28.09.2015 Views

nanocrystalline cores

Current Transformers with nanocrystalline cores - Metering.com

Current Transformers with nanocrystalline cores - Metering.com

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Current Transformers with<br />

<strong>nanocrystalline</strong> <strong>cores</strong>


Power Measurement<br />

MeasurementErrors<br />

Exact power value<br />

P true<br />

= U ⋅ I<br />

⋅ cos φ<br />

Measured power value including errors<br />

P meas<br />

( 1−<br />

F( I)<br />

) ⋅ ( φ + ϕ ( I)<br />

)<br />

= U ⋅ I ⋅ cos<br />

− P<br />

P<br />

meas true<br />

Error ∆P<br />

[% ] = ⋅100<br />

P<br />

true<br />

5<br />

4<br />

3<br />

Power error DP [%]<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

-3<br />

-4<br />

-5<br />

0,1 1 10 100<br />

Primary current I prim [A rms ]<br />

CurrentTransformers with<strong>nanocrystalline</strong> <strong>cores</strong> 23.02.2009 Page 2


Power Measurement<br />

Functional principlesof currenttransducers<br />

Shunt resistor<br />

Hall Effect sensor<br />

Pickup coil<br />

sensor<br />

Current<br />

transformer<br />

with fluxconcentrating<br />

pole pieces<br />

withgapped laminated<br />

core<br />

„Rogowski-Coil“(no core)<br />

gapped laminated core<br />

withgapped ferrite core<br />

with ferrite core<br />

with optimised<br />

toroidal VAC core<br />

D complexjoining<br />

technology<br />

D no galvanicseparation<br />

D lowoutputvoltage<br />

D outputdriftsovertime<br />

D high offset, high T-drift<br />

offset extensive<br />

compensation<br />

D lowoutputsignals<br />

D needsintegrator<br />

C securegalvanicseparation<br />

C high dynamicrange<br />

C insensitive to external<br />

magneticfields(closed core)<br />

Dominant<br />

technology<br />

D high susceptabilityto external<br />

magneticfieldsforfield-detecting<br />

measurementmethods( shielding) differentiation bymaterial<br />

CurrentTransformers with<strong>nanocrystalline</strong> <strong>cores</strong> 23.02.2009 Page 3


Toroidal Core CTs – CT Design<br />

Fundamental Formulae<br />

↑<br />

I prim<br />

I sec<br />

Burden<br />

resistor<br />

R B<br />

Toroidal soft<br />

magnetic<br />

Primary<br />

Secondary core<br />

current<br />

conductorwinding<br />

Material:<br />

• permeabilities<br />

• core losses d,<br />

µ = ⋅<br />

' ''<br />

µ s<br />

+ i µ s<br />

''<br />

µ<br />

s<br />

δ =<br />

'<br />

µ<br />

s<br />

tan<br />

• saturationinduction B sat<br />

Current ranges<br />

Errors<br />

CurrentTransformers with<strong>nanocrystalline</strong> <strong>cores</strong> 23.02.2009 Page 4


Toroidal Core CTs – CT design<br />

Maximum primaryAC current<br />

I sec<br />

I prim<br />

2<br />

ω ⋅N<br />

B<br />

N prim<br />

=1 N sec<br />

R<br />

sat<br />

B U<br />

sec<br />

⋅<br />

B Imaxrms<br />

≈ ⋅<br />

R<br />

ω = 2π ⋅<br />

f<br />

R Cu<br />

Primary current range increases with<br />

Current range :<br />

2<br />

R = R Cu<br />

+ R B<br />

‣ highersaturation induction B sat<br />

crystalline, amorphous and <strong>nanocrystalline</strong><strong>cores</strong> (B sat<br />

> 1T) superiorto ferrites (B sat<br />

~ 0.4T)<br />

ˆ<br />

A<br />

Fe<br />

‣ increased corecross section A Fe<br />

drawbacks: highercost, biggercomponent, A Fe<br />

↑⇒R ↑ ~ √ A Fe<br />

‣ decreased winding resistance RCu<br />

exhaustavailable windingspace<br />

Mostly R Cu<br />

>> R B<br />

, withR Cu<br />

~ N sec<br />

² ⇒ R ~ N sec<br />

², increasingN sec<br />

does notextendprimary currentrange.<br />

CurrentTransformers with<strong>nanocrystalline</strong> <strong>cores</strong> 23.02.2009 Page 5


I sec<br />

I prim<br />

N prim N sec<br />

R B U B<br />

R Cu<br />

ω = 2π ⋅ f<br />

R = R Cu<br />

+ RB<br />

Errors improve with<br />

Toroidal Core CTs – CT design<br />

Errors<br />

Phase<br />

error:<br />

Amplitude<br />

error:<br />

ϕ( I)<br />

≈<br />

F(<br />

I)<br />

≈<br />

FOM =<br />

arctan<br />

−sinδ<br />

R<br />

ω L<br />

⋅<br />

R<br />

ω⋅L<br />

‣ higherpermeabilityµ<br />

µ↑⇒L ↑, crystalline, amorphous, <strong>nanocrystalline</strong><strong>cores</strong> (µ > 100000) superiorto ferrites (µ<<br />

15000)<br />

R<br />

ω⋅L<br />

‣ lowercorelosses (amplitudeerror)<br />

amorphous and <strong>nanocrystalline</strong><strong>cores</strong> superior to crystalline<strong>cores</strong> and ferrites<br />

≈<br />

ρ<br />

µ<br />

Cu<br />

‣ decreased winding resistance R Cu<br />

exhaustavailable windingspace<br />

CurrentTransformers with<strong>nanocrystalline</strong> <strong>cores</strong> 23.02.2009 Page 6


Toroidal Core CTs –Materials<br />

Non-DC-tolerantCTs<br />

0,60<br />

0,40<br />

0,20<br />

High-perm crystalline(C), amorphous(AM) and <strong>nanocrystalline</strong> (NC) <strong>cores</strong><br />

Phase error j [°]<br />

crystalline<br />

ULTRAPERM 10<br />

<strong>nanocrystalline</strong><br />

VITROPERM 500 F<br />

amorphous<br />

VITROVAC 6025 F<br />

AM, NC: no load<br />

dependence of<br />

phase error<br />

0,00<br />

Amplitude error [%]<br />

~ (bigger)<br />

ferrite<br />

AM, NC: Low<br />

amplitude errors<br />

Losses !<br />

-0,20<br />

I prim [A rms ]<br />

0,1 1 10 100<br />

Easy error compensation requires independence of L, tan δ on load and temperature + stable production<br />

processes with low tolerances for µ and tan δ.<br />

CurrentTransformers with<strong>nanocrystalline</strong> <strong>cores</strong> 23.02.2009 Page 7


Toroidal Core CTs - Material selection:<br />

Non-DC-tolerantCTs<br />

accuracy<br />

very high<br />

high<br />

High current range + low errors<br />

Amorphous high-µ VITROVAC<br />

Nanocrystallinehigh-µVITROPERM<br />

80%NiFe ULTRAPERM<br />

medium<br />

high-µ ferrite<br />

toolow<br />

50%NiFe PERMENORM<br />

3% SiFeTRAFOPERM<br />

primarycurrent<br />

CurrentTransformers with<strong>nanocrystalline</strong> <strong>cores</strong> 23.02.2009 Page 8


Toroidal Core CTs – CT design<br />

Maximum unipolar current<br />

I sec<br />

I prim<br />

N prim N sec<br />

R B U B<br />

Current range :<br />

Iˆ<br />

DC max<br />

=<br />

π<br />

µ<br />

0<br />

.<br />

Bˆ<br />

sat<br />

⋅<br />

µ<br />

l<br />

Fe<br />

ω = 2π ⋅<br />

f<br />

R Cu<br />

Unipolar current rangeincreases with<br />

‣ highersaturation induction B sat<br />

crystalline, amorphous and <strong>nanocrystalline</strong><strong>cores</strong> (B sat<br />

> 1T) superiorto ferrites (B sat<br />

~ 0.4T)<br />

‣ lowerpermeability µ<br />

lowµ low L generally higheramplitudeand phase errors<br />

‣ increased corelength l Fe<br />

highercost, biggercomponent<br />

CurrentTransformers with<strong>nanocrystalline</strong> <strong>cores</strong> 23.02.2009 Page 9


Toroidal Core CTs –Materials<br />

DC-tolerant CTs<br />

6<br />

Low-perm<strong>nanocrystalline</strong> core<br />

basically no loadand<br />

temperature dependence<br />

easy compensation<br />

85°<br />

5<br />

4<br />

Phase error j [°]<br />

25°<br />

3<br />

2<br />

Phase and amplitudeerrorshave to becompensated; compensation<br />

easy, if errorsdo notvarywith temperatureand load<br />

1<br />

0<br />

-1<br />

Amplitude error [%]<br />

25°<br />

85°<br />

0,1 1 10 100 1000<br />

I prim [A rms ]<br />

CurrentTransformers with<strong>nanocrystalline</strong> <strong>cores</strong> 23.02.2009 Page 10


Toroidal Core CTs - Material selection:<br />

DC tolerant CTs<br />

accuracy<br />

very high<br />

high<br />

High unipolar current range + low errors<br />

Nanocrystalline low-µVITROPERM<br />

Amorphous low-µ VITROVAC<br />

newlow-µ<br />

VITROPERM variants<br />

medium<br />

low-µferrite<br />

toolow<br />

50%, 80%NiFe, 3% SiFe<br />

primarycurrent~ unipolar current<br />

CurrentTransformers with<strong>nanocrystalline</strong> <strong>cores</strong> 23.02.2009 Page 11


Furtherdevelopmentof material basis:<br />

‣ New low-µ<strong>nanocrystalline</strong> VP alloys<br />

Toroidal Core CTs – New developments:<br />

Low-perm VITROPERM <strong>cores</strong>, integrated CTs<br />

smaller<strong>cores</strong> (OD)<br />

<strong>nanocrystalline</strong> material<br />

costsavings<br />

Design of application-specific and customer-specific components_<br />

‣ Integration of CT fore.g. 3 phase applicationsinto 1 component<br />

easierassembly<br />

costsavings<br />

Customer-specificdesigns<br />

CurrentTransformers with<strong>nanocrystalline</strong> <strong>cores</strong> 23.02.2009 Page 12


Integrated seamlessprimary conductor<br />

‣ radial through ID of core<br />

‣ connection to meterbasethroughblades<br />

Toroidal Core CTs –New developments:<br />

CT with integrated primary conductor<br />

Picture to visualizeconcept<br />

optimizedcoregeometry (ID smaller)<br />

less expensivecopper bar<br />

costsavings<br />

CurrentTransformers with<strong>nanocrystalline</strong> <strong>cores</strong> 23.02.2009 Page 13

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!