06.09.2021 Views

First Semester in Numerical Analysis with Julia, 2020a

First Semester in Numerical Analysis with Julia, 2020a

First Semester in Numerical Analysis with Julia, 2020a

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

CHAPTER 3. INTERPOLATION 100<br />

With this new notation, Newton’s <strong>in</strong>terpolat<strong>in</strong>g polynomial can be written as<br />

n∑<br />

p n (x) =f[x 0 ]+ f[x 0 ,x 1 , ..., x k ](x − x 0 ) ···(x − x k−1 )<br />

k=1<br />

= f[x 0 ]+f[x 0 ,x 1 ](x − x 0 )+f[x 0 ,x 1 ,x 2 ](x − x 0 )(x − x 1 )+...<br />

+ f[x 0 ,x 1 , ..., x n ](x − x 0 )(x − x 1 ) ···(x − x n−1 )<br />

Here is the formal def<strong>in</strong>ition of divided differences:<br />

Def<strong>in</strong>ition 54. Given data (x i ,f(x i )),i = 0, 1, ..., n, the divided differences are def<strong>in</strong>ed<br />

recursively as<br />

where k =0, 1, ..., n.<br />

f[x 0 ]=f(x 0 )<br />

f[x 0 ,x 1 , ..., x k ]= f[x 1, ..., x k ] − f[x 0 , ..., x k−1 ]<br />

x k − x 0<br />

Theorem 55. The order<strong>in</strong>g of the data <strong>in</strong> construct<strong>in</strong>g divided differences is not important,<br />

that is, the divided difference f[x 0 , ..., x k ] is <strong>in</strong>variant under all permutations of the arguments<br />

x 0 , ..., x k .<br />

Proof. Consider the data (x 0 ,y 0 ), (x 1 ,y 1 ), ..., (x k ,y k ) and let p k (x) be its <strong>in</strong>terpolat<strong>in</strong>g polynomial:<br />

p k (x) =f[x 0 ]+f[x 0 ,x 1 ](x − x 0 )+f[x 0 ,x 1 ,x 2 ](x − x 0 )(x − x 1 )+...<br />

+ f[x 0 , ..., x k ](x − x 0 ) ···(x − x k−1 ).<br />

Now let’s consider a permutation of the x i ; let’s label them as ˜x 0 , ˜x 1 , ..., ˜x k . The <strong>in</strong>terpolat<strong>in</strong>g<br />

polynomial for the permuted data does not change, s<strong>in</strong>ce the data x 0 ,x 1 , ..., x k (omitt<strong>in</strong>g the<br />

y-coord<strong>in</strong>ates) is the same as ˜x 0 , ˜x 1 , ..., ˜x k , just <strong>in</strong> different order. Therefore<br />

p k (x) =f[˜x 0 ]+f[˜x 0 , ˜x 1 ](x − ˜x 0 )+f[˜x 0 , ˜x 1 , ˜x 2 ](x − ˜x 0 )(x − ˜x 1 )+...<br />

+ f[˜x 0 , ..., ˜x k ](x − ˜x 0 ) ···(x − ˜x k−1 ).<br />

The coefficient of the polynomial p k (x) for the highest degree x k is f[x 0 , ..., x k ] <strong>in</strong> the first<br />

equation, and f[˜x 0 , ..., ˜x k ] <strong>in</strong> the second. Therefore they must be equal to each other.<br />

Example 56. F<strong>in</strong>d the <strong>in</strong>terpolat<strong>in</strong>g polynomial for the data (−1, −6), (1, 0), (2, 6) us<strong>in</strong>g<br />

Newton’s form and divided differences.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!