24.12.2012 Views

Dislocation Dynamics and Plasticity - California Institute of Technology

Dislocation Dynamics and Plasticity - California Institute of Technology

Dislocation Dynamics and Plasticity - California Institute of Technology

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Multiscale models <strong>of</strong> metal<br />

plasticity<br />

Lecture IV: Kinetics <strong>and</strong> work<br />

hardening<br />

M. Ortiz<br />

<strong>California</strong> <strong>Institute</strong> <strong>of</strong> <strong>Technology</strong><br />

Sixth Summer School in Analysis <strong>and</strong><br />

Applied Mathematics<br />

Rome, June 20-24, 2011<br />

Michael Ortiz<br />

ROME0611


Outline <strong>of</strong> Lecture #4<br />

• Beyond energy: Kinetics<br />

• Experimental observations, dislocation mobility<br />

• The forest hardening model<br />

• Energy-dissipation functionals<br />

• Phase-field models<br />

(Humphreys <strong>and</strong> Hirsch, 1970)<br />

Michael Ortiz<br />

ROME0611


Crystal plasticity – Macroscopic behavior<br />

Uniaxial<br />

tension test<br />

Copper<br />

P. Franciosi <strong>and</strong> A. Zaoui,<br />

Acta Metall., 30 (1982) 2141-2151<br />

Taylor scaling<br />

(SJ Basinski <strong>and</strong> ZS Basinski,<br />

<strong>Dislocation</strong>s in Solids,<br />

FRN Nabarro (ed.)<br />

North-Holl<strong>and</strong>, 1979.)<br />

Michael Ortiz<br />

ROME0611


Hardening <strong>and</strong> obstacle density<br />

T. Suzuki, S. Takeuchi <strong>and</strong> H. Yoshinaga,<br />

<strong>Dislocation</strong> <strong>Dynamics</strong> <strong>and</strong> <strong>Plasticity</strong>, Springer-Verlag, 1985.<br />

Michael Ortiz<br />

ROME0611


Etch pits on a LiF crystal<br />

<strong>Dislocation</strong> velocity<br />

T. Suzuki, S. Takeuchi <strong>and</strong> H. Yoshinaga,<br />

<strong>Dislocation</strong> <strong>Dynamics</strong> <strong>and</strong> <strong>Plasticity</strong>, Springer-Verlag, 1985.<br />

Michael Ortiz<br />

ROME0611


<strong>Dislocation</strong> velocity<br />

T. Suzuki, S. Takeuchi <strong>and</strong> H. Yoshinaga,<br />

<strong>Dislocation</strong> <strong>Dynamics</strong> <strong>and</strong> <strong>Plasticity</strong>, Springer-Verlag, 1985.<br />

Michael Ortiz<br />

ROME0611


Thermal s<strong>of</strong>tening<br />

T. Suzuki, S. Takeuchi <strong>and</strong> H. Yoshinaga,<br />

<strong>Dislocation</strong> <strong>Dynamics</strong> <strong>and</strong> <strong>Plasticity</strong>, Springer-Verlag, 1985.<br />

Michael Ortiz<br />

ROME0611


Outline <strong>of</strong> Lecture #4<br />

• <strong>Dislocation</strong> motion is governed by kinetics<br />

• <strong>Dislocation</strong>s react with each other irreversibly<br />

• Energy-minimization is not enough to describe<br />

dislocation dynamics, hardening<br />

• Need kinetics, time-dependent problems!<br />

(Humphreys <strong>and</strong> Hirsch, 1970)<br />

Michael Ortiz<br />

ROME0611


The forest-hardening problem<br />

Glissile dislocation moving<br />

through forest dislocations<br />

Micro-to-macro transition,<br />

single slip<br />

Michael Ortiz<br />

ROME0611


Classical rate variational problems<br />

Michael Ortiz<br />

ROME0611


Classical rate variational problems<br />

Michael Ortiz<br />

ROME0611


Forest hardening – External energy<br />

Michael Ortiz<br />

ROME0611


Forest hardening – Stored energy<br />

moving<br />

dislocation dislocation<br />

line<br />

Michael Ortiz<br />

ROME0611


Forest hardening – Lattice friction<br />

moving<br />

dislocation<br />

dislocation speed<br />

Peierls stress<br />

(lattice friction)<br />

Michael Ortiz<br />

ROME0611


Forest hardening − Dissipation at<br />

Dissipation<br />

at junctions<br />

obstacles<br />

pinning<br />

points<br />

unfavorable junction<br />

reaction coordinate<br />

Stainier, L., Cuitino, A., Ortiz, M.,<br />

JMPS, 50 (2002) 1511-1554.<br />

favorable<br />

junction<br />

jog formation<br />

energy<br />

Michael Ortiz<br />

ROME0611


Forest hardening – Point obstacles<br />

moving<br />

dislocation<br />

dislocation speed<br />

point obstacles<br />

obstacle<br />

strength<br />

Michael Ortiz<br />

ROME0611


Forest hardening – Summary<br />

r<strong>and</strong>om obstacles<br />

periodic<br />

M. Koslowski, A.M.Cuitino <strong>and</strong> M. Ortiz,<br />

JMPS, 50 (2002) 2597-2635<br />

(dislocation lines)<br />

Michael Ortiz<br />

ROME0611


Energy-dissipation functionals<br />

“Arrow <strong>of</strong> time”<br />

Energy<br />

Dissipation<br />

Michael Ortiz<br />

ROME0611


Rate-independent problems<br />

Michael Ortiz<br />

ROME0611


Forest Hardening – Deformation theory<br />

overstress!<br />

Michael Ortiz<br />

ROME0611


Forest hardening – Pinning/depinning<br />

obstacle<br />

dislocation segment<br />

bowing between obstacles<br />

Michael Ortiz<br />

ROME0611


Forest hardening – Pinning/depinning<br />

obstacle<br />

Michael Ortiz<br />

ROME0611


Forest hardening – Pinning/depinning<br />

loops<br />

tangent<br />

obstacle<br />

Michael Ortiz<br />

ROME0611


Forest hardening − Single dislocation<br />

. . . .<br />

.<br />

.<br />

. .<br />

.<br />

. . . .<br />

. .<br />

. . . . . .<br />

.<br />

. .<br />

. .<br />

.<br />

. . . .<br />

.<br />

. . . .<br />

. .<br />

. . . . .<br />

. . .<br />

.<br />

. .<br />

.<br />

. . .<br />

obstacle point set<br />

Michael Ortiz<br />

ROME0611


Forest hardening − Single dislocation<br />

A.J.E. Foreman <strong>and</strong> M.J. Makin, Phil. Mag., 14 (1966) 911.<br />

Percolation!<br />

Michael Ortiz<br />

ROME0611


Forest hardening − Single dislocation<br />

<strong>Dislocation</strong> motion through r<strong>and</strong>om array <strong>of</strong> obstacles<br />

(Foreman, A.J.E., Makin, M.J., Phil. Mag., 14 (1966) 911)<br />

Michael Ortiz<br />

ROME0611


Forest hardening − Summary & outlook<br />

• Model is based on line tension approximation<br />

• Motion by pinning/depinning at obstacles<br />

• Model gives parabolic hardening curve, correct<br />

Taylor scaling with obstacle density<br />

• Open mathematical questions:<br />

– Limit <strong>of</strong> infinite number <strong>of</strong> obstacles (N) at fixed<br />

obstacle density, e.g., Poisson distribution <strong>of</strong> obstacles<br />

– Loading/unloading, hysteresis…<br />

Michael Ortiz<br />

ROME0611


2½D phase-field model – Assumptions<br />

slip<br />

plane<br />

0 1 2<br />

M. Koslowski, A.M.Cuitino <strong>and</strong> M. Ortiz,<br />

JMPS, 50 (2002) 2597-2635<br />

Michael Ortiz<br />

ROME0611


2½D phase-field model – Energy<br />

Core energy Elastic energy External<br />

G. Alberti, G. Bouchitté, <strong>and</strong> P. Seppecher,<br />

C. R. Acad. Sci. Paris Sér I. Math., 319 (1994) 333–338<br />

A. Garroni <strong>and</strong> S. Müller, SIAM J. Math. Anal.,<br />

36 (2005) 1943–1964; ARMA 181 (2006) 535–578<br />

Michael Ortiz<br />

ROME0611


obstacles<br />

2½D phase-field model – Time<br />

discretization<br />

M. Koslowski, A.M.Cuitino <strong>and</strong> M. Ortiz,<br />

JMPS, 50 (2002) 2597-2635<br />

dislocations<br />

Michael Ortiz<br />

ROME0611


Phase-field dislocation dynamics<br />

Stress-strain curve<br />

<strong>Dislocation</strong> density<br />

a b c<br />

d e f<br />

g h i<br />

Michael Ortiz<br />

ROME0611


Return-point <strong>and</strong> fading memory<br />

a<br />

c<br />

b<br />

e f<br />

Three dimensional view <strong>of</strong> the evolution<br />

<strong>of</strong> the slip-field, showing the the<br />

switching <strong>of</strong> the cusps.<br />

d<br />

Stress-strain curve.<br />

Michael Ortiz<br />

ROME0611 33


1 τ/τ0 0.5<br />

0<br />

-0.5<br />

-1<br />

Line-tension anisotropy<br />

-50 0 50<br />

ν = 0.0<br />

ν = 0.3<br />

ν = 0.5<br />

γ/γ o<br />

0.45<br />

ρ/ρ0 0.4<br />

= 0.<br />

b<br />

0.35<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

-50 0 50<br />

Stress-strain curve. <strong>Dislocation</strong> density<br />

ν = 0.0<br />

ν = 0.3<br />

ν = 0.5<br />

Stress-strain curve <strong>Dislocation</strong> density vs.strain<br />

ν = 0.<br />

0<br />

ν 3<br />

ν = 0.<br />

5<br />

γ/γ o<br />

Michael Ortiz<br />

ROME0611 34


Summary <strong>and</strong> outlook<br />

• The forest-hardening model predicts the<br />

observed kinetics <strong>of</strong> hardening in crystals<br />

• A full analytical treatment <strong>of</strong> the foresthardening<br />

model is still lacking<br />

• Need tools <strong>of</strong> analysis (similar to CoV) for time<br />

dependent evolution problems<br />

(Humphreys <strong>and</strong> Hirsch, 1970)<br />

Michael Ortiz<br />

ROME0611


time<br />

ms<br />

µs<br />

Metal plasticity − Multiscale analysis<br />

ns<br />

Objective: Derive ansatz-free,<br />

physics-based, predictive models<br />

<strong>of</strong> macroscopic behavior<br />

Lattice<br />

defects, EoS<br />

<strong>Dislocation</strong><br />

dynamics<br />

nm µm<br />

Subgrain<br />

structures<br />

length<br />

Engineering<br />

applications<br />

Polycrystals<br />

Lecture #4: Subgrain<br />

dislocation structures<br />

Lecture #3: <strong>Dislocation</strong> kinetics,<br />

the forest-hardening model<br />

Lecture #2: <strong>Dislocation</strong> energies,<br />

the line-tension approximation<br />

mm<br />

Michael Ortiz<br />

ROME0611

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!