14.12.2012 Views

SUMOylation and DeSUMOylation at a Glance - Journal of Cell ...

SUMOylation and DeSUMOylation at a Glance - Journal of Cell ...

SUMOylation and DeSUMOylation at a Glance - Journal of Cell ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> Science<br />

<strong>Cell</strong> Science <strong>at</strong> a <strong>Glance</strong><br />

<strong>SUMOyl<strong>at</strong>ion</strong> <strong>and</strong><br />

de<strong>SUMOyl<strong>at</strong>ion</strong> <strong>at</strong> a<br />

glance<br />

Yonggang Wang <strong>and</strong><br />

Mary Dasso*<br />

Labor<strong>at</strong>ory <strong>of</strong> Gene Regul<strong>at</strong>ion <strong>and</strong> Development,<br />

N<strong>at</strong>ional Institute <strong>of</strong> Child Health <strong>and</strong> Human<br />

Development, Bethesda, MD 20892, USA<br />

*Author for correspondence (mdasso@helix.nih.gov)<br />

<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> Science 122, 4249-4252<br />

Published by The Company <strong>of</strong> Biologists 2009<br />

doi:10.1242/jcs.050542<br />

Small ubiquitin-rel<strong>at</strong>ed modifiers (SUMOs) are<br />

ubiquitin-like polypeptides th<strong>at</strong> become<br />

covalently conjug<strong>at</strong>ed to cellular proteins in a<br />

manner similar to ubiquityl<strong>at</strong>ion (Johnson,<br />

2004). More than 1000 proteins have been<br />

identified as potential SUMO-conjug<strong>at</strong>ion<br />

(<strong>SUMOyl<strong>at</strong>ion</strong>) targets (Hochstrasser, 2009),<br />

jcs.biologists.org<br />

Key steps <strong>and</strong> components in the SUMO p<strong>at</strong>hway<br />

1.<br />

2.<br />

Cleavage SUMO<br />

<strong>of</strong> SUMO activ<strong>at</strong>ion<br />

C-terminus (linkage to<br />

E1 enzyme)<br />

Aos1<br />

E3s Ulp/SENP<br />

Ulp/SENP<br />

ATP<br />

SH<br />

AMP+PPi<br />

Aos1<br />

SH<br />

Uba2 SH Ubc9<br />

K<br />

Target S<br />

S S Uba2 S S S S<br />

K<br />

Target<br />

Aos1<br />

Uba2 SH Ubc9<br />

Abbrevi<strong>at</strong>ions: DUB, deubiquityl<strong>at</strong>ing enzyme; E3s, E3 ligases; HDAC4, histone deacetylase 4; IR, internal repe<strong>at</strong>; KAP1,<br />

KRAB-associ<strong>at</strong>ed protein 1; Mms21, methyl methanesulfon<strong>at</strong>e sensitivity protein 21; Pc2, polycomb group protein 2; PIAS,<br />

protein inhibitor <strong>of</strong> activ<strong>at</strong>ed STAT; RanBP2, Ran binding protein 2; S, SUMO; S-1, SUMO-1; S-2/3, SUMO-2/3; Sae1,<br />

SUMO-activ<strong>at</strong>ing enzyme subunit 1 (E1); Sae2, SUMO-activ<strong>at</strong>ing enzyme subunit 2 (E1); SENP, sentrin-specific protease;<br />

<strong>and</strong> this p<strong>at</strong>hway has been implic<strong>at</strong>ed in<br />

controlling many aspects <strong>of</strong> cell physiology,<br />

including cell-cycle regul<strong>at</strong>ion, transcription,<br />

nucleocytoplasmic transport, DNA replic<strong>at</strong>ion<br />

<strong>and</strong> repair, chromosome dynamics,<br />

apoptosis, <strong>and</strong> ribosome biogenesis.<br />

Both <strong>SUMOyl<strong>at</strong>ion</strong> <strong>and</strong> de<strong>SUMOyl<strong>at</strong>ion</strong><br />

(SUMO deconjug<strong>at</strong>ion) are highly dynamic<br />

processes. This poster article discusses the<br />

enzymes th<strong>at</strong> medi<strong>at</strong>e <strong>SUMOyl<strong>at</strong>ion</strong> <strong>and</strong><br />

de<strong>SUMOyl<strong>at</strong>ion</strong>, concentr<strong>at</strong>ing on their<br />

mechanisms <strong>of</strong> action. Although it is not<br />

possible to discuss individual SUMOyl<strong>at</strong>ed<br />

targets in detail, we will mention emerging<br />

paradigms th<strong>at</strong> explain how <strong>SUMOyl<strong>at</strong>ion</strong><br />

might direct the f<strong>at</strong>e <strong>of</strong> target proteins.<br />

SUMO paralogues<br />

Yeast express a single SUMO paralogue, called<br />

Smt3p in Saccharomyces cerevisiae.<br />

Mammalian cells express three major SUMO<br />

paralogues, called SUMO-1, SUMO-2 <strong>and</strong><br />

<strong>SUMOyl<strong>at</strong>ion</strong> <strong>and</strong> De<strong>SUMOyl<strong>at</strong>ion</strong> <strong>at</strong> a <strong>Glance</strong><br />

4.<br />

<strong>SUMOyl<strong>at</strong>ion</strong><br />

<strong>of</strong> target<br />

(E3-dependent<br />

or -independent;<br />

see below)<br />

K<br />

Target<br />

Mammals S. cerevisiae S. pombe<br />

Small ubiquitin-rel<strong>at</strong>ed modifiers SUMO-1, SUMO-2, SUMO-3 Smt3p Pmt3p<br />

Activ<strong>at</strong>ing enzyme (E1)<br />

Aos1 (Sae1)-Uba2 (Sae2)<br />

Aos1p-Uba2p Rad31p-Fub2p<br />

Conjug<strong>at</strong>ing enzyme (E2) Ubc9<br />

Ubc9p Hus5p<br />

SP-RING-type E3 ligases PIAS1, PIAS3, PIASxα (ARIP3), Siz1p (UII1p), Pli1p, Nse2p<br />

PIASxβ (Miz1), PIASγ (PIAS4), Siz2p (Nfi1p),<br />

Mms21 (Nse2)<br />

Mms21p<br />

(Nse2p), Zip3p<br />

IR E3 ligase<br />

Other E3 ligases<br />

Protease (Ulp/SENP)<br />

3.<br />

SUMO<br />

transfer to<br />

E2 enzyme<br />

3.<br />

De<strong>SUMOyl<strong>at</strong>ion</strong><br />

(see below)<br />

RanBP2 (Nup358)<br />

HDAC4, KAP1, Pc2, Topors<br />

SENP1 (SuPr-2), SENP2 (SMT3IP2, UIp1p (Nib1p), Ulp1p, Ulp2p<br />

SSP3, Axam2), SENP3 (SMT3IP1), Ulp2p (Smt4p)<br />

SENP5 (SMT3IP3), SENP6 (SSP1,<br />

SUSP1), SENP7<br />

S<br />

Yonggang Wang <strong>and</strong> Mary Dasso<br />

Target<br />

SUMO-1<br />

E1, E2, E3<br />

K<br />

Ulp/SENP<br />

Ulp/SENP<br />

Ulp/SENP<br />

<strong>SUMOyl<strong>at</strong>ion</strong> confers multiple f<strong>at</strong>es<br />

Ubiquitin<br />

E1, E2, STUbL<br />

SIM, SUMO-interacting motif; Siz, SAP <strong>and</strong> Miz-finger domain-containing protein; SP-RING, Siz/PIAS RING-finger domain;<br />

STUbL, SUMO-targeted ubiquitin ligase; SUMO, small ubiquitin-rel<strong>at</strong>ed modifier; Topors, topoisomerase I-binding RING<br />

finger protein; U, ubiquitin; Ubc9, ubiquitin-conjug<strong>at</strong>ing enzyme E2 I (SUMO-conjug<strong>at</strong>ing enzyme); Ulp, ubiquitin-likeprotein-specific<br />

protease.<br />

4249<br />

SUMO-3. SUMO-2 <strong>and</strong> SUMO-3 are ~95%<br />

identical to each other. In most contexts,<br />

SUMO-2 <strong>and</strong> SUMO-3 cannot be distinguished,<br />

<strong>and</strong> here we collectively refer to them as<br />

SUMO-2/3. SUMO-2 <strong>and</strong> SUMO-3 are each<br />

~45% identical to SUMO-1, <strong>and</strong> all mammalian<br />

paralogues are ~ 45% identical to Smt3p.<br />

There are several important differences<br />

between the mammalian SUMO paralogues.<br />

First, some SUMO targets are conjug<strong>at</strong>ed only to<br />

SUMO-1, others only to SUMO-2/3, <strong>and</strong> still<br />

others to all SUMO paralogues (Vertegaal<br />

et al., 2006). Second, the overall cellular<br />

concentr<strong>at</strong>ion <strong>of</strong> SUMO-2/3 is gre<strong>at</strong>er than th<strong>at</strong> <strong>of</strong><br />

SUMO-1, as is the pool <strong>of</strong> free protein available<br />

for conjug<strong>at</strong>ion (Saitoh <strong>and</strong> Hinchey, 2000). It is<br />

thus likely th<strong>at</strong> the bulk <strong>of</strong> <strong>SUMOyl<strong>at</strong>ion</strong><br />

involves SUMO-2/3. Third, SUMO-1 <strong>and</strong><br />

SUMO-2/3 show different subcellular<br />

localiz<strong>at</strong>ion p<strong>at</strong>terns (Ayaydin <strong>and</strong> Dasso, 2004;<br />

Zhang et al., 2008). Fourth, photobleaching<br />

experiments suggest th<strong>at</strong> SUMO-1 is less<br />

E3-dependent (Siz/PIAS-medi<strong>at</strong>ed) <strong>SUMOyl<strong>at</strong>ion</strong> E3-independent (SIM-medi<strong>at</strong>ed) <strong>SUMOyl<strong>at</strong>ion</strong><br />

Mechanism <strong>of</strong> SUMO deconjug<strong>at</strong>ion by Ulp/SENP<br />

O<br />

Gly<br />

S S<br />

Cys<br />

Ubc9<br />

Ubc9-bound<br />

SUMO<br />

Siz/<br />

PIAS<br />

Ubc9<br />

Ubc9<br />

Ubc9<br />

Free target Siz/PIAS <strong>and</strong> Ubc9bound<br />

substr<strong>at</strong>e<br />

Ubc9<br />

Ubc9<br />

SUMO-2/3<br />

E1, E2, E3<br />

Conjug<strong>at</strong>e Free target SIM-medi<strong>at</strong>ed<br />

bound intermedi<strong>at</strong>e<br />

S<br />

S-1<br />

K<br />

S-2/3<br />

K<br />

S-2/3n<br />

Ulp/SENP<br />

K<br />

Target<br />

SUMO-1<br />

E1, E2, E3<br />

O<br />

Gly<br />

S<br />

Cys<br />

Enzyme-bound<br />

substr<strong>at</strong>e<br />

S-2/3<br />

K<br />

Target<br />

SUMO-2/3n<br />

E1, E2, E3<br />

S-2/3<br />

K<br />

S-2/3n<br />

K<br />

Target<br />

Siz/<br />

O<br />

O<br />

PIAS<br />

O<br />

Gly<br />

S S<br />

Gly<br />

Ubc9<br />

S S<br />

Gly O<br />

Gly<br />

Cys<br />

Cys<br />

S<br />

S S<br />

NH<br />

Cys<br />

Siz/<br />

Siz/<br />

NH2<br />

K<br />

PIAS<br />

PIAS<br />

K<br />

SIM K NH2<br />

NH2<br />

Target<br />

SIM K NH2 Target<br />

K<br />

Target<br />

Target<br />

Target<br />

HS<br />

Cys<br />

SIM<br />

Target<br />

K NH2<br />

O<br />

SIM K NH<br />

Target<br />

S<br />

S<br />

Gly<br />

S<br />

Cys<br />

O<br />

Ubc9<br />

S-1<br />

K<br />

Target<br />

HS<br />

Cys<br />

Ubc9<br />

DUB<br />

Conjug<strong>at</strong>e<br />

Gly<br />

Un<br />

a. Blocking a binding site<br />

Interactor<br />

K<br />

Target arget<br />

<strong>SUMOyl<strong>at</strong>ion</strong><br />

S<br />

K<br />

Target Ta T rget<br />

U<br />

U<br />

De<strong>SUMOyl<strong>at</strong>ion</strong><br />

b. Cre<strong>at</strong>ion <strong>of</strong> additional binding site<br />

Interactor<br />

Interactor<br />

SIM<br />

SIM<br />

S<br />

K <strong>SUMOyl<strong>at</strong>ion</strong><br />

K<br />

Target<br />

Target<br />

De<strong>SUMOyl<strong>at</strong>ion</strong><br />

c. Conform<strong>at</strong>ion alter<strong>at</strong>ion<br />

K <strong>SUMOyl<strong>at</strong>ion</strong><br />

Target<br />

De<strong>SUMOyl<strong>at</strong>ion</strong><br />

Un<br />

S-2/3<br />

U S-2/3<br />

S-2/3<br />

S-2/3n<br />

K K<br />

Target<br />

S<br />

Gly<br />

O<br />

NH<br />

K<br />

Target<br />

Substr<strong>at</strong>e<br />

(trans conform<strong>at</strong>ion)<br />

Ulp/SENP<br />

HS-Cys<br />

Free enzyme<br />

S<br />

K<br />

Target<br />

U<br />

Interactor<br />

U<br />

U<br />

S<br />

O Gly<br />

OH<br />

Ulp/SENP S<br />

O Gly<br />

S-Cys<br />

NH<br />

K<br />

Target<br />

Enzyme-bound substr<strong>at</strong>e<br />

(cis conform<strong>at</strong>ion)<br />

<strong>Cell</strong>-cycle regul<strong>at</strong>ion<br />

Gene transcription<br />

Nucleocytoplasmic transport<br />

DNA replic<strong>at</strong>ion <strong>and</strong> repair<br />

Chromosome dynamics<br />

Apoptosis<br />

Ribosome biogenesis<br />

Others<br />

S-2/3<br />

S-2/3<br />

T r e<br />

S-2/3<br />

a<br />

g<br />

t<br />

S-2/3n<br />

Proteasome-medi<strong>at</strong>ed<br />

degrad<strong>at</strong>ion<br />

NH2<br />

K<br />

Target<br />

Ulp/SENP S<br />

O Gly<br />

S-Cys<br />

Thioester intermedi<strong>at</strong>e<br />

H2O<br />

Ulp/SENP S<br />

O Gly<br />

OH HS-Cys<br />

Product-bound enzyme<br />

© <strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> Science 2009 (122, pp. 4249-4252)<br />

(See poster insert)


<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> Science<br />

4250<br />

<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> Science 122 (23)<br />

dynamic than the other SUMO paralogues, <strong>and</strong><br />

its p<strong>at</strong>tern <strong>of</strong> conjug<strong>at</strong>ion responds differently to<br />

he<strong>at</strong> shock <strong>and</strong> stress (Ayaydin <strong>and</strong> Dasso, 2004;<br />

Saitoh <strong>and</strong> Hinchey, 2000).<br />

Smt3p, SUMO-2 <strong>and</strong> SUMO-3 can form<br />

conjug<strong>at</strong>ed chains through a single conserved<br />

acceptor lysine (Bylebyl et al., 2003; T<strong>at</strong>ham<br />

et al., 2001). SUMO-1 does not have an<br />

equivalent lysine residue, <strong>and</strong> thus probably<br />

does not act as a link in elong<strong>at</strong>ing chains<br />

in vivo. However, SUMO-1 might termin<strong>at</strong>e<br />

chains th<strong>at</strong> are elong<strong>at</strong>ed through serial<br />

conjug<strong>at</strong>ion <strong>of</strong> SUMO-2/3 (M<strong>at</strong>ic et al., 2008).<br />

Notably, although <strong>SUMOyl<strong>at</strong>ion</strong> does not seem<br />

to rely upon the geometry <strong>of</strong> chain linkages to<br />

confer inform<strong>at</strong>ion, as ubiquityl<strong>at</strong>ion does<br />

(Pickart <strong>and</strong> Fushman, 2004), SUMO<br />

conjug<strong>at</strong>es built from different paralogues or<br />

with different chain lengths can specify distinct<br />

target f<strong>at</strong>es, as discussed below.<br />

SUMO-interacting motifs<br />

SUMO-interacting motifs (SIMs) play a central<br />

role in both the enzymology <strong>of</strong> the SUMO<br />

p<strong>at</strong>hway <strong>and</strong> in the f<strong>at</strong>e <strong>of</strong> conjug<strong>at</strong>ed species.<br />

The best-characterized class <strong>of</strong> SIM consists <strong>of</strong> a<br />

hydrophobic core ([V/I]-x-[V/I]-[V/I]) flanked<br />

by a cluster <strong>of</strong> neg<strong>at</strong>ively charged amino acids<br />

(Kerscher, 2007). The SIM hydrophobic core<br />

can bind to an interaction surface on SUMO<br />

proteins in a parallel or antiparallel orient<strong>at</strong>ion.<br />

The acidic residues adjacent to the core might<br />

contribute to the affinity, orient<strong>at</strong>ion or<br />

paralogue specificity <strong>of</strong> binding (Hecker et al.,<br />

2006; Meulmeester et al., 2008). A variant SIM<br />

was recently defined within the transcriptional<br />

repressor CoREST1, consisting <strong>of</strong> [I/V/L]-<br />

[D/E]-[I/V/L]-[D/E]-[I/V/L] with N-terminal<br />

acidic residues (Ouyang et al., 2009). This SIM<br />

is highly selective for SUMO-2/3 binding, <strong>and</strong><br />

differs from previously identified SIMs because<br />

its core lacks a hydrophobic residue <strong>at</strong> position<br />

4. Notably, the diversity <strong>of</strong> SIMs identified to<br />

d<strong>at</strong>e is much less than the 16 known ubiquitinbinding<br />

domains (Grabbe <strong>and</strong> Dikic, 2009); it is<br />

reasonable to specul<strong>at</strong>e th<strong>at</strong> additional SIMs<br />

remain to be discovered.<br />

SUMO-processing, -activ<strong>at</strong>ing <strong>and</strong><br />

-conjug<strong>at</strong>ing enzymes<br />

Newly transl<strong>at</strong>ed SUMO proteins are cleaved to<br />

reveal C-terminal diglycine motifs. This<br />

processing is medi<strong>at</strong>ed by a family <strong>of</strong><br />

proteases known as ubiquitin-like-proteinspecific<br />

proteases (Ulps) in yeast <strong>and</strong><br />

sentrin-specific proteases (SENPs) in mammals<br />

(Mukhopadhyay <strong>and</strong> Dasso, 2007). Ulps <strong>and</strong><br />

SENPs also medi<strong>at</strong>e de<strong>SUMOyl<strong>at</strong>ion</strong> (see<br />

below).<br />

All SUMO paralogues share the same<br />

activ<strong>at</strong>ing (E1) <strong>and</strong> conjug<strong>at</strong>ing (E2) enzymes.<br />

These enzymes are structurally similar to E1 <strong>and</strong><br />

E2 enzymes <strong>of</strong> ubiquitin, <strong>and</strong> they share many <strong>of</strong><br />

the properties th<strong>at</strong> have been demonstr<strong>at</strong>ed for<br />

those enzymes (Hochstrasser, 2009). The<br />

yeast SUMO E1 enzyme is a heterodimer<br />

consisting <strong>of</strong> Aos1p (also known as Sae1 in<br />

vertebr<strong>at</strong>es) <strong>and</strong> Uba2p (also known as Sae2<br />

in vertebr<strong>at</strong>es), which show sequence similarity<br />

to the N-terminus <strong>and</strong> C-terminus <strong>of</strong> the<br />

monomeric ubiquitin E1 enzyme, respectively<br />

(Johnson et al., 1997). Aos1p-Uba2p c<strong>at</strong>alyzes<br />

the form<strong>at</strong>ion <strong>of</strong> a high-energy thioester bond<br />

between Uba2p <strong>and</strong> the SUMO C-terminus,<br />

with ATP hydrolysis to AMP <strong>and</strong> pyrophosph<strong>at</strong>e<br />

(Johnson et al., 1997; Lois <strong>and</strong> Lima, 2005). The<br />

activ<strong>at</strong>ed SUMO is subsequently passed to a<br />

cysteine in the active site <strong>of</strong> the E2 enzyme,<br />

Ubc9, through an intermolecular thiol-transfer<br />

reaction.<br />

Residues <strong>of</strong> Ubc9 th<strong>at</strong> are directly involved in<br />

the transfer <strong>of</strong> SUMO act to orient the lysine<br />

<strong>of</strong> the target protein <strong>and</strong> to decrease its pKa,<br />

resulting in a higher occurrence <strong>of</strong> its activ<strong>at</strong>ed,<br />

de-proton<strong>at</strong>ed st<strong>at</strong>e (Yunus <strong>and</strong> Lima, 2006).<br />

SUMO transfer from Ubc9 to some target<br />

proteins can occur through <strong>at</strong> least two ligaseindependent<br />

mechanisms. First, many<br />

SUMOyl<strong>at</strong>ed lysines lie within a consensus<br />

motif, �-K-x-[D/E] (where � is an aliph<strong>at</strong>ic<br />

branched amino acid <strong>and</strong> x is any amino acid).<br />

Ubc9 can directly recognize this motif <strong>and</strong><br />

conjug<strong>at</strong>e the lysine residue within it (Bernier-<br />

Villamor et al., 2002). Second, some SUMO<br />

substr<strong>at</strong>es contain SIMs th<strong>at</strong> promote their own<br />

conjug<strong>at</strong>ion (Meulmeester et al., 2008; Zhu<br />

et al., 2008). These SIMs bind to the SUMO<br />

moiety to which Ubc9 is <strong>at</strong>tached, thereby<br />

increasing its local concentr<strong>at</strong>ion <strong>and</strong><br />

facilit<strong>at</strong>ing <strong>SUMOyl<strong>at</strong>ion</strong>. Because SIMs show<br />

paralogue preference, this mechanism allows<br />

targets to be modified in a paralogue-selective<br />

manner. Notably, mammalian Ubc9 can itself be<br />

SUMOyl<strong>at</strong>ed on a nonconsensus lysine in its<br />

N-terminal helix (Knipscheer et al., 2008). This<br />

modific<strong>at</strong>ion does not inhibit its activity per se,<br />

but alters its target preference, increasing the<br />

conjug<strong>at</strong>ion <strong>of</strong> substr<strong>at</strong>es th<strong>at</strong> contain SIMs,<br />

which bind to the SUMO th<strong>at</strong> is conjug<strong>at</strong>ed to<br />

Ubc9.<br />

SUMO ligases<br />

SUMO ligases (E3 enzymes) facilit<strong>at</strong>e the<br />

majority <strong>of</strong> <strong>SUMOyl<strong>at</strong>ion</strong> under physiological<br />

conditions (Meulmeester et al., 2008). A number<br />

<strong>of</strong> SUMO ligases have been described, most <strong>of</strong><br />

which seem to be specific to metazoans.<br />

Siz/PIAS-family proteins<br />

All eukaryotes express proteins with Siz/PIAS<br />

RING-finger-like domains (SP-RING<br />

domains), which are known as SAP <strong>and</strong> Miz-<br />

finger domain (Siz) proteins in yeast <strong>and</strong><br />

protein inhibitor <strong>of</strong> activ<strong>at</strong>ed STAT (PIAS)<br />

proteins in vertebr<strong>at</strong>es (Hochstrasser, 2001). In<br />

budding yeast, Siz1p <strong>and</strong> Siz2p are required for<br />

most Smt3p conjug<strong>at</strong>ion (Johnson <strong>and</strong> Gupta,<br />

2001; Takahashi et al., 2001). Other SP-RING<br />

proteins, Zip3p <strong>and</strong> Mms21p, promote<br />

assembly <strong>of</strong> the synaptonemal complex<br />

between homologous chromosomes during<br />

meiosis (Cheng et al., 2006) <strong>and</strong> DNA repair<br />

(Potts, 2009), respectively. The five vertebr<strong>at</strong>e<br />

PIAS proteins (PIAS1, PIAS3, PIASx�,<br />

PIASx� <strong>and</strong> PIAS�) have been implic<strong>at</strong>ed in<br />

many processes, including gene expression,<br />

signal transduction <strong>and</strong> genome maintenance<br />

(Palvimo, 2007).<br />

Beyond their SP-RING domains, Siz/PIASfamily<br />

members share additional conserved<br />

motifs, including an N-terminal scaffold<br />

<strong>at</strong>tachment factor (SAF)-A/B, acinus, PIAS<br />

(SAP) motif, a PINIT motif, a SIM, <strong>and</strong> a<br />

C-terminal domain th<strong>at</strong> is rich in serine <strong>and</strong><br />

acidic amino acids (S/DE domain) (Palvimo,<br />

2007). The SAP domain directs the localiz<strong>at</strong>ion<br />

<strong>of</strong> Siz/PIAS proteins to chrom<strong>at</strong>in within the<br />

nucleus (Azuma et al., 2005; Palvimo, 2007).<br />

Structural analysis <strong>of</strong> a Siz1 fragment th<strong>at</strong> is<br />

sufficient for E3 activity in vitro shows th<strong>at</strong> it<br />

has an elong<strong>at</strong>ed tripartite architecture, formed<br />

by its N-terminal PINIT domain, SP-RING<br />

domain <strong>and</strong> C-terminal domain, termed the<br />

SP-CTD (Yunus <strong>and</strong> Lima, 2009). The SP-<br />

RING <strong>and</strong> SP-CTD domains are required for<br />

activ<strong>at</strong>ion <strong>of</strong> the Ubc9-SUMO thioester,<br />

whereas the PINIT domain directs<br />

<strong>SUMOyl<strong>at</strong>ion</strong> to the correct target lysine.<br />

RanBP2<br />

RanBP2 is a nuclear-pore protein th<strong>at</strong> localizes<br />

to the cytoplasmic face <strong>of</strong> the pore. RanBP2<br />

possesses a domain called the internal repe<strong>at</strong><br />

(IR) domain, which consists <strong>of</strong> two t<strong>and</strong>emly<br />

repe<strong>at</strong>ed sequences <strong>of</strong> around 50 residues (IR1<br />

<strong>and</strong> IR2), separ<strong>at</strong>ed by a 24-residue spacer (M).<br />

RanBP2 fragments containing the IR domain<br />

have SUMO ligase activity in vitro (Pichler<br />

et al., 2002). Structural analysis <strong>of</strong> a RanBP2<br />

fragment containing the IR1 <strong>and</strong> M domains<br />

indic<strong>at</strong>es th<strong>at</strong> RanBP2 enhances Ubc9 activity<br />

without direct contacts to the target protein<br />

(Reverter <strong>and</strong> Lima, 2005). It has thus been<br />

proposed th<strong>at</strong> RanBP2 promotes <strong>SUMOyl<strong>at</strong>ion</strong><br />

by aligning the Ubc9-SUMO thioester complex<br />

in an optimal configur<strong>at</strong>ion for substr<strong>at</strong>e<br />

interaction with the active site <strong>of</strong> Ubc9 <strong>and</strong> for<br />

c<strong>at</strong>alysis. Notably, the IR domain <strong>of</strong> RanBP2<br />

binds extremely stably to Ubc9 <strong>and</strong> the<br />

SUMO-1-conjug<strong>at</strong>ed form <strong>of</strong> RanGAP1,<br />

the activ<strong>at</strong>ing protein for the GTPase Ran<br />

(M<strong>at</strong>unis et al., 1998; Saitoh et al., 1998).<br />

Structural analysis yielded the puzzling result


<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> Science<br />

th<strong>at</strong> this binding abolishes the ability <strong>of</strong> RanBP2<br />

to promote multiple rounds <strong>of</strong> target<br />

<strong>SUMOyl<strong>at</strong>ion</strong> (Reverter <strong>and</strong> Lima, 2005). It<br />

will clearly be important to establish how this<br />

inhibition is overcome for RanBP2 to act as an<br />

E3 enzyme in its physiological context.<br />

Other SUMO ligases<br />

Additional proteins th<strong>at</strong> have been reported as<br />

potential SUMO ligases include histone<br />

deacetylase 4 (HDAC4), KRAB-associ<strong>at</strong>ed<br />

protein 1 (KPA1), Pc2 <strong>and</strong> Topors.<br />

HDAC4 is a histone deacetylase th<strong>at</strong> is a<br />

<strong>SUMOyl<strong>at</strong>ion</strong> target. HDAC4 expression<br />

enhances the <strong>SUMOyl<strong>at</strong>ion</strong> <strong>of</strong> myocyte-specific<br />

enhancer factor 2 (MEF2), as well as other<br />

targets (Geiss-Friedl<strong>and</strong>er <strong>and</strong> Melchior, 2007;<br />

Zhao et al., 2005). HDAC4 can bind to Ubc9,<br />

suggesting th<strong>at</strong> it acts as an E3 enzyme. It has<br />

altern<strong>at</strong>ively been proposed th<strong>at</strong> HDAC4<br />

enhances <strong>SUMOyl<strong>at</strong>ion</strong> by other means, such<br />

as promoting the phosphoryl<strong>at</strong>ion <strong>of</strong> target<br />

proteins <strong>at</strong> sites adjacent to conjug<strong>at</strong>ed lysine<br />

residues (Yang <strong>and</strong> Gregoire, 2006).<br />

The human co-repressor KRAB-associ<strong>at</strong>ed<br />

protein 1 (KAP1) possesses PHD-finger domains<br />

th<strong>at</strong> c<strong>at</strong>alyze intramolecular <strong>SUMOyl<strong>at</strong>ion</strong> <strong>of</strong> an<br />

adjacent KAP1 bromodomain (Peng <strong>and</strong><br />

Wysocka, 2008). <strong>SUMOyl<strong>at</strong>ion</strong> stabilizes the<br />

associ<strong>at</strong>ion <strong>of</strong> the bromodomain with<br />

the chrom<strong>at</strong>in modifiers, thus promoting the<br />

establishment <strong>of</strong> gene silencing. Structural<br />

analysis suggests th<strong>at</strong> the PHD finger <strong>and</strong> the<br />

bromodomain cooper<strong>at</strong>e as an integr<strong>at</strong>ed unit to<br />

recruit Ubc9 <strong>and</strong> facilit<strong>at</strong>e <strong>SUMOyl<strong>at</strong>ion</strong> (Zeng<br />

et al., 2008).<br />

Mammalian Pc2 is a polycomb-group<br />

protein th<strong>at</strong> can act as a SUMO ligase for the<br />

transcriptional co-repressor CtBP (Wotton <strong>and</strong><br />

Merrill, 2007). Pc2 can bind to both Ubc9 <strong>and</strong> its<br />

conjug<strong>at</strong>ion targets, <strong>and</strong> it seems to have a r<strong>at</strong>her<br />

limited spectrum <strong>of</strong> targets.<br />

Topors is a RING-finger protein th<strong>at</strong> binds<br />

DNA topoisomerase I <strong>and</strong> p53. It possesses both<br />

RING-finger-dependent ubiquitin ligase<br />

activity <strong>and</strong> RING-finger-independent SUMO<br />

ligase activity (Weger et al., 2005). Topors has a<br />

SIM (Hecker et al., 2006) <strong>and</strong> acts as a SUMO<br />

ligase in vitro (Hammer et al., 2007).<br />

SUMO-deconjug<strong>at</strong>ing enzymes<br />

Ulps/SENPs are responsible both for processing<br />

SUMO peptides <strong>and</strong> for deconjug<strong>at</strong>ing<br />

SUMOyl<strong>at</strong>ed species (Hay, 2007;<br />

Mukhopadhyay <strong>and</strong> Dasso, 2007). Ulps/SENPs<br />

share a conserved ~200-amino-acid c<strong>at</strong>alytic<br />

domain th<strong>at</strong> is typically found near their<br />

C-terminus.<br />

There are two Ulps in budding yeast: Ulp1p<br />

<strong>and</strong> Ulp2p (Li <strong>and</strong> Hochstrasser, 1999; Li <strong>and</strong><br />

Hochstrasser, 2000). Ulp1p localizes to the<br />

nuclear envelope <strong>and</strong> is encoded by an<br />

essential gene (Li <strong>and</strong> Hochstrasser, 1999).<br />

Overexpression <strong>of</strong> processed Smt3p weakly<br />

rescues �ulp1 cells, but unprocessed Smt3p does<br />

not (Li <strong>and</strong> Hochstrasser, 1999), suggesting th<strong>at</strong><br />

one essential function <strong>of</strong> Ulp1p is Smt3p<br />

m<strong>at</strong>ur<strong>at</strong>ion. Ulp2p localizes in the nucleoplasm<br />

(Li <strong>and</strong> Hochstrasser, 2000) <strong>and</strong> is particularly<br />

important for dismantling poly-Smt3p chains<br />

(Bylebyl et al., 2003). Although not essential for<br />

veget<strong>at</strong>ive growth, Ulp2p has roles in<br />

chromosome segreg<strong>at</strong>ion, meiotic development<br />

<strong>and</strong> recovery from cell-cycle checkpoint arrest<br />

(Li <strong>and</strong> Hochstrasser, 2000).<br />

Mammals have six SENPs: SENP1, SENP2,<br />

SENP3, SENP5, SENP6 <strong>and</strong> SENP7. SENP1-3<br />

<strong>and</strong> SENP5 are more similar to Ulp1p than to<br />

Ulp2p, whereas SENP6 <strong>and</strong> SENP7 are more<br />

Ulp2-like (Mukhopadhyay <strong>and</strong> Dasso, 2007).<br />

SENP1 <strong>and</strong> SENP2 localize to the nuclear<br />

envelope <strong>and</strong> have processing <strong>and</strong><br />

deconjug<strong>at</strong>ion activity for both SUMO-1 <strong>and</strong><br />

SUMO-2/3. By contrast, all other SENPs have a<br />

strong preference for SUMO-2/3. SENP3 <strong>and</strong><br />

SENP5 localize in nucleoli <strong>and</strong> c<strong>at</strong>alyze<br />

SUMO-2/3 processing <strong>and</strong> deconjug<strong>at</strong>ion (Di<br />

Bacco et al., 2006; Gong <strong>and</strong> Yeh, 2006).<br />

Similar to Ulp1p (Panse et al., 2006), SENP3<br />

<strong>and</strong> SENP5 have important roles in ribosome<br />

biogenesis (Yun et al., 2008). SENP6 <strong>and</strong><br />

SENP7 localize within the nucleoplasm <strong>and</strong> are<br />

implic<strong>at</strong>ed in the editing <strong>of</strong> poly-SUMO chains<br />

(Lima <strong>and</strong> Reverter, 2008; Mukhopadhyay<br />

et al., 2006; Shen et al., 2009).<br />

The sites <strong>of</strong> SENP1, SENP2 <strong>and</strong> Ulp1p th<strong>at</strong> are<br />

engaged during processing or deconjug<strong>at</strong>ion are<br />

shallow clefts lined with conserved amino acids<br />

(Mossessova <strong>and</strong> Lima, 2000; Reverter <strong>and</strong><br />

Lima, 2004; Shen et al., 2006b). In both reactions,<br />

the C-terminus <strong>of</strong> SUMO lies within these clefts<br />

as an elong<strong>at</strong>ed str<strong>and</strong>, <strong>and</strong> conserved<br />

tryptophans <strong>and</strong> other adjacent residues <strong>of</strong> Ulp1p,<br />

SENP1 <strong>and</strong> SENP2 clamp the diglycine motif <strong>of</strong><br />

SUMO in a hydrophobic ‘tunnel’. During<br />

deconjug<strong>at</strong>ion, such binding requires minimal<br />

structural distortion <strong>of</strong> the target protein, which<br />

explains how Ulps/SENPs can deconjug<strong>at</strong>e many<br />

SUMOyl<strong>at</strong>ed species with only modest target<br />

specificity. In the SUMO processing reaction,<br />

Ulps/SENPs induce the isomeriz<strong>at</strong>ion <strong>of</strong> the<br />

scissile peptide bond, resulting in a 90° kink in the<br />

SUMO C-terminal tail (Reverter <strong>and</strong> Lima, 2006;<br />

Shen et al., 2006a). In deconjug<strong>at</strong>ion reactions,<br />

Ulps/SENPs induce the scissile isopeptide bond<br />

between the C-terminus <strong>of</strong> SUMO <strong>and</strong> the<br />

�-amine group <strong>of</strong> the lysine residue <strong>of</strong> the target<br />

protein to adopt a cis configur<strong>at</strong>ion, resulting in a<br />

similar 90° kink (Reverter <strong>and</strong> Lima, 2006; Shen<br />

et al., 2006a). For both peptide <strong>and</strong> amide bonds,<br />

the kinked cis conform<strong>at</strong>ions facilit<strong>at</strong>e hydrolysis<br />

<strong>of</strong> the bond.<br />

<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> Science 122 (23)<br />

4251<br />

The f<strong>at</strong>es <strong>of</strong> SUMOyl<strong>at</strong>ed species<br />

The consequences <strong>of</strong> <strong>SUMOyl<strong>at</strong>ion</strong> are diverse,<br />

including alter<strong>at</strong>ion <strong>of</strong> the activity, localiz<strong>at</strong>ion<br />

<strong>and</strong>/or stability <strong>of</strong> the target protein (Geiss-<br />

Friedl<strong>and</strong>er <strong>and</strong> Melchior, 2007). Frequently,<br />

these consequences result from recognition <strong>of</strong><br />

conjug<strong>at</strong>ed species by SIM-containing proteins.<br />

<strong>SUMOyl<strong>at</strong>ion</strong> might also cause the loss <strong>of</strong><br />

binding partners, or cause conform<strong>at</strong>ional<br />

changes th<strong>at</strong> alter the enzym<strong>at</strong>ic activity <strong>of</strong> the<br />

target protein. Some SIM-medi<strong>at</strong>ed interactions<br />

prevent deconjug<strong>at</strong>ion by limiting the access <strong>of</strong><br />

Ulps/SENPs to the conjug<strong>at</strong>ed proteins. In cases<br />

in which the interacting SIMs have intrinsic<br />

paralogue preference, they will selectively<br />

protect targets th<strong>at</strong> are modified with the<br />

preferred SUMO paralogue (Zhu et al., 2009).<br />

Few <strong>SUMOyl<strong>at</strong>ion</strong> targets show quantit<strong>at</strong>ive<br />

modific<strong>at</strong>ion. Notably, <strong>SUMOyl<strong>at</strong>ion</strong> can play<br />

an important regul<strong>at</strong>ory role even under these<br />

circumstances (Geiss-Friedl<strong>and</strong>er <strong>and</strong> Melchior,<br />

2007). This might be explained by the<br />

observ<strong>at</strong>ion th<strong>at</strong> <strong>SUMOyl<strong>at</strong>ion</strong> can promote<br />

the assembly <strong>of</strong> protein complexes, such as in<br />

transcriptionally repressed chrom<strong>at</strong>in, th<strong>at</strong><br />

remain stable despite subsequent<br />

de<strong>SUMOyl<strong>at</strong>ion</strong> (Geiss-Friedl<strong>and</strong>er <strong>and</strong><br />

Melchior, 2007). Additionally, <strong>SUMOyl<strong>at</strong>ion</strong><br />

might function within the c<strong>at</strong>alytic cycle <strong>of</strong><br />

targets, facilit<strong>at</strong>ing enzym<strong>at</strong>ic turnover<br />

(Hardel<strong>and</strong> et al., 2002). In both <strong>of</strong> these cases,<br />

SUMOyl<strong>at</strong>ed species are transient intermedi<strong>at</strong>es<br />

th<strong>at</strong> facilit<strong>at</strong>e stable changes in target proteins.<br />

Crosstalk between the SUMO <strong>and</strong><br />

ubiquitin p<strong>at</strong>hways<br />

A particularly exciting development in this field<br />

has revealed an important point <strong>of</strong> crosstalk<br />

between the SUMO <strong>and</strong> ubiquitin p<strong>at</strong>hways<br />

(Hunter <strong>and</strong> Sun, 2008): a subset <strong>of</strong> targets<br />

become conjug<strong>at</strong>ed with multiple SUMOs, <strong>and</strong><br />

can be recognized by SUMO-targeted ubiquitin<br />

ligases (STUbLs), causing the proteasomal<br />

degrad<strong>at</strong>ion <strong>of</strong> these targets. It is currently<br />

believed th<strong>at</strong> STUbLs oper<strong>at</strong>e primarily through<br />

recognition <strong>of</strong> poly-SUMO chains, although it<br />

remains possible th<strong>at</strong> they might recognize some<br />

targets th<strong>at</strong> are mono-SUMOyl<strong>at</strong>ed <strong>at</strong> numerous<br />

sites.<br />

Rfp1p <strong>and</strong> Rfp2p are fission-yeast RINGfinger<br />

proteins th<strong>at</strong> possess N-terminal SIMs<br />

(Sun et al., 2007). They are genetically<br />

redundant <strong>and</strong> there is no visible phenotype for<br />

loss <strong>of</strong> either gene encoding these proteins.<br />

However, cells must possess <strong>at</strong> least one <strong>of</strong> these<br />

proteins for growth <strong>and</strong> genome stability. Both<br />

Rfp1p <strong>and</strong> Rfp2p heterodimerize with the Slx8p<br />

protein, a RING-finger ubiquitin ligase.<br />

Together, they medi<strong>at</strong>e the ubiquityl<strong>at</strong>ion <strong>of</strong><br />

poly-SUMOyl<strong>at</strong>ed targets, resulting in their<br />

proteasomal destruction. The Slx5p-Slx8p


<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> Science<br />

4252<br />

<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> Science 122 (23)<br />

heterodimer acts similarly in budding yeast<br />

(Hunter <strong>and</strong> Sun, 2008). The functions <strong>of</strong> Rfp1<br />

<strong>and</strong>/or Rfp2 <strong>and</strong> Slx8 are performed by a single<br />

protein in human cells, RING-finger protein 4<br />

(RNF4), which is the only confirmed<br />

mammalian STUbL (Sun et al., 2007).<br />

Perspectives<br />

Findings during the last 5 or 6 years have<br />

provided a much more sophistic<strong>at</strong>ed<br />

underst<strong>and</strong>ing <strong>of</strong> the <strong>SUMOyl<strong>at</strong>ion</strong> p<strong>at</strong>hway,<br />

revealing some aspects th<strong>at</strong> are unique to this<br />

p<strong>at</strong>hway <strong>and</strong> others th<strong>at</strong> are probably common<br />

to p<strong>at</strong>hways involving all ubiquitin-like<br />

proteins. However, the picture <strong>of</strong> <strong>SUMOyl<strong>at</strong>ion</strong><br />

is not yet complete, <strong>and</strong> we expect th<strong>at</strong> studies <strong>of</strong><br />

the SUMO p<strong>at</strong>hway may yet hold more<br />

surprises. In particular, we look forward to<br />

future findings regarding the mechanisms <strong>of</strong><br />

SUMO ligases <strong>and</strong> the possibility th<strong>at</strong> additional<br />

SIMs remain to be discovered. Finally, we still<br />

have much to learn regarding the biological<br />

functions <strong>of</strong> this p<strong>at</strong>hway <strong>and</strong> its interaction with<br />

ubiquitin <strong>and</strong> other regul<strong>at</strong>ory p<strong>at</strong>hways.<br />

This work was supported through Eunice Kennedy<br />

Shriver N<strong>at</strong>ional Institute <strong>of</strong> Child Health <strong>and</strong> Human<br />

Development Intramural funds (Z01 HD001902).<br />

Deposited in PMC for release after 12 months.<br />

References<br />

Ayaydin, F. <strong>and</strong> Dasso, M. (2004). Distinct in vivo dynamics <strong>of</strong><br />

vertebr<strong>at</strong>e SUMO paralogues. Mol. Biol. <strong>Cell</strong> 15, 5208-5218.<br />

Azuma, Y., Arnaoutov, A., Anan, T. <strong>and</strong> Dasso, M. (2005).<br />

PIASy medi<strong>at</strong>es SUMO-2 conjug<strong>at</strong>ion <strong>of</strong> Topoisomerase-II on<br />

mitotic chromosomes. EMBO J. 24, 2172-2182.<br />

Bernier-Villamor, V., Sampson, D. A., M<strong>at</strong>unis, M. J. <strong>and</strong><br />

Lima, C. D. (2002). Structural basis for E2-medi<strong>at</strong>ed SUMO<br />

conjug<strong>at</strong>ion revealed by a complex between ubiquitinconjug<strong>at</strong>ing<br />

enzyme Ubc9 <strong>and</strong> RanGAP1. <strong>Cell</strong> 108, 345-356.<br />

Bylebyl, G. R., Belichenko, I. <strong>and</strong> Johnson, E. S. (2003). The<br />

SUMO isopeptidase Ulp2 prevents accumul<strong>at</strong>ion <strong>of</strong> SUMO<br />

chains in yeast. J. Biol. Chem. 278, 44113-44120.<br />

Cheng, C. H., Lo, Y. H., Liang, S. S., Ti, S. C., Lin, F. M., Yeh,<br />

C. H., Huang, H. Y. <strong>and</strong> Wang, T. F. (2006). SUMO<br />

modific<strong>at</strong>ions control assembly <strong>of</strong> synaptonemal complex <strong>and</strong><br />

polycomplex in meiosis <strong>of</strong> Saccharomyces cerevisiae. Genes Dev.<br />

20, 2067-2081.<br />

Di Bacco, A., Ouyang, J., Lee, H. Y., C<strong>at</strong>ic, A., Ploegh, H. <strong>and</strong><br />

Gill, G. (2006). The SUMO-specific protease SENP5 is required<br />

for cell division. Mol. <strong>Cell</strong>. Biol. 26, 4489-4498.<br />

Geiss-Friedl<strong>and</strong>er, R. <strong>and</strong> Melchior, F. (2007). Concepts in<br />

sumoyl<strong>at</strong>ion: a decade on. N<strong>at</strong>. Rev Mol. <strong>Cell</strong>. Biol. 8, 947-956.<br />

Gong, L. <strong>and</strong> Yeh, E. T. (2006). Characteriz<strong>at</strong>ion <strong>of</strong> a family <strong>of</strong><br />

nucleolar SUMO-specific proteases with preference for SUMO-<br />

2 or SUMO-3. J. Biol. Chem. 281, 15869-15877.<br />

Grabbe, C. <strong>and</strong> Dikic, I. (2009). Functional roles <strong>of</strong> ubiquitinlike<br />

domain (ULD) <strong>and</strong> ubiquitin-binding domain (UBD)<br />

containing proteins. Chem. Rev. 109, 1481-1494.<br />

Hammer, E., Heilbronn, R. <strong>and</strong> Weger, S. (2007). The E3 ligase<br />

Topors induces the accumul<strong>at</strong>ion <strong>of</strong> polysumoyl<strong>at</strong>ed forms <strong>of</strong><br />

DNA topoisomerase I in vitro <strong>and</strong> in vivo. FEBS Lett. 581, 5418-<br />

5424.<br />

Hardel<strong>and</strong>, U., Steinacher, R., Jiricny, J. <strong>and</strong> Schar, P. (2002).<br />

Modific<strong>at</strong>ion <strong>of</strong> the human thymine-DNA glycosylase by<br />

ubiquitin-like proteins facilit<strong>at</strong>es enzym<strong>at</strong>ic turnover. EMBO J.<br />

21, 1456-1464.<br />

Hay, R. T. (2007). SUMO-specific proteases: a twist in the tail.<br />

Trends <strong>Cell</strong> Biol. 17, 370-376.<br />

Hecker, C. M., Rabiller, M., Haglund, K., Bayer, P. <strong>and</strong> Dikic,<br />

I. (2006). Specific<strong>at</strong>ion <strong>of</strong> SUMO1- <strong>and</strong> SUMO2-interacting<br />

motifs. J. Biol. Chem. 281, 16117-16127.<br />

Hochstrasser, M. (2001). SP-RING for SUMO: new functions<br />

bloom for a ubiquitin-like protein. <strong>Cell</strong> 107, 5-8.<br />

Hochstrasser, M. (2009). Origin <strong>and</strong> function <strong>of</strong> ubiquitin-like<br />

proteins. N<strong>at</strong>ure 458, 422-429.<br />

Hunter, T. <strong>and</strong> Sun, H. (2008). Crosstalk between the SUMO<br />

<strong>and</strong> ubiquitin p<strong>at</strong>hways. Ernst Schering Found. Symp. Proc. 1-16.<br />

Johnson, E. S. (2004). Protein modific<strong>at</strong>ion by SUMO. Annu.<br />

Rev. Biochem. 73, 355-382.<br />

Johnson, E. S. <strong>and</strong> Gupta, A. A. (2001). An E3-like factor th<strong>at</strong><br />

promotes SUMO conjug<strong>at</strong>ion to the yeast septins. <strong>Cell</strong> 106, 735-<br />

744.<br />

Johnson, E. S., Schwienhorst, I., Dohmen, R. J. <strong>and</strong> Blobel,<br />

G. (1997). The ubiquitin-like protein Smt3p is activ<strong>at</strong>ed for<br />

conjug<strong>at</strong>ion to other proteins by an Aos1p/Uba2p heterodimer.<br />

EMBO J. 16, 5509-5519.<br />

Kerscher, O. (2007). SUMO junction-wh<strong>at</strong>’s your function? New<br />

insights through SUMO-interacting motifs. EMBO Rep. 8, 550-<br />

555.<br />

Knipscheer, P., Flotho, A., Klug, H., Olsen, J. V., van Dijk, W.<br />

J., Fish, A., Johnson, E. S., Mann, M., Sixma, T. K. <strong>and</strong><br />

Pichler, A. (2008). Ubc9 sumoyl<strong>at</strong>ion regul<strong>at</strong>es SUMO target<br />

discrimin<strong>at</strong>ion. Mol. <strong>Cell</strong> 31, 371-382.<br />

Li, S. J. <strong>and</strong> Hochstrasser, M. (1999). A new protease required<br />

for cell-cycle progression in yeast. N<strong>at</strong>ure 398, 246-251.<br />

Li, S. J. <strong>and</strong> Hochstrasser, M. (2000). The yeast ULP2 (SMT4)<br />

gene encodes a novel protease specific for the ubiquitin-like Smt3<br />

protein. Mol. <strong>Cell</strong>. Biol. 20, 2367-2377.<br />

Lima, C. D. <strong>and</strong> Reverter, D. (2008). Structure <strong>of</strong> the human<br />

SENP7 c<strong>at</strong>alytic domain <strong>and</strong> poly-SUMO deconjug<strong>at</strong>ion<br />

activities for SENP6 <strong>and</strong> SENP7. J. Biol. Chem. 283, 32045-<br />

32055.<br />

Lois, L. M. <strong>and</strong> Lima, C. D. (2005). Structures <strong>of</strong> the SUMO<br />

E1 provide mechanistic insights into SUMO activ<strong>at</strong>ion <strong>and</strong> E2<br />

recruitment to E1. EMBO J. 24, 439-451.<br />

M<strong>at</strong>ic, I., van Hagen, M., Schimmel, J., Macek, B., Ogg, S. C.,<br />

T<strong>at</strong>ham, M. H., Hay, R. T., Lamond, A. I., Mann, M. <strong>and</strong><br />

Vertegaal, A. C. (2008). In vivo identific<strong>at</strong>ion <strong>of</strong> human small<br />

ubiquitin-like modifier polymeriz<strong>at</strong>ion sites by high accuracy<br />

mass spectrometry <strong>and</strong> an in vitro to in vivo str<strong>at</strong>egy. Mol. <strong>Cell</strong><br />

Proteomics 7, 132-144.<br />

M<strong>at</strong>unis, M. J., Wu, J. <strong>and</strong> Blobel, G. (1998). SUMO-1<br />

modific<strong>at</strong>ion <strong>and</strong> its role in targeting the Ran GTPase-activ<strong>at</strong>ing<br />

protein, RanGAP1, to the nuclear pore complex. J. <strong>Cell</strong> Biol. 140,<br />

499-509.<br />

Meulmeester, E., Kunze, M., Hsiao, H. H., Urlaub, H. <strong>and</strong><br />

Melchior, F. (2008). Mechanism <strong>and</strong> consequences for paralogspecific<br />

sumoyl<strong>at</strong>ion <strong>of</strong> ubiquitin-specific protease 25. Mol. <strong>Cell</strong><br />

30, 610-669.<br />

Mossessova, E. <strong>and</strong> Lima, C. D. (2000). Ulp1-SUMO crystal<br />

structure <strong>and</strong> genetic analysis reveal conserved interactions <strong>and</strong> a<br />

regul<strong>at</strong>ory element essential for cell growth in yeast. Mol. <strong>Cell</strong> 5,<br />

865-876.<br />

Mukhopadhyay, D. <strong>and</strong> Dasso, M. (2007). Modific<strong>at</strong>ion in<br />

reverse: the SUMO proteases. Trends Biochem. Sci. 32, 286-295.<br />

Mukhopadhyay, D., Ayaydin, F., Kolli, N., Tan, S. H., Anan,<br />

T., Kametaka, A., Azuma, Y., Wilkinson, K. D. <strong>and</strong> Dasso, M.<br />

(2006). SUSP1 antagonizes form<strong>at</strong>ion <strong>of</strong> highly SUMO2/3conjug<strong>at</strong>ed<br />

species. J. <strong>Cell</strong> Biol. 174, 939-949.<br />

Ouyang, J., Shi, Y., Valin, A., Xuan, Y. <strong>and</strong> Gill, G. (2009).<br />

Direct binding <strong>of</strong> CoREST1 to SUMO-2/3 contributes to genespecific<br />

repression by the LSD1/CoREST1/HDAC complex.<br />

Mol. <strong>Cell</strong> 34, 145-154.<br />

Palvimo, J. J. (2007). PIAS proteins as regul<strong>at</strong>ors <strong>of</strong> small<br />

ubiquitin-rel<strong>at</strong>ed modifier (SUMO) modific<strong>at</strong>ions <strong>and</strong><br />

transcription. Biochem. Soc. Trans. 35, 1405-1408.<br />

Panse, V. G., Kressler, D., Pauli, A., Petfalski, E., Gnadig, M.,<br />

Tollervey, D. <strong>and</strong> Hurt, E. (2006). Form<strong>at</strong>ion <strong>and</strong> nuclear export<br />

<strong>of</strong> preribosomes are functionally linked to the small-ubiquitinrel<strong>at</strong>ed<br />

modifier p<strong>at</strong>hway. Traffic 7, 1311-1321.<br />

Peng, J. <strong>and</strong> Wysocka, J. (2008). It takes a PHD to SUMO.<br />

Trends Biochem. Sci. 33, 191-194.<br />

Pichler, A., Gast, A., Seeler, J. S., Dejean, A. <strong>and</strong> Melchior, F.<br />

(2002). The nucleoporin RanBP2 has SUMO1 E3 ligase activity.<br />

<strong>Cell</strong> 108, 109-120.<br />

Pickart, C. M. <strong>and</strong> Fushman, D. (2004). Polyubiquitin chains:<br />

polymeric protein signals. Curr. Opin. Chem. Biol. 8, 610-616.<br />

Potts, P. R. (2009). The Yin <strong>and</strong> Yang <strong>of</strong> the MMS21-SMC5/6<br />

SUMO ligase complex in homologous recombin<strong>at</strong>ion. DNA<br />

Repair (Amst) 8, 499-506.<br />

Reverter, D. <strong>and</strong> Lima, C. D. (2004). A basis for SUMO<br />

protease specificity provided by analysis <strong>of</strong> human Senp2 <strong>and</strong> a<br />

Senp2-SUMO complex. Structure 12, 1519-1531.<br />

Reverter, D. <strong>and</strong> Lima, C. D. (2005). Insights into E3 ligase<br />

activity revealed by a SUMO-RanGAP1-Ubc9-Nup358 complex.<br />

N<strong>at</strong>ure 435, 687-692.<br />

Reverter, D. <strong>and</strong> Lima, C. D. (2006). Structural basis for SENP2<br />

protease interactions with SUMO precursors <strong>and</strong> conjug<strong>at</strong>ed<br />

substr<strong>at</strong>es. N<strong>at</strong>. Struct. Mol. Biol. 13, 1060-1068.<br />

Saitoh, H. <strong>and</strong> Hinchey, J. (2000). Functional heterogeneity <strong>of</strong><br />

small ubiquitin-rel<strong>at</strong>ed protein modifiers SUMO-1 versus<br />

SUMO-2/3. J. Biol. Chem. 275, 6252-6258.<br />

Saitoh, H., Sparrow, D. B., Shiomi, T., Pu, R. T., Nishimoto,<br />

T., Mohun, T. J. <strong>and</strong> Dasso, M. (1998). Ubc9p <strong>and</strong> the<br />

conjug<strong>at</strong>ion <strong>of</strong> SUMO-1 to RanGAP1 <strong>and</strong> RanBP2. Curr. Biol.<br />

8, 121-124.<br />

Shen, L., T<strong>at</strong>ham, M. H., Dong, C., Zagorska, A., Naismith,<br />

J. H. <strong>and</strong> Hay, R. T. (2006a). SUMO protease SENP1 induces<br />

isomeriz<strong>at</strong>ion <strong>of</strong> the scissile peptide bond. N<strong>at</strong>. Struct. Mol. Biol.<br />

13, 1069-1077.<br />

Shen, L. N., Dong, C., Liu, H., Naismith, J. H. <strong>and</strong> Hay, R. T.<br />

(2006b). The structure <strong>of</strong> SENP1-SUMO-2 complex suggests a<br />

structural basis for discrimin<strong>at</strong>ion between SUMO paralogues<br />

during processing. Biochem. J. 397, 279-288.<br />

Shen, L. N., Ge<strong>of</strong>froy, M. C., Jaffray, E. G. <strong>and</strong> Hay, R. T.<br />

(2009). Characteriz<strong>at</strong>ion <strong>of</strong> SENP7, a SUMO-2/-3 specific<br />

isopeptidase. Biochem. J. 2, 223-230.<br />

Sun, H., Leverson, J. D. <strong>and</strong> Hunter, T. (2007). Conserved<br />

function <strong>of</strong> RNF4 family proteins in eukaryotes: targeting a<br />

ubiquitin ligase to SUMOyl<strong>at</strong>ed proteins. EMBO J. 26, 4102-<br />

4112.<br />

Takahashi, Y., Kahyo, T., Toh, E. A., Yasuda, H. <strong>and</strong> Kikuchi,<br />

Y. (2001). Yeast Ull1/Siz1 is a novel SUMO1/Smt3 ligase for<br />

septin components <strong>and</strong> functions as an adaptor between<br />

conjug<strong>at</strong>ing enzyme <strong>and</strong> substr<strong>at</strong>es. J. Biol. Chem. 276, 48973-<br />

48977.<br />

T<strong>at</strong>ham, M. H., Jaffray, E., Vaughan, O. A., Desterro, J. M.,<br />

Botting, C. H., Naismith, J. H. <strong>and</strong> Hay, R. T. (2001).<br />

Polymeric chains <strong>of</strong> SUMO-2 <strong>and</strong> SUMO-3 are conjug<strong>at</strong>ed to<br />

protein substr<strong>at</strong>es by SAE1/SAE2 <strong>and</strong> Ubc9. J. Biol. Chem. 276,<br />

35368-35374.<br />

Vertegaal, A. C., Andersen, J. S., Ogg, S. C., Hay, R. T., Mann,<br />

M. <strong>and</strong> Lamond, A. I. (2006). Distinct <strong>and</strong> overlapping sets <strong>of</strong><br />

SUMO-1 <strong>and</strong> SUMO-2 target proteins revealed by quantit<strong>at</strong>ive<br />

proteomics. Mol. <strong>Cell</strong> Proteomics 5, 2298-2310.<br />

Weger, S., Hammer, E. <strong>and</strong> Heilbronn, R. (2005). Topors acts<br />

as a SUMO-1 E3 ligase for p53 in vitro <strong>and</strong> in vivo. FEBS Lett.<br />

579, 5007-5012.<br />

Wotton, D. <strong>and</strong> Merrill, J. C. (2007). Pc2 <strong>and</strong> <strong>SUMOyl<strong>at</strong>ion</strong>.<br />

Biochem. Soc. Trans. 35, 1401-1404.<br />

Yang, X. J. <strong>and</strong> Gregoire, S. (2006). A recurrent phosphosumoyl<br />

switch in transcriptional repression <strong>and</strong> beyond. Mol. <strong>Cell</strong><br />

23, 779-786.<br />

Yun, C., Wang, Y., Mukhopadhyay, D., Backlund, P., Kolli,<br />

N., Yergey, A., Wilkinson, K. D. <strong>and</strong> Dasso, M. (2008).<br />

Nucleolar protein B23/nucleophosmin regul<strong>at</strong>es the vertebr<strong>at</strong>e<br />

SUMO p<strong>at</strong>hway through SENP3 <strong>and</strong> SENP5 proteases. J. <strong>Cell</strong><br />

Biol. 183, 589-595.<br />

Yunus, A. A. <strong>and</strong> Lima, C. D. (2006). Lysine activ<strong>at</strong>ion <strong>and</strong><br />

functional analysis <strong>of</strong> E2-medi<strong>at</strong>ed conjug<strong>at</strong>ion in the SUMO<br />

p<strong>at</strong>hway. N<strong>at</strong>. Struct. Mol. Biol. 13, 491-499.<br />

Yunus, A. A. <strong>and</strong> Lima, C. D. (2009). Structure <strong>of</strong> the Siz/PIAS<br />

SUMO E3 ligase Siz1 <strong>and</strong> determinants required for SUMO<br />

modific<strong>at</strong>ion <strong>of</strong> PCNA. Mol. <strong>Cell</strong> 35, 669-682.<br />

Zeng, L., Yap, K. L., Ivanov, A. V., Wang, X., Mujtaba, S.,<br />

Plotnikova, O., Rauscher, F. J., 3rd. <strong>and</strong> Zhou, M. M.<br />

(2008). Structural insights into human KAP1 PHD fingerbromodomain<br />

<strong>and</strong> its role in gene silencing. N<strong>at</strong>. Struct. Mol. Biol.<br />

15, 626-633.<br />

Zhang, X. D., Goeres, J., Zhang, H., Yen, T. J., Porter, A. C.<br />

<strong>and</strong> M<strong>at</strong>unis, M. J. (2008). SUMO-2/3 modific<strong>at</strong>ion <strong>and</strong> binding<br />

regul<strong>at</strong>e the associ<strong>at</strong>ion <strong>of</strong> CENP-E with kinetochores <strong>and</strong><br />

progression through mitosis. Mol. <strong>Cell</strong> 29, 729-741.<br />

Zhao, X., Sternsdorf, T., Bolger, T. A., Evans, R. M. <strong>and</strong> Yao,<br />

T. P. (2005). Regul<strong>at</strong>ion <strong>of</strong> MEF2 by histone deacetylase 4- <strong>and</strong><br />

SIRT1 deacetylase-medi<strong>at</strong>ed lysine modific<strong>at</strong>ions. Mol. <strong>Cell</strong>.<br />

Biol. 25, 8456-8464.<br />

Zhu, J., Zhu, S., Guzzo, C. M., Ellis, N. A., Sung, K. S., Choi,<br />

C. Y. <strong>and</strong> M<strong>at</strong>unis, M. J. (2008). Small ubiquitin-rel<strong>at</strong>ed<br />

modifier (SUMO) binding determines substr<strong>at</strong>e recognition <strong>and</strong><br />

paralog-selective SUMO modific<strong>at</strong>ion. J. Biol. Chem. 283,<br />

29405-29415.<br />

Zhu, S., Goeres, J., Sixt, K. M., Bekes, M., Zhang, X. D.,<br />

Salvesen, G. S. <strong>and</strong> M<strong>at</strong>unis, M. J. (2009). Protection from<br />

isopeptidase-medi<strong>at</strong>ed deconjug<strong>at</strong>ion regul<strong>at</strong>es paralog-selective<br />

sumoyl<strong>at</strong>ion <strong>of</strong> RanGAP1. Mol. <strong>Cell</strong> 33, 570-580.<br />

<strong>Cell</strong> Science <strong>at</strong> a <strong>Glance</strong> on the Web<br />

Electronic copies <strong>of</strong> the poster insert are available<br />

in the online version <strong>of</strong> this article <strong>at</strong><br />

jcs.biologists.org. The JPEG images can be<br />

downloaded for printing or used as slides.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!