27.12.2012 Views

RA 602 CA - Rolled Alloys

RA 602 CA - Rolled Alloys

RA 602 CA - Rolled Alloys

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

DATA SHEET<br />

Features<br />

• Outstanding resistance to cyclic<br />

oxidation through 2250°F (1232°C)<br />

• Excellent high temperature creeprupture<br />

strength<br />

• Resistant to carburizing environments<br />

• Highly resistant to grain growth in<br />

service<br />

• Superior behavior in oxidizing/<br />

chloridizing environments<br />

• Good resistance to metal dusting<br />

Applications<br />

• Calciners shells<br />

• Muffles and retorts<br />

• Chemical vapor deposition retorts<br />

• Nitric acid catalyst support grids<br />

• Radiant tubes<br />

• Vacuum furnace fixtures<br />

• Molten glass process equipment<br />

• Vitrification of nuclear wastes<br />

• Reheaters & convection tubes in direct<br />

reduction iron ore (DRI) plants<br />

Chemical Composition Range, %<br />

Min Max<br />

Chromium 24.0 26.0<br />

Nickel balance<br />

Carbon 0.15 0.25<br />

Aluminum 1.8 2.4<br />

Titanium 0.1 0.2<br />

Yttrium 0.05 0.12<br />

Zirconium 0.01 0.10<br />

Manganese -- 0.15<br />

Silicon -- 0.5<br />

Copper -- 0.1<br />

Iron 8.0 11.0<br />

Specifications<br />

UNS N0<strong>602</strong>5 W.Nr. 2.4633<br />

ASTM B 168/ASME SB168<br />

Plate, Sheet, Strip<br />

ASTM B 166/ASME SB166<br />

Rod, Bar, Wire<br />

Weld Wire: ERNiCrFe-12<br />

Covered electrodes: ENiCrFe-12<br />

ASME Code Case 2359 to 1800°F (1032°C)<br />

Stress, psi<br />

1<br />

<strong>RA</strong> <strong>602</strong> <strong>CA</strong><br />

<strong>RA</strong> <strong>602</strong> <strong>CA</strong> ®<br />

ALLOY<br />

Performance Profile<br />

<strong>RA</strong> <strong>602</strong> <strong>CA</strong> provides some of the best combined high<br />

temperature properties of any nickel alloy available.<br />

<strong>RA</strong> <strong>602</strong> <strong>CA</strong> is one of the most oxidation resistant nickel<br />

alloys. A high chromium content, along with aluminum<br />

and yttrium additions, permits the alloy to develop a<br />

tightly adherent oxide scale. A relatively high carbon<br />

content combined with titanium and zirconium additions<br />

results in high creep rupture strength.<br />

<strong>RA</strong> <strong>602</strong> <strong>CA</strong> may be considered for applications where<br />

it is important to minimize product contamination while<br />

maintaining high mechanical integrity at extreme<br />

temperatures.<br />

10000<br />

1000<br />

<strong>RA</strong>600<br />

Haynes ® 230 <br />

<strong>RA</strong> 353 MA<br />

<strong>RA</strong>333 ®<br />

<strong>RA</strong> 601<br />

<strong>RA</strong> <strong>602</strong> <strong>CA</strong><br />

2200°F Cyclic Oxidation Testing<br />

3040 Hours Cycled Weekly<br />

0 100 200 300 400 500<br />

Weight Gain (mg/cm 2 )<br />

Average 10,000 Hour Rupture Strength 3,4,5<br />

Haynes<br />

230<br />

<strong>RA</strong>330<br />

<strong>RA</strong><strong>602</strong><strong>CA</strong><br />

100<br />

1200 1400 1600 1800 2000 2200<br />

Temperature, °F


<strong>RA</strong> <strong>602</strong> <strong>CA</strong><br />

2100°F (1149°C) Cyclic Oxidation Testing 1,2<br />

3000 Hours Cycled Weekly<br />

<strong>RA</strong>330 ®<br />

<strong>RA</strong> 353 MA ®<br />

<strong>RA</strong>333 ®<br />

Alloy 617<br />

Haynes ® 230 <br />

<strong>RA</strong> <strong>602</strong> <strong>CA</strong><br />

Oxidation Resistance<br />

0 10 20 30 40 50 60<br />

Weight Gain (mg/cm 2 )<br />

<strong>RA</strong> <strong>602</strong> <strong>CA</strong> is one of the most oxidation resistant nickel<br />

alloys available. Outstanding oxidation resistance is<br />

achieved through a high chromium content (25%)<br />

supplemented with aluminum (2.2%) and a<br />

microalloying addition (0.1%) yttrium. High chromium<br />

contents are known to be beneficial for resisting<br />

oxidation. The aluminum addition allows for the<br />

formation of a continuous homogenous self repairing<br />

AI 2 O 3 subscale. The addition of yttrium improves the<br />

adhesion and spalling resistance of the chromium and<br />

aluminum oxide scales. The extremely low scaling rate<br />

of <strong>RA</strong> <strong>602</strong> <strong>CA</strong> makes it an excellent candidate for<br />

<strong>RA</strong> <strong>602</strong> <strong>CA</strong> after 3150 hours exposure to<br />

2100°F (1149°C) Magnification: 200x<br />

<strong>RA</strong> 601<br />

H<br />

Haynes ® 214<br />

2<br />

Alloy 617<br />

<strong>RA</strong> 353 MA<br />

<strong>RA</strong>333 ®<br />

<strong>RA</strong> <strong>602</strong> <strong>CA</strong><br />

2250°F Cyclic Oxidation Testing<br />

3000 Hours Cycled Weekly<br />

0 100 200 300 400 500<br />

Weight Gain (mg/cm 2 )<br />

applications such as calciners, where minimal<br />

contamination from scaling is permissible.<br />

The figures below compare the appearance of<br />

<strong>RA</strong> <strong>602</strong> <strong>CA</strong> versus <strong>RA</strong>601 after more than 3000 hours<br />

at 2100°F (1149°C). <strong>RA</strong>601, as seen, has extensive<br />

internal oxidation attack6 . In contrast, only a thin surface<br />

oxide scale formed on <strong>RA</strong> <strong>602</strong> <strong>CA</strong>2 . This is especially<br />

important in applications that use thin sheet such as<br />

radiant tubes. No internal oxidation means the entire<br />

wall thickness is sound metal and the alloy retains a<br />

greater amount of its original properties.<br />

<strong>RA</strong>601 after 3150 hours exposure to<br />

2100°F (1149°C) Magnification: 200x


Grain Growth<br />

The brittle fracture of components exposed to<br />

extreme temperatures is a common occurrence.<br />

At temperatures near or exceeding the annealing<br />

temperature of a heat resistant alloy, grain growth is<br />

likely to occur. Extensive grain growth can result in a<br />

loss of ductility. As a result, the component can be<br />

prone to brittle fracture. An alloy 601 corrugated muffle<br />

that suffered brittle fracture due to combination of<br />

extensive grain growth and carburization is shown<br />

above.<br />

The results of testing at 2050°F (1121°C) are detailed<br />

in the table below. The information provides a<br />

comparison of various heat resisting alloys that are<br />

commonly used above 1900°F (1038°C). The data was<br />

compiled from intermittent exposure of sample<br />

coupons to 2050°F (1121°C) for a total of 990 hours.<br />

Each sample was in the mill annealed condition. The<br />

figure at right shows a sample of <strong>RA</strong> <strong>602</strong> <strong>CA</strong> after long<br />

term exposure to 2100°F (1149°C).<br />

3<br />

<strong>RA</strong> <strong>602</strong> <strong>CA</strong><br />

Brittle fracture of an alloy 601 muffle from the combination of extensive grain growth and carburization.<br />

Sample of <strong>RA</strong> <strong>602</strong> <strong>CA</strong> examined after exposure to<br />

2100°F (1149°C) for over 3150 hours. The grain size<br />

was originally ASTM 7. After the 3000 hour test<br />

period the grains had only grown to ASTM 5.5.<br />

Magnification: 90x<br />

Effects of High Temperature Exposure on ASTM Grain Size8 - 2050°F (1121°C)<br />

Time ASTM Average Grain Size<br />

Hours <strong>RA</strong> <strong>602</strong> <strong>CA</strong> <strong>RA</strong>601 601GC <strong>RA</strong>330 <strong>RA</strong> 353 MA <strong>RA</strong>333 <strong>RA</strong>600<br />

0 7 5 5.5 7 6 4 8<br />

2 7 5 5.5 3.5 4 4 4<br />

24 7 1.5 5 3.5 3 3.5 1<br />

72 7 1 5 3 2.5 3 0<br />

184 6.5 1 3.5 3 2.5 2.5 0<br />

344 6.5 0 3.5 2.5 2 2 0<br />

510 6.5 0 3 2 2 2 00<br />

670 6.5 00 3 2 1.5 2 00<br />

830 6.5 00 3 2 1.5 2 00<br />

990 6.5 00 2.5 1.5 1.5 1 00


<strong>RA</strong> <strong>602</strong> <strong>CA</strong><br />

Carburization 8<br />

Extended exposure to methane (CH 4 ), carbon<br />

monoxide (CO), and other carbon rich gases can lead<br />

to carburization. As heat resistant alloys absorb carbon,<br />

their ductility will gradually decrease. <strong>Alloys</strong> that are<br />

high in nickel, such as <strong>RA</strong> <strong>602</strong> <strong>CA</strong> possess excellent<br />

Metal Wastage Rate (mg/cm 2 h)<br />

1.00E-01<br />

1.00E-02<br />

1.00E-03<br />

1.00E-04<br />

1.00E-05<br />

1.00E-06<br />

<strong>RA</strong>600<br />

0 2000 4000 6000 8000 10000<br />

Exposure Time (Hours)<br />

4<br />

resistance to carburization attack. <strong>RA</strong> <strong>602</strong> <strong>CA</strong> forms a<br />

tenacious oxide scale, which provides increased<br />

protection from carburization. This protective scale<br />

impedes the carbon fro being absorbed into the base<br />

metal.<br />

Cyclic Carburization in CH /H Environment (A =0.8), Weight Change (mg/m 4 2 c 2h) 850°C (1562°F) 1000°C (1832°F) 1150°C (2102°F)<br />

<strong>RA</strong>310 130 305 —<br />

<strong>RA</strong>800AT 143 339 813<br />

<strong>RA</strong>600 50 190 626<br />

<strong>RA</strong>601 64 170 508<br />

<strong>RA</strong> <strong>602</strong> <strong>CA</strong> 13 70 175<br />

Metal dusting is a form of carburization that can lead<br />

to the rapid corrosion of heat resistant alloys. The<br />

photo at left shows a section of an <strong>RA</strong>330 fan shroud<br />

taken from a carburizing furnace displaying the pitting<br />

typical of metal dusting attack.<br />

The combination of high aluminum and chromium<br />

additions to <strong>RA</strong> <strong>602</strong> <strong>CA</strong> results in a resistance to metal<br />

dusting superior to alloys such as <strong>RA</strong>330, <strong>RA</strong>600,<br />

<strong>RA</strong>601, and 800HT ® alloy.<br />

<strong>RA</strong>601<br />

<strong>RA</strong> <strong>602</strong> <strong>CA</strong><br />

Coupon testing<br />

of alloys in<br />

simulated metal<br />

dusting<br />

atmosphere<br />

consisting of<br />

H 2 +CO+H 2 O at<br />

650°C (1202°F).


Hot Corrosion 9<br />

Weight change values for<br />

nickel alloys exposed for 100<br />

hours at 800°C (1472 °F)<br />

Weight Gain (mg/cm2)<br />

Physical Properties Melting Range: 2350-2550°F (1288-1400°C)<br />

Permeability at 20°C/68°F (RT):


<strong>RA</strong> <strong>602</strong> <strong>CA</strong><br />

Mechanical Properties<br />

Typical Tensile Properties, Solution Treated 2228°F (1220°C)<br />

Temperature, °F Tensile Strength, psi 0.2% Yield Strength, psi Elongation, % Reduction of Area, %<br />

68 105,000 50,500 38 39<br />

800 95,400 39,200 42 33<br />

900 94,600 38,600 43 35<br />

1000 93,400 38,300 40 36<br />

1200 84,000 37,700 48 45<br />

1400 54,400 36,500 55 52<br />

1500 41,200 34,800 78 72<br />

1600 32,800 28,700 82 72<br />

1700 24,900 21,000 82 74<br />

1800 17,100 15,200 78 75<br />

1900 13,600 12,200 80 72<br />

2000 13,000 11,600 85 74<br />

2100 10,200 9,000 86 78<br />

2200 5,800 5,000 96 76<br />

Note: Above 1155°F (624°C), time dependent properties, ie., creep-rupture are the basis for design.<br />

Typical Tensile Properties (Metric)<br />

Temperature, °C Tensile Strength, MPa 0.2% Yield Strength, MPa Elongation, % Reduction of Area, %<br />

20 721 348 38 39<br />

400 664 272 42 32<br />

600 632 262 36 37<br />

800 311 251 76 74<br />

900 198 180 82 72<br />

1100 789 78 86 75<br />

1200 42 39 92 76<br />

ASME Allowable Stresses (Code Case 2359-1)<br />

For Metal Maximum For Metal Maximum<br />

Temperature Not Allowable Temperature Not Allowable<br />

Exceeding, °F Stress Values Exceeding, °F Stress Values<br />

ksi {Notes (1) ksi {Notes (1)<br />

and (2)} and (2)}<br />

100 26.0 1100 9.2<br />

200 25.5 1150 6.9<br />

300 24.7 1200 4.1<br />

400 23.7 1250 2.8<br />

500 22.7 1300 2.0<br />

600 21.7 1350 1.5<br />

650 21.2 1400 1.2<br />

700 20.8 1450 0.97<br />

750 20.5 1500 0.80<br />

800 20.2 1550 0.68<br />

850 20.0 1600 0.58<br />

900 19.8 1650 0.51<br />

950 19.6 1700 0.44 (Note 3)<br />

1000 16.3 1750 0.37 (Note 3)<br />

1050 12.3 1800 0.32 (Note 3)<br />

General Note: Time Dependent Values are shown in italics<br />

6<br />

Please consult Code Case 2359-1 for all<br />

requirements for designing with <strong>RA</strong> <strong>602</strong><br />

<strong>CA</strong> to Section 1 and Section VIII, Division<br />

1 requirements.<br />

Notes:<br />

(1) This alloy in the solution-annealed<br />

condition is subject to severe loss of<br />

rupture ductility in the temperature range<br />

of 1200-1400°F.<br />

(2) The allowable stress values are based<br />

on the revised criterion for tensile strength<br />

of 3.5, where applicable.<br />

(3) For Section VIII, Division 1 use only.<br />

(4) The criteria used to establish allowable<br />

stresses at design temperatures above<br />

1500°F included consideration of the Favg factor as defined in Appendix 1 of Section<br />

II, Part D.<br />

(5) Creep-fatigue, thermal ratcheting, and<br />

environmental effects are increasingly<br />

significant failure modes at temperatures<br />

in excess of 1500°F and shall be<br />

considered in the design.


Creep-Rupture Properties 3<br />

<strong>RA</strong> <strong>602</strong> <strong>CA</strong> possesses excellent creep rupture<br />

properties. The relatively high carbon level in the alloy<br />

ensures the precipitation of bulky homogeneously<br />

distributed carbides. Alloying with titanium and<br />

zirconium ensures that these carbides and also<br />

carbonitrides are finely distributed. Even solution<br />

annealing at 1200°C (2192°F) does not completely<br />

7<br />

<strong>RA</strong> <strong>602</strong> <strong>CA</strong><br />

dissolve these carbides. As a result, the alloy achieves<br />

its high creep strength through a combination of solid<br />

solution hardening and carbide strengthening.<br />

<strong>RA</strong> <strong>602</strong> <strong>CA</strong> has a strength advantage over <strong>RA</strong>601 at<br />

all temperatures. At temperatures in the 1800-1900°F<br />

(982-1038°C) range and above, <strong>RA</strong> <strong>602</strong> <strong>CA</strong> has<br />

equivalent or greater creep rupture properties than<br />

Haynes 230 alloy.<br />

Creep-Rupture Properties, grain size 70 µm or coarser ( ≅ ASTM 4.5 or coarser)<br />

Temperature Average Stress to Rupture, psi Average Stress for 1% Total Creep, psi<br />

°F 1,000 Hrs 10,000 Hrs 100,000 Hrs 1000 Hrs 10,000 Hrs 100,000 Hrs<br />

1200 37,700 31,200 20,300 31,900 26,800 20,900<br />

1400 17,400 11,300 5800 13,900 9400 5400<br />

1600 4600 3200 1750 3500 2380 1300<br />

1700 3600 2180 1100 2230 1520 910<br />

1800 2300 1490 740 1300 960 580<br />

1900 1700 990 485 810 590 320<br />

2000 1250 670 (310) 540 330 (160)<br />

2100 670 440 (200) 260 140 (60)<br />

Temperature Average Stress to Rupture, MPa Average Stress for 1% Total Creep, MPa<br />

°C 1,000 Hrs 10,000 Hrs 100,000 Hrs 1,000 Hrs 10,000 Hrs 100,000 Hrs<br />

650 260 215 140 220 185 120<br />

700 155 100 132 85<br />

750 90 48 75 46<br />

800 42 20 32 16.5<br />

850 26 14 19 9.7<br />

900 18 9.7 2.2 13 7.5<br />

950 13 6.7 8.8 5.4<br />

1000 14.1 9.0 4.5 7.5 5.8 3.4<br />

1050 6.2 3.1 3.6 1.9<br />

1100 7.2 4.4 (2.1) 3.2 1.9 0.85<br />

1150 3.0 (1.4) 1.0 0.40<br />

1200 3.0 1.9 (0.42) 0.97


<strong>RA</strong> <strong>602</strong> <strong>CA</strong><br />

Fatigue Properties10 Fatigue strength of<br />

<strong>RA</strong> <strong>602</strong> <strong>CA</strong> at elevated<br />

temperatures.<br />

Impact Properties 9<br />

Loading ± σ m ,N/mm2<br />

100<br />

80<br />

60<br />

40<br />

20<br />

1100°C<br />

1000°C<br />

Effects of Long Term Exposure at Elevated Temperatures on Ductility 3<br />

0<br />

1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07<br />

Number of Cycles<br />

Condition Aging Temperature Time at Aging Impact Strength<br />

°C (°F) Temperature Joules (ft-lb)<br />

Annealed N/A 0 78-84 (58-62)<br />

Annealed 500°C (932°F) 8000 30 (22.1)<br />

Annealed 640°C (1184°F) 8000 30 (22.1)<br />

Annealed 740°C (1364°F) 8000 27 (20)<br />

Annealed 840°C (1544°F) 8000 58 (42.8)<br />

10% Cold Worked 500°C (932°F) 8000 22 (16.2)<br />

10% Cold Worked 640°C (1184°F) 8000 27 (20)<br />

10% Cold Worked 740°C (1364°F) 8000 25 (18.4)<br />

10% Cold Worked 840°C (1544°F) 8000 68 (50.2)<br />

10% C.W. + Aged + Annealed 500°C (932°F) 8000 78 (58)<br />

10% C.W. + Aged + Annealed 640°C (1184°F) 8000 85 (62.7)<br />

10% C.W. + Aged + Annealed 740°C (1364°F) 8000 76 (56.1)<br />

10% C.W. + Aged + Annealed 840°C (1544°F) 8000 80 (59)<br />

8<br />

1150°C


Forming<br />

Hot Working<br />

<strong>RA</strong> <strong>602</strong> <strong>CA</strong> may be hot-worked in the temperature<br />

range 1200 to 900°C (2190 to 1650°F), followed by<br />

water quenching or rapid air cool. As with other<br />

austenitic alloys, do not attempt to form in the 600-<br />

800°C (1100-1500°F) temperature range.<br />

Heating must be performed in a furnace with accurate<br />

temperature control, and a neutral to slightly oxidizing<br />

atmosphere. The atmosphere should not fluctuate<br />

between oxidizing and reducing. Natural gas used to<br />

fire the furnace should contain no more than 0.1<br />

weight % sulfur, and fuel oil no more than 0.5% sulfur.<br />

Spin formed radiant tube return bend. 6 inch<br />

diameter on 6 inch centers formed out of 11ga<br />

(0.120”) <strong>RA</strong> <strong>602</strong> <strong>CA</strong> sheet.<br />

Heat Treatment<br />

<strong>RA</strong> <strong>602</strong> <strong>CA</strong> is solution annealed at 2160-2230°F<br />

(1180-1220°C) followed by water quenching. For<br />

sheet 16 gage (1.5mm) and lighter, rapid air cooling<br />

is acceptable.<br />

9<br />

<strong>RA</strong> <strong>602</strong> <strong>CA</strong><br />

The flame must not impinge directly on the workpiece.<br />

Do not heat <strong>RA</strong> <strong>602</strong> <strong>CA</strong>, or any other nickel alloy,<br />

with a torch to bend it. The lack of temperature control<br />

will often result in cracking.<br />

Cold Forming<br />

<strong>RA</strong> <strong>602</strong> <strong>CA</strong> has a high carbon content, and work<br />

hardens rapidly. <strong>RA</strong> <strong>602</strong> <strong>CA</strong> may be bent 120° around<br />

a diameter equal to three times the material thickness<br />

(3T bend) for material up to 0.4” (10 mm) thick. This<br />

grade cannot be bent to as tight a radius as the lower<br />

carbon alloys, e.g, <strong>RA</strong>600 or <strong>RA</strong>330.<br />

As with other nickel alloys, the shear drag (burr)<br />

should be removed, or placed on the inside of the<br />

bend. During bending this heavily cold-worked burr<br />

may initiate cracking. Sawed plate may be preferred<br />

for severe forming operations.<br />

3/8” thick retort head press formed from 3/8” thick<br />

<strong>RA</strong> <strong>602</strong> <strong>CA</strong> plate. 3-1/2 inch deep and 17 inches in<br />

diameter.


<strong>RA</strong> <strong>602</strong> <strong>CA</strong><br />

Welding<br />

GTAW - Gas Tungsten Arc Welding<br />

10,000 Hour Creep Rupture<br />

Strength, N/mm2<br />

30<br />

25<br />

20<br />

15<br />

<strong>RA</strong> <strong>602</strong> <strong>CA</strong> Base Metal<br />

10<br />

-18%<br />

<strong>RA</strong> <strong>602</strong> <strong>CA</strong> GTAW<br />

5<br />

W/Matching Filler<br />

-16%<br />

0<br />

800 900 1000<br />

-16%<br />

1100<br />

-18%<br />

1200<br />

Temperature, °C<br />

10.000 hour stress to rupture values of <strong>RA</strong> <strong>602</strong> <strong>CA</strong><br />

GTAW weld as compared to <strong>RA</strong> <strong>602</strong> <strong>CA</strong> base metal. 10<br />

<strong>RA</strong> <strong>602</strong> <strong>CA</strong> may be joined by Gas Tungsten Arc<br />

Welding and by Plasma Arc Welding. In both cases<br />

the back side of the weld root must be shielded with<br />

100% welding grade argon (not nitrogen). Good root<br />

shielding is required because of the high aluminum<br />

content of this alloy. The torch gas must be 97.5%<br />

argon, 2.5% nitrogen, for both processes. The<br />

2.5% N 2 addition to the argon is necessary for<br />

improved weldability and reduced hot cracking<br />

susceptiblity in <strong>RA</strong> <strong>602</strong> <strong>CA</strong>.<br />

Manual GTAW Parameters<br />

Shielding gas: 98% Argon - 2% Nitrogen<br />

Plate Filler Metal Root Pass Filler Pass Travel Arc Energy Shielding<br />

Thickness Diameter Speed Gas Flow<br />

inches inches Amps Volts Amps Volts in/min KJ/in, max cfh<br />

11 ga 0.063 90-100 11 -- -- 4-6 20 17-21<br />

1/4 0.063-0.094 110 11 130-150 15 4-6 20 17-21<br />

1/2 0.094 110 11 130-150 15 4-6 20 17-21<br />

Automatic GTAW Parameters<br />

Shielding gas: 98% Argon - 2% Nitrogen<br />

Plate Filler Metal Root Pass Filler Pass Travel Arc Energy Shielding<br />

Thickness Diameter Speed Gas Flow<br />

inches inches Amps Volts Amps Volts in/min KJ/in, max cfh<br />

11 ga 0.035-0.045 manual 150-250 10-15 8-12 20 30-40<br />

5/16 0.035-0.045 manual 150-250 10-15 8-12 20 30-40<br />

10<br />

Stress, psi<br />

45,000<br />

40,000<br />

35,000<br />

UTS Base Metal<br />

YS Base Metal<br />

UTS Weld<br />

30,000<br />

25,000<br />

20,000<br />

15,000<br />

10,000<br />

5,000<br />

0<br />

YS Weld<br />

1500 1600 1700 1800 1900 2000 2100 2200<br />

Temperature, °F<br />

Comparison of mechanical properties of <strong>RA</strong> <strong>602</strong> <strong>CA</strong><br />

base metal vs. GTAW welds made with matching<br />

filler.<br />

Interpass temperature should not exceed 250°F<br />

(120°C) with lower temperatures preferred. Heat the<br />

metal before welding only if necessary to dry the<br />

workpiece, and then just hot to the touch. Neither<br />

preheat nor postheat is required.<br />

The matching weld filler wire is S <strong>602</strong>5, W.Nr. 2.4649,<br />

AWS ERNiCrFe-12.


GMAW - Gas Metal Arc Welding<br />

11<br />

<strong>RA</strong> <strong>602</strong> <strong>CA</strong><br />

GMAW welding of <strong>RA</strong> <strong>602</strong> <strong>CA</strong> should be performed using the matching composition weld wire designated as<br />

S <strong>602</strong>5. <strong>RA</strong> <strong>602</strong> <strong>CA</strong> should be joined using the pulse arc process. For welding material thicknesses less than<br />

3/16” thick use of 100% Argon shielding has been satisfactory. For welding thicknesses above 3/16”, it is recommended<br />

to utilize the welding gas AR Ni5He5CD300. (Available from Airgas 419-666-7155) to reduce the<br />

likelihood of centerline cracking.<br />

GMAW – Pulse Arc Transfer<br />

Wire Diameter Wire Feed Amperes Volts Gas Flow Travel Speed Pulse<br />

0.045 inch 236 in/min 170 A 26 V 38 ft 3 /hr 15 in/min 500 pulse/sec<br />

For applications under 1832°F (1000°C), <strong>RA</strong> <strong>602</strong> <strong>CA</strong> may be welded with alloy 617 wire, ERNiCrCoMo-1, using<br />

argon or argon-helium shielding gas. A GTAW cover pass with S <strong>602</strong>5 filler wire is necessary to match the<br />

oxidation resistance of the <strong>RA</strong> <strong>602</strong> <strong>CA</strong> base metal. S <strong>602</strong>5 weld filler should be used at higher temperatures<br />

where alloy 617 has less strength than <strong>RA</strong> <strong>602</strong> <strong>CA</strong> base metal.<br />

SMAW - Shielded Metal Arc Welding<br />

Matching chemistry DC basic covered electrodes, 6225 Al (AWS ENiCrFe-12), are available for welding<br />

<strong>RA</strong> <strong>602</strong> <strong>CA</strong>. Use a stringer bead technique, electrode inclined approximately 20° in the direction of travel. Keep<br />

the interpass temperature low, below 300°F (150°C). Electrodes must be dry. If necessary, rebake to dry for 2<br />

hours at 480°F (250°C).<br />

6225 Al Electrode Weld Deposit 8 - Nominal Chemical Composition, %<br />

Cr Ni C AI Ti Y Zr Mn Si Fe<br />

25 62 0.2 1.8 0.1 0.02 0.03 0.1 0.6 10<br />

SMAW Weld Metal Mechanical Properties, Room Temperature (minimum)<br />

Ultimate Tensile 0.2% Yield Strength Elongation Impact Strength<br />

Strength<br />

psi N/mm 2 psi N/mm 2 % Ft-lb J<br />

101,500 700 72,500 500 15 22 30<br />

Starting Parameters<br />

Electrode diameter, inch (mm) 3/32 (2.5) 1/8 (3.2) 3/16 (4.0)<br />

DCRP Current, Amps 40-55 70-90 90-110


<strong>RA</strong> <strong>602</strong> <strong>CA</strong><br />

PAW - Plasma Arc Welding<br />

As with automatic GTAW, shielding gas must be Argon with 2-3% Nitrogen<br />

Plate Filler Metal Root Pass Filler Pass Travel Arc Energy Shielding<br />

Thickness Diameter Speed Gas Flow<br />

inches inches Amps Volts Amps Volts in/min KJ/in, max cfh<br />

3/16 0.045 180 25 -- -- 10-12 28 65<br />

1/2 0.045 180 25 GMAW 10-12 28 65<br />

Dissimilar Welding<br />

<strong>RA</strong> <strong>602</strong> <strong>CA</strong> may be welded to carbon steel, 304 stainless steel, or <strong>RA</strong>600 using ERNiCr-3 (Alloy 82) bare wire or<br />

ENiCrFe-3 (Alloy 182) covered electrodes.<br />

Joints between <strong>RA</strong> <strong>602</strong> <strong>CA</strong> and <strong>RA</strong>601 may be made using the matching <strong>RA</strong> <strong>602</strong> <strong>CA</strong> weld filler, Nicrofer S <strong>602</strong>5.<br />

Weldments to other heat resistant or nickel alloys should be qualified before production. Choice of weld filler<br />

should be based on high temperature service properties, in addition to weldability considerations.<br />

Corrosion Rate, mm/a<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

<strong>RA</strong> <strong>602</strong> <strong>CA</strong> GTAW SMAW<br />

Base Metal<br />

1100°C 1200°C<br />

Comparison of the oxidation of <strong>RA</strong> <strong>602</strong> <strong>CA</strong> base metal to GTAW and SMAW welds<br />

made with matching ERNiCrFe-12 and ENiCrFe-12 filler metal respectively.<br />

12


25” O.D. calciner processing metal oxide pigments<br />

in the 1800-2100°F range. <strong>RA</strong> <strong>602</strong> <strong>CA</strong> selected after<br />

coupon testing of <strong>RA</strong>601, HR-120, Haynes 556, and<br />

HR-160 alloys. Reference <strong>RA</strong> Case History #2027.<br />

60 inch diameter x 30 ft. long calciner processing<br />

high purity alumina at 2050-2100°F. Unit in operation<br />

for 5 years until first repairs. <strong>RA</strong> <strong>602</strong> <strong>CA</strong> selected<br />

over alloy 601 based on higher strength and scaling<br />

resistance.<br />

Serpentine grid formed from 3/16" <strong>RA</strong> <strong>602</strong> <strong>CA</strong> plate.<br />

Material used in vacuum heat treatment of tool<br />

steels at 2175°F-2275°F followed by 6 bar nitrogen<br />

quench. Still in service after 1200 cycles. See Case<br />

History 2063.<br />

13<br />

<strong>RA</strong> <strong>602</strong> <strong>CA</strong><br />

Furnace rolls in a specialty steel mill. <strong>RA</strong> <strong>602</strong> <strong>CA</strong><br />

replaced water cooled asbestos lined carbon steel.<br />

The <strong>RA</strong> <strong>602</strong> <strong>CA</strong> is not water cooled and was rolled<br />

and welded to form the rolls. <strong>RA</strong> <strong>602</strong> <strong>CA</strong> rolls have<br />

reduced energy consumption by eliminating watercooling<br />

and have reduced marking of sheet product<br />

due to their smooth surface.<br />

30” diameter chemical vapor deposition (CVD)<br />

retort for the aluminide coating of gas turbine<br />

blades. <strong>RA</strong> <strong>602</strong> <strong>CA</strong> replaced Haynes 230 in this<br />

application. Temperatures are 1975°F.


<strong>RA</strong> <strong>602</strong> <strong>CA</strong><br />

Radiant tube formed out of 11 ga <strong>RA</strong> <strong>602</strong> <strong>CA</strong> sheet.<br />

Replaced type HT cast tubes. <strong>RA</strong> <strong>602</strong> <strong>CA</strong> tubes<br />

preferred due to their lighter weight, which translates<br />

into easier installation and greater furnace efficiency.<br />

Tube still in service after 18 months no distortion<br />

reported. Reference <strong>RA</strong> Case History 2026.<br />

Test of <strong>RA</strong> <strong>602</strong> <strong>CA</strong> vs. alloy 600 belly bands on an<br />

aluminide coating retort. 69 cycles of operation at<br />

2000°F. <strong>RA</strong> <strong>602</strong> <strong>CA</strong> is now specified for this application<br />

over alloy 600. See Bulletin 2032 for more details.<br />

14<br />

<strong>RA</strong> <strong>602</strong> <strong>CA</strong> liner being formed prior to welding.<br />

Liner is replacing alloy 800HT ® in a hydrogen<br />

reformer bypass duct. Metal dusting has historically<br />

been a problem with the alloy 800HT liners.<br />

<strong>RA</strong> <strong>602</strong> <strong>CA</strong> coating cans fabricated from 11ga<br />

sheet. <strong>RA</strong> <strong>602</strong> <strong>CA</strong> replaced Haynes 214 ® alloy. Due<br />

to the light gage and temperatures in the 1900-<br />

2000°F range oxidation resistance is critical in this<br />

application.


15<br />

<strong>RA</strong> <strong>602</strong> <strong>CA</strong>


<strong>RA</strong> <strong>602</strong> <strong>CA</strong><br />

References<br />

1. J.C. Kelly & J. D. Wilson, “Oxidation Rates of Some Heat Resistant<br />

<strong>Alloys</strong>”, ASM Proceedings of the 2nd International Conference on<br />

Heat-Resistant Materials, Gatlinburg, TN, USA. September 11-14,<br />

1995.<br />

2. <strong>Rolled</strong> <strong>Alloys</strong> Laboratory Testing, Investigation File #99-55.<br />

3. Personal Correspondence with Krupp VDM 9/28/00.<br />

4. <strong>Rolled</strong> <strong>Alloys</strong>, Inc. <strong>RA</strong> Data Sheet, <strong>RA</strong>330 Alloy, Bulletin 107, 9/98.<br />

5. Haynes International, Haynes 230 Alloy Data Sheet, H-3000F, pgs<br />

5, 6.<br />

6. <strong>Rolled</strong> <strong>Alloys</strong> Laboratory Testing, Investigation File #92-99.<br />

7. <strong>Rolled</strong> <strong>Alloys</strong> Laboratory Testing, Investigation File #00-05.<br />

8. D.C. Agarwal & U. Brill, & J. Kloewer, “Recent Results on Metal<br />

Dusting of Nickel Based <strong>Alloys</strong> and Some Applications,” Corrosion<br />

2001, Paper 1382, NACE International, Houston TX 2001.<br />

9. R. Bender & M. Schultze, “Oxidation Beharior of Several<br />

Commercial <strong>Alloys</strong> in Chlorine Containing High Temperature<br />

Environments.<br />

MIDWEST REGION:<br />

125 West Sterns Road<br />

Temperance, Michigan 48182-9546<br />

800-521-0332<br />

1-734-847-0561<br />

Fax: 1-734-847-6917<br />

email:sales@rolledalloys.com<br />

CENT<strong>RA</strong>L REGION:<br />

9944 Princeton-Glendale Road<br />

Cincinnati, Ohio 45246<br />

800-521-0332<br />

email:sales@rolledalloys.com<br />

EASTERN REGION:<br />

30 Baker Hollow<br />

Windsor, Connecticut 06095<br />

800-521-0332<br />

email:sales@rolledalloys.com<br />

SOUTHERN REGION:<br />

9818 E. Hardy Road<br />

Houston, Texas 77093<br />

800-521-0332<br />

email:sales@rolledalloys.com<br />

WESTERN REGION:<br />

Harvey Titanium Ltd., Division of <strong>Rolled</strong> <strong>Alloys</strong><br />

291 Coral Circle Drive<br />

El Segundo, California 90245<br />

800-321-0909<br />

1-310-343-6000 fax 1-310-606-9322<br />

email:harveytisales@rolledalloys.com<br />

<strong>CA</strong>NADA:<br />

<strong>Rolled</strong> <strong>Alloys</strong>-Canada, Inc.<br />

151 Brunel Road - Unit 23<br />

Mississauga Ontario Canada L4Z 2H6<br />

800-521-0332<br />

1-905-501-7552 fax 1-905-501-7553<br />

email:racsales@rolledalloys.com<br />

Form<br />

# 1<strong>602</strong><br />

6/<br />

04<br />

500<br />

10. ThyssenKrupp VDM, VDM Report No. 25, High-Temperature <strong>Alloys</strong><br />

from Krupp VDM for Industrial Engineering.<br />

11. D.C. Agarwal & U. Brill “Performance of Alloy <strong>602</strong><strong>CA</strong> (UNS N0<strong>602</strong>5)<br />

in High Temperature Environments up to 1200�C”, Corrosion/2000,<br />

Paper 521, NACE International, Orlando, FL 2000.<br />

General Disclaimer<br />

The data and information in this data sheet are believed to be<br />

reliable, however, this data is not intended as a substitute for competent<br />

professional engineering assistance which is a requisite to any<br />

specific application.<br />

Trade Marks:<br />

<strong>602</strong> <strong>CA</strong> is a registered trademark of ThyssenKrupp VDM.<br />

<strong>RA</strong>330 and <strong>RA</strong>333 are registered trademarks of <strong>Rolled</strong> <strong>Alloys</strong>, Inc.<br />

Haynes 230 and Haynes 214 are registerd trademarks of Haynes<br />

International.<br />

<strong>RA</strong> 353 MA is a registered trademark of Outokumpu Stainless.<br />

800HT is a registered trademark of Special Metals.<br />

ENGLAND:<br />

Walker Industrial Park<br />

Guide, Blackburn<br />

BB1 2QE, United Kingdom<br />

+44-(0)1254 582 999 fax +44- (0)1254 582 666<br />

email:blackburn@rolledalloys.co.uk<br />

Unit 5, Priory Industrial Park<br />

Airspeed Rd., Christchurch, Dorset<br />

BH23 4HD, United Kingdom<br />

+44-(0)1425 280 000 fax +44-(0)1425 280 028<br />

email:christchurch@rolledalloys.co.uk<br />

THE NETHERLANDS:<br />

<strong>Rolled</strong> <strong>Alloys</strong><br />

Voorerf 16<br />

4824 GN Breda, The Netherlands<br />

+31-(0)76-548 44 44 fax +31-(0)76-542 98 88<br />

email:sales@rolledalloys.nl<br />

INTERNATIONAL:<br />

<strong>Rolled</strong> <strong>Alloys</strong> International, Ltd.<br />

14, The Oaks<br />

Clews Road, Redditch, Worcestershire<br />

B98 7ST, United Kingdom<br />

+44-(0)1527-401101 fax +44-(0)1527-401013<br />

email:hbuijnsters@rolledalloys.co.uk<br />

SINGAPORE:<br />

<strong>Rolled</strong> <strong>Alloys</strong> International, Ltd. Singapore<br />

10 Anson Road #24-06<br />

International Plaza, Singapore 079903<br />

+65-62272725 fax +65-62272735<br />

email:railtd@pacific.net.sg<br />

CHINA:<br />

<strong>Rolled</strong> <strong>Alloys</strong>, Ltd.<br />

Room 12B03, 12B Floor<br />

Suncome Liauw's Plaza<br />

738 Shangcheng Road, Pudong New Area<br />

Shanghai, China 200120<br />

+86-(0)21-5835-5329 fax +86-(0)21-5835-5339<br />

E-mail: sales@rolledalloys.com<br />

http://www.<strong>Rolled</strong><strong>Alloys</strong>.com<br />

© 2016<br />

04<br />

<strong>Rolled</strong><br />

<strong>Alloys</strong>,<br />

Inc.<br />

Litho<br />

in<br />

U.<br />

S.<br />

A.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!