30.06.2017 Views

Airplane Flying Handbook

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Drag<br />

TAS 106KT<br />

OAT 7°C<br />

2<br />

1<br />

1<br />

2<br />

Drag<br />

TAS 106KT<br />

OAT 7°C<br />

2<br />

1<br />

1<br />

2<br />

Yaw<br />

string<br />

Relative wind<br />

Thrust<br />

Yaw<br />

string<br />

Relative wind<br />

Thrust<br />

Rudder force<br />

NAV1 108.00 113.00<br />

NAV2 108.00 110.60<br />

WPT _ _ _ _ _ _ DIS _ _ ._ NM DTK _ _ _ ° TRK 360°<br />

134.000 118.000 COM1<br />

123.800 118.000 COM2<br />

130<br />

120<br />

4000<br />

4300<br />

4200<br />

110<br />

1<br />

100<br />

9<br />

90<br />

4100<br />

60<br />

4000<br />

20<br />

3900<br />

NAV1 108.00 113.00<br />

NAV2 108.00 110.60<br />

WPT _ _ _ _ _ _ DIS _ _ ._ NM DTK _ _ _ ° TRK 360°<br />

134.000 118.000 COM1<br />

123.800 118.000 COM2<br />

Figure 12-17. Excessive bank engine-out flight.<br />

80<br />

70<br />

Excess bank toward operating engine, no rudder input.<br />

XPDR 5537 IDNT LCL 10:12:34<br />

3200<br />

ALERTS<br />

Result: large sideslip toward operating engine and greatly<br />

3100<br />

reduced climb performance.<br />

For any multiengine airplane, zero sideslip can be confirmed<br />

through the use of a yaw string. A yaw string is a piece of<br />

string or yarn approximately 18 to 36 inches in length taped to<br />

the base of the windshield or to the nose near the windshield<br />

along the airplane centerline. In two-engine coordinated<br />

flight, the relative wind causes the string to align itself with<br />

the longitudinal axis of the airplane, and it positions itself<br />

straight up the center of the windshield. This is zero sideslip.<br />

Experimentation with slips and skids vividly displays the<br />

location of the relative wind. Adequate altitude and flying speed<br />

must be maintained while accomplishing these maneuvers.<br />

With an engine set to zero thrust (or feathered) and the<br />

airplane slowed to V YSE , a climb with maximum power on<br />

VOR 1<br />

270°<br />

3800<br />

4300<br />

3600<br />

3500<br />

3400<br />

3300<br />

Bank toward operating engine, no sideslip.<br />

Results: much lower drag and smaller control surface<br />

deflections.<br />

Figure 12-18. Zero sideslip engine-out flight.<br />

130<br />

120<br />

110<br />

1<br />

100<br />

9<br />

90<br />

80<br />

70<br />

VOR 1<br />

270°<br />

4000<br />

4300<br />

4200<br />

4100<br />

60<br />

4000<br />

20<br />

3900<br />

3800<br />

4300<br />

3600<br />

3500<br />

3400<br />

3300<br />

XPDR 5537 IDNT LCL 10:12:34<br />

3200<br />

ALERTS<br />

3100<br />

the remaining engine reveals the precise bank angle and<br />

ball deflection required for zero sideslip and best climb<br />

performance. Zero sideslip is again indicated by the yaw<br />

string when it aligns itself vertically on the windshield. There<br />

are very minor changes from this attitude depending upon the<br />

engine failed (with non-counter-rotating propellers), power<br />

available, airspeed and weight; but without more sensitive<br />

testing equipment, these changes are difficult to detect.<br />

The only significant difference would be the pitch attitude<br />

required to maintain V YSE under different density altitude,<br />

power available, and weight conditions.<br />

12-25

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!