16.09.2015 Views

Chapter 9

Chapter 9 A Ideal and Real Solutions

Chapter 9 A Ideal and Real Solutions

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Chapter</strong> 9<br />

Ideal and Real Solutions<br />

Physical Chemistry 2 nd Edition<br />

Thomas Engel, Philip Reid<br />

1


Objectives<br />

• Introduce ideal and real solution<br />

• Raoult’s law<br />

• Henry’s law<br />

• Introduce the concept of the activity<br />

Physical Chemistry 2 nd Edition<br />

© 2010 Pearson Education South Asia Pte Ltd<br />

2


Outline<br />

1. Defining the Ideal Solution<br />

2. The Chemical Potential of a Component in the Gas and<br />

Solution Phases<br />

3. Applying the Ideal Solution Model to Binary Solutions<br />

4. The Temperature– Composition Diagram and Fractional<br />

Distillation<br />

5. The Gibbs–Duhem Equation<br />

6. Colligative Properties<br />

7. The Freezing Point Depression and Boiling Point<br />

Elevation<br />

Physical Chemistry 2 nd Edition<br />

© 2010 Pearson Education South Asia Pte Ltd<br />

3


Outline<br />

8. The Osmotic Pressure<br />

9. Real Solutions Exhibit Deviations from Raoult’s Law<br />

10. The Ideal Dilute Solution<br />

11. Activities Are Defined with Respect to Standard States<br />

12. Henry’s Law and the Solubility of Gases in a Solvent<br />

13. Chemical Equilibrium in Solutions<br />

14. Solutions formed from Partially Miscible Liquids<br />

15. The Solid-Solution Equilibrium<br />

Physical Chemistry 2 nd Edition<br />

© 2010 Pearson Education South Asia Pte Ltd<br />

4


9.1 Defining the Ideal Solution<br />

• For a particular ideal solution mixture, the partial<br />

pressure of each component (i) above the liquid is<br />

given by<br />

P<br />

i<br />

<br />

x<br />

i<br />

P<br />

*<br />

i<br />

i<br />

<br />

1,2<br />

• It is known as Raoult’s law and is the definition of<br />

an ideal solution.<br />

• It is only obeyed if the molecule is in the form of A–<br />

A, B–B, and A–B interactions and are all equally<br />

strong.<br />

Physical Chemistry 2 nd Edition<br />

© 2010 Pearson Education South Asia Pte Ltd<br />

5


9.1 Defining the Ideal Solution<br />

• For a particular ideal solution mixture, the partial<br />

pressure of each component (i) above the liquid is<br />

given by<br />

P<br />

i<br />

<br />

x<br />

i<br />

P<br />

*<br />

i<br />

i<br />

<br />

1,2<br />

• Raoult’s law is the definition<br />

of an ideal solution.<br />

• It is only obeyed if the molecule is in the form of A–<br />

A, B–B, and A–B interactions and are all equally<br />

strong.<br />

Physical Chemistry 2 nd Edition<br />

© 2010 Pearson Education South Asia Pte Ltd<br />

6


Example 9.1<br />

Assume that the rates of evaporation, R evap , and<br />

condensation, R cond , of the solvent from the surface of pure<br />

liquid solvent are given by the expressions<br />

R Ak<br />

evap<br />

evap<br />

*<br />

Rcond<br />

AkevapPsolvent<br />

where A is the surface area of the liquid and k evap and k cond are<br />

the rate constants for evaporation and condensation,<br />

respectively. Derive a relationship between the vapor<br />

pressure of the solvent above a solution and above the pure<br />

solvent.<br />

Physical Chemistry 2 nd Edition<br />

© 2010 Pearson Education South Asia Pte Ltd<br />

7


Solution<br />

For the pure solvent, the equilibrium vapor pressure is found by setting the rates<br />

of evaporation and condensation equal:<br />

R<br />

Ak<br />

P<br />

evap<br />

evap<br />

*<br />

solvent<br />

<br />

R<br />

<br />

<br />

cond<br />

Ak<br />

k<br />

k<br />

evap<br />

cond<br />

cond<br />

P<br />

*<br />

solvent<br />

Physical Chemistry 2 nd Edition<br />

© 2010 Pearson Education South Asia Pte Ltd<br />

8


Solution<br />

Next, consider the ideal solution. In this case, the rate of evaporation is reduced<br />

by the factor x solvent<br />

and at equilibrium<br />

R<br />

evap<br />

<br />

Ak<br />

evap<br />

x<br />

solvent<br />

R<br />

cond<br />

<br />

Ak<br />

cond<br />

P<br />

solvent<br />

The derived relationship is Raoult’s law.<br />

R<br />

Ak<br />

P<br />

evap<br />

evap<br />

solvent<br />

<br />

x<br />

<br />

R<br />

cond<br />

solvent<br />

k<br />

k<br />

evap<br />

cond<br />

<br />

x<br />

Ak<br />

cond<br />

solvent<br />

P<br />

<br />

solvent<br />

P<br />

*<br />

solvent<br />

x<br />

solvent<br />

Physical Chemistry 2 nd Edition<br />

© 2010 Pearson Education South Asia Pte Ltd<br />

9


The molecular basis of Raoult's law<br />

From Atkins 8e, Fig. 5.13<br />

The large spheres<br />

represent solvent<br />

molecules at the surface<br />

of a solution (the<br />

uppermost line of<br />

spheres), and the small<br />

spheres are solute<br />

molecules. The solute<br />

hinder the escape of<br />

solvent molecules into<br />

the vapor, but do not<br />

hinder their return.<br />

Physical Chemistry 2 nd Edition<br />

© 2010 Pearson Education South Asia Pte Ltd<br />

10


Vapor‐Liquid Equilibrium of Binary Liquid Mixtures<br />

• Raoult 在 1884 年 指 出 部 分 分 壓 與 莫 耳 分 率 的 比 例 關 係 : Pi<br />

x iP*<br />

i<br />

• 理 想 溶 液 的 溶 劑 蒸 氣 壓 的 值 與 純 溶 劑 蒸 氣 壓 之 比 等 於 溶 劑 的 莫 耳 分 率<br />

。 p A /p A * = x A<br />

• 對 純 物 質 而 言 , P A = P A * , P A * 為 液 態 純 物 質 A 的 平 衡 蒸 氣 壓 .<br />

• 於 純 液 體 的 理 想 液 體 中 , 如 果 溶 液 中 只 有 A, B 兩 個 組 成 , 則 x A +x B = 1,<br />

P<br />

A<br />

<br />

<br />

<br />

1 x P * 或<br />

B<br />

A<br />

• 上 式 為 趨 近 式 , 當 理 想 混 合 物 成 分 很 相 似 時 , 最 為 接 近 Raoult’s Law. 當 兩<br />

成 份 混 合 時 分 子 間 作 用 力 A-A, A-B, 和 B-B 皆 相 同 或 相 似 , 則 Raoult’s<br />

Law 最 符 合 .<br />

• 氣 相 的 總 壓 為 P , y i 為 氣 態 中 物 種 i 的 莫 耳 分 率 : y i P = x i P i *<br />

• 若 氣 相 為 理 想 氣 體 時 , 成 分 的 活 性 等 於 其 莫 耳 分 律 . a i = x i .<br />

• 此 為 液 相 理 想 溶 液 的 定 義 :<br />

μ<br />

i<br />

x<br />

B<br />

<br />

P A*-P<br />

P *<br />

A<br />

A<br />

l<br />

μi<br />

l<br />

RT<br />

lnx<br />

i<br />

Physical Chemistry 2 nd Edition<br />

© 2010 Pearson Education South Asia Pte Ltd<br />

11


From Atkins, 8e. Fig. 5.12<br />

Two similar liquids, in this case<br />

benzene and methylbenzene<br />

(toluene), behave almost<br />

ideally, and the variation of<br />

their vapor pressures with<br />

composition resembles that for<br />

an ideal solution.<br />

Physical Chemistry 2 nd Edition<br />

© 2010 Pearson Education South Asia Pte Ltd<br />

12


Vapor‐Liquid Equilibrium of Binary Liquid Mixtures<br />

• 兩 個 液 體 的 理 想 混 合 物 可 按 任 意 比 例 互 溶 , 每 個 成 分 的 蒸 氣 壓 都 服 從 Roault 定<br />

律 , 如 此 組 成 的 理 想 的 完 全 互 溶 雙 成 份 液 體 系 統 , 或 稱 為 理 想 的 液 體 混 合 物<br />

, 如 苯 和 甲 苯 , 正 己 烷 與 正 庚 烷 等 結 構 相 似 的 化 合 物 可 形 成 這 種 理 想 的 液 體<br />

混 合 物 。<br />

• 當 系 統 達 到 平 衡 時 , 分 佈 在 不 同 相 中 的 物 種 i 的 化 學 勢 能 相 等 :<br />

i (g) = i ( l )<br />

• 假 設 蒸 氣 相 為 理 想 氣 體 , 化 學 勢 能 以 分 壓 表 示 :<br />

• 若 是 液 態 混 合 物 中 成 分 i 的 化 學 勢 能 以 活 性 a i 表 示 :<br />

• 合 併 兩 式 得 :<br />

μ <br />

i<br />

μ<br />

i<br />

μ<br />

P<br />

<br />

P<br />

<br />

i <br />

g<br />

<br />

μ g<br />

RT ln <br />

<br />

i<br />

i<br />

l<br />

μi<br />

l<br />

RT<br />

lnai<br />

P <br />

P<br />

<br />

i<br />

gRT<br />

ln<br />

μi<br />

l RT<br />

lnai<br />

Physical Chemistry 2 nd Edition<br />

© 2010 Pearson Education South Asia Pte Ltd<br />

13


Vapor‐Liquid Equilibrium of Binary Liquid Mixtures<br />

Pi<br />

<br />

μi<br />

g<br />

RT ln<br />

μi<br />

l RT lnai<br />

P <br />

• 此 式 亦 適 用 於 純 液 體 的 理 想 液 體 系 統 : i *(g) = i *(l )<br />

• 於 純 液 體 的 理 想 液 體 中 a i =1 且 P i = P i *<br />

P i * 為 液 態 純 物 質 的 平 衡 蒸 氣 壓 .<br />

• 液 態 純 物 質 的 化 學 勢 能 表 示 為 :<br />

Pi<br />

* <br />

μi<br />

g<br />

RT ln<br />

μi<br />

<br />

l<br />

P <br />

• 相 減 合 併 可 得 : P <br />

i<br />

RT ln<br />

RT lnai<br />

P*<br />

<br />

i <br />

• 假 如 蒸 氣 為 理 想 氣 體 , 則 物 種 在 溶 液 中 的 活 性 值 等 於 物 種 在 溶<br />

液 上 方 成 分 的 部 份 分 壓 與 純 液 體 的 蒸 氣 壓 比 : Pi<br />

ai<br />

<br />

P *<br />

i<br />

Physical Chemistry 2 nd Edition<br />

© 2010 Pearson Education South Asia Pte Ltd<br />

14


Vapor‐Liquid Equilibrium of Binary Liquid Mixtures<br />

• 利 用 Raoult 定 律 於 理 想 液 體 的 混 合 物 , 如 果 溶 液 中 只 有 兩 個 成 分 , 總 壓<br />

與 莫 耳 分 率 的 比 例 關 係 為 :<br />

• P = P 1 + P 2 = x 1 P 1 *+ x 2 P 2 * = P 2 * + x 1 (P 1 * - P 2 *)<br />

• 此 方 程 式 亦 可 稱 為 Bubble point line. 雙 成 份 理 想 混 合 物 上 方 的 蒸 氣 組<br />

成 亦 可 由 Raoult 定 律 推 得 :<br />

解<br />

或 解<br />

P1<br />

x1P<br />

1<br />

*<br />

y<br />

1<br />

<br />

<br />

P1<br />

P2<br />

x1P1<br />

* x<br />

2P2<br />

* P<br />

y1P<br />

2<br />

*<br />

x1 可 得 x1<br />

<br />

P 1<br />

* P<br />

2<br />

*-P<br />

1<br />

* y<br />

1<br />

P2<br />

x<br />

2P2<br />

*<br />

y<br />

2<br />

<br />

<br />

P P x P * x<br />

P * P * <br />

x<br />

Physical Chemistry 2 nd Edition<br />

© 2010 Pearson Education South Asia Pte Ltd<br />

2<br />

可 得 x<br />

2<br />

<br />

2 1<br />

2<br />

<br />

P *<br />

y<br />

P*<br />

P*-P 1 2<br />

* y 2<br />

x P *<br />

1 1<br />

2<br />

* <br />

2 2<br />

1 2 1 1 2 2 1<br />

<br />

15<br />

P<br />

1<br />

* P<br />

2<br />

* x<br />

1<br />

x<br />

P *<br />

P<br />

2<br />

* P 1<br />

* x<br />

2


From Alberty, 4e. Fig 7(a)<br />

(a) Plot of total pressure for the benzene(2)‐toluene(1) versus x 1 , as<br />

given by equation: P =P 2 * + (P 1 *‐P 2 *) x 1<br />

Physical Chemistry 2 nd Edition<br />

© 2010 Pearson Education South Asia Pte Ltd<br />

16


Vapor‐Liquid Equilibrium of Binary Liquid Mixtures<br />

• 可 以 計 算 總 壓 P 而 得 到 蒸 氣 相 的 dew point line.<br />

y<br />

x <br />

<br />

<br />

1 1 1 <br />

y<br />

<br />

<br />

1<br />

-<br />

P<br />

2*<br />

P*<br />

1<br />

P* <br />

x<br />

2<br />

P*P<br />

1<br />

*<br />

P<br />

2*<br />

<br />

y P * P *-P<br />

P*P *<br />

1<br />

1 2<br />

iP x iP*<br />

i 解 P P* 1 <br />

y <br />

1<br />

P 1<br />

* y<br />

1<br />

<br />

P<br />

2<br />

或<br />

或<br />

P<br />

2<br />

1<br />

<br />

2<br />

1<br />

y<br />

P*<br />

1 1 <br />

-<br />

<br />

P 2*<br />

P* <br />

2<br />

P<br />

1<br />

1<br />

2<br />

1 2<br />

* y 2<br />

P<br />

2<br />

*-P<br />

1<br />

* 1<br />

Physical Chemistry 2 nd Edition<br />

© 2010 Pearson Education South Asia Pte Ltd<br />

17


From Alberty, 4e. Fig 7(b)<br />

(b) Plot of the total pressure<br />

for the benzene(2)‐<br />

toluene(1) versus y 1 , as given<br />

by equation:<br />

P = (x 1 /y 1 ) P 1 *<br />

= P 1 *P 2 */ [P 1 *+ (P 2 *‐P 1 *) y 1 ].<br />

Physical Chemistry 2 nd Edition<br />

© 2010 Pearson Education South Asia Pte Ltd<br />

18


Chap 6 Phase Equilibrium<br />

• From<br />

• So<br />

• Also<br />

x<br />

y<br />

x<br />

1<br />

1<br />

<br />

x<br />

<br />

P<br />

1<br />

P<br />

x P *<br />

1 1<br />

2<br />

* <br />

1 2<br />

1<br />

* <br />

<br />

P<br />

1<br />

* P<br />

2<br />

* 1<br />

y P *<br />

P<br />

2<br />

*-P<br />

1<br />

* y<br />

1<br />

P-P*<br />

P*-P *<br />

1<br />

2<br />

2<br />

x<br />

P<br />

1<br />

*-P<br />

2<br />

1<br />

1<br />

P 1<br />

y 1<br />

P 2<br />

* y 1<br />

*<br />

P P*<br />

* x<br />

P*-P 1 2<br />

* 1<br />

2<br />

x<br />

Physical Chemistry 2 nd Edition<br />

© 2010 Pearson Education South Asia Pte Ltd<br />

19


9.2 The Chemical Potential of a Component in the Gas and<br />

Solution Phases<br />

• The chemical potential of species i in a solution is<br />

solution * Pi<br />

i<br />

i<br />

RT ln<br />

*<br />

P<br />

• For an ideal solution, the central equation describing<br />

ideal solutions is obtained:<br />

i<br />

<br />

solution<br />

i<br />

* RT ln<br />

i<br />

x<br />

i<br />

• It is useful in describing the thermodynamics of<br />

solutions in which all components are volatile and<br />

miscible in all proportions.<br />

Physical Chemistry 2 nd Edition<br />

© 2010 Pearson Education South Asia Pte Ltd<br />

20


9.2 The Chemical Potential of a Component in the Gas and<br />

Solution Phases<br />

• We can derive relations for the thermodynamics of<br />

mixing to form ideal solutions as follow:<br />

G<br />

S<br />

mixing<br />

mixing<br />

nRT<br />

<br />

G<br />

<br />

<br />

T<br />

i<br />

x<br />

i<br />

mixing<br />

lnx<br />

<br />

<br />

<br />

i<br />

p<br />

nR<br />

<br />

i<br />

x<br />

i<br />

lnx<br />

i<br />

V<br />

mixing<br />

<br />

<br />

<br />

<br />

G<br />

P<br />

mixing<br />

<br />

<br />

<br />

T , n<br />

1 ,<br />

n<br />

2<br />

<br />

0<br />

and<br />

H<br />

mixing<br />

G<br />

mixing<br />

TS<br />

mixing<br />

<br />

nRT<br />

<br />

i<br />

x<br />

i<br />

lnx<br />

i<br />

T<br />

<br />

<br />

<br />

nR<br />

<br />

i<br />

x<br />

i<br />

lnx<br />

i<br />

<br />

<br />

<br />

<br />

0<br />

Physical Chemistry 2 nd Edition<br />

© 2010 Pearson Education South Asia Pte Ltd<br />

21


Example 9.2<br />

An ideal solution is made from 5.00 mol of benzene and 3.25<br />

mol of toluene. Calculate G mixing<br />

and Smixingat 298 K and 1 bar<br />

pressure. Is mixing a spontaneous process?<br />

Physical Chemistry 2 nd Edition<br />

© 2010 Pearson Education South Asia Pte Ltd<br />

22


Solution<br />

The mole fractions of the components in the solutions are<br />

x benzene =0.606 and x toluene =0.394.<br />

Gmixing<br />

nRT<br />

xi<br />

ln xi<br />

8.258.314<br />

298<br />

13.710<br />

S<br />

mixing<br />

8.258.314<br />

298<br />

46.0JK<br />

1<br />

3<br />

J<br />

nR<br />

<br />

i<br />

i<br />

x<br />

i<br />

<br />

ln x<br />

0.606ln 0.606 0.394ln 0.394<br />

i<br />

<br />

0.606ln 0.606 0.394ln 0.394<br />

<br />

<br />

Mixing is spontaneous because G<br />

always true that G<br />

mixing<br />

0.<br />

mixing<br />

0. If<br />

two liquids are miscible, it is<br />

Physical Chemistry 2 nd Edition<br />

© 2010 Pearson Education South Asia Pte Ltd<br />

23


9.3 Applying the Ideal Solution Model to Binary<br />

Solutions<br />

• From Raoult’s law, we have the total pressure as follow:<br />

1<br />

*<br />

* * * *<br />

P total<br />

P1 P2<br />

x1P1<br />

1<br />

x1<br />

P2<br />

P2<br />

P1<br />

P2<br />

x<br />

• The mole fraction of each component in the gas phase<br />

can also be calculated.<br />

Physical Chemistry 2 nd Edition<br />

© 2010 Pearson Education South Asia Pte Ltd<br />

24


9.3 Applying the Ideal Solution Model to Binary<br />

Solutions<br />

• Using the symbols y 1 and y 2 to denote the gas-phase<br />

mole fractions and the definition of the partial pressure,<br />

y<br />

1<br />

<br />

P<br />

P<br />

1<br />

total<br />

<br />

P<br />

*<br />

2<br />

<br />

x<br />

1<br />

P<br />

*<br />

1<br />

<br />

* *<br />

P <br />

1<br />

P2<br />

x 1<br />

• To obtain the pressure in the vapor<br />

phase as a function of y 1 ,<br />

we first solve x 1 :<br />

x<br />

1<br />

<br />

P<br />

*<br />

1<br />

<br />

y<br />

1<br />

P<br />

*<br />

2<br />

<br />

* *<br />

P <br />

2<br />

P1<br />

y 1<br />

Physical Chemistry 2 nd Edition<br />

© 2010 Pearson Education South Asia Pte Ltd<br />

25


9.3 Applying the Ideal Solution Model to Binary<br />

Solutions<br />

• And obtain P total from<br />

P total<br />

<br />

P<br />

*<br />

1<br />

<br />

P<br />

*<br />

1<br />

P<br />

*<br />

2<br />

<br />

* *<br />

P <br />

2<br />

P1<br />

y 1<br />

• It can be rearranged to give an equation for y 1 in terms of<br />

the vapor pressures of the pure components and the total<br />

pressure:<br />

y<br />

1<br />

<br />

P P<br />

P<br />

*<br />

1 total<br />

<br />

*<br />

total<br />

P1<br />

P<br />

<br />

P<br />

* *<br />

1 2<br />

*<br />

P <br />

2<br />

Physical Chemistry 2 nd Edition<br />

© 2010 Pearson Education South Asia Pte Ltd<br />

26


Example 9.3<br />

An ideal solution is made from 5.00 mol of benzene and 3.25<br />

mol of toluene. At 298 K, the vapor pressure of the pure<br />

substances are P* benzene =96.4Tor and P* toluene =28.9Tor.<br />

a. The pressure above this solution is reduced from 760 Torr.<br />

At what pressure does the vapor phase first appear?<br />

b. What is the composition of the vapor under these<br />

conditions?<br />

Physical Chemistry 2 nd Edition<br />

© 2010 Pearson Education South Asia Pte Ltd<br />

27


Solution<br />

a. The mole fractions of the components in the solution are x benzene =0.606 and<br />

x toluene =0.394. The vapor pressure above this solution is<br />

No vapor will be formed until the pressure has been reduced to this value.<br />

*<br />

*<br />

P x P x P 0.60696.4<br />

0.39428.9<br />

69. Torr<br />

total benzene benzene toulene toulene<br />

8<br />

Physical Chemistry 2 nd Edition<br />

© 2010 Pearson Education South Asia Pte Ltd<br />

28


Solution<br />

b. The composition of the vapor at a total pressure of 69.8<br />

Torr is given by<br />

y<br />

<br />

y<br />

*<br />

*<br />

PbenzenePtotal<br />

P<br />

<br />

*<br />

Ptotal<br />

( Pbenzene<br />

P<br />

96.4<br />

69.8 96.4<br />

28.9<br />

69.8<br />

96.4<br />

28.9<br />

1<br />

y 0.163<br />

benzene<br />

toulene<br />

benzene<br />

benzene toulene<br />

*<br />

toulene)<br />

0.837<br />

Note that the vapor is enriched relative to the liquid in<br />

the more volatile component, which has the lower<br />

boiling temperature.<br />

<br />

P<br />

Physical Chemistry 2 nd Edition<br />

© 2010 Pearson Education South Asia Pte Ltd<br />

29


9.3 Applying the Ideal Solution Model to Binary<br />

Solutions<br />

• To calculate the relative amount of material in each of<br />

the two phases in a coexistence region, we derive the<br />

lever rule for a binary solution of the components A and<br />

B.<br />

n<br />

tot<br />

liq<br />

<br />

tot<br />

<br />

z<br />

B<br />

<br />

x<br />

B<br />

n<br />

vapor<br />

y<br />

B<br />

<br />

z<br />

B<br />

• The lever rule determine<br />

what fraction of the system<br />

is in the liquid and vapor phases<br />

Physical Chemistry 2 nd Edition<br />

© 2010 Pearson Education South Asia Pte Ltd<br />

30


Chap 9 Phase Equilibrium<br />

• Tie lines ( 等 壓 連 接 線 ):<br />

Points on the dew point line and bubble<br />

point line at the same pressure<br />

represent the compositions of vapor and<br />

liquid phases that are in equilibrium.<br />

These point are connected by a<br />

horizontal line referred to as a tie line.<br />

x<br />

n L x B → n V y B<br />

in between : (n L +n V ) x TB<br />

The lever rule:<br />

(n L +n V ) x TB = n L x B + n V y B<br />

nL<br />

yB-<br />

xTB<br />

(x- v)<br />

<br />

n x<br />

- x ( l-x)<br />

V<br />

TB<br />

B<br />

Physical Chemistry 2 nd Edition<br />

© 2010 Pearson Education South Asia Pte Ltd<br />

31


Example 9.4<br />

For the benzene–toluene solution, calculate<br />

a. the total pressure<br />

b. the liquid composition<br />

c. the vapor composition when 1.50 mol of the solution<br />

has been converted to vapor.<br />

Physical Chemistry 2 nd Edition<br />

© 2010 Pearson Education South Asia Pte Ltd<br />

32


Solution<br />

The lever rule relates the average composition,<br />

Z benzene =0.606, and the liquid and vapor compositions:<br />

n<br />

vapor<br />

y<br />

z <br />

n z<br />

x <br />

benzene<br />

benzene<br />

Entering the parameters of the problem, this equation<br />

simplifies to<br />

6.75x benzene<br />

1.50y<br />

<br />

The total pressure is given by<br />

y<br />

benzene<br />

<br />

P<br />

*<br />

benzene<br />

P<br />

total<br />

P<br />

P<br />

*<br />

P<br />

*<br />

liq<br />

benzene<br />

benzene<br />

5.00<br />

Ptotal<br />

<br />

96.4<br />

<br />

Torr<br />

benzene<br />

<br />

2786<br />

total bemzene toulene<br />

*<br />

*<br />

P<br />

P <br />

<br />

P<br />

benzene toulene<br />

total<br />

67.5<br />

Torr <br />

Physical Chemistry 2 nd Edition<br />

© 2010 Pearson Education South Asia Pte Ltd<br />

33


Solution<br />

The solution for x benzene obtained from these two equations<br />

can be substituted in the first equation to give y benzene . The<br />

answers are x benzene =0.561, y benzene = 0.810, and P total = 66.8<br />

Torr.<br />

Physical Chemistry 2 nd Edition<br />

© 2010 Pearson Education South Asia Pte Ltd<br />

34


9.4 The Temperature–Composition Diagram and Fractional<br />

Distillation<br />

• The temperature–composition diagram gives the<br />

temperature of the solution as a function of the average<br />

system composition for a predetermined total vapor<br />

pressure, P total .<br />

Physical Chemistry 2 nd Edition<br />

© 2010 Pearson Education South Asia Pte Ltd<br />

35


9.4 The Temperature–Composition Diagram and Fractional<br />

Distillation<br />

• The upper red curve shows the boiling temperature as a<br />

function of y benzene , and the lower red curve shows the<br />

boiling temperature as a function of x benzene .<br />

• The area intermediate between the two curves shows the<br />

vapor–liquid coexistence region.<br />

• In a boiling point diagram, the liquid and vapor<br />

composition lines are tangent<br />

to one another at the<br />

maximum boiling temperature.<br />

Physical Chemistry 2 nd Edition<br />

© 2010 Pearson Education South Asia Pte Ltd<br />

36


9.4 The Temperature–Composition Diagram and Fractional<br />

Distillation<br />

• If the A–B interactions are less attractive than the A–A<br />

and B–B interactions, a minimum boiling azeotrope can<br />

be formed.<br />

Physical Chemistry 2 nd Edition<br />

© 2010 Pearson Education South Asia Pte Ltd<br />

37


9.4 The Temperature–Composition Diagram and Fractional<br />

Distillation<br />

• Other commonly occurring azeotropic mixtures are<br />

listed.<br />

Physical Chemistry 2 nd Edition<br />

© 2010 Pearson Education South Asia Pte Ltd<br />

38


9.5 The Gibbs–Duhem Equation<br />

• The azeotropic composition depends on the total<br />

pressure, thus pure B can be recovered from the A–B<br />

mixture by first distilling the mixture under atmospheric<br />

pressure and, subsequently, under a reduced pressure.<br />

Physical Chemistry 2 nd Edition<br />

© 2010 Pearson Education South Asia Pte Ltd<br />

39


From Alberty, 4e. Fig A.11(a)<br />

(a) Liquid mixture with<br />

a negative azeotrope:<br />

Chloroform(1)-<br />

Acetone(2) at 35.17<br />

℃.<br />

Physical Chemistry 2 nd Edition<br />

© 2010 Pearson Education South Asia Pte Ltd<br />

40


From Alberty, 4e. Fig A.11(b)<br />

(b) Liquid mixture<br />

with a positive<br />

azeotrope: Carbon<br />

disulfide(1)‐<br />

Acetone(2) at<br />

35.17 ℃.<br />

Physical Chemistry 2 nd Edition<br />

© 2010 Pearson Education South Asia Pte Ltd<br />

41


From Alberty, 4e. Fig A.12<br />

Vapor<br />

Liquid<br />

Vapor<br />

(a)Boiling point curve at<br />

constant pressure for a<br />

maximum boiling<br />

point azeotrope.<br />

(b)Boiling point curve at<br />

constant pressure for a<br />

minimum boiling<br />

azeotrope.<br />

Liquid<br />

Physical Chemistry 2 nd Edition<br />

© 2010 Pearson Education South Asia Pte Ltd<br />

42


9.5 The Gibbs–Duhem Equation<br />

• Gibbs–Duhem equation for a binary solution written in<br />

either of two forms:<br />

n1d1<br />

n2d2<br />

0 or x <br />

1d<br />

1<br />

x <br />

2d<br />

2<br />

<br />

0<br />

• This equation states that the chemical potentials of the<br />

components in a binary solution are not independent.<br />

Physical Chemistry 2 nd Edition<br />

© 2010 Pearson Education South Asia Pte Ltd<br />

43


Example 9.5<br />

<br />

One component in a solution follows Raoult’s law,<br />

solution *<br />

1<br />

1<br />

RT ln x1<br />

over the entire range 0 ≤ x 1 ≤ 1 . Using the<br />

Gibbs–Duhem equation, show that the second component<br />

must also follow Raoult’s law.<br />

Physical Chemistry 2 nd Edition<br />

© 2010 Pearson Education South Asia Pte Ltd<br />

44


Solution<br />

We have<br />

d<br />

<br />

<br />

x d<br />

<br />

1 1 1 *<br />

2<br />

d 1<br />

RT ln<br />

x2<br />

n2<br />

n<br />

<br />

Because dx 2 = –dx 1 and x 1 + x 2 =1. Integrating this equation,<br />

one obtains μ 2 = RT ln x 2 + C, where C is a constant of<br />

integration. This constant can be evaluated by<br />

examining the limit x 2 →1. This limit corresponds to<br />

solution *<br />

the pure substance 2 for which 2 2<br />

RT ln x.<br />

2<br />

We conclude that C= μ 2* and, therefore, μ 2 = μ 2* = RT ln 1 +C<br />

<br />

x<br />

1<br />

<br />

RT<br />

x<br />

x<br />

1<br />

2<br />

dx<br />

x<br />

1<br />

1<br />

Physical Chemistry 2 nd Edition<br />

© 2010 Pearson Education South Asia Pte Ltd<br />

45

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!