14.12.2012 Views

Optimal-Transportation Meshfree Approximation Schemes - Solid ...

Optimal-Transportation Meshfree Approximation Schemes - Solid ...

Optimal-Transportation Meshfree Approximation Schemes - Solid ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Optimal</strong>-<strong>Transportation</strong> <strong>Meshfree</strong><br />

<strong>Approximation</strong> <strong>Schemes</strong><br />

for Fluid and Plastic Flows<br />

M M. Ortiz<br />

Ortiz<br />

California Institute of Technology<br />

In collaboration with:<br />

Bo Li, Feras Habbal (Caltech),<br />

B. Schmidt (TUM), A. Pandolfi (Milano),<br />

F. Fraternali (Salerno)<br />

UCLA, February 23, 2010<br />

Michael Ortiz<br />

UCLA 02/22/10


ASC/PSAAP Centers<br />

Michael Ortiz<br />

UCLA 02/22/10


Caltech PSAAP Center<br />

Objective: Predict hypervelocity<br />

impact phenomena with quantified<br />

margins and uncertainties<br />

Hypervelocity impact test bumper shield<br />

(Ernst-Mach Institut, Freiburg Germany)<br />

NASA Ames Research Center<br />

E Energy fl flash h from f hypervelocity<br />

h l it<br />

test at 7.9 Km/s<br />

Michael Ortiz<br />

UCLA 02/22/10


QMU – Center’s assets<br />

Experimental Science Simulation codes<br />

SPHIR<br />

HSRT<br />

VTF OTM<br />

Physics models UQ tools<br />

Plasma/EoS Strength/Fracture<br />

Probability/CoM UQ pipeline<br />

Michael Ortiz<br />

UCLA 02/22/10


Simulation requirements<br />

• Hypervelocity impact: Grand challenge in<br />

scientific computing p g<br />

• Main simulation requirements:<br />

– Hypersonic dynamics, high-energy density (HED)<br />

– Multiphase flows (solid, fluid, gas, plasma)<br />

– Free boundaries + contact<br />

– Fracture Fracture, fragmentation, fragmentation perforation<br />

– Complex material phenomena:<br />

• HED/extreme conditions<br />

• Ionization, excited states, plasma<br />

• Multiphase equation of state, transport<br />

• Viscoplasticity, p y, thermomechanical coupling p g<br />

• Brittle/ductile fracture, fragmentation...<br />

Michael Ortiz<br />

UCLA 02/22/10


<strong>Optimal</strong>-<strong>Transportation</strong> <strong>Meshfree</strong> (OTM)<br />

• Time integration (OT):<br />

– <strong>Optimal</strong> transportation methods:<br />

• Geometrically exact, discrete Lagrangians<br />

– Discrete mechanics, variational time integrators:<br />

• Symplecticity, exact conservation properties<br />

– Variational material updates, inelasticity:<br />

• Incremental a variational a a o a structure u u<br />

• Spatial discretization (M):<br />

– Max-ent meshfree nodal interpolation:<br />

• Kronecker-delta property at boundary<br />

– Material-point sampling:<br />

• Numerical quadrature quadrature, material history<br />

– Dynamic reconnection, ‘on-the-fly’ adaptivity<br />

Michael Ortiz<br />

UCLA 02/22/10


<strong>Optimal</strong> transportation theory<br />

Gaspard Monge<br />

Beaune (1746), Paris (1818)<br />

"Sur Sur la théorie des déblais et des<br />

remblais" (Mém. de l’acad.<br />

de Paris, 1781)<br />

Leonid V. Kantorovich<br />

Saint Petersbourg (1912)<br />

Moscow (1986)<br />

Nobel Prize in<br />

Economics (1975)<br />

Michael Ortiz<br />

UCLA 02/22/10


Mass flows ─ <strong>Optimal</strong> transportation<br />

• Flow of non-interacting particles in<br />

• Initial and final conditions:<br />

Michael Ortiz<br />

UCLA 02/22/10


Mass flows ─ <strong>Optimal</strong> transportation<br />

• Benamou & Brenier minimum principle:<br />

• Reformulation as optimal transportation problem:<br />

• McCann’s interpolation:<br />

Michael Ortiz<br />

UCLA 02/22/10


Euler flows ─ <strong>Optimal</strong> transportation<br />

• Semidiscrete action:<br />

inertia internal energy<br />

• Discrete Euler Euler-Lagrange Lagrange equations:<br />

geometrically exact mass conservation!<br />

Michael Ortiz<br />

UCLA 02/22/10


<strong>Optimal</strong>-<strong>Transportation</strong> <strong>Meshfree</strong> (OTM)<br />

• <strong>Optimal</strong> transportation theory is a useful<br />

tool for generating geometrically-exact<br />

geometrically exact<br />

discrete Lagrangians for flow problems<br />

• Inertial part of discrete Lagrangian<br />

measures distance between consecutive<br />

mass densities (in sense of Wasserstein)<br />

• Di Discrete t HHamilton ilt principle i i l of f stationary t ti<br />

action: Variational time integration scheme:<br />

– Symplectic Symplectic, time reversible<br />

– Exact conservation properties (linear and angular<br />

momenta, energy)<br />

– S Strong variational i i l convergence i in the h sense of f Γ-<br />

convergence (B. Schmidt)<br />

Michael Ortiz<br />

UCLA 02/22/10


material<br />

points i<br />

OTM ─ Spatial discretization<br />

nodal points:<br />

Michael Ortiz<br />

UCLA 02/22/10


OTM ─ Spatial discretization<br />

Steel projectile/aluminum plate: Nodal set<br />

Michael Ortiz<br />

UCLA 02/22/10


OTM ─ Spatial discretization<br />

Steel projectile/aluminum plate: Material point set<br />

Michael Ortiz<br />

UCLA 02/22/10


material<br />

points i<br />

OTM ─ Spatial discretization<br />

nodal points:<br />

Question: Q How can we<br />

reconstruct<br />

from nodal coordinates?<br />

Michael Ortiz<br />

UCLA 02/22/10


OTM ─ Max-ent interpolation<br />

• Problem: Reconstruct function from nodal<br />

sample so that:<br />

– Reconstruction is least biased<br />

– Reconstruction is most local<br />

• <strong>Optimal</strong> shape functions (Arroyo & MO, IJNME, 2006):<br />

shape function width information entropy<br />

Michael Ortiz<br />

UCLA 02/22/10


OTM ─ Max-ent interpolation<br />

Michael Ortiz<br />

UCLA 02/22/10


OTM ─ Max-ent interpolation<br />

• Max-ent interpolation is smooth,<br />

meshfree<br />

• Finite-element interpolation is<br />

recovered in the limit of β→∞ β<br />

• Rapid decay, short range<br />

• Monotonicity, maximum principle<br />

• Good mass lumping properties<br />

• Kronecker-delta property at the<br />

boundary:<br />

– Displacement boundary conditions<br />

– Compatibility p y<br />

with finite elements<br />

Michael Ortiz<br />

UCLA 02/22/10


material<br />

points i<br />

OTM ─ Spatial discretization<br />

nodal points:<br />

Michael Ortiz<br />

UCLA 02/22/10


material<br />

points i<br />

OTM ─ Spatial discretization<br />

nodal points:<br />

Michael Ortiz<br />

UCLA 02/22/10


OTM ─ Spatial discretization<br />

Np = local neighborhood<br />

of material point p<br />

Michael Ortiz<br />

UCLA 02/22/10


material<br />

points i<br />

OTM ─ Spatial discretization<br />

nodal points:<br />

• Max-ent interpolation at<br />

material point p determined<br />

by nodes in its local<br />

environment Np<br />

• LLocal l environments<br />

i t<br />

determined ‘on-the-fly’ by<br />

range searches<br />

• Local environments evolve<br />

continuously during flow<br />

(dynamic ( y reconnection) )<br />

• Dynamic reconnection<br />

requires no remapping of<br />

history variables!<br />

Michael Ortiz<br />

UCLA 02/22/10


OTM ─ Flow chart<br />

(i) Explicit nodal coordinate update:<br />

(ii) Material point update:<br />

position:<br />

deformation:<br />

volume: ol me<br />

density:<br />

(iii) Constitutive update at material points<br />

(iv) ( ) Reconnect nodal and material p points ( (range g<br />

searches), recompute max-ext shape functions<br />

Michael Ortiz<br />

UCLA 02/22/10


velocity (m/s) (<br />

tip<br />

OTM ─ Tensile stability<br />

velocity (m/s) (<br />

tip<br />

time (s) time (s)<br />

Finite elements OTM<br />

OTM is free from tensile instabilities!<br />

Michael Ortiz<br />

UCLA 02/22/10


(Kg/m ) 3 )<br />

density<br />

OTM ─ Riemann problem<br />

density d L1<br />

error noorm<br />

convergence<br />

rate ~ 1<br />

position (m) mesh size (h)<br />

computed vs. exact<br />

wave structure<br />

density convergence<br />

(L1 norm)<br />

Michael Ortiz<br />

UCLA 02/22/10


OTM ─ Shock tube problem<br />

Shock tube problem – velocity snapshots<br />

Michael Ortiz<br />

UCLA 02/22/10


ocity L error norm<br />

2 vel e<br />

OTM ─ Shock tube problem<br />

convergence g<br />

rate ~ 1<br />

nsity L error normm<br />

1 den e<br />

convergence g<br />

rate ~ 1<br />

mesh size (h) mesh size (h)<br />

velocity convergence<br />

(L2 (L norm)<br />

density convergence<br />

(L1 (L norm)<br />

Shock tube problem – convergence plots<br />

Michael Ortiz<br />

UCLA 02/22/10


OTM ─ Taylor anvil test<br />

t=0 t 0<br />

tt=7.5 7 5 µs<br />

t=15 µs t=28 µs<br />

copper rod<br />

@ 750 m/s<br />

Michael Ortiz<br />

UCLA 02/22/10


OTM ─ Taylor anvil test<br />

t=0 t 0<br />

tt=7.5 7 5 µs<br />

t=15 µs t=28 µs<br />

copper rod<br />

@ 750 m/s<br />

Michael Ortiz<br />

UCLA 02/22/10


OTM ─ Bouncing balloons<br />

FE membrane<br />

OTM fluid<br />

(rubber (rubber, Kapton)<br />

(water (water, air)<br />

Michael Ortiz<br />

UCLA 02/22/10


OTM ─ Bouncing balloons<br />

FE membrane<br />

OTM fluid<br />

(rubber (rubber, Kapton)<br />

(water (water, air)<br />

Michael Ortiz<br />

UCLA 02/22/10


OTM ─ Bouncing balloons<br />

FE membrane<br />

OTM fluid<br />

(rubber (rubber, Kapton)<br />

(water (water, air)<br />

Michael Ortiz<br />

UCLA 02/22/10


OTM ─ Bouncing balloons<br />

FE membrane<br />

OTM fluid<br />

(rubber (rubber, Kapton)<br />

(water (water, air)<br />

Michael Ortiz<br />

UCLA 02/22/10


OTM ─ Terminal ballistics<br />

steel projectile<br />

1500 m/s<br />

aluminum plate<br />

Michael Ortiz<br />

UCLA 02/22/10


OTM ─ Seizing contact<br />

body 1 body 2<br />

nodes<br />

material points<br />

Seizing contact (infinite friction)<br />

is obtained for free in OTM!<br />

(as in other material point methods)<br />

linear<br />

momentum<br />

cancellation! ll ti !<br />

Michael Ortiz<br />

UCLA 02/22/10


OTM ─ Seizing contact<br />

body 1 body 2<br />

nodes<br />

material points<br />

Seizing contact (infinite friction)<br />

is obtained for free in OTM!<br />

(as in other material point methods)<br />

linear<br />

momentum<br />

cancellation! ll ti !<br />

Michael Ortiz<br />

UCLA 02/22/10


Variational Fracture & fragmentation<br />

M. Ortiz and A.E. Giannakopoulos,<br />

Int. J. Fracture, 44 (1990) 233-258.<br />

Michael Ortiz<br />

UCLA 02/22/10


Variational Fracture & fragmentation<br />

rate (G)<br />

-release r<br />

Energy-<br />

crack extension (Δa)<br />

M. Ortiz and A.E. Giannakopoulos,<br />

Int. J. Fracture, 44 (1990) 233-258.<br />

Michael Ortiz<br />

UCLA 02/22/10


OTM – Fracture & fragmentation<br />

Crack growth in mixed mode<br />

M. Ortiz and A.E. Giannakopoulos,<br />

Int Int. J J. Fracture Fracture, 44 (1990) 233 233-258. 258<br />

• Fracture energy over-estimated as h → 0!<br />

• Non Non-convergence con e gence fo for gene general al paths, paths meshes!<br />

Michael Ortiz<br />

UCLA 02/22/10


OTM – Fracture & fragmentation<br />

ε-neighborhood<br />

g<br />

construction<br />

Michael Ortiz<br />

UCLA 02/22/10


Variational Fracture & fragmentation<br />

crack<br />

• Proof of convergence of<br />

variational i ti l element l t erosion i t to<br />

Griffith fracture:<br />

– Schmidt, , B., , Fraternali, , F. and<br />

Ortiz, M. “Eigenfracture: An<br />

eigendeformation approach to<br />

variational fracture,” SIAM J.<br />

Multiscale Model. Simul., 7(3)<br />

(2009) 1237-1366.<br />

• OTM implentation: p<br />

Variational<br />

erosion of material points (by<br />

ε-neighborhood construction)<br />

Michael Ortiz<br />

UCLA 02/22/10


OTM ─ Back to terminal ballistics<br />

steel projectile<br />

1500 m/s<br />

aluminum plate<br />

Michael Ortiz<br />

UCLA 02/22/10


QMU – Simulation codes – OTM<br />

Michael Ortiz<br />

UCLA 02/22/10


QMU – Simulation codes – OTM<br />

Michael Ortiz<br />

UCLA 02/22/10


QMU – Simulation codes – OTM<br />

Michael Ortiz<br />

UCLA 02/22/10


QMU – Simulation codes – OTM<br />

eriment<br />

expe<br />

simulationn<br />

Michael Ortiz<br />

UCLA 02/22/10


OTM ─ Summary and outlook<br />

• Optimum-<strong>Transportation</strong>-<strong>Meshfree</strong> method:<br />

– OT is a useful tool for generating geometrically-<br />

geometrically<br />

exact discrete Lagrangians for flow problems<br />

– Max-ent approach supplies an efficient meshfree,<br />

continuously adaptive adaptive, remapping remapping-free, free FEcompatible,<br />

interpolation scheme<br />

– Material-point sampling effectively addresses the<br />

iissues of f numerical i l quadrature, d hi history variables i bl<br />

• Extensions include:<br />

– Contact (seizing contact for free!)<br />

– Fracture and fragmentation (provably convergent)<br />

• Outlook: Parallel implementation, p , UQ… Q<br />

Michael Ortiz<br />

UCLA 02/22/10


OTM ─ Summary and outlook<br />

Thank you! y<br />

Michael Ortiz<br />

UCLA 02/22/10

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!