22.12.2012 Views

Genetic control of branching in Arabidopsis and ... - Directory UMM

Genetic control of branching in Arabidopsis and ... - Directory UMM

Genetic control of branching in Arabidopsis and ... - Directory UMM

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

54 Growth <strong>and</strong> development<br />

the base <strong>of</strong> each side-shoot. This phenotype is due to the<br />

activity <strong>of</strong> dom<strong>in</strong>ant alleles <strong>of</strong> the genes ART <strong>and</strong> EAR, one<br />

<strong>of</strong> which (EAR) can be substituted for by mutant alleles <strong>of</strong><br />

other late flower<strong>in</strong>g genes. The aerial rosette phenotype<br />

seems not to be due to a premature <strong>in</strong>itiation <strong>of</strong> axillary<br />

meristems, but <strong>in</strong>stead they seem to have adopted the<br />

identity <strong>of</strong> young primary SAMs lead<strong>in</strong>g to a prolonged<br />

vegetative phase <strong>of</strong> the lateral shoots [2].<br />

Mutations <strong>in</strong> the gene TERMINAL FLOWER 1 (TFL1) convert<br />

the <strong>in</strong>determ<strong>in</strong>ate <strong>Arabidopsis</strong> <strong>in</strong>florescence <strong>in</strong>to a<br />

determ<strong>in</strong>ate one <strong>and</strong> condition a shorter vegetative phase <strong>of</strong><br />

the primary shoot [7,33]. In contrast, overexpression <strong>of</strong><br />

TFL1 results <strong>in</strong> a longer vegetative phase <strong>of</strong> both primary<br />

<strong>and</strong> lateral shoots lead<strong>in</strong>g to a highly branched <strong>in</strong>florescence<br />

phenotype. These observations suggest that TFL1 is<br />

<strong>in</strong>volved <strong>in</strong> a mechanism regulat<strong>in</strong>g the progression through<br />

the different phases <strong>of</strong> shoot development [34 •• ,35].<br />

In the tomato mutant self prun<strong>in</strong>g (sp), development <strong>of</strong> the<br />

primary shoot <strong>and</strong> <strong>of</strong> the <strong>in</strong>florescence are as <strong>in</strong> the wildtype;<br />

however, the pattern <strong>of</strong> sympodial shoot<br />

development is abnormal. Whereas <strong>in</strong> the wild-type three<br />

nodes are formed before the transition to floral development,<br />

<strong>in</strong> the mutant the numbers <strong>of</strong> vegetative nodes <strong>of</strong><br />

successive sympodial units are progressively reduced, until<br />

the ma<strong>in</strong> axis term<strong>in</strong>ates <strong>in</strong> a sympodial shoot without a<br />

leaf [14,36 •• ]. Recently, the correspond<strong>in</strong>g gene has been<br />

isolated [34 •• ] <strong>and</strong> proved to be homologous to the TFL1<br />

gene <strong>of</strong> <strong>Arabidopsis</strong> [37 • ,38] <strong>and</strong> the CENTRORADIALIS<br />

(CEN) gene <strong>of</strong> Antirrh<strong>in</strong>um [39]. The similarity <strong>of</strong> TFL1,<br />

CEN, <strong>and</strong> SP to phosphatidylethanolam<strong>in</strong>-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong>s<br />

<strong>of</strong> animals, known to b<strong>in</strong>d to membrane prote<strong>in</strong><br />

complexes, suggests that these prote<strong>in</strong>s may play a role <strong>in</strong><br />

signall<strong>in</strong>g processes <strong>in</strong> the apex. Overexpression <strong>of</strong> SP<br />

results <strong>in</strong> plants with more than three vegetative nodes per<br />

sympodial unit <strong>and</strong> a partially leafy <strong>in</strong>florescence. These<br />

results are consistent with the assumption that the SP gene<br />

<strong>of</strong> tomato regulates the progression through different phases<br />

<strong>of</strong> shoot development <strong>in</strong> a similar manner to the TFL1<br />

gene <strong>of</strong> <strong>Arabidopsis</strong>. Unlike TFL1, however, the SP gene<br />

seems to have no effect on the floral transition <strong>of</strong> the primary<br />

shoot <strong>and</strong> on the architecture <strong>of</strong> the <strong>in</strong>florescence.<br />

Conclusions<br />

Recently several factors <strong>in</strong>fluenc<strong>in</strong>g the process <strong>of</strong> shoot<br />

<strong>branch<strong>in</strong>g</strong> <strong>in</strong> plants have been identified. The subtend<strong>in</strong>g<br />

leaf seems to play an important role <strong>in</strong> the process <strong>of</strong> axillary<br />

meristem <strong>in</strong>itiation <strong>in</strong>fluenc<strong>in</strong>g the position <strong>of</strong><br />

meristems <strong>and</strong> their growth rate. Molecular evidence <strong>in</strong>dicates<br />

that the plant hormone GA may <strong>in</strong>fluence the<br />

formation <strong>of</strong> axillary meristems.<br />

A comparison <strong>of</strong> lateral shoot formation <strong>in</strong> the monopodial<br />

plant <strong>Arabidopsis</strong> <strong>and</strong> the sympodial tomato reveal both<br />

differences <strong>and</strong> similarities, <strong>and</strong> may uncover factors<br />

responsible for the characteristic shoot architecture<br />

observed <strong>in</strong> the two species. Whereas <strong>in</strong> tomato axillary<br />

meristems are <strong>in</strong>itiated early <strong>in</strong> development, <strong>in</strong><br />

<strong>Arabidopsis</strong>, this happens only after the transition to reproductive<br />

growth. In both species the side-shoots preced<strong>in</strong>g<br />

the <strong>in</strong>florescence develop faster than other side-shoots. In<br />

tomato, the sympodial shoot overgrows the comparatively<br />

slowly develop<strong>in</strong>g <strong>in</strong>florescence result<strong>in</strong>g <strong>in</strong> a sympodial<br />

shoot architecture, whereas <strong>in</strong> <strong>Arabidopsis</strong> the ma<strong>in</strong> <strong>in</strong>florescence<br />

develops with a similar growth rate as the<br />

paraclades <strong>and</strong> rema<strong>in</strong>s <strong>in</strong> a term<strong>in</strong>al position. In tomato,<br />

the genetic <strong>control</strong> <strong>of</strong> the <strong>in</strong>itiation <strong>of</strong> the sympodial meristem<br />

<strong>and</strong> <strong>of</strong> the axillary meristem below it is <strong>control</strong>led<br />

differently as compared to other lateral meristems. It<br />

rema<strong>in</strong>s to be tested if this is also true for <strong>Arabidopsis</strong>.<br />

Genes <strong>of</strong> the TFL1/CEN/Sp family encod<strong>in</strong>g products<br />

related to phosphatidylethanolam<strong>in</strong>-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong>s <strong>of</strong><br />

animals <strong>control</strong> the length <strong>of</strong> all phases <strong>of</strong> shoot development<br />

<strong>in</strong> <strong>Arabidopsis</strong>, but only the length <strong>of</strong> the vegetative<br />

phase <strong>of</strong> sympodial shoots <strong>in</strong> tomato.<br />

Acknowledgements<br />

We thank F Salam<strong>in</strong>i <strong>and</strong> Z Schwarz-Sommer for critical read<strong>in</strong>g <strong>of</strong> the<br />

manuscript <strong>and</strong> members <strong>of</strong> the laboratory for helpful comments <strong>and</strong><br />

discussion. Our work on genes that <strong>control</strong> <strong>branch<strong>in</strong>g</strong> is supported by the<br />

Deutsche Forschungsgeme<strong>in</strong>schaft <strong>and</strong> the European Community.<br />

References <strong>and</strong> recommended read<strong>in</strong>g<br />

Papers <strong>of</strong> particular <strong>in</strong>terest, published with<strong>in</strong> the annual period <strong>of</strong> review,<br />

have been highlighted as:<br />

• <strong>of</strong> special <strong>in</strong>terest<br />

•• <strong>of</strong> outst<strong>and</strong><strong>in</strong>g <strong>in</strong>terest<br />

1. Steeves TA, Sussex IM: Organogenesis <strong>in</strong> the shoot:<br />

determ<strong>in</strong>ation <strong>of</strong> leaves <strong>and</strong> branches. In Patterns <strong>in</strong> Plant<br />

Development, 2nd edn. Cambridge: Cambridge University Press;<br />

1989:124-146.<br />

2. Grbic V, Bleecker AB: An altered body plan is conferred on<br />

<strong>Arabidopsis</strong> plants carry<strong>in</strong>g dom<strong>in</strong>ant alleles <strong>of</strong> two genes.<br />

Development 1996, 122:2395-2403.<br />

3. Esau K: Anatomy <strong>of</strong> Seed Plants. New York: John Wiley <strong>and</strong> Sons; 1977.<br />

4. Cl<strong>in</strong>e MG: Concepts <strong>and</strong> term<strong>in</strong>ology <strong>of</strong> apical dom<strong>in</strong>ance.<br />

Am J Bot 1997, 84:1064-1069.<br />

5. Schultz EA, Haughn GW: LEAFY, a homeotic gene that regulates<br />

<strong>in</strong>florescence development <strong>in</strong> <strong>Arabidopsis</strong>. Plant Cell 1991,<br />

3:771-781.<br />

6. Hempel FD, Feldman LJ: Bi-directional <strong>in</strong>florescence<br />

development <strong>in</strong> <strong>Arabidopsis</strong> thaliana: acropetal <strong>in</strong>itiation <strong>of</strong><br />

flowers <strong>and</strong> basipetal <strong>in</strong>itiation <strong>of</strong> paraclades. Planta 1994,<br />

192:276-286.<br />

7. Alvarez J, Guli CL, Xiang-Hua Y, Smyth DR: term<strong>in</strong>al flower: a gene<br />

affect<strong>in</strong>g <strong>in</strong>florescence development <strong>in</strong> <strong>Arabidopsis</strong> thaliana.<br />

Plant J 1992, 2:103-116.<br />

8. Talbert PB, Adler HT, Paris DW, Comai L: The REVOLUTA gene is<br />

necessary for apical meristem development <strong>and</strong> for limit<strong>in</strong>g cell<br />

divisions <strong>in</strong> the leaves <strong>and</strong> stems <strong>of</strong> <strong>Arabidopsis</strong> thaliana.<br />

Development 1995, 121:2723-2735.<br />

9. Picken AJF, Stewart K, Klapwijk D: Germ<strong>in</strong>ation <strong>and</strong> vegetative<br />

development. In The Tomato Crop. London: Chapman <strong>and</strong> Hall<br />

1986:111-166.<br />

10. Sawhney VK, Greyson RI: On the <strong>in</strong>itiation <strong>of</strong> the <strong>in</strong>florescence <strong>and</strong><br />

floral organs <strong>in</strong> tomato (Lycopersicon esculentum). Can J Bot<br />

1984, 50:1493-1495.<br />

11. Malayer JC, Guard AT: A comparative developmental study <strong>of</strong> the<br />

mutant side-shootless <strong>and</strong> normal tomato plants. Am J Bot 1964,<br />

51:140-143.<br />

12. Tucker DJ: Hormonal regulation <strong>of</strong> lateral bud outgrowth <strong>in</strong> the<br />

tomato. Plant Sci Lett 1977, 8:105-111.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!