11.09.2015 Views

Ch 12 Proterozoic Eon

Proterozoic Eon

Proterozoic Eon

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Ch</strong>. <strong>12</strong> <strong>Proterozoic</strong> <strong>Eon</strong><br />

• <strong>Proterozoic</strong> <strong>Eon</strong> is ~ 1.95 billion years in<br />

duration, from 2.5 Ga to 0.543 Ga<br />

2.5 Ga 1.6 Ga<br />

1.0 Ga 0.54 Ga<br />

Paleoproterozoic Era Mesoproterozoic Era Neoproterozoic Era<br />

PROTEROZOIC EON<br />

Earth History, <strong>Ch</strong>. <strong>12</strong> 1


Early <strong>Proterozoic</strong> Life<br />

• Stromatolites<br />

continued to increase<br />

in abundance,<br />

especially after 2.2<br />

Ga, probably because<br />

of the establishment<br />

of broad continental<br />

shelves<br />

Earth History, <strong>Ch</strong>. <strong>12</strong> 2


Modern<br />

stromatolite<br />

structure<br />

Earth History, <strong>Ch</strong>. <strong>12</strong> 3


<strong>Proterozoic</strong><br />

stromatolites<br />

Earth History, <strong>Ch</strong>. <strong>12</strong> 4


<strong>Proterozoic</strong><br />

bacterial<br />

filaments<br />

(prokaryotes)<br />

Earth History, <strong>Ch</strong>. <strong>12</strong> 5


Early <strong>Proterozoic</strong> life<br />

• Earliest fossil evidence of eukaryotes is<br />

single-celled algae (protists), ~2.1 Ga,<br />

although indirect genetic evidence suggests<br />

the possibility of Archean eukaryotes<br />

• Eukaryotic cell probably originated from<br />

the union of two prokaryotic cells, with one<br />

engulfing the other (“endosymbiont<br />

theory”)<br />

Earth History, <strong>Ch</strong>. <strong>12</strong> 6


Endosymbiont theory<br />

• Cytoskeleton (fibers just inside cell<br />

membrane) allows cell to change shape–<br />

makes engulfing possible (adaptive<br />

breakthrough)<br />

• Simple protists could have engulfed<br />

chlorophyll-bearing cyanobacteria to<br />

become plant-like protists (algae)<br />

Earth History, <strong>Ch</strong>. <strong>12</strong> 7


Endosymbiont theory<br />

In modern eukaryotes, DNA<br />

and RNA of mitochondria<br />

and chloroplasts differ from<br />

that in the nucleus,<br />

suggesting separate origins<br />

Earth History, <strong>Ch</strong>. <strong>12</strong> 8


Lynn Margulis<br />

• National Academy of Sciences<br />

• Russian Academy of Natural Sciences<br />

• American Academy of Arts and<br />

Sciences<br />

• Proctor Prize<br />

• National Medal of Science<br />

• Linnean Society of London<br />

• Darwin-Wallace Medal<br />

• Papers archived in Library of Congress<br />

Earth History, <strong>Ch</strong>. <strong>12</strong> 9


Early <strong>Proterozoic</strong> life<br />

• Even after the origin of eukaryotes, prokaryotes<br />

were dominant until about ~1.9 Ga—what<br />

happened then?<br />

• Build-up of atmospheric oxygen was achieved<br />

by ~1.9 Ga, as evidenced by decrease in banded<br />

iron formations and appearance of “red beds”<br />

(oxidized sediments)<br />

• O 2 combined with N 2 to form nitrates (NO 3 ),<br />

which acted as “fertilizer” to accelerate the<br />

evolution of eukaryotic algae<br />

Earth History, <strong>Ch</strong>. <strong>12</strong> 10


Early<br />

<strong>Proterozoic</strong> life<br />

1.9 Ga prokaryotes from<br />

the Gunflint Formation<br />

of Ontario, Canada<br />

Note small size<br />

Earth History, <strong>Ch</strong>. <strong>12</strong> 11


Early <strong>Proterozoic</strong> life<br />

Single-celled, eukaryotic<br />

algae–acritarchs–became<br />

abundant after ~1.9Ga<br />

Acritarchs are relatively<br />

large and possess a complex<br />

cell wall. Probably related<br />

to modern planktonic algae<br />

(dinoflagellates)<br />

35µm<br />

Earth History, <strong>Ch</strong>. <strong>12</strong> <strong>12</strong>


<strong>Proterozoic</strong><br />

acritarchs<br />

Bar scale = 10 µm<br />

Earth History, <strong>Ch</strong>. <strong>12</strong> 13


Neoproterozoic life<br />

• Transition from Mesoproterozoic to<br />

Neoproterozoic was marked by an adaptive<br />

radiation of eukaryotes at ~1.0 Ga<br />

– Mainly an increase in the diversity of acritarchs<br />

• But, by the end of <strong>Proterozoic</strong> time,<br />

stromatolites had declined in abundance<br />

and unquestioned multicellular animals<br />

had spread to many regions of the Earth<br />

Earth History, <strong>Ch</strong>. <strong>12</strong> 14


Neoproterozoic life<br />

• The evolutionary radiation of animals<br />

– Beginning at ~570 Ma, rocks contain evidence<br />

of diverse animal life<br />

• Trace fossils<br />

• Animal embryos<br />

• Impressions of soft-bodied fossils<br />

• Skeletal fossils<br />

Earth History, <strong>Ch</strong>. <strong>12</strong> 15


Neoproterozoic life<br />

• Trace fossils<br />

– Burrows, tracks, trails<br />

– Not known in rocks<br />

older than ~570 Ma*<br />

– Their presence is good<br />

evidence for animal<br />

activity<br />

*hold that thought<br />

Late <strong>Proterozoic</strong> feeding<br />

burrows from Norway<br />

Earth History, <strong>Ch</strong>. <strong>12</strong> 16


animal<br />

embryos<br />

(570 Ma)<br />

from <strong>Ch</strong>ina<br />

Earth History, <strong>Ch</strong>. <strong>12</strong> 17


Neoproterozoic life<br />

• Impressions from the<br />

Ediacara Hills region of<br />

Australia (“Ediacara<br />

Fauna”)<br />

Primitive<br />

mollusk<br />

“Sea pen”<br />

(cnidarian)<br />

Worm/arthropod?<br />

Segmented form<br />

Earth History, <strong>Ch</strong>. <strong>12</strong> 18


Neoproterozoic<br />

life<br />

• Skeletal fossils<br />

include the calcitic,<br />

tube-like Cloudina<br />

Earth History, <strong>Ch</strong>. <strong>12</strong> 19


Neoproterozoic life<br />

• Thus, by the end of <strong>Proterozoic</strong> <strong>Eon</strong>, at least four<br />

major groups of animals had arisen<br />

– Segmented worms, arthropods, cnidarians, mollusks<br />

• What triggered the initial radiation of animals?<br />

– Critical build-up of atmospheric O 2 ?<br />

– Evolution of key adaptive features such as muscle cells<br />

or nerve cells?<br />

• Answer is still unknown!<br />

Earth History, <strong>Ch</strong>. <strong>12</strong> 20


Addendum (2002 news!)<br />

Probable trace fossils<br />

> 1.2 Ga from SW<br />

Australia<br />

Discovery suggests a<br />

much earlier origin of<br />

active organisms than<br />

previously thought<br />

Rasmussen et al. 2002, Science<br />

Earth History, <strong>Ch</strong>. <strong>12</strong> 21


<strong>Proterozoic</strong> life (review)<br />

oldest evidence for animals *<br />

adaptive radiation of acritarchs *<br />

* oxygenation of atmosphere<br />

eukaryotes<br />

?<br />

prokaryotes<br />

2.5 Ga 2.1 1.9<br />

1.2 1.0 0.57<br />

Earth History, <strong>Ch</strong>. <strong>12</strong> 22


Oxygenation of the atmosphere<br />

• Most iron-bearing sedimentary deposits younger<br />

than 1.9 billion are highly oxidized (red beds)<br />

• Cessation of Banded Iron Formation deposition<br />

– BIFs are alternating bands of iron-rich layers and<br />

chert layers<br />

– Very few BIFs younger than 1.9 billion years old (when<br />

atmospheric O 2 increased)<br />

– Principal source of world’s iron ore<br />

Earth History, <strong>Ch</strong>. 11 23


Banded iron formations<br />

Earth History, <strong>Ch</strong>. <strong>12</strong> 24


Oxygenation of the atmosphere<br />

Fe ++ was dissolved in oceans before<br />

oxygenation of the atmosphere<br />

Once O 2 became plentiful in atmosphere<br />

and oceans, Fe ++ became oxidized and was<br />

precipitated as banded iron formations<br />

Fe ++ oxidation<br />

Fe +++ + e -<br />

soluble<br />

(ferrous)<br />

insoluble<br />

(ferric)<br />

Earth History, <strong>Ch</strong>. 11 25


<strong>Proterozoic</strong> continents<br />

• Major cratons were assembled by the<br />

suturing of protocontinents<br />

• Once cratons formed, incremental growth of<br />

continents occurred through continental<br />

accretion<br />

Earth History, <strong>Ch</strong>. <strong>12</strong> 26


Continental<br />

accretion<br />

• Lateral growth of a<br />

continental margin by<br />

suturing of a microplate<br />

and/or compression and<br />

metamorphism of<br />

sediments<br />

Earth History, <strong>Ch</strong>. <strong>12</strong> 27


Assembly of North America<br />

• Laurentia = <strong>Proterozoic</strong><br />

combined landmass of<br />

North America and<br />

Greenland<br />

– Core of Laurentia was<br />

North American craton<br />

(now exposed in Canadian<br />

Shield)<br />

• Throughout <strong>Proterozoic</strong><br />

time, Laurentia grew by<br />

continental accretion<br />

Earth History, <strong>Ch</strong>. <strong>12</strong> 28


Assembly of Laurentia<br />

• First step in assembly of Laurentia was the<br />

fusion of six Archean protocontinents to form<br />

the stable craton<br />

– Suturing of protocontinents occurred from 1.95–<br />

1.85 Ga<br />

– Trans-Hudson belt is metamorphosed suture<br />

zone between Superior protocontinent and<br />

Wyoming-Hearne protocontinent<br />

Earth History, <strong>Ch</strong>. <strong>12</strong> 29


Assembly of Laurentia<br />

Earth History, <strong>Ch</strong>. <strong>12</strong> 30


Assembly of Laurentia<br />

• Second major step was continental<br />

accretion of central and southern U.S. (1.8-<br />

1.6 Ga)<br />

• Third step was Grenville Orogeny<br />

– Collision of eastern Laurentia with northern<br />

South America, ~1.2–1.0 Ga<br />

– Resulted in continental accretion along entire<br />

eastern margin of Laurentia<br />

Earth History, <strong>Ch</strong>. <strong>12</strong> 31


Assembly of Laurentia<br />

Earth History, <strong>Ch</strong>. <strong>12</strong> 32


Midcontinent rift<br />

•Midcontinent Rift formed at about same time as<br />

Grenville orogeny (~1.2 to 1.0 Ga), but relationship<br />

is unclear<br />

–Split in continental crustrifting filling of elongate<br />

basins with Keweenawan basalts<br />

Earth History, <strong>Ch</strong>. <strong>12</strong> 33


Continental rift sequence<br />

Earth History, <strong>Ch</strong>. <strong>12</strong> 34


Earth History, <strong>Ch</strong>. <strong>12</strong> 35


Midcontinent<br />

rift system<br />

Earth History, <strong>Ch</strong>. <strong>12</strong> 36


Gravity<br />

survey<br />

Earth History, <strong>Ch</strong>. <strong>12</strong> 37


Assembly of Laurentia<br />

Earth History, <strong>Ch</strong>. <strong>12</strong> 38


Assembly of the supercontinent<br />

Rodinia<br />

• Grenville orogenic belt<br />

was connected to<br />

orogenic belts along<br />

margins of southern<br />

Africa, India, Australia<br />

and Antarctica<br />

• By ~1.0 Ga all these<br />

continental areas had<br />

merged to form the<br />

supercontinent Rodinia<br />

Earth History, <strong>Ch</strong>. <strong>12</strong> 39


Breakup of Rodinia<br />

• Rodinia split in half<br />

at ~800–700 Ma<br />

• This rift created the<br />

Pacific Ocean<br />

Earth History, <strong>Ch</strong>. <strong>12</strong> 40


Breakup of Rodinia—another<br />

failed rift<br />

Earth History, <strong>Ch</strong>. <strong>12</strong> 41


End of Precambrian<br />

• By end of Precambrian time, Laurentia,<br />

Baltica, and Siberia were distinct<br />

continents<br />

• Pan-African suturing resulted in the<br />

formation of the supercontinent<br />

“Gondwanaland” (Africa, South America,<br />

India, Australia, Antarctica)<br />

Earth History, <strong>Ch</strong>. <strong>12</strong> 42


Earth History, <strong>Ch</strong>. <strong>12</strong> 43


Gondwana<br />

Laurentia<br />

Siberia<br />

Earth History, <strong>Ch</strong>. <strong>12</strong> 44


Iowa’s Precambrian record<br />

• Only Precambrian rocks exposed at surface are in<br />

northwestern corner of state in Gitchie<br />

Manitou State Preserve<br />

– Sioux Quartzite (~1.7 Ma) (deposited after Trans-<br />

Hudson Belt but before Midcontinent Rift)<br />

• Best record of Precambrian rocks in subsurface is<br />

Amoco Eischeid well (Carroll County)<br />

– ~15,000 ft of late <strong>Proterozoic</strong> sedimentary rocks that<br />

filled the Midcontinent Rift valley above Keweenawan<br />

basalts<br />

Earth History, <strong>Ch</strong>. <strong>12</strong> 45


Earth History, <strong>Ch</strong>. <strong>12</strong> 46


Sioux Quartzite<br />

southern Minnesota ~1900<br />

Earth History, <strong>Ch</strong>. <strong>12</strong> 47


“Pipestone” figurines<br />

Earth History, <strong>Ch</strong>. <strong>12</strong> 48


Snowball Earth??<br />

Locations of known glacial till deposits of Late <strong>Proterozoic</strong> age<br />

Earth History, <strong>Ch</strong>. <strong>12</strong> 49


Tillite overlain by limestone<br />

Earth History, <strong>Ch</strong>. <strong>12</strong> 50


Snowball Earth?<br />

Earth History, <strong>Ch</strong>. <strong>12</strong> 51


570 Ma<br />

Earliest evidence of<br />

multicellular animals<br />

is immediately after<br />

“Snowball Earth” period<br />

Earth History, <strong>Ch</strong>. <strong>12</strong> 52

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!