14.12.2012 Views

SUMOylation and DeSUMOylation at a Glance - Journal of Cell ...

SUMOylation and DeSUMOylation at a Glance - Journal of Cell ...

SUMOylation and DeSUMOylation at a Glance - Journal of Cell ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> Science<br />

<strong>Cell</strong> Science <strong>at</strong> a <strong>Glance</strong><br />

<strong>SUMOyl<strong>at</strong>ion</strong> <strong>and</strong><br />

de<strong>SUMOyl<strong>at</strong>ion</strong> <strong>at</strong> a<br />

glance<br />

Yonggang Wang <strong>and</strong><br />

Mary Dasso*<br />

Labor<strong>at</strong>ory <strong>of</strong> Gene Regul<strong>at</strong>ion <strong>and</strong> Development,<br />

N<strong>at</strong>ional Institute <strong>of</strong> Child Health <strong>and</strong> Human<br />

Development, Bethesda, MD 20892, USA<br />

*Author for correspondence (mdasso@helix.nih.gov)<br />

<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> Science 122, 4249-4252<br />

Published by The Company <strong>of</strong> Biologists 2009<br />

doi:10.1242/jcs.050542<br />

Small ubiquitin-rel<strong>at</strong>ed modifiers (SUMOs) are<br />

ubiquitin-like polypeptides th<strong>at</strong> become<br />

covalently conjug<strong>at</strong>ed to cellular proteins in a<br />

manner similar to ubiquityl<strong>at</strong>ion (Johnson,<br />

2004). More than 1000 proteins have been<br />

identified as potential SUMO-conjug<strong>at</strong>ion<br />

(<strong>SUMOyl<strong>at</strong>ion</strong>) targets (Hochstrasser, 2009),<br />

jcs.biologists.org<br />

Key steps <strong>and</strong> components in the SUMO p<strong>at</strong>hway<br />

1.<br />

2.<br />

Cleavage SUMO<br />

<strong>of</strong> SUMO activ<strong>at</strong>ion<br />

C-terminus (linkage to<br />

E1 enzyme)<br />

Aos1<br />

E3s Ulp/SENP<br />

Ulp/SENP<br />

ATP<br />

SH<br />

AMP+PPi<br />

Aos1<br />

SH<br />

Uba2 SH Ubc9<br />

K<br />

Target S<br />

S S Uba2 S S S S<br />

K<br />

Target<br />

Aos1<br />

Uba2 SH Ubc9<br />

Abbrevi<strong>at</strong>ions: DUB, deubiquityl<strong>at</strong>ing enzyme; E3s, E3 ligases; HDAC4, histone deacetylase 4; IR, internal repe<strong>at</strong>; KAP1,<br />

KRAB-associ<strong>at</strong>ed protein 1; Mms21, methyl methanesulfon<strong>at</strong>e sensitivity protein 21; Pc2, polycomb group protein 2; PIAS,<br />

protein inhibitor <strong>of</strong> activ<strong>at</strong>ed STAT; RanBP2, Ran binding protein 2; S, SUMO; S-1, SUMO-1; S-2/3, SUMO-2/3; Sae1,<br />

SUMO-activ<strong>at</strong>ing enzyme subunit 1 (E1); Sae2, SUMO-activ<strong>at</strong>ing enzyme subunit 2 (E1); SENP, sentrin-specific protease;<br />

<strong>and</strong> this p<strong>at</strong>hway has been implic<strong>at</strong>ed in<br />

controlling many aspects <strong>of</strong> cell physiology,<br />

including cell-cycle regul<strong>at</strong>ion, transcription,<br />

nucleocytoplasmic transport, DNA replic<strong>at</strong>ion<br />

<strong>and</strong> repair, chromosome dynamics,<br />

apoptosis, <strong>and</strong> ribosome biogenesis.<br />

Both <strong>SUMOyl<strong>at</strong>ion</strong> <strong>and</strong> de<strong>SUMOyl<strong>at</strong>ion</strong><br />

(SUMO deconjug<strong>at</strong>ion) are highly dynamic<br />

processes. This poster article discusses the<br />

enzymes th<strong>at</strong> medi<strong>at</strong>e <strong>SUMOyl<strong>at</strong>ion</strong> <strong>and</strong><br />

de<strong>SUMOyl<strong>at</strong>ion</strong>, concentr<strong>at</strong>ing on their<br />

mechanisms <strong>of</strong> action. Although it is not<br />

possible to discuss individual SUMOyl<strong>at</strong>ed<br />

targets in detail, we will mention emerging<br />

paradigms th<strong>at</strong> explain how <strong>SUMOyl<strong>at</strong>ion</strong><br />

might direct the f<strong>at</strong>e <strong>of</strong> target proteins.<br />

SUMO paralogues<br />

Yeast express a single SUMO paralogue, called<br />

Smt3p in Saccharomyces cerevisiae.<br />

Mammalian cells express three major SUMO<br />

paralogues, called SUMO-1, SUMO-2 <strong>and</strong><br />

<strong>SUMOyl<strong>at</strong>ion</strong> <strong>and</strong> De<strong>SUMOyl<strong>at</strong>ion</strong> <strong>at</strong> a <strong>Glance</strong><br />

4.<br />

<strong>SUMOyl<strong>at</strong>ion</strong><br />

<strong>of</strong> target<br />

(E3-dependent<br />

or -independent;<br />

see below)<br />

K<br />

Target<br />

Mammals S. cerevisiae S. pombe<br />

Small ubiquitin-rel<strong>at</strong>ed modifiers SUMO-1, SUMO-2, SUMO-3 Smt3p Pmt3p<br />

Activ<strong>at</strong>ing enzyme (E1)<br />

Aos1 (Sae1)-Uba2 (Sae2)<br />

Aos1p-Uba2p Rad31p-Fub2p<br />

Conjug<strong>at</strong>ing enzyme (E2) Ubc9<br />

Ubc9p Hus5p<br />

SP-RING-type E3 ligases PIAS1, PIAS3, PIASxα (ARIP3), Siz1p (UII1p), Pli1p, Nse2p<br />

PIASxβ (Miz1), PIASγ (PIAS4), Siz2p (Nfi1p),<br />

Mms21 (Nse2)<br />

Mms21p<br />

(Nse2p), Zip3p<br />

IR E3 ligase<br />

Other E3 ligases<br />

Protease (Ulp/SENP)<br />

3.<br />

SUMO<br />

transfer to<br />

E2 enzyme<br />

3.<br />

De<strong>SUMOyl<strong>at</strong>ion</strong><br />

(see below)<br />

RanBP2 (Nup358)<br />

HDAC4, KAP1, Pc2, Topors<br />

SENP1 (SuPr-2), SENP2 (SMT3IP2, UIp1p (Nib1p), Ulp1p, Ulp2p<br />

SSP3, Axam2), SENP3 (SMT3IP1), Ulp2p (Smt4p)<br />

SENP5 (SMT3IP3), SENP6 (SSP1,<br />

SUSP1), SENP7<br />

S<br />

Yonggang Wang <strong>and</strong> Mary Dasso<br />

Target<br />

SUMO-1<br />

E1, E2, E3<br />

K<br />

Ulp/SENP<br />

Ulp/SENP<br />

Ulp/SENP<br />

<strong>SUMOyl<strong>at</strong>ion</strong> confers multiple f<strong>at</strong>es<br />

Ubiquitin<br />

E1, E2, STUbL<br />

SIM, SUMO-interacting motif; Siz, SAP <strong>and</strong> Miz-finger domain-containing protein; SP-RING, Siz/PIAS RING-finger domain;<br />

STUbL, SUMO-targeted ubiquitin ligase; SUMO, small ubiquitin-rel<strong>at</strong>ed modifier; Topors, topoisomerase I-binding RING<br />

finger protein; U, ubiquitin; Ubc9, ubiquitin-conjug<strong>at</strong>ing enzyme E2 I (SUMO-conjug<strong>at</strong>ing enzyme); Ulp, ubiquitin-likeprotein-specific<br />

protease.<br />

4249<br />

SUMO-3. SUMO-2 <strong>and</strong> SUMO-3 are ~95%<br />

identical to each other. In most contexts,<br />

SUMO-2 <strong>and</strong> SUMO-3 cannot be distinguished,<br />

<strong>and</strong> here we collectively refer to them as<br />

SUMO-2/3. SUMO-2 <strong>and</strong> SUMO-3 are each<br />

~45% identical to SUMO-1, <strong>and</strong> all mammalian<br />

paralogues are ~ 45% identical to Smt3p.<br />

There are several important differences<br />

between the mammalian SUMO paralogues.<br />

First, some SUMO targets are conjug<strong>at</strong>ed only to<br />

SUMO-1, others only to SUMO-2/3, <strong>and</strong> still<br />

others to all SUMO paralogues (Vertegaal<br />

et al., 2006). Second, the overall cellular<br />

concentr<strong>at</strong>ion <strong>of</strong> SUMO-2/3 is gre<strong>at</strong>er than th<strong>at</strong> <strong>of</strong><br />

SUMO-1, as is the pool <strong>of</strong> free protein available<br />

for conjug<strong>at</strong>ion (Saitoh <strong>and</strong> Hinchey, 2000). It is<br />

thus likely th<strong>at</strong> the bulk <strong>of</strong> <strong>SUMOyl<strong>at</strong>ion</strong><br />

involves SUMO-2/3. Third, SUMO-1 <strong>and</strong><br />

SUMO-2/3 show different subcellular<br />

localiz<strong>at</strong>ion p<strong>at</strong>terns (Ayaydin <strong>and</strong> Dasso, 2004;<br />

Zhang et al., 2008). Fourth, photobleaching<br />

experiments suggest th<strong>at</strong> SUMO-1 is less<br />

E3-dependent (Siz/PIAS-medi<strong>at</strong>ed) <strong>SUMOyl<strong>at</strong>ion</strong> E3-independent (SIM-medi<strong>at</strong>ed) <strong>SUMOyl<strong>at</strong>ion</strong><br />

Mechanism <strong>of</strong> SUMO deconjug<strong>at</strong>ion by Ulp/SENP<br />

O<br />

Gly<br />

S S<br />

Cys<br />

Ubc9<br />

Ubc9-bound<br />

SUMO<br />

Siz/<br />

PIAS<br />

Ubc9<br />

Ubc9<br />

Ubc9<br />

Free target Siz/PIAS <strong>and</strong> Ubc9bound<br />

substr<strong>at</strong>e<br />

Ubc9<br />

Ubc9<br />

SUMO-2/3<br />

E1, E2, E3<br />

Conjug<strong>at</strong>e Free target SIM-medi<strong>at</strong>ed<br />

bound intermedi<strong>at</strong>e<br />

S<br />

S-1<br />

K<br />

S-2/3<br />

K<br />

S-2/3n<br />

Ulp/SENP<br />

K<br />

Target<br />

SUMO-1<br />

E1, E2, E3<br />

O<br />

Gly<br />

S<br />

Cys<br />

Enzyme-bound<br />

substr<strong>at</strong>e<br />

S-2/3<br />

K<br />

Target<br />

SUMO-2/3n<br />

E1, E2, E3<br />

S-2/3<br />

K<br />

S-2/3n<br />

K<br />

Target<br />

Siz/<br />

O<br />

O<br />

PIAS<br />

O<br />

Gly<br />

S S<br />

Gly<br />

Ubc9<br />

S S<br />

Gly O<br />

Gly<br />

Cys<br />

Cys<br />

S<br />

S S<br />

NH<br />

Cys<br />

Siz/<br />

Siz/<br />

NH2<br />

K<br />

PIAS<br />

PIAS<br />

K<br />

SIM K NH2<br />

NH2<br />

Target<br />

SIM K NH2 Target<br />

K<br />

Target<br />

Target<br />

Target<br />

HS<br />

Cys<br />

SIM<br />

Target<br />

K NH2<br />

O<br />

SIM K NH<br />

Target<br />

S<br />

S<br />

Gly<br />

S<br />

Cys<br />

O<br />

Ubc9<br />

S-1<br />

K<br />

Target<br />

HS<br />

Cys<br />

Ubc9<br />

DUB<br />

Conjug<strong>at</strong>e<br />

Gly<br />

Un<br />

a. Blocking a binding site<br />

Interactor<br />

K<br />

Target arget<br />

<strong>SUMOyl<strong>at</strong>ion</strong><br />

S<br />

K<br />

Target Ta T rget<br />

U<br />

U<br />

De<strong>SUMOyl<strong>at</strong>ion</strong><br />

b. Cre<strong>at</strong>ion <strong>of</strong> additional binding site<br />

Interactor<br />

Interactor<br />

SIM<br />

SIM<br />

S<br />

K <strong>SUMOyl<strong>at</strong>ion</strong><br />

K<br />

Target<br />

Target<br />

De<strong>SUMOyl<strong>at</strong>ion</strong><br />

c. Conform<strong>at</strong>ion alter<strong>at</strong>ion<br />

K <strong>SUMOyl<strong>at</strong>ion</strong><br />

Target<br />

De<strong>SUMOyl<strong>at</strong>ion</strong><br />

Un<br />

S-2/3<br />

U S-2/3<br />

S-2/3<br />

S-2/3n<br />

K K<br />

Target<br />

S<br />

Gly<br />

O<br />

NH<br />

K<br />

Target<br />

Substr<strong>at</strong>e<br />

(trans conform<strong>at</strong>ion)<br />

Ulp/SENP<br />

HS-Cys<br />

Free enzyme<br />

S<br />

K<br />

Target<br />

U<br />

Interactor<br />

U<br />

U<br />

S<br />

O Gly<br />

OH<br />

Ulp/SENP S<br />

O Gly<br />

S-Cys<br />

NH<br />

K<br />

Target<br />

Enzyme-bound substr<strong>at</strong>e<br />

(cis conform<strong>at</strong>ion)<br />

<strong>Cell</strong>-cycle regul<strong>at</strong>ion<br />

Gene transcription<br />

Nucleocytoplasmic transport<br />

DNA replic<strong>at</strong>ion <strong>and</strong> repair<br />

Chromosome dynamics<br />

Apoptosis<br />

Ribosome biogenesis<br />

Others<br />

S-2/3<br />

S-2/3<br />

T r e<br />

S-2/3<br />

a<br />

g<br />

t<br />

S-2/3n<br />

Proteasome-medi<strong>at</strong>ed<br />

degrad<strong>at</strong>ion<br />

NH2<br />

K<br />

Target<br />

Ulp/SENP S<br />

O Gly<br />

S-Cys<br />

Thioester intermedi<strong>at</strong>e<br />

H2O<br />

Ulp/SENP S<br />

O Gly<br />

OH HS-Cys<br />

Product-bound enzyme<br />

© <strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> Science 2009 (122, pp. 4249-4252)<br />

(See poster insert)


<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> Science<br />

4250<br />

<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> Science 122 (23)<br />

dynamic than the other SUMO paralogues, <strong>and</strong><br />

its p<strong>at</strong>tern <strong>of</strong> conjug<strong>at</strong>ion responds differently to<br />

he<strong>at</strong> shock <strong>and</strong> stress (Ayaydin <strong>and</strong> Dasso, 2004;<br />

Saitoh <strong>and</strong> Hinchey, 2000).<br />

Smt3p, SUMO-2 <strong>and</strong> SUMO-3 can form<br />

conjug<strong>at</strong>ed chains through a single conserved<br />

acceptor lysine (Bylebyl et al., 2003; T<strong>at</strong>ham<br />

et al., 2001). SUMO-1 does not have an<br />

equivalent lysine residue, <strong>and</strong> thus probably<br />

does not act as a link in elong<strong>at</strong>ing chains<br />

in vivo. However, SUMO-1 might termin<strong>at</strong>e<br />

chains th<strong>at</strong> are elong<strong>at</strong>ed through serial<br />

conjug<strong>at</strong>ion <strong>of</strong> SUMO-2/3 (M<strong>at</strong>ic et al., 2008).<br />

Notably, although <strong>SUMOyl<strong>at</strong>ion</strong> does not seem<br />

to rely upon the geometry <strong>of</strong> chain linkages to<br />

confer inform<strong>at</strong>ion, as ubiquityl<strong>at</strong>ion does<br />

(Pickart <strong>and</strong> Fushman, 2004), SUMO<br />

conjug<strong>at</strong>es built from different paralogues or<br />

with different chain lengths can specify distinct<br />

target f<strong>at</strong>es, as discussed below.<br />

SUMO-interacting motifs<br />

SUMO-interacting motifs (SIMs) play a central<br />

role in both the enzymology <strong>of</strong> the SUMO<br />

p<strong>at</strong>hway <strong>and</strong> in the f<strong>at</strong>e <strong>of</strong> conjug<strong>at</strong>ed species.<br />

The best-characterized class <strong>of</strong> SIM consists <strong>of</strong> a<br />

hydrophobic core ([V/I]-x-[V/I]-[V/I]) flanked<br />

by a cluster <strong>of</strong> neg<strong>at</strong>ively charged amino acids<br />

(Kerscher, 2007). The SIM hydrophobic core<br />

can bind to an interaction surface on SUMO<br />

proteins in a parallel or antiparallel orient<strong>at</strong>ion.<br />

The acidic residues adjacent to the core might<br />

contribute to the affinity, orient<strong>at</strong>ion or<br />

paralogue specificity <strong>of</strong> binding (Hecker et al.,<br />

2006; Meulmeester et al., 2008). A variant SIM<br />

was recently defined within the transcriptional<br />

repressor CoREST1, consisting <strong>of</strong> [I/V/L]-<br />

[D/E]-[I/V/L]-[D/E]-[I/V/L] with N-terminal<br />

acidic residues (Ouyang et al., 2009). This SIM<br />

is highly selective for SUMO-2/3 binding, <strong>and</strong><br />

differs from previously identified SIMs because<br />

its core lacks a hydrophobic residue <strong>at</strong> position<br />

4. Notably, the diversity <strong>of</strong> SIMs identified to<br />

d<strong>at</strong>e is much less than the 16 known ubiquitinbinding<br />

domains (Grabbe <strong>and</strong> Dikic, 2009); it is<br />

reasonable to specul<strong>at</strong>e th<strong>at</strong> additional SIMs<br />

remain to be discovered.<br />

SUMO-processing, -activ<strong>at</strong>ing <strong>and</strong><br />

-conjug<strong>at</strong>ing enzymes<br />

Newly transl<strong>at</strong>ed SUMO proteins are cleaved to<br />

reveal C-terminal diglycine motifs. This<br />

processing is medi<strong>at</strong>ed by a family <strong>of</strong><br />

proteases known as ubiquitin-like-proteinspecific<br />

proteases (Ulps) in yeast <strong>and</strong><br />

sentrin-specific proteases (SENPs) in mammals<br />

(Mukhopadhyay <strong>and</strong> Dasso, 2007). Ulps <strong>and</strong><br />

SENPs also medi<strong>at</strong>e de<strong>SUMOyl<strong>at</strong>ion</strong> (see<br />

below).<br />

All SUMO paralogues share the same<br />

activ<strong>at</strong>ing (E1) <strong>and</strong> conjug<strong>at</strong>ing (E2) enzymes.<br />

These enzymes are structurally similar to E1 <strong>and</strong><br />

E2 enzymes <strong>of</strong> ubiquitin, <strong>and</strong> they share many <strong>of</strong><br />

the properties th<strong>at</strong> have been demonstr<strong>at</strong>ed for<br />

those enzymes (Hochstrasser, 2009). The<br />

yeast SUMO E1 enzyme is a heterodimer<br />

consisting <strong>of</strong> Aos1p (also known as Sae1 in<br />

vertebr<strong>at</strong>es) <strong>and</strong> Uba2p (also known as Sae2<br />

in vertebr<strong>at</strong>es), which show sequence similarity<br />

to the N-terminus <strong>and</strong> C-terminus <strong>of</strong> the<br />

monomeric ubiquitin E1 enzyme, respectively<br />

(Johnson et al., 1997). Aos1p-Uba2p c<strong>at</strong>alyzes<br />

the form<strong>at</strong>ion <strong>of</strong> a high-energy thioester bond<br />

between Uba2p <strong>and</strong> the SUMO C-terminus,<br />

with ATP hydrolysis to AMP <strong>and</strong> pyrophosph<strong>at</strong>e<br />

(Johnson et al., 1997; Lois <strong>and</strong> Lima, 2005). The<br />

activ<strong>at</strong>ed SUMO is subsequently passed to a<br />

cysteine in the active site <strong>of</strong> the E2 enzyme,<br />

Ubc9, through an intermolecular thiol-transfer<br />

reaction.<br />

Residues <strong>of</strong> Ubc9 th<strong>at</strong> are directly involved in<br />

the transfer <strong>of</strong> SUMO act to orient the lysine<br />

<strong>of</strong> the target protein <strong>and</strong> to decrease its pKa,<br />

resulting in a higher occurrence <strong>of</strong> its activ<strong>at</strong>ed,<br />

de-proton<strong>at</strong>ed st<strong>at</strong>e (Yunus <strong>and</strong> Lima, 2006).<br />

SUMO transfer from Ubc9 to some target<br />

proteins can occur through <strong>at</strong> least two ligaseindependent<br />

mechanisms. First, many<br />

SUMOyl<strong>at</strong>ed lysines lie within a consensus<br />

motif, �-K-x-[D/E] (where � is an aliph<strong>at</strong>ic<br />

branched amino acid <strong>and</strong> x is any amino acid).<br />

Ubc9 can directly recognize this motif <strong>and</strong><br />

conjug<strong>at</strong>e the lysine residue within it (Bernier-<br />

Villamor et al., 2002). Second, some SUMO<br />

substr<strong>at</strong>es contain SIMs th<strong>at</strong> promote their own<br />

conjug<strong>at</strong>ion (Meulmeester et al., 2008; Zhu<br />

et al., 2008). These SIMs bind to the SUMO<br />

moiety to which Ubc9 is <strong>at</strong>tached, thereby<br />

increasing its local concentr<strong>at</strong>ion <strong>and</strong><br />

facilit<strong>at</strong>ing <strong>SUMOyl<strong>at</strong>ion</strong>. Because SIMs show<br />

paralogue preference, this mechanism allows<br />

targets to be modified in a paralogue-selective<br />

manner. Notably, mammalian Ubc9 can itself be<br />

SUMOyl<strong>at</strong>ed on a nonconsensus lysine in its<br />

N-terminal helix (Knipscheer et al., 2008). This<br />

modific<strong>at</strong>ion does not inhibit its activity per se,<br />

but alters its target preference, increasing the<br />

conjug<strong>at</strong>ion <strong>of</strong> substr<strong>at</strong>es th<strong>at</strong> contain SIMs,<br />

which bind to the SUMO th<strong>at</strong> is conjug<strong>at</strong>ed to<br />

Ubc9.<br />

SUMO ligases<br />

SUMO ligases (E3 enzymes) facilit<strong>at</strong>e the<br />

majority <strong>of</strong> <strong>SUMOyl<strong>at</strong>ion</strong> under physiological<br />

conditions (Meulmeester et al., 2008). A number<br />

<strong>of</strong> SUMO ligases have been described, most <strong>of</strong><br />

which seem to be specific to metazoans.<br />

Siz/PIAS-family proteins<br />

All eukaryotes express proteins with Siz/PIAS<br />

RING-finger-like domains (SP-RING<br />

domains), which are known as SAP <strong>and</strong> Miz-<br />

finger domain (Siz) proteins in yeast <strong>and</strong><br />

protein inhibitor <strong>of</strong> activ<strong>at</strong>ed STAT (PIAS)<br />

proteins in vertebr<strong>at</strong>es (Hochstrasser, 2001). In<br />

budding yeast, Siz1p <strong>and</strong> Siz2p are required for<br />

most Smt3p conjug<strong>at</strong>ion (Johnson <strong>and</strong> Gupta,<br />

2001; Takahashi et al., 2001). Other SP-RING<br />

proteins, Zip3p <strong>and</strong> Mms21p, promote<br />

assembly <strong>of</strong> the synaptonemal complex<br />

between homologous chromosomes during<br />

meiosis (Cheng et al., 2006) <strong>and</strong> DNA repair<br />

(Potts, 2009), respectively. The five vertebr<strong>at</strong>e<br />

PIAS proteins (PIAS1, PIAS3, PIASx�,<br />

PIASx� <strong>and</strong> PIAS�) have been implic<strong>at</strong>ed in<br />

many processes, including gene expression,<br />

signal transduction <strong>and</strong> genome maintenance<br />

(Palvimo, 2007).<br />

Beyond their SP-RING domains, Siz/PIASfamily<br />

members share additional conserved<br />

motifs, including an N-terminal scaffold<br />

<strong>at</strong>tachment factor (SAF)-A/B, acinus, PIAS<br />

(SAP) motif, a PINIT motif, a SIM, <strong>and</strong> a<br />

C-terminal domain th<strong>at</strong> is rich in serine <strong>and</strong><br />

acidic amino acids (S/DE domain) (Palvimo,<br />

2007). The SAP domain directs the localiz<strong>at</strong>ion<br />

<strong>of</strong> Siz/PIAS proteins to chrom<strong>at</strong>in within the<br />

nucleus (Azuma et al., 2005; Palvimo, 2007).<br />

Structural analysis <strong>of</strong> a Siz1 fragment th<strong>at</strong> is<br />

sufficient for E3 activity in vitro shows th<strong>at</strong> it<br />

has an elong<strong>at</strong>ed tripartite architecture, formed<br />

by its N-terminal PINIT domain, SP-RING<br />

domain <strong>and</strong> C-terminal domain, termed the<br />

SP-CTD (Yunus <strong>and</strong> Lima, 2009). The SP-<br />

RING <strong>and</strong> SP-CTD domains are required for<br />

activ<strong>at</strong>ion <strong>of</strong> the Ubc9-SUMO thioester,<br />

whereas the PINIT domain directs<br />

<strong>SUMOyl<strong>at</strong>ion</strong> to the correct target lysine.<br />

RanBP2<br />

RanBP2 is a nuclear-pore protein th<strong>at</strong> localizes<br />

to the cytoplasmic face <strong>of</strong> the pore. RanBP2<br />

possesses a domain called the internal repe<strong>at</strong><br />

(IR) domain, which consists <strong>of</strong> two t<strong>and</strong>emly<br />

repe<strong>at</strong>ed sequences <strong>of</strong> around 50 residues (IR1<br />

<strong>and</strong> IR2), separ<strong>at</strong>ed by a 24-residue spacer (M).<br />

RanBP2 fragments containing the IR domain<br />

have SUMO ligase activity in vitro (Pichler<br />

et al., 2002). Structural analysis <strong>of</strong> a RanBP2<br />

fragment containing the IR1 <strong>and</strong> M domains<br />

indic<strong>at</strong>es th<strong>at</strong> RanBP2 enhances Ubc9 activity<br />

without direct contacts to the target protein<br />

(Reverter <strong>and</strong> Lima, 2005). It has thus been<br />

proposed th<strong>at</strong> RanBP2 promotes <strong>SUMOyl<strong>at</strong>ion</strong><br />

by aligning the Ubc9-SUMO thioester complex<br />

in an optimal configur<strong>at</strong>ion for substr<strong>at</strong>e<br />

interaction with the active site <strong>of</strong> Ubc9 <strong>and</strong> for<br />

c<strong>at</strong>alysis. Notably, the IR domain <strong>of</strong> RanBP2<br />

binds extremely stably to Ubc9 <strong>and</strong> the<br />

SUMO-1-conjug<strong>at</strong>ed form <strong>of</strong> RanGAP1,<br />

the activ<strong>at</strong>ing protein for the GTPase Ran<br />

(M<strong>at</strong>unis et al., 1998; Saitoh et al., 1998).<br />

Structural analysis yielded the puzzling result


<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> Science<br />

th<strong>at</strong> this binding abolishes the ability <strong>of</strong> RanBP2<br />

to promote multiple rounds <strong>of</strong> target<br />

<strong>SUMOyl<strong>at</strong>ion</strong> (Reverter <strong>and</strong> Lima, 2005). It<br />

will clearly be important to establish how this<br />

inhibition is overcome for RanBP2 to act as an<br />

E3 enzyme in its physiological context.<br />

Other SUMO ligases<br />

Additional proteins th<strong>at</strong> have been reported as<br />

potential SUMO ligases include histone<br />

deacetylase 4 (HDAC4), KRAB-associ<strong>at</strong>ed<br />

protein 1 (KPA1), Pc2 <strong>and</strong> Topors.<br />

HDAC4 is a histone deacetylase th<strong>at</strong> is a<br />

<strong>SUMOyl<strong>at</strong>ion</strong> target. HDAC4 expression<br />

enhances the <strong>SUMOyl<strong>at</strong>ion</strong> <strong>of</strong> myocyte-specific<br />

enhancer factor 2 (MEF2), as well as other<br />

targets (Geiss-Friedl<strong>and</strong>er <strong>and</strong> Melchior, 2007;<br />

Zhao et al., 2005). HDAC4 can bind to Ubc9,<br />

suggesting th<strong>at</strong> it acts as an E3 enzyme. It has<br />

altern<strong>at</strong>ively been proposed th<strong>at</strong> HDAC4<br />

enhances <strong>SUMOyl<strong>at</strong>ion</strong> by other means, such<br />

as promoting the phosphoryl<strong>at</strong>ion <strong>of</strong> target<br />

proteins <strong>at</strong> sites adjacent to conjug<strong>at</strong>ed lysine<br />

residues (Yang <strong>and</strong> Gregoire, 2006).<br />

The human co-repressor KRAB-associ<strong>at</strong>ed<br />

protein 1 (KAP1) possesses PHD-finger domains<br />

th<strong>at</strong> c<strong>at</strong>alyze intramolecular <strong>SUMOyl<strong>at</strong>ion</strong> <strong>of</strong> an<br />

adjacent KAP1 bromodomain (Peng <strong>and</strong><br />

Wysocka, 2008). <strong>SUMOyl<strong>at</strong>ion</strong> stabilizes the<br />

associ<strong>at</strong>ion <strong>of</strong> the bromodomain with<br />

the chrom<strong>at</strong>in modifiers, thus promoting the<br />

establishment <strong>of</strong> gene silencing. Structural<br />

analysis suggests th<strong>at</strong> the PHD finger <strong>and</strong> the<br />

bromodomain cooper<strong>at</strong>e as an integr<strong>at</strong>ed unit to<br />

recruit Ubc9 <strong>and</strong> facilit<strong>at</strong>e <strong>SUMOyl<strong>at</strong>ion</strong> (Zeng<br />

et al., 2008).<br />

Mammalian Pc2 is a polycomb-group<br />

protein th<strong>at</strong> can act as a SUMO ligase for the<br />

transcriptional co-repressor CtBP (Wotton <strong>and</strong><br />

Merrill, 2007). Pc2 can bind to both Ubc9 <strong>and</strong> its<br />

conjug<strong>at</strong>ion targets, <strong>and</strong> it seems to have a r<strong>at</strong>her<br />

limited spectrum <strong>of</strong> targets.<br />

Topors is a RING-finger protein th<strong>at</strong> binds<br />

DNA topoisomerase I <strong>and</strong> p53. It possesses both<br />

RING-finger-dependent ubiquitin ligase<br />

activity <strong>and</strong> RING-finger-independent SUMO<br />

ligase activity (Weger et al., 2005). Topors has a<br />

SIM (Hecker et al., 2006) <strong>and</strong> acts as a SUMO<br />

ligase in vitro (Hammer et al., 2007).<br />

SUMO-deconjug<strong>at</strong>ing enzymes<br />

Ulps/SENPs are responsible both for processing<br />

SUMO peptides <strong>and</strong> for deconjug<strong>at</strong>ing<br />

SUMOyl<strong>at</strong>ed species (Hay, 2007;<br />

Mukhopadhyay <strong>and</strong> Dasso, 2007). Ulps/SENPs<br />

share a conserved ~200-amino-acid c<strong>at</strong>alytic<br />

domain th<strong>at</strong> is typically found near their<br />

C-terminus.<br />

There are two Ulps in budding yeast: Ulp1p<br />

<strong>and</strong> Ulp2p (Li <strong>and</strong> Hochstrasser, 1999; Li <strong>and</strong><br />

Hochstrasser, 2000). Ulp1p localizes to the<br />

nuclear envelope <strong>and</strong> is encoded by an<br />

essential gene (Li <strong>and</strong> Hochstrasser, 1999).<br />

Overexpression <strong>of</strong> processed Smt3p weakly<br />

rescues �ulp1 cells, but unprocessed Smt3p does<br />

not (Li <strong>and</strong> Hochstrasser, 1999), suggesting th<strong>at</strong><br />

one essential function <strong>of</strong> Ulp1p is Smt3p<br />

m<strong>at</strong>ur<strong>at</strong>ion. Ulp2p localizes in the nucleoplasm<br />

(Li <strong>and</strong> Hochstrasser, 2000) <strong>and</strong> is particularly<br />

important for dismantling poly-Smt3p chains<br />

(Bylebyl et al., 2003). Although not essential for<br />

veget<strong>at</strong>ive growth, Ulp2p has roles in<br />

chromosome segreg<strong>at</strong>ion, meiotic development<br />

<strong>and</strong> recovery from cell-cycle checkpoint arrest<br />

(Li <strong>and</strong> Hochstrasser, 2000).<br />

Mammals have six SENPs: SENP1, SENP2,<br />

SENP3, SENP5, SENP6 <strong>and</strong> SENP7. SENP1-3<br />

<strong>and</strong> SENP5 are more similar to Ulp1p than to<br />

Ulp2p, whereas SENP6 <strong>and</strong> SENP7 are more<br />

Ulp2-like (Mukhopadhyay <strong>and</strong> Dasso, 2007).<br />

SENP1 <strong>and</strong> SENP2 localize to the nuclear<br />

envelope <strong>and</strong> have processing <strong>and</strong><br />

deconjug<strong>at</strong>ion activity for both SUMO-1 <strong>and</strong><br />

SUMO-2/3. By contrast, all other SENPs have a<br />

strong preference for SUMO-2/3. SENP3 <strong>and</strong><br />

SENP5 localize in nucleoli <strong>and</strong> c<strong>at</strong>alyze<br />

SUMO-2/3 processing <strong>and</strong> deconjug<strong>at</strong>ion (Di<br />

Bacco et al., 2006; Gong <strong>and</strong> Yeh, 2006).<br />

Similar to Ulp1p (Panse et al., 2006), SENP3<br />

<strong>and</strong> SENP5 have important roles in ribosome<br />

biogenesis (Yun et al., 2008). SENP6 <strong>and</strong><br />

SENP7 localize within the nucleoplasm <strong>and</strong> are<br />

implic<strong>at</strong>ed in the editing <strong>of</strong> poly-SUMO chains<br />

(Lima <strong>and</strong> Reverter, 2008; Mukhopadhyay<br />

et al., 2006; Shen et al., 2009).<br />

The sites <strong>of</strong> SENP1, SENP2 <strong>and</strong> Ulp1p th<strong>at</strong> are<br />

engaged during processing or deconjug<strong>at</strong>ion are<br />

shallow clefts lined with conserved amino acids<br />

(Mossessova <strong>and</strong> Lima, 2000; Reverter <strong>and</strong><br />

Lima, 2004; Shen et al., 2006b). In both reactions,<br />

the C-terminus <strong>of</strong> SUMO lies within these clefts<br />

as an elong<strong>at</strong>ed str<strong>and</strong>, <strong>and</strong> conserved<br />

tryptophans <strong>and</strong> other adjacent residues <strong>of</strong> Ulp1p,<br />

SENP1 <strong>and</strong> SENP2 clamp the diglycine motif <strong>of</strong><br />

SUMO in a hydrophobic ‘tunnel’. During<br />

deconjug<strong>at</strong>ion, such binding requires minimal<br />

structural distortion <strong>of</strong> the target protein, which<br />

explains how Ulps/SENPs can deconjug<strong>at</strong>e many<br />

SUMOyl<strong>at</strong>ed species with only modest target<br />

specificity. In the SUMO processing reaction,<br />

Ulps/SENPs induce the isomeriz<strong>at</strong>ion <strong>of</strong> the<br />

scissile peptide bond, resulting in a 90° kink in the<br />

SUMO C-terminal tail (Reverter <strong>and</strong> Lima, 2006;<br />

Shen et al., 2006a). In deconjug<strong>at</strong>ion reactions,<br />

Ulps/SENPs induce the scissile isopeptide bond<br />

between the C-terminus <strong>of</strong> SUMO <strong>and</strong> the<br />

�-amine group <strong>of</strong> the lysine residue <strong>of</strong> the target<br />

protein to adopt a cis configur<strong>at</strong>ion, resulting in a<br />

similar 90° kink (Reverter <strong>and</strong> Lima, 2006; Shen<br />

et al., 2006a). For both peptide <strong>and</strong> amide bonds,<br />

the kinked cis conform<strong>at</strong>ions facilit<strong>at</strong>e hydrolysis<br />

<strong>of</strong> the bond.<br />

<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> Science 122 (23)<br />

4251<br />

The f<strong>at</strong>es <strong>of</strong> SUMOyl<strong>at</strong>ed species<br />

The consequences <strong>of</strong> <strong>SUMOyl<strong>at</strong>ion</strong> are diverse,<br />

including alter<strong>at</strong>ion <strong>of</strong> the activity, localiz<strong>at</strong>ion<br />

<strong>and</strong>/or stability <strong>of</strong> the target protein (Geiss-<br />

Friedl<strong>and</strong>er <strong>and</strong> Melchior, 2007). Frequently,<br />

these consequences result from recognition <strong>of</strong><br />

conjug<strong>at</strong>ed species by SIM-containing proteins.<br />

<strong>SUMOyl<strong>at</strong>ion</strong> might also cause the loss <strong>of</strong><br />

binding partners, or cause conform<strong>at</strong>ional<br />

changes th<strong>at</strong> alter the enzym<strong>at</strong>ic activity <strong>of</strong> the<br />

target protein. Some SIM-medi<strong>at</strong>ed interactions<br />

prevent deconjug<strong>at</strong>ion by limiting the access <strong>of</strong><br />

Ulps/SENPs to the conjug<strong>at</strong>ed proteins. In cases<br />

in which the interacting SIMs have intrinsic<br />

paralogue preference, they will selectively<br />

protect targets th<strong>at</strong> are modified with the<br />

preferred SUMO paralogue (Zhu et al., 2009).<br />

Few <strong>SUMOyl<strong>at</strong>ion</strong> targets show quantit<strong>at</strong>ive<br />

modific<strong>at</strong>ion. Notably, <strong>SUMOyl<strong>at</strong>ion</strong> can play<br />

an important regul<strong>at</strong>ory role even under these<br />

circumstances (Geiss-Friedl<strong>and</strong>er <strong>and</strong> Melchior,<br />

2007). This might be explained by the<br />

observ<strong>at</strong>ion th<strong>at</strong> <strong>SUMOyl<strong>at</strong>ion</strong> can promote<br />

the assembly <strong>of</strong> protein complexes, such as in<br />

transcriptionally repressed chrom<strong>at</strong>in, th<strong>at</strong><br />

remain stable despite subsequent<br />

de<strong>SUMOyl<strong>at</strong>ion</strong> (Geiss-Friedl<strong>and</strong>er <strong>and</strong><br />

Melchior, 2007). Additionally, <strong>SUMOyl<strong>at</strong>ion</strong><br />

might function within the c<strong>at</strong>alytic cycle <strong>of</strong><br />

targets, facilit<strong>at</strong>ing enzym<strong>at</strong>ic turnover<br />

(Hardel<strong>and</strong> et al., 2002). In both <strong>of</strong> these cases,<br />

SUMOyl<strong>at</strong>ed species are transient intermedi<strong>at</strong>es<br />

th<strong>at</strong> facilit<strong>at</strong>e stable changes in target proteins.<br />

Crosstalk between the SUMO <strong>and</strong><br />

ubiquitin p<strong>at</strong>hways<br />

A particularly exciting development in this field<br />

has revealed an important point <strong>of</strong> crosstalk<br />

between the SUMO <strong>and</strong> ubiquitin p<strong>at</strong>hways<br />

(Hunter <strong>and</strong> Sun, 2008): a subset <strong>of</strong> targets<br />

become conjug<strong>at</strong>ed with multiple SUMOs, <strong>and</strong><br />

can be recognized by SUMO-targeted ubiquitin<br />

ligases (STUbLs), causing the proteasomal<br />

degrad<strong>at</strong>ion <strong>of</strong> these targets. It is currently<br />

believed th<strong>at</strong> STUbLs oper<strong>at</strong>e primarily through<br />

recognition <strong>of</strong> poly-SUMO chains, although it<br />

remains possible th<strong>at</strong> they might recognize some<br />

targets th<strong>at</strong> are mono-SUMOyl<strong>at</strong>ed <strong>at</strong> numerous<br />

sites.<br />

Rfp1p <strong>and</strong> Rfp2p are fission-yeast RINGfinger<br />

proteins th<strong>at</strong> possess N-terminal SIMs<br />

(Sun et al., 2007). They are genetically<br />

redundant <strong>and</strong> there is no visible phenotype for<br />

loss <strong>of</strong> either gene encoding these proteins.<br />

However, cells must possess <strong>at</strong> least one <strong>of</strong> these<br />

proteins for growth <strong>and</strong> genome stability. Both<br />

Rfp1p <strong>and</strong> Rfp2p heterodimerize with the Slx8p<br />

protein, a RING-finger ubiquitin ligase.<br />

Together, they medi<strong>at</strong>e the ubiquityl<strong>at</strong>ion <strong>of</strong><br />

poly-SUMOyl<strong>at</strong>ed targets, resulting in their<br />

proteasomal destruction. The Slx5p-Slx8p


<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> Science<br />

4252<br />

<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> Science 122 (23)<br />

heterodimer acts similarly in budding yeast<br />

(Hunter <strong>and</strong> Sun, 2008). The functions <strong>of</strong> Rfp1<br />

<strong>and</strong>/or Rfp2 <strong>and</strong> Slx8 are performed by a single<br />

protein in human cells, RING-finger protein 4<br />

(RNF4), which is the only confirmed<br />

mammalian STUbL (Sun et al., 2007).<br />

Perspectives<br />

Findings during the last 5 or 6 years have<br />

provided a much more sophistic<strong>at</strong>ed<br />

underst<strong>and</strong>ing <strong>of</strong> the <strong>SUMOyl<strong>at</strong>ion</strong> p<strong>at</strong>hway,<br />

revealing some aspects th<strong>at</strong> are unique to this<br />

p<strong>at</strong>hway <strong>and</strong> others th<strong>at</strong> are probably common<br />

to p<strong>at</strong>hways involving all ubiquitin-like<br />

proteins. However, the picture <strong>of</strong> <strong>SUMOyl<strong>at</strong>ion</strong><br />

is not yet complete, <strong>and</strong> we expect th<strong>at</strong> studies <strong>of</strong><br />

the SUMO p<strong>at</strong>hway may yet hold more<br />

surprises. In particular, we look forward to<br />

future findings regarding the mechanisms <strong>of</strong><br />

SUMO ligases <strong>and</strong> the possibility th<strong>at</strong> additional<br />

SIMs remain to be discovered. Finally, we still<br />

have much to learn regarding the biological<br />

functions <strong>of</strong> this p<strong>at</strong>hway <strong>and</strong> its interaction with<br />

ubiquitin <strong>and</strong> other regul<strong>at</strong>ory p<strong>at</strong>hways.<br />

This work was supported through Eunice Kennedy<br />

Shriver N<strong>at</strong>ional Institute <strong>of</strong> Child Health <strong>and</strong> Human<br />

Development Intramural funds (Z01 HD001902).<br />

Deposited in PMC for release after 12 months.<br />

References<br />

Ayaydin, F. <strong>and</strong> Dasso, M. (2004). Distinct in vivo dynamics <strong>of</strong><br />

vertebr<strong>at</strong>e SUMO paralogues. Mol. Biol. <strong>Cell</strong> 15, 5208-5218.<br />

Azuma, Y., Arnaoutov, A., Anan, T. <strong>and</strong> Dasso, M. (2005).<br />

PIASy medi<strong>at</strong>es SUMO-2 conjug<strong>at</strong>ion <strong>of</strong> Topoisomerase-II on<br />

mitotic chromosomes. EMBO J. 24, 2172-2182.<br />

Bernier-Villamor, V., Sampson, D. A., M<strong>at</strong>unis, M. J. <strong>and</strong><br />

Lima, C. D. (2002). Structural basis for E2-medi<strong>at</strong>ed SUMO<br />

conjug<strong>at</strong>ion revealed by a complex between ubiquitinconjug<strong>at</strong>ing<br />

enzyme Ubc9 <strong>and</strong> RanGAP1. <strong>Cell</strong> 108, 345-356.<br />

Bylebyl, G. R., Belichenko, I. <strong>and</strong> Johnson, E. S. (2003). The<br />

SUMO isopeptidase Ulp2 prevents accumul<strong>at</strong>ion <strong>of</strong> SUMO<br />

chains in yeast. J. Biol. Chem. 278, 44113-44120.<br />

Cheng, C. H., Lo, Y. H., Liang, S. S., Ti, S. C., Lin, F. M., Yeh,<br />

C. H., Huang, H. Y. <strong>and</strong> Wang, T. F. (2006). SUMO<br />

modific<strong>at</strong>ions control assembly <strong>of</strong> synaptonemal complex <strong>and</strong><br />

polycomplex in meiosis <strong>of</strong> Saccharomyces cerevisiae. Genes Dev.<br />

20, 2067-2081.<br />

Di Bacco, A., Ouyang, J., Lee, H. Y., C<strong>at</strong>ic, A., Ploegh, H. <strong>and</strong><br />

Gill, G. (2006). The SUMO-specific protease SENP5 is required<br />

for cell division. Mol. <strong>Cell</strong>. Biol. 26, 4489-4498.<br />

Geiss-Friedl<strong>and</strong>er, R. <strong>and</strong> Melchior, F. (2007). Concepts in<br />

sumoyl<strong>at</strong>ion: a decade on. N<strong>at</strong>. Rev Mol. <strong>Cell</strong>. Biol. 8, 947-956.<br />

Gong, L. <strong>and</strong> Yeh, E. T. (2006). Characteriz<strong>at</strong>ion <strong>of</strong> a family <strong>of</strong><br />

nucleolar SUMO-specific proteases with preference for SUMO-<br />

2 or SUMO-3. J. Biol. Chem. 281, 15869-15877.<br />

Grabbe, C. <strong>and</strong> Dikic, I. (2009). Functional roles <strong>of</strong> ubiquitinlike<br />

domain (ULD) <strong>and</strong> ubiquitin-binding domain (UBD)<br />

containing proteins. Chem. Rev. 109, 1481-1494.<br />

Hammer, E., Heilbronn, R. <strong>and</strong> Weger, S. (2007). The E3 ligase<br />

Topors induces the accumul<strong>at</strong>ion <strong>of</strong> polysumoyl<strong>at</strong>ed forms <strong>of</strong><br />

DNA topoisomerase I in vitro <strong>and</strong> in vivo. FEBS Lett. 581, 5418-<br />

5424.<br />

Hardel<strong>and</strong>, U., Steinacher, R., Jiricny, J. <strong>and</strong> Schar, P. (2002).<br />

Modific<strong>at</strong>ion <strong>of</strong> the human thymine-DNA glycosylase by<br />

ubiquitin-like proteins facilit<strong>at</strong>es enzym<strong>at</strong>ic turnover. EMBO J.<br />

21, 1456-1464.<br />

Hay, R. T. (2007). SUMO-specific proteases: a twist in the tail.<br />

Trends <strong>Cell</strong> Biol. 17, 370-376.<br />

Hecker, C. M., Rabiller, M., Haglund, K., Bayer, P. <strong>and</strong> Dikic,<br />

I. (2006). Specific<strong>at</strong>ion <strong>of</strong> SUMO1- <strong>and</strong> SUMO2-interacting<br />

motifs. J. Biol. Chem. 281, 16117-16127.<br />

Hochstrasser, M. (2001). SP-RING for SUMO: new functions<br />

bloom for a ubiquitin-like protein. <strong>Cell</strong> 107, 5-8.<br />

Hochstrasser, M. (2009). Origin <strong>and</strong> function <strong>of</strong> ubiquitin-like<br />

proteins. N<strong>at</strong>ure 458, 422-429.<br />

Hunter, T. <strong>and</strong> Sun, H. (2008). Crosstalk between the SUMO<br />

<strong>and</strong> ubiquitin p<strong>at</strong>hways. Ernst Schering Found. Symp. Proc. 1-16.<br />

Johnson, E. S. (2004). Protein modific<strong>at</strong>ion by SUMO. Annu.<br />

Rev. Biochem. 73, 355-382.<br />

Johnson, E. S. <strong>and</strong> Gupta, A. A. (2001). An E3-like factor th<strong>at</strong><br />

promotes SUMO conjug<strong>at</strong>ion to the yeast septins. <strong>Cell</strong> 106, 735-<br />

744.<br />

Johnson, E. S., Schwienhorst, I., Dohmen, R. J. <strong>and</strong> Blobel,<br />

G. (1997). The ubiquitin-like protein Smt3p is activ<strong>at</strong>ed for<br />

conjug<strong>at</strong>ion to other proteins by an Aos1p/Uba2p heterodimer.<br />

EMBO J. 16, 5509-5519.<br />

Kerscher, O. (2007). SUMO junction-wh<strong>at</strong>’s your function? New<br />

insights through SUMO-interacting motifs. EMBO Rep. 8, 550-<br />

555.<br />

Knipscheer, P., Flotho, A., Klug, H., Olsen, J. V., van Dijk, W.<br />

J., Fish, A., Johnson, E. S., Mann, M., Sixma, T. K. <strong>and</strong><br />

Pichler, A. (2008). Ubc9 sumoyl<strong>at</strong>ion regul<strong>at</strong>es SUMO target<br />

discrimin<strong>at</strong>ion. Mol. <strong>Cell</strong> 31, 371-382.<br />

Li, S. J. <strong>and</strong> Hochstrasser, M. (1999). A new protease required<br />

for cell-cycle progression in yeast. N<strong>at</strong>ure 398, 246-251.<br />

Li, S. J. <strong>and</strong> Hochstrasser, M. (2000). The yeast ULP2 (SMT4)<br />

gene encodes a novel protease specific for the ubiquitin-like Smt3<br />

protein. Mol. <strong>Cell</strong>. Biol. 20, 2367-2377.<br />

Lima, C. D. <strong>and</strong> Reverter, D. (2008). Structure <strong>of</strong> the human<br />

SENP7 c<strong>at</strong>alytic domain <strong>and</strong> poly-SUMO deconjug<strong>at</strong>ion<br />

activities for SENP6 <strong>and</strong> SENP7. J. Biol. Chem. 283, 32045-<br />

32055.<br />

Lois, L. M. <strong>and</strong> Lima, C. D. (2005). Structures <strong>of</strong> the SUMO<br />

E1 provide mechanistic insights into SUMO activ<strong>at</strong>ion <strong>and</strong> E2<br />

recruitment to E1. EMBO J. 24, 439-451.<br />

M<strong>at</strong>ic, I., van Hagen, M., Schimmel, J., Macek, B., Ogg, S. C.,<br />

T<strong>at</strong>ham, M. H., Hay, R. T., Lamond, A. I., Mann, M. <strong>and</strong><br />

Vertegaal, A. C. (2008). In vivo identific<strong>at</strong>ion <strong>of</strong> human small<br />

ubiquitin-like modifier polymeriz<strong>at</strong>ion sites by high accuracy<br />

mass spectrometry <strong>and</strong> an in vitro to in vivo str<strong>at</strong>egy. Mol. <strong>Cell</strong><br />

Proteomics 7, 132-144.<br />

M<strong>at</strong>unis, M. J., Wu, J. <strong>and</strong> Blobel, G. (1998). SUMO-1<br />

modific<strong>at</strong>ion <strong>and</strong> its role in targeting the Ran GTPase-activ<strong>at</strong>ing<br />

protein, RanGAP1, to the nuclear pore complex. J. <strong>Cell</strong> Biol. 140,<br />

499-509.<br />

Meulmeester, E., Kunze, M., Hsiao, H. H., Urlaub, H. <strong>and</strong><br />

Melchior, F. (2008). Mechanism <strong>and</strong> consequences for paralogspecific<br />

sumoyl<strong>at</strong>ion <strong>of</strong> ubiquitin-specific protease 25. Mol. <strong>Cell</strong><br />

30, 610-669.<br />

Mossessova, E. <strong>and</strong> Lima, C. D. (2000). Ulp1-SUMO crystal<br />

structure <strong>and</strong> genetic analysis reveal conserved interactions <strong>and</strong> a<br />

regul<strong>at</strong>ory element essential for cell growth in yeast. Mol. <strong>Cell</strong> 5,<br />

865-876.<br />

Mukhopadhyay, D. <strong>and</strong> Dasso, M. (2007). Modific<strong>at</strong>ion in<br />

reverse: the SUMO proteases. Trends Biochem. Sci. 32, 286-295.<br />

Mukhopadhyay, D., Ayaydin, F., Kolli, N., Tan, S. H., Anan,<br />

T., Kametaka, A., Azuma, Y., Wilkinson, K. D. <strong>and</strong> Dasso, M.<br />

(2006). SUSP1 antagonizes form<strong>at</strong>ion <strong>of</strong> highly SUMO2/3conjug<strong>at</strong>ed<br />

species. J. <strong>Cell</strong> Biol. 174, 939-949.<br />

Ouyang, J., Shi, Y., Valin, A., Xuan, Y. <strong>and</strong> Gill, G. (2009).<br />

Direct binding <strong>of</strong> CoREST1 to SUMO-2/3 contributes to genespecific<br />

repression by the LSD1/CoREST1/HDAC complex.<br />

Mol. <strong>Cell</strong> 34, 145-154.<br />

Palvimo, J. J. (2007). PIAS proteins as regul<strong>at</strong>ors <strong>of</strong> small<br />

ubiquitin-rel<strong>at</strong>ed modifier (SUMO) modific<strong>at</strong>ions <strong>and</strong><br />

transcription. Biochem. Soc. Trans. 35, 1405-1408.<br />

Panse, V. G., Kressler, D., Pauli, A., Petfalski, E., Gnadig, M.,<br />

Tollervey, D. <strong>and</strong> Hurt, E. (2006). Form<strong>at</strong>ion <strong>and</strong> nuclear export<br />

<strong>of</strong> preribosomes are functionally linked to the small-ubiquitinrel<strong>at</strong>ed<br />

modifier p<strong>at</strong>hway. Traffic 7, 1311-1321.<br />

Peng, J. <strong>and</strong> Wysocka, J. (2008). It takes a PHD to SUMO.<br />

Trends Biochem. Sci. 33, 191-194.<br />

Pichler, A., Gast, A., Seeler, J. S., Dejean, A. <strong>and</strong> Melchior, F.<br />

(2002). The nucleoporin RanBP2 has SUMO1 E3 ligase activity.<br />

<strong>Cell</strong> 108, 109-120.<br />

Pickart, C. M. <strong>and</strong> Fushman, D. (2004). Polyubiquitin chains:<br />

polymeric protein signals. Curr. Opin. Chem. Biol. 8, 610-616.<br />

Potts, P. R. (2009). The Yin <strong>and</strong> Yang <strong>of</strong> the MMS21-SMC5/6<br />

SUMO ligase complex in homologous recombin<strong>at</strong>ion. DNA<br />

Repair (Amst) 8, 499-506.<br />

Reverter, D. <strong>and</strong> Lima, C. D. (2004). A basis for SUMO<br />

protease specificity provided by analysis <strong>of</strong> human Senp2 <strong>and</strong> a<br />

Senp2-SUMO complex. Structure 12, 1519-1531.<br />

Reverter, D. <strong>and</strong> Lima, C. D. (2005). Insights into E3 ligase<br />

activity revealed by a SUMO-RanGAP1-Ubc9-Nup358 complex.<br />

N<strong>at</strong>ure 435, 687-692.<br />

Reverter, D. <strong>and</strong> Lima, C. D. (2006). Structural basis for SENP2<br />

protease interactions with SUMO precursors <strong>and</strong> conjug<strong>at</strong>ed<br />

substr<strong>at</strong>es. N<strong>at</strong>. Struct. Mol. Biol. 13, 1060-1068.<br />

Saitoh, H. <strong>and</strong> Hinchey, J. (2000). Functional heterogeneity <strong>of</strong><br />

small ubiquitin-rel<strong>at</strong>ed protein modifiers SUMO-1 versus<br />

SUMO-2/3. J. Biol. Chem. 275, 6252-6258.<br />

Saitoh, H., Sparrow, D. B., Shiomi, T., Pu, R. T., Nishimoto,<br />

T., Mohun, T. J. <strong>and</strong> Dasso, M. (1998). Ubc9p <strong>and</strong> the<br />

conjug<strong>at</strong>ion <strong>of</strong> SUMO-1 to RanGAP1 <strong>and</strong> RanBP2. Curr. Biol.<br />

8, 121-124.<br />

Shen, L., T<strong>at</strong>ham, M. H., Dong, C., Zagorska, A., Naismith,<br />

J. H. <strong>and</strong> Hay, R. T. (2006a). SUMO protease SENP1 induces<br />

isomeriz<strong>at</strong>ion <strong>of</strong> the scissile peptide bond. N<strong>at</strong>. Struct. Mol. Biol.<br />

13, 1069-1077.<br />

Shen, L. N., Dong, C., Liu, H., Naismith, J. H. <strong>and</strong> Hay, R. T.<br />

(2006b). The structure <strong>of</strong> SENP1-SUMO-2 complex suggests a<br />

structural basis for discrimin<strong>at</strong>ion between SUMO paralogues<br />

during processing. Biochem. J. 397, 279-288.<br />

Shen, L. N., Ge<strong>of</strong>froy, M. C., Jaffray, E. G. <strong>and</strong> Hay, R. T.<br />

(2009). Characteriz<strong>at</strong>ion <strong>of</strong> SENP7, a SUMO-2/-3 specific<br />

isopeptidase. Biochem. J. 2, 223-230.<br />

Sun, H., Leverson, J. D. <strong>and</strong> Hunter, T. (2007). Conserved<br />

function <strong>of</strong> RNF4 family proteins in eukaryotes: targeting a<br />

ubiquitin ligase to SUMOyl<strong>at</strong>ed proteins. EMBO J. 26, 4102-<br />

4112.<br />

Takahashi, Y., Kahyo, T., Toh, E. A., Yasuda, H. <strong>and</strong> Kikuchi,<br />

Y. (2001). Yeast Ull1/Siz1 is a novel SUMO1/Smt3 ligase for<br />

septin components <strong>and</strong> functions as an adaptor between<br />

conjug<strong>at</strong>ing enzyme <strong>and</strong> substr<strong>at</strong>es. J. Biol. Chem. 276, 48973-<br />

48977.<br />

T<strong>at</strong>ham, M. H., Jaffray, E., Vaughan, O. A., Desterro, J. M.,<br />

Botting, C. H., Naismith, J. H. <strong>and</strong> Hay, R. T. (2001).<br />

Polymeric chains <strong>of</strong> SUMO-2 <strong>and</strong> SUMO-3 are conjug<strong>at</strong>ed to<br />

protein substr<strong>at</strong>es by SAE1/SAE2 <strong>and</strong> Ubc9. J. Biol. Chem. 276,<br />

35368-35374.<br />

Vertegaal, A. C., Andersen, J. S., Ogg, S. C., Hay, R. T., Mann,<br />

M. <strong>and</strong> Lamond, A. I. (2006). Distinct <strong>and</strong> overlapping sets <strong>of</strong><br />

SUMO-1 <strong>and</strong> SUMO-2 target proteins revealed by quantit<strong>at</strong>ive<br />

proteomics. Mol. <strong>Cell</strong> Proteomics 5, 2298-2310.<br />

Weger, S., Hammer, E. <strong>and</strong> Heilbronn, R. (2005). Topors acts<br />

as a SUMO-1 E3 ligase for p53 in vitro <strong>and</strong> in vivo. FEBS Lett.<br />

579, 5007-5012.<br />

Wotton, D. <strong>and</strong> Merrill, J. C. (2007). Pc2 <strong>and</strong> <strong>SUMOyl<strong>at</strong>ion</strong>.<br />

Biochem. Soc. Trans. 35, 1401-1404.<br />

Yang, X. J. <strong>and</strong> Gregoire, S. (2006). A recurrent phosphosumoyl<br />

switch in transcriptional repression <strong>and</strong> beyond. Mol. <strong>Cell</strong><br />

23, 779-786.<br />

Yun, C., Wang, Y., Mukhopadhyay, D., Backlund, P., Kolli,<br />

N., Yergey, A., Wilkinson, K. D. <strong>and</strong> Dasso, M. (2008).<br />

Nucleolar protein B23/nucleophosmin regul<strong>at</strong>es the vertebr<strong>at</strong>e<br />

SUMO p<strong>at</strong>hway through SENP3 <strong>and</strong> SENP5 proteases. J. <strong>Cell</strong><br />

Biol. 183, 589-595.<br />

Yunus, A. A. <strong>and</strong> Lima, C. D. (2006). Lysine activ<strong>at</strong>ion <strong>and</strong><br />

functional analysis <strong>of</strong> E2-medi<strong>at</strong>ed conjug<strong>at</strong>ion in the SUMO<br />

p<strong>at</strong>hway. N<strong>at</strong>. Struct. Mol. Biol. 13, 491-499.<br />

Yunus, A. A. <strong>and</strong> Lima, C. D. (2009). Structure <strong>of</strong> the Siz/PIAS<br />

SUMO E3 ligase Siz1 <strong>and</strong> determinants required for SUMO<br />

modific<strong>at</strong>ion <strong>of</strong> PCNA. Mol. <strong>Cell</strong> 35, 669-682.<br />

Zeng, L., Yap, K. L., Ivanov, A. V., Wang, X., Mujtaba, S.,<br />

Plotnikova, O., Rauscher, F. J., 3rd. <strong>and</strong> Zhou, M. M.<br />

(2008). Structural insights into human KAP1 PHD fingerbromodomain<br />

<strong>and</strong> its role in gene silencing. N<strong>at</strong>. Struct. Mol. Biol.<br />

15, 626-633.<br />

Zhang, X. D., Goeres, J., Zhang, H., Yen, T. J., Porter, A. C.<br />

<strong>and</strong> M<strong>at</strong>unis, M. J. (2008). SUMO-2/3 modific<strong>at</strong>ion <strong>and</strong> binding<br />

regul<strong>at</strong>e the associ<strong>at</strong>ion <strong>of</strong> CENP-E with kinetochores <strong>and</strong><br />

progression through mitosis. Mol. <strong>Cell</strong> 29, 729-741.<br />

Zhao, X., Sternsdorf, T., Bolger, T. A., Evans, R. M. <strong>and</strong> Yao,<br />

T. P. (2005). Regul<strong>at</strong>ion <strong>of</strong> MEF2 by histone deacetylase 4- <strong>and</strong><br />

SIRT1 deacetylase-medi<strong>at</strong>ed lysine modific<strong>at</strong>ions. Mol. <strong>Cell</strong>.<br />

Biol. 25, 8456-8464.<br />

Zhu, J., Zhu, S., Guzzo, C. M., Ellis, N. A., Sung, K. S., Choi,<br />

C. Y. <strong>and</strong> M<strong>at</strong>unis, M. J. (2008). Small ubiquitin-rel<strong>at</strong>ed<br />

modifier (SUMO) binding determines substr<strong>at</strong>e recognition <strong>and</strong><br />

paralog-selective SUMO modific<strong>at</strong>ion. J. Biol. Chem. 283,<br />

29405-29415.<br />

Zhu, S., Goeres, J., Sixt, K. M., Bekes, M., Zhang, X. D.,<br />

Salvesen, G. S. <strong>and</strong> M<strong>at</strong>unis, M. J. (2009). Protection from<br />

isopeptidase-medi<strong>at</strong>ed deconjug<strong>at</strong>ion regul<strong>at</strong>es paralog-selective<br />

sumoyl<strong>at</strong>ion <strong>of</strong> RanGAP1. Mol. <strong>Cell</strong> 33, 570-580.<br />

<strong>Cell</strong> Science <strong>at</strong> a <strong>Glance</strong> on the Web<br />

Electronic copies <strong>of</strong> the poster insert are available<br />

in the online version <strong>of</strong> this article <strong>at</strong><br />

jcs.biologists.org. The JPEG images can be<br />

downloaded for printing or used as slides.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!