14.12.2012 Views

SUMOylation and DeSUMOylation at a Glance - Journal of Cell ...

SUMOylation and DeSUMOylation at a Glance - Journal of Cell ...

SUMOylation and DeSUMOylation at a Glance - Journal of Cell ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> Science<br />

4252<br />

<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> Science 122 (23)<br />

heterodimer acts similarly in budding yeast<br />

(Hunter <strong>and</strong> Sun, 2008). The functions <strong>of</strong> Rfp1<br />

<strong>and</strong>/or Rfp2 <strong>and</strong> Slx8 are performed by a single<br />

protein in human cells, RING-finger protein 4<br />

(RNF4), which is the only confirmed<br />

mammalian STUbL (Sun et al., 2007).<br />

Perspectives<br />

Findings during the last 5 or 6 years have<br />

provided a much more sophistic<strong>at</strong>ed<br />

underst<strong>and</strong>ing <strong>of</strong> the <strong>SUMOyl<strong>at</strong>ion</strong> p<strong>at</strong>hway,<br />

revealing some aspects th<strong>at</strong> are unique to this<br />

p<strong>at</strong>hway <strong>and</strong> others th<strong>at</strong> are probably common<br />

to p<strong>at</strong>hways involving all ubiquitin-like<br />

proteins. However, the picture <strong>of</strong> <strong>SUMOyl<strong>at</strong>ion</strong><br />

is not yet complete, <strong>and</strong> we expect th<strong>at</strong> studies <strong>of</strong><br />

the SUMO p<strong>at</strong>hway may yet hold more<br />

surprises. In particular, we look forward to<br />

future findings regarding the mechanisms <strong>of</strong><br />

SUMO ligases <strong>and</strong> the possibility th<strong>at</strong> additional<br />

SIMs remain to be discovered. Finally, we still<br />

have much to learn regarding the biological<br />

functions <strong>of</strong> this p<strong>at</strong>hway <strong>and</strong> its interaction with<br />

ubiquitin <strong>and</strong> other regul<strong>at</strong>ory p<strong>at</strong>hways.<br />

This work was supported through Eunice Kennedy<br />

Shriver N<strong>at</strong>ional Institute <strong>of</strong> Child Health <strong>and</strong> Human<br />

Development Intramural funds (Z01 HD001902).<br />

Deposited in PMC for release after 12 months.<br />

References<br />

Ayaydin, F. <strong>and</strong> Dasso, M. (2004). Distinct in vivo dynamics <strong>of</strong><br />

vertebr<strong>at</strong>e SUMO paralogues. Mol. Biol. <strong>Cell</strong> 15, 5208-5218.<br />

Azuma, Y., Arnaoutov, A., Anan, T. <strong>and</strong> Dasso, M. (2005).<br />

PIASy medi<strong>at</strong>es SUMO-2 conjug<strong>at</strong>ion <strong>of</strong> Topoisomerase-II on<br />

mitotic chromosomes. EMBO J. 24, 2172-2182.<br />

Bernier-Villamor, V., Sampson, D. A., M<strong>at</strong>unis, M. J. <strong>and</strong><br />

Lima, C. D. (2002). Structural basis for E2-medi<strong>at</strong>ed SUMO<br />

conjug<strong>at</strong>ion revealed by a complex between ubiquitinconjug<strong>at</strong>ing<br />

enzyme Ubc9 <strong>and</strong> RanGAP1. <strong>Cell</strong> 108, 345-356.<br />

Bylebyl, G. R., Belichenko, I. <strong>and</strong> Johnson, E. S. (2003). The<br />

SUMO isopeptidase Ulp2 prevents accumul<strong>at</strong>ion <strong>of</strong> SUMO<br />

chains in yeast. J. Biol. Chem. 278, 44113-44120.<br />

Cheng, C. H., Lo, Y. H., Liang, S. S., Ti, S. C., Lin, F. M., Yeh,<br />

C. H., Huang, H. Y. <strong>and</strong> Wang, T. F. (2006). SUMO<br />

modific<strong>at</strong>ions control assembly <strong>of</strong> synaptonemal complex <strong>and</strong><br />

polycomplex in meiosis <strong>of</strong> Saccharomyces cerevisiae. Genes Dev.<br />

20, 2067-2081.<br />

Di Bacco, A., Ouyang, J., Lee, H. Y., C<strong>at</strong>ic, A., Ploegh, H. <strong>and</strong><br />

Gill, G. (2006). The SUMO-specific protease SENP5 is required<br />

for cell division. Mol. <strong>Cell</strong>. Biol. 26, 4489-4498.<br />

Geiss-Friedl<strong>and</strong>er, R. <strong>and</strong> Melchior, F. (2007). Concepts in<br />

sumoyl<strong>at</strong>ion: a decade on. N<strong>at</strong>. Rev Mol. <strong>Cell</strong>. Biol. 8, 947-956.<br />

Gong, L. <strong>and</strong> Yeh, E. T. (2006). Characteriz<strong>at</strong>ion <strong>of</strong> a family <strong>of</strong><br />

nucleolar SUMO-specific proteases with preference for SUMO-<br />

2 or SUMO-3. J. Biol. Chem. 281, 15869-15877.<br />

Grabbe, C. <strong>and</strong> Dikic, I. (2009). Functional roles <strong>of</strong> ubiquitinlike<br />

domain (ULD) <strong>and</strong> ubiquitin-binding domain (UBD)<br />

containing proteins. Chem. Rev. 109, 1481-1494.<br />

Hammer, E., Heilbronn, R. <strong>and</strong> Weger, S. (2007). The E3 ligase<br />

Topors induces the accumul<strong>at</strong>ion <strong>of</strong> polysumoyl<strong>at</strong>ed forms <strong>of</strong><br />

DNA topoisomerase I in vitro <strong>and</strong> in vivo. FEBS Lett. 581, 5418-<br />

5424.<br />

Hardel<strong>and</strong>, U., Steinacher, R., Jiricny, J. <strong>and</strong> Schar, P. (2002).<br />

Modific<strong>at</strong>ion <strong>of</strong> the human thymine-DNA glycosylase by<br />

ubiquitin-like proteins facilit<strong>at</strong>es enzym<strong>at</strong>ic turnover. EMBO J.<br />

21, 1456-1464.<br />

Hay, R. T. (2007). SUMO-specific proteases: a twist in the tail.<br />

Trends <strong>Cell</strong> Biol. 17, 370-376.<br />

Hecker, C. M., Rabiller, M., Haglund, K., Bayer, P. <strong>and</strong> Dikic,<br />

I. (2006). Specific<strong>at</strong>ion <strong>of</strong> SUMO1- <strong>and</strong> SUMO2-interacting<br />

motifs. J. Biol. Chem. 281, 16117-16127.<br />

Hochstrasser, M. (2001). SP-RING for SUMO: new functions<br />

bloom for a ubiquitin-like protein. <strong>Cell</strong> 107, 5-8.<br />

Hochstrasser, M. (2009). Origin <strong>and</strong> function <strong>of</strong> ubiquitin-like<br />

proteins. N<strong>at</strong>ure 458, 422-429.<br />

Hunter, T. <strong>and</strong> Sun, H. (2008). Crosstalk between the SUMO<br />

<strong>and</strong> ubiquitin p<strong>at</strong>hways. Ernst Schering Found. Symp. Proc. 1-16.<br />

Johnson, E. S. (2004). Protein modific<strong>at</strong>ion by SUMO. Annu.<br />

Rev. Biochem. 73, 355-382.<br />

Johnson, E. S. <strong>and</strong> Gupta, A. A. (2001). An E3-like factor th<strong>at</strong><br />

promotes SUMO conjug<strong>at</strong>ion to the yeast septins. <strong>Cell</strong> 106, 735-<br />

744.<br />

Johnson, E. S., Schwienhorst, I., Dohmen, R. J. <strong>and</strong> Blobel,<br />

G. (1997). The ubiquitin-like protein Smt3p is activ<strong>at</strong>ed for<br />

conjug<strong>at</strong>ion to other proteins by an Aos1p/Uba2p heterodimer.<br />

EMBO J. 16, 5509-5519.<br />

Kerscher, O. (2007). SUMO junction-wh<strong>at</strong>’s your function? New<br />

insights through SUMO-interacting motifs. EMBO Rep. 8, 550-<br />

555.<br />

Knipscheer, P., Flotho, A., Klug, H., Olsen, J. V., van Dijk, W.<br />

J., Fish, A., Johnson, E. S., Mann, M., Sixma, T. K. <strong>and</strong><br />

Pichler, A. (2008). Ubc9 sumoyl<strong>at</strong>ion regul<strong>at</strong>es SUMO target<br />

discrimin<strong>at</strong>ion. Mol. <strong>Cell</strong> 31, 371-382.<br />

Li, S. J. <strong>and</strong> Hochstrasser, M. (1999). A new protease required<br />

for cell-cycle progression in yeast. N<strong>at</strong>ure 398, 246-251.<br />

Li, S. J. <strong>and</strong> Hochstrasser, M. (2000). The yeast ULP2 (SMT4)<br />

gene encodes a novel protease specific for the ubiquitin-like Smt3<br />

protein. Mol. <strong>Cell</strong>. Biol. 20, 2367-2377.<br />

Lima, C. D. <strong>and</strong> Reverter, D. (2008). Structure <strong>of</strong> the human<br />

SENP7 c<strong>at</strong>alytic domain <strong>and</strong> poly-SUMO deconjug<strong>at</strong>ion<br />

activities for SENP6 <strong>and</strong> SENP7. J. Biol. Chem. 283, 32045-<br />

32055.<br />

Lois, L. M. <strong>and</strong> Lima, C. D. (2005). Structures <strong>of</strong> the SUMO<br />

E1 provide mechanistic insights into SUMO activ<strong>at</strong>ion <strong>and</strong> E2<br />

recruitment to E1. EMBO J. 24, 439-451.<br />

M<strong>at</strong>ic, I., van Hagen, M., Schimmel, J., Macek, B., Ogg, S. C.,<br />

T<strong>at</strong>ham, M. H., Hay, R. T., Lamond, A. I., Mann, M. <strong>and</strong><br />

Vertegaal, A. C. (2008). In vivo identific<strong>at</strong>ion <strong>of</strong> human small<br />

ubiquitin-like modifier polymeriz<strong>at</strong>ion sites by high accuracy<br />

mass spectrometry <strong>and</strong> an in vitro to in vivo str<strong>at</strong>egy. Mol. <strong>Cell</strong><br />

Proteomics 7, 132-144.<br />

M<strong>at</strong>unis, M. J., Wu, J. <strong>and</strong> Blobel, G. (1998). SUMO-1<br />

modific<strong>at</strong>ion <strong>and</strong> its role in targeting the Ran GTPase-activ<strong>at</strong>ing<br />

protein, RanGAP1, to the nuclear pore complex. J. <strong>Cell</strong> Biol. 140,<br />

499-509.<br />

Meulmeester, E., Kunze, M., Hsiao, H. H., Urlaub, H. <strong>and</strong><br />

Melchior, F. (2008). Mechanism <strong>and</strong> consequences for paralogspecific<br />

sumoyl<strong>at</strong>ion <strong>of</strong> ubiquitin-specific protease 25. Mol. <strong>Cell</strong><br />

30, 610-669.<br />

Mossessova, E. <strong>and</strong> Lima, C. D. (2000). Ulp1-SUMO crystal<br />

structure <strong>and</strong> genetic analysis reveal conserved interactions <strong>and</strong> a<br />

regul<strong>at</strong>ory element essential for cell growth in yeast. Mol. <strong>Cell</strong> 5,<br />

865-876.<br />

Mukhopadhyay, D. <strong>and</strong> Dasso, M. (2007). Modific<strong>at</strong>ion in<br />

reverse: the SUMO proteases. Trends Biochem. Sci. 32, 286-295.<br />

Mukhopadhyay, D., Ayaydin, F., Kolli, N., Tan, S. H., Anan,<br />

T., Kametaka, A., Azuma, Y., Wilkinson, K. D. <strong>and</strong> Dasso, M.<br />

(2006). SUSP1 antagonizes form<strong>at</strong>ion <strong>of</strong> highly SUMO2/3conjug<strong>at</strong>ed<br />

species. J. <strong>Cell</strong> Biol. 174, 939-949.<br />

Ouyang, J., Shi, Y., Valin, A., Xuan, Y. <strong>and</strong> Gill, G. (2009).<br />

Direct binding <strong>of</strong> CoREST1 to SUMO-2/3 contributes to genespecific<br />

repression by the LSD1/CoREST1/HDAC complex.<br />

Mol. <strong>Cell</strong> 34, 145-154.<br />

Palvimo, J. J. (2007). PIAS proteins as regul<strong>at</strong>ors <strong>of</strong> small<br />

ubiquitin-rel<strong>at</strong>ed modifier (SUMO) modific<strong>at</strong>ions <strong>and</strong><br />

transcription. Biochem. Soc. Trans. 35, 1405-1408.<br />

Panse, V. G., Kressler, D., Pauli, A., Petfalski, E., Gnadig, M.,<br />

Tollervey, D. <strong>and</strong> Hurt, E. (2006). Form<strong>at</strong>ion <strong>and</strong> nuclear export<br />

<strong>of</strong> preribosomes are functionally linked to the small-ubiquitinrel<strong>at</strong>ed<br />

modifier p<strong>at</strong>hway. Traffic 7, 1311-1321.<br />

Peng, J. <strong>and</strong> Wysocka, J. (2008). It takes a PHD to SUMO.<br />

Trends Biochem. Sci. 33, 191-194.<br />

Pichler, A., Gast, A., Seeler, J. S., Dejean, A. <strong>and</strong> Melchior, F.<br />

(2002). The nucleoporin RanBP2 has SUMO1 E3 ligase activity.<br />

<strong>Cell</strong> 108, 109-120.<br />

Pickart, C. M. <strong>and</strong> Fushman, D. (2004). Polyubiquitin chains:<br />

polymeric protein signals. Curr. Opin. Chem. Biol. 8, 610-616.<br />

Potts, P. R. (2009). The Yin <strong>and</strong> Yang <strong>of</strong> the MMS21-SMC5/6<br />

SUMO ligase complex in homologous recombin<strong>at</strong>ion. DNA<br />

Repair (Amst) 8, 499-506.<br />

Reverter, D. <strong>and</strong> Lima, C. D. (2004). A basis for SUMO<br />

protease specificity provided by analysis <strong>of</strong> human Senp2 <strong>and</strong> a<br />

Senp2-SUMO complex. Structure 12, 1519-1531.<br />

Reverter, D. <strong>and</strong> Lima, C. D. (2005). Insights into E3 ligase<br />

activity revealed by a SUMO-RanGAP1-Ubc9-Nup358 complex.<br />

N<strong>at</strong>ure 435, 687-692.<br />

Reverter, D. <strong>and</strong> Lima, C. D. (2006). Structural basis for SENP2<br />

protease interactions with SUMO precursors <strong>and</strong> conjug<strong>at</strong>ed<br />

substr<strong>at</strong>es. N<strong>at</strong>. Struct. Mol. Biol. 13, 1060-1068.<br />

Saitoh, H. <strong>and</strong> Hinchey, J. (2000). Functional heterogeneity <strong>of</strong><br />

small ubiquitin-rel<strong>at</strong>ed protein modifiers SUMO-1 versus<br />

SUMO-2/3. J. Biol. Chem. 275, 6252-6258.<br />

Saitoh, H., Sparrow, D. B., Shiomi, T., Pu, R. T., Nishimoto,<br />

T., Mohun, T. J. <strong>and</strong> Dasso, M. (1998). Ubc9p <strong>and</strong> the<br />

conjug<strong>at</strong>ion <strong>of</strong> SUMO-1 to RanGAP1 <strong>and</strong> RanBP2. Curr. Biol.<br />

8, 121-124.<br />

Shen, L., T<strong>at</strong>ham, M. H., Dong, C., Zagorska, A., Naismith,<br />

J. H. <strong>and</strong> Hay, R. T. (2006a). SUMO protease SENP1 induces<br />

isomeriz<strong>at</strong>ion <strong>of</strong> the scissile peptide bond. N<strong>at</strong>. Struct. Mol. Biol.<br />

13, 1069-1077.<br />

Shen, L. N., Dong, C., Liu, H., Naismith, J. H. <strong>and</strong> Hay, R. T.<br />

(2006b). The structure <strong>of</strong> SENP1-SUMO-2 complex suggests a<br />

structural basis for discrimin<strong>at</strong>ion between SUMO paralogues<br />

during processing. Biochem. J. 397, 279-288.<br />

Shen, L. N., Ge<strong>of</strong>froy, M. C., Jaffray, E. G. <strong>and</strong> Hay, R. T.<br />

(2009). Characteriz<strong>at</strong>ion <strong>of</strong> SENP7, a SUMO-2/-3 specific<br />

isopeptidase. Biochem. J. 2, 223-230.<br />

Sun, H., Leverson, J. D. <strong>and</strong> Hunter, T. (2007). Conserved<br />

function <strong>of</strong> RNF4 family proteins in eukaryotes: targeting a<br />

ubiquitin ligase to SUMOyl<strong>at</strong>ed proteins. EMBO J. 26, 4102-<br />

4112.<br />

Takahashi, Y., Kahyo, T., Toh, E. A., Yasuda, H. <strong>and</strong> Kikuchi,<br />

Y. (2001). Yeast Ull1/Siz1 is a novel SUMO1/Smt3 ligase for<br />

septin components <strong>and</strong> functions as an adaptor between<br />

conjug<strong>at</strong>ing enzyme <strong>and</strong> substr<strong>at</strong>es. J. Biol. Chem. 276, 48973-<br />

48977.<br />

T<strong>at</strong>ham, M. H., Jaffray, E., Vaughan, O. A., Desterro, J. M.,<br />

Botting, C. H., Naismith, J. H. <strong>and</strong> Hay, R. T. (2001).<br />

Polymeric chains <strong>of</strong> SUMO-2 <strong>and</strong> SUMO-3 are conjug<strong>at</strong>ed to<br />

protein substr<strong>at</strong>es by SAE1/SAE2 <strong>and</strong> Ubc9. J. Biol. Chem. 276,<br />

35368-35374.<br />

Vertegaal, A. C., Andersen, J. S., Ogg, S. C., Hay, R. T., Mann,<br />

M. <strong>and</strong> Lamond, A. I. (2006). Distinct <strong>and</strong> overlapping sets <strong>of</strong><br />

SUMO-1 <strong>and</strong> SUMO-2 target proteins revealed by quantit<strong>at</strong>ive<br />

proteomics. Mol. <strong>Cell</strong> Proteomics 5, 2298-2310.<br />

Weger, S., Hammer, E. <strong>and</strong> Heilbronn, R. (2005). Topors acts<br />

as a SUMO-1 E3 ligase for p53 in vitro <strong>and</strong> in vivo. FEBS Lett.<br />

579, 5007-5012.<br />

Wotton, D. <strong>and</strong> Merrill, J. C. (2007). Pc2 <strong>and</strong> <strong>SUMOyl<strong>at</strong>ion</strong>.<br />

Biochem. Soc. Trans. 35, 1401-1404.<br />

Yang, X. J. <strong>and</strong> Gregoire, S. (2006). A recurrent phosphosumoyl<br />

switch in transcriptional repression <strong>and</strong> beyond. Mol. <strong>Cell</strong><br />

23, 779-786.<br />

Yun, C., Wang, Y., Mukhopadhyay, D., Backlund, P., Kolli,<br />

N., Yergey, A., Wilkinson, K. D. <strong>and</strong> Dasso, M. (2008).<br />

Nucleolar protein B23/nucleophosmin regul<strong>at</strong>es the vertebr<strong>at</strong>e<br />

SUMO p<strong>at</strong>hway through SENP3 <strong>and</strong> SENP5 proteases. J. <strong>Cell</strong><br />

Biol. 183, 589-595.<br />

Yunus, A. A. <strong>and</strong> Lima, C. D. (2006). Lysine activ<strong>at</strong>ion <strong>and</strong><br />

functional analysis <strong>of</strong> E2-medi<strong>at</strong>ed conjug<strong>at</strong>ion in the SUMO<br />

p<strong>at</strong>hway. N<strong>at</strong>. Struct. Mol. Biol. 13, 491-499.<br />

Yunus, A. A. <strong>and</strong> Lima, C. D. (2009). Structure <strong>of</strong> the Siz/PIAS<br />

SUMO E3 ligase Siz1 <strong>and</strong> determinants required for SUMO<br />

modific<strong>at</strong>ion <strong>of</strong> PCNA. Mol. <strong>Cell</strong> 35, 669-682.<br />

Zeng, L., Yap, K. L., Ivanov, A. V., Wang, X., Mujtaba, S.,<br />

Plotnikova, O., Rauscher, F. J., 3rd. <strong>and</strong> Zhou, M. M.<br />

(2008). Structural insights into human KAP1 PHD fingerbromodomain<br />

<strong>and</strong> its role in gene silencing. N<strong>at</strong>. Struct. Mol. Biol.<br />

15, 626-633.<br />

Zhang, X. D., Goeres, J., Zhang, H., Yen, T. J., Porter, A. C.<br />

<strong>and</strong> M<strong>at</strong>unis, M. J. (2008). SUMO-2/3 modific<strong>at</strong>ion <strong>and</strong> binding<br />

regul<strong>at</strong>e the associ<strong>at</strong>ion <strong>of</strong> CENP-E with kinetochores <strong>and</strong><br />

progression through mitosis. Mol. <strong>Cell</strong> 29, 729-741.<br />

Zhao, X., Sternsdorf, T., Bolger, T. A., Evans, R. M. <strong>and</strong> Yao,<br />

T. P. (2005). Regul<strong>at</strong>ion <strong>of</strong> MEF2 by histone deacetylase 4- <strong>and</strong><br />

SIRT1 deacetylase-medi<strong>at</strong>ed lysine modific<strong>at</strong>ions. Mol. <strong>Cell</strong>.<br />

Biol. 25, 8456-8464.<br />

Zhu, J., Zhu, S., Guzzo, C. M., Ellis, N. A., Sung, K. S., Choi,<br />

C. Y. <strong>and</strong> M<strong>at</strong>unis, M. J. (2008). Small ubiquitin-rel<strong>at</strong>ed<br />

modifier (SUMO) binding determines substr<strong>at</strong>e recognition <strong>and</strong><br />

paralog-selective SUMO modific<strong>at</strong>ion. J. Biol. Chem. 283,<br />

29405-29415.<br />

Zhu, S., Goeres, J., Sixt, K. M., Bekes, M., Zhang, X. D.,<br />

Salvesen, G. S. <strong>and</strong> M<strong>at</strong>unis, M. J. (2009). Protection from<br />

isopeptidase-medi<strong>at</strong>ed deconjug<strong>at</strong>ion regul<strong>at</strong>es paralog-selective<br />

sumoyl<strong>at</strong>ion <strong>of</strong> RanGAP1. Mol. <strong>Cell</strong> 33, 570-580.<br />

<strong>Cell</strong> Science <strong>at</strong> a <strong>Glance</strong> on the Web<br />

Electronic copies <strong>of</strong> the poster insert are available<br />

in the online version <strong>of</strong> this article <strong>at</strong><br />

jcs.biologists.org. The JPEG images can be<br />

downloaded for printing or used as slides.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!