20.12.2012 Views

Foreign Cooperating Institutions - Institute of Inorganic Chemistry ...

Foreign Cooperating Institutions - Institute of Inorganic Chemistry ...

Foreign Cooperating Institutions - Institute of Inorganic Chemistry ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

PREFACE<br />

This report covers a three-year period <strong>of</strong> the “life” at the <strong>Institute</strong> <strong>of</strong> <strong>Inorganic</strong> <strong>Chemistry</strong><br />

(IIC) <strong>of</strong> the Slovak Academy <strong>of</strong> Sciences (SAS). In this time span many important events<br />

took place which in some sense formed the present status <strong>of</strong> the <strong>Institute</strong>. First <strong>of</strong> all, the<br />

<strong>Institute</strong> together with all 55 research institutes <strong>of</strong> the Slovak Academy <strong>of</strong> Sciences underwent<br />

an international accreditation process in 2007. The final ranking <strong>of</strong> the Accreditation<br />

Committee based on the report <strong>of</strong> international panel and approved by the Presidium <strong>of</strong> SAS<br />

was for IIC SAS very positive since we were appointed as an “Institution <strong>of</strong> Category A* ” .<br />

This means that our <strong>Institute</strong> belongs to the best research institutes in the Slovak Academy <strong>of</strong><br />

Sciences. This status <strong>of</strong> IIC SAS was yearly confirmed at the internal evaluation <strong>of</strong> the<br />

institutes <strong>of</strong> SAS belonging to Section II. <strong>of</strong> SAS. Among 22 research institutions in this<br />

section, our <strong>Institute</strong> never finished worse than on the second position.<br />

In the period covered, several <strong>Institute</strong>s’ research teams achieved distinguished awards<br />

and honours. Two teams were awarded by the “Award <strong>of</strong> the Slovak Academy <strong>of</strong> Sciences”,<br />

which is the highest scientific award conferred by the Presidium <strong>of</strong> SAS. One title “Scientist<br />

<strong>of</strong> the Year in the Slovak Republic” was conferred to an <strong>Institute</strong>’s representative; two<br />

scientists were awarded by the “Prize <strong>of</strong> the Slovak Literary Fund” for the highest number <strong>of</strong><br />

citations <strong>of</strong> their publications in last three years. Our PhD student was appointed “The Head<br />

<strong>of</strong> the Year” and “The Student Personality <strong>of</strong> the Year”.<br />

Several <strong>Institute</strong> members were invited to contribute to scientific books published by<br />

respectable scientific publishers. Our researchers presented more than 50 invited lectures at<br />

the international symposia/conferences all over the world.<br />

The <strong>Institute</strong> was involved in three FP6 projects. Two Centres <strong>of</strong> Excellence <strong>of</strong> the<br />

Slovak Academy <strong>of</strong> Sciences were established on the board <strong>of</strong> the <strong>Institute</strong> and two research<br />

groups got involved in the Centres <strong>of</strong> Excellence supported by the Slovak Research and<br />

Development Agency. The proposal for the “Centre for Materials, Layers and Systems for the<br />

Applications and Chemical Processes in the Extreme Environments” in the frame <strong>of</strong> the<br />

Structural Funds <strong>of</strong> the European Union was successfully submitted and approved in<br />

December 2008. Consequently, the Vice-premier <strong>of</strong> the Slovak government appointed our<br />

<strong>Institute</strong> the Centre <strong>of</strong> Excellence for the period <strong>of</strong> 2009 – 2013.<br />

1


This Triannual report includes the most important activities <strong>of</strong> the <strong>Institute</strong> in both basic<br />

and applied research during the period <strong>of</strong> 2006 to 2008. The structured budget development,<br />

running projects, organized meetings, invited guests are included in this report together with<br />

all important events and milestones. We are <strong>of</strong>fering the reader a comprehensive overview <strong>of</strong><br />

the <strong>Institute</strong> covering the three-year period in order to provide a chance to recognize the<br />

trends in the <strong>Institute</strong>s’ development.<br />

Finally, let me express my sincere thanks to Dr. Jana Madejová who compiled this report<br />

and also to Dr. Peter Komadel and Pr<strong>of</strong>. Jozef Noga for the corrections and pro<strong>of</strong>reading <strong>of</strong><br />

the manuscript.<br />

2


CONTENT<br />

STRUCTURE OF THE INSTITUTE OF INORGANIC CHEMISTRY..................................5<br />

INSTITUTE REPRESENTATIVES.......................................................................................6<br />

DIRECTOR OF IIC............................................................................................................6<br />

MANAGEMENT BOARD.................................................................................................6<br />

SCIENTIFIC BOARD........................................................................................................6<br />

ECONOMY AND SERVICES SECTION..........................................................................7<br />

INSTITUTE STAFF...........................................................................................................7<br />

HIGHLIGHTS OF THE IIC SCIENCE..................................................................................8<br />

SCIENTIFIC ACTIVITIES OF THE INSTITUTE...............................................................19<br />

1. CENTRES OF EXCELLENCE / NATIONAL CENTRES........................................19<br />

2. RESEARCH PROJECTS..........................................................................................20<br />

3. SCIENTIFIC OUTPUT............................................................................................24<br />

4. INTERNATIONAL CONFERENCES ORGANIZED BY THE INSTITUTE...........24<br />

5. INTERNATIONAL FELLOWSHIPS.......................................................................25<br />

6. LECTURES DELIVERED BY THE GUESTS OF THE INSTITUTE......................26<br />

7. INVITED LECTURES DELIVERED BY THE MEMBERS OF THE INSTITUTE 26<br />

8. AWARDS AND HONOURS....................................................................................31<br />

9. DEFENDED PhD. THESIS......................................................................................34<br />

10. MEMBERS OF THE EDITORIAL BOARDS..........................................................35<br />

11. COOPERATION WITH INDUSTRY.......................................................................36<br />

12. RESEARCH FUNDING...........................................................................................37<br />

13. EVENTS...................................................................................................................38<br />

IIC SAS DEPARTMENTS...................................................................................................43<br />

DEPARTMENT OF CERAMICS.....................................................................................45<br />

DEPARTMENT OF HYDROSILICATES.......................................................................51<br />

DEPARTMENT OF MOLTEN SYSTEMS......................................................................57<br />

DEPARTMENT OF THEORETICAL CHEMISTRY.......................................................63<br />

VITRUM LAUGARICIO (VILA)....................................................................................69<br />

3


STRUCTURE OF THE INSTITUTE OF<br />

INORGANIC CHEMISTRY<br />

5


INSTITUTE REPRESENTATIVES<br />

Pr<strong>of</strong>. RNDr. Pavol Šajgalík, DrSc.<br />

Secretary<br />

(as per December 2008)<br />

DIRECTOR OF IIC<br />

phone:<br />

e-mail:<br />

Zdena Kapišinská phone:<br />

fax:<br />

e-mail:<br />

web:<br />

Deputy Director<br />

MANAGEMENT BOARD<br />

Ing. Miroslav Boča, PhD. phone:<br />

e-mail:<br />

Chairman <strong>of</strong> the Scientific Board<br />

RNDr. Peter Komadel, DrSc. phone:<br />

e-mail:<br />

Secretary for Science<br />

RNDr. Jana Madejová, DrSc. phone:<br />

e-mail:<br />

Secretary for Education<br />

Ing. Miroslav Hnatko, PhD. phone:<br />

e-mail:<br />

SCIENTIFIC BOARD<br />

Chairman Vice-chairman<br />

6<br />

+421 2 59410 400<br />

pavol.sajgalik@savba.sk<br />

+421 2 59410 401<br />

+421 2 59410 444<br />

uachsekr@savba.sk<br />

http://www.uach.sav.sk<br />

+421 2 59410 490<br />

miroslav.boca@savba.sk<br />

+421 2 59410 464<br />

peter.komadel@savba.sk<br />

+421 2 59410 406<br />

jana.madejova@savba.sk<br />

+421 2 59410 415<br />

miroslav.hnatko@savba.sk<br />

RNDr. Peter Komadel, DrSc. RNDr. Jana Madejová, DrSc.<br />

<strong>Institute</strong> members External members<br />

Ing. Miroslav Boča, PhD. Pr<strong>of</strong>. Ing. Pavel Fellner, DrSc.<br />

RNDr. Juraj Bujdák, Dr. Pr<strong>of</strong>. Ing. Marek Liška, DrSc.<br />

Doc. Ing. Dušan Galusek, PhD. Pr<strong>of</strong>. RNDr. Jozef Noga, DrSc.<br />

Dr. Vladimír Malkin, DrSc.<br />

Ing. Zoltán Lenčéš, PhD.


Economy<br />

ECONOMY AND SERVICES SECTION<br />

Ing. Ján Piško, head phone:<br />

e-mail:<br />

Ing. Judita Lilová<br />

e-mail:<br />

Jaromíra Dankovičová<br />

e-mail:<br />

Anna Kovárová<br />

e-mail:<br />

Iveta Bouadjenak<br />

e-mail:<br />

Services<br />

Ján Maraffko mechanical workshop<br />

Jozef Sitár supply<br />

Alexandra Tonkovičová library<br />

Dana Matejkinová<br />

Terezia Pírová<br />

INSTITUTE STAFF<br />

7<br />

+421 2 59410 458<br />

jan.pisko@savba.sk<br />

judita.lilova@savba.sk<br />

jaromira.dankovicova@savba.sk<br />

anna.kovarova@savba.sk<br />

iveta.bouadjenak @savba.sk<br />

2006 2007 2008<br />

Researchers 40 41 46<br />

Technical Staff 21 22 24<br />

Administration 7 6 6<br />

Supporting Staff 5 5 5<br />

<strong>Institute</strong> Staff Total 73 74 81<br />

Average age (years) 46 43 43<br />

PhD. Students 10 8 4


HIGHLIGHTS OF THE IIC SCIENCE<br />

The scientific activity <strong>of</strong> the <strong>Institute</strong> <strong>of</strong> <strong>Inorganic</strong> <strong>Chemistry</strong> is concentrated to the<br />

fundamental, applied and industry oriented research <strong>of</strong> the inorganic systems suitable for<br />

design <strong>of</strong> new materials and/or technologies. Presented in the following pages are brief<br />

summaries <strong>of</strong> recent scientific highlights.<br />

New theoretical approaches for relativistic calculations <strong>of</strong> NMR<br />

parameters for compounds containing heavy elements<br />

M. Repiský, S. Komorovský, P. Hrobárik, O. L. Malkina, V. G. Malkin<br />

An accurate prediction <strong>of</strong> electronic structure and properties <strong>of</strong> compounds containing heavy<br />

elements obligatorily requires inclusion <strong>of</strong> relativistic effects into consideration. It means that<br />

instead <strong>of</strong> working with the Schrödinger equation one has to deal (in one way or other) with<br />

the Dirac equation extended for treatment <strong>of</strong> many-electron systems. Nowadays it becomes a<br />

common point that relativity has an especially immense effect on NMR shielding tensor and<br />

indirect nuclear spin-spin coupling constants (SSCC). Often calculations <strong>of</strong> those properties<br />

serve as a very delicate probe to test different ways <strong>of</strong> treating relativistic effects and the basis<br />

set quality. Lately we succeeded in the development <strong>of</strong> new relativistic four-component<br />

density functional approach based on the use <strong>of</strong> restricted magnetically balanced basis<br />

(mDKS-RMB) for calculations <strong>of</strong> NMR shielding [1]<br />

and indirect nuclear spin-spin coupling constants [2]. The<br />

unperturbed equations are solved with the use <strong>of</strong> a<br />

restricted kinetically balanced basis set for the small<br />

component, while to solve the second-order coupled<br />

perturbed DKS equations a restricted magnetically<br />

balanced basis set for the small component is applied.<br />

The method provides an attractive alternative to existing<br />

approximate two-component methods with transformed<br />

Hamiltonians for relativistic calculations <strong>of</strong> spin-spin<br />

coupling constants <strong>of</strong> heavy-atom systems. In particular,<br />

no picture-change effects arise in our method for<br />

property calculations. Pilot benchmark relativistic<br />

calculations show a high reliability <strong>of</strong> the mDKS-RMB<br />

methods. Recently, this method was extended to include<br />

GIAO (Gauge Including Atomic Orbitals) formalism.<br />

Our new method increases the accuracy in calculations<br />

<strong>of</strong> NMR and EPR parameters <strong>of</strong> compounds containing<br />

even as heavy elements as lanthanides or actinides.<br />

Further information: V. Malkin:<br />

vladimir.malkin@savba.sk<br />

1. Komorovský S., Repiský M., Malkina O. L., Malkin V. G., Malkin Ondik I., Kaupp M.: J. Chem.<br />

Phys. 128, 104101-1-104101-15, 2008<br />

2. Repiský M., Komorovský S., Malkina O. L., Malkin V. G.: Chem. Phys. 356, 236-242, 2009<br />

8


A model study <strong>of</strong> dickite intercalated with formamide<br />

and N-methylformamide<br />

E. Scholtzová, Ľ. Benco, D. Tunega<br />

The study <strong>of</strong> bonding <strong>of</strong> small molecules within the interlayer space <strong>of</strong> clay minerals<br />

enhances the understanding <strong>of</strong> the intercalation process and formation <strong>of</strong> contacts between<br />

intercalated molecule and host matrix. Local geometry and orientation <strong>of</strong> intercalated<br />

molecules <strong>of</strong> formamide (FA) and N-methylformamide (NMFA) in the clay mineral dickite<br />

(D) was studied by means <strong>of</strong> Density Functional Theory (DFT) calculations. Ten<br />

configurations with different orientation <strong>of</strong> the intercalated molecule were investigated for<br />

both D_FA (Fig. 1a) and D_NMFA intercalates. Four groups <strong>of</strong> relaxed structures sorted by<br />

the calculated total electronic energy were found in both cases (Fig. 1b). The experimental<br />

geometry <strong>of</strong> the D_FA intercalate was denoted as the most stable structure from the<br />

investigated models. The differences in the total electronic energy <strong>of</strong> all D_FA configurations<br />

are within the interval <strong>of</strong> ~92 kJ/mol. Formamide forms intercalates specifically and a close<br />

relation between the orientation <strong>of</strong> the FA molecules in the interlayer space and the stability<br />

<strong>of</strong> a particular configuration has been observed. On the other hand, N-methylformamide<br />

forms intercalated structures non-specifically. Small differences in the total energy, not larger<br />

than 18 kJ/mol, are observed for different orientations <strong>of</strong> the NMFA molecules The<br />

reorientation <strong>of</strong> the intercalated molecules has only a small effect on the stabilization <strong>of</strong> the<br />

D_NMFA intercalate what is in contrast with the D_FA intercalate. It was also observed that<br />

the experimental D_NMFA configuration is not the most stable. A small variation <strong>of</strong> the total<br />

electronic energy <strong>of</strong> different configurations correlates with small changes <strong>of</strong> the orientation<br />

<strong>of</strong> the dipole moment <strong>of</strong> the intercalated NMFA molecule.<br />

Structure model <strong>of</strong> D-FA intercalate (left); Calculated relative energies for ten model configurations<br />

<strong>of</strong> the D_FA and D_NMFA intercalates. (right)<br />

Further information: E. Scholtzová: eva.scholtzova@savba.sk<br />

Scholtzová E., Benco Ľ.,Tunega D.: Phys. Chem. Miner. 35, 299-309, 2008<br />

9


Organoclays and their applications<br />

J. Hrachová, Ľ. Jankovič, P. Komadel, J. Madejová, H. Pálková<br />

Montmorillonites (MMT), the main minerals in bentonites belonging to smectite group, are<br />

<strong>of</strong>ten used in many industrial applications, either in their natural form or after appropriate<br />

modification. Natural smectites with inorganic exchangeable cations, e.g. Ca 2+ or Na + , and<br />

their high affinity to water gives rise to hydrophilic character <strong>of</strong> smectite surface.<br />

Replacement <strong>of</strong> inorganic by organic (alkylammonium) cations changes the clay mineral<br />

surfaces to more hydrophobic. Final properties <strong>of</strong> organo-modified MMTs (organoclays)<br />

depend on their layer charge, the type <strong>of</strong> the organic cation used; the cation/clay mineral ratio,<br />

etc. For such materials higher stability upon mechanochemical or acid treatment was observed<br />

[1,2]. Montmorillonites in their natural forms are considered ineffective adsorbents <strong>of</strong> nonpolar<br />

organic compounds polluting frequently surface water because these compounds cannot<br />

effectively compete with highly polar water for adsorption sites on smectite surfaces.<br />

However, after exchange with organic cations with long alkyl chains adsorption on the<br />

smectites has been impressive. On the other side, smectite<br />

modified with small alkylammonium cations did not display<br />

much better adsorption abilities compared to their natural<br />

forms. Improvement was achieved only for low charged<br />

smectites. Nowadays, montmorillonite is the most widely used<br />

clay mineral as nan<strong>of</strong>iller because <strong>of</strong> its cation-exchange<br />

capacity and large active surface area when sufficiently<br />

delaminated. The layer thickness is ~1 nm, while the lateral<br />

dimensions <strong>of</strong> the layers vary up to several microns or even<br />

more, i.e. at least one dimension <strong>of</strong> the filler is in the<br />

nanometer range. Of particular interest is recently developed<br />

nanocomposite technology consisting <strong>of</strong> interactions <strong>of</strong> a<br />

polymer with an organoclay [3] Alkylammonium or<br />

alkylphosphonium cations in the organoclays lead to a<br />

decrease <strong>of</strong> the surface energy <strong>of</strong> the inorganic host and<br />

improve the wetting <strong>of</strong> the filler surface by polymer matrix,<br />

resulting in larger interlayer spacing. Additionally, these<br />

cations can provide functional groups that may react with the<br />

polymer matrix, or even initiate the polymerization <strong>of</strong><br />

monomers to improve interactions on the interface between<br />

the inorganic and the polymer matrix and to advance beneficial<br />

properties <strong>of</strong> nanocomposites.<br />

10<br />

Configuration <strong>of</strong> organic<br />

cations within interlayers<br />

<strong>of</strong> smectites<br />

Further information: J. Hrachová: jana.hrachova@savba.sk<br />

1. Hrachová J., Madejová J., Billik P., Komadel P., Fajnor V.Š.: J. Coll. Interf. Sci. 316, 589–595,<br />

2007<br />

2. Madejová J., Pálková H., Pentrák M., Komadel P.: Clays Clay Miner. 57, 392-403, 2009<br />

3. Hrachová J., Komadel P., Chodák I.: J. Mat. Sci. 43, 2012–2017, 2008


Molecular energy transfer in the systems based on layered silicates<br />

and organic dyes<br />

J. Bujdák, A. Czímerová, A. Čeklovský<br />

The formation <strong>of</strong> supramolecular assemblies <strong>of</strong> cationic dyes was observed in colloids and<br />

films <strong>of</strong> layered silicates. The distribution <strong>of</strong> dye molecules influenced the phenomenon <strong>of</strong><br />

energy transfer upon the excitation with visible light. Fluorescence spectroscopy indicated the<br />

intermolecular interactions based on a non-radiant energy transfer taking place between<br />

isolated dye cations and the supramolecules. For example, the energy transfer in a few<br />

nanometers’ scale was directly proven for more complex systems composed <strong>of</strong> two different<br />

dyes: oxazine and rhodamine. Molecules <strong>of</strong> rhodamine took a role <strong>of</strong> molecular antennas<br />

absorbing green light (λ=500-520 nm). Light absorption was accompanied with a non-radiant<br />

energy transfer to the molecules <strong>of</strong> the second dye, oxazine. The transfer was detected as a<br />

quenching <strong>of</strong> the light emission from the rhodamine (580 nm) in favour <strong>of</strong> the red light<br />

luminescence from oxazine (near 635 nm). Oxazine had not been directly excited by green<br />

light, and did not emit in rhodamine absence. The phenomenon shows how inorganic layered<br />

materials can be used to mediate the transfer <strong>of</strong> electromagnetic energy between adsorbed dye<br />

cations. The energy transfer yields were influenced by the distances between interacting<br />

molecules, which depended on the layer charge density <strong>of</strong> the silicate. These results could<br />

contribute to the development <strong>of</strong> novel types <strong>of</strong> hybrid materials potentially useful for laser or<br />

optical technologies.<br />

Scheme showing RET processes in the hybrids based on fluorescent dyes adsorbed on the<br />

surface <strong>of</strong> layered silicate particles. Using a suitable silicate and an optimal composition <strong>of</strong><br />

the hybrids, quenching by molecular aggregates (left) can be minimized in favour <strong>of</strong> the<br />

energy transfer leading to the emission from the energy acceptor (right).<br />

Further information: J. Bujdák: juraj.bujdak@savba.sk<br />

1. Bujdák J., Iyi N.: Chem. Mater. 18, 2618-2624, 2006<br />

2. Czímerová A., Bujdák J., Iyi N.: J. Photoch. Photob. A 187, 160-166, 2007<br />

11


Utilization <strong>of</strong> Slovak bentonites in environmental protection<br />

S. Andrejkovičová, P. Komadel, J. Madejová, M. Pentrák<br />

Pollution <strong>of</strong> the environment by toxic pollutants is a serious problem <strong>of</strong> present days.<br />

Bentonites are nano-sized materials utilized in isolating layers <strong>of</strong> waste dumps due to their<br />

excellent sealing properties. Among different types <strong>of</strong> barriers geosynthetic clay liners<br />

(GCLs) are <strong>of</strong>ten used to minimize contaminant transport from waste disposal sites. GCLs are<br />

factory fabricated thin layers, where bentonite is incorporated between geotextiles or bonded<br />

to a geomembrane. Bentonites are composed mainly <strong>of</strong> montmorillonite, the most common<br />

mineral <strong>of</strong> the smectite group. Chemical composition <strong>of</strong> montmorillonite, its sorption and<br />

swelling capacity and stability in acid or alkali solutions significantly affect the utilization <strong>of</strong><br />

bentonite. In Slovakia Al-rich bentonite from Jelšový Potok (JP) deposit and Fe-rich bentonite<br />

from Lieskovec (L) deposit are extensively investigated for their application in environment<br />

protection. Basic geotechnical properties such as liquid and plasticity limit, free swelling and<br />

permeability coefficient were<br />

determined to ascertain if<br />

bentonite from Lieskovec can<br />

be used for GCL applications.<br />

The permeability coefficients<br />

<strong>of</strong> the order <strong>of</strong> 10 -11 m.s -1<br />

suggested possible suitability<br />

<strong>of</strong> this bentonite for GCLs;<br />

however, other geotechnical<br />

properties provided insufficient<br />

values. Therefore the blends <strong>of</strong><br />

L-bentonite and JP-bentonite<br />

with ratios 65:35, 75:25, 85:15<br />

were prepared and tested. After<br />

natrification <strong>of</strong> the blends all<br />

Scheme <strong>of</strong> geosynthetic clay liner with bentonite filler<br />

geotechnical parameters markedly improved compared to L-bentonite. Properties <strong>of</strong> the<br />

mixtures containing 65 mass % <strong>of</strong> Na-L and 35 mass % <strong>of</strong> Na-JP bentonite were above those<br />

required for bentonites used in GCL for reliable protecting <strong>of</strong> the environment.<br />

Interactions <strong>of</strong> acid or alkali solutions with bentonites can significantly affect their<br />

properties and, consequently, theirutilization in GCLs. For example, acid attack on bentonites<br />

results in gradual damage <strong>of</strong> montmorillonite layers and formation <strong>of</strong> a protonated amorphous<br />

silica phase. The IR spectroscopy in the near region was found to be a simple, fast and very<br />

powerful method to follow structural changes occurring upon clay minerals dissolution in<br />

inorganic acids. The OH overtone band at 7312 cm -1 revealed the creation <strong>of</strong> the Si-OH<br />

groups even in the mildly-treated samples <strong>of</strong> L-bentonite. Similar changes observed in the<br />

NIR spectra <strong>of</strong> different clay minerals confirm that the mechanism <strong>of</strong> the clay minerals<br />

dissolution in inorganic acids is the same regardless <strong>of</strong> the structural arrangement and<br />

chemical composition <strong>of</strong> the mineral.<br />

Further information: S. Andrejkovičová: slavka.andrejkovicova@savba.sk<br />

1. Andrejkovičová S., Rocha F., Janotka I., Komadel P.: Geotext. Geomembranes 26, 436-445, 2008<br />

2. Madejová J., Pentrák M., Pálková H., Komadel P.: Vib. Spectrosc. 49, 211–218, 2009<br />

12


Ceramics nano-composites for the high temperature applications<br />

P. Šajgalík, Š. Lojanová, M. Hnatko, Z. Lenčéš<br />

Silicon nitride based nano-composites<br />

containing silicon carbide nanoinclusions<br />

were prepared by in situ<br />

reactions at the temperature <strong>of</strong> sintering.<br />

Different rare-earth oxides (RE = La,<br />

Nd, Sm, Y, Yb, Lu) were used as<br />

sintering additives. SiC nano-inclusions<br />

were formed by carbothermal reduction<br />

<strong>of</strong> intentionally added fine SiO2. Dense<br />

Si3N4/SiC nano-composites have<br />

exceptional mechanical properties,<br />

especially high temperature creep<br />

resistance. Composite prepared by<br />

addition <strong>of</strong> lutetia has a creep rate<br />

1.6 x 10 –9 s –1 at 1350 °C and 100 MPa<br />

loading.<br />

This value is much lower than the<br />

average values <strong>of</strong> creep rate<br />

commercially available materials and<br />

predetermines this nano-composite for<br />

the high-temperature applications in<br />

extreme conditions. Interestingly also<br />

room temperature properties <strong>of</strong> this<br />

nano-composite were reasonably high.<br />

Lutecia containing nano-composite has<br />

the highest hardness (17.6 ± 0.5 GPa),<br />

quite high fracture toughness (5.0 ± 0.2<br />

MPa⋅m 1/2 ) and strength (652 ± 56 MPa).<br />

All these properties predetermine this<br />

nano-composite for the applications in<br />

extreme conditions, e.g. material for<br />

ceramic glow plug is one <strong>of</strong> the<br />

possibilities.<br />

Further information: P. Šajgalík: pavol.sajgalik@savba.sk<br />

1. Šajgalík P., Hnatko M., Lenčéš Z., Dusza J., Kašiarová M.: Int. J. Appl. Ceram. Technol. 3, 41-46,<br />

2006<br />

2. Šajgalík P, Hnatko M., Lojanová Š., Lenčéš Z., Pálková H., Dusza J.: Int. J. Mater. Res. 97, 772-<br />

777, 2006<br />

3. Dusza J., Kašiarová M., Vysocká A., Špaková J., Šajgalík P.: High Temp. Mater. Process. 26, 7-<br />

16, 2007<br />

13<br />

SiC nano-<br />

inclusions<br />

1µm<br />

Microstructure <strong>of</strong> Si3N4/SiC nano-composites<br />

Deformation/creep <strong>of</strong> prepared lutecia doped ceramic<br />

nano-composite is almost negligible comparing to the<br />

deformation


Low cost SiAlON from hydrosilicates with high hardness<br />

and good corrosion resistance<br />

J. Křesťan, T. Plachký, Z. Lenčéš, Z. Pánek, P. Šajgalík<br />

Raw hydrosilicate materials (pyrophyllite and kaoline supplied by Envigeo, Inc. Slovakia)<br />

were used for the preparation <strong>of</strong> cheap β-SiAlON ceramics. Conversion <strong>of</strong> hydrosilicates to<br />

powder precursors (Si3N4 and AlN) was carried out by carbothermal reduction and nitridation<br />

(CRN) process. The preparation <strong>of</strong> powder precursor from raw materials by CRN with<br />

defined phase and chemical composition, which can be transformed to β-SiAlONs at higher<br />

temperatures, depends on the temperature, time, gas flow rate in the reactor, particle size <strong>of</strong><br />

reactants and the construction <strong>of</strong> reactor. All processing parameters were optimized<br />

experimentally for both starting powders, i.e. pyrophyllite and kaoline.<br />

The powder precursors were mixed with an appropriate amount <strong>of</strong> Al2O3 yielding β-<br />

SiAlON with the z-value <strong>of</strong> 3.7 (in the general formula Si6-zAlzOzN8-z) after hot pressing in a<br />

graphite resistance furnace at 1750°C for 2 hours in nitrogen atmosphere. Reference β-<br />

SiAlON was prepared for a comparison from the mixture <strong>of</strong> commercial powders (AlN,<br />

Al2O3, and Si3N4) under the same sintering conditions. The mechanical properties <strong>of</strong> kaoline<br />

derived β-SiAlON are similar to the reference SiAlON with a Vickers hardness (HV1) <strong>of</strong><br />

15.5 GPa and fracture toughness (KIC) <strong>of</strong> 4.5 MPa⋅m 1/2 . β-SiAlON prepared from pyrophyllite<br />

exhibits the best mechanical properties (HV1 = 18.4 GPa, K1C = 5.5 MPa⋅m 1/2 ).<br />

The corrosion behaviour <strong>of</strong> prepared β-SiAlONs<br />

was tested in molten steel, molten aluminium and<br />

relative fluoride and chloride fluxes used in the<br />

aluminium metallurgy. The corrosion layer in<br />

hydrosilicate-derived β-SiAlONs after tests in molten<br />

steel is two times thicker compared to reference<br />

material, but the service life is still three times longer<br />

compared to the commonly used alumina based<br />

materials. Moreover, all the prepared β-SiAlONs<br />

exhibit excellent corrosion resistance against molten<br />

chlorides and aluminium. The corrosion resistance <strong>of</strong><br />

β-SiAlONs (with high z-value) against molten<br />

fluorides is also acceptable. The results show that<br />

these relatively cheap hydrosilicate-derived β-<br />

SiAlONs can be applied in the aluminium and steel<br />

industry.<br />

14<br />

Ceramic part for steel-making<br />

ladles prepared from pyrophyllite<br />

precursor<br />

Further information: Z. Lenčéš: zoltan.lences@savba.sk<br />

1. Křesťan J., Pritula O., Smrčok Ľ., Šajgalík P., Lenčéš Z., Wannberg A., Monteverde F.: J. Eur.<br />

Ceram. Soc. 27, 2137-2143, 2007<br />

2. Plachký T., Křesťan J., Korenko M., Medri V., Lenčéš Z., Šajgalík P.: J. Ceram. Soc. Japn. 117,<br />

482-488, 2009


High temperature liquids: Specialized equipments for measuring<br />

<strong>of</strong> molten fluoride salts<br />

M. Boča, M. Kucharík, M. Korenko, B. Kubíková, F. Šimko, Ľ. Smrčok<br />

<strong>Inorganic</strong> melts based on fluoride salts are extremely corrosive; investigation <strong>of</strong> their<br />

properties meets with remarkable technical problems. We have succeeded in implementation<br />

<strong>of</strong> modern techniques for research <strong>of</strong> microscopic properties through collaboration with<br />

internationally accessible laboratories. Macroscopic properties, such as phase equilibria,<br />

thermodynamic quantities, density, viscosity and interfacial and surface tension were<br />

measured using commercially inaccessible equipment for research prepared and build in our<br />

laboratories.<br />

Highly time consuming experiments provide important data mainly for industrial<br />

applications. However, conclusions based solely on these results on processes occurring in<br />

molten systems lack direct prove, they need further support. It was achieved via<br />

implementation <strong>of</strong> new techniques like Rapid Solidification Processing and diffraction<br />

experiments using neutron and synchrotron radiation. This approach <strong>of</strong> the team and the<br />

results obtained were honoured by the Slovak Academy <strong>of</strong> Sciences Award in 2008.<br />

Neutron diffraction detector – Hahn-Meitner-Institut – Berlin<br />

Further information: M. Boča: miroslav.boca@savba.sk<br />

Korenko M., Kucharík M., Janičkovič D.: Chem. Pap. 62, 219-222, 2008<br />

15


High temperature liquids: Nanotubes formed from rapidly cooled<br />

melts <strong>of</strong> alumina saturated cryolite<br />

M. Kucharík, M. Korenko, B. Kubíková, F. Šimko<br />

So-called Rapid Solidification Processing (RPS) was used to obtain more information on<br />

the structure <strong>of</strong> deeply undercooled cryolite-alumina melts. It involved a rapid quenching <strong>of</strong><br />

the melt by cooling rate <strong>of</strong> ~10 6 K.s -1 . The RSP is more frequently used in a different field <strong>of</strong><br />

material engineering - for preparation <strong>of</strong> special amorphous materials such as glassy metals <strong>of</strong><br />

interesting properties. Cryolite and alumina are the main constituents <strong>of</strong> the electrolytes in the<br />

industrial production <strong>of</strong> aluminium by the Hall-Héroult process. SEM analysis has shown an<br />

additional feature <strong>of</strong> RPS application. The mass <strong>of</strong> nanotubes on the surface <strong>of</strong> so prepared<br />

undercooled melts mainly on the randomly shaped aggregates was observed. These nanotubes<br />

having usually a square shape in cross-section were preferentially located on the defect places<br />

<strong>of</strong> the surface with approximate dimensions <strong>of</strong> the base ~100 x 100 nm and the length ~1000<br />

nm. HR-TEM and EDX analyses <strong>of</strong> a lamella cut out <strong>of</strong> the prepared aggregates indicated that<br />

cryolite alone formed these nanotubes. However, alumina evidently played some role in the<br />

process <strong>of</strong> crystallization <strong>of</strong> the nanotubes since no similar features were observed on the<br />

surface <strong>of</strong> pure cryolite samples. Further investigation is in progress.<br />

Nanotubes formed from rapidly cooled melts <strong>of</strong> alumina saturated cryolite<br />

Further information: M. Korenko: michal.korenko@savba.sk<br />

Korenko M., Kucharík M., Vincenc Oboňa J., Janičkovič D., Córdoba R., De Teresa J.M., Kubíková<br />

B.: Helv. Chim. Acta 91, 1389-1399, 2008<br />

16


Laboratory-scale examination <strong>of</strong> foam formation and its stability<br />

during E-glass melting<br />

M. Liška, J. Kraxner, R. Klement<br />

In the frame <strong>of</strong> the project APVV20-P06405 “Optimization <strong>of</strong> E-glass melting” the Joint<br />

Glass Centre Vitrum Laugaricio developed experimental equipment for laboratory-scale<br />

examination <strong>of</strong> foam formation and its stability during glass batch melting. In cooperation<br />

with the glassworks Johns Manville Slovakia (JMS), Inc., Trnava the formation and stability<br />

<strong>of</strong> foam during melting <strong>of</strong> E-glass batch was investigated. The essence <strong>of</strong> industrial scale<br />

experiment performed in the glassworks JMS comprised the modification <strong>of</strong> the glass batch –<br />

gradual replacement <strong>of</strong> boric acid with colemanite. Simultaneously, the stability <strong>of</strong> foam<br />

during glass batch melting was investigated under reproducible and constant conditions in<br />

laboratory, which facilitated separation <strong>of</strong> the influence <strong>of</strong> the replacement <strong>of</strong> boric acid with<br />

colemanite from other process parameters. Laboratory tests indicated statistically significant<br />

trend <strong>of</strong> decreasing <strong>of</strong> the foam stability when boric acid was replaced with colemanite. The<br />

results allowed the increase <strong>of</strong> melting capacity without impairing the quality <strong>of</strong> produced Efibers.<br />

Development <strong>of</strong> foam amount in dependence <strong>of</strong> time. Red line shows the surface <strong>of</strong> glass<br />

melt.<br />

Further information: M. Liška: Liska@tnuni.sk<br />

17


Transparent armours with enhanced ballistic resistance<br />

D. Galusek, M. Michálková, J. Sedláček, P. Švančárek<br />

The cooperation <strong>of</strong> the Joint Glass Centre Vitrum Laugaricio with the partners from Czech<br />

Republic, Russia and Ukraine in development <strong>of</strong> transparent ceramic ballistic protections was<br />

focused on research and development <strong>of</strong> transparent alumina-based materials with excellent<br />

mechanical properties. The principal problem addressed by the project was the development<br />

<strong>of</strong> practical material, technological, and construction solutions <strong>of</strong> a new generation <strong>of</strong><br />

transparent armour systems with a protection capacity against AP small calibre ammunition<br />

(7,62 x 51 AP) comparable to recently produced thick layered armour concepts made <strong>of</strong><br />

strengthened float glass at simultaneous significant reduction <strong>of</strong> weight and thickness. The<br />

result is the solution <strong>of</strong> layered armour system with ultra hard impact layers made <strong>of</strong> sapphire<br />

single crystal, which at the total thickness <strong>of</strong> 60 mm provides the same level <strong>of</strong> ballistic<br />

protection as a layered glass <strong>of</strong> the thickness 120 - 140 mm. The armour has been successfully<br />

tested at the certified shooting range in Slavicin, Czech Republic, and earned the certificate<br />

for the Level 3 protection according to the STANAG 4569 standard.<br />

Fig. 1 Sample <strong>of</strong> bullet pro<strong>of</strong> window with<br />

surface sheet made <strong>of</strong> sapphire single<br />

crystal. The sample was exhibited at the<br />

presentation <strong>of</strong> accomplishments <strong>of</strong> the<br />

NATO scientific programmes at NATO<br />

headquarters in Brussels and at the IDET<br />

trade fair in Brno.<br />

Further information: D. Galusek: Galusek@tnuni.sk<br />

Fig. 2 Protective shutters on the tested<br />

transparent armour. A network <strong>of</strong> cracks can be<br />

seen after the second hit with an AP bullet with<br />

ultra hard WC core. The armour successfully<br />

defeated three hits with the AP bullet with<br />

impact velocity 930 m/s. Such bullet can pierce<br />

a 20 mm thick steel armour.<br />

18


SCIENTIFIC ACTIVITIES OF THE<br />

INSTITUTE<br />

1. CENTRES OF EXCELLENCE / NATIONAL CENTRES<br />

• Centre <strong>of</strong> excellence <strong>of</strong> SAS: NANOSMART – Centre <strong>of</strong> the nanostructured<br />

materials; coordinator from IIC: Pr<strong>of</strong>. RNDr. P. Šajgalík, DrSc.; 2007 – 2010. The aim<br />

<strong>of</strong> the centre is to conduct research and development <strong>of</strong> advanced materials, mainly<br />

aluminium based metallic alloys, ceramic high-temperature superconductors and ceramic<br />

engineering materials with respect to their structure on the nanolevel.<br />

• Centre <strong>of</strong> excellence <strong>of</strong> SAS: COMCHEM – Centre for advanced computational<br />

chemistry; principal coordinator from IIC: Pr<strong>of</strong>. RNDr. J. Noga, DrSc.; coordinator from<br />

IIC: Dr. V. Malkin, DrSc.; 2007 – 2010. The purpose <strong>of</strong> the centre is to improve the<br />

effectiveness and the quality <strong>of</strong> the research covering a broader spectrum <strong>of</strong> specific<br />

interests – from the development <strong>of</strong> new, progressive methods for highly accurate<br />

calculations <strong>of</strong> molecules, through applications <strong>of</strong> such methods in determining the<br />

structure, properties and reactivity <strong>of</strong> small to middle size molecules, to molecular<br />

mechanics studies <strong>of</strong> polymer aggregation or modeling <strong>of</strong> the condensed phase focused to<br />

materials research.<br />

• Centre <strong>of</strong> excellence <strong>of</strong> APVV: MEPA – Magnetoactivity, electroactivity and<br />

photoactivity <strong>of</strong> coordination compounds; VVCE-0004-07; coordinator from IIC: Dr.<br />

O. Malkin, DrSc.; 2008 – 2011. The aim <strong>of</strong> the centre is to prepare new inorganic<br />

materials, to characterize their composition, structure, and electronic structure, to identify<br />

their magnetic, electric and optical properties, to interpret these properties at the<br />

contemporary level <strong>of</strong> theories, and eventually to shift the theory to a higher level, with<br />

the final target not only to describe, but also to understand the mentioned properties and<br />

processes from the polyfunctional point <strong>of</strong> view.<br />

• Centre <strong>of</strong> excellence <strong>of</strong> APVV: SOLIPHA – Research and education centre <strong>of</strong><br />

excellence for solid phase research focused on nanomaterials, environmental<br />

mineralogy and material science; VVCE-0033-07; coordinator from IIC: RNDr. P.<br />

Komadel, DrSc.; 2008 – 2011. The principal objective <strong>of</strong> the research within the centre is<br />

the investigation <strong>of</strong> solid phases at the micro- and nano-levels. The research is focused on<br />

questions <strong>of</strong> environmental pollution related to mining activities, sustainable exploitation<br />

<strong>of</strong> raw materials, study <strong>of</strong> nanomaterials, material science and associated technologies.<br />

• Vitrum Laugaricio, Joint Glass Centre (VILA), founded in 2003, is based on a<br />

contract between the <strong>Institute</strong> <strong>of</strong> <strong>Inorganic</strong> <strong>Chemistry</strong>, Alexander Dubček University in<br />

Trenčín, Faculty <strong>of</strong> Chemical and Food Technology <strong>of</strong> the Slovak University <strong>of</strong><br />

Technology in Bratislava and RONA, j.s.c. The centre is a unique combination <strong>of</strong> the<br />

institutions involved in one research and education centre. The fundamental and applied<br />

research in the centre is represented by the IIC SAS, university education by the<br />

Alexander Dubček University <strong>of</strong> Trenčín and Faculty <strong>of</strong> Chemical and Food Technology,<br />

and the glassworks RONA, j.s.c. represents the industrially oriented research and<br />

development. The ultimate goal <strong>of</strong> the centre is to utilize the synergy effect <strong>of</strong><br />

participation <strong>of</strong> all four partners in order to preserve high level <strong>of</strong> research in the field <strong>of</strong><br />

19


oxide glasses and ceramic materials, and to prepare the graduates for both research and<br />

industrial careers.<br />

• MULTIDISC – Centre for the multidisciplinary research <strong>of</strong> advanced materials;<br />

coordinator from IIC: Pr<strong>of</strong>. RNDr. P. Šajgalík, DrSc.; 2005 – 2009. The aim <strong>of</strong> the centre<br />

is to develop the infrastructure necessary for the characterization <strong>of</strong> advanced materials<br />

on the submicrometre level.<br />

2. RESEARCH PROJECTS<br />

Multilateral International Projects<br />

FP6 Projects<br />

• FUNMIG (FP6-EURATOM): Fundamental processes <strong>of</strong> radionuclide migration,<br />

No: 516514; coordinator from IIC: Dr. V. Malkin, DrSc.; project coordinator: Dr. G.<br />

Buckau, <strong>Institute</strong> for Nuclear Waste Disposal, Research Center Karlsruhe, Germany;<br />

2005 – 2008<br />

• SMART (FP6): Foresight action for multifunctional materials technology, No: SSA-<br />

517045; coordinator from IIC: Pr<strong>of</strong>. RNDr. P. Šajgalík, DrSc.; project coordinator: Dr. G.<br />

Schumacher, Forschungszentrum Jülich, Germany; 2005 – 2007<br />

• PolyCerNet(FP6): Tailored multifunctional polymer-derived nanoceramics, No:<br />

MRTN-CT-2005-019601; coordinator from IIC: Pr<strong>of</strong>. RNDr. P. Šajgalík, DrSc.; project<br />

coordinator: Pr<strong>of</strong>. G. D. Soraru, Università degli studi di Trento, Italy; 2006 – 2009<br />

NATO Project<br />

• NATO SfP: Light weight and transparent armours, No: CBP-NR-SFPP-981770;<br />

coordinator from IIC: Doc. Ing. D. Galusek, PhD.; project coordinator: Dr. Alfred Sinani,<br />

I<strong>of</strong>fe Phys.-Tech. <strong>Institute</strong> <strong>of</strong> the Russian Academy <strong>of</strong> Sciences, St. Petersburg, Russia;<br />

2006 – 2009<br />

COST Projects<br />

• COST <strong>Chemistry</strong> Action WG D18/02: Lanthanide chemistry for diagnostic and<br />

therapy; coordinator from IIC: Dr. V. Malkin, DrSc.; project coordinator: Pr<strong>of</strong>. A.<br />

Merbach, Institut de chimie moléculaire et biologique, École Polytechnique Fédérale de<br />

Lausanne; 1999–2006<br />

• COST <strong>Chemistry</strong> Action WG D26/12: Towards a new level <strong>of</strong> accuracy in<br />

computations <strong>of</strong> molecular structure, molecular properties, spectroscopy and<br />

thermo-chemistry; project coordinator: Pr<strong>of</strong>. RNDr. J. Noga, DrSc.; 2002 – 2007<br />

Other International Projects<br />

• New Clay – Nanosemiconductive hybrids; coordinator from IIC: RNDr. Peter<br />

Komadel, DrSc.; partner: Department <strong>of</strong> Materials Science and Engineering, University<br />

<strong>of</strong> Ioannina, Greece; 2005 – 2006<br />

20


• Structure and solubility <strong>of</strong> niobium complexes: high temperature and high<br />

resolution solid state NMR study <strong>of</strong> the system; coordinator from IIC: Ing. František<br />

Šimko, PhD.; partner: Conditions Extremes et Materiaux: Haute Temperature et<br />

Irradiation, CNRS Orleans, France; 2005 – 2006<br />

• α-SiAlON with needle-like microstructure for wear applications; coordinator from<br />

IIC: Pr<strong>of</strong>. RNDr. P. Šajgalík, DrSc.; partner: Anadolu University, Faculy <strong>of</strong> Engineering<br />

and Architecture, Department <strong>of</strong> Materials Science and Engineering, Turkey; 2006 –<br />

2007<br />

• Processing and properties <strong>of</strong> Si-based ternary nitrides as sintering additives and<br />

phosphors; JSPS – SAS project; coordinator from IIC: Ing. Zoltán Lenčéš, PhD.;<br />

partner: Advanced Manufacturing Research <strong>Institute</strong>; AIST Nagoya, Japan; 2006 – 2007<br />

• Sorption <strong>of</strong> glyphosate on clay minerals; coordinator from IIC: RNDr. Peter Komadel,<br />

DrSc.; partner: Geological Survey <strong>of</strong> Denmark and Greenland, 2006 – 2007<br />

• Chemical evolution <strong>of</strong> inorganic substances to amino acids, peptides and protein<br />

precursors on the primordial Earth; coordinator from IIC: RNDr. J. Bujdák, PhD.;<br />

partner: <strong>Institute</strong> for General, <strong>Inorganic</strong> and Theoretical <strong>Chemistry</strong>, University <strong>of</strong><br />

Innsbruck, Austria; 2006 – 2008<br />

• Atomic level aspects <strong>of</strong> advanced cementitious materials; coordinator from IIC:<br />

RNDr. M. Drábik, CSc.; partner: University <strong>of</strong> Surrey (<strong>Chemistry</strong> C4), UK; 2006 – 2012<br />

• Novel porous materials based on layered silicates; coordinator from IIC: RNDr. J.<br />

Madejová, DrSc.; partner: <strong>Institute</strong> <strong>of</strong> Catalysis and Surface <strong>Chemistry</strong>, PAS, Krakow,<br />

Poland; 2007 – 2009<br />

• Characterisation and mechanical properties <strong>of</strong> SiCO ceramics; coordinator from IIC:<br />

pr<strong>of</strong>. RNDr. P. Šajgalík, DrSc.; partner: Institut für Materialwissenschaft, Fachbereich<br />

Material- und Geowissenschaften, Technische Universität Darmstadt, Germany; 2007 –<br />

2008<br />

• Anisotropic fluorescent thin films based on organic dyes embedded in layered<br />

inorganics; coordinator from IIC: RNDr. J. Bujdák, PhD.; partners: National <strong>Institute</strong> for<br />

Materials Science (NIMS), Tsukuba, Japan; Yamaguchi University, Graduate School <strong>of</strong><br />

Medicine, Yamaguchi, Japan; Division <strong>of</strong> Applied <strong>Chemistry</strong>, Tokyo Metropolitan<br />

University, Tokyo; 2008 – 2010<br />

• New hybrid materials based on fluorescent polymers on inorganic carriers;<br />

coordinator from IIC: RNDr. J. Bujdák, PhD.; partner: <strong>Institute</strong> <strong>of</strong> Polymers, Bulgarian<br />

Academy <strong>of</strong> Sciences, S<strong>of</strong>ia, Bulgaria; 2008 – 2010<br />

• Experimental study <strong>of</strong> molten fluoride salts as coolants in advanced high<br />

temperature reactors; coordinator from IIC: Ing. F. Šimko, PhD.; partner: Conditions<br />

Extremes et Materiaux: Haute Temperature et Irradiation, CNRS Orleans, France; 2008 –<br />

2009<br />

21


Projects <strong>of</strong> National Grant Agencies<br />

APVV Projects<br />

Coordinated by IIC<br />

• Application <strong>of</strong> DFT based methods for interpretation <strong>of</strong> NMR and EPR spectra <strong>of</strong><br />

inorganic compounds (with emphasis on transition metal complexes) and<br />

biosystems, APVT-51-045502, 2003 – 2006, Dr. V. Malkin, DrSc.<br />

• The physico-chemical and thermodynamic properties <strong>of</strong> the industrial molten<br />

fluoride systems on the base <strong>of</strong> aluminium, niobium and tantalum, APVT-51-<br />

008104, 2005 – 2007, Ing. M. Korenko, PhD.<br />

• Organic modifications <strong>of</strong> natural nanomaterials, APVV-51-050505, 2006 – 2009,<br />

RNDr. P. Komadel, DrSc.<br />

• Anisotropical energy transfer in hybrid nanomaterials based on layered silicates<br />

with organic dyes, APVV-51-027405, 2006 – 2009, RNDr. J. Bujdák, PhD.<br />

• Advanced ceramic materials for the photo-thermo-mechanical conversion system <strong>of</strong><br />

solar thermal engine based on the steam cycle, APVV-0448-06, 2007 – 2009, Ing. Z.<br />

Lenčéš, PhD.<br />

• Towards a higher accuracy in relativistic calculations <strong>of</strong> electronic structure and<br />

magneto-resonance spectra <strong>of</strong> compounds containing heavy elements, APVV-0625-<br />

06, 2007 – 2009, Dr. V. Malkin, DrSc.<br />

• Research <strong>of</strong> ceramics materials for high corrosive environments, APVV-0171-06,<br />

2007 – 2009, Pr<strong>of</strong>. RNDr. P. Šajgalík, DrSc.<br />

• Polymer derived nano-ceramic with controlled crystallinity, RPEU-0013-06, 2007 –<br />

2009, Pr<strong>of</strong>. RNDr. P. Šajgalík, DrSc.<br />

Sub-coordinated by IIC<br />

• Magnetostructural correlations in unconvential magnetic materials, APVT-20-<br />

005204, 2005 – 2007, Ing. M. Boča, PhD.<br />

• Optimisation <strong>of</strong> EUTAL glass melting, APVT-20-P06405, 2005 – 2007, Pr<strong>of</strong>. Ing. M.<br />

Liška, DrSc.<br />

• Properties <strong>of</strong> molecules with complicated electronic structure: Sophisticated<br />

calculations and predictions <strong>of</strong> spectroscopic and electric properties, APVV 018405,<br />

2006 – 2009, Pr<strong>of</strong>. RNDr. J. Noga, DrSc.<br />

• Alumina-based electroceramics for advanced plasma sources, APVV 0485-06, 2007<br />

– 2009, Doc. Ing. D. Galusek, PhD.<br />

• Micro-CHP unit based on solid biomass burning, APVV-0517-07, 2008 – 2010, Ing.<br />

Z. Lenčéš, PhD.<br />

VEGA Projects<br />

• Ceramic nanocomposites, VEGA-2/4072, 2004 – 2006, Pr<strong>of</strong>. RNDr. P. Šajgalík, DrSc.<br />

22


• The formation <strong>of</strong> ox<strong>of</strong>luoroaluminates and Si and V impurities behaviour in the<br />

system NaF-AlF3-Al2O3, VEGA-2/4071, 2004 – 2006, Ing. I. Nerád, CSc.<br />

• <strong>Chemistry</strong> and selected technological consequences <strong>of</strong> the effects <strong>of</strong> moisture and<br />

sulfates in cement-based materials, VEGA-2/5011, 2005 – 2007, RNDr. M. Drábik,<br />

CSc.<br />

• Physical and chemical properties <strong>of</strong> layer silicates related to their environmental<br />

applications, VEGA-2/6177, 2006 – 2008, RNDr. P. Komadel, DrSc.<br />

• Supramolecular assemblies based on the molecular aggregates <strong>of</strong> organic dyes on<br />

the surface <strong>of</strong> layered silicates, VEGA-2/6180, 2006 – 2008, RNDr. J. Bujdák, PhD.<br />

• The study <strong>of</strong> the fluoride molten-salts systems with the potential for industrial<br />

application, VEGA-2/6179, 2006 – 2008, Ing. M. Boča, PhD.<br />

• Structure and dynamics <strong>of</strong> hydrogen bonds in solids by neutron diffraction,<br />

quantum chemistry and inelastic netron scattering (INS), VEGA-2/6178, 2006 –<br />

2008, RNDr. Ľ. Smrčok, CSc.<br />

• Towards detailed knowledge <strong>of</strong> electronic structure from quantum chemical<br />

calculation, VEGA-2/6182, 2006 – 2008, Dr. O. Malkina, DrSc.<br />

• Transparent alumina-based materials with outstanding mechanical properties,<br />

VEGA-2/6181, 2006 – 2008, Doc. Ing. D. Galusek, PhD.<br />

• Structure and properties <strong>of</strong> silicate glasses – thermodynamical models and<br />

molecular dynamics simulations vs. experiment, VEGA-1/3578, 2006 – 2008, Pr<strong>of</strong>.<br />

Ing. M. Liška, DrSc.<br />

• Ceramic composites with uncommon sintering and microstructure forming<br />

additives, VEGA-2/7171, 2007 – 2009, Ing. Z. Lenčéš, PhD.<br />

• The behaviour <strong>of</strong> impurities in industrial acid electrolytes for aluminium<br />

production, VEGA-2/7077, 2007 – 2009, Ing. F. Šimko, PhD.<br />

• Relations <strong>of</strong> chemical changes and physico-mechanical properties <strong>of</strong> selected<br />

materials based on cement, VEGA-2/0055, 2008 – 2010, RNDr. M. Drábik, CSc.<br />

Projects supported by European Social Fund<br />

• Project ESF No. 13120200048: Sciental and technological transfer in research and<br />

development <strong>of</strong> natural nanomaterials, 2005 – 2008; principal coordinators: P. Uhlík<br />

and S. Šoltés, Faculty <strong>of</strong> Natural Sciences, Comenius University in Bratislava, Slovakia;<br />

coordinators from IIC: RNDr. P. Komadel, DrSc., RNDr. J. Madejová, DrSc.<br />

http://www.pvoc.sk/nano/index.php<br />

• Project ESF No. 13120200055: Claster <strong>of</strong> advanced studies – development <strong>of</strong> the<br />

next studiedness in the multidisciplinary research and development <strong>of</strong> progressive<br />

materials and nanomatarials with respect to the sustainable development, 2005 –<br />

2008; principal coordinator: Dr. Eva Majková, <strong>Institute</strong> <strong>of</strong> Physics SAS, Bratislava,<br />

Slovakia; coordinator from IIC: Pr<strong>of</strong>. RNDr. P. Šajgalík, DrSc.<br />

• Projekt ESF No. 13120200076: MATNET – Establishment <strong>of</strong> the R&D and<br />

Innovative Network for the Field <strong>of</strong> Materials and Joining Technology, 2005 – 2008;<br />

principal coordinator: Dr. Jaroslav Jerz, <strong>Institute</strong> <strong>of</strong> Materials and Maschine Mechanics,<br />

Bratislava, Slovakia; coordinator from IIC: Ing. M. Hnatko, PhD.<br />

23


3. SCIENTIFIC OUTPUT<br />

24<br />

2006 2007 2008<br />

Chapters in Monographs 1 1 6<br />

Papers in International Reviewed Journals 58 60 50<br />

Papers in other Journals 3 3 6<br />

Papers in Proceedings 14 17 31<br />

Invited Lectures at International Conferences 13 14 22<br />

Other Contributions at International Conferences 68 64 46<br />

Invited Lectures in <strong>Institutions</strong> Abroad 5 3 8<br />

SCI Citations to Publications 830 893 981<br />

4. INTERNATIONAL CONFERENCES ORGANIZED BY THE<br />

INSTITUTE<br />

• Engineering Ceramics 07, Smolenice 06 – 10. 05. 2007, Pr<strong>of</strong>. RNDr. P. Šajgalík, DrSc.<br />

The scope <strong>of</strong> the workshop was to commemorate the<br />

invention and recent development in the field <strong>of</strong> highperformance<br />

ceramics. During the last few years, the<br />

design <strong>of</strong> engineering ceramic materials, as many other<br />

high-tech materials proceeds the transition from microstructural<br />

to the nano-structural approach <strong>of</strong> their preparation. The main benefit <strong>of</strong> this<br />

approach is a new quality <strong>of</strong> materials as high temperature super-plasticity; excellent<br />

mechanical properties (high strength, fracture behaviour approaching the quasi-ductility,<br />

higher reliability, increased HT properties); functional properties (high electrical and<br />

thermal conductivity, optical transparency, graded function/properties <strong>of</strong> materials), etc.<br />

• The 8 th Conference on Solid State <strong>Chemistry</strong> – SSC 2008, Bratislava 06 – 11. 07.<br />

2008, RNDr. P. Komadel, DrSc.<br />

The scope <strong>of</strong> the conference was solid state chemistry in<br />

the broadest meaning, including results <strong>of</strong> various<br />

experimental and theoretical methods applied in<br />

investigation <strong>of</strong> solid state substances. The scientific program <strong>of</strong> SSC 2008 comprised<br />

sessions: Synthesis & characterization <strong>of</strong> materials; Crystal, electronic & magnetic<br />

structure; Electrochemistry & molten salts; <strong>Chemistry</strong> <strong>of</strong> glasses; Novel inorganic<br />

materials & nanomaterials; Layered compounds, clathrates & intercalates; Deposited<br />

films & surface chemistry. Over 200 participants from 29 countries representing Europe,


Asia, the Americas, and Africa attended the conference and presented 18 invited talks, 73<br />

lectures, and 146 posters.<br />

• 9th Conference <strong>of</strong> the European Society on Glass Science and Technology and the<br />

Annual Meeting <strong>of</strong> the International Commission on Glass, Trenčín 22 – 26. 06.<br />

2008, Pr<strong>of</strong>. Ing. M. Liška, DrSc., Pr<strong>of</strong>. RNDr. P. Šajgalík, DrSc., Doc. Ing. D. Galusek,<br />

PhD.<br />

The most important world glass event in 2008 covered a range<br />

<strong>of</strong> topics from the area <strong>of</strong> science and technology <strong>of</strong> glass and<br />

glass production. A satellite event the “Workshop on Entropy<br />

in Glass” dealt with theoretical aspects <strong>of</strong> glassy state.<br />

• Autumn school on neutron diffraction and spectroscopy, Tatranská Štrba 15 – 18. 09.<br />

2007, RNDr. Ľ. Smrčok, CSc.<br />

The School covered the current topics <strong>of</strong> neutron diffraction and spectroscopy with<br />

applications in chemistry, physics, material science and biology. The School put<br />

emphasis on the basic physical and technical principles.<br />

5. INTERNATIONAL FELLOWSHIPS<br />

Marie Curie Fellowship<br />

Ľ. Jankovič: University <strong>of</strong> Ioannina, Department <strong>of</strong> Physics, Greece, FP5: Research Training<br />

Networks (HPRN-CT-2002-00178), project title: „Composites <strong>of</strong> augmented strength:<br />

study <strong>of</strong> intercalates <strong>of</strong> uniquely structured clays”, 08/2003 – 07/2006<br />

H. Pálková: <strong>Institute</strong> <strong>of</strong> Catalysis and Surface <strong>Chemistry</strong>, Polish Academy <strong>of</strong> Sciences,<br />

Poland, project title: „Transfer <strong>of</strong> Knowledge in Design <strong>of</strong> Porous Catalysts“ within the<br />

framework <strong>of</strong> the Marie Curie Programme Transfer <strong>of</strong> Knowledge <strong>of</strong> the 6FP, 11/2005 –<br />

10/2006<br />

O. Pritula: Otto-Schott-Institut, Friedrich Schiller Universität, Jena, Germany, Marie Curie<br />

Host Fellowship, 08/2005 – 04/2006<br />

J. Sedláček: Otto-Schott-Institut, Friedrich Schiller Universität, Jena, Germany, Marie Curie<br />

Research Training Network, 09/2005 – 04/2006<br />

J. Sedláček: University <strong>of</strong> Karlsruhe, Karlsruhe, Germany, Marie Curie Fellowship, 09/2006<br />

– 09/2008<br />

M. Derzsi: <strong>Institute</strong> <strong>of</strong> Nuclear Physics PAS, Cracow, Poland, Marie Curie Research Training<br />

Network: Crust to Core (c2c) – the fate <strong>of</strong> subduction material, 01/2008 – 12/2008<br />

Others<br />

A. Czímerová: Advanced Materials Laboratory, National <strong>Institute</strong> for Materials Science,<br />

Tsukuba, Japan, FY2005 Japan Society for the Promotion <strong>of</strong> Science (JSPS), Postdoctoral<br />

Fellowship for <strong>Foreign</strong> Researchers, 09/2005 – 08/2006<br />

B. Kubíková: École Polytechnique, Chateau Gombert, Marseille, France, 10/2006 – 4/2007<br />

M. Milko: University <strong>of</strong> Leoben, Leoben, Austria, 03/2007 – 01/2010<br />

25


6. LECTURES DELIVERED BY THE GUESTS OF THE<br />

INSTITUTE<br />

Ján Šaroun: Application <strong>of</strong> neutron scattering in material reserch Nuclear Physics <strong>Institute</strong><br />

<strong>of</strong> the ASCR, Řež, Czech Republic, 25. 05. 2006<br />

Kamil Lang: From singlet oxygen to self-disinfecting materials. <strong>Institute</strong> <strong>of</strong> <strong>Inorganic</strong><br />

<strong>Chemistry</strong>, ASCR, Řež, Cech Republic, 28. 11. 2006<br />

Seniz Reyhan Kushan: Thermal diffusivity behaviour <strong>of</strong> SiAlON ceramics, Anadolu<br />

University, Eskisehir, Turkey, 15. 08. 2006<br />

Ioannis Koutselas: Low dimensional hybrid semiconductors, University <strong>of</strong> Patras, Greece,<br />

20. 11. 2006<br />

Corneliu Balan: Rheology <strong>of</strong> sol-gel transition, “Politehnica” University <strong>of</strong> Bucharest,<br />

Romania, 22. 02. 2007<br />

Ivo Dlouhý: Fracture behaviour <strong>of</strong> composite materials with brittle matrix. <strong>Institute</strong> <strong>of</strong><br />

Physics <strong>of</strong> Materials <strong>of</strong> the ASCR, Brno, Czech Republic, 28. 02. 2007<br />

Kiyoshi Hirao: High thermal conductivity silicon nitride ceramics, High-performance<br />

component processing group, Advanced Manufacturing Processing Research <strong>Institute</strong>,<br />

National Inst. Adv. Industrial Sci. and Technology (AIST), Nagoya, Japan, 13. 03. 2007<br />

Shelley Wiederhorn: The effect <strong>of</strong> rare earth oxides on the creep <strong>of</strong> silicon nitride, National<br />

<strong>Institute</strong> <strong>of</strong> Standards and Technology Gaithersburg, MD, USA, 14. 06. 2007<br />

Nobuo Iyi: Preparation <strong>of</strong> Self-standingLayeredDouble Hydroxide (LDH) Films and Other<br />

Recent Topics on LDHs, National <strong>Institute</strong> for Materials Science, Tsukuba, Japan, 21. 10.<br />

2008<br />

Ryo Sasai: Preparation <strong>of</strong> LuminousDye/Layered Material Hybrid Solid Materials with High<br />

Emission Quantum Yield and Its Environmental Response Ability, Nagoya University,<br />

Japan, 21. 10. 2008<br />

Shinsuke Takagi: The Effects <strong>of</strong> Porphyrin Structure on the Complex Formation Behavior<br />

with Clay, Tokyo Metropolitan University, Japan, 21. 10. 2008<br />

Jun Kawamata: Clay/Organic Hybrid Composites as Nonlinear Optical Materials,<br />

Yamaguchi University, Japan, 21. 10. 2008<br />

7. INVITED LECTURES DELIVERED BY THE MEMBERS OF<br />

THE INSTITUTE<br />

At International Conferences<br />

D. Galusek: Microstructure-property relationship in sintered alumina ceramics, 11 th Int.<br />

Ceramic Congress CIMTEC 2006, Acireale, Italy, 04. – 09. 06. 2006<br />

D. Galusek: Ceramic armour: Threats and challenges or threats are challenges? Workshop:<br />

Materials for a Safe Europe, Munich, Germany, 10. – 11. 10. 2006<br />

26


P. Komadel, J. Madejová, J. W. Stucki: Manipulation <strong>of</strong> layer charge <strong>of</strong> smectites, Fourth<br />

Mediterranean Clay Meeting, Middle East Technical University, Ankara, Turkey, 05. –<br />

10. 09. 2006<br />

Z. Lenčéš, Ľ. Hric, R. Hauser, P. Šajgalík, R. Riedel: Densification <strong>of</strong> Polymer Derived<br />

SiC/Si(A)OC, Ceramics, Polymer Routes to Multifunctional Ceramics for Advanced<br />

Energy and Propulsion Applications, Boulder-Colorado, USA, 30. 07. – 05. 08. 2006<br />

J. Madejová: Near infrared spectroscopy: a powerful method to learn more on modified<br />

smectites, Mid European Clay Conference 2006, Opatija, Croatia, 18. – 22. 09. 2006<br />

V. Malkin: Toward a quantum chemical simulation <strong>of</strong> EPR and NMR spectra <strong>of</strong> lanthanide<br />

compounds, Final meeting <strong>of</strong> the COST D18 Action: Lanthanide <strong>Chemistry</strong> for<br />

Diagnostic and Therapy, Orleans, France, 30. 03. – 02. 04. 2006<br />

V. Malkin: Recent progress in quantum-chemical calculations <strong>of</strong> NMR and EPR parameters<br />

<strong>of</strong> lanthanide compounds, 2 nd FUNMIG RTDC-2 Progress Meeting, Karlsruhe, Germany,<br />

02. 08. 2006<br />

J. Noga, S. Kedžuch: Beyond the standard approximation in coupled cluster R12 theory,<br />

CCP2 workshop on explicitly correlated wavefunctions, Notthingham, UK, 2006<br />

P. Šajgalík, M. Hnatko, Z. Lenčéš: Mechanical behavior <strong>of</strong> newly developed SiC/Si3N4 nanocomposites,<br />

The 30 th International Conference and Exhibition on Advanced Ceramics and<br />

Composites, Cocoa Beach, Florida, USA, 22. – 27. 01. 2006<br />

P. Šajgalík: Novel processing <strong>of</strong> silicon nitride/carbide nano-composites with the potential<br />

for cutting tools application, The Symposium on Hybrid Nano Materials toward Future<br />

Industries – HNM 2006, Nagaoka, Japan, 03. – 05. 02. 2006<br />

P. Šajgalík, J. Křesťan, Z. Lenčéš: Sialons from aluminosilicates – processing, RT properties,<br />

corrosion and oxidation resistance, 5 th ISN IT, Eskişehir Turkey, 02. – 06. 04. 2006<br />

P. Šajgalík, Z. Lenčéš, M. Hnatko: Layered ceramic composites with self-detection ability,<br />

Reliability <strong>of</strong> Ceramics, Cracow, Poland, 17. – 20. 09. 2006<br />

P. Šajgalík, Z. Lenčéš, M. Hnatko: SiC/Si3N4 nano/micro composites for high temperature<br />

applications, Advanced Polymer Materials, Bratislava, Slovakia, 11. – 14. 06. 2006<br />

D. Galusek: Advanced sintering methods for preparation <strong>of</strong> nanostructured ceramics, VI<br />

Konferencja Polskiego Towarzystwa Ceramicznego, Zakopane, Poland, 13. – 16. 09. 2007<br />

K. Hirao, Y. Zhou, X. Zhu, Z. Lenčéš, P. Šajgalík: Processing parameters affecting thermal<br />

and mechanical properties on sintered reaction-bonded nitrides, 2 nd International<br />

Symposium on Sialons and Non-Oxide, Ise-Shima, Mie, Japan, 02. – 05. 12. 2007<br />

S. Kedžuch, J. Šimunek, J. Noga: Different considerations for second order R12/F12 theory,<br />

Highly Accurate Calculations <strong>of</strong> Molecular Electronic Structure, Bad Herrenalb,<br />

Germany, 22. – 24. 03. 2007<br />

P. Komadel, J. Hrachová: Clay minerals used in polymer-clay composites, Nanoved 4 th<br />

International Conference on Nanoscience and Nanotechnologies, Bratislava, Slovakia, 11.<br />

– 14. 11. 2007<br />

A. Kožuško, A. Sinani, L. Lytvynov, V. Šída, D. Galusek: Ceramic protection against AP<br />

threats, 5 th Light Weight Armour Group Meeting, Roedental, Germany, 05. 10. 2007<br />

Z. Lenčéš, M. Hnatko, P. Šajgalík, D. Galusek: Silicon nitride based composites with tailored<br />

mechanical and functional properties, 2 nd International Conference on Recent Advances<br />

in Composite Materials, New Delhi, India, 20. – 23. 02. 2007<br />

Z. Lenčéš, P. Šajgalík, T. Plachký, Y. Zhou, K. Hirao, R. Riedel: Effect <strong>of</strong> polymer derived<br />

ceramics and ternary nitride sintering aids on the thermal conductivity <strong>of</strong> silicon nitride,<br />

27


International Symposium on Advanced Ceramics and Technology for Sustinable Energy<br />

Applications, ACTSEA 2007, Kenting Henchun Town, Taiwan, 04. – 07. 11. 2007<br />

Z. Lenčéš, P. Šajgalík, T. Plachký, Y. Zhou, K. Hirao, R. Riedel: Ternary nitrides with<br />

thermo electrical and optical properties and related silicon nitride-based composites,<br />

MRS Fall Meeting, Symposium Q: Nitrides and Related Bulk Materials, Boston, USA,<br />

26. – 30. 11. 2007<br />

J. Noga: MP2-R12 versus dual basis MP2 theory, Molecular Quantum Mechanics - Analytic<br />

Gradients and Beyond, Budapest, Hungary, 29. 05. – 03. 06. 2007<br />

J. Noga: Second quantization framework for the treatment <strong>of</strong> the operators partitionings – a<br />

tool to understand R12 theories, Molecular Theory for Real Systems, Kyoto, Japan, 27. –<br />

29. 07. 2007<br />

O. Malkin: A fully relativistic generalized kinetically balanced method for calculation <strong>of</strong><br />

EPR and NMR parameters in the framework <strong>of</strong> the modified matrix Dirac-Kohn-Sham<br />

equation, Conference on Relativistic Effects in Heavy Elements – REHE 2007, Ottrot,<br />

France, 21. – 25. 03. 2007<br />

P. Šajgalík, Z. Lenčéš, M. Hnatko, D. Salamon, J. Sedláček, D. Galusek: Oxide and nonoxide<br />

composites for ceramic tools applications, 10 th International Conference and<br />

Exhibition <strong>of</strong> the European Ceramic Society, Berlin, Germany, 17. – 21. 06. 2007<br />

P. Šajgalík, J. Křesťan, Z. Lenčéš, T. Plachký: Sialons from aluminosilicates, processing, RT<br />

properties, corrosion and oxidation resistance, 2 nd International Symposium on Sialons<br />

and Non-Oxide, Ise-Shima, Mie, Japan, 02. – 05. 12. 2007<br />

P. Šajgalík, Z. Lenčéš: Polymer derived ceramics: hybrid processing, 59. zjazd chemikov,<br />

Tatranske Matliare, Slovakia, 02. – 06. 09. 2007<br />

A. Čeklovský, J. Bujdák, K. Lang: Thin films <strong>of</strong> layered silicates with photochemically-active<br />

porphyrin cations, 8 th Conference on Solid State <strong>Chemistry</strong>, Bratislava, Slovakia, 06. –<br />

11. 07. 2008<br />

M. Drábik: The innovations <strong>of</strong> cement-based materials through materials chemistry, 8 th<br />

Conference on Solid State <strong>Chemistry</strong>, Bratislava, Slovakia, 06. – 11. 07. 2008<br />

K. Hirao, Y. Zhou, Y. Yoshizawa, Z. Lenčéš, P. Šajgalík: Preparation <strong>of</strong> nitride phosphors<br />

by combustion synthesis, International Symposium on New Frontier <strong>of</strong> Advanced Si-<br />

Based Ceramics and Composites (ISASC-2008), Jeju, Korea, 08. 06. – 11. 06. 2008<br />

S. Komorovský: Dirac-Kohn-Sham calculations <strong>of</strong> shielding tensor with restricted<br />

magnetically balanced basis, Workshop on Modern Methods in Quantum <strong>Chemistry</strong>,<br />

Mariapfarr, Austria, 14 – 17. 02. 2008<br />

Z. Lenčéš, Ľ. Benco, D. Velič, Y. Zhou, K. Hirao, P. Šajgalík: Thermal and optical<br />

properties <strong>of</strong> ternary silicon-nitrides, 4 th International Workshop on Spinel Nitrides and<br />

Related Materials, Ruedesheim/Rhine, Germany, 31. 08. – 05. 09. 2008<br />

Z. Lenčéš, Y. Zhou, Ľ. Benco, D. Velič, K. Hirao, P. Šajgalík: Electronic structure and<br />

optical properties <strong>of</strong> silicon-based ternary nitrides, 2 nd International Congress on<br />

Ceramics, Verona, Italy, 29. 06. – 04. 07. 2008<br />

J. Madejová: Infrared spectroscopy: Theory and clay minerals applications I, International<br />

workshop ADVANCECLAY – ERASMUS IP, Eötvös L. University, Budapest, Hungary,<br />

23. 07. 2008<br />

J. Madejová: Infrared spectroscopy: Theory and clay minerals applications II, International<br />

workshop ADVANCECLAY – ERASMUS IP, Eötvös L. University, Budapest, Hungary,<br />

23. 07. 2008<br />

J. Madejová: Possibilities <strong>of</strong> near IR spectroscopy in investigation <strong>of</strong> reduced charge<br />

28


smectites, AluSiV, Aberdeen, Scotland, UK, 03– 05. 09. 2008 2008<br />

V. Malkin: A fully relativistic calculations NMR parameters in the framework <strong>of</strong> the matrix<br />

Dirac-Kohn-Sham equation using a restricted magnetically balanced basis, Current<br />

Trends in Theoretical <strong>Chemistry</strong> V. Krakow, Poland, 2008<br />

P. Neogrady, J. Noga, M. Pitonak, M. Urban: Towards a more accurate and more efficient<br />

coupled cluster implementation in the Bratislava Group, 48 th Sanibel Symposium,<br />

Georgia, USA, 21. – 26. 02. 2008<br />

J. Noga: R12/F12 based theories within and beyond the standard approximation. An analysis<br />

and some numbers, Symposium on Atomic, Molecular and Optical Sciences and High<br />

Performance Computing, Kolkata, India, 10. – 12. 01. 2008<br />

J. Noga: Alternative explicitly correlated approaches based on the R12 theory, Symposium:<br />

Electron correlation and molecular dynamics for excited states and photochemistry,<br />

Vienna, Austria, 03. – 04. 06. 2008<br />

J. Noga, S. Kedzuch, J. Simunek, S. Ten-no: Coupled cluster F12 theory with Slater<br />

geminals, 7 th Central European Symposium on Theoretical <strong>Chemistry</strong>, Hejnice, Czech<br />

Republic, 28. 09. – 01. 10. 2008<br />

T. Plachký, Z. Lenčéš, R. Hauser, R. Riedel, P. Šajgalík: Densification <strong>of</strong> Si3N4/SiAlOC<br />

ceramic composites, 8 th Conference on Solid State <strong>Chemistry</strong>, Bratislava, Slovakia, 06. –<br />

11. 07. 2008<br />

P. Šajgalík: Road map <strong>of</strong> ceramics for energy, 2 nd International Congress on Ceramics,<br />

Verona, Italy, 29. 06. – 04. 07. 2008<br />

P. Šajgalík: Ceramic technologies for the alternative energy, KERMAT, International<br />

Symposium: The New Frontiers <strong>of</strong> Ceramic Materials, Rimini, Italy, 01. – 02. 10. 2008<br />

P. Šajgalík, M. Hnatko, Š. Lojanová, Z. Lenčéš: SiC/Si3N4 nano/micro composites –<br />

materials with excellent properties, Polish Ceramics: V. International Scientific and<br />

Technological Conference, Cracow, Poland, 14. – 17. 09. 2008<br />

P. Šajgalík, M. Hnatko, Š. Lojanová, Z. Lenčéš: SiC/Si3N4 nano/micro composites –<br />

processing and mechanical properties, International Symposium on New Frontier <strong>of</strong><br />

Advanced Si-Based Ceramics and Composites (ISASC-2008), Jeju Island, Korea, 08. 06.<br />

– 11. 06. 2008<br />

P. Šajgalík, Z. Lenčéš, Ľ. Hric, T. Plachký, R. Riedel: Novel non-oxide ceramics for<br />

application in extreme conditions, The 9 th International Symposium on Ceramic Materials<br />

and Components for Energy and Environmental Applications, Shanghai, China, 10. – 14.<br />

11. 2008<br />

P. Šajgalík, Z. Lenčéš, Y. Zhou, Ľ. Benco, K. Hirao, D. Velič: Synthesis and physical<br />

properties <strong>of</strong> magnesium and lanthanum silicon nitride, 1 st Symposium on Advanced<br />

Synthesis and Processing for Materials (ASPM08), Wuhan University <strong>of</strong> Technology,<br />

Wuhan, China, 14. – 17. 11. 2008<br />

P. Šajgalík, T. Plachký, Ľ. Hric, Z. Lenčéš, R. Riedel: Processing and properties <strong>of</strong> siliconbased<br />

composites using polymer derived ceramics as sintering aids, 4 th International<br />

Workshop on Spinel Nitrides and Related Materials, Ruedesheim/Rhine, Germany, 31.<br />

08. – 05. 09. 2008<br />

29


In <strong>Institutions</strong> Abroad<br />

J. Bujdák: Clay minerals in chemical evolution, Department <strong>of</strong> Theoretical <strong>Chemistry</strong>,<br />

<strong>Institute</strong> for General, <strong>Inorganic</strong> and Theoretical <strong>Chemistry</strong>, University <strong>of</strong> Innsbruck,<br />

Austria, 11. 12. 2006<br />

P. Komadel: <strong>Chemistry</strong> and properties <strong>of</strong> clay minerals – smectites, 24. 03. 2006;<br />

Spectroscopic evidence <strong>of</strong> chemical composition and changes in clay minerals, 05. 04.<br />

2006, Department <strong>of</strong> Geochemistry, Geological Survey <strong>of</strong> Denmark and Greenland,<br />

Copenhagen, Denmark<br />

P. Šajgalík, J. Křesťan, Z. Lenčéš: Sialons from aluminosilicates – processing, RT properties,<br />

corrosion and oxidation resistance, AIST Nagoya, Japan, 16. 10. 2006<br />

P. Šajgalík, Z. Lenčéš, M. Hnatko: Layered ceramic composites with self-detection ability,<br />

reliability <strong>of</strong> ceramics, IKM, University <strong>of</strong> Karlsruhe, Germany, 04. 12. 2006<br />

J. Bujdák: Clay minerals in chemical evolution, <strong>Institute</strong> <strong>of</strong> General, <strong>Inorganic</strong> and<br />

Theoretical <strong>Chemistry</strong>, Department <strong>of</strong> Theoretical <strong>Chemistry</strong>, University <strong>of</strong> Innsbruck,<br />

Austria, 12. 11. 2007<br />

D. Galusek: Pre-ceramic precursors for bulk non-oxide ceramics and ceramic-ceramic<br />

composites, University <strong>of</strong> Bayreuth, Bayreuth, Germany, 20. 07. 2007<br />

M. Pentrák: Acid treatment <strong>of</strong> clay minerals, University <strong>of</strong> Poitiers, France, 30. 11. 2007<br />

J. Bujdák: Hybrid materials based on organic dyes embedded in layered inorganic<br />

compounds. Phenomena and potential applications, Workshop on layered materials,<br />

National <strong>Institute</strong> for Materials Science, Tsukuba, Japan, 11. 03. 2008<br />

P. Komadel: <strong>Chemistry</strong> and properties <strong>of</strong> clay minerals – smectites, 9. 12. 2008;<br />

Spectroscopic evidence <strong>of</strong> chemical composition and changes in clay minerals, 10. 12.<br />

2008; Manipulation <strong>of</strong> layer charge <strong>of</strong> smectites, 11. 12. 2008, Faculty <strong>of</strong> Mining,<br />

Geology and Petroleum Engineering, University <strong>of</strong> Zagreb, Croatia<br />

J. Madejová: Near infrared spectroscopy in studies <strong>of</strong> modified smectites, <strong>Institute</strong> <strong>of</strong><br />

Catalysis and Surface <strong>Chemistry</strong> Polish Academy <strong>of</strong> Sciences, Cracow, Poland, 10. 06.<br />

2008<br />

V. Malkin: Introduction in the theory <strong>of</strong> calculations <strong>of</strong> NMR and EPR parameters;<br />

Relativistic calculations <strong>of</strong> NMR and EPR parameters; Theoretical prediction and<br />

interpretation <strong>of</strong> NMR and EPR parameters, <strong>Institute</strong> <strong>of</strong> Catalysis and Surface <strong>Chemistry</strong><br />

Polish Academy <strong>of</strong> Sciences and Jagiellonian university, Cracow, Poland, 31. 03. – 20.<br />

04. 2008.<br />

J. Noga: Towards high precision calculations <strong>of</strong> molecular energies and properties via<br />

explicitly correlated coupled cluster theory,<br />

a) Indian Association for the Cultivation <strong>of</strong> Science, Kolkata, India, 13. 01. 2008<br />

b) National Chemical Laboratory, Pune, India, 17. 01. 2008<br />

J. Noga: Basic Aspects <strong>of</strong> the Explicitly Correlated Coupled Cluster Theory, Center for<br />

Computational Quantum <strong>Chemistry</strong>, University <strong>of</strong> Georgia, Athens, GA, USA, 27. 02. –<br />

29. 02. 2008<br />

H. Pálková: Experimental measurement <strong>of</strong> Li/Mg partitioning between clay and solution<br />

during hectorite synthesis, UMR-CNRS, University de Poitiers, France, 03. 12. 2008<br />

V. Petrušková: Corrosion <strong>of</strong> Si3N4 and Al2O3 ceramics in different melting media,<br />

Technische Universität Darmstadt, Fachbereich material- und Geowissenschaften,<br />

Germany, 10. 11. 2008<br />

30


8. AWARDS AND HONOURS<br />

P. Komadel<br />

J. Noga<br />

Premium <strong>of</strong> the Slovak Literary Fund for citations in last three years,<br />

2006<br />

Premium <strong>of</strong> the Slovak Literary Fund for citations in last three years,<br />

2006<br />

J. Noga Elected member <strong>of</strong> the Learned Society <strong>of</strong> the SAS<br />

P. Šajgalík Elected member <strong>of</strong> the Learned Society <strong>of</strong> the SAS<br />

P. Šajgalík Scientist <strong>of</strong> the Year 2006<br />

P. Komadel Elected member <strong>of</strong> the Learned Society <strong>of</strong> the SAS<br />

M. Boča<br />

M. Korenko<br />

B. Kubíková<br />

M. Kucharík<br />

Award <strong>of</strong> the Slovak Academy <strong>of</strong> Sciences for the year 2008 for<br />

achievements in research on physico-chemical properties <strong>of</strong> molten<br />

salts<br />

F. Šimko<br />

P. Šajgalík<br />

Z. Lenčéš<br />

M. Hnatko<br />

D. Galusek<br />

J. Sedláček<br />

D. Galusek<br />

J. Chovanec<br />

M. Chromčíková<br />

R. Karell<br />

M. Liška<br />

J. Sedláček<br />

P. Švančárek<br />

Award <strong>of</strong> the Slovak Academy <strong>of</strong> Sciences for the year 2008 for the<br />

achievements in the reserach and development <strong>of</strong> advanced ceramic<br />

materials<br />

The prize <strong>of</strong> Vice-premier and Minister <strong>of</strong> Education <strong>of</strong> the Slovak<br />

Republic for science and technology for the year 2008, category<br />

Scientific Team <strong>of</strong> the Year<br />

P. Hrobárik Distinguished Student Award for 2008<br />

P. Hrobárik Outstanding Young Scientist Award for 2008<br />

S. Kedžuch<br />

Distinguished Student Award for 2006/07<br />

31


From left: M. Korenko, F. Šimko, B. Kubíková, M. Kucharík and M. Boča receiving the<br />

Award <strong>of</strong> the Slovak Academy <strong>of</strong> Sciences for the year 2008 for achievements in research on<br />

physico-chemical properties <strong>of</strong> molten salts<br />

From left: D. Galusek, M. Hnatko, Z. Lenčéš and P. Šajgalík receiving the Award <strong>of</strong> the<br />

Slovak Academy <strong>of</strong> Sciences for the year 2008 for achievements in the reserach and<br />

development <strong>of</strong> advanced ceramic materials<br />

32


M. Liška and D. Galusek receiving The prize <strong>of</strong> Vice-premier and Minister <strong>of</strong> Education <strong>of</strong><br />

the Slovak Republic for science and technology for the year 2008, category scientific team <strong>of</strong><br />

the year<br />

P. Hrobárik receiving the Award for the Outstanding Young Scientist <strong>of</strong> the Year 2008<br />

33


9. DEFENDED PhD. THESIS<br />

2006<br />

Ján Křesťan SiAlONs made from clay raw materials<br />

Supervisor<br />

Scientific Field<br />

Pr<strong>of</strong>. RNDr. P. Šajgalík, DrSc.<br />

<strong>Inorganic</strong> Technology and Materials<br />

Blanka Kubíková Phase equilibrium and surface tension <strong>of</strong> electrolytes for<br />

deposition <strong>of</strong> niobium<br />

Supervisor<br />

Pr<strong>of</strong>. Ing. Pavel Fellner, DrSc.<br />

Scientific Field <strong>Inorganic</strong> Technology and Materials<br />

Marián Kucharík Phase analysis <strong>of</strong> Na3AlF6-Al2O3 system. Surface tention <strong>of</strong><br />

molten NaF-AlF3-Al2O3 and KF-K2MoO4-SiO2 systems<br />

Supervisor<br />

Doc. Ing. Vladimír Daněk, DrSc.<br />

Scientific Field <strong>Inorganic</strong> Technology and Materials<br />

2007<br />

Viera Petrušková Damage <strong>of</strong> glass by hot water cleaning process<br />

Supervisor<br />

Scientific Field<br />

Pr<strong>of</strong>. RNDr. Pavol Šajgalík, DrSc.<br />

<strong>Inorganic</strong> Technology and Materials<br />

Mária<br />

Chromčíková<br />

The structural relaxation <strong>of</strong> oxide glasses<br />

Supervisor<br />

Pr<strong>of</strong>. Ing. Marek Liška, DrSc.<br />

Scientific Field <strong>Inorganic</strong> Technology and Materials<br />

Matúš Milko Electronic structure calculations <strong>of</strong> system with translational<br />

periodicity using the charge distributions fitting method<br />

Supervisor<br />

Pr<strong>of</strong>. RNDr. Jozef Noga, DrSc.<br />

Scientific Field Chemical Physics<br />

Mariana<br />

Structure and dynamics <strong>of</strong> selected hydrogen bonded<br />

Sládkovičová<br />

molecules – inelastic neutron scattering, neutron diffraction<br />

and DFT study<br />

Supervisor<br />

RNDr. Ľubomír Smrčok, CSc.<br />

Scientific Field Chemical Physics<br />

Stanislav Kedžuch Explicitly correlated wave functions: Alternative R12<br />

approach and the problem <strong>of</strong> one particle basis sets<br />

Supervisor<br />

Pr<strong>of</strong>. RNDr. Jozef Noga, DrSc.<br />

Scientific Field Chemical Physics<br />

2008<br />

Slávka<br />

Properties <strong>of</strong> bentonite from the Lieskovec deposit and its<br />

Andrejkovičová potential environmental applications<br />

Supervisor<br />

RNDr. Peter Komadel, DrSc.<br />

Scientific Field <strong>Inorganic</strong> Technology and Materials<br />

Jana Hrachová Organic modifications <strong>of</strong> montmorillonites and their<br />

applications in polymer (nano)composites<br />

Supervisor<br />

RNDr. Peter Komadel, DrSc.<br />

Scientific Field <strong>Inorganic</strong> Technology and Materials<br />

34


Zuzana Netriová Phase and volume properties <strong>of</strong> fluoride system based on<br />

tantalum<br />

Supervisor<br />

Ing. Miroslav Boča, PhD.<br />

Scientific Field <strong>Inorganic</strong> Technology and Materials<br />

Martin Pentrák Modification <strong>of</strong> clay minerals structure and properties by<br />

acid and alkali treatments<br />

Supervisor<br />

RNDr. Jana Madejová, DrSc.<br />

Scientific Field <strong>Inorganic</strong> Technology and Materials<br />

Ľubomír Hric Preparation <strong>of</strong> SiC-based ceramic materials with uncommon<br />

sintering additives<br />

Supervisor<br />

Pr<strong>of</strong>. RNDr. Pavol Šajgalík, DrSc.<br />

Scientific Field <strong>Inorganic</strong> Technology and Materials<br />

Peter Hrobárik Quantum-chemical studies on electronic structure and<br />

EPR/NMR parameters <strong>of</strong> transition and inner-transition<br />

metal complexes<br />

Supervisor<br />

Dr. Oľga Malkin, DrSc.<br />

Scientific Field Physical <strong>Chemistry</strong><br />

10. MEMBERS OF THE EDITORIAL BOARDS<br />

Scientific Journals Published Abroad<br />

P. Komadel<br />

P. Šajgalík<br />

M. Liška<br />

Applied Clay Science<br />

Clays and Clay Minerals<br />

Clay Minerals<br />

Ceramics-Silikáty<br />

Key Engineering Materials<br />

Bulletin <strong>of</strong> the European Ceramic Society<br />

Ceramics-Silikáty<br />

Sklár a Keramik<br />

Scientific Journals Published In Slovakia<br />

M. Boča Chemical Papers<br />

P. Komadel Geologica Carpathica<br />

35


11. COOPERATION WITH INDUSTRY<br />

Glassworks RONA, j.s.c. Lednické Rovne<br />

• Joint research grants on development <strong>of</strong> new compositions <strong>of</strong> crystalline glasses produced<br />

by the company<br />

• Actual problems <strong>of</strong> applied research and experimental development meeting the<br />

immediate needs <strong>of</strong> the company<br />

• Activities <strong>of</strong> specialist from RONA j.s.c. as lecturers for undergraduate and PhD students<br />

at VILA Center<br />

Saint Gobain Advanced Ceramics, Turnov, Česká republika<br />

Development <strong>of</strong> transparent ceramic armours with increased ballistic efficiency (joint<br />

grant NATO SfP 98 17 70: Light weight transparent armours)<br />

GoldenSUN Slovakia, s.r.o., Liptovský Mikuláš<br />

Joint research grants founded by Slovak Research and Development Agency:<br />

• Advanced ceramic materials for the photo-thermo-mechanical conversion system <strong>of</strong> solar<br />

thermal engine based on the steam cycle (project APVV-0448-06), 02/2007-12/2009<br />

• Micro-combined heat and power unit based on solid biomass burning (project APVV-<br />

0517-07), 09/2008-12/2010<br />

VUEZ, j.s.c., Levice<br />

Joint research projects on determination <strong>of</strong> resistance <strong>of</strong> glass fibers used as thermal<br />

insulations in nuclear power plants against leaching in aqueous media (Grant No.<br />

DSR/SESPRI/04s029a Chemical effects and Chemical effects II, funded by IRSN,<br />

France, Similar project funded by Allion Science USA<br />

Johns Manville Slovakia, j.s.c., Trnava<br />

Joint research project founded by Slovak Research and Development Agency:<br />

Optimalization <strong>of</strong> EUTAL melting (project APVT-20-P06405), partners: VILA (Joint<br />

Glass Center <strong>of</strong> the <strong>Institute</strong> <strong>of</strong> <strong>Inorganic</strong> <strong>Chemistry</strong> SAS, Alexander Dubček University<br />

<strong>of</strong> Trenčín, and RONA Lednické Rovne), <strong>Institute</strong> <strong>of</strong> <strong>Inorganic</strong> <strong>Chemistry</strong> SAS, Johns<br />

Manville Slovakia, inc. Trnava; 05/2006 - 12/1007<br />

Envigeo, j.s.c., Banská Bystrica<br />

Joint research project founded by Slovak Research and Development Agency: “Organic<br />

modifications <strong>of</strong> natural nanomaterials” (project APVV-51-050505), 03/2006 – 10/2009<br />

RHI AG, Technology Center, Standort Leoben, Austria; Montan Universität, Leoben,<br />

Austria<br />

Joint research project founded by RHI AG on the Synthesis and characterization <strong>of</strong><br />

oxinitrides in ordinary ceramic refractories. 2008 - 2010<br />

36


12. RESEARCH FUNDING<br />

thousand SKK<br />

30,000<br />

25,000<br />

20,000<br />

15,000<br />

10,000<br />

5,000<br />

0<br />

Wages<br />

Cost composition 2006-2008<br />

Overhead<br />

Capital investments<br />

37<br />

National Projects<br />

Cost category<br />

International Projects<br />

Cost composition<br />

(in thousand SKK) 2006 2007 2008<br />

Wages (+ taxes and funds<br />

contributions) 1 24 021 26 523 27 622<br />

Overhead 1 467 1 497 1 867<br />

Capital Investments 2 7 295 4 291 3 126<br />

National Projects 3 12 186 19 995 16 203<br />

International Projects 3 2 233 832 1 317<br />

Total Budget 47 202 53 138 50 135<br />

1 Permanent staff and PhD students<br />

2 Including the capital investments obtained from the national and international projects<br />

3 Without capital investments<br />

2006<br />

2007<br />

2008


13. EVENTS<br />

The Open Door Day<br />

Within the Slovak Science and Technology Week, “The Open Door Day” was organized<br />

in the <strong>Institute</strong> twice, in 2006 and 2008, mainly for the students <strong>of</strong> the secondary schools<br />

together with their pedagogues and university students. Representatives <strong>of</strong> industrial partners<br />

and media were also invited.<br />

Five to seven membered groups were shuttled throughout the departments with special<br />

explanation <strong>of</strong> the experimental instrumentation. In the common areas poster exhibition<br />

together with presentation <strong>of</strong> <strong>Institute</strong>’s publications were available. Particular attention was<br />

paid to the exposition <strong>of</strong> research products (artificial ceramic joints, cutting tools, advanced<br />

materials, ...). From all the experiments, the most attractive were those performed on scanning<br />

electron microscope. Available were computer demonstrations <strong>of</strong> the scientific interests <strong>of</strong><br />

each department, as well as short movies from industrial processes. Several visitors stopped at<br />

the <strong>Institute</strong>’s library. For secondary school students, blocks <strong>of</strong> laboratory experiments were<br />

performed to show the beauty <strong>of</strong> chemistry, emphasizing the need <strong>of</strong> precaution. About one<br />

hundred visitors came in 2008.<br />

Anna Jurová presenting details <strong>of</strong> the scanning electron microscopy work. More information<br />

about the experiments explained Jaroslav Sedláček (in the back).<br />

38


PhD. student Tomáš Plachký presenting Bengal flames, one <strong>of</strong> the most attractive<br />

experiments.<br />

“The fruit <strong>of</strong> our research” — the materials developed by the scientists from our <strong>Institute</strong>.<br />

39


Researcher’s Night in the European Union<br />

The tradition <strong>of</strong> the European Researchers´ night began in 2005. This action aims at<br />

supporting the efforts undertaken since 2005 in order to bring researchers closer to the larger<br />

public, with a view to enhancing their important role in society. Traditional events during<br />

Researchers´ night are activities focused on presentation <strong>of</strong> scientifics and researchers, results<br />

<strong>of</strong> investigations and developments, various qiuzes and competitions, discussions, scientific<br />

c<strong>of</strong>fee bars and other promotions. Slovak Republic participated twice in this all-European<br />

event. The coves <strong>of</strong> investigation and development <strong>of</strong> construction ceramics materials were<br />

presented by young scientists from the Department <strong>of</strong> Ceramics <strong>of</strong> our <strong>Institute</strong> during the<br />

night from 26 th to 27 th September 2008 in the shopping centre Aupark in Bratislava.<br />

Specifically, material resistant against cavitations, corrosive working environment, high<br />

temperatures and pressures and thermal shocks for photo-thermal and mechanical conversion<br />

system in thermo-solar engine, which is working on the principle <strong>of</strong> steam engine cycle, was<br />

introduced.<br />

Stirling model <strong>of</strong> solar engine as an example <strong>of</strong> utilization <strong>of</strong> renewable source <strong>of</strong> energy - the<br />

Researchers´Night 2008.<br />

40


Pr<strong>of</strong>. Pavol Šajgalík, the director <strong>of</strong> our <strong>Institute</strong>, in front <strong>of</strong> a microphone during the<br />

Researchers´Night 2008<br />

41


IIC SAS DEPARTMENTS<br />

43


DEPARTMENT OF CERAMICS<br />

Members <strong>of</strong> the Department<br />

phone e-mail<br />

Head<br />

Pr<strong>of</strong>. RNDr. Pavol Šajgalík, DrSc. +421 2 59410 400 pavol.sajgalik@savba.sk<br />

Scientific staff<br />

Ing. Svetozár Balkovic, PhD. +421 2 59410 419 svetozar.balkovic@savba.sk<br />

Ing. Ľubomír Benco, PhD. lubomir benco@univie.ac.at<br />

RNDr. Milan Drábik, PhD. +421 2 59410 474 milan.drabik@savba.sk<br />

Prom.farm. Ľubica Gáliková +421 2 59410 439 lubica.galikova@savba.sk<br />

Ing. Katarína Ghillányová, PhD. +421 2 59410 440 katarina.ghillanyova@savba.sk<br />

Ing. Miroslav Hnatko, PhD. +421 2 59410 415 miroslav.hnatko@savba.sk<br />

Mgr. Ľubomír Hric, PhD. +421 2 59410 440 lubomir.hric@savba.sk<br />

Ing. Štefan Kavecký, PhD. +421 2 49268 281 stefan.kavecky@savba.sk<br />

Ing. Zoltán Lenčéš, PhD. +421 2 59410 408 zoltan.lences@savba.sk<br />

Ing. Jaroslav Sedláček, PhD. +421 2 59410 442 jaroslav.sedlacek@savba.sk<br />

Technical staff<br />

Miriam Hnatková +421 2 59410 415 miriam.hnatkova@savba.sk<br />

Anna Jurová +421 2 59410 403 anna.jurova@savba.sk<br />

Magdaléna Kňazovičová +421 2 59410 429 magdalena.knazovicova@savba.sk<br />

PhD. Students<br />

Ing. Františka Frajkorová +421 2 59410 428 frantiska.frajkorova@savba.sk<br />

Ing. Linda Kipsová +421 2 59410 443 linda.kipsova@savba.sk<br />

Ing. Štefánia Lojanová +421 2 59410 442 stefania.lojanova@savba.sk<br />

Ing. Tomáš Plachký +421 2 59410 440 tomas.plachky@savba.sk<br />

45


Field <strong>of</strong> Scientific Interest<br />

The Department <strong>of</strong> Ceramics <strong>of</strong> IIC is active in the research <strong>of</strong> oxide and non-oxide ceramic<br />

materials since 1984. Main expertise is in the processing <strong>of</strong> bulk micro-and nano-ceramics,<br />

microstructure control, and their characterization. In the last years the research is focused on<br />

the development <strong>of</strong> ceramic materials for wear and high-temperature applications, transparent<br />

ceramics, polymer derived ceramics, preparation <strong>of</strong> non-oxide ceramics with high thermal<br />

and/or electrical conductivity, design <strong>of</strong> nitride/oxynitride phosphors. Microstructural design<br />

<strong>of</strong> a new type <strong>of</strong> multifunctional composites with self-diagnostic ability, and in situ<br />

modification <strong>of</strong> grain boundaries has also been studied with respect to the high temperature<br />

mechanical properties. Further, the chemical aspects <strong>of</strong> cross-linked functional interfaces<br />

between the polymer filler and cemented matrix in MDF materials and their impact on the<br />

bulk properties were investigated.<br />

International and National Projects<br />

Foresight action for multifunctional materials technology<br />

FP 6 Project EU, No. SSA 517045 (SMART)<br />

Duration: 2005 – 2006<br />

International Coordinator: Dr. Gerd Schumacher; Forschung Centrum Jülich, Germany<br />

Principal Investigator in Slovakia: Pr<strong>of</strong>. RNDr. P. Šajgalík, DrSc.<br />

Tailored Multifunctional Polymer-derived nanoCeramics<br />

FP 6 Project EU, MRTN-CT-2005-019601 (PolyCerNet)<br />

Duration: 2006 – 2009<br />

International Coordinator: Pr<strong>of</strong>. Gian Domenico Soraru, Department <strong>of</strong> Materials<br />

Engineering, University <strong>of</strong> Trento, Italy<br />

Principal Investigator in Slovakia: Pr<strong>of</strong>. RNDr. P. Šajgalík, DrSc.<br />

Atomic level aspects <strong>of</strong> advanced cementitious materials<br />

Bilateral Project with the University <strong>of</strong> Surrey, UK<br />

Duration: 2003 – 2006<br />

Principal Investigator in Slovakia: RNDr. M. Drábik, CSc.<br />

Ceramic nanocomposites<br />

VEGA Project No. 2/4072/24<br />

Duration: 2004 – 2006<br />

Principal Investigator: Pr<strong>of</strong>. RNDr. P. Šajgalík, DrSc.<br />

<strong>Chemistry</strong> and selected technological consequences <strong>of</strong> the effects <strong>of</strong><br />

moisture and sulfates in cement-based materials<br />

VEGA Project No. 2/5011/25<br />

Duration: 2005 – 2007<br />

Principal Investigator: RNDr. M. Drábik, CSc.<br />

46


Ceramic composites with uncommon sintering and microstructure forming<br />

additives<br />

VEGA Project No. 2/7171/27<br />

Duration: 2007 – 2009<br />

Principal Investigator: Ing. Z. Lenčéš, PhD.<br />

Relations <strong>of</strong> chemical changes and physico-mechanical properties <strong>of</strong><br />

selected materials based on cement<br />

VEGA Project No. 2/0055/08<br />

Duration: 2008 – 2010<br />

Principal Investigator: RNDr. M. Drábik, CSc.<br />

Polymer derived nano-ceramic with controlled crystallinity<br />

APVV Project No. RPEU-0013-06<br />

Duration: 2007 – 2009<br />

Principal Investigator: Pr<strong>of</strong>. RNDr. P. Šajgalík, DrSc.<br />

Research <strong>of</strong> ceramics materials for high corrosive environments<br />

APVV Project No. APVV-0171-06<br />

Duration: 2007 – 2009<br />

Principal Investigator: Pr<strong>of</strong>. RNDr. P. Šajgalík, DrSc.<br />

Advanced ceramic materials for the photo-thermo-mechanical conversion<br />

system <strong>of</strong> solar thermal engine based on the steam cycle.<br />

APVV Project No. APVV-0448-06<br />

Duration: 2007 – 2009<br />

Principal Investigator: Ing. Z. Lenčéš, PhD.<br />

Micro-CHP unit based on solid biomass burning<br />

APVV Project No. APVV-0517-07<br />

Duration: 2008 – 2010<br />

Principal Investigator: Faculty <strong>of</strong> Engineering, University <strong>of</strong> Žilina<br />

Principal Investigator at IIC SAS: Ing. Z. Lenčéš, PhD.<br />

Processing and properties <strong>of</strong> Si-based ternary nitrides as sintering additives<br />

and phosphors<br />

Joint Research Project supported by the Japan Society for the Promotion <strong>of</strong> Science in<br />

collaboration with the Slovak Academy <strong>of</strong> Sciences<br />

Duration: 2006 – 2008<br />

Principal Investigator: Dr. K. Hirao, AIST Nagoya, Japan<br />

Principal Investigator in Slovakia: Ing. Z. Lenčéš, PhD.<br />

Centre <strong>of</strong> the nanostructured materials<br />

Project <strong>of</strong> CE SAS<br />

Duration: 2007 – 2010<br />

Principal Investigator: IMR SAS<br />

Principal Investigator on IICH SAS: Pr<strong>of</strong>. RNDr. P. Šajgalík, DrSc.<br />

47


Selected Publications<br />

BALOG M., ŠAJGALÍK P., HOFER F., WARBICHLER P., FRÖHLICH K., VÁVRA O.,<br />

JANEGA J., HUANG J.-L: Electrically Conductive SiC-(Nb,Ti)ss-(Nb,Ti)Css Cermet, Journal<br />

<strong>of</strong> the European Ceramic Society 26, 1259 – 1266, 2006<br />

ŠAJGALÍK P., HNATKO M., LOJANOVÁ Š., LENČÉŠ Z., PÁLKOVÁ H., DUSZA J.:<br />

Microstructure, Hardness and Fracture Toughness Evolution <strong>of</strong> Hot-Pressed SiC/Si3N4<br />

Nano/Micro Composite after High-temperature Treatment, International Journal <strong>of</strong> Materials<br />

Research 97, 772 – 777, 2006<br />

ŠAJGALÍK P., LENČÉŠ Z., DUSZA J.: Layered Composites with Self-Diagnostic Ability,<br />

Composites Part B: Engineering 37, 515 – 523, 2006<br />

LENČÉŠ Z., HIRAO K., ŠAJGALÍK P., HOFFMANN M.J.: Thermodynamic and<br />

Dielectric Properties <strong>of</strong> MgSiN2 Ceramics, Key Engineering Materials 317-318, 857 – 860,<br />

2006<br />

KAŠIAROVÁ M., DUSZA J., HNATKO M., ŠAJGALÍK P., REECE M.J.: Fractographic<br />

Montage for a Si3N4-SiC Nanocomposite, Journal <strong>of</strong> the American Ceramic Society 89, 1752<br />

– 1755, 2006<br />

ŠAJGALÍK P., HNATKO M., ČOPAN P., LENČÉŠ Z., HUANG J.-L.: Influence <strong>of</strong><br />

Graphite Additives on Wear Properties <strong>of</strong> Hot-Pressed Si3N4 Ceramics, Journal <strong>of</strong> the<br />

Ceramic Society <strong>of</strong> Japan 114, 1061 – 1068, 2006<br />

BODIŠOVÁ K., ŠAJGALÍK P., GALUSEK D., ŠVANČÁREK P.: Two-Stage Sintering <strong>of</strong><br />

Alumina with Submicrometer Grain Size, Journal <strong>of</strong> the American Ceramic Society 90, 330 –<br />

332, 2007<br />

LICHVÁR P., ŠAJGALÍK P., LIŠKA M., GALUSEK D.: CaO-SiO2-Al2O3-Y2O3 Glasses as<br />

Model Grain Boundary Phases for Si3N4, Journal <strong>of</strong> the European Ceramic Society 27, 429 –<br />

436, 2007<br />

KŘESŤAN J., PRITULA O., SMRČOK Ľ., ŠAJGALÍK P., LENČÉŠ Z., WANNBERG A.,<br />

MONTEVERDE F.: Corrosion <strong>of</strong> β-SiAlON-Based Ceramics by Molten Steel, Journal <strong>of</strong> the<br />

European Ceramic Society 27, 2137 – 2143, 2007<br />

ŠAJGALÍK P., KŘESŤAN J., LENČÉŠ Z.: Corrosion Resistance <strong>of</strong> β-SiAlON-Based<br />

Ceramics against Molten Steel, Materials Science Forum 554, 147 – 150, 2007<br />

PETRUŠKOVÁ V., VRÁBEL P., ŠIMURKA P., ŠAJGALÍK P., MARYŠKA M.: Surface<br />

Damage <strong>of</strong> Two Different Wineglasses during Dishwashing Process, Ceramics – Silikáty 51,<br />

57 – 66, 2007<br />

BENCO Ľ., HAFNER J., LENČÉŠ Z., ŠAJGALÍK P.: Density Functional Study <strong>of</strong><br />

Structures and Mechanical Properties <strong>of</strong> Y-Doped α-SiAlONs, J. Eur. Ceram. Soc. 28, 995 –<br />

1003, 2008<br />

48


LENČÉŠ Z., BENCO Ľ., MADEJOVÁ J., ZHOU Y., KIPSOVÁ L., HIRAO K.: Reaction<br />

Synthesis and Characterisation <strong>of</strong> Lanthanum Silicon Nitride, Journal <strong>of</strong> the European<br />

Ceramic Society 28, 1917 – 1922, 2008<br />

ŠAJGALÍK P., DUSZA J., LENČÉŠ Z., HNATKO M., GALUSEK D., GHILLÁNYOVÁ<br />

K.: Bulk Ceramic Nanostructures, In: Chen I-W.: Ceramics Science and Technology 1,<br />

WILEY-VCH, Weinheim, 347 – 373, 2008, ISBN 978-527-31155-2.<br />

DRÁBIK M., GÁLIKOVÁ Ľ., BALKOVIC S., SLADE R.C.: Macro-Defect Free Materials<br />

with Controlled Moisture Resistance, In: Nanotechnology <strong>of</strong> concrete: Recent developments<br />

and future perspectives, eds. K. Sobolev, S. P. Shah, American Concrete <strong>Institute</strong>, Michigan,<br />

145 – 155, 2008, ISBN 978-0-97031-299-1<br />

Editors <strong>of</strong> Special Journal Issues and Proceedings<br />

ŠAJGALÍK P., LENČÉŠ Z.: Multifunctional Ceramic Nanocomposites with Self-<br />

Diagnostic Ability <strong>of</strong> Catastrophic Damage, eds. J. A. Schwarz, C. I. Contescu, K. Putyera,<br />

Dekker Encyclopedia <strong>of</strong> Nanoscience and Nanotechnology 1, 2006, ISBN 0-8247-5055-1<br />

SCHUMACHER G., PRESTON S., SMITH A., ŠAJGALÍK P.: Future Perspectives <strong>of</strong><br />

European Materials Research, Matter and Materials 35, Forschung Centrum Juelich, 2007,<br />

130 pages, ISBN 978-3-89336-447-0<br />

ŠAJGALÍK P., DUSZA J., LENČÉŠ Z., HNATKO M., GALUSEK D., GHILLÁNYOVÁ<br />

K.: Ceramic Science and Technology, eds. R. Riedel and I-W. Chen, Bulk Ceramic<br />

Nanocomposites 1, WILEY-VCH GmBH & Co. KGaA, Weinheim, 347 – 375, 2008<br />

<strong>Foreign</strong> <strong>Cooperating</strong> <strong>Institutions</strong><br />

• Universität Karlsruhe, Institut für Keramik im Maschinenbau, Karlsruhe, Germany<br />

• Technische Universität Darmstadt, Fachgebiet Disperse Festst<strong>of</strong>fe, Darmstadt, Germany<br />

• <strong>Institute</strong> for Ceramic Technology, ISTEC, Faenza, Italy<br />

• University <strong>of</strong> Trento, Materials Science Department, Trento, Italy<br />

• National <strong>Institute</strong> for Advanced Industrial Science and Technology (AIST), Nagoya,<br />

Japan<br />

• University <strong>of</strong> Leeds, Materials Science Department, Leeds, United Kingdom<br />

• Austrian Research Center, Materials Science Division, Seibersdorf, Austria<br />

• Forschung Institut für Elektronenmikroskopie und Feinstruktur Forschung, TU Graz,<br />

Austria<br />

• Department <strong>of</strong> Material Science and Engineering, National Cheng Kung University,<br />

Tainan, Taiwan, PR China<br />

49


Electron microscope EVO ® 40 Series<br />

Selected Equipment<br />

Universal, multiple-purpose, scanning electron microscope EVO ® 40 represents the latest<br />

development trends in SEM technology with accurate and reproducible, full-mechanised stage<br />

with full range <strong>of</strong> vacuum modes and all new lenses with BeamSleeve technology. The<br />

superior X-rays geometry provides users the most exact analysis in high vacuum.<br />

X-ray diffractometer (Bruker D8 Advance Super Speed)<br />

The instrument is equipped with spinning copper anode (wave length 0.154 nm) and a Goebel<br />

mirror (horizontal divergence 0.03° FWHM). The measurement <strong>of</strong> X-ray diffraction in<br />

symmetric regime, grazing incidence <strong>of</strong> XRD, structural and voltage analysis <strong>of</strong> reflection and<br />

reciprocal space mapping are possible.<br />

50


DEPARTMENT OF HYDROSILICATES<br />

Members <strong>of</strong> the Department<br />

phone e-mail<br />

Head<br />

RNDr. Peter Komadel, DrSc. +421 2 59410 464 peter.komadel@savba.sk<br />

Scientific staff<br />

Mgr. Slávka Andrejkovičová, PhD. +421 2 59410 484 slavka.andrejkovicova@savba.sk<br />

RNDr. Juraj Bujdák, PhD. +421 2 59410 459 juraj.bujdak@savba.sk<br />

Mgr. Adriana Czímerová, PhD. +421 2 59410 471 adriana.czimerova@savba.sk<br />

RNDr. Jana Hrachová, PhD. +421 2 59410 485 jana.hrachova@savba.sk<br />

Mgr. Ľuboš Jankovič, PhD. +421 2 59410 459 lubos.jankovic@savba.sk<br />

RNDr. Jana Madejová, DrSc. +421 2 59410 406 jana.madejova@savba.sk<br />

Ing. Helena Pálková, PhD. +421 2 59410 485 helena.palkova@savba.sk<br />

Ing. Martin Pentrák, PhD. +421 2 59410 484 martin.pentrak@savba.sk<br />

Ing. Jana Valúchová, PhD. +421 2 59410 485 jana.valuchova@savba.sk<br />

Technical staff<br />

RNDr. Klára Hrnčiarová +421 2 59410 499 klara.hrnciarova@savba.sk<br />

Zora Lukáčová +421 2 59410 470 zora.lukacova@savba.sk<br />

Zuzana Rosíková +421 2 59410 470 zuzana.rosikova@savba.sk<br />

PhD. Student<br />

Mgr. Alexander Čeklovský +421 2 59410 471 alexander.ceklovsky@savba.sk<br />

51


Field <strong>of</strong> Scientific Interest<br />

Minerals from the smectite group, typically montmorillonites, are natural layered<br />

nanomaterials and the main minerals in bentonites. Their chemistry and modifications are<br />

investigated at the Department <strong>of</strong> Hydrosilicates since the foundation <strong>of</strong> the <strong>Institute</strong>. Primary<br />

interest is development and characterization <strong>of</strong> attractive novel materials based on modified<br />

smectites, such as hybrid nanomaterials with organic substances and intercalation compounds.<br />

Chemical modifications performed recently include replacement <strong>of</strong> exchangeable cations with<br />

protons and/or with various inorganic or organic cations, forming a systematic study targeted<br />

on the properties <strong>of</strong> raw and modified smectites. Their possible applications are in organic<br />

and inorganic hybrid materials, including smectite–polymer nanocomposites, optical materials<br />

based on hybrids with organic dyes, in numerous spheres <strong>of</strong> environmental protection, etc.<br />

The phenomena studied include new applications <strong>of</strong> IR and UV-VIS spectroscopic techniques<br />

in materials chemistry; surface acidity; fixation <strong>of</strong> cations; barrier and sorption properties with<br />

entrapping <strong>of</strong> environmentally hazardous compounds; properties <strong>of</strong> clay–polymer<br />

nanocomposites; for hybrids with dyes resonance energy transfer, luminescence, formation <strong>of</strong><br />

molecular aggregates and photoactivity.<br />

International and National Projects<br />

New clay – nanosemiconductive hybrids<br />

Bilateral Project within the Collaboration Program <strong>of</strong> Slovak Republic and Greece<br />

Duration: 2005 – 2006<br />

Principal Investigator in Slovakia: RNDr. P. Komadel, DrSc.<br />

Principal Investigator in Greece: Dr. M. A. Karakassides, Department <strong>of</strong> Materials Science<br />

and Engineering, University <strong>of</strong> Ioannina, Greece<br />

The chemical evolution <strong>of</strong> inorganic substances to amino acids, peptides<br />

and protein precursors on the primordial earth<br />

Bilateral Project No. GZ 45.530/1-VI/B/7a/2002<br />

Duration: 2002 – 2006<br />

Principal Investigator in Slovakia: RNDr. J. Bujdák, PhD.<br />

Principal Investigator in Austria: Pr<strong>of</strong>. B.M. Rode, <strong>Institute</strong> for General, <strong>Inorganic</strong> and<br />

Theoretical <strong>Chemistry</strong>, University <strong>of</strong> Innsbruck, Austria<br />

Chemical evolution<br />

Bilateral Project<br />

Duration: 2007 – 2008<br />

Principal Investigator in Slovakia: RNDr. J. Bujdák, PhD.<br />

Principal Investigator in Austria: Pr<strong>of</strong>. B.M. Rode <strong>Institute</strong> for General, <strong>Inorganic</strong> and<br />

Theoretical <strong>Chemistry</strong>, University <strong>of</strong> Innsbruck, Austria<br />

Novel porous materials based on layered silicates<br />

Bilateral Project within inter-academic agreements on scientific cooperation with Polish<br />

Academy <strong>of</strong> Sciences<br />

Duration: 2007 – 2009<br />

52


Principal Investigator in Slovakia: RNDr. J. Madejová, DrSc.<br />

Principal Investigator in Poland: Pr<strong>of</strong>. E. Serwicka, <strong>Institute</strong> <strong>of</strong> Catalysis and Surface<br />

<strong>Chemistry</strong>, Polish Academy <strong>of</strong> Sciences, Krakow, Poland<br />

Anisotropic fluorescent thin films based on organic dyes embedded in<br />

layered inorganics<br />

Bilateral Project within inter-academic agreements on scientific cooperation with Japan<br />

Society for the Promotion <strong>of</strong> Science<br />

Duration: 2008 – 2010<br />

Principal Investigator in Slovakia: RNDr. J. Bujdák, PhD.<br />

Principal Investigator in Japan: Dr. N. Iyi, National <strong>Institute</strong> for Materials Science,<br />

Tsukuba, Japan<br />

New hybrid materials based on fluorescent polymers on inorganic carriers<br />

Bilateral Project within inter-academic agreements on scientific cooperation with Bulgarian<br />

Academy <strong>of</strong> Sciences<br />

Duration: 2008 – 2010<br />

Principal Investigator in Slovakia: RNDr. J. Bujdák, PhD.<br />

Principal Investigator in Bulgaria: Assoc. Pr<strong>of</strong>. Ivo Grabchev, <strong>Institute</strong> <strong>of</strong> Polymers,<br />

Bulgarian Academy <strong>of</strong> Sciences, S<strong>of</strong>ia, Bulgaria<br />

Physical and chemical properties <strong>of</strong> layer silicates related to their<br />

environmental applications<br />

VEGA Project No. 2/6177/06<br />

Duration: 2006 – 2008<br />

Principal Investigator: RNDr. P. Komadel, DrSc.<br />

Supramolecular assemblies based on the molecular aggregates <strong>of</strong> organic<br />

dyes on the surface <strong>of</strong> layered silicates<br />

VEGA Project No. 2/6180/26<br />

Duration: 01/2006 – 12/2008<br />

Principal Investigator: RNDr. J. Bujdák, PhD.<br />

Organic modifications <strong>of</strong> natural nanomaterials<br />

APVT Project No. 51-050505<br />

Duration: 05/2006 – 04/2009<br />

Principal Investigator: RNDr. P. Komadel, DrSc.<br />

<strong>Cooperating</strong> <strong>Institutions</strong>: Polymer <strong>Institute</strong>, SAS, and Envigeo, j.s.c., Banská Bystrica,<br />

Slovakia<br />

Anisotropical energy transfer in hybrid nanomaterials based on layered<br />

silicates with organic dyes<br />

APVT Project No. 51-027405<br />

Duration: 05/2006 – 04/2009<br />

Principal Investigator: RNDr. J. Bujdák, PhD.<br />

<strong>Cooperating</strong> <strong>Institutions</strong>: J. Heyrovsky <strong>Institute</strong> <strong>of</strong> Physical <strong>Chemistry</strong> <strong>of</strong> the ASCR,<br />

Czech Republic, National <strong>Institute</strong> for Materials Science, Tsukuba, Japan<br />

53


Sciential and technological transfer in research and development <strong>of</strong> natural<br />

nanomaterials<br />

ESF Project No. 13120200048<br />

Duration: 2005 – 2008<br />

Principal Investigator: Faculty <strong>of</strong> Natural Sciences, Comenius University, Bratislava<br />

<strong>Cooperating</strong> <strong>Institutions</strong>: <strong>Institute</strong> <strong>of</strong> <strong>Inorganic</strong> <strong>Chemistry</strong> and <strong>Institute</strong> <strong>of</strong> Construction and<br />

Architecture, SAS, Bratislava<br />

Research and education centre <strong>of</strong> excellence for solid phase research<br />

focused on nanomaterials, environmental mineralogy and material science<br />

APVV-VVCE Project No. 0033-07<br />

Duration: 07/2008 – 06/2011<br />

Principal Investigator: Faculty <strong>of</strong> Natural Sciences, Comenius University, Bratislava<br />

<strong>Cooperating</strong> <strong>Institutions</strong>: <strong>Institute</strong> <strong>of</strong> <strong>Inorganic</strong> <strong>Chemistry</strong>, SAS, Bratislava<br />

Selected Publications<br />

KOMADEL P., MADEJOVÁ J.: Acid activation <strong>of</strong> clay minerals. In: Handbook <strong>of</strong> clay<br />

Science, F. Bergaya, B.K.G. Theng, G. Lagaly ed., Developments in Clay Science, Elsevier,<br />

Vol. 1, 263 – 287, 2006<br />

BUJDÁK J., IYI N.: Spectral and structural characteristics <strong>of</strong> oxazine 4/hexadecyltri-<br />

Methylammonium montmorillonite films, <strong>Chemistry</strong> <strong>of</strong> Materials 18, 2618 – 2624, 2006<br />

KOMADEL P., MADEJOVÁ J., STUCKI J.W.: Structural Fe(III) reduction in smectites,<br />

Applied Clay Science 34, 88 – 94, 2006<br />

MADEJOVÁ J., PÁLKOVÁ H., KOMADEL P.: Behaviour <strong>of</strong> Li + and Cu 2+ in heated<br />

montmorillonite: Evidence from far-, mid-, and near-IR regions, Vibrational Specroscopy 40,<br />

80 – 88, 2006<br />

BUJDÁK J., MARTÍNEZ MARTÍNEZ V., LÓPEZ ARBELOA F., IYI N.: Spectral<br />

properties <strong>of</strong> rhodamine 3B adsorbed on the surface <strong>of</strong> montmorillonites with variable layer<br />

charge, Langmuir 23, 1851 – 1859, 2007<br />

CZÍMEROVÁ A., IYI N., BUJDÁK J.: Energy transfer between rhodamine 3B and oxazine<br />

4 in synthetic-saponite dispersioons and films, Journal <strong>of</strong> Colloid and Interface Science 306,<br />

316 – 322, 2007<br />

HRACHOVÁ J., MADEJOVÁ J., BILLIK P., KOMADEL P., FAJNOR V.Š.: Dry<br />

grinding <strong>of</strong> Ca and octadecyltrimethylammonium montmorillonite, Journal <strong>of</strong> Colloid and<br />

Interface Science 316, 589 – 595, 2007<br />

MADEJOVÁ J., ANDREJKOVIČOVÁ S., BUJDÁK J., ČEKLOVSKÝ A.,<br />

HRACHOVÁ J., VALÚCHOVÁ J., KOMADEL P.: Characterization <strong>of</strong> products obtained<br />

by acid leaching <strong>of</strong> Fe-bentonite, Clay Minerals 42, 527 – 540, 2007<br />

54


ANDREJKOVIČOVÁ S., JANOTKA I., KOMADEL P.: Evaluation <strong>of</strong> geotechnical<br />

properties <strong>of</strong> bentonite from Lieskovec deposit, Slovakia, Applied Clay Science 38, 297 –<br />

303, 2008<br />

ANDREJKOVIČOVÁ S., ROCHA F., JANOTKA I., KOMADEL P.: An investigation into<br />

the use <strong>of</strong> blends <strong>of</strong> two bentonites for geosynthetic clay liners, Geotextiles and<br />

Geomembranes 26, 436 – 445, 2008<br />

BUJDÁK J., CZÍMEROVÁ A., IYI N.: Structure <strong>of</strong> cationic dyes assemblies intercalated in<br />

the films <strong>of</strong> montmorillonite, Thin Solid Films 517, 793 – 799, 2008<br />

CZÍMEROVÁ A., IYI N., BUJDÁK J.: Fluorencence resonance energy transfer between<br />

two cationic laser dyes in presence <strong>of</strong> the series <strong>of</strong> reduced-charge montmorillonites: Effect <strong>of</strong><br />

the layer charge, Journal <strong>of</strong> Colloid and Interface Science 320, 140 – 151, 2008<br />

ČEKLOVSKÝ A., CZÍMEROVÁ A., PENTRÁK M., BUJDÁK J.: Spectral properties <strong>of</strong><br />

TMPyP intercalated in thin films <strong>of</strong> layered silicates, Journal <strong>of</strong> Colloid and Interface Science<br />

324, 240 – 245, 2008<br />

HRACHOVÁ J., KOMADEL P., CHODÁK I: Effect <strong>of</strong> montmorillonite modification on<br />

mechanical properties <strong>of</strong> vulcanized natural rubber composites, Journal <strong>of</strong> Materials Science<br />

43, 2012 – 2017, 2008<br />

KOMADEL P., ANASTÁCIO A.S., ANDREJKOVIČOVÁ S., STUCKI J.W.: Iron phases<br />

identified in bentonite from the Lieskovec deposit (Slovakia) by variable-temperature<br />

Mössbauer spectroscopy, Clay Minerals 43, 107 – 115, 2008<br />

<strong>Foreign</strong> <strong>Cooperating</strong> <strong>Institutions</strong><br />

• J. Heyrovsky <strong>Institute</strong> <strong>of</strong> Physical <strong>Chemistry</strong> <strong>of</strong> the ASCR, Prague, Czech Republic<br />

• <strong>Institute</strong> <strong>of</strong> <strong>Chemistry</strong>, Academy <strong>of</strong> Sciences <strong>of</strong> the Czech Republic, Czech Republic<br />

• <strong>Institute</strong> <strong>of</strong> Catalysis and Surface <strong>Chemistry</strong>, Polish Academy <strong>of</strong> Sciences, Krakow,<br />

Poland<br />

• <strong>Institute</strong> <strong>of</strong> Polymers, Bulgarian Academy <strong>of</strong> Sciences, S<strong>of</strong>ia, Bulgaria<br />

• University <strong>of</strong> Poitiers, CNRS, HydrASA, Poitiers, France<br />

• University <strong>of</strong> Aveiro, Aveiro, Portugal<br />

• University <strong>of</strong> Ioannina, Ioannina, Greece<br />

• Sheffield Hallam University, Sheffield, UK<br />

• National <strong>Institute</strong> for Materials Science, Tsukuba, Japan<br />

• Nagoya University, Graduate School <strong>of</strong> Engineering, Nagoya, Japan<br />

• Tokyo Metropolitan University Faculty <strong>of</strong> Urban Environmental Sciences, Tokyo, Japan<br />

• Yamaguchi University, Graduate School <strong>of</strong> Medicine, Yamaguchi, Japan<br />

• University <strong>of</strong> Illinois, Champaign-Urbana, USA<br />

• Monash University, Melbourne, Australia<br />

55


Selected Equipment<br />

UV-VIS spectrophotometer Cary 100 (Varian)<br />

Dr. A. Czímerová working at UV-VIS spectrophotometer<br />

Double beam spectrophotometer operating in the whole UV-VIS range (200-900 nm) is ideal<br />

for measuring an extensive set <strong>of</strong> samples from solutions to solid/non-liquid optical materials.<br />

It can be used for various scientific or applied industrial applications, e.g. quantitative<br />

analysis <strong>of</strong> chromophores (including biochemical compounds), measuring the reaction<br />

kinetics, etc.<br />

Nicolet 6700 FTIR spectrometer<br />

Dr. M. Pentrák working at FTIR spectrometer<br />

High research-grade Fourier Transform Infrared (FTIR) spectrometer is equipped by Smart<br />

Accessories including Orbit diamond single bounce ATR, Specular ATR, Diffuse Reflectance<br />

and Near-IR UpDRIFT TM . Smart Accessories are recognized by FTIR bench, which can<br />

automatically optimize the system for the measurement technique that best suits the sample<br />

type or problem.<br />

56


Head<br />

DEPARTMENT OF MOLTEN SYSTEMS<br />

Members <strong>of</strong> the Department<br />

phone e-mail<br />

Ing. Miroslav Boča, PhD. +421 2 59410 490 miroslav.boca@savba.sk<br />

Scientific staff<br />

Ing. Michal Korenko, PhD. +421 2 59410 463 michal.korenko@savba.sk<br />

Ing. Ladislav Kosa, CSc. +421 2 59410 495 ladislav.kosa@savba.sk<br />

Ing. Blanka Kubíková, PhD. +421 2 59410 414 blanka.kubikova@savba.sk<br />

Ing. Marián Kucharík, PhD. +421 2 59410 420 marian.kucharik@savba.sk<br />

Ing. Jarmila Mlynáriková<br />

(Cibulková), PhD.<br />

+421 2 59410 414 jarmila.mlynarikova@savba.sk<br />

Ing. Ivan Nerád, CSc. +421 2 59410 421 ivan.nerad@savba.sk<br />

Ing. Zuzana Netriová<br />

(Ivanová), PhD.<br />

+421 2 59410 414 zuzana.netriova@savba.sk<br />

Ing. František Šimko, PhD. +421 2 59410 420 frantisek.simko@savba.sk<br />

Technical staff<br />

Jarmila Heinleinová +421 2 59410 455 jarmila.heinleinova@savba.sk<br />

Ing. Iveta Macková +421 2 59410 492 iveta.mackova@savba.sk<br />

Ing. Eva Mikšíková +421 2 59410 492 eva.miksikova@savba.sk<br />

Ing. Jozef Priščák +421 2 59410 489 jozef.priscak@savba.sk<br />

RNDr. Roman Vasiljev<br />

+421 2 59410 489 roman.vasiljev@savba.sk<br />

57


Field <strong>of</strong> Scientific Interest<br />

The Department <strong>of</strong> Molten Systems deals with the investigation <strong>of</strong> liquids that can be<br />

characterized by the existence <strong>of</strong> columbic interactions at high temperatures. Basic physicochemical<br />

properties like phase equilibria, density, electric conductivity, viscosity, interfacial<br />

and surface tension are under the study together with the development <strong>of</strong> semi-empirical<br />

models for better understanding <strong>of</strong> the relations between the composition, properties and<br />

structure <strong>of</strong> inorganic melts. Preferentially, fluoride systems based on tantalum, niobium,<br />

titanium, tin and aluminium are the objects <strong>of</strong> the research. Ambition <strong>of</strong> the Department is the<br />

implementation <strong>of</strong> modern techniques, such as high temperature NMR and MAS NMR<br />

spectroscopy, high temperature neutron and synchrotron diffraction methods or secondary ion<br />

mass spectroscopy into the investigation <strong>of</strong> melts. . Rapid solidification processing is applied<br />

in order to prepare metastable phases with the structure close to that <strong>of</strong> the liquid phase.<br />

Applied research <strong>of</strong> the Department is connected with optimization <strong>of</strong> conditions for<br />

electrochemical aluminium production. In recent years circulations <strong>of</strong> impurities like<br />

phosphorus, iron, carbon, silicon and vanadium in the electrolyte for aluminium production<br />

and their distribution between aluminium, electrolyte, anode gases and graphite have been<br />

studied, with the aim to improve the efficiency <strong>of</strong> the production and quality <strong>of</strong> the produced<br />

aluminium.<br />

Projects and Cooperation<br />

Structure and solubility <strong>of</strong> niobium complexes: high temperature and high<br />

resolution solid state NMR study <strong>of</strong> the system KF-K2NbF7-Nb2O5<br />

Project No. 18182<br />

Duration: 2005 – 2006<br />

Principal Investigator in Slovakia: Ing. F. Šimko, PhD.<br />

In Collaboration with Centre de Recherches Sur Les Materiaux a Haute Temperature,<br />

CNRS, 1D, Avenue de la recherche Scientifique 45071 Orleans, France<br />

The formation <strong>of</strong> ox<strong>of</strong>luoroaluminates and Si and V impurities behaviour in<br />

the system NaF-AlF3-Al2O3<br />

VEGA Project 2/4071/04<br />

Duration: 2004 – 2006<br />

Principal Investigator: Ing. I. Nerád, CSc.<br />

Magnetostructural correlations in unconvential magnetic materials<br />

APVT Project No. APVT-20-005204<br />

Duration: 2005 – 2007<br />

Principal Investigator: Pr<strong>of</strong>. RNDr. A. Feher, DrSc., University <strong>of</strong> P. J. Šafárika in Košice<br />

Principal Investigator in IIC: Ing. M. Boča, PhD.<br />

The physico-chemical and thermodynamic properties <strong>of</strong> the industrial<br />

molten fluoride systems on the base <strong>of</strong> aluminium, niobium and tantalum<br />

APVT Project No. APVT-51-008104<br />

Duration: 2005 – 2007<br />

58


Principal Investigator: Ing. M. Korenko, PhD.<br />

The study <strong>of</strong> the fluoride molten-salts system with the potential for<br />

industrial application.<br />

VEGA Project 2/6179/26<br />

Duration: 2006 – 2008<br />

Principal Investigator: Ing. M. Boča, PhD.<br />

The behaviour <strong>of</strong> impurities in industrial electrolytes for aluminium<br />

production.<br />

VEGA Project 2/7077/27<br />

Duration: 2007 – 2009<br />

Principal Investigator: Ing. F. Šimko, PhD.<br />

Study <strong>of</strong> molten fluoride systems interested for cooling systems in advanced<br />

high-temperature nuclear reactors.<br />

APVV Project No.SK-FR-0013/07<br />

Duration: 2008 – 2009<br />

Principal Investigator in Slovakia: Ing. F. Šimko, PhD.<br />

In Collaboration with Centre de Recherches Sur Les Materiaux a Haute Temperature,<br />

CNRS, 1D, Avenue de la recherche Scientifique 45071 Orleans, France<br />

Selected Publications<br />

ŠIMKO F., BESSADA C., RAKHMATULLIN A., DANĚK V., BOČA M.: Multinuclear<br />

High Temperature NMR Study <strong>of</strong> Na3AlF6-FeO and Na3AlF6-Fe2O3 melts, European<br />

Journal <strong>of</strong> <strong>Inorganic</strong> <strong>Chemistry</strong>, 4528 – 4532, 2006<br />

ŠIMKO F., DANĚK V., STAŠ M.: Long-Term Material Balance <strong>of</strong> Iron in Aluminum<br />

Reduction Cells, Metallurgical and Materials Transactions A 37A, 731 – 738, 2006<br />

KOSA L., MACKOVÁ I.: Determination <strong>of</strong> the Enthalpy <strong>of</strong> Fusion <strong>of</strong> K3TaF8 and<br />

K3TaOF6, Thermochimica Acta 447, 209 – 211, 2006<br />

KORENKO M., ONDERCIN M.: Interfacial Tension Between Aluminium and Cryolite<br />

Melts during Electrolysis <strong>of</strong> the System Na3AlF6-AlF3 (NaF)-Al2O3, Journal <strong>of</strong> Applied<br />

Electrochemistry 36, 1347 – 1352, 2006<br />

BOČA M., IVANOVÁ Z., KUCHARÍK M., CIBULKOVÁ J., VASILJEV R.,<br />

CHRENKOVÁ M.: Density and Surface Tension <strong>of</strong> the System KF–K2TaF7–Ta2O5,<br />

Zeitschrift fur Physikalische Chemie 220, 1159 – 1180, 2006<br />

NERÁD I., MIKŠÍKOVÁ E.: Thermochemical properties <strong>of</strong> the Fe-analogue <strong>of</strong> cryolite,<br />

Na3FeF6, Central European Journal <strong>of</strong> <strong>Chemistry</strong> 5, 508 – 515, 2007<br />

59


BOČA M., DANIELIK V., IVANOVÁ Z., MIKŠÍKOVÁ E., KUBÍKOVÁ B.: Phase<br />

Diagram <strong>of</strong> the KF-K2TaF7 and KF-Ta2O5 System, Journal <strong>of</strong> Thermal Analysis and<br />

Calorimetry 90, 159 – 165, 2007<br />

ŠIMKO F., BOČA M.: The Phase Analysis on the System Na3AlF6 – Na2SiO3, Helvetica<br />

Chimica Acta 90, 1529 – 1537, 2007<br />

KUBÍKOVÁ B., DANĚK V., GAUNE-ESCARD M.: Physicochemical Properties <strong>of</strong> Melts<br />

used for Electrodeposition <strong>of</strong> Niobium, Zeitschrift fur Naturforschung 62a, 540 – 544, 2007<br />

KUCHARÍK M., ŠIMKO F., DANIELIK V., BOČA M., VASILJEV R.: Thermal Analysis<br />

<strong>of</strong> the System Na3AlF6–NaVO3, Monatshefte fur Chemie 138, 1211 – 1215, 2007<br />

KORENKO M., KUCHARÍK M., VINCENC OBOŇA J., JANIČKOVIČ D., CORDÓBA<br />

R., DE TERESA J. M., KUBÍKOVÁ B.: Nanotubes Made from Deeply Undercooled<br />

Cryolite/Alumina Melts, Helvetica Chimica Acta 91, 1389 – 1399, 2008<br />

NERÁD I., MIKŠÍKOVÁ E.: Calorimetric Study <strong>of</strong> Melts in the System KF – K2NbF7,<br />

Central European Journal <strong>of</strong> <strong>Chemistry</strong> 6(2), 297 – 303, 2008<br />

KUBÍKOVÁ B., MLYNÁRIKOVÁ J., BOČA M.: Intermolecular Forces in NaF + KF +<br />

K2NbF7 System: Investigation <strong>of</strong> Surface Tension and Viscosity, Journal <strong>of</strong> Chemical and<br />

Engineering Data 53, 812 – 815, 2008<br />

MLYNÁRIKOVÁ J., BOČA M., KIPSOVÁ L.: The Role <strong>of</strong> the Alkaline Cations in the<br />

Density and Volume Properties <strong>of</strong> the Melts MF−K2NbF7 (MF = LiF−NaF, LiF−KF and<br />

NaF−KF), Journal <strong>of</strong> Molecular Liquids 140, 101 – 107, 2008<br />

KOSA L., MACKOVÁ I., PROKS I., PRITULA O., SMRČOK Ľ., BOČA M., RUNDLŐF<br />

H.: Phase Transitions <strong>of</strong> K2TaF7 within 680 – 800 o C, Central European Journal <strong>of</strong> <strong>Chemistry</strong><br />

6, 27 – 32, 2008<br />

• Kola Science Centre RAS, Apatity, Russia<br />

<strong>Foreign</strong> <strong>Cooperating</strong> <strong>Institutions</strong><br />

• Ecole Polytechnique IUSTI-CNRS, Marseille, France<br />

• Conditions Extrêmes et Matériaux: Haute Température et Irradiation-CNRS, Orléans,<br />

France<br />

• Nuclear Research <strong>Institute</strong>, Řež, Czech Republic<br />

60


Selected Equipment<br />

František Šimko in front <strong>of</strong> the NMR experimental device in a laboratory at CEMHTI in<br />

Orleans, France<br />

61


DEPARTMENT OF THEORETICAL CHEMISTRY<br />

Head<br />

Members <strong>of</strong> the Department<br />

phone e-mail<br />

RNDr. Ľubomír Smrčok, CSc. +421 2 59410 435 lubomir.smrcok@savba.sk<br />

Scientific Staff<br />

Mgr. Mariana Derzsi, PhD. +421 2 59410 475 mariana.derzi@savba.sk<br />

Mgr. Peter Hrobárik, PhD. +421 2 59410 487 peter.hrobarik@savba.sk<br />

Mgr. Stanislav Kedžuch, PhD. +421 2 59410 487 stanislav.kedzuch@savba.sk<br />

Dr. Vladimír G. Malkin, DrSc. +421 2 59410 469 vladimir.malkin@savba.sk<br />

Dr. Oľga L. Malkin, DrSc. +421 2 59410 422 olga.malkin@savba.sk<br />

Ing.Matúš Milko, PhD. +421 2 59410 468 matus.milko@savba.sk<br />

Ing. Eva Scholtzová, CSc. +421 2 59410 457 eva.scholtzova@savba.sk<br />

Ing. Štefan Varga, CSc. +421 2 59410 468 stefan.varga@savba.sk<br />

PhD. Students<br />

Mgr. Stanislav Komorovský +421 2 59410 481 uachstno@savba.sk<br />

Mgr. Michal Repiský +421 2 59410 481 michal.repisky@savba.sk<br />

Part-time Jobs<br />

Doc. Ing. Pavol Mach, CSc. +421 2 60295 682 mach@fmph.uniba.sk<br />

Pr<strong>of</strong>. RNDr. Jozef Noga, DrSc. +421 2 59410 417 jozef.noga@savba.sk<br />

Doc. Ing. Daniel Tunega, CSc. +421 2 59410 422 daniel.tunega@univie.ac.at<br />

Emeriti<br />

Ing. Slavomír Ďurovič, CSc. +421 2 59410 405 slavomir.durovic@savba.sk<br />

RNDr. Dalma Gyepesová, CSc. +421 2 59410 475 dalma.gyepesova@savba.sk<br />

63


Field <strong>of</strong> Scientific Interest<br />

The Department is engaged in three main research areas. Research activities <strong>of</strong> the first field<br />

are focused on developing advanced computational methods for treating electron correlation<br />

in molecules and solids. The second area covers studies on magnetic and electric properties <strong>of</strong><br />

medium-sized systems including calculations <strong>of</strong> NMR and EPR parameters <strong>of</strong> organometallic,<br />

biologically and catalytically active substances. Another related direction is connected with<br />

development and application <strong>of</strong> relativistic approaches for calculation <strong>of</strong> NMR and EPR<br />

parameters for heavy-element compounds. X-ray crystal structure determination and<br />

vibrational spectroscopy by inelastic neutron scattering in combination with solid state DFT<br />

calculations <strong>of</strong> technologically important materials is the objective <strong>of</strong> the third research field.<br />

International and National Projects<br />

FUNMIG: Fundamental processes <strong>of</strong> radionuclide migration<br />

FP6-EURATOM Project No. 516514<br />

Duration: 01/2005 – 12/2008<br />

Coordinator from IIC: Dr. V. Malkin, DrSc.<br />

Lanthanide chemistry for diagnostic and therapy.<br />

COST Project No. WG D18/02<br />

Duration: 01/1999 – 12/2006<br />

Coordinator from IIC: Dr. V. Malkin, DrSc.<br />

Towards a new level <strong>of</strong> accuracy in computations <strong>of</strong> molecular structure,<br />

molecular properties, spectroscopy and thermo-chemistry<br />

COST Project No. WG D26/12<br />

Duration: 01/2002 – 12/2007<br />

Coordinator from IIC: Pr<strong>of</strong>. RNDr. J. Noga, DrSc.<br />

COMCHEM - Centre for advanced Computational <strong>Chemistry</strong><br />

Centre <strong>of</strong> excellence <strong>of</strong> SAS: COMCHEM<br />

Duration: 01/2007 – 12/2010<br />

Coordinator from IIC: Pr<strong>of</strong>. RNDr. J. Noga, DrSc<br />

MEPA - Magnetoactivity, electroactivity and photoactivity <strong>of</strong> coordination<br />

compounds<br />

Centre <strong>of</strong> excellence <strong>of</strong> APVV: MEPA<br />

Duration: 01/2008 – 12/2011<br />

Coordinator from IIC: Dr. O. Malkin, DrSc.<br />

Application <strong>of</strong> DFT based methods for interpretation <strong>of</strong> NMR and EPR<br />

spectra <strong>of</strong> inorganic compounds (with emphasis on transition metal<br />

complexes) and biosystems<br />

APVV Project No. 51-045502<br />

64


Duration: 01/2003 – 12/2006<br />

Principal Investigator: Dr. V. Malkin, DrSc.<br />

Towards a higher accuracy in relativistic calculations <strong>of</strong> electronic structure<br />

and magneto-resonance spectra <strong>of</strong> compounds containing heavy elements<br />

APVV Project No. 0625-06<br />

Duration: 01/2007 – 12/2009<br />

Principal Investigator: Dr. V. Malkin, DrSc.<br />

Properties <strong>of</strong> molecules with complicated electronic structure: Sophisticated<br />

calculations and predictions <strong>of</strong> spectroscopic and electric properties<br />

APVV Project No. 018405<br />

Duration: 01/2006 – 12/2009<br />

Principal Investigator: Pr<strong>of</strong>. RNDr. J. Noga, DrSc.<br />

Structure and dynamics <strong>of</strong> hydrogen bonds in solids by neutron diffraction,<br />

quantum chemistry and inelastic neutron scattering (INS)<br />

VEGA Project No. 2/6178/02<br />

Duration: 01/2006 – 12/2008<br />

Principal Investigator: RNDr. Ľ. Smrčok, CSc.<br />

Towards detailed knowledge <strong>of</strong> electronic structure from quantum chemical<br />

calculation<br />

VEGA Project No. 2/6182/27.<br />

Duration: 01/2006 – 12/2008<br />

Principal Investigator: Dr. O. Malkin, DrSc.<br />

Selected Publications<br />

VARGA Š., MILKO M., NOGA J.: Density fitting <strong>of</strong> two-electron integrals in extended<br />

systems with translational periodicity: The Coulomb problem, J. Chem. Phys. 124, 034106/1-<br />

7, 2006<br />

KAHN A., GRANOVSKY A.A., NOGA J.: Convergence <strong>of</strong> Third-Order Correlation Energy<br />

in Atoms and Molecules, J. Comput. Chem. 28, 547 – 554, 2007<br />

NOGA J., KEDŽUCH S., ŠIMUNEK J.: Second order explicitly correlated R12 theory<br />

revisited: A second quantization framework for treatment <strong>of</strong> the operators' partitionings, J.<br />

Chem. Phys. 127, 034106/1-11, 2007<br />

NOGA J., KEDŽUCH S., ŠIMUNEK J., TENNO S.: Explicitly correlated coupled cluster<br />

F12 theory with single and double excitations, J. Chem. Phys. 128, 174103/1-11, 2008<br />

BOKHAN D., TENNO S., NOGA J.: Implementation <strong>of</strong> the CCSD(T)-F12 method using<br />

cusp conditions, Phys. Chem. Chem. Phys. 10, 3320 – 3326, 2008<br />

65


KOMOROVSKÝ S., REPISKÝ M., MALKINA O. L., MALKIN V. G., MALKIN I.,<br />

KAUPP M.: Resolution <strong>of</strong> identity Dirac-Kohn-Sham method using the large component<br />

only. Calculations <strong>of</strong> g-tensor and hyperfine tensor, J. Chem. Phys. 124, 084108, 2006<br />

MALKIN E., MALKIN I., MALKINA O. L., MALKIN V. G., KAUPP M.: Scalar<br />

relativistic calculations <strong>of</strong> hyperfine coupling tensors using the Douglas-Kroll-Hess method<br />

with a finite-size nucleus model, Phys. Chem. Chem. Phys. 8, 4079 – 4085, 2006<br />

REVIAKINE R., ARBUZNIKOV A.V., TREMBLAY J-C., REMENYI C., MALKINA O.<br />

L., MALKIN V. G., KAUPP M: Calculation <strong>of</strong> zero-field splitting parameters: Comparison<br />

<strong>of</strong> a two-component noncolinear spin-density-functional method and a one-component<br />

perturbational approach, J. Chem. Phys. 125, 054110, 2006<br />

HROBÁRIK P., REVIAKINE R., ARBUZNIKOV A. V., MALKINA O. L., MALKIN<br />

V. G., KÖHLER F. H., KAUPP M.: Density Functional Calculations <strong>of</strong> NMR Shielding<br />

Tensors for Paramagnetic Systems with Arbitrary Spin Multiplicity. Validation on 3d-<br />

Metallocenes, J. Chem. Phys. 126, 024107, 2007<br />

KOMOROVSKÝ S., REPISKÝ M., MALKINA O. L., MALKIN V. G., MALKIN I.,<br />

KAUPP M.: A fully relativistic method for calculation <strong>of</strong> nuclear magnetic shielding tensors<br />

with a restricted magnetically balanced basis set in the framework <strong>of</strong> the matrix Dirac-Kohn-<br />

Sham equation, J. Chem. Phys. 128, 104101, 2008<br />

SMRČOK Ľ., LANGER V., KŘESŤAN J.: γ-Alumina: asingle-crystal X-ray diffraction<br />

study, Acta Crystallographica C62, i83 – i84, 2006<br />

LANGER V., SCHOLTZOVÁ E., MACH P., SOLČAN T, SMRČOK Ľ.: 2-<br />

Anilinomethylene-3-oxobutanenitrile: an X-ray and density functional theory study, Acta<br />

Crystallographica C62, o544 – o546, 2006<br />

SMRČOK Ľ., JORÍK V., SCHOLTZOVÁ E., MILATA V.: Ab initio structure<br />

determination <strong>of</strong> 5-anilinomethylene-2,2-dimethyl-1,3-dioxane-4,6-dione from laboratory<br />

powder data - a combined use <strong>of</strong> X-ray, molecular and solid-state DFT study, Acta<br />

Crystallographica B63, 477 – 484, 2007<br />

SLÁDKOVIČOVÁ M., SMRČOK Ľ., MACH P., TUNEGA D., KOLESNIKOV A. I.:<br />

Inelastic neutron scattering and DFT study <strong>of</strong>2-amino-3-hydroxymethyl-1,3-propane diol<br />

(TRIS), Chemical Physics 340, 245 – 259, 2007<br />

SLÁDKOVIČOVÁ M., SMRČOK Ľ., MACH P., TUNEGA D., RAMIREZ-CUESTA A.<br />

J.: Inelastic neutron scattering and DFT study <strong>of</strong> 1,6-anhydro-β-d-glucopyranose<br />

(levoglucosan), Journal <strong>of</strong> Molecular Structure 874, 108 – 120, 2008<br />

<strong>Foreign</strong> <strong>Cooperating</strong> <strong>Institutions</strong><br />

• Institut für Anorganische Chemie, Universität Würzburg, Germany<br />

• National Center for Biomolecular Research and Department <strong>of</strong> <strong>Chemistry</strong>, Faculty <strong>of</strong><br />

Science, Masaryk University, Brno, Czech Republic<br />

66


• Forschungszentrum Karlsruhe GmbH, Institut für Nukleare Entsorgung(INE), Karlsruhe,<br />

Germany<br />

• Institut de Chimie Moléculaire de l'Université de Bourgogne, Laboratoire ARECO<br />

(Architecture, Réactivité, Electrochimie et Catalyse Organométalliques), Dijon, France<br />

• Observatoire de Grenoble, Universite Joseph Fourier, Grenoble, France<br />

• <strong>Institute</strong> <strong>of</strong> <strong>Chemistry</strong>, Eotvös Lorand University, Budapest, Hungary<br />

• Graduate School <strong>of</strong> Information Science, University <strong>of</strong> Nagoya, Nagoya, Japan<br />

• Jaroslav Heyrovský <strong>Institute</strong> <strong>of</strong> Physical <strong>Chemistry</strong> <strong>of</strong> the ASCR, Prague, Czech<br />

Republic<br />

• Chalmers University <strong>of</strong> Technology, Göteborg, Sweden<br />

Selected Equipment<br />

Dr. E. Scholtzová working at a single crystal diffractometer during her visit to Pr<strong>of</strong>. V.<br />

Langer's Laboratory at Chalmers University <strong>of</strong> Technology, Göteborg, Sweden<br />

67


VITRUM LAUGARICIO<br />

Joint Glass Center <strong>of</strong> the <strong>Institute</strong> <strong>of</strong> <strong>Inorganic</strong> <strong>Chemistry</strong>, Slovak Academy <strong>of</strong> Sciences;<br />

Faculty <strong>of</strong> Chemical and Food Technology, Slovak University <strong>of</strong> Technology; Alexander<br />

Dubček University <strong>of</strong> Trenčín and RONA, j.s.c.<br />

Members <strong>of</strong> VILA<br />

Head phone e-mail<br />

Doc. Ing. Dušan Galusek, PhD. +421 32 7400 262 galusek@tnuni.sk<br />

Pr<strong>of</strong>. Ing. Marek Liška, DrSc. +421 32 7400 299 liska@tnuni.sk<br />

Scientific staff from IIC SAS<br />

Ing. Mária Chromčíková, PhD. +421 32 7400 251 chromcikova@tnuni.sk<br />

Ing. Radovan Karell, PhD. +421 32 7400 244 karell@tnuni.sk<br />

Ing. Jaroslav Sedláček, PhD. +421 2 59410 440 jaroslav.sedlacek@savba.sk<br />

Mgr. Peter Švančárek, PhD. +421 32 7400 244 svancarek@tnuni.sk<br />

Scientific staff from TnU AD<br />

Ing. Róbert Klement, PhD. +421 32 7400 244 klement@tnuni.sk<br />

Ing. Dagmar Galusková +421 32 7400 240 galuskova@tnuni.sk<br />

Ing. Jozef Chocholoušek, PhD. +421 32 7400 298 chocholousek@tnuni.sk<br />

Ing. Jozef Kraxner, PhD. +421 32 7400 461 kraxner@tnuni.sk<br />

Ing. Anna Prnová, PhD. +421 32 7400 251 prnova@tnuni.sk<br />

PhD. Students<br />

Ing. Jozef Chovanec +421 32 7400 461 chovanecj1@stuba.sk<br />

Ing. Monika Michálková +421 2 59410 443 monika.michalkova@savba.sk<br />

Mgr. Anna Piatriková +421 32 7400 251 anna.piatrikova@tnuni.sk<br />

Dipl. Ing. Stefan Reschke (ext.) stefan.reschke@int.fhg.de<br />

69


Field <strong>of</strong> Scientific Interest<br />

The research in the laboratory covers two areas – the relation between composition, structure<br />

and properties <strong>of</strong> oxide glasses, and the study <strong>of</strong> processing, microstructure, and properties <strong>of</strong><br />

polycrystalline ceramic materials. The first area involves the study <strong>of</strong> volume, structural and<br />

enthalpic relaxation processes in silicate glasses, molecular dynamic simulations <strong>of</strong> structure<br />

<strong>of</strong> glasses, study <strong>of</strong> processes during the glass batch melting, electrochemistry <strong>of</strong> glasses and<br />

glass melts, development and optimisation <strong>of</strong> new glasses for industrial applications, and<br />

corrosion <strong>of</strong> glasses by aqueous media. The second area covers especially polycrystalline<br />

aluminas, with special attention paid to liquid phase sintered (LPS) aluminas, their<br />

microstructure characteristics and mechanical properties (e.g. wear), and the relations between<br />

the composition and structure <strong>of</strong> grain boundary phases and the properties <strong>of</strong> polycrystalline<br />

ceramic materials.<br />

Projects and Cooperation<br />

Chemical effects II<br />

Project No. DSR/SESPRI/04s029a (02/05/04)<br />

Duration: 2005 – 2006<br />

Principal Investigator in IIC: Pr<strong>of</strong>. Ing. M. Liška, DrSc.<br />

In Collaboration with VÚEZ j.s.c., Levice, Institue de Radioprotection et de Sureté<br />

Nucléaire, Clamart et Fontenay-aux-Roses, France<br />

Transparent alumina-based materials with outstanding mechanical<br />

properties<br />

VEGA Project No. 2/6181/26<br />

Duration: 2006 – 2008<br />

Principal Investigator: Doc. Ing. D. Galusek, PhD.<br />

<strong>Cooperating</strong> Institution: Alexander Dubček University <strong>of</strong> Trenčín, Trenčín<br />

Structure and properties <strong>of</strong> silicate glasses – thermodynamic models and<br />

molecular dynamics simulations vs. experiment.<br />

VEGA Project No. 1/3578/06<br />

Duration: 2006 – 2008<br />

Principal Investigator: Doc. Ing. D. Galusek, PhD.<br />

<strong>Cooperating</strong> Institution: Alexander Dubček University <strong>of</strong> Trenčín, Trenčín<br />

The complex analyze <strong>of</strong> the samples.<br />

Project<br />

1. ZOD No. 1079/2007/K (SUB1184856RB) Duration: 05.12.2007 – 07.02.2008<br />

2. ZOD No. 1090/2008/K (SUB1184856RB) Duration: 20.02.2008 – 20.03.2008<br />

3. suplement No. 1 for ZOD No. 1090/2008/K (SUB1184856RB) Duration: 18.06.2008 –<br />

18.07.2008<br />

Principal Investigator: Pr<strong>of</strong>. Ing. M. Liška, DrSc.<br />

70


Light weight and transparent armours<br />

Project NATO SfP – 981770<br />

Duration: 2005 – 2009<br />

Principal Investigator in IIC: Doc. Ing. D. Galusek, PhD.<br />

In Collaboration with Saint Gobain Advanced Ceramics, Turnov, Czech Republic, I<strong>of</strong>fe<br />

Phys.-Tech. <strong>Institute</strong> <strong>of</strong> the Russian Academy <strong>of</strong> Sciences, St. Petersburg, Russia, <strong>Institute</strong> for<br />

Single Crystals <strong>of</strong> Scientific Technological Complex ”<strong>Institute</strong> for Single Crystals” <strong>of</strong> the<br />

National Academy <strong>of</strong> Sciences, Kharkov,Ukraine<br />

Alumina-based electroceramics for advanced plasma sources<br />

APVV Project No. 0485-06<br />

Duration: 2007 – 2009<br />

Principal Investigator in IIC: Doc. Ing. D. Galusek, PhD.<br />

In Collaboration with Faculty <strong>of</strong> Mathematics, Physics and Informatics <strong>of</strong> Comenius<br />

University in Bratislava<br />

Measurement and calculation <strong>of</strong> stress relaxation in glass ware during<br />

forming and cooling processes.<br />

Project No. AV 4/0025/07<br />

Duration: 2007 – 2009<br />

Principal Investigator in IIC: Ing. M. Chromčíková, PhD.<br />

In Collaboration with RONA, j.s.c., Lednické Rovne<br />

Selected Publications<br />

ŠVANČÁREK P., GALUSEK D., LOUGHRAN F., BROWN A., BRYDSON R.,<br />

ATKINSON A., RILEY F.: Microstructure-stress relationships in liquid phase sintered<br />

alumina modified by the addition <strong>of</strong> 5 weight % <strong>of</strong> calcia-silica additives, Acta Materialia,<br />

54, 4853 – 486, 2006<br />

GALUSEK D., SEDLÁČEK J., ŠVANČÁREK P., RIEDEL R., SATET R., HOFFMANN<br />

M.: The influence <strong>of</strong> post-sintering HIP on the microstructure, hardness, and indentation<br />

fracture toughness <strong>of</strong> polymer-derived Al2O3–SiC nanocomposites, Journal <strong>of</strong> the European<br />

Ceramic Society 27[2-3], 1237 – 1245, 2007<br />

LICHVÁR P., ŠAJGALÍK P., LIŠKA M., GALUSEK D.: CaO–SiO2–Al2O3–Y2O3 glasses<br />

as model grain boundary phases for Si3N4 ceramics, Journal <strong>of</strong> the European Ceramic Society<br />

27[1], 429 – 436, 2007<br />

BODIŠOVÁ K., GALUSEK D., ŠVANČÁREK P., ŠAJGALÍK P.: Two-stage sintering <strong>of</strong><br />

alumina with submicrometer grain size, J. Am. Ceram. Soc. 90[1], 330 – 332, 2007<br />

GALUSEK D., SEDLÁČEK J., RIEDEL R.: Al2O3-SiC composites by warm pressing and<br />

sintering <strong>of</strong> an organosilicon polymer-coated alumina powder, J.Eur.Ceram.Soc. 27, 2385 –<br />

2392, 2007<br />

71


SEDLÁČEK J., GALUSEK D., ŠVANČÁREK P., RIEDEL R., ATKINSON A., WANG<br />

X.: Abrasive wear <strong>of</strong> Al2O3–SiC and Al2O3–(SiC)–C composites with micrometer- and<br />

submicrometer-sized alumina matrix grains, Journal <strong>of</strong> the European Ceramic Society 28,<br />

2983 – 2993, 2008<br />

PRNOVÁ A., KARELL R., GALUSEK D.: The preparation <strong>of</strong> binary Al2O3-Y2O3 glass<br />

microspheres by flame synthesis from powder oxide precursors, Ceramics-Silikáty 52[2], 109<br />

– 114, 2008<br />

MACHÁČEK J., GEDEON O., LIŠKA M.: Group connectivity in binary silicate glasses, J.<br />

Non-Crystalline Solids 352, 2173 – 2179, 2006<br />

CHROMČÍKOVÁ M., LIŠKA M.: Simple relaxation model <strong>of</strong> the reversible part <strong>of</strong> the<br />

StepScan ® DSC record <strong>of</strong> glass transition, J. Thermal Analysis and Calorimetry 84, 703 –<br />

708, 2006<br />

KLUVÁNEK P., KLEMENT R., KARÁČOŇ M.: Investigation <strong>of</strong> the conductivity <strong>of</strong> the<br />

lithium borosilicate glass system, J. Non-Cryst. Solids 353, 2004 – 2007, 2007<br />

MACHÁČEK J., GEDEON O., LIŠKA M., CHARVÁTOVÁ S.: First principles molecular<br />

dynamics <strong>of</strong> silicate oxynitride melt doped with scandium, yttrium and lanthanum, J. Non-<br />

Crystalline Solids 353, 2025 – 2028, 2007<br />

CHROMČÍKOVÁ M., LIŠKA M.: Viscosity and structural relaxation <strong>of</strong><br />

15Na2O·xMgO·(10-x)CaO·75SiO2 glasses, J. Thermal Analysis and Calorimetry 90, 421 –<br />

429, 2007<br />

GEDEON O., LIŠKA M., MACHÁČEK J.: Connectivity <strong>of</strong> Q-species in binary sodiumsilicate<br />

glasses, Journal <strong>of</strong> Non-Crystalline Solids 354, 1133 – 1136, 2008<br />

KARELL R., CHROMČÍKOVÁ M., LIŠKA M.: Properties <strong>of</strong> selected zirconia containing<br />

silicate glasses III, Ceramics – Silikáty 52, 102 – 108, 2008<br />

KRAXNER J., KLEMENT R., LIŠKA M.: High-temperature viscosity and density <strong>of</strong><br />

alumino-borosilicate glasses as a model system for commercial E-glass, Ceramics – Silikáty<br />

52, 148 – 154, 2008<br />

<strong>Foreign</strong> <strong>Cooperating</strong> <strong>Institutions</strong><br />

• Saint Gobain Advanced Ceramics, Turnov, Czech Republic<br />

• I<strong>of</strong>fe Physical Technical <strong>Institute</strong>, St. Petersburg, Russia<br />

• <strong>Institute</strong> for Single Crystals, Kharkov, Ukraine<br />

• Department <strong>of</strong> Materials, TU Darmstadt, Germany<br />

• Department <strong>of</strong> Materials, Imperial College, London, UK<br />

• <strong>Institute</strong> <strong>of</strong> Chemical Technology, Prague, Czech Republic<br />

• University <strong>of</strong> Pardubice, Czech Republic<br />

• VTUO Brno, Czech Republic<br />

72


Varian Vista MPX<br />

Selected Equipment<br />

Optical Emission Spectroscopy in Inductively Coupled Plasma – chemical analysis <strong>of</strong><br />

solutions<br />

Varian GS280<br />

Atomic Absorption Spectrometry with graphite furnace and Zeeman correction for trace<br />

chemical analysis <strong>of</strong> solutions<br />

73

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!