17.12.2012 Views

Alexander Barcza

Alexander Barcza

Alexander Barcza

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

From Sensitivity to Tunability in CoMnSi-based<br />

magnetocaloric compounds<br />

A new family of potential magnetocaloric materials<br />

A <strong>Barcza</strong>, K G Sandeman<br />

Department of Materials Science<br />

Device Materials Group<br />

University of Cambridge<br />

Tuesday, 14 August 2007 / MMMR, Baden<br />

A <strong>Barcza</strong>, K G Sandeman (DMG) CoMnSi-based magnetocaloric compounds 14th August 2007 1 / 27


Outline<br />

1 Introduction<br />

Motivation<br />

Inverse/negative magnetocaloric effect<br />

Thermodynamic quantities describing the magnetocaloric effect<br />

The magnetocaloric effect in metamagnets<br />

2 CoMnSi-based metamagnets<br />

CoMnSi<br />

CoMnSi1−xGex<br />

CoMn1−xNixSi<br />

3 Summary and Outlook<br />

A <strong>Barcza</strong>, K G Sandeman (DMG) CoMnSi-based magnetocaloric compounds 14th August 2007 2 / 27


Why use Mn based alloys?<br />

Mn based compounds are:<br />

relatively cheap<br />

Introduction Motivation<br />

environmentally friendly (not all of them)<br />

show first-order phase transitions (as well as higher order)<br />

MnAs 1) , TC = 318 K, ∆SM = −32 J kg −1 K −1 in 5 T<br />

Mn1.1Fe0.9P0.47As0.53 2) : TC 310 K, ∆SM = −20 J kg −1 K −1 in 5 T<br />

Ni0.5Mn0.5−xSnx 3) : Tt 300 K ∆SM = 18 J kg −1 K −1 in 5 T<br />

(x=0.13)<br />

Mn3GaC 4) : Tt = 164 K, ∆SM = 12 J kg −1 K −1 in 5 T<br />

properties are tunable by substitution of elements<br />

exchange interactions between Mn-Mn are crucial for magnetism of<br />

Mn-based compounds<br />

1) Wada H, Appl. Phys. Lett. 79 3302-3304 (2001)<br />

2) Tegus O, J. Magn. Magn. Mater. 272 2389-2390 (2004)<br />

3) Krenke T, Nature Mat. 4 450-454 (2005)<br />

4) Tohai T, J. Appl. Phys. 94 1800-1802 (2003)<br />

A <strong>Barcza</strong>, K G Sandeman (DMG) CoMnSi-based magnetocaloric compounds 14th August 2007 3 / 27


Studied inverse MCE materials<br />

Introduction Inverse/negative magnetocaloric effect<br />

Mn2Sb 1) is ferrimagnet with T C=550 K<br />

two Mn sites with different magnetic moments<br />

substitution of Mn with Cr/V leads to first order antiferro- to<br />

ferrimagnetic transition<br />

Mn1.95Cr0.05Sb 2) : ∆SM = 7 J kg −1 K −1 in 5 T at ∼198 K<br />

Mn1.82V0.18Sb 3) : ∆SM = 5.5 J kg −1 K −1 in 5 T at ∼280 K<br />

Fe0.49Rh0.51 4) :<br />

highest observed inverse MCE of 20 J kg −1 K −1 at ∆H = 1.95 T<br />

MCE declines when material is cycled through phase transition<br />

1) Wijngaard J H, Phys. Rev. B 45 5395-5405 (1992) (and references therein)<br />

2) Tegus O, Physica B 319 174-192 (2002)<br />

3) Zhang Y Q, J. Alloys and Compounds 365 35-38 (2004)<br />

4) Annaorazov et al. J. Appl. Phys. 79 1689 (1996)<br />

A <strong>Barcza</strong>, K G Sandeman (DMG) CoMnSi-based magnetocaloric compounds 14th August 2007 4 / 27


Inverse MCE in FeRh<br />

Kouvel J S J. Appl. Phys. 37 1257 (1966)<br />

Annaorazov et al. J. Appl. Phys. 79 1689 (1996)<br />

Introduction Inverse/negative magnetocaloric effect<br />

first order magnetostructural phase<br />

transition from antiferro- to<br />

ferromagnetic state at 330 K for FeRh<br />

development of magnetic moment on<br />

Rh at the phase transition<br />

crystal volume changes at the phase<br />

transition ∼ 0.3 % [2]<br />

spontaneous magnetostriction is a<br />

measure for lattice entropy<br />

contributions<br />

A <strong>Barcza</strong>, K G Sandeman (DMG) CoMnSi-based magnetocaloric compounds 14th August 2007 5 / 27


Introduction Thermodynamic quantities describing the magnetocaloric effect<br />

Isothermal entropy change ∆ST and adiabatic temperature change ∆Tad<br />

∆ST =<br />

H2<br />

H 1<br />

<br />

H2<br />

∂M<br />

dH ∆Tad = −<br />

∂T p,H<br />

H1 T<br />

CH,p<br />

∆Tad and ∆ST are large near a phase transition,<br />

<br />

∂M<br />

dH<br />

∂T p,H<br />

the sharper the phase transition the larger ∆Tad and ∆ST ,<br />

∆Tad and ∆ST are larger for higher magnetic fields.<br />

For application in a room temperature magnetic refrigerator materials<br />

should have<br />

phase transitions around room temperature and a large MCE,<br />

phase transition that can be induced in small magnetic fields,<br />

should be environmentally friendly and cheap.<br />

A <strong>Barcza</strong>, K G Sandeman (DMG) CoMnSi-based magnetocaloric compounds 14th August 2007 6 / 27


Introduction Thermodynamic quantities describing the magnetocaloric effect<br />

Isothermal entropy change ∆ST and adiabatic temperature change ∆Tad<br />

∆ST =<br />

H2<br />

H 1<br />

<br />

H2<br />

∂M<br />

dH ∆Tad = −<br />

∂T p,H<br />

H1 T<br />

CH,p<br />

∆Tad and ∆ST are large near a phase transition,<br />

<br />

∂M<br />

dH<br />

∂T p,H<br />

the sharper the phase transition the larger ∆Tad and ∆ST ,<br />

∆Tad and ∆ST are larger for higher magnetic fields.<br />

For application in a room temperature magnetic refrigerator materials<br />

should have<br />

phase transitions around room temperature and a large MCE,<br />

phase transition that can be induced in small magnetic fields,<br />

should be environmentally friendly and cheap.<br />

A <strong>Barcza</strong>, K G Sandeman (DMG) CoMnSi-based magnetocaloric compounds 14th August 2007 6 / 27


Metamagnets as refrigerants<br />

M<br />

S T<br />

(∂M/∂T) > 0<br />

H<br />

H =0<br />

T t<br />

H 1<br />

T C<br />

Introduction The magnetocaloric effect in metamagnets<br />

T<br />

T<br />

Remember:<br />

H2<br />

∆Tad =<br />

H1 ∆ST =<br />

− T<br />

<br />

∂M<br />

dH<br />

CH,p ∂T p,H<br />

H2<br />

A <strong>Barcza</strong>, K G Sandeman (DMG) CoMnSi-based magnetocaloric compounds 14th August 2007 7 / 27<br />

H 1<br />

<br />

∂M<br />

dH<br />

∂T p,H<br />

At a metamagnetic transition<br />

∆ST is positive,<br />

∆Tad is negative.


CoMnSi-based metamagnets CoMnSi<br />

The metamagnet – CoMnSi<br />

sample was quenched from 1000 ◦ C<br />

60.0<br />

M (Am 2 /kg)<br />

50.0<br />

40.0<br />

30.0<br />

20.0<br />

10.0<br />

4000 Oe<br />

0.0<br />

100 200 300 400 500 600<br />

T (K)<br />

Bińczycka et al., phys. stat. sol. (a) 35 K69 (1976)<br />

Johnson et al., phys. stat. sol (a) 20 331 (1973)<br />

Nizioł et al., phys. stat. sol. (a) 45 591 (1978)<br />

There are 3 phase transitions in CoMnSi<br />

antiferro- to ferromagnetic<br />

(metamagnetic) phase transition<br />

at Tt = 200 − 360 K,<br />

ferro- to paramagnetic phase<br />

transition at T C 410 K,<br />

orthorhombic to hexagonal<br />

structural phase transition at<br />

Tstructural = 917 ◦ C.<br />

! phase transition temperatures are very<br />

sample dependent !<br />

A <strong>Barcza</strong>, K G Sandeman (DMG) CoMnSi-based magnetocaloric compounds 14th August 2007 8 / 27


CoMnSi-based metamagnets CoMnSi<br />

The metamagnet – CoMnSi<br />

sample was quenched from 1000 ◦ C<br />

60.0<br />

M (Am 2 /kg)<br />

50.0<br />

40.0<br />

30.0<br />

20.0<br />

10.0<br />

4000 Oe<br />

0.0<br />

100 200 300 400 500 600<br />

T (K)<br />

Bińczycka et al., phys. stat. sol. (a) 35 K69 (1976)<br />

Johnson et al., phys. stat. sol (a) 20 331 (1973)<br />

Nizioł et al., phys. stat. sol. (a) 45 591 (1978)<br />

There are 3 phase transitions in CoMnSi<br />

antiferro- to ferromagnetic<br />

(metamagnetic) phase transition<br />

at Tt = 200 − 360 K,<br />

ferro- to paramagnetic phase<br />

transition at T C 410 K,<br />

orthorhombic to hexagonal<br />

structural phase transition at<br />

Tstructural = 917 ◦ C.<br />

! phase transition temperatures are very<br />

sample dependent !<br />

A <strong>Barcza</strong>, K G Sandeman (DMG) CoMnSi-based magnetocaloric compounds 14th August 2007 8 / 27


CoMnSi-based metamagnets CoMnSi<br />

The metamagnet – CoMnSi<br />

sample was quenched from 1000 ◦ C<br />

60.0<br />

M (Am 2 /kg)<br />

50.0<br />

40.0<br />

30.0<br />

20.0<br />

10.0<br />

4000 Oe<br />

0.0<br />

100 200 300 400 500 600<br />

T (K)<br />

Bińczycka et al., phys. stat. sol. (a) 35 K69 (1976)<br />

Johnson et al., phys. stat. sol (a) 20 331 (1973)<br />

Nizioł et al., phys. stat. sol. (a) 45 591 (1978)<br />

There are 3 phase transitions in CoMnSi<br />

antiferro- to ferromagnetic<br />

(metamagnetic) phase transition<br />

at Tt = 200 − 360 K,<br />

ferro- to paramagnetic phase<br />

transition at T C 410 K,<br />

orthorhombic to hexagonal<br />

structural phase transition at<br />

Tstructural = 917 ◦ C.<br />

! phase transition temperatures are very<br />

sample dependent !<br />

A <strong>Barcza</strong>, K G Sandeman (DMG) CoMnSi-based magnetocaloric compounds 14th August 2007 8 / 27


CoMnSi1−xGex-system<br />

Nizioł et al., J. Magn. Magn. Mat. 79 333-337 (1989)<br />

CoMnSi-based metamagnets CoMnSi 1−x Gex<br />

Objectives in making CoMnSi1−xGex:<br />

change sample composition and<br />

gain control over Tt<br />

separate Tt and T C<br />

measure the magnetocaloric effect<br />

A <strong>Barcza</strong>, K G Sandeman (DMG) CoMnSi-based magnetocaloric compounds 14th August 2007 9 / 27


CoMnSi-based metamagnets CoMnSi 1−x Gex<br />

Magnetization M(H) and MCE of CoMnSi1−xGex<br />

Ge substitution decreases the metamagnetic transition temperature<br />

transition is sharpest in CoMnSi0.95Ge0.05 yielding ∆ST=9 J kg −1 K −1<br />

at ∆H = 5 T<br />

change of sign around room temperature<br />

Sandeman et al., Phys. Rev. B 74 224436 (2006)<br />

A <strong>Barcza</strong>, K G Sandeman (DMG) CoMnSi-based magnetocaloric compounds 14th August 2007 10 / 27


CoMnSi-based metamagnets CoMnSi 1−x Gex<br />

Magnetization M(H) and MCE of CoMnSi1−xGex<br />

Ge substitution decreases the metamagnetic transition temperature<br />

transition is sharpest in CoMnSi0.95Ge0.05 yielding ∆ST=9 J kg −1 K −1<br />

at ∆H = 5 T<br />

change of sign around room temperature<br />

interested in the microscopic magnetization?<br />

– see next talk by Kelly Morrison<br />

Sandeman et al., Phys. Rev. B 74 224436 (2006)<br />

A <strong>Barcza</strong>, K G Sandeman (DMG) CoMnSi-based magnetocaloric compounds 14th August 2007 10 / 27


CoMn1−xNixSi – Aims<br />

CoMnSi-based metamagnets CoMn 1−x Nix Si<br />

Objectives of making Ni substituted CoMn1−xNixSi are<br />

increase T C, far away from Tt<br />

tune Tt near room temperature<br />

obtain large values for ∆Tad and ∆ST<br />

get single phase material<br />

A <strong>Barcza</strong>, K G Sandeman (DMG) CoMnSi-based magnetocaloric compounds 14th August 2007 11 / 27


CoMnSi-based metamagnets CoMn 1−x Nix Si<br />

Synthesis and characterization of CoMn1−xNixSi<br />

quasi contact free co-melting of elements in an induction furnace,<br />

subsequent annealing of ingots in a box furnace at 1123 - 1373 K,<br />

measurement of structural transition temperatures with<br />

calorimetry,<br />

determination of crystal structure with X-ray powder diffraction,<br />

magnetic measurements with VSM and SQUID<br />

A <strong>Barcza</strong>, K G Sandeman (DMG) CoMnSi-based magnetocaloric compounds 14th August 2007 12 / 27


CoMnSi-based metamagnets CoMn 1−x Nix Si<br />

High temperature structural transition temperatures<br />

heating:<br />

cooling:<br />

Thermal analysis (SDT) signals for heating (upper<br />

figure) and cooling (lower figure):<br />

Ni (%) T heating<br />

struc T cooling<br />

7 926<br />

struc<br />

842 84<br />

9 924 846 78<br />

11 920 826 94<br />

∆Tstruc<br />

value of Tstruc is important to choose<br />

annealing conditions<br />

three different hold temperatures were<br />

choosen (850 ◦ C, 950 ◦ C, 1100 ◦ C)<br />

all samples were slowly cooled<br />

A <strong>Barcza</strong>, K G Sandeman (DMG) CoMnSi-based magnetocaloric compounds 14th August 2007 13 / 27


CoMnSi-based metamagnets CoMn 1−x Nix Si<br />

Crystal structure of CoMn1−xNixSi<br />

orthorhombic Pnma phase with<br />

TiNiSi-type structure<br />

a=5.83 Å, b=3.68 Å, c=6.86 Å<br />

atoms in Wyckoff pos. 4c (x, 1<br />

4 , z)<br />

not all reflections belong to the space<br />

group Pnma<br />

ac-plane viewed along b-axis of the orthorhombic unit cell<br />

Mn (pink), Co (blue), Si (yellow)<br />

atom x y z<br />

Co 0.159(1) 0.250000 0.559(1)<br />

Mn 0.015(2) 0.250000 0.184(1)<br />

Ni 0.015(2) 0.250000 0.184(1)<br />

Si 0.773(3) 0.250000 0.620(2)<br />

A <strong>Barcza</strong>, K G Sandeman (DMG) CoMnSi-based magnetocaloric compounds 14th August 2007 14 / 27


CoMnSi-based metamagnets CoMn 1−x Nix Si<br />

Second hexagonal crystallographic phase<br />

high temperature hexagonal<br />

structure is metastable at room<br />

temperature<br />

hexagonal P63/mmc phase with<br />

Ni2In type<br />

a=3.93 Å, c=5.22 Å<br />

ac-plane viewed along b-axis of the orthorhombic unit cell<br />

Mn in ( 1 3 , 2 3 , 3 4 ) (pink), Co in ( 1 3 , 2 3 , 1 ) (blue), Si in (0, 0, 0)<br />

4<br />

(yellow)<br />

axis-transformation during orthorhombic to hexagonal unit cell<br />

transition:<br />

a =<br />

hex b ortho<br />

A <strong>Barcza</strong>, K G Sandeman (DMG) CoMnSi-based magnetocaloric compounds 14th August 2007 15 / 27<br />

a hex<br />

1/2<br />

3<br />

a = hex<br />

c ortho


CoMnSi-based metamagnets CoMn 1−x Nix Si<br />

A metastable high temperature hexagonal phase<br />

amount of second phase:<br />

weight fraction of hexagonal Phase (%)<br />

24<br />

22<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

Annealing temperature<br />

1100 °C<br />

950 °C<br />

850 °C<br />

0<br />

6 8 10 12<br />

degree of Ni substitution (%)<br />

unit cell volume:<br />

147.4<br />

6 8 10 12<br />

degree of Ni substitution (%)<br />

annealing at a temperature below Tstruc for a long time<br />

(200 h) decreases the weight fraction of second phase<br />

samples annealed away from Tstruc show similar<br />

behaviour of unit cell volume versus Ni concentration<br />

orthorhombic unit cell volume (Å 3 )<br />

A <strong>Barcza</strong>, K G Sandeman (DMG) CoMnSi-based magnetocaloric compounds 14th August 2007 16 / 27<br />

147.9<br />

147.8<br />

147.7<br />

147.6<br />

147.5<br />

Annealing temperature<br />

1100 °C<br />

950 °C<br />

850 °C (Si powder)


CoMnSi-based metamagnets CoMn 1−x Nix Si<br />

Magnetization M(H) of CoMn1−xNixSi at low<br />

temperatures<br />

M (Am 2 /kg)<br />

140.0<br />

120.0<br />

100.0<br />

80.0<br />

60.0<br />

40.0<br />

20.0<br />

330 K<br />

CoMn 0.93 Ni 0.07 Si<br />

70 K<br />

330 K<br />

280 K<br />

250 K<br />

230 K<br />

210 K<br />

190 K<br />

170 K<br />

150 K<br />

130 K<br />

110 K<br />

90 K<br />

70 K<br />

0.0<br />

0 1 2 3 4 5<br />

µ H (T)<br />

0<br />

sample was annealed at 950 ◦ C<br />

at low temperatures there are<br />

two regions where magnetization<br />

changes<br />

metamagnetic phase transition<br />

at ∼3 T<br />

A <strong>Barcza</strong>, K G Sandeman (DMG) CoMnSi-based magnetocaloric compounds 14th August 2007 17 / 27


CoMnSi-based metamagnets CoMn 1−x Nix Si<br />

Magnetization M(H) of CoMn1−xNixSi at low<br />

temperatures<br />

M (Am 2 /kg)<br />

140.0<br />

120.0<br />

100.0<br />

80.0<br />

60.0<br />

40.0<br />

20.0<br />

330 K<br />

CoMn 0.93 Ni 0.07 Si<br />

70 K<br />

330 K<br />

280 K<br />

250 K<br />

230 K<br />

210 K<br />

190 K<br />

170 K<br />

150 K<br />

130 K<br />

110 K<br />

90 K<br />

70 K<br />

0.0<br />

0 1 2 3 4 5<br />

µ H (T)<br />

0<br />

sample was annealed at 950 ◦ C<br />

at low temperatures there are<br />

two regions where magnetization<br />

changes<br />

metamagnetic phase transition<br />

at ∼3 T<br />

Does the second phase have an influence on M(H)?<br />

A <strong>Barcza</strong>, K G Sandeman (DMG) CoMnSi-based magnetocaloric compounds 14th August 2007 17 / 27


CoMnSi-based metamagnets CoMn 1−x Nix Si<br />

Curie transitions above room temperature<br />

samples annealed at 850 ◦ C<br />

Ni (%) T C1 (K)<br />

7 431<br />

9 437<br />

11 445<br />

two transitions at temperatures<br />

above room temperature<br />

relative drop of magnetization<br />

above T C1 corresponds to the<br />

amount of second phase<br />

T C increases with Ni content<br />

A <strong>Barcza</strong>, K G Sandeman (DMG) CoMnSi-based magnetocaloric compounds 14th August 2007 18 / 27


CoMnSi-based metamagnets CoMn 1−x Nix Si<br />

The magnetocaloric effect in CoMn1−xNixSi<br />

magnetisation data<br />

M (Am 2 /kg)<br />

140.0<br />

120.0<br />

100.0<br />

80.0<br />

60.0<br />

40.0<br />

20.0<br />

330 K<br />

CoMn 0.93 Ni 0.07 Si<br />

70 K<br />

330 K<br />

280 K<br />

250 K<br />

230 K<br />

210 K<br />

190 K<br />

170 K<br />

150 K<br />

130 K<br />

110 K<br />

90 K<br />

70 K<br />

0.0<br />

0 1 2 3 4 5<br />

µ H (T)<br />

0<br />

second hexagonal phase was<br />

identified to be ferromagnetic.<br />

magnetic field induced<br />

metamagnetic phase transition<br />

at ∼3 T (70 K).<br />

from M versus T curves: Tt<br />

around 170 K in 1 T.<br />

T C of both phases are above<br />

430 K<br />

isothermal magnetisation versus magnetic field curves were used to<br />

calculate the magnetocaloric effect<br />

A <strong>Barcza</strong>, K G Sandeman (DMG) CoMnSi-based magnetocaloric compounds 14th August 2007 19 / 27


CoMnSi-based metamagnets CoMn 1−x Nix Si<br />

The magnetocaloric effect in CoMn1−xNixSi<br />

Temperature dependence of ∆ST at various Ni concentrations<br />

M (Am 2 /kg)<br />

∆ S T (Jkg -1 K -1 )<br />

140.0<br />

120.0<br />

100.0<br />

80.0<br />

60.0<br />

40.0<br />

20.0<br />

0.0<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

-0.5<br />

11 %<br />

CoMn 0.91 Ni 0.09 Si<br />

1 2 3 4 5<br />

µ H (T)<br />

CoMn 0 Ni Si 1-x x<br />

9 %<br />

7 %<br />

330 K<br />

280 K<br />

250 K<br />

230 K<br />

210 K<br />

190 K<br />

170 K<br />

150 K<br />

130 K<br />

110 K<br />

90 K<br />

70 K<br />

M (Am 2 /kg)<br />

0 50 100 150 200 250<br />

T (K)<br />

140.0<br />

120.0<br />

100.0<br />

80.0<br />

60.0<br />

40.0<br />

20.0<br />

0.0<br />

330 K<br />

10 K<br />

CoMn 0.89 Ni 0.11 Si<br />

1 2 3 4 5<br />

µ 0 H (T)<br />

maximal entropy change ∼2.5 J/kgK<br />

in a magnetic field change from 0 -<br />

5 T at ∼100 K<br />

∆ST decreases with Ni concentration<br />

ferromagnetic background of second<br />

phase has negative influence<br />

A <strong>Barcza</strong>, K G Sandeman (DMG) CoMnSi-based magnetocaloric compounds 14th August 2007 20 / 27<br />

330 K<br />

280 K<br />

250 K<br />

230 K<br />

210 K<br />

190 K<br />

170 K<br />

150 K<br />

130 K<br />

110 K<br />

90 K<br />

70 K<br />

50 K<br />

30 K<br />

10 K


CoMnSi-based metamagnets CoMn 1−x Nix Si<br />

Order of the metamagnetic phase transition<br />

7 %<br />

M 2 (Am 2 /kg) 2<br />

9 %<br />

M 2 (Am 2 /kg) 2<br />

11 %<br />

M 2 (Am 2 /kg) 2<br />

20000<br />

18000<br />

16000<br />

14000<br />

12000<br />

10000<br />

8000<br />

6000<br />

4000<br />

2000<br />

20000<br />

18000<br />

16000<br />

14000<br />

12000<br />

330 K<br />

CoMn 0.93 Ni 0.07 Si<br />

70 K<br />

330 K<br />

280 K<br />

250 K<br />

230 K<br />

210 K<br />

190 K<br />

170 K<br />

150 K<br />

130 K<br />

110 K<br />

90 K<br />

70 K<br />

0.00 0.01 0.02 0.03 0.04<br />

µ H/M (T kg/ Am<br />

0<br />

0.05 0.06<br />

2 0<br />

CoMn Ni Si )<br />

0.91 0.09<br />

0.00 0.01 0.02 0.03 0.04 0.05<br />

µ H/M (T kg/Am<br />

0<br />

0.06 0.07<br />

2 10000<br />

330 K<br />

280 K<br />

8000<br />

250 K<br />

230 K<br />

210 K<br />

6000<br />

190 K<br />

170 K<br />

4000<br />

150 K<br />

130 K<br />

2000<br />

110 K<br />

90 K<br />

70 K<br />

0<br />

CoMn Ni Si)<br />

0.89 0.11<br />

20000<br />

18000<br />

16000<br />

14000<br />

12000<br />

10000<br />

8000<br />

6000<br />

4000<br />

2000<br />

330 K<br />

10 K<br />

330 K<br />

280 K<br />

250 K<br />

230 K<br />

210 K<br />

190 K<br />

170 K<br />

150 K<br />

130 K<br />

110 K<br />

90 K<br />

70 K<br />

50 K<br />

30 K<br />

10 K<br />

0.00 0.01 0.02 0.03 0.04<br />

µ H/M (T kg/Am<br />

0<br />

0.05 0.06<br />

2 0<br />

)<br />

around phase transitions thermodynamic potentials<br />

can be expanded in a Taylor series with respect<br />

to the order parameter:<br />

Φ = Φ0 + aM 2 + bM 4 − MH<br />

at equilibrium (∂Φ/∂M = 0):<br />

αM + βM 3 = H −→ H<br />

M<br />

= α + βM2<br />

<br />

≥ 0, higher order phase transitions<br />

β<br />

< 0, first order phase transitions<br />

Banerjee S K, Phys. Lett. 12 16 (1964)<br />

A <strong>Barcza</strong>, K G Sandeman (DMG) CoMnSi-based magnetocaloric compounds 14th August 2007 21 / 27


Summary<br />

Summary and Outlook<br />

Samples of CoMn1−xNixSi with x = 0.07, 0.09, 0.11 were<br />

synthesised.<br />

A second ferromagnetic phase was identified and partial control<br />

over it was obtained.<br />

Maximum ∆ST of 2.5 J/kgK at 100 K in 5 T was calculated from<br />

isothermal M(H) curves.<br />

A <strong>Barcza</strong>, K G Sandeman (DMG) CoMnSi-based magnetocaloric compounds 14th August 2007 22 / 27


Conclusion<br />

Conclusion and further work<br />

Values for ∆ST are too small at a too low temperature for room<br />

temperature applications.<br />

Second phase broadens the metamagnetic phase transition and<br />

decreases the magnetocaloric effect.<br />

Further work<br />

Employment of element and crystallographic phase specific<br />

experimental techniques to study the influence of the second phase<br />

(SEM with EBSD, XPEEM).<br />

Try other substitutions (e.g. Ni on the Co site and Cr on the Mn<br />

site).<br />

A <strong>Barcza</strong>, K G Sandeman (DMG) CoMnSi-based magnetocaloric compounds 14th August 2007 23 / 27


Conclusion<br />

Conclusion and further work<br />

Values for ∆ST are too small at a too low temperature for room<br />

temperature applications.<br />

Second phase broadens the metamagnetic phase transition and<br />

decreases the magnetocaloric effect.<br />

Further work<br />

Employment of element and crystallographic phase specific<br />

experimental techniques to study the influence of the second phase<br />

(SEM with EBSD, XPEEM).<br />

Try other substitutions (e.g. Ni on the Co site and Cr on the Mn<br />

site).<br />

A <strong>Barcza</strong>, K G Sandeman (DMG) CoMnSi-based magnetocaloric compounds 14th August 2007 23 / 27


Acknowledgements<br />

Acknowledgements<br />

Karl G. Sandeman for supervising me and my work.<br />

Sibel Özcan for sample synthesis.<br />

Mary E. Vickers and Andrew Moss for a lot of help with X-ray<br />

diffraction and data analysis.<br />

EPSRC and Camfridge Ltd. for funding.<br />

A <strong>Barcza</strong>, K G Sandeman (DMG) CoMnSi-based magnetocaloric compounds 14th August 2007 24 / 27


Appendix<br />

A <strong>Barcza</strong>, K G Sandeman (DMG) CoMnSi-based magnetocaloric compounds 14th August 2007 25 / 27


Appendix<br />

A <strong>Barcza</strong>, K G Sandeman (DMG) CoMnSi-based magnetocaloric compounds 14th August 2007 26 / 27


Appendix<br />

A <strong>Barcza</strong>, K G Sandeman (DMG) CoMnSi-based magnetocaloric compounds 14th August 2007 27 / 27

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!