07.12.2012 Views

Effect of method, step size and drying temperature on sorption ...

Effect of method, step size and drying temperature on sorption ...

Effect of method, step size and drying temperature on sorption ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>method</str<strong>on</strong>g>, <str<strong>on</strong>g>step</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>drying</str<strong>on</strong>g> <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <strong>on</strong><br />

sorpti<strong>on</strong> isotherms<br />

Ruut Peuhkuri, Assistant Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor,<br />

rhp@byg.dtu.dk<br />

Carsten Rode, Associate Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor,<br />

car@byg.dtu.dk<br />

Kurt Kielsgaard Hansen, Associate Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor,<br />

kkh@byg.dtu.dk<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Civil Engineering, Technical University <str<strong>on</strong>g>of</str<strong>on</strong>g> Denmark<br />

http://www.byg.dtu.dk<br />

KEYWORDS: sorpti<strong>on</strong> isotherm, hygroscopic, measurement <str<strong>on</strong>g>method</str<strong>on</strong>g>s, <str<strong>on</strong>g>drying</str<strong>on</strong>g> <str<strong>on</strong>g>temperature</str<strong>on</strong>g>.<br />

SUMMARY:<br />

One <str<strong>on</strong>g>of</str<strong>on</strong>g> the most important hygrothermal material properties is the sorpti<strong>on</strong> curve, which gives the<br />

equilibrium moisture c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> the material for relative humidity from 0 to 98 %. Some studies have shown<br />

that the resulting sorpti<strong>on</strong> curves vary surprisingly widely, even though the <str<strong>on</strong>g>method</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> especially the<br />

materials are the same.<br />

The determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the sorpti<strong>on</strong> curve has traditi<strong>on</strong>ally been a very lengthy <str<strong>on</strong>g>and</str<strong>on</strong>g> laborious process.<br />

Therefore there is an increasing interest in developing <str<strong>on</strong>g>and</str<strong>on</strong>g> using time saving <str<strong>on</strong>g>method</str<strong>on</strong>g>s for sorpti<strong>on</strong><br />

measurements. These could be using fewer measurement points <str<strong>on</strong>g>and</str<strong>on</strong>g>/or increasing <str<strong>on</strong>g>drying</str<strong>on</strong>g> <str<strong>on</strong>g>temperature</str<strong>on</strong>g>s.<br />

When reducing the time used for tests the risk <str<strong>on</strong>g>of</str<strong>on</strong>g> not reaching the equilibrium <str<strong>on</strong>g>and</str<strong>on</strong>g> by that the true<br />

equilibrium moisture c<strong>on</strong>tent will increase. A sufficient compromise between the accuracy <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

time/labour savings should possibly be found.<br />

In this paper some aspects supposed to have impact <strong>on</strong> the resulting sorpti<strong>on</strong> curve – choice <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>method</str<strong>on</strong>g>,<br />

<str<strong>on</strong>g>step</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>drying</str<strong>on</strong>g> <str<strong>on</strong>g>temperature</str<strong>on</strong>g> – will be analysed by comparing the resulting sorpti<strong>on</strong> curves with each<br />

other <str<strong>on</strong>g>and</str<strong>on</strong>g> discussing uncertainties, pros <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>s. The investigated materials are various building<br />

materials, including a range <str<strong>on</strong>g>of</str<strong>on</strong>g> insulati<strong>on</strong> materials.<br />

1. Introducti<strong>on</strong><br />

The quality <str<strong>on</strong>g>of</str<strong>on</strong>g> the predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the hygrothermal performance <str<strong>on</strong>g>of</str<strong>on</strong>g> building materials <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>structi<strong>on</strong>s is<br />

highly dependent <strong>on</strong> the used material data in the simulati<strong>on</strong>s. One <str<strong>on</strong>g>of</str<strong>on</strong>g> the most important material<br />

properties is the sorpti<strong>on</strong> curve, which gives the equilibrium moisture c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> the material through out<br />

the relative humidity (RH) range. Distincti<strong>on</strong> is usually made between wetting – adsorpti<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>drying</str<strong>on</strong>g> –<br />

desorpti<strong>on</strong>.<br />

According to EN ISO 12571 Determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hygroscopic sorpti<strong>on</strong> properties (ISO 2000) there are two<br />

st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard <str<strong>on</strong>g>method</str<strong>on</strong>g>s for determining the sorpti<strong>on</strong> curve: 1) Desiccator <str<strong>on</strong>g>method</str<strong>on</strong>g>, where the RH in desiccators is<br />

maintained by the saturated salt soluti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> 2) Climatic chamber <str<strong>on</strong>g>method</str<strong>on</strong>g>, where the <str<strong>on</strong>g>temperature</str<strong>on</strong>g> (T) <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

RH <str<strong>on</strong>g>of</str<strong>on</strong>g> the air in the chamber are c<strong>on</strong>trolled. The <str<strong>on</strong>g>temperature</str<strong>on</strong>g> is maintained c<strong>on</strong>stant during the<br />

measurements, 23ºC, therefore the resulting curve is also called the sorpti<strong>on</strong> isotherm. The st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard test<br />

procedure is to dry the samples in the beginning (gives the dry mass m0) <str<strong>on</strong>g>and</str<strong>on</strong>g> then place the samples<br />

c<strong>on</strong>secutively in series, where RH is increasing in stages. After equilibrium is reached at a given RH, the<br />

moist mass (m) can be determined. The moisture c<strong>on</strong>tent by mass u [kg/kg] for the given RH can be<br />

determined from


u<br />

m − m<br />

m<br />

0 = (1)<br />

0<br />

These moisture c<strong>on</strong>tents for increasing RH together govern the absorpti<strong>on</strong> curve that describes the wetting.<br />

In the same way, the desorpti<strong>on</strong> curve can be determined describing <str<strong>on</strong>g>drying</str<strong>on</strong>g>, but now the starting point is a<br />

moist sample (>95 %RH) <str<strong>on</strong>g>and</str<strong>on</strong>g> the RH will be decreasing. The st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard gives also guidelines for sample<br />

<str<strong>on</strong>g>size</str<strong>on</strong>g>, number <str<strong>on</strong>g>of</str<strong>on</strong>g> samples <str<strong>on</strong>g>and</str<strong>on</strong>g> equilibrium criteria.<br />

Some studies have shown that measured sorpti<strong>on</strong> curves can vary surprisingly widely, even though the<br />

<str<strong>on</strong>g>method</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> the materials have been the same (Wilkes et al, 2004). Different traditi<strong>on</strong>s for experimental<br />

work <str<strong>on</strong>g>and</str<strong>on</strong>g> different laboratory equipment may be the explanati<strong>on</strong>. However, using the st<str<strong>on</strong>g>and</str<strong>on</strong>g>ardized <str<strong>on</strong>g>method</str<strong>on</strong>g>,<br />

<strong>on</strong>e should always get the same measurement result within the accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> the equipment.<br />

For practical design purposes, usually catalogue material properties are used, as they present some kind <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

average for a product type, <str<strong>on</strong>g>and</str<strong>on</strong>g> the design process takes place before any materials are chosen for the<br />

c<strong>on</strong>structi<strong>on</strong>s. For research purposes, in c<strong>on</strong>trary, minimising any possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> error will have impact <strong>on</strong><br />

the final result. Therefore, the material properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the samples used in any experimental work have to be<br />

determined, if the results are going to be compared with a theoretical model with numerical simulati<strong>on</strong>s.<br />

Determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the sorpti<strong>on</strong> curve has traditi<strong>on</strong>ally been a very lengthy <str<strong>on</strong>g>and</str<strong>on</strong>g> laborious process. Therefore<br />

there is an increasing interest in developing <str<strong>on</strong>g>and</str<strong>on</strong>g> using rapid <str<strong>on</strong>g>method</str<strong>on</strong>g>s for sorpti<strong>on</strong> measurements (Janz,<br />

2000; Johanness<strong>on</strong>, 2000; Kelly, 2002). When reducing the time used for tests the risk <str<strong>on</strong>g>of</str<strong>on</strong>g> not reaching the<br />

equilibrium <str<strong>on</strong>g>and</str<strong>on</strong>g> by that the true equilibrium moisture c<strong>on</strong>tent will increase. A sufficient compromise<br />

between the accuracy <str<strong>on</strong>g>and</str<strong>on</strong>g> the time/labour savings should be possible to be found.<br />

In this paper several aspects supposed to have impact <strong>on</strong> the resulting sorpti<strong>on</strong> curve will be analysed by<br />

comparing the resulting sorpti<strong>on</strong> curves with each other <str<strong>on</strong>g>and</str<strong>on</strong>g> discussing uncertainties <str<strong>on</strong>g>and</str<strong>on</strong>g> pros <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>s.<br />

The measurement data has been produced by the Authors <str<strong>on</strong>g>and</str<strong>on</strong>g>/or by their staff members.<br />

The scope <str<strong>on</strong>g>of</str<strong>on</strong>g> this work was to investigate<br />

• If the st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard <str<strong>on</strong>g>and</str<strong>on</strong>g> rapid sorpti<strong>on</strong> <str<strong>on</strong>g>method</str<strong>on</strong>g>s will result in the same sorpti<strong>on</strong> curve.<br />

• If the <str<strong>on</strong>g>step</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g> has a significant effect <strong>on</strong> the equilibrium moisture c<strong>on</strong>tent.<br />

• If the <str<strong>on</strong>g>drying</str<strong>on</strong>g> <str<strong>on</strong>g>temperature</str<strong>on</strong>g> level has a significant effect <strong>on</strong> the equilibrium moisture c<strong>on</strong>tent.<br />

• If the <str<strong>on</strong>g>drying</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> a sample at elevated <str<strong>on</strong>g>temperature</str<strong>on</strong>g>s alters the hygroscopic behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> the material.<br />

2. Experiments<br />

The experimental work presented in this paper has been going in the period 1999-2004. The complete<br />

descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> all the experimental set-ups can be found in the referred works.<br />

2.1 Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> sample <str<strong>on</strong>g>size</str<strong>on</strong>g>s<br />

Table 1 introduces the materials used in these moisture sorpti<strong>on</strong> experiments. Also sample weights are<br />

given to illustrate the <str<strong>on</strong>g>size</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the used samples. There were used 2-6 duplicates in the climatic chamber<br />

tests <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>ly <strong>on</strong>e sample for IGAsorp tests. The latter choice was due to the experiences by (Kelly, 2002),<br />

where the duplicates did not add to the reliability <str<strong>on</strong>g>of</str<strong>on</strong>g> the results.<br />

TABLE 1: The materials used for sorpti<strong>on</strong> measurements with the dry density <str<strong>on</strong>g>and</str<strong>on</strong>g> approximate mean<br />

sample weights .<br />

Material Dry density Approximate sample weight<br />

[kg/m³] Climatic chamber [g] IGAsorp [mg]<br />

Flax insulati<strong>on</strong> 30 12 45<br />

Perlite insulati<strong>on</strong> 35 47 50<br />

Cellulose insulati<strong>on</strong> 65 20 62<br />

Glass wool insulati<strong>on</strong> 75 25 54<br />

Cellular c<strong>on</strong>crete 450 15 113


2.2 Experimental <str<strong>on</strong>g>method</str<strong>on</strong>g>s<br />

The sorpti<strong>on</strong> curves to be presented in this paper have been determinated by using two different <str<strong>on</strong>g>method</str<strong>on</strong>g>s<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> corresp<strong>on</strong>ding laboratory equipments <str<strong>on</strong>g>and</str<strong>on</strong>g> set-ups:<br />

1. IGAsorp apparatus (rapid <str<strong>on</strong>g>method</str<strong>on</strong>g>)<br />

2. Climatic chamber <str<strong>on</strong>g>method</str<strong>on</strong>g> (st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard <str<strong>on</strong>g>method</str<strong>on</strong>g>)<br />

Additi<strong>on</strong>ally, the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>step</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g> <strong>on</strong> the resulting sorpti<strong>on</strong> curve has been investigated with the<br />

IGAsorp equipment. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>drying</str<strong>on</strong>g> <str<strong>on</strong>g>temperature</str<strong>on</strong>g> has been analysed with both <str<strong>on</strong>g>method</str<strong>on</strong>g>s. These setups<br />

are briefly described in the following.<br />

(a) (b)<br />

FIG. 1: (a) The st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard sorpti<strong>on</strong> equipment (IGAsorp) <str<strong>on</strong>g>and</str<strong>on</strong>g> (b) the climatic chamber.<br />

2.2.1 IGAsorp apparatus – rapid <str<strong>on</strong>g>method</str<strong>on</strong>g><br />

The IGAsorp (see Fig. 1 (a)) is a st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard sorpti<strong>on</strong> equipment, which has a sensitive microbalance<br />

(resoluti<strong>on</strong> 1µg <str<strong>on</strong>g>and</str<strong>on</strong>g> capacity 200 mg), which c<strong>on</strong>tinuously registers the weight <str<strong>on</strong>g>of</str<strong>on</strong>g> the sample together with<br />

the <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> relative humidity around the sample. The <str<strong>on</strong>g>temperature</str<strong>on</strong>g> can be varied from 5 ºC to 80 ºC<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> the relative humidity from 0 % RH to 95 % RH with an accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> ± 1% for 0 - 90%RH <str<strong>on</strong>g>and</str<strong>on</strong>g> ± 2% for<br />

90 - 95%RH. The sample is placed within a weighing basket <str<strong>on</strong>g>and</str<strong>on</strong>g> positi<strong>on</strong>ed <strong>on</strong> the microbalance. The<br />

chamber is then closed <str<strong>on</strong>g>and</str<strong>on</strong>g> the sample sealed in positi<strong>on</strong>. Drying <str<strong>on</strong>g>of</str<strong>on</strong>g> the sample before sorpti<strong>on</strong><br />

measurements is carried out at 20 ºC in flowing nitrogen until the weight <str<strong>on</strong>g>of</str<strong>on</strong>g> the sample is in equilibrium at<br />

RH


Elevated <str<strong>on</strong>g>drying</str<strong>on</strong>g> <str<strong>on</strong>g>temperature</str<strong>on</strong>g>s<br />

The test procedure for investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>drying</str<strong>on</strong>g> at elevated <str<strong>on</strong>g>temperature</str<strong>on</strong>g>s <strong>on</strong> the resulting<br />

sorpti<strong>on</strong> curve <str<strong>on</strong>g>and</str<strong>on</strong>g> the hygroscopic behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> the material was to dry the sample immediately after the<br />

determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the sorpti<strong>on</strong> curve at 50ºC <str<strong>on</strong>g>and</str<strong>on</strong>g> 70ºC, which in both cases takes appr. 12h to reach<br />

equilibrium weight. The sec<strong>on</strong>d sorpti<strong>on</strong> isotherm was then measured immediately after the <str<strong>on</strong>g>drying</str<strong>on</strong>g>, again<br />

without opening the chamber. In this way, the errors when h<str<strong>on</strong>g>and</str<strong>on</strong>g>ling the sample were minimised.<br />

2.2.2 Climatic chambers – st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard <str<strong>on</strong>g>method</str<strong>on</strong>g><br />

During the measurements, the samples were placed in net bags – made <str<strong>on</strong>g>of</str<strong>on</strong>g> a practically moisture inert<br />

polyester to ensure no loss <str<strong>on</strong>g>of</str<strong>on</strong>g> material –<str<strong>on</strong>g>and</str<strong>on</strong>g> positi<strong>on</strong>ed in a climatic chamber, which is a redesigned kitchen<br />

refrigerator. The climate is automatically c<strong>on</strong>trolled <str<strong>on</strong>g>and</str<strong>on</strong>g> maintains the desired <str<strong>on</strong>g>temperature</str<strong>on</strong>g> (20 ± 0,4 ºC)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> relative humidity with the given accuracy: ± 0,2 (low RH) - 2,0 (high RH) % RH. The RH can be<br />

varied in the range 2 – 96 %RH. The net bags are moved in turns to a hook attached to a balance for<br />

weighing without opening the chamber. The resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the balance is 0.001g .The relative humidity is<br />

altered in <str<strong>on</strong>g>step</str<strong>on</strong>g>s after the samples have reached the equilibrium. The design <str<strong>on</strong>g>of</str<strong>on</strong>g> the equipment is described in<br />

detail in (Strømdahl 2000).<br />

The insulati<strong>on</strong> materials flax, perlite <str<strong>on</strong>g>and</str<strong>on</strong>g> cellulose fibres were measured with 10 %RH <str<strong>on</strong>g>step</str<strong>on</strong>g>s for absorpti<strong>on</strong>.<br />

But for low (3 – 15 %) <str<strong>on</strong>g>and</str<strong>on</strong>g> high end (90 – 96%) RHs, the <str<strong>on</strong>g>step</str<strong>on</strong>g>s were 2 – 3 %RH to get a more detailed<br />

picture <str<strong>on</strong>g>of</str<strong>on</strong>g> these areas (Hansen et al, 1999b). The materials cellular c<strong>on</strong>crete <str<strong>on</strong>g>and</str<strong>on</strong>g> glass wool were also<br />

measured with 10 %RH <str<strong>on</strong>g>step</str<strong>on</strong>g>s for the most <str<strong>on</strong>g>of</str<strong>on</strong>g> the RH-range, but less attenti<strong>on</strong> was paid to low RHs. The<br />

high end (85 – 95%) was measured with 5% <str<strong>on</strong>g>step</str<strong>on</strong>g>s. The desorpti<strong>on</strong> isotherm was in all cases measured with<br />

fewer points. The final <str<strong>on</strong>g>drying</str<strong>on</strong>g> took place outside the chamber: at 20ºC over magnesium perchlorate giving<br />

< 1 %RH in a desiccator. The elevated <str<strong>on</strong>g>temperature</str<strong>on</strong>g>s were reached in an oven.<br />

3. Results<br />

The results are given as sorpti<strong>on</strong> curves at 20 ºC, where moisture c<strong>on</strong>tent by mass u [kg/kg] is given as a<br />

functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> RH [-]. For many cases, <strong>on</strong>ly the absorpti<strong>on</strong> isotherm is shown for the clarity <str<strong>on</strong>g>of</str<strong>on</strong>g> the diagrams.<br />

3.1 <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>method</str<strong>on</strong>g><br />

Fig. 2 gives an overview <str<strong>on</strong>g>of</str<strong>on</strong>g> all the main sorpti<strong>on</strong> curves found, where the <str<strong>on</strong>g>drying</str<strong>on</strong>g> for determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> m0<br />

took place at 20 ºC <str<strong>on</strong>g>and</str<strong>on</strong>g> < 1 %RH. For IGAsorp, 5 %RH <str<strong>on</strong>g>step</str<strong>on</strong>g>s were used. Results for both <str<strong>on</strong>g>method</str<strong>on</strong>g>s, the<br />

rapid <str<strong>on</strong>g>method</str<strong>on</strong>g> using IGAsorp apparatus <str<strong>on</strong>g>and</str<strong>on</strong>g> the st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard <str<strong>on</strong>g>method</str<strong>on</strong>g> using climatic chamber are shown in the<br />

same diagram. Negative values for perlite are simply due to that the weight <str<strong>on</strong>g>of</str<strong>on</strong>g> the sample decreased in the<br />

beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> absorpti<strong>on</strong> process.<br />

3.2 <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>step</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g><br />

The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>step</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g> used during the measurements <strong>on</strong> the resulting sorpti<strong>on</strong> curves was investigated<br />

for all the materials but perlite. For these measurements <strong>on</strong>ly the IGAsorp apparatus was used. The sorpti<strong>on</strong><br />

curves found are shown in Fig. 3. Steps <str<strong>on</strong>g>of</str<strong>on</strong>g> 5 %, 10 % <str<strong>on</strong>g>and</str<strong>on</strong>g> 20 %RH were used.<br />

3.3 <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>drying</str<strong>on</strong>g> <str<strong>on</strong>g>temperature</str<strong>on</strong>g><br />

The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>drying</str<strong>on</strong>g> <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <strong>on</strong> the resulting sorpti<strong>on</strong> curve was investigated for all materials with both<br />

<str<strong>on</strong>g>method</str<strong>on</strong>g>s. The determined absorpti<strong>on</strong> curves are shown in Fig 4 <strong>on</strong>ly for cellulose <str<strong>on</strong>g>and</str<strong>on</strong>g> glass wool. Also flax<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> perlite showed similar behaviour as cellulose, where the equilibrium moisture c<strong>on</strong>tent increases for<br />

increasing <str<strong>on</strong>g>drying</str<strong>on</strong>g> <str<strong>on</strong>g>temperature</str<strong>on</strong>g>. Only glass wool did not show any effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>drying</str<strong>on</strong>g> <str<strong>on</strong>g>temperature</str<strong>on</strong>g>.<br />

3.4 <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>drying</str<strong>on</strong>g> <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <strong>on</strong> the hygroscopic behaviour<br />

Finally, Fig 5 shows 2 sets <str<strong>on</strong>g>of</str<strong>on</strong>g> absorpti<strong>on</strong> curves for cellulose <str<strong>on</strong>g>and</str<strong>on</strong>g> cellular c<strong>on</strong>crete determined with the<br />

rapid <str<strong>on</strong>g>method</str<strong>on</strong>g>. The first isotherm was measured after the sample had been dried at 20ºC <str<strong>on</strong>g>and</str<strong>on</strong>g> the sec<strong>on</strong>d <strong>on</strong>e<br />

after <str<strong>on</strong>g>drying</str<strong>on</strong>g> in 70ºC. Also perlite <str<strong>on</strong>g>and</str<strong>on</strong>g> glass wool have a similar behaviour as cellulose.


Moisture c<strong>on</strong>tent [kg/kg]<br />

Moisture c<strong>on</strong>tent [kg/kg]<br />

Moisture c<strong>on</strong>tent [kg/kg]<br />

0.500<br />

0.450<br />

0.400<br />

0.350<br />

0.300<br />

0.250<br />

0.200<br />

0.150<br />

0.100<br />

0.050<br />

0.000<br />

0.500<br />

0.450<br />

0.400<br />

0.350<br />

0.300<br />

0.250<br />

0.200<br />

0.150<br />

0.100<br />

0.050<br />

0.000<br />

0.060<br />

0.050<br />

0.040<br />

0.030<br />

0.020<br />

0.010<br />

0.000<br />

Flax<br />

Absorpti<strong>on</strong> Igasorp<br />

Desorpti<strong>on</strong> Igasorp<br />

Absorpti<strong>on</strong> Climatic Chamber<br />

Desorpti<strong>on</strong> Climatic Chamber<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

Relative humidity [-]<br />

Cellulose<br />

Absorpti<strong>on</strong> Igasorp<br />

Desorpti<strong>on</strong> Igasorp<br />

Absorpti<strong>on</strong> Climatic Chamber<br />

Desorpti<strong>on</strong> Climatic Chamber<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

Relative humidity [-]<br />

Aerated cellular c<strong>on</strong>crete<br />

Absorpti<strong>on</strong> Igasorp<br />

Desorpti<strong>on</strong> Igasorp<br />

Absorpti<strong>on</strong> Climatic Chamber<br />

Desorpti<strong>on</strong> Climatic Chamber<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

Relative humidity [-]<br />

Moisture c<strong>on</strong>tent [kg/kg]<br />

Moisture c<strong>on</strong>tent [kg/kg]<br />

0.020<br />

0.018<br />

0.016<br />

0.014<br />

0.012<br />

0.010<br />

0.008<br />

0.006<br />

0.004<br />

0.002<br />

Perlite<br />

Absorpti<strong>on</strong> Igasorp<br />

Desorpti<strong>on</strong> Igasorp<br />

Absorpti<strong>on</strong> Climatic Chamber<br />

Desorpti<strong>on</strong> Climatic Chamber<br />

0.000<br />

0.0<br />

-0.002<br />

0.2 0.4 0.6 0.8 1.0<br />

Relative humidity [-]<br />

0.060<br />

0.050<br />

0.040<br />

0.030<br />

0.020<br />

0.010<br />

0.000<br />

Glass wool<br />

Absorpti<strong>on</strong> Igasorp<br />

Desorpti<strong>on</strong> Igasorp<br />

Absorpti<strong>on</strong> Climatic Chamber<br />

Desorpti<strong>on</strong> Climatic Chamber<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

Relative humidity [-]<br />

FIG. 2: Sorpti<strong>on</strong> curves at 20 ºC . Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard <str<strong>on</strong>g>method</str<strong>on</strong>g> using climatic chamber <str<strong>on</strong>g>and</str<strong>on</strong>g> rapid<br />

<str<strong>on</strong>g>method</str<strong>on</strong>g> using IGAsorp apparatus.


Moisture c<strong>on</strong>tent [kg/kg]<br />

Moisture c<strong>on</strong>tent [kg/kg]<br />

0.300<br />

0.250<br />

0.200<br />

0.150<br />

0.100<br />

0.050<br />

0.000<br />

0.050<br />

0.045<br />

0.040<br />

0.035<br />

0.030<br />

0.025<br />

0.020<br />

0.015<br />

0.010<br />

0.005<br />

0.000<br />

5 % RH <str<strong>on</strong>g>step</str<strong>on</strong>g>s<br />

10 % RH <str<strong>on</strong>g>step</str<strong>on</strong>g>s<br />

20 % RH <str<strong>on</strong>g>step</str<strong>on</strong>g>s<br />

Flax<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

Relative humidity [-]<br />

5 % RH <str<strong>on</strong>g>step</str<strong>on</strong>g>s<br />

10 % RH <str<strong>on</strong>g>step</str<strong>on</strong>g>s<br />

20 % RH <str<strong>on</strong>g>step</str<strong>on</strong>g>s<br />

Glass wool<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

Relative humidity [-]<br />

Moisture c<strong>on</strong>tent [kg/kg]<br />

Moisture c<strong>on</strong>tent [kg/kg]<br />

0.300<br />

0.250<br />

0.200<br />

0.150<br />

0.100<br />

0.050<br />

0.000<br />

0.060<br />

0.050<br />

0.040<br />

0.030<br />

0.020<br />

0.010<br />

0.000<br />

5 % RH <str<strong>on</strong>g>step</str<strong>on</strong>g>s<br />

10 % RH <str<strong>on</strong>g>step</str<strong>on</strong>g>s<br />

20 % RH <str<strong>on</strong>g>step</str<strong>on</strong>g>s<br />

Cellulose<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

Relative humidity [-]<br />

5 % RH <str<strong>on</strong>g>step</str<strong>on</strong>g>s<br />

Cellular c<strong>on</strong>crete<br />

10 % RH <str<strong>on</strong>g>step</str<strong>on</strong>g>s<br />

20 % RH <str<strong>on</strong>g>step</str<strong>on</strong>g>s<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

Relative humidity [-]<br />

FIG. 3: Sorpti<strong>on</strong> curves at 20 ºC that show the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>step</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g> used for the measurements.Measured<br />

using IGAsorp apparatus.<br />

4. Discussi<strong>on</strong><br />

When comparing the two <str<strong>on</strong>g>method</str<strong>on</strong>g>s used, it is clear that the sorpti<strong>on</strong> curves found are close to identical for<br />

most <str<strong>on</strong>g>of</str<strong>on</strong>g> the materials. Some strange results were also achieved: absorpti<strong>on</strong> curve for flax using the st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard<br />

<str<strong>on</strong>g>method</str<strong>on</strong>g> was higher than desorpti<strong>on</strong> curve. The most likely explanati<strong>on</strong> is the leaching out <str<strong>on</strong>g>of</str<strong>on</strong>g> the added salts<br />

(fire retarders) at high RH's <str<strong>on</strong>g>and</str<strong>on</strong>g> following loss <str<strong>on</strong>g>of</str<strong>on</strong>g> weight as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> the manual h<str<strong>on</strong>g>and</str<strong>on</strong>g>ling <str<strong>on</strong>g>of</str<strong>on</strong>g> the samples.<br />

These salts are extremely hygroscopic (Hansen et.al, 1999a), <str<strong>on</strong>g>and</str<strong>on</strong>g> a loss <str<strong>on</strong>g>of</str<strong>on</strong>g> these salts gives a reduced<br />

moisture c<strong>on</strong>tent compared to absorpti<strong>on</strong>. This is also slightly seen for cellulose. On the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, the<br />

desorpti<strong>on</strong> curve for cellular c<strong>on</strong>crete using st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard <str<strong>on</strong>g>method</str<strong>on</strong>g> tends to be too high, most likely due to too<br />

thick samples (10 mm) compared to time used for reaching equilibrium.<br />

The <str<strong>on</strong>g>size</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>step</str<strong>on</strong>g>s used during the measurements did not have any particular effect <strong>on</strong> the resulting<br />

sorpti<strong>on</strong> curve. However, the <str<strong>on</strong>g>size</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> hysteresis effect seemed to be reduced for increasing <str<strong>on</strong>g>step</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g>. The<br />

benefit <str<strong>on</strong>g>of</str<strong>on</strong>g> using many relative humidity levels is, however, that the resulting curve will be more smooth.<br />

On the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, using just a few relative humidity levels can reduce the measurement time significantly.<br />

The <str<strong>on</strong>g>drying</str<strong>on</strong>g> <str<strong>on</strong>g>temperature</str<strong>on</strong>g> does have a significant effect <strong>on</strong> the determined sorpti<strong>on</strong> curves. A questi<strong>on</strong><br />

c<strong>on</strong>nected to this is: When can the sample be seen to be dry? Traditi<strong>on</strong>ally a <str<strong>on</strong>g>drying</str<strong>on</strong>g> <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 105ºC<br />

has been used, because at this <str<strong>on</strong>g>temperature</str<strong>on</strong>g> all the physically bound water is removed. However, not all the


Moisture c<strong>on</strong>tent [kg/kg]<br />

0.500<br />

0.450<br />

0.400<br />

0.350<br />

0.300<br />

0.250<br />

0.200<br />

0.150<br />

0.100<br />

0.050<br />

0.000<br />

Cellulose (absorpti<strong>on</strong>)<br />

T=20ºC (CC)<br />

T=70ºC (CC)<br />

T=105ºC (CC)<br />

T=20ºC (IS)<br />

T=50ºC (IS)<br />

T=70ºC (IS)<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

Relative humidity [-]<br />

Moisture c<strong>on</strong>tent [kg/kg]<br />

0.060<br />

0.050<br />

0.040<br />

0.030<br />

0.020<br />

0.010<br />

0.000<br />

Glass wool (absorpti<strong>on</strong>)<br />

T=20ºC (CC) initial m0<br />

T=20ºC (CC)<br />

T=50ºC (CC)<br />

T=70ºC (CC)<br />

T=20ºC (IS)<br />

T=50ºC (IS)<br />

T=70ºC (IS)<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

Relative humidity [-]<br />

FIG. 4: Absorpti<strong>on</strong> curves at 20 ºC for cellulose <str<strong>on</strong>g>and</str<strong>on</strong>g> glass wool that show the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the different <str<strong>on</strong>g>drying</str<strong>on</strong>g><br />

<str<strong>on</strong>g>temperature</str<strong>on</strong>g> <strong>on</strong> the equilibrium moisture c<strong>on</strong>tent. Note that the <str<strong>on</strong>g>drying</str<strong>on</strong>g> <str<strong>on</strong>g>temperature</str<strong>on</strong>g>s shown in diagrams are<br />

not identical in both cases.(IS = IGAsorp <str<strong>on</strong>g>and</str<strong>on</strong>g> CC = climatic chamber)<br />

Moisture c<strong>on</strong>tent [kg/kg]<br />

0.300<br />

0.250<br />

0.200<br />

0.150<br />

0.100<br />

0.050<br />

0.000<br />

Cellulose (absorpti<strong>on</strong>)<br />

1. isotherm<br />

2. isotherm<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

Relative humidity [-]<br />

Moisture c<strong>on</strong>tent [kg/kg]<br />

0.070<br />

0.060<br />

0.050<br />

0.040<br />

0.030<br />

0.020<br />

0.010<br />

0.000<br />

Cellular c<strong>on</strong>crete (absorpti<strong>on</strong>)<br />

1. isotherm<br />

2. isotherm<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

Relative humidity [-]<br />

FIG. 5: Absorpti<strong>on</strong> curves at 20 ºC showing the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>drying</str<strong>on</strong>g> <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <strong>on</strong> the hygrothermal<br />

behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> the material. In this case, the 2 nd isotherm has been measured after the sample has been dried<br />

at 70ºC.<br />

materials can sustain this high <str<strong>on</strong>g>temperature</str<strong>on</strong>g> without impact. A newly investigati<strong>on</strong> <strong>on</strong> gypsum plaster board<br />

(Wilkes et al, 2004) has shown that <str<strong>on</strong>g>drying</str<strong>on</strong>g> at 20 ºC <str<strong>on</strong>g>and</str<strong>on</strong>g> 0 % RH gives what could be c<strong>on</strong>ceived as the most<br />

correct answer, if enough time is used for the <str<strong>on</strong>g>drying</str<strong>on</strong>g>. In the actual measurements for this paper, the <str<strong>on</strong>g>drying</str<strong>on</strong>g><br />

at 20 ºC took about 24h for the IGAsorp <str<strong>on</strong>g>method</str<strong>on</strong>g>. Using the st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard <str<strong>on</strong>g>method</str<strong>on</strong>g>, the end <str<strong>on</strong>g>drying</str<strong>on</strong>g> took 10 – 14<br />

days for insulati<strong>on</strong> materials <str<strong>on</strong>g>and</str<strong>on</strong>g> 1 – 2 m<strong>on</strong>ths for cellular c<strong>on</strong>crete <str<strong>on</strong>g>and</str<strong>on</strong>g> glass wool (Hansen et al, 1999a).<br />

On the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, Fig 5 shows that <str<strong>on</strong>g>drying</str<strong>on</strong>g> at elevated <str<strong>on</strong>g>temperature</str<strong>on</strong>g>s does not have any significant effect <strong>on</strong><br />

the sorpti<strong>on</strong> behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> the investigated materials, expect for cellular c<strong>on</strong>crete. One possible explanati<strong>on</strong><br />

for the difference between first <str<strong>on</strong>g>and</str<strong>on</strong>g> sec<strong>on</strong>d isotherm for cellular c<strong>on</strong>crete is that <str<strong>on</strong>g>drying</str<strong>on</strong>g> at elevated<br />

<str<strong>on</strong>g>temperature</str<strong>on</strong>g>s has removed extra moisture <str<strong>on</strong>g>and</str<strong>on</strong>g> thereby the dry mass m0 for the sec<strong>on</strong>d isotherm is relatively


smaller. However, there is a slight tendency to that the slope <str<strong>on</strong>g>of</str<strong>on</strong>g> the sorpti<strong>on</strong> curve – <str<strong>on</strong>g>and</str<strong>on</strong>g> thereby the<br />

moisture capacity – is increased for all the materials.<br />

The main argument for using rapid <str<strong>on</strong>g>method</str<strong>on</strong>g>s is the wish to reduce the time used for the experiments: While<br />

it takes <strong>on</strong>ly few days for IGAsorp, the st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard <str<strong>on</strong>g>method</str<strong>on</strong>g> can take several m<strong>on</strong>ths, or a year, to execute. On<br />

the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, it is possible to measure <strong>on</strong>ly <strong>on</strong>e sample at time in the IGAsorp while the st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard <str<strong>on</strong>g>method</str<strong>on</strong>g><br />

makes it possible to make parallel tests for many samples at time. A variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard <str<strong>on</strong>g>method</str<strong>on</strong>g> has<br />

been used at the Technical University <str<strong>on</strong>g>of</str<strong>on</strong>g> Denmark for years: Similar samples are placed in parallel in<br />

desiccators which each c<strong>on</strong>tain different saturated salt soluti<strong>on</strong>s, corresp<strong>on</strong>ding to a certain RH. EN ISO<br />

12571 stipulates another principle where each sample is placed c<strong>on</strong>secutively in a series <str<strong>on</strong>g>of</str<strong>on</strong>g> test<br />

envir<strong>on</strong>ments. Following the ISO-procedure the test will be very time c<strong>on</strong>suming compared to the<br />

alternative procedure.<br />

5. C<strong>on</strong>clusi<strong>on</strong><br />

This paper has dealt with an investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the potential importance <str<strong>on</strong>g>of</str<strong>on</strong>g> some parameters <strong>on</strong> the<br />

determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the sorpti<strong>on</strong> curves. The results have shown that while the choice <str<strong>on</strong>g>of</str<strong>on</strong>g> apparatus/<str<strong>on</strong>g>method</str<strong>on</strong>g><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> the <str<strong>on</strong>g>step</str<strong>on</strong>g> <str<strong>on</strong>g>size</str<strong>on</strong>g> in RH does not have any particular effect, the <str<strong>on</strong>g>drying</str<strong>on</strong>g> <str<strong>on</strong>g>temperature</str<strong>on</strong>g> used for the<br />

determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the dry mass may have a very significant effect <strong>on</strong> the results.<br />

6. Acknowledgements<br />

Sorpti<strong>on</strong> measurements with the IGAsorp equipment took place at Glasgow Caled<strong>on</strong>ian University with<br />

assistance from Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Graham H Galbraith <str<strong>on</strong>g>and</str<strong>on</strong>g> his staff: Dr. David Kelly <str<strong>on</strong>g>and</str<strong>on</strong>g> David Bailly. Measurements<br />

in climatic chambers were assisted by Britta Roll <str<strong>on</strong>g>and</str<strong>on</strong>g> Ulla Gjøl Jacobsen.<br />

7. References<br />

EN ISO 12571:2000: Hygrothermal performance <str<strong>on</strong>g>of</str<strong>on</strong>g> building materials – Determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hygroscopic<br />

sorpti<strong>on</strong> properties.<br />

Greenspan, L. 1977. Humidity Fixed Points <str<strong>on</strong>g>of</str<strong>on</strong>g> Binary Saturated Aqueous Soluti<strong>on</strong>s. JOURNAL OF<br />

RESEARCH <str<strong>on</strong>g>of</str<strong>on</strong>g> the Nati<strong>on</strong>al Bureau <str<strong>on</strong>g>of</str<strong>on</strong>g> St<str<strong>on</strong>g>and</str<strong>on</strong>g>ards - A. Physics <str<strong>on</strong>g>and</str<strong>on</strong>g> Chemistry, Vol. 81A, No. 1,<br />

January-February.<br />

Hansen E.J. <str<strong>on</strong>g>and</str<strong>on</strong>g> Hansen K.K.. 1999a. Sorpti<strong>on</strong>sisotermer. Del af Varme- og fugttekniske undersøgelser for<br />

alternative isoleringsmaterialer, Report R No 58. (in Danish). Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Structural Engineering<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> materials, Technical University <str<strong>on</strong>g>of</str<strong>on</strong>g> Denmark<br />

Hansen E.J., Hansen K.K. <str<strong>on</strong>g>and</str<strong>on</strong>g> Padfield T. 1999b. Measured moisture properties for alternative insulati<strong>on</strong><br />

products. Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> 5th Symposium <strong>on</strong> Building Physics in the Nordic Countries. Göteborg.<br />

Janz, M. 2000. Moisture transport <str<strong>on</strong>g>and</str<strong>on</strong>g> fixati<strong>on</strong> in porous materials at high moisture levels. Ph.D. Thesis,<br />

Report TVBM-1018, Divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> building materials, Lund Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, Lund University.<br />

Johanness<strong>on</strong>, B. 2000. Transport <str<strong>on</strong>g>and</str<strong>on</strong>g> sorpti<strong>on</strong> phenomena in c<strong>on</strong>crete <str<strong>on</strong>g>and</str<strong>on</strong>g> other porous media. Ph.D.<br />

Thesis, Report TVBM-1019, Divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> building materials, Lund Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, Lund<br />

University.<br />

Kelly, D. J. 2002. Rapid experimental <str<strong>on</strong>g>method</str<strong>on</strong>g>s for the evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> material moisture permeability, Ph.D.<br />

Thesis, School <str<strong>on</strong>g>of</str<strong>on</strong>g> Built <str<strong>on</strong>g>and</str<strong>on</strong>g> Natural Envir<strong>on</strong>ment, Glasgow Caled<strong>on</strong>ian University<br />

Peuhkuri, R. 2003. Moisture dynamics in building envelopes, Ph.D. Thesis, Report R-071, Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Civil Engineering, Technical University <str<strong>on</strong>g>of</str<strong>on</strong>g> Denmark. http://www.byg.dtu.dk<br />

Strømdahl, K. 2000. Water Sorpti<strong>on</strong> in Wood <str<strong>on</strong>g>and</str<strong>on</strong>g> Plant Fibres, Ph.D Thesis, Report R No 78, Department<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Structural Engineering <str<strong>on</strong>g>and</str<strong>on</strong>g> materials, Technical University <str<strong>on</strong>g>of</str<strong>on</strong>g> Denmark<br />

Wilkes, K E., Atchley, J A. <str<strong>on</strong>g>and</str<strong>on</strong>g> Childs, P W, 2004. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Drying Protocols <strong>on</strong> Measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> Sorpti<strong>on</strong><br />

Isotherms <str<strong>on</strong>g>of</str<strong>on</strong>g> Gypsum Building Materials, Internati<strong>on</strong>al C<strong>on</strong>ference <strong>on</strong> Performance <str<strong>on</strong>g>of</str<strong>on</strong>g> Exterior<br />

Envelopes <str<strong>on</strong>g>of</str<strong>on</strong>g> Whole Buildings IX, Principles Track, Clearwater Beach, Florida

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!