12.12.2012 Views

Recent progress in hydrogen storage alloys for nickel/metal hydride ...

Recent progress in hydrogen storage alloys for nickel/metal hydride ...

Recent progress in hydrogen storage alloys for nickel/metal hydride ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Review<br />

<strong>Recent</strong> <strong>progress</strong> <strong>in</strong> <strong>hydrogen</strong> <strong>storage</strong> <strong>alloys</strong> <strong>for</strong> <strong>nickel</strong>/<strong>metal</strong><br />

<strong>hydride</strong> secondary batteries<br />

Xiangyu Zhao, Liqun Ma*<br />

College of Materials Science and Eng<strong>in</strong>eer<strong>in</strong>g, Nanj<strong>in</strong>g University of Technology, 5 X<strong>in</strong>mofan Road, Nanj<strong>in</strong>g, 210009, P.R. Ch<strong>in</strong>a<br />

article <strong>in</strong>fo<br />

Article history:<br />

Received 26 June 2008<br />

Received <strong>in</strong> revised <strong>for</strong>m<br />

23 February 2009<br />

Accepted 13 March 2009<br />

Available onl<strong>in</strong>e 25 April 2009<br />

Keywords:<br />

Hydrogen <strong>storage</strong> alloy<br />

Mg-based alloy<br />

Composite<br />

Charge transfer<br />

Hydrogen diffusion<br />

1. Introduction<br />

<strong>in</strong>ternational journal of <strong>hydrogen</strong> energy 34 (2009) 4788–4796<br />

abstract<br />

Hydrogen <strong>storage</strong> <strong>alloys</strong>, the ma<strong>in</strong> materials <strong>in</strong> the negative<br />

electrodes of <strong>nickel</strong>/<strong>metal</strong> <strong>hydride</strong> (Ni–MH) secondary<br />

batteries, have been extensively studied <strong>for</strong> many years<br />

because of their dom<strong>in</strong>ant role <strong>in</strong> the battery. Kuriyama et al. [1]<br />

have reviewed some ef<strong>for</strong>ts such as substitution of alloy<br />

components, heat treatment, and surface treatment to improve<br />

the per<strong>for</strong>mance of the <strong>hydrogen</strong> <strong>storage</strong> <strong>alloys</strong>, ma<strong>in</strong>ly LaNi5based<br />

<strong>alloys</strong>. Hong [2] has surveyed the development of<br />

commercial <strong>hydrogen</strong> <strong>storage</strong> <strong>alloys</strong>, also recommended is the<br />

work of Furukawa [3]. For a more comprehensive summary of<br />

<strong>hydrogen</strong>-absorb<strong>in</strong>g <strong>alloys</strong>, see Akiba [4].<br />

Only rare-earth LaNi 5-based and Zr–Ti–V-based laves<br />

phase <strong>hydrogen</strong> <strong>storage</strong> <strong>alloys</strong> have been used as negative<br />

electrode materials <strong>for</strong> the commercial production of Ni–MH<br />

Available at www.sciencedirect.com<br />

journal homepage: www.elsevier.com/locate/he<br />

This paper reviews the development of <strong>hydrogen</strong> <strong>storage</strong> <strong>alloys</strong> prepared by an effective<br />

method of mechanical alloy<strong>in</strong>g and mill<strong>in</strong>g. It emphasizes <strong>alloys</strong> based on Mg or that<br />

conta<strong>in</strong> Mg due to their low cost, low weight and high <strong>hydrogen</strong> <strong>storage</strong> capacity. Hydrogen<br />

absorption/desorption and electrochemical measurements are briefly discussed. The<br />

electrochemical properties of the <strong>alloys</strong> that conta<strong>in</strong> Mg are covered <strong>in</strong> detail, emphasiz<strong>in</strong>g<br />

the effects of changes <strong>in</strong> alloy composition. The system of Ti–Ni-based <strong>alloys</strong> is also<br />

<strong>in</strong>troduced. At present, composite <strong>hydrogen</strong> <strong>storage</strong> <strong>alloys</strong> may be the most effective<br />

materials <strong>for</strong> practical application <strong>in</strong> new <strong>nickel</strong>/<strong>metal</strong> <strong>hydride</strong> secondary batteries. The<br />

steps of <strong>hydrogen</strong> absorption/desorption such as charge-transfer and <strong>hydrogen</strong> diffusion<br />

<strong>for</strong> evaluat<strong>in</strong>g the electrochemical properties of <strong>hydrogen</strong> <strong>storage</strong> <strong>alloys</strong> are discussed. The<br />

relationship between alloy composition and electrochemical properties is noted and<br />

evaluated.<br />

ª 2009 International Association <strong>for</strong> Hydrogen Energy. Published by Elsevier Ltd. All rights<br />

reserved.<br />

batteries [5]. However, these materials have low <strong>hydrogen</strong><br />

<strong>storage</strong> capacities, i.e. low energy densities. Their high cost<br />

and heavy weight also limit their application. The design of<br />

<strong>hydrogen</strong> <strong>storage</strong> <strong>alloys</strong> depends on three aspects: alloy<br />

composition, bulk structure, and surface structure. Apparently,<br />

the preparation method is the primary approach <strong>for</strong><br />

vary<strong>in</strong>g these three aspects. Sakai et al. [6] mentioned that<br />

commercial <strong>hydrogen</strong> <strong>storage</strong> <strong>alloys</strong> were produced by a rapid<br />

solidification process followed by a pulverization process <strong>in</strong>to<br />

powders <strong>for</strong> prepar<strong>in</strong>g the electrode. Mechanical alloy<strong>in</strong>g<br />

(MA), a process of mill<strong>in</strong>g powder materials and a technology<br />

of prepar<strong>in</strong>g non-equilibrium materials, has several important<br />

advantages <strong>for</strong> prepar<strong>in</strong>g <strong>hydrogen</strong> <strong>storage</strong> <strong>alloys</strong>:<br />

It allows easy and controlled synthesis of equilibrium and<br />

metastable alloy phases such as crystall<strong>in</strong>e,<br />

* Correspond<strong>in</strong>g author. Tel.: þ86 25 8358 7243; fax: þ86 25 8324 0205.<br />

E-mail addresses: zhaoxycc@yahoo.com.cn (X. Zhao), maliqun@njut.edu.cn (L. Ma).<br />

0360-3199/$ – see front matter ª 2009 International Association <strong>for</strong> Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.<br />

doi:10.1016/j.ijhydene.2009.03.023


nanocrystall<strong>in</strong>e, amorphous, and quasicrystall<strong>in</strong>e <strong>in</strong> spite of<br />

large differences <strong>in</strong> the melt<strong>in</strong>g po<strong>in</strong>ts of the raw materials.<br />

It can effectively synthesize a composite <strong>hydrogen</strong> <strong>storage</strong><br />

material which conta<strong>in</strong>s two or more <strong>hydrogen</strong> <strong>storage</strong> <strong>alloys</strong>.<br />

Its product is a powder which can be used directly <strong>for</strong><br />

<strong>hydrogen</strong> <strong>storage</strong> materials without subsequent size<br />

reduction.<br />

It is a simple and <strong>in</strong>expensive process<strong>in</strong>g technology operat<strong>in</strong>g<br />

at room temperature.<br />

Suryanarayana [7] and El-Eskandarany [8] have published<br />

two classic texts on mechanical alloy<strong>in</strong>g and mill<strong>in</strong>g. Dur<strong>in</strong>g<br />

high energy mill<strong>in</strong>g the powder particles are repeatedly flattened,<br />

cold welded, fractured and rewelded. The typical<br />

morphology with a lamellar structure which is <strong>for</strong>med by the<br />

alternation of cold weld<strong>in</strong>g and fracture decreases the diffusion<br />

distance. Furthermore, the particles are heavily de<strong>for</strong>med,<br />

and a variety of crystal defects such as dislocations, vacancies,<br />

stack<strong>in</strong>g faults, and an <strong>in</strong>creased number of gra<strong>in</strong> boundaries,<br />

which can enhance the diffusivity of solute elements <strong>in</strong>to<br />

the matrix, result. Additionally, the slight rise <strong>in</strong> temperature<br />

dur<strong>in</strong>g mill<strong>in</strong>g, perhaps <strong>in</strong>clud<strong>in</strong>g local high temperatures,<br />

further aids the diffusion behavior, and as a result, true alloy<strong>in</strong>g<br />

takes place among the constituent elements.<br />

The classes of <strong>hydrogen</strong> <strong>storage</strong> <strong>alloys</strong> can be pr<strong>in</strong>cipally or<br />

conventionally classified as AB5-type <strong>alloys</strong>, AB3-type <strong>alloys</strong>,<br />

A2B7-type <strong>alloys</strong>, AB2-type <strong>alloys</strong>, AB-type <strong>alloys</strong>, Mg-based<br />

<strong>alloys</strong> and V-based solid solution <strong>alloys</strong>. For prepar<strong>in</strong>g<br />

<strong>hydrogen</strong> <strong>storage</strong> <strong>alloys</strong>, the application of MA and/or<br />

mechanical mill<strong>in</strong>g (MM) began <strong>in</strong> the 1980s when the Mg2Ni<br />

<strong>hydrogen</strong> <strong>storage</strong> alloy was fabricated [9], and s<strong>in</strong>ce then this<br />

technology <strong>for</strong> the study of <strong>hydrogen</strong> <strong>storage</strong> <strong>alloys</strong> has<br />

flourished worldwide. In this review, the electrochemical<br />

properties and the development of Mg-based, AB 3-type, A 2B 7type,<br />

AB-type <strong>alloys</strong>, and composite <strong>hydrogen</strong> <strong>storage</strong> <strong>alloys</strong><br />

that are prepared by mechanical alloy<strong>in</strong>g and mill<strong>in</strong>g will be<br />

<strong>in</strong>troduced and discussed.<br />

2. Steps of <strong>hydrogen</strong> absorption/desorption<br />

Ni–MH batteries conta<strong>in</strong> an electrochemical system <strong>in</strong>volv<strong>in</strong>g<br />

a <strong>hydrogen</strong> <strong>storage</strong> electrode and a Ni(OH) 2/NiOOH counter<br />

electrode. The <strong>hydrogen</strong> <strong>storage</strong> alloy plays a dom<strong>in</strong>ant role <strong>in</strong><br />

the power and service life of a Ni–MH battery and determ<strong>in</strong>es<br />

the electrochemical properties of the battery, and is there<strong>for</strong>e<br />

still a research topic of great <strong>in</strong>terest. The <strong>hydrogen</strong> evolution<br />

reaction (HER) <strong>for</strong> <strong>hydrogen</strong> <strong>storage</strong> <strong>alloys</strong> <strong>in</strong>volves the<br />

follow<strong>in</strong>g steps:<br />

M þ H2O þ e 4MHads þ OH (1)<br />

MHads4MHabs<br />

MHabs4MH<strong>hydride</strong><br />

2MHads4M þ H2<br />

<strong>in</strong>ternational journal of <strong>hydrogen</strong> energy 34 (2009) 4788–4796 4789<br />

MHads þ H2O þ e 4M þ H2 þ OH (5)<br />

(2)<br />

(3)<br />

(4)<br />

i.e., the steps of adsorption/desorption, surface penetration,<br />

<strong>hydrogen</strong> diffusion, and <strong>for</strong>mation/decomposition of <strong>metal</strong><br />

<strong>hydride</strong>. In the <strong>in</strong>itial step of the HER, the adsorption of<br />

<strong>hydrogen</strong> atoms occurs on the surface of a <strong>hydrogen</strong> <strong>storage</strong><br />

alloy by dissociation of water. These atoms can be absorbed to<br />

<strong>for</strong>m <strong>metal</strong> <strong>hydride</strong>, but can also comb<strong>in</strong>e together to produce<br />

<strong>hydrogen</strong> gas accord<strong>in</strong>g to the Tafel reaction Eq. (4) and the<br />

Heyrovsky reaction Eq. (5). These steps can be also effectively<br />

described <strong>in</strong> a charge/discharge curve <strong>for</strong> a <strong>hydrogen</strong> <strong>storage</strong><br />

alloy, as shown <strong>in</strong> Fig. 1. In stage OA, the potential of the<br />

electrode rapidly changes with time or <strong>hydrogen</strong> content. This<br />

stage is the <strong>for</strong>mation of a solid solution called the a-phase.<br />

After this stage, <strong>in</strong> the section AB, the potential rema<strong>in</strong>s<br />

constant as the <strong>hydrogen</strong> content <strong>in</strong>creases. This constant<br />

plateau region <strong>in</strong>dicates a <strong>progress</strong>ive conversion of the aphase<br />

to a <strong>metal</strong> <strong>hydride</strong> called the b-phase. Eventually the<br />

curve beg<strong>in</strong>s to slope aga<strong>in</strong>, <strong>in</strong>dicat<strong>in</strong>g that the conversion of<br />

a-phase to b-phase is f<strong>in</strong>ished. F<strong>in</strong>ally, with further <strong>in</strong>crease of<br />

the charg<strong>in</strong>g time, there is another plateau region which<br />

corresponds to the process of <strong>hydrogen</strong> evolution and <strong>in</strong>dicates<br />

that the charge of the electrode is saturated. Dur<strong>in</strong>g<br />

discharge, the b-phase decomposes to the a-phase, revers<strong>in</strong>g<br />

the charg<strong>in</strong>g process. It is obvious that the per<strong>for</strong>mance of the<br />

<strong>hydrogen</strong> <strong>storage</strong> alloy is determ<strong>in</strong>ed <strong>in</strong> the stage where the<br />

two phases coexist, i.e., the k<strong>in</strong>etics of the charge transfer<br />

reaction at the electrode surface, the rate of <strong>hydrogen</strong> transfer<br />

between the absorbed state and the adsorbed state, and the<br />

diffusion of absorbed <strong>hydrogen</strong> between the bulk and the<br />

electrode surface [10].<br />

Many ef<strong>for</strong>ts [11–17] have <strong>in</strong>vestigated the steps of<br />

<strong>hydrogen</strong> absorption/desorption, especially the chargetransfer<br />

reaction at the electrode/electrolyte <strong>in</strong>terface and<br />

<strong>hydrogen</strong> diffusion with<strong>in</strong> the bulk electrode. These are the<br />

two dom<strong>in</strong>ant factors, particularly <strong>for</strong> the high rate dischargeability<br />

(HRD) of <strong>hydrogen</strong> <strong>storage</strong> alloy electrodes<br />

[18–20]. The two steps can be expressed by the values of<br />

electrochemical k<strong>in</strong>etic parameters such as exchange current<br />

density, polarization resistance, and <strong>hydrogen</strong> diffusion<br />

coefficient.<br />

Potential (V)<br />

O<br />

A<br />

charge<br />

B<br />

C<br />

D<br />

Charge-discharge time (h)<br />

E<br />

discharge<br />

Fig. 1 – Schematic illustration of a charge–discharge curve<br />

<strong>for</strong> a <strong>hydrogen</strong> <strong>storage</strong> alloy.<br />

F<br />

G


4790<br />

The exchange current density of <strong>hydrogen</strong> <strong>storage</strong> alloy<br />

electrodes can be determ<strong>in</strong>ed by l<strong>in</strong>ear polarization [18,21],<br />

Tafel polarization [21,22], and electrochemical impedance<br />

spectroscopy (EIS) [22,23]. The exchange current density I0 can<br />

be obta<strong>in</strong>ed from a l<strong>in</strong>earized <strong>for</strong>m of the Butler–Volmer<br />

equation <strong>in</strong> the low overpotential region (h < 10 mV). The<br />

l<strong>in</strong>ear equation can be written as:<br />

I0 ¼ IRT<br />

(6)<br />

Fh<br />

where I is the applied current density, R is the gas constant, T<br />

is the absolute temperature, F is the Faraday constant, and h is<br />

the overpotential of the electrochemical reaction <strong>for</strong> the<br />

<strong>hydrogen</strong> <strong>storage</strong> <strong>alloys</strong>. The Tafel region is controlled by the<br />

step of charge transfer at high overpotential (h > 118 mV). For<br />

porous <strong>hydrogen</strong> <strong>storage</strong> alloy electrodes, the Tafel region<br />

shows strong mass-transfer effects at high currents. Us<strong>in</strong>g the<br />

measured limit<strong>in</strong>g current densities from the curve of Tafel<br />

polarization, the Tafel plots can be corrected <strong>for</strong> mass-transfer<br />

effects by plott<strong>in</strong>g the logarithm of I/(1 I/IL) aga<strong>in</strong>st the<br />

electrode potential, which can be expressed as:<br />

h ¼ 2:3RT<br />

bF log1 þ<br />

I0<br />

2:3RT<br />

bF log<br />

I<br />

1 I=IL<br />

where I L is the limit<strong>in</strong>g current density, and b is the transfer<br />

coefficient <strong>for</strong> <strong>hydrogen</strong> desorption. For EIS, the semicircle <strong>in</strong><br />

the high frequency region is related to the contact resistance<br />

between the current collector and the alloy pellet, and the<br />

semicircle <strong>in</strong> the low frequency region corresponds to the<br />

charge-transfer resistance Rct [23–25]. The exchange current<br />

density can be calculated us<strong>in</strong>g the follow<strong>in</strong>g Equation [21,26]:<br />

I0 ¼ RT<br />

F<br />

1<br />

Rct<br />

Ratnakumar et al. [22] and Witham et al. [27] found that<br />

exchange current densities estimated from l<strong>in</strong>ear polarization<br />

were <strong>in</strong> agreement with those from EIS, but were quite<br />

different from the values obta<strong>in</strong>ed from Tafel polarization.<br />

Wang et al. [10] proposed that this discrepancy may be caused<br />

by a neglect of the effect of <strong>hydrogen</strong> transfer between the<br />

absorbed and adsorbed states.<br />

Many approaches have been proposed <strong>for</strong> evaluat<strong>in</strong>g the<br />

<strong>hydrogen</strong> diffusion coefficient, <strong>in</strong>clud<strong>in</strong>g nuclear magnetic<br />

resonance [28], quasi-elastic neutron scatter<strong>in</strong>g [29], and<br />

various electrochemical technologies of current pulse [30],<br />

cyclic voltammetry [31], EIS [32], and potential-step [33,34].<br />

The potential-step method, a simple and convenient technology,<br />

is widely used to study the <strong>hydrogen</strong> diffusion coefficient.<br />

When a large potential-step is applied to <strong>hydrogen</strong><br />

<strong>storage</strong> alloy electrodes, a drastic depletion of <strong>hydrogen</strong><br />

occurs on the alloy surface. After a long response time, the<br />

current decreases slowly <strong>in</strong> a l<strong>in</strong>ear fashion. In this l<strong>in</strong>ear<br />

region, <strong>hydrogen</strong> diffusion controls the electrode process, and<br />

the <strong>hydrogen</strong> diffusion coefficient D can be calculated<br />

accord<strong>in</strong>g to the follow<strong>in</strong>g equation [20,33–35]:<br />

log i ¼ log 6FD<br />

da 2 ðC0 CsÞ<br />

<strong>in</strong>ternational journal of <strong>hydrogen</strong> energy 34 (2009) 4788–4796<br />

p2 D<br />

2:303 a2t where i (A/g) is the diffusion current density, D (cm 2 /s) is the<br />

<strong>hydrogen</strong> diffusion coefficient, d (g/cm 3 ) is the density of the<br />

(7)<br />

(8)<br />

(9)<br />

<strong>hydrogen</strong> <strong>storage</strong> alloy, a (cm) is the alloy particle radius, C 0<br />

(mol/cm 3 ) is the <strong>in</strong>itial <strong>hydrogen</strong> concentration <strong>in</strong> the bulk of<br />

the alloy, Cs (mol/cm 3 ) is the <strong>hydrogen</strong> concentration on the<br />

surface of the alloy particles and t (s) is the discharge time.<br />

This method needs a long time period, generally several<br />

thousand seconds, to measure the response of the anodic<br />

current. As a result, the calculated <strong>hydrogen</strong> diffusion coefficient<br />

will be an average value. Consequently, this method is<br />

unsuitable <strong>for</strong> determ<strong>in</strong><strong>in</strong>g the <strong>hydrogen</strong> diffusion coefficient<br />

at a certa<strong>in</strong> depth of discharge (DOD). Feng et al. [17,36]<br />

described a new and relatively simple potentiostatic method<br />

<strong>for</strong> determ<strong>in</strong><strong>in</strong>g the <strong>hydrogen</strong> diffusion coefficient over<br />

a small time period, less than 500 s. The <strong>hydrogen</strong> diffusion<br />

coefficient can be found by measur<strong>in</strong>g the ratio of <strong>in</strong>tercept<br />

and slope from a l<strong>in</strong>ear plot of I(t) versus t 1/2 by us<strong>in</strong>g the<br />

follow<strong>in</strong>g equation:<br />

IðtÞ ¼ FADðCs C0Þ<br />

1 1<br />

pffiffiffiffiffiffi<br />

pffiffit<br />

pD<br />

1<br />

a<br />

(10)<br />

where A is the surface area of the particles (m 2 /g). This<br />

method does not require knowledge of either the <strong>hydrogen</strong><br />

concentration or the surface area of the alloy particles. The<br />

<strong>hydrogen</strong> diffusion coefficient at a certa<strong>in</strong> DOD can be<br />

obta<strong>in</strong>ed by us<strong>in</strong>g this method.<br />

Apart from the steps of charge-transfer and <strong>hydrogen</strong><br />

diffusion, the process of <strong>hydrogen</strong> transfer, which was<br />

neglected <strong>in</strong> previous studies, is also discussed by Wang et al.<br />

[10] who assume that the pressure plateau of a <strong>hydrogen</strong><br />

<strong>storage</strong> alloy is flat and the fully charged <strong>hydride</strong> electrode is<br />

considered to be uni<strong>for</strong>mly discharged at each DOD.<br />

3. Mg-based <strong>alloys</strong><br />

Mg has a high reversible <strong>storage</strong> capacity of 7.6 wt.% (approx.<br />

2200 mAh/g) <strong>hydrogen</strong>, which is pr<strong>in</strong>ciple makes it a promis<strong>in</strong>g<br />

candidate as a <strong>storage</strong> medium <strong>in</strong> mobile applications. In<br />

recent years, more attention has been paid to develop<strong>in</strong>g<br />

applications of Mg-based <strong>alloys</strong> <strong>in</strong> Ni–MH secondary batteries<br />

because of their high <strong>storage</strong> capacity, low cost and low<br />

weight. MA is a simple and effective method <strong>for</strong> prepar<strong>in</strong>g Mgbased<br />

<strong>alloys</strong> with metastable or non-equilibrium phases,<br />

which do not appear <strong>in</strong> phase-diagrams, <strong>in</strong> spite of large<br />

differences <strong>in</strong> the melt<strong>in</strong>g po<strong>in</strong>ts of the raw materials. The<br />

alloy composition can be simply controlled. S<strong>in</strong>gh et al. [37]<br />

described a nanocrystall<strong>in</strong>e Mg2Ni alloy with a gra<strong>in</strong> size of<br />

about 4 nm <strong>for</strong>med after mill<strong>in</strong>g magnesium and <strong>nickel</strong><br />

powders. Amorphous Mg2Ni alloy can also be prepared by MA<br />

[38]. Cui et al. [39] showed that the <strong>for</strong>mation and growth of<br />

a magnesium oxide and/or hydroxide layer on Mg 2Ni<br />

<strong>in</strong>creased the electronic resistance at the electrode/electrolyte<br />

<strong>in</strong>terface and resulted <strong>in</strong> a large discharge overpotential,<br />

lead<strong>in</strong>g to low discharge capacity and sluggish k<strong>in</strong>etics of the<br />

alloy. In order to improve the electrochemical properties of<br />

Mg-based alloy, element substitution of Mg-based <strong>alloys</strong> has<br />

been extensively attempted. Although Zr [40], Ti[41], Co[42],<br />

Al [43],Ce[44], Y[45], Ca[46] and Fe [47] have been <strong>in</strong>troduced<br />

<strong>in</strong>to Mg2Ni alloy to improve their <strong>hydrogen</strong> absorption/<br />

desorption properties, there was no apparent improvement.


Liu et al. [48] described a composition of Mg 0.7Ti 0.225Al 0.075Ni<br />

which showed a low decay of discharge capacity due to the<br />

<strong>for</strong>mation of MgTi2O4 <strong>in</strong>stead of Mg(OH)2. A similar positive<br />

result was reported by Tian et al. [49] who found that<br />

a composition of Mg0.8Ti0.1Pd0.1Ni possessed good cycle<br />

stability because of a protective layer of (NiO)x(PdO)y(TiO2)z.<br />

Apart from element substitution, Rongeat et al. [50] proposed<br />

that an <strong>in</strong>crease of MgNi particle size could effectively<br />

improve the cycle stability and high rate dischargeability<br />

because larger particles had a lower sensitivity to oxidation.<br />

Then, a comprehensive work [51] that considered both<br />

element substitution and particle size showed that an amorphous<br />

Mg0.9Ti0.1NiAl0.05 alloy with particle size larger than<br />

150 mm displayed excellent electrochemical properties, as<br />

good as a commercial LaNi5-based alloy, due to a control of the<br />

charge <strong>in</strong>put and a cooperative protection by Ti and Al.<br />

Obviously the cost and weight are much lower than a LaNi5based<br />

alloy. However, the high rate dischargeability is presently<br />

too low, which will limit the potential use of Mg-based<br />

<strong>alloys</strong> <strong>in</strong> real applications; this should be studied further.<br />

4. AB 3- and A 2B 7-type <strong>alloys</strong><br />

AB3- and A2B7-type <strong>alloys</strong> have been studied <strong>for</strong> decades. Ivey<br />

et al. [52] reviewed b<strong>in</strong>ary <strong>alloys</strong> correlated to AB3 and A2B7<br />

<strong>alloys</strong>, and mentioned that the structures of AB3 and A2B7 can<br />

be related to those of AB5 and AB2. Based on the assumption<br />

that there are no long-range H–H <strong>in</strong>teractions, these relations<br />

can be expressed as [53]:<br />

nðAB3Þ ¼ 1 2<br />

nðAB5Þþ<br />

3 3 nðAB2Þ (11)<br />

and<br />

<strong>in</strong>ternational journal of <strong>hydrogen</strong> energy 34 (2009) 4788–4796 4791<br />

nðA2B7Þ ¼nðAB5ÞþnðAB2Þ (12)<br />

where n(AkBm) represent the <strong>hydrogen</strong> concentration <strong>for</strong> each<br />

of the respective <strong>for</strong>mula units. Zhang et al. [54] described the<br />

<strong>for</strong>mation of amorphous LaNi 2H x and LaNi 5H y after <strong>hydrogen</strong><br />

absorption by LaNi 3 at 298 K. The amorphous LaNi 2H x would<br />

decompose to LaH 2 and LaNi 5H z at 473 K. Similar results were<br />

reported by Srivastava [55] who also claimed that both LaNi 3<br />

and La2Ni7 had lower <strong>storage</strong> capacity than LaNi5 but better<br />

suppression of pulverization. In recent years, ternary or<br />

multiple AB3 and A2B7 <strong>alloys</strong> have been developed. Kadir et al.<br />

[56,57] reported a ternary system of R–Mg–Ni (R ¼ rare earth,<br />

Ca or Y) with a PuNi3-type rhombohedral structure, which was<br />

of great <strong>in</strong>terest <strong>for</strong> many researchers. Liang et al. [58] presented<br />

a mechanically alloyed Ca2Ni7, the structure of which<br />

could be destroyed by substitut<strong>in</strong>g Mg <strong>for</strong> a small fraction of<br />

the Ca, result<strong>in</strong>g <strong>in</strong> the <strong>for</strong>mation of an AB 3 phase with an<br />

accompany<strong>in</strong>g <strong>nickel</strong> phase, but the as-milled <strong>alloys</strong> absorbed<br />

<strong>hydrogen</strong> with poor reversibility. Ml (La-rich misch<strong>metal</strong>) can<br />

be effectively used <strong>for</strong> the A side [59]. The element Ni on the B<br />

side can be partially substituted by Co, Mn, Fe, Al and Cu to<br />

improve the k<strong>in</strong>etics and cycle stability [60,61]. For electrochemical<br />

properties, Zhang [62] fabricated a composition of<br />

La1.5Mg0.5Ni7 with a maximum discharge capacity of<br />

389.4 mAh/g, good activation characteristics and good cycle<br />

stability. Its HRD showed a high value of 92.3% at a current<br />

density of 900 mA/g. This year a new phase, MgNi 3, with the<br />

same cubic crystal lattice as AuCu3 has been reported [63].<br />

More work needs to be carried out with AB3- and A2B7-type<br />

<strong>alloys</strong>.<br />

5. AB-type <strong>alloys</strong><br />

Early work on AB-type <strong>hydrogen</strong> <strong>storage</strong> <strong>alloys</strong> was restricted<br />

to TiFe. There are two stable <strong>in</strong>ter<strong>metal</strong>lic compounds <strong>for</strong>med<br />

by the Ti–Fe system, TiFe and TiFe 2 [52]. The application of<br />

TiFe <strong>in</strong> Ni–MH batteries has been limited because of its poor<br />

k<strong>in</strong>etics of <strong>hydrogen</strong> absorption/desorption [64]. In recent<br />

years, more AB-type <strong>hydrogen</strong> <strong>storage</strong> <strong>alloys</strong> consist<strong>in</strong>g of Ti,<br />

Zr or Hf on the A side and Fe, Ni, Al, Co, Mn, or Sn on the B side<br />

have been <strong>in</strong>vestigated [65–69]. The substitution of Ni <strong>for</strong> Fe<br />

could improve the activation per<strong>for</strong>mance and discharge<br />

capacity. TiFe 0.25Ni 0.75 showed a high discharge capacity of<br />

155 mAh/g on the third cycle [67]. Although the Ti–Ni system<br />

has been studied <strong>for</strong> many years, it is still <strong>in</strong> an active research<br />

topic [70–73]. Cuevas et al. [74] have shown that martensitic<br />

Ti 0.64Zr 0.36Ni exhibited much higher reversible capacity, about<br />

330 mAh/g. Nevertheless, the electrochemical properties of<br />

this system of <strong>alloys</strong> are unsatisfactory [73].<br />

Ti–Ni-based <strong>alloys</strong> with a similar composition but a quasicrystall<strong>in</strong>e<br />

structure have been described <strong>in</strong> the past few years<br />

[75,76]. There are many <strong>in</strong>terstices which could be suitable<br />

sites <strong>for</strong> <strong>hydrogen</strong> atoms <strong>in</strong> a quasicrystall<strong>in</strong>e Ti–Zr–Ni alloy,<br />

compared to a normal crystal structure [76]. Liu et al. [26]<br />

found that Ti 45 xZr 35 xNi 17þ2xCu 3 icosahedral quasicrystall<strong>in</strong>e<br />

phase (I-phase) had a large discharge capacity of 269 mAh/g<br />

without <strong>in</strong>itial activation, when x was up to 8. Increased <strong>nickel</strong><br />

content improved the electrochemical k<strong>in</strong>etic properties and<br />

prevented oxidation of the alloy electrodes. The <strong>hydrogen</strong><br />

<strong>storage</strong> <strong>alloys</strong> with quasicrystall<strong>in</strong>e structure show good<br />

<strong>hydrogen</strong> <strong>storage</strong> properties. However, direct fabrication of<br />

this quasicrystall<strong>in</strong>e phase by MA has not been reported.<br />

Takasaki et al. [77] expla<strong>in</strong>ed that MA processes elemental<br />

powders mostly by dynamic <strong>for</strong>ce or mechanical collision,<br />

which leads to chemically <strong>in</strong>homogeneous f<strong>in</strong>al products and<br />

makes it difficult to produce a s<strong>in</strong>gle quasicrystall<strong>in</strong>e phase.<br />

6. Composite <strong>hydrogen</strong> <strong>storage</strong> <strong>alloys</strong><br />

Desirable electrochemical properties of <strong>hydrogen</strong> <strong>storage</strong><br />

<strong>alloys</strong> <strong>in</strong>clude high <strong>storage</strong> capacity, easy activation, high<br />

resistance to corrosion, favorable k<strong>in</strong>etic per<strong>for</strong>mance, high<br />

HRD, and low cost. In practice, it is difficult to simultaneously<br />

obta<strong>in</strong> all these properties <strong>in</strong> a s<strong>in</strong>gle alloy system, but us<strong>in</strong>g<br />

a composite <strong>hydrogen</strong> <strong>storage</strong> alloy is an effective way to<br />

achieve it. A composite <strong>hydrogen</strong> <strong>storage</strong> alloy conta<strong>in</strong>s two or<br />

more <strong>hydrogen</strong> <strong>storage</strong> <strong>alloys</strong>, or a <strong>hydrogen</strong> <strong>storage</strong> alloy and<br />

another <strong>in</strong>ter<strong>metal</strong>lic compound. Generally, the major<br />

component <strong>in</strong> a composite <strong>hydrogen</strong> <strong>storage</strong> alloy is an alloy<br />

with good <strong>hydrogen</strong> <strong>storage</strong> properties. The m<strong>in</strong>or component<br />

is a surface activator to improve the activation properties and<br />

the k<strong>in</strong>etics of <strong>hydrogen</strong> sorption/desorption [78].<br />

AB5- and AB2-type <strong>alloys</strong> are the two conventional<br />

<strong>hydrogen</strong> <strong>storage</strong> <strong>alloys</strong>. Each one has its own advantages,


4792<br />

<strong>in</strong>ternational journal of <strong>hydrogen</strong> energy 34 (2009) 4788–4796<br />

such as easy activation of AB 5 and high <strong>storage</strong> capacity of<br />

AB2. Chen et al. [79] milled an AB2 Zr–Ti–V–Ni alloy with added<br />

LaNi5, and showed that the matrix alloy was successfully<br />

coated with f<strong>in</strong>e nanocrystall<strong>in</strong>e LaNi5 and the electrochemical<br />

activation of the AB2 alloy was effectively improved.<br />

A similar result was obta<strong>in</strong>ed by Han et al. [80] who found that<br />

the addition of LaNi5 improved not only the activation<br />

per<strong>for</strong>mance but also the high rate dischargeability of the<br />

matrix due to a segregated La–Ni phase which provided active<br />

sites and pathways <strong>for</strong> <strong>hydrogen</strong> diffusion. Another <strong>in</strong>terest<strong>in</strong>g<br />

result was that the addition of AB 5 alloy could drastically<br />

decrease the amount of V dissolved from the matrix by<br />

the KOH electrolyte [81]. On the contrary, an AB2 alloy added to<br />

a matrix of LaNi5 alloy [82] enhanced the discharge capacity of<br />

the matrix.<br />

Yang et al. [78] found that amorphous Mg–Ni alloy can be<br />

an excellent surface activator to elim<strong>in</strong>ate the <strong>in</strong>itial activation<br />

and substantially improve the k<strong>in</strong>etic properties of <strong>alloys</strong><br />

such as Zr(Ni0.6Mn0.15Cr0.1V0.15)2 and ZrCrNi, which are usually<br />

considered unsuitable <strong>for</strong> practical application because of<br />

their poor k<strong>in</strong>etics and difficult activation. Choi et al. [83]<br />

demonstrated a similar result <strong>in</strong> a system of TiV 2.1Ni 0.3–MgNi<br />

composites, and expla<strong>in</strong>ed that the amorphous MgNi alloy not<br />

only acted as a protective film aga<strong>in</strong>st corrosion, but also<br />

<strong>for</strong>med a uni<strong>for</strong>m layer with high electrocatalytic per<strong>for</strong>mance<br />

and high elasticity on the surface of the matrix. It is<br />

well known that Mg-based <strong>alloys</strong> have attractively high<br />

<strong>storage</strong> capacity, low cost and light weight. Un<strong>for</strong>tunately,<br />

they have poor <strong>hydrogen</strong> absorption/desorption characteristics,<br />

which seriously blocks their practical use <strong>in</strong> energy<br />

<strong>storage</strong>. Cui et al. [84] <strong>in</strong>vestigated a composite alloy of Mg 2Ni–<br />

40 wt%Ti2Ni. The addition of Ti2Ni particles <strong>in</strong>laid on the<br />

surface of Mg2Ni particles improved both the charge-transfer<br />

reaction at the surface of alloy and <strong>hydrogen</strong> diffusion <strong>in</strong> the<br />

bulk alloy. Some <strong>in</strong>ter<strong>metal</strong>lic compounds such as CoB [85]<br />

and TiB [86] are also effective additions <strong>for</strong> prepar<strong>in</strong>g<br />

composite <strong>hydrogen</strong> <strong>storage</strong> <strong>alloys</strong>. In recent years, magnesium<br />

has been used as a substitutable element <strong>in</strong> the system<br />

of La–Mg–Ni <strong>alloys</strong> which were extensively studied as negative<br />

electrode candidates <strong>for</strong> Ni–MH secondary batteries due to<br />

their high discharge capacities [58–62]. However, the <strong>in</strong>ferior<br />

cycle durability of these <strong>alloys</strong> limits their real application.<br />

Prepar<strong>in</strong>g composite <strong>hydrogen</strong> <strong>storage</strong> <strong>alloys</strong> is also a good<br />

method to improve their overall properties [87–89].<br />

7. Electrochemical k<strong>in</strong>etics of <strong>hydrogen</strong><br />

absorption/desorption<br />

The thermodynamic properties of a <strong>metal</strong>-<strong>hydrogen</strong> system<br />

are conveniently summarized by a pressure–composition–<br />

temperature (PCT) curve [90]. Thermodynamic parameters<br />

such as the enthalpy DH and the entropy DS of <strong>hydride</strong><br />

<strong>for</strong>mation can be determ<strong>in</strong>ed from the Van’t Hoff equation<br />

[91].<br />

Apart from thermodynamic properties, another important<br />

criterion <strong>for</strong> a <strong>metal</strong>-<strong>hydrogen</strong> system is the electrochemical<br />

k<strong>in</strong>etics of <strong>hydrogen</strong> absorption/desorption, i.e. the k<strong>in</strong>etics<br />

of the charge-transfer reaction at the electrode/electrolyte<br />

<strong>in</strong>terface and <strong>hydrogen</strong> diffusion with<strong>in</strong> the bulk electrode.<br />

Table 1 – Exchange current densities <strong>for</strong> <strong>hydrogen</strong> <strong>storage</strong> <strong>alloys</strong> at 50% DOD.<br />

Composition Phase structure Exchange current<br />

density, I0 (mA/g)<br />

Reference<br />

Ti0.8Zr0.2V2.7Mn0.5Cr0.8Ni1.25 C14 Laves phase, V-based<br />

solid solution phase<br />

142.8 [93]<br />

Ti0.8Zr0.2V2.7Mn0.5Cr0.5Ni1.25Fe0.3 178.7 [93]<br />

Ti0.8Zr0.2V2.7Mn0.5Ni1.25Fe0.8 46.96 [93]<br />

Ti45Zr35Ni17Cu3 I-phase 199.5 [26]<br />

Ti43Zr33Ni21Cu3 229.1 [26]<br />

Ti41Zr31Ni25Cu3 301.2 [26]<br />

Ti37Zr27Ni33Cu3 480.7 [26]<br />

La2MgNi9 PuNi3-type 88.5 [60]<br />

La2Mg(Ni0.09Al0.01)9 65.4 [60]<br />

La2Mg(Ni0.08Al0.02) 9 62.8 [60]<br />

La1.7Mg0.3Ni7.0 LaNi5, PuNi3-type 128.1 [62]<br />

La1.6Mg0.4Ni7.0 228.7 [62]<br />

La1.5Mg0.5Ni7.0 227.7 [62]<br />

La1.4Mg0.6Ni7.0 167.3 [62]<br />

La0.7Mg0.3(Ni0.85Co0.15) 3 PuNi3-type 186.5 [19]<br />

La0.7Mg0.3(Ni0.85Co0.15)4 222.3 [19]<br />

La0.7Mg0.3(Ni0.85Co0.15)5 190.1 [19]<br />

Mg0.86Ti0.1Pd0.04Ni Amorphous 256 [49]<br />

Mg0.84Ti0.1Pd0.06Ni 247 [49]<br />

Mg0.8Ti0.1Pd0.1Ni 184 [49]<br />

La0.7Mg0.3Ni3.5 PuNi3-type, LaNi5 79.6 [89]<br />

Ti0.17Zr0.08V0.35Cr0.1Ni0.3 V-based solid solution phase, C14 Laves phase 99.5 [89]<br />

La0.7Mg0.3Ni3.5 þ 5 wt.% Ti0.17Zr0.08V0.35Cr0.1Ni0.3 PuNi3-type, LaNi5, V-based solid solution<br />

phase, C14 Laves phase<br />

362.9 [89]<br />

La 0.7Mg 0.3Ni 3.5 þ 50 wt.% Ti 0.17Zr 0.08V 0.35Cr 0.1Ni 0.3 201.6 [89]


<strong>in</strong>ternational journal of <strong>hydrogen</strong> energy 34 (2009) 4788–4796 4793<br />

These can be expressed by the values of the exchange<br />

current density I0 and/or the polarization resistance Rp, as<br />

well as the <strong>hydrogen</strong> diffusion coefficient D and/or diffusion<br />

resistance RD.<br />

Tables 1 and 2 summarize the I0 and D values of <strong>hydrogen</strong><br />

<strong>storage</strong> <strong>alloys</strong> <strong>in</strong> a half-cell conta<strong>in</strong><strong>in</strong>g a Ni(OH)2/NiOOH<br />

counter electrode and a Hg/HgO reference electrode <strong>in</strong> the<br />

KOH solution, respectively. Zheng et al. [18] have found that<br />

the exchange current density I 0 obta<strong>in</strong>ed on LaNi 4.27Sn 0.24<br />

alloy electrodes was a function of the bulk <strong>hydrogen</strong> concentration.<br />

Ramya et al. [94] noticed similar results <strong>for</strong><br />

a TiMn 1.6Ni 0.4 alloy and proposed that a modified surface<br />

could improve the charge-transfer reaction. There is no doubt<br />

that the properties of <strong>hydrogen</strong> <strong>storage</strong> <strong>alloys</strong> are pr<strong>in</strong>cipally<br />

<strong>in</strong>fluenced by the electrochemical characteristics of the <strong>alloys</strong><br />

<strong>in</strong> the region of the potential plateau. That is why the<br />

exchange current density was determ<strong>in</strong>ed at 50% DOD <strong>in</strong><br />

a number of studies. Enhancement of the exchange current<br />

density can be related to modification of the surface state.<br />

Many approaches to surface modification have been attempted<br />

to dissolve the oxide layer and promote the <strong>for</strong>mation of<br />

an active surface with excellent electrocatalytic per<strong>for</strong>mance<br />

[19,20,26,49,78,89]. It is <strong>in</strong>terest<strong>in</strong>g that the exchange current<br />

densities of various research groups can be <strong>in</strong>creased to the<br />

same level by either element substitution or composite <strong>alloys</strong><br />

as shown <strong>in</strong> Table 1. The electrochemical properties of<br />

<strong>hydrogen</strong> <strong>storage</strong> <strong>alloys</strong> may be strongly <strong>in</strong>fluenced by<br />

transport properties <strong>in</strong> the bulk <strong>alloys</strong>. The potential-step<br />

method <strong>for</strong> calculat<strong>in</strong>g the value or the average value [17,36] of<br />

<strong>hydrogen</strong> diffusion coefficients has been extensively used as<br />

shown <strong>in</strong> Table 2. It can be seen that this method is effective<br />

<strong>for</strong> evaluat<strong>in</strong>g the change of <strong>hydrogen</strong> diffusion coefficients<br />

with<strong>in</strong> each research group. For comparison between various<br />

research groups, as Feng et al. [17] remarked, values obta<strong>in</strong>ed<br />

at the same DOD should be used.<br />

Presently, there is no doubt that <strong>in</strong>creas<strong>in</strong>g the exchange<br />

current density and the <strong>hydrogen</strong> diffusion coefficient<br />

<strong>in</strong>creases the charge and discharge capacities and efficiencies<br />

of <strong>hydrogen</strong> <strong>storage</strong> <strong>alloys</strong>. The exchange current density<br />

related to the charge-transfer step is determ<strong>in</strong>ed both by<br />

crystallographic and electronic structure [95]. Different alloy<br />

compositions on the alloy surface <strong>in</strong>fluence the valence<br />

electron configurations, which essentially determ<strong>in</strong>ed the<br />

charge-transfer reaction Eq. (1), i.e. the <strong>hydrogen</strong> dissociative<br />

reaction [96]. The surface s- and d-electrons play an important<br />

role <strong>in</strong> the <strong>hydrogen</strong> dissociation on a <strong>metal</strong> surface [96]. In<br />

the case of a substrate atom whose valence electron states are<br />

fully occupied, the H s-electron is repelled. Jaksic [97] has<br />

reported that a synergistic effect <strong>in</strong> <strong>hydrogen</strong> electrosorption–<br />

desorption should arise by alloy<strong>in</strong>g <strong>metal</strong>s hav<strong>in</strong>g unoccupied<br />

d-band states with those hav<strong>in</strong>g <strong>in</strong>ternally paired d-electrons.<br />

For <strong>in</strong>stance, the valence electron configurations of Mg, La, Ni<br />

atoms are 2p 6 3s 2 ,6s 2 5d 1 and 4s 2 3d 8 , respectively. In the case<br />

of Mg, the s- and p-orbitals are fully occupied and no d-orbital,<br />

Table 2 – Hydrogen diffusion coefficients D obta<strong>in</strong>ed by us<strong>in</strong>g Eq. (9) <strong>for</strong> <strong>hydrogen</strong> <strong>storage</strong> <strong>alloys</strong>.<br />

Composition Phase structure Hydrogen diffusion<br />

coefficient, D (cm 2 /s)<br />

Mg2Ni Mg2Ni 4.5 10 10<br />

Mg1.9V0.1Ni0.8Co0.2 1.3 10 9<br />

La1.7Mg0.3Ni7.0 LaNi5, PuNi3-type 4.5 10 10<br />

La1.6Mg0.4Ni7.0 6.4 10 10<br />

La1.5Mg0.5Ni7.0 8.4 10 10<br />

La1.4Mg0.6Ni7.0 7.7 10 10<br />

La2Mg(Ni0.95Al0.05)9 PuNi3-type 1.18 10 10<br />

La2Mg(Ni0.95Sn0.05)9 7.57 10 10<br />

La0.7Mg0.3(Ni0.85Co0.15) 3 1.61 10 10<br />

La0.7Mg0.3(Ni0.85Co0.15) 4 2.20 10 10<br />

La0.7Mg0.3(Ni0.85Co0.15)5 1.48 10 10<br />

Mg0.86Ti0.1Pd0.04Ni Amorphous 3.0 10 9<br />

Mg0.84Ti0.1Pd0.06Ni 4.1 10 9<br />

Mg0.8Ti0.1Pd0.1Ni 5.6 10 9<br />

TiNi Nanocrystall<strong>in</strong>e 2.73 10 12<br />

TiNi0.8Mn0.2 9.2 10 12<br />

TiNi0.8Mn0.2 Amorphous/Nanocrystall<strong>in</strong>e 1.2 10 10<br />

Ti45Zr35Ni17Cu3 I-phase 5.8 10 10<br />

Ti43Zr33Ni21Cu3 6.3 10 10<br />

Ti41Zr31Ni25Cu3 7.4 10 10<br />

Ti37Zr27Ni33Cu3 10.5 10 10<br />

Ti0.8Zr0.2V2.7Mn0.5Cr0.8Ni1.25 C14 Laves phase, V-based solid solution phase 4.6 10 11<br />

Ti0.8Zr0.2V2.7Mn0.5Cr0.5Ni1.25Fe0.3 6.01 10 11<br />

Ti0.8Zr0.2V2.7Mn0.5Ni1.25Fe0.8 2.7 10 11<br />

Ti0.9Zr0.2Mn1.5Cr0.3V0.3 C14 Laves phase 0.62 10 14<br />

Ti0.9Zr0.2Mn1.5Cr0.3V0.3 þ LaNi3.8Mn0.3Al0.4Co0.5 C14 Laves phase, LaNi5 3.19 10 14<br />

La0.7Mg0.3Ni3.5 þ 5 wt.% Ti0.17Zr0.08V0.35Cr0.1Ni0.3 PuNi3-type, LaNi5, V-based solid<br />

solution phase, C14 Laves phase<br />

1.67 10 11<br />

La0.7Mg0.3Ni3.5 þ 25 wt.% Ti0.17Zr0.08V0.35Cr0.1Ni0.3 1.28 10 11<br />

La0.7Mg0.3Ni3.5 þ 40 wt.% Ti0.17Zr0.08V0.35Cr0.1Ni0.3 1.51 10 11<br />

Reference<br />

[35]<br />

[35]<br />

[62]<br />

[62]<br />

[62]<br />

[62]<br />

[61]<br />

[61]<br />

[19]<br />

[19]<br />

[19]<br />

[49]<br />

[49]<br />

[49]<br />

[73]<br />

[73]<br />

[73]<br />

[26]<br />

[26]<br />

[26]<br />

[26]<br />

[93]<br />

[93]<br />

[93]<br />

[92]<br />

[92]<br />

[89]<br />

[89]<br />

[89]


4794<br />

result<strong>in</strong>g <strong>in</strong> the high energy barrier <strong>for</strong> <strong>hydrogen</strong> dissociation.<br />

In cases of Ni and La, although the s-orbital is fully occupied,<br />

the d-orbital is hardly occupied, result<strong>in</strong>g <strong>in</strong> the negligible<br />

energy barrier [95,98]. It is obvious from Table 1 that elemental<br />

substitution with the element with unoccupied d-band state is<br />

fairly useful to enhance the exchange current density of the<br />

alloy [26,49,60]. Moreover, a synergistic effect <strong>in</strong> a composite<br />

alloy substantially improves the electrocatalytic per<strong>for</strong>mance<br />

of the alloy substrate [88,89].<br />

In absorption, the dissociated <strong>hydrogen</strong> atoms are <strong>in</strong>corporated<br />

<strong>in</strong>to the solid lattice framework. The <strong>hydrogen</strong><br />

diffusion coefficient of atomic <strong>hydrogen</strong> <strong>in</strong> the <strong>metal</strong>lic<br />

lattices was shown to be dependent on the strength of the<br />

<strong>metal</strong>-<strong>hydrogen</strong> <strong>in</strong>teraction and the <strong>hydrogen</strong> concentration<br />

[17,20,36]. It is known that the hydrid<strong>in</strong>g properties of MgH2<br />

are significantly improved by the addition of transition<br />

<strong>metal</strong>s, such as Ni which acts as a catalyst, result<strong>in</strong>g <strong>in</strong><br />

a weaken<strong>in</strong>g of the bond<strong>in</strong>g between Mg and H atoms and<br />

consequent an <strong>in</strong>crease <strong>in</strong> <strong>hydrogen</strong> diffusion. A similar<br />

result has been achieved by the partial submission of Mg by<br />

Pd [49]. Furthermore, a substitution of Mg by V <strong>in</strong>creases the<br />

lattice volume and enhances the <strong>hydrogen</strong> diffusion [35].<br />

Drenchev et al. [73] reported that amorphous phase <strong>in</strong><br />

Ti–Mn–Ni alloy was beneficial to the <strong>hydrogen</strong> diffusion <strong>in</strong><br />

the bulk alloy. Liu et al. [26] showed a quasicrystall<strong>in</strong>e<br />

Ti-based alloy with high <strong>hydrogen</strong> <strong>in</strong>f<strong>in</strong>ity conta<strong>in</strong><strong>in</strong>g abundant<br />

tetrahedrons <strong>for</strong> <strong>hydrogen</strong> occupation and found that<br />

the <strong>hydrogen</strong> absorption/desorption properties of the alloy<br />

could effectively improved by <strong>in</strong>creas<strong>in</strong>g the Ni content <strong>in</strong> the<br />

alloy, and the <strong>hydrogen</strong> diffusion efficient could be fairly<br />

enhanced. Composite <strong>hydrogen</strong> <strong>storage</strong> <strong>alloys</strong> [89,92] are<br />

helpful to the <strong>in</strong>crease <strong>in</strong> the <strong>hydrogen</strong> diffusion of the<br />

matrix alloy by a synergistic effect, which improves the<br />

<strong>hydrogen</strong> penetration or <strong>hydrogen</strong> transfer between the alloy<br />

surface and bulk alloy.<br />

8. Summary<br />

<strong>in</strong>ternational journal of <strong>hydrogen</strong> energy 34 (2009) 4788–4796<br />

Hydrogen <strong>storage</strong> <strong>alloys</strong> have been extensively studied <strong>for</strong><br />

many years. There is an apparent trend to concentrate on low<br />

cost, light weight and excellent charge–discharge properties.<br />

This paper presents a review of some <strong>in</strong>terest<strong>in</strong>g <strong>hydrogen</strong><br />

<strong>storage</strong> <strong>alloys</strong> prepared by an effective and low cost method of<br />

mechanical alloy<strong>in</strong>g and mill<strong>in</strong>g. Alloys based on Mg and that<br />

conta<strong>in</strong> Mg have received more attention <strong>in</strong> recent years <strong>in</strong><br />

spite of stubborn difficulties due to their low cost, light weight<br />

and high <strong>hydrogen</strong> <strong>storage</strong> capacity. The system of Ti–Nibased<br />

<strong>alloys</strong> shows an attractive quasicrystall<strong>in</strong>e structure<br />

which is quite favorable <strong>for</strong> <strong>hydrogen</strong> <strong>storage</strong>. At the present<br />

time, us<strong>in</strong>g composite <strong>hydrogen</strong> <strong>storage</strong> <strong>alloys</strong> may be most<br />

effective <strong>for</strong> practical battery applications.<br />

Charge-transfer and <strong>hydrogen</strong> diffusion are the two most<br />

important factors <strong>for</strong> evaluat<strong>in</strong>g the electrochemical properties<br />

of <strong>hydrogen</strong> <strong>storage</strong> <strong>alloys</strong>. They can be expressed by the<br />

exchange current density I0 and <strong>hydrogen</strong> diffusion coefficient<br />

D, respectively. Any comparison of these values <strong>in</strong> different<br />

<strong>alloys</strong>, or <strong>in</strong> the same alloy system, should be carried out at the<br />

same DOD.<br />

references<br />

[1] Kuriyama N, Sakai T, Miyamura H, Tanaka H, Ishikawa H,<br />

Uehara I. Hydrogen <strong>storage</strong> <strong>alloys</strong> <strong>for</strong> <strong>nickel</strong>/<strong>metal</strong>–<strong>hydride</strong><br />

battery. Vacuum 1996;47(6-8):889–92.<br />

[2] Hong K. The development of <strong>hydrogen</strong> <strong>storage</strong> <strong>alloys</strong> and the<br />

<strong>progress</strong> of <strong>nickel</strong> <strong>hydride</strong> batteries. J Alloys Compd 2001;<br />

321(2):307–13.<br />

[3] Furukawa N. Development and commercialization of <strong>nickel</strong><strong>metal</strong><br />

<strong>hydride</strong> secondary batteries. J Power Sources 1994;<br />

51(1-2):45–59.<br />

[4] Akiba E. Hydrogen-absorb<strong>in</strong>g <strong>alloys</strong>. Curr Op<strong>in</strong> Solid St M<br />

1999;4(3):267–72.<br />

[5] Cui N, He P, Luo JL. Magnesium-based <strong>hydrogen</strong> <strong>storage</strong><br />

materials modified by mechanical alloy<strong>in</strong>g. Acta Mater 1999;<br />

47(14):3737–43.<br />

[6] Sakai T, Uehara I, Ishikawa H. R&D on <strong>metal</strong> <strong>hydride</strong><br />

materials and Ni–MH batteries <strong>in</strong> Japan. J Alloys Compd 1999;<br />

293–295:762–9.<br />

[7] Suryanarayana C. Mechanical alloy<strong>in</strong>g and mill<strong>in</strong>g. Prog<br />

Mater Sci 2001;46(1):1–184.<br />

[8] El-Eskandarany MS. Mechanical alloy<strong>in</strong>g <strong>for</strong> Fabrication of<br />

advanced eng<strong>in</strong>eer<strong>in</strong>g materials. New York: William Andrew<br />

Publish<strong>in</strong>g; 2001.<br />

[9] Ivanov E, Konstanchuk I, Stepanov A, Boldyrev V.<br />

Magnesium mechanical <strong>alloys</strong> <strong>for</strong> <strong>hydride</strong> <strong>storage</strong>. J Less-<br />

Common Met 1987;131(1–2):25–9.<br />

[10] Wang CS, Soriaga MP, Sr<strong>in</strong>ivasan S. Determ<strong>in</strong>ation of<br />

reaction resistances <strong>for</strong> <strong>metal</strong>-<strong>hydride</strong> electrodes dur<strong>in</strong>g<br />

anodic polarization. J Power Sources 2000;85(2):212–23.<br />

[11] Mart<strong>in</strong> M, Gommel C, Borkhart C, Fromm E. Absorption and<br />

desorption k<strong>in</strong>etics of <strong>hydrogen</strong> <strong>storage</strong> <strong>alloys</strong>. J Alloys<br />

Compd 1996;238(1–2):193–201.<br />

[12] Wang CS, Wang XH, Lei YQ, Chen CP, Wang QD. The<br />

hydrid<strong>in</strong>g k<strong>in</strong>etics of MlNi 5M–I. Development of the model.<br />

Int J Hydrogen Energy 1996;21(6):471–8.<br />

[13] Wang XH, Wang CS, Chen CP, Lei YQ, Wang QD. The<br />

hydrid<strong>in</strong>g k<strong>in</strong>etics of MlNi 5dII. Experimental results. Int<br />

J Hydrogen energy 1996;21(6):479–84.<br />

[14] Fernández GE, Rodríguez D, Meyer G. Hydrogen absorption<br />

k<strong>in</strong>etics of MmNi 4.7Al 0.3. Int J Hydrogen Energy 1998;23(12):<br />

1193–6.<br />

[15] Geng M, Feng F, Sebastian PJ, Matchett AJ, Northwood DO.<br />

Charge transfer and mass transfer reactions <strong>in</strong> the <strong>metal</strong><br />

<strong>hydride</strong> electrode. Int J Hydrogen Energy 2000;26(2):165–9.<br />

[16] Xu YH, He GR, Wang XL. Hydrogen evolution reaction on the<br />

AB 5 <strong>metal</strong> <strong>hydride</strong> electrode. Int J Hydrogen Energy 2003;<br />

28(9):961–5.<br />

[17] Feng F, Northwood DO. Hydrogen diffusion <strong>in</strong> the anode of Ni/<br />

MH secondary batteries. J Power Sources 2004;136(2):346–50.<br />

[18] Zheng G, Popov BN, White RE. Determ<strong>in</strong>ation of transport<br />

and electrochemical k<strong>in</strong>etic parameters of bare and coppercoated<br />

LaNi 4.27Sn 0.24 electrodes <strong>in</strong> alkal<strong>in</strong>e solution.<br />

J Electrochem Soc 1996;143(3):835–9.<br />

[19] Pan HG, Liu YF, Gao MX, Zhu YF, Lei YQ. The structural and<br />

electrochemical properties of La 0.7Mg 0.3(Ni 0.85Co 0.15) x(x¼3.0–<br />

5.0) <strong>hydrogen</strong> <strong>storage</strong> <strong>alloys</strong>. Int J Hydrogen Energy 2003;<br />

28(11):1219–28.<br />

[20] Zhao XY, D<strong>in</strong>g Yi, Yang M, Ma LQ. Effect of surface treatment<br />

on electrochemical properties of MmNi3.8Co0.75Mn0.4Al0.2<br />

<strong>hydrogen</strong> <strong>storage</strong> alloy. Int J Hydrogen Energy 2008;33(1):81–6.<br />

[21] Zheng G, Popov BN, White RE. Application of porous<br />

electrode theory on <strong>metal</strong> <strong>hydride</strong> electrode <strong>in</strong> alkal<strong>in</strong>e<br />

solution. J Electrochem Soc 1996;143(2):435–41.<br />

[22] Ratnakumar BV, Witham C, Bowman Jr RC, Hightower A,<br />

Fultz B. Electrochemical studies on LaNi 5 xSn x <strong>metal</strong> <strong>hydride</strong><br />

<strong>alloys</strong>. J Electrochem Soc 1996;143(8):2578–84.


<strong>in</strong>ternational journal of <strong>hydrogen</strong> energy 34 (2009) 4788–4796 4795<br />

[23] Shaju KM, Kumar VG, Rodrigues S, Munichandraiah N,<br />

Shukla AK. Effect of morphology on the per<strong>for</strong>mance of <strong>metal</strong><strong>hydride</strong><br />

electrodes. J Appl Electrochem 2000;30(3):347–57.<br />

[24] Kuriyama N, Sakai T, Miyamura H, Uehara I, Ishikawa H.<br />

Electrochemical impedance and deterioration behavior of<br />

<strong>metal</strong> <strong>hydride</strong> electrodes. J Alloys Compd 1993;202(1-2):183–97.<br />

[25] Gao XP, Zhang W, Yang HB, Song DY, Zhang YS, Zhou ZX, et al.<br />

Electrochemical properties of the Zr(W 0.4Ni 0.6) 2.4 <strong>hydrogen</strong><br />

<strong>storage</strong> alloy electrode. J Alloys Compd 1996;235(2):225–31.<br />

[26] Liu BZ, Wu YM, Wang LM. Crystallographic and<br />

electrochemical characteristics of icosahedral<br />

quasicrystall<strong>in</strong>e Ti 45 xZr 35 xNi 17þ2xCu 3 (x¼0–8) powders.<br />

J Power Sources 2006;162(1):713–8.<br />

[27] Witham C, Fultz B, Ratnakumar BV, Bowman RC,<br />

Hightower A. Electrochemical properties of LaNi 5 xGe x <strong>alloys</strong><br />

<strong>in</strong> Ni–MH batteries. J Electrochem Soc 1997;144(11):3758–64.<br />

[28] Karlicek RF, Lowe IJ. Hydrogen diffusion <strong>in</strong> beta-LaNi 5<br />

<strong>hydride</strong>. J Less-Common Met 1980;73(2):219–25.<br />

[29] Richter D, Hemplemann R, V<strong>in</strong>has LA. Hydrogen diffusion <strong>in</strong><br />

LaNi 5H 6 studied by quasi-elastic neutron scatter<strong>in</strong>g. J Less-<br />

Common Met 1982;88(2):353–60.<br />

[30] Stroem-Olsen JO, Zhao Y, Ryan DH, Haui Y, Cochrane RW.<br />

Hydrogen diffusion <strong>in</strong> amorphous Ni–Zr. J Less-Common Met<br />

1991;173(1-2):922–7.<br />

[31] Yuan XX, Xu NX. Determ<strong>in</strong>ation of <strong>hydrogen</strong> diffusion<br />

coefficient <strong>in</strong> <strong>metal</strong> <strong>hydride</strong> electrode by cyclic voltammetry.<br />

J Alloys Compd 2001;316(1-2):113–7.<br />

[32] Yuan XX, Xu NX. Determ<strong>in</strong>ation of <strong>hydrogen</strong> diffusion<br />

coefficient <strong>in</strong> <strong>metal</strong> <strong>hydride</strong> electrode by modified Warburg<br />

impedance. J Alloys Compd 2001;329(1-2):115–20.<br />

[33] Zheng G, Popov BN, White RE. Electrochemical<br />

determ<strong>in</strong>ation of the diffusion coefficient of <strong>hydrogen</strong><br />

through an LaNi 4.25Al 0.75 electrode <strong>in</strong> Alkal<strong>in</strong>e aqueous<br />

solution. J Electrochem Soc 1995;142(8):2695–8.<br />

[34] Nish<strong>in</strong>a T, Ura H, Uchida I. Determ<strong>in</strong>ation of chemical diffusion<br />

coefficients <strong>in</strong> <strong>metal</strong> <strong>hydride</strong> particles with a microelectrode<br />

technique. J Electrochem Soc 1997;144(4):1273–7.<br />

[35] Cui N, Luo JL. Electrochemical study of <strong>hydrogen</strong> diffusion<br />

behavior <strong>in</strong> Mg 2Ni-type <strong>hydrogen</strong> <strong>storage</strong> alloy electrodes.<br />

Int J Hydrogen Energy 1999;24(1):37–42.<br />

[36] Feng F, Han J, Geng M, Northwood DO. Study of <strong>hydrogen</strong><br />

transport <strong>in</strong> <strong>metal</strong> <strong>hydride</strong> electrodes us<strong>in</strong>g a novel<br />

electrochemical method. J Electroanal Chem 2000;487(2):111–9.<br />

[37] S<strong>in</strong>gh AK, S<strong>in</strong>gh AK, Srivastava ON. On the synthesis of the Mg 2Ni<br />

alloy by mechanical alloy<strong>in</strong>g. J Alloys Compd 1995;227(1):63–8.<br />

[38] Inoue H, Hazui S, Nohara S, Iwakura C. Preparation and<br />

electrochemical characterization of Mg2Ni <strong>alloys</strong> with different<br />

crystall<strong>in</strong>ities. Electrochim Acta 1998;43(14-15):2221–4.<br />

[39] Cui N, Luan B, Liu HK, Dou SX. Discharge behaviour of Mg 2Nitype<br />

<strong>hydrogen</strong>-<strong>storage</strong> alloy electrodes <strong>in</strong> 6M KOH solution<br />

by electrochemical impedance spectroscopy. J Power Sources<br />

1996;63(2):209–14.<br />

[40] Han SS, Lee HY, Goo NH, Jeong WT, Lee KS. Improvement of<br />

electrode per<strong>for</strong>mances of Mg 2Ni by mechanical alloy<strong>in</strong>g.<br />

J Alloys Compd 2002;330–332:841–5.<br />

[41] Zhang Y, Zhang SK, Chen LiX, Lei YQ, Wang QD. The study<br />

on the electrochemical per<strong>for</strong>mance of mechanically alloyed<br />

Mg–Ti–Ni-based ternary and quaternary <strong>hydrogen</strong> <strong>storage</strong><br />

electrode <strong>alloys</strong>. Int J Hydrogen Energy 2001;36(8):801–6.<br />

[42] Bobet JL, Akiba E, Nakamura Y, Darriet B. Study of Mg-M<br />

(M¼Co, Ni and Fe) mixture elaborated by reactive mechanical<br />

alloy<strong>in</strong>g-<strong>hydrogen</strong> sorption properties. Int J Hydrogen Energy<br />

2000;25(1):987–96.<br />

[43] Wang LB, Wang JB, Yuan HT, Wang YJ, Li QD. An<br />

electrochemical <strong>in</strong>vestigation of Mg 1 xAl xNi (0 x 0.6)<br />

<strong>hydrogen</strong> <strong>storage</strong> <strong>alloys</strong>. J Alloys Compd 2004;385(1-2):304–8.<br />

[44] Feng Y, Jiao LF, Yuan HT, Zhao M. Effect of Al and Ce<br />

substitutions of the electrochemical properties of<br />

amorphous MgNi-based alloy electrodes. Int J Hydrogen<br />

Energy 2007;32(12):1701–6.<br />

[45] Khorkounov B, Gebert A, Mickel Ch, Schultz L. Improv<strong>in</strong>g the<br />

per<strong>for</strong>mance of <strong>hydrogen</strong> <strong>storage</strong> electrodes based on<br />

mechanically alloyed Mg 61Ni 30Y 9. J Alloys Compd 2007;458(1–2):<br />

479–86.<br />

[46] Takasaki A, Sasao K. Hydrogen absorption and desorption by<br />

Mg 67 xCa xNi 33 powders prepared by mechanical alloy<strong>in</strong>g.<br />

J Alloys Compd 2005;404–406:431–4.<br />

[47] Guo J, Yang K, Xu LQ, Liu YX, Zhou KW. Hydrogen <strong>storage</strong><br />

properties of Mg 76Ti 12Fe 12 xNi x (x¼0, 4, 8, 12) <strong>alloys</strong> by<br />

mechanical alloy<strong>in</strong>g. Int J Hydrogen Energy 2007;32(13):2412–6.<br />

[48] Liu JW, Yuan HT, Cao JS, Wang YJ. Effect of Ti-Al substitution<br />

on the electrochemical properties of amorphous MgNi-based<br />

secondary <strong>hydride</strong> electrodes. J Alloys Compd 2005;392(1–2):<br />

300–5.<br />

[49] Tian QF, Zhang Y, Chu HL, Sun LX, Xu F, Tan ZC, et al.<br />

The electrochemical per<strong>for</strong>mances of Mg 0.9Ti 0.1Ni 1 xPd x<br />

(x¼0–0.15) <strong>hydrogen</strong> <strong>storage</strong> electrode <strong>alloys</strong>. J Power Sources<br />

2006;159(1):155–8.<br />

[50] Rongeat C, Roué L. Effect of particle size on the electrode<br />

per<strong>for</strong>mance of MgNi <strong>hydrogen</strong> <strong>storage</strong> alloy. J Power<br />

Sources 2004;132(1–2):302–8.<br />

[51] Rongeat C, Grosjean MH, Ruggeri S, Dehmas M, Bourlot S,<br />

Marcotte S, et al. Evaluation of different approaches <strong>for</strong><br />

improv<strong>in</strong>g the cycle life of MgNi-based electrodes <strong>for</strong> Ni–MH<br />

batteries. J Power Sources 2006;158(1):747–53.<br />

[52] Ivey DG, Northwood DO. Stor<strong>in</strong>g energy <strong>in</strong> <strong>metal</strong> <strong>hydride</strong>s:<br />

a review of the physical <strong>metal</strong>lurgy. J Mater Sci 1983;18(2):321–47.<br />

[53] Dunlap BD, Viccaro PJ, Shenoy GK. Structural relationships <strong>in</strong><br />

rare earth-transition <strong>metal</strong> <strong>hydride</strong>s. J Less-Common Met<br />

1980;74(1):75–9.<br />

[54] Zhang J, Fang F, Zheng SY, Zhu J, Chen GR, Sun DL, et al.<br />

Hydrogen-<strong>in</strong>duced phase transitions <strong>in</strong> RNi 3 and RY 2Ni 9<br />

(R¼La, Ce) compounds. J Power Sources 2007;172(1):<br />

446–50.<br />

[55] Srivastava S, Srivastava ON. Synthesis, characterization and<br />

<strong>hydrogen</strong>ation behaviour of composite <strong>hydrogen</strong> <strong>storage</strong><br />

<strong>alloys</strong>, LaNi 5/La 2Ni 7, LaNi 3. J Alloys Compd 1999;282(1–2):<br />

197–205.<br />

[56] Kadir K, Sakai T, Uehara I. Synthesis and structure<br />

determ<strong>in</strong>ation of a new series of <strong>hydrogen</strong> <strong>storage</strong> <strong>alloys</strong>;<br />

RMg 2Ni 9 (R¼La, Ce, Pr, Nd, Sm and Gd) built from MgNi 2<br />

Laves-type layers alternat<strong>in</strong>g with AB 5 layers. J Alloys Compd<br />

1997;257(1–2):115–21.<br />

[57] Kadir K, Kuriyama N, Sakai T, Uehara I, Eriksson L. Structural<br />

<strong>in</strong>vestigation and <strong>hydrogen</strong> capacity of CaMg2Ni9: a new<br />

phase <strong>in</strong> the AB 2C 9 system isostructural with LaMg 2Ni 9.<br />

J Alloys Compd 1999;284(1–2):145–54.<br />

[58] Liang G, Schulz R. Phase structures and <strong>hydrogen</strong> <strong>storage</strong><br />

properties of Ca–Mg–Ni <strong>alloys</strong> prepared by mechanical<br />

alloy<strong>in</strong>g. J Alloys Compd 2003;356–357:612–6.<br />

[59] Zhu M, Peng CH, Ouyang LZ, Tong YQ. The effect of<br />

nanocrystall<strong>in</strong>e <strong>for</strong>mation on the <strong>hydrogen</strong> <strong>storage</strong><br />

properties of AB 3-base Ml–Mg–Ni multi-phase <strong>alloys</strong>. J Alloys<br />

Compd 2006;426(1–2):316–21.<br />

[60] Liao B, Lei YQ, Chen LX, Lu GL, Pan HG, Wang QD. The effect<br />

of Al substitution <strong>for</strong> Ni on the structure and electrochemical<br />

properties of AB 3-type La 2Mg(Ni 1 xAl x) 9 (x¼0-0.05) alloy.<br />

J Alloys Compd 2005;404–406:665–8.<br />

[61] Liao B, Lei YQ, Chen LX, Lu GL, Pan HG, Wang QD. A study on<br />

the structure and electrochemical properties of La 2Mg<br />

(Ni 0.95M 0.05) 9 (M¼Co, Mn, Fe, Al, Cu, Sn) <strong>hydrogen</strong> <strong>storage</strong><br />

electrode <strong>alloys</strong>. J Alloys Compd 2004;376(1–2):186–95.<br />

[62] Zhang FL, Luo YC, Wang DH, Yan RX, Kang L, Chen JH.<br />

Structure and electrochemical properties of La 2 xMg xNi 7.0<br />

(x¼0.3-0.6) <strong>hydrogen</strong> <strong>storage</strong> <strong>alloys</strong>. J Alloys Compd 2007;<br />

439(1–2):181–8.


4796<br />

<strong>in</strong>ternational journal of <strong>hydrogen</strong> energy 34 (2009) 4788–4796<br />

[63] Liu GY, Xi SQ, Ran G, Zuo KS, Li PL, Zhou JG. A new phase<br />

MgNi 3 synthesized by mechanical alloy<strong>in</strong>g. J Alloys Compd<br />

2008;448(1–2):206–9.<br />

[64] Jankowska E, Jurczyk M. Electrochemical behaviour of highenergy<br />

ball-milled TiFe alloy. J Alloys Compd 2002;346(1–2):L1–3.<br />

[65] Lee HH, Lee KY, Lee JY. The Ti-based <strong>metal</strong> <strong>hydride</strong> electrode <strong>for</strong><br />

Ni-MH rechargeable batteries. J Alloys Compd 1996;239(1):63–70.<br />

[66] Xu YH, Chen CP, Wang XL, Wang QD. The relationship<br />

between the high-rate dischargeability and the diffusion<br />

coefficient and exchange current <strong>for</strong> Ti 0.5Ni 0.25Al 0.25 <strong>metal</strong><br />

<strong>hydride</strong> <strong>alloys</strong>. J Alloys Compd 2002;335(1–2):262–5.<br />

[67] Jurczyk M, Jankowska E, Nowak M, Jakubowicz J.<br />

Nanocrystall<strong>in</strong>e titanium-type <strong>metal</strong> <strong>hydride</strong> electrodes<br />

prepared by mechanical alloy<strong>in</strong>g. J Alloys Compd 2002;336<br />

(1-2):265–9.<br />

[68] Cuevas F, Latroche M, Percheron-Guégan A. Relationship<br />

between polymorphism and <strong>hydrogen</strong>ation properties <strong>in</strong><br />

Ti 0.64Zr 0.36Ni alloy. J Alloys Compd 2005;404–406:545–9.<br />

[69] Drenchev B, Spassov T. Electrochemical hydrid<strong>in</strong>g of<br />

amorphous and nanocrystall<strong>in</strong>e TiNi-based <strong>alloys</strong>. J Alloys<br />

Compd 2007;441(1–2):197–201.<br />

[70] Wang CS, Lei YQ, Wang QD. Studies of electrochemical<br />

properties of TiNi alloy used as an MH electrode-I. Discharge<br />

capacity. Electrochim Acta 1998;43(21–22):3193–207.<br />

[71] Wang CS, Lei YQ, Wang QD. Studies of electrochemical<br />

properties of TiNi alloy used as an MH electrode-II.<br />

Discharge. Electrochim Acta 1998;43(21–22):3193–207.<br />

[72] Wang CS, Lei YQ, Wang QD. Effects of Nb and Pd on the<br />

electrochemical properties of a Ti–Ni <strong>hydrogen</strong>-<strong>storage</strong><br />

electrode. J Power Sources 1998;70(2):222–7.<br />

[73] Drenchev B, Spassov T, Radev D. Influence of alloy<strong>in</strong>g and<br />

microstructure on the electrochemical hydrid<strong>in</strong>g of TiNibased<br />

ternary <strong>alloys</strong>. J Appl Electrochem 2007;38(4):437–44.<br />

[74] Cuevas F, Latroche M, Och<strong>in</strong> P, Dezellus A, Fernández JF,<br />

Sánchez C, et al. Influence of the martensitic trans<strong>for</strong>mation<br />

on the <strong>hydrogen</strong>ation properties of Ti 50 xZr xNi 50 <strong>alloys</strong>.<br />

J Alloys Compd 2002;330–332:250–5.<br />

[75] Takasaki A, Huett VT, Kelton KF. Hydrogenation of Ti-Zr-Ni<br />

quasicrystals synthesized by mechanical alloy<strong>in</strong>g. J Non-<br />

Cryst Solids 2004;334–335:457–60.<br />

[76] Takasaki A, Kelton KF. Hydrogen <strong>storage</strong> <strong>in</strong> Ti-based<br />

quasicrystal powders produced by mechanical alloy<strong>in</strong>g. Int<br />

Hydrogen Energy 2006;31(2):183–90.<br />

[77] Takasaki A, Kelton KF. High-pressure <strong>hydrogen</strong> load<strong>in</strong>g <strong>in</strong><br />

Ti 45Zr 38Ni 17 amorphous and quasicrystal powders<br />

synthesized by mechanical alloy<strong>in</strong>g. J Alloys Compd 2002;<br />

347(1–2):295–300.<br />

[78] Yang QM, Ciureanu M, Ryan DH, Strom-Olsen JO. Composite<br />

<strong>hydride</strong> electrode materials. J Alloys Compd 1998;274(1–2):<br />

266–73.<br />

[79] Chen ZH, Chen ZH, Huang KL, Huang PY. Properties of<br />

Zr 0.5Ti 0.5V 0.75Ni 1.25 alloy ball-milled with nanocrystall<strong>in</strong>e<br />

LaNi 5 powder. J Alloys Compd 1999;293–295:712–5.<br />

[80] Han SM, Zhang Z, Zhao MS, Zheng YZ. Electrochemical<br />

characteristics and microstructure of Zr 0.9Ti 0.1Ni 1.1Mn 0.6V 0.3–<br />

LaNi 5 composite <strong>hydrogen</strong> <strong>storage</strong> <strong>alloys</strong>. Int J Hydrogen<br />

Energy 2006;31(5):563–7.<br />

[81] Yu XB, Li F, Wu Z, Xia BJ, Xu NX. Enhanced electrochemical<br />

properties of ball-milled Ti–30V–15Mn–15Crþ20 wt%<br />

La(NiMnCoAl) 5 alloy electrodes. Phys Lett A 2004;320(4):<br />

312–7.<br />

[82] Han SM, Zhao MS, Zhang Z, Zheng YZ, J<strong>in</strong>g TF. Effect of AB 2<br />

alloy addition on the phase structures and electrochemical<br />

characteristics of LaNi 5 <strong>hydride</strong> electrode. J Alloys Compd<br />

2005;392(1–2):268–73.<br />

[83] Choi WK, Tanaka T, Miyauchi R, Morikawa T, Inoue H,<br />

Iwakura C. Electrochemical and structural characteristics of<br />

TiV 2.1Ni 0.3 surface-modified by ball-mill<strong>in</strong>g with MgNi.<br />

J Alloys Compd 2000;299(1–2):141–7.<br />

[84] Cui N, Luan B, Zhao HJ, Liu HK, Dou SX. Synthesis and<br />

electrode characteristics of the new composite <strong>alloys</strong><br />

Mg 2Ni x wt%Ti 2Ni. J Alloys Compd 1996;240(1–2):229–34.<br />

[85] Feng Y, Jiao LF, Yuan HT, Zhao M. Study on the preparation<br />

and electrochemical characteristics of MgNi–CoB <strong>alloys</strong>.<br />

J Alloys Compd 2007;440(1–2):304–8.<br />

[86] He G, Jiao LF, Yuan HT, Zhan YY, Wang YJ. Preparation and<br />

electrochemical properties of MgNi–MB (M¼Co, Ti)<br />

composite <strong>alloys</strong>. J Alloys Compd 2008;450(1–2):375–9.<br />

[87] Chu HL, Qiu SJ, Sun LX, Zhang Y, Xu F, Jiang T, et al. The<br />

improved electrochemical properties of novel La–Mg–Nibased<br />

<strong>hydrogen</strong> <strong>storage</strong> composites. Electrochim Acta 2007;<br />

52(24):6700–6.<br />

[88] Zhang YY, Jiao LF, Yuan HT, Song DW, Wang YJ, Zhang YH.<br />

Effects of amorphous Co–C on the structural and<br />

electrochemical characteristics of La 0.8Mg 0.2Ni 0.8Mn 0.1Co 0.5Al 0.1<br />

<strong>hydrogen</strong> <strong>storage</strong> alloy. J Alloys Compd 2009;467(1–2):L16–20.<br />

[89] Chu HL, Qiu SJ, Sun XL, Zhang Y, Xu F, Zhu M, et al.<br />

Electrochemical <strong>hydrogen</strong> <strong>storage</strong> properties of La 0.7Mg 0.3<br />

Ni 3.5–Ti 0.17Zr 0.08V 0.35Cr 0.1Ni 0.3 composites. Int J Hydrogen<br />

Energy 2008;33(2):755–61.<br />

[90] Reilly JJ, Adzic GD, Johnson JR, Vogt T, Mukerjee S, McBreen J.<br />

The correlation between composition and electrochemical<br />

properties of <strong>metal</strong> <strong>hydride</strong> electrodes. J Alloys Compd 1999;<br />

293–295:569–82.<br />

[91] Ja<strong>in</strong> A, Ja<strong>in</strong> RK, Agarwal S, Ja<strong>in</strong> IP. Structural and<br />

thermodynamical <strong>in</strong>vestigations of La 0.23Ni 0.34Co 0.33Nd 0.08<br />

Ti 0.01Al 0.01 <strong>hydrogen</strong> <strong>storage</strong> alloy. Int J Hydrogen energy<br />

2008;33(1):356–9.<br />

[92] Chu HL, Zhang Y, Sun LX, Qiu SJ, Qi YN, Xu F, et al. Structure<br />

and electrochemical properties of composite electrodes<br />

synthesized by mechanical mill<strong>in</strong>g Ni-free TiMn 2-based alloy<br />

with La-based <strong>alloys</strong>. J Alloys Compd 2007;446–447:614–9.<br />

[93] Miao H, Gao MX, Liu YF, L<strong>in</strong> Y, Wang JH, Pan HG.<br />

Microstructure and electrochemical properties of Ti-V-based<br />

multiphase <strong>hydrogen</strong> <strong>storage</strong> electrode <strong>alloys</strong> Ti 0.8Zr 0.2V 2.7<br />

Mn 0.5Cr 0.8 xNi 1.25Fe x (x¼0.0–0.8). Int J Hydrogen Energy 2007;<br />

32(16):3947–53.<br />

[94] Ramya K, Rajalakshmi N, Sridhar P, Sivasankar B. Effect of<br />

surface treatment on electrochemical properties of TiMn 1.6Ni 0.4<br />

alloy <strong>in</strong> alkal<strong>in</strong>e electrolyte. J Power Sources 2002;111(2):335–44.<br />

[95] Kleperis J, Wójcik G, Czerw<strong>in</strong>ski A, Skowronski J, Kopczyk M,<br />

Beltowska-Brzez<strong>in</strong>ska M. Electrochemical behavior of <strong>metal</strong><br />

<strong>hydride</strong>s. J Solid State Electrochem 2001;5(4):229–49.<br />

[96] Nobuhara K, Kasai H, D<strong>in</strong>o WA, Nakanishi H. H 2 dissociative<br />

adsorption on Mg, Ti, Ni, Pd and La surfaces. Surf Sci 2004;<br />

566–568:703–7.<br />

[97] Jaksic MM. Electrocatalysis of <strong>hydrogen</strong> evolution <strong>in</strong> the light<br />

of the Brewer-Engel theory <strong>for</strong> bond<strong>in</strong>g <strong>in</strong> <strong>metal</strong>s and<br />

<strong>in</strong>ter<strong>metal</strong>lic phases. Electrochim Acta 1984;29(11):1539–50.<br />

[98] Pozzo M, Alfè D, Amieiro A, French S, Pratt A. Hydrogen<br />

dissociation and diffusion on Ni- and Ti-doped Mg(0001)<br />

surfaces. J Chem Phys 2008;128(9):094703.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!