... WK10<br />

Gampe, R. T ............. .WK6<br />

Ganapa<strong>th</strong>y, S ............. MF13, WF14<br />

Garbow, J. R ............. MF21<br />

Garroway, A. N ......... .MF77<br />

Garwood, M .............. MF65<br />

Gemperle, C .............. WK14,Sun pro,<br />

Tue pm<br />

Genge, I ................... WK20<br />

Geoffrion, Y .............. WF66<br />

Glass, T ................... MF1<br />

Gleason, K. K ........ MF23, Sun pm<br />

Glickson, J. D ............ WK10<br />

Glover, G .............. .Thur am<br />

Gonen, O ............... MF03, Sun pm<br />

Gorenstein, D ............. WF44<br />

Grahn, H .................. WK30<br />

Grandinetti, P. J . . . . . . . . . . WF4<br />

Grant, D. M .............. .MF19<br />

Greenburg, M. M ........ MF29<br />

Griesinger, C .......... WK14, MK37,<br />

Sun pm, Tue am,<br />

Tue pm<br />

Griffin, R. G .......... MFll, WF46,<br />

Wed am<br />

Gronenborn, A. M...Mon am<br />

Gutowsky, H. S ..... .Wed pm<br />

Guy, C. A ................ .MF47<br />

Hallenga, K ............... MF43<br />

HaUer, G .................. WF34<br />

Hammel, P. C ............ MF3, Sun pm<br />

Hanley, C ................. MK1, Sun pm<br />

Harbison, G. S ....... Wed am<br />

Hart, H. R. Jr ............. WF64, Tue pm<br />

Hartzell, C. J ............. .WF22<br />

Hauksson, J .............. .WF2<br />

Haw, J. F ................. WF24<br />

Hengyi, S ................. MK31<br />

Hermans, W .............. WF36<br />

He<strong>th</strong>erington, H. P ....... WF72<br />

Hewston, T. A ............ WF30<br />

Hill, L. E ................. .MF25<br />

Hiyama, Y ................ .WK16<br />

Hoch, J. C ............. MK31, Tue am<br />

Boldface Type Indicates Speakers<br />

Holak, T. A ............... MK13, WF6<br />

Hornak, J. P .............. WF42<br />

Hoult, D. I ............. Thur am<br />

Hseu, T. H ............... MK 19<br />

Hunter, W. W. Jr ........ MF67<br />

Husted, C ................ ~ 1<br />

Jaccard, G ................ .Tue am<br />

Jakobsen, H. J ............ WF20<br />

James, T. L ............... WF68, MK3,<br />

Mon am<br />

Janakiraman, V .......... .MK25<br />

Janssen, R ................ .Wed am<br />

JarreU, H. C ............... WF66<br />

Jarret, R. M ........... .MF53, Sun pm<br />

Jarvie, T ................... WF40<br />

Jelinski, L. W ............ MF41<br />

Jiang, Y. J ................ MF19<br />

Job, C ..................... Mon pm<br />

Johnson, B. A ............ WK32<br />

Johnson, C. S. Jr ........ WF78<br />

Johnson, K. M ........... MF43<br />

Johnston, E ............... MF55<br />

Jonas, J ................... .WF4<br />

Jones, C. R ............... WF44<br />

Jue, T ...................... MK45<br />

Kang, L ................... .WK40<br />

Karczmar, G. S ........... WF74<br />

Kaufmann, S .............. WF54, Tue pm<br />

Kay, L. E ................. .WF6<br />

Keams, D. R ............. MF45<br />

Keller, P.J ................ M1::69<br />

Kendrick, R. D ........... MF39, Wed am<br />

Kennedy, S. D ........... MF13, W'F14<br />

Kentgens, A. P. M ...... .Wed am<br />

Kessler, H ................ MK37<br />

Khoury, A ................ .WK2<br />

Khuen, A ................. .WK20<br />

King, J. D ................ .Mort pm<br />

Kintanar, A ............... .WK08<br />

Kjaer, M ................... MKll, MK31<br />

Kohlbrenner, W. E ...... MK7<br />

Kohno, H ................. MF75<br />

Kolbert, A. C ............. Wed am<br />

Kopelevich, M ........... _MF51<br />

Kormos, D. W ............ WF70<br />

Kreis, R ................... Sun pm<br />

Kuhns, P ................. 2VIF3, Sun pm<br />

LaMar, G. N .............. WF02<br />

Lamb, D. M ............... WF04<br />

Langer, V .................. WF20<br />

Laue, E. D ............. .Tue am<br />

Lawry, T .................. WF74<br />

Lecomte, J. T. J .......... WF2<br />

Lee, C ...................... WF32


Lee, K.-B ................. WF2<br />

Leigh, J. S ................ MF5<br />

Leighton, P ............... .WK2<br />

Levitt, M ................ WK22, Tue pro,<br />

Wed am<br />

Levy, G. C ............... .WK30<br />

Limat, D ................... Tue am<br />

Limbach, H.-H ........... WF26<br />

Liu, S.-B .................. WF8, MF35<br />

Loaiza, F .................. WFS0<br />

Lock, H ................... .WF28, WF38<br />

LoGrasso, P. V .......... MF47<br />

Lowe, I. J ................. MF71<br />

Lu, P ...................... .WK2<br />

Ludvigsen, S ............. MK31<br />

Luly, J. R ................. WK6<br />

Luyten, P. R .......... .Thur am<br />

Luzar, M ................... WF40<br />

Maciel, G. E .............. WF18, WF28,<br />

MF27, WF38,<br />

Tue pm<br />

Mack, J. W .............. .WK16<br />

Madi, Z .................... Sum pm<br />

Madsen, J. C ............. Sun pm<br />

Majors, P. D .............. Wed am<br />

Malikayil, J. A ........... .WK32<br />

Manders, W. F ........... WF36<br />

Mao, J ..................... WK38<br />

Maple, S. R ............... WF52<br />

Marchetti, P. S ........... .Wed am<br />

Mareci, T. H .............. WK38, WF62<br />

Markley, J. L ............. Tue am<br />

Marshall, A. G ........... MF67, MK33<br />

Mateescu, G. D .......... MF73<br />

Matson, G ................. WF74<br />

Matsui, S .................. MF75<br />

Mattingly, M .............. WF56<br />

Matzkanin, G. A ......... Mort pm<br />

Mayne, C. L .............. MF19<br />

McCoy, M ................ .WK40<br />

McDowell, C. A ......... ~[K09<br />

McGourty, J. L .......... .WF2<br />

McLennan, I. J ........... .WK10<br />

McNamara, R ............. WF32<br />

Meier, B. H ............... MF17<br />

Meier, B. U ............... Sun pm<br />

Merrill, R. A .............. MF29<br />

Metz, K .................... WF76<br />

Meyerhoff, D. J .......... WK46<br />

Millar, J. M ............... WF40<br />

Miller, J. B ............... NIF77<br />

Mirau, P. A ............ WK12, Tue pm<br />

Moll, F. III ............... MF47<br />

Morris, D ................. .Wed am<br />

Boldface Type Indicates Speakers<br />

Mueller, L ................. WK4<br />

Muira, H .................. .WF48<br />

Murphy-Boesch, J ....... WF74<br />

Narula, S.S ............... WK18<br />

Navon, G ................. MF41<br />

Nayeem, A ................ Wed am<br />

Neiss, T. G ............... MF33, Sun pm<br />

Nelson, S. J .............. MK27<br />

Nettesheim, D. G ........ MK21<br />

Nguyen, K ................ Mon am<br />

Nicholson, L. K ......... NIF47<br />

Nicol, A. T ............ .Mon pm<br />

Nissan, R.A .............. .WF30<br />

Norris, J. R ............... WK36<br />

Novic, M .................. Tue am<br />

Nunlist, R ................. WK46<br />

O'Neil-Johnson, M ...... MF55<br />

Ohuchi, M ................ .MK39<br />

Oldfield, E ................ MF31<br />

Olejniczak, E. T .......... MK7, MK21,<br />

WF46<br />

Opella, S ................... WF32, WK2<br />

Oschkinat, H ............. .Tue am<br />

Pardi, A ................... MK17<br />

Pearson, G. A ............ MK47<br />

Pearson, R. M ........ Mon pm<br />

Pekar, J ................... .1VII:z05<br />

Petrich, M. A ............ MF23, Sun pm<br />

Peyton, D. H .............. WF2<br />

Pf~indler,P ................ .Tue am<br />

Pfenninger, S ............. Sun pm<br />

Picart, F ................... WK34<br />

Pines, A ................... WF08, WK24,<br />

MF35, WF40<br />

Poulsen, F. M ............ MKll, MK31<br />

Pratum, T. K ............. .WF22<br />

Prestegard, J. H ......... WF06, MK13<br />

Pugmire, R. J ............ MF19<br />

Quinting, G ............... MF27<br />

Radda, G. K .............. WF58<br />

Radloff, C ................ Sun pm<br />

Ragle, J. L ............. .Wed am<br />

Raidy, T. E ............... .Wed am<br />

Raleigh, D. P ............. Wed am<br />

Ramachandran, R ........ WK28<br />

Rance, M .................. WK48<br />

Ra<strong>th</strong>, A. R ................ MF65<br />

Ream, L ................... Mon pm<br />

Reid, B. R ................ .WK8<br />

Reimer, J. A .............. MF23, Sun pm<br />

Roberts, J. E .......... MF33, Sun pm<br />

Roberts, M. F ............ .WK22, Tue pm<br />

Rockway, T .............. .WK6<br />

Rollwitz, W. L ....... Mon pm


Ronemus, A. D .......... .MF49<br />

Rooney, W. D ............ MK15<br />

Root, T .................... WF34<br />

Ross, B. D ................ WK26<br />

Ro<strong>th</strong>man, D. L ............ WF72<br />

Rupprecht, A ............. NIF45<br />

Rydzy, M .................. WF66<br />

Ryoo, R .................. .WF8<br />

Saarinen, T ................ WF78<br />

Sammon, M. J ........... .MF41<br />

Santfni, R .................. WF44<br />

Sarkar, S. K .............. WKI0<br />

Saunders, M .............. MF53, Sun pm<br />

Schaefer, J ................ WF12, MF21<br />

Schenker, K. V .......... .WK24<br />

Schiksnis, R .............. WK2<br />

Schmalbrock, P .......... MF67, MF69<br />

Schmidt, C ................ WF54, Tue pm<br />

Schoeniger, J ............. WF56<br />

Sch6nenberger, C ........ Sun pm<br />

Schussheim, A. E ........ WK34<br />

Schweiger, A ............. Sun pm<br />

Scott, K. N ................ WK38<br />

Seidel, H .................. MF39, Wed am<br />

Sekihara, K ............... MF75<br />

Seto, H .................... MK39<br />

Shan, X ................... MF31<br />

Shu, A. T ................. MF67<br />

Shulman, R. G ........... WP'72<br />

Silver, M .................. WF80<br />

Simonsen, D. M .......... WF34, WF16<br />

Singel, D. A .............. MF39<br />

Sklenkar, V ............... MK23<br />

Smi<strong>th</strong>, I. C. P ............. WF66<br />

Smi<strong>th</strong>, W. S ............... WF2<br />

Soffe, N ................... MK43<br />

Serensen, O. W ...... .WK14, Sun pm,<br />

Tue pm<br />

Souza, S. P ............... WF64, Tue pm<br />

Spanton, S. G ............ MK35<br />

Sparks, S. W ............. WK16<br />

Spiess, H. W ............. WF54, Tue pm,<br />

Wed am<br />

Springer, C. S. Jr ....... .MK15, WF10<br />

Starewicz, P. M .......... WF60<br />

Stebbins, J. F ............ _MF35<br />

Stein, H. H ............... .WK6<br />

Stein, R. S ................ WF36<br />

Stengle, T. R ............ .MF09<br />

Stephens, R. L ........... MK35<br />

Steuemagel, S ............ MK37<br />

Stewart, P ................. WF32<br />

St6cklein, W .............. MF39<br />

Studer, W ................. Sun pm<br />

Boldface Type Indicates Speakers<br />

Styles, P ................... WF58<br />

Suter, D ................. WK24,Tue pm<br />

Suzuki, E.-I .............. ~Ion am<br />

Swanson, S ............... MF13, WF14<br />

Szeverenyi, N. M ........ WF80<br />

Szumowski, J ............. WF42<br />

Takegoshi, K ............. MK9<br />

Tang, C. G ................ Tue pm<br />

Tang, J ..................... WK36<br />

Thanabal, V ............... WF2<br />

Thayer, A. M .......... WF40, Wed am<br />

Theimer, D ................ WF54, Tue pm<br />

Thoma, W. J .............. WF60, MF61<br />

Thomas, A ................ Sun pm<br />

Tijink, E ................... Wed am<br />

Torchia, D. A ............. WK16<br />

Tsang, P ................... WF50<br />

Ugurbil, K ................ MF65<br />

Vander Hart, D. L ........ WF36<br />

Veeman, W. S ......... Wed am<br />

Vogt, V.-D ................ Wed am<br />

Vold, R. L ................ MF49, WF50<br />

Vold, R. R ................ MF49, WF50<br />

Wade, C. G ............... MF55<br />

Wagner, K ................ MK37<br />

Walter, T. H .............. MF31<br />

Wang, C .................. .MK17<br />

Warren, W. S ......... WK40, MF79,<br />

Thur am<br />

Waugh, J. S ........... MF3, Sun pm,<br />

Tue pm<br />

Weber, P. L .............. .WK4<br />

Wef'mg, S ................. WF54, Tue pm<br />

Wehrle, B ................. WF26<br />

Weiner, M. W ............ WF74<br />

Weitekamp, D. P ..... MK41, Thur am<br />

Westler, W. M ........ Tue am<br />

White, D ................... WF32<br />

Whittern, D ............... MK35<br />

Williams, E. H ........... MF37<br />

WiUiamson, K. L ....... .MF9<br />

Wimperis, S .............. .WK42, Tue am<br />

Wind, R. A ............. WF18, WF28,<br />

WF38,Tue pm<br />

Wolff, P. A ............... MFll<br />

Woolfenden, W. R ...... .MF19<br />

Wright, P. E .............. WK18<br />

Wfi<strong>th</strong>rich, K ........... Mort am<br />

Yamane, T ................ MF41<br />

Yannoni, C. S ........ .MF39, Wed am<br />

Yesinowski, J. P .... .Wed am<br />

Yeung, H. N .............. WF70<br />

Yu, C ...................... MK19<br />

Zamir, D .................. .Mt:I 1


Zciglcr, R ................. MF27<br />

Zhou, N ................... Mort am<br />

Zicssow, D ............... .WK20<br />

Zilm, K. W ............... MF29, WF34<br />

Zon, G .................... Mon am<br />

Zuiderweg, E. R. P ...... MK21<br />

Zumbulyadis, N .......... WF38<br />

Boldface Type Indicates Speakers


List of Attendees<br />

(registered by March 1, <strong>1987</strong>)


Connie L. Ace<br />

E<strong>th</strong>icon Inc.<br />

Route 22<br />

Somerville, NJ 08876<br />

Doro<strong>th</strong>y A. Adams<br />

PhilLips Medical Systems<br />

41Hurd Avenue<br />

Monroe, CT 06468<br />

James B. Aguayo<br />

Johns Hopkins University<br />

Div. of NMR Research<br />

310 Taylor<br />

Baltimore, ND 21205<br />

Lawrence Atemany<br />

Mobil Res.& Devet.<br />

Bittingsport Road<br />

Paulsboro, NJ 08066<br />

Witti Ammann<br />

Varian<br />

611 Hanson Way<br />

PaLo ALto, CA 94303<br />

Karen L. Anderson<br />

University of Utah<br />

Dept. of Chemistry<br />

SaLt Lake City, UT 84112<br />

John A. Anderson<br />

Univ. of Itt.-Chicago<br />

P.O. Box 6998-M/C 937<br />

Chicago, IL 60680<br />

Frank A.L. Anet<br />

Univ. of Calif. - LA<br />

Chem/BiochemDept<br />

Los AngeLes, CA 90024<br />

lan M. Armitage<br />

Yale University<br />

Dept Mot Biophy/Biochem<br />

P.O. Box 3333<br />

New Haven, CT 06510<br />

Cheryl H. Arrowsmi<strong>th</strong><br />

Stanford Magnetic Resonanc<br />

Stanford University<br />

Stanford, CA 94305-5055<br />

Jerome L. Ackerman<br />

Mass Gent Hospital<br />

NMR Facility Baker 2<br />

Dept. of Radiology<br />

Boston, NA 02114<br />

Bruce R. Adams<br />

University of Wisconsin<br />

1101 University Avenue<br />

Madison, WI 53706<br />

Michael J. Atbright<br />

Siemens Medical Systems<br />

186WoodAve. Sou<strong>th</strong><br />

lsetin, NJ 08830<br />

Brian D. Attore<br />

Sick ChiLd. Hosp.<br />

88 ELm St., 5<strong>th</strong> fLr<br />

Toronto,Ont.Canada<br />

Karl R. Amundson<br />

Univ. Cal. - BerkeLey<br />

Dept. of Chem. Eng.<br />

Berkeley, CA94720<br />

StanLey E. Anderson<br />

Westmont CoLlege<br />

Dept. of Chemistry<br />

Santa Barbara, CA 93108<br />

WiLLiam R. Anderson<br />

Lehigh University<br />

S.G. Mudd Btdg #6<br />

Be<strong>th</strong>Lehem, PA 18015<br />

Eric. V. AnsLyn<br />

Cat Tech<br />

Pasadena, CA 91125<br />

Robert D. Armstrong<br />

GE NMR Instruments<br />

20 TechnoLogy Pkwy.<br />

Suite380<br />

Norcross, GA 30092<br />

Dennis J. Ashwor<strong>th</strong><br />

Stauffer Chemical<br />

1200 S. 47<strong>th</strong> Street<br />

Richmond, CA 94804<br />

Gato Acosta<br />

Diasonics, Inc.<br />

533 Cabot Road<br />

San Francisco, CA 94080<br />

Robert E. Addleman<br />

Indiana University<br />

Department of Chemistry<br />

Bloomington, IN 47405<br />

Donald W. Alderman<br />

University of Utah<br />

Chemistry Dept.<br />

Salt Lake City, UT 84112<br />

John D. Attman<br />

Univ.of CaLifornia<br />

Dept. Pharm. Chem.<br />

San Francisco, CA 94143<br />

A.M.(Andy) Anderson<br />

Witmad GLass Co., Inc.<br />

1506Uppinghan Rd.<br />

Thousand Oaks, CA 91360<br />

Niets H. Anderson<br />

University of Washington<br />

Dept. of Chemistry<br />

Seattle, WA 98195<br />

D. Andreu<br />

See abstract<br />

Byron H. Arison<br />

Merck & Co.<br />

P.O.Box 2000<br />

Rahway, NJ 07065<br />

Henry C. Arndt<br />

Miles Laboratory<br />

1129 Myrtle St.<br />

Elkhart, IN 46514<br />

Hector Avram<br />

Oiasonics, Inc.<br />

533 Cabot Rd<br />

San Franciso, CA 94080


David Axe[son<br />

EMR-CoaL Research Labs<br />

Canmet/Crt PO Bag 1280<br />

Devon ALberta<br />

Canada TOC lEO<br />

ALex D. Bain<br />

Bruker Spectrospin Ltd<br />

555 Steele Ave. E<br />

Mitton,Ont.Canada L9T 1Y6<br />

Lairna Battusis<br />

Varian<br />

Chemistry Dept.<br />

Fort Col[ins, CO 80525<br />

Thomas M. Barbara<br />

SUNY - Stony Brook<br />

Dept of Chemistry<br />

Stony Brook, NY 11794<br />

Vtadimir J. Basus<br />

University of California<br />

School of Pharmacy<br />

BOX 0446<br />

San Francisco, CA 94143<br />

Jean Baum<br />

Oxford University<br />

Inorganic Chem. Lab<br />

Sou<strong>th</strong> Parks Rd.<br />

Oxford, England OX13QR<br />

Ad Bax<br />

Natt[ ]nst of Heal<strong>th</strong><br />

gtdg 2 Rm 109<br />

Be<strong>th</strong>esda, ND 20892<br />

William H. Bearden<br />

JEOL USA ]NC.<br />

11 Dearborn Road<br />

Peabody, NA 01960<br />

Larry Becket<br />

General Chemical Corp.<br />

344 W.Oenesee St.<br />

Syracuse, NY 13108<br />

John H. Begemann<br />

New Me<strong>th</strong>ods Research Inc.<br />

719 E. Genesee St.<br />

Syracuse, NY 13210<br />

Mary S. Bailey<br />

Univ. of Cincinnati<br />

Col Med Dept Ant/Celt Bio.<br />

2.31 Be<strong>th</strong>esda Ave.<br />

Cincinnati, OH 45229<br />

John H. Batdo<br />

GE NMR Instruments<br />

255 Fourier Ave.<br />

Fremont, CA 94536<br />

Shetton Bank<br />

Univ of Sou<strong>th</strong> Carolina<br />

MRL<br />

Columbia, SC 29208<br />

Peter B. Barker<br />

HMRI<br />

10 Pico Street<br />

Pasadena, CA 91109<br />

Lyrme S. Batchetder<br />

Varian Associates<br />

611Hansen Way<br />

Pato Afro, CA 94303<br />

Mary W. Baum<br />

Princeton University<br />

Dept. of Chemistry<br />

Princeton, NJ 08544<br />

Renzo Bazzo<br />

Oxford University<br />

Dept. of Biochem<br />

Oxford, Eng., UK OX1 3QR<br />

gittiarn T. Beaudry<br />

Chem. Res. & Dev. Ctr.<br />

SMCCR-RSC-P/Beaudry<br />

Abrdn Prv.Grd., MD 21010-5<br />

ALvin J. Beeter<br />

I.E. DUPONT de NEMOURS<br />

Wilmington, DE 19898<br />

Ronatd Behting<br />

AT&T BELL LABS<br />

Room 1C-432<br />

600 Mountain Ave.<br />

Murray Hill, NJ 07974<br />

David B. Bailey<br />

USI Chemical<br />

1275 Section Rd.<br />

Cincinnati, OH 45237<br />

James A. Batshi<br />

Harvard Medical School<br />

NMR Lab<br />

221Longwood Ave.<br />

Boston, NA 02115<br />

Oebra L. Banvitte<br />

UCSF<br />

Dept. of Pharmaceut. Chem.<br />

San Francisco, CA 94143<br />

Victor J. Bartuska<br />

Chemagnetics<br />

209 Commerce Dr.<br />

Fort Collins, CO 80524<br />

Lorenz J. Bauer<br />

Allied Signal<br />

50 E. ALgonquin Rd.<br />

Des Ptaines, lL 60017<br />

Karen P. Baum<br />

Univ. of Ca[if.<br />

ChemDept.<br />

Santa Barbara, CA 93106<br />

John M. Beate<br />

Ohio State University<br />

Dept. of Chemistry<br />

120 W. 18<strong>th</strong> Ave.<br />

Columbus, OH 43210<br />

Edwin D. Becker<br />

NIH<br />

Btdg l/Rm 118<br />

Be<strong>th</strong>esda, MD 20892<br />

James W. Beery<br />

Sandoz Crop Protect.Corp<br />

]41E. Ohio Street,<br />

Mail Stop 5120<br />

Chicago, lL 60611<br />

M. Robin BendaLt<br />

Varian<br />

Griffi<strong>th</strong> Univ Sch Sci.<br />

Na<strong>th</strong>an, Queensland<br />

Australia 4111


Alan Benesi<br />

Penn State University<br />

Dept. of Chemistry<br />

NNR Lab<br />

University Park, PA 16802<br />

Benedict W. Bergerter<br />

Dept. of Chemistry<br />

Yale University<br />

225 Prospect St PO Box 666<br />

New Haven, CT 06511<br />

Nichae[ A. Bernstein<br />

Nerck Frosst Canada<br />

PO BOX 1005<br />

Pointe Ctair-Oorvat,<br />

Quebec/Canada H9/R 4P8<br />

Norman S. Bhacca<br />

Chemistry Dept.<br />

Louisiana State Univ.<br />

Baton Rouge, LA 70803<br />

Harriet Bible<br />

Sargent Welch<br />

9012 Nango Ave.<br />

Norton Grove, IL 60053<br />

Karen K. Bittner<br />

Raychem Corp.<br />

300 Constitution Ave.<br />

Menlo, CA 94025<br />

C. Scott Btackwett<br />

Union Carbide Tech Ctr.<br />

Old Sa~nitt River R.<br />

Tarrytoun, NY 10591<br />

Michael J. Bogusky<br />

University of Penn.<br />

ChemDept.<br />

Philadelphia, PA 19104<br />

Manju S. Bonsatt<br />

Indian lnst of Science<br />

Bangatore, India 560012<br />

Richard Borders<br />

Kimberly Clark<br />

Btdg 4001408<br />

1600 HotcombBridge<br />

Roswetl, GA 30076<br />

Mabry Benson<br />

USDA West Reg Res Ctr<br />

800 Buchanan St.<br />

Albany, CA 94710<br />

Bruce 1. Berkoff<br />

University California<br />

Biophysics Group<br />

22 Gitman Halt<br />

Berkeley, CA 96720<br />

Richard D. Bertrand<br />

University of Colorado<br />

Dept. of Chem.<br />

PO BOX 7150 Austin Bluffs<br />

Cot. Sprgs, CO 80933-7150<br />

Anna Maria Bianucci<br />

UCAL SF<br />

Dept. of Pharm. Chem.<br />

513 Damassus Ave.<br />

San Francisco, CA 94143<br />

An<strong>th</strong>ony Bietecki<br />

MIT Nat'[ Nag Lab<br />

Btdg NW14<br />

Cambridge, HA 02139<br />

Stephen J. Blackband<br />

Johns Hopkins Univ.<br />

School of Med.<br />

720 Rutland Ave.<br />

Baltimore, MD 21205<br />

Bernhard Btuemich<br />

MAX PLANC-INST POLM CHUNG<br />

Postfach 3148<br />

D-6500<br />

Mainz, Germany<br />

Lizann Botinger<br />

Univ. of Penn.<br />

Biochem/Biophys<br />

Philadelphia, PA 19104<br />

Jo-Anne K. Bonstee[<br />

DuPont Exper Sta.<br />

PPD E269<br />

gitmington, DE 19898<br />

Phittip Borer<br />

Syracuse University<br />

1117 gestcott St.<br />

Syracuse, NY 13210<br />

Jack A. Berdasco<br />

Potym. Mat'| Res. Gr.<br />

574 Btdg/Dou Chemical Co.<br />

Midland, Ri 48667<br />

Wotfgard Bermet<br />

Bruker Instruments<br />

Manning Park<br />

Bitterica, HA 01821<br />

Kebecle Beshah<br />

Francis Bitter Nat't.<br />

Nagnet. Lab<br />

NW 14-5107/NIT<br />

Cambridge, HA 02139<br />

Roy Bible<br />

G.D. Searte & Co.<br />

6901Searte Pkwy<br />

Skokie, ]L 60077<br />

Donald C. Bishop<br />

Chemagnetics, inc.<br />

208 Commerce Dr.<br />

Ft. Collins, CO 80524<br />

Martin J. Blacktedge<br />

Univ. of Oxford<br />

MRC Biomed NRR Facility<br />

John Radcliffe Hospital<br />

Oxford/UK<br />

Geoffrey Bodenhausen<br />

Univ. of Lausanne<br />

Inst de Chimie Organique<br />

Rue de ta Barre 2<br />

1005 Lausanne, Switz<br />

Philip H. Botton<br />

Wesleyan University<br />

Chemistry Dept.<br />

Niddteton, CT 06457<br />

Babut Borah<br />

Norwich Eaton Pharm.<br />

I~D Box 191<br />

Woods Corners,<br />

Norwich, NY 13815<br />

Brandan A. Borgias<br />

Univ. of Calif.- SF<br />

Dept. of Pharm. Chem.<br />

San Francisco, CA 94163


Vincent P. Bork<br />

Washington Univ.<br />

Chemistry Dept.<br />

St. Louis, NO 63130<br />

Akset A. Bo<strong>th</strong>ner-By<br />

Carnegie-Relton Univ.<br />

Dept. of Chem<br />

Pittsburgh, PA 15213<br />

C. Russell Bowers<br />

Cattech<br />

Ar<strong>th</strong>ur Amos Noyes Lab<br />

Pasadena, CA 91125<br />

Raymond J. Brambitta<br />

ALLied-Signal<br />

Morristown, NJ 07960<br />

Anita Brandotini<br />

Mobil Chem. Co. RgO<br />

PO Bx 240<br />

Edison, HJ 08818<br />

Christian Brevard<br />

Bruker Instruments<br />

Ranning Park<br />

Bitterica, NA 01821<br />

Jacques Briand<br />

Univ British Columbia<br />

Dept Chem2036 Rain Halt<br />

Vancouvera Brt. Col.<br />

Canada V6T 1Y6<br />

Chuck E. Bronniman<br />

CSU Reginat NNR Facility<br />

Dept of Chem<br />

Colorado State University<br />

Fort Collins, CO 80521<br />

Bernadette A. Brown<br />

IBR<br />

166 Hillside Ave.<br />

Riveredge, NJ 07661<br />

Stephen C. Brown<br />

Smi<strong>th</strong> Ktine & French Labs<br />

709 Suedetand Rd.<br />

Swedetand, PA 19479<br />

Rarie Borzo<br />

Hoechst-Cetanese<br />

86Norris Ave.<br />

Summit, NJ 07901<br />

James H. Bourett<br />

Plant Celt Research Inst.<br />

1548 Brentwoed Ct.<br />

Walnut Creek, CA 94595<br />

Jona<strong>th</strong>an Boyd<br />

Oxford University<br />

Dept. of Biochem.<br />

Sou<strong>th</strong> Parks Rd.<br />

Oxford, England, UK<br />

Malcolm R. Brarnwett<br />

Bruker Instruments<br />

2880 Zanker Rd. Ste 106<br />

Jan Jose, CA 95134<br />

Steve Brandt<br />

Chemical Dynamics Corp.<br />

3001 Hadley Rd.<br />

S. Plainfield, NJ 07080<br />

Wallace S. Brey<br />

Univ. of FLorida<br />

ChemDept<br />

Gainesvitte, FL 32611<br />

Richard W. Briggs<br />

Hilton Hershey Ned Ctr<br />

Dept. of Radiology<br />

PO Box 850<br />

Hershey, PA 17033<br />

Ar<strong>th</strong>ur L. Brooke<br />

Oxford Magnet Technology<br />

Eynsham, Oxforshire<br />

England, UK OX8 1BP<br />

Leo D. Brown<br />

NRR Instruments<br />

255 Fourier Ave.<br />

Fremont, CA 94539<br />

Truman R. Brown<br />

Fox Chase Cancer Center<br />

7701Burhotme Ave.<br />

Philadelphia, PA 19111<br />

Richaet D. Boska<br />

V.A. Medical Ctr.-S.F.<br />

RRS Lab<br />

4150 CLement St.<br />

San Francisco, CA 94121<br />

John L. Bowers<br />

Univ. of ILLinois<br />

Box 18-1Noyes Lab<br />

Urbana, IL 61801<br />

Joel C. Bradley<br />

Cambridge Isotope Lab.<br />

20 Coemerce Way<br />

Woburn, NA 01801<br />

Rotf Brandes<br />

Univ. of California<br />

San Diego<br />

Dept. of ChemB-014<br />

La Jotta, CA 92093<br />

Gerald T. Bratt<br />

University of Rinnesota<br />

Biochem. Dept.<br />

435 Deteware St. SE<br />

HinneapoLis, RN 55455<br />

William Brey<br />

Univ. Texas/Hed/Radiot.<br />

UT Heal<strong>th</strong> Center - Houston<br />

6431Fannin<br />

Houston, TX 77030<br />

Hichette S. Broido<br />

Hunter College Chem Dept.<br />

695 Park Ave.<br />

Neu York, NY 10021<br />

Etwood E. Brooks<br />

Univ. of Cincinnati<br />

Chem Dept ML172<br />

Cincinnati, OH 45221<br />

Ronatd D. Brown<br />

Merck & Co.<br />

PO Box 62000 R80M-113<br />

Rahway, NJ 07065<br />

Larry R. Brown<br />

Australia Nat't Univ.<br />

RES School of Chem<br />

Canberra, A.C.T.<br />

Austral ia 2601


Hark S. Brown<br />

Yale School of Hed.<br />

Dept. of Diag. Rad.<br />

333 Cedar St CB58<br />

Neu Haven, CT 06511<br />

Har<strong>th</strong>a Bruch<br />

DuPont Expermtt Station<br />

Polymer Preducts Dept.<br />

Wilmington, DE 19898<br />

Thomas E. Butt<br />

FDA/Btdg 29/Rm530<br />

8800 Rockvitte Pike<br />

Be<strong>th</strong>esda, HI) 20892<br />

Douglas P. Burum<br />

Bruker Instruments<br />

Hanning Park<br />

Bitterica, HA 01821<br />

Gordon C. Campbell, Jr.<br />

Texas AgN<br />

Dopt. of Chemistry<br />

cortege Station, TX 7-/843<br />

James L. Carotan<br />

Natorac Cryogenics Corp<br />

837 Arnold Dr Ste. 600<br />

Hartinez, CA 94553<br />

Louis G. Carreiro<br />

Army Rat Tech Lab<br />

SLCRT-OHN Arsenal St.<br />

Watertown, HA 02172<br />

Toni L. Ceckter<br />

Univ Rochester Red Ctr<br />

Biophysics Dept.<br />

Rochester, NY 14627<br />

Lawrence Chan<br />

Univ Colorado<br />

Sch of Med.<br />

Box C280 4200 E 9<strong>th</strong> St<br />

Denver, CO 80262<br />

Hsu Chang<br />

Diasonics, Inc.<br />

533 Cabot Rd.<br />

S. San Francisco, CA 94080<br />

Rodney D. Brown Ill<br />

lBN Research Labs<br />

PO Box 218<br />

Yorktown Hgts., NY 10598<br />

Robert G. Bryant<br />

Univ Rochester Ned Ctr<br />

Biophysics Dept.<br />

Rochester, NY 14642<br />

Steven A. Bumgardner<br />

Chen~gnetics, Inc.<br />

208 Con~rce Dr.<br />

Ft. Collins, CO 80524<br />

C. Allen Bush<br />

lttinois Inst. Tech<br />

Dept of Chemistry<br />

Chicago, IL 60616<br />

Steve Caravaja[<br />

Proctor & Gant~te<br />

5299 Spring Grove Ave<br />

Cincinnati, OH 45217<br />

Thomas A. Carpenter<br />

Cambridge Univ.<br />

Lab Ned Che~n/Ctin Sch<br />

Aclclen Brooke's Hosp.<br />

Canbridge, UK<br />

Lewis W. Cary<br />

GE NNR Instruments<br />

255 Fourier Ave.<br />

Fremont, CA 94539<br />

V. P. Chacko<br />

Johns Hopkins fled Inst<br />

110MRI, Dopt Rad.<br />

600 Wolfe St.<br />

Baltimore,, ND 21205<br />

Tze-Ning Chan<br />

Schering Corp.<br />

60 Orange St.<br />

Bloomfield, NJ 07003<br />

Shoumo Chang<br />

Univ. of California<br />

Chemistry Dept<br />

lrvine, CA 92717<br />

Sydney K. Brownstein<br />

Nat't Res Council Canada<br />

Chemistry Div.<br />

Ottawa,Ont,Canada K1A OR9<br />

Edward Bubienko<br />

G.E. Red Sys. Group<br />

University of California<br />

Freemont, CA 92439<br />

Louet[ J. Burnett<br />

San Diego State University<br />

Physics Oopt.<br />

San Diego, CA 92119<br />

R. Andrew Byrd<br />

BiD LaWCtr Drugs/Biol.<br />

NIH Btdg 29-432<br />

Be<strong>th</strong>esda, MD 20892<br />

Kei<strong>th</strong> R. Carduner<br />

Ford Notor Co.<br />

Research Staff<br />

Dearborn, M! 48121<br />

Allan Carr<br />

Anderson Urot.Assoc.<br />

218 E. Calhoun St.<br />

Anderson, SC 29621<br />

Nichaet Cassidy<br />

Oxford Instruments<br />

3A Alfred Circle<br />

Bedford, HA 01730<br />

Linda D. Chadwick<br />

Siemens Ned. Syst.<br />

186 Woo(] Ave S.<br />

Isetin, NJ 08830<br />

S. Chandrasekar<br />

Dept of Chemistry<br />

Georgia State Univ.<br />

Atlanta, ~ 30303<br />

Jih-Wen Chang<br />

Univ. Cal.-Berkeley<br />

Mail Stp 11-B85<br />

Dept of Chem<br />

Berkeley, CA 94720


Lydia L. Chang<br />

Stauffer Chemical Co.<br />

1200 S. 47<strong>th</strong> St.<br />

Richmond, CA 94804<br />

Hark A. Chaykovsky<br />

Bruker Instruments<br />

Manning Park<br />

Bitlerica, MA 01821<br />

Benjamin Chen<br />

YaLe Univ. Sch Ned<br />

Dept Diag. Rad<br />

333 Cedar St.<br />

HeM Haven, CT 06510<br />

N. g. Cheng<br />

HercuLes Inc.<br />

Research Center<br />

WiLmington, DE 19894<br />

Kenner A. Christensen<br />

Univ of Arizona<br />

ChemDept<br />

Tuscon, AZ 85721<br />

John Chung<br />

Univ of ILLinois<br />

Box 30 Noyes Lab<br />

505 S. Na<strong>th</strong>ews<br />

Urbana, IL 61801<br />

Hike N. Ctingan<br />

Doty Scientific Inc.<br />

600 Ctemson Rd.<br />

CoLumbia, SC 29223<br />

Robert Codrington<br />

Varian Associates<br />

611 Nansen gay<br />

Pato ALto, CA 94303<br />

Lawrence D. Cotebrook<br />

Concordia Univ/Chem<br />

1455 deMaissoneuve BL W<br />

Nontreat,Oue<br />

Canada H3G 1N8<br />

Chuck Connor<br />

Dept of Chem<br />

Univ of Cat<br />

BerkeLey, CA 94720<br />

Hark D. Chatfietd<br />

Univ. of CaLif.,Davis<br />

ChemDept<br />

Davis, CA 95616<br />

WaLter J. Chazin<br />

Res lnst Scripps CLinic<br />

NB-21103<br />

10666 N. Torrey Pine Rd.<br />

La Jotta, CA 92037<br />

Deng-Ywan Chen<br />

Univ of Penn.<br />

Dept of Chem<br />

PhiLadeLphia, PA 19104<br />

Peter Cheung<br />

PhiLLips PetroLeum<br />

347A Petro. Lab<br />

PhiLLips Res. Ctr.<br />

Barttesvilte, OK 74004<br />

Simon C. Chu<br />

Univ. of Cat Davis<br />

NHR FaciLity<br />

Davis, CA 95616<br />

Theodore C. Ctaiborne<br />

Hedrad Inc.<br />

271 Kappa Hanor Dr.<br />

Pittsburgh, PA 15239<br />

David N. Cochran<br />

Ayerst Labs Research<br />

CH 8000<br />

Princeton, NJ 08540<br />

Scott g. Coffin<br />

RockefeLler Univ.<br />

1230 York Ave.<br />

New York, NY 10021-6399<br />

Kimberty L. Cotson<br />

YaLe Univ.Ned Sch<br />

Dept of Pharm.<br />

333 Cedar St<br />

New Haven, CT 06510<br />

Noodrow N. Conover<br />

GE NHR instruments<br />

255 Fourier Ave.<br />

Fremont, CA 94536<br />

Nariann J. Chatfietd<br />

Univ of CaL.-Davis<br />

ChemDept<br />

Davis, CA 95616<br />

Brad F. Chemetka<br />

Univ of Cat BerkeLey<br />

Dept of Chem Eng.<br />

BerkeLey, CA 94720<br />

Doris Cheng<br />

Exxon Chemical Co.<br />

PO Box 45<br />

Linden, NJ 07036<br />

Gwendotyn N. Chmurny<br />

NCi Frederick Cancer<br />

Research Center<br />

PO Box B<br />

Frederick, MD 21701<br />

l-Ssuer Chuang<br />

Chemistry Dept Bx42<br />

CoLorado State Univ.<br />

Ft Cottins, CO 80523<br />

Niger J. Ctayden<br />

ICI PLC, lnt'l Nat't Ctr<br />

P 0 Box 90<br />

Nitton,Hiddtesbrough<br />

CLeveLand,England TS6 8JE<br />

Hichaet D. Cockman<br />

Univ of Fla.<br />

Box 71<br />

Leigh HaLt<br />

Gainesvilte, FL 32611<br />

Hetga J. Cohen<br />

Univ. of Sou<strong>th</strong> CaroLina<br />

Chem Dept NNR Lab<br />

CoLumbia, SC 29208<br />

Thomas Connick<br />

Dory Scientific<br />

600 Ctemson Rd<br />

CoLumbia, SC 29223<br />

Frank Contratto<br />

Varian Assoc.<br />

505 Jutie Rivers Rd.<br />

Sugar Land, TX 77478


Michael Cooper<br />

Lockheed MSC 0/48-92<br />

1111 Lockheed Way<br />

B/195B<br />

Sunnwate, CA 94089-3504<br />

Paul Cope<br />

Witmad Glass Co.<br />

Route 40 & Oak Rd.<br />

Buena, NJ 08310<br />

Charles E. Cottrelt<br />

Ohio State Univ.<br />

CCIC<br />

176 W. 19<strong>th</strong> Ave.<br />

CoLumbus, OH 43210<br />

Edward Craig<br />

Ohio State Univ.<br />

Dept of Chem.<br />

120 W 18<strong>th</strong> Ave<br />

CoLumbus, OH 43210-1173<br />

Roger W. Crecety<br />

Univ of Delaware<br />

ChemDept.<br />

Newark, DE 19716<br />

Richard C. Crosby<br />

Texas AgN<br />

Dept. Chem.<br />

cortege Station, TX 77843<br />

Joseph C. Crowtey<br />

Lockheed Misstes/Spece<br />

3251 Hanover St<br />

8204/09350<br />

Pato ALto, CA 94304-1191<br />

John D. Cutnett<br />

So. Illinois Univ.<br />

Physics Dept.<br />

Carbondate, IL 62901-4401<br />

David C. Oatgarno<br />

American Cyanamid<br />

PO Box 400<br />

Princeton, NJ 08540<br />

Prashan<strong>th</strong> Darba<br />

Univ Wisconsin/Madison<br />

Dept of Biochem<br />

420 Henry Matt<br />

Madison, WI 53706<br />

James W. Cooper<br />

IBM Instruments<br />

PO Box 8332<br />

Danbury, CT 06813<br />

Chris Coretsopeutos<br />

Univ. of ILLinois<br />

Dept of Chem<br />

505 S. Na<strong>th</strong>ews<br />

Urbana, IL 61801<br />

David Couburn<br />

RockefeLLer Univ.<br />

1230 York Ave.<br />

Box 299<br />

New York, NY 10021-6399<br />

Ray Crandatl<br />

Xerox Corp<br />

800 Phillips Rd.<br />

Webster, NY 14580<br />

Robert Creekmore<br />

FMC Corp.<br />

PO Box 8<br />

Princeton, NJ 08540<br />

Timo<strong>th</strong>y A. Cross<br />

FLorida St. Univ.<br />

Chem Dept<br />

Tattahassee, FL 32306<br />

Sean A. Curran<br />

Monsanto Co.<br />

730 Worcester St.<br />

SpringfieLd, MA 01151<br />

Dana Andre D'Avignon<br />

Washington Univ.<br />

Campus Box 1134<br />

St. Louis, NO 63130<br />

Jerry L. DaLLas<br />

GE NMR Instruments<br />

255 Fourier Ave.<br />

Fremont, CA 94539<br />

Darrell R. Davis<br />

Univ of Utah<br />

Dept of Chemistry<br />

Salt Lake City, UT 84112<br />

Walter G. Copan<br />

Lubrizot Corp<br />

29400 Lakeland Btvd<br />

Wicktiffe, OH 44092<br />

Mary Lou Cotter<br />

Or<strong>th</strong>o Pharm.<br />

Route 202<br />

Raritan, NJ 08869-0602<br />

Bruce Coxon<br />

Nat'[ Bur of Stds<br />

Chemistry BLdg A361<br />

Gai<strong>th</strong>ersburg, HI) 20899<br />

Eaten Crecety<br />

Brandywine Res. Labs<br />

226 W Park PLace<br />

Newark, DE 19711<br />

Robert M. Crosby<br />

M-R Resourses Inc.<br />

262 Lakeshore Dr.<br />

PO Box 642<br />

Ashburnham, IdA 01430<br />

Michael Crowtey<br />

Harper Grace Hospitat<br />

NMR Center<br />

Detroit, M! 48201<br />

Janet C. Curtis<br />

Univ of Utah<br />

Dept of Chemistry<br />

SaLt Lake City, UT 84112<br />

Josef Oadok<br />

Carnegie MeLton Univ.<br />

Chemistry Dept.<br />

4400 Fif<strong>th</strong> Ave.<br />

Pittsburgh, PA 15213<br />

Neat Dando<br />

ALcoa<br />

Anal Chem Tech Ctr<br />

ALcoa Center, PA 15046<br />

Detphine Davis<br />

Univ Cat/Santa Barbara<br />

Dept of Chem<br />

Santa Barbara, CA 93106


Nicotette Davis<br />

View Engineering<br />

1656 Emeric Ave.<br />

Simi Valley, CA 03065<br />

Steven F. Dec<br />

Colorado St. Univ.<br />

Dept of Chem<br />

Ft. Collins, CO 80501<br />

Alan J. Deese<br />

Genera[ Electric<br />

Ned. Systems Group<br />

255 Fourier Ave.<br />

Freemont, CA 94539<br />

E. James Detikatny<br />

Univ of British Columbia<br />

Dept of Chemistry<br />

Vancouver/BC/Canada V6T1Y6<br />

Peter C. Demou<br />

Yate University<br />

ChemDept<br />

PO Box 6666<br />

New Haven, CT 06511<br />

Jeffrey S. deRopp<br />

Univ of Cat-Davis<br />

NMR Facility<br />

Davis, CA 95616<br />

Hea<strong>th</strong>er Dettman<br />

University of Ottawa<br />

Dept of Chem<br />

Ottawa<br />

Ontario/Canada K1N9B4<br />

Lisa M. DiMichete<br />

Merck & Co., Inc.<br />

PO Box 2000<br />

Btdg 801Rm 210<br />

Rahway, NJ 07065<br />

Thomas Dixon<br />

Emory Univ.<br />

Radiology Dept.<br />

412 Woodruff Hem.Bldg.<br />

Atlanta, GA 30322<br />

Peter J. Domai[le<br />

DuPont Exp. Station<br />

Wilmington, DE 19898<br />

Donald G. Davis<br />

NIEHS<br />

Lab Note. Biophycs.<br />

PO Box 12233<br />

Research Tri. Pk, NC 27709<br />

Rona[d L. Dechene<br />

Auburn lnt't. IMR Div.<br />

Eight Electronics Ave.<br />

Danvers Industrial Pk.<br />

Danvers, HA 01923<br />

Frank Oetagtio<br />

New Me<strong>th</strong>ods Research<br />

719 E. Genesee St.<br />

Syracuse, HY 13210<br />

Marc Detsuc<br />

Syracuse Univ.<br />

305 Bowne Hat[<br />

Syracuse, NY 03210<br />

Christopher E. Dempsey<br />

Oxford University<br />

Dept of Biochem<br />

Sou<strong>th</strong> Park Rd<br />

Oxford/England, UK OXl 3QU<br />

Christian Detettier<br />

University of Ottawa<br />

Dept of Chemistry<br />

Ottawa/Canada K1N9B4<br />

Lisa A. Deuring<br />

Varian Assosciates<br />

255 Fourier Ave<br />

Fremont, CA 94539<br />

Bob DiPasquate<br />

JEOL USA Inc<br />

11 Dearborn Rd.<br />

Peabody, HA 01960<br />

Chris N. Dobson<br />

Oxford Univ.<br />

Oept of ]norg. Chem.<br />

Sou<strong>th</strong> Parks Rd<br />

Oxford England, UK OX1 30R<br />

Robert Lee Domenick<br />

Stanford Nag. Res. Lab.<br />

Stanford University<br />

Stanford, CA 94305-5055<br />

William Dawson<br />

Canmet, Energ.Res.Lab.<br />

555 Boo<strong>th</strong> Street<br />

Ottawa/<br />

Ontario/Canada KIA OG1<br />

James J. Dechter<br />

Arco Oil & Gas<br />

PRC-1C17<br />

2300 W. Piano Pkwy<br />

Piano, TX 75075<br />

John L. DeLayre<br />

Tecmag Inc.<br />

6006 Bettaire Blvd.<br />

Ste. 118<br />

Houston, TX 77081<br />

Louis C. DeNenorvat<br />

Univ of Cal.-Berkeley<br />

Dept of Chem.<br />

Berkeley, CA 94720<br />

Lawrence W. Dennis<br />

Exxon Res & Eng<br />

PO Box 4255<br />

Baytown, TX 77522-4255<br />

George Detre<br />

SRI International<br />

333 Ravenswood Dr.<br />

Menlo Park, CA 94025<br />

Susan L. Dexheimer<br />

Laurence Berke[ey Lab<br />

Berkeley, CA 94720<br />

Joseph A. DiVerdi<br />

Chemagnetics Inc.<br />

208 Commerce Dr.<br />

Ft. Cottins, CO 80524<br />

Jack Ooherty<br />

GE NMR Instruments<br />

255 Fourier Ave.<br />

Fremont, CA 94539<br />

Harry C. Oorn<br />

vPI<br />

Chemistry Dept.<br />

Blacksburg, VA 24061


F. David Doty<br />

Doty Scientific Inc.<br />

600 Ctemson Rd.<br />

CoLumbia, SC 29223<br />

Daniel R. Draney<br />

American Cyanamid Co.<br />

1937 W. Main St.<br />

Stamford, CT 06904-0060<br />

Susan Oruckman<br />

E.R. Squibb<br />

PO Box 4000<br />

Princeton, NJ 08543<br />

Haureen A. Duffy<br />

Can~oridge Isotope Labs<br />

20 Commerce Way<br />

Woburn, HA 01801<br />

R. William Dunlap<br />

Amoco Research Center<br />

PO Box 400<br />

Napervitte, IL 60566<br />

Cecil Dybowski<br />

University of Delaware<br />

Dept of Chemistry<br />

Neward, DE 19716<br />

Thomas A. Early<br />

GE NMR Instruments<br />

255 Fourier Way<br />

Fremont, CA 94539<br />

William M. Egan<br />

FDA Biophys.lab<br />

Ctr Drugs & Biologies<br />

ge<strong>th</strong>esda, MD 20892<br />

Henry Eisenson<br />

Sciteq Electronics<br />

8401Aero Drive<br />

San Diego, CA 92113<br />

John Eng<br />

Princeton Univ.<br />

Chemistry Dept.<br />

Princeton, NJ 08540<br />

Judy M. Dory<br />

Doty Scientific Inc.<br />

600 Ctemson Rd.<br />

Columbia, SC 29223<br />

Edward A. Dratz<br />

Montana State Univ.<br />

Dept of Chem.<br />

Bozeman, MT 59717<br />

George R. Dubay<br />

Duke University<br />

Dept of Chemistry<br />

P.M. Gross Chem Labs<br />

Durham, NC 27706<br />

Charles L. Dumoutin<br />

Genera[ Electric Co.<br />

Res. & Devet. Ctr.<br />

PO Box 8 KI-NMR<br />

Schenectady, NY 12301<br />

Theresa S. Dunne<br />

Lederte Labs<br />

Middletown Rd. 658/320<br />

Pearl River, NY 10965<br />

Thomas M. Eads<br />

Kraft Inc., Tech Ctr.<br />

801Waukegan Rd.<br />

Gtenview, IL 60025<br />

Het[mut Eckert<br />

Cat. Tech.<br />

Dept of Chemistry<br />

Mail 164-30<br />

Pasadena, CA 91125<br />

Thomas F. Egan<br />

Tecmag<br />

6006 BetAir Blvd.<br />

Houston, TX 77081<br />

Paul D. Ellis<br />

Univ of So.Carolina<br />

Chemistry Dept.<br />

Columbia, SC 29208<br />

Cart E. Engteman<br />

Ohio State Univ.<br />

120 W. 18<strong>th</strong> Ave.<br />

Columbus, OH 43210<br />

Montee A. Doverspike<br />

Naval Res. Lab.<br />

Code 6120<br />

4555 Overtook Ave., SU<br />

Washington, DC 20375-5000<br />

Gary Drol0ny<br />

Chemistry Dept.<br />

Univ. of Washington<br />

Seattle, WA 98195<br />

Eliot W. Dudley<br />

New Me<strong>th</strong>ods Research<br />

719 E. Genesee St.<br />

Syracuse, NY 13210<br />

T. Michael Duncan<br />

AT&T Belt Labs<br />

6E-318<br />

Murray Hilt, NJ 07974-2070<br />

Lois J. Durham<br />

Stanford University<br />

ChemOept.<br />

Stanford, CA 94305-5080<br />

William L. Earl<br />

Los Atames Nat't Lab.<br />

Mail Stop C345<br />

Los Atames, NM 87545<br />

Richard R. Eckman<br />

Exxon Chemical<br />

5200 Bayway Dr.<br />

Baytown, TX 77520<br />

Keigi Eguchi<br />

JEOL USA [NC<br />

1418 Nakagami<br />

Akishima, 196<br />

Tokyo Japan<br />

Steven Donald Emerson<br />

Univ. of California<br />

Chem. Dept.<br />

Davis, CA 95616<br />

ALan D. English<br />

DuPont Exp. Station<br />

Central Res & Devel.<br />

Wilmington, DE 19898


Raut G. Enriquez<br />

]nstituto De Ouimica<br />

Univ. Nacionat Autonoma<br />

Circuito Exterior<br />

Ciudad Univer., MX 04510<br />

C. Anderson Evans<br />

Berlex Laboratories Inc.<br />

110 E. Hanover Ave.<br />

Cedar Knolls, NJ 07927<br />

Mary Fabry<br />

Einstein Col. Med.<br />

1300 Morris Park Ave.<br />

Bronx, NY 10461<br />

Rod Fartee<br />

DuPont Central Res.<br />

E328/126<br />

Wilmington, DE 19898<br />

Thomas C. Farrar<br />

Univ of Wisconsin<br />

Chemistry Dept.<br />

Madison, Wl 53706<br />

Jeffrey R. Fitzsimmons<br />

Shands Hosp. JHMHC<br />

Dept of Radiology<br />

Gainesvilte, FL 32601<br />

Peter F. Ftynn<br />

Univ. of Washington<br />

Dept of Chemistry BG-IO<br />

Seattle, WA 98195<br />

Peter Forster<br />

University of Otkahoma<br />

Dept of Chemistry<br />

Norman, OK 73019<br />

Stephen Freetand<br />

Chemagnetics<br />

208 Commerce Dr.<br />

Ft. Collins, CO 80524<br />

Alan J. Freyer<br />

Penn State Univ<br />

152 Davey Lab Chem Dept<br />

University Park, PA 16802<br />

George Entzminger<br />

Doty Scientific<br />

600 Clemson Rd.<br />

Columbia, SC 29223<br />

Jerenn/ R. Everett<br />

Beecham Pharmaceuticals<br />

Brockham Park<br />

Betchwor<strong>th</strong>,<br />

Surrey, UK RH3 7AJ<br />

Paul E. Fagerness<br />

Upjohn/Product Control II<br />

7832-259-12<br />

Portage Road<br />

Kalamazoo, MI 49001<br />

Bruce W. Farnum<br />

Certified Tech Corp.<br />

7404 Washington Ave. So.<br />

Minneapolis, MR 55344<br />

Raymond Ferguson<br />

Condux, Inc.<br />

300 Whitby Dr.<br />

Wilmington, DE 19803<br />

William W. Fleming<br />

IBM Almaden Res K91/801<br />

650 Harry Road<br />

San Jose', CA 95120-6099<br />

Jeffrey Forbes<br />

Univ. of illinois<br />

Noyes Lab Box 42-1<br />

505 S. Ma<strong>th</strong>ews<br />

Urbana, IL 61801<br />

Natalie Foster<br />

Lehigh Univ.<br />

Dept of Chemistry<br />

Mudd Btdg #6<br />

Be<strong>th</strong>lehem, PA 18015<br />

Dominique Freeman<br />

G E Red Syst<br />

255 Fourier Ave.<br />

Fremont, CA 94539<br />

Richard M. Fronko<br />

Naval Research Lab<br />

Code 6122<br />

Washington, 0C 20375-5000<br />

Richard R. Ernst<br />

ETH Zurich<br />

Lab. Physikalische Chemie<br />

ETH-Zentrum<br />

Zurich Switzerland 8092<br />

Edward L. Ezett<br />

UT Medical Branch<br />

Galveston, TX 77550<br />

Teresa Fan<br />

Univ.Calif-Davis<br />

NMR Facility<br />

Davis, CA 95616<br />

Sylvia A. Farnum<br />

3N Corp.<br />

Spec.Chem Lab<br />

Bldg 236-2B-11, 3M Ctr.<br />

St. Paul, MN 55144-1000<br />

Stephen W. Fesik<br />

Abbott Laboratories<br />

D-47G AP9<br />

Abbott Park, IL 60064<br />

Timo<strong>th</strong>y Flood<br />

PPG<br />

PO Box 31<br />

Barberton, OH 44203<br />

Charles E. Forbes<br />

Celanese Research Co.<br />

86Morris Ave<br />

Summit, NJ 07901<br />

David Foxatt<br />

Varian Associates<br />

1120 Auburn Street<br />

Fremont, CA 94538<br />

Michael H. Frey<br />

JEOL USA INC<br />

11 Dearborn Rd.<br />

Peabody, NA 01960<br />

David Fry<br />

Hoffman-LaRoche, Inc.<br />

Dept of Physical Chem.<br />

Nuttey, NJ 07110


James S. Frye<br />

Colorado State Univ<br />

Dept of Chem<br />

Ft ColLins, CO 80523<br />

Bing N. Fung<br />

Univ of Otkahorna<br />

Dept of Chemistry<br />

Norman, OK 73019<br />

Nichaet Fuson<br />

Wabash CoLlege<br />

Dept of Chem<br />

Crawfordsvitte, IN 47933<br />

Michael Gamcsik<br />

John Hopkins Univ.<br />

720 RutLand Ave.<br />

BaLtimore, HD 21205<br />

Joel R. Garbow<br />

Honsanto Co.<br />

Life Sciences, NHR Ctr<br />

700 ChesterfieLd Vlg Pkb~y<br />

St. Louis, NO 63198<br />

Hichae[ Garwood<br />

Univ of Ninnesota<br />

Gray Freshwater<br />

Biological Institute<br />

Navarre, HN 55392<br />

John H. Geckte<br />

Bruker Instrument<br />

Manning Park<br />

Bitterica, HA 01821<br />

Robert T. Gempe Jr.<br />

Abbott Labs AP9<br />

Pharm. Discv. Div<br />

RMR Research Group<br />

Abbott Park, IL 6006/+<br />

John T. Gerig<br />

Univ of CaLifornia<br />

Chemistry Dept.<br />

Santa Barbara, CA 93106<br />

A<strong>th</strong>ot[ A. Gibson<br />

gatorac Cryogenics<br />

837 Arnold Dr. Ste.600<br />

Nartinez, CA 94553<br />

Toshimichi Fujiuara<br />

JEOL Ltd.<br />

Biomet Lab<br />

1418 Nakagami-Akishirna<br />

Tokyo/Japan 196<br />

Kazuo Furihata<br />

Univ of Tokyo<br />

lnst of AppLied Biology<br />

Bunk You-Ku<br />

Tokyo Japan<br />

Colin A. Fyfe<br />

University of GueLph<br />

Guelph<br />

Ontario Canada N1G 2U1<br />

Zhehong Gan<br />

University of Utah<br />

Salt Lake City, UT 84112<br />

Janice Kotes Garde<br />

Nonsanto Co.<br />

800 N. Lindberg Btvd<br />

St Louis, NO 63166<br />

Nancy K. Geananget<br />

Univ of Houston<br />

Dept of Chemistry<br />

4800 Calhoun<br />

Houston, TX 77004<br />

Thomas E. Gedris<br />

Florida State Univ.<br />

Dept of Chemistry<br />

Tattahassee, FL 32306<br />

Yves Geoffrion<br />

See abstract<br />

Bernard C. Gerstein<br />

Iowa State University<br />

229 Spedding<br />

Ames, IA 50010<br />

Dara E. Gilbert<br />

UCLA<br />

Dept of Chem& Biochem<br />

405 Hitgard Ave.<br />

Los Angeles, CA 90024<br />

Eiichi Fukushima<br />

Lovetace Nedicat Found.<br />

2425 Ridgecrest Dr. SE<br />

Atbuciuerque, NH 87108<br />

George T. Furst<br />

Univ of Penn<br />

Chemistry Dept.<br />

PhiLadelphia, PA 1910/+<br />

Robert A. Gate<br />

N. R. Resourses<br />

PO Box 642<br />

262 Lakeshore Dr.<br />

Ashburnham, HA 01430<br />

ALbert R. Garbsr<br />

Univ of So CaroLina<br />

ChemOept<br />

CoLumbia, SC 29208<br />

AlLen N. Garroway<br />

Naval Research Labs<br />

Cede 6122<br />

Washington, DC 20375-5000<br />

Russett A. Geanange[<br />

Univ of Houston<br />

Dept of Chemistry<br />

4800 CaLhoun<br />

Houston, TX 77004<br />

Leslie T. Gelbeum<br />

Georgia Tech<br />

Dept of Applied Biotogy<br />

AtLanta, GA 30332<br />

Walter V. Gerasirnowicz<br />

USDA - ERRC<br />

600 E Nermaid Lane<br />

Philadelphia, PA 19118<br />

Paul J. Oiammatteo<br />

Texaco Inc.<br />

PO Box 509<br />

Beacon, NY 12508<br />

Russell W. Gittis<br />

The Upjohn Co.<br />

1140-230-2<br />

7171 Portage Rd.<br />

Kalamazoo, HI 49001


Peter S. Given<br />

Nabisco Brands<br />

100 DeForest Ave.<br />

PO Box 1941<br />

E. Hanover, NJ 07936<br />

Karen Gteason<br />

Univ of California<br />

Dept of Chem Eng.<br />

Berketey, CA 94720<br />

G. Gtover<br />

See abstract<br />

Wench/ Gotdberg<br />

Merck Isotopes<br />

PO Box 2000<br />

Rahway, NJ 07065<br />

Ricardo R. Gonzatez-Mendez<br />

Resonex Inc.<br />

720 Patomar Ave.<br />

Sunnyvate, CA 94086<br />

Warren J. Goux<br />

Univ of Texas -Dattas<br />

Dept of Chemistry<br />

PO Box 688<br />

Dattas, TX 75080<br />

David M. Grant<br />

Dept of Chemistry<br />

University Utah<br />

Satt Lake City, UT 84112<br />

Christian Griesinger<br />

E<strong>th</strong>-Zurich Phy Chem Lab<br />

E<strong>th</strong>-Zentrum<br />

CH-8092<br />

Zurich, Switzerland<br />

Chartes M. Grisham<br />

Univ of Virginia<br />

Dept of Chemistry<br />

Chartottesvitte, VA 22901<br />

Terry W. Gultion<br />

Washington Univ.<br />

Dept of Chemistry<br />

St. Louis, MO 63130<br />

Jay A. Gtaset<br />

Univ of Connecticut<br />

Oept of Biochemistry<br />

Hear<strong>th</strong> Center<br />

Farmington, CT 06032<br />

James W. Gteeson<br />

Mobit Res. & Oevet.<br />

PO Box 819047<br />

Dattas, TX 75381<br />

Gian C. Gobbi<br />

Dow Chemicat (Canada)<br />

PO Box 3030<br />

Vidat St.S. Sarnia,<br />

Ontario, Canada NTT 7M1<br />

Nina C. Gonetta<br />

ciba Geigy<br />

556 Morris Ave.<br />

Summit, NJ 07901<br />

Paut R. Gootey<br />

The Upjohn Co.<br />

7171 Portage Rd.<br />

7832-259-12<br />

Katamazoo, HI 49001<br />

David W. Graden<br />

Or<strong>th</strong>o Pharm. Corp.<br />

Route 202<br />

Raritan, NJ 08869<br />

Peter Grant<br />

Varian Associates<br />

505 Ju[ie Rivers Road<br />

Sugar Land, TX 77478<br />

Robert G. Griffin<br />

Nationat Magnet Lab<br />

NW14-5113 MIT<br />

77Massachusetts Ave.<br />

Cambridge, HA 02139<br />

Stephen H. Grode<br />

The Upjohn Co.<br />

1140-250-2<br />

Kalamazoo, MI 49001<br />

Wei Guo<br />

Univ Missouri-Columbia<br />

Dept of Chem.<br />

Cotumbia, MO 65211<br />

Tho(nas E. Grass<br />

VPI<br />

Dept of Chemistry<br />

Btacksburg, VA 24061<br />

Jerry D. Gtickson<br />

Johns Hopkins Hospitat<br />

Sch of Med/Dept of Rad.<br />

Taytor Btdg Rm 310<br />

Battirnore, MD 21205<br />

Laurence A. Goff<br />

ICI Americas, Inc.<br />

Witmington, DE 19897<br />

Oded Gonen<br />

MIT<br />

RM-6-133<br />

Cambridge, HA 02139<br />

Myra Gordon<br />

Merck Sharp & Dohme lsot.<br />

612-1209 Richmond St.<br />

London,Ont,Canada NGA 3L7<br />

Hans Grahm<br />

Syracuse University<br />

305 Bowne Hatt<br />

Syracuse, NY 13210<br />

George Gray<br />

Varian Associates<br />

611Hansen Way<br />

ParD Atto, CA 94303<br />

Janet M. Griffi<strong>th</strong>s<br />

Univ of Catif-Berketey<br />

Oept of Chem Engineering<br />

Berketey, CA 94720<br />

Angeta M. Gronenborn<br />

Max Planck Institute<br />

8033 Martinsried BE1<br />

Munich, FRG<br />

Herbert Gutowski<br />

Univ of Ittinois<br />

505 S. Ma<strong>th</strong>ews<br />

Urbana, IL 61801


Herbert Gutowski<br />

University of Illinois<br />

505 S. Ma<strong>th</strong>ews<br />

Champaign,<br />

Urbana, IL 61801<br />

Andreas Hackman<br />

Univ of Dortmund<br />

Inst. of Physics<br />

PO Box 500 500<br />

Dortmund,50, FRG D-4600<br />

Elizabe<strong>th</strong> Hajdu<br />

G. D. Searte & Co.<br />

4901Searte Parkway<br />

Skokie, IL 60077<br />

Gordon K. Hamer<br />

Xerox Research Center<br />

of Canada<br />

2660 Speakman Drive<br />

Nississuaga/Ont/Can LSK2L1<br />

willis B. Hammond<br />

ALlied Signal, Inc.<br />

PO Box 1021R<br />

Morristown, NJ 07960<br />

Ronatd L. Barter<br />

Univ. Catif<br />

Dept of Chem<br />

Santa Cruz, CA 9506/,<br />

V. Hariharasubramanian<br />

Univ of Pennsylvania<br />

Dept of Biochem & Biophys<br />

School of Medicine<br />

Philadelphia, PA 19106<br />

Cyn<strong>th</strong>ia J. Hartzelt<br />

Univ. of Washington<br />

Dept of Chemistry BG-IO<br />

Seattle, WA 98195<br />

John R. Havens<br />

Raychem Corp.<br />

300 Constitution Dr.<br />

Menlo Park, CA 94025<br />

Jane E. Hawks<br />

Kings College (KQC)<br />

Dept of Chemistry<br />

Univ. of London<br />

Strnd/Lndn/Eng, UK WC2R 2L<br />

C.A.G. Haasnoot<br />

Unitever Research Lab<br />

Oliver van Moorttaan 120<br />

3133 AT Vlaardingen,<br />

Nedertand<br />

Grant W. Haddix<br />

Univ of Catif - Berkeley<br />

Dept of Chem Eng<br />

Berkeley, CA 94720<br />

Laurance David Halt<br />

Cambridge Univ/MCCS<br />

Addenbrookes Hosp.<br />

Hilts Rd.<br />

Cambridge, UK<br />

Bruce E. Hammer<br />

Intermagnetics Gen.Corp.<br />

Hag. Resonance Res. Lab.<br />

1223 Peoples Ave.<br />

Troy, NY 12180<br />

Oc Hee Han<br />

Univ of Illinois<br />

Dept of Chemistry<br />

505 S. Ma<strong>th</strong>ews<br />

Urbana, 1L 61801<br />

James A. Happe<br />

Lawrence Livermore<br />

National Lab<br />

PO Box 808<br />

Livermore, CA 94550<br />

Arnold M. Harrison<br />

Union Carbide<br />

PO Box 8361<br />

So. Charleston, WV 25303<br />

Dennis L. Hasha<br />

Oow Chemical Co.<br />

Analytical Labs Bldg 574<br />

Midland, MI 48667<br />

James F. Haw<br />

Texas A&M Univ<br />

ChemDept<br />

cortege Station, TX 77843<br />

Geoffrey E. Hawks<br />

Queen Mary College-London<br />

Univ of London,Chem Dept.<br />

Mite End Road<br />

London,England, UK E14NS<br />

Fred Haberle<br />

Brucker Instruments<br />

Manning Park<br />

Bitterica, HA 01821<br />

Edward W. Hagaman<br />

Oak Ridge National Lab<br />

Oak Ridge, TN 37831<br />

Ktaas Hattenga<br />

Michigan State Univ.<br />

Chemistry Dept.<br />

East Lansing, M! 48824<br />

Terry E. Hammond<br />

Standard Oil of Ohio<br />

4440 Warrensvitte Rd.<br />

Cleveland, OH 44128<br />

Diane K. Hancock<br />

Nat'l Bur. of Stds.<br />

Btdg 222 A-361<br />

Gai<strong>th</strong>ersburg, MD 20899<br />

Gerard S. Harbison<br />

S.U.N.Y. Stonybrook<br />

Dept of Chemistry<br />

Stony Brook, NY 11794<br />

J. Stephen Hartman<br />

Brock Univ. Chem. Dept.<br />

St.Ca<strong>th</strong>arines/Ont. L2S3A1<br />

Jon B. Hauksson<br />

Univ of Calif. Davis<br />

Dept of Chem<br />

Davis, CA 95616<br />

Bruce L. Hawkins<br />

Colorado State Univ.<br />

Dept of Chemistry<br />

Ft. Collins, CO 80523<br />

Shigenobu Hayashi<br />

Univ of Illinois<br />

School Of Chem Science<br />

505 S. Ma<strong>th</strong>ews Ave.<br />

Urbana, IL 61801


Richard A. Hearman<br />

ICI PLC, C&P Group<br />

PO Box 90<br />

Middtesbrough,<br />

Cleveland TS6 8JE, UK<br />

Rose Anne HeLms<br />

Doty Scientific<br />

600 Clemson Rd.<br />

Columbia, SC 29223<br />

P. Mark Henrichs<br />

Eastman Kodak Co.<br />

Research Labs<br />

Rochester, NY 14650<br />

Roy Hickman<br />

Varian Associates<br />

505 Jutie Rivers Rd.<br />

Sugar Land, TX 77478<br />

Howard Hill<br />

Varian Associates<br />

611Hansen Way<br />

ParD Alto, CA 94303<br />

Tetsu Hinomoto<br />

JEOL USA, INC.<br />

11 Dearborn Rd.<br />

Peabody, MA 01960<br />

Yukio Hiyama<br />

NIH<br />

Btdg 30, Rm 106<br />

Be<strong>th</strong>esda, MD 20892<br />

Tadeusz A. Hotak<br />

Yale University<br />

Dept of Chemistry<br />

New Haven, CT 06511<br />

Xiaole Hong<br />

Georgia State Univ.<br />

Dept of Chemistry<br />

University Plaza<br />

Atlanta, GA 30303<br />

Joseph P. Hornak<br />

Rochester Inst. of Tech.<br />

Chemistry Dept.<br />

Rochester, NY 14623<br />

Nick J. Heaton<br />

Univ. of Calif.-San Diego<br />

La Jotta, CA 92093<br />

Janet M. Henderson<br />

Varian Associates<br />

Hanover Ave.<br />

F[orham Park, NJ<br />

Hoby P. He<strong>th</strong>erington<br />

Yale University<br />

Dept of Mot. Biophys<br />

and Biochem.<br />

New Haven, CT 06510<br />

Robert Highet<br />

Nat'[ Heart/Lung & Blood I<br />

National Inst. of Heal<strong>th</strong><br />

Bldg 10 Rm 7N320<br />

Be<strong>th</strong>esda, MD 20892<br />

David F. Hiltenbrand<br />

JEOL USA INC.<br />

11 Dearborn Rd.<br />

Peabody, MA 01960<br />

Toshifumi Hiraoki<br />

University of Calgary<br />

Div. of Biochemistry<br />

Calgary,A[ta,Can. T2N1N4<br />

Gina L. Hoatson<br />

College of William & Mary<br />

Dept of Physics<br />

Williamsburg, VA 23185<br />

Scott K. Holland<br />

Yale University<br />

Sch of Med, Diag. Rad.<br />

333 Cedar St<br />

New Haven, CT 06520<br />

Robert S. Honkonen<br />

Stauffer Chemical Co.<br />

Eastern Research Ctr.<br />

Dobbs Ferry, NY 10522<br />

Howard Homing<br />

Varian Associates<br />

505 Julie Rivers Rd<br />

Sugar Land, TX 77478<br />

Gregory Helms<br />

Univ of Hawaii<br />

Dept of Chem - Manda<br />

2945 The MaLt<br />

Honolulu, HI 96822<br />

Michael J. Hennessy<br />

IGC Intermag. Gen. Corp.<br />

Magnetic Res. Lab.<br />

1223 Peoples Ave.<br />

Troy, NY 12180<br />

J. Michael Hewitt<br />

Eastman Kodak Co.<br />

Research Laboratories<br />

Rochester, NY 14615<br />

Lauren E. Hilt<br />

Michigan State Univ.<br />

Oept of Chemistry<br />

East Lansing, MI 48824<br />

Peter R. Hitliard<br />

Ctairot Res. Labs.<br />

2 Blachtey Rd.<br />

Stamford, CT 06922<br />

Robert C. Hirst<br />

Goodyear Tire & Rubber<br />

Dept. 415A<br />

Akron, OH 44305<br />

Jeffrey Hoch<br />

Rowland Institute<br />

100 Cambridge Pkwy.<br />

Cambridge, NA 02142<br />

Brenda S. Hotmes<br />

Naval Research Lab,<br />

Code 6120<br />

Washington, DC 20375-5000<br />

Kenne<strong>th</strong> D. Hope<br />

Univ of Atabama-Birmgham.<br />

Dept of Chemistry<br />

University Station<br />

Birmingham, AL 35294<br />

David I. Houtt<br />

NIH<br />

9000 Rockvilte Pike<br />

Be<strong>th</strong>esda, MD 20892


Edward S. Hsi<br />

Union Carbide Corp.<br />

PO Box 670<br />

Bound Brook, gJ 08805<br />

Dee-Hua Huang<br />

University of Atabama<br />

NMR Facitity/CHS B-31<br />

Birmingham, AL 35294<br />

Robert L. Hubbard<br />

Tektronix Inc.<br />

Box 500,MS50-324<br />

Beaverton, OR 97077<br />

Steven Huhn<br />

Nabisco Brands Res. Ctr.<br />

100 DeForest Ave.<br />

East Hanover, NJ 07936<br />

Ca<strong>th</strong>erine T. Hunt<br />

Rohm & Haas Co.<br />

Anatyticat Res 8B<br />

Spring House, PA 19477<br />

Stuart Hurtbert<br />

Burroughs Wellcome<br />

3030 Cornwattis Rd.<br />

Res Tri.Park, NC 27709<br />

Tracey Hutchins<br />

Chemicat Dynamics<br />

3001Hadtey Road<br />

PO Box 395<br />

So. Ptainfietd, NJ 07080<br />

David A. Ikenberry<br />

Univ of Catif.-San Diego<br />

Dept of Chemistry<br />

B-014<br />

La Jotta, CA 92093<br />

Dan Iverson<br />

Varian Associates<br />

611Hansen Way<br />

ParD Atto, CA 94303-0883<br />

Victoria J. Jacob<br />

Spectrat Data Services<br />

818 Pioneer<br />

Champaign, IL 61820<br />

Grace Hsu<br />

M & T Chemicats<br />

PO Box 1104<br />

Rahway, NJ 07065<br />

Wen-Chang W. Huang<br />

Univ. of Washington<br />

Dept of Chemistry<br />

Seattte, WA 98105<br />

Donatd W. Hughes<br />

McMaster University<br />

Dept of Chemistry<br />

1280 Main St., West<br />

Hamitton,Ont.Canada L8S 4M<br />

Chi Cheng Hung<br />

Washington University<br />

Box 1134<br />

Chemistry Dept.<br />

St. Louis, NO 63130<br />

Brian K. Hunter<br />

Oueen's University<br />

Kingston,<br />

Ontario, Canada K7L 3N6<br />

Cyn<strong>th</strong>ia Husted<br />

Univ of [ttinois<br />

Box 43 Roger Adams Lab<br />

Sch. of Chem. Science<br />

Urbana, IL 61801<br />

WittiamC. Hutton<br />

Monsanto Co.<br />

Life Sci. NMR Ctr.<br />

700 Chesterftd. Vit.Pkwy.<br />

St. Louis, MO 63198<br />

Paut T. Ingtefietd<br />

Ctark University<br />

Dept of Chemistry<br />

Worcester, MA 01610<br />

Pradeep S. lyer<br />

Unocat<br />

Science & Tech.Div<br />

376 S. Vatencia Ave.<br />

Brea, CA 92621<br />

Russett E. Jacobs<br />

Univ. of Catifornia<br />

Dept. of Phys. & Biophys.<br />

Irvine, CA 92717<br />

Victor L. Hsu<br />

Univ. of Catif.-San Diego<br />

B-014 Dept of Chemistry<br />

La Jo[ta, CA 92093<br />

Shaw-Guand Huang<br />

Harvard University<br />

Dept of Chemistry<br />

Cambridge, MA 02138<br />

David Hughes<br />

Varian Associates<br />

611Hansen Way<br />

ParD Afro, CA 94303<br />

David T. Hung<br />

Resonex<br />

720 Pa[omar Ave.<br />

Sunnyva[e, CA 94086<br />

Ratph E. Hurd<br />

GE NNR Inst.<br />

255 Fourier Ave.<br />

Fremont, CA 94539<br />

Howard Hutchins<br />

JEOL USA INC.<br />

11 Dearborn Rd.<br />

Peabody, NA 01960<br />

Geno A. lannaccone<br />

VPI & SU<br />

Chemistry Dept.<br />

Btacksburg, VA 24061<br />

Ru<strong>th</strong> R. Inners<br />

Bruker Instruments<br />

Manning Park<br />

Vitterica, MA 01821<br />

Jasper Jackson<br />

120 Sherwood<br />

Los Atamos, NM 87544<br />

Nazim J. Jaffer<br />

Univ of Catifornia - L.A.<br />

Dept of Chem& Biochem.<br />

Los Angetes, CA 90024


Hans J. Jakobsen<br />

Univ of Aarhus<br />

Dept of Chemistry<br />

800 Aarhus C,<br />

Denmark<br />

Erica Jansson<br />

Univ of Catif.-San Fran.<br />

Science 926<br />

Dept of Pharm. Chem.<br />

San Francisco, CA 94143<br />

Ronald M. Jarret<br />

Cortege of Hoty Cross<br />

Dept of Chem.<br />

Worcester, NA 01610<br />

Lynn W. Jetinski<br />

AT&T Bert Laboratories<br />

600 Mountain Ave.<br />

Murry Hilt, NJ 07974<br />

LeRoy F. Johnson<br />

GE HMR<br />

225 Fourier Ave.<br />

Fremont, CA 94539<br />

Kermit M. Johnson<br />

Michigan State Univ.<br />

Chemistry Dept.<br />

East Lansing, Ml 48824<br />

Eric R. Johnston<br />

IBM Instruments, Inc.<br />

San Jose, CA 95110<br />

Robert L. Jones<br />

Georgia Tech<br />

Chemistry Dept.<br />

Attanta, GA 30332<br />

Deborah A. Kattick<br />

UCAL, Berketey<br />

Lab for Chem. Biodynamics<br />

Catvin Lab, Dept of Chem<br />

Berketey, CA 94720<br />

Samue[ Kaptan<br />

Xerox Corp.<br />

800 Phittips Rd.<br />

0114 24D<br />

Webster, NY 14580<br />

Thomas L. James<br />

Univ of Catifornia<br />

PO Box 0446<br />

San Francisco, CA 94143<br />

Norma Jardetzky<br />

Stanford University<br />

Stanford Magnetic Lab<br />

Stanford, CA 94305-5055<br />

Thomas P. Jarvie<br />

Univ. of Catifornia<br />

Oept of Chemistry<br />

Berketey, CA 94720<br />

Yi Jin Jiang<br />

University of Utah<br />

Deportment of Chemistry<br />

Box 102<br />

Satt Lake City, UT 8/,112<br />

Bruce A. Johnson<br />

Yate Univ./Sch of Med.<br />

Dept of Mot Biophys<br />

PO 3333<br />

New Haven, CT 06510<br />

Connie Johnson<br />

Bruker Instruments<br />

Manning Park<br />

git[erica, MA 01821<br />

Atan A. Jones<br />

Ctark University<br />

Dept of Chemistry<br />

Worcester, NA 01610<br />

Tom Jue<br />

Yate University<br />

Mot Biophys & Biochem.<br />

New Haven, CT 06511<br />

Pau[ Kanyha<br />

GE NMR Institute<br />

255 Fourier Ave.<br />

Fremont, CA 94539<br />

Leeta Kar<br />

Univ. of Ittinois<br />

Dept of Ned. Chem<br />

PO Box 6998<br />

Chicago, IL 60680<br />

Na<strong>th</strong>an J. Janes<br />

Johns Hopkins Univ NIAAA<br />

1800 E. Jefferson St.<br />

Battimore, MD 21205<br />

Harotd C. Jarrett<br />

Nat't. Res. Councit-Canada<br />

Div. of Biotogica[ Science<br />

Ottawa,Ont. Canada K1A OR6<br />

Linda A. Jeticks<br />

Hunter cortege<br />

695 Park Ave.<br />

New York City, NY 10021<br />

Constantino Job<br />

Auburn lnternational-iMR<br />

4473 Wittow Rd. Ste. 105<br />

Hacienda Business Pk.<br />

Pteasonton, CA 94566<br />

James H. Johnson<br />

Hoffmann-La Roche<br />

340 Kingstand St.<br />

Btdg 71<br />

Nuttey,, NJ 07110<br />

Chartes S. Johnson, Jr.<br />

Univ of Nor<strong>th</strong> Carolina<br />

Dept of Chem., 045A<br />

Chape[ Hitt, NC 27514<br />

Ctaude R. Jones<br />

Purdue University<br />

Dept of Chemistry<br />

W. Lafayette, IN 47907<br />

Gary P. Juneau<br />

Otin Corporation<br />

PO Box 586<br />

Cheshire, CT 06410-0586<br />

Lung Fa (Jeff) Kao<br />

Ctorox Tech Center<br />

PO Box 493<br />

Pteasanton, CA 94566<br />

Gregory S. Karczmar<br />

Univ. of Catif.-San Fran.<br />

415 Warren Dr. #11<br />

San Francisco, CA 94131


Rodney V. Kastrup<br />

Exxon Research & Engineeri<br />

Rte. 22 E. CLinton Townshi<br />

Annandate, NJ 08801<br />

Lewis E. Kay<br />

Yale University<br />

Oept of Chemistry<br />

225 Prospect St.<br />

Hew Haven, CT 06511<br />

James H. Keetar<br />

Cambridge University<br />

University Chemistry Lab<br />

Lensfield Rd.<br />

Canbridge, England CB21EW<br />

Tony Keller<br />

Bruker Instruments<br />

Manning Park<br />

Billerica, HA 01821<br />

Max A. Keniry<br />

Univ. of California<br />

Dept of Pharm. Chem.<br />

San Francisco, CA 94143<br />

Robert A. Kinsey<br />

BF Goodrich<br />

Res & Oeve[. Ctr.<br />

9921Brecksvitte Rd.<br />

Brecksvitte, OH 44141<br />

Branimir Ktaic<br />

Stanford Nag. Res. Lab<br />

Stanford University<br />

Stanford, CA 94305-5055<br />

Christopher T. G. Knight<br />

Univ. of Illinois<br />

Sch. Chemical Science<br />

505 S. Ma<strong>th</strong>ews Ave.<br />

Urbana, IL 61801<br />

Richard A. Komoroski<br />

Univ. of Ark for Hed.Sci.<br />

Slot 596 4301W. Markham<br />

Little Rock, AR 72205-71~<br />

Alan M. Kook<br />

Rice University,NHR Ctr.<br />

Dept of Chemistry/Rm 309A<br />

Houston, TX 77005<br />

Robert J. Kauten<br />

Univ. of California-Davis<br />

717 Atvarado #168<br />

Davis, CA 95616<br />

David R. Kearns<br />

Univ. of Calif.-San Diego<br />

Dept of ChemB-014<br />

La Jotta, CA 92093<br />

Paul A. Keifer<br />

Univ. of Ittinois<br />

School of Chem. Science<br />

Box 95-9<br />

Urbana, IL 61801<br />

Michael F. Ketty<br />

GE NMR Institute<br />

255 Fourier Ave.<br />

Fre~nont, CA 94539<br />

Gordon J. Kenned,/<br />

Esso Petroleum Canada<br />

PO Box 3022 Research Dept<br />

Sarnia/Ont. Can. N7T 7141<br />

Agustin B. Kintanar<br />

University of Washington<br />

Dept of Chemistry/BG-lO<br />

Seattle, WA 98195<br />

Melvin P. Klein<br />

Univ. of Calif.-Berkeley<br />

Lawrence Berkety Lab<br />

Berkeley, CA 94720<br />

Mark J. Knudsen<br />

Univ of California-Davis<br />

Dept of Biol. Chem.<br />

School of Medicine<br />

Davis, CA 95616-2043<br />

Hobby Kondo<br />

JEOL USA INC<br />

11 Dearborn Rd.<br />

Peabody, HA 01960<br />

Max Kopetevich<br />

UCLA<br />

Dept of Chemistry<br />

405 Hilgard Ave.<br />

Los Angeles, CA 90024<br />

Roger A. Kautz<br />

Stanford Medical Ctr.<br />

Dept of Cell Biotogy,DlO5<br />

Stanford, CA 94305<br />

Joseph D. Keegan<br />

GE NHR Institute<br />

255 Fourier Ave.<br />

Fremont, CA 94539<br />

Paul J. Keller<br />

Barrow Neurot. Inst.<br />

350 W. Thomas Rd.<br />

Phoenix, AZ 85013<br />

Raymond D. Kendrick<br />

IBM Research<br />

650 Harry Rd.<br />

San Jose, CA 95120-6099<br />

Albrecht Khuen<br />

Technical Univ of Berlin<br />

lwan-N.-Stanski-Inst.<br />

Str. 17 Juni 112,D-1000<br />

Berlin 12,Gerrnany<br />

Gregory L. Kirk<br />

Resonex<br />

720 Patomar Ave.<br />

Sunnyvale, CA 94086<br />

Jack Ktinowski<br />

Univ. of Cambridge<br />

Dept of Physical Chemistry<br />

Lensfietd Rd.<br />

CatTibrdg, Eng. CB21EP<br />

Frank E. Koehn<br />

Sea Pharm/Harbor Branch<br />

Oceanographic Inst.<br />

5600 Old Dixie Hwy.<br />

Ft. Pierce, FL 33450<br />

Marvin J. Kontney<br />

Univ. of Wisconsin<br />

Dept. of Chemistry<br />

1101 University Ave.<br />

Madison, gi 5]706<br />

Christoph Koppen<br />

Univ Bremn - FRG<br />

Physics Dept.<br />

2800 Bremen 33/FRG


Donald W. Kormos<br />

Case Western Univ.<br />

Dept of Radiology<br />

University Circle<br />

Cleveland, OH 44106<br />

David Kramer<br />

Diasonics, Inc.<br />

533 Cabot Rd.<br />

San Francisco, CA 94080<br />

V. V. Krishnamur<strong>th</strong>y<br />

Univ of California<br />

Pest. Chem. & Tox. Lab.<br />

Berketey, CA 94720<br />

Atsushi Kubo<br />

Univ. British Cotu~ia<br />

Dept of Chemistry<br />

2036 Main Matt<br />

Vancouver/Be,Can. V6T 1Y6<br />

Katsuhiko Kushida<br />

Varian Associates<br />

611Hansen Way<br />

Pa[o Alto, CA 94303<br />

Douglas N. Lamb<br />

Univ. of Illinois<br />

Noyes Lab Box 17-1<br />

505 S. Na<strong>th</strong>ews<br />

Urbana, IL 61801<br />

David Lankin<br />

Varian Associates<br />

205 W. Touny Ave.<br />

Park Ridge, ]L 60068<br />

Dirk Laukiem<br />

Bruker Instruments<br />

Manning Park<br />

Bitterica, HA 01821<br />

Ted Lawry<br />

Vet. Admin. Ned. Ctr.<br />

HRS Lab (11D)<br />

4150 Clement St.<br />

San Francisco, CA 94121<br />

Joseph H.C. Lee<br />

Sou<strong>th</strong>ern Illinois Univ.<br />

Dept of Chem. & Biochem.<br />

Carbondate, IL 62901<br />

Christine A. Kostek<br />

IBN Instruments<br />

Orchard Park<br />

PO Box 3332<br />

Danbury, CT 06801<br />

Thomas P. Krick<br />

Univ. Ninnesota<br />

Dept of Biochemistry<br />

1479 Gortner Ave.<br />

St. Paul, MN 55108<br />

Bata S. Krishnan<br />

Bristol Nyers Co.<br />

5 Research Pkwy.<br />

Wattingford, CT 06492<br />

Philip L. Kuhns<br />

Chemagnetics, inc.<br />

208 Commerce Drive<br />

Ft. Collins, CO 80524<br />

Gittes Labette<br />

Cambridge Isotope Labs<br />

20 Commerce Way<br />

Woburn, HA 01801<br />

Joseph B. Lambert<br />

Nor<strong>th</strong>western Univ.<br />

Chemistry Dept.<br />

Evanston, IL 60201<br />

Laurine A. LaPtanche<br />

Nor<strong>th</strong>ern Illinois Univ.<br />

Dept of Chemistry<br />

DeKatb, IL 60115<br />

Frank Laukiem<br />

Bruker Instruments<br />

Hanning Park<br />

Bitterica, HA 01821<br />

W. John Layton<br />

Univ of Kentucky<br />

NRC<br />

Chemistry Dept.<br />

Lexington, KY 40506-0053<br />

Robert W. K. Lee<br />

Univ of California<br />

Chemistry Dept.<br />

Riverside, CA 92521<br />

John F. Koztouski<br />

Purdue University<br />

Dept. of Nedicina[ Chem.<br />

School of Pharmacy<br />

West Lafayette, lN 47907<br />

N. Rama Krishna<br />

Univ of Alabama<br />

NHR Core Fac. CHS B-31<br />

Birmingham, AL 35294<br />

Richard W. Kriwacki<br />

Boehringer Ingelheim<br />

Pharmaceutical, Inc.<br />

90 E. Ridge Rd.<br />

Ridgefietd, CT 06877<br />

Ahi[ Kumar<br />

Syracuse University<br />

305 Bowne Hall<br />

Syracuse, NY 13210<br />

Gerd N. LaMar<br />

Univ. of Calif.-Davis<br />

Davis, CA 95616<br />

Andrew N. Lane<br />

NlHR-London<br />

The Ridgeway Nitl Hilt<br />

London, England NW7 1AA<br />

Ernest Douglas Laue<br />

Univ. of Cambridge<br />

Dept of Biochemistry<br />

Tennis Ct. Road<br />

Cambridge,England CB2 1QW<br />

Paul C. Lauterbur<br />

University of lttinois<br />

Biemedicat NR Lab<br />

1307 West Park<br />

Urbana, IL 61801<br />

Chang J. Lee<br />

Univ of California<br />

Dept of Chemistry<br />

Berkely, CA 94720<br />

Yu-Hwei Lee<br />

Univ. Illinois-Chicago<br />

Ned ChemDept<br />

833 S. Wo(xJ St.<br />

Chicago, II 60612


Guang-Huei Lee<br />

Sun Refining/Hkting Co.<br />

PO Box 1135<br />

Narcus Hook, PA 19061-0835<br />

Hark Leifer<br />

Varian Associates<br />

611Hansen gay<br />

Pato ALto, CA 94303<br />

Hary Frances LeopoLd<br />

University of Utah<br />

Dept of Chemistry<br />

Salt Lake City, UT 84112<br />

Nartin E. Levenson<br />

Auburn Int'[ IHR Div.<br />

Eight ELectronics Ave.<br />

Danvers Industrial Pk<br />

Danvers, HA 01923<br />

George C. Levy<br />

Neu Me<strong>th</strong>ods Research Inc.<br />

Syracuse University<br />

305 Bowne Hall<br />

Syracuse, NY 13210<br />

Robert L. Lichter<br />

S.U.N.Y.Stony Brook<br />

2401 Lab Office BLdg.<br />

Stonybrook, NY 11794-4433<br />

Fu-Tyan Lin<br />

Univ of Pittsburgh<br />

1305 CB/ChemDept<br />

Pittsburgh, PA 15260<br />

Peter Ltewettyn<br />

Varian Associates<br />

611Hansen Way<br />

Pa[o ALto, CA 94303<br />

George H. Lohrer<br />

Programmed Test Sources<br />

9 Beaver Brook Rd.<br />

Littteton, HA 01460<br />

Irving J. Lowe<br />

Carnegie MeLlon Univ.<br />

BiD[ Sci<br />

4400 Fif<strong>th</strong> Ave.<br />

Pittsburgh, PA 15213<br />

Suzannie C. Lee<br />

Proctor & GambLe Co.<br />

Miami VaLLey Labs.<br />

Box 39175<br />

Cincinnati, OH 45247<br />

PhiLip Leighton<br />

Univ of PennsyLvania<br />

Dept of Chemistry<br />

Phita., PA 19104-6323<br />

CharLes L. Lerman<br />

ICI Americas<br />

Concord Pike & Hurphy Rd.<br />

gitmington, DE 19897<br />

John R. Levin<br />

General ELectric Co.<br />

199 Pomeroy Rd.<br />

Suite 104<br />

Parsippany, NJ 07054<br />

Barbara A. Lewis<br />

Univ. Wisconsin-Madison<br />

Dept of Chemistry<br />

1101 University Ave.<br />

Madison, WI 53706<br />

John J. Likos<br />

Honsanto Co.<br />

700 ChesterfieLd ViLLage P<br />

St. Louis, NO 63198<br />

Shang-Bin Liu<br />

Univ. of CaLifornia<br />

Chemistry Dept.<br />

HiLdebrand D-64<br />

BerkeLey, CA 94720<br />

H. Lock<br />

See abstract<br />

James L. Loo<br />

Univ CaLifornia<br />

Div of Nature Sciences<br />

Santa Cruz, CA 95064<br />

Peter Luksch<br />

Scientific Info Services<br />

7 Woodtand Ave.<br />

Larchmont, NY 10538<br />

Yang-Chih Lee<br />

Thomas Jefferson Univ.<br />

5 Jacatyn Dr.<br />

Havertown, PA 19065<br />

Gregory Leo<br />

Honsanto 018<br />

800 N. Lindbergh BLvd.<br />

St. Louis, NO 63167<br />

Laura Lerner<br />

LCP/NIADDK/NIH<br />

Btdg 2 Rm B2-08<br />

Be<strong>th</strong>esda, HI) 20892<br />

Hatcotm H. Levitt<br />

NIT<br />

NW14-5122<br />

Cambridge, NA 02139<br />

Shi-Jiang Li<br />

Johns Hopkins<br />

Sch. Ned.310 TayLor<br />

720 RutLand Ave.<br />

BaLtimore, MD 21205<br />

Hans H. Limback<br />

Univ of Frieburg<br />

Physical Chemistry<br />

ALbert Str.21<br />

07800 Freiburg W.Ger<br />

David Live<br />

Emory University<br />

Dept of Chemistry<br />

AtLanta, GA 30322<br />

Michael P. Lohrer<br />

Programmed Test Sourses<br />

9 Beaver Brook Rd.<br />

Littteton, HA 01460<br />

Jan Lovy<br />

Kingston Tech Inc.<br />

2235B Route 130<br />

Dayton, NJ 08810<br />

Robert E. Lundin<br />

gestern Req. Res. Ctr.<br />

800 Buchanan St.<br />

ALbany, CA 94710


P. R. Luyten<br />

Univ. of California<br />

Chemistry Dept.<br />

La Jolta, CA 92093<br />

James W. Rack<br />

Nat't Inst. of Dent. Res.<br />

NIH Btdg 30 Rm 106<br />

Be<strong>th</strong>esda, HI) 20892<br />

Prem P. Mahendroo<br />

Atcon Laboratories, inc.<br />

6201S. Freeway<br />

Ft. Wor<strong>th</strong>, TX 76134<br />

Paul D. Majors<br />

Lovetace Medical Found.<br />

2425 Ridgeorest Dr, SE<br />

Albuquerque, NM 87108<br />

Douglas R. Manatt<br />

Lawrence Livermore Lab<br />

Nuclear Chem, LLNL<br />

PO Box 808 L-233<br />

Livermore, CA 94550<br />

Steven R. Maple<br />

Indiana University<br />

Dept of Chemistry<br />

Btoemington, IN 47405<br />

Charlene Marie<br />

Ctorox Tech Center<br />

7200 Johnson Dr.<br />

Pteasanton, CA 94566<br />

Trevor G. Marshall<br />

E.F. Unicon Systems Inc.<br />

3423 Hilt Canyon Ave.<br />

Thousand Oaks, CA 91360<br />

Gerald B Matson<br />

VA Nedica[ Center<br />

MRS Lab (11D)<br />

4150 Clement St.<br />

San Francisco, CA 94121<br />

Nark Mattingty<br />

Bruker Instruments<br />

Manning Park<br />

Bitterica, HA 01821<br />

James R. Lyerla<br />

IBM Almaden Res. Ctr.<br />

650 Harry Rd.<br />

San Jose, CA 95120<br />

Alexander G. Hacur<br />

Neu Me<strong>th</strong>ods Research inc.<br />

719 E. Genesee St.<br />

Syracuse, NY 13210<br />

Vera V. Hainz<br />

University of Illinois<br />

Sch. of Chemical Sciences<br />

Box 34-1<br />

Urbana, 1L 61801<br />

J. An<strong>th</strong>ony Hatikayit<br />

Yale University<br />

Dept. HBB<br />

333 Cedar St.<br />

Neu Haven, CT'06510<br />

Sadasivam Manogaran<br />

Univ of California<br />

Dept of Pharm. Chem.<br />

San Francisco, CA 94143<br />

Paul S. Marchetti<br />

Univ. of So. Carolina<br />

Chemistry Dept.<br />

Cotun~ia, SC 29205<br />

Ron Raron<br />

Merck Institute<br />

Merck & Co., Inc.<br />

PO Box 2000<br />

Rahway, NJ 07065<br />

Joel F. Martin<br />

Univ. Calif.-San Diego<br />

Dept of Radiology/H-756<br />

San Diego, CA 92103<br />

Shigeru Matsui<br />

Hitachi Central Res. Lab.<br />

Hitachi, Ltd.<br />

PO Box 2<br />

Kokubunji, Tokyo 185 Japan<br />

Anabeta Haynard<br />

Univ. of Toronto<br />

80 St. George St.<br />

Toronto, M55 1A1 Canada<br />

Gary E. Maciel<br />

Colorado State Univ.<br />

Chemistry Dept.<br />

Ft. Collins, CO 80523<br />

Michael L. Haddox<br />

Syntex Corp. Res. Div.<br />

3401Hittview Ave.<br />

PaiD Alto, CA 94304<br />

Truett Majors<br />

Varian Associates<br />

611Hansen Way<br />

Pard At[o, CA 94303<br />

Stanley L. Manatt<br />

Jet Propulsion Laboratory<br />

4800 Oak Grove Dr.<br />

Pasadena, CA 91109<br />

Jintong MaD<br />

University of Florida<br />

HRI Group<br />

Dept of Radiology<br />

Gainesvitte, FL 32611<br />

Thomas H. Hareci<br />

University of Florida<br />

Radiology Dept<br />

Box J-374<br />

Gainesvitte, FL 32610<br />

Brian J. Marsden<br />

Univ. of Alberta<br />

Dept of Biochem.<br />

Edmonton,<br />

Alberta, Canada T6G 2H7<br />

G. D. Mateescu<br />

Case Western Resrv. Univ.<br />

Cleveland, OH 44106<br />

George Hattinger<br />

Diasonics, Inc.<br />

533 Cabot R.<br />

San Francisco, CA 94080<br />

Charles L. Nayne<br />

University of Utah<br />

Dept of Chemistry<br />

Salt Lake City, UT 84112


John HcAutiffe<br />

Univ of Cincinnati<br />

Oept of Anes<strong>th</strong>esia<br />

231Be<strong>th</strong>esda Ave.<br />

Cincinnati, OH 45267<br />

Lewis NcDonald<br />

JEOL USA INC.<br />

11 Dearborn Rd.<br />

Peabody, NA 01960<br />

Stuart J. McLachlan<br />

General Electric Co.<br />

255 Fourier Ave.<br />

Freemont, CA 94539<br />

Lee McPeters<br />

Rohm & Haas Co.<br />

PO Box 219<br />

Bristol, PA 19007<br />

Ronatd A. Merrill<br />

YaLe University<br />

Sterling Chem Lab<br />

PO Box 6666<br />

New Haven, CT 06511-8118<br />

Frank Michaets<br />

Eastman Kodak Res. Labs.<br />

Eastern Ave.<br />

Rochester, NY 14650<br />

PameLa A. Mitts<br />

Univ of Calif.-San Fran.<br />

Dept of Pharm. Chem.<br />

San Francisco, CA 94143<br />

Peter A. Mirau<br />

AT&T BeLt Labs<br />

600 Mountain Ave.<br />

Murray HILL, NJ 07974<br />

ore Mots<br />

gayne State Univ.<br />

Dept of Chemistry<br />

Detroit, Ml 48202<br />

Courtney F. Morgan<br />

Univ. of CaLif.-Santa Cruz<br />

Natural Sciences It<br />

Santa Cruz, CA 95064<br />

Mark A. McCoy<br />

Frick Chemical Lab<br />

Washington Road<br />

Princeton, NJ 08544<br />

Jacquetine L. McGourty<br />

Univ. of CaLif.-Davis<br />

Dept of Chemistry<br />

Davis, CA 95616<br />

fan J. McLettan<br />

Johns Hopkins Ned. Sch.<br />

Dept of Radiology<br />

BaLtimore, MD 21205<br />

James H. Medley<br />

BristoL-Myers<br />

Pharm. Res. & Dev. Div.<br />

PO Box 4755<br />

Syracuse, NY 13221-4755<br />

Kenne<strong>th</strong> R. Metz<br />

Penn State Univ.<br />

Hershey Red. Ctr/Rad.Dept.<br />

PO Box 850<br />

Hershey, PA 17033<br />

John M. Mittar<br />

Yale University<br />

Dept of Chemistry<br />

PO Box 6666<br />

New Haven, CT 06511<br />

Michael J. Minch<br />

Univ. of Pacific<br />

Dept of Chem.<br />

Stockton, CA 95211<br />

Hitoshi Miura<br />

E356/113,CR.D,<br />

E.].DuPont de Nemours<br />

Wilmington, DE 19898<br />

Ben Montez<br />

818 Pioneer<br />

Champaign, IL 61820<br />

Paul K. Morris<br />

Morris Instruments Inc.<br />

1382 McMahon Ave.<br />

GLoucester,<br />

Ontario, Canada K1T 1C3<br />

Paula L. McDaniet<br />

Univ. of Illinois<br />

505 S. Ma<strong>th</strong>ews<br />

Box 35-1Dept of Chem.<br />

Urbana, IL 61801<br />

Robert A. McKay<br />

gashington University<br />

Dept of Chem/Camp Bx1134<br />

1Brookings Dr.<br />

St. Louis, NO 63130<br />

Ronatd McNamara<br />

Univ. of PennsyLvania<br />

Dept of Chemistry<br />

PhiladeLphia, PA 19104<br />

Michael T. Melchior<br />

Exxon Research<br />

Clinton Township<br />

Annandate, NJ 08801<br />

Dieter Meyerhoff<br />

Univ. of Calif.-Berkeley<br />

Dept of Chemistry<br />

Berkeley, CA 94720<br />

Joel B. HilLer<br />

Naval Research Lab<br />

Code 6120<br />

Washington, DC 20375-5000<br />

Virginia W. Miner<br />

Dow Chemical Co.<br />

Btdg 574<br />

Midland, MI 48667<br />

Steven C. Mohr<br />

GE NNR Instruments<br />

255 Fourier Ave.<br />

Fremont, CA 94539<br />

J. Robert Mooney<br />

Standard OiL Co.<br />

4440 Warrensvilte Ctr Rd.<br />

Cleveland, OH 44128<br />

George O. Morton<br />

American Cyanamid Co.<br />

Lederte Labs Div.<br />

Pearl River, NY 10965


Michael E. Noseley<br />

Univ of California -S.F.<br />

Dept of Radiology<br />

Box 0446<br />

San Francisco, CA 94143<br />

Donald D. Huccio<br />

Univ. Of ALabama<br />

Dept of Chemistry<br />

Birmingham, AL 35294<br />

Nar<strong>th</strong>a P. Nurari<br />

Liposome Technology Inc.<br />

1050 Hamilton Court<br />

Menlo Park, CA 94025<br />

Joseph Nurphy-Boesch<br />

Univ of California<br />

School of Pharmacy<br />

Box 0446<br />

San Francisco, CA 94143<br />

Barbara L. Nyers-Acosta<br />

Lockheed Hiss. & Space Co.<br />

0/48-92 B/195B<br />

PO Box 3504<br />

Sunnyvale, CA 94088-3504<br />

Lewis E. Nance<br />

Univ. of Nor<strong>th</strong> Carolina<br />

Dept of Chemistry<br />

601S. College Rd.<br />

Wilmington, NC 28403-3297<br />

Sarah J. Nelson<br />

Fox Chase Cancer Center<br />

NHR Labs<br />

77'01Burhotme Ave.<br />

Philadelphia, PA 19111<br />

David G. Nettesheim<br />

Abbott Labs<br />

D-47G, AP9<br />

Abbott Park, IL 60064<br />

Xuan-Zhong Ni<br />

Doty Scientific<br />

600 Ctemson Rd.<br />

Colun~oia, SC 29223<br />

Ann T. Nicot<br />

Litton-Guidance & Control<br />

5500 Canoga Ave.<br />

Woodland Hilts, CA 91365<br />

Edwin Hotelt<br />

Dept of Chemistry<br />

San Francisco State Univ.<br />

1600 Holtoway Ave.<br />

San Francisco, CA 94132<br />

Karl T. Muetter<br />

Univ of Calif.- Berkeley<br />

Dept of Chemistry<br />

Berkeley, CA 94720<br />

James B. Murdoch<br />

Picker Inter.<br />

NHR Division<br />

5500 Avion Park Dr.<br />

Highland Heights, OH 44143<br />

Martin S. Mutter<br />

McNeil Pharmaceuticats<br />

Dept of Chemical Research<br />

Sprg. House, PA 19477-0776<br />

Donald L. Naget<br />

Eppley Institute<br />

Univ. Nebraska Ned Ctr.<br />

Omaha, NE 68105<br />

Surinder Singh Naruta<br />

Scripps Clinic & Research<br />

Dept of Notecutar Biol.<br />

10666 g. Torrey Pines Rd.<br />

La Jotta, CA 92037<br />

Janis T. Nelson<br />

Syntex Research<br />

3401Hittvieu Ave.<br />

Pa[o Alto, IL 60566<br />

Richard A. Ne~anark<br />

3N Co.<br />

Btdg 201-BS-05<br />

St. Paul, NN 55144<br />

Brenda C. Nichols<br />

Varian Associates<br />

533 Cabot Rd.<br />

San Francisco, CA 94080<br />

Ronatd A. Nieman<br />

Arizona State University<br />

Chemistry Dept.<br />

Tempe, AZ 85287<br />

Foad Mozayeni<br />

Akzo Chemie America<br />

8401W. 47<strong>th</strong> St.<br />

NcCook,, IL 60525<br />

Detteff Nuetter<br />

Bruker Instruments<br />

Nanning Park<br />

Bitterica, MA 01821<br />

Paul Murphy<br />

IBM Instruments Btdg 1<br />

Orchard Park<br />

Danbury, CT 06810<br />

Mark E. Myers<br />

General Motors Res. Lab.<br />

30500 Mound Road<br />

Warren, Ml 48090-9055<br />

Thomas T. Nakashima<br />

Univ of ALberta<br />

Chemistry Dept.<br />

Edmonton,<br />

Atta.,Canada T6G 2G2<br />

Vitas garutis<br />

gatco Chemicals<br />

One Nalco Center<br />

gaparvitte, IL 60566<br />

Janis T. Nelson<br />

Syntex Research<br />

3401Hittvieu Ave.<br />

Paid Alto, CA 94304<br />

Richard D. Neumark<br />

Laurence Berkeley Lab<br />

MS 55-121<br />

1 Cyclotron Road<br />

Berkeley, CA 947"20<br />

Linda Nichotson<br />

Florida State University<br />

Inst. Hote.Biophys.<br />

Tallahassee, FL 32306<br />

Walter P. Nienczura<br />

University of Hawaii<br />

Chemistry Dept.<br />

Honolulu, HI 96822


Robin A. Nissan<br />

Naval Weapons Center<br />

Code 3851Nichetson Lab<br />

China Lake, CA 93555<br />

Atsuko Y. Nosaka<br />

NIH<br />

Nat't Inst. of Aging<br />

Gerontology Center<br />

Baltimore, ND 21224<br />

Coteen Young O'Gara<br />

Wayne State Univ.<br />

Chemistry Dept.<br />

410 W. Warren Ave.<br />

Detroit, N! 48202<br />

Mark A. O'Neil-Johnson<br />

IBM Instruments<br />

40 Airport Pkwy.<br />

San Jose, CA 95110<br />

Jong H. Ok<br />

Univ. of Calif.-San Diego<br />

Dept of Chemistry<br />

La Jotta, CA 92093<br />

ALan W. Otson<br />

General Electric NHR<br />

3165 Ludlow Rd.<br />

Shaker Hgts., OH 44120-283<br />

Anita M. Orendt<br />

Univ of Utah<br />

Chemistry Dept/Box 6G<br />

Salt Lake City, UT 84112<br />

James D. Otvos<br />

Univ of Wisconsin<br />

at Nitwaukee<br />

Dept of Chemistry<br />

Nitwaukee, W! 53201<br />

Peter J. Paterson<br />

JEOL USA INC<br />

11 Dearborn Rd<br />

Peabody, HA 01960<br />

Ross Payne<br />

Varian Associates<br />

611Hansen Way<br />

Pato Alto, CA 94303-0883<br />

Joseph H. Noggte<br />

University of Delaware<br />

Dept of Chemistry<br />

Newark, DE 19711<br />

Rudi Nuntist<br />

Univ. of California<br />

Chemistry Dept.<br />

Berkeley, CA 94720<br />

John F. O'Gara<br />

General Ntrs Tech Res. Lab<br />

30500 Hound R.<br />

Warren, N! 48090-9055<br />

Terrance G. Oas<br />

NIT<br />

Francis Bitter Natl Nag. L<br />

Cambridge, HA 02139<br />

Eric Otdfietd<br />

University of Illinois<br />

Sch. of Chemical Science<br />

505 S. Na<strong>th</strong>ews<br />

Urbana, IL 61801<br />

Stanley J. Opetta<br />

Univ of Pennsylvania<br />

Dept of Chemistry<br />

PhiladeLphia, PA 19104<br />

Donald G. Ott<br />

Los Atamos Nat't. Lab.<br />

Exptos. Tech. Group<br />

MSG-920<br />

Los Atames, NN 87545<br />

Allen R. Palmer<br />

Chernagnetics<br />

208 Commerce Dr.<br />

Ft Collins, CO 80524<br />

Steven L. Patt<br />

Varian Associates<br />

611Hansen gay<br />

Pato ALto, CA 94303<br />

Robert N. Pearson<br />

3590 Churchitt Ct.<br />

Auburn Int~l IMR Div.<br />

Pteasanton, CA 94566<br />

Carol I. Noggte<br />

Medtab, Inc.<br />

8 Falcon Court<br />

Wilmington, DE 19808<br />

Daniel J. O'Donnett<br />

Chemagnetics, Inc.<br />

208 Commerce Dr.<br />

Ft. ColLins, CO 80524<br />

Daniel J. O'Leary<br />

UCLA<br />

Dept of Chem& Biochem<br />

Los Angeles, CA<br />

Nuneki Ohuchi<br />

JEOL Ltd.<br />

Nakagami Akishima<br />

Tokyo, Japan 196<br />

Edward T. Otejniczak<br />

Abbott Labs Btdg AP9<br />

Pharmaceutical Discovery<br />

Abbott Park, IL 60064<br />

Arnulf Oppett<br />

Siemens A. G.<br />

Henkestr 127<br />

D-8520<br />

Erlangen, FRG<br />

Albin Otter<br />

Univ of Alberta<br />

Dept of Chemistry<br />

Edmonton,<br />

Alta, Canada TSG 2G2<br />

Jona<strong>th</strong>an W. Paschal<br />

Eli Lilly Res. Labs.<br />

Lilly Corp. Center<br />

Indianapolis, 1N 46285<br />

John Paxton<br />

Varian Associates<br />

611Hansen Way<br />

Palo Alto, CA 94303<br />

Gerald A. Pearson<br />

Univ of Iowa<br />

Chemistry Dept.<br />

Iowa City, IA 52242


Joseph H. Pease<br />

Univ. of Calif.-Berkeley<br />

Melvin Calin Lab<br />

Berkeley, CA 94720<br />

Donald J. Pennino<br />

The B.O.C. Group Inc.<br />

100 Mountain Ave.<br />

Nurray Hill, NJ 07974<br />

Carote Perry<br />

Univ of Utah<br />

Chemistry Dept.<br />

Salt Lake City, UT 84112<br />

David H. Peyton<br />

Univ of Catif.-Davis<br />

Dept of Chemistry<br />

Davis, CA 95616<br />

Stephen B. Phitson<br />

Univ. of Minnesota<br />

Dept of Chem.<br />

207 Pleasant St., SE<br />

Minneapolis, MN 55455<br />

T. Phil Pitner<br />

Boehringer lngelheim<br />

90 E. Ridge/PO Box 368<br />

Ridgefie[d, CT 06877<br />

Mark D. Potiks<br />

Univ. of Connecticut<br />

Inst. of Materials Science<br />

U-136<br />

Storrs, CT 06268<br />

Ftemming M. Poutsen<br />

Cartsberg Labs<br />

Dept of Chem.<br />

Gamte Carlsberg VEJIO<br />

DK-2500 Vatby, Copenh Denma<br />

William Proctor<br />

Oxford Instruments<br />

3A Alfred Circle<br />

Bedford, HA 01730<br />

Jin Oiao<br />

San Diego State Univ.<br />

Dept of Chemistry<br />

San Diego, CA 92182<br />

James J. Pekar<br />

Univ. Of Pennsylvania<br />

Dept of Biochem/Biophysics<br />

Philadelphia, PA 19104<br />

Ray Perkins<br />

Varian Associates<br />

505 Jutie Rivers Rd.<br />

Sugar Land, TX 77478<br />

Joseph J. Pesek<br />

San Jose State Univ.<br />

Chemistry Dept.<br />

San Jose, CA 95192<br />

Minh Tan Phan Viet<br />

Univ. of Montreal<br />

Chemistry Dept.<br />

PO Box 6128, Sta. A<br />

Montrt,Oue,Can. H3C 3J7<br />

Francis Picart<br />

Rockefeller Univ.<br />

Box 299<br />

1230 York Ave.<br />

New York, NY 10021<br />

Steven M. Pitzenberger<br />

Merck Sharp & Dohma Res.<br />

Btdg 26o100<br />

West Point, PA 19486<br />

Karl Heinz Pook<br />

Boehringer lnge<strong>th</strong>eim KG<br />

Analytical Chem.<br />

6507 Inge<strong>th</strong>eim<br />

Rhein, West Germany<br />

Thomas K. Pratum<br />

Univ. of Washington<br />

Dept of Chemistry, BG-IO<br />

Seattle, WA 98195<br />

Ronatd J. Pugmire<br />

Univ. of Utah<br />

304 Park Btdg<br />

Salt Lake City, UT 84112<br />

Michael J. Ouast<br />

UTMB-Galveston<br />

200 University Blvd.<br />

St. 601<br />

Galveston, TX 77550<br />

Jeffrey G. Petton<br />

Univ. of Calif.-Berkeley<br />

Melvin Calvin Lab<br />

Berkeley, CA 94720<br />

Thomas G. Perkins<br />

GE NMR, Instruments<br />

255 Fourier Ave.<br />

Freemont, CA 94539<br />

Hark A. Petrich<br />

Univ. of California<br />

Dept of Chem. Eng.<br />

Berkeley, CA 94720<br />

Martin A. Phitlippi<br />

Chtorox Co.<br />

PO Box 493<br />

Pleasanton, CA 94566<br />

Ross G. Pitcher<br />

Hoffman LaRoche<br />

Physical Chemistry Dept.<br />

Nutley, NJ 07110<br />

Nick Ptavac<br />

Univ of Toronto<br />

Dept of Chemistry<br />

80 St. George St.<br />

Toronto,Ont,Canada MSS 1A1<br />

Michael A. Porubcan<br />

E.R. Squibb<br />

PO Box 4000<br />

Princeton, NJ 08543<br />

James H. Prestegard<br />

Yale University<br />

Chemistry Dept.<br />

New Haven, CT 06511<br />

David E. Purdy<br />

Siemens Medical Systems<br />

186goodAve., So.<br />

Iselin, NJ 08830<br />

Gregory Ouinting<br />

Colorado State Univ.<br />

Chemistry Dept.<br />

Ft. Collins, CO 80523


Dattas L. Rabenstein<br />

Dept. of Chemistry<br />

Univ. of Catifornia<br />

Riverside, CA 92521<br />

Tom Raidy<br />

GE NMR Instruments<br />

255 Fourier Ave.<br />

Fremont, CA 94539<br />

Margaret H. Rakowsky<br />

Naval Research Lab.<br />

Code 617]<br />

Washington, DC 20375<br />

Mark A. Rance<br />

Res. Inst. of Scripps Ctin<br />

10666 N. Torrey Pines Rd.<br />

La Jotta, CA 92037<br />

Betty M. Ra<strong>th</strong>er<br />

Pennwatt Co.<br />

900 First St.<br />

King of Prussia, PA 19406<br />

John M. Read<br />

DuPont Medical Prod. Dept.<br />

E336/29<br />

gilmington, DE 19898<br />

Robert A. Reamer<br />

Merck Sharp & Dohme<br />

PO Box 2000, Btdg 801-210<br />

Rahway, NJ 07065<br />

Christina Redfietd<br />

Univ. of Oxford<br />

Inorganic Chemistry Lab.<br />

Sou<strong>th</strong> Parks Road<br />

Oxford, England, UK OXl 30<br />

william F. Reynolds<br />

Univ. of Toronto<br />

Chemistry Dept.<br />

Toronto,Ont.,Canada M5S 1A<br />

Rene Richarz<br />

Varian Associates<br />

611Hansen Way<br />

ParD Alto, CA 94303<br />

Dan Raftery<br />

Univ. of Catif.-Berketey<br />

Hitderbrand D-60<br />

Berkeley, CA 94720<br />

Ponni Rajagopat<br />

UCLA<br />

Dept of Chem& Biochem<br />

c/o Jutie Feigon<br />

Los Angeles, CA 90024<br />

Daniel P. Raleigh<br />

MIT/Rm NW 14-5107<br />

77Massachusetts Ave.<br />

Cambridge, HA 02139<br />

Chris I. Ratctiffe<br />

Nat't. Res. Council Canada<br />

Ottawa, Ont, Can. K1A OR6<br />

Bruce David Ray<br />

IUPUI Physics Dept.<br />

PO Box 647<br />

Indianapetis, IN 46223<br />

David B. Reader<br />

Cambridge Isotope Labs<br />

20 Commerce Way<br />

Woburn, HA 01801<br />

Gade S. Reddy<br />

DuPont Central Research<br />

E328<br />

Wilmington, DE 19898<br />

Jeffrey A. Refiner<br />

Univ of Calif.-Berkeley<br />

Dept Chem. Eng.<br />

201 Gilman Hall<br />

Berkeley, CA 94720<br />

An<strong>th</strong>ony A. Ribeiro<br />

Duke University<br />

Box 3711<br />

Durham, NC 27710<br />

John Rieger<br />

Varian Associates<br />

505 Jutie Rivers Rd.<br />

Sugar Land, TX 7"/478<br />

John I. Ragte<br />

Univ. of Massachusetts<br />

Dept of Chemistry,<br />

LGRT411<br />

Amherst, HA 01003<br />

Srinivasan Rajan<br />

American Cyanamid<br />

PO Box 400<br />

Princeton, NJ 08540<br />

John Ralph<br />

Univ of Calif.-Berkeley<br />

Dept of Chemistry<br />

Berkety, CA 94720<br />

Alan Ra<strong>th</strong><br />

Varian Associates<br />

CNID, Cancer Ct. Rm 228<br />

Albuquerque, NM<br />

G. Joseph Ray<br />

Amoco Research Center<br />

PO Box 400<br />

Napervitte, IL 60566<br />

Lyn Ream<br />

Auburn Int't. IMR Oiv.<br />

4473 Willow Rd.<br />

Hacienda Business Park<br />

Pteasonton, CA 94566<br />

Richard D. Redfearn<br />

Marshall Res. & Dev. Lab.<br />

DuPont<br />

3500 Grays Ferry Ave.<br />

Philadelphia, PA 19146<br />

Linda G. Reven<br />

Univ. of Ittinois<br />

Noyes Lab Box 53-1<br />

505 S. Ma<strong>th</strong>ews Rd.<br />

Urbana, IL 61801<br />

Metanie Rice-Bernatzki<br />

Varian Associates<br />

611Hansen Way<br />

Pa[o Alto, CA 94303<br />

Errott S. Riewerts<br />

Sou<strong>th</strong>west Research lnst.<br />

PO Box 28510<br />

San Antonio, TX 7828/,


Peter Rinatdi<br />

Varian Associates<br />

505 Jutie Rivers Rd.<br />

Sugar Land, TX 77478<br />

WiLLiam H. Ritchey<br />

Case Western Resrv. Univ.<br />

Oept of Chemistry<br />

Cleveland, OH 44106<br />

Valerie J. Robinson<br />

Syntex, inc.<br />

2100 Syntex Ct.<br />

Mississuaga,<br />

Ontario, Can. L5N 3X4<br />

JtxJy C. Rodeghero<br />

Clorox Tech Center<br />

Analytical Res. & Serv.<br />

7200 Johnson Dr.<br />

Pleasanton, CA 94566<br />

Stephen B. W. Roeder<br />

San Diego State Univ.<br />

Dept of Physics<br />

San Diego, CA 92182<br />

WiLliam D. Rooney<br />

S.U.N.Y.-Stoneybrook<br />

Dept of Chemistry<br />

Stoneybrook, NY 11794<br />

Kenne<strong>th</strong> 0. Rose<br />

Exxon Research & Engineeri<br />

CLLAB/LH170<br />

Annanda[e, NJ 08801<br />

Daniel W. Ro<strong>th</strong><br />

Amplifier Research<br />

160 School House Rd.<br />

Souderton, PA 18964-9990<br />

Steven P. Rucker<br />

Univ. of Calif.-BerkeLey<br />

Dept of Chemistry<br />

Serketey, CA 94720<br />

Jacques Rutschmann<br />

Diasonics, inc.<br />

533 Cabot Rd.<br />

San Francisco, CA 94080<br />

James H. Riordan<br />

Sou<strong>th</strong>ern Research inst.<br />

PO Box 55305<br />

Birmingham, AL 35255-5305<br />

Christopher D. Ri<strong>th</strong>ner<br />

Warner Lan~bert<br />

2800 Plymou<strong>th</strong> Rd.<br />

Ann Arbor, M1 48105<br />

Thomas J. Robinson<br />

3H Co./Riker Labs<br />

3N Center/Bldg 270-4S-02<br />

St. PauL, HN 55144<br />

James C. Rodgers<br />

Univ of California<br />

Oept of Chemistry, B-014<br />

La Jolla, CA 92093<br />

William L. Rottuitz<br />

Sou<strong>th</strong>west Research Inst.<br />

6220 Cutebra Rd.<br />

PO Box 28510<br />

San Antonia, TX 78284<br />

Thatcher W. Root<br />

Univ of Wisconsin<br />

Dept of Chem. Eng.<br />

Hadison, WI 5]706<br />

Scott Ross<br />

Cattech, 12772<br />

Pasadena, CA 91126<br />

T. Michael Ro<strong>th</strong>geb<br />

Proctor & Gamble<br />

lvorydale Tech. Ctr.<br />

5299 Spring Grove Ave.<br />

Cincinnati, OH 45217<br />

Randat Rue<br />

Varian Associates<br />

1120 Auburn Street<br />

Fremont, CA 94538<br />

Timo<strong>th</strong>y R. Saarinen<br />

Univ. of Nor<strong>th</strong> Carolina<br />

Dept of Chemistry<br />

Chapel Hill, NC 27514<br />

John A. Ripmeester<br />

Nat't. Res. Council-Canada<br />

Div of Chemistry<br />

Ottaua,Ont.,Canada K1A OR9<br />

James E. Roberts<br />

Lehigh University<br />

Chem. Dept/Btdg.6<br />

Be<strong>th</strong>lehem, PA 18015<br />

Ronatd K. Rodebeugh<br />

CIBA-GEIGY Corp.<br />

444 Sa~nilt River Rd.<br />

Ardstey, NY 10502<br />

D. Christopher Roe<br />

OuPont Experimental Sta.<br />

Central Research E356<br />

Wilmington, DE 19898<br />

Alan Ronemus<br />

Univ. of California<br />

Chem Dept B-014<br />

La Jotta, CA 92093<br />

Richard C. Rosanske<br />

Florida State Univ.<br />

Chemistry Dept.<br />

Tatlahassee, FL 32306-3006<br />

Klaus Ro<strong>th</strong><br />

V.A. Ned. Ctr-San Fran.<br />

NHR Lab (110)<br />

4150 Clement St.<br />

San Francisco, CA 94121<br />

David J. Ruben<br />

National Hagnet Lab,HIT<br />

170 Albany St.<br />

Cambridge, HA 02119<br />

John G. Russell<br />

California State Univ.<br />

Dept of Chemistry<br />

Sacramento, CA 95819<br />

Paul Sagalyn<br />

Army Materiats Tech Lab.<br />

SLCNT-OMM<br />

Dept of <strong>th</strong>e Army<br />

Watertown, HA 02172-0001


Ronald Sager<br />

Quantum Design<br />

11568 Sorento Valley Rd.<br />

Suite 15<br />

San Diego, CA 92121<br />

Robert E. Santini<br />

Purdue University<br />

Chemistry Dept #92<br />

West Lafayette, IN 47907<br />

Indrani Sarkai<br />

Vittanova<br />

Viltanova, PA 19085<br />

James D. Satterlee<br />

Univ of New Mexico<br />

Chemistry Dept.<br />

Albuquerque, NM 87131<br />

Brian Sayer<br />

McMaster University<br />

Dept of Chemistry<br />

1280 Main St.,West<br />

Hmttn,Ont,Canada L8S 4M1<br />

Robert A. Schiksnis<br />

Univ of Pennsylvania<br />

Dept of Chemistry D5<br />

Philadelphia, PA 19104<br />

Kirk Schmitt<br />

Mobile Res. & Dev.<br />

PO Box 1025<br />

Princeton, gJ 08540<br />

Everett C. Schreiber<br />

G.E. NMR<br />

255 Fourier Ave.<br />

Fremont, CA 94536<br />

Jay F. Schutz<br />

Henkel Research Corp.<br />

2330 Circadian Way<br />

Santa Rosa, CA 95407<br />

Emil M. Scoffone<br />

Univ. of California<br />

Chemistry Dept.<br />

Berkeley, CA 94720<br />

Felix Satinas, Ill<br />

Univ. Texas Med. Branch<br />

200 University Blvd. Ste 6<br />

Galveston, TX 77550<br />

Armando DeLos Santos<br />

Sou<strong>th</strong>west Res. Inst.<br />

6220 Cutebra Rd.<br />

San Antonia, TX 78284<br />

Susanta K. Sarkar<br />

Smi<strong>th</strong> Ktine & French<br />

L-940 PO Box 7929<br />

Philadelphia, PA 19101<br />

John K. Saunders<br />

Nat'l Res Council of Canad<br />

Div. of Biological Science<br />

Ottawa,Ont,Can. K1A OR6<br />

Terrence A. Scahitt<br />

Upjohn Co.<br />

Physical & Analytical Chem<br />

Kalamazoo, MI 49001<br />

Thomas Schteich<br />

Univ of California<br />

Dept of Chemistry<br />

Santa Cruz, CA 95064<br />

Charles Schramm<br />

Catalytica Assoc., Inc.<br />

430 Ferguson Dr.<br />

Mountain View, CA 94043<br />

Jane K. Schreiber<br />

G.E.NMR<br />

255 Fourier Ave.<br />

Fremont, CA 94538<br />

Herbert M. Schwartz<br />

Renssetaer Polytechnic Ins<br />

Chemistry Dept<br />

Troy, NY 12181<br />

Ka<strong>th</strong>erine N. Scott<br />

Univ. Florida<br />

Miller Heal<strong>th</strong> Ctr.<br />

Radiology Dept.<br />

Gainesvitte, FL 32610<br />

Everett R. Santee, Jr.<br />

Univ of Akron<br />

Institute Polymer Science<br />

302 E. Buchtel Ave.<br />

Akron, OH 44325<br />

K. P. Sara<strong>th</strong>y<br />

Auburn University<br />

Dept of Chemistry<br />

Auburn, AL 36849<br />

Shiro Satoh<br />

Varian Associates<br />

611 gansen Way<br />

ParD Atto, CA 94303<br />

Francoise Sauriot<br />

McGitt University<br />

Chemistry Dept.<br />

Montreat,Oue,Can. H3A 2K6<br />

Jacob Schaefer<br />

Washington University<br />

Dept of Chemistry<br />

St. Louis, MO 63130<br />

Petra Schrnatbrock<br />

Ohio State University<br />

MRI Facility<br />

1630 Upham Drive<br />

Columbus, OH 43210<br />

Suzanne E. Schramm<br />

Mobile Res. & Dev. Ctr.<br />

PO Box 1025<br />

Princeton, RJ 08540<br />

Regina Schuck<br />

G.E. NMR Inst.<br />

255 Fourier Ave.<br />

Fremont, CA 94539<br />

Arnold L. Schwartz<br />

Varian Associates<br />

255 Fourier Ave.<br />

Fremont, CA 94539<br />

Kenne<strong>th</strong> L. Servis<br />

Univ of So. Calif.<br />

Dept of Chemistry<br />

Los Angeles, CA 90089-1062


Naresh K. Se<strong>th</strong>i<br />

Univ. of Utah<br />

Dept of Chemistry<br />

Bx132, Henry Eyrng.Btvd.<br />

Salt Lake City, UT 84112<br />

Bernard L. Shapiro<br />

Texas A & M Univ.<br />

Chemistry Dept.<br />

cortege Station, TX 77843<br />

Peter Shepard<br />

John Wiley & Sons, Ltd.<br />

Baffins Lane<br />

Chichester,<br />

Sussex, England, UK<br />

Yang T. Shieh<br />

Case Western Resrv. Univ.<br />

Dept of Chemistry<br />

CLeveland, OH 44106<br />

Sakae Shiojima<br />

JEOL USA INC.<br />

11 Dearborn Rd.<br />

Peabody, MA 01960<br />

Ben A. Shoulders<br />

University of Texas<br />

Chemistry Dept.<br />

Austin, TX 78712<br />

Ronatd E. Siatkowski<br />

Naval Reserch Lab<br />

Chemistry Division<br />

Code 6122<br />

Washington, DC 20375-5000<br />

Connie S. Sitber<br />

gakefietd Corp.<br />

3131A East 29<strong>th</strong> St.<br />

Bryan, TX 77802<br />

Virgil Simptaceanu<br />

Biotog. Sci/Carnegie Metro<br />

4400 Fif<strong>th</strong> Ave.<br />

Pittsburgh, PA 15213-2683<br />

Larry D. Sims<br />

Univ. of Houston<br />

4800 CaLhoun<br />

Houston, TX 77004<br />

A. J. Shaka<br />

Univ of California<br />

Chemistry Dept.<br />

Berkeley, CA 94720<br />

Michael J. Shapiro<br />

Sandoz Research Inst.<br />

NMR Facilities, Rte 10<br />

East Hanover, NJ 07936<br />

Donald R. Shepherd<br />

AmpLifier Research<br />

160 School House Rd.<br />

Souderton, PA 18964-9990<br />

Carl M. ShieLds<br />

Case Western Resrv. Univ.<br />

Dept of Chemistry<br />

Cleveland, OH 44106<br />

Ata Shirazi<br />

Univ of CaLifornia<br />

Chemistry Dept.<br />

Santa Barbara, CA 93106<br />

Litian G. Shum<br />

Avery International<br />

325 N. Altadena Drive<br />

Pasadena, CA 91107<br />

Hanna Siezputowski-Gracz<br />

Univ of Missouri<br />

Biology Dept.<br />

Columbia, NO 65211<br />

Robin F. Sitverman<br />

ClBA-Geigy Corp.<br />

556 Morris Ave.<br />

Summit, NJ 07901<br />

Etena Simptacenau<br />

Carnegie MeLton Univ.<br />

Ct. Biomed. Res. MeLLon In<br />

4400 Fif<strong>th</strong> Ave.<br />

Pittsburgh, PA 15213-2683<br />

Dean g. Sindorf<br />

Chemagnetics<br />

208 Commerce Dr.<br />

Ft. Cottins, CO 80524<br />

Xi Shan<br />

Univ. Of IlLinois<br />

Box 4-1NL<br />

505 S. Ma<strong>th</strong>ews Ave.<br />

Urbana, IL 61801<br />

Robert L. Shetdon<br />

Varian Associates<br />

611Hansen Way<br />

Pato Alto, CA 94303<br />

Mark H. Sherwood<br />

Univ of Utah<br />

Dept of Chemistry<br />

Salt Lake City, UT 84112<br />

Nancy R. Shine<br />

ICR, Pacific Presb.<br />

Medical Center<br />

2200 Webster St.<br />

San Francisco, CA 94115<br />

James N. Shoo[ery<br />

Varian Associates<br />

611Hansen gay<br />

Pa[o ALto, CA 94303<br />

Dikoma C. Shungu<br />

Hershey Medical Center<br />

Dept of Radiology<br />

Hershey, PA 17033<br />

Steve K. Silber<br />

Texas A & M University<br />

Chemistry Dept.<br />

Cortege Station, TX 77843<br />

Diana R. Sirnonsen<br />

Yale University<br />

Sterling Chemical Lab<br />

225 Prospect St.<br />

New Haven, CT 06511<br />

Marjorie Simpson<br />

Univ of Calif. Berkeley<br />

Dept of Chem Eng.<br />

Berketey, CA 94720<br />

David J. Single<br />

Harvard University<br />

Dept of Chemistry<br />

12 Oxford St. #90<br />

Cambridge, MA 02138


Robert Skarjune<br />

3M Company<br />

Btdg 201-BS-OS/3M Ctr.<br />

St. Paul, MN 55144<br />

George Stomp<br />

The Upjohn Co.<br />

Physical & Analytical Chem<br />

7255-209-006<br />

Kalamazoo, MI 49001<br />

Karen Ann Smi<strong>th</strong><br />

Colgate-Palmolive Co.<br />

909 River Road<br />

Piscataway, NJ 08854<br />

Letand L. Smi<strong>th</strong><br />

Univ of Texas<br />

Medical Branch<br />

Galveston, TX 77550<br />

Steven O. Smi<strong>th</strong><br />

NW14-5107/M1T<br />

Nat't Rag Lab<br />

170 Atbeny St.<br />

cambridge, HA 02139<br />

Richard Snook<br />

Varian Associates<br />

505 Jutie Rivers Rd.<br />

Sugar Land, TX 77478<br />

Mark S. Solum<br />

Univ of Utah<br />

Chemistry Dept<br />

HEB #132<br />

Salt Lake City, UT 84112<br />

Christopher H. Sotak<br />

GE NMR Instruments Inc.<br />

255 Fourier Ave.<br />

Fremont, CA 94539<br />

Charles S. Springer, Jr.<br />

State Univ of New York<br />

Chemistry Dept.<br />

Stony Brook, NY 11794-3400<br />

Ru<strong>th</strong> S. Stamaszek<br />

Abbott Laboratories<br />

Nor<strong>th</strong> Chicago, IL 60064<br />

Tore Skjetne<br />

Sintef, Tronc~eim<br />

Center for NMR<br />

N-7034 Trondheim Noruay<br />

Ca<strong>th</strong>erine Stomp<br />

Medical Theraputics,<br />

9162-243-67<br />

The Upjohn Co.<br />

Kalamazoo, Nl 49001<br />

Martin A. R. Smi<strong>th</strong><br />

Bruker Spectrospin-Canada<br />

555 Steetes Ave. E.<br />

Milton, Ont,Canada L9T 146<br />

Michael B. Smi<strong>th</strong><br />

Henry Ford Hospital<br />

NMR Facility Dept Neur.<br />

2799 W. Grand Blvd.<br />

Detroit, Ml 48202<br />

Wanda S. Smi<strong>th</strong><br />

Univ of California<br />

Dept of Chemistry<br />

Davis, CA 95616<br />

Arlen Soderquist<br />

University of Utah<br />

Chemistry Dept.<br />

Salt Lake City, UT 8/,121<br />

ore Sorenson<br />

E<strong>th</strong> Zurich<br />

Physical Chem Lab<br />

E<strong>th</strong> Zentrum<br />

8092 Zurich Switzertnd<br />

Steven W. Sparks<br />

National Inst. Heal<strong>th</strong><br />

Btdg 30/RmlO6/NIDR<br />

Be<strong>th</strong>esda, MD 20815<br />

J. B. Sptizmesser<br />

Doty Scientific<br />

600 Ctemson Rd.<br />

Columbia, SC 29223<br />

John D. Stanley<br />

Heu Me<strong>th</strong>ods Research<br />

719 E. Genessee St.<br />

Syracuse, HY 13210<br />

Vtadimir Sklenar<br />

NIH, Lab Chem Phys,<br />

NIDDK, 2/Rm B2-22<br />

Be<strong>th</strong>esda, MD 20892<br />

Steve H. Smattcembe<br />

Varian Associates<br />

611Hansen Way<br />

Pato Alto, CA 94303<br />

Rebecca L. Smi<strong>th</strong><br />

Rohm & Haas Co.<br />

Analytical Research<br />

727 Norristown Rd.<br />

Spring House, PA 19477<br />

Stanford L. Smi<strong>th</strong><br />

Univ of Kentucky<br />

MR/SC<br />

101 Stone Bldg.<br />

Lexington, KY 40506-0053<br />

William B. Smi<strong>th</strong><br />

Texas Christian Univ.<br />

Chemistry Dept.<br />

Fort Wor<strong>th</strong>, TX 76129<br />

Nicholas Soffe<br />

University of Oxford<br />

Dept of Biochem<br />

Sou<strong>th</strong> Parks Rd.<br />

Oxford, England, UK<br />

Steven D. Sorey<br />

University of Texas-Austin<br />

Dept of Chemistry<br />

Austin, TX 78712<br />

Richard F. Sprecher<br />

DOE, PETC<br />

PO Box 10940<br />

Pittsburgh, PA 15236<br />

Naurice St-Jacques<br />

Univ of Montreal<br />

Chemistry Dept.<br />

Montreat,Ont,Can H3C3J7<br />

Piotr M. Starewicz<br />

Siemens Medical Systems<br />

186 Wood Ave., So.<br />

Isetin, NJ 08830


Ru<strong>th</strong> E. Stark<br />

College of Staten Island<br />

CUNY<br />

Staten Is,and, NY 10301<br />

Richard L. Stephens<br />

Abbott Laboratories<br />

D418,AP9<br />

Nor<strong>th</strong> Chicago, IL 60004<br />

Phoebe L. Stewart<br />

Univ of Pennsylvania<br />

Chemistry Dept.<br />

Phita., PA 19104-6323<br />

Gerald N. Stockton<br />

American Cyanamid Co.<br />

Agricultural Res. Div.<br />

Princeton, NJ 08540<br />

David Stranz<br />

E.I.Dt~Pont Agr. Prod. Dept<br />

Experimental Station<br />

Wilmington, DE 19898<br />

Nark J. Sullivan<br />

Hercules, inc.<br />

Research Ctr.<br />

Wilmington, DE 19894<br />

Dieter Suter<br />

Univ. of California<br />

Dept of Chemistry<br />

Berkeley, CA 94720<br />

Fred J. Swiecinski<br />

USl Chemicals, Inc.<br />

3100 Golf Rd.<br />

Rolling Neadows, IL 60008<br />

Nikotaus Szeverenyi<br />

S.U.N.Y. Heal<strong>th</strong> Science<br />

Radiology Dept.<br />

708 Irving Ave.<br />

Syracuse, NY 13210<br />

Christian I. Tanzer<br />

Bruker Instruments<br />

Nanning Park<br />

Bitterica, NA 01821<br />

Jona<strong>th</strong>an F. Stebbins<br />

Stanford University<br />

Dept of Geology<br />

Stanford, CA 94305-2115<br />

Larry L. Sterna<br />

Shell Development Co.<br />

PO Box 1380<br />

Houston, TX 77251<br />

Robert C. Stewart<br />

~unoco Prod. Research<br />

4502 E 41st St.<br />

PO Box 3385<br />

Tulsa, OK 74102<br />

Gerhard Stoeckt<br />

Scientific Info Services<br />

7 NoodlandAve.<br />

Larchmont, NY 10538<br />

Jane Strouse<br />

Univ of California<br />

Dept of Chem& Biochem<br />

Los Angeles, CA 90024<br />

GLenn R. Sullivan<br />

GE NNR Instruments Inc.<br />

255 Fourier Ave.<br />

Fremont, CA 94539<br />

Jerome D. Swalen<br />

IBM<br />

Almaden Res. Ctr.<br />

K-34/802, 650 Harry Rd.<br />

San Jose, CA 95120<br />

Brian D. Sykes<br />

Univ of ALberta<br />

Oept of Biochemistry<br />

Edmonton,<br />

ALberta, Canada T6G 2H7<br />

Kiyonori Takegoshi<br />

Univ of California<br />

Dept of Chemistry<br />

Berkeley, CA 94720<br />

Herbert Taus<br />

GE NNR Instruments, Inc.<br />

255 Fourier Ave.<br />

Fremont, CA 94539<br />

Edward O. Stejskat<br />

Nor<strong>th</strong> Carolina State<br />

Dept of Chemistry<br />

Box 8204<br />

Raleigh, NC 27695-8204<br />

Edward Sternin<br />

Univ of British Columbia<br />

Dept of Physics<br />

Vancvr.BC,Canada V6T2A6<br />

Peter Stitbes<br />

Royal Inst Tech<br />

S-10044 Stockholm, Sweden<br />

Waldehar Stoecktern<br />

IBH<br />

650 Harry Rd.<br />

San Jose, CA 95120-6099<br />

Biing-Ning Su<br />

Stauffer Chemical<br />

Eastern Res. Ctr.<br />

Dobbs Ferry, NY 10522<br />

Richard H. Sullivan<br />

Jackson State University<br />

PO Box 17636<br />

Jackson, MS 39217<br />

Linda Sweeting<br />

Towson State University<br />

Chemistry Dept.<br />

Baltimore, HD 21204<br />

Linda L. Szafraniec<br />

Chem Res. Dev. & Eng Ctr.<br />

SNCCR-RSC-P<br />

Abrdn Prv Grnd., MD 21010-<br />

Jau Tang<br />

Argonne National Lab<br />

Chemistry Division<br />

Argonne, IL 60439<br />

Robert E. Taylor<br />

Bruker Instrument<br />

Nanning Park<br />

Bitterica, NA 01821


R. Tearson<br />

See program<br />

Ann N. Thayer<br />

AT&T BeLt Labs<br />

600 Mountain Ave.<br />

Murray HiLt, NJ 07974<br />

Ar<strong>th</strong>ur R. Thompson<br />

Argonne Nat'l Lab<br />

Chemistry E169<br />

9700 S. Cass Ave.<br />

Argonne, IL 60439<br />

Victor Tong<br />

TecNag<br />

6006 Bettaire BLvd.<br />

Houston, TX 77081<br />

Beau James Toy<br />

Univ of Catif- San Fran.<br />

401 Gold Street<br />

Auburn, CA 95603<br />

James Tropp<br />

Diasonics, Inc.<br />

533 Cabot Rd.<br />

San Francisco, CA 94080<br />

Rayond Tse<br />

Desoto Inc. ACAR<br />

1700 S. Mt Prospect Rd.<br />

Des Ptaines, IL 60017<br />

Gary L. Turner<br />

SpectraL Data Services<br />

818 Pioneer<br />

Chanpaign, IL 61820<br />

Feng-Fang Tzeng<br />

Univ. of Catif-Riverside<br />

Dept of Chemistry<br />

Riverside, CA 92521<br />

Stephen ULrich<br />

GE NNR Instruments Inc.<br />

255 Fourier Ave.<br />

Fremont, CA 96539<br />

Mike Tesic<br />

Varian Associates<br />

611Hansen Way<br />

Pato ALto, CA 94303<br />

WiLLiam J. Thoma<br />

Fox Chase Cancer Ctr.<br />

NMR lab<br />

7701 Burhotme Ave.<br />

Phitadetphia, PA 19111<br />

Robert L. Thrift<br />

GE NNR Instruments Inc.<br />

255 fourier Ave.<br />

Fremont, CA 94539<br />

Dennis A. Torchia<br />

Nat'[ Inst. of HeaL<strong>th</strong><br />

Btdg 30, Rm 106<br />

Be<strong>th</strong>esda, MD 20892<br />

Daniel O. Traficante<br />

Univ of Rhode Island<br />

Dept of Chemistry<br />

Kingston, R! 02881<br />

Pearl Tsang<br />

Scripps CLinic & Res. Foun<br />

10666 Toney Pines Rd.<br />

La Jotta, CA 92093<br />

Chien Ken Tseng<br />

Stauffer Chemical Co.<br />

1200 S. 67<strong>th</strong> St.<br />

Richmond, CA 96804<br />

Anne H. Turner<br />

Howard University<br />

Dept of Chemistry<br />

Washington, DC 20059<br />

Na<strong>th</strong>an Tzodikov<br />

G.E. NMR Instruments Inc.<br />

255 Fourier Ave.<br />

Fremont, CA 94539<br />

Sun Un<br />

Univ of California<br />

Chem. Biodynamics Lab LBL<br />

Berkeley, CA 96720<br />

Venkataraman Thanabat<br />

Univ of Calif.-Davis<br />

Dept of Chemistry<br />

Davis, CA 95616<br />

Hans Thomann<br />

Exxon Corporation<br />

Exxon Cord. Res. Lab<br />

AnnandaIe, NJ 0~01<br />

Hye Kyung C. Timken<br />

Univ of ILLinois<br />

Noyes Lab Box 24-1<br />

505 S. Ma<strong>th</strong>eus Ave.<br />

Urbana, IL 61801<br />

David R. Torgeson<br />

Mid-Continent Instruments<br />

2327 N. Dakota Ave.<br />

Ames, IA 50010<br />

Lynda G. Treat-Ctemons<br />

Stanford University<br />

SMRL<br />

Stanford, CA 94305-5055<br />

Rotf Tschudin<br />

Nat'L. Inst. of Heal<strong>th</strong><br />

Btdg 2, RmB2-02<br />

Be<strong>th</strong>esda, MD 20892<br />

David Turner<br />

Pennzoit Tech. Ctr.<br />

PO Box 7569<br />

The Woodlands,, TX 77387<br />

Christopher J. Turner<br />

Columbia University<br />

Box 555 Havermeyer Halt<br />

New York, NY 10027<br />

Kamit Ugurbit<br />

Univ of Minnesota<br />

GFWBI<br />

Navarre, MN 55392<br />

Steve W. Unger<br />

Univ of CaLif.-Davis<br />

NMR FaciLity MS-1A<br />

Davis, CA 95616


Timo<strong>th</strong>y Vail<br />

Chem Dynamics Corp.<br />

PO Box 395<br />

3001 Hadley Rd.<br />

S. PLainfield, NJ 07080<br />

Joseph B. Vaughn<br />

Rockefeller University<br />

1230 York Ave.<br />

New York, NY 10021<br />

Alexander J. Vega<br />

DuPont Experimental Sta.<br />

E356<br />

Wilmington, DE 19898<br />

Ronatd E. Viola<br />

Univ of Akron<br />

Dept of Chemistry<br />

Akron, OH 44325<br />

Tom Walter<br />

Univ of ILLinois<br />

Box 22 Noyes Lab<br />

Urbana, IL 61801<br />

Jin-shan Wang<br />

Virginia Potytech. & SU<br />

Dept of Vet. Biosciences<br />

College of Vet Med.<br />

Btacksburg, VA 24061<br />

Raymond L. Ward<br />

Lawrence Livermore Labs<br />

Box 808, L-310<br />

Livermore, CA 94550<br />

Andrew L. Waterhouse<br />

Tutane University<br />

Dept of Chemistry<br />

New Orleans, LA 70118<br />

Gretchen G. Webb<br />

Yale University<br />

Dept of Chem<br />

225 Prospect St.<br />

New Haven, CT 06511<br />

David Weisteder<br />

US Dept of Agriculture<br />

Nor<strong>th</strong>ern Regionat Res. Ctr<br />

Peoria, IL 61604<br />

Ka<strong>th</strong>teen G. Valentine<br />

Princeton University<br />

ChemDept. Frick Lab<br />

Princeton, NJ 08544<br />

David M. Vea<br />

Varian Associates<br />

505 Jutie Rivers Road<br />

Sugar Land, TX 77478<br />

Vincent S. Venturetta<br />

Anaquest/BOC Tech Ctr.<br />

100 Mountain Ave.<br />

Murray Hilt, NJ 07974<br />

Chartes G. Wade<br />

IBM Instruments<br />

40 Airport Pkuy<br />

San Jose, CA 95110<br />

Chuan Wang<br />

Rutgers College<br />

Dept of Chemistry<br />

Piscataway, NJ 0~54<br />

Pu Sen Wang<br />

Monsanto Research Corp.<br />

Mound Ave.<br />

Miamisburg, OH 45342<br />

Warren S. Warren<br />

Princeton University<br />

Frick Chemical Lab<br />

Dept of Chemistry<br />

Princeton, NJ 08544<br />

Charles L. Watkins<br />

Univ. of ALabama<br />

Dept of Chemistry<br />

Birmingham, AL 35294<br />

Jon O. Web[)<br />

M-R Resourses Inc.<br />

PO Box 642<br />

262 Lakeshore Dr.<br />

Ashburnham, HA 01430<br />

Daniet P. Weitekamp<br />

CatTech<br />

Noyes Lab of Chem. Phys.<br />

Pasadena, CA 91125<br />

David VanderHart<br />

Nat'[ Bureau of Stds.<br />

Gai<strong>th</strong>ersburg, MD 20899<br />

W. S. Veeman<br />

See program<br />

Daniel g. Vigneron<br />

Univ of Calif.-San Fran.<br />

Dept. of Pharm. Chem.<br />

San Francisco, CA 94143<br />

Frances Ann Walker<br />

San Francisco State Univ.<br />

Chemistry Dept.<br />

San Francisco, CA 94132<br />

Hsin Wang<br />

Eastman Kodak Res. Lab<br />

B[dg 82/FL1<br />

Rochester, NY 14650<br />

Mark A. Ward<br />

Natco Chemical Co.<br />

PO Box 87<br />

Sugar Land, TX 77487<br />

Dennis L. Warrenfe[tz<br />

Univ. of Georgia<br />

CCRC Russet[ Labs<br />

A<strong>th</strong>ens, GA 30613<br />

John S. Waugh<br />

Mass Inst. of Tech.<br />

6-235<br />

Dept of Chemistry<br />

Cambridge, HA 02139<br />

Jarma P. Wehrte<br />

Johns Hopkins Univ.<br />

Sch of Med/Dept Rad.<br />

Baltimore, ND 21205<br />

Larry B. We[sh<br />

ALlied Signal EMRC<br />

50 East Atgonquin Rd.<br />

Des Ptaines, IL 60017


David E. Wemmer<br />

Univ of California<br />

Dept of Chemistry<br />

Berkeley, CA 94720<br />

Nito Westter<br />

Univ. of Wisconsin<br />

Dept of Biochemistry<br />

420 Henry Natl<br />

Madison, WI 53706<br />

David R. Wheeler<br />

Cattech 164-30<br />

Pasadena, CA 91125<br />

David J. Wilbur<br />

Varian Associates<br />

611Hansen Way<br />

Pato Alto, CA 94303<br />

Philip G. Williams<br />

Nat't. Tritium Labeling<br />

Lawrence Berkeley Lab<br />

UCALLBerketey<br />

Berkeley, CA 94720<br />

Kenne<strong>th</strong> L. Wittiamson<br />

Nount Holyoke College<br />

Chemistry Dept.<br />

Sou<strong>th</strong> Hadley, MA 01075<br />

Donald M. Wilson<br />

Chevron Research<br />

576 Standard Ave.<br />

Richmond, CA 94802<br />

Robert A. Wind<br />

Colorado State University<br />

Dept of Chemistry<br />

Ft. Collins, CO 80523<br />

Scott E. Woehter<br />

Georgia State Univ.<br />

Dept of Chemistry<br />

University Plaza<br />

Atlanta, GA 30303<br />

Gerd Wolff<br />

Bruker Instruments<br />

Manning Park<br />

Bilterica, NA 01821<br />

Laurence G. Werbetou<br />

Hew Mexico Inst. of<br />

Nining Technotogy<br />

Chemistry Dept.<br />

Socorro, gN 87801<br />

Stephen N. Wharry<br />

Phillips Petroleum<br />

144 P.L.<br />

Barttesvitte, OK 74004<br />

Earl B. Whipple<br />

Pfizer Inc.<br />

Central Research Labs<br />

Groton, CT 06340<br />

M. Robert Willcott<br />

NHR Imaging, Inc.<br />

2501-C Central Pkt~/<br />

Houston, TX 77092<br />

Wanda F. Wittiarns<br />

Allergen Pharmaceuticals<br />

Dept of Anaty. & Biopharm.<br />

2525 DuPont Dr.<br />

irvine, CA 92713<br />

Daniel Wittiamson<br />

Epptey Institute<br />

Univ. of Nebraska Red. Ctr<br />

Omaha, NE 68105<br />

G. Edwin Wilson, Jr.<br />

Univ. of Akron<br />

Chemistry Dept.<br />

Akron, OH 44325<br />

Toni Wir<strong>th</strong>lin<br />

Varian Associates<br />

611Hansen Way<br />

Palo Alto, CA 94303<br />

Donald E. Woessner<br />

Nobil Research & Devet.<br />

137"/THiclway Rd.<br />

Dallas, TX 75244<br />

Atan golfson<br />

Bruker Instrument<br />

Manning Park<br />

Bitterica, NA 01821<br />

Denver D. Werstler<br />

GenCorp Research<br />

2990 Gitchrist Rd.<br />

Akron, OH 44305<br />

Roger W. Wheattey<br />

Phospho Energetics Inc.<br />

3401 Market St.<br />

Philadelphia, PA 19104<br />

Carol F. Wichmann<br />

Merck & Co. R80R-203<br />

PO Box 2000<br />

Rahway, NJ 07065<br />

Gerald D. Williams<br />

Penn St./Hershey Ned<br />

Dept of Radiology<br />

Hershey, PA 17033<br />

Even Williams<br />

Varian Associates<br />

611Hansen Way<br />

Pato Alto, CA 94303<br />

William K. Wilson<br />

Rice University<br />

Biochemistry<br />

PO Box 1892<br />

Houston, TX 77251<br />

At Witunowski<br />

Varian Associates<br />

611Hansen Way<br />

Pato Alto, CA 94303<br />

Sue C. Witt<br />

WRRC<br />

800 Buchanan St.<br />

Albany, CA 94710<br />

Roger A. Wolfe<br />

Occidental Chemical Corp.<br />

Technology Center<br />

Long Road<br />

Grand Island, NY 14072<br />

Tuck C. Wong<br />

University of Missouri<br />

Chemistry Dept.<br />

Columbia, MO 65211


Warner R. Wootfenden<br />

University of Utah<br />

Box 92 HE B[dg<br />

Chemistry Dept.<br />

Salt Lake City, UT 84112<br />

John M. Wright<br />

Univ of California<br />

Dept of Chemistry B-014<br />

La Jotla, CA 92093<br />

Kurt Wu<strong>th</strong>rich<br />

ETH-Honggerberg<br />

lnst.Motekutahbiotogie<br />

und Biophysik<br />

CH8093, Zurich Switzerlnd<br />

Ching Yao<br />

Diasonics, Inc.<br />

533 Cabot Rd.<br />

San Francisco, CA 94080<br />

Chin Yu<br />

Nat'[ Tsing Hua Univ.<br />

Chemistry Dept.<br />

Hsinchu,<br />

Taiwart30043 Rep China<br />

Dieter Ziessow<br />

Technical Univ. Berlin<br />

I.N. Stranski Inst.<br />

Str 17 Juni 112,D1000<br />

Berlin 12, Germany<br />

Jan B. Wooten<br />

Phittip Norris Res & Dev<br />

PO Box 26583<br />

Richmond, VA 23261<br />

David A. Wright<br />

GE NNR Instruments Inc.<br />

255 Fourier Ave.<br />

Fremont, CA 94539<br />

Ping Pin Yang<br />

Int'l Mineral & Chem Corp.<br />

PO Box 207<br />

Terre Haute, IN 47808<br />

James P. Yesinowski<br />

California lnst Tech<br />

MC 164-30<br />

Pasadena, CA 91125<br />

Toby Zens<br />

Varian Associates<br />

611Hansen Way<br />

Pato Alto, CA 94303<br />

Eric R.P. Zuiderweg<br />

Abbott Labs<br />

NMR Research<br />

Abbott Park, IL 60064<br />

Denise L. Wor<strong>th</strong>en<br />

Cattech 127-72<br />

Pasadena, CA 91125<br />

Peter E. Wright<br />

Research Inst of<br />

Scripps Clinic<br />

Dept of Molecular Biology<br />

La Jotta, CA 92037<br />

Constantino S. Yannoni<br />

IBM Almaden Res. 1(341802<br />

650 Harry Road<br />

San Jose, CA 95120-6099<br />

Hon9 N. Yeung<br />

4829 Lindsey (]vat<br />

Richmond Hgts., OH 44143<br />

Ning Zhou<br />

Univ. California<br />

Pharmaceutical ChemOept.<br />

San Francisco, CA 94143<br />

Nicholas Zumbutyadis<br />

Eastman Kodak Co.<br />

Research Labs<br />

Rochester, NY 14650


Notes

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!