17.12.2012 Views

Ion exchange in hydrometallurgy - Purolite.com

Ion exchange in hydrometallurgy - Purolite.com

Ion exchange in hydrometallurgy - Purolite.com

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Purolite</strong> Product Bullet<strong>in</strong> Hydrometallurgy<br />

<strong>Purolite</strong> Product Bullet<strong>in</strong>_________________________<br />

<strong>Ion</strong> Exchange<br />

<strong>in</strong> Hydrometallurgy<br />

Hydrometallurgy 09 2012 0<br />

<strong>Ion</strong> Exchange <strong>in</strong> Hydrometallurgy


<strong>Purolite</strong> Product Bullet<strong>in</strong> Hydrometallurgy<br />

Hydrometallugy<br />

Metals can be extracted from ores us<strong>in</strong>g several<br />

methods. They can be extracted us<strong>in</strong>g chemical<br />

solutions (Hydrometallurgy), us<strong>in</strong>g heat<br />

(Pyrometallurgy) or us<strong>in</strong>g mechanical means.<br />

Hydrometallurgy is the process of extract<strong>in</strong>g<br />

metals from ores by dissolv<strong>in</strong>g the ore<br />

conta<strong>in</strong><strong>in</strong>g the metal of <strong>in</strong>terest <strong>in</strong>to an aqueous<br />

phase and recover<strong>in</strong>g the metal from the<br />

result<strong>in</strong>g pregnant liquor.<br />

Hydrometallurgy often offers the most costeffective<br />

and environmentally friendly techniques<br />

for extract<strong>in</strong>g and concentrat<strong>in</strong>g different metals.<br />

Often, various hydrometallurgical processes are<br />

used <strong>in</strong> the same flowsheet, such as <strong>com</strong>b<strong>in</strong><strong>in</strong>g<br />

ion <strong>exchange</strong> and solvent extraction for the<br />

recovery and purification of uranium.<br />

Hydrometallurgical processes can also be<br />

<strong>com</strong>b<strong>in</strong>ed with non - hydrometallurgical<br />

extractive metallurgy processes.<br />

Table 1 - Applications of ion <strong>exchange</strong> <strong>in</strong> <strong>hydrometallurgy</strong><br />

Orig<strong>in</strong> of stream to be treated <strong>Ion</strong> <strong>exchange</strong> application<br />

This bullet<strong>in</strong> discusses the use and advantages<br />

of ion <strong>exchange</strong> res<strong>in</strong>s for sorption and recovery<br />

of target metals.<br />

1. Applications of <strong>Ion</strong> Exchange (IX)<br />

<strong>Ion</strong> <strong>exchange</strong> technology is used for the primary<br />

recovery of metal(s) of <strong>in</strong>terest or the removal of<br />

specific impurities <strong>in</strong> order to <strong>in</strong>crease the value<br />

and purity of the f<strong>in</strong>al product.<br />

A wide variety of process streams benefit from<br />

the application of ion <strong>exchange</strong> res<strong>in</strong>s, as shown<br />

<strong>in</strong> Table 1.<br />

2. <strong>Ion</strong> Exchange Contactor Design<br />

<strong>Ion</strong> Exchange contactor designs are quite<br />

diverse and customized. They generally fall <strong>in</strong>to<br />

three categories: Fixed Bed, Fluidized Bed and<br />

Res<strong>in</strong> <strong>in</strong> Pulp. The design varies as a function<br />

of the properties of the medium be<strong>in</strong>g treated<br />

and overall capital expense optimization<br />

considerations.<br />

<strong>Ion</strong> <strong>exchange</strong> contactors perform two key<br />

functions:<br />

1. They provide conditions that favor<br />

efficient mass transfer between the<br />

process solution or pulp and the ion<br />

<strong>exchange</strong> res<strong>in</strong><br />

2. They ensure the efficient mechanical<br />

separation of the ion <strong>exchange</strong> res<strong>in</strong><br />

from the solution or pulp.<br />

Ore, after heap or agitated leach Primary recovery of metal(s) of <strong>in</strong>terest, e.g. gold, uranium<br />

Volatile <strong>com</strong>pounds captured <strong>in</strong> offgases<br />

from smelters and roasters<br />

Slags and calc<strong>in</strong>es from roast<strong>in</strong>g and<br />

smelt<strong>in</strong>g operations<br />

Electrolyte<br />

Tail<strong>in</strong>gs treatment<br />

Acid m<strong>in</strong>e dra<strong>in</strong>age<br />

Recovery of rhenium from off-gases produced by roast<strong>in</strong>g of<br />

molybdenite and smelt<strong>in</strong>g of copper concentrates<br />

Recovery of various metal(s) of <strong>in</strong>terest, after leach<strong>in</strong>g<br />

Removal of copper and z<strong>in</strong>c impurities from cobalt and nickel<br />

advance electrolytes, to ensure higher metal purity<br />

Recovery of copper, cobalt, gold, etc from historical m<strong>in</strong>e<br />

tail<strong>in</strong>gs, as well as current aris<strong>in</strong>gs<br />

Treatment of process water to enable recycl<strong>in</strong>g to the plant or<br />

safe disposal<br />

Hydrometallurgy 09 2012 1


<strong>Purolite</strong> Product Bullet<strong>in</strong> Hydrometallurgy<br />

An important factor that determ<strong>in</strong>es the design<br />

of an ion <strong>exchange</strong> contactor is the suspended<br />

solids content of the pregnant liquor/pulp. A<br />

certa<strong>in</strong> quantity of suspended particles is always<br />

present <strong>in</strong> the actual pregnant solutions from<br />

which the metal(s) of <strong>in</strong>terest is to be recovered.<br />

A suitable ion <strong>exchange</strong> contactor design must<br />

be selected based on the suspended solid<br />

content <strong>in</strong> a pregnant flow, as summarized <strong>in</strong><br />

Table 2.<br />

Table 2 - Choice of IX contactor based on<br />

solids content of feed<br />

Solids content<br />

Clear liquid, Pb 2+ > Zn 2+ > Cd 2+ ><br />

Ni 2+ > Ca 2+<br />

Phosphonic res<strong>in</strong>s: Cu 2+ > Zn 2+ > Cd 2+ > Mn 2+<br />

> Co 2+ > Ni 2+ > Ca 2+<br />

Am<strong>in</strong>ophosphonic res<strong>in</strong>s (at acidic pH): H + ><br />

Fe 3+ > Pb 2+ > Cu 2+ > Zn 2+ , Al 3+ > Mg 2+ ≥ Ca 2+ ≥<br />

Cd 2+ > Ni 2+ ≥ Co 2+ > Na +<br />

Im<strong>in</strong>odiacetic res<strong>in</strong>s: Cr 3+ > In 3+ > Fe 3+ > Al 3+<br />

> Hg 2+ > UO 2+ > Cu 2+ > Pb 2+ > Ni 2+ > Cd 2+ > Zn 2+<br />

> Co 2+ > Fe 2+ > Mn 2+ > Ca 2+ > Mg 2+<br />

Strong acid res<strong>in</strong>s: Fe 3+ > Ca 2+ > Fe 2+ > Cu 2+<br />

> Mg 2+ > K + > NH4 + > H +<br />

Strong base res<strong>in</strong>s: SO4 2- > CO3 2- > NO3 - > Cl -<br />

- - -<br />

> HCO3 > F > OH<br />

Bis-picolylam<strong>in</strong>e res<strong>in</strong>s: Cu 2+ > Ni 2+ > Fe 3+ ><br />

Zn 2+ > Co 2+ > Cd 2+ > Fe 2+ > Mn 2+<br />

Hydrometallurgy 09 2012 3


<strong>Purolite</strong> Product Bullet<strong>in</strong> Hydrometallurgy<br />

The usual <strong>com</strong>plement of parameters that are to<br />

be controlled dur<strong>in</strong>g production <strong>in</strong>cludes:<br />

� Functionality: determ<strong>in</strong>es the selectivity<br />

of the res<strong>in</strong> for certa<strong>in</strong> metals over<br />

others<br />

� <strong>Ion</strong> <strong>exchange</strong> capacity: a high capacity<br />

is desirable to reduce the size of the<br />

plant and subsequently the cost of<br />

capital <strong>in</strong>vestment and elution reagents<br />

� Grad<strong>in</strong>g: smaller beads are used <strong>in</strong> fixed<br />

bed operations, which benefits from the<br />

improved k<strong>in</strong>etics of smaller beads. RIP<br />

operations require larger beads, to allow<br />

for ease of separation of the res<strong>in</strong> and<br />

pulp.<br />

� Mechanical stability<br />

� Osmotic stability<br />

All the characteristics of IX res<strong>in</strong>s are<br />

<strong>in</strong>terdependent and performance of the res<strong>in</strong> is a<br />

trade-off between the different technical<br />

parameters of the res<strong>in</strong>.<br />

4. Pr<strong>in</strong>ciples of Res<strong>in</strong> Volume Estimation for a<br />

specific project<br />

In order to make an <strong>in</strong>itial estimate of ion<br />

<strong>exchange</strong> plant size, it is necessary to calculate<br />

the res<strong>in</strong> volume that is sufficient to reach the<br />

performance target. This is calculated from the<br />

mass balance equation for the target metal:<br />

Mass balance: CPLS × FPLS = CR × FR<br />

CPLS: Metal concentration <strong>in</strong> PLS, kg/m 3 (PLS)<br />

FPLS: Flow rate of PLS, m 3 (PLS)/hr<br />

CR: Operat<strong>in</strong>g metal capacity of the res<strong>in</strong>,<br />

kg/m 3 (R)<br />

FR: Flow rate of the res<strong>in</strong>, m 3 (R)/hr<br />

IX res<strong>in</strong> flow rate: FR = (CPLS × FPLS)/CR<br />

Total Res<strong>in</strong> Inventory (m 3 ):<br />

VR = FR × (T1 × k + T2 + T3)<br />

T1 – Residence time at sorption provided that:<br />

� The concentration of the metal is<br />

reduced to the tail limits (e.g., < 5 ppm<br />

for most uranium projects).<br />

� The metal capacity of the res<strong>in</strong> reaches<br />

maximum.<br />

A res<strong>in</strong> "safety" volume should be provided for<br />

the sorption stage; for this volume, the Т1<br />

parameter should be multiplied by a k factor with<br />

a value of 1.1 – 1.5 (the process-designer<br />

selects the actual value).<br />

T2 – Residence time at desorption<br />

T3 – Residence time <strong>in</strong> auxiliary operations<br />

By m<strong>in</strong>imiz<strong>in</strong>g FR and T, CAPEX can be<br />

reduced.<br />

In order to m<strong>in</strong>imize FR a res<strong>in</strong> must have a<br />

maximum capacity.<br />

In order to m<strong>in</strong>imize T1, a res<strong>in</strong> must have the<br />

best ion <strong>exchange</strong> k<strong>in</strong>etics.<br />

In order to m<strong>in</strong>imize T2, a res<strong>in</strong> must have<br />

efficient desorption; i.e., <strong>com</strong>plete and rapid.<br />

In order to m<strong>in</strong>imize T3, the desorption and<br />

regeneration processes must be simple, so as to<br />

avoid or m<strong>in</strong>imize additional operations.<br />

Hydrometallurgy 09 2012 4


<strong>Purolite</strong> Product Bullet<strong>in</strong> Hydrometallurgy<br />

5. Select<strong>in</strong>g the Optimum Res<strong>in</strong><br />

There are a number of important considerations<br />

<strong>in</strong> choos<strong>in</strong>g the correct res<strong>in</strong>. They <strong>in</strong>clude:<br />

� The target metal. Is it a valuable metal(s)<br />

or an impurity?<br />

� The matrix. e.g. acidic (sulfate, chloride,<br />

etc.) or alkal<strong>in</strong>e (cyanide, sodium<br />

carbonate, etc.)<br />

� The solution pH. The performance of IX<br />

res<strong>in</strong>s can be affected by pH.<br />

� Recovery from pulp (RIP) or clear solution<br />

Res<strong>in</strong> <strong>in</strong> Solution (RIS). This will<br />

determ<strong>in</strong>e the type of contactor required,<br />

as well as dictate certa<strong>in</strong> physical<br />

properties of the res<strong>in</strong> (size, physical<br />

strength).<br />

� Presence of <strong>com</strong>pet<strong>in</strong>g ions. It is important<br />

to choose a res<strong>in</strong> with a high selectivity for<br />

the metal of <strong>in</strong>terest.<br />

� The solution temperature. While <strong>in</strong>creased<br />

temperatures generally benefit most<br />

reactions, IX res<strong>in</strong>s are temperature<br />

sensitive and for hydrometallurgical<br />

applications a maximum operat<strong>in</strong>g<br />

temperature of 60 °C is usually<br />

re<strong>com</strong>mended.<br />

� Integration with other unit operations. i.e.<br />

the choice of elution reagent is often<br />

dictated by requirements/limitations of<br />

downstream processes.<br />

� Process flexibility. Is it possible to change<br />

the pH of the solution to possibly benefit<br />

the IX unit operation while hav<strong>in</strong>g a<br />

m<strong>in</strong>imal impact on the rest of the circuit?<br />

� Environmental limitations. The choice of<br />

elution/regeneration reagents is <strong>in</strong>fluenced<br />

by regulations on the disposal thereof.<br />

Table 3 shows a number of<br />

hydrometallurgical applications and the<br />

suggested <strong>Purolite</strong> res<strong>in</strong>(s)<br />

Table 3 - Hydrometallurgical Application and the suggested <strong>Purolite</strong> res<strong>in</strong>(s)<br />

Target metal Detail <strong>Purolite</strong> ® res<strong>in</strong>(s)<br />

Gold Cyanide liquors and pulps<br />

Purogold A193<br />

Purogold S992<br />

Gold Thiosulphate leach <strong>Purolite</strong> ® A500/2788, <strong>Purolite</strong> ® A530<br />

Gold Acidic liquors or pulps <strong>Purolite</strong> ® S920, <strong>Purolite</strong> ® S924<br />

Plat<strong>in</strong>um Group Metals Acidic liquors or pulps<br />

<strong>Purolite</strong> ® S920, <strong>Purolite</strong> ® S924,<br />

<strong>Purolite</strong> ® S985<br />

Molybdenum Acidic liquors or pulps <strong>Purolite</strong> ® A100Mo<br />

Rhenium Acidic liquors or pulps<br />

<strong>Purolite</strong> ® A170/4675,<br />

<strong>Purolite</strong> ® A172/4635<br />

Gallium Recovery from Bayer solutions <strong>Purolite</strong> ® S970<br />

Rare Earth Elements Acidic liquors or pulps<br />

Copper, nickel, cobalt, z<strong>in</strong>c Acidic liquors or pulps<br />

Nickel Acidic liquors or pulps <strong>Purolite</strong> ® S960<br />

Copper & z<strong>in</strong>c impurity<br />

removal<br />

Cobalt and nickel electrolyte <strong>Purolite</strong> ® S950<br />

Selection of cation <strong>exchange</strong><br />

res<strong>in</strong>s<br />

<strong>Purolite</strong> ® S930Plus,<br />

<strong>Purolite</strong> ® S930/4884, <strong>Purolite</strong> ® S960<br />

Mercury Various liquors and waste waters <strong>Purolite</strong> ® S920, <strong>Purolite</strong> ® S924<br />

Antimony Various liquors and waste waters <strong>Purolite</strong> ® S957<br />

Bismuth Various liquors and waste waters <strong>Purolite</strong> ® S957<br />

Ferric iron Copper and nickel electrolyte <strong>Purolite</strong> ® S957<br />

Hydrometallurgy 09 2012 5


<strong>Purolite</strong> Product Bullet<strong>in</strong> Hydrometallurgy<br />

For more <strong>in</strong>formation and for assistance with system design, please contact your local <strong>Purolite</strong> office.<br />

Americas<br />

<strong>Purolite</strong><br />

150 Monument Road<br />

Bala Cynwyd, PA 19004<br />

USA<br />

Tel +1 610 668 9090<br />

Tel +1 800 343 1500<br />

Fax +1 610 668 8139<br />

<strong>in</strong>fo@puroliteusa.<strong>com</strong><br />

Europe<br />

<strong>Purolite</strong> International Ltd<br />

Llantrisant Bus<strong>in</strong>ess Park<br />

Llantrisant<br />

Wales<br />

CF72 8LF<br />

UK<br />

Tel +44 1443 229334<br />

Fax +44 1443 227073<br />

sales@purolite.<strong>com</strong><br />

Asia Pacific<br />

<strong>Purolite</strong> (Ch<strong>in</strong>a) Co. Limited<br />

Room 707, C Section<br />

Huanglong Century Plaza<br />

No. 3 Hangda Road<br />

Hangzhou , Zhejiang<br />

Ch<strong>in</strong>a 310007<br />

Tel +86 571 876 31382<br />

Fax +86 571 876 31385<br />

<strong>in</strong>fo@purolitech<strong>in</strong>a.<strong>com</strong><br />

Russia<br />

Lus<strong>in</strong>ovskaya 36<br />

6 th Floor<br />

Moscow 115093<br />

Russia<br />

Tel +7 495 363 5056<br />

<strong>Purolite</strong>@co.ru<br />

For further <strong>in</strong>formation on <strong>Purolite</strong> products & services<br />

visit www.purolite.<strong>com</strong><br />

Hydrometallurgy 09 2012 6

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!