24.12.2012 Views

Dislocation Dynamics and Plasticity - California Institute of Technology

Dislocation Dynamics and Plasticity - California Institute of Technology

Dislocation Dynamics and Plasticity - California Institute of Technology

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Multiscale models <strong>of</strong> metal<br />

plasticity<br />

Lecture IV: Kinetics <strong>and</strong> work<br />

hardening<br />

M. Ortiz<br />

<strong>California</strong> <strong>Institute</strong> <strong>of</strong> <strong>Technology</strong><br />

Sixth Summer School in Analysis <strong>and</strong><br />

Applied Mathematics<br />

Rome, June 20-24, 2011<br />

Michael Ortiz<br />

ROME0611


Outline <strong>of</strong> Lecture #4<br />

• Beyond energy: Kinetics<br />

• Experimental observations, dislocation mobility<br />

• The forest hardening model<br />

• Energy-dissipation functionals<br />

• Phase-field models<br />

(Humphreys <strong>and</strong> Hirsch, 1970)<br />

Michael Ortiz<br />

ROME0611


Crystal plasticity – Macroscopic behavior<br />

Uniaxial<br />

tension test<br />

Copper<br />

P. Franciosi <strong>and</strong> A. Zaoui,<br />

Acta Metall., 30 (1982) 2141-2151<br />

Taylor scaling<br />

(SJ Basinski <strong>and</strong> ZS Basinski,<br />

<strong>Dislocation</strong>s in Solids,<br />

FRN Nabarro (ed.)<br />

North-Holl<strong>and</strong>, 1979.)<br />

Michael Ortiz<br />

ROME0611


Hardening <strong>and</strong> obstacle density<br />

T. Suzuki, S. Takeuchi <strong>and</strong> H. Yoshinaga,<br />

<strong>Dislocation</strong> <strong>Dynamics</strong> <strong>and</strong> <strong>Plasticity</strong>, Springer-Verlag, 1985.<br />

Michael Ortiz<br />

ROME0611


Etch pits on a LiF crystal<br />

<strong>Dislocation</strong> velocity<br />

T. Suzuki, S. Takeuchi <strong>and</strong> H. Yoshinaga,<br />

<strong>Dislocation</strong> <strong>Dynamics</strong> <strong>and</strong> <strong>Plasticity</strong>, Springer-Verlag, 1985.<br />

Michael Ortiz<br />

ROME0611


<strong>Dislocation</strong> velocity<br />

T. Suzuki, S. Takeuchi <strong>and</strong> H. Yoshinaga,<br />

<strong>Dislocation</strong> <strong>Dynamics</strong> <strong>and</strong> <strong>Plasticity</strong>, Springer-Verlag, 1985.<br />

Michael Ortiz<br />

ROME0611


Thermal s<strong>of</strong>tening<br />

T. Suzuki, S. Takeuchi <strong>and</strong> H. Yoshinaga,<br />

<strong>Dislocation</strong> <strong>Dynamics</strong> <strong>and</strong> <strong>Plasticity</strong>, Springer-Verlag, 1985.<br />

Michael Ortiz<br />

ROME0611


Outline <strong>of</strong> Lecture #4<br />

• <strong>Dislocation</strong> motion is governed by kinetics<br />

• <strong>Dislocation</strong>s react with each other irreversibly<br />

• Energy-minimization is not enough to describe<br />

dislocation dynamics, hardening<br />

• Need kinetics, time-dependent problems!<br />

(Humphreys <strong>and</strong> Hirsch, 1970)<br />

Michael Ortiz<br />

ROME0611


The forest-hardening problem<br />

Glissile dislocation moving<br />

through forest dislocations<br />

Micro-to-macro transition,<br />

single slip<br />

Michael Ortiz<br />

ROME0611


Classical rate variational problems<br />

Michael Ortiz<br />

ROME0611


Classical rate variational problems<br />

Michael Ortiz<br />

ROME0611


Forest hardening – External energy<br />

Michael Ortiz<br />

ROME0611


Forest hardening – Stored energy<br />

moving<br />

dislocation dislocation<br />

line<br />

Michael Ortiz<br />

ROME0611


Forest hardening – Lattice friction<br />

moving<br />

dislocation<br />

dislocation speed<br />

Peierls stress<br />

(lattice friction)<br />

Michael Ortiz<br />

ROME0611


Forest hardening − Dissipation at<br />

Dissipation<br />

at junctions<br />

obstacles<br />

pinning<br />

points<br />

unfavorable junction<br />

reaction coordinate<br />

Stainier, L., Cuitino, A., Ortiz, M.,<br />

JMPS, 50 (2002) 1511-1554.<br />

favorable<br />

junction<br />

jog formation<br />

energy<br />

Michael Ortiz<br />

ROME0611


Forest hardening – Point obstacles<br />

moving<br />

dislocation<br />

dislocation speed<br />

point obstacles<br />

obstacle<br />

strength<br />

Michael Ortiz<br />

ROME0611


Forest hardening – Summary<br />

r<strong>and</strong>om obstacles<br />

periodic<br />

M. Koslowski, A.M.Cuitino <strong>and</strong> M. Ortiz,<br />

JMPS, 50 (2002) 2597-2635<br />

(dislocation lines)<br />

Michael Ortiz<br />

ROME0611


Energy-dissipation functionals<br />

“Arrow <strong>of</strong> time”<br />

Energy<br />

Dissipation<br />

Michael Ortiz<br />

ROME0611


Rate-independent problems<br />

Michael Ortiz<br />

ROME0611


Forest Hardening – Deformation theory<br />

overstress!<br />

Michael Ortiz<br />

ROME0611


Forest hardening – Pinning/depinning<br />

obstacle<br />

dislocation segment<br />

bowing between obstacles<br />

Michael Ortiz<br />

ROME0611


Forest hardening – Pinning/depinning<br />

obstacle<br />

Michael Ortiz<br />

ROME0611


Forest hardening – Pinning/depinning<br />

loops<br />

tangent<br />

obstacle<br />

Michael Ortiz<br />

ROME0611


Forest hardening − Single dislocation<br />

. . . .<br />

.<br />

.<br />

. .<br />

.<br />

. . . .<br />

. .<br />

. . . . . .<br />

.<br />

. .<br />

. .<br />

.<br />

. . . .<br />

.<br />

. . . .<br />

. .<br />

. . . . .<br />

. . .<br />

.<br />

. .<br />

.<br />

. . .<br />

obstacle point set<br />

Michael Ortiz<br />

ROME0611


Forest hardening − Single dislocation<br />

A.J.E. Foreman <strong>and</strong> M.J. Makin, Phil. Mag., 14 (1966) 911.<br />

Percolation!<br />

Michael Ortiz<br />

ROME0611


Forest hardening − Single dislocation<br />

<strong>Dislocation</strong> motion through r<strong>and</strong>om array <strong>of</strong> obstacles<br />

(Foreman, A.J.E., Makin, M.J., Phil. Mag., 14 (1966) 911)<br />

Michael Ortiz<br />

ROME0611


Forest hardening − Summary & outlook<br />

• Model is based on line tension approximation<br />

• Motion by pinning/depinning at obstacles<br />

• Model gives parabolic hardening curve, correct<br />

Taylor scaling with obstacle density<br />

• Open mathematical questions:<br />

– Limit <strong>of</strong> infinite number <strong>of</strong> obstacles (N) at fixed<br />

obstacle density, e.g., Poisson distribution <strong>of</strong> obstacles<br />

– Loading/unloading, hysteresis…<br />

Michael Ortiz<br />

ROME0611


2½D phase-field model – Assumptions<br />

slip<br />

plane<br />

0 1 2<br />

M. Koslowski, A.M.Cuitino <strong>and</strong> M. Ortiz,<br />

JMPS, 50 (2002) 2597-2635<br />

Michael Ortiz<br />

ROME0611


2½D phase-field model – Energy<br />

Core energy Elastic energy External<br />

G. Alberti, G. Bouchitté, <strong>and</strong> P. Seppecher,<br />

C. R. Acad. Sci. Paris Sér I. Math., 319 (1994) 333–338<br />

A. Garroni <strong>and</strong> S. Müller, SIAM J. Math. Anal.,<br />

36 (2005) 1943–1964; ARMA 181 (2006) 535–578<br />

Michael Ortiz<br />

ROME0611


obstacles<br />

2½D phase-field model – Time<br />

discretization<br />

M. Koslowski, A.M.Cuitino <strong>and</strong> M. Ortiz,<br />

JMPS, 50 (2002) 2597-2635<br />

dislocations<br />

Michael Ortiz<br />

ROME0611


Phase-field dislocation dynamics<br />

Stress-strain curve<br />

<strong>Dislocation</strong> density<br />

a b c<br />

d e f<br />

g h i<br />

Michael Ortiz<br />

ROME0611


Return-point <strong>and</strong> fading memory<br />

a<br />

c<br />

b<br />

e f<br />

Three dimensional view <strong>of</strong> the evolution<br />

<strong>of</strong> the slip-field, showing the the<br />

switching <strong>of</strong> the cusps.<br />

d<br />

Stress-strain curve.<br />

Michael Ortiz<br />

ROME0611 33


1 τ/τ0 0.5<br />

0<br />

-0.5<br />

-1<br />

Line-tension anisotropy<br />

-50 0 50<br />

ν = 0.0<br />

ν = 0.3<br />

ν = 0.5<br />

γ/γ o<br />

0.45<br />

ρ/ρ0 0.4<br />

= 0.<br />

b<br />

0.35<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

-50 0 50<br />

Stress-strain curve. <strong>Dislocation</strong> density<br />

ν = 0.0<br />

ν = 0.3<br />

ν = 0.5<br />

Stress-strain curve <strong>Dislocation</strong> density vs.strain<br />

ν = 0.<br />

0<br />

ν 3<br />

ν = 0.<br />

5<br />

γ/γ o<br />

Michael Ortiz<br />

ROME0611 34


Summary <strong>and</strong> outlook<br />

• The forest-hardening model predicts the<br />

observed kinetics <strong>of</strong> hardening in crystals<br />

• A full analytical treatment <strong>of</strong> the foresthardening<br />

model is still lacking<br />

• Need tools <strong>of</strong> analysis (similar to CoV) for time<br />

dependent evolution problems<br />

(Humphreys <strong>and</strong> Hirsch, 1970)<br />

Michael Ortiz<br />

ROME0611


time<br />

ms<br />

µs<br />

Metal plasticity − Multiscale analysis<br />

ns<br />

Objective: Derive ansatz-free,<br />

physics-based, predictive models<br />

<strong>of</strong> macroscopic behavior<br />

Lattice<br />

defects, EoS<br />

<strong>Dislocation</strong><br />

dynamics<br />

nm µm<br />

Subgrain<br />

structures<br />

length<br />

Engineering<br />

applications<br />

Polycrystals<br />

Lecture #4: Subgrain<br />

dislocation structures<br />

Lecture #3: <strong>Dislocation</strong> kinetics,<br />

the forest-hardening model<br />

Lecture #2: <strong>Dislocation</strong> energies,<br />

the line-tension approximation<br />

mm<br />

Michael Ortiz<br />

ROME0611

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!