27.12.2012 Views

XIII European Conference on the Spectroscopy of ... - ecsbm 2009

XIII European Conference on the Spectroscopy of ... - ecsbm 2009

XIII European Conference on the Spectroscopy of ... - ecsbm 2009

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>XIII</str<strong>on</strong>g> <str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g><br />

<strong>on</strong> <strong>the</strong><br />

<strong>Spectroscopy</strong> <strong>of</strong> Biological Molecules<br />

August 28 th – September 2 nd<br />

University <strong>of</strong> Palermo, Parco d’Orléans Campus<br />

Palermo, Italy<br />

BOOK OF ABSTRACTS<br />

i


ECSBM: an <str<strong>on</strong>g>European</str<strong>on</strong>g> C<strong>on</strong>gress since 1985.<br />

The <str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Spectroscopy</strong> <strong>of</strong> Biological Molecules (ECSBM) has been<br />

founded in 1985 by <strong>the</strong> researchers working in <strong>the</strong> field <strong>of</strong> optical spectroscopy applied to<br />

biomolecules and biosystems. The first meeting <strong>of</strong> this c<strong>on</strong>ference was held in Reims (France) and<br />

organized by <strong>the</strong> University <strong>of</strong> Reims-Champagne-Ardenne.<br />

Since this time, <strong>the</strong> field <strong>of</strong> activity <strong>of</strong> <strong>the</strong> c<strong>on</strong>ference has c<strong>on</strong>siderably grown up. Researchers who<br />

use traditi<strong>on</strong>al spectroscopic techniques, such as Raman scattering, IR absorpti<strong>on</strong>, UV/Vis<br />

Absorpti<strong>on</strong>, circular dichroism, fluorescence, magnetic res<strong>on</strong>ance, X-rays and neutr<strong>on</strong> scattering, as<br />

well as those who work <strong>on</strong> cellular and tissutal imaging attend <strong>the</strong> meetings <strong>of</strong> <strong>the</strong> c<strong>on</strong>ference which<br />

are held every two years in a different <str<strong>on</strong>g>European</str<strong>on</strong>g> country. Recently, particular attenti<strong>on</strong> has been<br />

devoted to <strong>the</strong> applicati<strong>on</strong>s <strong>of</strong> biomolecular spectroscopy in <strong>the</strong> fields <strong>of</strong> biomedical imaging, anti<br />

cancer research, drug characterizati<strong>on</strong> for pharmaceutical applicati<strong>on</strong>s, drug delivery and nanobiotechnology.<br />

Researchers not <strong>on</strong>ly from all countries <strong>of</strong> Europe attend <strong>the</strong> c<strong>on</strong>ference, but also<br />

from North Africa, Israel and Middle East countries, India, Japan and Australia, United States,<br />

Middle and South America.<br />

For its qualified attendance and for <strong>the</strong> broadness <strong>of</strong> scientific topics covered, ECSBM has become<br />

during <strong>the</strong> last years a leading c<strong>on</strong>ference located at <strong>the</strong> crossroad <strong>of</strong> three fundamental scientific<br />

fields: Physics, Chemistry, Biology.<br />

<str<strong>on</strong>g>European</str<strong>on</strong>g> Countries and cities where <strong>the</strong> ECSBM meetings have been held:<br />

1985 France (Reims)<br />

1987 Germany (Fribourg)<br />

1989 Italy (Rimini)<br />

1991 United Kingdom (York)<br />

1993 Greece (Loutraki)<br />

1995 France (Lille)<br />

1997 Spain (Madrid)<br />

1999 Ne<strong>the</strong>rlands (Enschede)<br />

2001 Czech Republic (Prague)<br />

2003 Hungary (Szeged)<br />

2005 Germany (Aschaffenburg)<br />

2007 France (Paris)<br />

<strong>2009</strong> Italy (Palermo)<br />

ii


ECSBM <str<strong>on</strong>g>European</str<strong>on</strong>g> Committee: Scientific Council <strong>of</strong> <strong>the</strong> C<strong>on</strong>gress<br />

Halina Abramczyk (Technical University <strong>of</strong> Lodz, Poland) abramczy@mbi-berlin.de<br />

Andreas Barth (Stockholm University, Sweden) barth@dbb.su.se<br />

Vladimir Baumruk (Charles University, Czech Republic) baumruk@karlovu.miff.cuni.cz<br />

Ant<strong>on</strong>io Cupane (University <strong>of</strong> Palermo, Italy) cupane@fisica.unipa.it<br />

Manuel Dauchez (Univ.<strong>of</strong> Reims Champagne-Ardenne, France) manuel.dauchez@univ-reims.fr<br />

Alessandro Feis (University <strong>of</strong> Florence, Italy) feis@chim.unifi.it<br />

Joachim Heberle (Bielefeld University, Germany) j.heberle@fz-jjuelich.de<br />

Belen Hernández (BioMoCeTi, University <strong>of</strong> Paris 13, France) belen.hernandez@univ-paris13.fr<br />

Nerea Iza (Universidad Complutense de Madrid, Spain) nereaiza@quim.ucm.es<br />

Zoltan Kota (Biological Research Center, Szeged, Hungary) zkota@brc.hu<br />

Maria Paula Marques (University <strong>of</strong> Coimbra, Portugal) pmc@ci.uc.pt<br />

Dieter Naumann (Robert Koch Institute, Berlin, Germany) naumannd@rki.de<br />

Juan Carlos Otero (University <strong>of</strong> Malaga, Spain) jc_otero@uma.es<br />

Anth<strong>on</strong>y Parker (Ru<strong>the</strong>rford Applet<strong>on</strong> Lab. United Kingdom) a.w.parker@stfc.ac.uk<br />

George B. Tolstorozhev (Natl. Acad. Sci. <strong>of</strong> Belarus, Belarus) gbt@imaph.bas-net.by<br />

Rienk van Gr<strong>on</strong>delle (Vrije Universiteit, The Ne<strong>the</strong>rlands) rienk@few.vu.nl<br />

Costantinos Varotsis (University <strong>of</strong> Crete, Greece) varotsis@edu.uoc.gr<br />

Local Organizing Committee<br />

Ant<strong>on</strong>io Cupane (Chairman, DSFA Palermo, Italy)<br />

Grazia Cott<strong>on</strong>e (DSFA Palermo, Italy)<br />

Daniela Giacomazza (CNR Palermo, Italy)<br />

Matteo Levantino (DSFA Palermo, Italy)<br />

Alessandro L<strong>on</strong>go (CNR Palermo, Italy)<br />

Giorgio Schirò (DSFA Palermo, Italy)<br />

Eugenio Vitrano (DSFA Palermo, Italy)<br />

iii


CONFERENCE PROGRAM<br />

August 28 th <strong>2009</strong> ; Friday<br />

15:00 – 19:00 REGISTRATION<br />

19:00 – 20.30 WELCOME COCKTAIL<br />

v


09:00<br />

09:30<br />

10:30<br />

11:30<br />

11:50<br />

12:15<br />

12:40<br />

13:05<br />

13:30<br />

15:00<br />

16:30<br />

OPENING CEREMONY<br />

August 29 th <strong>2009</strong> ; Saturday<br />

Aula Magna “Vincenzo Li D<strong>on</strong>ni”<br />

OPENING SESSION<br />

Aula Magna “Vincenzo Li D<strong>on</strong>ni”<br />

Chair: Anth<strong>on</strong>y W. Parker<br />

The tumour suppressor p53: from structure to drug discovery<br />

Alan FERSHT<br />

University <strong>of</strong> Cambridge, Cambridge, UK<br />

2D-IR spectroscopy <strong>of</strong> peptides and proteins<br />

Peter HAMM<br />

University <strong>of</strong> Zurich, Zurich, CH<br />

C<strong>of</strong>fee Break<br />

ADVANCED SPECTROSCOPY 1<br />

Complesso Polididattico Room A<br />

Chair: Halina Abramczyk<br />

Recent studies <strong>of</strong> coherent vibrati<strong>on</strong>al moti<strong>on</strong> in<br />

biomolecules<br />

Paul M. CHAMPION<br />

Nor<strong>the</strong>astern University, Bost<strong>on</strong>, USA<br />

Green fluorescent protein as a matrix for <strong>the</strong><br />

study <strong>of</strong> ultrafast prot<strong>on</strong> transfer in proteins<br />

Stephen R. MEECH<br />

University <strong>of</strong> East Anglia, Norwich, UK<br />

Time-resolved diffusi<strong>on</strong> and <strong>the</strong>rmodynamics<br />

revealed spectrally hidden dynamics <strong>of</strong><br />

phototropins<br />

Masahide TERAZIMA<br />

University <strong>of</strong> Kyoto, Kyoto, JP<br />

Ultrafast protein resp<strong>on</strong>se in BR and<br />

SRII: results from isotopically labeled<br />

and chemically modified retinal proteins<br />

Rolf DILLER<br />

University <strong>of</strong> Kaiserslautern,<br />

Kaiserslautern, DE<br />

Lunch<br />

vi<br />

ADVANCED SPECTROSCOPY 2<br />

Complesso Polididattico Room B<br />

Chair: Andreas Barth<br />

Laser amplifier for spectroscopy <strong>of</strong> prot<strong>on</strong>ated<br />

peptides<br />

Oleg V. BOYARKIN<br />

École Polytechnique Fédérale , Lausanne, CH<br />

Spectroscopic and modeling studies <strong>of</strong><br />

biomolecular adsorpti<strong>on</strong> <strong>on</strong> solid surfaces<br />

Dennis K. HORE<br />

University <strong>of</strong> Victoria, Victoria, CA<br />

Structural analysis <strong>of</strong> macromolecular<br />

complexes by isotope-edited FTIR spectroscopy<br />

Suren A. TATULIAN<br />

University <strong>of</strong> Central Florida, Orlando, USA<br />

Excit<strong>on</strong> dynamics and energy disorder in<br />

photosyn<strong>the</strong>tic light-harvesting complexes<br />

Silvia VOLKER<br />

University <strong>of</strong> Leiden, Leiden, NL<br />

Poster Sessi<strong>on</strong> A: Magnetic Res<strong>on</strong>ance; Multidimensi<strong>on</strong>al <strong>Spectroscopy</strong>; Neutr<strong>on</strong><br />

Scattering; Optical <strong>Spectroscopy</strong>; Synchrotr<strong>on</strong> and XFEL <strong>Spectroscopy</strong><br />

C<strong>of</strong>fee Break


16:50<br />

17:50<br />

18:15<br />

18:40<br />

19:05<br />

PROTEIN DYNAMICS 1<br />

Complesso Polididattico Room A<br />

Chair: Lorenzo Cord<strong>on</strong>e<br />

Protein dynamics and functi<strong>on</strong>ality: <strong>the</strong><br />

role <strong>of</strong> hydrati<strong>on</strong> shell waters<br />

Joel FRIEDMAN<br />

AECOM, New York, USA<br />

Fluorescence and Infrared Cross-<br />

Correlati<strong>on</strong> spectroscopy: a new tool in<br />

analysing protein c<strong>on</strong>formati<strong>on</strong>al<br />

coupling<br />

Karim FAHMY<br />

Forschungszentrum, Dresden, DE<br />

Shape <strong>of</strong> <strong>the</strong> carb<strong>on</strong> m<strong>on</strong>oxide infrared<br />

absorpti<strong>on</strong> band <strong>of</strong> carboxyheme proteins as a<br />

probe <strong>of</strong> <strong>the</strong> protein anharm<strong>on</strong>icity<br />

Solom<strong>on</strong> S. STAVROV<br />

University <strong>of</strong> Tel-Aviv, Tel-Aviv, IL<br />

Low-frequency dynamics <strong>of</strong> Bacteriorhodopsin<br />

studied by terahertz time-domain spectroscopy;<br />

relati<strong>on</strong> with its functi<strong>on</strong><br />

Keisuke TOMINAGA<br />

University <strong>of</strong> Kobe, Kobe, JP<br />

Low temperature FTIR spectroscopy reveals new<br />

insights <strong>on</strong> <strong>the</strong> pH-dependent prot<strong>on</strong> pathway <strong>of</strong><br />

Proteorhodopsin<br />

Gabriela SCHÄFER<br />

Goe<strong>the</strong>-University, Frankfurt, DE<br />

vii<br />

MAGNETIC RESONANCE<br />

Complesso Polididattico Room B<br />

Chair: Alessandro Feis<br />

EPR studies <strong>of</strong> membrane protein<br />

structure and folding<br />

Gunnar JESCHKE<br />

ETH, Zurich, CH<br />

Time resolved EPR investigati<strong>on</strong> <strong>on</strong> oxygen and<br />

temperature effects <strong>on</strong> a syn<strong>the</strong>tic eumelanin<br />

Fosca CONTI<br />

University <strong>of</strong> Padova, Padova, IT<br />

Olig<strong>on</strong>ucleotide-based chemical nucleases:<br />

opportunities and challenges in RNA targeting<br />

Steven M. MILES<br />

University <strong>of</strong> Manchester, Manchester, UK<br />

Molecular stress in biological membranes<br />

measured by solid-state NMR spectroscopy<br />

Horia I. PETRACHE<br />

Purdue University, Indianapolis, USA<br />

Self-assembled i<strong>on</strong> channels probed by nitroxide<br />

spin labels and PELDOR spectroscopy<br />

Jan RAAP<br />

University <strong>of</strong> Leiden, Leiden, NL


09:00<br />

10:00<br />

10:25<br />

10:50<br />

11:10<br />

12:10<br />

12:35<br />

13:00<br />

13:30<br />

15:00<br />

16:30<br />

August 30 th <strong>2009</strong> ; Sunday<br />

FTIR, X-RAY AND NEUTRON SCATTERING STUDIES ON PROTEINS AND PEPTIDES<br />

Aula Magna “Vincenzo Li D<strong>on</strong>ni”<br />

Chairs: Ant<strong>on</strong>io Cupane – Rienk van Gr<strong>on</strong>delle<br />

Protein structural dynamics visualized by time-resolved X-ray crystallography and<br />

liquidography<br />

Hyotcherl IHEE<br />

KAIST, Daeje<strong>on</strong>, RoK<br />

Tracking structural changes in soluti<strong>on</strong> with 100 ps time-resolved X-ray scattering<br />

Marco CAMMARATA<br />

ESRF, Grenoble, FR<br />

Proteins in acti<strong>on</strong> m<strong>on</strong>itored by time-resolved FTIR spectroscopy<br />

Klaus GERWERT<br />

Ruhr University, Bochum, DE<br />

C<strong>of</strong>fee Break<br />

Neutr<strong>on</strong> scattering studies <strong>of</strong> low-temperature and high-temperature dynamic<br />

crossovers in lysozyme hydrati<strong>on</strong> water and <strong>the</strong>ir effect <strong>on</strong> <strong>the</strong> c<strong>on</strong>formati<strong>on</strong>al<br />

dynamics <strong>of</strong> <strong>the</strong> protein<br />

Sow-Hsin CHEN<br />

MIT, Cambridge, USA<br />

Sp<strong>on</strong>sored by “<strong>Spectroscopy</strong> – Biomedical Applicati<strong>on</strong>s” - IOS Press<br />

Dynamic crossovers and quantum effects in protein hydrati<strong>on</strong> water<br />

Fabio BRUNI<br />

University <strong>of</strong> Rome 3, Rome, IT<br />

Folding dynamics <strong>of</strong> peptides studied by temperature-jump infrared-spectroscopy<br />

Karin HAUSER<br />

University <strong>of</strong> Frankfurt , Frankfurt, DE<br />

Photoemissi<strong>on</strong> and <strong>the</strong> shape <strong>of</strong> free amino acids<br />

Vitaliy FEYER<br />

Synchrotr<strong>on</strong> Trieste, Basovizza, IT<br />

Lunch<br />

Poster Sessi<strong>on</strong> A: Magnetic Res<strong>on</strong>ance; Multidimensi<strong>on</strong>al <strong>Spectroscopy</strong>; Neutr<strong>on</strong><br />

Scattering; Optical <strong>Spectroscopy</strong>; Synchrotr<strong>on</strong> and XFEL <strong>Spectroscopy</strong><br />

C<strong>of</strong>fee Break<br />

viii


16:50<br />

17:50<br />

18:15<br />

18:40<br />

19:05<br />

PROTEIN DYNAMICS 2<br />

Complesso Polididattico Room A<br />

Chair: Balazs Szal<strong>on</strong>tai<br />

Hydrogen b<strong>on</strong>ding properties <strong>of</strong><br />

amorphous water-saccharide matrixes<br />

and bioprotecti<strong>on</strong><br />

Lorenzo CORDONE<br />

University <strong>of</strong> Palermo, Palermo, IT<br />

Modulati<strong>on</strong> <strong>of</strong> <strong>the</strong> c<strong>on</strong>formati<strong>on</strong> <strong>of</strong> cytochrome c<br />

oxidase from Paracoccus denitrificans by activesite<br />

mutati<strong>on</strong>s<br />

Denis L. ROUSSEAU<br />

AECOM, New York, USA<br />

A new method to m<strong>on</strong>itor ligand binding to<br />

proteins, amide I band simulati<strong>on</strong>s and <strong>the</strong><br />

infrared spectrum <strong>of</strong> acetyl phosphate<br />

Andreas BARTH<br />

University <strong>of</strong> Stockholm, Stockholm, SE<br />

The regulati<strong>on</strong> <strong>of</strong> <strong>the</strong> formati<strong>on</strong> <strong>of</strong><br />

cytoskeletal protein complexes by actinbinding<br />

proteins<br />

Miklos NYITRAI<br />

University <strong>of</strong> Pécs, Pécs, HU<br />

Study <strong>of</strong> dynamic properties <strong>of</strong> rec<strong>on</strong>stituted<br />

myelin sheath<br />

Francesca NATALI<br />

CNR/ILL, Grenoble, FR<br />

ix<br />

OPTICAL SPECTROSCOPY 1<br />

Complesso Polididattico Room B<br />

Chair: Oleksandr Slobodyanyuk<br />

dSTORM: super-resoluti<strong>on</strong> imaging with<br />

small organic fluorophores<br />

Markus SAUER<br />

University <strong>of</strong> Bielefeld, Bielefeld, DE<br />

Disulfide chromophore and its optical activity<br />

Vladimir BAUMRUK<br />

Charles University, Prague, CZ<br />

Ultrafast processes in photosyn<strong>the</strong>sis<br />

Rienk van GRONDELLE<br />

Vrije Universiteit, Amsterdam, NL<br />

Steady state and time-resolved Fluorescence<br />

measurements <strong>of</strong> <strong>the</strong> Green Fluorescent<br />

Variants T203V and T203V/S205V<br />

Dan HUPPERT<br />

University <strong>of</strong> Tel-Aviv, Tel-Aviv, IL<br />

The influence <strong>of</strong> activator <strong>on</strong> c<strong>on</strong>formati<strong>on</strong>al<br />

changes in human platelet Integrin αIIbβ3<br />

Tia E. KEYES<br />

Dublin City University, Dublin, IE


09:00<br />

10:00<br />

10:30<br />

11:00<br />

11:20<br />

11:45<br />

12:10<br />

12:35<br />

13:00<br />

13:25<br />

15:00<br />

16:30<br />

August 31 st <strong>2009</strong> ; M<strong>on</strong>day<br />

PROTEIN FOLDING AND AGGREGATION<br />

Complesso Polididattico Room A<br />

Chairs: Pier Luigi San Biagio – Zoltan Kota<br />

Polyglutamine and neurodegenerati<strong>on</strong>: a<br />

structural approach<br />

Laura MASINO<br />

NIMR, L<strong>on</strong>d<strong>on</strong>, UK<br />

Unfolded and (self)-aggregated states <strong>of</strong> alanine<br />

based peptides<br />

Reinhard SCHWEITZER-STENNER<br />

Drexel University, Philadelphia, USA<br />

A novel approach to multiscale measurements in<br />

biological materials: silk as a model system<br />

Cedric DICKO<br />

University <strong>of</strong> Oxford, Oxford, UK<br />

C<strong>of</strong>fee Break<br />

UV-Vis and FT-IR spectra <strong>of</strong> ultraviolet<br />

irradiated collagen in <strong>the</strong> presence <strong>of</strong> antioxidant<br />

ascorbic acid<br />

Ketevan JARIASHVILI<br />

Tbilisi State University, Tbilisi, GE<br />

Equilibrium spectroscopic studies <strong>of</strong> aromaticaromatic<br />

interacti<strong>on</strong> and pH effect <strong>on</strong> trpzip βhairpin<br />

stability<br />

Timothy A. KEIDERLING<br />

University <strong>of</strong> Illinois at Chicago, Chicago, USA<br />

Denaturati<strong>on</strong> <strong>of</strong> proteins with beta-barrel<br />

topology induced by guanidine hydrochloride<br />

Olesya STEPANENKO<br />

RAS, Saint-Petersburg, RU<br />

Determinati<strong>on</strong> <strong>of</strong> c<strong>on</strong>formati<strong>on</strong>al changes during<br />

aggregati<strong>on</strong> <strong>of</strong> <strong>the</strong> amyloid-beta peptide by<br />

attenuated total reflecti<strong>on</strong>-Fourier transform<br />

infrared spectroscopy<br />

Rabia SARROUKH<br />

Université Libre de Bruxelles, Bruxelles, BE<br />

A 2DCOS study <strong>of</strong> <strong>the</strong> effect <strong>of</strong> radiati<strong>on</strong> <strong>on</strong><br />

TGase activity<br />

José Luis ARRONDO<br />

Universidad del País Vasco, Bilbao, ES<br />

Lunch<br />

x<br />

BIOMEDICAL APPLICATIONS 1<br />

Complesso Polididattico Room B<br />

Chairs: Maria P. Sevilla – Roger Bisby<br />

Will biophysical studies <strong>of</strong> neuroglobin<br />

provide clues for novel <strong>the</strong>rapies <strong>of</strong><br />

neur<strong>on</strong>al death and degenerati<strong>on</strong>?<br />

Beatrice VALLONE<br />

University “La Sapienza”, Rome, IT<br />

Biomedical applicati<strong>on</strong> <strong>of</strong> Mössbauer<br />

spectroscopy with high velocity resoluti<strong>on</strong>:<br />

revealing <strong>of</strong> small variati<strong>on</strong>s<br />

Michael I. OSHTRAKH<br />

Ural State Technical Univ., Ekaterinburg, RU<br />

Raman markers <strong>of</strong> cancer. Ultrafast dynamics <strong>of</strong><br />

carotenoids and lipids<br />

Halina ABRAMCZYK<br />

Technical University <strong>of</strong> Lodz, Lodz, PL<br />

Far-IR synchrotr<strong>on</strong> and low-wavenumber<br />

Raman studies <strong>of</strong> proteins and protein/water<br />

interacti<strong>on</strong>s. From model system to animal and<br />

human skin<br />

Ole F. NIELSEN<br />

University <strong>of</strong> Copenhagen, Copenhagen, DK<br />

Histopathological characterizati<strong>on</strong> <strong>of</strong> skin<br />

cancers using infrared micro-imaging<br />

Elodie LY<br />

Univ. Reims-Champagne Ardenne, Reims, FR<br />

Investigati<strong>on</strong> <strong>of</strong> <strong>the</strong> Raman spectra <strong>of</strong> hemozoin<br />

Torsten FROSCH<br />

University <strong>of</strong> Jena, Jena, DE<br />

Automated atmospheric pressure i<strong>on</strong>izati<strong>on</strong><br />

mass spectrometry imaging platform<br />

Vladimir HAVLICECK<br />

ASCR, Prague, CZ<br />

Solubilizati<strong>on</strong> and determinati<strong>on</strong> <strong>of</strong><br />

Ketoc<strong>on</strong>azole in micellar soluti<strong>on</strong> <strong>of</strong><br />

polyethylene glycol 400<br />

Neeti NEMA<br />

Hari Singh Gour University, IN<br />

Poster Sessi<strong>on</strong> B : Biomedical Applicati<strong>on</strong>s; Dielectric <strong>Spectroscopy</strong>; DNA & RNA;<br />

Nanotechnology … ; Protein Dynamics; Protein Folding and Aggregati<strong>on</strong>; Single Molecule<br />

and Single Cell <strong>Spectroscopy</strong>


17:00 Guided tours <strong>of</strong>:<br />

Free afterno<strong>on</strong><br />

- Palermo Botanical Garden, Via Lincoln 2; http://ortobotanico.palermo.it/<br />

- Palazzo Steri with Inquisiti<strong>on</strong> Jails, Piazza Marina 61 (max. 100 pers<strong>on</strong>s)<br />

20:30 Social Dinner: Palazzo Butera, Via Butera, 8<br />

xi


09:00<br />

10:00<br />

10:25<br />

10:50<br />

September 1 st <strong>2009</strong> ; Tuesday<br />

OPTICAL SPECTROSCOPY 2<br />

Complesso Polididattico Room A<br />

Chairs: V. K. Rastogi – Belen Hernandez - Illera<br />

Heme pocket structural properties <strong>of</strong><br />

bacterial truncated hemoglobins as<br />

revealed by res<strong>on</strong>ance Raman<br />

spectroscopy<br />

Giulietta SMULEVICH<br />

University <strong>of</strong> Florence, Florence, IT<br />

Primary events in <strong>the</strong> photo-dissociati<strong>on</strong> <strong>of</strong> oxyhemoglobin<br />

Atsushi YABUSHITA<br />

Nati<strong>on</strong>al Chiao-Tung Univ., Hsichu, Taiwan<br />

UV Res<strong>on</strong>ance Raman spectroscopic study <strong>of</strong><br />

tyrosine in <strong>the</strong> TTR(105-115) peptide<br />

Sophia C. HAYES<br />

University <strong>of</strong> Cyprus, Nicosia, CY<br />

Rapid-scan/step-scan FTIR difference<br />

spectroscopy applied to photosyn<strong>the</strong>tic<br />

reacti<strong>on</strong>s: new insights by multiple experiment<br />

design and tailored multivariate analysis<br />

techniques<br />

Alberto MEZZETTI<br />

University <strong>of</strong> Science and Technology, Lille, FR<br />

11:15 C<strong>of</strong>fee Break<br />

11:30<br />

11:50<br />

12:10<br />

12:30<br />

12:50<br />

Does <strong>the</strong> disulfide bridge have an effect<br />

<strong>on</strong> <strong>the</strong> c<strong>on</strong>formati<strong>on</strong>al properties <strong>of</strong> <strong>the</strong><br />

peptide horm<strong>on</strong>e somatostatin-14?<br />

Mahmoud GHOMI<br />

University <strong>of</strong> Paris 13, Bobigny, FR<br />

Model based pre-processing in biospectroscopy<br />

Nils K. AFSETH<br />

N<strong>of</strong>ima-Mat, Ås, NO<br />

Stemness <strong>of</strong> stem cells as determined by<br />

c<strong>on</strong>focal Raman microspectroscopy<br />

Vishnu V. PULLY<br />

University <strong>of</strong> Twente, Enschede, NL<br />

Tautomerism in 5-Bromouracil: relati<strong>on</strong>ships<br />

with o<strong>the</strong>r 5-haloderivatives and effect <strong>of</strong> <strong>the</strong><br />

microhydrati<strong>on</strong><br />

Vinod K. RASTOGI<br />

CCS University, Meerut, IN<br />

Activity <strong>of</strong> upper electr<strong>on</strong>-excited states in<br />

coelenterate bioluminescence<br />

Nadezda BELOGUROVA<br />

RAS - Siberian Branch, Krasnoyarsk, RU<br />

xii<br />

NANOTECHNOLOGY<br />

SINGLE MOLECULE SPECTROSCOPY<br />

Complesso Polididattico Room B<br />

Chairs: Jose V. Garcia Ramos – Nerea Iza<br />

Atomic force spectroscopic investigati<strong>on</strong><br />

<strong>of</strong> biorecogniti<strong>on</strong> events<br />

Salvatore CANNISTRARO<br />

University <strong>of</strong> Tuscia, Viterbo, IT<br />

Observing proteins as single molecules<br />

encapsulated in surface- te<strong>the</strong>red polymeric<br />

nanoc<strong>on</strong>tainers<br />

Joerg FITTER<br />

Forschungszentrum, Jülich, DE<br />

Three dimensi<strong>on</strong>al collagen gels as a cell culture<br />

model for <strong>the</strong> study <strong>of</strong> living cells by Raman<br />

spectroscopy<br />

Franck BONNIER<br />

Dublin Institute <strong>of</strong> Technology, Dublin, IE<br />

Gold nanoparticles for protein detecti<strong>on</strong> assays<br />

Giuseppe CHIRICO<br />

University <strong>of</strong> Milano “Bicocca”, Milano, IT<br />

Data processing in FTIR imaging <strong>of</strong> cells and<br />

tissues: towards protein sec<strong>on</strong>dary structure<br />

imaging<br />

Erik GOORMAGHTIGH<br />

Université Libre de Bruxelles, Bruxelles, BE<br />

Nanoparticle-based SERS for biodiagnostic<br />

sensing<br />

Janina KNEIPP<br />

Humboldt University, Berlin, DE<br />

Tip-enhanced and surface-enhanced Raman<br />

spectroscopy <strong>of</strong> biological molecules <strong>on</strong><br />

structured metallic surfaces<br />

Laura E. HENNEMANN<br />

University <strong>of</strong> Tübingen, Tübingen, DE<br />

SERS microscopy: improved nanoparticle<br />

probes and <strong>the</strong>ir applicati<strong>on</strong> in tissue diagnostics<br />

Max SCHÜTZ<br />

University <strong>of</strong> Osnabrück , Osnabrück, DE<br />

Surface enhanced Raman scattering for tissue<br />

diagnostic<br />

Sim<strong>on</strong>a CÎNTĂ PÎNZARU<br />

Babes-Bolyai University, Cluj-Napoca, RO


13:10<br />

13:30<br />

15:00<br />

FTIR microspectroscopy (MSP) for detecti<strong>on</strong><br />

and identificati<strong>on</strong> <strong>of</strong> fungal phytopathogenes<br />

Ahmad SALMAN<br />

SCE, Beer-Sheva, IL<br />

Lunch<br />

xiii<br />

A new approach for <strong>on</strong>line-m<strong>on</strong>itoring <strong>of</strong> drugs<br />

in complex matrices with Surface Enhanced<br />

Raman <strong>Spectroscopy</strong><br />

Anne MAERZ<br />

Friedrich Schiller University, Jena, DE<br />

Poster Sessi<strong>on</strong> B : Biomedical Applicati<strong>on</strong>s; Dielectric <strong>Spectroscopy</strong>; DNA & RNA;<br />

Nanotechnology … ; Protein Dynamics; Protein Folding and Aggregati<strong>on</strong>; Single Molecule<br />

and Single Cell <strong>Spectroscopy</strong><br />

16:30 C<strong>of</strong>fee Break<br />

16:50<br />

17:15<br />

17:40<br />

18:05<br />

18:30<br />

BIOMEDICAL APPLICATIONS 2<br />

Complesso Polididattico Room A<br />

Chair: Vladimir Baumruk<br />

Towards <strong>the</strong> instantaneous quantitative<br />

fluoroimaging drugs determinati<strong>on</strong> in body<br />

fluids with no added reagents<br />

Abraham H. PAROLA<br />

Ben Guri<strong>on</strong> University, Beer-Sheva, IL<br />

Near-Infrared fluorophores for biomolecule<br />

characterizati<strong>on</strong> and imaging applicati<strong>on</strong>s<br />

Gabor PATONAY<br />

Georgia State University, Atlanta, USA<br />

Examinati<strong>on</strong> <strong>of</strong> IgG diffusi<strong>on</strong> in c<strong>on</strong>trolled pore<br />

glass protein affinity media with C<strong>on</strong>focal<br />

Raman <strong>Spectroscopy</strong><br />

Nanying BIAN<br />

Millipore Corp., Bedford, USA<br />

Study <strong>of</strong> melanoma cell lines invasiveness using<br />

Raman microspectroscopy<br />

Olivier PIOT<br />

Univ. <strong>of</strong> Reims-Champagne Ardenne, Reims, FR<br />

Synchrotr<strong>on</strong> based FTIR Microscopy <strong>of</strong> single<br />

stained lung cells: applicati<strong>on</strong>s in cancer<br />

diagnosis<br />

Josep SULE’-SUSO<br />

University <strong>of</strong> Keele, UK<br />

DNA&RNA / DIELECTRIC<br />

SPECTROSCOPY<br />

Complesso Polididattico Room B<br />

Chair: Shaul Mordechai<br />

Excitati<strong>on</strong> <strong>of</strong> cytosine-rich nucleic acids as seen<br />

through time-resolved infrared spectroscopy<br />

Anth<strong>on</strong>y W. PARKER<br />

Ru<strong>the</strong>rford Applet<strong>on</strong> Laboratory, Chilt<strong>on</strong>, UK<br />

Emissi<strong>on</strong> lifetime study <strong>of</strong> fluorescence probes<br />

based <strong>on</strong> G-quadruplex olig<strong>on</strong>ucleotides endlabeled<br />

with pyrene moieties<br />

Bernard JUSKOWIAK<br />

Mickiewicz University, Poznan, PL<br />

DNA photodamage: study <strong>of</strong> thyminephotodimerisati<strong>on</strong><br />

in a locked thymine<br />

dinucleotide<br />

Wolfgang J. SCHREIER<br />

LMU, München, DE<br />

C`-terminal domain <strong>of</strong> n<strong>on</strong>hist<strong>on</strong>e protein<br />

HMGB1 as a modulator <strong>of</strong> HMGB1–DNA<br />

structural interacti<strong>on</strong>s<br />

Elena CHIKHIRZHINA<br />

RAS, Saint-Petersburg, RU<br />

Microwave hydrati<strong>on</strong> measurements <strong>of</strong> <strong>the</strong><br />

unfolding in aqueous systems <strong>of</strong> proteins and<br />

syn<strong>the</strong>tic proteinlike polymers<br />

Mikhail M. VOROB’EV<br />

RAS, Moscow, RU


09:00<br />

10:00<br />

10:25<br />

10:50<br />

September 2 nd <strong>2009</strong> ; Wednesday<br />

THEORETICAL/COMPUTATIONAL METHODS<br />

Aula Magna “Vincenzo Li D<strong>on</strong>ni”<br />

Chair: Mario Pio Marzocchi<br />

Theoretical search for molecular mechanisms <strong>of</strong> photostability <strong>of</strong> building blocks<br />

<strong>of</strong> life<br />

Andrzej SOBOLEWSKI<br />

Polish Academy <strong>of</strong> Sciences, Warsaw, PL<br />

Computing vibrati<strong>on</strong>al spectra <strong>of</strong> biomolecules by mixed Quantum Mechanics / Molecular<br />

Mechanics<br />

Le<strong>on</strong>ardo GUIDONI<br />

University <strong>of</strong> L’Aquila, M<strong>on</strong>teluco di Roio, IT<br />

A statistical model for protein translocati<strong>on</strong> across nanopores<br />

Fabio CECCONI<br />

CNR – INFM, Rome, IT<br />

Respiratory proteins: breathing moti<strong>on</strong>s revealed by Molecular Dynamics simulati<strong>on</strong>s<br />

Arturo ROBERTAZZI<br />

University <strong>of</strong> Cagliari, Cagliari, IT<br />

11:15 C<strong>of</strong>fee Break<br />

11:30<br />

Closing Lecture<br />

Water in narrow pores<br />

Christoph DELLAGO<br />

University <strong>of</strong> Vienna, Vienna, Austria<br />

12:30 STUDENT PRIZES AWARDING AND CLOSING CEREMONY<br />

xiv


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

INVITED LECTURES<br />

1


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

2


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

The Tumour Suppressor p53: from structure to drug discovery<br />

ALAN FERSHT<br />

Cambridge University and MRC Centre for Protein Engineering<br />

Hills Road, Cambridge, CB2 0QH, UK<br />

p53 is directly inactivated by mutati<strong>on</strong> in some 50% <strong>of</strong> human cancers. Some 30-40% <strong>of</strong> <strong>the</strong><br />

mutati<strong>on</strong>s simply lower <strong>the</strong> stability <strong>of</strong> <strong>the</strong> core domain so it melts close to or below body<br />

temperature. We have shown in principle that it is possible to reactivate p53 by small molecules<br />

that bind to and stabilise it. To understand fur<strong>the</strong>r <strong>the</strong> structure <strong>of</strong> <strong>the</strong> protein and hence <strong>the</strong><br />

rati<strong>on</strong>al design <strong>of</strong> drugs, we are solving its structure at high resoluti<strong>on</strong>. We are faced with twin<br />

problems: <strong>the</strong> tetrameric protein c<strong>on</strong>sists <strong>of</strong> 1572 residues, some <strong>of</strong> which are in well-structured<br />

domains but o<strong>the</strong>rs are intrinsically disordered or natively unfolded; and <strong>the</strong> important core<br />

domain is intrinsically unstable and not well suited to systematic study. We have solved <strong>the</strong><br />

structure <strong>of</strong> <strong>the</strong> core domain in soluti<strong>on</strong> by state-<strong>of</strong>-<strong>the</strong>-art NMR methods and found structural<br />

reas<strong>on</strong>s for its instability. We have engineered a more stable variant, which is biologically active<br />

and have solved <strong>the</strong> crystal structures <strong>of</strong> <strong>on</strong>cogenic mutants in this framework. We solved <strong>the</strong><br />

quaternary structure <strong>of</strong> <strong>the</strong> full-length tetrameric complex by combining high-resoluti<strong>on</strong> structural<br />

informati<strong>on</strong> <strong>on</strong> <strong>the</strong> folded individual domains with NMR, small angle x-ray scattering and electr<strong>on</strong><br />

microscopy, which should be a paradigm for solving o<strong>the</strong>r complex proteins that are involved in<br />

<strong>the</strong> cell cycle. We are refining <strong>the</strong>se structures to high resoluti<strong>on</strong>, and studying <strong>the</strong>ir complexes<br />

with partner proteins using a fur<strong>the</strong>r mix <strong>of</strong> structural methods. The mutati<strong>on</strong> Y220C occurs in<br />

about 70,000 to 80,000 new cases <strong>of</strong> cancer per annum. The mutant is highly destabilized and<br />

denatures rapidly at body temperature. Our structural studies revealed that <strong>the</strong> mutati<strong>on</strong> forms a<br />

surface cavity that appears a prime target for small molecules to bind to and stabilise <strong>the</strong> protein.<br />

In silico design identified a series <strong>of</strong> molecules that might bind in <strong>the</strong> cavity. We screened those<br />

and <strong>the</strong> sec<strong>on</strong>d and third generati<strong>on</strong> derivatives and found small compounds <strong>of</strong> drug-like<br />

properties that raise <strong>the</strong> melting temperature <strong>of</strong> <strong>the</strong> mutants and restore its activity.<br />

3


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

2D-IR spectroscopy <strong>of</strong> peptides and proteins<br />

PETER HAMM<br />

University <strong>of</strong> Zürich, Institute <strong>of</strong> Physical Chemistry<br />

Winterthurerstr. 190, 8057 Zürich, Switzerland<br />

We have recently developed <strong>the</strong> method <strong>of</strong> transient 2D-IR spectroscopy, i.e. <strong>the</strong> 2D-IR<br />

spectroscopy <strong>of</strong> a transient species during a photochemical reacti<strong>on</strong>. 2D-IR spectroscopy carries<br />

significant structural informati<strong>on</strong> through <strong>the</strong> existence <strong>of</strong> crosspeaks which report <strong>on</strong> local<br />

c<strong>on</strong>tacts in a molecule. At <strong>the</strong> same time, it takes <strong>on</strong>e picosec<strong>on</strong>d to measure a 2D-IR spectrum,<br />

which opens <strong>the</strong> possibility to measure snapshot structures during <strong>the</strong> course <strong>of</strong> a photochemical<br />

reacti<strong>on</strong>. Transient 2D-IR spectroscopy combines ultrafast time resoluti<strong>on</strong> with appreciable<br />

structure resoluti<strong>on</strong>. I will report <strong>on</strong> various examples <strong>of</strong> photo-switchable peptides whose folding<br />

transiti<strong>on</strong> is studied by this new technique.<br />

4


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Protein dynamics and functi<strong>on</strong>ality: <strong>the</strong> role <strong>of</strong><br />

hydrati<strong>on</strong> shell waters<br />

JOEL M. FRIEDMAN<br />

Dept <strong>of</strong> Physiology and Biophysics, Albert Einstein College <strong>of</strong> Medicine,<br />

Br<strong>on</strong>x, New York USA 10461<br />

It has become fully apparent that protein functi<strong>on</strong>ality requires that <strong>the</strong> protein be dynamically<br />

active and that solvent moti<strong>on</strong>s are needed for activati<strong>on</strong> <strong>of</strong> functi<strong>on</strong>ally important protein<br />

dynamics. In attempting to study <strong>the</strong> interplay between dynamics and functi<strong>on</strong>ality <strong>on</strong>e is<br />

c<strong>on</strong>fr<strong>on</strong>ted with <strong>the</strong> complicati<strong>on</strong> that <strong>the</strong>re is myriad <strong>of</strong> different types <strong>of</strong> dynamics displayed by<br />

proteins. How to organize <strong>the</strong>se dynamics into a meaningful and workable scheme is a challenge.<br />

One promising approach is based <strong>on</strong> Frauenfelder and coworkers solvent slaving c<strong>on</strong>cept which<br />

defines a hierarchy <strong>of</strong> protein dynamics based <strong>on</strong> which category <strong>of</strong> solvent moti<strong>on</strong> c<strong>on</strong>trols <strong>the</strong><br />

enthalpic barrier associated with specific c<strong>on</strong>formati<strong>on</strong>al fluctuati<strong>on</strong>s and relaxati<strong>on</strong>s. This c<strong>on</strong>cept<br />

dictates that an overall approach to <strong>the</strong> study <strong>of</strong> <strong>the</strong> dynamical basis for protein functi<strong>on</strong>ality<br />

include four elements: functi<strong>on</strong>, protein dynamics, solvent moti<strong>on</strong>s and <strong>the</strong>ir interdependence. The<br />

presentati<strong>on</strong> will describe how we have used sol-gel and glass matrices in combinati<strong>on</strong> with an<br />

extensi<strong>on</strong> <strong>of</strong> <strong>the</strong> solvent slaving c<strong>on</strong>cept in <strong>the</strong> form our proposed Protein Dynamic State Model to<br />

link functi<strong>on</strong>ality, c<strong>on</strong>formati<strong>on</strong>al dynamics and solvent properties. Additi<strong>on</strong>ally we will present<br />

advances in <strong>the</strong> use <strong>of</strong> several spectroscopic tools including vibr<strong>on</strong>ic side band spectroscopy to<br />

probe <strong>the</strong> resp<strong>on</strong>se <strong>of</strong> hydrati<strong>on</strong> shell waters to added osmolytes and <strong>the</strong> correlated impact <strong>on</strong><br />

protein properties. A general picture based <strong>on</strong> <strong>the</strong>se studies will be presented that links hydrati<strong>on</strong><br />

shell water properties, dynamics and functi<strong>on</strong>ality.<br />

5


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

EPR studies <strong>of</strong> membrane protein structure and folding<br />

G. JESCHKE 1 , D. HILGER 2 , H. JUNG 2 , E. PADAN 3 , Y. POLYHACH, 1 A. VOLKOV 4 , C. DOCKTER 5 AND<br />

H. PAULSEN 5<br />

1. Lab. Phys. Chem., ETH Zürich, Wolfgang-Pauli-Str. 10, Zürich, CH-<br />

8093, Switzerland<br />

2. Department Biologie I, Microbiology, LMU München, Grosshaderner<br />

Strasse 2-4, D-82152 Planegg-Martinsried, Germany<br />

3. Hebrew University <strong>of</strong> Jerusalem, Alexander Silberman Institute <strong>of</strong> Life<br />

Sciences, IL-91904 Jerusalem, Israel<br />

4. MPI for Polymer Research, Ackermannweg 10, D-55021 Mainz,<br />

Germany<br />

5. Institute for General Botany, Johannes-Gutenberg University Mainz,<br />

Müllerweg 6, D-55099 Mainz, Germany<br />

The functi<strong>on</strong> <strong>of</strong> many membrane proteins is related to structural transiti<strong>on</strong>s induced by subtle<br />

changes in <strong>the</strong> envir<strong>on</strong>ment. In this situati<strong>on</strong> studies <strong>of</strong> crystalline samples, which are in itself hard<br />

to obtain, cannot provide <strong>the</strong> full informati<strong>on</strong> <strong>on</strong> <strong>the</strong> structure-dynamics-functi<strong>on</strong> relati<strong>on</strong>ship. At<br />

<strong>the</strong> same time <strong>the</strong>re is a lack <strong>of</strong> techniques that can provide high-resoluti<strong>on</strong> structural informati<strong>on</strong><br />

in n<strong>on</strong>-crystalline envir<strong>on</strong>ments, in particular for medium-sized and large α-helical membrane<br />

proteins, where NMR techniques run into problems. By combining site-directed spin labeling [1]<br />

with pulsed EPR techniques [2] it is possible to obtain informati<strong>on</strong> even <strong>on</strong> disordered states<br />

encountered before or during folding or disordered domains that are missing in crystal structures.<br />

This is dem<strong>on</strong>strated for major plant light harvesting complex IIb [3,4]. In particular, structurally<br />

resolved informati<strong>on</strong> <strong>on</strong> folding kinetics can be obtained by following changes in water<br />

accessibility <strong>of</strong> a selected residue with electr<strong>on</strong> spin echo envelope modulati<strong>on</strong> (ESEEM)<br />

spectroscopy and changes in distances between two selected sites by double electr<strong>on</strong> electr<strong>on</strong><br />

res<strong>on</strong>ance (DEER) experiments. In most cases, resoluti<strong>on</strong> will be moderate due to <strong>the</strong> size and<br />

c<strong>on</strong>formati<strong>on</strong>al distributi<strong>on</strong> <strong>of</strong> <strong>the</strong> spin label. However, high-resoluti<strong>on</strong> structures <strong>of</strong> protein<br />

complexes (or oligomers) can be obtained from DEER data if structures with atomic resoluti<strong>on</strong> are<br />

known for <strong>the</strong> c<strong>on</strong>stituents (or m<strong>on</strong>omer) [5]. On <strong>the</strong> 54.3 kDa Na +/proline symporter in liposomes<br />

it is dem<strong>on</strong>strated that <strong>the</strong> shape <strong>of</strong> a transmembrane domain at moderate resoluti<strong>on</strong> can be<br />

obtained “from scratch”, i.e. without regress to any previous structural informati<strong>on</strong> at similar or<br />

higher resoluti<strong>on</strong> [6].<br />

References<br />

[1] W. L. Hubbell, D.S. Cafiso, C. Altenbach, Nat. Struct. Biol. 7, 735-739 (2000).<br />

[2] A. Schweiger, G. Jeschke, Principles <strong>of</strong> pulse electr<strong>on</strong> paramagnetic res<strong>on</strong>ance, Oxford: Oxford University Press,<br />

(2001).<br />

[3] G. Jeschke, A. Bender, T. Schweikardt, G. Panek, H. Decker, H. Paulsen, J. Biol. Chem. 280, 18623-18630<br />

(2005).<br />

[4] A. Volkov, C. Dockter, T. Bund, H. Paulsen, G. Jeschke, Biophys. J. 96, 1124-1141 (<strong>2009</strong>).<br />

[5] D. Hilger, Ye. Polyhach, E. Padan, H. Jung, G. Jeschke, Biophys. J. 93, 3675-3683 (2007).<br />

[6] D. Hilger, Y. Polyhach, H. Jung, G. Jeschke, Biophys. J. 96, 217-225 (<strong>2009</strong>).<br />

6


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Protein structural dynamics visualized by time-resolved<br />

X-ray crystallography and liquidography<br />

H. IHEE<br />

Center for Time-Resolved Diffracti<strong>on</strong>, Department <strong>of</strong> Chemistry, KAIST,<br />

305-701, KOREA hyotcherl.ihee@kaist.ac.kr<br />

The principle, experimental technique, data analysis, and applicati<strong>on</strong>s <strong>of</strong> time-resolved X-ray<br />

diffracti<strong>on</strong> and scattering to study spatiotemporal reacti<strong>on</strong> dynamics <strong>of</strong> proteins in single crystals<br />

and soluti<strong>on</strong>s will be presented. X-ray crystallography, <strong>the</strong> major structural tool to determine 3D<br />

structures <strong>of</strong> proteins, can be extended to time-resolved X-ray crystallography with a laserexcitati<strong>on</strong><br />

and X-ray-probe scheme, and all <strong>the</strong> atomic positi<strong>on</strong>s in a protein can be tracked during<br />

<strong>the</strong>ir biological functi<strong>on</strong>. A study using time-resolved X-ray crystallography will be presented for<br />

<strong>the</strong> photocycle <strong>of</strong> <strong>the</strong> photoactive yellow protein (PYP). Although time-resolved X-ray<br />

crystallography has realized <strong>the</strong> 3D visualizati<strong>on</strong> <strong>of</strong> protein structural dynamics, its applicability<br />

has been limited to a few model systems with reversible photocycles due to <strong>the</strong> stringent<br />

prerequisites such as highly-ordered and radiati<strong>on</strong>-resistant single crystals. More importantly,<br />

crystal packing c<strong>on</strong>straints might hinder biologically relevant moti<strong>on</strong>s, and it simply cannot be<br />

used to study irreversible reacti<strong>on</strong>s such as protein folding. These problems can be overcome by<br />

applying time-resolved X-ray diffracti<strong>on</strong> directly to protein soluti<strong>on</strong>s ra<strong>the</strong>r than protein single<br />

crystals and <strong>the</strong>n capturing transient molecular structures in <strong>on</strong>e-dimensi<strong>on</strong>. To emphasize that<br />

structural informati<strong>on</strong> can be obtained from <strong>the</strong> liquid phase, this time-resolved X-ray soluti<strong>on</strong><br />

scattering technique is named time-resolved X-ray liquidography in analogy to time-resolved Xray<br />

crystallography where <strong>the</strong> structural informati<strong>on</strong> <strong>of</strong> reacti<strong>on</strong> intermediates is obtained from<br />

<strong>the</strong> crystalline phase. Time-resolved X-ray liquidography permits us to investigate <strong>the</strong><br />

tertiary/quaternary c<strong>on</strong>formati<strong>on</strong>al changes <strong>of</strong> human hemoglobin triggered by laser induced<br />

ligand photolysis in nearly physiological c<strong>on</strong>diti<strong>on</strong>s. Data <strong>on</strong> optically induced tertiary relaxati<strong>on</strong>s<br />

<strong>of</strong> myoglobin and refolding <strong>of</strong> cytochrome c are also reported to illustrate <strong>the</strong> wide applicability <strong>of</strong><br />

this technique. In additi<strong>on</strong> <strong>the</strong> photocycle <strong>of</strong> PYP which has been extensively investigated with<br />

time-resolved X-ray crystallography has been also studied with time-resolved X-ray liquidography<br />

so that a direct comparis<strong>on</strong> between liquidography and crystallography is possible. By providing<br />

insights into <strong>the</strong> structural dynamics <strong>of</strong> proteins functi<strong>on</strong>ing in <strong>the</strong>ir natural envir<strong>on</strong>ment, timeresolved<br />

X-ray liquidography complements and extends results obtained with time-resolved<br />

spectroscopy and X-ray crystallography.<br />

References<br />

[1] Ihee, H., Acc. Chem. Res., 42, 356-366 (<strong>2009</strong>).<br />

[2] Cammarata, M. et al., Nature Methods, 5, 881 (2008)<br />

[3] Lee, J. H. et al., J. Am. Chem. Soc., 130, 5834 (2008)<br />

[4] K<strong>on</strong>g, Q. et al., Angew. Chem. Int. Ed., 47, 5550 (2008)<br />

[5] Lee, J. H. et al., Angew. Chem. Int. Ed., 47, 1047 (2008)<br />

[6] K<strong>on</strong>g, Q. et al., J. Am. Chem. Soc., 129, 13584 (2007)<br />

[7] Kim, T. K. et al., Proc. Natl. Acad. Sci., 103, 9410 (2006)<br />

[8] Lee, J. H. et al., J. Chem. Phys., 125, 174504 (2006)<br />

[9] Ihee, H. et al., Science, 309, 1223 (2005)<br />

7


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Neutr<strong>on</strong> scattering studies <strong>of</strong> low-temperature and<br />

high-temperature dynamic crossover in lysozyme<br />

hydrati<strong>on</strong> water and <strong>the</strong>ir effect <strong>on</strong> <strong>the</strong> c<strong>on</strong>formati<strong>on</strong>al<br />

dynamics <strong>of</strong> <strong>the</strong> protein<br />

SOW HSIN CHEN<br />

Department <strong>of</strong> Nuclear Science and Engineering, Massachusetts Institute<br />

<strong>of</strong> Technology, Cambridge, MA, USA (sowhsin@mit.edu)<br />

We study <strong>the</strong> dynamics <strong>of</strong> hydrati<strong>on</strong> water <strong>on</strong> lysozyme powder using Elastic, Quasi-Elastic and<br />

Inelastic Neutr<strong>on</strong> Scattering in <strong>the</strong> temperature range from 180 K to 380 K, and in <strong>the</strong> pressure<br />

range from 1 bar to 1600 bars. We found well-defined dynamic crossover phenomena in <strong>the</strong><br />

hydrogen atom mean square displacement and <strong>the</strong> translati<strong>on</strong>al relaxati<strong>on</strong> time <strong>of</strong> water<br />

molecules. The high temperature crossover occurs at TD = 345 ± 5 K, which coincides with <strong>the</strong><br />

reversible denaturati<strong>on</strong> temperature <strong>of</strong> lysozyme [1]. The low temperature crossover occurs at TL =<br />

225 ± 5 K, which coincides with <strong>the</strong> protein dynamic transiti<strong>on</strong> (or so-called glass transiti<strong>on</strong>)<br />

temperature [2]. Up<strong>on</strong> applying pressure, <strong>the</strong> low-T crossover TL(P) tracks <strong>the</strong> Widom line in <strong>the</strong><br />

(T,P) plane, emanating from <strong>the</strong> hypo<strong>the</strong>tical existence <strong>of</strong> <strong>the</strong> liquid-liquid critical point at PC =<br />

1550 ± 50 bars and TC = 200 ± 5 K [3]. This suggests that <strong>the</strong> dynamics and <strong>the</strong>rmodynamics <strong>of</strong><br />

protein hydrati<strong>on</strong> water are str<strong>on</strong>gly coupled to <strong>the</strong> dynamics <strong>of</strong> <strong>the</strong> protein, in such a way that <strong>the</strong><br />

two crossover temperatures TL and TD define <strong>the</strong> temperature interval <strong>of</strong> <strong>the</strong> significant biological<br />

activity <strong>of</strong> <strong>the</strong> protein. We also performed a high-resoluti<strong>on</strong> inelastic x-ray scattering study <strong>of</strong><br />

intra-protein ph<strong>on</strong><strong>on</strong>s in hydrated lysozyme and BSA powders, above and below <strong>the</strong> low-T<br />

crossover temperature. We identify a significant s<strong>of</strong>tening and an increase in populati<strong>on</strong> <strong>of</strong><br />

ph<strong>on</strong><strong>on</strong>like collective moti<strong>on</strong>s in an intermediate q-range above <strong>the</strong> dynamic transiti<strong>on</strong><br />

temperature <strong>of</strong> <strong>the</strong> proteins [4].<br />

References<br />

[1] Y. Zhang, M. Lagi, D. Liu, F. Mallamace, E. Fratini, P. Bagli<strong>on</strong>i, E. Mam<strong>on</strong>tov, M. Hagen, and S.-H. Chen,<br />

“Observati<strong>on</strong> <strong>of</strong> high-temperature dynamic crossover in protein hydrati<strong>on</strong> water and its relati<strong>on</strong> to reversible<br />

denaturati<strong>on</strong> <strong>of</strong> lysozyme”, J. Chem. Phys. 130, 135101 (<strong>2009</strong>)<br />

[2] S.-H. Chen, L. Liu, E. Fratini, P. Bagli<strong>on</strong>i, A. Fara<strong>on</strong>e, and E. Mam<strong>on</strong>tov, “Observati<strong>on</strong> <strong>of</strong> fragile-to-str<strong>on</strong>g dynamic<br />

crossover in protein hydrati<strong>on</strong> water,” Proc. Nat. Acad. Sci. USA 103, 9012-9016 (2006).<br />

[3] X.-Q. Chu, A. Fara<strong>on</strong>e, C. Kim, E. Fratini, P. Bagli<strong>on</strong>i, J. B. Leao and S.-H. Chen “Proteins remain s<strong>of</strong>t at lower<br />

temperatures under pressure” J. Phys. Chem B (Letter) 113, 5001 (<strong>2009</strong>).<br />

[4] D. Liu, X.-Q. Chu, M. Lagi, Y. Zhang, E. Fratini, P. Bagli<strong>on</strong>i, A. Alatas, A. Said, E. Alp and S.-H. Chen “Studies <strong>of</strong><br />

Ph<strong>on</strong><strong>on</strong>-like Low-Energy Excitati<strong>on</strong>s <strong>of</strong> Protein Molecules by Inelastic Xray Scattering”, Phys. Rev. Lett. 101,<br />

135501 (2008)<br />

8


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Hydrogen B<strong>on</strong>ding Properties <strong>of</strong> Amorphous low-Water<br />

protein-Saccharide Matrixes and Bioprotecti<strong>on</strong><br />

LORENZO CORDONE<br />

Dipartimento di Scienze Fisiche ed Astr<strong>on</strong>omiche, Università di<br />

Palermo, Via Archirafi 36 I-90123 Palermo, Italy<br />

cord<strong>on</strong>e@fisica.unipa.it<br />

Glassy matrices <strong>of</strong> saccharides exhibit an outstanding ability to protect biological structures<br />

against adverse envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s, such as freezing, heating, and dehydrati<strong>on</strong> [1,2].<br />

Saccharides are employed by several organisms that can l<strong>on</strong>g survive under extreme drought and<br />

high temperature, entering a state <strong>of</strong> suspended metabolism (anhydrobiosis), which is preceded by<br />

a massive syn<strong>the</strong>sis <strong>of</strong> specific carbohydrates [1,2]. Am<strong>on</strong>g sugars, <strong>the</strong> disaccharide trehalose<br />

appears to be <strong>the</strong> most effective protectant [1,3,4]. In this communicati<strong>on</strong> will be presented a set <strong>of</strong><br />

measurements, performed with different experimental techniques, which c<strong>on</strong>cur in suggesting<br />

how a relevant role, in determining <strong>the</strong> difference in bioprotecti<strong>on</strong> am<strong>on</strong>g different saccharides, is<br />

played by <strong>the</strong> hydrogen b<strong>on</strong>ding properties <strong>of</strong> low water amorphous saccharide matrixes.<br />

References<br />

[1] J. H. Crowe, J. F Carpenter, and L. M. Crowe, Annu. ReV. Physiol., 60, 73, 1998<br />

[2] L. M. Crowe, Comp. Biochem. Physiol. A., 132, 505, 2002<br />

[3] J. H.; Crowe, L. M. Crowe, S. A., Jacks<strong>on</strong>, Arch. Biochem. Biophys., 220, 477, 1983<br />

[4] M. Uritani, M. Takai, K. Yoshinaga, J. Biochem., 117, 774, 1995,<br />

9


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

dSTORM: Super-resoluti<strong>on</strong> imaging<br />

with small organic fluorophores<br />

MARKUS SAUER<br />

Applied Laser Physics and Laser <strong>Spectroscopy</strong> and Bielefeld Institute for<br />

Biophysics and Nanoscience, Bielefeld University, Universitätsstrasse 25,<br />

33615 Bielefeld, Germany<br />

We introduce a general approach for multicolor super-resoluti<strong>on</strong> fluorescence imaging based <strong>on</strong><br />

photoswitching <strong>of</strong> standard small organic fluorophores. Photoswitching <strong>of</strong> organic rhodamine and<br />

oxazine fluorophores, i.e. <strong>the</strong> reversible transiti<strong>on</strong> from a fluorescent to a n<strong>on</strong>-fluorescent state in<br />

aqueous buffers exploits <strong>the</strong> formati<strong>on</strong> <strong>of</strong> l<strong>on</strong>g-lived triplet radical ani<strong>on</strong>s through reacti<strong>on</strong> with<br />

thiol compounds and repopulati<strong>on</strong> <strong>of</strong> <strong>the</strong> singlet ground state by reacti<strong>on</strong> with molecular oxygen.<br />

We unravel <strong>the</strong> underlying switching mechanism and dem<strong>on</strong>strate super-resoluti<strong>on</strong> imaging with<br />

different commercially available organic fluorophores. Fur<strong>the</strong>rmore, we provide evidence that <strong>the</strong><br />

method can be advantageously used for live cell imaging with ~ 20 nm optical resoluti<strong>on</strong>.<br />

10


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Polyglutamine and neurodegenerati<strong>on</strong>:<br />

a structural approach<br />

L. MASINO<br />

Divisi<strong>on</strong> <strong>of</strong> Molecular Structure - MRC Nati<strong>on</strong>al Institute for Medical Research<br />

L<strong>on</strong>d<strong>on</strong> - UK<br />

Expansi<strong>on</strong> <strong>of</strong> unstable CAG trinucleotide repeats coding for polyglutamine is <strong>the</strong> cause <strong>of</strong> at least<br />

nine inherited neurodegenerative disorders, including Huntingt<strong>on</strong>'s disease and several<br />

spinocerebellar ataxias. Protein misfolding and aggregati<strong>on</strong> seem to be critical steps in <strong>the</strong><br />

pathogenesis <strong>of</strong> <strong>the</strong>se disorders. The structural characterisati<strong>on</strong> <strong>of</strong> <strong>the</strong> proteins carrying<br />

polyglutamine stretches is <strong>the</strong>refore an essential prerequisite for understanding disease<br />

mechanisms and designing effective <strong>the</strong>rapeutic strategies. Using a wide range <strong>of</strong> biophysical<br />

methods, including optical and NMR spectroscopy, EM, and AFM, we have investigated <strong>the</strong><br />

structural properties <strong>of</strong> a polyglutamine model system and <strong>of</strong> <strong>the</strong> protein ataxin-3, elucidating<br />

<strong>the</strong>ir domain architecture, aggregati<strong>on</strong> mechanisms, target interacti<strong>on</strong>s and functi<strong>on</strong>. By showing<br />

that ataxin-3 is a cysteine protease that cleaves poly-ubiquitin chains and is involved in <strong>the</strong><br />

ubiquitin-proteasome pathway, we have shed light <strong>on</strong> <strong>the</strong> role <strong>of</strong> ubiquitin binding <strong>on</strong> ataxin-3's<br />

aggregati<strong>on</strong> pathways.<br />

11


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Will biophysical studies <strong>of</strong> neuroglobin provide clues<br />

for novel <strong>the</strong>rapies <strong>of</strong> neur<strong>on</strong>al death and degenerati<strong>on</strong>?<br />

B. VALLONE 1 , C. ARDICCIONI 1 , T. MOSCHETTI 1 , C. RONDINELLI 1 , A. GIUFFRÈ 3 , A. ARCOVITO 2<br />

AND M. BRUNORI 1<br />

1. Dept. <strong>of</strong> Biochemical Sciences, University <strong>of</strong> Rome "La Sapienza", P.le<br />

A. Moro, 5, 00185, Rome, Italy.<br />

2. Institue <strong>of</strong> Biochemistry and Clinical Biochemistry, Catholic<br />

University <strong>of</strong> Rome, L.go F.Vito, 00168, Rome Italy<br />

3. IBPM <strong>of</strong> CNR c/o University <strong>of</strong> Rome "La Sapienza, P.le A. Moro, 5,<br />

00185, Rome, Italy.<br />

Neuroglobin (Ngb), a heme protein expressed in <strong>the</strong> Central Nervous System <strong>of</strong> vertebrates, was<br />

shown in vivo and in vitro to counteract <strong>the</strong> effects <strong>of</strong> ischemia and <strong>the</strong> <strong>on</strong>set <strong>of</strong> Alzheimer disease<br />

[1]. Moreover associati<strong>on</strong> was shown between Ngb and <strong>the</strong> cellular pri<strong>on</strong> protein (prPc) and<br />

between <strong>on</strong>e <strong>of</strong> <strong>the</strong> subunits (G�i) <strong>of</strong> heterorimeric G-proteins. The overexpressi<strong>on</strong> <strong>of</strong> neuroglobin<br />

has beneficial effects also up<strong>on</strong> hypoxia <strong>of</strong> cardiac tissue. We have determined <strong>the</strong> threedimensi<strong>on</strong>al<br />

structure <strong>of</strong> liganded and unliganded Ngb [2,3] and characterized its reacti<strong>on</strong> with<br />

radicals such as NO [4]. The structural dynamics <strong>of</strong> Ngb was analysed by molecular dynamics and,<br />

experimentally, by microspectrophotometry in crystals, XANES [5], and stopped-flow kinetics. We<br />

have c<strong>on</strong>firmed <strong>the</strong> specific interacti<strong>on</strong> <strong>of</strong> Ngb with PrPc. We are currently analyzing this complex<br />

by using specifically designed bio-active peptides from PrPc. The main goal is <strong>the</strong> determinati<strong>on</strong> <strong>of</strong><br />

<strong>the</strong> molecular mechanism <strong>of</strong> neuroprotecti<strong>on</strong> exerted by neuroglobin, by rigorous structural and<br />

biophysical characterizati<strong>on</strong> <strong>of</strong> <strong>the</strong> system and implementati<strong>on</strong> <strong>of</strong> this informati<strong>on</strong> in cell biology<br />

experiments. We are exspressing proteins that could take part in a signalling complex and<br />

engineering mutants <strong>of</strong> neuroglobin with altered properties (ligand affinity, reactivity towards<br />

radicals, complex formati<strong>on</strong>) and expressing <strong>the</strong>m in neur<strong>on</strong>al cells in culture to evaluate <strong>the</strong>ir<br />

effect <strong>on</strong> functi<strong>on</strong>s. We will determine <strong>the</strong> three-dimensi<strong>on</strong>al structure <strong>of</strong> complexes <strong>of</strong> Ngb and<br />

ano<strong>the</strong>r partner in signalling networks (PrPc and G-alpha-i) by crystallography and X-ray<br />

scattering. The mechanism <strong>of</strong> neuroprotecti<strong>on</strong> by neuroglobin is still unclear, and its<br />

characterizati<strong>on</strong> may pave <strong>the</strong> way to novel strategies for <strong>the</strong> treatment and preventi<strong>on</strong> <strong>of</strong><br />

neur<strong>on</strong>al death due to ischemia and neurodenerative diseases. Our approach will yield structural<br />

informati<strong>on</strong> at <strong>the</strong> detail necessary for <strong>the</strong> rati<strong>on</strong>al design <strong>of</strong> new drug leads.<br />

Fig. 1. The structure <strong>of</strong> neuroglobin with xen<strong>on</strong> atoms docked into<br />

cavities provides a putative ligand migrati<strong>on</strong> pathway.<br />

12


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Heme pocket structural properties <strong>of</strong> bacterial truncated<br />

hemoglobins as revealed by res<strong>on</strong>ance Raman spectroscopy<br />

A. FEIS 1, E. DROGHETTI 1, B.D. HOWES 1, F.P. NICOLETTI 1, A. BOFFI 2, C. VERDE 3 AND G. SMULEVICH 1<br />

1. Dept. <strong>of</strong> Chemistry, Università di Firenze, Via della Lastruccia 3, Firenze, I-50019, Italy<br />

2. Dept. <strong>of</strong> Biochemical Sciences and CNR Institute <strong>of</strong> Molecular Biology and Pathology, University <strong>of</strong> Rome<br />

“La Sapienza”, Piazzale Aldo Moro 5, I-00185 Rome, Italy<br />

3. Institute <strong>of</strong> Protein Biochemistry, CNR, Via Pietro Castellino 111, I-80131 Naples, Italy<br />

Truncated hemoglobins (trHbs) are a family <strong>of</strong> small oxygen binding proteins, widely distributed<br />

am<strong>on</strong>g bacteria, protozoa and plants [1, 2], characterized by i) amino acid sequence which is 20–40<br />

residues shorter than animal Hbs; ii) unusual structural fold, and iii) a remarkable variability in<br />

<strong>the</strong> nature <strong>of</strong> <strong>the</strong> heme pocket residues in <strong>the</strong> distal side. They are divided into three groups that<br />

share less than 30% sequence similarity with each o<strong>the</strong>r [1]. Group II is <strong>the</strong> most populated <strong>of</strong> <strong>the</strong><br />

three, and is characterized by <strong>the</strong> presence <strong>of</strong> a Trp residue (G8 positi<strong>on</strong>) in <strong>the</strong> heme distal pocket.<br />

The crystal structures <strong>of</strong> group II truncated hemoglobins from Bacillus subtilis (Bs-trHb1) [3],<br />

Thermobifida fusca (Tf-trHb) [4], Geobacillus stearo<strong>the</strong>rmophilus (Gs-trHb) [5] and Mycobacterium<br />

tuberculosis (Mt-trHbO) [6, 7] revealed a very polar heme pocket. In Bs-trHb and Gs-trHb, <strong>the</strong>re is a<br />

H-b<strong>on</strong>ding network involving Tyr B10, Gln E11 and <strong>the</strong> nitrogen atom <strong>of</strong> <strong>the</strong> tryptophan residue<br />

in positi<strong>on</strong> G8 whereas in Tf-trHb and Mt-trHbO and in <strong>the</strong> trHbO from P. haloplanktis TAC125 [8],<br />

an additi<strong>on</strong>al potential hydrogen b<strong>on</strong>d d<strong>on</strong>or is provided by a Tyr CD1 residue. Due to <strong>the</strong>ir very<br />

high oxygen affinity it is unlikely that <strong>the</strong>se proteins may act as oxygen transporters, but <strong>the</strong>ir<br />

physiological role is not yet fully understood. The combinati<strong>on</strong> <strong>of</strong> electr<strong>on</strong>ic absorpti<strong>on</strong>, Res<strong>on</strong>ance<br />

Raman, and Electr<strong>on</strong> Paramagnetic Res<strong>on</strong>ance spectroscopies is particularly useful in highlighting<br />

<strong>the</strong> structural properties <strong>of</strong> <strong>the</strong>se proteins. In <strong>the</strong> present work <strong>the</strong> characterizati<strong>on</strong> <strong>of</strong><br />

representative members <strong>of</strong> bacterial Hbs bel<strong>on</strong>ging to Group II toge<strong>the</strong>r with selected site directed<br />

mutants <strong>of</strong> <strong>the</strong> amino acids <strong>of</strong> <strong>the</strong> distal side will be discussed. The following points will be<br />

treated: i) <strong>the</strong> strength <strong>of</strong> <strong>the</strong> proximal Fe-His b<strong>on</strong>d via <strong>the</strong> ν(Fe-His) mode; ii) <strong>the</strong> steric effects<br />

imposed by <strong>the</strong> protein moiety <strong>on</strong> <strong>the</strong> structure <strong>of</strong> <strong>the</strong> heme macrocycle via <strong>the</strong> enhancement <strong>of</strong> <strong>the</strong><br />

out-<strong>of</strong>-plane modes <strong>of</strong> <strong>the</strong> heme; iii) <strong>the</strong> interacti<strong>on</strong> between <strong>the</strong> ir<strong>on</strong>-bound ligand and <strong>the</strong> polar<br />

residues <strong>of</strong> <strong>the</strong> distal heme pocket. In particular, <strong>the</strong> vibrati<strong>on</strong>al frequencies <strong>of</strong> <strong>the</strong> Fe-Ligand<br />

complexes formed in <strong>the</strong> presence <strong>of</strong> carb<strong>on</strong> m<strong>on</strong>oxide [9], fluoride, hydroxide, and hydrogen<br />

sulfide will be discussed in terms <strong>of</strong> specific interacti<strong>on</strong> between <strong>the</strong> bound ligand and <strong>the</strong> distal<br />

amino acid residues.<br />

References<br />

[1] J. B.,Wittenberg, M. Bolognesi, B. A. Wittenberg, M. Guertin, J. Biol. Chem. 277, 871-874 (2002).<br />

[2] G. Wu, L. M. Wainwright, R. K. Poole, Adv. Microb. Physiol. 47, 255-310 (2003).<br />

[3] A. Giangiacomo, L. Ilari, A. B<strong>of</strong>fi, V. Morea, E. Chianc<strong>on</strong>e, E. J. Biol. Chem. 280, 9192-9202 (2005).<br />

[4] A. B<strong>on</strong>amore, A. Ilari, L. Giangiacomo, A. Bellelli, V. Morea, A. B<strong>of</strong>fi, FEBS J. 272, 4189-4201 (2005).<br />

[5] A. Ilari, P. Kjelgaard, C. v<strong>on</strong> Wachenfeldt, B. Catacchio, E. Chianc<strong>on</strong>e, A. B<strong>of</strong>fi, Arch. Biochem. Biophys. 457, 85-<br />

94 (2007).<br />

[6] M. Milani, A. Pesce, M. Nardini, H. Ouellet, Y. Ouellet, S. Dewilde, A. Bocedi, P. Ascenzi, M. Guertin, L. Moens, J.<br />

M. Friedman, J. B. Wittenberg, M. Bolognesi, M. J. Inorg. Biochem. 99, 97-109 (2005).<br />

[7] M. Milani, P. Y. Savard, H. Ouellet, P. Ascenzi, M. Guertin, M. Bolognesi, M. Proc. Natl. Acad. Sci. U.S.A. 100,<br />

5766-5771 (2003).<br />

[8] D. Giordano, D. Parrilli, A. Dettaï, R. Russo, G. Barbiero , G. Marino, G. Lecointre, G. di Prisco, L. Tutino, C.<br />

Verde, Gene 398, 69–77 (2007).<br />

[9] A. Feis, A. Lapini, B. Catacchio, S. Brogi<strong>on</strong>i, P. Foggi, E. Chianc<strong>on</strong>e, A. B<strong>of</strong>fi, G. Smulevich, Biochemistry 47,<br />

902-910 (2008).<br />

13


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Atomic force spectroscopic investigati<strong>on</strong> <strong>of</strong><br />

biorecogniti<strong>on</strong> events<br />

SALVATORE CANNISTRARO<br />

Biophysics and Nanoscience Centre and CNISM, University <strong>of</strong> Tuscia,<br />

Largo dell’Università, Viterbo, I-01100, Italy<br />

Life is based <strong>on</strong> biomolecular interacti<strong>on</strong>s, and atomic force spectroscopy (AFS) is nowadays <strong>the</strong><br />

most powerful and widely used technique for investigating forces, energies and dynamics <strong>of</strong><br />

biomolecular complex, at <strong>the</strong> single molecule level [1]. AFS allows to probe complexes <strong>on</strong>e at time,<br />

under near-physiological c<strong>on</strong>diti<strong>on</strong>s, and without labeling procedures. Moreover, in AFS<br />

biomolecular interacti<strong>on</strong>s occur between bound molecules, and thus biorecogniti<strong>on</strong> events taking<br />

place at cell surfaces are well mimicked. However, to gain reliable informati<strong>on</strong>, <strong>the</strong> immobilizati<strong>on</strong><br />

<strong>of</strong> proteins to tips and supports has to be carefully c<strong>on</strong>trolled. The influence <strong>of</strong> <strong>the</strong> immobilizati<strong>on</strong><br />

strategy <strong>on</strong> <strong>the</strong> efficiency and strength <strong>of</strong> biomolecular interacti<strong>on</strong>s has been widely characterized<br />

[2], also by optimizing <strong>the</strong> biomolecular orientati<strong>on</strong> <strong>on</strong> <strong>the</strong> basis <strong>of</strong> computati<strong>on</strong>al docking<br />

predicted molecular complex c<strong>on</strong>figurati<strong>on</strong>s [3]. Moreover, AFS can be successfully used both to<br />

investigate complexes having very different affinities and also to reveal competitive binding<br />

mechanisms, thus gaining deeper informati<strong>on</strong> about molecular interacti<strong>on</strong>s. Experimental details<br />

and potentialities <strong>of</strong> AFS will be described, toge<strong>the</strong>r with some AFS applicati<strong>on</strong>s to <strong>the</strong> study <strong>of</strong><br />

biological complexes <strong>of</strong> different nature, ranging from transient to competitive or ternary<br />

complexes.<br />

References<br />

Fig. 1 – Schematic illustrati<strong>on</strong> <strong>of</strong> an AFS experiment to probe <strong>the</strong><br />

selective interacti<strong>on</strong> between <strong>the</strong> tumor suppressor p53 and <strong>the</strong><br />

electr<strong>on</strong>-transfer protein Azurin, which shows anti-cancer activity.<br />

[1] P. Robert, A.-M. Benoliel, A. Pierres, P. B<strong>on</strong>grand, J. Mol. Recognit. 20, 432-447 (2007).<br />

[2] B. B<strong>on</strong>anni, A. S. M. Kamruzzahan, A. R. Bizzarri, C. Rankl, H. J. Gruber, P. Hinterdorfer, S. Cannistraro, Biophys.<br />

J. 89, 2783-2791 (2005); B. B<strong>on</strong>anni, A. R. Bizzarri, S. Cannistraro, J. Phys. Chem. B 110, 14574-14580 (2006);<br />

M. Taranta, A. R. Bizzarri, S. Cannistraro, J. Mol. Recognit. 21, 63-70 (2008).<br />

[3] A. R. Bizzarri, E. Brunori, B. B<strong>on</strong>anni, S. Cannistraro, J. Mol. Recognit. 20, 122-131 (2007); V. De Grandis, A. R.<br />

Bizzarri, S. Cannistraro, J. Mol. Recognit. 20, 215-226 (2007); M. Taranta, A. R. Bizzarri, S. Cannistraro, J. Mol.<br />

Recognit. 22, 215-222 (<strong>2009</strong>).<br />

14


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Theoretical search for molecular mechanisms <strong>of</strong><br />

photostability <strong>of</strong> building blocks <strong>of</strong> life<br />

ANDRZEJ L. SOBOLEWSKI<br />

Institute <strong>of</strong> Physics, Polish Academy <strong>of</strong> Sciences, PL-02668 Warsaw, Poland<br />

The DNA and RNA bases absorb str<strong>on</strong>gly in <strong>the</strong> 200 – 300 nm range, which renders living matter<br />

potentially vulnerable to <strong>the</strong> UV comp<strong>on</strong>ents <strong>of</strong> sunlight. Never<strong>the</strong>les, DNA is inherently highly<br />

photostable, that is, <strong>the</strong> quantum yield <strong>of</strong> photochemical reacti<strong>on</strong> products is very low.<br />

Apparently, ultrafast photophysical excited-state deactivati<strong>on</strong>-process depopulates <strong>the</strong> excited<br />

states where destructive reacti<strong>on</strong>s can take place. The unstructured absorpti<strong>on</strong> spectra <strong>of</strong><br />

aminoacids and polypeptides, <strong>the</strong> generally very low quantum yield <strong>of</strong> fluorescence (with <strong>the</strong><br />

excepti<strong>on</strong> <strong>of</strong> tryptophan c<strong>on</strong>taining proteins) indicate similar mechanisms <strong>of</strong> photostability exist in<br />

<strong>the</strong>se species. This presentati<strong>on</strong> addresses <strong>the</strong> calculati<strong>on</strong> <strong>of</strong> reacti<strong>on</strong> paths and <strong>the</strong> corresp<strong>on</strong>ding<br />

energy pr<strong>of</strong>iles in excited electr<strong>on</strong>ic states <strong>of</strong> selected DNA bases and <strong>the</strong>ir dimers as well as<br />

aminoacids and short peptide chains using ab initio methods. Adenine and guanine-cytosine base<br />

pair are c<strong>on</strong>sidered as examples <strong>of</strong> <strong>the</strong> former systems, while tyrosine-(H2O)2 and Gly-Phe-Ala<br />

peptide represent <strong>the</strong> latter. For isolated adenine <strong>the</strong> calculati<strong>on</strong>s reveal <strong>the</strong> reacti<strong>on</strong> pathway<br />

which leads to a c<strong>on</strong>ical intersecti<strong>on</strong> (CI) with <strong>the</strong> ground state via out-<strong>of</strong>-plane deformati<strong>on</strong> <strong>of</strong> <strong>the</strong><br />

hetero-aromatic ring in <strong>the</strong> lowest excited singlet state [1]. For hydrogen-b<strong>on</strong>ded systems (GC<br />

dimer, Tyr-(H2O)2, and GlyPheAla) ano<strong>the</strong>r mechanism <strong>of</strong> deactivati<strong>on</strong> is identified. This involves<br />

electr<strong>on</strong>-transfer followed by single-prot<strong>on</strong>-transfer processes al<strong>on</strong>g existing hydrogen-b<strong>on</strong>ds.<br />

These reacti<strong>on</strong> paths lead to CIs with <strong>the</strong> electr<strong>on</strong>ic ground state and provide a pathway for<br />

ultrafast radiati<strong>on</strong>less deactivati<strong>on</strong> [2-4]. These findings suggest that CIs <strong>of</strong> <strong>the</strong> excited electr<strong>on</strong>ic<br />

states with <strong>the</strong> electr<strong>on</strong>ic ground state play a universal role in <strong>the</strong> photochemistry <strong>of</strong> molecular<br />

building blocks <strong>of</strong> life (amino acids, DNA bases, and <strong>the</strong>ir complexes). The c<strong>on</strong>ical intersecti<strong>on</strong>s are<br />

<strong>the</strong> origin <strong>of</strong> <strong>the</strong> excepti<strong>on</strong>al photostability <strong>of</strong> <strong>the</strong>se compounds, which may have lead to <strong>the</strong>ir<br />

selecti<strong>on</strong> at <strong>the</strong> very beginning <strong>of</strong> <strong>the</strong> biological evoluti<strong>on</strong> [5].<br />

References:<br />

[1] S. Perun, A.L. Sobolewski, W. Domcke, J. Am. Chem. Soc. 2005, 127, 6257<br />

[2] L. Sobolewski, W. Domcke, C. Hättig, Proc. Nat. Acad. Sci. 102 (2005) 17903<br />

[3] L. Sobolewski, D. Shmesh, W. Domcke, J. Phys. Chem. A, 113 (<strong>2009</strong>) 542<br />

[4] D. Shmesh, A.L. Sobolewski, W. Domcke, J. Am. Chem. Soc., 131 (<strong>2009</strong>) 1374<br />

[5] C. Sagan, J. Theor. Biol., 39 (1973) 195<br />

15


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Water in narrow pores<br />

CHRISTOPH DELLAGO<br />

Faculty <strong>of</strong> Physics, University <strong>of</strong> Wien, Austria<br />

Water c<strong>on</strong>fined into <strong>the</strong> interior channels <strong>of</strong> narrow carb<strong>on</strong> nanotubes or transmembrane proteins<br />

forms collectively oriented molecular wires held toge<strong>the</strong>r by tight hydrogen b<strong>on</strong>ds. Here, I will<br />

explore <strong>the</strong> <strong>the</strong>rmodynamic stability and dipolar orientati<strong>on</strong> <strong>of</strong> such <strong>on</strong>e-dimensi<strong>on</strong>al (1D) water<br />

chains from nanoscopic to macroscopic dimensi<strong>on</strong>s. A simple dipole lattice model accurately<br />

recovers key properties <strong>of</strong> 1D-c<strong>on</strong>fined water when compared to atomically detailed simulati<strong>on</strong>s.<br />

In a major reducti<strong>on</strong> in computati<strong>on</strong>al complexity, <strong>the</strong> dipole model can be represented in terms <strong>of</strong><br />

effective Coulombic charges, which allows us to study pores <strong>of</strong> macroscopic lengths in equilibrium<br />

with a water bath (or vapor). At ambient c<strong>on</strong>diti<strong>on</strong>s, <strong>the</strong> water chains filling <strong>the</strong> tube are<br />

essentially c<strong>on</strong>tinuous up to macroscopic dimensi<strong>on</strong>s. The properties <strong>of</strong> nanopore water can be<br />

probed experimentally with dielectric spectroscopy. Our computer simulati<strong>on</strong>s, carried out for a<br />

simplified water model, dem<strong>on</strong>strate that <strong>the</strong> dielectric resp<strong>on</strong>se <strong>of</strong> 1d water chains follows Debye<br />

behavior. Exploiting that <strong>the</strong> time evoluti<strong>on</strong> <strong>of</strong> <strong>the</strong> total dipole moment <strong>of</strong> a 1D water chain is<br />

determined by <strong>the</strong> diffusive dynamics <strong>of</strong> essentially uncorrelated defects, we have derived simple<br />

formulas for <strong>the</strong> susceptibility and relaxati<strong>on</strong> times as a functi<strong>on</strong> <strong>of</strong> chain length. These<br />

expressi<strong>on</strong>s, verified in extensive computer simulati<strong>on</strong>s, permit to extract fundamental molecular<br />

informati<strong>on</strong> such as <strong>the</strong> defect energy and <strong>the</strong>ir diffusi<strong>on</strong> c<strong>on</strong>stant from dielectric relaxati<strong>on</strong><br />

spectra. The implicati<strong>on</strong>s <strong>of</strong> <strong>the</strong> dipolar order <strong>of</strong> nanoc<strong>on</strong>fined 1D water for l<strong>on</strong>g-range prot<strong>on</strong><br />

transport are also discussed.<br />

16


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

ORAL PRESENTATIONS<br />

AUGUST 29 th Saturday<br />

17


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

18


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Recent studies <strong>of</strong> coherent vibrati<strong>on</strong>al moti<strong>on</strong> in<br />

biomolecules<br />

PAUL M. CHAMPION<br />

Physics Department, Nor<strong>the</strong>astern University,<br />

360 Huntingt<strong>on</strong> Avenue, Bost<strong>on</strong>, MA 02115 USA<br />

Recent studies [1-3] have dem<strong>on</strong>strated how ei<strong>the</strong>r static or transient distorti<strong>on</strong>s al<strong>on</strong>g specific<br />

normal modes <strong>of</strong> heme proteins serve to activate coherent res<strong>on</strong>ance Raman intensities, o<strong>the</strong>rwise<br />

be forbidden by symmetry. The distorti<strong>on</strong>-induced enhancement mechanism [3] is most relevant<br />

for low-frequency modes, which are susceptible to distorti<strong>on</strong> by envir<strong>on</strong>mental forces. The protein<br />

can evidently “tune” or distort <strong>the</strong> heme to perform a multitude <strong>of</strong> different tasks and <strong>the</strong>se<br />

distorti<strong>on</strong>s can be m<strong>on</strong>itored by measuring Raman-active vibrati<strong>on</strong>al coherences. The results<br />

dem<strong>on</strong>strate that vibrati<strong>on</strong>al coherence spectroscopy is a sensitive probe <strong>of</strong> <strong>the</strong>rmally accessible<br />

and functi<strong>on</strong>ally relevant heme distorti<strong>on</strong>s, which serve as biochemical reacti<strong>on</strong> coordinates.<br />

The figure shows <strong>the</strong><br />

low-spin CN-bound ferric<br />

heme coherence spectra for<br />

myoglobin (Mb) and<br />

horseradish peroxidase<br />

(HRP). Here, <strong>the</strong> heme is in<br />

an identical electr<strong>on</strong>ic state<br />

for both proteins. However,<br />

<strong>the</strong> heme crystallographic<br />

structures, as analyzed by<br />

normal coordinate structural<br />

decompositi<strong>on</strong>, show that<br />

HRP and Mb induce<br />

predominant heme saddling<br />

and doming distorti<strong>on</strong>s,<br />

respectively. The coherence<br />

spectra clearly reflect this<br />

difference. Additi<strong>on</strong>al studies<br />

<strong>of</strong> cytochrome c will be<br />

presented that dem<strong>on</strong>strate<br />

how excitati<strong>on</strong> within an<br />

ir<strong>on</strong>-ligand charge transfer<br />

band appears to activate <strong>the</strong><br />

redox-active heme ruffling<br />

mode near 60cm -1.<br />

References<br />

Comparis<strong>on</strong> <strong>of</strong> low frequency spectra <strong>of</strong> HRP-CN and Mb-CN<br />

60fs pulse,λ ex =433nm, open band detecti<strong>on</strong>, KPi buffer, pH=7<br />

0 500 1000 1500 2000 2500 3000 3500 4000 0 50 100 150 200 250 300 350 400<br />

0 500 1000 1500 2000 2500 3000 3500 4000 0 50 100 150 200 250 300 350 400<br />

time(fs)<br />

[1] Flaviu Gruia, Minoru Kubo, Xi<strong>on</strong>g Ye, Dan I<strong>on</strong>ascu, Changyuan Lu, Robert K. Poole, Syun-Ru Yeh , and Paul M.<br />

Champi<strong>on</strong>, J. Am. Chem. Soc. 130, 5231-5244 (2008).<br />

[2] Flaviu Gruia, Minoru Kubo, Xi<strong>on</strong>g Ye and Paul M. Champi<strong>on</strong>, Biophys. J. 94, 2252-2266 (2008).<br />

[3] Minoru Kubo, Flaviu Gruia, Abdelkrim Benabbas, William M<strong>on</strong>tfort, Estelle Maes, and Paul M. Champi<strong>on</strong>, J. Am.<br />

Chem. Soc. 130, 9800-9811 (2008).<br />

19<br />

HRP-CN<br />

Mb-CN<br />

23<br />

38<br />

69<br />

40<br />

65<br />

96<br />

100<br />

127<br />

141<br />

152<br />

176<br />

184<br />

209<br />

233<br />

223<br />

267<br />

252<br />

268<br />

wavenumber(cm -1 )<br />

283<br />

342<br />

343<br />

371


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Green fluorescent protein as a matrix for <strong>the</strong> study <strong>of</strong><br />

ultrafast prot<strong>on</strong> transfer in proteins<br />

MINAKO KONDO, ISMAEL A. HEISLER AND STEPHEN R. MEECH<br />

School <strong>of</strong> Chemistry, University <strong>of</strong> East Anglia, Norwich NR4 7TJ, UK<br />

The green fluorescent protein (GFP) is well known as a key technology in fluorescence imaging.<br />

The wild type protein is also known to exhibit a unique excited state prot<strong>on</strong> transfer (ESPT)<br />

reacti<strong>on</strong>. 1 This reacti<strong>on</strong> has been characterized through structural studies and ultrafast vibrati<strong>on</strong>al<br />

spectroscopy as involving l<strong>on</strong>g range prot<strong>on</strong> transport al<strong>on</strong>g a three step prot<strong>on</strong> wire. 2 While such<br />

ESPT is very rare in biology prot<strong>on</strong> transport itself has many important functi<strong>on</strong>s. Since many<br />

mutants <strong>of</strong> GFP can be prepared and structurally characterized it is possible that photoinitiati<strong>on</strong> <strong>of</strong><br />

prot<strong>on</strong> transport provides a unique means <strong>of</strong> studying prot<strong>on</strong> transport dynamics in proteins in<br />

real time. In this presentati<strong>on</strong> two examples will be given, utilizing ultrafast fluorescence and time<br />

resolved vibrati<strong>on</strong>al spectroscopy. In <strong>on</strong>e example we short circuit <strong>the</strong> prot<strong>on</strong> wire in <strong>the</strong> wtGFP<br />

and replace it with a single acceptor very close to <strong>the</strong> prot<strong>on</strong> d<strong>on</strong>or. In this way we create a low<br />

barrier H-b<strong>on</strong>d <strong>of</strong> <strong>the</strong> type much discussed in <strong>the</strong> c<strong>on</strong>text <strong>of</strong> enzyme catalysis. 3 It is shown that <strong>the</strong><br />

resultant ESPT is extraordinarily fast, occurring <strong>on</strong> a sub 100 fs timescale (Figure 1). The sec<strong>on</strong>d<br />

mutant localizes GFP almost exclusively in its neutral A state, allowing us to reinvestigate <strong>the</strong><br />

origin <strong>of</strong> <strong>the</strong> previously noted 1 ultrafast comp<strong>on</strong>ent <strong>of</strong> <strong>the</strong> ESPT. This comp<strong>on</strong>ent has not been<br />

characterized in detail, and may result from multiple pathways in <strong>the</strong> wt GFP structure.<br />

References<br />

Fig. 1 – Ultrafast fluorescence up-c<strong>on</strong>versi<strong>on</strong> <strong>of</strong> S65T H148D GFP.<br />

The sub 100 fs dynamics in <strong>the</strong> blue regi<strong>on</strong> <strong>of</strong> <strong>the</strong> spectrum are<br />

assigned to ultrafast prot<strong>on</strong> translocati<strong>on</strong> <strong>on</strong> a low barrier H-b<strong>on</strong>d.<br />

[1] M. Chattoraj, B.A. King, G.U. Bublitz, S.G. Boxer: PNAS 93 8362-67 (1996).<br />

[2] M. K. Brejc, T.K. Sixma, P.A. Kitts, S.R. Kain, R.Y. Tsien, M. Ormo, S.J. Remingt<strong>on</strong>: PNAS 94 2306-11 (1997); D.<br />

St<strong>on</strong>er-Ma, A.A. Jaye, P. Matousek, M. Towrie, S.R. Meech, P.J. T<strong>on</strong>ge: J. Amer. Chem. Soc. 127 2864-65 (2005);<br />

J.J. van Thor, G. Zanetti, K.L. R<strong>on</strong>ayne, M. Towrie: J. <strong>of</strong> Phys. Chem. B 109 16099-108 (2005).<br />

[3] W.W. Cleland, M.M. Kreevoy: Science 264 1887-90 (1994).<br />

20


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Time-Resolved diffusi<strong>on</strong> and <strong>the</strong>rmodynamics revealed<br />

spectrally hidden dynamics <strong>of</strong> phototropins<br />

YUSUKE NAKASONE 1 , SATORU TOKUTOMI 2 , MASAHIDE TERAZIMA 1<br />

1. Department <strong>of</strong> Chemistry, Graduate School <strong>of</strong> Science<br />

Kyoto University, Kyoto, Japan<br />

2. Department <strong>of</strong> Biological Science, Graduate School <strong>of</strong> Science, Osaka<br />

Prefecture University, Sakai, Osaka 599-8531, Japan<br />

Revealing molecular mechanism <strong>of</strong> a protein reacti<strong>on</strong> has been a central issue not <strong>on</strong>ly in<br />

chemistry but also in more general science. For that purpose, a variety <strong>of</strong> time-resolved<br />

spectroscopic methods have been developed. However, <strong>the</strong>y can m<strong>on</strong>itor <strong>on</strong>ly dynamics<br />

associated with an optical transiti<strong>on</strong> and it has been very difficult to trace processes without<br />

optical transiti<strong>on</strong>. In this respect, <strong>on</strong>e <strong>of</strong> powerful ways to characterize materials is diffusi<strong>on</strong><br />

and/or <strong>the</strong>rmodynamics. However, a difficulty <strong>of</strong> <strong>the</strong> traditi<strong>on</strong>al techniques in studying chemical<br />

reacti<strong>on</strong>s is <strong>the</strong> lack <strong>of</strong> time-resoluti<strong>on</strong>. Recently our group has been working <strong>on</strong> time-resolved<br />

studies during a variety <strong>of</strong> photochemical processes in nano - millisec<strong>on</strong>ds. We used <strong>the</strong> pulsed<br />

laser induced transient grating (TG) method for quantitative measurements in time domain. We<br />

applied this technique to <strong>the</strong> photochemical reacti<strong>on</strong>s <strong>of</strong> various proteins. Here we will show<br />

studies <strong>on</strong> phototropin. Phototropin is a blue light sensor protein <strong>of</strong> plants and <strong>the</strong> reacti<strong>on</strong><br />

dynamics has been attracting a lot <strong>of</strong> attenti<strong>on</strong> recently. From <strong>the</strong> TG signal, we could identify<br />

many intermediates, which have not been observed previously. It was found that <strong>the</strong> TG signals<br />

after photoexcitati<strong>on</strong> <strong>of</strong> Arabidopsis phototropin 1 LOV2 (phot1LOV2) domain without <strong>the</strong> linker<br />

were very sensitive to <strong>the</strong> temperature; <strong>the</strong> diffusi<strong>on</strong> signal increased drastically with increasing<br />

<strong>the</strong> temperature. The signal was c<strong>on</strong>sistently explained well in terms <strong>of</strong> superpositi<strong>on</strong> <strong>of</strong> <strong>the</strong> photoinduced<br />

dissociati<strong>on</strong> and associati<strong>on</strong> reacti<strong>on</strong>s. This fact indicates presence <strong>of</strong> equilibrium between<br />

<strong>the</strong> m<strong>on</strong>omer and <strong>the</strong> dimer <strong>of</strong> <strong>the</strong> phot1LOV2 domain in dark and this equilibrium was<br />

c<strong>on</strong>firmed by a gel chromatographic technique. Interestingly, <strong>the</strong> TG signal <strong>of</strong> phot1LOV2 with <strong>the</strong><br />

linker (phot1LOV2-linker), which exists as <strong>the</strong> m<strong>on</strong>omer form was also temperature dependent;<br />

<strong>the</strong> diffusi<strong>on</strong> signal intensity decreased with increasing <strong>the</strong> temperature. Since <strong>the</strong> diffusi<strong>on</strong> signal<br />

reflected <strong>the</strong> c<strong>on</strong>formati<strong>on</strong> change <strong>of</strong> <strong>the</strong> linker up<strong>on</strong> <strong>the</strong> photoexcitati<strong>on</strong>, this temperature<br />

dependence should indicate that <strong>the</strong>re are two kinds <strong>of</strong> phot1LOV2-linker; <strong>on</strong>e <strong>of</strong> <strong>the</strong>m can exhibit<br />

a c<strong>on</strong>formati<strong>on</strong> change <strong>of</strong> <strong>the</strong> linker regi<strong>on</strong> up<strong>on</strong> <strong>the</strong> photoexcitati<strong>on</strong> and <strong>the</strong> o<strong>the</strong>r does not. The<br />

fracti<strong>on</strong> <strong>of</strong> <strong>the</strong>se species depended <strong>on</strong> <strong>the</strong> temperature. C<strong>on</strong>sidering <strong>the</strong> m<strong>on</strong>omer-dimer<br />

equilibrium <strong>of</strong> phot1LOV2 domain, we suggested that <strong>the</strong> n<strong>on</strong>-reactive form possesses <strong>the</strong> linker<br />

regi<strong>on</strong> that is dissociated from <strong>the</strong> LOV2 domain. A<br />

relati<strong>on</strong> with <strong>the</strong> biological functi<strong>on</strong> will be described.<br />

References<br />

Fig. 1 Schematic showing <strong>the</strong> equilibrium<br />

between <strong>the</strong> dimer and m<strong>on</strong>omer <strong>of</strong><br />

phot1LOV2 and between reactive and<br />

n<strong>on</strong>-reactive states <strong>of</strong> phot1LOV2-linker<br />

sample.<br />

[1] Y.Nakas<strong>on</strong>e, T.Eitoku, D.Matsuoka, S.Tokutomi, M.Terazima, J.Mol.Biol., 367, 432-442(2007).: Y. Nakas<strong>on</strong>e, T.<br />

Eitoku, K. Zikihara, D. Matsuoka, S.Tokutomi, M. Terazima, J.Mol.Biol., 383, 904-913 (2008).<br />

21


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Ultrafast protein resp<strong>on</strong>se in BR and SRII:<br />

Results from isotopically labeled and chemically<br />

modified retinal proteins<br />

R. GROSS 1 , C. SCHUMANN 1# , N. FRIEDMAN 2 , M. SHEVES 2 , L. LI 3 , M. ENGELHARD 3 ,<br />

O. TRENTMANN 4 , E. H. NEUHAUS 3 AND R. DILLER 1<br />

1. Dept. <strong>of</strong> Physics, University <strong>of</strong> Kaiserslautern, E. Schrödinger Str., D-<br />

67663 Kaiserslautern, Germany<br />

2. Dept. <strong>of</strong> Organ. Chemistry, Weizmann Institute <strong>of</strong> Science, 76100<br />

Rehovot, Israel<br />

3. Max-Planck-Institute for Molecular Physiology, Otto-Hahn-Str. 11, D-<br />

44227 Dortmund<br />

4. Dept. <strong>of</strong> Biology, University <strong>of</strong> Kaiserslautern, E. Schrödinger Str., D-<br />

67663 Kaiserslautern, Germany<br />

# Current address: Leibniz Institute for New Materials, D-66123<br />

Saarbrücken, Germany<br />

The light driven functi<strong>on</strong> <strong>of</strong> retinal binding proteins in archaea depends critically <strong>on</strong> <strong>the</strong> coupling <strong>of</strong><br />

<strong>the</strong> activated chromophore to <strong>the</strong> hosting protein moiety. In order to explore <strong>the</strong> dynamics <strong>of</strong> this<br />

process we have performed ultrafast transient mid-infrared spectroscopy <strong>on</strong> isotopically labeled<br />

samples <strong>of</strong> bacteriorhodopsin (BR) and sensory rhodopsin II (SRII) [1]. The experiments allow <strong>the</strong><br />

discriminati<strong>on</strong> <strong>of</strong> chromophore [2,3] and n<strong>on</strong>-chromophore bands and include SRII in D2O-buffer,<br />

BR in H2 18O medium, SRII with 15N-labeled protein and BR with 13C14 13C15-labeled retinal<br />

chromophore. Via observed shifts <strong>of</strong> infrared difference bands after photoexcitati<strong>on</strong> and <strong>the</strong>ir<br />

kinetics we provide evidence for n<strong>on</strong>-chromophore bands in <strong>the</strong> amide I and <strong>the</strong> amide II regi<strong>on</strong>s<br />

<strong>of</strong> BR and SRII. A band around 1550 cm -1 is very likely due to an amide II vibrati<strong>on</strong>. In <strong>the</strong> amide I<br />

regi<strong>on</strong>, c<strong>on</strong>tributi<strong>on</strong>s <strong>of</strong> modes involving exchangeable prot<strong>on</strong>s and modes not involving<br />

exchangeable prot<strong>on</strong>s can be discerned. Observed bands in <strong>the</strong> amide I regi<strong>on</strong> <strong>of</strong> BR are not due to<br />

bending vibrati<strong>on</strong>s <strong>of</strong> protein bound water molecules. The observed protein bands appear within<br />

0.3 – 3 ps and decay partially <strong>on</strong> a slower time scale <strong>of</strong> 9 – 18 ps, clearly showing that BR and SRII<br />

resp<strong>on</strong>d to chromophore activati<strong>on</strong> <strong>on</strong> <strong>the</strong> time scale <strong>of</strong> <strong>the</strong> primary photoreacti<strong>on</strong>. Our findings<br />

fill a gap c<strong>on</strong>cerning spectroscopic and time resolved evidence for <strong>the</strong> ultrafast coupling between<br />

<strong>the</strong> excited and isomerising chromophore and its protein envir<strong>on</strong>ment. They are related to recent<br />

results <strong>on</strong> BR c<strong>on</strong>taining a sterically locked, n<strong>on</strong> isomerizing chromophore (BR5.12), where similar<br />

protein bands have been observed [4]. Thus, <strong>the</strong> results not <strong>on</strong>ly shed light <strong>on</strong> <strong>the</strong> reacti<strong>on</strong><br />

mechanism in retinal proteins but also suggest implicati<strong>on</strong>s for <strong>the</strong> coupling between an excited<br />

chromophore and a surrounding protein matrix in general.<br />

References<br />

[1] R. Gross, M. M. N. Wolf, C. Schumann, N. Friedman, M. Sheves, L. Li, M. Engelhard, O. Trentmann, H. E. Neuhaus,<br />

R. Diller, JACS, submitted (<strong>2009</strong>)<br />

[2] J. Herbst, K. Heyne and R. Diller, Science 297, 822-825 (2002)<br />

[3] R. Diller, R. Jakober, C. Schumann, F. Peters, J. P. Klare and M. Engelhard, Biopolymers, 82, 358–362 (2006)<br />

[4] R. Gross, C. Schumann, M.N.N. Wolf, J. Herbst, R. Diller, N. Friedman and M. Sheves, J. Phys. Chem. B. 113,<br />

7851–7860 (<strong>2009</strong>)<br />

22


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Laser amplifier for spectroscopy <strong>of</strong> prot<strong>on</strong>ated peptides<br />

Oleg V. Boyarkin, M<strong>on</strong>ia Guidi, Natalia S. Nagornova and Thomas R. Rizzo<br />

Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, CH-1015<br />

Lausanne, Switzerland<br />

Specific biological functi<strong>on</strong>s <strong>of</strong> proteins are largely determined by <strong>the</strong>ir 3-D structures that <strong>the</strong>y<br />

adopt in vivo. Calculati<strong>on</strong> <strong>of</strong> <strong>the</strong>se complex structures requires experimental verificati<strong>on</strong> and,<br />

perhaps, gradual adjustments <strong>of</strong> <strong>the</strong> employed <strong>the</strong>oretical models. This can be d<strong>on</strong>e by predicting<br />

structures <strong>of</strong> small species in an isolated envir<strong>on</strong>ment, <strong>the</strong>n extending to larger but still isolated<br />

peptides and proteins and finally to solvated species. Infrared (IR) spectroscopy <strong>of</strong> biomolecules<br />

in <strong>the</strong> gas-phase can provide such data in <strong>the</strong> form <strong>of</strong> sets <strong>of</strong> vibrati<strong>on</strong>al frequencies that is to be<br />

reproduced by a valid <strong>the</strong>ory. Each set, if measured <strong>on</strong> <strong>the</strong> same c<strong>on</strong>former <strong>of</strong> a molecule,<br />

c<strong>on</strong>stitutes a spectroscopic signature that can be used to test and calibrate <strong>the</strong>ory. We employ an<br />

IR-UV laser double res<strong>on</strong>ance photo-fragmentati<strong>on</strong> approach to measure c<strong>on</strong>former-selective IR<br />

spectra <strong>of</strong> prot<strong>on</strong>ated peptides, cooled to T=10K in a 22-pole linear i<strong>on</strong> trap.[1,2] The UV induced<br />

statistical phot<strong>of</strong>ragmentati<strong>on</strong> slows quickly up<strong>on</strong> increasing size <strong>of</strong> peptides, limiting utility <strong>of</strong><br />

this approach to small species. We report here a spectroscopic technique that allows an increase in<br />

<strong>the</strong> phot<strong>of</strong>ragmentati<strong>on</strong> yield <strong>of</strong> large molecules <strong>of</strong> more than two orders <strong>of</strong> magnitude. In this<br />

approach prot<strong>on</strong>ated species that have been first excited electr<strong>on</strong>ically in <strong>the</strong> UV undergo infrared<br />

multiple phot<strong>on</strong> excitati<strong>on</strong> (IRMPE) by a pulsed TEA CO2 laser.[3] This additi<strong>on</strong>al vibrati<strong>on</strong>al<br />

excitati<strong>on</strong> accelerates statistical dissociati<strong>on</strong> rate and, <strong>the</strong>refore, increases fragmentati<strong>on</strong> yield <strong>of</strong><br />

<strong>the</strong> excited species <strong>on</strong> a time-scale <strong>of</strong> our experiment. We have verified that <strong>the</strong> CO2 laser assisted<br />

phot<strong>of</strong>ragmentati<strong>on</strong> doesn’t distort UV spectra. It is also compatible with IR-UV depleti<strong>on</strong><br />

technique, allowing us to extend c<strong>on</strong>former specific IR spectroscopy to larger prot<strong>on</strong>ated peptides<br />

c<strong>on</strong>taining up to 17 amino acids and to a str<strong>on</strong>gly bounded cyclic peptide - a natural antibiotic<br />

gramicidin-s..<br />

References<br />

[1] O. V. Boyarkin, S. R. Mercier, A. Kamariotis, and T. R. Rizzo, J. Am. Chem. Soc. 128 (9), 2816<br />

(2006).<br />

[2] J. A. Stearns, S. Mercier, C. Seaiby, M. Guidi, O. V. Boyarkin, and T. R. Rizzo, J. Am. Chem. Soc.<br />

129 (38), 11814 (2007).<br />

[3] M. Guidi, U. J. Lorenz, G. Papadopoulos, O. V. Boyarkin, and T. R. Rizzo, The Journal <strong>of</strong><br />

Physical Chemistry A 113 (5), 797 (<strong>2009</strong>).<br />

23


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Spectroscopic and modeling studies <strong>of</strong> biomolecular<br />

adsorpti<strong>on</strong> <strong>on</strong> solid surfaces<br />

D. K. HORE, K. C. JENA, S. A. HALL AND T. TRUDEAU<br />

Dept. <strong>of</strong> Chemistry, University <strong>of</strong> Victoria,<br />

Victoria, British Columbia, V8W 3V6, Canada<br />

The interacti<strong>on</strong> <strong>of</strong> biomolecules with solid surfaces is a fundamental aspect <strong>of</strong> many physiological,<br />

envir<strong>on</strong>mental, and technological processes. Often, <strong>the</strong> aim is to promote <strong>the</strong> specific adsorpti<strong>on</strong><br />

<strong>of</strong> a particular protein to a surface. In a biosensor, for example, optimizati<strong>on</strong> is reliant <strong>on</strong> c<strong>on</strong>trol<br />

<strong>of</strong> both <strong>the</strong> orientati<strong>on</strong> and c<strong>on</strong>formati<strong>on</strong> <strong>of</strong> <strong>the</strong> protein to a substrate. While <strong>the</strong>re are many<br />

excellent tools for probing bulk structures <strong>of</strong> biomolecules, <strong>the</strong>re are relatively few techniques that<br />

can provide quantitative informati<strong>on</strong> <strong>on</strong> adsorbed structures. One <strong>of</strong> <strong>the</strong> challenges is that<br />

molecular features <strong>of</strong> <strong>the</strong> substrate and soluti<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s are highly influential <strong>on</strong> <strong>the</strong> adsorbed<br />

biomolecular structure. Ano<strong>the</strong>r is that a high degree <strong>of</strong> surface-specificity is required to<br />

discriminate from adjacent bulk phases. Our lab is focussed <strong>on</strong> developing spectroscopic and<br />

modeling techniques to probe such interacti<strong>on</strong>s and provide a feature-rich descripti<strong>on</strong> <strong>of</strong> adsorbed<br />

biomolecular structure. Using techniques such as visible-infrared sum-frequency generati<strong>on</strong><br />

spectroscopy and molecular dynamics simulati<strong>on</strong>s, our aim is to arrive at <strong>the</strong> details <strong>of</strong> <strong>the</strong><br />

submolecular interacti<strong>on</strong>s that govern <strong>the</strong> interplay between residue-residue and residue-surface<br />

interacti<strong>on</strong>s.<br />

References<br />

Fig. 1 – Three-wave mixing experiments performed with different<br />

polarizati<strong>on</strong>s <strong>of</strong> <strong>the</strong> input and output beams are revealing <strong>of</strong><br />

orientati<strong>on</strong> and c<strong>on</strong>formati<strong>on</strong> <strong>of</strong> molecules at <strong>the</strong> surface. The<br />

spectra are fit [1,2] to determine elements <strong>of</strong> <strong>the</strong> sec<strong>on</strong>d-order<br />

susceptibility. This in turn is related to <strong>the</strong> hyperpolarizability in <strong>the</strong><br />

molecular frame, <strong>the</strong>reby providing <strong>the</strong> link to surface-adsorbed<br />

structure [3].<br />

[1] D. Hore, J. King, F. Moore, D. Alavi, M. Hamamoto, G. Richm<strong>on</strong>d, Appl. Spectrosc. 58, 1377 (2004).<br />

[2] D. Hore, D. Beaman, G. Richm<strong>on</strong>d, J. Chem. Phys. 121, 12589 (2004).<br />

[3] D. Hore, D. Beaman, D. Parks, G. Richm<strong>on</strong>d, J. Phys. Chem. B 109, 16846 (2005).<br />

24


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Structural analysis <strong>of</strong> macromolecular complexes<br />

by Isotope-Edited FTIR <strong>Spectroscopy</strong><br />

Suren A. Tatulian<br />

Department <strong>of</strong> Physics, University <strong>of</strong> Central Florida, Orlando, FL, USA<br />

Structure determinati<strong>on</strong> <strong>of</strong> large macromolecular complexes, such as multidomain proteins or<br />

protein-membrane complexes, is <strong>on</strong>e <strong>of</strong> <strong>the</strong> most challenging tasks in modern structural biology.<br />

High-resoluti<strong>on</strong> techniques, like NMR or X-ray crystallography, are limited to molecules <strong>of</strong><br />

moderate size or those that can be crystallized easily, and protein-membrane systems are out <strong>of</strong><br />

reach <strong>of</strong> both methods. This work describes an emerging biophysical technique that combines<br />

segmental isotope labeling <strong>of</strong> proteins with Fourier transform infrared (FTIR) spectroscopy, which<br />

provides detailed structural informati<strong>on</strong> <strong>on</strong> protein-membrane complexes and multidomain<br />

proteins. Labeling <strong>of</strong> a segment <strong>of</strong> <strong>the</strong> protein with 13C results in infrared spectral resoluti<strong>on</strong> <strong>of</strong> <strong>the</strong><br />

labeled and unlabeled parts and thus allows identificati<strong>on</strong> <strong>of</strong> structural changes occurring in<br />

specific domains/segments <strong>of</strong> <strong>the</strong> protein that accompany functi<strong>on</strong>al changes. Segmental isotope<br />

labeling also allows determinati<strong>on</strong> <strong>of</strong> <strong>the</strong> precise c<strong>on</strong>figurati<strong>on</strong> <strong>of</strong> protein-membrane complexes by<br />

polarized attenuated total reflecti<strong>on</strong> FTIR spectroscopy. These new developments <strong>of</strong>fer soluti<strong>on</strong>s to<br />

functi<strong>on</strong>ally important site-specific structural changes in proteins and protein-membrane<br />

complexes that are hard to approach using c<strong>on</strong>venti<strong>on</strong>al methods.<br />

25


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Excit<strong>on</strong> dynamics and energy disorder in<br />

photosyn<strong>the</strong>tic light-harvesting complexes<br />

V. K<strong>on</strong>ing 1 , N. Verhart 1 , R. Purchase 1 , R. J. Silbey 1 and S. Völker 1,2<br />

1 Huygens and Gorlaeus Laboratories, Leiden University, Leiden, The Ne<strong>the</strong>rlands. 2 Faculty <strong>of</strong><br />

Sciences, Vrije Universiteit, Amsterdam, The Ne<strong>the</strong>rlands. 3 Department <strong>of</strong> Chemistry,<br />

Massachusetts Institute <strong>of</strong> Technology, Cambridge, MA, USA.<br />

In photosyn<strong>the</strong>sis, solar energy is c<strong>on</strong>verted into chemical energy that drives subsequent metabolic<br />

reacti<strong>on</strong>s. The process begins with <strong>the</strong> absorpti<strong>on</strong> <strong>of</strong> phot<strong>on</strong>s by light-harvesting (LH) complexes<br />

from which <strong>the</strong> excitati<strong>on</strong> energy is rapidly transferred to <strong>the</strong> reacti<strong>on</strong> center (RC). In <strong>the</strong> latter,<br />

charge separati<strong>on</strong> takes place and chemical energy becomes available for fur<strong>the</strong>r processes. Purple<br />

bacteria have two types <strong>of</strong> LH-complexes, a core complex surrounding <strong>the</strong> RC called LH1, and a<br />

peripheral LH2 complex. The LH2 complexes are organized in two c<strong>on</strong>centric rings: <strong>the</strong> B800 ring<br />

with well separated and weakly interacting bacteriochlophyll (BChl) molecules absorbing at ~ 800<br />

nm, and <strong>the</strong> B850 ring with str<strong>on</strong>gly interacting BChls absorbing at ~ 850 nm. The str<strong>on</strong>g<br />

interacti<strong>on</strong> in B850 leads to delocalizati<strong>on</strong> <strong>of</strong> <strong>the</strong> electr<strong>on</strong>ic excitati<strong>on</strong>. The degree <strong>of</strong> this<br />

delocalizati<strong>on</strong>, which is limited by static and dynamic disorder, remains a subject <strong>of</strong> debate and it<br />

is not clear whe<strong>the</strong>r <strong>the</strong> c<strong>on</strong>troversial results reported in <strong>the</strong> literature are related to <strong>the</strong> different<br />

techniques used and/or <strong>the</strong> differences in <strong>the</strong> bacteria studied. To clear up <strong>the</strong>se c<strong>on</strong>troversies and<br />

to get a better understanding <strong>of</strong> <strong>the</strong> interplay between <strong>the</strong> coherence <strong>of</strong> <strong>the</strong> excitati<strong>on</strong> originating<br />

from <strong>the</strong> str<strong>on</strong>g electr<strong>on</strong>ic coupling and <strong>the</strong> energy disorder in <strong>the</strong> ring that tends to destroy <strong>the</strong><br />

coherence, we have performed spectral hole-burning experiments detected in fluorescence <strong>on</strong> <strong>the</strong><br />

B850 band <strong>of</strong> <strong>the</strong> LH2 complexes <strong>of</strong> four types <strong>of</strong> purple bacteria. By measuring <strong>the</strong> depth <strong>of</strong> <strong>the</strong><br />

holes as a functi<strong>on</strong> <strong>of</strong> wavelength, we were able to determine <strong>the</strong> distributi<strong>on</strong> <strong>of</strong> <strong>the</strong> lowest k=0<br />

excit<strong>on</strong> states within <strong>the</strong> B850 band. From <strong>the</strong> comparis<strong>on</strong> <strong>of</strong> our experimental results with <strong>the</strong><br />

simulati<strong>on</strong>s, we could get an estimate <strong>of</strong> <strong>the</strong> amount <strong>of</strong> energy disorder and electr<strong>on</strong>ic coupling in<br />

<strong>the</strong> various bacteria studied. Problems with <strong>the</strong> <strong>the</strong>oretical model and its implicati<strong>on</strong>s will be<br />

discussed.<br />

26


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Fluorescence and Infrared Cross-Correlati<strong>on</strong> <strong>Spectroscopy</strong>:<br />

A new tool in analysing protein c<strong>on</strong>formati<strong>on</strong>al coupling<br />

S. MADATHIL 1 , U. ALEXIEV 2 AND K. FAHMY1 1<br />

1. Div. <strong>of</strong> Biophysics, Institute <strong>of</strong> Radiochemistry, Forschungszentrum<br />

Dresden-Rossendorf, PF 510119, D-01314 Dresden, Germany<br />

2. Dept. <strong>of</strong> Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany<br />

The functi<strong>on</strong>al regulati<strong>on</strong> <strong>of</strong> proteins is based <strong>on</strong> structural changes that are initiated at a<br />

ligand-binding site and are transmitted to a "distant" site where biological activity is altered.<br />

Understanding <strong>the</strong> molecular mechanisms <strong>of</strong> l<strong>on</strong>g range coupling is crucial for many systems<br />

ranging from energy c<strong>on</strong>versi<strong>on</strong> and catalysis to pharmacoligical interference with receptors.<br />

We have developed a generalized multidimensi<strong>on</strong>al spectoscopic approach to investigate l<strong>on</strong>g<br />

range coupling in proteins by integrating simultaneously recorded fluorescence emissi<strong>on</strong> and<br />

infrared absorpti<strong>on</strong> from a protein sample undergoing c<strong>on</strong>formati<strong>on</strong>al transiti<strong>on</strong>s in resp<strong>on</strong>se<br />

to an external perturbati<strong>on</strong>. Using fluorescence-coupled attenuated total relfectance (ATR)<br />

Fourier-transform infrared (FTIR) difference spectroscopy, coupling <strong>of</strong> <strong>the</strong> cytosolic<br />

c<strong>on</strong>formati<strong>on</strong> <strong>of</strong> <strong>the</strong> retinal protein rhodopsin to internal carboxyl_H-b<strong>on</strong>ds has thus been<br />

identified [1]. Here we have used <strong>the</strong> fluorescence-labeled bacteriorhodopsin mutant D96A to<br />

show how <strong>the</strong> closure <strong>of</strong> <strong>the</strong> cytosolic half channel <strong>of</strong> this prot<strong>on</strong> pump is coupled to <strong>the</strong><br />

prot<strong>on</strong>ati<strong>on</strong> state <strong>of</strong> <strong>the</strong> retinal Schiff base and its counter i<strong>on</strong> Asp85. Channel closure is<br />

str<strong>on</strong>gly coupled to deprot<strong>on</strong>ati<strong>on</strong> <strong>of</strong> Asp85 but less to <strong>the</strong> reprot<strong>on</strong>ati<strong>on</strong> <strong>of</strong> <strong>the</strong> Schiff base<br />

which partially precedes <strong>the</strong> cytosolic c<strong>on</strong>formati<strong>on</strong>al change. Azide accelerates channel<br />

closure relative to <strong>the</strong> internal prot<strong>on</strong>transfer steps. In additi<strong>on</strong> to site-specific labelling, <strong>the</strong><br />

model-free analysis <strong>of</strong> cross-correlated spectral data can be extended to proteins c<strong>on</strong>taining<br />

natural flurophores. We show for <strong>the</strong> cytoskeletal protein actin that <strong>the</strong> loss <strong>of</strong> liganddependent<br />

static quenching <strong>of</strong> tryptophan emissi<strong>on</strong> during <strong>the</strong>rmal unfolding correlates with<br />

<strong>the</strong> loss <strong>of</strong> specific sec<strong>on</strong>dary structure m<strong>on</strong>itored by FTIR spectroscopy. This approach<br />

provides structural informati<strong>on</strong> <strong>on</strong> flav<strong>on</strong>oid binding to actin which has recently been shown<br />

to affect actin c<strong>on</strong>formati<strong>on</strong>al changes [2]. Fur<strong>the</strong>r topological informati<strong>on</strong> can be obtained<br />

from <strong>the</strong> emissi<strong>on</strong> wavelength <strong>of</strong> <strong>the</strong> tryptophans that become unquenched during ligand<br />

dissociati<strong>on</strong>. Fluorescence-IR-cross-correlati<strong>on</strong> spectroscopy thus extends <strong>the</strong> IR-based<br />

c<strong>on</strong>formati<strong>on</strong>al analysis by site-specific informati<strong>on</strong> <strong>on</strong> local physical parameters (polarity,<br />

electrostatics, etc.) which affect <strong>the</strong> emissi<strong>on</strong> <strong>of</strong> intrinsic or extrinsic fluorophores.<br />

References<br />

[1] N. Lehmann, U. Alexiev, K. Fahmy, J. Mol. Biol. 336, 1129–1141 (2007).<br />

[2] M. Boehl, S. Tietze, A. Sokoll, S. Madathil, F. Pfennig, J. Apostolakis, K. Fahmy, H.-O. Gutzeit,<br />

Biophys. J. 93, 2767-2780 (2007).<br />

27


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Shape <strong>of</strong> <strong>the</strong> carb<strong>on</strong> m<strong>on</strong>oxide infrared absorpti<strong>on</strong> band<br />

<strong>of</strong> carboxyheme proteins as a probe <strong>of</strong> <strong>the</strong> protein<br />

anharm<strong>on</strong>icity.<br />

S. S. STAVROV<br />

Sackler Institute <strong>of</strong> Molecular Medicine, Dept. <strong>of</strong> Human Molecular<br />

Genetics and Biochemistry, Sackler Faculty <strong>of</strong> Medicine, Tel Aviv<br />

University, Ramat Aviv, Tel Aviv, 69978, Israel<br />

Heme proteins are intensively used to study chemistry and physics <strong>of</strong> proteins, because <strong>the</strong>y can<br />

be studied by virtually any spectroscopic technique. Carboxyheme proteins manifest very str<strong>on</strong>g<br />

infrared absorpti<strong>on</strong> band in <strong>the</strong> regi<strong>on</strong> <strong>of</strong> 1900 – 2000 cm -1, which corresp<strong>on</strong>ds to <strong>the</strong> valence<br />

vibrati<strong>on</strong> <strong>of</strong> <strong>the</strong> heme-coordinated CO molecule. Positi<strong>on</strong> <strong>of</strong> this band was shown to be affected by<br />

<strong>the</strong> protein envir<strong>on</strong>ment [1, 2] and was used to study <strong>the</strong> HP structure and dynamics (see for<br />

review [2]). Modern infrared spectroscopy allows obtaining high resoluti<strong>on</strong> spectra <strong>of</strong> this band<br />

with high signal-noise ratio. Therefore not <strong>on</strong>ly positi<strong>on</strong>, but also shape <strong>of</strong> <strong>the</strong> band is used to<br />

obtain informati<strong>on</strong> about <strong>the</strong> protein structure and dynamics [3-5]. In this study we analyze<br />

general properties <strong>of</strong> shape <strong>of</strong> <strong>the</strong> CO band. It was shown earlier [6] that decay weakly c<strong>on</strong>tributes<br />

to <strong>the</strong> band width (~ 0.5 cm -1 at room temperature), whereas <strong>the</strong> band’s full width at half<br />

maximum is ~ 10 cm -1. Therefore, <strong>the</strong> main c<strong>on</strong>tributi<strong>on</strong> to <strong>the</strong> CO band broadening stems from<br />

interacti<strong>on</strong> <strong>of</strong> <strong>the</strong> CO vibrati<strong>on</strong> with moti<strong>on</strong> <strong>of</strong> its envir<strong>on</strong>ment, whereas <strong>the</strong> natural width <strong>of</strong> <strong>the</strong><br />

band is negligibly small. If this envir<strong>on</strong>ment moves harm<strong>on</strong>ically, <strong>the</strong> band shape can be described<br />

in terms <strong>of</strong> <strong>the</strong>ory <strong>of</strong> multi-ph<strong>on</strong><strong>on</strong> optical absorpti<strong>on</strong> band [6]. Using this <strong>the</strong>ory we show that (a)<br />

<strong>the</strong> CO band is broadened by moti<strong>on</strong>s <strong>of</strong> <strong>the</strong> envir<strong>on</strong>ment slower than ~10 ps (most probably <strong>the</strong>y<br />

corresp<strong>on</strong>d to some large-amplitude moti<strong>on</strong>s <strong>of</strong> <strong>the</strong> protein); (2) <strong>the</strong> temperature dependence <strong>of</strong><br />

<strong>the</strong> sec<strong>on</strong>d moment <strong>of</strong> <strong>the</strong> band has to be linear in any temperature interval at T > 20 K. Deviati<strong>on</strong><br />

from <strong>the</strong> linearity points at anharm<strong>on</strong>ic character <strong>of</strong> moti<strong>on</strong> <strong>of</strong> <strong>the</strong> envir<strong>on</strong>ment; (3) if at any<br />

temperature <strong>the</strong> spectrum is symmetric, it must be Gaussian. Experimental observati<strong>on</strong> <strong>of</strong> ano<strong>the</strong>r<br />

symmetric bandshape (for example, Voigtian) implies that moti<strong>on</strong> <strong>of</strong> <strong>the</strong> envir<strong>on</strong>ment is<br />

anharm<strong>on</strong>ic, and <strong>the</strong> band is a superpositi<strong>on</strong> <strong>of</strong> Gaussians, each <strong>of</strong> which corresp<strong>on</strong>ds to a<br />

c<strong>on</strong>formati<strong>on</strong>al substate <strong>of</strong> <strong>the</strong> protein. These results explain <strong>the</strong> experimentally observed<br />

temperature dependence <strong>of</strong> <strong>the</strong> CO band [5] and, in particular, bring <strong>on</strong>e to a c<strong>on</strong>clusi<strong>on</strong> that even<br />

in dry trehalose protein c<strong>on</strong>formati<strong>on</strong>al transiti<strong>on</strong> occurs.<br />

References<br />

[1] S. S. Stavrov, “The FeCO unit vibrati<strong>on</strong>s as a probe <strong>of</strong> <strong>the</strong> structure and dynamics <strong>of</strong> <strong>the</strong> active site <strong>of</strong> heme<br />

proteins: combined quantum chemical, vibr<strong>on</strong>ic and spectroscopic study”, in Biopolymer Research Trends, edited<br />

by R. B. Hamil, Nova Publishers, 119 (2008).<br />

[2] T. G. Spiro, I. H. Wasbotten, J. Inorg. Biochem. 99, 34-44 (2005)<br />

[3] J. D. Muller, B. H. McMah<strong>on</strong>, E. Y. T. Chien, S. G. Sligar, G. U. Nienhaus, Biophys. J. 77, 1036-1051 (1999)<br />

[4] A. Cupane, M. Le<strong>on</strong>e, V. Militello, Biophys. Chem. 104, 335-344 (2003).<br />

[5] A. D.Kaposi, J. M. Vanderkooi, S. S. Stavrov, Biophys. J. 91, 4191-4200 (2006).<br />

[6] K. A. Merchant, D. E. Thomps<strong>on</strong>, Q. H. Xu, R. B. Williams, R. F. Loring, M. D. Fayer, Biophys. J. 82, 3277-3288<br />

(2002).<br />

[7] Y. E. Perlin, Sov. Phys. Uspekhi 80, 553-595 (1964).<br />

28


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Low-frequency dynamics <strong>of</strong> Bacteriorhodopsin studied<br />

by terahertz time-domain spectroscopy; relati<strong>on</strong> with its<br />

functi<strong>on</strong><br />

S. KAWAGUCHI 1 , M. SHIBATA 2 , H. KANDORI 2 , AND K. TOMINAGA 1,3<br />

1. Graduated School <strong>of</strong> Science, Kobe University<br />

2. Nagoya Institute <strong>of</strong> Technology, Showa-ku, Nagoya, 466-8555, Japan<br />

3. Molecular Photoscience Research Center, Kobe University, Nada-ku,<br />

Kobe, 657-8501, Japan<br />

When proteins express <strong>the</strong>ir functi<strong>on</strong>s, large c<strong>on</strong>formati<strong>on</strong>al changes <strong>of</strong>ten occur. These changes<br />

result from collective moti<strong>on</strong>s <strong>of</strong> a large number <strong>of</strong> atoms. Such moti<strong>on</strong>s have characteristic<br />

frequencies in <strong>the</strong> regi<strong>on</strong> below a few tens <strong>of</strong> wavenumbers. Fur<strong>the</strong>rmore, it is well known that<br />

when proteins express <strong>the</strong>ir functi<strong>on</strong>s water molecules trapped internally and those surrounding<br />

<strong>the</strong> proteins play an important role. In this work, we have measured <strong>the</strong> low-frequency spectra <strong>of</strong><br />

bacteriorhodopsin (BR) at various c<strong>on</strong>diti<strong>on</strong>s <strong>of</strong> hydrati<strong>on</strong> and temperature using terahertz (THz)<br />

time-domain spectroscopy to discuss relati<strong>on</strong> with expressi<strong>on</strong> <strong>of</strong> <strong>the</strong>ir functi<strong>on</strong>. From <strong>the</strong> obtained<br />

spectra <strong>of</strong> <strong>the</strong> refractive index and absorpti<strong>on</strong> coefficient we calculated Reduced Absorpti<strong>on</strong> Cross<br />

Secti<strong>on</strong> (RACS) in <strong>the</strong> THz regi<strong>on</strong> which is proporti<strong>on</strong>al to vibrati<strong>on</strong>al density <strong>of</strong> state (VDOS) [1].<br />

It was found that <strong>the</strong> RACS <strong>of</strong> <strong>the</strong> BR samples shows a power-law behavior (RACS ν α ). At room<br />

temperature, <strong>the</strong> power-law <strong>of</strong> <strong>the</strong> dry sample is α = 1.97 ± 0.02.� The value <strong>of</strong> <strong>the</strong> exp<strong>on</strong>ent<br />

α �becomes smaller as <strong>the</strong> amount <strong>of</strong> hydrati<strong>on</strong> increases. By comparing <strong>the</strong> ideal case, anharm<strong>on</strong>ic<br />

coupling am<strong>on</strong>g <strong>the</strong> low-frequency modes <strong>of</strong> BR becomes larger as <strong>the</strong> amount <strong>of</strong> hydrati<strong>on</strong><br />

increases. Fur<strong>the</strong>rmore, <strong>the</strong> temperature dependence <strong>of</strong> <strong>the</strong> exp<strong>on</strong>ent is similar for both <strong>the</strong> dry<br />

and hydrated samples in <strong>the</strong> temperature range from -100 C to -40 C. However, above -40 C <strong>the</strong><br />

hydrated samples show str<strong>on</strong>ger temperature dependence than <strong>the</strong> dry samples. It shows that for<br />

<strong>the</strong> hydrated sample anharm<strong>on</strong>ic coupling is induced above -40 C by increasing temperature. This<br />

change is due to <strong>the</strong> dynamical transiti<strong>on</strong> that was reported by <strong>the</strong> inelastic neutr<strong>on</strong> scattering<br />

study [2].<br />

References<br />

RACS (m 2 mol -1 )<br />

10<br />

1<br />

0.1<br />

6<br />

4<br />

2<br />

6<br />

4<br />

2<br />

6<br />

5 6 7 8 9<br />

10<br />

Wavenumber (cm -1 )<br />

29<br />

2 3 4 5 6 7 8<br />

Fig.1 Reduced Absorpti<strong>on</strong> Cross Secti<strong>on</strong> <strong>of</strong> BR in <strong>the</strong> THz regi<strong>on</strong>.<br />

[1] K. Yamamoto, et al. Biophys. J. 89, L22-L24 (2005).<br />

[2] M. Ferrand, et al. Biophys. J. 90, L9668-L9672 (1993).


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Low temperature FTIR spectroscopy reveals new<br />

insights <strong>on</strong> <strong>the</strong> pH-dependent prot<strong>on</strong> pathway <strong>of</strong><br />

Proteorhodopsin<br />

G. SCHÄFER 1 , M.-K. VERHOEFEN 2 , S. SHASTRI 3 ,<br />

I. WEBER 3 , C. GLAUBITZ 3 , J. WACHTVEITL 1,2 , W. MÄNTELE 1<br />

1. Institute <strong>of</strong> Biophysics, Max v<strong>on</strong> Laue-Str.1, Johann Wolfgang Goe<strong>the</strong>-University Frankfurt , 60438<br />

Frankfurt, Germany<br />

2. Institute <strong>of</strong> Physical and Theoretical Chemistry, Johann Wolfgang Goe<strong>the</strong>-University Frankfurt, Max v<strong>on</strong><br />

Laue-Str.7, 60438 Frankfurt, Germany<br />

3. Institute <strong>of</strong> Biophysical Chemistry and Center <strong>of</strong> Biomolecular Magnetic Res<strong>on</strong>ance, Johann Wolfgang<br />

Goe<strong>the</strong>-University Frankfurt, Max v<strong>on</strong> Laue-Str.9, 60438 Frankfurt, Germany<br />

Proteorhodopsin (PR) discovered in <strong>the</strong> γ-proteobacterium SAR86 is believed to be a light-driven<br />

prot<strong>on</strong> pump. 1 Since <strong>the</strong> first descripti<strong>on</strong> <strong>of</strong> PR several studies have uncovered evidence <strong>of</strong><br />

intermediates comparable to <strong>the</strong> bacteriorhodopsin (BR) photocycle. However, photocycle and pH<br />

dependent prot<strong>on</strong> transport <strong>of</strong> PR are still c<strong>on</strong>troversially discussed. Until now no M intermediate<br />

could be detected kinetically at acidic pH, but recently low temperature visible spectroscopy<br />

shows a band typical for <strong>the</strong> M state at pH 4. 2,3,4 We were able to characterize <strong>the</strong> main photocycle<br />

intermediates with a combined low-temperature infrared and visible spectroscopy approach.<br />

These <strong>the</strong>rmodynamically c<strong>on</strong>trolled c<strong>on</strong>diti<strong>on</strong>s allowed us to identify an M intermediate not <strong>on</strong>ly<br />

at pH 9.0 but also at pH 5.1. At both c<strong>on</strong>diti<strong>on</strong>stransport is enabled by <strong>the</strong> presence <strong>of</strong> a prot<strong>on</strong><br />

acceptor and c<strong>on</strong>comitant changes in <strong>the</strong> protein structure. A tentative band assignment places<br />

Glu-108 as prot<strong>on</strong> acceptor at low pH in c<strong>on</strong>trast to its role as prot<strong>on</strong> d<strong>on</strong>or at pH 9.0. A<br />

bidirecti<strong>on</strong>al prot<strong>on</strong> pumping above and below <strong>the</strong> pKa value <strong>of</strong> Asp-97 is thus likely. In additi<strong>on</strong>,<br />

<strong>the</strong> photocycle properties are influenced by small pH changes in <strong>the</strong> order <strong>of</strong> 0.5 pH units. At<br />

pH 5.5 and pH 8.5 <strong>the</strong> difference spectra show distinctive differences c<strong>on</strong>nected to changes in <strong>the</strong><br />

prot<strong>on</strong>ati<strong>on</strong> state <strong>of</strong> key residues. We shed light <strong>on</strong> <strong>the</strong> complicated pH-dependence <strong>of</strong> <strong>the</strong> PR<br />

photocycle and were able to identify three distinct mechanisms c<strong>on</strong>nected to alkaline, neutral and<br />

acidic c<strong>on</strong>diti<strong>on</strong>s leading to a holistically understanding <strong>of</strong> prot<strong>on</strong> translocati<strong>on</strong> in PR.<br />

References<br />

[1] Béjà, O. et al., Science, 289, 1902-1906 (2000).<br />

[2] Friedrich, T. et al., J. Mol. Biol., 321, 821-838 (2002).<br />

[3] Dioumaev, A.K. et al., Biochemistry, 42, 6582-6587 (2003).<br />

[4] Lörinczi, É., Verhoefen, M.-K. submitted.<br />

30


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Time resolved EPR investigati<strong>on</strong> <strong>on</strong> oxygen and<br />

temperature effects <strong>on</strong> a syn<strong>the</strong>tic eumelanin<br />

F. CONTI 1 , L. PANZELLA 2 , A. NAPOLITANO 2 , M. D’ISCHIA 2 , AND A. TOFFOLETTI 1<br />

1. Dept. <strong>of</strong> Chemical Sciences, University <strong>of</strong> Padova, Via Marzolo 1,<br />

Padova, I-35131, Italy<br />

2. Dept. <strong>of</strong> Organic Chemistry and Biochemistry, University <strong>of</strong> Naples<br />

Federico II, Via Cintia 4, Naples, I-80126, Italy<br />

Eumelanins are <strong>the</strong> fundamental comp<strong>on</strong>ents <strong>of</strong> <strong>the</strong> mammalian pigmentary system. Their<br />

biological functi<strong>on</strong>s, in all <strong>the</strong> different localizati<strong>on</strong>, e.g. <strong>the</strong> skin or <strong>the</strong> retinal pigment epi<strong>the</strong>lium,<br />

are influenced by uncomm<strong>on</strong> physicochemical features [1]. Eumelanin properties include a<br />

permanent EPR signal due to a number <strong>of</strong> intrinsic quin<strong>on</strong>e/semiquin<strong>on</strong>e like radicals and a<br />

reversibly generated EPR signal under UV and visible irradiati<strong>on</strong>, that suggests <strong>the</strong> formati<strong>on</strong> <strong>of</strong><br />

additi<strong>on</strong>al extrinsic radicals. Recently, TR-EPR studies have dem<strong>on</strong>strated that in <strong>the</strong><br />

photoproducti<strong>on</strong> <strong>of</strong> new melanin free radicals, <strong>the</strong>y are generated as Radical Pairs from <strong>the</strong> triplet<br />

manifold [2]. Here, we compare photoreactivity <strong>of</strong> a syn<strong>the</strong>tic eumelanins as functi<strong>on</strong> <strong>of</strong> <strong>the</strong><br />

temperature in <strong>the</strong> range 290-140K. Moreover, we analyze <strong>the</strong> electr<strong>on</strong> spin polarizati<strong>on</strong> <strong>of</strong> <strong>the</strong> EPR<br />

signal in <strong>the</strong> presence and in <strong>the</strong> absence <strong>of</strong> oxygen. TR-EPR spectra <strong>of</strong> samples under vacuum<br />

exhibit <strong>on</strong>ly a net emissi<strong>on</strong> after <strong>the</strong> exciting laser pulse, while for sample in equilibrium with<br />

oxygen in <strong>the</strong> air an additi<strong>on</strong>al distinct pattern c<strong>on</strong>sisting <strong>of</strong> an enhanced absorpti<strong>on</strong> followed by<br />

emissi<strong>on</strong> is present at <strong>the</strong> earliest times (delay


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Olig<strong>on</strong>ucleotide-based chemical nucleases:<br />

opportunities and challenges in RNA targeting<br />

STEVEN M. MILES 1 , MENGISTEAB B. GEBREZGIABHER 1 , WALEED A. ZALLOUM 1 , DMITRII V.<br />

PYSHNYI 2 , NADEZHDA L. MIRONOVA 2 , MARINA A. ZENKOVA 2 , VALENTIN V. VLASSOV 2 AND ELENA<br />

V. BICHENKOVA 1<br />

1. School <strong>of</strong> Pharmacy, University <strong>of</strong> Manchester, Oxford Road,<br />

Manchester, M13 9PT, U.K.<br />

2. Institute <strong>of</strong> Chemical Biology and Fundamental Medicine SB RAS,<br />

Novosibirsk, Russia<br />

The development <strong>of</strong> novel biomimetic supramolecular catalysts based <strong>on</strong> natural rib<strong>on</strong>ucleases<br />

and capable <strong>of</strong> cleaving RNA targets presents an opportunity for new biological tools, or even<br />

<strong>the</strong>rapeutics, affecting specific messenger RNAs and viral genomic RNAs. Our recent work <strong>on</strong><br />

Peptidyl olig<strong>on</strong>ucleotide-based Chemical Nucleases (PCN) 1-4 revealed a new type <strong>of</strong> chemical<br />

nuclease with unusual catalytic and structural properties. These novel deoxyolig<strong>on</strong>ucleotide-based<br />

chemical nucleases were c<strong>on</strong>structed by chemical c<strong>on</strong>jugati<strong>on</strong> <strong>of</strong> short catalytically inactive<br />

oligopeptides (c<strong>on</strong>taining alternating basic and hydrophobic amino acids) with<br />

deoxyolig<strong>on</strong>ucleotide comp<strong>on</strong>ents, which are poorly or n<strong>on</strong>-complementary to <strong>the</strong> RNA target<br />

regi<strong>on</strong>. After c<strong>on</strong>jugati<strong>on</strong>, <strong>the</strong> olig<strong>on</strong>ucleotide comp<strong>on</strong>ent seemed to induce an active c<strong>on</strong>formati<strong>on</strong><br />

for <strong>the</strong> peptide and hence significantly enhanced its catalytic performance. However, nei<strong>the</strong>r<br />

structural aspects <strong>of</strong> <strong>the</strong> active c<strong>on</strong>formati<strong>on</strong>(s) nor <strong>the</strong> fine mechanisms <strong>of</strong> cross-modulated<br />

c<strong>on</strong>formati<strong>on</strong>al re-arrangement and subsequent cleavage were studied. It is our current aim to<br />

discover structure-activity relati<strong>on</strong>ships for <strong>the</strong> PCN systems using 1D and 2D NMR spectroscopic<br />

techniques ( 1H, 31P, COSY, NOESY) to inform <strong>the</strong> design <strong>of</strong> catalysts with enhanced properties.<br />

Here we report our first results <strong>on</strong> structural aspects <strong>of</strong> selected PCN systems using NMR<br />

spectroscopy in combinati<strong>on</strong> with computati<strong>on</strong>al studies.<br />

References<br />

[1] D. Pyshnyi et al. Nucleosides & Nucleotides, 16, 1571–1574 (1997).<br />

[2] N. Mir<strong>on</strong>ova et al. Nucl. Acids Res. 32, 1928-1936 (2004).<br />

[3] N. Mir<strong>on</strong>ova et al. J. Biomol. Struct. Dyn., 23, 591-602 (2006).<br />

[4] N. Mir<strong>on</strong>ova et al. Nucl. Acids Res. 35, 2356-2367 (2007).<br />

32


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Molecular stress in biological membranes measured by<br />

solid-state NMR spectroscopy<br />

H. I. PETRACHE<br />

Department <strong>of</strong> Physics, Indiana University Purdue University<br />

Indianapolis, Indianapolis, IN 46202, USA<br />

The interfacial regi<strong>on</strong> between biological membranes and <strong>the</strong> aqueous space differs markedly from<br />

isotropic soluti<strong>on</strong>s [1]. Water molecules as well as interfacial solutes, although highly mobile and<br />

in permanent exchange with <strong>the</strong> bath, are dynamically restricted (ordered) <strong>on</strong> membrane surfaces<br />

[2]. In additi<strong>on</strong>, <strong>the</strong> interacti<strong>on</strong>s within biological membranes which govern <strong>the</strong> functi<strong>on</strong> <strong>of</strong> i<strong>on</strong><br />

channels and membrane receptors are also highly anisotropic. How to measure and describe <strong>the</strong>se<br />

interacti<strong>on</strong>s that govern <strong>the</strong> functi<strong>on</strong> <strong>of</strong> biological membranes? Solid state NMR methods are well<br />

suited to provide experimental observables to address such questi<strong>on</strong>s. In particular, 2H and 31P<br />

NMR provides valuable informati<strong>on</strong> <strong>on</strong> <strong>the</strong> molecular dynamics at <strong>the</strong> membrane-water interface<br />

[2], while 2H NMR <strong>of</strong> deuterated lipid probes provide informati<strong>on</strong> <strong>on</strong> <strong>the</strong> molecular interacti<strong>on</strong>s<br />

within membranes [3]. We report and analyze experimental data to provide a descripti<strong>on</strong> <strong>of</strong><br />

molecular interacti<strong>on</strong>s in terms <strong>of</strong> a mean-torque pr<strong>of</strong>ile obtained from solid-state 2H NMR. Two<br />

aspects will be addressed: <strong>the</strong> role <strong>of</strong> charged lipid headgroups <strong>on</strong> interfacial interacti<strong>on</strong>s and <strong>the</strong><br />

role <strong>of</strong> polyunsaturated lipid chains <strong>on</strong> <strong>the</strong> membrane forces. We show that lateral compressi<strong>on</strong><br />

energies generated by such molecular substituti<strong>on</strong>s are sufficiently large to provide a<br />

<strong>the</strong>rmodynamic driving force for protein c<strong>on</strong>formati<strong>on</strong>al changes. This approach provides a<br />

predictive framework for relating lipid compositi<strong>on</strong> to membrane functi<strong>on</strong>.<br />

References<br />

[1] H. I. Petrache et al., PNAS 103, 7982 (2006)<br />

[2] H. I. Petrache et al., Biophys. J. 86, 1574 (2004)<br />

[3] K. Rajamoorthi et al., J. Am. Chem. Soc. 127, 1576 (2005)<br />

33


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Self-assembled i<strong>on</strong> channels<br />

probed by nitroxide spin labels and PELDOR spectroscopy<br />

A. D. Milov 1 , R. I. Samoilova 1 , Y. D. Tsvetkov 1 , F. Formaggio 2 ,<br />

C. T<strong>on</strong>iolo 2 , J.-W. Handgraaf 3 and J. Raap 4<br />

1. Institute <strong>of</strong> Chemical Kinetics and Combusti<strong>on</strong>, Novosibirsk, 630090 Russian Federati<strong>on</strong><br />

2. Institute <strong>of</strong> Biomolecular Chemistry, CNR, Department <strong>of</strong> Chemistry, University <strong>of</strong> Padova,<br />

35131 Padova, Italy<br />

3. Culgi B.V., P.O. Box 557, 2300 AN Leiden, The Ne<strong>the</strong>rlands<br />

4. Leiden Institute <strong>of</strong> Chemistry, Gorlaeus Laboratories, Leiden University,<br />

2300 RA Leiden, The Ne<strong>the</strong>rlands<br />

Alamethicin is a membrane active peptide antibiotic which c<strong>on</strong>tains 19 amino acid residues and a<br />

phenylalaninol residue at <strong>the</strong> C-terminus. Interest in this molecule is provoked by its ability to change<br />

<strong>the</strong> permeability <strong>of</strong> biological membranes by forming voltage-gated c<strong>on</strong>ductive channels. In c<strong>on</strong>trast to<br />

protein channels, peptide induced channels are generally believed to be formed by self-associati<strong>on</strong> <strong>of</strong> a<br />

number <strong>of</strong> amphipathic helical molecules. The mechanism <strong>of</strong> opening and closing <strong>the</strong> channel might be<br />

triggered by this self-assembling process. From <strong>the</strong> c<strong>on</strong>centrati<strong>on</strong> dependences <strong>of</strong> <strong>the</strong> c<strong>on</strong>ductances it is<br />

known that 2-11 alamethicin molecules might be involved in <strong>the</strong> transport <strong>of</strong> small metal cati<strong>on</strong>s<br />

through <strong>the</strong> membrane barrier. Pulsed electr<strong>on</strong>-electr<strong>on</strong> double res<strong>on</strong>ance (PELDOR) was used to<br />

study <strong>the</strong> structure <strong>of</strong> aggregates <strong>of</strong> m<strong>on</strong>o spin labelled alamethicin molecules in <strong>the</strong> membranes <strong>of</strong><br />

large multilamellar phosphocholine vesicles, which were<br />

frozen to 77K. This method, combined with <strong>the</strong> applicati<strong>on</strong><br />

<strong>of</strong> nitroxide spin labels which are rigidly c<strong>on</strong>nected to well<br />

defined positi<strong>on</strong>s <strong>of</strong> <strong>the</strong> peptide backb<strong>on</strong>e allowed us to<br />

determine <strong>the</strong> aggregate number and distances between<br />

spin labels in <strong>the</strong> range <strong>of</strong> 1.5-8 nm as well. In <strong>the</strong><br />

presentati<strong>on</strong> <strong>the</strong> quaternary structure <strong>of</strong> <strong>the</strong><br />

supramolecular cluster <strong>of</strong> molecules will be presented in<br />

terms <strong>of</strong> a penknife structural model.<br />

Fig.1 Energy minimized model <strong>of</strong> <strong>the</strong> supramolecular<br />

alamethicin tetramer wherein <strong>the</strong> spatial positi<strong>on</strong>s <strong>of</strong> <strong>the</strong><br />

spin labels are indicated by balls, (A) A side view <strong>of</strong> <strong>the</strong><br />

tube model shows <strong>the</strong> arrangement <strong>of</strong> four parallelly<br />

aligned α-helical peptide chains. The maximum diameter <strong>of</strong> <strong>the</strong> peptide complex (3.2 nm) appears<br />

roughly matching <strong>the</strong> hydrophobic thickness <strong>of</strong> <strong>the</strong> membrane double layer (3.5 nm). The electric<br />

dipole-dipole interacti<strong>on</strong>s between <strong>the</strong> polar side chains (inset) are believed to stabilize <strong>the</strong> C-terminal<br />

ends <strong>of</strong> <strong>the</strong> peptide chains. (B) Top down view <strong>of</strong> <strong>the</strong> peptide backb<strong>on</strong>e orientati<strong>on</strong>s. (C) A semitransparent<br />

surface model <strong>of</strong> a thin slice (thickness <strong>of</strong> about half <strong>of</strong> a helix-turn) showing <strong>the</strong> entry <strong>of</strong><br />

<strong>on</strong>e or more channels within <strong>the</strong> tetramer.<br />

Reference A. D. Milov, R. I. Samoilava, Yu. D. Tsvetkov, F. Formaggio, C. T<strong>on</strong>iolo and J. Raap, J. Am.<br />

Chem. Soc. 129, 9260-9261 (2007)<br />

34


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

ORAL PRESENTATIONS<br />

AUGUST 30 th Sunday<br />

35


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

36


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Tracking structural changes in soluti<strong>on</strong> with 100 ps<br />

time-resolved X-ray scattering<br />

MARCO CAMMARATA<br />

ESRF, Grenoble, France<br />

Reacti<strong>on</strong>s are at <strong>the</strong> core <strong>of</strong> life and chemistry. The fast time scales usually involved have<br />

prevented direct structural studies up to very recently. In <strong>the</strong> last years <strong>the</strong> intrinsicly pulsed<br />

nature <strong>of</strong> synchrotr<strong>on</strong> sources has been used to allow laser pump / x-ray probe studies with a time<br />

resoluti<strong>on</strong> <strong>of</strong> 100ps.<br />

Examples coming from chemistry and biophysics will be discussed toge<strong>the</strong>r with <strong>the</strong> key<br />

ingredients <strong>of</strong> <strong>the</strong> experimental technique.<br />

X-ray free electr<strong>on</strong> lasers will allow to push <strong>the</strong> time resoluti<strong>on</strong> even fur<strong>the</strong>r but wavelength and<br />

positi<strong>on</strong> stability, toge<strong>the</strong>r with o<strong>the</strong>r beam characteristics, will be crucial for <strong>the</strong> success <strong>of</strong> such<br />

experiments.<br />

References<br />

[1] Cammarata, M. et al., Nature Methods, 5, 881 (2008)<br />

[2] Ihee, H. et al., Science, 309, 1223 (2005)<br />

[3] Cammarata, M et al., Rev. Sci. Instrum. 80: 015101 (<strong>2009</strong>)<br />

37


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Proteins in acti<strong>on</strong> m<strong>on</strong>itored by time-resolved FTIR spectroscopy<br />

KLAUS GERWERT<br />

Ruhr-Universität Bochum, Lehrstuhl für Biophysik, Bochum<br />

In <strong>the</strong> Postgenom era <strong>on</strong>e <strong>of</strong> <strong>the</strong> remaining major challenges is <strong>the</strong> detailed understanding <strong>of</strong> protein networks within <strong>the</strong><br />

living cell. Currently, <strong>the</strong>re is a large gap between <strong>the</strong> detailed understanding <strong>of</strong> proteins in vitro and <strong>the</strong>ir descripti<strong>on</strong> in<br />

interacti<strong>on</strong> pathway maps in systems biology. In order to c<strong>on</strong>tribute to a more detailed understanding <strong>of</strong> protein<br />

interacti<strong>on</strong>s a combined approach <strong>of</strong> x-ray structure analysis, time-resolved FTIR spectroscopy, Molecular Dynamic and<br />

QM/MM biomolecular simulati<strong>on</strong>s is used. Time-resolved FTIR difference spectroscopy can be used to m<strong>on</strong>itor <strong>the</strong><br />

reacti<strong>on</strong>s within proteins at atomic resoluti<strong>on</strong> with ns time-resoluti<strong>on</strong> up to days [1]. This provides in combinati<strong>on</strong> with<br />

structural models in additi<strong>on</strong> spatial resoluti<strong>on</strong>. Complementary, by QM/MM simulati<strong>on</strong>s <strong>the</strong>oretical IR spectra can be<br />

obtained. More quantitative informati<strong>on</strong> is <strong>the</strong>reby deduced from <strong>the</strong> IR spectra. Based <strong>on</strong> fast scan studies <strong>on</strong><br />

bacteriorhodopsin <strong>the</strong> key catalytic residues, asp 85 and asp 96 and <strong>the</strong>ir prot<strong>on</strong>ati<strong>on</strong> kinetics are identified and<br />

summarized in a first detailed prot<strong>on</strong> pump model [2]. Based <strong>on</strong> succeeding step scan FTIR measurements <strong>the</strong> interplay<br />

between protein bound water molecules, a str<strong>on</strong>gly hydrogen b<strong>on</strong>ded water, a dangling water and a prot<strong>on</strong>ated water<br />

complex is elucidated in detail. It results in a c<strong>on</strong>trolled Grotthus prot<strong>on</strong> transfer from <strong>the</strong> central prot<strong>on</strong> binding site to<br />

<strong>the</strong> protein surface [3]. A similar mechanism might apply in <strong>the</strong> photosyn<strong>the</strong>tic reacti<strong>on</strong> center [4]. Using caged GTP <strong>the</strong><br />

GTPase mechanism <strong>of</strong> <strong>the</strong> proto<strong>on</strong>cogen Ras is investigated [5]. The ras protein switches external signals to <strong>the</strong> nucleus.<br />

It is down regulated by a protein-protein interacti<strong>on</strong> with <strong>the</strong> GAP protein which catalyses <strong>the</strong> GTP hydrolysis by five<br />

orders <strong>of</strong> magnitude. Oncogenic mutati<strong>on</strong>s in Ras prevent this catalysis, which results in unc<strong>on</strong>trolled cell growth. The<br />

Ras-GAP protein interacti<strong>on</strong> is be studied time-resolved [6,7]. This provides a detailed <strong>the</strong>rmodynamic characterisati<strong>on</strong><br />

<strong>of</strong> <strong>the</strong> catalytic mechanism. It is shown that <strong>the</strong> movement <strong>of</strong> a catalytic GAP-“arg-finger” into <strong>the</strong> GTP binding site,<br />

pushes water molecules out <strong>of</strong> <strong>the</strong> binding pocket. Thereby <strong>the</strong> activati<strong>on</strong> entropy is increased and <strong>the</strong> hydrolysis is<br />

catalysed [8,9]. The studies proves that <strong>the</strong> trFTIR approach can be applied to protein-protein interacti<strong>on</strong>s. Beside<br />

reacti<strong>on</strong> within <strong>the</strong> active site <strong>of</strong> a protein, also <strong>the</strong> surface change <strong>of</strong> a protein, which c<strong>on</strong>trols <strong>the</strong> protein-protein<br />

interacti<strong>on</strong>s is m<strong>on</strong>itored [10]. In order to investigate <strong>the</strong> protein interacti<strong>on</strong>s closer to physiological c<strong>on</strong>diti<strong>on</strong>s <strong>the</strong> ATR<br />

(attenuated total reflecti<strong>on</strong>) technique is applied. Using this approach for <strong>the</strong> first time <strong>the</strong> folding <strong>of</strong> <strong>the</strong> pri<strong>on</strong> protein<br />

bound to a rafts lipid bylayer is studied [11].<br />

References<br />

(1) Kötting, C., Gerwert, K., Chem Phys. Chem 6, 881-888 (2005)<br />

(2) Gerwert, K., Hess, B., Soppa, J., Oesterhelt, D., Proc. Natl. Acad. Sci USA 86, 4943-4947 (1989)<br />

(3) Garczarek, F., Gerwert, K. Nature 439, 109-112 (2006)<br />

(4) Remy, A., Gerwert, K., Nature Struct. Biol. 10, 637-644 (2003)<br />

(5) Cepus,V., Goody, R.S., Gerwert, K., Biochemistry 1998, 37, 10263-10271, (1998)<br />

(6) Allin, C., Ahmadian, M. R., Wittingh<strong>of</strong>er, A., Gerwert, K., Proc. Natl. Acad. Sci., USA 98, 7754 (2001)<br />

(7) Kötting, C., Blessenohl, M., Suveyzdis, Y., Goody, R.S., Wittingh<strong>of</strong>er, A., Gerwert, K. Proc. Natl. Acad. Sci. USA<br />

103, 13911-13916 (2006)<br />

(8) te Heesen, H; Gerwert, K.; Schlitter, J., Febs Letters, 581, 5677-5684 (2007)<br />

(9) Kötting, C., Kallenbach A., Suveyzdis, Y., Wittingh<strong>of</strong>er, A. Gerwert, K., Proc. Natl. Sci., 105, 17, 6260-6265 (2008)<br />

(10) Kötting, C., Kallenbach, A., Suveyzdis, Y., Eichholz, C., Gerwert, K., ChemBioChem, 8, 781-787 (2007)<br />

(11) Elfrink, K., Ollesch, J., Stöhr, C., Willbold, D., Riesner, D., Gerwert, K.., Proc. Natl. Acad. Sci, 105, 31, 10815-<br />

10819 (2008)<br />

38


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Dynamic crossovers and quantum effects<br />

in protein hydrati<strong>on</strong> water<br />

F. Bruni (1), S. E. Pagnotta (2)<br />

(1) Dipartimento di Fisica, Universit_a degli Studi di Roma Tre, Rome, Italy<br />

(2) Centro de Fisica de Materiales (CSIC-UPV/EHU) - Materials Physics Center MPC,<br />

D<strong>on</strong>ostia-San Sebastian, Spain<br />

Recent work has focused <strong>on</strong> dielectric relaxati<strong>on</strong> experiments <strong>on</strong> hydrated proteins, aimed<br />

at <strong>the</strong> study <strong>of</strong> water and protein dynamics [1- 4]. At variance with <strong>the</strong>se experiments, we<br />

will report <strong>on</strong> <strong>the</strong> dielectric relaxati<strong>on</strong> <strong>of</strong> water prot<strong>on</strong>s. In particular, we discuss <strong>the</strong><br />

temperature dependence <strong>of</strong> prot<strong>on</strong> dynamics al<strong>on</strong>g chains <strong>of</strong> hydrogen b<strong>on</strong>ded water<br />

molecules at <strong>the</strong> interface with a globular protein. The rati<strong>on</strong>ale behind this approach is<br />

that measurements <strong>of</strong> <strong>the</strong> prot<strong>on</strong> mobility are closely linked to <strong>the</strong> dynamics and<br />

c<strong>on</strong>nectivity <strong>of</strong> <strong>the</strong> water molecules in <strong>the</strong> protein hydrati<strong>on</strong> shell.<br />

Quantum effects <strong>on</strong> <strong>the</strong> water prot<strong>on</strong> dynamics over <strong>the</strong> surface <strong>of</strong> a hydrated protein are<br />

measured by means <strong>of</strong> broadband dielectric spectroscopy and deep inelastic neutr<strong>on</strong><br />

scattering [5]<br />

[1] S. Pawlus, S. Khodadadi, and A. P. Sokolov, Phys. Rev. Lett. 100, 108103 (2008).<br />

[2] S. Khodadadi, S. Pawlus, J. H. Roh, V. Garcia-Sakai, E. Mam<strong>on</strong>tov, and A. P. Sokolov, J. Chem. Phys. 128,<br />

195106 (2008).<br />

[3] S. Khodadadi, S. Pawlus, and A. P. Sokolov, J. Phys. Chem. B. 112, 14273 (2008).<br />

[4] H. Frauenfelder, G. Chen, J. Berendzen, P. W. Fenimore, H. Janss<strong>on</strong>b, B. H. McMah<strong>on</strong>, I. R. Stroe, J.<br />

Swens<strong>on</strong> and Robert D. Young, Proc. Nat. Acad. Sci. 106, 5129 (<strong>2009</strong>).<br />

[5] S. E. Pagnotta, F. Bruni. R. Senesi, and A. Pietropaolo, Biophys. J. 96, 1939 (<strong>2009</strong>)<br />

39


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Folding dynamics <strong>of</strong> peptides studied by temperaturejump<br />

infrared-spectroscopy<br />

C. KREJTSCHI 1 , O. RIDDERBUSCH 1 , R. HUANG 2 , L. WU 2 , T. A. KEIDERLING 2 , K. HAUSER 1<br />

1. Institut für Biophysik, Universität Frankfurt, Max-v<strong>on</strong>-Laue-Str. 1,<br />

60438 Frankfurt, Germany<br />

2. Department <strong>of</strong> Chemistry, University <strong>of</strong> Illinois at Chicago, 845 W.<br />

Taylor St. Chicago, Illinois 60607- 7061, USA<br />

Peptides with well-defined sec<strong>on</strong>dary structure are ideal model systems to study protein folding<br />

mechanisms. Infrared techniques provide both <strong>the</strong> necessary time resoluti<strong>on</strong> as well as <strong>the</strong><br />

structural sensitivity. The amide I’ regi<strong>on</strong>, mainly c<strong>on</strong>sisting <strong>of</strong> <strong>the</strong> coupled C=O stretching<br />

vibrati<strong>on</strong>s <strong>of</strong> <strong>the</strong> polypeptide backb<strong>on</strong>e, is a sensitive marker for sec<strong>on</strong>dary structure and<br />

structural changes. We initiate rapid heating by laser-excited ns temperature jumps (~10°C) and<br />

study fast ns-to-µs relaxati<strong>on</strong> dynamics [1]. The dynamics <strong>of</strong> <strong>the</strong> alpha-helix to random coil<br />

transiti<strong>on</strong> <strong>of</strong> polyglutamic acid was analyzed under reversible folding/refolding pH-c<strong>on</strong>diti<strong>on</strong>s.<br />

The observed relaxati<strong>on</strong> kinetics allowed separati<strong>on</strong> <strong>of</strong> <strong>the</strong> folding and unfolding process with<br />

additi<strong>on</strong>al use <strong>of</strong> FTIR measurements in <strong>the</strong>rmal equilibrium. Site-specific dynamics have been<br />

m<strong>on</strong>itored for a set <strong>of</strong> isotopically labeled beta-hairpin peptides, variants <strong>of</strong> a 12-mer tryptophan<br />

zipper whose c<strong>on</strong>formati<strong>on</strong> is stabilized by a hydrophobic core formed from <strong>the</strong> interacti<strong>on</strong> <strong>of</strong> four<br />

tryptophan residues. Various single and cross-strand coupled 13C=O labeled variants have been<br />

analyzed by probing <strong>the</strong> relaxati<strong>on</strong> kinetics via separate partially resolved 13C=O amide I’ bands.<br />

Differences in <strong>the</strong> kinetic behavior have been found for <strong>the</strong> loss <strong>of</strong> beta-strand and <strong>the</strong> gain <strong>of</strong><br />

disordered structure. The isotope-edited kinetics show variati<strong>on</strong>s in local structural stability <strong>of</strong> <strong>the</strong><br />

hairpin backb<strong>on</strong>e. Our data support a multistate dynamic behavior that prevents clear<br />

determinati<strong>on</strong> <strong>of</strong> folding and unfolding time c<strong>on</strong>stants. N<strong>on</strong>e<strong>the</strong>less, <strong>the</strong> site-specific kinetics are<br />

c<strong>on</strong>sistent with a hydrophobic collapse hypo<strong>the</strong>sis for hairpin folding [2]. The c<strong>on</strong>tributi<strong>on</strong> <strong>of</strong> <strong>the</strong><br />

hydrophobic core to <strong>the</strong> hairpin stability has additi<strong>on</strong>ally been analyzed with mutants <strong>of</strong> this<br />

sequence whose tryptophan residues have been selectively substituted by valines.<br />

References<br />

[1] C. Krejtschi, R. Huang, T.A. Keiderling, K. Hauser, Vibr. Spec. 48, 1-7 (2008)<br />

[2] K. Hauser, C. Krejtschi, R. Huang, L. Wu, T.A. Keiderling, J. Am. Chem. Soc. 130, 2984-2992 (2008)<br />

40


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Photoemissi<strong>on</strong> and <strong>the</strong> shape <strong>of</strong> free amino acids<br />

V. FEYER 1 , O. PLEKAN 1 , R. RICHTER 1 , M. CORENO 2,3 , M. DE SIMONE 3 , K.C. PRINCE 1,3 ,<br />

W. ZHANG 4,5,6 , V. CARRAVETTA 6 ,<br />

1. Sincrotr<strong>on</strong>e Trieste, Basovizza (Trieste), I-34012, Italy.<br />

2. Istituto di Metodologie Inorganiche e dei Plasmi, M<strong>on</strong>telibretti (Rome), I-00016, Italy.<br />

3. Laboratorio Nazi<strong>on</strong>ale TASC, Basovizza (Trieste), I-34012, Italy.<br />

4. Department <strong>of</strong> Theoretical Chemistry, School <strong>of</strong> Biotechnology, Royal<br />

Institute <strong>of</strong> Technology, Stockholm, S-10691, Sweden.<br />

5. Hefei Nati<strong>on</strong>al Laboratory for Physical Science at <strong>the</strong> Microscale,<br />

University <strong>of</strong> Science and Technology, Hefei, Anhui 230026, P.R. China.<br />

6. Institute <strong>of</strong> Chemical Physical Processes, Pisa, I-56124, Italy.<br />

Low energy spectroscopies such as microwave and infrared techniques are comm<strong>on</strong>ly used as methods to<br />

determine <strong>the</strong> structure <strong>of</strong> free biomolecules, but high energy techniques like x-ray photoemissi<strong>on</strong><br />

spectroscopy (XPS) have not yet yielded much significant structural informati<strong>on</strong> about biomolecules in <strong>the</strong><br />

gas phase. Using XPS we have measured eight amino acids (Gly, Ala, Thr, Met, Pro, Trp, Phe and Tyr) at<br />

<strong>the</strong> C, N and O 1s edges. These amino acids all c<strong>on</strong>tain a single nitrogen atom in an amino group (NH2),<br />

except Trp which has an additi<strong>on</strong>al nitrogen atom in <strong>the</strong> indole ring. The N 1s core level spectra <strong>of</strong> Pro, Ala,<br />

Thr, Pro, Phe and Tyr show an additi<strong>on</strong>al shoulder or two peaks (Fig. 1a) [1-3] instead <strong>of</strong> <strong>the</strong> single peak<br />

expected from <strong>the</strong> stoichiometry. Gly and Met show single narrow N 1s peaks [3]. High quality calculati<strong>on</strong>s<br />

dem<strong>on</strong>strate that <strong>the</strong> peaks are due to different c<strong>on</strong>formers, OH•••N str<strong>on</strong>g hydrogen b<strong>on</strong>ds and NH2•••O=C<br />

weak hydrogen b<strong>on</strong>ds (Fig. 1b). We have also shown using XPS we can measure some populati<strong>on</strong>s <strong>of</strong><br />

c<strong>on</strong>formers at <strong>the</strong> measurement temperature experimentally, which is extremely difficult o<strong>the</strong>rwise. In<br />

additi<strong>on</strong> XPS has an advantage that <strong>the</strong> temperature <strong>of</strong> <strong>the</strong> sample is well known, and <strong>the</strong>refore some<br />

<strong>the</strong>rmodynamic parameters (entropy, enthalpy) can be determined [1, 3].<br />

Intensity (arb. units)<br />

References<br />

a)<br />

SUM<br />

PHE-1<br />

PHE-2<br />

PHE-3<br />

PHE-6<br />

407.0 406.0 405.0 404.0<br />

Binding energy, eV<br />

Fig. 1 a) N 1s photoemissi<strong>on</strong> spectra <strong>of</strong> phenylalanine, points: experimental data;<br />

thick solid lines: calculated spectra; thin solid lines: fits. b) Structures <strong>of</strong> <strong>the</strong> four<br />

lowest energy c<strong>on</strong>formers <strong>of</strong> phenylalanine [4].<br />

[1] O. Plekan, V. Feyer, R. Richter, M. Coreno, M. de Sim<strong>on</strong>e, K.C. Prince, V. Carravetta, Chem. Phys. Lett. 442, 429-433 (2007).<br />

[2] V. Feyer, O. Plekan, R. Richter, M. Coreno, K.C. Prince, V. Carravetta, J. Phys. Chem. A. 112, 7806-7815 (2008).<br />

[3] O. Plekan, V. Feyer, R. Richter, M. Coreno, M. de Sim<strong>on</strong>e, K.C. Prince, V. Carravetta, J. Phys. Chem. A, 111, 10998-11005 (2007).<br />

[4] W. Zhang, V. Carravetta, O. Plekan, V. Feyer, R. Richter, M. Coreno, K.C. Prince, J. Chem. Phys. submitted (<strong>2009</strong>).<br />

41


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

42


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

A new method to m<strong>on</strong>itor ligand binding to proteins,<br />

amide I band simulati<strong>on</strong>s and <strong>the</strong> infrared spectrum <strong>of</strong><br />

acetyl phosphate<br />

S. KUMAR, N. EREMINA, E.-L. KARJALAINEN, H. KUMAR, M. RUDBECK, A. BARTH<br />

Dept. <strong>of</strong> Biochemistry and Biophysics, Stockholm University, Arrhenius<br />

Laboratories, 10691 Stockholm, Sweden, barth@dbb.su.se<br />

Results from several projects will be presented: (i) Ligand binding to four different proteins was<br />

detected with infrared spectroscopy via an absorbance change <strong>of</strong> <strong>the</strong> OH stretching band <strong>of</strong> water.<br />

The effect is likely caused by a transfer <strong>of</strong> hydrati<strong>on</strong> water into bulk water. In principle, this<br />

method can be applied to any molecular associati<strong>on</strong> event and may <strong>the</strong>refore become an important<br />

new technology for drug development. (ii) The amide I band <strong>of</strong> beta sheet assemblies was<br />

calculated according to ref. [1]. The calculati<strong>on</strong>s reveal that <strong>the</strong> infrared spectrum is sensitive to <strong>the</strong><br />

assembly <strong>of</strong> two sheets into a beta sheet stack. When <strong>the</strong> distance between <strong>the</strong> two sheets is 7 Å, an<br />

upshift <strong>of</strong> up to 5 cm -1 is observed relative to two isolated sheets, which depends <strong>on</strong> <strong>the</strong> relative<br />

orientati<strong>on</strong> <strong>of</strong> <strong>the</strong> two sheets. This is relevant for <strong>the</strong> Alzheimer's peptide which forms a stacked<br />

beta sheet. Our calculati<strong>on</strong>s <strong>of</strong> <strong>the</strong> amide I band have been fur<strong>the</strong>r refined by including<br />

informati<strong>on</strong> from density functi<strong>on</strong>al <strong>the</strong>ory calculati<strong>on</strong>s [2] as well as <strong>the</strong> effects <strong>of</strong> hydrogen<br />

b<strong>on</strong>ding and test calculati<strong>on</strong>s will be presented. (iii) In our attempt to understand how Ca 2+<br />

pumping by <strong>the</strong> Ca 2+-ATPase is c<strong>on</strong>trolled by <strong>the</strong> envir<strong>on</strong>ment <strong>of</strong> <strong>the</strong> phosphoenzyme phosphate<br />

group, we have studied <strong>the</strong> vibrati<strong>on</strong>al spectrum and <strong>the</strong> b<strong>on</strong>d lengths <strong>of</strong> <strong>the</strong> model compound<br />

acetyl phosphate in simple envir<strong>on</strong>ments c<strong>on</strong>stituted by HF molecules. HF b<strong>on</strong>ding to <strong>the</strong><br />

bridging oxygen and to <strong>the</strong> phosphorus atom has <strong>the</strong> largest effects <strong>on</strong> <strong>the</strong> above properties in line<br />

with our experimental spectra [3] and with interacti<strong>on</strong>s observed in crystal structures.<br />

References<br />

[1] H. Torii, M. Tasumi, J. Chem. Phys. 96, 3379-3387 (1992).<br />

[2] J.-H. Choi, M. Cho, J. Chem. Phys.120, 4383-4392 (2004).<br />

[3] A. Barth, N. Bezlyepkina, J. Biol. Chem. 279, 51888-51896 (2004).<br />

43


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

The regulati<strong>on</strong> <strong>of</strong> <strong>the</strong> formati<strong>on</strong> <strong>of</strong> cytoskeletal protein<br />

complexes by actin-binding proteins<br />

T. KUPI, Z. UJFALUSI, SZ. BARKÓ, J. BELÁGYI, G. HILD AND M. NYITRAI<br />

Dept. <strong>of</strong> Biophysics, University <strong>of</strong> Pécs, Szigeti str. 12., Pécs, H-7624,<br />

Hungary<br />

In living cells various groups <strong>of</strong> proteins are associated to supramolecular actin filament<br />

structures. The nature <strong>of</strong> <strong>the</strong> actin-binding proteins forming complexes with actin depends <strong>on</strong> <strong>the</strong><br />

actin nucleati<strong>on</strong> factors which initiated <strong>the</strong> polymerisati<strong>on</strong> <strong>of</strong> <strong>the</strong> filaments. For example, actin<br />

structures associated with formins can bind tropomyosin and pr<strong>of</strong>ilin, while those polymerised by<br />

<strong>the</strong> nucleati<strong>on</strong> <strong>of</strong> <strong>the</strong> Arp2/3 complex bind c<strong>of</strong>ilin and myosin I. Although <strong>the</strong>se observati<strong>on</strong>s are<br />

known for a l<strong>on</strong>g time, <strong>the</strong> molecular mechanisms underlying <strong>the</strong> regulati<strong>on</strong> <strong>of</strong> <strong>the</strong> formati<strong>on</strong> <strong>of</strong><br />

<strong>the</strong>se protein complexes is still ambiguous. By using various biophysical methods we have shown<br />

recently that <strong>on</strong>e <strong>of</strong> <strong>the</strong> actin nucleati<strong>on</strong> factor families, <strong>the</strong> formins, can bind <strong>the</strong> actin filaments<br />

and change <strong>the</strong>ir c<strong>on</strong>formati<strong>on</strong>al state. The formin-bound filaments are more flexible than those<br />

formed in <strong>the</strong> absence <strong>of</strong> formins [1, 2, 3]. We have also shown that subsequent binding <strong>of</strong> o<strong>the</strong>r<br />

actin-binding proteins, such as tropomyosin [4] and myosin, can reverse <strong>the</strong>se changes. It appears<br />

that <strong>the</strong> reversal effect assumes that <strong>the</strong> actin-binding protein binds <strong>the</strong> filaments in a well-defined<br />

and specific binding site, and thus it is able to stabilise a certain c<strong>on</strong>formati<strong>on</strong> <strong>of</strong> <strong>the</strong> actin<br />

polymers. The altered c<strong>on</strong>formati<strong>on</strong>al state <strong>of</strong> <strong>the</strong> actin filaments observed after <strong>the</strong> binding <strong>of</strong><br />

<strong>the</strong>se proteins, especially <strong>the</strong> formins, provides a possible explanati<strong>on</strong> for <strong>the</strong> modified affinity <strong>of</strong><br />

<strong>the</strong> filaments for o<strong>the</strong>r-actin binding proteins. We assume that <strong>the</strong> affinities are modified<br />

differently by different nucleati<strong>on</strong> factors. As actin nucleati<strong>on</strong> factors are <strong>the</strong> first protein to<br />

interact with <strong>the</strong> filaments, <strong>the</strong> c<strong>on</strong>formati<strong>on</strong>al changes introduced to actin by <strong>the</strong>se actin<br />

nucleati<strong>on</strong> factors can serve as <strong>the</strong> molecular bases for <strong>the</strong> regulati<strong>on</strong> <strong>of</strong> <strong>the</strong> formati<strong>on</strong> <strong>of</strong> actin<br />

based intracellular protein complexes. Experiments are in progress to test and fur<strong>the</strong>r corroborate<br />

<strong>the</strong> existence <strong>of</strong> such regulatory mechanisms in living cells.l.<br />

References<br />

[1] B. Bugyi, G. Papp, G. Hild, D. Lırinczy, E.M. Nevalainen, P. Lappalainen, B. Somogyi and M. Nyitrai. J. Biol.<br />

Chem., 281(16), 10727-36 (2006).<br />

[2] G., Papp, B. Bugyi, Z. Ujfalusi, Sz. Barkó, G. Hild, B. Somogyi and M. Nyitrai. Biophys. J., 91(7), 2564-2572<br />

(2006).<br />

[3] T. Kupi, P. Gróf, M. Nyitrai and J. Belágyi. Biophys. J., 96(7), 2901-2911 (<strong>2009</strong>).<br />

[4] Z. Ujfalusi, A. Vig, G. Hild and M. Nyitrai. <strong>2009</strong>. Biophys. J., in press (<strong>2009</strong>).<br />

44


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Study <strong>of</strong> dynamic properties <strong>of</strong> rec<strong>on</strong>stituted myelin<br />

sheath.<br />

W. KNOLL 1 , F. NATALI 2 , J. PETERS 1 AND P. KURSULA 3<br />

1. University Joseph Fourier and Institut Laue-Langevin, Grenoble, FR-<br />

38000, France<br />

2. CNR-INFM, OGG, c/o Institut Laue-Langevin, Grenoble, FR-38000,<br />

France<br />

3. University <strong>of</strong> Oulu, Oulu, Finland<br />

Myelin is <strong>the</strong> lipid-rich, multilamellar membrane disc<strong>on</strong>tinuously wrapped around nerve ax<strong>on</strong>s,<br />

which increases <strong>the</strong> efficiency <strong>of</strong> saltatory impulse c<strong>on</strong>ducti<strong>on</strong> (up to 350 km/hr in a healthy<br />

pers<strong>on</strong>). The molecular comp<strong>on</strong>ents <strong>of</strong> <strong>the</strong> myelin sheath interact tightly with each o<strong>the</strong>r and<br />

molecules <strong>on</strong> <strong>the</strong> ax<strong>on</strong>al surface to drive myelinati<strong>on</strong>, to keep both myelin and <strong>the</strong> ax<strong>on</strong> intact, and<br />

to transduce signals from myelin to <strong>the</strong> ax<strong>on</strong> and vice versa. Myelin is destroyed by autoimmune<br />

processes in human demyelinating diseases, including multiple sclerosis (MS) in CNS and<br />

peripheral neuropathies (PN). Despite <strong>the</strong> presence <strong>of</strong> a well-defined set <strong>of</strong> myelin-specific<br />

proteins, little is known about <strong>the</strong> dynamics <strong>of</strong> <strong>the</strong>se proteins and <strong>the</strong>ir influence <strong>on</strong> myelin<br />

stability. We present here first neutr<strong>on</strong> scattering results <strong>on</strong> <strong>the</strong> dynamics <strong>of</strong> <strong>the</strong> myelin sheath and<br />

<strong>of</strong> <strong>the</strong> interacti<strong>on</strong> between its c<strong>on</strong>stituents. In particular, we will try to clarify <strong>the</strong> influence <strong>of</strong> <strong>the</strong><br />

myelin proteins <strong>on</strong> <strong>the</strong> myelin stability.<br />

45


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Disulfide chromophore and its optical activity<br />

L. BEDNÁROVÁ 1 , P. MALOŇ 1 , H. DLOUHÁ 1 , M. KUBÁŇOVÁ 2 AND V. BAUMRUK 2<br />

1. Institute <strong>of</strong> Organic Chemistry and Biochemistry, Flemingovo nám. 2,<br />

Prague 6, 166 10, Czech Republic<br />

2. Charles University in Prague, Faculty <strong>of</strong> Ma<strong>the</strong>matics and Physics,<br />

Institute <strong>of</strong> Physics, Ke Karlovu 5, Prague 2, 121 16, Czech Republic<br />

The use <strong>of</strong> various spectroscopic methods and <strong>the</strong>ir chiroptical variants, for <strong>the</strong><br />

determinati<strong>on</strong> <strong>of</strong> peptide/protein c<strong>on</strong>formati<strong>on</strong> is relatively well established [1, 2].<br />

Although <strong>the</strong> informati<strong>on</strong> is <strong>of</strong> ra<strong>the</strong>r low resoluti<strong>on</strong> it can be obtained for samples in<br />

soluti<strong>on</strong> and <strong>the</strong>refore has a distinct advantage over more informative methods like NMR<br />

or X-ray crystallography. Electr<strong>on</strong>ic circular dichroism (ECD) measured in <strong>the</strong> visible and<br />

near UV spectral regi<strong>on</strong> carries majority <strong>of</strong> structural informati<strong>on</strong> via <strong>the</strong> amide group.<br />

Detailed analyses <strong>of</strong> ECD give also additi<strong>on</strong>al structural data about o<strong>the</strong>r functi<strong>on</strong>al<br />

groups existing in peptide/protein molecules. These involve aromatic chromophores <strong>of</strong><br />

Phe, Tyr and Trp side chains, <strong>the</strong> not very well understood c<strong>on</strong>tributi<strong>on</strong> <strong>of</strong> <strong>the</strong> imidazole<br />

ring <strong>of</strong> histidine and a c<strong>on</strong>tributi<strong>on</strong> <strong>of</strong> cystine disulphide chromophore, which is<br />

sometimes detectable as <strong>the</strong> high wavelength tail <strong>of</strong> <strong>the</strong> CD spectrum. Disulphide group is<br />

<strong>the</strong> <strong>on</strong>ly chromophore in proteins and peptides, which by itself exhibits inherent chirality<br />

and <strong>the</strong>refore should give rise to substantial chiroptical manifestati<strong>on</strong> in electr<strong>on</strong>ic spectra<br />

(<strong>the</strong> n<strong>on</strong>-planar disulphide chromophore itself is <strong>of</strong> C2 symmetry). In practice, it is<br />

unfortunately not <strong>the</strong> case and especially <strong>the</strong> low energy CD bands <strong>of</strong> <strong>the</strong> disulphide<br />

group with <strong>the</strong> maximum at about 260 nm are low in intensity and ra<strong>the</strong>r broad. If we<br />

c<strong>on</strong>sider, in additi<strong>on</strong>, <strong>the</strong> possible overlap with CD bands <strong>of</strong> aromatic chromophores <strong>of</strong><br />

phenylalanine, tyrosine and tryptophan residues, it is not surprising that structure<br />

oriented applicati<strong>on</strong> <strong>of</strong> electr<strong>on</strong>ic CD spectroscopy to a disulphide chromophore is quite<br />

difficult. In this c<strong>on</strong>tributi<strong>on</strong> we scrutinize chiral disulphides by o<strong>the</strong>r variants <strong>of</strong><br />

chiroptical spectroscopy, namely vibrati<strong>on</strong>al optical activity measured in Raman<br />

scattering [3]. Raman spectroscopy is for this purpose ra<strong>the</strong>r promising already in its n<strong>on</strong><br />

chiral variant (it gives informati<strong>on</strong> <strong>on</strong> <strong>the</strong> C-S b<strong>on</strong>d c<strong>on</strong>formati<strong>on</strong>), but <strong>on</strong>e should<br />

underline that <strong>the</strong> obtained informati<strong>on</strong> is not complete. In that way no informati<strong>on</strong> about<br />

‘absolute c<strong>on</strong>formati<strong>on</strong>’ <strong>of</strong> <strong>the</strong> disulphide bridge can be acquired. According to <strong>the</strong>oretical<br />

calculati<strong>on</strong>s [4] Raman optical activity could provide this very specific informati<strong>on</strong> using<br />

<strong>the</strong> S-S (~500 cm -1 ) and C-S (~700 cm -1 ) stretching vibrati<strong>on</strong>s. The ECD, IR and Raman<br />

spectra, VCD and ROA spectra <strong>of</strong> model systems are presented with <strong>the</strong> aim to cast light<br />

<strong>on</strong> this unresolved problem. The spectra are compared with <strong>the</strong>oretical predicti<strong>on</strong>s.<br />

References<br />

[1] R. W. Woody, A. K. Dunker, in Circular Dichroism: C<strong>on</strong>formati<strong>on</strong>al Analysis <strong>of</strong> Biopolymers, edited by G. D.<br />

Fasman, New York, Plenum Press, 109 (1996).<br />

[2] Spectroscopic Methods for Determining Protein Structure in Soluti<strong>on</strong>, edited by H. A. Havel, VCH Publishers, New<br />

York (1996).<br />

[3] J. Kapitán, V. Baumruk, H. Hulačová, P. Maloň, Vib. Spectrosc. 42, 88-92 (2006).<br />

[4] L. Bednárová, P. Bouř, P. Maloň, Chirality (submitted).<br />

46


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Ultrafast Processes in Photosyn<strong>the</strong>sis<br />

RIENK VAN GRONDELLE<br />

Faculty <strong>of</strong> Science, VU University, De Boelelaan 1081, 1081 HV,<br />

Amsterdam, The Ne<strong>the</strong>rlands<br />

Photosyn<strong>the</strong>sis is <strong>the</strong> process by which plants, algae and photosyn<strong>the</strong>tic bacteria store <strong>the</strong> energy<br />

<strong>of</strong> <strong>the</strong> sun in chemical free energy. The photosyn<strong>the</strong>tic apparatus c<strong>on</strong>sists <strong>of</strong> a multitude <strong>of</strong><br />

membrane-associated pigment-proteins, that display a high degree <strong>of</strong> supramolecular organizati<strong>on</strong><br />

to optimally perform <strong>the</strong>ir functi<strong>on</strong>. Three ultrafast processes underlie <strong>the</strong> high efficiency <strong>of</strong><br />

natural photosyn<strong>the</strong>sis: (1) transfer <strong>of</strong> excitati<strong>on</strong> energy am<strong>on</strong>g <strong>the</strong> pigments <strong>of</strong> <strong>the</strong> lightharvesting<br />

antenna, (2) transmembrane charge separati<strong>on</strong> in <strong>the</strong> photosyn<strong>the</strong>tic reacti<strong>on</strong> center<br />

and (3) quenching <strong>of</strong> excitati<strong>on</strong> energy under high-light c<strong>on</strong>diti<strong>on</strong>s. In this talk I will illustrate how<br />

femtosec<strong>on</strong>d laser spectroscopy has c<strong>on</strong>tributed to <strong>the</strong> unraveling <strong>of</strong> <strong>the</strong> molecular basis <strong>of</strong> <strong>the</strong>se<br />

elementary events.<br />

47


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Steady State and Time-Resolved Fluorescence<br />

Measurements <strong>of</strong> <strong>the</strong> Green Fluorescent Variants T203V<br />

and T203V/S205V<br />

RINAT GEPSHTEIN 1 , DAN HUPPERT 1 , XIAOKUN SHU 2 AND S. JAMES REMINGTON 2<br />

1. Raym<strong>on</strong>d and Beverly Sackler Faculty <strong>of</strong> Exact Sciences, School <strong>of</strong><br />

Chemistry Tel-Aviv University, Tel-Aviv, Israel. Huppert@tulip.tau.ac.il<br />

2. Institute <strong>of</strong> Molecular Biology and Department <strong>of</strong> Physics, University<br />

<strong>of</strong> Oreg<strong>on</strong>, Eugene, OR 97403-1229<br />

Steady state emissi<strong>on</strong> and picosec<strong>on</strong>d time-correlated single phot<strong>on</strong> counting (TCSPC)<br />

measurements were used to study <strong>the</strong> excited state prot<strong>on</strong> transfer reacti<strong>on</strong> in <strong>the</strong> green<br />

fluorescent proteins T203V, T203V/S205V, S205T, S205G and S205A mutants in H2O and D2O. The<br />

mutati<strong>on</strong> T203V blocks a possible escape route <strong>of</strong> <strong>the</strong> transferred prot<strong>on</strong> from <strong>the</strong> barrel structure<br />

to <strong>the</strong> exterior. The dual mutati<strong>on</strong> T203V/S205V blocks both <strong>the</strong> main prot<strong>on</strong> pathway to <strong>the</strong><br />

prot<strong>on</strong> acceptor E222 and <strong>the</strong> escape route from <strong>the</strong> barrel thus disabling <strong>the</strong> excited state prot<strong>on</strong><br />

transfer and causing this mutant to emit <strong>on</strong>ly in <strong>the</strong> blue and lack <strong>the</strong> str<strong>on</strong>g green fluorescence <strong>of</strong><br />

<strong>the</strong> deprot<strong>on</strong>ated form. We found that at room temperature <strong>the</strong> prot<strong>on</strong> transfer rate <strong>of</strong> T203V is<br />

some what smaller than that <strong>of</strong> wt-GFP. We found that <strong>the</strong> kinetic isotope effect (KIE) <strong>of</strong> <strong>the</strong><br />

prot<strong>on</strong> transfer rate is about 5. We studied <strong>the</strong> temperature dependence <strong>of</strong> <strong>the</strong> ESPT process <strong>of</strong><br />

T203V in H2O (pH 9) in <strong>the</strong> temperature range <strong>of</strong> 88-320K. The prot<strong>on</strong> transfer rate c<strong>on</strong>stant<br />

exhibits a n<strong>on</strong> Arrhenius behavior. In D2O at sufficiently low temperatures, T


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

The influence <strong>of</strong> activator <strong>on</strong> c<strong>on</strong>formati<strong>on</strong>al changes in<br />

human platelet Integrin αIIbβ3<br />

A. MCNALLY 1 , R. STEFFAN 1 , C. DE CHAUMONT 2, N. MORAN 2, R.J. FORSTER 1 , T.E. KEYES 1<br />

1. School <strong>of</strong> Chemical Sciences, Nati<strong>on</strong>al Centre for Sensor Research,<br />

Dublin City University, Glasnevin, Dublin 9, Ireland.<br />

2. The Department <strong>of</strong> Clinical Pharmacology, Royal College <strong>of</strong> Surge<strong>on</strong>s<br />

in Ireland, Dublin 2, Ireland.<br />

Integrin αIIbβ3 is a heterodimeric receptor protein incorporated into <strong>the</strong> plasma membrane <strong>of</strong><br />

human platelets. It plays a key role in linking platelets to extracellular adhesi<strong>on</strong> molecules such as<br />

fibrinogen and <strong>the</strong> intracellular actin cytoskelet<strong>on</strong> and is crucial in haemostasis and thrombosis. It<br />

c<strong>on</strong>sists <strong>of</strong> two transmembrane subunits αIIb and β3 and <strong>the</strong> dimer possesses a large extracellular<br />

and short cytoplasmic tail domains which are n<strong>on</strong>–covalently linked. The integrin exists in at least<br />

two c<strong>on</strong>formati<strong>on</strong>al forms. In its native state, it assumes a resting c<strong>on</strong>figurati<strong>on</strong> characterized by a<br />

low binding affinity to its primary ligand fibrinogen. In intact platelets <strong>the</strong> ligand binding functi<strong>on</strong><br />

is activated by physiologic stimuli such as thrombin, collagen or ADP via an inside–out signaling<br />

mechanism, and integrin assumes an activated state with high affinity for fibrinogen binding.[1] A<br />

number <strong>of</strong> chemical activators are comm<strong>on</strong>ly employed in biophysical studies <strong>of</strong> purified αIIbβ3<br />

which are generally expected to mimic in vivo activati<strong>on</strong> <strong>of</strong> integrin, including DTT (dithioreitol),<br />

Mn(II) and EDTA. However, to our knowledge no comparative study has been made <strong>on</strong> <strong>the</strong><br />

structural c<strong>on</strong>sequences <strong>of</strong> activati<strong>on</strong> with <strong>the</strong>se reagents. In this c<strong>on</strong>tributi<strong>on</strong>, we describe a<br />

systematic study <strong>of</strong> <strong>the</strong> effects <strong>of</strong> <strong>the</strong>se reagents and a cyclic RGD heptapeptide antag<strong>on</strong>ist <strong>of</strong><br />

αIIbβ3, eptifibatide, <strong>on</strong> αIIbβ3 structure using Raman and circular dichroism spectroscopy and<br />

fluorescence lifetime studies. These studies are complimented by whole platelet studies using<br />

flow cytometry.[2] Our data suggest that <strong>the</strong>se comm<strong>on</strong>ly employed activators yield active-like<br />

integrin states but that each reagent induces significantly different c<strong>on</strong>formati<strong>on</strong>al change in <strong>the</strong><br />

integrin. Activati<strong>on</strong> also has a pr<strong>of</strong>ound impact <strong>on</strong> <strong>the</strong> disulfide b<strong>on</strong>ding in this cysteine rich<br />

protein. Raman spectroscopy reveals that in <strong>the</strong> native state, <strong>the</strong> disulfides show a high degree <strong>of</strong><br />

steric strain whereby a substantial fracti<strong>on</strong> <strong>of</strong> <strong>the</strong> CCSSCC rotamers existing in n<strong>on</strong>-equilibrium<br />

geometry.[3] Activati<strong>on</strong> reduces this strain, but <strong>the</strong> nature and extent <strong>of</strong> this change varies with<br />

activator.<br />

References<br />

[1] T. Xiao T, J. Takagi J-h. Wang, B.S. Coller T.A. Springer, Nature, (2004), 432, 59-67<br />

[2] G. M. Walsh, D. Leane, N. Moran, T.E. Keyes, R.J. Forster, D. Kenny, S O'Neill. Biochemistry, (2007) 46, 6429-36.<br />

[3] H.E. Van Wart, A. Lewis, HA. Scheraga, F.D and Saeva, PNAS, (1973) 70, 2619.<br />

49


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

50


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

ORAL PRESENTATIONS<br />

AUGUST 31 st M<strong>on</strong>day<br />

51


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

52


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Unfolded and (Self)-Aggregated States <strong>of</strong> Alanine<br />

Based Peptides<br />

R. SCHWEITZER-STENNER, A. HAGARMAN AND T. J. MEASEY<br />

Department <strong>of</strong> Chemistry, University <strong>of</strong> Palermo, 3141 Chestnut Street,<br />

Philadelphia, PA 19026, USA<br />

The unfolded state <strong>of</strong> peptides has attracted substantial interest owing to <strong>the</strong> growing awareness<br />

<strong>of</strong> <strong>the</strong> fact that it is structurally less random than expected [1]. Investigati<strong>on</strong>s have focused <strong>on</strong><br />

alanine, owing to its abundance in all types <strong>of</strong> proteins. MD simulati<strong>on</strong>s generally support <strong>the</strong><br />

statistical coil picture in that <strong>the</strong>y predict nearly equal populati<strong>on</strong>s <strong>of</strong> helical and n<strong>on</strong>-helical<br />

extended c<strong>on</strong>formati<strong>on</strong>s [2]. Experimental data are thus far somewhat inc<strong>on</strong>clusive. A substantial<br />

number <strong>of</strong> experiments clearly suggest that alanine prefers a polyproline II (PPII) like<br />

c<strong>on</strong>formati<strong>on</strong>s which cluster around φ=-70 o and ψ=150 o, but <strong>the</strong> reported propensity scales differ<br />

substantially [1]. We used <strong>the</strong> structural sensitivity <strong>of</strong> excit<strong>on</strong>ic coupling between amide I<br />

backb<strong>on</strong>e modes to explore <strong>the</strong> structural manifold <strong>of</strong> various polyalanines by analyzing this<br />

mode’s band pr<strong>of</strong>iles in <strong>the</strong> respective IR, isotropic Raman, anisotropic Raman and vibrati<strong>on</strong>al<br />

circular dichroism specta. Additi<strong>on</strong>ally, we utilized <strong>the</strong> 3JNHCαH c<strong>on</strong>stants obtained from 1H NMR<br />

as input. The analysis is based <strong>on</strong> distributi<strong>on</strong> models describing <strong>the</strong> sampling <strong>of</strong> <strong>the</strong><br />

Ramachandran space. We found that alanine has indeed a high propensity for PPII, exhibiting an<br />

intrinsic propensity <strong>of</strong> ca. 0.78 (<strong>on</strong> a scale from 0 to 1). This is dem<strong>on</strong>strated by <strong>the</strong> distributi<strong>on</strong><br />

functi<strong>on</strong> for alanine in GAG (Fig. 1). This propensity is slightly increased (0.85), if A is flanked by<br />

o<strong>the</strong>r alanines [3]. L<strong>on</strong>ger polyalanines are generally doped with i<strong>on</strong>ized residues to guarantee<br />

<strong>the</strong>ir solubility. These peptides have been used for studying helix↔coil transiti<strong>on</strong>s. While alanine<br />

maintains its high propensity for PPII, preliminary data suggest that <strong>the</strong> charged residues are more<br />

c<strong>on</strong>formati<strong>on</strong>al random thus giving rise to a somewhat more compact structure <strong>of</strong> unfolded<br />

polyalanines. To our surprise we found that not all doped polyalanines with more than 12 residues<br />

form a helix in aqueous soluti<strong>on</strong>. The 16-mer (AAKA)16 instantaneously self-aggregates into large<br />

scale β-sheets which subsequently decay into a disordered state with <strong>the</strong> usual high PPII c<strong>on</strong>tent.<br />

References<br />

Fig. 1 – C<strong>on</strong>formati<strong>on</strong>al distributi<strong>on</strong> <strong>of</strong> alanine in GAG.<br />

[1] Z. Shi, K. Shen, Z. Liu, N.R. Kallenbach, Chem. Rev. 106- (2007).<br />

[2] Y. Duan, C. Wu, S. Chowdury, M.C. Lee, G. Xi<strong>on</strong>g, W. Zhang, R. Yang, P. Cieplak, R. Luo, T. Lee, J. Caldwell, J.<br />

Wang, P. Kollman, J. Comp. Chem. 24, 1999-2012, 2002.<br />

[3] R. Schweitzer-Stenner, J. Phys. Chem. B. in press, published as a.s.a.p. article, (<strong>2009</strong>).<br />

53


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

A novel approach to multiscale measurements in<br />

biological materials: silk as a model system<br />

C. DICKO 1 , A. RODGER 2 , S. V. HOFFMANN 3 , F. VOLLRATH 1<br />

1. Dept. <strong>of</strong> Zoology, University <strong>of</strong> Oxford, OX1 3PS, Oxford, UK<br />

2. Dept. <strong>of</strong> Chemistry, University <strong>of</strong> Warwick, CV4 7AL, Coventry UK<br />

3. Institute for Storage Ring Facility (ISA), University <strong>of</strong> Aarhus, DK8000, Aarhus C, Denmark<br />

In a recent and first applicati<strong>on</strong> using Synchrotr<strong>on</strong> Radiati<strong>on</strong> Linear Dichroism (SRLD) we found<br />

that it was possible to characterize <strong>the</strong> UV spectra <strong>of</strong> a bundle <strong>of</strong> silk fibers. Fur<strong>the</strong>rmore, we were<br />

able to m<strong>on</strong>itor <strong>the</strong> effect <strong>of</strong> fibers extensi<strong>on</strong> using <strong>the</strong> LD spectra. A direct plot <strong>of</strong> <strong>the</strong> reduced LD r<br />

(LD normalized by <strong>the</strong> isotropic absorpti<strong>on</strong>) in figure 1 (left) shows how silk transiti<strong>on</strong> dipoles<br />

lined respectively to <strong>the</strong> fiber axis, and how <strong>the</strong>y behave under extensi<strong>on</strong>. Negative LD r<br />

corresp<strong>on</strong>ds to a molecular orientati<strong>on</strong> perpendicular to <strong>the</strong> fiber axis. From a simple<br />

interpretati<strong>on</strong> <strong>of</strong> <strong>the</strong> amide chromophores electr<strong>on</strong>ic transiti<strong>on</strong>s we could separate <strong>the</strong> spectra in<br />

figure 1 in regi<strong>on</strong>s corresp<strong>on</strong>ding to parts or domains <strong>of</strong> <strong>the</strong> silk protein. Direct plot <strong>of</strong> <strong>the</strong> LD r as a<br />

functi<strong>on</strong> <strong>of</strong> strain (data not shown) showed segmental mobility <strong>of</strong> <strong>the</strong> chains. If <strong>the</strong> silk were a<br />

uniform material <strong>on</strong>e would predict a linear dependence <strong>of</strong> <strong>the</strong> LD r with strain and identical slopes<br />

at all wavelengths. Instead, we observed sequential mobility that can be linked to silk remarkable<br />

mechanical properties. Testing fur<strong>the</strong>r <strong>the</strong> method we compared two silks <strong>of</strong> similar functi<strong>on</strong> but<br />

from closely related spiders (figure1-right) and found that <strong>the</strong>ir spectral signature and chains<br />

orientati<strong>on</strong> varied dramatically. In <strong>the</strong> presentati<strong>on</strong> we will explore <strong>the</strong> observed segmental<br />

mobility <strong>of</strong> silks in light <strong>of</strong> <strong>the</strong>ir measured mechanical properties and electr<strong>on</strong>ic/vibrati<strong>on</strong>al<br />

couplings. We will, finally, explore <strong>the</strong> role <strong>of</strong> SRLD and routine LD into resolving <strong>the</strong> structurefuncti<strong>on</strong><br />

relati<strong>on</strong>ship in biological materials.<br />

Fig. 1 – Reduced LD spectra <strong>of</strong> spider major ampullate silk as functi<strong>on</strong> <strong>of</strong> wavelength and tensile<br />

deformati<strong>on</strong>. Regi<strong>on</strong> (1) protein backb<strong>on</strong>e, (2) side chains, (3), (4) o<strong>the</strong>rs. Right panel, comparis<strong>on</strong> <strong>of</strong><br />

reduced LD signals <strong>of</strong> dragline silk from Nephila edulis and Argiope lobata spiders.<br />

54


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

UV-Vis and FT-IR spectra <strong>of</strong> ultraviolet irradiated collagen in <strong>the</strong><br />

presence <strong>of</strong> antioxidant ascorbic acid<br />

N. Metreveli 1 , K. Jariashvili 2 , L. Namicheishvili 2 , E. Chikvaidze 2 , Alina Si<strong>on</strong>kowska 3 , J.<br />

Skopinska 3<br />

1. Faculty <strong>of</strong> Physics and Ma<strong>the</strong>matics, Ilia. Chavchavadze State<br />

University, Chavchavadze Ave. 32, 0179 Tbilisi, Georgia<br />

2. Dept <strong>of</strong> Exact and Natural Sciences, Iv. Javakhishvili Tbilisi State<br />

University, Chavchavadze Ave. 3, 0128 Tbilisi, Georgia<br />

3. Faculty <strong>of</strong> Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-<br />

100 Torun, Poland<br />

The influence <strong>of</strong> deleterious UV irradiati<strong>on</strong> <strong>on</strong> collagen molecule in <strong>the</strong> absence and presence <strong>of</strong><br />

ascorbic acid using UV-Vis and FT-IR spectroscopy has been studied. Intensity <strong>of</strong> UV-Vis<br />

absorpti<strong>on</strong> spectrum <strong>of</strong> collagen with a maximum at 275 nm due to <strong>the</strong> aromatic residues (tyrosine<br />

and phenylalanine) increases with <strong>the</strong> increasing dose <strong>of</strong> UV irradiati<strong>on</strong>. This effect is significantly<br />

hindered in <strong>the</strong> presence <strong>of</strong> antioxidant ascorbic acid. Intensities <strong>of</strong> FT-IR bands (amide A, B, I and<br />

II) <strong>of</strong> collagen decrease with <strong>the</strong> increase <strong>of</strong> <strong>the</strong> UV irradiati<strong>on</strong> dosage. Intensities <strong>of</strong> bands are also<br />

decreased in <strong>the</strong> presence <strong>of</strong> ascorbic acid. Obtained results suggest that collagen photo-stability<br />

increases, increasing <strong>the</strong> c<strong>on</strong>centrati<strong>on</strong> <strong>of</strong> ascorbic acid and collagen becomes less sensitive toward<br />

<strong>the</strong> UV irradiati<strong>on</strong>. Formati<strong>on</strong> <strong>of</strong> hydrogen b<strong>on</strong>ds between <strong>the</strong> groups N-H <strong>of</strong> collagen and C=O <strong>of</strong><br />

ascorbic acid possibly takes place. Though more hypo<strong>the</strong>tical is that under UV irradiati<strong>on</strong> free<br />

radicals appearing in acid soluble collagen and evoking photo-degradati<strong>on</strong> <strong>of</strong> macromolecule<br />

restore due to <strong>the</strong> ability <strong>of</strong> ascorbic acid d<strong>on</strong>ating <strong>on</strong>e or two electr<strong>on</strong>s [1,2]. Increasing <strong>the</strong> dose <strong>of</strong><br />

irradiati<strong>on</strong> more molecules <strong>of</strong> ascorbic acid are delayed and antioxidant effect is diminished<br />

accordingly.<br />

References<br />

[1] N. Metreveli, L. Namicheishvili, K. Jariashvili, G. Mrevlishvili, A. Si<strong>on</strong>kowska, Internati<strong>on</strong>al Journal <strong>of</strong> Photoenergy,<br />

Article ID 76830, 1-4 (2006).<br />

[2] N. Metreveli, L. Namicheishvili, K. Jariashvili, M. Dgebuadze, E. Chikvaidze, A. Si<strong>on</strong>kowska, Journal <strong>of</strong><br />

Photochemistry and Photobiology B: biology, 93(2), 61-65 (2008).<br />

55


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Equilibrium spectroscopic studies <strong>of</strong> aromatic-aromatic<br />

interacti<strong>on</strong> and pH effect <strong>on</strong> trpzip β-hairpin stability<br />

Ling Wu 1 , Takahiro Takekiyo 2 , Dan McElheny 1 , Anjan Roy 1 , Timothy A. Keiderling 1<br />

1 Department <strong>of</strong> Chemistry, University <strong>of</strong> Illinois at Chicago,<br />

845 W. Taylor St., Chicago IL, 60607-7061 USA<br />

2 Nati<strong>on</strong>al Defense Academy, Hashirimizu Yokosuka, Kanagawa, Japan<br />

Aromatic side chains in proteins are <strong>of</strong>ten involved in pairs or larger networks, most <strong>of</strong> which<br />

form interacting networks <strong>of</strong> three or more aromatic side chains. Analysis <strong>of</strong> neighboring aromatic<br />

groups can lead to improved understanding <strong>of</strong> protein folding mechanisms and stability. We have<br />

used <strong>the</strong> β-hairpin forming peptide Trpzip2 [1] as a template to study <strong>the</strong> effect <strong>of</strong> aromaticaromatic<br />

interacti<strong>on</strong> <strong>on</strong> peptide stability. Optical spectra (ECD, FTIR) were measured and NMR<br />

structures determined for <strong>the</strong> original TZ2 peptide [2] and its Tyr and Val-substituted mutants to<br />

characterize <strong>the</strong>ir c<strong>on</strong>formati<strong>on</strong> and <strong>the</strong>rmal stability. The NMR structures showed <strong>the</strong> str<strong>on</strong>gly<br />

interacting Trp-Trp edge-to-face geometry to be maintained in hairpins with just two Trps placed<br />

in directly cross-strand positi<strong>on</strong>s. Diag<strong>on</strong>al Trp-Trp interacti<strong>on</strong>s did not result in a stable hairpin<br />

fold. The structures for <strong>the</strong> Tyr-Tyr interacti<strong>on</strong>s show a different geometry, but still yield relatively<br />

c<strong>on</strong>strained Tyr side chains. The <strong>the</strong>rmal unfolding processes for three Val mutants were studied<br />

under both neutral and acidic c<strong>on</strong>diti<strong>on</strong>s by IR and ECD. From analysis <strong>of</strong> <strong>the</strong> IR amide I’ band,<br />

which reflects peptide sec<strong>on</strong>dary structure, we see more random coil c<strong>on</strong>tent at acidic pH than<br />

those at neutral pH. The transiti<strong>on</strong> temperatures obtained using both IR and CD are lower at acidic<br />

pH than at neutral pH, which suggests that this peptide is less stable at acidic pH. Thermodynamic<br />

analyses <strong>of</strong> <strong>the</strong> temperature dependent CD and IR spectra obtained at neutral pH showed two<br />

transiti<strong>on</strong> temperatures, indicative <strong>of</strong> a complex folding pathway. At lower pH, <strong>the</strong>se become<br />

competitive, so that CD and IR analyses yield similar <strong>the</strong>rmodynamic parameters. Tyr-Tyr shows<br />

much weaker aromatic-aromatic interacti<strong>on</strong> than Trp-Trp, but that is str<strong>on</strong>ger than just<br />

hydrophobic interacti<strong>on</strong>s as determined by comparis<strong>on</strong> to Val substituting for Trp residues.<br />

Aromatic interacti<strong>on</strong> shows a str<strong>on</strong>ger effect in stabilizing this peptide. The CD spectra are not a<br />

simple sum <strong>of</strong> <strong>the</strong> CD for <strong>the</strong> cross-strand pairs <strong>of</strong> Trp, and we have shown by TD-DFT<br />

calculati<strong>on</strong>s that <strong>the</strong> diag<strong>on</strong>al interacti<strong>on</strong>s c<strong>on</strong>tribute to <strong>the</strong> CD if not much to <strong>the</strong> stability. Added<br />

studies <strong>of</strong> Trpzip1 based hairpins with Tyr substituti<strong>on</strong>s gave c<strong>on</strong>sistent results.[3]<br />

References<br />

[1] Cochran et al, Proc.Nat.Acad.Sci.(USA), 98, 5578-5583 (2001)<br />

[2] R<strong>on</strong>g Huang, Ling Wu, Dan McElheny, Petr Bour, Anjan Roy, Timothy A. Keiderling, J. Phys. Chem. B 113, 5661-5674 (<strong>2009</strong>)<br />

[3] Takahiro Takekiyo, Ling Wu, Yukihiro Yoshimura, Akio Shimizu, and Timothy A. Keiderling, Biochemistry 48, 1543-1552 (<strong>2009</strong>)<br />

56


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Denaturati<strong>on</strong> <strong>of</strong> proteins with beta-barrel topology<br />

induced by guanidine hydrochloride<br />

OLESYA V. STEPANENKO 1 , I. M. KUZNETSOVA 1 , V. V. VERKHUSHA 2 , M. STAIANO 3 , S. D’AURIA 3<br />

AND K. K. TUROVEROV 1<br />

1. Institute <strong>of</strong> Cytology <strong>of</strong> <strong>the</strong> Russian Academy <strong>of</strong> Sciences, Tikhoretsky<br />

av. 4, 194064, Saint-Petersburg, Russia<br />

2. Albert Einstein College <strong>of</strong> Medicine, 1300 Morris Park Avenue, 10461,<br />

New York, USA<br />

3. Institute <strong>of</strong> Protein Biochemistry CNR, Via Pietro Castellino 111,<br />

Naples, 80131, Italy<br />

The investigati<strong>on</strong> <strong>of</strong> protein folding is <strong>on</strong>e <strong>of</strong> <strong>the</strong> most actual and rapidly rising trends <strong>of</strong> molecular biology.<br />

Folding <strong>of</strong> proteins with high c<strong>on</strong>tent <strong>of</strong> β-structure and, especially, proteins with β-barrel topology is<br />

significantly less understood with respect to folding <strong>of</strong> α-helical proteins. This work is devoted to study <strong>of</strong><br />

denaturati<strong>on</strong> processes induced by guanidine hydrochloride (GdnHCl) <strong>of</strong> proteins possessing β-barrel<br />

structure: porcine odorant-binding protein (OBP) and a series <strong>of</strong> fluorescent proteins (FPs) and <strong>the</strong>ir mutants.<br />

A great interest to fluorescent proteins is caused by <strong>the</strong>ir wide use as optical reporters <strong>of</strong> numerous cell<br />

events. The odorant-binding proteins represent an excepti<strong>on</strong>al interest because <strong>of</strong> investigati<strong>on</strong> <strong>of</strong> olfacti<strong>on</strong><br />

mechanism and possibility to exploit <strong>the</strong>se proteins as sensing probe <strong>of</strong> biosensors to different substances,<br />

including dangerous. Our results have revealed that proteins with β-barrel topology have a higher structural<br />

stability with regard to globular α-helical proteins. At <strong>the</strong> same time, <strong>the</strong> rate <strong>of</strong> OBP denaturati<strong>on</strong> is higher<br />

in comparis<strong>on</strong> to FPs, which indicates that <strong>the</strong> value <strong>of</strong> energy barrier between native and unfolded state for<br />

FPs exceeds that for OBP essentially. It should be pointed out that denaturant additi<strong>on</strong> to <strong>the</strong> green<br />

fluorescent protein EGFP leads to <strong>the</strong> sharp increase <strong>of</strong> chromophore fluorescence intensity. Quasiequilibrium<br />

curves also have shown that <strong>the</strong> additi<strong>on</strong> <strong>of</strong> 0.1-0.2 M GdnHCl to EGFP results in approximately<br />

20% increase <strong>of</strong> “green” fluorescence intensity. It have been c<strong>on</strong>cluded that in <strong>the</strong> presence <strong>of</strong> small GdnHCl<br />

c<strong>on</strong>centrati<strong>on</strong>s <strong>the</strong> structure <strong>of</strong> EGFP becomes less strained. As a result, <strong>the</strong> chromophore being inaccessible<br />

to quenching acti<strong>on</strong> <strong>of</strong> water molecules gains more planar c<strong>on</strong>figurati<strong>on</strong>. This causes <strong>the</strong> increase <strong>of</strong> πelectr<strong>on</strong><br />

system c<strong>on</strong>jugati<strong>on</strong> and, in its turn, <strong>the</strong> increase <strong>of</strong> EGFP fluorescence quantum yield. In <strong>the</strong> case <strong>of</strong><br />

OBP, <strong>the</strong> pre-denaturating GdnHCl c<strong>on</strong>centrati<strong>on</strong>s lead to <strong>the</strong> increase <strong>of</strong> tryptophan fluorescence quantum<br />

yield and <strong>the</strong> decrease <strong>of</strong> fluorescence lifetime <strong>of</strong> <strong>the</strong> single tryptophan residue <strong>of</strong> OBP, Trp16. These effects<br />

are not accompanied by noticeable changes <strong>of</strong> protein structure which is manifested by invariance <strong>of</strong><br />

parameter A, fluorescence anisotropy, <strong>the</strong> c<strong>on</strong>tributi<strong>on</strong> <strong>of</strong> tyrosine residues to <strong>the</strong> bulk protein fluorescence,<br />

and far-UV CD spectra. The accessibility <strong>of</strong> Trp16 to <strong>the</strong> solvent remains unchanged and near-UV CD<br />

spectra become more pr<strong>on</strong>ounced. These effects have been explained by local changes in microenvir<strong>on</strong>ment<br />

<strong>of</strong> Trp16 which leads to <strong>the</strong> destructi<strong>on</strong> <strong>of</strong> Trp16 complex with <strong>the</strong> positively charged atom NZ <strong>of</strong> Lys 120,<br />

localized near Trp16 indole ring and to <strong>the</strong> formati<strong>on</strong> <strong>of</strong> exciplex between Trp16 and bound water molecules<br />

in its close vicinity. Thus <strong>the</strong> small GdnHCl c<strong>on</strong>centrati<strong>on</strong>s have been shown to induce local structural<br />

disturbances in proteins. Similar structural changes have been previously observed for a number <strong>of</strong> proteins:<br />

creatine kinase, actin, carb<strong>on</strong>ic anhydrase. This work was supported by NATO (CLG.983088), C<strong>on</strong>tract with<br />

FASI (02.512.11.2277) and Program "Leading Scientific School <strong>of</strong> Russia" (1961.2008.4).<br />

57


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Determinati<strong>on</strong> <strong>of</strong> c<strong>on</strong>formati<strong>on</strong>al changes during<br />

aggregati<strong>on</strong> <strong>of</strong> <strong>the</strong> amyloid-beta peptide by attenuated<br />

total reflecti<strong>on</strong>-Fourier Transform Infrared<br />

<strong>Spectroscopy</strong>.<br />

R. SARROUKH 1 , E. CERF 1 , A. ITKIN 1 , S. DERCLAYE 2 , Y. DUFRÊNE 2 , J.-M. RUYSSCHAERT 1 ,<br />

E.GOORMAGHTIGH 1 AND V. RAUSSENS 1<br />

1. Center for Structural Biology and Bioinformatics, Laboratory for<br />

Structure and Functi<strong>on</strong> <strong>of</strong> Biological Membranes, Faculté des Sciences,<br />

Université Libre de Bruxelles, CP 206/2, Blvd. duTriomphe, B-1050<br />

Brussels, Belgium.<br />

2. Unité de Chimie des Interfaces, Université Catholique de Louvain,<br />

Croix du Sud 2/18, B-1348 Louvain-la-Neuve, Belgium.<br />

Alzheimer’s disease is <strong>the</strong> most comm<strong>on</strong> form <strong>of</strong> dementia worldwide. One hallmark <strong>of</strong> this brain<br />

disorder is characterized by polymorphous extracellular deposits called "senile plaques". Amyloid-<br />

beta peptide (Aβ) is <strong>the</strong> primary comp<strong>on</strong>ent <strong>of</strong> <strong>the</strong>se plaques and plays an important, but not<br />

completely understood, role in <strong>the</strong> neurotoxicity. Two major forms <strong>of</strong> Aβ are produced by <strong>the</strong><br />

proteolytic cleavage <strong>of</strong> <strong>the</strong> amyloid precursor protein: 40 and 42 residue-l<strong>on</strong>g. The most abundant<br />

form is <strong>the</strong> 40 amino acids peptide. Aβ can form different entities: m<strong>on</strong>omeric, large soluble<br />

entities collectively called oligomers and insoluble fibrils. In <strong>the</strong> early stages <strong>of</strong> aggregati<strong>on</strong>, Aβ<br />

forms oligomers, which are now c<strong>on</strong>sidered to be <strong>the</strong> most toxic forms. C<strong>on</strong>tinued aggregati<strong>on</strong><br />

gives rise to fibrils formati<strong>on</strong>. The mechanisms leading to accumulati<strong>on</strong> <strong>of</strong> misfolded peptide and<br />

<strong>the</strong> fibrils formati<strong>on</strong> still remain a matter <strong>of</strong> debate. Studies report that Aβ becomes toxic for<br />

neur<strong>on</strong>s up<strong>on</strong> aggregati<strong>on</strong> [1]. We have previously shown, in our laboratory, that <strong>the</strong> oligomeric<br />

species and fibrils <strong>of</strong> Aβ42 display distinct spectral features by attenuated total reflecti<strong>on</strong>-Fourier<br />

transform infrared (ATR-FTIR) spectroscopy. Whereas fibrils display spectral features <strong>of</strong> parallel<br />

β-sheet, oligomers adopt an antiparallel β-sheet structure [2]. Based <strong>on</strong> <strong>the</strong>se observati<strong>on</strong>s, we<br />

followed <strong>the</strong> aggregati<strong>on</strong> <strong>of</strong> Aβ40 using ATR-FTIR. The aggregati<strong>on</strong> was also followed by<br />

fluorescence spectroscopy using a probe (Thi<strong>of</strong>lavine T, ThT) specific to fibrils. We observed that<br />

Aβ40 polymerized, in our case, first into antiparallel β-sheet oligomers which are recognized by a<br />

c<strong>on</strong>formati<strong>on</strong>al antibody specific to <strong>the</strong>se species (A11). Aβ moves from an antiparallel to a parallel<br />

β-sheet structure. This shift from oligomers to fibrils observed by ATR-FTIR was in perfect<br />

agreement with <strong>the</strong> marked increase in ThT fluorescence up<strong>on</strong> fibrils formati<strong>on</strong>. This<br />

c<strong>on</strong>formati<strong>on</strong>al change supposes a reorganizati<strong>on</strong> <strong>of</strong> <strong>the</strong> peptide up<strong>on</strong> aggregati<strong>on</strong>, which is also<br />

observed using m<strong>on</strong>ocl<strong>on</strong>al antibodies regi<strong>on</strong>-specific used to study <strong>the</strong> accessibility <strong>of</strong> aggregates.<br />

We dem<strong>on</strong>strated that ATR-FTIR is a powerful tool for protein aggregati<strong>on</strong> studies: ATR-FTIR (i)<br />

can discriminate between Aβ oligomers and fibrils from a structural point <strong>of</strong> view (ii) shows a<br />

c<strong>on</strong>formati<strong>on</strong>al change in <strong>the</strong> structure <strong>of</strong> <strong>the</strong> peptide up<strong>on</strong> aggregati<strong>on</strong>, perfectly correlated to<br />

<strong>the</strong> formati<strong>on</strong> <strong>of</strong> fibrils, as probed by fluorescence.<br />

References<br />

[1] Selkoe DJ. Trends Cell. Biol.(1998) 8, 447-453<br />

[2] Cerf E, Sarroukh R, Tamamizu-Kato S, Breydo L, Derclaye S, Dufrêne Y, Narayanaswami V, Goormaghtigh E,<br />

Ruysschaert JM, Raussens V. Biochem J (<strong>2009</strong>) Accepted Manuscript.<br />

58


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

A 2DCOS study <strong>of</strong> <strong>the</strong> effect <strong>of</strong> radiati<strong>on</strong> <strong>on</strong> TGase activity<br />

I.DELAARADA 1 , J.L.R.ARRONDO 1 J.GONZALEZ VELASCO 2 AND P.BILBAO 2,3<br />

1. Unidad De Bi<strong>of</strong>ísica (Csic-Upv) And Departamento De Bioquímica,<br />

Universidad del País Vasco, Bilbao, Spain.<br />

2. Depto. Cirugia, Radiología y Medicina Física , Universidad del País<br />

Vasco, Bilbao, Spain.<br />

3. Servicio de Oncología Radioterapeútica, Hospital de Cruces-<br />

Osakidetza, Bilbao<br />

Transglutaminases (TGase) are ubiquous enzymes activated <strong>on</strong>ly after major disrupti<strong>on</strong>s in<br />

physiological or homeostatic processes. However, <strong>the</strong>ir activity is str<strong>on</strong>gly regulated since<br />

overexpressi<strong>on</strong> <strong>of</strong> <strong>the</strong> enzyme does not change cell survival. In mammalian cells 6 isozymes have<br />

been isolated even if <strong>the</strong> genome <strong>the</strong>re are 8 different isozymes. The most characteristic is Factor<br />

<str<strong>on</strong>g>XIII</str<strong>on</strong>g>, involved in blood clotting activati<strong>on</strong>. TGase-2 has been isolated from keratinocytes in soluble<br />

form or associated to membranes. The enzyme can be activated by physical agents such as<br />

ultraviolet or i<strong>on</strong>izing irradiati<strong>on</strong> or by chemical agents such as <strong>the</strong> chemo<strong>the</strong>rapeutic drugs. The<br />

changes produced in TGase activity under radiati<strong>on</strong> have been attributed to metabolomic effects<br />

associated with variati<strong>on</strong>s in cell calcium levels. We have studies <strong>the</strong> changes in <strong>the</strong> presence <strong>of</strong><br />

excess calcium and <strong>the</strong>y are still present, pointing to a structural effect. In order to see <strong>the</strong> changes<br />

we have used TGase2 from hepatic cells being irradiated at different doses and measuring <strong>the</strong><br />

amide I infrared spectrum at different times. As expected, since <strong>the</strong> cells irradiated are viable, <strong>the</strong><br />

changes observed analyzing <strong>the</strong> decompositi<strong>on</strong> are minimal, so we have used 2DCOS to analyze<br />

and visualize <strong>the</strong> changes. This approach shows that <strong>the</strong> changes observed in <strong>the</strong> amide I are<br />

c<strong>on</strong>sistent and allow us to propose that <strong>the</strong>e changes in activity produced in TGase up<strong>on</strong> radiati<strong>on</strong><br />

are due to structural changes ra<strong>the</strong>r to metabolomic alterati<strong>on</strong>s.<br />

Acknowledgement: This work has been supported by a grant (2006111064) from <strong>the</strong> Department <strong>of</strong><br />

Health <strong>of</strong> <strong>the</strong> Basque Government<br />

59


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Biomedical applicati<strong>on</strong> <strong>of</strong> Mössbauer spectroscopy with<br />

high velocity resoluti<strong>on</strong>: revealing <strong>of</strong> small variati<strong>on</strong>s<br />

M.I. OSHTRAKH 1, V.A. SEMIONKIN 1,2 , O.B. MILDER 1,3 , I.V. ALENKINA 1,2 AND E.G. NOVIKOV 1,2<br />

1. Faculty <strong>of</strong> Physical Techniques and Devices for Quality C<strong>on</strong>trol,<br />

Physical–Technical Dept., Ural State Technical University – UPI,<br />

Ekaterinburg, 620002, Russian Federati<strong>on</strong><br />

2. Faculty <strong>of</strong> Experimental Physics, Physical–Technical Dept., Ural State<br />

Technical University – UPI, Ekaterinburg, 620002, Russian Federati<strong>on</strong><br />

3. Radio–Technical Dept., Ural State Technical University – UPI,<br />

Ekaterinburg, 620002, Russian Federati<strong>on</strong><br />

Mössbauer spectroscopy is a useful technique for study ir<strong>on</strong>-c<strong>on</strong>taining biological species that was<br />

applied in biomedical research [1, 2]. Comparative study <strong>of</strong> small variati<strong>on</strong>s <strong>of</strong> <strong>the</strong> ir<strong>on</strong> electr<strong>on</strong>ic<br />

structure and stereochemistry in proteins and model compounds is <strong>on</strong>e <strong>of</strong> <strong>the</strong> interesting aims in<br />

this field [3]. This interest is related to protein heterogeneity due to natural evoluti<strong>on</strong> process or<br />

pathological changes related to molecular diseases and to <strong>the</strong> ir<strong>on</strong> electr<strong>on</strong>ic structure sensitivity to<br />

protein molecular structure variati<strong>on</strong>s. However, it takes to improve velocity resoluti<strong>on</strong> in<br />

Mössbauer spectroscopy to detect small variati<strong>on</strong>s <strong>of</strong> <strong>the</strong> ir<strong>on</strong> electr<strong>on</strong>ic structure well. Usually<br />

Mössbauer spectra are measured in 512 channels or less. We used high stable, precisi<strong>on</strong> and<br />

sensitive spectrometer SM-2201 with spectra measurement in 4096 channels. An increase <strong>of</strong><br />

velocity resoluti<strong>on</strong> leads to decrease <strong>of</strong> <strong>the</strong> experimental error for hyperfine parameters and to<br />

more reliable fitting <strong>of</strong> complicated spectra. Therefore, we dem<strong>on</strong>strated comparis<strong>on</strong> <strong>of</strong> <strong>the</strong> study<br />

<strong>of</strong> various biological subjects such as hemoglobins, ferritin and its pharmaceutically important<br />

models, and liver and spleen tissues using Mössbauer spectroscopy with low and high velocity<br />

resoluti<strong>on</strong> (see Fig. 1). These results dem<strong>on</strong>strated better revealing <strong>of</strong> small variati<strong>on</strong>s <strong>of</strong><br />

Mössbauer hyperfine parameters permitted us to distinguish various proteins <strong>of</strong> <strong>the</strong> same type as<br />

well as proteins in normal and pathological case. This may be a good base for fur<strong>the</strong>r development<br />

<strong>of</strong> diagnostic tests <strong>on</strong> <strong>the</strong> basis <strong>of</strong> Mössbauer hyperfine parameters. This work was supported in<br />

part by <strong>the</strong> Russian Foundati<strong>on</strong> for Basic Research (grant # 09-02-00055-a).<br />

QUADRUPOLE SPLITTING, mm/s<br />

2.125<br />

2.115<br />

2.105<br />

2.095<br />

2.085<br />

2.075<br />

2.065<br />

0.245 0.255 0.265 0.275 0.285<br />

ISOMER SHIFT, mm/s<br />

QUADRUPOLE SPLITTING, mm/s<br />

0.750<br />

0.740<br />

0.730<br />

0.720<br />

0.710<br />

0.700<br />

0.690<br />

0.680<br />

0.670<br />

0.340 0.350 0.360 0.370 0.380<br />

ISOMER SHIFT, mm/s<br />

60<br />

0.595<br />

0.585<br />

0.575<br />

0.565<br />

0.555<br />

0.545<br />

0.535<br />

a b c<br />

QUADRUPOLE SPLITTING, mm/s<br />

0.525<br />

0.370 0.380 0.390 0.400 0.410<br />

ISOMER SHIFT, mm/s<br />

Fig. 1 – Small differences <strong>of</strong> Mössbauer hyperfine parameters: a – oxyhemoglobins: human<br />

(�, 512 ch.) and rabbit (�, 512 ch., �, 1024 ch.); b – human ferritin (�), Imfer<strong>on</strong> (�) and<br />

Malt<strong>of</strong>er® (�), open symbols – 2048 ch., black symbols – 512 ch.; c – chicken spleen: � –<br />

normal and � – leukemia, open symbols – 1024 ch., black symbols – 512 ch.<br />

References<br />

[1] M. I. Oshtrakh, Hyperfine Interact. 165, 313–320 (2005).<br />

[2] M. I. Oshtrakh, J. Radioanal. Nucl. Chem. 269, 407–415 (2006).<br />

[3] M. I. Oshtrakh, Spectrochim. Acta, Part A: Molec. and Biomolec. <strong>Spectroscopy</strong> 60, 217–234 (2004).


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Raman markers <strong>of</strong> cancer.<br />

Ultrafast dynamics <strong>of</strong> carotenoids and lipids<br />

Jakub Surmacki 1, Piotr Ciacka 1, Beata Brozek-Pluska 1, Joanna Jabl<strong>on</strong>ska 2, Radzislaw Kordek 2,<br />

Halina Abramczyk 1,3<br />

1 Technical University <strong>of</strong> Lodz, Chemistry Department, Laboratory <strong>of</strong> Laser Molecular <strong>Spectroscopy</strong>, 93-590<br />

Lodz Wroblewskiego 15 str Poland, e-mail abramczy@mitr.p.lodz.pl,<br />

2 Department <strong>of</strong> Oncology, Medical University <strong>of</strong> Lodz, Paderewskiego 4, 93-509, Poland<br />

3* Max-Born-Institute Fax: +49 30 6392 1409 Max-Born-Str. 2A 12489 Berlin Germany, e-mail:<br />

abramczy@mbi-berlin.de<br />

Our recent papers [1-3] <strong>on</strong> medical applicati<strong>on</strong>s dem<strong>on</strong>strate power <strong>of</strong> Raman spectroscopy as a<br />

diagnostic tool for breast cancer diagnosis. The results dem<strong>on</strong>strate <strong>the</strong> ability <strong>of</strong> Raman<br />

spectroscopy to accurately characterize breast cancer tissue and provide evidence that carotenoids<br />

and lipids <strong>of</strong> <strong>the</strong> tissue play an essential role as a Raman biomarkers that are able to distinguish<br />

between normal, malignant and benign types. Fig. 1 shows a typical spectrum <strong>of</strong> normal and<br />

malignant breast tissues and <strong>the</strong>ir histopathological images.<br />

Fig. 1 – Raman spectra (n<strong>on</strong>-dyed samples) and histopathological<br />

images <strong>of</strong> typical normal and malignant (infiltrating ductal cancer)<br />

breast tissues <strong>of</strong> <strong>the</strong> same patient performed at identical<br />

experimental c<strong>on</strong>diti<strong>on</strong>s<br />

The role <strong>of</strong> carotenoids is disscused in terms <strong>of</strong> <strong>the</strong>ir ability to act as light harvesting antenna that<br />

protects tissue from oxidative damage, lipid-phase anti-oxidant and upregulator <strong>of</strong> juncti<strong>on</strong>al<br />

communicati<strong>on</strong> in c<strong>on</strong>nexins. The possible mechanisms <strong>of</strong> interacti<strong>on</strong> between carotenoids and<br />

lipids are discussed. The role <strong>of</strong> water <strong>on</strong> energy dissipati<strong>on</strong> rate at <strong>the</strong> water/lipid interface will<br />

be discussed. Femtosec<strong>on</strong>d infrared two-color and bleaching pump-probe experiments were used<br />

to investigate vibrati<strong>on</strong>al relaxati<strong>on</strong> dynamics <strong>of</strong> C-H stretch modes in <strong>the</strong> lipid alkyl chains <strong>of</strong> 2,3-<br />

Dipalmitoyl-sn-glycero-1-phosphocholine (DPPC) and O-H stretch mode <strong>of</strong> water at <strong>the</strong><br />

water/lipid interface for a c<strong>on</strong>trolled humidity <strong>of</strong> <strong>the</strong> sample.<br />

References<br />

intensity (cts/s)<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

malignant tissue<br />

normal tissue<br />

1000 2000 3000 4000 5000 6000 7000 8000<br />

wavenumber (cm -1 )<br />

[1] H. Abramczyk, I. Placek, B. BroŜek – Płuska, K. Kurczewski, Z. Morawiec, M. Tazbir, J. Mol. Liquid 141,145-148 (2008)<br />

[2] H. Abramczyk, I. Placek , B. BroŜek – Płuska, K. Kurczewski, Z. Morawiec, M. Tazbir, <strong>Spectroscopy</strong> 22, 113-121 (2008)<br />

[3] H. Abramczyk, J. Surmacki, B. BroŜek – Płuska, Z. Morawiec, M. Tazbir, The Hallmarks <strong>of</strong> Breast Cancer by Raman <strong>Spectroscopy</strong>, J. Mol.<br />

Struc. DOI: 10.1016/jmolstruc. 2008.10.055<br />

61


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Far-IR synchrotr<strong>on</strong> and low-wavenumber Raman<br />

studies <strong>of</strong> proteins and protein/water interacti<strong>on</strong>s. From<br />

model system to animal and human skin<br />

O.F. NIELSEN 1 , T.M. GREVE 1,2 , N. DE FRIES 1 , N.W. LARSEN 1 , K.B. ANDERSEN 2 ,A. ENGDAHL 3<br />

AND B. NELANDER 3<br />

1. Dept. <strong>of</strong> Chemistry, University <strong>of</strong> Copenhagen, Universitetsparken 5,<br />

Copenhagen, DK-2100, Denmark<br />

2. Dept. <strong>of</strong> <strong>Spectroscopy</strong> and Physical Chemistry, LEO-Phama,<br />

Industriparken 55, Ballerup, DK-2750, Denmark<br />

3. MAX-lab, Lund University, Ole Römers väg 1, Lund, SE-22363,<br />

Sweden<br />

The low-wavenumber part <strong>of</strong> <strong>the</strong> vibrati<strong>on</strong>al spectrum yields informati<strong>on</strong> about intermolecular<br />

hydrogen b<strong>on</strong>ded interacti<strong>on</strong>s. Peptides, proteins, water/protein mixtures and samples <strong>of</strong> human<br />

and animal skin were investigated. Synchrotr<strong>on</strong> radiati<strong>on</strong> was used as a light source to record <strong>the</strong><br />

FT-Far-IR spectra. The spectra were obtained through a microscope in ei<strong>the</strong>r ATR- or transmissi<strong>on</strong><br />

modes. Near-IR-FT-Raman spectra were recorded with excitati<strong>on</strong> at 1064 nm. The spectra were<br />

transformed to <strong>the</strong> R( ν) -representati<strong>on</strong> in order to get rid <strong>of</strong> <strong>the</strong> Rayleigh line [1,2]. A peptide/<br />

protein band at 110-120 cm-1 in both <strong>the</strong> Far-IR and <strong>the</strong> Raman spectrum was assigned to an out-<strong>of</strong><br />

plane hydrogen b<strong>on</strong>d mode. DFT calculati<strong>on</strong>s were performed <strong>on</strong> hydrogen b<strong>on</strong>ded amide model<br />

systems. The mode might drive c<strong>on</strong>formati<strong>on</strong>al changes in proteins and thus be <strong>of</strong> importance for<br />

protein folding and/or denaturati<strong>on</strong>. In <strong>the</strong> R( ν) -representati<strong>on</strong> a water band at 180 cm-1 was<br />

assigned to <strong>the</strong> presence <strong>of</strong> water with a tetrahedrical hydrogen b<strong>on</strong>d c<strong>on</strong>formati<strong>on</strong> [2]. This band<br />

is significant for <strong>the</strong> presence <strong>of</strong> water with a bulk like structure like that in liquid water. Thus <strong>the</strong><br />

180 cm-1 band can be used to m<strong>on</strong>itor <strong>the</strong> presence <strong>of</strong> water with a liquid water like structure, i.e.<br />

water n<strong>on</strong>-hydrogen b<strong>on</strong>ded to proteins [2]. The FT-Far-IR synchrotr<strong>on</strong> spectra are very sensitive<br />

to <strong>the</strong> presence <strong>of</strong> low water c<strong>on</strong>centrati<strong>on</strong>s in water/lysozyme mixtures, whereas <strong>the</strong> Raman<br />

spectra are useful at higher water c<strong>on</strong>centrati<strong>on</strong>s. Thus <strong>the</strong> two techniques are complimentary in<br />

studies <strong>of</strong> water/protein interacti<strong>on</strong>s in a wide range <strong>of</strong> water c<strong>on</strong>centrati<strong>on</strong>s. The ATR FT-Far-IR<br />

technique was tested in a study <strong>of</strong> full thickness pig ear skin. The low-wavenumber Raman feature<br />

in <strong>the</strong> R( ν) -representati<strong>on</strong> was used to characterize water in skin samples from humans, pig ears,<br />

hairless Guinea pigs and mice [3]. Changes in water structure by freezing and thawing <strong>of</strong> skin<br />

biopsies can be followed [3]. Malignant and benign human skin tumours show a higher c<strong>on</strong>tent <strong>of</strong><br />

water with a bulk like structure in <strong>the</strong> malignant case [3]. The mechanism <strong>of</strong> penetrati<strong>on</strong> <strong>of</strong><br />

dimethylsulfoxide, DMSO, through epidermal tissue from pig ear skin involved a binding <strong>of</strong><br />

DMSO to free bulk water [4].<br />

References<br />

[1] S.E.M. Colaianni, O.F. Nielsen, J. Mol. Struct. 347, 267-281 (1995).<br />

[2] O.F. Nielsen,C. Johanss<strong>on</strong>, K.L. Jakobsen, D.H. Christensen, M.R. Wiegell, T. Pedersen, M. Gniadecka, H.C. Wulf,<br />

P. Westh, Proc. SPIE 4098, 160-168 (2000).<br />

[3] T.M. Greve,N. R. Andersen, K.B. Andersen, M. Gniadecka, H.C. Wulf, O.F. Nielsen “Biomedical Aspects <strong>of</strong> Water<br />

Structure in Human and Animal Skin: A Near Infrared-Fourier Transform-Raman Study”, in New Approaches in<br />

Biomedical <strong>Spectroscopy</strong>, edited by K. Kneipp, R. Aroca, H. Kneipp, E. Wentrup-Byrne, Washingt<strong>on</strong> DC: American<br />

Chemical Society, ACS Symposium Series 963, 30-40 (2007).<br />

[4] T.M. Greve, K.B. Andersen and O.F. Nielsen, <strong>Spectroscopy</strong> 22, 405-417 (2008).<br />

62


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Histopathological characterizati<strong>on</strong> <strong>of</strong> skin cancers<br />

using infrared micro-imaging<br />

E. LY 1 , O. PIOT 1 , A. DURLACH 2 , N. CARDOT-LECCIA 3 , J-P. ORTONNE 4 , P. BERNARD 5, 6 AND M.<br />

MANFAIT 1 .<br />

1. Unité MéDIAN, CNRS UMR 6237 MEDyC, Université de Reims-<br />

Champagne Ardenne, Faculté de Pharmacie, IFR 53, France<br />

2. Laboratoire Pol Bouin, CHU Mais<strong>on</strong>-Blanche, Reims, France<br />

3. Laboratoire central d'anatomie pathologie, Hôpital Pasteur, CHU de<br />

Nice, France<br />

4. Service de Dermatologie, Hôpital de l'Archet 2, CHU de Nice, France<br />

5. Laboratoire de Biochimie et de Dermatologie, CNRS UMR 6237<br />

MEDyC, Université de Reims-Champagne Ardenne, IFR 53, France<br />

6. Service de Dermatologie, CHU Robert Debré, Reims, France<br />

Skin cancer is <strong>the</strong> most comm<strong>on</strong> form <strong>of</strong> human cancer and its incidence is <strong>on</strong> <strong>the</strong> rise [1]. It<br />

includes n<strong>on</strong>-melanoma skin cancers (NMSC) and malignant melanoma (MM). The diagnosis <strong>of</strong><br />

skin cancer is based <strong>on</strong> <strong>the</strong> morphological evaluati<strong>on</strong> <strong>of</strong> <strong>the</strong> lesi<strong>on</strong>, which requires <strong>the</strong> expertise <strong>of</strong><br />

a dermatopathologist. Fourier Transform Infrared (FTIR) imaging is emerging as a promising<br />

objective and innovative tool for <strong>the</strong> characterizati<strong>on</strong> <strong>of</strong> tissue samples. Infrared (IR) spectra probe<br />

intrinsic molecular compositi<strong>on</strong> and interacti<strong>on</strong>s which are characteristic <strong>of</strong> <strong>the</strong> histopathological<br />

state <strong>of</strong> <strong>the</strong> tissue, and can be c<strong>on</strong>sidered as real tissue-specific spectroscopic fingerprints. C<strong>on</strong>trary<br />

to c<strong>on</strong>venti<strong>on</strong>al hematoxylin-and-eosin (HE) staining, spectral imaging can be performed directly<br />

<strong>on</strong> archival fixed and paraffin-embedded tissues. For this purpose, we have developed a<br />

multivariate approach (Principal Comp<strong>on</strong>ent Analysis, Clustering) for <strong>the</strong> direct analysis <strong>of</strong><br />

paraffin-embedded samples. Highly c<strong>on</strong>trasted color-coded images were generated and compared<br />

to tissue architecture from HE stained secti<strong>on</strong>s [2]. First, this methodology was applied <strong>on</strong> a large<br />

set <strong>of</strong> NMSC samples in order to create a spectral library. Based <strong>on</strong> this informati<strong>on</strong>, a predictive<br />

diagnostic algorithm was built, and tested <strong>on</strong> unknown samples. This approach permitted <strong>the</strong><br />

precise locati<strong>on</strong> and characterizati<strong>on</strong> <strong>of</strong> tumor areas in n<strong>on</strong>-melanoma skin cancers, in agreement<br />

with <strong>the</strong> histology as revealed by standard staining <strong>of</strong> <strong>the</strong> biopsy secti<strong>on</strong> [3]. Sec<strong>on</strong>d, <strong>the</strong> IR<br />

analysis <strong>of</strong> different subtypes <strong>of</strong> cutaneous melanoma revealed automatically intra-tumoral<br />

heterogeneity which was closely associated with some dermatopathological parameters such as<br />

ulcerati<strong>on</strong>, Breslow thickness and poor prognosis. Taken toge<strong>the</strong>r <strong>the</strong>se results, FTIR imaging<br />

appears as a label-free, rapid and automated technology to help in <strong>the</strong> diagnosis <strong>of</strong> skin cancer.<br />

References<br />

[1] Amercian Cancer Society, Cancer Facts and Figures 2007, Atlanta: American Cancer Society (2007)<br />

[2] E. Ly, O. Piot, R. Wolthuis, A. Durlach, P. Bernard, M. Manfait, Analyst 133, 197-205 (2008)<br />

[3] E. Ly, O. Piot, A. Durlach, P. Bernard, M. Manfait, Analyst, DOI : 10.1039/B820998G (<strong>2009</strong>)<br />

63


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Investigati<strong>on</strong> <strong>of</strong> <strong>the</strong> Raman spectra <strong>of</strong> hemozoin<br />

T. FROSCH 1,2 AND J. POPP 1,2<br />

1. Institut für Physikalische Chemie, Universität Jena, Helmholtzweg 4, D-07743 Jena, Germany,<br />

torsten.frosch@uni-jena.de<br />

2. Institut für Phot<strong>on</strong>ische Technologien, Albert-Einstein-Straße 9, D-07745 Jena, Germany<br />

Malaria is <strong>on</strong>e <strong>of</strong> <strong>the</strong> most devastating infectious diseases <strong>on</strong> earth and resistances against key<br />

drugs arise <strong>on</strong> a global scale. However, <strong>the</strong> molecular mode <strong>of</strong> acti<strong>on</strong> <strong>of</strong> those drugs is not well<br />

understood. Raman spectroscopy has unique potential for an identificati<strong>on</strong> <strong>of</strong> biological hematintargets<br />

and an elucidati<strong>on</strong> <strong>of</strong> drug-target-interacti<strong>on</strong>s in living cells.<br />

Raman micro-spectroscopy was applied for an in situ localizati<strong>on</strong> <strong>of</strong> <strong>the</strong> malaria pigment hemozoin<br />

in Plasmodium falciparum infected erythrocytes. These in situ Raman signals <strong>of</strong> hemozoin were<br />

compared to Raman spectra <strong>of</strong> extracted hemozoin, <strong>the</strong> syn<strong>the</strong>tic analogue ß-hematin as well as to<br />

hematin and hemin. Raman spectra <strong>of</strong> <strong>the</strong> hemozoin dimer were calculated ab initio (DFT) for <strong>the</strong><br />

first time and used for an assignment <strong>of</strong> <strong>the</strong> experimentally derived Raman bands. This knowledge<br />

<strong>of</strong> <strong>the</strong> underlying normal modes is very useful for a thorough interpretati<strong>on</strong> <strong>of</strong> <strong>the</strong> Raman bands<br />

which are influenced by ππ−stacking to <strong>the</strong> antimalarial drugs. Morphology sensitive low<br />

wavenumber modes <strong>of</strong> hemozoin were selectively enhanced with help <strong>of</strong> excitati<strong>on</strong> wavelengths at<br />

633 nm and 647 nm. The mode at 343 cm -1 in <strong>the</strong> Raman spectrum <strong>of</strong> hemozoin, is str<strong>on</strong>gly<br />

enhanced with λexc. = 647 nm and is represented by a combined, symmetric doming mode <strong>of</strong> <strong>the</strong><br />

two hematin units in <strong>the</strong> hemozoin dimer. The enhancement <strong>of</strong> this vibrati<strong>on</strong> is str<strong>on</strong>ger in <strong>the</strong><br />

res<strong>on</strong>ance Raman spectrum <strong>of</strong> hemozoin compared with less crystalline ß-hematin. The low<br />

wavenumber modes are also str<strong>on</strong>gly enhanced in <strong>the</strong> res<strong>on</strong>ance Raman spectra <strong>of</strong> a very<br />

crystalline sample <strong>of</strong> hemin and are less pr<strong>on</strong>ounced in <strong>the</strong> spectra <strong>of</strong> an amorphous sample <strong>of</strong><br />

hematin. The selective relative res<strong>on</strong>ance enhancement <strong>of</strong> <strong>the</strong> morphology sensitive Raman modes<br />

<strong>of</strong> hemozoin is reflected by absorpti<strong>on</strong> bands in <strong>the</strong> UV-VIS-NIR spectrum. Res<strong>on</strong>ance Raman<br />

micro spectroscopy with λexc. = 647 nm was shown to have great capabilities to probe <strong>the</strong><br />

morphology <strong>of</strong> hematin samples.<br />

References<br />

Fig. 1 – Dimeric unit cell <strong>of</strong> <strong>the</strong> Malaria pigment hemozoin.<br />

[1] Frosch, T.; K<strong>on</strong>carevic, S.; Zedler, L.; Schmitt, M.; Schenzel, K.; Becker, K.; Popp, J., J. Phys. Chem. B (2007),<br />

111, 11047;<br />

[2] Frosch, T.; Meyer, T.; Schmitt, M.; Popp, J., Anal. Chem. (2007), 79(16) 6159-6166<br />

[3] Puskar, L.; Tuckermann, R.; Frosch, T.; Popp, J.; Ly, V.; McNaught<strong>on</strong>, D.; and Wood, B. R., Lab <strong>on</strong> a Chip (2007),<br />

7, 1125-1131<br />

[4] Frosch, T.; Popp, J., J. Mol. Struct. (<strong>2009</strong>), 924-926, 301;<br />

[5] Frosch, T.; K<strong>on</strong>carevic, S.; Becker, K.; Popp, J., Analyst (<strong>2009</strong>) DOI:10.1039/B821705J;<br />

64


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Automated atmospheric pressure i<strong>on</strong>izati<strong>on</strong> mass<br />

spectrometry imaging platform<br />

M. VOLNY 1 , M. STROHALM 1 , V. VIDOVA 1,2 , G. KRUPPA 1 , K. LEMR 1,2 , J. POL 1,3 AND V.<br />

HAVLICEK 1,2<br />

1. Institute <strong>of</strong> Microbiology, Videnska 1083, 142 20 Prague 4, Czech Republic<br />

2. Palacky University, Faculty <strong>of</strong> Science Tr. Svobody 8, 771 46 Olomouc, Czech Republic<br />

3. University <strong>of</strong> Helsinki, P.O. Box 56, FI-00014, University <strong>of</strong> Helsinki, Finland<br />

We present labmade automated atmospheric pressure (AP) mass spectrometry (MS) imaging<br />

platform coupled to FTICR spectrometer. The interest in atmospheric pressure desorpti<strong>on</strong><br />

i<strong>on</strong>izati<strong>on</strong> techniques in MS was triggered by <strong>the</strong> introducti<strong>on</strong> <strong>of</strong> Desorpti<strong>on</strong> electrospray<br />

i<strong>on</strong>izati<strong>on</strong> (DESI), which allows for <strong>the</strong> analysis <strong>of</strong> surfaces in <strong>the</strong> ambient envir<strong>on</strong>ment. Similar<br />

techniques based <strong>on</strong> modified setup and principles have emerged since DESI introducti<strong>on</strong>. One <strong>of</strong><br />

<strong>the</strong>m, Desorpti<strong>on</strong> atmospheric pressure photoi<strong>on</strong>izati<strong>on</strong> (DAPPI), which is based <strong>on</strong> efficient<br />

<strong>the</strong>rmal shock desorpti<strong>on</strong> <strong>of</strong> n<strong>on</strong>polar compounds and subsequent photoi<strong>on</strong>izati<strong>on</strong>, was used in<br />

this work as complimentary to DESI. APMS imaging is <strong>the</strong> logical extensi<strong>on</strong> <strong>of</strong> AP techniques; this<br />

is <strong>the</strong> first example <strong>of</strong> DAPPI imaging and <strong>on</strong>e <strong>of</strong> <strong>on</strong>ly few reports <strong>of</strong> high resoluti<strong>on</strong> DESI<br />

imaging. By DESI we analyzed mouse brain and kidney secti<strong>on</strong>s and obtained 2D chemical<br />

distributi<strong>on</strong> <strong>of</strong> different phospholipid species with high mass accuracy and resoluti<strong>on</strong>. The results<br />

were compared with MALDI and Raman <strong>Spectroscopy</strong> imaging <strong>of</strong> tissues. DAPPI is suitable for<br />

less polar analytes than DESI and it was successfully used for instance to obtain chemical images<br />

<strong>of</strong> n<strong>on</strong>polar compounds in plant leaves. Some analytes (e.g. cholesterol in tissues) were detected<br />

by both i<strong>on</strong>izati<strong>on</strong> techniques but overall <strong>the</strong> techniques acted as complementary. In our<br />

experiments, DAPPI did not provide comprehensive informati<strong>on</strong> about lipids in tissues,<br />

something that DESI is good at, but <strong>on</strong> <strong>the</strong> o<strong>the</strong>r hand it could for instance detect aflatoxins from<br />

plant attacked by a fungus, which DESI failed to i<strong>on</strong>ize. We also utilized both techniques to image<br />

wing surfaces <strong>of</strong> different insect species.<br />

65


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Solubilizati<strong>on</strong> and Determinati<strong>on</strong> <strong>of</strong> Ketoc<strong>on</strong>azole in micellar<br />

soluti<strong>on</strong> <strong>of</strong> polyethylene glycol 400.<br />

NEETI NEMA AND ARCHNA PANDEY<br />

Department <strong>of</strong> Chemistry, Dr. Hari Singh Gour University,<br />

Sagar (M.P.) 470 003 INDIA<br />

e-mail : archnapandey@indiatimes.com<br />

The purpose <strong>of</strong> present study was to investigate <strong>the</strong> effect <strong>of</strong> Polyethylene glycol (PEG)<br />

up<strong>on</strong> <strong>the</strong> solubility <strong>of</strong> antifungal drug Ketoc<strong>on</strong>azole (KTCZ). KTCZ is water insoluble drug. For<br />

water insoluble drugs difficulties are usually encountered in selecting dissoluti<strong>on</strong> medium with a<br />

good discriminating power. In <strong>the</strong> present study, a dissoluti<strong>on</strong> medium based <strong>on</strong> solubility data is<br />

developed for KTCZ. The solubility <strong>of</strong> KTC2 in various fluids such as purified water (pH 6.4),<br />

cetyl trimethyl amm<strong>on</strong>ium bromide (CTAB), sodium lauryl sulphate (SLS), Polyethylene glycol<br />

(PEG) and also in 0.1 M sulphuric acid c<strong>on</strong>taining SLS, CTAB, PEG (at <strong>the</strong>ir critical micellar<br />

c<strong>on</strong>centrati<strong>on</strong>s (CMC) values) was determined. The solubility <strong>of</strong> KTCZ is increased by 2.51 fold in<br />

PEG + purified water system. The surprising increase in solubility <strong>of</strong> same drug by 7.29 fold is<br />

found in acidic PEG i.e. PEG + 0.1 M H2SO4 system. Polymeric surfactants (PEG 400) form<br />

nanoscopic core-shell structues above <strong>the</strong> critical micellar c<strong>on</strong>centrati<strong>on</strong>s. The hydrophobic drugs<br />

while <strong>the</strong> hydrophobic part serve as reservoirs for hydrophobic drugs while <strong>the</strong> hydrophilic part<br />

serves as interface between <strong>the</strong> bulk aqueous phase and <strong>the</strong> hydrophobic domain. This unique<br />

architecture enables polymeric micelles to serve as nanoscopic depots or stabilizers for poorly<br />

water-soluble compounds. A new spectrophotometric method was also proposed for <strong>the</strong><br />

determinati<strong>on</strong> <strong>of</strong> KTCZ in pure form and pharmaceutical formulati<strong>on</strong>. This method is based <strong>on</strong> <strong>the</strong><br />

redox-complexati<strong>on</strong> reacti<strong>on</strong>s, which proceed in <strong>the</strong> ketoc<strong>on</strong>azole, amm<strong>on</strong>ium metavanadate and<br />

PEG system and form a red-brown coloured complex with absorpti<strong>on</strong> maxima <strong>of</strong> V[V] at 375 nm.<br />

A linear calibrati<strong>on</strong> graph was obtained between 1.06 μg/ml - 42.5 - μg/ml <strong>of</strong> KTCZ. The results <strong>of</strong><br />

analysis have been validated statistically and by recovery studies. The proposed method is simple<br />

rapid, and sensitive.<br />

66


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

ORAL PRESENTATIONS<br />

September 1 st Tuesday<br />

67


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

68


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Primary events in <strong>the</strong> photo-dissociati<strong>on</strong> <strong>of</strong> oxy-hemoglobin<br />

T. KOBAYASHI 1,2,3,4 , A. YABUSHITA 1<br />

1. Department <strong>of</strong> Electrophysics, Nati<strong>on</strong>al Chiao-Tung University,<br />

Hsichu 300, Taiwan<br />

2. ICORP, JST, 4-1-8, H<strong>on</strong>cho, Kawaguchi, Saitama 332-0012, Japan<br />

3. Department <strong>of</strong> Applied Physics and Chemistry and Institute for Laser<br />

Science, University <strong>of</strong> Electro-Communicati<strong>on</strong>s, 1-5-1, Ch<strong>of</strong>ugaoka,<br />

Ch<strong>of</strong>u, Tokyo, 182-8585, Japan<br />

4. Institute <strong>of</strong> Laser Engineering, Osaka University, 2-6 Yamada-oka,<br />

Suita, Osaka 565-0971, Japan<br />

The growing number <strong>of</strong> data <strong>on</strong> heme proteins in <strong>the</strong> ultrafast time domain has revealed<br />

complicated photophysics <strong>of</strong> <strong>the</strong> heme that are sensitive to both <strong>the</strong> structure <strong>of</strong> <strong>the</strong> protein and to<br />

<strong>the</strong> ligand (CO, O2, and NO) (1). Champi<strong>on</strong> et al. studied (2) <strong>the</strong> excited-state photophysics <strong>of</strong><br />

hemoglobin (Hb), myoglobin (Mb), and protoheme and <strong>the</strong> effects <strong>of</strong> <strong>the</strong> ligands CO, O2, and NO<br />

<strong>on</strong> <strong>the</strong> excited-state photophysics. In this work, ultrafast time-resolved pump-probe signal was<br />

observed in visible spectral range using an ultrashort visible laser pulse. Broad spectral width <strong>of</strong><br />

visible laser pulse enabled us to observe <strong>the</strong> pump-probe signal with a broadband range. A<br />

broadband multi-channel detector array was used to obtain <strong>the</strong> pump-probe signal at all <strong>of</strong> <strong>the</strong> probe<br />

frequencies simultaneously. In <strong>the</strong> simultaneous measurement at many probe wavelengths, we<br />

could obtain ultrafast spectral change after <strong>the</strong> photo-excitati<strong>on</strong> <strong>of</strong> oxy-hemoglobin <strong>on</strong>ly with a<br />

short measurement time, avoiding laser damage <strong>on</strong> <strong>the</strong> sample. The spectra <strong>of</strong> <strong>the</strong> excited species in<br />

<strong>the</strong> process <strong>of</strong> ultrafast photodissociati<strong>on</strong> was determined for Hb * and HbII*<br />

in <strong>the</strong> spectral range <strong>of</strong><br />

I<br />

13914 cm-1 (719 nm) and 19109 cm-1 (523 nm) for <strong>the</strong> first time in <strong>the</strong> visible range. Also <strong>the</strong> time<br />

c<strong>on</strong>stant <strong>of</strong> <strong>the</strong> primary process was determined for <strong>the</strong> first time. The difference spectra ΔA in <strong>the</strong><br />

delay time regi<strong>on</strong> <strong>of</strong> 0-100fs averaged over 10fs was studied to observe ultrafast spectral change.<br />

Ultrafast spectral change found in <strong>the</strong> measurement result reflects ultrafast photo-dissociati<strong>on</strong><br />

process <strong>of</strong> oxy-hemoglobin.<br />

References<br />

ΔA<br />

- 0.015<br />

- 0.020<br />

- 0.025<br />

- 0.030<br />

- 0.035<br />

14000 14500 15000 15500 16000 16500 17000 17500 18000<br />

probe frequency (cm -1 )<br />

69<br />

5fs<br />

15fs<br />

25fs<br />

35fs<br />

45fs<br />

55fs<br />

65fs<br />

75fs<br />

85fs<br />

95fs<br />

Fig. 1 – Difference absorbance spectra averaged over 10 fs at<br />

different delay times.<br />

[1] D. A. Chern<strong>of</strong>f, R. M. Hochstrasser, A. W. Steele, Proc. Natl. Acad. Sci. USA 77, 5606-5610 (1980).<br />

[2] J. W. Petrich, C. Poyart, J. L. Martin, Proc. Natl. Acad. Sci. USA 27, 4049-4060 (1988).


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

UV Res<strong>on</strong>ance Raman spectroscopic study <strong>of</strong> tyrosine<br />

in <strong>the</strong> TTR(105-115) peptide<br />

G. PIERIDOU AND S. C. HAYES<br />

Dept. <strong>of</strong> Chemistry, University <strong>of</strong> Cyprus, P. O. Box 20537, 1678, Nicosia,<br />

Cyprus<br />

Understanding <strong>the</strong> various interacti<strong>on</strong>s between amino acid residues or backb<strong>on</strong>e groups that<br />

determine protein structure, involves probing <strong>the</strong> local envir<strong>on</strong>ment <strong>the</strong>y experience up<strong>on</strong> folding.<br />

As <strong>the</strong> structure <strong>of</strong> a protein in soluti<strong>on</strong> might differ from that in <strong>the</strong> solid state, where it is usually<br />

studied by x-ray diffracti<strong>on</strong>, it is critical to possess a tool that provides insights <strong>on</strong> <strong>the</strong> structure in<br />

<strong>the</strong> native envir<strong>on</strong>ment. We will present our efforts in characterizing <strong>the</strong> c<strong>on</strong>formati<strong>on</strong> <strong>of</strong> <strong>the</strong> 11residue<br />

peptide TTR(105-115) (YTIAALLSPYS) in soluti<strong>on</strong> using UV Res<strong>on</strong>ance Raman<br />

spectroscopy. TTR(105-115) is part <strong>of</strong> <strong>the</strong> sequence <strong>of</strong> <strong>the</strong> human amyloid-forming protein<br />

transthyretin, corresp<strong>on</strong>ding to a naturally-occurring β-strand in <strong>the</strong> crystal structure <strong>of</strong> <strong>the</strong><br />

protein. This peptide fragment has been shown to form ordered amyloid fibrils in vitro,<br />

c<strong>on</strong>stituting it an ideal model for <strong>the</strong> study <strong>of</strong> fibril formati<strong>on</strong> in general. Our present studies have<br />

provided insights <strong>on</strong> <strong>the</strong> c<strong>on</strong>formati<strong>on</strong> <strong>of</strong> this peptide in different envir<strong>on</strong>ments that serve as a<br />

first step in understanding <strong>the</strong> structural changes that lead to fibril formati<strong>on</strong>. We focused our<br />

efforts <strong>on</strong> <strong>the</strong> characterizati<strong>on</strong> <strong>of</strong> <strong>the</strong> envir<strong>on</strong>ment experienced by tyrosines in <strong>the</strong> peptide, since<br />

tyrosine has been reported repeatedly in <strong>the</strong> past, as part <strong>of</strong> UVRR studies, to be a good probe for<br />

investigating <strong>the</strong> local envir<strong>on</strong>ment <strong>of</strong> a protein. Specifically, vibrati<strong>on</strong>al bands associated with <strong>the</strong><br />

phenolic ring seem to be particularly sensitive to <strong>the</strong> change in local envir<strong>on</strong>ment and particularly<br />

to hydrogen b<strong>on</strong>ding <strong>of</strong> <strong>the</strong> phenolic OH.[1,2] Comparis<strong>on</strong> <strong>of</strong> <strong>the</strong> pKa determined for <strong>the</strong> tyrosine<br />

side-chains in <strong>the</strong> peptide to <strong>the</strong> value for aqueous Tyr, al<strong>on</strong>g with various spectral observati<strong>on</strong>s,<br />

suggest that <strong>the</strong> two Tyr residues in <strong>the</strong> peptide probe two distinct microenvir<strong>on</strong>ments, with<br />

Tyr105 exposed to <strong>the</strong> solvent and Tyr114 hydrogen-b<strong>on</strong>ded to ei<strong>the</strong>r <strong>the</strong> backb<strong>on</strong>e or to o<strong>the</strong>r<br />

residues’ side chains. As fibrils <strong>of</strong> TTR(105-115) have been shown to form in vitro after incubati<strong>on</strong><br />

at temperatures around 37 o C,[3] we performed temperature-dependent studies probing <strong>the</strong><br />

tyrosine envir<strong>on</strong>ment in <strong>the</strong> peptide. These studies dem<strong>on</strong>strated an increase in <strong>the</strong> absolute<br />

Res<strong>on</strong>ance Raman cross secti<strong>on</strong>s <strong>of</strong> <strong>the</strong> tyrosine side chain vibrati<strong>on</strong>s with an increase in<br />

temperature, suggesting that <strong>the</strong> phenolic ring experiences an increasingly hydrophobic<br />

envir<strong>on</strong>ment as it approaches <strong>the</strong> fibrillizati<strong>on</strong> temperature regime.<br />

References<br />

[1] Z. Chi X. G. Chen, J. S. W. Holtz, S. Asher, Biochemistry 1998, 37, 2854.<br />

[2] P. G. Hildebrandt, R. A. Copeland, T. G. Spiro, J. Otlewski, M. J. Laskowski, F. G. Prendergast, Biochemistry 1988,<br />

27, 5426.<br />

[3] C. P. Jar<strong>on</strong>iec, C. E. MacPhee, N. S. Astr<strong>of</strong>, C. M. Dobs<strong>on</strong>,. R. G. Griffin, Proc. Nat. Acad. Sci. U.S.A. 2002, 99,<br />

16748.<br />

70


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Rapid-scan / step-scan FTIR difference spectroscopy applied to<br />

photosyn<strong>the</strong>tic reacti<strong>on</strong>s: new insights by multiple experiment<br />

design and tailored multivariate analysis techniques<br />

A. MEZZETTI 1,2 , L. BLANCHET 2,3 , C. RUCKEBUSCH 2 , A. DE JUAN 3 AND W. LEIBL 1<br />

1. SB2SM, URA CNRS 2096, IBITeC-S, DSV, Bat 532, CEA-Saclay, France<br />

2. LASIR UMR CNRS 8516, Université Lille 1, Villeneuve d’Ascq, France<br />

3. Departament de Química Analítica, Universitat de Barcel<strong>on</strong>a, Diag<strong>on</strong>al, 647, 08028 Barcel<strong>on</strong>a, Spain<br />

Time-res. difference FTIR is a powerful technique to study biochemical processes. We studied<br />

photosyn<strong>the</strong>tic systems where light induces processes like electr<strong>on</strong> transfer (ET), energy transfer,<br />

prot<strong>on</strong> transfer, or c<strong>of</strong>actor displacement [1-6 & refs. <strong>the</strong>rein]. The ability <strong>of</strong> time-res. FTIR to<br />

record simultaneously absorbance changes over a wide range <strong>of</strong> frequencies has permitted to<br />

follow different events and to get informati<strong>on</strong> <strong>on</strong> <strong>the</strong>ir possible coupling (e.g. between H + and e -<br />

transfer). An interdisciplinary approach has been applied, combining different time-res. FTIR<br />

techniques, site-directed mutagenesis, tailored chemometric analysis, kinetics simulati<strong>on</strong>s and DFT<br />

calculati<strong>on</strong>s. Whereas step-scan FTIR (t. res. 5 μs) has allowed to study <strong>the</strong> primary photophysical<br />

processes [2], rapid-scan FTIR (t. res. 25 ms) has been used to follow <strong>the</strong> H +-coupled ET leading to<br />

<strong>the</strong> formati<strong>on</strong> and release <strong>of</strong> ubiquinol QH2 [1, 3-6]. This topic has been recently <strong>the</strong> object <strong>of</strong><br />

c<strong>on</strong>troversy [7,8]. Results have also shown that QH2 formati<strong>on</strong> entails a perturbati<strong>on</strong> <strong>of</strong> <strong>the</strong><br />

membrane structure. The development <strong>of</strong> a specific chemometric approach (hard-s<strong>of</strong>t multivariate<br />

curve resoluti<strong>on</strong> applied to difference spectra [1,4]) enabled a detailed kinetic analysis and<br />

provided pure spectra corresp<strong>on</strong>ding to different biophysical events. The results are discussed in<br />

<strong>the</strong> framework <strong>of</strong> <strong>the</strong> current knowledge <strong>of</strong> <strong>the</strong> structure <strong>of</strong> <strong>the</strong> photosyn<strong>the</strong>tic apparatus.<br />

References<br />

Fig. 1 – time res. FTIR differ. spectra <strong>of</strong> Rb spharoides membranes<br />

under light showing QH2 formati<strong>on</strong>, protein rearrangement and<br />

membrane perturbati<strong>on</strong><br />

[1] L. Blanchet, C. Ruckebusch, A. Mezzetti, J.P. Huvenne, A. de Juan, J. Phys Chem. B 113, 6031-6040 (<strong>2009</strong>).<br />

[2] A. Mezzetti, R. Spezia, <strong>Spectroscopy</strong> Int. J, 22, 235-250 (2008).<br />

[3] A. Mezzetti, W. Leibl, Vibrat Spectrosc, 48, 126-134 (2008).<br />

[4] L. Blanchet, A. Mezzetti, C. Ruckebusch, J.P. Huvenne, A. de Juan, Anal. Bioanal. Chem, 387, 1863-1874 (2007).<br />

[5] A. Mezzetti, W. Leibl, Eur. Biophys. J., 34, 921-936 (2005).<br />

[6] A. Mezzetti, W. Leibl, J. Bret<strong>on</strong>, E. Nabedryk, FEBS Letters 537, 161–165 (2003)<br />

[7] A. Remy, K. Gerwert, Nat. Struct. Biol. 10, 637 (2003).<br />

[8] J. Bret<strong>on</strong>, Biochemistry 46, 4459-65, (2007).<br />

71


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Does <strong>the</strong> disulfide bridge have an effect <strong>on</strong> <strong>the</strong><br />

c<strong>on</strong>formati<strong>on</strong>al properties <strong>of</strong> <strong>the</strong> peptide horm<strong>on</strong>e<br />

somatostatin-14?<br />

B. HERNÁNDEZ 1 , C. CARELLI 1 , Y. M. COÏC 2 AND M. GHOMI 1<br />

1. Groupe de Biophysique Moléculaire, UFR SMBH, Université Paris 13, 74 rue Marcel<br />

Cachin, 93017 Bobigny cedex France<br />

2. Unité de Chimie des Biomolécules, URA 2128, Institut Pasteur, 28 rue du Docteur<br />

Roux, 75724 Paris cedex 15, France<br />

To emphasize <strong>the</strong> role played by <strong>the</strong> S-S bridge in <strong>the</strong> structural features <strong>of</strong> somatostatin-14 (SST-<br />

14) [1], we have applied our previously described experimental protocol to this peptide horm<strong>on</strong>e<br />

[2]. Newly recorded CD and Raman spectra <strong>of</strong> this cyclic peptide and its open analogue obtained<br />

by Cys→Ser substituti<strong>on</strong>, are presented. CD spectra <strong>of</strong> both peptides recorded in aqueous<br />

soluti<strong>on</strong>s in <strong>the</strong> 100-500 µM c<strong>on</strong>centrati<strong>on</strong> range are strikingly similar. They reveal principally that<br />

random c<strong>on</strong>formers c<strong>on</strong>stitute <strong>the</strong> major populati<strong>on</strong> in both peptides. C<strong>on</strong>sequently <strong>the</strong> S-S bridge<br />

has no structuring effect at submilimolar c<strong>on</strong>centrati<strong>on</strong>s. In methanol, <strong>the</strong> CD spectrum <strong>of</strong><br />

somatostatin-14 keeps globally <strong>the</strong> same spectral shape as that observed in water, whereas its open<br />

analogue presents a major populati<strong>on</strong> <strong>of</strong> helical c<strong>on</strong>formers. Raman spectra recorded as a functi<strong>on</strong><br />

<strong>of</strong> peptide c<strong>on</strong>centrati<strong>on</strong> (5-20 mM) and also in <strong>the</strong> presence <strong>of</strong> 150 mM NaCl, provide valuable<br />

c<strong>on</strong>formati<strong>on</strong>al informati<strong>on</strong>. All Raman spectra present a mixture <strong>of</strong> random and β-hairpin<br />

structures for both cyclic and open peptides. More importantly, <strong>the</strong> presence or <strong>the</strong> absence <strong>of</strong> <strong>the</strong><br />

disulfide bridge, do not seem to influence c<strong>on</strong>siderably different populati<strong>on</strong>s <strong>of</strong> sec<strong>on</strong>dary<br />

structures within this range <strong>of</strong> c<strong>on</strong>centrati<strong>on</strong>. However, Raman spectra <strong>of</strong> SST-14 reveal a peptide<br />

c<strong>on</strong>centrati<strong>on</strong> effect <strong>on</strong> <strong>the</strong> flexibility <strong>of</strong> <strong>the</strong> S-S linkage, and c<strong>on</strong>sequently <strong>on</strong> that <strong>of</strong> its cyclic part.<br />

In c<strong>on</strong>clusi<strong>on</strong>, although <strong>the</strong> disulfide linkage does not seem to markedly influence <strong>the</strong> SST-14<br />

c<strong>on</strong>formati<strong>on</strong>al features in aqueous soluti<strong>on</strong>s, its presence seems to be necessary to assure <strong>the</strong><br />

flexibility <strong>of</strong> <strong>the</strong> cyclic part <strong>of</strong> this peptide, and to maintain its closed structure in lower dielectric<br />

c<strong>on</strong>stant envir<strong>on</strong>ments.<br />

References<br />

[1] M. Pawlikowski, G. Meleń-Mucha, Curr. Op. Pharmacol. 4, 608-613 (2004).<br />

[2] G.Guiffo Soh, B. Hernández, Y.M.Coïc, F.Z. Boukhalfa-Heniche, M. Ghomi, J. Phys. Chem. B 111, 12563-12572<br />

(2007).<br />

72


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Model based pre-processing in biospectroscopy<br />

A. KOHLER 1,2,3 , N. K. AFSETH 1 , G. D.SOCKALINGUM 4 AND H. MARTENS 1,2,3,5<br />

1 Centre for Biospectroscopy and Data Modelling, Matforsk/N<strong>of</strong>ima<br />

Food, Ås, Norway<br />

2 CIGENE – Center for Integrative Genetics, University <strong>of</strong> Life Sciences,<br />

1432 Ås, Norway<br />

3 Department <strong>of</strong> Ma<strong>the</strong>matical Sciences and Technology (IMT),<br />

Norwegian University <strong>of</strong> Life Sciences, Ås, Norway<br />

4 MéDIAN- Université de Reims Champagne-Ardenne, CNRS UMR6237-<br />

MEDyC, UFR de Pharmacie, IFR 53, 51096 Reims cedex, France.<br />

Pharmacie, 51 rue Cognacq-Jay, 51096 Reims Cedex, France<br />

5 Faculty <strong>of</strong> Life Sciences, University <strong>of</strong> Copenhagen, Denmark<br />

Pre-processing is an important first step <strong>of</strong> <strong>the</strong> data analysis in order to remove n<strong>on</strong>-relevant<br />

informati<strong>on</strong> or to separate light scattering phenomena in spectra from chemical absorbance 1. A<br />

major advantage <strong>of</strong> model-based pre-processing techniques is that <strong>the</strong>y allow c<strong>on</strong>sidering light<br />

scattering phenomena separately from chemical informati<strong>on</strong>. This is important in all situati<strong>on</strong>s<br />

where light scattering phenomena are informative and need to be treated separately. This may<br />

avoid that <strong>the</strong>y are interpreted as chemical informati<strong>on</strong> 1. Ano<strong>the</strong>r advantage <strong>of</strong> model based preprocessing<br />

is that a priori knowledge about scattering phenomena can be build into <strong>the</strong> preprocessing<br />

model.<br />

Recently we have presented an approach for estimating and correcting Mie scattering occurring in<br />

infrared spectra <strong>of</strong> single cells as in synchrotr<strong>on</strong> based microscopic 2. The Mie scattering can be<br />

modeled by approximate formulae estimated before being separated from <strong>the</strong> vibrati<strong>on</strong>al<br />

absorpti<strong>on</strong> using extended multiplicative signal correcti<strong>on</strong> (EMSC). Since <strong>the</strong> Mie scattering is<br />

depending n<strong>on</strong>-linearly <strong>on</strong> <strong>the</strong> product <strong>of</strong> radius and refractive index <strong>of</strong> <strong>the</strong> medium/sphere<br />

causing it, a new method based <strong>on</strong> principal comp<strong>on</strong>ent analysis (PCA) was developed for<br />

estimating <strong>the</strong> Mie scattering by EMSC for unknown radius and refractive index <strong>of</strong> <strong>the</strong> Mie<br />

scatterer. The approach is <strong>of</strong> ra<strong>the</strong>r generic nature for handling spectral phenomena with a priori<br />

known ma<strong>the</strong>matical approximati<strong>on</strong> model.<br />

When a priori knowledge about unwanted interference phenomena is not available, it can be<br />

obtained from <strong>the</strong> dataset itself. Systematic patterns <strong>of</strong> unwanted methodological variati<strong>on</strong>s can be<br />

estimated from replicate spectra, modeled by a linear subspace model and implemented into<br />

EMSC. 3<br />

References<br />

[1] Kohler A., Zim<strong>on</strong>ja M., Segtnan V., Martens H., “Data preprocessing: SNV, MSC and EMSC pre-processing in<br />

biospectroscopy”, in Comprehensive Chemometrics, edited by Walczak B, Tauler Ferré R, Brown S., Elsevier, in<br />

press.<br />

[2] Kohler A., Sulé-Suso J., Sockalingum G.D., Tobin M., Bahrami F., Yang Y., Pijanka J., Dumas P., Cotte M., Martens<br />

H., Applied <strong>Spectroscopy</strong> , 62, 259-266 (2008).<br />

[3] Kohler A., Böcker U., Warringer J., Blomberg A., Omholt S.W., Stark E., Martens H ., Applied spectroscopy 63 (3),<br />

296-305 (<strong>2009</strong>).<br />

73


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Stemness <strong>of</strong> stem cells as determined by c<strong>on</strong>focal<br />

Raman microspectroscopy<br />

V. V. PULLY 1 , A. LENFERINK 1 , V. SUBRAMANIAM 1 , C. A. VAN BLITTERSWIJK 2 , AND C. OTTO 1<br />

1. Biophysical Engineering, BMTI, MESA + institute for Nanotechnology<br />

University <strong>of</strong> Twente, Enschede 7522 ND, The Ne<strong>the</strong>rlands.<br />

2. Tissue Regenerati<strong>on</strong>, BMTI, Dept. <strong>of</strong> Physics, University <strong>of</strong> Twente,<br />

Enschede 7522 ND, The Ne<strong>the</strong>rlands.<br />

Adult human b<strong>on</strong>e marrow derived mesenchymal stem cells (hBMSC) are known for <strong>the</strong>ir<br />

stemness, wherein differentiati<strong>on</strong> towards various pluripotent mesenchymal lineages such as<br />

b<strong>on</strong>e, cartilage, muscle, neur<strong>on</strong>s , hepatic tissue, and still o<strong>the</strong>r tissues are feasible [1]. We cultured<br />

hBMSCs under <strong>the</strong> influence <strong>of</strong> a range <strong>of</strong> differentiati<strong>on</strong> media that provide physical and<br />

chemical cues to guide differentiati<strong>on</strong> and assembly into osteogenic, adipogenic and myogenic<br />

lineages. hBMSCs differentiating towards <strong>the</strong>se lineages were m<strong>on</strong>itored over l<strong>on</strong>g time periods<br />

up to 30 days using a home-built c<strong>on</strong>focal Raman micro-spectroscope [2]. The stemness <strong>of</strong> <strong>the</strong> cells<br />

could be determined with c<strong>on</strong>focal Raman microscopy (CRM) from measurements at regular time<br />

intervals from early stage till late stage <strong>of</strong> differentiati<strong>on</strong>. We c<strong>on</strong>clude that CRM provides a<br />

powerful method for n<strong>on</strong>-invasive and label-free analysis <strong>of</strong> in vitro development <strong>of</strong> tissues from<br />

hBMSCs all through <strong>the</strong> culture period. CRM overcomes particular disadvantages in existing<br />

methods such as NMR, FTIR, SEM or fluorescence staining procedures. Raman spectroscopic data<br />

acquired as early as day 3 <strong>of</strong> a culture period showed bio-markers for osteogenesis that defined<br />

early stage <strong>of</strong> hBMSC differentiati<strong>on</strong>. These results were in agreement with <strong>the</strong> Raman results<br />

obtained after day 30 <strong>of</strong> <strong>the</strong> culture period, when stem cell pluripotency was well expressed.<br />

Acknowledgements<br />

The funding <strong>of</strong> The Dutch Program for Tissue Engineering (DPTE) through <strong>the</strong> Dutch Technology<br />

Foundati<strong>on</strong> is gratefully acknowledged.<br />

References<br />

[1] M. F. Pittienger, A. M. Mackey, S. C. Beck, R. K. Jaiswal, R. Douglas, J. D. Mo DH. Frauenfelder, S. G. Sligar, P. G.<br />

Wolynes, Science 254, 1598-1603 (1991).<br />

[2] H. J. van Manen, A. Lenferink and C. Otto. Anal Chem. 80, 9576-9582 (2008).<br />

74


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Tautomerism in 5-Bromouracil: relati<strong>on</strong>ships with<br />

o<strong>the</strong>r 5-haloderivatives and effect <strong>of</strong> <strong>the</strong> microhydrati<strong>on</strong><br />

M. ALCOLEA PALAFOX 1 , V.K. RASTOGI 2 , A. GUERRERO-MARTÍNEZ 1 , G. TARDAJOS 1 , JÉSSICA<br />

TALAYA 1 , HITESH KUMAR 2 AND J K VATS 2<br />

1. Departamento de Química-Física I, Facultad de Ciencias Químicas, Universidad<br />

Complutense, Madrid-28040, Spain, alcolea@quim.ucm.es<br />

2. Department <strong>of</strong> Physics, CCS University, Meerut-250 004, India<br />

Uracil and its derivatives play a pivotal role in basic biological processes. 5-bromouracil (5-BrU) is<br />

<strong>on</strong>e <strong>of</strong> <strong>the</strong> well-known uncomm<strong>on</strong> nucleotide bases and has <strong>the</strong> ability to co-ordinate metal or to<br />

bind to tissues via metals, which interfaces with <strong>the</strong> growth <strong>of</strong> cancer cells [1,2]. The existence <strong>of</strong><br />

<strong>the</strong> enol tautomer is <strong>the</strong> origin <strong>of</strong> its mutagenic property [3]. As in <strong>the</strong> uracil molecule (U), 5-BrU<br />

may exist in various tautomeric forms differing from each o<strong>the</strong>r by <strong>the</strong> positi<strong>on</strong> <strong>of</strong> <strong>the</strong> prot<strong>on</strong>.<br />

Tautomers U1-U6 corresp<strong>on</strong>d to that <strong>of</strong> uracil notati<strong>on</strong>, and <strong>the</strong>y are <strong>the</strong> most important and<br />

studied <strong>on</strong>es, Table 1. The calculati<strong>on</strong>s were made with <strong>the</strong> GAUSSIAN 03 package [4]. The most<br />

stable is <strong>the</strong> dioxo form (U1). Tautomers U7-U10 are <strong>on</strong>ly characteristic <strong>of</strong> 5-XU, due to <strong>the</strong><br />

X=halogen atom. Solvent interacti<strong>on</strong>s partly modify this gas-phase order <strong>of</strong> stability. These<br />

stabilities are also somewhat sensitive to both <strong>the</strong> basis set and <strong>the</strong> <strong>the</strong>oretical method used,<br />

showing variati<strong>on</strong>s within 1.5 kcal/mol. U3-U4 are very close in energy, ca. 0.5 kcal/mol. The<br />

shortening <strong>of</strong> N3-C4 (and N1-C6) in U3, U4 and U9 increase <strong>the</strong> quin<strong>on</strong>oid character <strong>of</strong> <strong>the</strong> ring.<br />

U9 is not planar. It is <strong>the</strong> <strong>on</strong>ly <strong>on</strong>e that appears with <strong>the</strong> hydrogen <strong>on</strong> <strong>the</strong> halogen atom out-<strong>of</strong> ring<br />

plane, and with <strong>the</strong> uracil ring str<strong>on</strong>gly deformed. Tautomers in 5-XU are more stable than in U.<br />

Water molecules stabilize <strong>the</strong> enol forms more than <strong>the</strong> keto <strong>on</strong>es, and increase <strong>the</strong> reactivity <strong>of</strong> both<br />

oxygen atoms.<br />

Acknowledgement.: MAP, JT, AG and GT are grateful to <strong>the</strong> UCM <strong>of</strong> Spain for financial supports<br />

through UCM-BSCH GR58/08 grant number 921628.<br />

Table 1. Gas-phase relative energies <strong>of</strong> <strong>the</strong> tautomers (Kcal/mol) in uracil and in 5-XU.<br />

Method U1 U2 U3 U4 U5 U6 U7 U8 U9 U10<br />

Uracil:<br />

B3LYP/6-311++G(3df,pd) + ZPE<br />

B3LYP/DGDZVP + ZPE<br />

CCSD/6-31G**, ref. [5]<br />

Experimental, ref. [6]<br />

5-FU<br />

B3LYP/6-311++G(3df,pd) +ZPE<br />

5-BrU<br />

B3LYP/6-311++G(3df,pd) +ZPE<br />

B3LYP/DGDZVP + ZPE<br />

MP2/6-31G** + ZPE<br />

5-IU<br />

B3LYP/DGDZVP + ZPE<br />

References<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

11.12<br />

11.68<br />

11.19<br />

9.21<br />

9.72<br />

10.24<br />

9.61<br />

10.46<br />

11.53<br />

12.76<br />

12.88<br />

12.27<br />

11.92<br />

13.06<br />

13.08<br />

13.09<br />

75<br />

12.89<br />

14.47<br />

12.39<br />

19 ± 6<br />

11.59<br />

11.79<br />

13.29<br />

10.85<br />

13.57<br />

18.89<br />

20.12<br />

19.62<br />

22 ± 1<br />

16.41<br />

17.24<br />

18.57<br />

17.71<br />

18.74<br />

20.34<br />

21.63<br />

22.60<br />

19.72<br />

17.51<br />

18.71<br />

18.66<br />

18.82<br />

86.97<br />

90.54<br />

97.26<br />

79.03<br />

76.47<br />

74.82<br />

79.84<br />

70.05<br />

92.72<br />

95.80<br />

99.95<br />

[1] J.P. Henders<strong>on</strong>, J. Byun, J. Takeshita, and J.W. Heinecke, J. Biol. Chem., 278, 23522 (2003).<br />

[2] V.K. Rastogi, M.A. Palafox, L. Mittal, N. Peica, W. Kiefer, K. Lang, S.P. Ojha, J. Raman Spectros., 38, 1227 (2007).<br />

[3] J.M. Berg, J.L. Tymoczko, L. Stryer, and N.D. Clarke, Biochemistry, W.H. Freeman, New York, 2002.<br />

[4] Gaussian 03, Revisi<strong>on</strong> B.04, Gaussian Inc, Pittsburg, PA, 2003.<br />

[5] S. Millefiori, and A. Alpar<strong>on</strong>e, Chem. Phys., 303, 27 (2004).<br />

[6] P. Beak, and J.M. White, J. Am. Chem. Soc., 104, 7073 (1982).<br />

90.04<br />

82.52<br />

85.76<br />

90.08<br />

75.82


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Activity <strong>of</strong> upper electr<strong>on</strong>-excited states in coelenterate<br />

bioluminescence<br />

N. BELOGUROVA 1 , R. ALIEVA 2 AND N. KUDRYASHEVA 1,2<br />

1. Institute <strong>of</strong> Biophysics, Siberian Branch <strong>of</strong> <strong>the</strong> Russian Academy <strong>of</strong><br />

Sciences, Krasnoyarsk, 660036, Russia, nbelogurova@mail.ru<br />

2. Siberian Federal University, Svobodny, Krasnoyarsk, 660041, Russia<br />

Bioluminescence is a result <strong>of</strong> chemiluminescent oxidative enzymatic reacti<strong>on</strong>s. The <strong>the</strong>ories <strong>of</strong><br />

chemiluminescence and structure <strong>of</strong> <strong>the</strong> molecules predict that <strong>the</strong> process <strong>of</strong> bioluminescence<br />

may involve upper electr<strong>on</strong>-excited states <strong>of</strong> <strong>the</strong> bioluminescent emitter molecule. It is believed<br />

that organic peroxides decompose to form nπ*-states <strong>of</strong> organic substances located at carb<strong>on</strong>yl<br />

groups. The bioluminescent emitter is supposed to be a heterocyclic compound with high<br />

fluorescence yield. It is specified by <strong>the</strong> upper singlet and triplet excited states <strong>of</strong> nπ*-type (Fig.<br />

1) with excitati<strong>on</strong> located <strong>on</strong> carb<strong>on</strong>yl groups. Generati<strong>on</strong> <strong>of</strong> an excited carb<strong>on</strong>yl group <strong>of</strong> <strong>the</strong><br />

similar compounds is to be followed by populati<strong>on</strong> <strong>of</strong> lower-energy singlet states, e.g. through<br />

intramolecular n<strong>on</strong>-radiative transiti<strong>on</strong>s Tnπ*~~→Sππ*. This process is permitted as transiti<strong>on</strong><br />

between <strong>the</strong> levels <strong>of</strong> different both orbital nature and multiplicity (El Sayed rule). Emissi<strong>on</strong> <strong>of</strong><br />

light is <strong>the</strong> final stage <strong>of</strong> <strong>the</strong> bioluminescent process (Fig. 1). The hypo<strong>the</strong>sis <strong>of</strong> activity <strong>of</strong> upper<br />

electr<strong>on</strong>-excited states <strong>of</strong> <strong>the</strong> bioluminescent emitter was first proposed by N.S. Kudryasheva<br />

and D.N. Shigorin. It was experimentally c<strong>on</strong>firmed for bioluminescent emitter <strong>of</strong> bacteria.<br />

Applicati<strong>on</strong> <strong>of</strong> <strong>the</strong> hypo<strong>the</strong>sis to bioluminescent emitters <strong>of</strong> o<strong>the</strong>r organisms (fireflies,<br />

coelenterates, etc.) is <strong>of</strong> great interest now. In this work we experimentally verified that upper<br />

electr<strong>on</strong>-excited states are involved in bioluminescence <strong>of</strong> coelenterates as <strong>the</strong> primary excited<br />

states. A series <strong>of</strong> fluorescent molecules was used as foreign energy acceptors in this<br />

bioluminescent reacti<strong>on</strong>. The fluorescent aromatic compounds – pyrene, 2-methoxy-naphtalene,<br />

naphthalene, and 1,4-diphenylbutadiene – were selected, with fluorescent state energies<br />

ranging from 26700 to 32500 cm -1. Excitati<strong>on</strong> <strong>of</strong> <strong>the</strong>se molecules by Forster singlet-singlet energy<br />

transfer from Sππ* <strong>of</strong> bioluminescence emitter and by light absorpti<strong>on</strong> were excluded. The weak<br />

sensitized fluorescence <strong>of</strong> three compounds was found in <strong>the</strong> course <strong>of</strong> <strong>the</strong> bioluminescent<br />

reacti<strong>on</strong>. Energy <strong>of</strong> <strong>the</strong> upper electr<strong>on</strong>-excited states <strong>of</strong> <strong>the</strong> bioluminescent emitter was located<br />

around 31000 cm -1.<br />

Fig. 1 – Yabl<strong>on</strong>ski diagram <strong>of</strong> bioluminescent emitter and exogenous fluorescent compound.<br />

76


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

FTIR microspectroscopy (MSP) for detecti<strong>on</strong> and<br />

identificati<strong>on</strong> <strong>of</strong> fungal phytopathogenes<br />

Ahmad Salman 1, Leah Tsror 2, Shaul Mordechai 3 and Mahmoud Huleihel 4<br />

1Department <strong>of</strong> Physics, Sami Shamo<strong>on</strong> College <strong>of</strong> Engineering , Beer-Sheva 84100, Israel.<br />

2Department <strong>of</strong> Plant Pathology, The Institute <strong>of</strong> Plant Protecti<strong>on</strong>, Agricultural Research<br />

Organizati<strong>on</strong>, Gilat Experiment Stati<strong>on</strong>, M.P. Negev, 85250, Israel.<br />

3 Department <strong>of</strong> Physics, Ben-Guri<strong>on</strong> University, Beer-Sheva 84105, Israel<br />

4Department <strong>of</strong> Virology and Developmental Genetics, Faculty <strong>of</strong> Health Sciences, Ben-Guri<strong>on</strong><br />

University <strong>of</strong> <strong>the</strong> Negev,Beer-Sheva, Israel.<br />

Soil-borne fungi are c<strong>on</strong>sidered as serious pathogens to many plants and can cause a severe<br />

ec<strong>on</strong>omic damage. Early detecti<strong>on</strong> and identificati<strong>on</strong> <strong>of</strong> <strong>the</strong>se pathogens is very important and<br />

might be critical for <strong>the</strong>ir c<strong>on</strong>trol. The available methods for identificati<strong>on</strong> <strong>of</strong> fungi are time<br />

c<strong>on</strong>suming and not always very specific.<br />

Fourier-transform infrared (FTIR) microscopy is c<strong>on</strong>sidered to be a comprehensive and sensitive<br />

method for detecti<strong>on</strong> <strong>of</strong> molecular changes in intact cells. The advantage <strong>of</strong> FTIR<br />

microspectroscopy over c<strong>on</strong>venti<strong>on</strong>al FTIR spectroscopy is that it facilitates inspecti<strong>on</strong> <strong>of</strong> restricted<br />

regi<strong>on</strong>s <strong>of</strong> <strong>the</strong> examined samples.<br />

In <strong>the</strong> present study we used FTIR microscopy as a sensitive and effective assay for <strong>the</strong> detecti<strong>on</strong><br />

and discriminati<strong>on</strong> between different species and strains <strong>of</strong> fungi. Our results showed significant<br />

spectral differences between <strong>the</strong> various examined fungi. These results proved <strong>the</strong> possibility <strong>of</strong><br />

discriminati<strong>on</strong> between <strong>the</strong>se fungi <strong>on</strong> <strong>the</strong> level <strong>of</strong> strains which bel<strong>on</strong>g to <strong>the</strong> same species.<br />

Keywords: FTIR microscopy, fungal detecti<strong>on</strong>, fungi, spectral characteristics<br />

77


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Observing proteins as single molecules encapsulated in<br />

surface- te<strong>the</strong>red polymeric nanoc<strong>on</strong>tainers<br />

T. ROSENKRANZ 1 , A. KATRANIDIS 1 , D. ATTA 1 , I. GREGOR 2 , J. ENDERLEIN 2 , M. GRZELAKOWSKI 3 ,<br />

P. RIGLER 3 , W. MEIER 3 AND J. FITTER 1<br />

1. Forschungszentrum Jülich, ISB-2, Molecular Biophysics, D-52425<br />

Jülich, Germany<br />

2. III Physikalisches Institut, Universität Göttingen, D-37077 Göttingen,<br />

Germany<br />

3. Institut für Physikalische Chemie, Universität Basel,<br />

Klingelbergstrasse 80, CH-4056 Basel, Switzerland<br />

Immobilizing biomolecules provides <strong>the</strong> advantage to observe <strong>the</strong>m individually for extended<br />

time periods, unlike in case <strong>of</strong> freely diffusing molecules in soluti<strong>on</strong>. In order to immobilize<br />

individual protein molecules, we encapsulate <strong>the</strong>m in polymeric vesicles made <strong>of</strong> amphiphilic<br />

triblock-copolymers and te<strong>the</strong>r <strong>the</strong> vesicles to a cover slide surface [1]. A major goal <strong>of</strong> this study is<br />

to investigate polymeric vesicles with respect to <strong>the</strong>ir suitability for protein folding studies. The<br />

fact that polymeric vesicles possess an extreme stability with respect to various chemical<br />

c<strong>on</strong>diti<strong>on</strong>s is supported by our observati<strong>on</strong> that harsh unfolding c<strong>on</strong>diti<strong>on</strong>s do not perturb <strong>the</strong><br />

structural integrity <strong>of</strong> <strong>the</strong> vesicles. Moreover, polymerosomes prove to be permeable to GdnHCl<br />

and <strong>the</strong>reby ideally suited for unfolding and refolding studies with encapsulated proteins. We<br />

dem<strong>on</strong>strate this with encapsulated phosphoglycerate kinase, which was fluorescently labeled<br />

with Atto655, a dye that exhibits pr<strong>on</strong>ounced photoinduced electr<strong>on</strong> transfer (PET) to a nearby<br />

tryptophan residue in <strong>the</strong> native state. Under unfolding c<strong>on</strong>diti<strong>on</strong>s, PET is reduced and we<br />

m<strong>on</strong>itored for individual encapsulated proteins alternating unfolding and refolding c<strong>on</strong>diti<strong>on</strong>s.<br />

References<br />

Fig. 1 (Left) Scheme <strong>of</strong> an individual encapsulated protein labeled<br />

with a fluorescent dye. (Right) Repetitive unfolding/refolding<br />

transiti<strong>on</strong>s as observed for single encapsulated proteins.<br />

[1] T. Rosenkranz, A. Katranidis, D. Atta, I. Gregor, J. Enderlein, M. Grzelakowski, P. Rigler, W. Meier and J. Fitter,<br />

ChemBioChem 10,702-709 (<strong>2009</strong>)<br />

78


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Three dimensi<strong>on</strong>al collagen gels as a cell culture model<br />

for <strong>the</strong> study <strong>of</strong> living cells by Raman spectroscopy<br />

F.BONNIER, A.D. MEADE, P. KNIEF, K. BHATTACHARYA, F.M. LYNG AND H.J. BYRNE<br />

Focas Research Institute, Dublin Institute <strong>of</strong> Technology (DIT), Kevin<br />

Street, Dublin 8, Ireland (fb<strong>on</strong>nier@dit.ie)<br />

The study <strong>of</strong> single cells with infrared and Raman spectroscopy is an emergent topic in <strong>the</strong> field <strong>of</strong><br />

“biospectroscopy” [1]. The main advantage <strong>of</strong> Raman spectroscopy is <strong>the</strong> weak signal from water,<br />

which <strong>of</strong>fers <strong>the</strong> potential to record spectra from living cells using an immersi<strong>on</strong> lens. Normally,<br />

<strong>the</strong> c<strong>on</strong>focality <strong>of</strong> <strong>the</strong> Raman microspectrometer reduces <strong>the</strong> spectral c<strong>on</strong>tributi<strong>on</strong> <strong>of</strong> <strong>the</strong> optical<br />

substrates that are used during measurements <strong>on</strong> optically thin single cells. Until now, quartz has<br />

been preferred due to its weak signal but also for its surface properties which allow cells to attach<br />

and grow, in comparis<strong>on</strong> to CaF2 or ZnSe [2]. Never<strong>the</strong>less, dissimilarities between different<br />

optical substrates within in vivo cell culture result in morphological and functi<strong>on</strong>al changes in <strong>the</strong><br />

cell [3]. In order to create an experimental model closer to <strong>the</strong> real c<strong>on</strong>diti<strong>on</strong>s encountered by <strong>the</strong><br />

cell in vivo, 3-D collagen gels have been used as a substrate for spectroscopic study <strong>of</strong> living cells.<br />

In this paper we dem<strong>on</strong>strate <strong>the</strong> advantages and potential <strong>of</strong> such a model for Raman<br />

spectroscopy using 785nm as source. The Alamar Blue fluorescence assay dem<strong>on</strong>strated an<br />

increase in cell viability <strong>of</strong> up to 20% <strong>of</strong> A549 and HaCaT cells in <strong>the</strong> 3-D collagen matrix in<br />

comparis<strong>on</strong> to quartz windows. An additi<strong>on</strong>al advantage <strong>of</strong> <strong>the</strong> use <strong>of</strong> collagen gel instead <strong>of</strong><br />

quartz windows is a significant improvement in multivariate data analysis. We have observed<br />

through <strong>the</strong> measurement <strong>of</strong> various Z-pr<strong>of</strong>iles through various cells that collagen gels give <strong>the</strong><br />

same background spectral c<strong>on</strong>tributi<strong>on</strong> regardless <strong>of</strong> Z positi<strong>on</strong>, making background removal in<br />

data pretreatment more efficient. The density <strong>of</strong> <strong>the</strong> collagen gel appears too low to c<strong>on</strong>tribute<br />

significantly to <strong>the</strong> spectra recorded, with <strong>the</strong> result that it is rendered invisible spectrally. Thus<br />

<strong>the</strong> background c<strong>on</strong>tributi<strong>on</strong>s are reduced to that <strong>of</strong> <strong>the</strong> water based soluti<strong>on</strong> (medium/NaCl)<br />

used to keep <strong>the</strong> cells alive during <strong>the</strong> experiments.<br />

References<br />

[1] R. J. Swain and M. M. Stevens, Biochemical Society transacti<strong>on</strong>s 35(Pt 3), 544-549 (2007)<br />

[2] F. Draux, P. Jeanness<strong>on</strong>, A. Beljebbar, A. Tfayli, N. Fourre, M. Manfait, J. Sule-Suso and G. D. Sockalingum, The<br />

Analyst 134(3), 542-548 (<strong>2009</strong>)<br />

[3] A. D. Meade, F. M. Lyng, P. Knief and H. J. Byrne, Analytical and bioanalytical chemistry 387(5), 1717-1728<br />

(2007)<br />

79


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Gold nanoparticles for protein detecti<strong>on</strong> assays.<br />

GIUSEPPE CHIRICO 1 , LAURA SIRONI 1 , STEFANO FREDDI 1 , LAURA D’ALFONSO 1 , MADDALENA<br />

COLLINI 1 , SANDRO PALLAVICINI 2<br />

1. Dipartimento di Fisica, Università degli studi di Milano Bicocca.<br />

Piazza della Scienza 3, Milano, I-20126, Italy.<br />

2. Dipartimento di Chimica Generale, Universita` degli Studi di Pavia,<br />

Pavia, I-27100, Italy.<br />

Gold nanoparticles (NP) few nm in size have peculiar optical properties that can be tailored for a<br />

variety <strong>of</strong> applicati<strong>on</strong>s by changing <strong>the</strong>ir size and shape. The close vicinity <strong>of</strong> <strong>the</strong> dye to <strong>the</strong> gold<br />

surface can induce fluorescence quenching or enhancement depending <strong>on</strong> <strong>the</strong> dye-gold distance<br />

and it can be fur<strong>the</strong>r modified by <strong>the</strong> binding <strong>of</strong> proteins to <strong>the</strong> gold surface. The specificity <strong>of</strong> <strong>the</strong><br />

protein recogniti<strong>on</strong> is ensured by <strong>the</strong> use <strong>of</strong> antibodies specific for <strong>the</strong> selected protein. We report<br />

here <strong>the</strong> characterizati<strong>on</strong> <strong>of</strong> complexes based <strong>on</strong> 5 and 10 nm gold NPs <strong>on</strong> which Fluoresceine<br />

Isothiocyanate (FITC) is bound. The dye excited state lifetime is measured <strong>on</strong> single NP or small<br />

aggregates by fluorescence burst analysis in standard soluti<strong>on</strong>s. The binding <strong>of</strong> proteins to <strong>the</strong> gold<br />

NPs through antigen-antibody recogniti<strong>on</strong> induces a decrease <strong>of</strong> <strong>the</strong> dye excited state lifetime that<br />

can be used to measure <strong>the</strong> protein c<strong>on</strong>centrati<strong>on</strong>. We present titrati<strong>on</strong>s <strong>of</strong> BSA and p53 proteins<br />

up to 100 pM. The brightness <strong>of</strong> this dye allows to measure protein c<strong>on</strong>centrati<strong>on</strong> in soluti<strong>on</strong> with<br />

an apparent limit <strong>of</strong> detecti<strong>on</strong> <strong>of</strong> 5 pM. Competiti<strong>on</strong> experiments with o<strong>the</strong>r globular proteins in<br />

soluti<strong>on</strong>s indicate that <strong>the</strong> present c<strong>on</strong>structs allow highly selective protein detecti<strong>on</strong> and fur<strong>the</strong>r<br />

extensi<strong>on</strong> to experiments in cellular extracts suggests that <strong>the</strong> proposed method could proceed to<br />

future clinical trials.<br />

80


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Data processing in FTIR imaging <strong>of</strong> cells and tissues:<br />

towards protein sec<strong>on</strong>dary structure imaging<br />

ERIK GOORMAGHTIGH, AUDREY BÉNARD, ALLISON DERENNE AND RÉGIS GASPER,<br />

Laboratory for <strong>the</strong> Structure and Functi<strong>on</strong> <strong>of</strong> Biological Membranes,<br />

Center for Structural Biology and Bioinformatics, Université Libre de<br />

Bruxelles (ULB) CP206/2, Boulevard du Triomphe 2, B1050 Brussels,<br />

Belgium.<br />

IR spectroscopic images were recorded using an Equinox Bruker FTIR spectrometer coupled to a<br />

Hyperi<strong>on</strong> 3000 imaging system equipped with a mercury cadmium telluride (MCT)-based focal<br />

plane array (FPA) detector <strong>of</strong> 64×64 pixels (Bruker Optik, Ettlingen, Germany). Images <strong>of</strong> 4096 IR<br />

spectra at 8 cm -1 spectral resoluti<strong>on</strong> were acquired by coadding 256 interferograms. All <strong>the</strong> data<br />

processing was carried out by <strong>the</strong> program “Kinetics” running under MatLab. The “Kinetics”<br />

s<strong>of</strong>tware, previously used for FTIR spectrum processing and analysis, was extended for <strong>the</strong><br />

processing <strong>of</strong> FPA-acquired FTIR data. Bey<strong>on</strong>d <strong>the</strong> challenge <strong>of</strong> processing thousands <strong>of</strong> spectra<br />

for every single image, image analysis raises new challenges related to <strong>the</strong> variati<strong>on</strong>s <strong>of</strong> sample<br />

c<strong>on</strong>centrati<strong>on</strong> <strong>on</strong> <strong>the</strong> same image, from <strong>the</strong> absence <strong>of</strong> sample to c<strong>on</strong>centrati<strong>on</strong>s that are too high<br />

and saturate <strong>the</strong> detector. Preprocessing usually starts with scaled correcti<strong>on</strong> for water vapor<br />

absorpti<strong>on</strong>, baseline subtracti<strong>on</strong>, normalizati<strong>on</strong> (usually <strong>on</strong> <strong>the</strong> amide I-amide II area), CO2<br />

c<strong>on</strong>tributi<strong>on</strong> removal and possibly derivati<strong>on</strong> (usually sec<strong>on</strong>d derivative, in which case baseline<br />

subtracti<strong>on</strong> is unnecessary). All <strong>the</strong>se processing steps are performed automatically. At this stage,<br />

when <strong>the</strong> normalizati<strong>on</strong> step rescales spectra that were very weak, <strong>the</strong> resulting spectra are <strong>of</strong> very<br />

poor signal-to-noise ratios. In turn, a number <strong>of</strong> filters where designed to mark <strong>the</strong>se pixels with<br />

ei<strong>the</strong>r a signal/noise below a threshold or an absolute intensity higher or lower than specified<br />

thresholds. The latter acti<strong>on</strong> allows <strong>the</strong> marking <strong>of</strong> spectra distorted because <strong>of</strong> detector saturati<strong>on</strong>.<br />

Different types <strong>of</strong> images can be <strong>the</strong>n generated, ei<strong>the</strong>r based <strong>on</strong> <strong>the</strong> absorbance at 1 wavenumber<br />

or <strong>the</strong> ratio <strong>of</strong> <strong>the</strong> absorbances at 2 wavenumbers or more advanced combinati<strong>on</strong> <strong>of</strong> <strong>the</strong> data.<br />

Typically, principal comp<strong>on</strong>ent analysis (PCA) <strong>on</strong> <strong>on</strong>e or a combinati<strong>on</strong> <strong>of</strong> several spectral regi<strong>on</strong>s,<br />

area <strong>of</strong> bands, hierarchical or k-means cluster analysis, sec<strong>on</strong>dary structure c<strong>on</strong>tent evaluated as<br />

described in [1] or supervised classificati<strong>on</strong> methods such as linear discriminant analysis (LDA) or<br />

supervised partial least square (sPLS). We shall illustrate here more precisely how <strong>the</strong> processing<br />

is performed and how imaging by sec<strong>on</strong>dary structure can shed light <strong>on</strong> <strong>the</strong> molecular<br />

determinants that allow <strong>the</strong> differentiati<strong>on</strong> <strong>of</strong> sub-structures in tissues. Similarly we shall illustrate<br />

heterogeneity in prostate cancer cells (PC-3) in culture based <strong>on</strong> sec<strong>on</strong>dary structure imaging.<br />

References<br />

[1] Goormaghtigh,E., J.M.Ruysschaert, and V.Raussens. Evaluati<strong>on</strong> <strong>of</strong> <strong>the</strong> informati<strong>on</strong> c<strong>on</strong>tent in infrared spectra for<br />

protein sec<strong>on</strong>dary structure determinati<strong>on</strong>, Biophys.J. 90 (2006) 2946-2957.<br />

81


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Nanoparticle-based SERS for biodiagnostic sensing<br />

J. KNEIPP 1,2 , V. JOSEPH 1,2 , A. MATSCHULAT 1,2 , AND D. DRESCHER 1,2<br />

1. Humboldt-Universität zu Berlin, Department <strong>of</strong> Chemistry, Brook-<br />

Taylor-Str. 2, 12489 Berlin, Germany<br />

2. BAM Federal Institute for Materials Research and Testing, Richard-<br />

Willstätter-Str. 11, 12489 Berlin, Germany<br />

As dem<strong>on</strong>strated by a number <strong>of</strong> works in <strong>the</strong> recent past, <strong>the</strong> tailoring <strong>of</strong> <strong>the</strong> plasm<strong>on</strong>ic and<br />

surface properties <strong>of</strong> metal nanostructures for <strong>the</strong> c<strong>on</strong>structi<strong>on</strong> <strong>of</strong> efficient substrates is <strong>the</strong> key to a<br />

successful applicati<strong>on</strong> <strong>of</strong> surface-enhanced Raman scattering (SERS), in particular in biodiagnostic<br />

applicati<strong>on</strong>s. Nanoparticles and nanoaggregates from gold and silver have proven as versatile<br />

SERS-active structures for many analytical purposes. Here we will show results obtained in <strong>the</strong><br />

process <strong>of</strong> c<strong>on</strong>structi<strong>on</strong> <strong>of</strong> optical labels and sensors for bioanalytical applicati<strong>on</strong>s. We aim at<br />

c<strong>on</strong>structing such labels in a way that permits efficient delivery and functi<strong>on</strong>alizati<strong>on</strong> with target<br />

sequences in additi<strong>on</strong> to optimum SERS enhancement. For <strong>the</strong> characterizati<strong>on</strong> <strong>of</strong> <strong>the</strong> properties <strong>of</strong><br />

<strong>the</strong> nanoparticles and <strong>the</strong>ir aggregates, direct (electr<strong>on</strong> microscopy) and indirect methods (UV/Vis<br />

absorpti<strong>on</strong>, dynamic light scattering, DLS, and small angle x-ray scattering, SAXS) have been used.<br />

The delivery <strong>of</strong> nanoparticulate SERS substrates has to be adapted to <strong>the</strong> morphology and<br />

ultrastructure <strong>of</strong> a biological sample. Here, we will also report <strong>on</strong> in situ generati<strong>on</strong> <strong>of</strong> gold and<br />

silver nanostructures directly in situ, prior to <strong>the</strong> Raman experiment. Several aspects, such as <strong>the</strong><br />

accessibility <strong>of</strong> “hidden” substructures, as well as <strong>the</strong> change in spectroscopic perspective due to<br />

<strong>the</strong> extreme localizati<strong>on</strong> <strong>of</strong> <strong>the</strong> SERS signals were observed when we generated nanoparticles in<br />

situ in complex biomatrices such as pollen outer layers [1]. Different Raman processes were shown<br />

to be useful for obtaining <strong>the</strong> vibrati<strong>on</strong>al informati<strong>on</strong> [2, 3]. The applicati<strong>on</strong> <strong>of</strong> <strong>on</strong>e- and twophot<strong>on</strong>-excitati<strong>on</strong><br />

with sensors applied to eukaryotic cells will be dem<strong>on</strong>strated. Utilizati<strong>on</strong> <strong>of</strong> twophot<strong>on</strong><br />

excited (=hyper) Raman scattering is <strong>on</strong>ly possible due to <strong>the</strong> SERS process. Due to<br />

different selecti<strong>on</strong> rules it enables <strong>the</strong> observati<strong>on</strong> <strong>of</strong> spectral features that cannot be found in 1-P<br />

Raman spectra, such as IR-active or silent modes.<br />

References<br />

[1] V. Joseph, F. Schulte, U. Panne, and J. Kneipp, submitted.<br />

[2] J. Kneipp, H. Kneipp, K. Kneipp, Proc. Natl. Acad. Sci. USA 103, 117149-17153 (2006).<br />

[3] J. Kneipp, H. Kneipp, B. Wittig, K. Kneipp, Nano Letters 7, 2819-2823 (2007)<br />

82


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Tip-enhanced and surface-enhanced Raman<br />

spectroscopy <strong>of</strong> biological molecules <strong>on</strong> structured<br />

metallic surfaces<br />

L. E. HENNEMANN 1 , D. ZHANG 1 , D. BENNER 2 , AND A. J. MEIXNER 1<br />

1. Institute <strong>of</strong> Physical and Theoretical Chemistry, University <strong>of</strong><br />

Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany<br />

2. Department <strong>of</strong> Physics, University <strong>of</strong> K<strong>on</strong>stanz, Universitätsstrasse 10,<br />

78457 K<strong>on</strong>stanz, Germany<br />

A custom built apertureless scanning near-field optical microscope (SNOM) [1] has been used to<br />

investigate several kinds <strong>of</strong> biological molecules ranging from DNA bases to double stranded<br />

DNA. The setup is an extended parabolic mirror based c<strong>on</strong>focal microscope. We detect <strong>the</strong><br />

presence <strong>of</strong> (sub)m<strong>on</strong>olayer molecules by collecting <strong>the</strong>ir unique Raman fingerprints using ei<strong>the</strong>r<br />

surface-enhanced Raman spectroscopy (SERS) or tip-enhanced Raman spectroscopy (TERS). For<br />

SERS, both <strong>the</strong> irregular rough edges <strong>of</strong> evaporated noble metal grids and regular arrays <strong>of</strong> gold<br />

nano triangles served as enhancing substrates. We compared <strong>the</strong> plasm<strong>on</strong>ic properties <strong>of</strong> gold<br />

triangles <strong>of</strong> different sizes and inter-distances to optimize <strong>the</strong> electromagnetic enhancement with<br />

<strong>the</strong> 632.8 nm laser excitati<strong>on</strong>. Str<strong>on</strong>gly enhanced Raman spectra <strong>of</strong> adenine, acridine and calf<br />

thymus DNA were observed. In <strong>the</strong> case <strong>of</strong> TERS, an electrochemically etched sharp gold tip<br />

(approx. 20 nm tip apex diameter) is approached to <strong>the</strong> surface, acting simultaneously as an AFM<br />

tip for topographical measurements and as a near-field antenna collecting optical informati<strong>on</strong>.<br />

Preliminary TERS measurements <strong>of</strong> single calf thymus DNA molecules immobilized <strong>on</strong> smooth<br />

Au (111) surfaces will be shown.<br />

Fig. 1 Gold nano triangles evaporated <strong>on</strong> a glass substrate. a): C<strong>on</strong>focal optical image <strong>of</strong> <strong>the</strong> gold triangle<br />

array. Inset: SEM picture showing partially <strong>the</strong> gold triangles and partially <strong>the</strong> template composed <strong>of</strong><br />

polystyrene particles. b): SNOM measurement <strong>of</strong> <strong>the</strong> gold triangles. Left, <strong>the</strong> topography; right, <strong>the</strong><br />

simultaneously recorded optical image acquired by an avalanche photodiode. The white triangles indicate<br />

<strong>the</strong> near-field luminescence generated by <strong>the</strong> gold nano triangles. c): SERS spectrum <strong>of</strong> (sub)m<strong>on</strong>olayer<br />

adenine molecules adsorbed <strong>on</strong> <strong>the</strong> gold triangles. Acquisiti<strong>on</strong> time: 10 s, laser power: 250 µW, source:<br />

632.8 nm He-Ne laser.<br />

Refences<br />

[1] M. Sackrow, C. Stanciu, M. A. Lieb, A. J. Meixner, Chem. Phys. Chem. 9, 316-320 (2008)<br />

83


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

SERS microscopy: improved nanoparticle probes and<br />

<strong>the</strong>ir applicati<strong>on</strong> in tissue diagnostics<br />

M. SCHÜTZ, M. GELLNER, B. KÜSTNER AND S. SCHLÜCKER<br />

Department <strong>of</strong> Physics, University <strong>of</strong> Osnabrück, Barbarastraße 7,<br />

49069 Osnabrück, Germany.<br />

Surface-enhanced Raman scattering (SERS) microscopy is a novel method for <strong>the</strong> selective<br />

detecti<strong>on</strong> <strong>of</strong> biomolecules in targeted research.[1,2] This technique is based <strong>on</strong> vibrati<strong>on</strong>al Raman<br />

microspectroscopy in combinati<strong>on</strong> with target-specific nanoparticles. The aim is to visualize and<br />

also quantify <strong>the</strong> distributi<strong>on</strong> <strong>of</strong> multiple target molecules such as proteins in cells and tissues.<br />

Advantages <strong>of</strong> SERS over existing labeling approaches include <strong>the</strong> tremendous multiplexing<br />

capacity, quantificati<strong>on</strong> and high photostability.[1] Here, our improved SERS label design will be<br />

presented: Silica-encapsulated self-assembled m<strong>on</strong>olayers (SAMs) <strong>on</strong> tunable gold/silver<br />

nanoshells as SERS substrates for red laser excitati<strong>on</strong>.[3] This c<strong>on</strong>cept combines <strong>the</strong> spectroscopic<br />

advantages <strong>of</strong> a SAM with <strong>the</strong> high chemical and mechanical stability <strong>of</strong> a glass shell. The<br />

maximum surface coverage with Raman reporter molecules <strong>on</strong> <strong>the</strong> nanoparticle surface and <strong>the</strong><br />

uniform molecular orientati<strong>on</strong> within <strong>the</strong> SAM leads to intense and reproducible SERS signals.<br />

Overall, this improved SERS label design based <strong>on</strong> Au/Ag nanoshells results in ~ 180 times<br />

brighter SERS signals up<strong>on</strong> red laser excitati<strong>on</strong>, when compared with existing approaches based<br />

<strong>on</strong> single gold nanospheres and subm<strong>on</strong>olayer coverage with Raman reporter molecules.[3] Using<br />

SERS-labeled antibodies, <strong>the</strong> selective localizati<strong>on</strong> <strong>of</strong> prostate-specific antigen (PSA) in <strong>the</strong><br />

epi<strong>the</strong>lium <strong>of</strong> prostate tissue specimens by immuno-SERS microscopy is dem<strong>on</strong>strated. [2,3]<br />

Fig. 1 – Improved SERS label design for red laser excitati<strong>on</strong>: silica-<br />

encapsulated SAM <strong>of</strong> Raman reporter molecules <strong>on</strong> a Au/Ag<br />

nanoshell<br />

[1] S. Schlücker, ChemPhysChem <strong>2009</strong>, accepted (invited review <strong>on</strong> SERS microscopy).<br />

[2] S. Schlücker, B. Küstner, A. Punge, R. B<strong>on</strong>fig, A. Marx, P. Ströbel, J. Raman Spectrosc. 37, 719-721 (2006).<br />

[3] B. Küstner, M. Gellner, M. Schütz, F. Schöppler, A. Marx, P.Ströbel, P. Adam, C. Schmuck, S. Schlücker,<br />

Angew. Chem. Int. Ed. 48, 1950-1953 (<strong>2009</strong>).<br />

84


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Surface enhanced Raman scattering for tissue<br />

diagnostic<br />

S. CÎNTĂ PÎNZARU 1 , A. FĂLĂMAŞ 1 C. A. DEHELEAN 2 , AND C. LEHENE 1<br />

1. Babes-Bolyai University, Faculty <strong>of</strong> Physics, Kogalniceanu 1, RO-<br />

400084 Cluj-Napoca, Romania<br />

2. Victor Babes-University <strong>of</strong> Medicine and Pharmacy, Eftimie Murgu<br />

Square 2, RO-300041, Timisoara, Romania<br />

Surface enhanced Raman scattering (SERS) has been largely employed for characterizing <strong>the</strong><br />

interacti<strong>on</strong> between metal surfaces and complex biomolecules, like DNA or proteins, or even<br />

detecting <strong>the</strong> antigen–antibody complexes at a given nanostructured surface. In order to gain <strong>the</strong><br />

required enhancement to detect a n<strong>on</strong>-res<strong>on</strong>ant Raman target species at physiological<br />

c<strong>on</strong>centrati<strong>on</strong> level, a large Raman cross-secti<strong>on</strong> molecular label, usually a dye species can be used<br />

[1, 2]. Here we present <strong>the</strong> possibility to transfer this c<strong>on</strong>cept in <strong>the</strong> tissue investigati<strong>on</strong>. The<br />

availability <strong>of</strong> <strong>the</strong> amino functi<strong>on</strong>al groups <strong>of</strong> <strong>the</strong> cresyl violet molecule for Ag adsorpti<strong>on</strong> and/or<br />

for DNA targeting is reported. The fur<strong>the</strong>r aim <strong>of</strong> <strong>the</strong> present work was to determine whe<strong>the</strong>r<br />

SERS spectra can be acquired from cresyl violet labeled Ag nanoparticles using FT-SERS with <strong>the</strong><br />

near infrared 1064 nm laser line, less aggressive for tissues investigati<strong>on</strong>. The informati<strong>on</strong> about<br />

<strong>the</strong> label stability which does not suffer from photobleaching, is fur<strong>the</strong>r used to test <strong>the</strong> specific<br />

Raman signatures <strong>of</strong> <strong>the</strong> reporters buried in Sprague Dowley rat tissue to probe <strong>the</strong> skin damage<br />

and pathology m<strong>on</strong>itoring using FT-SERS. Obtaining for <strong>the</strong> first time here <strong>the</strong> FT-SERS spectrum<br />

<strong>of</strong> CV using Ag nanoparticles is <strong>of</strong> particular importance in <strong>the</strong> field, since a very limited number<br />

<strong>of</strong> molecular species exhibit NIR-SERS with Ag colloidal nanoparticles. According to <strong>the</strong> SERS<br />

<strong>the</strong>ory, <strong>the</strong> explanati<strong>on</strong> <strong>of</strong> <strong>the</strong> present results is based <strong>on</strong> <strong>the</strong> surface plasm<strong>on</strong> res<strong>on</strong>ance <strong>of</strong> <strong>the</strong><br />

aggregated nanoparticles in <strong>the</strong> presence <strong>of</strong> <strong>the</strong> adsorbate, which could reach NIR. It is c<strong>on</strong>cluded<br />

that cresyl violet is adsorbed <strong>on</strong> <strong>the</strong> Ag nanostructured surface through its chromophore group<br />

and <strong>the</strong> exocyclic NH2 groups are less involved, thus obtaining double functi<strong>on</strong>alized Ag<br />

nanoparticles which are extremely important because <strong>the</strong>y can bind via <strong>the</strong>se functi<strong>on</strong>s to DNA<br />

fragments and can be used for biomedical diagnosis and spectral tagging. Besides <strong>the</strong> characteristic<br />

SERS lines <strong>of</strong> <strong>the</strong> reporter, <strong>the</strong> tissue spectra display <strong>the</strong> intense lipids bands located at 2974, 2852<br />

and 1440 cm -1 as well as characteristic DNA bands. The band shape pr<strong>of</strong>iles are changed <strong>on</strong><br />

passing from normal to cancerous tissue, a distinct spectral shape being noticeable. The<br />

photodamaged skin exhibited characteristic signal, <strong>the</strong>refore, <strong>the</strong> technique shows great promise in<br />

rapid diagnostic and cancer tissue m<strong>on</strong>itoring.<br />

References<br />

[1] T. Vo-Dinh, F. Yan, M. B. Wabuyele, J. Raman Spectrosc. 36, 640–647 (2005).<br />

[2] I. Pavel, E. McCarney, A. Elkhaled, A. Morrill, K. Plaxco, and M. Moskovits, J. Phys. Chem. C 112(13), 4880-4883<br />

(2008).<br />

85


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

A new approach for <strong>on</strong>line-m<strong>on</strong>itoring <strong>of</strong> drugs in<br />

complex matrices with Surface Enhanced Raman<br />

<strong>Spectroscopy</strong><br />

A. MAERZ 1 , K.R. ACKERMANN 1, D. MALSCH2, T. BOCKLITZ1, T. HENKEL2 AND J. POPP 1,2<br />

1. Institute <strong>of</strong> Physical Chemistry, Friedrich Schiller University Jena,<br />

Helmholtzweg 4, 07743 Jena, Germany<br />

2. Intitute <strong>of</strong> Phot<strong>on</strong>ic Technology (IPHT), Albert-Einstein-Straße 9,<br />

07745 Jena, Germany<br />

Raman spectroscopy is characterized by high specificity, good spatial resoluti<strong>on</strong>, minimal sample<br />

preparati<strong>on</strong> and <strong>the</strong> fact that water can be used as solvent. Never<strong>the</strong>less it is difficult to use<br />

Raman spectroscopy for analytical questi<strong>on</strong>s due to <strong>the</strong> low sensitivity. A possibility to become<br />

more sensitive is <strong>the</strong> use <strong>of</strong> surface enhanced Raman spectroscopy. In literature even <strong>the</strong><br />

detecti<strong>on</strong> <strong>of</strong> single molecule with SERS is reported [1]. In combinati<strong>on</strong> with a lab-<strong>on</strong>-a-chip device<br />

surface enhanced Raman spectroscopy is excellent applicable for quantitative <strong>on</strong>line-m<strong>on</strong>itoring<br />

<strong>of</strong> different drugs like mitoxanr<strong>on</strong>e and promethazine in aqueous soluti<strong>on</strong>s [2]. To accomplish <strong>the</strong><br />

prec<strong>on</strong>diti<strong>on</strong>s for quantitative measurements a liquid/liquid 2-phase segmented flow is applied<br />

to prevent depositi<strong>on</strong>s <strong>of</strong> nanoparticle at <strong>the</strong> channel walls [3]. To compensate <strong>the</strong> low<br />

reproducibility <strong>of</strong> SERS spectra due to <strong>the</strong> dependence <strong>of</strong> <strong>the</strong> SERS activity <strong>on</strong> various properties<br />

<strong>of</strong> <strong>the</strong> used colloid isotopic labeled molecules are implemented as internal standard [4]. This new<br />

lab-<strong>on</strong>-a-chip system using an isotope labeled internal standard and liquid-liquid segmentedflow-based<br />

flow-through Raman detecti<strong>on</strong> <strong>of</strong>fers <strong>the</strong> possibility for reproducible quantitative<br />

SERS measurements. The major challenge now is to detect drugs in matrices like blood or urine.<br />

The necessary sample preparati<strong>on</strong> is supposed to be implemented in <strong>the</strong> lab-<strong>on</strong>-<strong>the</strong>-chip system<br />

to create a compact analytical tool. In this c<strong>on</strong>tributi<strong>on</strong> first investigati<strong>on</strong>s c<strong>on</strong>cerning <strong>the</strong><br />

detecti<strong>on</strong> <strong>of</strong> drugs in matrices will be presented.<br />

References<br />

[1] S. Nie, S. R. Emory, Science 1997, 275, 1102.<br />

[2] K. R. Strehle, D. Cialla, P. Roesch, T. Henkel, M. Koehler, J. Popp, Anal. Chem. 2007, 79, 1542.<br />

[3] K. R. Ackermann, T. Henkel, J. Popp, ChemPhysChem 2007, 8, 2665.<br />

[4] A. März, K. R. Ackermann, D. Malsch, T. Bocklitz, T. Henkel, J. Popp, Journal <strong>of</strong> Biophot<strong>on</strong>ics <strong>2009</strong>, 2, 232.<br />

86


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Towards <strong>the</strong> instantaneous quantitative fluoroimaging<br />

drugs determinati<strong>on</strong> in body fluids with no added reagents<br />

N. STRASHENIKOV 1 , A.GERSHANIK 1 , N. PAPIASHVILI 1 , R. COHEN-LURIA 1 , Y. KALISKY 2 ,<br />

AND A.H. PAROLA 1*<br />

1. Dept. <strong>of</strong> Chemistry, Ben Guri<strong>on</strong> University, P.O. Box 653 Beer Sheva, Israel 84 105, Israel<br />

2. Chemistry Dept, Nuclear Research Center Negev, P.O. Box 9001 Beer Sheva, 84190, Israel<br />

The objective <strong>of</strong> our research stems from <strong>the</strong> need to develop a simple and easy-to-operate<br />

m<strong>on</strong>itoring technique for a rapid, sensitive and quantitative detecti<strong>on</strong> <strong>of</strong> drugs in body fluids, with<br />

no reagent added and with no need for highly qualified pr<strong>of</strong>essi<strong>on</strong>al laboratory technicians. This<br />

will be <strong>of</strong> particular use in bed-side diagnosis and for patient m<strong>on</strong>itoring in doctor’s <strong>of</strong>fice. An<br />

added value <strong>of</strong> our proposed method is aimed towards hospitals that will not require special<br />

clinical laboratories. Mass m<strong>on</strong>itoring <strong>of</strong> say, student populati<strong>on</strong>, government employees, military<br />

pers<strong>on</strong>nel or drugged drivers could thus be easily m<strong>on</strong>itored. This novel method should result in<br />

eliminati<strong>on</strong> <strong>of</strong> <strong>the</strong> need to send body fluid samples to a central laboratory and instead will utilize<br />

<strong>the</strong> internet. The newly developed Fluoroimager will be widely and freely distributed for sample<br />

measurement elsewhere and <strong>the</strong> collected test data will be examined by our novel neur<strong>on</strong>al<br />

network-pattern recogniti<strong>on</strong> s<strong>of</strong>tware, against a central data bank. We obtain a 3-D fluorescence<br />

map <strong>of</strong> <strong>the</strong> sample under study by simultaneous recording <strong>of</strong> <strong>the</strong> fluorescence intensity at <strong>the</strong><br />

various predetermined spectral range <strong>of</strong> both excitati<strong>on</strong> and emissi<strong>on</strong> wavelengths. The 3-D<br />

image obtained is specific and a unique "fingerprint image" <strong>of</strong> <strong>the</strong> fluorescent sample. When<br />

compared with various spectra from a predetermined databank (which includes c<strong>on</strong>centrati<strong>on</strong>calibrati<strong>on</strong><br />

curves), it can accurately identify both qualitatively and quantitatively <strong>the</strong> unknown<br />

drugs. This is correct for samples c<strong>on</strong>taining drug mixtures too. The method combines highsensitivity,<br />

quick determinati<strong>on</strong>, single step measurement with no need for pre-treatment or<br />

additi<strong>on</strong> <strong>of</strong> reagents.<br />

Fig. 1 – Excitati<strong>on</strong>-emissi<strong>on</strong> three-dimensi<strong>on</strong>al (3D) spectra <strong>of</strong> Digoxin-diazepam<br />

mixture in distilled water. Similar spectra were obtained in diluted human serum.<br />

* To whom corresp<strong>on</strong>dence should be addressed at aparola@bgu.ac.il<br />

87


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Near-Infrared Fluorophores for Biomolecule Characterizati<strong>on</strong> and<br />

Imaging Applicati<strong>on</strong>s<br />

G. Pat<strong>on</strong>ay, G. Beckford, L. Strekowski, M. Henary and S. H. Kim<br />

Department <strong>of</strong> Chemistry, Georgia State University, Atlanta, GA 30303, USA<br />

Near-Infrared (NIR) fluorescence has been valuable in analytical and bioanalytical chemistry. NIR<br />

probes and labels have been used for several applicati<strong>on</strong>s, including hydrophobicity <strong>of</strong> protein<br />

binding sites, DNA sequencing, immunoassays, CE separati<strong>on</strong>s, etc. The NIR regi<strong>on</strong> (700-1100<br />

nm) has advantages for <strong>the</strong> spectroscopist due to <strong>the</strong> inherently lower background interference<br />

from <strong>the</strong> biological matrix and <strong>the</strong> high molar absorptivities <strong>of</strong> NIR chromophores. During <strong>the</strong><br />

studies we report here several NIR dyes were prepared to determine <strong>the</strong> importance <strong>of</strong> <strong>the</strong><br />

hydrophobicity <strong>of</strong> NIR dyes in binding to biomolecules including serum albumins. We<br />

syn<strong>the</strong>sized NIR dye homologs c<strong>on</strong>taining <strong>the</strong> same chromophore but substituents <strong>of</strong> varying<br />

hydrophobicity. Hydrophobic moieties were represented by alkyl and aryl groups and<br />

hydrophilic moieties were polyethylene glycols (PEG). NIR dyes <strong>of</strong> varying hydrophobicity<br />

exhibited varying degrees <strong>of</strong> H-aggregati<strong>on</strong> in aqueous soluti<strong>on</strong>; PEGylated NIR dyes had very<br />

little aggregati<strong>on</strong> and <strong>the</strong>ir binding c<strong>on</strong>stants were smaller as well, indicating that <strong>the</strong> degree <strong>of</strong> Haggregati<strong>on</strong><br />

could be used as an indicator to predict binding characteristics to serum albumins.<br />

Typical dye structures that exhibit large binding c<strong>on</strong>stants to biomolecules were compared in<br />

order to optimize applicati<strong>on</strong>s utilizing n<strong>on</strong>-covalent interacti<strong>on</strong>s. Recently, our research group<br />

introduced bis-cyanines as NIR probes. Depending <strong>on</strong> <strong>the</strong>ir microenvir<strong>on</strong>ment, bis-cyanines can<br />

exist as an intramolecular dimer with <strong>the</strong> two cyanines, ei<strong>the</strong>r in a stacked form or in a linear<br />

c<strong>on</strong>formati<strong>on</strong> in which <strong>the</strong> two subunits do not interact with each o<strong>the</strong>r. In its intramolecular Haggregate<br />

form, <strong>the</strong> chromophore has a low extincti<strong>on</strong> coefficient and low fluorescence quantum<br />

yield. Up<strong>on</strong> additi<strong>on</strong> <strong>of</strong> biomolecules <strong>the</strong> H- and D-bands are decreased and <strong>the</strong> m<strong>on</strong>omeric band<br />

is increased, with c<strong>on</strong>comitant increase in fluorescence intensity. The utility <strong>of</strong> NIR dyes as tracers<br />

for measuring small molecule binding to biomolecules (e.g., HSA) was dem<strong>on</strong>strated via CE using<br />

NIR LIF detecti<strong>on</strong>. Certain NIR dyes accumulate in live cells allowing for imaging applicati<strong>on</strong>s.<br />

Examples for cell imaging using hydrophobic dyes will be given. In additi<strong>on</strong> to hydrophobic NIR<br />

dyes, water soluble NIR dyes are excellent candidates for both in vitro and in vivo imaging <strong>of</strong> cells<br />

and organs.<br />

88


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Examinati<strong>on</strong> <strong>of</strong> IgG diffusi<strong>on</strong> in C<strong>on</strong>trolled Pore Glass Protein<br />

Affinity Media with C<strong>on</strong>focal Raman <strong>Spectroscopy</strong><br />

N. BIAN, S. BLAZKA, K. COTONI, AND D. BELL<br />

Millipore Corporati<strong>on</strong>, 80 Ashby Road, Bedford, Massachusetts 01730,<br />

USA<br />

Protein A affinity chromatography has been <strong>the</strong> workhorse in downstream processing <strong>of</strong><br />

m<strong>on</strong>ocl<strong>on</strong>al antibody [1-3]. One <strong>of</strong> <strong>the</strong> comm<strong>on</strong> base matrices for affinity chromatography media is<br />

c<strong>on</strong>trolled pore glass (CPG). As a relatively mature material, c<strong>on</strong>trolled pore glass provides<br />

rigidity, uniform pore size, and superior flow property. The recent breakthrough is Prosep Ultra<br />

Plus resin that possesses <strong>the</strong> highest binding capacity <strong>of</strong> immunoglobulin antibody, especially at<br />

short residence time (≤ 4 min). However, while <strong>the</strong> agarose affinity resin is well examined for its<br />

ligand distributi<strong>on</strong> and IgG diffusi<strong>on</strong> kinetics [4], <strong>the</strong> same informati<strong>on</strong> for c<strong>on</strong>trolled pore glass<br />

does not exist. This is partly due to <strong>the</strong> opacity <strong>of</strong> c<strong>on</strong>trolled pore glass in water and o<strong>the</strong>r comm<strong>on</strong><br />

buffers used in c<strong>on</strong>focal fluorescence studies in which agarose is transparent. The irregularity <strong>of</strong><br />

c<strong>on</strong>trolled pore glass makes it even more mysterious and challenging to visualize. In recent years,<br />

<strong>the</strong> development in c<strong>on</strong>focal Raman spectroscopy hardware enables researchers to “see through”<br />

o<strong>the</strong>rwise opaque materials. We examined Prosep Ultra Plus resin using c<strong>on</strong>focal Raman.<br />

Although we were able to obtain PrA ligand distributi<strong>on</strong> directly with suitable oil, <strong>the</strong> signal to<br />

noise is extremely low. The data acquisiti<strong>on</strong> time is too l<strong>on</strong>g to acquire a 3-D image. To solve this<br />

problem, we labeled <strong>the</strong> resin with a fluorescence dye at an optimized level and were able to<br />

obtain good 3-D image to c<strong>on</strong>firm that <strong>the</strong> PrA is evenly distributed throughout <strong>the</strong> resin.<br />

Encouraged by this learning, we fur<strong>the</strong>r labeled IgG with <strong>the</strong> same fluorescence dye and observed<br />

its diffusi<strong>on</strong> into <strong>the</strong> ProSep Ultra Plus affinity media. For resin exposed to IgG for 1 min, a clear<br />

diffusi<strong>on</strong> fr<strong>on</strong>t <strong>of</strong> fluorescence labeled IgG is observed. This provides us with firsthand evidence<br />

that IgG diffusi<strong>on</strong> into CPG is similar to that <strong>of</strong> spherical media in that <strong>the</strong> outer layer <strong>of</strong> <strong>the</strong> media<br />

sees most <strong>of</strong> IgG. IgG is diffusi<strong>on</strong> limited, most probably due to steric hindrance. Fur<strong>the</strong>r work is<br />

planned to compare irregular CPG and spherical media <strong>on</strong> IgG diffusi<strong>on</strong> under <strong>the</strong> same binding<br />

c<strong>on</strong>diti<strong>on</strong>s at different residence time. Diffusi<strong>on</strong> kinetics study will be incorporated with<br />

ma<strong>the</strong>matic modeling to fur<strong>the</strong>r our understanding <strong>of</strong> this widely used chromatography base<br />

matrices.<br />

References<br />

[1] D. Follman, and RL Fahrner. Factorial screening <strong>of</strong> antibody purificati<strong>on</strong> processes using three chromatographic<br />

steps without Protein A. J Chromatogr A.1024, 79–85 (2004).<br />

[2] RG. Hamilt<strong>on</strong>. The Human IgG Subclasses. pp 1–75. Calbiochem- Novabiochem Corporati<strong>on</strong>, Texas, (1987)<br />

[3] H. Wlad , A. Ballagi , L. Bouakaz , Z. Gu , JC. Jans<strong>on</strong> . Rapid two-step purificati<strong>on</strong> <strong>of</strong> a recombinant mouse Fab<br />

fragment expressed in Escherichia coli. Protein Expr Purif. 22(2), 325-329 (2001).<br />

[4] T. Bankst<strong>on</strong>, M. St<strong>on</strong>e, and G.Carta. 2008. Theory and applicati<strong>on</strong>s <strong>of</strong> refractive index-based optical microscopy to<br />

measure protein mass transfer in spherical adsorbent particles. J. Chromatogr. A, 1188, 242-254, (2008)<br />

89


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Study <strong>of</strong> melanoma cell lines invasiveness using Raman<br />

microspectroscopy<br />

N. MAINRECK 1 , O. PIOT 1 , F. ANTONICELLI 2 , M. MANFAIT 1<br />

1. MéDIAN, UMR CNRS 6237 MEDyC, Université de Reims-Champagne<br />

Ardenne, IFR 53, 51 rue Cognacq-Jay, 51096 Reims cedex, France<br />

2. Laboratoire de Dermatologie, UMR CNRS 6237 MEDyC, Université de<br />

Reims-Champagne Ardenne, IFR 53, 51 rue Cognacq-Jay, 51095 Reims<br />

cedex, France<br />

Raman microspectroscopy is an innovative biophot<strong>on</strong>ic technique which can be used for <strong>the</strong><br />

characterizati<strong>on</strong> <strong>of</strong> living cells. It allows <strong>the</strong> analysis <strong>of</strong> cellular mechanism in a fundamental<br />

approach but also <strong>the</strong> in vivo cell characterizati<strong>on</strong> in a biomedical approach. In Europe and United-<br />

States, melanoma incidence is in c<strong>on</strong>stant augmentati<strong>on</strong>; doubling each decade since thirty years.<br />

Melanoma represents nowadays 7000 new cases per year in France. The tumoral progressi<strong>on</strong><br />

occurs generally in two steps: <strong>the</strong> first step is an epidermic horiz<strong>on</strong>tal growth, <strong>the</strong> sec<strong>on</strong>d step<br />

corresp<strong>on</strong>ds to a vertical progressi<strong>on</strong> towards <strong>the</strong> dermis leading to metastases formati<strong>on</strong>. Some<br />

melanomas with high invasive potential are more aggressive and c<strong>on</strong>sequently <strong>of</strong> bad prognosis.<br />

In vitro study <strong>of</strong> melanoma cell lines with different degrees <strong>of</strong> invasive potential show different<br />

behaviours <strong>of</strong> tumoral invasi<strong>on</strong>. Our aim is to study by Raman microspectroscopy <strong>the</strong> invasi<strong>on</strong><br />

mechanisms <strong>of</strong> melanoma cells <strong>on</strong> models <strong>of</strong> collagen matrix miming <strong>the</strong> extracellular matrix. We<br />

will compare two types <strong>of</strong> melanoma cell lines: Mewo (less invasive) and SK-MEL-28 (more<br />

invasive). For each, spectroscopic markers related to tridimensi<strong>on</strong>al progressi<strong>on</strong> <strong>of</strong> melanoma cells<br />

will be determinated both for cells and collagen peritumoral. These markers could be used for<br />

early diagnosis and new <strong>the</strong>rapeutic targets.<br />

90


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Synchrotr<strong>on</strong> based FTIR Microscopy <strong>of</strong> single stained<br />

lung cells: applicati<strong>on</strong>s in cancer diagnosis.<br />

J. SULÉ-SUSO 1,2 , J. PIJANKA 1 , G. D. SOCKALINGUM 3 , A. KOHLER 4 , F. DRAUX 3 , P.<br />

DUMAS 5 , C. SANDT 5 , D. G. VAN PITTIUS 6 , G. PARKES 6 , V. UNTEREINER 3 , AND Y. YANG 1<br />

1. Institute for Science and Technology in Medicine, Keele University, Guy Hilt<strong>on</strong> Research Centre,<br />

Thornburrow Drive, Stoke <strong>on</strong> Trent ST4 7BG, U. K.<br />

2. Staffordshire Oncology Centre, University Hospital <strong>of</strong> North Staffordshire, Stoke <strong>on</strong> Trent, U. K.<br />

3. MéDIAN- Université de Reims Champagne-Ardenne, CNRS UMR6237-MEDyC, UFR de Pharmacie, IFR<br />

53, 51096 Reims cedex, France.<br />

4. Centre for Biospectroscopy and Data Modeling N<strong>of</strong>ima, Ås, Norway<br />

5. SOLEIL Synchrotr<strong>on</strong>, BP48, L’Orme des Merisiers, 91192 Gif sur Yvette Cédex, France;<br />

6. Pathology Department, University Hospital <strong>of</strong> North Staffordshire, Stoke <strong>on</strong> Trent, U. K.<br />

It is well accepted that FTIR spectroscopy and micro-spectroscopy has a tremendous potential in<br />

cancer diagnosis thus reducing <strong>the</strong> workload in pathology departments. This could be, am<strong>on</strong>gst<br />

o<strong>the</strong>r, as an automated analytical tool that could survey unstained tissue or cytology samples for<br />

<strong>the</strong> presence <strong>of</strong> cancer cells. Moreover, <strong>the</strong> technique can help to better characterise cells present in<br />

biopsy samples that are suggestive but not diagnostic <strong>of</strong> cancer which requires patients to undergo<br />

fur<strong>the</strong>r biopsies in order to c<strong>on</strong>firm <strong>the</strong> diagnosis <strong>of</strong> cancer. However, <strong>the</strong>se samples are already<br />

stained and it becomes an important issue to assess how staining could affect <strong>the</strong> FTIR spectra <strong>of</strong><br />

<strong>the</strong>se cells and influence <strong>the</strong> analysis. To address this issue, we have studied, using synchrotr<strong>on</strong><br />

based FTIR microspectroscopy, single lung epi<strong>the</strong>lial and lung cancer cells pre and post staining<br />

with Haematoxilin-Eosin (H & E) or Papanicolau (Pap) which are widely used in pathology<br />

departments. Our results show that although staining caused <strong>the</strong> presence <strong>of</strong> new peaks in <strong>the</strong><br />

FTIR spectra <strong>of</strong> single cells, <strong>the</strong>se did not affect amides I and II (possible biomarkers in cancer<br />

diagnosis) both in lung epi<strong>the</strong>lial cells and lung cancer cells. Fur<strong>the</strong>rmore, no differences were<br />

found when comparing cells stained at two different centres c<strong>on</strong>firming <strong>the</strong> reproducibility <strong>of</strong> this<br />

technique. This has important implicati<strong>on</strong>s in <strong>the</strong> standardisati<strong>on</strong> <strong>of</strong> this technique for pathological<br />

diagnosis. We will also discuss here <strong>the</strong> applicati<strong>on</strong>s <strong>of</strong> FTIR microspectroscopy to study different,<br />

already stained, pathological samples such as cytospins and smears.<br />

91


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Excitati<strong>on</strong> <strong>of</strong> cytosine-rich nucleic acids - as seen<br />

through time-resolved infrared spectroscopy<br />

ANTHONY W. PARKER 1 , PÁRAIC KEANE 2 , IAN P CLARK 1 , MICHAL WOJDYLA 2 , GERARD W.<br />

DOORLEY 2 , MICHAEL TOWRIE 1 , JOHN M. KELLY 1 , AND SUSAN J. QUINN 2<br />

1. Central Laser Facility, STFC Ru<strong>the</strong>rford Applet<strong>on</strong> Laboratory, Chilt<strong>on</strong>,<br />

Didcot, Oxfordshire, OX11 0QX, UK<br />

2. School <strong>of</strong> Chemistry, Trinity College, Dublin 2, Ireland<br />

The nucleic acid bases have short-lived 1̟̟* excited states (


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Emissi<strong>on</strong> lifetime study <strong>of</strong> fluorescence probes based<br />

<strong>on</strong> G-quadruplex olig<strong>on</strong>ucleotides end-labeled with<br />

pyrene moieties<br />

B. JUSKOWIAK 1 , A. DEMBSKA 1 , T. PEDZINSKI 1 AND S. TAKENAKA 2<br />

1. Fac. <strong>of</strong> Chemistry, A. Mickiewicz University, Grunwaldzka 6, 60-780<br />

Poznan, Poland<br />

2. Dept. <strong>of</strong> Applied Chemistry, Kyushu Institute <strong>of</strong> Technology,<br />

Kitakyushu, Japan<br />

Certain DNA sequences that are guanine-rich can form four-stranded structures called Gquadruplexes<br />

under specific cati<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s. Typically, three or four G-quartets are stacked and<br />

held toge<strong>the</strong>r by π– π n<strong>on</strong>b<strong>on</strong>ded attractive interacti<strong>on</strong>s, but formed G-quadruplexes may have<br />

different topological structures depending <strong>on</strong> <strong>the</strong> olig<strong>on</strong>ucleotide sequence and envir<strong>on</strong>mental<br />

c<strong>on</strong>diti<strong>on</strong>s [1]. Recently, we have developed fluorescent olig<strong>on</strong>ucleotide probes based <strong>on</strong> <strong>the</strong> Gquadruplex<br />

scaffold for detecting potassium (PSO-Potassium Sensing Olig<strong>on</strong>ucleotide) [2-5]. Two<br />

strategies were exploited for <strong>the</strong> transducti<strong>on</strong> <strong>of</strong> metal cati<strong>on</strong> binding event, <strong>the</strong> fluorescence<br />

res<strong>on</strong>ance energy transfer (FRET) [2,3] and excimer emissi<strong>on</strong> <strong>of</strong> <strong>the</strong> pyrene labels [4,5]. The sec<strong>on</strong>d<br />

strategy is <strong>of</strong> particular interest since it enables an insight into label-label and label/nucleobases<br />

interacti<strong>on</strong> processes. For example, <strong>the</strong> thrombin binding aptamer (TBA) with a<br />

d(G2T2G2TGTG2T2G2) sequence gave efficient excimer emissi<strong>on</strong> in <strong>the</strong> presence <strong>of</strong> potassium [4]<br />

but <strong>the</strong> sensor with <strong>the</strong> human telomeric sequence d(G3(T2AG3)3) showed <strong>on</strong>ly quenching <strong>of</strong> <strong>the</strong><br />

pyrene m<strong>on</strong>omer emissi<strong>on</strong> without noticeable excimer c<strong>on</strong>tributi<strong>on</strong> [5]. Here, we report steady<br />

state and fluorescence lifetime study <strong>of</strong> two fluorescent probes abbreviated as Py-Htelom-Py and<br />

Py-TBA-Py, carrying pyrene moieties at both termini and sequences <strong>of</strong> Human telomere and<br />

Thrombin Binding Aptamer, respectively. The effect <strong>of</strong> metal cati<strong>on</strong>s (sodium, potassium and<br />

str<strong>on</strong>tium) <strong>on</strong> <strong>the</strong> photophysical processes was examined in order to elucidate factors that facilitate<br />

<strong>the</strong> producti<strong>on</strong> <strong>of</strong> excimer emissi<strong>on</strong>. The spectra and emissi<strong>on</strong> kinetics data support <strong>the</strong><br />

c<strong>on</strong>cussi<strong>on</strong>s that pyrene-quadruplex c<strong>on</strong>jugate has multiple c<strong>on</strong>formers in soluti<strong>on</strong> and that <strong>the</strong><br />

relative orientati<strong>on</strong> <strong>of</strong> pyrene and neighboring nucleobase (guanine, adenine, thymine) plays a<br />

crucial role in determining both <strong>the</strong> rate <strong>of</strong> electr<strong>on</strong>-transfer quenching <strong>of</strong> pyrene excited state and<br />

<strong>the</strong> efficiency <strong>of</strong> excimer emissi<strong>on</strong>.<br />

References<br />

[1] T. Sim<strong>on</strong>ss<strong>on</strong>, Biol. Chem. 382, 621-628 (2001).<br />

[2] H. Ueyama, M. Takagi, S. Takenaka, J. Am. Chem. Soc. 124, 14286-14287 (2002).<br />

[3] B. Juskowiak, E. Galezowska, A. Zawadzka, A. Gluszynska, S. Takenaka, Spectrochim. Acta A 64, 835-843 (2006).<br />

[4] S. Nagatoishi, T. Nojima, B. Juskowiak, S. Takenaka, Angew. Chem. Int. Ed. 44, 5067-5070. (2005).<br />

[5] H. Hayashida, J. Paczesny, B. Juskowiak, S. Takenaka, Bioorg. Med. Chem. 16, 9871–9881 (2008).<br />

93


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

DNA photodamage: Study <strong>of</strong> thyminephotodimerisati<strong>on</strong><br />

in a locked thymine dinucleotide<br />

W. J. SCHREIER 1 , J. KUBON 1 , P. CLIVIO 2 , W. ZINTH 1 AND P. GILCH 1<br />

1. Fakultät für Physik, LMU München, Lehrstuhl für BioMolekulare<br />

Optik, Oettingenstr. 67, 80538 München, Germany<br />

2. Institut de Chimie Moléculaire de Reims, CNRS UMR 6229, Université<br />

de Reims Champagne Ardenne, IRF 53, UFR de Pharmacie, 51 rue<br />

Cognacq-Jay, 51096 Reims Cedex, France<br />

UV radiati<strong>on</strong> and c<strong>on</strong>comitant photoreacti<strong>on</strong>s are <strong>on</strong>e <strong>of</strong> <strong>the</strong> most important external hazards to<br />

DNA with implicati<strong>on</strong>s for scientific areas ranging from molecular evoluti<strong>on</strong> to cancer research.<br />

The most abundant photolesi<strong>on</strong> is <strong>the</strong> cyclobutane pyrimidine dimer (CPD) formed between two<br />

adjacent thymine bases with a quantum yield <strong>of</strong> <strong>the</strong> order <strong>of</strong> ~ 1%. Although <strong>the</strong> small quantum<br />

yield hampers <strong>the</strong> study <strong>of</strong> damage formati<strong>on</strong>, we have recently traced <strong>the</strong> CPD formati<strong>on</strong> in an all<br />

thymine DNA single strand ((dT)18) [1] by means <strong>of</strong> time resolved IR spectroscopy. This<br />

experiment has given evidence that IR marker bands for <strong>the</strong> CPD lesi<strong>on</strong> are visible within less than<br />

<strong>on</strong>e picosec<strong>on</strong>d. A more detailed investigati<strong>on</strong> is possible with <strong>the</strong> locked nucleotide model<br />

compound TLpTL (Figure 1) where <strong>the</strong> sugar moieties are forced into a C3' endo c<strong>on</strong>formati<strong>on</strong>.<br />

This restricti<strong>on</strong> increases <strong>the</strong> quantum yield for CPD formati<strong>on</strong> to about 10% [2]. By means <strong>of</strong> time<br />

resolved IR spectroscopy <strong>on</strong> TLpTL and two o<strong>the</strong>r DNA model compunds we will show that: (i)<br />

The initially recorded absorpti<strong>on</strong> changes after ~ 1 ps are due to CPD photodamage. (ii) The<br />

quantum efficiency <strong>of</strong> CPD formati<strong>on</strong> <strong>on</strong> <strong>the</strong> few picosec<strong>on</strong>d time scale equals <strong>the</strong> quantum<br />

efficiency reported in stati<strong>on</strong>ary experiments [3]. CPD photodamage formati<strong>on</strong> in <strong>the</strong> investigated<br />

DNA c<strong>on</strong>structs is thus predominantly formed via <strong>the</strong> primarily photoexcited singlet ππ* state,<br />

whereas <strong>the</strong> triplet channel does not play an essential role.<br />

References<br />

Fig. 1 – IR difference signal obtained after 268 nm femtosec<strong>on</strong>d<br />

excitati<strong>on</strong> <strong>of</strong> T LpT L. Arrows point to <strong>the</strong> marker bands <strong>of</strong> <strong>the</strong> CPD<br />

form. Structure <strong>of</strong> <strong>the</strong> locked dinucleotide T LpT L and <strong>the</strong> CPD lesi<strong>on</strong>.<br />

[1] W. J. Schreier, T. E. Schrader, F. O. Koller, P. Gilch, C. E. Crespo-Hernandez, V. N. Swaminathan, T. Carell, W.<br />

Zinth, B. Kohler, Science 315, 625-629 (2007).<br />

[2] C. Desnous, B. R. Babu, C. McIriou, J. U. O. Mayo, A. Favre, J. Wengel, P. Cliviot, J. Am. Chem. Soc. 130, 31-31<br />

(2008).<br />

[3] W. J. Schreier, J. Kub<strong>on</strong>, N. Regner, K. Haiser, T. E. Schrader, W. Zinth, P. Clivio, P. Gilch, J. Am. Chem. Soc.<br />

131, 5038-5039 (<strong>2009</strong>).<br />

94


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

C`-terminal domain <strong>of</strong> n<strong>on</strong>hist<strong>on</strong>e protein HMGB1 as a<br />

modulator <strong>of</strong> HMGB1–DNA structural interacti<strong>on</strong>s<br />

E. Chikhirzhina, A. Polyanichko, E. Kostyleva, V. Vorobyev<br />

1 Institute <strong>of</strong> Cytology, RAS, 4 Tikhoretsky ave., Saint-Petersburg, 194064, Russian Federati<strong>on</strong><br />

2 Saint-Petersburg State University, 1 Uljanovskaja st., Stary Peterg<strong>of</strong>f , Saint-Petersburg, 198504, Russian<br />

Federati<strong>on</strong><br />

E-mail: chikhir@gmail.com<br />

The HMGB1 protein (High Mobility Group protein 1) participates in <strong>the</strong> formati<strong>on</strong> <strong>of</strong> functi<strong>on</strong>ally<br />

significant DNA-protein complexes. HMGB1 protein c<strong>on</strong>tains two DNA-binding HMGB domains,<br />

dem<strong>on</strong>strating preferable binding to structural distorti<strong>on</strong>s in DNA and negatively charged<br />

disordered C`-terminal regi<strong>on</strong>. The latter c<strong>on</strong>sists <strong>of</strong> c<strong>on</strong>tinuous sequence <strong>of</strong> dicarboxylic amino<br />

acids residues. We have studied <strong>the</strong> structural changes in DNA-protein complexes by CD<br />

spectroscopy and atomic force microscopy (AFM). We have used natural HMGB1 and<br />

recombinant protein HMGB1-(A+B) lacked negatively charged C`-terminal regi<strong>on</strong>. At low i<strong>on</strong>ic<br />

strength (15 mM NaCl) we have observed similar behavior <strong>of</strong> both proteins up<strong>on</strong> interacti<strong>on</strong> with<br />

DNA. At higher i<strong>on</strong>ic strength (150 mM NaCl) <strong>the</strong> DNA-HMGB1-(A+B) complexes show very<br />

high optical activity. AFM shows, that at <strong>the</strong> low c<strong>on</strong>centrati<strong>on</strong> <strong>of</strong> HMGB1 in <strong>the</strong> complex <strong>the</strong><br />

protein is distributed al<strong>on</strong>g DNA in a random way. Increase <strong>of</strong> HMGB1 c<strong>on</strong>tent leads to<br />

cooperative interacti<strong>on</strong> and a redistributi<strong>on</strong> <strong>of</strong> <strong>the</strong> bound protein molecules <strong>on</strong> DNA is observed.<br />

Based <strong>on</strong> <strong>the</strong> data obtained we c<strong>on</strong>clude that protein-protein interacti<strong>on</strong>s play a key role in <strong>the</strong><br />

formati<strong>on</strong> <strong>of</strong> highly ordered DNA-HMGB1 complexes. In <strong>the</strong> case <strong>of</strong> HMGB1-(A+B) protein <strong>the</strong><br />

AFM images can be sorted out into two different groups, attributed to <strong>the</strong> pre-cooperative and<br />

post-cooperative stages. It was shown that C`-terminal domain modulate <strong>the</strong> interacti<strong>on</strong>s <strong>of</strong> DNA<br />

with HMGB1 protein. The complexes <strong>of</strong> <strong>the</strong> recombinant protein HMGB1-(A+B) with DNA<br />

dem<strong>on</strong>strate <strong>the</strong> highly-ordered supramolecular structure. We estimate that <strong>the</strong> size <strong>of</strong> HMGB1-<br />

(A+B) binding site <strong>on</strong> DNA is twice bigger than that <strong>of</strong> HMGB1 protein. We suggest that <strong>the</strong> C`terminal<br />

domain <strong>of</strong> HMGB1 also modulates <strong>the</strong> “packing” <strong>of</strong> HMGB1 molecules <strong>on</strong> <strong>the</strong> DNA.<br />

This work was support by Russian Foundati<strong>on</strong> for Basic Research (grants №№ 07-04-01072, 09-08-<br />

01119).<br />

95


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Microwave hydrati<strong>on</strong> measurements <strong>of</strong> <strong>the</strong> unfolding in aqueous<br />

systems <strong>of</strong> proteins and syn<strong>the</strong>tic proteinlike polymers<br />

М. M. VOROB’EV<br />

Institute <strong>of</strong> Organoelement Compounds, Russian Academy <strong>of</strong> Sciences,<br />

28 ul. Vavilova, 119991, Moscow, Russia<br />

Microwave irradiati<strong>on</strong> at 30-40 GHz (millimeter-wave range) <strong>of</strong> aqueous systems <strong>of</strong> globular<br />

proteins, modified chitosans or syn<strong>the</strong>tic polymers was combined with hydrati<strong>on</strong> measurements<br />

by res<strong>on</strong>ance method. Hydrati<strong>on</strong> numbers were estimated from <strong>the</strong> difference in absorpti<strong>on</strong><br />

between undisturbed water and water with solute, as it was attributed to <strong>the</strong> solute-induced<br />

reducti<strong>on</strong> in water mobility. Hydrati<strong>on</strong> data for globular proteins were compared with data<br />

obtained for low-weight molecules and groups. It was found that rotati<strong>on</strong>al mobility <strong>of</strong> water<br />

molecules in <strong>the</strong> hydrati<strong>on</strong> shells <strong>of</strong> various kinds <strong>of</strong> solutes (groups) decreased in <strong>the</strong> following<br />

order: water structure breaking compounds > polar groups > unfolded proteins > globular<br />

proteins > n<strong>on</strong>-polar groups. Bound water was shown to be a measure <strong>of</strong> macromolecular<br />

unfolding allowing to characterize hydrophobically driven processes like temperature-induced<br />

coil-to-globule transiti<strong>on</strong> <strong>of</strong> poly(N-isopropylacrylamide) (PNIPA) and gelati<strong>on</strong> <strong>of</strong> casein micelles<br />

at acidificati<strong>on</strong> [1, 2]. The amount <strong>of</strong> bound water per number <strong>of</strong> carb<strong>on</strong>s in <strong>the</strong> n<strong>on</strong>polar groups<br />

increased in <strong>the</strong> following order: hydrophobically modified chitosan < globular protein (BSA) <<br />

hydrophobically modified polyacrylamide. The hydrophobic modificati<strong>on</strong> <strong>of</strong> acrylamide and<br />

chitosan polymers gave smaller variati<strong>on</strong> in hydrati<strong>on</strong> than did both <strong>the</strong> coil → globule transiti<strong>on</strong><br />

<strong>of</strong> PNIPA and <strong>the</strong> masking <strong>of</strong> n<strong>on</strong>polar groups within protein globule. Unfolding <strong>of</strong> globular<br />

proteins during limited hydrolysis (proteolysis) as measured by microwave method is a<br />

demasking process, which is important for <strong>the</strong> regulati<strong>on</strong> <strong>of</strong> proteolysis kinetics [3].<br />

References<br />

[1] M.M. Vorob’ev, Food Hydrocolloids 21, 309-312 (2007).<br />

[2] M. Vorob’ev, N. Churochkina, A. Khokhlov, E. Stepnova, Macromol. Bioscience 7, 475-481 (2007).<br />

[3] M. M. Vorob’ev, J. Mol. Catal.: B. 58, 146-152 (<strong>2009</strong>).<br />

96


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

ORAL PRESENTATIONS<br />

September 2 nd Wednesday<br />

97


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

98


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Computing vibrati<strong>on</strong>al spectra <strong>of</strong> biomolecules by<br />

mixed Quantum Mechanics / Molecular Mechanics<br />

L. GUIDONI 1<br />

1. Dept. <strong>of</strong> Chemistry, Chemical Engineering and Material, Università<br />

degli studi de L’Aquila, M<strong>on</strong>teluco di Roio - 67040 L'Aquila<br />

Computati<strong>on</strong>al spectroscopy <strong>of</strong>fers <strong>the</strong> key to link structural data to <strong>the</strong> optical, magnetic, and<br />

dynamical observed properties <strong>of</strong> biomolecules to unravel and rati<strong>on</strong>alize <strong>the</strong> molecular<br />

mechanisms underlying structure/functi<strong>on</strong> relati<strong>on</strong>ships. In this respect, mixed Quantum<br />

Mechanics / Molecular Mechanics (QM/MM) methods have been developed to allow <strong>the</strong> study a<br />

porti<strong>on</strong> <strong>of</strong> <strong>the</strong> system at full quantum level, whereas all <strong>the</strong> rest is treated at <strong>the</strong> classical forcefield<br />

level [1]. This techniques has been successfully applied to study enzyme catalytic reacti<strong>on</strong>s<br />

in situ treating <strong>the</strong> active site <strong>of</strong> <strong>the</strong> enzyme with first principles Car-Parrinello molecular<br />

dynamics and all <strong>the</strong> rest <strong>of</strong> <strong>the</strong> protein and solvent at <strong>the</strong> classical level [2]. Using QM/MM is<br />

possible to calculate and to interpret a variety <strong>of</strong> spectroscopic data such as absorpti<strong>on</strong> and<br />

fluorescence spectra, EPR, NMR, infrared spectroscopy and Raman scattering. The tw<strong>of</strong>old<br />

advantage <strong>of</strong> QM/MM is that both temperature effects and solvent (or protein) envir<strong>on</strong>ment can<br />

be explicitly c<strong>on</strong>sidered. In <strong>the</strong> present report we will illustrate <strong>the</strong> methodology and <strong>the</strong> recent<br />

applicati<strong>on</strong>s to calculate Infrared and Raman scattering intensities by first principles QM/MM<br />

dynamics at finite temperature. The vibrati<strong>on</strong>al density <strong>of</strong> states calculated al<strong>on</strong>g a trajectory at<br />

room temperature has been decomposed following <strong>the</strong> strategy reported by reference [3]. The<br />

decompositi<strong>on</strong> allow us to assign to <strong>the</strong> peaks observed in <strong>the</strong> infrared and Raman spectra <strong>the</strong><br />

corresp<strong>on</strong>ding “effective normal modes”, that fully include <strong>the</strong> effects <strong>of</strong> temperature and<br />

solvent.<br />

References<br />

Fig. 1 – Effective normal mode at 168 cm-1 <strong>of</strong> Cisplatin in water<br />

soluti<strong>on</strong>. The mode (yellow arrows) is obtained by decomposing <strong>the</strong><br />

vibrati<strong>on</strong>al density <strong>of</strong> states <strong>of</strong> QM/MM simulati<strong>on</strong>s at 300 K.<br />

[1.] A. Laio, J. VandeV<strong>on</strong>dele, U. Rothlisberger, A hamilt<strong>on</strong>ian electrostatic coupling scheme for hybrid Car-Parrinello<br />

molecular dynamics simulati<strong>on</strong>s, J.Phys.Chem B, 108, 7967 (2001).<br />

[2.] L. Guid<strong>on</strong>i , P. Maurer, S. Piana, U. Rothlisberger, Hybrid Car-Parrinello/Molecular Mechanics Modelling <strong>of</strong><br />

Transiti<strong>on</strong> Metal Complexes: Structure, Dynamics and Reactivity, Q.S.-A.R. 21 173-181 (2002)<br />

[3.] M.P. Gaigeot, M. Martinez, R. Vuilleumier, Infrared spectroscopy in <strong>the</strong> gas and liquid phase from first principle<br />

molecular dynamics simulati<strong>on</strong>s: applicati<strong>on</strong> to small peptides, Mol. Phys, 105, 19, 2857-2878 (2007).<br />

99


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

A statistical model for protein translocati<strong>on</strong> across nanopores<br />

A. AMMENTI 1 , F. CECCONI 2 U. MARINI-BETTOLO-MARCONI 3 AND A. VULPIANI 4<br />

1. Dept. <strong>of</strong> Physics University <strong>of</strong> Perugia, Via A. Pascoli , I-06123 Perugia Italy<br />

2. INFM-CNR Center for Statistical Mechanics and Complexity and Istituto dei Sistemi<br />

Complessi (CNR), Via dei Taurini 19, I-00185 Roma Italy<br />

3. Dept. <strong>of</strong> Physics University <strong>of</strong> Camerino and INFM-CNR<br />

Via Mad<strong>on</strong>na delle Carceri I-68032 Camerino (MC) Italy.<br />

4. Dept. <strong>of</strong> Physics University La Sapienza and INFM-CNR<br />

P.le Aldo Moro 2, I-00185 Rome Italy.<br />

Transport <strong>of</strong> biopolymers across membranes is fundamental to several cellular biological process:<br />

such as signal exchanging, transfer <strong>of</strong> genetic informati<strong>on</strong> and metabolic regulati<strong>on</strong>. The progress<br />

in <strong>the</strong> technology <strong>of</strong> molecular manipulati<strong>on</strong> has made possible to c<strong>on</strong>duct c<strong>on</strong>trolled experiments<br />

<strong>on</strong> translocati<strong>on</strong> <strong>of</strong> polynucleotyde [1,2] and polypeptide [3,4] chains across alpha-Hemolysin<br />

channels and solid-state nanopores. The complete <strong>the</strong>oretical interpretati<strong>on</strong>s <strong>of</strong> such experiments<br />

is still lacking. We propose to combine Molecular Dynamics at coarse-grained level and<br />

appropriate drift-diffusi<strong>on</strong> Smoluchowski equati<strong>on</strong>s [5] as a integrated statistical physics approach<br />

to <strong>the</strong> interpretati<strong>on</strong> <strong>of</strong> translocati<strong>on</strong> phenomenology. In particular, we performed Molecular<br />

Dynamics simulati<strong>on</strong>s <strong>of</strong> <strong>the</strong> translocati<strong>on</strong> process <strong>of</strong> a globular protein (Ubiquitin) across a<br />

cylindrical nanopore. The Ubiquitin is described by simplified native-centric model to investigate<br />

<strong>the</strong> influence <strong>of</strong> protein structural properties <strong>on</strong> translocati<strong>on</strong> mechanism. A <strong>the</strong>rmodynamical and<br />

kinetic characterizati<strong>on</strong> <strong>of</strong> <strong>the</strong> process is achieved by studying <strong>the</strong> statistics <strong>of</strong> blockage times, <strong>the</strong><br />

mobility and translocati<strong>on</strong> probability as a functi<strong>on</strong> <strong>of</strong> <strong>the</strong> pulling force F acting in <strong>the</strong> pore. We<br />

find that <strong>the</strong> transport dynamics occurs when <strong>the</strong> force exceeds a threshold F c depending <strong>on</strong> a<br />

free-energy barrier that Ubiquitin has to overcome in order to slide al<strong>on</strong>g <strong>the</strong> channel. Such a<br />

barrier results from competiti<strong>on</strong> <strong>of</strong> <strong>the</strong> unfolding energy and <strong>the</strong> entropy associated to <strong>the</strong><br />

c<strong>on</strong>finement effects <strong>of</strong> <strong>the</strong> pore. We implement appropriate umbrella sampling simulati<strong>on</strong>s to<br />

compute <strong>the</strong> free energy pr<strong>of</strong>ile as a functi<strong>on</strong> <strong>of</strong> <strong>the</strong> positi<strong>on</strong> <strong>of</strong> Ubiquitin center <strong>of</strong> mass inside <strong>the</strong><br />

channel (reacti<strong>on</strong> coordinate). This free-energy is <strong>the</strong>n used to develop a <strong>on</strong>e dimensi<strong>on</strong>al<br />

phenomenological model in <strong>the</strong> reacti<strong>on</strong> coordinate which explains and reproduces <strong>the</strong> behaviour<br />

<strong>of</strong> <strong>the</strong> observables during <strong>the</strong> translocati<strong>on</strong>.<br />

References<br />

[1] J.J. Kasianowicz, E. Brandin, D. Brant<strong>on</strong>, D.W. Deamer, Proc. Natl. Acad. Sci. USA 93, 13370-3 (1996).<br />

[2] Li Jaili, M. Gershow, D. Stein, E Brandin, J.A. Golovchenko Nature Mat. 2, 611-15 (2003).<br />

[3] G. Oukhaled, J. Ma<strong>the</strong> et al. Phys. Rev.Lett. 98 158101-8 (2007).<br />

[4] T.C. Su<strong>the</strong>rland, Y.-T. L<strong>on</strong>g et al. Nano Lett. 4 1273-7 (2004).<br />

[5] A.M. Berezhkovskii, M.A. Pustovoit, S.M. Bezrukov, J. Chem Phys. 116 9952-6 (2002).<br />

100


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Respiratory proteins: "breathing moti<strong>on</strong>s" revealed by<br />

molecular dynamics simulati<strong>on</strong>s"<br />

A. ROBERTAZZI 1 , M. A. SCORCIAPINO 1,2 , M. CASU 2 , P. RUGGERONE 1,3 AND M. CECCARELLI 1,3<br />

1. Sardinian Laboratory for Computati<strong>on</strong>al Material Science SLACS<br />

(INFM-CNR), Cittadella Universitaria, M<strong>on</strong>serrato (CA), I-09042, Italy<br />

2. Dept. <strong>of</strong> Chemical Sciences, University <strong>of</strong> Cagliari, Cittadella<br />

Univarsitaria S.S.554 bivio Sestu, M<strong>on</strong>serrato (CA), I-09042, Italy<br />

3. Dept. <strong>of</strong> Physics, University <strong>of</strong> Cagliari, Cittadella Universitaria<br />

S.S.554 bivio Sestu, M<strong>on</strong>serrato (CA), I-09042, Italy<br />

In <strong>the</strong> family <strong>of</strong> respiratory proteins, hemoglobins and myoglobins have been <strong>the</strong> first to be<br />

crystallized in ’50 [1]. Despite <strong>the</strong> availability <strong>of</strong> 3D structures, issues regarding <strong>the</strong> microscopic<br />

functi<strong>on</strong>ing remain open, such as, for instance, <strong>the</strong> R to T switching mechanism in hemoglobin or<br />

<strong>the</strong> ligand escape process in myoglobin. Due to <strong>the</strong> relatively small number <strong>of</strong> residues, myoglobin<br />

is <strong>the</strong> suitable candidate to investigate <strong>the</strong> more general structure-functi<strong>on</strong> paradigm, being<br />

defined as <strong>the</strong> hydrogen atom <strong>of</strong> biology. In particular, myoglobin has five main ligand docking<br />

sites, identified with Xe-NMR [2], possibly involved in ligands migrati<strong>on</strong> paths [3-5]. In this<br />

c<strong>on</strong>tributi<strong>on</strong>, we present standard molecular dynamics simulati<strong>on</strong>s performed <strong>on</strong> horse heart metmyoglobin<br />

with no ligand migrating inside <strong>the</strong> protein matrix. With <strong>the</strong> aim <strong>of</strong> revealing intrinsic<br />

internal pathways, <strong>the</strong> use <strong>of</strong> a statistical approach was applied to cavity calculati<strong>on</strong>, with special<br />

emphasis to <strong>the</strong> major pathway, from distal pocket to Xe1. Our study points out <strong>the</strong> remarkable<br />

dynamical behavior <strong>of</strong> Xe4, whose “breathing moti<strong>on</strong>s” may facilitate migrati<strong>on</strong> <strong>of</strong> ligands<br />

through <strong>the</strong> distal regi<strong>on</strong>. Additi<strong>on</strong>ally, our results highlight a two-ways path for a ligand to<br />

diffuse through <strong>the</strong> proximal regi<strong>on</strong>, possibly allowing an alternative route in case Xe1 is occupied.<br />

Finally, our approach led us to <strong>the</strong> identificati<strong>on</strong> <strong>of</strong> key residues, such as leucines that may work as<br />

switches between cavities. In additi<strong>on</strong> to this, preliminary results <strong>of</strong> standard (and biased)<br />

molecular dynamics simulati<strong>on</strong>s <strong>on</strong> human Hemoglobin proteins are also proposed.<br />

References<br />

[1] J. C. Kendrew, R. E. Dickers<strong>on</strong>, B. E. Strandberg, R. G. Hart, D. R. Davies, D. C. Philips, V. C. Shore, Nature 185,<br />

422-427 (1960).<br />

[2] R. Tilt<strong>on</strong>, I. Kuntz, G. Petsko, Biochemistry 23, 2849-2857 (1984).<br />

[3] A. Cossins, M. Berenbrink, Nature 454, 416-417 (2008).<br />

[4] M. Brunori, Trends Biochem. Sci. 26, 209-210 (2001).<br />

[5] U. Flogel, M. Merx, A. Godecke, U. Decking, J. Shrader, J. Proc. Nat. Acad. Sci. USA 98, 735-740 (2001).<br />

101


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

102


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

POSTER CONTRIBUTIONS<br />

SESSION A


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts


Magnetic res<strong>on</strong>ance 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

G domain movements in <strong>the</strong> tRNA modifying MnmE/GidA<br />

complex studied with DEER spectroscopy<br />

SABINE BÖHME 1 , SIMON MEYER 2 , ALFRED WITTINGHOFER 2 ,<br />

HEINZ-JÜRGEN STEINHOFF 1 , JOHANN P. KLARE 1<br />

1. University <strong>of</strong> Osnabrück, Barbarastr. 7, 40976 Osnabrück, Germany<br />

2. Max Planck-Institute for Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany<br />

Guanine nucleotide binding proteins (G proteins) are a family <strong>of</strong> proteins involved in <strong>the</strong><br />

regulati<strong>on</strong> <strong>of</strong> many cellular processes. These proteins alternate between an inactive guanosine<br />

diphosphate (GDP) and active guanosine triphosphate (GTP) bound state regulated by <strong>the</strong><br />

intrinsic GTPase activity [1], <strong>the</strong>refore <strong>the</strong>y serve as molecular switches. The G protein MnmE is a<br />

multidomain GTPase c<strong>on</strong>served between bacteria and eukarya. It is a homodimer in soluti<strong>on</strong><br />

where <strong>the</strong> highly mobile G domains face each o<strong>the</strong>r in various orientati<strong>on</strong>s but are not in close<br />

c<strong>on</strong>tact as suggested by <strong>the</strong> GDP-AlFx structure <strong>of</strong> <strong>the</strong> isolated domains. Toge<strong>the</strong>r with GidA,<br />

MnmE is involved in <strong>the</strong> modificati<strong>on</strong> <strong>of</strong> wobble uridine bases at <strong>the</strong> first anticod<strong>on</strong> positi<strong>on</strong> <strong>of</strong><br />

particular transfer-RNAs [2]. Here we study <strong>the</strong> GTPase-coupled rearrangements <strong>of</strong> <strong>the</strong> G domains<br />

by trapping <strong>the</strong> protein in various steps <strong>of</strong> its GTPase cycle by double electr<strong>on</strong>-electr<strong>on</strong> res<strong>on</strong>ance<br />

(DEER) spectroscopy in combinati<strong>on</strong> with site-directed spin labeling (SDSL)[4-6]. Distance<br />

measurements show that <strong>the</strong> G domains adopt an open c<strong>on</strong>formati<strong>on</strong> in <strong>the</strong> nucleotide free/GDPbound<br />

and a open/closed two-state equilibrium in <strong>the</strong> GTP-bound state, with maximal distance<br />

variati<strong>on</strong>s <strong>of</strong> 18 Å (Figure 1). With AlFx, <strong>on</strong>ly <strong>the</strong> closed c<strong>on</strong>formati<strong>on</strong> is observed. Dimerizati<strong>on</strong> <strong>of</strong><br />

<strong>the</strong> active sites with GDP-AlFx requires <strong>the</strong> presence <strong>of</strong> potassium, thus reflecting <strong>the</strong> requirements<br />

for <strong>the</strong> GTPase reacti<strong>on</strong> <strong>of</strong> MnmE (Meyer et al. PLoS <strong>2009</strong>, under review). Previous studies<br />

suggested that <strong>the</strong> mode <strong>of</strong> complex formati<strong>on</strong> between MnmE and GidA takes place by<br />

generating a symmetrical α2β2 heterotetramer in which <strong>the</strong> α-helical domain <strong>of</strong> MnmE and <strong>the</strong> last<br />

three C-terminal helices <strong>of</strong> GidA represent <strong>the</strong> main inter-protein c<strong>on</strong>tact sites [3]. We were able to<br />

provide direct evidence that GidA modulates G domain dimerizati<strong>on</strong> in MnmE. Fur<strong>the</strong>rmore, we<br />

dem<strong>on</strong>strate that <strong>the</strong> potassium dependency <strong>of</strong> G domain dimerizati<strong>on</strong> is completely abolished in<br />

<strong>the</strong> presence <strong>of</strong> GidA.<br />

References<br />

[1] K. Scheffzek and M. Ahmadian (2005), Cell. Mol. Life Sci. 62 (2005), 3014-3038<br />

[2] A. Scrima, I.R. Vetter, M.-E. Armengod, and A. Wittingh<strong>of</strong>er, EMBO J. 24 (2005), 23-33<br />

[3] S. Meyer, A. Scrima, W. Versees, and A. Wittingh<strong>of</strong>er, J.Mol.Biol. 380 (2008), 532-547<br />

[4] H.J. Steinh<strong>of</strong>f, Biol. Chem. 385 (2004), 913-920<br />

[5] G. Jeschke and Y. Polyhach, Phys. Chem. Chem. Phys. 9 (2007), 1895-1910<br />

[6] O. Schiemann and T.F. Prisner, Q. Rev. Biophys. 40 (2007), 1-53<br />

PA 1<br />

Fig. 1 Illustrati<strong>on</strong> <strong>of</strong> <strong>the</strong><br />

c<strong>on</strong>formati<strong>on</strong>al changes in<br />

MnmE up<strong>on</strong> juxtapositi<strong>on</strong> <strong>of</strong> Gdomains<br />

(Adapted from Scrima<br />

et al. (2006), EMBO Journal<br />

25, 2940-2951).


Magnetic res<strong>on</strong>ance 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Resolving <strong>the</strong> folding trajectory <strong>of</strong> riboswitch aptamer<br />

domains at atomic resoluti<strong>on</strong><br />

J. BUCK 1 , B. FÜRTIG 1 , J. NOESKE 1 , E. STIRNAL 1 , J. WÖHNERT 2 AND H. SCHWALBE 1<br />

1 Institute <strong>of</strong> Organic Chemistry and Chemical Biology, 2 Institute for<br />

Molecular Biosciences, Center for Biomolecular Magnetic Res<strong>on</strong>ance,<br />

J.W. Goe<strong>the</strong>-University, Max-v<strong>on</strong>-Laue-Str. 7, 60438 Frankfurt, Germany<br />

Riboswitch RNAs have emerged as an important example for macromolecular structural<br />

transiti<strong>on</strong>s that lead to transcripti<strong>on</strong>al or translati<strong>on</strong>al regulati<strong>on</strong> <strong>of</strong> protein expressi<strong>on</strong> induced by<br />

metabolite binding [1]. Riboswitch elements are located in <strong>the</strong> 5’-UTR <strong>of</strong> certain mRNAs and<br />

c<strong>on</strong>sist <strong>of</strong> a highly specific metabolite receptor regi<strong>on</strong> (aptamer domain) coupled to a 3’downstream<br />

sequence (expressi<strong>on</strong> platform). Gene expressi<strong>on</strong> is thought to be modulated in<br />

resp<strong>on</strong>se to c<strong>on</strong>formati<strong>on</strong>al differences between <strong>the</strong> ligand-bound and <strong>the</strong> ligand-free<br />

c<strong>on</strong>formati<strong>on</strong> <strong>of</strong> <strong>the</strong> aptamer domain. Here, static and time-resolved NMR-spectroscopic<br />

techniques have been applied to m<strong>on</strong>itor <strong>the</strong> hypoxanthine-induced folding <strong>of</strong> two aptamer<br />

domains (wt and G37A/C61U-mutant) <strong>of</strong> <strong>the</strong> guanine-sensing riboswitch <strong>of</strong> <strong>the</strong> B.subtilis xptpbuX<br />

oper<strong>on</strong> and to characterize associated RNA c<strong>on</strong>formati<strong>on</strong>s. Initiati<strong>on</strong> <strong>of</strong> <strong>the</strong> ligand-induced<br />

RNA folding event in situ was realized by different techniques. The laser-triggered release <strong>of</strong> <strong>the</strong><br />

ligand from a photocaged derivative or a mixing technique was applied and allowed for<br />

subsequent NMR-spectroscopic detecti<strong>on</strong> <strong>of</strong> binding events with residue-specific resoluti<strong>on</strong> in<br />

real-time. Combining selective isotope labeling <strong>of</strong> <strong>the</strong> RNA with NMR filter techniques resulted in<br />

significant spectral resoluti<strong>on</strong> and allowed kinetic analysis <strong>of</strong> <strong>the</strong> buildup rates for individual<br />

nucleotides. The final ligand-bound state is c<strong>on</strong>sistent with structural data <strong>of</strong> <strong>the</strong> RNA-ligand<br />

complex [2, 3]. For <strong>the</strong> wt-aptamer domain, three distinct kinetic steps associated with <strong>the</strong> ligandinduced<br />

folding were delineated. Following initial complex encounter <strong>the</strong> ligand-binding pocket is<br />

formed and results in subsequent stabilizati<strong>on</strong> <strong>of</strong> a remote l<strong>on</strong>g-range loop-loop interacti<strong>on</strong>.<br />

Incorporati<strong>on</strong> <strong>of</strong> NMR data into experimentally restrained molecular dynamics simulati<strong>on</strong>s<br />

provided insight into <strong>the</strong> RNA structural ensembles involved during <strong>the</strong> c<strong>on</strong>formati<strong>on</strong>al transiti<strong>on</strong><br />

[4]. In c<strong>on</strong>trast, in <strong>the</strong> G37A/C61U-mutant <strong>the</strong> tertiary loop-loop interacti<strong>on</strong>s <strong>on</strong>ly form in <strong>the</strong><br />

presence <strong>of</strong> magnesium. This change in tertiary structure formati<strong>on</strong> resulted in dramatic<br />

alterati<strong>on</strong>s <strong>of</strong> RNA ligand-binding characteristics and <strong>the</strong> associated folding trajectory <strong>of</strong> this<br />

mutant RNA.<br />

References<br />

[1] Mandal, M., Boese B., Barrick, J.E., Winkler W.C, Breaker R. R., Cell 113, 577-686 (2003).<br />

[2] Batey, R.T., Gilbert, S.D., M<strong>on</strong>tagne, R.K., Nature 432, 411-415 (2004).<br />

[3] Noeske, J., Richter, C., Grundl, M. A., Nasiri, H.R., Schwalbe, H., Wöhnert, J., Proc. Natl. Acad. Sci. USA 102,<br />

1372-1377 (2005)<br />

[4] Buck, J., Fürtig, B., Noeske, J., Wöhnert, J., Schwalbe, H., Proc. Natl. Acad. Sci. USA 104, 15699-15704 (2007)<br />

PA 2


Magnetic res<strong>on</strong>ance 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Low temperature transversal relaxati<strong>on</strong> (T2)<br />

optimizati<strong>on</strong> <strong>of</strong> nitroxides and <strong>the</strong>ir spatial distributi<strong>on</strong><br />

in phospholipid membranes and detergent micelles<br />

R. DASTVAN, B. E. BODE AND T. F. PRISNER<br />

Institute <strong>of</strong> Physical and Theoretical Chemistry and Center for Biomolecular Magnetic<br />

Res<strong>on</strong>ance, Goe<strong>the</strong>-University, Max-v<strong>on</strong>-Laue-Straße 7, 60438 Frankfurt, Germany.<br />

dastvan@prisner.de<br />

Although most membrane proteins are purified by <strong>the</strong> use <strong>of</strong> detergents, rec<strong>on</strong>stituti<strong>on</strong> <strong>of</strong><br />

membrane proteins into liposomes is important to identify <strong>the</strong> mechanism <strong>of</strong> acti<strong>on</strong> <strong>of</strong> membrane<br />

proteins. Many membrane proteins express <strong>the</strong>ir full activity <strong>on</strong>ly when correctly oriented and<br />

inserted into a lipid bilayer. 1 In order to gain structural informati<strong>on</strong> from membrane proteins in<br />

<strong>the</strong>ir different functi<strong>on</strong>al state, it is important to be able to perform <strong>the</strong> spectroscopic technique not<br />

<strong>on</strong>ly in <strong>the</strong> detergent-solubilized form but also in <strong>the</strong> rec<strong>on</strong>stituted state in lipid vesicles. Pulsed<br />

Electr<strong>on</strong>-electr<strong>on</strong> Double Res<strong>on</strong>ance (PELDOR) 2,3 is a powerful tool to determine l<strong>on</strong>g range<br />

distances in spin-labeled macromolecules. Its applicability to membrane proteins rec<strong>on</strong>stituted<br />

into vesicles is so far restricted because <strong>of</strong> <strong>the</strong> much faster transversal relaxati<strong>on</strong> time (T2) <strong>of</strong> spin<br />

labels compared to detergent micelles. In order to optimize <strong>the</strong> sample c<strong>on</strong>diti<strong>on</strong> for <strong>the</strong><br />

spectroscopy experiments with respect to relaxati<strong>on</strong> time, we studied <strong>the</strong> relaxati<strong>on</strong> behavior <strong>of</strong><br />

spin labeled fatty acids and phospholipid analogs in phospholipid vesicles and detergent micelles 4.<br />

The parameters which we studied were local and total spin label c<strong>on</strong>centrati<strong>on</strong>, deuteriati<strong>on</strong>,<br />

temperature, presence <strong>of</strong> oxygen, membrane compositi<strong>on</strong>, and cryoprotectant type. Fur<strong>the</strong>rmore,<br />

we investigated <strong>the</strong> effect <strong>of</strong> spatial distributi<strong>on</strong> 5,6 <strong>of</strong> spin labeled fatty acids in vesicles and<br />

detergent micelles. Due to <strong>the</strong> hydrophobic nature <strong>of</strong> <strong>the</strong>se spin labels <strong>the</strong>y are expected to be<br />

inhomogeneously distributed through <strong>the</strong> sample. Distance measurements <strong>on</strong> <strong>the</strong>se samples have<br />

ga<strong>the</strong>red <strong>the</strong> spatial distributi<strong>on</strong> functi<strong>on</strong>s and <strong>the</strong>ir comparis<strong>on</strong> with analytic models.<br />

References<br />

[1] P. Äänismaa, E. Gatlik-Landwojtowicz, A. Seelig, Biochemistry 47, 10197-10207 (2008).<br />

[2] A. D. Milov, K. M. Salikhov, M. D. Shirov, Fiz. Tverd. Tela 23, 975-982 (1981).<br />

[3] G. Jeschke, Y. Polyhach, Phys. Chem. Chem. Phys. 9, 1895-1910 (2007). And references <strong>the</strong>rein.<br />

[4] A. Volkov, C. Dockter, T. Bund, H. Paulsen, G. Jeschke, Biophys. J. 96, 1124-1141 (<strong>2009</strong>).<br />

[5] A. D. Milov, R. I. Samoilova, Y. D. Tsvetkov, F. Formaggio, C. T<strong>on</strong>iolo, J. Raap, Appl. Magn. Res<strong>on</strong>. 29, 703-716<br />

(2005).<br />

[6] A. D. Milov, D. A. Erilov, E. S. Salnikov, Y. D. Tsvetkov, F. Formaggio, C. T<strong>on</strong>iolo, J. Raap, Phys. Chem. Chem.<br />

Phys. 7, 1794-1799 (2005).<br />

PA 3


Magnetic res<strong>on</strong>ance 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

C<strong>on</strong>formati<strong>on</strong>s <strong>of</strong> phenylalanine in <strong>the</strong> tripeptides AFA<br />

and GFG probed by combining MD simulati<strong>on</strong>s with<br />

NMR, FTIR, Polarized Raman, and VCD <strong>Spectroscopy</strong><br />

S. PIZZANELLI 1 , C. FORTE 1 , S. MONTI 1 , G. ZANDOMENEGHI 2 , B. H. MEIER 2 , A. HAGARMAN 3 , T. J.<br />

MEASEY 3 AND R. SCHWEITZER-STENNER 3<br />

1. Istituto per i Processi Chimico Fisici, CNR, Via G. Moruzzi 1, Pisa, 56124, Italy<br />

2. Laboratory <strong>of</strong> Physical Chemistry, ETH-Zurich, Wolfgang-Pauli-<br />

Strasse 10, CH-8093 Zurich, Switzerland<br />

3. Dept. <strong>of</strong> Chemistry, Drexel University, 3141 Chestnut Street,<br />

Philadelphia, Pennsylvania 19104, USA<br />

C<strong>on</strong>formati<strong>on</strong>al properties <strong>of</strong> small, flexible peptides are a matter <strong>of</strong> <strong>on</strong>going interest since <strong>the</strong>y<br />

can be c<strong>on</strong>sidered as models for unfolded proteins. However, <strong>the</strong> investigati<strong>on</strong> <strong>of</strong> <strong>the</strong><br />

c<strong>on</strong>formati<strong>on</strong>s <strong>of</strong> small peptides is challenging as <strong>the</strong>y are intrinsically disordered systems.<br />

Motivated by its relevance for <strong>the</strong> self-aggregati<strong>on</strong> <strong>of</strong> peptides and its high β-sheet propensity in<br />

folded proteins, <strong>the</strong> c<strong>on</strong>formati<strong>on</strong>al distributi<strong>on</strong> <strong>of</strong> phenylalanine in <strong>the</strong> tripeptides AFA and GFG<br />

was investigated by combining Molecular Dynamics (MD) simulati<strong>on</strong>s with Nuclear Magnetic<br />

Res<strong>on</strong>ance (NMR), Fourier Transform IR (FTIR), polarized Raman and Vibrati<strong>on</strong>al Circular<br />

Dichroism (VCD) measurements. In particular MD simulati<strong>on</strong>s were used to obtain <strong>the</strong> mean<br />

values and widths <strong>of</strong> φ,ψ distributi<strong>on</strong>s <strong>of</strong> phenylalanine in AFA and GFG, whereas <strong>the</strong><br />

experimental NOEs and spin-spin coupling c<strong>on</strong>stants obtained from NOESY and 1D 1H NMR<br />

spectra, respectively, as well as <strong>the</strong> amide I’ band pr<strong>of</strong>ile in <strong>the</strong> isotropic and anisotropic Raman,<br />

IR and VCD spectra were used to obtain <strong>the</strong> <strong>the</strong>rmal populati<strong>on</strong>s <strong>of</strong> <strong>the</strong> different c<strong>on</strong>formati<strong>on</strong>al<br />

states. This analysis yielded that β-strand (β) and polyproline II (PPII) states are predominantly<br />

populated in both AFA and GFG, however, whereas phenylalanine exhibits a propensity for βstrand<br />

c<strong>on</strong>formati<strong>on</strong>s in GFG, in AFA a higher populati<strong>on</strong> <strong>of</strong> <strong>the</strong> PPII state is observed. This<br />

indicates that a change <strong>of</strong> <strong>the</strong> neighboring residue (G→A) alters <strong>the</strong> Gibbs energy landscape <strong>of</strong> <strong>the</strong><br />

guest residue (F).<br />

Fig. 1 – Ramachandran (φ F, ψ F) probability distributi<strong>on</strong> <strong>of</strong> AFA and<br />

GFG in water (angles in degrees) obtained from <strong>the</strong> MD simulati<strong>on</strong>s.<br />

PA 4


Magnetic res<strong>on</strong>ance 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Structural analysis <strong>of</strong> ErbB2 unfolded C-terminal domain.<br />

MIKAËL FERACCI 1 , ALI BADACHE 2 , YVES COLETTE 2 AND FRANÇOISE GUERLESQUIN 1<br />

1. IMR – FR88, CNRS, 31 chemin Joseph Aiguier, 13402 Marseille Cedex<br />

20, France<br />

2. Centre de Recherche en Cancérologie de Marseille, Inserm UMR 891 –<br />

Institut Paoli-Calmettes, 27 Bd Lei Roure 13009 Marseille, France<br />

Overexpressi<strong>on</strong> <strong>of</strong> <strong>the</strong> Erbb2 receptor tyrosine kinase in breast cancers is associated with <strong>the</strong> most<br />

aggressive tumours and experimental studies revealed Erbb2 as a <strong>the</strong>rapeutic target: Erbb2 is able<br />

to c<strong>on</strong>fer characteristics <strong>of</strong> cancerous cells, including unc<strong>on</strong>trolled proliferati<strong>on</strong>, resistance to<br />

aptosis and increased motility [1]. Recent clinical results dem<strong>on</strong>strated <strong>the</strong> efficacy <strong>of</strong> Erbb2targeting<br />

<strong>the</strong>rapy, however as <strong>on</strong>ly a fracti<strong>on</strong> <strong>of</strong> patients resp<strong>on</strong>ds successfully to <strong>the</strong> <strong>the</strong>rapy and<br />

that <strong>the</strong> risks <strong>of</strong> recurrence are still high, fur<strong>the</strong>r investigati<strong>on</strong>s are required for an improved<br />

understanding <strong>of</strong> <strong>the</strong> complex network <strong>of</strong> signalling pathways underlying Erbb2-driven cancer<br />

progressi<strong>on</strong>. ErbB2 protein is a homodimer c<strong>on</strong>stituted <strong>of</strong> an extracellular domain targeted by<br />

antibodies used for efficient breast cancer <strong>the</strong>rapies, a membrane bound helical domain involved<br />

in <strong>the</strong> homodimeristi<strong>on</strong> <strong>of</strong> <strong>the</strong> molecule, and an intracellular domain c<strong>on</strong>stituted by a kinase<br />

subdomain and an unfolded C-terminal extremity [2]. The unfolded C-terminal extremity is a 275<br />

amino acid peptide c<strong>on</strong>taining five phosphorylated tyrosines involved in signal transducti<strong>on</strong>.<br />

Various partners <strong>of</strong> <strong>the</strong>se residues have been identified [3, 4] and we are currently developing an<br />

NMR restrained docking structural analysis <strong>of</strong> various complexes. This C-terminal extremity has a<br />

very high c<strong>on</strong>tents <strong>of</strong> proline residues is characteristic <strong>of</strong> this peptide. The importance <strong>of</strong> proline<br />

residues in partner recogniti<strong>on</strong> is <strong>on</strong>e <strong>of</strong> our focuses in this study.<br />

References<br />

[1] Leahy, D. J. Adv. Prot. Chem. 68, 1-27 (2004).<br />

[2] Bagossi P, Horvath G, Vereb G, Szollosi J, Tozser J. Biophys J. 88, 1354-63 (2005).<br />

[3] Schulze, W., Deng, L. and Mann, M. Mol. Syst. Biol. 1, (2005).<br />

[4] Mar<strong>on</strong>e R, Hess D, Dankort D, Muller WJ, Hynes NE, Badache A. Nat Cell Biol. 6, 515-22 (2004).<br />

PA 5


Magnetic res<strong>on</strong>ance 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Interacti<strong>on</strong> <strong>of</strong> alcohol with phospholipid membrane, an<br />

NMR and XRD investigati<strong>on</strong> <strong>on</strong> DPPC-alcohol system.<br />

U. WANDERLINGH 1 , S. RIFICI 1 C. CORSARO, G. D'ANGELO, V. CONTI NIBALI, A.TRIMARCHI<br />

1. Dipt. Di Fisica, Università di Messina, Sal. Sper<strong>on</strong>e 31, Vill. S.Agata,<br />

98166 Messina. Italy<br />

The investigati<strong>on</strong>s <strong>on</strong> interacti<strong>on</strong> between phospholipid bilayer and short-chained alcohols, are<br />

relevant for <strong>the</strong> potential <strong>of</strong> lipid bilayer membranes to serve as model systems 1 for studies <strong>of</strong><br />

various biological processes including permeability <strong>of</strong> <strong>the</strong> plasma membrane and molecular<br />

mechanisms <strong>of</strong> anes<strong>the</strong>sia. Because <strong>the</strong> hydrophobic porti<strong>on</strong> <strong>of</strong> an alcohol favorably interacts with<br />

lipid hydrocarb<strong>on</strong> chains, <strong>the</strong> polar hydroxyl group remains free to form hydrogen b<strong>on</strong>ds with<br />

polar lipid atoms that are located near <strong>the</strong> water/lipid interface. Experiments <strong>on</strong> phospholipid<br />

membranes have shown that alcohols can induce an interdigitated phase and at high c<strong>on</strong>centrati<strong>on</strong><br />

even promote <strong>the</strong> assembly <strong>of</strong> some <strong>of</strong> <strong>the</strong> lipids into n<strong>on</strong>-bilayer structures within <strong>the</strong> membrane<br />

interior. In this c<strong>on</strong>tributi<strong>on</strong> we present an High Resoluti<strong>on</strong> Magic Angle Spin NMR study <strong>on</strong><br />

DPPC multilamellar vescicle with different c<strong>on</strong>centrati<strong>on</strong> <strong>of</strong> several alcohols: ethanol, propanol,<br />

hexanol and octanol. Typical spectra are shown in <strong>the</strong> pictures below, which are taken at<br />

temperatures before and after main transiti<strong>on</strong> from <strong>the</strong> gel to liquid phase, in <strong>the</strong> case <strong>of</strong> DPPC and<br />

hexanol The presence <strong>of</strong> high alcohol c<strong>on</strong>centrati<strong>on</strong> affects <strong>the</strong> membrane transiti<strong>on</strong> temperature<br />

by shifting it to lower values (about 10° C). From an analysis <strong>of</strong> <strong>the</strong> chemical shift <strong>of</strong> 1H, <strong>on</strong>e can<br />

observe that <strong>the</strong> alcohol mainly affect <strong>the</strong> envir<strong>on</strong>ment <strong>of</strong> <strong>the</strong> hydrogens located in <strong>the</strong><br />

phospholipid tail, by promoting some disorder in <strong>the</strong> chains porti<strong>on</strong>s even before <strong>the</strong> transiti<strong>on</strong>.<br />

Transiti<strong>on</strong> to liquid phase has also an influence <strong>on</strong> prot<strong>on</strong> located in <strong>the</strong> polar head.<br />

References<br />

Fig. 1 – HRMAS spectra from pure DPPC liposomes (left) and DPPC<br />

with hexanol, 2:1 alcohol/lipid (rigth). Thin line corresp<strong>on</strong>ds to<br />

ordered phase, thick line corresp<strong>on</strong>ds to disordered phase.<br />

[1] D'Angelo G., Wanderlingh U.,Nibali V. C., Crupi C., Corsaro C. and Di Marco G. 'Physical study <strong>of</strong> dynamics in fully<br />

hydrated phospholipid bilayers', Phil. Mag. 88, 4033-4046 (2008).<br />

PA 6


Magnetic res<strong>on</strong>ance 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Biomarker pr<strong>of</strong>iling <strong>of</strong> gil<strong>the</strong>ad sea bream by means <strong>of</strong><br />

1H NMR metab<strong>on</strong>omics<br />

F. SAVORANI 1 , G. PICONE 2 , F. CAPOZZI 2 AND S. B. ENGELSEN 1<br />

1. Dept. <strong>of</strong> Food Science, Faculty <strong>of</strong> Life Sciences, University <strong>of</strong> Copenhagen, Rolighedsvej 30,<br />

1958 Frederiksberg C, Denmark<br />

2. Dept. <strong>of</strong> Food Science, University <strong>of</strong> Bologna, Piazza Goidanich 60, 47023 Cesena (FC), Italy<br />

This research describes a metabolic pr<strong>of</strong>iling study <strong>of</strong> gil<strong>the</strong>ad sea bream [1] from three different<br />

aquaculture systems using 1H NMR spectroscopy and metab<strong>on</strong>omics [2]. A total <strong>of</strong> 54 samples<br />

under two different storage regimens were analyzed. The assignment <strong>of</strong> all major NMR signals <strong>of</strong><br />

<strong>the</strong> hydrophilic fracti<strong>on</strong> was performed for <strong>the</strong> first time for this fish. Fur<strong>the</strong>rmore, a<br />

comprehensive multivariate data analysis proved able to distinguish <strong>the</strong> fish metabolism am<strong>on</strong>g<br />

<strong>the</strong> different rearing systems and to determine whe<strong>the</strong>r a fish was stored or not. The state <strong>of</strong><br />

energy metabolism <strong>of</strong> inosine proved to be a robust biomarker for evaluating <strong>the</strong> storage time. A<br />

new multivariate classificati<strong>on</strong> tool, interval Extended Can<strong>on</strong>ical Variable Analysis (iECVA) [3],<br />

achieved a robust classificati<strong>on</strong> <strong>of</strong> <strong>the</strong> three different aquaculture systems, revealing <strong>the</strong> involved<br />

metabolites (Figure 1). These characterizing biomarkers yielded different results for different<br />

storage regimens: glycogen (stress indicator), histidine, alanine and especially glycine for <strong>the</strong><br />

stored samples and mainly betaine for <strong>the</strong> fresh <strong>on</strong>es. The findings represent a step forward in<br />

understanding how in vivo and postmortem processes affect <strong>the</strong> total quality <strong>of</strong> <strong>the</strong> final product.<br />

References<br />

Fig. 1 – iECVA plot with insets illustrating <strong>the</strong> spectral features <strong>of</strong><br />

<strong>the</strong> most discriminative biomarkers.<br />

[1] M. C. M<strong>on</strong>fort, “General fisheries commissi<strong>on</strong> for <strong>the</strong> Mediterranean”, in Marketing <strong>of</strong> aquacultured seabass and<br />

seabream from <strong>the</strong> Mediterranean basin, edited by <strong>the</strong> Food and Agriculture Organizati<strong>on</strong> <strong>of</strong> <strong>the</strong> United Nati<strong>on</strong>s,<br />

Rome, (2007)<br />

[2] J. K. Nichols<strong>on</strong>, J. C. Lind<strong>on</strong>, E. Holmes, Xenobiotica 29, 1181-1189 (1999)<br />

[3] L. Nørgaard, R. Bro, F. Westad, S. B. Engelsen, J. Chemometr. 20, 425-435 (2006)<br />

PA 7


Magnetic res<strong>on</strong>ance 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Barbituric acid chloroderivatives studied by 35Cl – NQR<br />

spectroscopy<br />

H. STEC 1 , M. JADśYN 1 , J. MILECKI 2 AND B. NOGAJ 1<br />

1. Dept. <strong>of</strong> Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland<br />

2. Dept. <strong>of</strong> Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland<br />

Pyrimidine derivatives are <strong>of</strong>ten similar to native structures and enhance biological activity. They<br />

are <strong>of</strong>ten used as specific enzymes inhibitors to fight bacteria, fungi and weedes [1,2]. New<br />

methods <strong>of</strong> gene <strong>the</strong>rapy also involve different kinds <strong>of</strong> nucleobases including pyrimidine<br />

chloroderivaties [3]. The nuclear quadrupole res<strong>on</strong>ance (NQR) spectroscopy enables a<br />

determinati<strong>on</strong> <strong>of</strong> electr<strong>on</strong> density distributi<strong>on</strong> in <strong>the</strong> vinicity <strong>of</strong> a quadrupole nucleus studied<br />

directly from <strong>the</strong> measured res<strong>on</strong>ance frequency. The electr<strong>on</strong> density <strong>on</strong> a chlorine nuleus can be<br />

correlated with <strong>the</strong> biological activity <strong>of</strong> a given compound. The substances studied were<br />

barbituric acid chloroderivatives. Results <strong>of</strong> <strong>the</strong> NQR study <strong>of</strong> chlorine nucleus at sec<strong>on</strong>d and<br />

fourth positi<strong>on</strong> <strong>of</strong> pyrimidine ring were compared with 13C NMR results for carb<strong>on</strong> nucleus at<br />

sec<strong>on</strong>d and fourth positi<strong>on</strong>, 1H NMR for hydrogen nucleus at fifth positi<strong>on</strong> and electr<strong>on</strong>egativity<br />

<strong>of</strong> o<strong>the</strong>rs substituents. Theoretical calculati<strong>on</strong>s <strong>of</strong> studied compounds were compared with<br />

experimental data and produced high correlati<strong>on</strong> coefficients. Results <strong>of</strong> NQR study proved that<br />

<strong>the</strong> frequency <strong>of</strong> 35Cl NQR in <strong>the</strong>se substances increases (and <strong>the</strong> electr<strong>on</strong> density <strong>on</strong> chlorine<br />

nuclei rises) with increasing substituents’electr<strong>on</strong>egativity, however <strong>the</strong> impact is weaker in case <strong>of</strong><br />

chlorine nucleus at <strong>the</strong> sec<strong>on</strong>d positi<strong>on</strong>. The i<strong>on</strong>icity <strong>of</strong> C-Cl b<strong>on</strong>d increases with electr<strong>on</strong>egativity<br />

<strong>of</strong> substituents at sec<strong>on</strong>d and fourth positi<strong>on</strong>. Also, <strong>the</strong> substituent size influences NQR frequency<br />

by steric interacti<strong>on</strong>, what is much less significant for 1H NMR shifts.<br />

References<br />

Fig. 1 – Atom numbering <strong>of</strong> studied compound.<br />

[1] D. C. M. Chan, C. A. Laught<strong>on</strong>, S. F. Queener, M. F. G. Stevens, J. Med. Chem. 44, 2555-2564 (2001).<br />

[2] J. Rebehmed, F. Barbault, C. Teixeira, F. Maurel, J. Comput. Aided. Mol. Des. 22, 831-841 (2008).<br />

[3] J. K. Watts, G. F. Deleavey, M. J. Damha, Drug Discovery Today, 13, 842-845 (2008)<br />

PA 8


Magnetic res<strong>on</strong>ance 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Combined electr<strong>on</strong> magnetic res<strong>on</strong>ance and density<br />

functi<strong>on</strong>al <strong>the</strong>ory study <strong>of</strong> <strong>the</strong>rmally induced free<br />

radical reacti<strong>on</strong>s in fructose and trehalose single crystals<br />

M.A. TARPAN 1 , H. DE COOMAN 1, 2 , H. VRIELINCK 1 , E. PAUWELS 2 , M. WAROQUIER 2 , E.<br />

SAGSTUEN 3 AND F. CALLENS 1<br />

1. Department <strong>of</strong> Solid State Sciences, Ghent University, Krijgslaan 281-S1, B-9000 Gent, Belgium<br />

2. Center for Molecular Modeling, Ghent University, Proeftuinstraat 86, B-9000 Gent, Belgium<br />

3. Department <strong>of</strong> Physics, University <strong>of</strong> Oslo, P.O. Box 1048 Blindern, N-0316 Oslo, Norway<br />

Both as models for studying <strong>the</strong> effects <strong>of</strong> radiati<strong>on</strong> <strong>on</strong> <strong>the</strong> DNA sugar unit and for applicati<strong>on</strong>s in<br />

dosimetry, radiati<strong>on</strong>-induced defects in sugars have in <strong>the</strong> past few decades been intensively<br />

studied with electr<strong>on</strong> magnetic res<strong>on</strong>ance (EMR) techniques, <strong>of</strong>ten with c<strong>on</strong>siderable success.<br />

However, irradiati<strong>on</strong> generally gives rise to a large variety <strong>of</strong> free radicals, resulting in str<strong>on</strong>gly<br />

composite Electr<strong>on</strong> Paramagnetic Res<strong>on</strong>ance (EPR) spectra. This complexity makes studying <strong>the</strong>m<br />

quite a challenge. Despite c<strong>on</strong>siderable efforts, little is still known about <strong>the</strong> identity <strong>of</strong> <strong>the</strong> radicals<br />

and even less about <strong>the</strong> radical formati<strong>on</strong> and transformati<strong>on</strong> processes and mechanisms. At room<br />

temperature (RT) <strong>the</strong> primary radiati<strong>on</strong> products, which may be stabilized up<strong>on</strong> low temperature<br />

(LT) irradiati<strong>on</strong>, transform into stable radicals via multistep reacti<strong>on</strong> mechanisms. While <strong>the</strong><br />

species formed at LT are expected to be formed by simple processes, <strong>the</strong> molecular structure and<br />

geometry <strong>of</strong> <strong>the</strong> stable radicals may differ c<strong>on</strong>siderably from that <strong>of</strong> <strong>the</strong> intact molecule even in <strong>the</strong><br />

solid state (crystals). Studying <strong>the</strong> intermediate radicals in <strong>the</strong> reacti<strong>on</strong>s occurring after LT<br />

irradiati<strong>on</strong> helps elucidating <strong>the</strong> formati<strong>on</strong> and identity <strong>of</strong> <strong>the</strong> stable radicals. The structural<br />

identificati<strong>on</strong> <strong>of</strong> <strong>the</strong>se radicals is in most cases <strong>the</strong> result <strong>of</strong> a combinati<strong>on</strong> <strong>of</strong> EPR, Electr<strong>on</strong> Nuclear<br />

Double Res<strong>on</strong>ance (ENDOR) and ENDOR Induced EPR (EIE) experiments and advanced quantum<br />

chemistry calculati<strong>on</strong>s based <strong>on</strong> Density Functi<strong>on</strong>al Theory (DFT). In <strong>the</strong> present study a<br />

summary is given <strong>of</strong> <strong>the</strong> experimental EMR results obtained so far <strong>on</strong> radiati<strong>on</strong>-induced radicals at<br />

different temperatures in fructose and trehalose single crystals and powders. “In situ” Xirradiati<strong>on</strong><br />

at LT (10 K) without annealing, leads to spectra str<strong>on</strong>gly different from those observed<br />

after RT irradiati<strong>on</strong> and <strong>of</strong>fers <strong>the</strong> possibility to study and characterize <strong>the</strong> primary radiati<strong>on</strong><br />

products [1]. Performing EMR measurements <strong>on</strong> samples irradiated and/or annealed at various<br />

temperatures between LT (10 K or 77 K) and RT allows us to study <strong>the</strong> intermediate products, and<br />

such studies <strong>the</strong>refore have <strong>the</strong> potential to devise mechanistic links between <strong>the</strong> primary radicals<br />

and <strong>the</strong> stable radicals. In <strong>the</strong> present work, our own measurements are compared with results<br />

reported in <strong>the</strong> EMR literature. An outline at future experimental (EMR) and <strong>the</strong>oretical (DFT)<br />

research will also be given.<br />

References<br />

[1] M.A. Tarpan, E. Sagstuen, E. Pauwels, H. Vrielinck, M. Waroquier, F. Callens, J. Phys. Chem .A 112, 3898-3905<br />

(2008).<br />

PA 9


Magnetic res<strong>on</strong>ance 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PA<br />

Insight into Red Abal<strong>on</strong>e prismatic layer using<br />

MAS-SS-NMR<br />

TOMASZ WROBEL 1,2<br />

1. Université des Sciences et Technologies de Lille 1, Cité Scientifique,<br />

F-59655 Villeneuve d’Ascq Cedex, France<br />

2. Dept. <strong>of</strong> Chemistry, Jagiell<strong>on</strong>ian University, Ul. Ingardena 3, 30-060<br />

Krakow, Poland<br />

The Red Abal<strong>on</strong>e (Haliotis rufescens) shell is a material with remarkable mechanistic properties<br />

acquired by merging inorganic minerals and biological macromolecules. “The mollusk shell is a<br />

true composite, c<strong>on</strong>sisting <strong>of</strong> calcium carb<strong>on</strong>ate mineral associated with biopolymers, including<br />

lipid assemblies, polysaccharides and proteins. In some mollusk <strong>the</strong> shell is a two layer composite<br />

material (Fig. 1), with each layer composed <strong>of</strong> different polymorphic forms <strong>of</strong> calcium carb<strong>on</strong>ate<br />

(prismatic layer = calcite, nacre layer = arag<strong>on</strong>ite)” [1]. The strategies aiming at characterizing <strong>the</strong><br />

organic comp<strong>on</strong>ents are usually based <strong>on</strong> different extracti<strong>on</strong> techniques [2]. An attempt to get an<br />

insight into <strong>the</strong> structure <strong>of</strong> <strong>the</strong> prismatic layer organic coating in situ was performed by Magic<br />

Angle Spinning Solid State Nuclear Magnetic Res<strong>on</strong>ance and Fourier Transform Raman<br />

<strong>Spectroscopy</strong>.<br />

References<br />

Fig. 1 – Abal<strong>on</strong>e shell and its two types <strong>of</strong> layer structures [1].<br />

[1] J. S. Evans, Chem. Rev., 2008, 108 (11).<br />

[2] I. M. Weiss, Ch. Renner, M. G. Strigl, and M. Fritz, Chem. Mater., 2002, 14 (8).<br />

10


Multidimensi<strong>on</strong>al spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PA<br />

Recording <strong>of</strong> 2D-nutati<strong>on</strong> NQR spectra by random<br />

sampling method<br />

O. GLOTOVA 1 , N. SINYAVSKY 2 , M. JADśYN 1 , M. OSTAFIN 1 AND B. NOGAJ 1<br />

1. Dept. <strong>of</strong> Physics, Adam Mickiewicz University <strong>of</strong> Poznań, Umultowska 85, 61-614 Poznań, Poland<br />

2. Baltic State Academy, Molodiozhnaya str. 6, 236029 Kaliningrad, Russia<br />

In a c<strong>on</strong>venti<strong>on</strong>al 2D-nutati<strong>on</strong> NQR spectroscopy <strong>of</strong> spin I=3/2 nuclei <strong>the</strong> NQR signal (free<br />

inducti<strong>on</strong> decay (FID) or spin echo) is recorded for varying radio-frequency (rf) pulse length which<br />

is incremented by a c<strong>on</strong>stant step from 0 up to some maximum value tmax. Then <strong>the</strong> entire set <strong>of</strong><br />

time-domain data undergoes a double Fourier transform to yield <strong>the</strong> NQR nutati<strong>on</strong> spectrum with<br />

characteristic nutati<strong>on</strong> singularities from which <strong>the</strong> asymmetry parameter η <strong>of</strong> <strong>the</strong> electric field<br />

gradient (EFG) tensor <strong>on</strong> I=3/2 nuclei can be extracted. This procedure, however, frequently<br />

appears to be a very time demanding so that, for practical reas<strong>on</strong>s, its usefulness is limited.<br />

Moreover, for small η <strong>the</strong> nutati<strong>on</strong> singularities are <strong>of</strong>ten not well resolved. To overcome <strong>the</strong>se<br />

limitati<strong>on</strong>s we adopted a novel approach already proposed in NMR spectroscopy [2]. In this<br />

method <strong>the</strong> rf pulse length instead <strong>of</strong> being incremented by equal steps is taken in random from<br />

<strong>the</strong> range 0 to tmax. An interesting and ra<strong>the</strong>r n<strong>on</strong>-intuitive result <strong>of</strong> modifying <strong>the</strong> original<br />

procedure that way is <strong>the</strong> increase <strong>of</strong> resoluti<strong>on</strong> <strong>of</strong> <strong>the</strong> nutati<strong>on</strong> singularities and sometimes <strong>the</strong><br />

improvement <strong>of</strong> <strong>the</strong> signal to noise ratio <strong>of</strong> <strong>the</strong> nutati<strong>on</strong> spectrum despite <strong>the</strong> fact that <strong>the</strong> number<br />

<strong>of</strong> data points to acquire can be significantly decreased as compared to <strong>the</strong> original procedure.<br />

Accordingly, <strong>the</strong> time <strong>of</strong> <strong>the</strong> experiment decreases. Figure 1 shows this effect <strong>on</strong> <strong>the</strong> simulated<br />

nutati<strong>on</strong> spectra <strong>of</strong> powder samples. For this purpose <strong>the</strong> analytical formulas or <strong>the</strong> 2D-nutati<strong>on</strong><br />

NQR spectra <strong>of</strong> spin I=3/2 nuclei are derived in our work and <strong>the</strong> c<strong>on</strong>diti<strong>on</strong> for resolving <strong>the</strong><br />

spectral singularities for small values <strong>of</strong> η is given. The aforementi<strong>on</strong>ed <strong>the</strong>oretical results have<br />

also been corroborated by us experimentally by recording <strong>the</strong> nutati<strong>on</strong> 35Cl-NQR spectra for<br />

powder samples <strong>of</strong> potassium chlorate, chloral hydrate, cyanuric chloride and 2,6-dichloropurine<br />

rib<strong>on</strong>ucleoside.<br />

Fig. 1 One-dimensi<strong>on</strong>al nutati<strong>on</strong> NQR spectra simulated by<br />

numerical integrati<strong>on</strong> <strong>of</strong> <strong>the</strong> <strong>the</strong>oretical formulas,<br />

γB 1/2π=50 kHz, η=0.23, t max=400 mks, 400 data points: a)<br />

– rf pulse length incremented by equal steps, b) – rf pulse<br />

length taken as normal distributi<strong>on</strong> with mean value μ=0<br />

and standard deviati<strong>on</strong> σ=100 μs.<br />

References<br />

[1] G. S. Harbis<strong>on</strong>, A. Slokenbergs, T. M. Barbara, J. Chem. Phys. 90, 5292-5298 (1989).<br />

[2] K. Kaźmierczuk, A. Zawadzka, W. Koźmiński, I. Zhukov, J. Biomol NMR 36, 157-168 (2006).<br />

11


Multidimensi<strong>on</strong>al spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PA<br />

Direct and indirect toxicological effects <strong>of</strong> carb<strong>on</strong><br />

nanotubes-assessed by Raman spectroscopy<br />

P. KNIEF 1 , F.M. LYNG 2 , A.D. MEADE 1 , AND H.J. BYRNE 3<br />

1. School <strong>of</strong> Physics/Focas Research Institute, Dublin Institute <strong>of</strong><br />

Technology, Kevin Street, Dublin 8, Ireland<br />

2. Radiati<strong>on</strong> and Envir<strong>on</strong>mental Science Centre, Dublin Institute <strong>of</strong><br />

Technology, Kevin Street, Dublin 8, Ireland<br />

3. Focas Research Institute, Dublin Institute <strong>of</strong> Technology, Kevin Street,<br />

Dublin 8, Ireland<br />

Raman spectroscopy has been dem<strong>on</strong>strated to have significant potential in <strong>the</strong> biosciences,<br />

delivering high throughput, high precisi<strong>on</strong> and multiplexed assays <strong>of</strong> biochemical state and<br />

biological functi<strong>on</strong> in biological species [1]. Cellular analysis using Raman spectroscopy has<br />

become increasingly popular in recent years with dem<strong>on</strong>strated applicati<strong>on</strong>s ranging from disease<br />

diagnosis to classificati<strong>on</strong> <strong>of</strong> microorganisms and as a probe <strong>of</strong> molecular changes at a cellular<br />

level occurring as a result <strong>of</strong> external toxic exposures [2]. Carb<strong>on</strong> nanotubes have attracted<br />

c<strong>on</strong>siderable interest not <strong>on</strong>ly for <strong>the</strong>ir outstanding physical and electr<strong>on</strong>ic properties, promising a<br />

potentially vast number <strong>of</strong> applicati<strong>on</strong>s, but also for <strong>the</strong>ir potential toxicological risks as<br />

nanoparticles [3]. In this study Raman spectroscopy is employed for <strong>the</strong> determinati<strong>on</strong> <strong>of</strong> carb<strong>on</strong>nanotube-mediated<br />

direct and indirect toxicity in human alveolar carcinoma epi<strong>the</strong>lial cells<br />

(A549). The exposure <strong>of</strong> this cell line represents <strong>the</strong> primary pathway <strong>of</strong> exposure in humans, that<br />

<strong>of</strong> inhalati<strong>on</strong>. Univariate and multivariate analytical techniques dem<strong>on</strong>strate <strong>the</strong> direct and<br />

indirect aspects <strong>of</strong> exposure to single-walled carb<strong>on</strong> nanotubes. Preliminary results exhibit a dose<br />

dependent resp<strong>on</strong>se, which correlates well to previous toxicological studies [4]. Independent<br />

comp<strong>on</strong>ent analysis is employed to fur<strong>the</strong>r classify and collocate cellular resp<strong>on</strong>se as a functi<strong>on</strong> <strong>of</strong><br />

dose and to examine differences between spectra as a functi<strong>on</strong> <strong>of</strong> exposed c<strong>on</strong>centrati<strong>on</strong>. This<br />

preliminary study fur<strong>the</strong>r develops <strong>of</strong> Raman spectroscopy as a probe <strong>of</strong> cytotoxicity from<br />

exposure to nanoparticles.<br />

References<br />

[1] Lyng, F.M., et al., Vibrati<strong>on</strong>al spectroscopy for cervical cancer pathology, from biochemical analysis to diagnostic<br />

tool. Exp Mol Pathol, 2007. 82(2): p. 121-9.<br />

[2] Knief, P., et al., Raman spectroscopy – a potential platform for <strong>the</strong> rapid measurement <strong>of</strong> carb<strong>on</strong> nanotubeinduced<br />

cytotoxicity. Analyst, <strong>2009</strong>. 134(6): p. 1182-1191.<br />

[3] Dowling, A.P., et al., Nanoscience and nanotechnologies: opportunities and uncertainties in The Royal Society.<br />

2004. p. 11.<br />

[4] Herzog, E., et al., - accepted - Oxidative stress resp<strong>on</strong>se <strong>of</strong> human lung epi<strong>the</strong>lial cells up<strong>on</strong> carb<strong>on</strong> nanoparticle<br />

exposure depends <strong>on</strong> dispersi<strong>on</strong> medium - Toxicology and Applied Pharmacology, 2008.<br />

12


Multidimensi<strong>on</strong>al spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PA<br />

Two-dimensi<strong>on</strong>al electr<strong>on</strong>ic spectroscopy signatures <strong>of</strong><br />

<strong>the</strong> glass transiti<strong>on</strong><br />

K. L. M. LEWIS, J. A. MYERS, P. F. TEKAVEC, F. FULLER AND J. P. OGILVIE<br />

Dept. <strong>of</strong> Physics and Biophysics, University <strong>of</strong> Michigan, 450 Church Street,<br />

Ann Arbor, Michigan 48109, USA<br />

Two-dimensi<strong>on</strong>al electr<strong>on</strong>ic spectroscopy (2DES) is a sensitive probe <strong>of</strong> solvati<strong>on</strong> and relaxati<strong>on</strong><br />

dynamics <strong>on</strong> ultrafast timescales, providing detailed informati<strong>on</strong> about <strong>the</strong> physical origin <strong>of</strong><br />

inhomogeneous line shapes. In this c<strong>on</strong>tributi<strong>on</strong> we explore <strong>the</strong> use <strong>of</strong> 2DES for studying <strong>the</strong> glass<br />

transiti<strong>on</strong>. As a probe <strong>of</strong> <strong>the</strong> local glass envir<strong>on</strong>ment we examine <strong>the</strong> 2DES line shape <strong>of</strong> cresyl<br />

violet acetate dissolved in a glass-forming solvent. In general, 2D electr<strong>on</strong>ic spectra correlate<br />

excitati<strong>on</strong> and detecti<strong>on</strong> frequencies as a system relaxes, providing informati<strong>on</strong> about <strong>the</strong><br />

persistence <strong>of</strong> “memory” <strong>of</strong> initial excitati<strong>on</strong> frequency. Above <strong>the</strong> glass transiti<strong>on</strong>, <strong>the</strong> local<br />

envir<strong>on</strong>ment <strong>of</strong> <strong>the</strong> chromophore changes rapidly, resulting in rapid memory loss, while below <strong>the</strong><br />

glass transiti<strong>on</strong> <strong>the</strong> relatively static chromophore envir<strong>on</strong>ment means that <strong>the</strong> memory persists<br />

over l<strong>on</strong>g time scales. The persistence <strong>of</strong> memory is captured by <strong>the</strong> frequency-frequency<br />

correlati<strong>on</strong> functi<strong>on</strong>, and can be related to <strong>the</strong> ellipticity <strong>of</strong> <strong>the</strong> 2DES line shape [1]. We discuss <strong>the</strong><br />

relative sensitivity <strong>of</strong> 2DES over o<strong>the</strong>r methods such as <strong>the</strong> three pulse phot<strong>on</strong> echo peak shift in<br />

characterizing <strong>the</strong> glass transiti<strong>on</strong>.<br />

References<br />

Fig. 1 – Absolute value spectra <strong>of</strong> cresyl violet dissolved in a 1:1<br />

(v/v) mixture <strong>of</strong> water and glycerol. Both are taken at a t 2 value <strong>of</strong><br />

1.5 ps. The spectrum <strong>on</strong> <strong>the</strong> left is taken above <strong>the</strong> glass transiti<strong>on</strong>,<br />

while <strong>the</strong> <strong>on</strong>e <strong>on</strong> <strong>the</strong> right is below <strong>the</strong> glass transiti<strong>on</strong>. The large<br />

ellipticity for <strong>the</strong> data taken below <strong>the</strong> glass transiti<strong>on</strong> reflects <strong>the</strong><br />

frozen envir<strong>on</strong>ment <strong>of</strong> <strong>the</strong> chromophore.<br />

[1] K. Laz<strong>on</strong>der, M. S. Pshenichnikov, and D. A. Wiersma, "Easy interpretati<strong>on</strong> <strong>of</strong> optical two-dimensi<strong>on</strong>al correlati<strong>on</strong><br />

spectra," Opt. Lett. 31, 3354-3356 (2006).<br />

13


Multidimensi<strong>on</strong>al spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PA<br />

Observati<strong>on</strong> and modeling <strong>of</strong> wavepacket dynamics<br />

with two-dimensi<strong>on</strong>al electr<strong>on</strong>ic spectroscopy<br />

J. A. MYERS, K. L. M. LEWIS, P. F. TEKAVEC, F. FULLER, AND J. P. OGILVIE<br />

Dept. <strong>of</strong> Physics and Biophysics, University <strong>of</strong> Michigan, 450 Church Street,<br />

Ann Arbor, Michigan 48109, USA<br />

Two-dimensi<strong>on</strong>al electr<strong>on</strong>ic spectroscopy (2DES) is an emerging method that is analogous to twodimensi<strong>on</strong>al<br />

NMR spectroscopy at optical frequencies. It permits <strong>the</strong> study <strong>of</strong> coupling between<br />

electr<strong>on</strong>ic transiti<strong>on</strong>s, and provides detailed informati<strong>on</strong> about <strong>the</strong> physical origin <strong>of</strong> broad<br />

electr<strong>on</strong>ic line shapes. Recently 2DES has been shown to be a powerful tool for studying energy<br />

transfer in natural light-harvesting systems. Despite <strong>the</strong> wealth <strong>of</strong> informati<strong>on</strong> available from<br />

2DES, its experimental complexity has limited its applicati<strong>on</strong>s. Many <strong>of</strong> <strong>the</strong> experimental<br />

challenges <strong>of</strong> 2DES can be lessened using a simple pump-probe geometry, where <strong>the</strong> two collinear<br />

pump pulses are created using an acousto-optic pulse shaper [1]. We have recently implemented<br />

this method with <strong>the</strong> use <strong>of</strong> a c<strong>on</strong>tinuum probe, providing informati<strong>on</strong> over a broad range <strong>of</strong><br />

frequencies, and showing that a pump-probe experiment can be readily c<strong>on</strong>verted to perform<br />

2DES measurements with <strong>the</strong> additi<strong>on</strong> <strong>of</strong> a pulse-shaper. Here, we discuss <strong>the</strong> benefits <strong>of</strong> this<br />

method, and use <strong>the</strong> technique to study wavepacket dynamics in a simple dye system: N, N’-bis<br />

(2,6-dimethylphenyl) perylene-3,4,9,10-tetracarboxylicdiimide (PERY) dissolved in DMSO. We<br />

find that <strong>the</strong> ellipticity and peak amplitudes are modulated by a low-frequency intramolecular<br />

vibrati<strong>on</strong>al mode. This finding implies that care must be taken to include <strong>the</strong> effects <strong>of</strong> vibrati<strong>on</strong>al<br />

dynamics in interpreting line shapes in 2DES. We compare our experimental results to simulati<strong>on</strong>s<br />

that include <strong>the</strong> effects <strong>of</strong> finite pulse durati<strong>on</strong> and pulse chirp and discuss future applicati<strong>on</strong>s.<br />

References<br />

Fig. 1 – Experimental absorptive 2D spectra for PERY dissolved in<br />

DMSO at different waiting times [2]. The ellipticity <strong>of</strong> <strong>the</strong> peaks is<br />

modulated by vibrati<strong>on</strong>al wavepacket dynamics.<br />

[1] J. A. Myers, K. L. Lewis, P. F. Tekavec, and J. P. Ogilvie, "Two-color two-dimensi<strong>on</strong>al Fourier transform electr<strong>on</strong>ic<br />

spectroscopy with a pulse-shaper," Opt. Express 16, 17420-17428 (2008).<br />

[2] P. F. Tekavec, J. A. Myers, K. L. M. Lewis, and J. P. Ogilvie, "Two-dimensi<strong>on</strong>al electr<strong>on</strong>ic spectroscopy with a<br />

c<strong>on</strong>tinuum probe," Opt. Lett. 34, 1390-1392 (<strong>2009</strong>).<br />

14


Multidimensi<strong>on</strong>al spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PA<br />

Spectroscopic imaging <strong>of</strong> Quantum dot cellular<br />

interacti<strong>on</strong><br />

L. SALFORD 1 , F. M. LYNG 2 , A. D. MEADE 1 , F. BONNIER 1 AND H. J. BYRNE 3<br />

1. 1. School <strong>of</strong> Physics, Dublin Institute <strong>of</strong> Technology, Kevin Street,<br />

Dublin 8, Ireland<br />

2. Radiati<strong>on</strong> and Envir<strong>on</strong>mental Science Centre, Dublin Institute <strong>of</strong><br />

Technology, Kevin Street, Dublin 8, Ireland<br />

3. Focas Research Institute, Dublin Institute <strong>of</strong> Technology, Kevin Street,<br />

Dublin 8, Ireland<br />

Quantum dots (QDs) are a diverse class <strong>of</strong> engineered nanomaterials that have great potential for<br />

use as agents in imaging, diagnostic and drug-delivery because <strong>of</strong> <strong>the</strong>ir intense and photostable<br />

fluorescence.[1,2] Advances in <strong>the</strong> field <strong>of</strong> nanotoxicology, however, have recently identified<br />

potential risks and hazards associated with exposure to QDs.[3] The main purpose <strong>of</strong> our research<br />

is to investigate <strong>the</strong> capabilities <strong>of</strong> a synergistic study with different techniques: cytotoxicity<br />

assays, c<strong>on</strong>focal microscopy and vibrati<strong>on</strong>al spectroscopy. With <strong>the</strong> combinati<strong>on</strong> <strong>of</strong> <strong>the</strong>se<br />

techniques we hope to understand <strong>the</strong> mechanisms <strong>of</strong> <strong>the</strong> interacti<strong>on</strong> <strong>of</strong> QDs with biological<br />

systems.Fluorescence and C<strong>on</strong>focal Microscopy studies have dem<strong>on</strong>strated that internalizati<strong>on</strong> <strong>of</strong><br />

<strong>the</strong> QDs within HaCaT keratinocytes occurs within 1 hour <strong>of</strong> exposure, and that <strong>the</strong> QDs are<br />

possibly retained in <strong>the</strong> lysosomes. This is c<strong>on</strong>firmed by colocalizati<strong>on</strong> <strong>of</strong> green LysoTracker<br />

probes (Invitrogen, Carlsbad, CA, USA) and <strong>the</strong> QDs (Evident Technology, Troy, N.Y., USA, with<br />

an emissi<strong>on</strong> at 625 nm). Lysotracker is a fluorescent acidotropic probe for labeling acidic organelles<br />

in live cells.Using an excitati<strong>on</strong> wavelength <strong>of</strong> 785 nm we have also observed a <strong>the</strong> two-phot<strong>on</strong><br />

excitati<strong>on</strong> and fluorescence in QDs (emissi<strong>on</strong> at 625 nm), where <strong>the</strong> fluorescent emissi<strong>on</strong> is<br />

observed in <strong>the</strong> anti-Stokes Raman signal, toge<strong>the</strong>r with <strong>the</strong> usual Stokes Raman scatter <strong>of</strong> a single<br />

cell. This study dem<strong>on</strong>strates preliminarily <strong>the</strong> potential for <strong>the</strong> use <strong>of</strong> QDs as lysosome Raman<br />

tags. QDs localize in <strong>the</strong> lysosomes and due to <strong>the</strong>ir intense fluorescence can be observed in <strong>the</strong><br />

cell with both c<strong>on</strong>focal and Raman microscopy. Raman microspectroscopy <strong>the</strong>refore <strong>of</strong>fers <strong>the</strong><br />

means to both localise (image) and study <strong>the</strong> chemical interacti<strong>on</strong> between a nanoparticle and its<br />

biological envir<strong>on</strong>ment.<br />

References<br />

[1] Gao, X., et al., In vivo cancer targeting and imaging with semic<strong>on</strong>ductor quantum dots. Nat Biotechnol, 2004.<br />

22(8): p. 969-76.<br />

[2] Michalet, Quantum dots for live cells, in vivo imaging, and diagnostic. science, 2005.<br />

[3] Hardman, R., A toxicologic review <strong>of</strong> quantum dots: toxicity depends <strong>on</strong> physicochemical and envir<strong>on</strong>mental<br />

factors. Envir<strong>on</strong> Health Perspect, 2006. 114(2): p. 165-72.<br />

[4] van Manen, H.-J. and C. Otto, Hybrid C<strong>on</strong>focal Raman Fluorescence Microscopy <strong>on</strong> Single Cells Using<br />

Semic<strong>on</strong>ductor Quantum Dots. Nano Letters, 2007. 7(6): p. 1631-1636.<br />

15


Multidimensi<strong>on</strong>al spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PA<br />

Fluctuating coherence length in 2D spectra <strong>of</strong> molecular<br />

aggregates - stochastic approach for modelling coherent<br />

n<strong>on</strong>linear optical resp<strong>on</strong>se (simulati<strong>on</strong> study)<br />

F. ŠANDA 1 , V. PERLÍK 1 AND S. MUKAMEL 2<br />

1. Institute <strong>of</strong> Physics, Faculty <strong>of</strong> Ma<strong>the</strong>matics and Physics, Charles<br />

University, Ke Karlovu 5, Prague 2, 121 16, Czech Republic<br />

2. Dept. <strong>of</strong> Chemistry, University <strong>of</strong> California, Irvine, CA 92697, USA<br />

Excit<strong>on</strong> coherence (or delocalizati<strong>on</strong>) length is a powerful c<strong>on</strong>cept for understanding <strong>the</strong> optical<br />

properties <strong>of</strong> molecular aggregates. It measures, how l<strong>on</strong>g is <strong>the</strong> part <strong>of</strong> aggregate (“fragment”)<br />

over which is <strong>the</strong> quantum coherence spanned after excitati<strong>on</strong>. Its actual value results from <strong>the</strong><br />

competiti<strong>on</strong> between intermolecular dipole-dipole interacti<strong>on</strong> and dephasing (localizati<strong>on</strong>) by bath<br />

induced fluctuati<strong>on</strong>s and disorder <strong>of</strong> local site frequencies [1]. Coherent 2D phot<strong>on</strong> echo<br />

spectroscopy provides direct measure for dynamics <strong>of</strong> fluctuati<strong>on</strong> <strong>of</strong> coherence length within<br />

certain parameter regimes, where <strong>the</strong> fragments can be associated with particular regi<strong>on</strong>s <strong>of</strong> <strong>the</strong><br />

spectrum [2]. We have simulated Frenkel excit<strong>on</strong> model <strong>of</strong> molecular agreggate with fluctuating<br />

site energies, coupling and/or dipolemoments. We used <strong>the</strong> stochastic approach [3] to bath<br />

induced fluctuati<strong>on</strong>s which is capable to correctly describe <strong>the</strong>ir autocorrelati<strong>on</strong> timescales. 3-rd<br />

orderd optical resp<strong>on</strong>se is calculated using quasiparticle representati<strong>on</strong> <strong>of</strong> optical aggregate [4].<br />

The signatures <strong>of</strong> <strong>the</strong> coherence length and its dynamics in both linear and 2D spectra <strong>of</strong> simple<br />

aggregates will be discussed.<br />

1.5<br />

1<br />

0.5<br />

References<br />

0<br />

1 1.5 2<br />

ω1<br />

J<br />

ω3<br />

J<br />

2.2<br />

2<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

1 1.5 2<br />

ω1<br />

J<br />

16<br />

ω3<br />

J<br />

2.2<br />

2<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

1 1.5 2<br />

Fig. 1 – Linear and 2D phot<strong>on</strong> echo spectra <strong>of</strong> disordered tetramer.<br />

Higher frequencies indicate higher coherence length (here). Crosspeaks<br />

at l<strong>on</strong>ger delay time (right panel) show kinetics <strong>of</strong> fragments.<br />

[1] V. M. Kenkre and P. Reineker,Excit<strong>on</strong> Dynamics in Molecular Crystals and Aggregates, Springer, Berlin (1982).<br />

[2] F. Sanda, V. Perlik, S. Mukamel, (in preparati<strong>on</strong>).<br />

[3] Y. Tanimura, J. Phys. Soc. Jpn. 75, 082001 (2006).<br />

[4] D. Abramavicius, B. Palimieri, D. V. Vor<strong>on</strong>ine, F. Sanda, S. Mukamel, Chem. Rev. 109, xxx (<strong>2009</strong>)<br />

http://dx.doi.org/10.1021/cr800268n.<br />

ω1<br />

J<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

−5<br />

−10


Neutr<strong>on</strong> scattering 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PA<br />

EINS study <strong>of</strong> molecular moti<strong>on</strong>s in systems <strong>of</strong><br />

biological interest<br />

A. BENEDETTO 1 , S. MAGAZÙ 1 , M. A. GONZALEZ 2 , F. MIGLIARDO 1,3 AND C. MONDELLI 2<br />

1. Dept. <strong>of</strong> Physics, University <strong>of</strong> Messina, Sper<strong>on</strong>e 31, Messina, I-98166,<br />

Italy<br />

2. Institut Laue Langevin, 6 rue Jules Horowitz, Grenoble, BP 156, F-<br />

38042, France<br />

3. Laboratoire de Dynamique et Structure des Matériaux Moléculaires,<br />

University <strong>of</strong> Lille 1, UMR CNRS 8024, Villeneuve d’Ascq CEDEX, F-<br />

59655 France<br />

The present work is addressed to <strong>the</strong> study <strong>of</strong> <strong>the</strong> role <strong>of</strong> <strong>the</strong> instrumental resoluti<strong>on</strong> in Elastic<br />

Incoherent Neutr<strong>on</strong> Scattering (EINS). The Self Distributi<strong>on</strong> Functi<strong>on</strong> (SDF) procedure is presented<br />

and c<strong>on</strong>nected to <strong>the</strong> measured EINS intensity pr<strong>of</strong>ile. This procedure allows to evaluate both <strong>the</strong><br />

total and <strong>the</strong> partial Mean Square Displacement (MSD), through <strong>the</strong> total and <strong>the</strong> partial SDFs. The<br />

SDF and <strong>the</strong> Gaussian procedures are compared by applying <strong>the</strong> two approaches to EINS data<br />

collected by <strong>the</strong> IN13 backscattering spectrometer (ILL, Grenoble) <strong>on</strong> systems <strong>of</strong> biological interest,<br />

such as disaccharides, i.e. sucrose and trehalose, and lysozyme.<br />

17


Neutr<strong>on</strong> scattering 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PA<br />

The role <strong>of</strong> myelin proteins in degenerative diseases – A<br />

neutr<strong>on</strong> investigati<strong>on</strong>.<br />

W. KNOLL 1 , F. NATALI 2 , J. PETERS 1 AND P. KURSULA 3<br />

1. University Joseph Fourier and Institut Laue-Langevin, Grenoble, FR-<br />

38000, France<br />

2. CNR-INFM, OGG, c/o Institut Laue-Langevin, Grenoble, FR-38000,<br />

France<br />

3. University <strong>of</strong> Oulu, Oulu, Finland<br />

Myelin, <strong>the</strong> multilamellar, lipid-rich membranous sheath surrounding and insulating <strong>the</strong> nerve<br />

ax<strong>on</strong>s in <strong>the</strong> central nervous system (CNS) and peripheral nervous system (PNS), allows for <strong>the</strong><br />

fast saltatory transmissi<strong>on</strong> <strong>of</strong> nerve impulses in vertebrates. It is destroyed by autoimmune<br />

processes in demyelinating diseases, such as multiple sclerosis (MS) or peripheral neuropathies<br />

(PN). The etiology <strong>of</strong> MS is affected by dynamic changes in protein-lipid interacti<strong>on</strong>s and lipidbased<br />

membrane microdomains. Two c<strong>on</strong>stituent parts <strong>of</strong> <strong>the</strong> myelin which account for its stability<br />

are <strong>the</strong> myelin basic protein (MBP) and <strong>the</strong> P2 protein. MBP is <strong>the</strong> major protein <strong>of</strong> <strong>the</strong> myelin<br />

membrane in <strong>the</strong> CNS and PNS, a lipid-free and intrinsically unstructured protein partiti<strong>on</strong>ing in<br />

<strong>the</strong> raft/n<strong>on</strong>-raft microdomains <strong>of</strong> CNS myelin [1-2]. P2 is a basic fatty acid binding protein <strong>of</strong> <strong>the</strong><br />

PNS located <strong>on</strong> <strong>the</strong> cytoplasmic side <strong>of</strong> compact myelin membranes. To investigate <strong>the</strong> influence <strong>of</strong><br />

<strong>the</strong>se myelin proteins <strong>on</strong> myelin stability and dynamic changes in protein-lipid interacti<strong>on</strong>s, we<br />

carried out incoherent elastic neutr<strong>on</strong> scattering experiments <strong>on</strong> a simple model system c<strong>on</strong>sisting<br />

<strong>of</strong> layers <strong>of</strong> <strong>the</strong> lipids dimyristoyl L-α-phosphatidic acid (DMPA) and <strong>the</strong> myelin proteins MBP<br />

and P2 in a wide temperature range.<br />

References<br />

[1] R. Smith, J Neurochem 59, 1589-1608 (1992).<br />

[2] G. Harauz, et al., Micr<strong>on</strong>., 35(7), 503-542 (2004).<br />

18


Neutr<strong>on</strong> scattering 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PA<br />

Quasi-elastic and elastic scattering studies <strong>of</strong> aligned<br />

DMPC multilayers at different hydrati<strong>on</strong>s<br />

M. TRAPP 1 , T. GUTBERLET 2 , F. JURANYI 3 , M. TEHEI 4 , T. UNRUH 5 AND J. PETERS 1,6,7<br />

1. Institut de Biologie Structurale, F-38042 Grenoble Cédex 9, France<br />

2. JCNS at FRMII, D-85747 Garching, Germany<br />

3. LNS, ETHZ & Paul Scherrer Institut, CH-5232 Villigen, Switzerland<br />

4. AINSE, University <strong>of</strong> Woll<strong>on</strong>g<strong>on</strong>g, NSW 2522, Australia<br />

5. FRM II, TUM, D-85747 Garching, Germany<br />

6. Université Joseph Fourier, F-38042 Grenoble Cédex 9, France<br />

7. Institut Laue Langevin, F-38042 Grenoble Cédex 9, France<br />

Lipid model membranes such as 1,2-Dimyristoyl-sn-Glycero-3-Phosphocholine (DMPC) serve as<br />

role models for <strong>the</strong>ir more complex counterparts in biological systems. Quasi-elastic neutr<strong>on</strong><br />

scattering (QENS) [1,2], inelastic neutr<strong>on</strong> scattering (INS) [3] and neutr<strong>on</strong> spin echo spectroscopy<br />

(NSE) [4] have been employed to study local as well as collective dynamics <strong>of</strong> <strong>the</strong>se membranes.<br />

Most <strong>of</strong> <strong>the</strong>se studies lack a systematic investigati<strong>on</strong> <strong>of</strong> <strong>the</strong> behavior <strong>of</strong> <strong>the</strong> model membranes in<br />

dependence <strong>on</strong> <strong>the</strong>ir hydrati<strong>on</strong>. To probe both dynamics in <strong>the</strong> plane <strong>of</strong> <strong>the</strong> membrane and<br />

perpendicular to it, <strong>the</strong> samples were prepared <strong>on</strong> cleaned silic<strong>on</strong> wafers. The hydrati<strong>on</strong> for <strong>the</strong><br />

two samples (chain deuterated DMPC-d54) was adjusted by hydrating <strong>the</strong>m for pure D2O and<br />

from a saturated salt soluti<strong>on</strong> respectively, resulting in two different states <strong>of</strong> hydrati<strong>on</strong> (repeating<br />

distance d=62.5 Å for 100 % r.h. and d = 54.9 Å for 99.7 % r.h., respectively). The alignment and<br />

mosaicity were checked prior to <strong>the</strong> measurements for all samples by neutr<strong>on</strong> diffracti<strong>on</strong>. QENS<br />

experiments were performed at <strong>the</strong> time-<strong>of</strong>-flight spectrometer TOFTOF at FRMII in Munich<br />

(energy resoluti<strong>on</strong>: 56 µeV) in <strong>the</strong> temperature range from 5°C to 30°C to cover <strong>the</strong> main phase<br />

transiti<strong>on</strong> <strong>of</strong> DMPC which occurs around 23°C. Elastic incoherent neutr<strong>on</strong> scattering (EINS)<br />

measurements were performed at <strong>the</strong> high momentum transfer backscattering spectrometer IN13<br />

(energy resoluti<strong>on</strong>: 8 µeV) at ILL, Grenoble. For <strong>the</strong> QENS experiment elastic incoherent structure<br />

factors (EISF) were extracted, which reveal that hydrati<strong>on</strong> has a clear influence <strong>on</strong> <strong>the</strong> mobility <strong>of</strong><br />

this system and in <strong>the</strong> framework <strong>of</strong> earlier QENS [1] and backscattering [5] investigati<strong>on</strong>s, <strong>the</strong>y<br />

extend our knowledge <strong>of</strong> model membrane systems. Apart from <strong>the</strong> results <strong>of</strong> <strong>the</strong>se two<br />

measurements (TOFTOF and IN13) an outlook for fur<strong>the</strong>r measurements (IN16) will be presented.<br />

References<br />

[1] S. König et al., J.Phys.II France, 2 (1992) 1589-1615<br />

[2] M.C. Rheinstädter et al., Phys. Rev. E 75 (2007) 011907<br />

[3] M.C. Rheinstädter et al., Phys. Rev. Lett. 93 (2004) 108107<br />

[4] M.C. Rheinstädter et al., Phys. Rev. Lett. 97 (2006) 048103<br />

[5] M.C. Rheinstädter et al., Phys. Rev. E 71 (2005) 061908 (2002)<br />

19


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Vibrati<strong>on</strong>al spectroscopy investigati<strong>on</strong> <strong>of</strong><br />

5-methylcytosine using ab initio Hartree-Fock and<br />

density functi<strong>on</strong>al <strong>the</strong>ory<br />

D. K. SHARMA 1 , T. RASHEED 2 , S. AHMAD 2 AND V. K. RASTOGI 1<br />

1. Dept. <strong>of</strong> Physics, C. C. S. University, Meerut-250004, India<br />

2. Dept. <strong>of</strong> Physics, Aligarh Muslim University, Aligarh-202002, India<br />

A clear understanding <strong>of</strong> <strong>the</strong> vibrati<strong>on</strong>al spectra <strong>of</strong> 5-methylcytosine (5MC) will aid c<strong>on</strong>siderably<br />

fur<strong>the</strong>r studies <strong>of</strong> certain biological processes in a more complex biomolecular system. In <strong>the</strong><br />

present investigati<strong>on</strong>, quantum chemical calculati<strong>on</strong>s <strong>of</strong> 5MC (Fig. 1) have been performed using<br />

<strong>the</strong> computati<strong>on</strong> package Gaussian 03W. The equilibrium geometry, harm<strong>on</strong>ic vibrati<strong>on</strong>al<br />

frequencies, infrared intensities and Raman scattering activities were calculated by HF and density<br />

functi<strong>on</strong>al B3LYP [1-2] methods utilizing <strong>the</strong> 6-311G(d,p) basis set. Calculated b<strong>on</strong>d lengths and<br />

b<strong>on</strong>d angles have been compared with <strong>the</strong> experimentally determined values for cytosine [3] and<br />

<strong>the</strong>se values were found to be in good agreement. A detailed interpretati<strong>on</strong> <strong>of</strong> 5MC vibrati<strong>on</strong>al<br />

spectra is reported. The molecular visualizati<strong>on</strong> program GaussView 03W was used to observe<br />

normal modes <strong>of</strong> vibrati<strong>on</strong>. The results are discussed in c<strong>on</strong>text <strong>of</strong> assigning <strong>the</strong> normal modes <strong>of</strong><br />

5MC. The scaled <strong>the</strong>oretical frequencies are in general close to <strong>the</strong> experimental <strong>on</strong>es which allow<br />

an unambiguous assignment <strong>of</strong> vibrati<strong>on</strong>al modes. Experimental frequencies for <strong>the</strong> asymmetric<br />

and symmetric stretching vibrati<strong>on</strong>s <strong>of</strong> <strong>the</strong> NH2 group are assigned at 3555 and 3435 cm -1<br />

respectively. Calculated and experimental frequencies have large difference which may be<br />

attributed to <strong>the</strong> intermolecular hydrogen b<strong>on</strong>ding in <strong>the</strong> solid sample. The band observed at 1745<br />

cm -1 in <strong>the</strong> Raman spectrum corresp<strong>on</strong>ds to <strong>the</strong> stretching vibrati<strong>on</strong>, ν(C=O), which is found to be<br />

very close to <strong>the</strong> scaled DFT frequency <strong>of</strong> 1759 cm -1. The lower frequencies generally show mixed<br />

compositi<strong>on</strong> <strong>of</strong> many modes.<br />

References<br />

Fig. 1 – Molecular structure and numbering scheme for 5methylcytosine.<br />

[1] A.D. Becke, J. Chem. Phys. 98, 1372-1378 (1993); J. Chem. Phys. 98, 5648-5756 (1993).<br />

[2] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 37, 785-789 (1988).<br />

[3] D.L. Barker, R.E. Marsh, Acta Cryst. 17, 1581-1587 (1964).<br />

PA 20


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

C<strong>on</strong>formati<strong>on</strong>al Heterogeneity <strong>of</strong> Cytochrome c Probed<br />

by Res<strong>on</strong>ance Raman <strong>Spectroscopy</strong> as a functi<strong>on</strong> <strong>of</strong> pH<br />

M. ALESSI 1 , A. HAGARMAN 1 AND R. SCHWEITZER-STENNER 1<br />

Dept. <strong>of</strong> Chemistry, Drexel University, 3141 Chestnut Street, Philadelphia, 19104, USA<br />

The oxidized state <strong>of</strong> cytochrome c is a subject <strong>of</strong> c<strong>on</strong>tinuous interest, due to <strong>the</strong> multitude <strong>of</strong><br />

c<strong>on</strong>formati<strong>on</strong>s <strong>the</strong> protein adopts. These c<strong>on</strong>formati<strong>on</strong>s are described as deviati<strong>on</strong>s from <strong>the</strong> native<br />

state, adopted at neutral pH and room temperature. These so-called n<strong>on</strong>-native states are thought<br />

to be adopted during biological functi<strong>on</strong>s such as electr<strong>on</strong> transfer, peroxidase activity and<br />

apoptosis. Despite numerous studies, native and n<strong>on</strong>-native states <strong>of</strong> ferricytochrome c have not<br />

been comprehensively analyzed regarding <strong>the</strong> influence <strong>of</strong> solvent c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> structure,<br />

functi<strong>on</strong>, and <strong>the</strong>rmodynamic equilibrium. The heme group <strong>of</strong> cytochrome c can be best related to<br />

having D4h symmetry, with a square planar geometry. Complexes that are classified in terms <strong>of</strong><br />

D4h have four types <strong>of</strong> Raman active modes, which exhibit A1g, A2g, B1g, and B2g symmetry. These<br />

normal modes corresp<strong>on</strong>d to different macrocycle deformati<strong>on</strong>s. In ideal D4h, <strong>the</strong> Raman modes<br />

would have characteristic depolarizati<strong>on</strong> ratio (DPR) values which are as follows: A1g (0.125), A2g<br />

(∞), B1g (0.75) and B2g (0.75). Deviati<strong>on</strong>s <strong>of</strong> DPRs from expectati<strong>on</strong> values allows for insight into<br />

admixtures <strong>of</strong> macrocycle deformati<strong>on</strong>s. These deviati<strong>on</strong>s can be inferred from figure 1. In <strong>the</strong><br />

current study, we have analyzed <strong>the</strong> high frequency (1200-1800cm -1) Soret and Q-band res<strong>on</strong>ance<br />

Raman spectra <strong>of</strong> oxidized and reduced horse heart cytochrome c (hhc) in terms <strong>of</strong> depolarizati<strong>on</strong><br />

ratios as a functi<strong>on</strong> <strong>of</strong> increasing pH. The obtained DPR values <strong>of</strong> <strong>the</strong> analyzed Raman lines<br />

indicate that <strong>the</strong> alkaline transiti<strong>on</strong>s from <strong>the</strong> native state III to n<strong>on</strong>-native alkaline states IV induce<br />

an additi<strong>on</strong>al triclinic B2g deformati<strong>on</strong>. The results show that as cytochrome c undergoes its<br />

transiti<strong>on</strong> from <strong>the</strong> native to n<strong>on</strong>-native alkaline states that <strong>the</strong> heme is becoming more distorted.<br />

This is surprising because <strong>on</strong>e would expect for <strong>the</strong> heme to become more relaxed and less<br />

distorted due to previously published works [2].<br />

References<br />

PA 21<br />

⊗<br />

A1G A2G B1G B2G<br />

A1G A1G A2G B1G B2G<br />

A2G A2G A1G B2G B1G<br />

B1G B1G B2G A1G A2G<br />

B2G B2G B1G A2G A1G<br />

Fig. 1 – The res<strong>on</strong>ance Raman active modes are shown with <strong>the</strong><br />

various deformati<strong>on</strong>s al<strong>on</strong>g with <strong>the</strong> respective cross products.<br />

[1] S. Hu, K. S. Smith, T.G. Spiro. J. Am. Chem. Soc. 118, 12638 (1996).<br />

[2] A. Hagarman, L. Duitch, R. Schweitzer-Stenner, Biochemistry. 47 (36), 9667-9677.(2008).


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Fourier transform infrared spectroscopy to m<strong>on</strong>itor<br />

embry<strong>on</strong>ic stem cell differentiati<strong>on</strong><br />

D. AMI 1 , A. NATALELLO 1 , T. NERI 2 , P. MEREGHETTI 3 , M. ZANONI 2 , M. ZUCCOTTI 4 , S.<br />

GARAGNA 2 , S. M. DOGLIA 1 AND. C A. REDI 2,5<br />

1. Dip. di Biotecnologie e Bioscienze, Università di Milano-Bicocca,<br />

Piazza della Scienza 2, Milan, I-20126, Italy<br />

2. Lab. di Biologia dello Sviluppo, Dip. di Biologia Animale, Università<br />

degli Studi di Pavia, Piazza Botta 9, Pavia, I-27100 Italy<br />

3. Dip. di Chimica, Università di Sassari, Via Vienna 2, Sassari, I-07100,<br />

Italy<br />

4. Dip. di Medicina Sperimentale, Sezi<strong>on</strong>e di Istologia ed Embriologia,<br />

Università degli Studi di Parma, Via Volturno 39, Parma, I-43100, Italy<br />

5. F<strong>on</strong>dazi<strong>on</strong>e IRCCS Policlinico San Matteo Pavia, Italy<br />

Fourier Transform Infrared (FT-IR) spectroscopy is emerging as a powerful tool in stem cell<br />

research [1]. In this work we show <strong>the</strong> applicati<strong>on</strong> <strong>of</strong> this technique to <strong>the</strong> in situ characterizati<strong>on</strong><br />

<strong>of</strong> murine embry<strong>on</strong>ic stem (ES) cell differentiati<strong>on</strong>, in order to m<strong>on</strong>itor possible changes in <strong>the</strong> cell<br />

macromolecular c<strong>on</strong>tent [2]. Undifferentiated cells were plated in a leukemia inhibitory factor (LIF)<br />

free medium to induce sp<strong>on</strong>taneous differentiati<strong>on</strong>. Undifferentiated and differentiating cells at 4,<br />

7, 9, and 14 days after LIF removing were measured by FT-IR microspectroscopy. Data were<br />

analyzed by <strong>the</strong> principal comp<strong>on</strong>ent analysis and subsequent linear discriminant analysis (PCA-<br />

LDA) that enabled us to segregate ES cell spectra into well separate clusters. Moreover, this<br />

statistical method allowed us to identify <strong>the</strong> most significant spectral changes occurring in <strong>the</strong><br />

biomolecule absorpti<strong>on</strong> regi<strong>on</strong>s. Interestingly, we observed important changes in <strong>the</strong> protein<br />

(1700–1600 cm −1) and in <strong>the</strong> nucleic acid (1050–850 cm −1) absorpti<strong>on</strong> regi<strong>on</strong>s between days 4 to 7 <strong>of</strong><br />

differentiati<strong>on</strong>, indicating <strong>the</strong> expressi<strong>on</strong> – at this time – <strong>of</strong> <strong>the</strong> specific proteins <strong>of</strong> <strong>the</strong> new<br />

phenotype. In particular, <strong>the</strong> presence <strong>of</strong> DNA/RNA hybrid bands (954 cm −1 and 899 cm −1)<br />

suggests that <strong>the</strong> transcripti<strong>on</strong>al switch <strong>of</strong> <strong>the</strong> genome started at this stage <strong>of</strong> differentiati<strong>on</strong>. These<br />

infrared results were found to be in agreement with <strong>the</strong> biochemical characterizati<strong>on</strong> <strong>of</strong> our<br />

differentiating cells [2], underlying <strong>the</strong> great potential <strong>of</strong> FT-IR spectroscopy in stem cell research.<br />

References<br />

[1] P. Heraud, M. J. Tobin, Stem Cell Research, In press doi:10.1016/j.scr.<strong>2009</strong>.04.002 (<strong>2009</strong>).<br />

[2] D. Ami, T. Neri, A. Natalello, P. Mereghetti, S. M. Doglia, M. Zan<strong>on</strong>i, M. Zuccotti, S. Garagna, C. A. Redi, BBA-Mol.<br />

Cell Research 1783, 98-106 (2008)<br />

PA 22


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Temperature dependence <strong>of</strong> carotenoid Raman spectra<br />

A. ANDREEVA 1 , I. APOSTOLOVA 1 AND M. VELITCHKOVA 2<br />

1. S<strong>of</strong>ia University, Faculty <strong>of</strong> Physics, Department <strong>of</strong> C<strong>on</strong>densed Matter<br />

Physics, 5, J. Bourchier blvd., 1164 S<strong>of</strong>ia, Bulgaria<br />

2. Institute <strong>of</strong> Biophysics, Bulgarian Academy <strong>of</strong> Sciences, Acad. G.<br />

B<strong>on</strong>chev str. bl.21, 1113 S<strong>of</strong>ia, Bulgaria<br />

Carotenoids are widespread natural molecules, which play several important physiological<br />

functi<strong>on</strong>s. The protecti<strong>on</strong> against high-light stress and reactive oxygen species, realized via <strong>the</strong><br />

quenching <strong>of</strong> electr<strong>on</strong>ic excited states <strong>of</strong> photosentising molecules, quenching <strong>of</strong> singlet oxygen<br />

and scavenging <strong>of</strong> free radicals, is <strong>on</strong>e <strong>of</strong> <strong>the</strong> main functi<strong>on</strong>s <strong>of</strong> carotenoids. To understand <strong>the</strong><br />

mechanism <strong>of</strong> <strong>the</strong> carotenoid’s photoprotecti<strong>on</strong> functi<strong>on</strong> it is essential to have a pr<strong>of</strong>ound<br />

knowledge <strong>of</strong> <strong>the</strong>ir excited electr<strong>on</strong>ic and vibr<strong>on</strong>ic states. In <strong>the</strong> present study we have<br />

investigated <strong>the</strong> most power antioxidants: β-carotene and zeaxanthin by means <strong>of</strong> res<strong>on</strong>ance<br />

Raman spectroscopy. The aim is to study in detail <strong>the</strong>ir Raman spectra in soluti<strong>on</strong> as a functi<strong>on</strong> <strong>of</strong><br />

temperature and polarizability <strong>of</strong> <strong>the</strong> solvent. To measure <strong>the</strong> spectra in <strong>the</strong>ir natural envir<strong>on</strong>ment<br />

two solvents have been used: water and pyridine. The latter has been chosen as its polarizability<br />

(n=1.5092) is close to that <strong>of</strong> lipid and membrane protein. The temperature dependence <strong>of</strong> <strong>the</strong> most<br />

intensive ν1 band (assigned to C=C b<strong>on</strong>ds in phase stretching vibrati<strong>on</strong>s [1,2]) has been obtained in<br />

<strong>the</strong> range from 77 K to 295 K at 488 nm and 514.5 nm excitati<strong>on</strong>. It was found that in pyridine <strong>the</strong><br />

band positi<strong>on</strong> is blue shifted linearly with temperature for both studied carotenoids, <strong>the</strong><br />

coefficients <strong>of</strong> <strong>the</strong> linearity being different. Two possible explanati<strong>on</strong>s for <strong>the</strong> observed shifts are<br />

c<strong>on</strong>sidered and compared: <strong>the</strong> existence <strong>of</strong> different carotene isomers [2] and two-mode nature <strong>of</strong><br />

ν1 band predicted by quantum mechanical calculati<strong>on</strong>s [3] and recently found experimentally in βcarotene<br />

dissolved in dichloromethane [4].<br />

References<br />

[1] B. Robert, “The electr<strong>on</strong>ic structure, stereochemistry and res<strong>on</strong>ance Raman spectroscopy <strong>of</strong> carotenoids”, in The<br />

Photochemistry <strong>of</strong> Carotenoids, eds. H. Frank, A. Young, G. Britt<strong>on</strong> and R. Cogdell, Dordrecht, Kluwer Acad. Publ.,<br />

189 (1999).<br />

[2] Y. Koyama and R. Fujii, “Cis-trans carotenoids in photosyn<strong>the</strong>sis: c<strong>on</strong>figurati<strong>on</strong>, excited state properties and<br />

physiological functi<strong>on</strong>s” in The Photochemistry <strong>of</strong> Carotenoids, eds. H. Frank, A. Young, G. Britt<strong>on</strong> and R. Cogdell,<br />

Dordrecht, Kluwer Acad. Publ., 161 (1999).<br />

[3] M. Schenderlein, M. A. Mroginski, M. Cetin, E. Schlodder, “Low quantum yield electr<strong>on</strong> transfer pathways in PS II”<br />

in: Photosyn<strong>the</strong>sis. Energy <strong>of</strong> Sun: 14th Internati<strong>on</strong>al C<strong>on</strong>gress <strong>on</strong> Photosyn<strong>the</strong>sis Research 2007, edited by J.F.<br />

Allen et al., Dordrecht, Springer, 191 (2008).<br />

[4] N. Tschirner, M. Schenderlein, K. Brose, E, Schlodder, M. A. Mroginski, P. Hildebrandt, C. Thomsen, phys. stat. sol.<br />

(b) 245, 2225-2228 (2008).<br />

PA 23


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Characterizati<strong>on</strong> <strong>of</strong> sec<strong>on</strong>dary structure <strong>of</strong> S-layer<br />

proteins isolated from lactobacilli strains by Raman<br />

spectroscopy<br />

C. ARAUJO-ANDRADE 1 , P. MOBILI 2 , A. LONDERO 2 , C. FRAUSTO-REYES 3 , G. DE ANTONI 2 , H.<br />

AVILA-DONOSO 1 , E. A. ARAIZA-REYNA 4 , F. RUIZ 4 AND A. GÓMEZ-ZAVAGLIA 2<br />

1. Unidad Académica de Física de la Universidad Autónoma de<br />

Zacatecas. Zacatecas, México<br />

2. Centro de Investigación y Desarrollo en Criotecnología de Alimentos<br />

(CIDCA), La Plata, Buenos Aires, Argentina<br />

3. Centro de Investigaci<strong>on</strong>es en Óptica, A.C, Aguascalientes, Ags.<br />

México<br />

4. Facultad de Ciencias, UASLP, San Luis Potosí, S.L.P. México<br />

S-layer structures are macromolecular paracrystalline arrays that completely cover <strong>the</strong> bacterial<br />

cell surface [1,2]. They are attached to <strong>the</strong> underlying cell wall by n<strong>on</strong>-covalent b<strong>on</strong>ds and usually<br />

may be dissociated and solubilized into protein m<strong>on</strong>omers by chaotropic agents such as guanidine<br />

hydrochloride and dissociating agents such as 5 M-LiCl. S-layers have been described in several<br />

species <strong>of</strong> Lactobacillus, such as L. acidophilus, L. helveticus, L. casei, L. brevis, L. buchneri, L. fermentum,<br />

L. bulgaricus, L. plantarum, L. kefir and L. parakefir [3,4]. On <strong>the</strong> basis that several Lactobacillus species<br />

with an S-layer structure play essential roles in many fermentati<strong>on</strong> processes in food industry,<br />

silage fermentati<strong>on</strong>s and in probiotics for humans and animals, <strong>the</strong> structural characterizati<strong>on</strong> <strong>of</strong><br />

lactobacilli S-layers has become increasingly important [5]. In recent years Raman spectroscopy<br />

has broadened its applicati<strong>on</strong>s due to <strong>the</strong> high c<strong>on</strong>tent <strong>of</strong> molecular structure informati<strong>on</strong> that it<br />

provides. In Food Microbiology, it has been used for microorganism characterizati<strong>on</strong> and for <strong>the</strong><br />

analysis <strong>of</strong> proteins [6,7]. As in FTIR spectroscopy, <strong>the</strong> positi<strong>on</strong> <strong>of</strong> a given band in a Raman<br />

spectrum depends <strong>on</strong> <strong>the</strong> inter and intramolecular interacti<strong>on</strong>s, including peptide-b<strong>on</strong>d angles and<br />

hydrogen-b<strong>on</strong>ding patterns. Therefore, Raman spectroscopy can also be used for protein structural<br />

analysis. In this work, S-layer proteins extracted from three species <strong>of</strong> heter<strong>of</strong>ermentative<br />

lactobacilli isolated from kefir grains (L. kefir, L. parakefir and L. brevis) have been structurally<br />

characterized. This approach allowed <strong>the</strong> determinati<strong>on</strong> <strong>of</strong> sec<strong>on</strong>dary structure compositi<strong>on</strong> (%) <strong>of</strong><br />

S-layer proteins according to <strong>the</strong> relative areas <strong>of</strong> <strong>the</strong> comp<strong>on</strong>ent bands obtained from <strong>the</strong> peak<br />

fitting <strong>of</strong> <strong>the</strong> amide I and III regi<strong>on</strong>s <strong>of</strong> <strong>the</strong> raw Raman spectra [8,9].<br />

References<br />

[1] U. B. Sleytr and T. J. Beveridge, Trends Microbiol. 7, 253–260 (1999).<br />

[2] M. Sára and U.B. Sleytr, J.Bacteriol. 182, 859–868 (2000).<br />

[3] S. Avall-Jääskeläinen and A. Palva, FEMS Microbiol. Rev. 29, 511-529 (2005).<br />

[4] P G. Garrote, L. Delfederico, R. Bibil<strong>on</strong>i, A. Abraham, P. Pérez, L. Semorile and G. De Ant<strong>on</strong>i, J. Dair. Res. 71,<br />

222–230 (2004).<br />

[5] M. Kahala, K. Savijoki and A. Palva, J. Bacteriol. 179, 284–286 (1997).<br />

[6] P. Rosch, M. Schmitt, W. Kiefer and J. Popp, J. Mol. Struc. 661-662, 363-369 (2003).<br />

[7] A. Torreggiani and G. Fini, J. Raman Spectrosc. 29(3), 229-236 (1998).<br />

[8] J.T. Pelt<strong>on</strong> and L.R.McLean, Anal. Biochem. 277, 167-176 (2000)<br />

[9] P. Mobili, A. L<strong>on</strong>dero, T. Roseiro, E. Eusebio, G. De Ant<strong>on</strong>i, R. Fausto and A. Gómez-Zavaglia, Vibrat. Spectrosc.<br />

2008, doi: 10.1016/j.vibspec.2008.07.016.<br />

PA 24


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Designing noble-metal nanostructures as versatile<br />

plasm<strong>on</strong>ic probes and sensors for biomedical<br />

applicati<strong>on</strong>s<br />

S. ASTILEAN, M. BAIA, D. MANIU, F. TODERAS, C. FARCAU, M. IOSIN, V. CANPEAN, S. BOCA<br />

AND M. POTARA<br />

Babes-Bolyai University, Faculty <strong>of</strong> Physics and Center for Nanoscience<br />

and Nanotechnology, Str. M Kogalniceanu 400084 Cluj-Napoca,<br />

Romania<br />

Surface plasm<strong>on</strong> res<strong>on</strong>ances (SPRs) are collective oscillati<strong>on</strong>s <strong>of</strong> free electr<strong>on</strong>s induced by light in<br />

noble-metal nanostructures. Bioplasm<strong>on</strong>ics is a new emerging branch <strong>of</strong> biophot<strong>on</strong>ics aiming to<br />

use <strong>the</strong> noble-metal nanostructures which support plasm<strong>on</strong> res<strong>on</strong>ances as versatile, nanoscale<br />

probes and tools in biomedical research [1]. In recent years, surface plasm<strong>on</strong> res<strong>on</strong>ances have<br />

gained c<strong>on</strong>siderable interest for sensing, imaging and detecti<strong>on</strong> applicati<strong>on</strong>s via surface-enhanced<br />

Raman spectroscopy (SERS), surface enhanced IR absorpti<strong>on</strong> (SEIRA), metal-enhanced<br />

fluorescence (MEF) and localized surface plasm<strong>on</strong> res<strong>on</strong>ances (LSPR). Currently, <strong>the</strong>re is a need<br />

for inexpensive, flexible and massively parallel methods for <strong>the</strong> fabricati<strong>on</strong> <strong>of</strong> plasm<strong>on</strong>ic<br />

nanostructures. In this presentati<strong>on</strong> we shall report our recent results <strong>on</strong> <strong>the</strong> fabricati<strong>on</strong> <strong>of</strong><br />

plasm<strong>on</strong>ic nanostructures by combining many inexpensive methods ranging from colloidal<br />

lithography to chemical syn<strong>the</strong>sis [2]. As for example, we employ self-assembled nanospheres as<br />

lithographic masks to deposit metal and generate periodic arrays <strong>of</strong> nanoparticles or, alternatively,<br />

we use biopolymer, protein and cell-assisted syn<strong>the</strong>sis procedures to generate a large variety <strong>of</strong><br />

biocompatible gold nanoparticles. To characterize and correlate <strong>the</strong> plasm<strong>on</strong>ic resp<strong>on</strong>se <strong>of</strong> as<br />

fabricated nanoparticles with <strong>the</strong>ir nanometer-scale morphology and topography we combine<br />

experimental methods (scanning and transmissi<strong>on</strong> electr<strong>on</strong> microscopy, atomic force microscopy,<br />

optical measurements) with computati<strong>on</strong>al methods (FDTD, DDA). We have recently developed<br />

biocompatible SERS substrates for <strong>the</strong> detecti<strong>on</strong> <strong>of</strong> low-c<strong>on</strong>centrati<strong>on</strong> amino-acids and studied <strong>the</strong><br />

direct interacti<strong>on</strong> between gold nanoparticles (rods, prisms, stars-shaped) and some representative<br />

biomolecules by combining LSPR, MEF and SERS measurements. The as fabricated substrates<br />

were exploited not <strong>on</strong>ly in SERS but also in SEIRA and both FT-SERS and SEIRA spectra <strong>of</strong> paminothiophenol<br />

were successfully recorded from <strong>the</strong> same metallic substrate [3]. We have<br />

dem<strong>on</strong>strated <strong>the</strong> applicability <strong>of</strong> metallic films perforated with periodic arrays <strong>of</strong> subwavelength<br />

nanoholes as dual molecular plasm<strong>on</strong>ic sensors based <strong>on</strong> LSPR and SERS. Finally we were able to<br />

register temporal series <strong>of</strong> SERS spectra at <strong>the</strong>se specific “hot-spot” locati<strong>on</strong>s <strong>on</strong> regular arrays <strong>of</strong><br />

nanoparticles and observed specific behaviors (fluctuating peak intensities and positi<strong>on</strong>s) which<br />

can be assigned to <strong>the</strong> signature <strong>of</strong> single-molecule SERS signal. The fabricated SERS and SEIRAactive<br />

substrates complemented with LSPR and MEF measurements can hold a significant<br />

potential for novel biomedical sensing and imaging methods.<br />

References<br />

[1] Paras N Prasad, Introducti<strong>on</strong> to Biophot<strong>on</strong>ics, Ed. John Wiley & S<strong>on</strong>s (2003).<br />

[2] M<strong>on</strong>ica Baia, Simi<strong>on</strong> Astilean, and Traian Iliescu, Raman and SERS investigati<strong>on</strong>s <strong>of</strong> pharmaceuticals, Ed. Springer,<br />

(2008).<br />

[3] M<strong>on</strong>ica Baia, Felicia Toderas, Lucian Baia, Dana Maniu and Simi<strong>on</strong> Astilean, ChemPhysChem 10, 7, 1106 – 1111,<br />

(<strong>2009</strong>).<br />

PA 25


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Diagnostic analysis <strong>of</strong> blood samples from women with<br />

breast cancer by Fourier transform infrared<br />

spectroscopy<br />

A. BAGHERI GARMARUDI 1,2 , M.KHANMOHAMMADI 1 AND K.GHASEMI 1<br />

1. Chemistry Department, Faculty <strong>of</strong> Science, IKIU, Qazvin, Iran<br />

2. Department <strong>of</strong> Chemistry & Polymer Laboratories, Engineering<br />

Research Institute, Tehran, Iran<br />

Changes in <strong>the</strong> cells and tissues, which are subtle and <strong>of</strong>ten not readily detectable in <strong>the</strong><br />

histopathological studies, are shown to be well studied, using Fourier transform infrared (FTIR)<br />

spectroscopy. Applicati<strong>on</strong> <strong>of</strong> FTIR spectroscopy to m<strong>on</strong>itor <strong>the</strong> biochemical changes in living cells<br />

has gained c<strong>on</strong>siderable importance in recent years. It is possible to identify <strong>the</strong> changes in <strong>the</strong><br />

level <strong>of</strong> various cellular biochemicals simultaneously, under in vivo and in vitro c<strong>on</strong>diti<strong>on</strong>s, as <strong>the</strong><br />

different metabolites absorb <strong>the</strong> infrared radiati<strong>on</strong> at different wavenumbers [1,2]. Preparati<strong>on</strong> <strong>of</strong><br />

biopsy samples c<strong>on</strong>sists <strong>of</strong> some harmful steps, as <strong>the</strong> treatment may distort <strong>the</strong> cell structure and<br />

immersi<strong>on</strong> <strong>of</strong> tissues in lipid solvents, such as xylene, dissolves <strong>the</strong> tissue lipids. On <strong>the</strong> o<strong>the</strong>r<br />

hand, tissue samples are normally very heterogeneous, comprising several comp<strong>on</strong>ents and<br />

different cell types. Some o<strong>the</strong>r drawbacks are difficult sampling, low speed sample preparati<strong>on</strong><br />

and very sensitive keeping c<strong>on</strong>diti<strong>on</strong>s. An idea is to replace whole blood sample instead <strong>of</strong> tissue<br />

samples in cancer diagnostic studies, as blood is more homogeneous and <strong>the</strong> sample preparati<strong>on</strong><br />

procedure is very simple while blood is studied. It would be also interesting to investigate <strong>the</strong><br />

blood according to its ability to play <strong>the</strong> role <strong>of</strong> traveling media [3]. The present study extends this<br />

idea by focusing <strong>on</strong> 3 spectral regi<strong>on</strong>s in <strong>the</strong> IR spectrum <strong>of</strong> <strong>the</strong> human blood sample, which are<br />

1600-1720 cm -1, 1480-1600cm -1 and 1180-1300 cm -1, related to amide I, II and III absorbance signals,<br />

respectively. There are several absorbance bands in <strong>the</strong>se regi<strong>on</strong>s due to <strong>the</strong> different cellular<br />

proteins. Our studies were aimed to find <strong>the</strong> statistically c<strong>on</strong>firmed informati<strong>on</strong> c<strong>on</strong>cerning <strong>the</strong><br />

changes occur in <strong>the</strong> spectral patterns during <strong>the</strong> cancer stages, in order to provide reliable data for<br />

fur<strong>the</strong>r studies and to propose a method for diagnosis <strong>of</strong> breast cancer by FTIR spectroscopy <strong>of</strong><br />

blood. Studies showed that A1635/A1658 ratio is decreased while peak area at 1658-1635 cm-1<br />

spectral regi<strong>on</strong> is increased significantly during stages I to IV. Signals in 1539-1550 cm-1 regi<strong>on</strong><br />

show to be increased from stage I to IV, but A1550/A1539 does not show any change during<br />

carcinogenesis. Absorbance at 1203-1276 cm-1 spectral regi<strong>on</strong> is increased from stage I to stage IV.<br />

While A1658/A1276 ratio is a little increased during stage I to IV, A1658/A1203 ratio is decreased<br />

in this range.The obtained FTIR spectra were statistically analyzed to determine differences<br />

between malignant status and normal status. LDA was applied to discriminate <strong>the</strong> two classes<br />

(normal and cancer).Results showed <strong>the</strong> predicti<strong>on</strong> <strong>of</strong> 47 samples to be correct according to<br />

comparing with pathologic reports while 1 normal tissue spectra were wr<strong>on</strong>gly predicted to be<br />

cancerous. Thus <strong>the</strong> accuracy was 97.9%. According to misclassificati<strong>on</strong> <strong>of</strong> 1 normal sample in<br />

cancer class (in totally 48 spectra c<strong>on</strong>sisting <strong>of</strong> 29 cancer and 19 normal cases), sensitivity and<br />

specificity <strong>of</strong> <strong>the</strong> proposed method were determined to be 100 and 94.7%, respectively.<br />

References<br />

[1] Fabian H., Lasch P., Boese M. & Haensch W. Journal <strong>of</strong> Molecular Structure 661, 411–417 (2003).<br />

[2] Huo X., Wang X.F., Che X. & Huang W.D. Spectrosc Spectral Anal 21, 614–616 (2001).<br />

[3] Khanmohammadi M., Ansari M.A., Bagheri Garmarudi A., Hassanzadeh G. & Garoosi G. Cancer Invest 25, 397–404<br />

(2007).<br />

PA 26


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Detecting molecular interacti<strong>on</strong>s in molecularly<br />

imprinted polymers with Raman and surface enhanced<br />

Raman spectroscopies<br />

K. KANTAROVICH 1 , I. TSARFATI 2 , L.A. GHEBER 2 , K. HAUPT 3 , AND I. BAR 1<br />

1. Department <strong>of</strong> Physics, Ben-Guri<strong>on</strong> University <strong>of</strong> <strong>the</strong> Negev, Beer-<br />

Sheva 84105, Israel<br />

2. Department <strong>of</strong> Biotechnology Engineering, Ben-Guri<strong>on</strong> University <strong>of</strong><br />

<strong>the</strong> Negev, Beer-Sheva 84105, Israel<br />

3. Compiègne University <strong>of</strong> Technology, UMR CNRS 6022, 60205<br />

Compiegne, France<br />

Molecularly imprinted polymers (MIPs), formed by crosslinking a polymer around a template<br />

molecule, can be used, following <strong>the</strong>ir patterning <strong>on</strong> surfaces and interfacing with optical methods,<br />

as biochips. MIP droplets were printed using a pipette or a nano fountain pen (NFP) <strong>on</strong> gold<br />

coated glass and <strong>on</strong> surface enhanced Raman scattering (SERS) - active surfaces, enabling<br />

measurement <strong>of</strong> Raman and SERS spectra, respectively. The m<strong>on</strong>itored Raman and SERS bands<br />

could be related to <strong>the</strong> taken up compound, allowing direct detecti<strong>on</strong> <strong>of</strong> <strong>the</strong> template in <strong>the</strong><br />

imprinted droplets. The NFP depositi<strong>on</strong> combined with Raman and SERS open <strong>the</strong> possibility <strong>of</strong><br />

using this approach for m<strong>on</strong>itoring MIP-based sensors <strong>on</strong> micro-scale.<br />

PA 27


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Natural polyacetylenes studied by Raman spectroscopy<br />

and DFT calculati<strong>on</strong>s<br />

MALGORZATA BARANSKA, 1 JAN CZ. DOBROWOLSKI, 2,3 MACIEJ ROMAN 1<br />

1. Faculty <strong>of</strong> Chemistry, Jagiell<strong>on</strong>ian University, 3 Ingardena Street, 30-060 Krakow, Poland<br />

2. Nati<strong>on</strong>al Medicines Institute, 30/34 Chełmska Street, 00-725 Warsaw, Poland<br />

3. Industrial Chemistry Research Institute, 8 Rydygiera Street, 01-793 Warsaw,<br />

Poland<br />

Polyacetylenes with c<strong>on</strong>jugated triple b<strong>on</strong>ds are comm<strong>on</strong> in a large number <strong>of</strong> natural products. In<br />

most cases <strong>the</strong>se sec<strong>on</strong>dary metabolites are unique to individual plant species; usually <strong>the</strong>y occur<br />

in low c<strong>on</strong>centrati<strong>on</strong>s and are not essential to plant cell survival. It is assumed that <strong>the</strong>ir functi<strong>on</strong><br />

or importance is mainly related to ecological aspects as <strong>the</strong>y are used for defense against<br />

predators, parasites, and diseases. They have proven to be important biologically active<br />

comp<strong>on</strong>ents that can be used as antibacterial, antimicrobial, antifungal, and antiviral agents.<br />

Moreover, <strong>the</strong>y also exhibit lavricidal activity and cytotoxicity towards a range <strong>of</strong> cell lines. This<br />

study is c<strong>on</strong>centrated <strong>on</strong> <strong>the</strong> vibrati<strong>on</strong>al analysis <strong>of</strong> polyacetylenes. The vibrati<strong>on</strong>al spectra show<br />

str<strong>on</strong>g and polarized -C≡C- bands in <strong>the</strong> regi<strong>on</strong> <strong>of</strong> about 2200 cm -1. As has been discussed before<br />

[1], <strong>the</strong> number <strong>of</strong> triple b<strong>on</strong>ds as well as presence <strong>of</strong> substituents influence <strong>the</strong> frequency and<br />

intensity <strong>of</strong> <strong>the</strong> polyacetylene -C≡C- stretching modes. Thus, <strong>the</strong> spectral positi<strong>on</strong> <strong>of</strong> <strong>the</strong> -C≡C-<br />

vibrati<strong>on</strong>s and pattern <strong>of</strong> Raman bands usually provide enough informati<strong>on</strong> to recognize <strong>the</strong> type<br />

<strong>of</strong> substituti<strong>on</strong> and to support <strong>the</strong> identificati<strong>on</strong> <strong>of</strong> polyacetylenes. In this work, <strong>the</strong> structural unit<br />

R-C≡C-C≡C-R was selected as a model to study <strong>the</strong> c<strong>on</strong>tributi<strong>on</strong> <strong>of</strong> <strong>the</strong> substituent effect. To<br />

understand <strong>the</strong> influence <strong>of</strong> electr<strong>on</strong>-d<strong>on</strong>or-acceptor (EDA) properties <strong>of</strong> <strong>the</strong> substituent <strong>on</strong> <strong>the</strong><br />

-C≡C- spectral pattern <strong>the</strong> R- groups <strong>of</strong> diverse EDA characteristics, such as: BH2, F, H, Me, OH,<br />

etc., were c<strong>on</strong>sidered in <strong>the</strong> model calculati<strong>on</strong>s. Theoretical Raman and IR spectra <strong>of</strong> <strong>the</strong> model<br />

compounds were calculated at <strong>the</strong> B3LYP/cc-pVDZ and B3LYP/aug-cc-pVDZ levels. For <strong>the</strong><br />

polyacetylenes supposed to be active in plants yet not available in an isolated form, <strong>the</strong>oretical<br />

simulati<strong>on</strong> <strong>of</strong> <strong>the</strong> vibrati<strong>on</strong>al spectra and comparis<strong>on</strong> it with <strong>the</strong> registered <strong>on</strong>es seems to be an<br />

excellent way to c<strong>on</strong>firm or exclude presence <strong>of</strong> <strong>the</strong>se compounds in <strong>the</strong> investigated plants. Such<br />

an approach was applied to analyze polyacetylenes in roots <strong>of</strong> Coreopsis grandiflora. Raman<br />

spectrum obtained from <strong>the</strong> roots shows band at 2194 cm -1. According to Bohlmann [2], this plant<br />

should c<strong>on</strong>tain a m<strong>on</strong>oacetylene with a substituti<strong>on</strong> by a thiophene ring. Theoretical calculati<strong>on</strong>s<br />

allowed to c<strong>on</strong>firm this assumpti<strong>on</strong>. For selected polyacetylenes <strong>the</strong>ir in situ distributi<strong>on</strong> was<br />

investigated by using Raman mapping technique. Additi<strong>on</strong>ally, <strong>the</strong> c<strong>on</strong>formati<strong>on</strong>al study was<br />

performed for falcarinol and falcarindiol, polyacetylenes occurring in carrot roots, which can be<br />

isolated by using various solvents. In order to interpret <strong>the</strong> experimental spectra <strong>of</strong> falcarinol <strong>the</strong><br />

B3LYP/aug-cc-pVDZ IR and Raman spectra were calculated for <strong>the</strong> selected 26 c<strong>on</strong>formers.<br />

References<br />

[1] B. Schrader, H. Schulz, M. Baranska, G. N. Andreev, C. Lehner, J. Sawatzki, Spectrochim. Acta A, 61, 1395-1401<br />

(2005).<br />

[2] E. Winterfeld, Ferdinand Bohlmann (1921-1991) und sein wissenschafliches Werk, Liebigs Ann. Chem. I-XXXIV,<br />

1994<br />

PA 28


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Small amines as building blocks <strong>of</strong> novel Pt(II) based<br />

anticancer agents: a structural study<br />

SARA PADRÃO, ANA M. AMADO AND LUÍS A.E. BATISTA DE CARVALHO<br />

Química-Física Molecular, FCTUC, Universidade de Coimbra, 3004-535<br />

Coimbra, Portugal<br />

The discovery <strong>of</strong> cisplatin’s (cis-diamminedichloroplatinum (II), cDDP) biological activity by<br />

Rosenberg opened <strong>the</strong> door to <strong>the</strong> use <strong>of</strong> inorganic agents as chemo<strong>the</strong>rapeutic drugs. However, in<br />

an attempt to overcome cDDP severe side effects and/or to expand its range <strong>of</strong> activity, <strong>the</strong><br />

development and biological evaluati<strong>on</strong> <strong>of</strong> new related metal-based agents that might overcome<br />

those limitati<strong>on</strong>s is nowadays a very active research area. An extensive number <strong>of</strong> platinum(II)<br />

complexes are being studied as promising antineoplastic drugs. The chemical characterizati<strong>on</strong> <strong>of</strong><br />

both <strong>the</strong> isolated ligands and <strong>the</strong> Pt-complex is <strong>of</strong> crucial importance in this c<strong>on</strong>text. On <strong>the</strong> o<strong>the</strong>r<br />

hand, quantum inorganic chemistry has proven to be a very helpful tool for <strong>the</strong> interpretati<strong>on</strong> <strong>of</strong><br />

<strong>the</strong> experimental spectra. A group <strong>of</strong> platinum complexes that has deserved particular interest in<br />

<strong>the</strong> last few years involves different amine ligands. For instance, in vitro studies for <strong>the</strong> Pt-complex<br />

comprising <strong>on</strong>e isopropylamine (iPram) and <strong>on</strong>e pyrazole (Py) ligands, in a trans c<strong>on</strong>figurati<strong>on</strong>,<br />

has yielded very promising results in overcoming cDDP resistance [1]. In <strong>the</strong> present work, a full<br />

c<strong>on</strong>formati<strong>on</strong>al analysis, at <strong>the</strong> mPW1PW/6-31G* quantum <strong>the</strong>ory level, is performed for both<br />

<strong>the</strong>se ligands. A complete assignment <strong>of</strong> <strong>the</strong> experimental vibrati<strong>on</strong>al spectra (Raman and FTIR) is<br />

carried out, in <strong>the</strong> light <strong>of</strong> <strong>the</strong> <strong>the</strong>oretical predicti<strong>on</strong> <strong>of</strong> <strong>the</strong> spectra. In order to assess <strong>the</strong><br />

importance <strong>of</strong> <strong>the</strong> hydrogen b<strong>on</strong>ding network <strong>on</strong> <strong>the</strong> molecular structure and <strong>on</strong> <strong>the</strong> vibrati<strong>on</strong>al<br />

pr<strong>of</strong>ile <strong>of</strong> <strong>the</strong>se chelates, soluti<strong>on</strong>s <strong>of</strong> <strong>the</strong> ligands in both water and CCl4 (which does not allow <strong>the</strong><br />

formati<strong>on</strong> <strong>of</strong> hydrogen b<strong>on</strong>ds) are also c<strong>on</strong>sidered, both experimental and <strong>the</strong>oretically. Finally,<br />

<strong>the</strong> structural preferences <strong>of</strong> <strong>the</strong> corresp<strong>on</strong>ding t-complexes are evaluated, by mean <strong>of</strong> <strong>the</strong>oretical<br />

calculati<strong>on</strong>s.<br />

References<br />

[1] E. Pantoja, A. Gallipoli, S. Van Zutphen, S. Komeda, D. Reddy, D. Jaganyi, M. Lutz, D.M. Tooke, A.L. Spek, C.<br />

Navarro-Ranninger, J. Reedijk, Journal <strong>of</strong> Inorganic Biochemistry 100, 1955-1964 (2006).<br />

PA 29


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

An advanced biosensing SERS-based method<br />

F. DOMENICI , A. R. BIZZARRI, AND S. CANNISTRARO<br />

Biophysics and Nanoscience Centre (BNC), Università della Tuscia and<br />

CNISM, Largo dell’Università, 01100 Viterbo (Italy)<br />

One <strong>of</strong> <strong>the</strong> main challenge in bio-medicine is <strong>the</strong> improvement <strong>of</strong> <strong>the</strong> detecti<strong>on</strong> sensitivity to<br />

achieve tumor-marker recogniti<strong>on</strong> at very low c<strong>on</strong>centrati<strong>on</strong>, when <strong>the</strong> disease is not yet<br />

significantly advanced [1]. In <strong>the</strong> last years, nano-approaches and single molecule spectroscopies,<br />

provided new tools to <strong>the</strong> biorecogniti<strong>on</strong>-based traditi<strong>on</strong>al methods, in order to optimize <strong>the</strong><br />

ultrasensitivity analytical detecti<strong>on</strong>. Surface Enhanced Raman Scattering (SERS) technique has<br />

huge potential for <strong>the</strong> development <strong>of</strong> sensitive and quantitative analytical methods [2,3]. We<br />

propose an advanced biosensing SERS approach aimed at <strong>the</strong> synergic combinati<strong>on</strong> <strong>of</strong> both <strong>the</strong> use<br />

<strong>of</strong> nanostructured materials and biorecogniti<strong>on</strong> process to increase <strong>the</strong> sensitivity <strong>of</strong> <strong>the</strong> analytical<br />

assay. By exploiting <strong>the</strong> high increment <strong>of</strong> <strong>the</strong> Raman signal-to-noise ratio in SERS, we are able<br />

to reveal <strong>the</strong> presence <strong>of</strong> tumor-markers below <strong>the</strong> pico-molar c<strong>on</strong>centrati<strong>on</strong>. We assessed <strong>the</strong><br />

effectiveness <strong>of</strong> <strong>the</strong> method, focusing <strong>on</strong> <strong>the</strong> interacti<strong>on</strong> between p53 and Azurin (Az). p53, which<br />

has a pivotal role in cancer defense mechanisms, was dem<strong>on</strong>strated to be stabilized by <strong>the</strong><br />

interacti<strong>on</strong> with <strong>the</strong> redox protein Az [4]. We assembled p53 <strong>on</strong> 50 nm gold nanoparticles (Np)<br />

by means <strong>of</strong> a SERS active bifuncti<strong>on</strong>al linker (4-ATP) (see Fig. 1A) and subsequently we dropped<br />

<strong>the</strong> obtained nanoparticle-protein hybrid system <strong>on</strong> a capture biosensing platform composed <strong>of</strong> Az<br />

m<strong>on</strong>olayer to allow <strong>the</strong> p53 recogniti<strong>on</strong> (see Fig. 1B). By following <strong>the</strong> SERS signal <strong>of</strong> 4-ATP-Np<br />

marker, we detected a threshold limit c<strong>on</strong>centrati<strong>on</strong> <strong>of</strong> 10 -13M <strong>of</strong> p53 captured by <strong>the</strong><br />

functi<strong>on</strong>alized Azurin substrate. The SERS-based approach was also supported by Atomic<br />

Force Microscopy (AFM) imaging, also in <strong>the</strong> perspective to lower <strong>the</strong> threshold sensitivity.<br />

Fig. 1 – A) p53 labeled with 4-aminothiophenol (4-ATP)-Np SERS marker; B) p53-Az biorecogniti<strong>on</strong><br />

event.<br />

References<br />

[1] N. L. Rosi and C. A. Mirkin. Chemical Reviews 105 (2005) 1547.<br />

[2] A. Otto, I. Mrozek, H. Grabhorn, and Y. Pommier, J. Phys.: C<strong>on</strong>dens. Matter 4 (1992) 1143.<br />

[3] A. R. Bizzarri, S. Cannistraro, Nanomedicine 3 (2007) 306.<br />

[4] M. Taranta, A. R. Bizzarri and S. Cannistraro, J. Mol. Recognit. 21 (2008) 63.<br />

PA 30


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Raman and multivariate statistical methods applied to<br />

human blood platelets<br />

C. W. BLACKLEDGE 1 , E. REDDY 2 , S. O'NEILL 2 , N. MORAN 2 , R. J. FORSTER 1 AND T. E. KEYES 1<br />

1. Nati<strong>on</strong>al Biophot<strong>on</strong>ics and Imaging Platform, Dublin City University,<br />

Glasnevin, Dublin 9, Ireland<br />

2. Clinical Research Centre and Clinical Pharmacology, Royal College <strong>of</strong><br />

Surge<strong>on</strong>s in Ireland, Dublin, Ireland<br />

Many commercial advances in vibrati<strong>on</strong>al spectroscopy instrumentati<strong>on</strong> and statistical analysis<br />

s<strong>of</strong>tware have been made in recent years. With <strong>the</strong> aid <strong>of</strong> statistical methods, Raman spectroscopy<br />

has been used to discriminate healthy and diseased tissue, and can provide an alternative<br />

diagnostic methodology compared to lengthy experimental protocols and sometimes subjective<br />

image interpretati<strong>on</strong> carried out by trained and experienced pathologists. Relying <strong>on</strong> <strong>the</strong> intrinsic<br />

vibrati<strong>on</strong>al transiti<strong>on</strong>s <strong>of</strong> molecules, Raman has great potential as a minimally invasive technique<br />

for characterizati<strong>on</strong> as well as microscopic and sub-microscopic imaging. We present <strong>the</strong> use <strong>of</strong><br />

multivariate statistics <strong>on</strong> <strong>the</strong> Raman spectroscopy <strong>of</strong> human blood platelets. As is <strong>the</strong> case for<br />

many complex biological materials, platelets c<strong>on</strong>sist <strong>of</strong> many different compounds such as lipids,<br />

proteins, and carotenoids, and this complicates <strong>the</strong> direct interpretati<strong>on</strong> <strong>of</strong> vibrati<strong>on</strong>al spectra.<br />

Principle comp<strong>on</strong>ent analysis <strong>of</strong> <strong>the</strong> fingerprint regi<strong>on</strong> between 400 cm -1 and 1700 cm -1 aids in<br />

simplifying <strong>the</strong> interpretati<strong>on</strong> <strong>of</strong> large sets <strong>of</strong> Raman spectra by projecting <strong>the</strong> data set into a<br />

smaller dimensi<strong>on</strong>al space. For example, 1024 channels <strong>of</strong> Raman spectral intensity measurements<br />

are reduced to three principal comp<strong>on</strong>ents. Previous work in our group showed that multivariate<br />

statistical analysis <strong>of</strong> Raman spectra <strong>of</strong> blood platelets could be used to discriminate between<br />

platelets treated with different ag<strong>on</strong>ists. More recently we have begun to apply similar statistical<br />

techniques to uncover <strong>the</strong> possibility <strong>of</strong> examining chemical and structural changes that may be<br />

observed with Raman spectroscopy <strong>of</strong> cellular molecular species in living human platelet cells. We<br />

will explain our recent results in view <strong>of</strong> <strong>the</strong> many opportunities for <strong>the</strong> applicati<strong>on</strong> <strong>of</strong> Raman and<br />

statistical methods in biological and medical problems.<br />

PA 31


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Study <strong>of</strong> humane b<strong>on</strong>e tissue regenerati<strong>on</strong> by Raman<br />

micro-spectroscopy<br />

Z. BLASZCZAK 1 , T. BUCHWALD 2 AND M. KOZIELSKI 2<br />

1. Faculty <strong>of</strong> Physics, Adam Mickiewicz University, Umultowska 85, 61-<br />

614 Poznań, Poland<br />

2. Faculty <strong>of</strong> Technical Physics, Poznan University <strong>of</strong> Technology,<br />

Nieszawska 13A, 60-965 Poznań, Poland<br />

Biomechanical properties <strong>of</strong> human b<strong>on</strong>es are determined, besides <strong>the</strong> mass, by <strong>the</strong> chemical<br />

compositi<strong>on</strong> <strong>of</strong> b<strong>on</strong>es (types <strong>of</strong> minerals and <strong>the</strong> ratio <strong>of</strong> <strong>the</strong>ir c<strong>on</strong>tent to <strong>the</strong> c<strong>on</strong>tent <strong>of</strong> collagen)<br />

<strong>the</strong>ir structural properties (tissue organisati<strong>on</strong>, orientati<strong>on</strong> and curing <strong>of</strong> collagen). The method <strong>of</strong><br />

Raman micro-spectroscopy permits identificati<strong>on</strong> <strong>of</strong> <strong>the</strong> b<strong>on</strong>e tissue comp<strong>on</strong>ents, detecti<strong>on</strong> <strong>of</strong><br />

surface changes in b<strong>on</strong>e tissue and orientati<strong>on</strong> <strong>of</strong> collagen fibres. This informati<strong>on</strong> permits<br />

evaluati<strong>on</strong> <strong>of</strong> <strong>the</strong> mechanical resistance <strong>of</strong> <strong>the</strong> b<strong>on</strong>es and <strong>the</strong>ir susceptibility to break. Changes in<br />

<strong>the</strong> structure <strong>of</strong> <strong>the</strong> b<strong>on</strong>e tissue (compositi<strong>on</strong> and arrangement <strong>of</strong> <strong>the</strong> collagen fibres) were studied<br />

in <strong>the</strong> thigh b<strong>on</strong>e <strong>of</strong> man by Raman micro-spectroscopy. Some bands in <strong>the</strong> Raman spectrum <strong>of</strong> <strong>the</strong><br />

b<strong>on</strong>e tissue were found to be sensitive to <strong>the</strong> polarisati<strong>on</strong> <strong>of</strong> <strong>the</strong> excitati<strong>on</strong> beam and <strong>the</strong> scattered<br />

beam. The intensity <strong>of</strong> <strong>the</strong>se bands changed according to <strong>the</strong> orientati<strong>on</strong> <strong>of</strong> <strong>the</strong> polarisati<strong>on</strong> vector<br />

<strong>of</strong> <strong>the</strong>se beams. The bands less sensitive to <strong>the</strong> polarisati<strong>on</strong> <strong>of</strong> <strong>the</strong> excitati<strong>on</strong> and scattered beams<br />

provide informati<strong>on</strong> <strong>on</strong> changes in <strong>the</strong> chemical compositi<strong>on</strong> <strong>of</strong> <strong>the</strong> b<strong>on</strong>e tissue, while <strong>the</strong> bands<br />

more sensitive to <strong>the</strong> polarisati<strong>on</strong> permit c<strong>on</strong>cluding <strong>on</strong> <strong>the</strong> orientati<strong>on</strong> <strong>of</strong> <strong>the</strong> organic comp<strong>on</strong>ent<br />

in <strong>the</strong> b<strong>on</strong>e tissue. The informati<strong>on</strong> can be used for evaluati<strong>on</strong> <strong>of</strong> <strong>the</strong> b<strong>on</strong>e tissue regenerati<strong>on</strong>.<br />

References<br />

[1] G. Penela, C. Delfossea, M. Descampsb, G. Leroya, B<strong>on</strong>e 36, 893 – 901, 2005.<br />

[2] M. Kazanci, H.D. Wagner b, N.I. Manjubala, H.S. Gupta , E. Paschalis, P. Roschger, P. Fratzl, B<strong>on</strong>e 41, 456– 461,<br />

2007<br />

[3] M. Kazanci, P. Roschger, E.P. Paschalis, K. Klaush<strong>of</strong>er, P. Fratzl, Journal <strong>of</strong> Structural Biology156, 489–496, 2006.<br />

PA 32


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Trp - modified bovine purine nucleoside phosphorylase<br />

K. BREER 1 , B. WIELGUS-KUTROWSKA 1 , A. GIRSTUN 2 , K. STAROŃ 2 AND A. BZOWSKA 1<br />

1. Dept. <strong>of</strong> Biophysics, Institute <strong>of</strong> Experimental Physics, University <strong>of</strong><br />

Warsaw, świrki i Wigury 93, 02-089 Warsaw, Poland<br />

2. Dept. <strong>of</strong> Molecular Biology, Institute <strong>of</strong> Biochemistry, University <strong>of</strong><br />

Warsaw, Miecznikowa 1, 02-089 Warsaw, Poland<br />

Purine nucleoside phosphorylase (PNP) leads <strong>the</strong> reversible phosphorolytic cleavage <strong>of</strong> <strong>the</strong><br />

glycosidic b<strong>on</strong>d <strong>of</strong> purine nucleosides and some analogues in <strong>the</strong> presence <strong>of</strong> phosphate. PNP is <strong>of</strong><br />

interest as a drug target because <strong>of</strong> its role in some immunological diseases and in <strong>the</strong> intracellular<br />

degradati<strong>on</strong> <strong>of</strong> some anti-tumor and anti-viral drugs [1]. The enzyme is a trimer with three<br />

tryptophan residues in every subunit. However, <strong>the</strong>se tryptophan residues are remote from <strong>the</strong><br />

PNP active site and c<strong>on</strong>venient determinati<strong>on</strong> <strong>of</strong> parameters <strong>of</strong> binding by means <strong>of</strong> fluorescence is<br />

limited <strong>on</strong>ly to ligands which exhibit <strong>the</strong>y own fluorescent signal when bound to <strong>the</strong> enzyme [2].<br />

By site-directed mutagenesis we introduced additi<strong>on</strong>al Trp residue in <strong>the</strong> bovine PNP sequence in<br />

a few positi<strong>on</strong>s in <strong>the</strong> active site neighborhood and <strong>the</strong> regi<strong>on</strong>s 32-36, 56-69, 244-266 reported to<br />

undergo a c<strong>on</strong>formati<strong>on</strong>al change up<strong>on</strong> ligand binding [3]. We modified <strong>on</strong>ly aromatic aminoacids<br />

or n<strong>on</strong> c<strong>on</strong>served positi<strong>on</strong>s, which were 35, 36, 56, 70, 159, 200, 249, 262 and 266. All <strong>the</strong> mutants<br />

exhibit similar to <strong>the</strong> wild-type enzyme properties <strong>of</strong> binding <strong>of</strong> guanine and activity with inosine,<br />

but <strong>on</strong>ly two <strong>of</strong> <strong>the</strong>m Phe159Trp (similarly to human PNP mutant [4]) and Phe200Trp show<br />

exepti<strong>on</strong>al fluorescent properties. These mutants resp<strong>on</strong>d with a unique str<strong>on</strong>g signal change due<br />

to ligand binding and were used for determinati<strong>on</strong> <strong>of</strong> dissociati<strong>on</strong> c<strong>on</strong>stants, rates and<br />

stoichiometry <strong>of</strong> binding <strong>of</strong> multisubstrate analogues DFPP-G and (±)-cis-piranyl [5] (Fig. 1).<br />

References<br />

Fig. 1 Phe200Trp bovine purine nucleoside phosphorylase mutant<br />

resp<strong>on</strong>ds with about a 4 times str<strong>on</strong>ger fluorescence signal<br />

quenching up<strong>on</strong> (±)-cis-piranyl binding (squares) when compared<br />

to <strong>the</strong> wild-type enzyme (open circles).<br />

[1] A. Bzowska, E. Kulikowska, D. Shugar, Pharmacol. Ther. 88, 349-425 (2000)<br />

[2] D. J. Porter, J. Biol. Chem. 267, 7342-7351 (1992)<br />

[3] C. Mao, W. J. Cook, M. Zhou, A. A. Fedorov, S.C. Almo, S.E. Ealick, Biochemistry 37, 7135-7146 (1998)<br />

[4] M. Ghanem, N. Zhadin, R. Calleder, V.L. Schramm, Biochemistry 48, 3658-3668 (<strong>2009</strong>)<br />

[5] L. Glovaš-Obrovac, M. Suver, S. Hikishima, T. Yokomatsu, A. Bzowska, Nucleosides Nucleotides Nucleic Acids 26,<br />

989-993 (2007)<br />

PA 33


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Metal binding motifs <strong>of</strong> adenylate kinase and ATP<br />

sulfurylase<br />

S.A. BURSAKOV 1 , A. V. KLADOVA 2 , O. YU. GAVEL 1,2 , V.L. SHNYROV 2 , C.BRONDINO 3 , I.<br />

MOURA 2 , J. J.G. MOURA 2<br />

1. Departamento de Protección Ambiental, Estación Experimental del<br />

Zaidin (EEZ-CSIC), 18008 Granada, Spain (sergey.bursakov@eez.csic.es)<br />

2. REQUIMTE, Departamento de Química, Centro de Química Fina e<br />

Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade Nova<br />

de Lisboa, 2829-516 Caparica, Portugal<br />

3. Facultad de Bioqumica y Ciencias Biologicas, Universidad Naci<strong>on</strong>al<br />

del Litoral, 3000ZAA Santa Fe, Argentina<br />

Three different metal i<strong>on</strong>s zinc, cobalt and ir<strong>on</strong> were found to be present in adenylate kinase (AK)<br />

from few Gram-negative bacteria where <strong>the</strong> structural motif Cys-X2÷5-Cys/His-X12-16-Cys-X2-Cys in<br />

<strong>the</strong> LID domain <strong>of</strong> AK is resp<strong>on</strong>sible for <strong>the</strong>ir binding [1]. Similar but different motif Cys-X2-Cys-<br />

X8-Cys-X-His c<strong>on</strong>taining cobalt or zinc was found in ATP sulfurylase (ATPS) from Desulfovibrio<br />

desulfuricans ATCC 27774 and Desulfovibrio gigas [2]. In this work, we isolated recombinant<br />

homogeneous Co 2+-AK, Zn 2+-AK and Fe 2+-AK <strong>of</strong> D. gigas and native ATPS from D. desulfuricans.<br />

Their c<strong>on</strong>formati<strong>on</strong>al stability, spectroscopic and kinetic properties were studied. Binding sites <strong>of</strong><br />

cobalt holo forms <strong>of</strong> AK and ATPS were compared by EPR saturati<strong>on</strong> studies. The comparis<strong>on</strong><br />

indicates that <strong>the</strong> Co 2+ i<strong>on</strong>s have different relaxati<strong>on</strong> properties. Tertiary structures <strong>of</strong> holo-AK<br />

were compared using near-UV circular dichroism analysis. The near-UV CD <strong>of</strong> proteins arises<br />

from <strong>the</strong> envir<strong>on</strong>ment <strong>of</strong> aromatic amino acids side chains. The c<strong>on</strong>tributi<strong>on</strong>s <strong>of</strong> phenylalanine and<br />

tryptophan residues in all holo-AK forms are similar, when <strong>the</strong> c<strong>on</strong>tributi<strong>on</strong> <strong>of</strong> tyrosine residues is<br />

very different. The calorimetric behavior <strong>of</strong> holo-forms is also different. Thus, reversible<br />

denaturati<strong>on</strong> process was detected for Co- and Zn- forms at pH 10, while Fe-AK denaturati<strong>on</strong> is<br />

irreversible at broad pH range.<br />

References<br />

[1] O.Yu. Gavel, S.A. Bursakov, G. Di Rocco, J. Trincão, I.J. Pickering, G.N. Graham, J.J. Calvete, V.L. Shnyrov, C.D.<br />

Br<strong>on</strong>dino, A.S. Pereira, J. Lampreia, P. Tavares, K.J.G. Moura, I. Moura JIB 102, 1380-1395 (2008)<br />

[2] O.Yu. Gavel, S.A. Bursakov, J.J. Calvete, G.N. George, J.J. Moura, I. Moura. Biochemistry 37, 16225-16232<br />

(1998)<br />

PA 34


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Detecti<strong>on</strong> <strong>of</strong> pesticide damage in human keratinocytes<br />

by means <strong>of</strong> Raman microspectroscopy<br />

G. PERNA 1 , M. LASALVIA 2 , A. CASTRO 1 , N. L’ABBATE 2 , E. MEZZENGA 1 , G. QUARTUCCI 1 AND<br />

V. CAPOZZI 1<br />

1. Dipartimento di Scienze Biomediche, Università di Foggia,<br />

Viale Pinto, I-71100 Foggia, Italy<br />

2. Dipartimento di Scienze Mediche e del Lavoro, Università di Foggia,<br />

Viale Pinto, I-71100 Foggia, Italy<br />

Raman microspectroscopy has been used to detect biochemical and structural changes in cultured<br />

human keratinocytes as a c<strong>on</strong>sequence <strong>of</strong> chlorpyriphos exposure. Chlorpyriphos is an important<br />

member <strong>of</strong> <strong>the</strong> organophosphate pesticides: in fact, it exhibits insecticidal activity against a wide<br />

range <strong>of</strong> insects <strong>on</strong> foliage in a wide range <strong>of</strong> crops. It damages mainly <strong>the</strong> central nervous system<br />

and also <strong>the</strong> cardiovascular and respiratory <strong>on</strong>es. So, it is present in a large number <strong>of</strong> commercial<br />

products. Some moderately toxic effects are observed in humans when it is used toge<strong>the</strong>r with<br />

o<strong>the</strong>r pesticides. Only in exposed workers some chr<strong>on</strong>ic effects have been evidenced, as loss <strong>of</strong><br />

memory and c<strong>on</strong>centrati<strong>on</strong>, c<strong>on</strong>fusi<strong>on</strong>, headache and insomnia. Therefore, <strong>the</strong> study <strong>of</strong> <strong>the</strong> effetcs<br />

<strong>of</strong> chlorpyriphos exposure is important to protect humans, in particular those people employed in<br />

<strong>the</strong> manufacturing and utilizati<strong>on</strong> activities and c<strong>on</strong>sumers. Studies <strong>of</strong> exposed cultured cells are<br />

essential for <strong>the</strong> investigati<strong>on</strong> <strong>of</strong> <strong>the</strong> biological resp<strong>on</strong>se to pesticides at cellular level, in order to<br />

evaluate eventual biochemical modificati<strong>on</strong>s caused by such products. Keratinocytes cultured cells<br />

have been treated with increasing doses <strong>of</strong> chlorpyriphos for 24h and c<strong>on</strong>centrati<strong>on</strong>s from 10 -3 M to<br />

10 -6 M. A viability test, performed by means <strong>of</strong> <strong>the</strong> Trypan blue assay, indicated that exposure to<br />

10 -3 M <strong>of</strong> chlorphyriphos for 24 h can be c<strong>on</strong>sidered a cytotoxic dose. Both c<strong>on</strong>trol and treated cells<br />

have been analysed by means <strong>of</strong> Raman microspectroscopy. We have found that important<br />

structural and biochemical changes occur in treated keratinocytes. In particular, such<br />

modificati<strong>on</strong>s, related to <strong>the</strong> structure <strong>of</strong> DNA bases, single aminoacids and proteineous linkage<br />

between aminoacids, begin after exposure at chlorphyriphos soluti<strong>on</strong> at <strong>the</strong> lowest c<strong>on</strong>centrati<strong>on</strong><br />

(10 -6 M). Therefore, cellular damage starts after exposure to chlorpyriphos doses well below that<br />

established as cytotoxic.<br />

PA 35


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Intramolecular and Intermolecular Charge Transfer <strong>Spectroscopy</strong> in Different<br />

Envir<strong>on</strong>ment including some heterogeneous medium <strong>of</strong> nano size<br />

P. CHOWDHURY<br />

Department <strong>of</strong> Physics & Material Science, Jaypee Institute <strong>of</strong> Informati<strong>on</strong><br />

Technology University, A-10, Sector-62, Noida-201307,UP, India<br />

This is an effort to explain <strong>the</strong> ground and excited state intra/intermolecular charge transfer<br />

photophysics and photochemistry <strong>of</strong> five member heterocyclic compounds like Pyrrole-2-<br />

Carboxyldehyde (PCL), Pyrrole-2-carboxylic acid (PCA) in different envir<strong>on</strong>ment and in some<br />

heterogeneous nano cavity like cyclodextrins and micelles. Existence <strong>of</strong> charge transfer complex in<br />

different envir<strong>on</strong>ment have been successfully explained with ab initio DFT (time dependent), HF,<br />

CIS, PM3, ONIOM calculati<strong>on</strong>s. The experimental and <strong>the</strong>oretical data shows <strong>the</strong> existence <strong>of</strong><br />

intramolecular hydrogen b<strong>on</strong>ding between H6….O11 <strong>of</strong> pyrrole and formyl group in ground state<br />

and possibility <strong>of</strong> intramolecular and intermolecular prot<strong>on</strong> transfer from pyrrole group(-NH) to<br />

formyl group (-C=O) in <strong>the</strong> excited state. The effect <strong>of</strong> c<strong>on</strong>finement <strong>of</strong> guest molecule inside <strong>the</strong><br />

cavity <strong>of</strong> cyclodextrin has been studied. The mechanism <strong>of</strong> diffusi<strong>on</strong> and surface tensi<strong>on</strong> are used<br />

to analyze <strong>the</strong> host guest interacti<strong>on</strong> and was dem<strong>on</strong>strated by measuring <strong>the</strong> binding force and<br />

dipole moment <strong>of</strong> cyclodextrin-guest molecule in liquid envir<strong>on</strong>ment at <strong>the</strong> molecular level. The<br />

specific str<strong>on</strong>g interacti<strong>on</strong> <strong>of</strong> water molecule was c<strong>on</strong>firmed <strong>on</strong> <strong>the</strong> nano scale. Quantum chemical<br />

calculati<strong>on</strong>s <strong>on</strong> <strong>the</strong> charge density distributi<strong>on</strong> and stretching <strong>of</strong> N-H b<strong>on</strong>d indicated that PCA,<br />

PCL are good candidate for intramolecular prot<strong>on</strong> transfer in excited state [1,4]. Possibility <strong>of</strong><br />

intramolecular and intermolecular hydrogen b<strong>on</strong>ding <strong>of</strong> PCL in ground state was established<br />

<strong>the</strong>oretically by <strong>the</strong> distance N5-H6………O11 <strong>of</strong> acidic and basic moieties <strong>of</strong> PCL and<br />

experimentally it is verified by <strong>the</strong> IR stretching and bending mode vibrati<strong>on</strong>s <strong>of</strong> different parts <strong>of</strong><br />

<strong>the</strong> molecule. The possibility <strong>of</strong> transfer <strong>of</strong> hydrogen from pyrrole ring towards [……………]<br />

Absorbance<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

0.00<br />

200 250 300 350<br />

Wavelength (nm)<br />

PCL in Methanol<br />

PA 36<br />

IR Absorbance (arb.unit)<br />

1654<br />

1664<br />

1602<br />

1500 1000 500<br />

1446<br />

1404<br />

1356<br />

1314<br />

1450<br />

1478<br />

1341<br />

1400<br />

Experimental (b)<br />

1140<br />

1094<br />

1048<br />

Theoretical (a)<br />

1166<br />

1127<br />

1089<br />

996<br />

960<br />

920<br />

864<br />

862<br />

792<br />

754<br />

778<br />

715<br />

606<br />

629<br />

518<br />

513<br />

1500 1000 500<br />

Wavenumber (cm-1)<br />

Fig. 1 – UV-VIS absorpti<strong>on</strong> spectra <strong>of</strong> PCL in MeOH. IR absorpti<strong>on</strong> spectra <strong>of</strong> PCL in KBr pellets.<br />

References<br />

1. P.Chowdhury, S.Panja, A. Chatterjee, P. Bhattacharya, S. Chakravorti, J. Photochem. Photobiol A: Chem. 170,<br />

(2004), 131.<br />

2. P.T.Chou, W.S.Yu, Y.C.Chen, C.Y.Wei, S.S.Martinez, J Am Chem Soc, 120, (1998), 12927.<br />

3. F.Jensen, Introducti<strong>on</strong> to Computati<strong>on</strong>al Chemistry, Wiley, England, (1999).<br />

4. P.Chowdhury, S.Panja, S.Chakravorti, J Phys Chem A, 107, (2003), 83.


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Influence <strong>of</strong> level <strong>of</strong> hydrati<strong>on</strong> <strong>on</strong> vibrati<strong>on</strong>al dynamics<br />

<strong>of</strong> Dipalmitoyl Phosphatidylcholine<br />

P. CIACKA 1 AND H. ABRAMCZYK 1,2<br />

1. Laboratory <strong>of</strong> Laser Molecular <strong>Spectroscopy</strong>, Institute <strong>of</strong> Applied<br />

Radiati<strong>on</strong> Chemistry, Technical University <strong>of</strong> Lodz, Ul. Wroblewskiego<br />

15, 93-590 Lodz, Poland<br />

2. Max-Born Institute, Max-Born Str. 2A, 12489 Berlin, Germany<br />

Our goal is to investigate if water molecules bound with H-b<strong>on</strong>ds to Dipalmitoyl<br />

Phosphatidylcholine (DPPC) phosphate and carb<strong>on</strong>yl groups affect vibrati<strong>on</strong>al dynamics <strong>of</strong> CH<br />

groups in <strong>the</strong> molecule’s alkyl chain. Results we have obtained by using time resolved infra-red<br />

pump-probe spectroscopy show that <strong>the</strong> amount <strong>of</strong> bound water influences <strong>the</strong> timescales <strong>of</strong><br />

vibrati<strong>on</strong>al dynamics even in <strong>the</strong> groups far away from where water lies, which is <strong>the</strong> case<br />

especially for CH3 group. We also observe spectral diffusi<strong>on</strong> <strong>of</strong> water band occurring before<br />

vibrati<strong>on</strong>al relaxati<strong>on</strong>. Fast times <strong>of</strong> this process lead us to believe that it is related to energy<br />

transfer between water molecules involved in hydrogen b<strong>on</strong>ds. Two-color experiment, where<br />

pump pulse was set to <strong>the</strong> OH regi<strong>on</strong> <strong>of</strong> water and probe to <strong>the</strong> CH regi<strong>on</strong> <strong>of</strong> DPPC, has revealed a<br />

feature which depended <strong>on</strong> water c<strong>on</strong>tent <strong>of</strong> <strong>the</strong> sample. We have assigned it to energy transfer<br />

between water and lipid. The experiment performed with pump tuned fur<strong>the</strong>r to <strong>the</strong> blue showed<br />

no signal for lipids. Based <strong>on</strong> that, we could deduce that <strong>the</strong> signal depends <strong>on</strong> how close (or how<br />

str<strong>on</strong>gly bound) water is to <strong>the</strong> binding site in <strong>the</strong> lipid.<br />

PA 37


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Towards a better knowledge <strong>of</strong> fluorescence properties<br />

<strong>of</strong> humic acid using fracti<strong>on</strong>ati<strong>on</strong><br />

C. COELHO 1 , G. GUYOT 1 , A. TER HALLE 1 , C. RICHARD 1 , O. TRUBETSKOJ 2 AND O. TRUBETSKAYA 3<br />

1. Laboratoire de Photochimie Moléculaire et Macromoléculaire, UMR<br />

n°6505 CNRS - Université Blaise Pascal 63177, Aubière Cedex, France<br />

2. Institute <strong>of</strong> Basic Biological Problems, Russian Academy <strong>of</strong> Sciences,<br />

142292, Pushchino, Moscow regi<strong>on</strong>, Russia<br />

3. Branch <strong>of</strong> Shemyakin and Ovchinnikov Insitute <strong>of</strong> Bioorganic<br />

Chemistry, Russian Academy <strong>of</strong> Sciences, 142292, Pushchino, Moscow<br />

regi<strong>on</strong>, Russia<br />

Humic acid from a chernozem soil (Kursk regi<strong>on</strong>, Russia) has been fracti<strong>on</strong>ated by coupling size<br />

exclusi<strong>on</strong> chromatography (SEC) and polyacrylamide gel electrophoresis (PAGE) <strong>on</strong> three<br />

fracti<strong>on</strong>s A, B and C+D. The bulk humic acid and <strong>the</strong>ir fracti<strong>on</strong>s present fluorescence and<br />

photoinductive properties that were compared in <strong>the</strong> past [1]. It was dem<strong>on</strong>strated that most <strong>of</strong><br />

fluorophores and a great part <strong>of</strong> <strong>the</strong> photoinductive chromophores are located in <strong>the</strong> lowest<br />

molecular size fracti<strong>on</strong>s <strong>of</strong> soil humic acid (C+D) [2]. As shown in <strong>the</strong> figure 1, two types <strong>of</strong><br />

fluorophores are present in <strong>the</strong> bulk humic acid those emitting at 510 nm and those emitting at 550<br />

nm. Fracti<strong>on</strong>s A and B have lost <strong>the</strong>ir emitting properties : <strong>the</strong>re’s a residual fluorescence <strong>of</strong><br />

trypophane-like structures at 350 nm for a 280 nm excitati<strong>on</strong>. Fracti<strong>on</strong> C+D fluorescence is located<br />

550 nm and is four times more intense than <strong>the</strong> bulk humic acid. Using SEC-PAGE, we lost <strong>the</strong><br />

emissi<strong>on</strong> at 510 nm from <strong>the</strong> bulk humic acid. Recently a new fracti<strong>on</strong>ati<strong>on</strong> based <strong>on</strong> ultrafiltrati<strong>on</strong><br />

enables to prepare quantitative low molecular size fracti<strong>on</strong>s <strong>of</strong> humic acid : ultrafiltrates below 5<br />

kDa. It was shown that <strong>the</strong>y c<strong>on</strong>tain C+D fracti<strong>on</strong>s [3]. These ultrafiltrates below 5 kDa present <strong>the</strong><br />

emissi<strong>on</strong> at 510 nm and are much more photoactive than C+D fracti<strong>on</strong>s. Combining optical<br />

properties and fracti<strong>on</strong>ati<strong>on</strong>, we hope to better characterize <strong>the</strong> type and <strong>the</strong> nature <strong>of</strong><br />

chromophores which are involved in humic acids.<br />

References<br />

PA 38<br />

Fig. 1 – Emissi<strong>on</strong> and Excitati<strong>on</strong> matrix <strong>of</strong> Kursk<br />

humic acid and its fracti<strong>on</strong>s A, B and C+D obtained by<br />

SEC-PAGE, emissi<strong>on</strong> intensity is normalised to a<br />

dissolved organic carb<strong>on</strong> <strong>of</strong> 1 mol.L -1<br />

[1] J.P. Aguer, O. Trubetskaya, O. Trubetskoj, C. Richard, Chemosphere 44, 205-209 (2001)<br />

[2] C. Richard, O. Trubetskaya, O. Trubetskoj, O. Reznikova, G. Afanas'eva, J.P. Aguer, G. Guyot, Envir<strong>on</strong>mental<br />

Science & Technology 38, 2052-2057 (2004)<br />

[3] O. Trubetskoj, O. Trubetskaya, G. Afanas'eva, O. Reznikova, C. Saiz-Jimenez, Journal <strong>of</strong> Chromatography A 767,<br />

285-292 (1997)


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Ultrafast photochemistry in protochlorophyllide by<br />

femtosec<strong>on</strong>d infrared spectroscopy<br />

M. COLINDRES 1 , R. GROß 1 , S. SEIDEL 2 , G. HERMANN 2 AND R. DILLER 1<br />

1. Fachbereich Physik, TU Kaiserslautern, Kaiserslautern, Germany<br />

2. Institut für Biochemie und Biophysik, Universität Jena, Jena, Germany<br />

The light dependent reducti<strong>on</strong> <strong>of</strong> protochlorophyllide (PChlide), <strong>the</strong> precursor in <strong>the</strong> biosyn<strong>the</strong>sis<br />

<strong>of</strong> chlorophyll, is catalyzed by <strong>the</strong> enzyme NADPH:protochlorophyllide oxidoreductase (POR).<br />

Excitati<strong>on</strong> <strong>of</strong> PChlide initiates a series <strong>of</strong> processes <strong>on</strong> <strong>the</strong> excited electr<strong>on</strong>ic state energy surface in<br />

<strong>the</strong> femto-nanosec<strong>on</strong>d time regime [1]. To fur<strong>the</strong>r characterize <strong>the</strong> photochemistry <strong>of</strong> PChlide,<br />

specifically its excited state dynamics, we have studied <strong>the</strong> primary photoreacti<strong>on</strong> <strong>of</strong> PChlide in<br />

methanol by means <strong>of</strong> sub-picosec<strong>on</strong>d mid-infrared spectroscopy. Preliminary results (Fig. 1) in<br />

<strong>the</strong> carb<strong>on</strong>yl regi<strong>on</strong> indicate changes <strong>of</strong> a C-O stretch vibrati<strong>on</strong> up<strong>on</strong> electr<strong>on</strong>ic excitati<strong>on</strong>.<br />

Systematic measurements in a broad spectral regi<strong>on</strong>, including C-O and C-C stretch vibrati<strong>on</strong>s will<br />

be presented and discussed in <strong>the</strong> c<strong>on</strong>text <strong>of</strong> <strong>the</strong> PChlide photochemistry.<br />

References<br />

Fig. 1 – Absorpti<strong>on</strong> kinetics at 1724 cm -1 after excitati<strong>on</strong> <strong>of</strong> PChlide<br />

at 630 nm<br />

[1] H. B. Dietzek, S. Tschierlei, G. Hermann, A. Yartsev, T. Pascher, V. Sundström, M. Schmitt and J. Popp,<br />

ChemPhysChem 10, 144-150 (<strong>2009</strong>).<br />

PA 39


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Some more facts <strong>on</strong> <strong>the</strong> molten globule state<br />

B. CZARNIK-MATUSEWICZ 1 , S. R. RYU 2 AND Y.M. JUNG 2<br />

1. Faculty <strong>of</strong> Chemistry, University <strong>of</strong> Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland<br />

2. Department <strong>of</strong> Chemistry, Kangw<strong>on</strong> Nati<strong>on</strong>al University, Chunch<strong>on</strong>, 200-701, Korea<br />

The molten globule state is not an independent c<strong>on</strong>formati<strong>on</strong>al state, but an equilibrium mixture <strong>of</strong><br />

<strong>the</strong> unfolded and native states that was c<strong>on</strong>firmed by X-ray scattering [1].The molten globule<br />

generally defined as a state with substantial sec<strong>on</strong>dary structure, absence <strong>of</strong> native-like tertiary<br />

structure, compact and globular is not describe at <strong>the</strong> same levels <strong>of</strong> details as <strong>the</strong> two limited<br />

states. We have employed FTIR-ATR and CD spectroscopies to studies <strong>the</strong> structural features <strong>of</strong><br />

<strong>the</strong> molten globule <strong>of</strong> Ca 2+-b<strong>on</strong>d (holo) α-lactalbumin. The infrared experiment was d<strong>on</strong>e in a<br />

functi<strong>on</strong> <strong>of</strong> pH and temperature for <strong>the</strong> aqueous soluti<strong>on</strong>s and <strong>the</strong> thin film samples.<br />

Measurements for pH from 8 to 2 allowed us to analyze <strong>the</strong> c<strong>on</strong>formati<strong>on</strong>al changes<br />

accompanying <strong>the</strong> transiti<strong>on</strong> from <strong>the</strong> native to <strong>the</strong> molten globule state. The CD Far-UV and<br />

Near-UV data disclosed fact that changes at <strong>the</strong> level <strong>of</strong> <strong>the</strong> ternary and <strong>the</strong> sec<strong>on</strong>dary structure<br />

cannot be described as a strictly correlated process developed according to <strong>the</strong> same pH-pr<strong>of</strong>ile. A<br />

sec<strong>on</strong>dary structure evoluti<strong>on</strong> towards n<strong>on</strong>-native helical c<strong>on</strong>figurati<strong>on</strong> precedes decay <strong>of</strong> <strong>the</strong><br />

ternary arrangement. This fact was c<strong>on</strong>firmed by <strong>the</strong> CD and <strong>the</strong> FT-IR data independently<br />

analyzed by means <strong>of</strong> <strong>the</strong> two-dimensi<strong>on</strong>al correlati<strong>on</strong> spectroscopy (2DCOS) and <strong>the</strong> principal<br />

comp<strong>on</strong>ents analysis (PCA) combined with <strong>the</strong> multivariate curve resoluti<strong>on</strong>-alternating least<br />

squares (MCR-ALS), approaches that are very efficient in analysis <strong>of</strong> infrared spectra <strong>of</strong><br />

biomolecules studied in aqueous envir<strong>on</strong>ment [2]. The three resoluti<strong>on</strong> methods enabled to detect<br />

an intermediate state before <strong>the</strong> molten globule is achieved at pH 2. Analysis <strong>of</strong> <strong>the</strong> native, <strong>the</strong> premolten,<br />

and <strong>the</strong> molten globule reveals that both levels <strong>of</strong> structure, i.e. <strong>the</strong> sec<strong>on</strong>dary and <strong>the</strong><br />

ternary are modified. Temperature-dependent studies d<strong>on</strong>e for <strong>the</strong> native (pH 8) and <strong>the</strong> molten<br />

globule (pH 2) structure let us characterize <strong>the</strong>rmal stability <strong>of</strong> <strong>the</strong> two states. Obtained results<br />

point <strong>on</strong> a larger structural evoluti<strong>on</strong> <strong>of</strong> <strong>the</strong> native than <strong>the</strong> molten globule form during heating<br />

process from 25 oC to 90 oC.<br />

References<br />

1750 1700 1650 1600 1550 1500 1450 1400<br />

wavenumber (cm-1 1750 1700 1650 1600 1550 1500 1450 1400<br />

wavenumber (cm ) -1 )<br />

PA 40<br />

pH<br />

2<br />

3<br />

3.5<br />

4<br />

4.5<br />

5<br />

6<br />

7<br />

8<br />

Fig. 1 – FTIR-ATR spectra <strong>of</strong> (holo)<br />

α-lactalbumin measured as a thin film<br />

<strong>on</strong> a diam<strong>on</strong>d crystal in functi<strong>on</strong> <strong>of</strong> pH.<br />

[1] M. Kataoka, K. Kuwajima, F. Tokunaga, Y. Goto, Protein Scien. 6, 422-430 (1997).<br />

[2] B. Czarnik-Matusewicz, S.B. Kim, Y.M. Jung, J. Phys. Chem. B, 113, 559–566 (<strong>2009</strong>).


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Preferential solvatati<strong>on</strong> <strong>of</strong> TFE in lysozyme: a<br />

luminescence study<br />

M. D'AMICO 1 , M. CANNAS 2 , V. MARTORANA 1 , S. RACCOSTA 1,2 , AND M. MANNO 1<br />

1. Inst. <strong>of</strong> Biophysics, Italian Nati<strong>on</strong>al Council <strong>of</strong> Research, Via Ugo La<br />

Malfa 153, Palermo, I-90146, Italy<br />

2. Dept. <strong>of</strong> Physical and Astr<strong>on</strong>omical Sciences, University <strong>of</strong> Palermo,<br />

Via Archirafi 36, Palermo, I-90123, Italy<br />

The effect <strong>of</strong> alcohols <strong>on</strong> <strong>the</strong> c<strong>on</strong>formati<strong>on</strong>al and <strong>the</strong>rmodynamic stability <strong>of</strong> proteins in soluti<strong>on</strong> is<br />

an important issue for <strong>the</strong> understanding <strong>of</strong> <strong>the</strong> physics <strong>of</strong> <strong>the</strong> solubility, misfolding and<br />

aggregati<strong>on</strong> <strong>of</strong> proteins. Here, we study <strong>the</strong> influence <strong>of</strong> <strong>the</strong> trifluoroethanol (TFE), <strong>on</strong> <strong>the</strong><br />

<strong>the</strong>rmodynamic stability <strong>of</strong> a model protein, <strong>the</strong> hen egg-white lysozyme, by stati<strong>on</strong>ary and time<br />

resolved photoluminescence (PL) <strong>of</strong> its tryptophans (TRP). TFE is known to induce c<strong>on</strong>formati<strong>on</strong>al<br />

changes in proteins, ei<strong>the</strong>r by a “macroscopic” solvent-mediated effect or by a direct interacti<strong>on</strong><br />

with <strong>the</strong> protein [1]. In Fig. 1 we show that <strong>the</strong> first moment <strong>of</strong> stati<strong>on</strong>ary PL <strong>of</strong> TRP shows a<br />

sigmoid red-shift for each TFE c<strong>on</strong>centrati<strong>on</strong>, compatible with a <strong>the</strong>rmal denaturati<strong>on</strong> process. The<br />

characteristic temperature decreases for high TFE c<strong>on</strong>tent accordingly with calorimetric data [2].<br />

At a fixed temperature <strong>the</strong> TFE gives a blue-shift <strong>of</strong> <strong>the</strong> TRP band which is more pr<strong>on</strong>ounced at 10<br />

(~4 nm) than at 80 °C (~1 nm) [3]. The time resolved PL excited by laser shows a “dynamic” red<br />

shift <strong>of</strong> <strong>the</strong> first moment, during <strong>the</strong> decay in <strong>the</strong> nanosec<strong>on</strong>d range, which is almost independent<br />

<strong>on</strong> <strong>the</strong> TFE c<strong>on</strong>centrati<strong>on</strong>. All <strong>the</strong>se results point towards a microscopic picture where <strong>the</strong> TFE<br />

forms a preferential solvati<strong>on</strong> shell around <strong>the</strong> protein [4], thus decreasing <strong>the</strong> <strong>the</strong>rmal stability <strong>of</strong><br />

<strong>the</strong> protein.<br />

References<br />

Fig. 1 –First moment <strong>of</strong> Lysozyme TRP band as a functi<strong>on</strong> <strong>of</strong><br />

temperature and TFE c<strong>on</strong>centrati<strong>on</strong>. The lines represent <strong>the</strong> fit with<br />

<strong>the</strong> reported functi<strong>on</strong>.<br />

[1] R. Walgers, T. C. Lee, A. Cammers-Goodwin, J. Am. Chem. Soc. 120, 5073-5079 (1998).<br />

[2] V. Bhakuni, Arch. Biochem. Biophys. 357, 274-284 (1998).<br />

[3] J. F. Povey, C. M. Smales, S. J. Hassard, M. J. Howard, J. Struct. Biol. 157, 329-338 (2007).<br />

[4] R. Carrotta, M. Manno, F. M. Giordano, A. L<strong>on</strong>go, G. Portale, V. Martorana, P. L. San Biagio, Phys. Chem. Chem<br />

Phys. DOI: 10.1039/b818687a (<strong>2009</strong>).<br />

PA 41


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Fluorescence study <strong>of</strong> <strong>the</strong> interacti<strong>on</strong> between<br />

antitumoral drug emodin and bovine serum albumin in<br />

presence <strong>of</strong> silver nanoparticles<br />

R. DE LLANOS 1 , P. SEVILLA 1, 2 , C. DOMINGO 1 , S. SÁNCHEZ-CORTÉS 1 AND J.V. GARCÍA-RAMOS 1<br />

1. Instituto de Estructura de la Materia, C<strong>on</strong>sejo Superior de<br />

Investigaci<strong>on</strong>es Científicas, Serrano 121, Madrid, 28006, Spain.<br />

2. Departamento de Química Física II, Facultad de Farmacia,<br />

Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n,<br />

28040, Spain.<br />

Emodin has been known for a l<strong>on</strong>g time for its laxative and anti-inflammatory effects. Recent<br />

studies have shown that it can induce apoptosis in several cancer cells [1]. This orange crystalline<br />

compound bel<strong>on</strong>gs to anthraquin<strong>on</strong>e family and it is <strong>on</strong>e <strong>of</strong> <strong>the</strong> active comp<strong>on</strong>ents <strong>of</strong> rhubarb.<br />

Emodin is able to form complexes with some proteins like bovine serum albumin (BSA) which<br />

ensure drug delivery through plasma. Nowadays, metal nanoparticles are being used to release<br />

drugs in a c<strong>on</strong>trolled and targeted way. Thus, <strong>the</strong> behaviour <strong>of</strong> emodin-BSA complex in presence<br />

<strong>of</strong> metal nanoparticles has great importance in <strong>the</strong> design <strong>of</strong> new drug delivery systems. In this<br />

work we study <strong>the</strong> binding <strong>of</strong> emodin to bovine serum albumin adsorbed <strong>on</strong> silver colloids. We<br />

have used different spectroscopic techniques like UV, fluorescence (frequency domain and time<br />

domain) and Circular Dichroism. It has been shown that <strong>the</strong> sec<strong>on</strong>dary structure <strong>of</strong> <strong>the</strong> protein is<br />

modified by <strong>the</strong> absorpti<strong>on</strong> <strong>on</strong> nanoparticles. The analysis <strong>of</strong> <strong>the</strong> binding saturati<strong>on</strong> curve has<br />

allowed us to determine <strong>on</strong>ly a single binding site for emodin. This differs from previous results<br />

obtained for <strong>the</strong> complex in aqueous soluti<strong>on</strong> and in <strong>the</strong> absence <strong>of</strong> Ag nanoparticles [2] where <strong>the</strong><br />

binding is produced at <strong>the</strong> two Sudlow´s sites <strong>of</strong> <strong>the</strong> protein. Fur<strong>the</strong>rmore, fluorescence lifetime<br />

studies have been carried out for <strong>the</strong> protein-emodin complex, in absence and presence <strong>of</strong><br />

nanoparticles. Results indicate decrease in protein fluorescence lifetime when nanoparticles are<br />

present and also when drug c<strong>on</strong>centrati<strong>on</strong> increases.<br />

References<br />

Fig. 1 – Structure, numbering and acid-base equilibrium <strong>of</strong> emodin<br />

[1] Z. W. Huang, G. C. Chen, P. Shi, Cancer Detecti<strong>on</strong> and Preventi<strong>on</strong> 32, 286-291 (<strong>2009</strong>).<br />

[2] P. Sevilla, J. M. Rivas, F. García-Blanco, J. V. García-Ramos, S. Sánchez-Cortés, Biochimica Et Biophysica Acta<br />

Proteins and Proteomics 1774, 1359-1369 (2007).<br />

PA 42


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Laser Raman Micro-spectroscopy <strong>of</strong> Proterozoic<br />

and Palaeozoic organic walled micr<strong>of</strong>ossils<br />

M.C DHAMELINCOURT 1 , A. MEZZETTI 1 , GERARD VERSTEEGH 2 , MARCO VECOLI 3<br />

1. Laboratoire de Spectrochimie Infrarouge et Raman UMR CNRS 8516,<br />

Bat C5, USTL, Cité Scientifique, 59655 Villenenuve d’Ascq, France<br />

2. Organic Geochemistry Department<br />

Center for Marine Envir<strong>on</strong>mental Sciences, MARUM<br />

University <strong>of</strong> Bremen, Bremen, Germany.<br />

3. Laboratoire de Palé<strong>on</strong>tologie UMR CNRS 8157 Geosystems, USTL,<br />

Cité Scientifique, 59655 Villenenuve d’Ascq, France<br />

Proterozoic and Palaeozoic organic walled micr<strong>of</strong>ossils (palynomorphs) comprise a wide range <strong>of</strong><br />

organisms (including oceanic photosyn<strong>the</strong>tic microplanct<strong>on</strong>, microzooplankt<strong>on</strong>, and microscopic<br />

spores from earliest land plants), which record fundamental evoluti<strong>on</strong>ary events in Earth’s<br />

biosphere. Classical comparative morphology analyses can be successfully applied <strong>on</strong>ly in a few<br />

cases when directly measurable morphological features are available but in <strong>the</strong> more general cases<br />

<strong>the</strong> biological affinity <strong>of</strong> Proterozoic and Early Palaeozoic palynomorphs remain largely unknown.<br />

Recently, new techniques based <strong>on</strong> microchemical analysis <strong>of</strong> individual organic-walled<br />

micr<strong>of</strong>ossils dem<strong>on</strong>strated <strong>the</strong>ir potential for elucidating <strong>the</strong> cellular anatomy, compositi<strong>on</strong>, and<br />

mode <strong>of</strong> preservati<strong>on</strong> <strong>of</strong> micr<strong>of</strong>ossils, thus <strong>of</strong>fering new insights into <strong>the</strong> palaeobiology <strong>of</strong> ancient<br />

microorganisms. In <strong>the</strong> last few years, Laser Raman micro-spectroscopy has emerged as <strong>on</strong>e <strong>of</strong> <strong>the</strong><br />

most powerful analytical tools (see for instance [1, 2]). In this study, different kinds <strong>of</strong><br />

excepti<strong>on</strong>ally well preserved palynomorphs extracted from Precambrian to early Dev<strong>on</strong>ian<br />

sediments were individually analyzed by Laser microRaman spectroscopy technique in order to<br />

better characterize <strong>the</strong>ir chemical compositi<strong>on</strong>. The results will be discussed in <strong>the</strong> framework <strong>of</strong><br />

<strong>the</strong> current knowledge <strong>on</strong> organic-walled micr<strong>of</strong>ossils. Possible improvements <strong>of</strong> <strong>the</strong> microRaman<br />

analysis, ei<strong>the</strong>r by new instrumentati<strong>on</strong> / new data treatment techniques (e.g. chemometrics) or by<br />

<strong>the</strong> synergic use <strong>of</strong> complementary techniques (e.g. micro-FTIR) will be also discussed.<br />

References<br />

[1] S. Bernard, O. Beyssac, K. Benzerara, Appl. Spectrosc. 62, 1180-1188 (2008)<br />

[2] J.W. Schopf, A.B. Kudryavtsev, D.G. Agresti, A.D. Czaja, T.J. Wdowiak, Astrobiology 5, 333-371 (2005)<br />

PA 43


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

L-isoserine c<strong>on</strong>formati<strong>on</strong> in low-temperature IR matrix<br />

spectra interpreted by means <strong>of</strong> <strong>the</strong> DFT calculati<strong>on</strong>s<br />

J.CZ. DOBROWOLSKI 1,2 , M.H. JAMRÓZ 2 , R. KOŁOS 3 , J.E. RODE 2 , J. SADLEJ 1,4<br />

1. Nati<strong>on</strong>al Medicines Institute, 30/34 Chełmska Street, 00-725 Warsaw, Poland<br />

2. Industrial Chemistry Research Institute, 8 Rydygiera Street, 01-793 Warsaw, Poland<br />

3. Institute <strong>of</strong> Physical Chemistry, PAN, 44 Kasprzaka Street, 01-224 Warsaw, Poland<br />

4. Faculty <strong>of</strong> Chemistry, Warsaw University, 1 Pasteura Street, 02-093 Warsaw, Poland<br />

Izoserine, NH2CH2CH(OH)COOH, 3-amino-2-hydroxypropi<strong>on</strong>ic acid (Scheme 1), is serine isomer<br />

in which <strong>the</strong> NH2 and OH groups were interchanged. Isoserine is <strong>the</strong> β-amino acid - an amino acid<br />

with <strong>the</strong> NH2 placed in <strong>the</strong> β positi<strong>on</strong>. A few β-amino acids have been isolated from plants,<br />

bacteria, and invertebrates. Paclitaxel (Taxol), first isolated from <strong>the</strong> bark <strong>of</strong> Taxus brevifolia L, is <strong>the</strong><br />

most important natural compound composed <strong>of</strong> <strong>the</strong> isoserine molecule, which is used in<br />

chemo<strong>the</strong>rapy <strong>of</strong> breast, ovarian, and lung cancers. The presence <strong>of</strong> <strong>the</strong> additi<strong>on</strong>al carb<strong>on</strong> atom in<br />

<strong>the</strong> backb<strong>on</strong>e <strong>of</strong> a β-amino acid results in different properties <strong>of</strong> β-peptides, such that <strong>the</strong>y exhibit<br />

higher stability against peptidases, and an enormous potential for sec<strong>on</strong>dary structure formati<strong>on</strong>,<br />

as documented in numerous comprehensive reviews (e.g. [1]). Recently, we are studying different<br />

aspects <strong>of</strong> vibrati<strong>on</strong>al spectroscopy <strong>of</strong> small biological molecules <strong>of</strong> pharmaceutical interest such as<br />

halouracils [2], lactic acid [3], cystein [4], and β-alanin [5]. Analysis <strong>of</strong> literature data devoted to<br />

isoserine has shown that knowledge about physicochemistry and spectroscopy <strong>of</strong> this molecule<br />

important to biology and pharmacy is diminutive. This is why this is <strong>the</strong> first systematic study <strong>on</strong><br />

c<strong>on</strong>formers and IR spectroscopy <strong>of</strong> isoserine molecule. The IR low-temperature Ar matrix spectra<br />

<strong>of</strong> L-isoserine were registered for <strong>the</strong> first time and interpreted by means <strong>of</strong> <strong>the</strong> anharm<strong>on</strong>ic DFT<br />

frequencies calculated at <strong>the</strong> B3LYL/aug-cc-pVTZ level. 54 L-isoserine c<strong>on</strong>formers were calculated<br />

to be stable at <strong>the</strong> B3LYL/aug-cc-pVDZ and MP2/aug-cc-pVDZ levels. The most stable c<strong>on</strong>former<br />

and seven highly populated <strong>on</strong>es were recalculated by using <strong>the</strong> two methods and <strong>the</strong> aug-ccpVTZ<br />

basis set. The most stable c<strong>on</strong>former is dominating in <strong>the</strong> experimental spectra. A detailed<br />

interprpretati<strong>on</strong> <strong>of</strong> <strong>the</strong> IR spectra <strong>of</strong> this c<strong>on</strong>former is performed based <strong>on</strong> comparis<strong>on</strong> with its<br />

anharm<strong>on</strong>ic B3LYL/aug-cc-pVDZ IR spectra and potenial energy distributi<strong>on</strong> analysis. Inspecti<strong>on</strong><br />

into <strong>the</strong> stretching vibrati<strong>on</strong> OH, C=O, and C-O regi<strong>on</strong>s <strong>of</strong> <strong>the</strong> experimental spectra enables <strong>on</strong>e to<br />

detect at least four o<strong>the</strong>r L-isoserine c<strong>on</strong>formers. The most stable c<strong>on</strong>former (1) is dominating<br />

whereas <strong>the</strong> o<strong>the</strong>r are much less populated is very visible in <strong>the</strong> ν(C=O) stretching vibrati<strong>on</strong> regi<strong>on</strong><br />

<strong>of</strong> <strong>the</strong> spectra registered for Ar matrix. The presence <strong>of</strong> <strong>the</strong> c<strong>on</strong>former (2) in <strong>the</strong> Ar matrix IR<br />

spectra <strong>of</strong> L-isoserine can be proved based <strong>on</strong> <strong>the</strong> inspecti<strong>on</strong> into <strong>the</strong> β(OH) bending vibrati<strong>on</strong><br />

regi<strong>on</strong> 1500-1200 cm -1. The side bands <strong>of</strong> <strong>the</strong> ν (C-O) band (1103 cm -1) <strong>of</strong> <strong>the</strong> c<strong>on</strong>former (1)<br />

positi<strong>on</strong>ed at 1121 and 1185 cm -1, corresp<strong>on</strong>ds <strong>the</strong> c<strong>on</strong>former (3).<br />

References<br />

[1] R. P. Cheng, S. H. Gellman, W. F. DeGrado, Chem. Rev., 101, 3219-3232 (2001).<br />

[2] J.Cz.Dobrowolski, J.E.Rode, R.Kołos, M.H.Jamróz, K.Bajdor, A.P.Mazurek, J. Phys. Chem.,109,2167-2182 (2005).<br />

[3] J. Sadlej, J. Cz. Dobrowolski, J. E. Rode, M. H. Jamróz, Phys. Chem. Chem. Phys., 8, 101-113 (2006).<br />

[4] J. Cz. Dobrowolski, M.ł H. Jamróz, R. Kołos, J. E. Rode, J. Sadlej, ChemPhysChem., 8, 1085-1094 (2007).<br />

[5] J. Cz. Dobrowolski, M. H. Jamróz, R. Kołos, J. E. Rode, J. Sadlej, ChemPhysChem., 9, 2042-2051 (2008).<br />

PA 44


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Static and time resolved spectroscopy <strong>on</strong><br />

bacteriophytochrome Agp2<br />

D. EHMER 1 , M. WOLF 1 , R. GROß 1 , J. LIN 1 , C. SCHUMANN 1+ , B. ZIENICKE 2 , T. LAMPARTER 2 AND R.<br />

DILLER 1<br />

1. Department <strong>of</strong> Physics, University <strong>of</strong> Kaiserslautern, Erwin-<br />

Schrödinger-Straße, Kaiserslautern, D-67663, Germany<br />

2. Botanical Institute I, University <strong>of</strong> Karlsruhe, Kaiserstraße 2,<br />

Karlsruhe, D-76131, Germany<br />

+ Current address: Leibnitz Institute for New Materials, Campus D2 2,<br />

Saarbrücken, D-66123, Germany<br />

Phytochromes are a wide spread family <strong>of</strong> photoreceptor proteins with two photointerc<strong>on</strong>vertible<br />

forms, Pr and Pfr, absorbing in <strong>the</strong> red and far-red spectral regi<strong>on</strong>, respectively. First discovered in<br />

plants, meanwhile phytochromes have also been discovered in bacteria and fungi. The<br />

bathyphytochrome Agp2 from <strong>the</strong> plant pathogenic soil bacterium Agrobacterium tumefaciens<br />

behaves antag<strong>on</strong>istically to most o<strong>the</strong>r phytochromes. In darkness Agp2 c<strong>on</strong>verts from Pr into Pfr.<br />

The latter represents <strong>the</strong> <strong>the</strong>rmal ground state, which is right in c<strong>on</strong>trast to <strong>the</strong> sec<strong>on</strong>d<br />

phytochrome Agp1 found in Agrobacterium [1, 2]. We present results <strong>of</strong> quasi-static UV-Vis<br />

spectroscopic measurements, which verify <strong>the</strong> <strong>the</strong>rmal ground state being Pfr and a relatively fast<br />

dark reversi<strong>on</strong> process unlike o<strong>the</strong>r bacteriophytochomes (Fig. 1a). For <strong>the</strong> first time we performed<br />

transient absorpti<strong>on</strong> experiments in <strong>the</strong> visible <strong>on</strong> <strong>the</strong> Pr form <strong>of</strong> Agp2 at microsec<strong>on</strong>d time<br />

resoluti<strong>on</strong> to characterize <strong>the</strong> photocycle. Two fast time c<strong>on</strong>stants <strong>of</strong> about 0.1 and 0.7 ms (Fig. 1b)<br />

and ano<strong>the</strong>r slower <strong>on</strong>e were identified in analogy to Agp1 [3]. In additi<strong>on</strong> we present first Vispump-Vis-probe-measurements<br />

<strong>on</strong> Pr with sub-picosec<strong>on</strong>d time resoluti<strong>on</strong>.<br />

Fig. 1 – a) dark reversi<strong>on</strong> process measured by UV-Vis-spectroscopy: in c<strong>on</strong>trast to o<strong>the</strong>r phytochromes<br />

<strong>the</strong> Pr-maximum decreases and <strong>the</strong> Pfr-maximum increases, b) kinetics at 710 and 750 nm (Pr- and Pfrmaximum,<br />

respectively) at an observed time range <strong>of</strong> 2 ms and corresp<strong>on</strong>ding global analysis.<br />

References<br />

[1] B. Karniol, R. D. Vierstra, Proc. Natl. Acad. Sci. USA 100, 2807-2812 (2003).<br />

[2] K. Inomata, S. Noack, M. A. S. Hammam, H. Khwan, H. Kinoshita, Y. Murata, N. Michael, P. Scheerer, N. Krauss,<br />

T. Lamparter, J. Biol. Chem. 281, 28162-28173 (2006).<br />

[3] B. Borucki, D. v. Stetten, S. Seibeck, T. Lamparter, N. Michael, M. A. Mroginski, H. Otto, D. H. Murgida, M. P.<br />

Heyn, P. Hildebrandt, J. Biol. Chem. 280, 34358-34364 (2005).<br />

PA 45


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Specific magnesium binding to RNA triplexes:<br />

Raman study<br />

SJ. ESPINOZA HERRERA 1 AND J. STEPANEK 1<br />

1. Institute <strong>of</strong> Physics. Charles University in Prague. Ke Karlovu 5, CZ-<br />

121 16 Praha 2, Czech Republic<br />

RNAs are negatively charged poly-i<strong>on</strong>s, which need extramolecular positive charges in order to<br />

fold in different compact structures and to carry out <strong>the</strong>ir functi<strong>on</strong>s. Milimolar c<strong>on</strong>centrati<strong>on</strong>s <strong>of</strong><br />

divalent i<strong>on</strong>s can stabilize RNA tertiary structures that are o<strong>the</strong>rwise <strong>on</strong>ly marginally stable in <strong>the</strong><br />

presence <strong>of</strong> high m<strong>on</strong>ovalent cati<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong>s [1]. Magnesium, <strong>the</strong> divalent i<strong>on</strong> with <strong>the</strong><br />

highest c<strong>on</strong>centrati<strong>on</strong> in <strong>the</strong> intracellular space, is known to support selectively triple-helix<br />

formati<strong>on</strong> in <strong>the</strong> mixed soluti<strong>on</strong> <strong>of</strong> poly(rU) and poly(rA) homopolynucleotides even if <strong>the</strong>ir<br />

stoichiometric ratio is optimal for <strong>the</strong> double-helix [2]. The mechanism <strong>of</strong> this phenomen<strong>on</strong> as well<br />

as details c<strong>on</strong>cerning <strong>the</strong> magnesium binding to RNA triplex was not before now resolved. In our<br />

study, we employed spectroscopic Raman titrati<strong>on</strong> to obtain spectral pattern caused by <strong>the</strong> specific<br />

magnesium interacti<strong>on</strong> with <strong>the</strong> RNA triplex. Raman spectra <strong>of</strong> a set <strong>of</strong> poly(rU) + poly(rA)<br />

soluti<strong>on</strong>s with various magnesium c<strong>on</strong>centrati<strong>on</strong>s were measured at c<strong>on</strong>diti<strong>on</strong>s that guaranteed a<br />

full complexati<strong>on</strong> <strong>of</strong> poly(rU) and poly(rA) chains into triplexes (2:1 poly(rU)/poly(rA)<br />

stoichiometric ratio; proper pH, i<strong>on</strong>ic strength, and temperature). Raman spectra were treated by a<br />

factor analysis (singular value decompositi<strong>on</strong> algorithm). The singular numbers show that <strong>the</strong><br />

spectra in <strong>the</strong> series are composed basically by two spectral comp<strong>on</strong>ents. Dependence <strong>of</strong> <strong>the</strong><br />

coefficient indicating mutual ratio <strong>of</strong> <strong>the</strong> two spectral comp<strong>on</strong>ents <strong>on</strong> <strong>the</strong> magnesium<br />

c<strong>on</strong>centrati<strong>on</strong> corresp<strong>on</strong>ds to <strong>the</strong> McGhee-v<strong>on</strong> Hippel model <strong>of</strong> a ligand binding to polymer; <strong>the</strong><br />

size <strong>of</strong> <strong>the</strong> polymer binding site being equal to two U:A*U triads. The difference Raman spectrum<br />

displaying <strong>the</strong> effect <strong>of</strong> <strong>the</strong> specific magnesium binding reveals numerous peaks that (assigned<br />

according to known Raman markers [3]) do not correlate with <strong>the</strong> Raman spectral changes<br />

attributable to <strong>the</strong> triplex structure stabilizati<strong>on</strong> [4]. They reflect simultaneous direct binding <strong>of</strong> <strong>the</strong><br />

magnesium surrounded by an incomplete shell <strong>of</strong> coordinated water molecules to adenine and<br />

uracil. Similar experiments performed for <strong>the</strong> poly(rC)/poly(rG) system, which is known to be less<br />

sensitive to <strong>the</strong> salt c<strong>on</strong>centrati<strong>on</strong> [5], has revealed a different mode <strong>of</strong> magnesium binding.<br />

References<br />

[1] E.D. Draper, RNA 10, 335-343 (2004).<br />

[2] B.I. Kankia. Nucleic Acids Res. 31(17), 5101-5107 (2003).<br />

[3] J.M. Benevides, M. Tsuboi, J.K.H. Bamford, G.J. Thomas. Biophys. J. 72, 2748-2762 (1997).<br />

[4] J. Hanus, J. Stepanek, P.-Y. Turpin, J. Bok. J.Mol.Struct. 480-481, 437-442 (1999).<br />

[5] E. Plum, D.S. Pilch. Annu. Rev. Biomol. Struct. 24, 319-350 (1995).<br />

PA 46


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Time-resolved photoacoustic spectroscopy <strong>of</strong> bacterial<br />

hemoglobins<br />

A. BOFFI 1 , A. FEIS 2 , C. GELLINI 2 , A. GUCCIONE 2 AND P.R. SALVI 2<br />

1. Department <strong>of</strong> Biochemical Sciences, University <strong>of</strong> Rome “La Sapienza”, Italy.<br />

2. Department <strong>of</strong> Chemistry, University <strong>of</strong> Florence, Italy.<br />

email: feis@chim.unifi.it<br />

We have applied time-resolved photoacoustic spectroscopy to <strong>the</strong> study <strong>of</strong> native and mutated<br />

“truncated” hemoglobins from <strong>the</strong> actinobacterium Thermobifida fusca. Photoacoustic<br />

measurements <strong>on</strong> <strong>the</strong> photodissociati<strong>on</strong> <strong>of</strong> <strong>the</strong> CO complexes <strong>of</strong> heme proteins can yield kinetic<br />

informati<strong>on</strong> (in a 10 ns – 10 μs range ) which complements laser flash photolysis data [1]. In<br />

additi<strong>on</strong>, <strong>the</strong> measurements allow to determine both volume and enthalpy changes in <strong>the</strong><br />

reacti<strong>on</strong>(s) triggered by CO photodissociati<strong>on</strong>. Th. fusca hemoglobin is a prototypical bacterial<br />

(class 2) hemoglobin. It has been identified in a <strong>the</strong>rmophilic actinobacterium [2] and<br />

overexpressed. The protein functi<strong>on</strong> has not yet been understood. Possible physiological ligands<br />

are O2, NO, HS -, which can bind to <strong>the</strong> heme Fe in <strong>the</strong> protein active site. The heme cavity<br />

structural properties are mainly due to <strong>the</strong> polarity and H-b<strong>on</strong>ding capability <strong>of</strong> <strong>the</strong> (distal) amino<br />

acids: Tyr(B10), Tyr(CD1), Trp(G8). Single, double and triple Phe mutants <strong>of</strong> <strong>the</strong>se key residues<br />

have recently become available. This set <strong>of</strong> mutated proteins <strong>of</strong>fers <strong>the</strong> opportunity to assess <strong>the</strong><br />

importance <strong>of</strong> each amino acid in <strong>the</strong> dynamics and in <strong>the</strong> energetics <strong>of</strong> <strong>the</strong> CO photodissociati<strong>on</strong><br />

reacti<strong>on</strong>. Preliminary results point to an overwhelming role for Trp(G8). This is in agreement with<br />

a recent study <strong>on</strong> a related bacterial hemoglobin from Bacillus subtilis [3].<br />

References<br />

[1] R.W. Larsen, J. Mikšovská, Coord. Chem. Rev. 254, 1101-1127 (2007).<br />

[2] A. B<strong>on</strong>amore, A Ilari, L. Giangiacomo, A. Bellelli, V. Morea, A. B<strong>of</strong>fi, FEBS J. 272, 4189-4201 (2005).<br />

[3] A. Feis, A. Lapini, B. Catacchio, S. Brogi<strong>on</strong>i, P. Foggi, E. Chianc<strong>on</strong>e, A. B<strong>of</strong>fi, G. Smulevich Biochemistry 47, 902-<br />

910 (2008).<br />

PA 47


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Delayed luminescence spectroscopy <strong>of</strong> erythrosin B in<br />

<strong>the</strong> presence <strong>of</strong> bacterial bioluminescence enzymes<br />

M. A. GERASIMOVA AND M. G. FOMINA<br />

Dept. <strong>of</strong> Experimental and Medical Physics, Siberian Federal University,<br />

79 Pr. Svobodny, Krasnoyarsk, 660041, Russia<br />

The phosphorescence <strong>of</strong> dyes in aqueous soluti<strong>on</strong> at room temperature is an uncomm<strong>on</strong><br />

phenomen<strong>on</strong> [1] because its triplet state is quenched effectively by <strong>the</strong> oxygen. Then, <strong>on</strong>ly delayed<br />

fluorescence <strong>of</strong> dye can be observed. The additi<strong>on</strong> <strong>of</strong> biopolymers in soluti<strong>on</strong> can produce <strong>the</strong><br />

intermolecular complex with dye. In this case it is possible to observe <strong>the</strong> phosphorescence <strong>of</strong> dye.<br />

Similar experiments were carried out in different fluid and solid biopolymer matrices [2, 3, 4]. In<br />

major cases such measurements were performed in anaerobic c<strong>on</strong>diti<strong>on</strong>s <strong>the</strong>refore <strong>the</strong> goal was to<br />

measure <strong>the</strong> phosphorescence <strong>of</strong> dye in aerobic c<strong>on</strong>diti<strong>on</strong>s. The paper presents <strong>the</strong> spectral and<br />

kinetic probing <strong>of</strong> triplet T1 and singlet S1 states <strong>of</strong> 50 μM erythrosin B up<strong>on</strong> additi<strong>on</strong> <strong>of</strong> <strong>the</strong><br />

enzymes <strong>of</strong> bacterial bioluminescent system using flash lamp with 5 μs pulse width. The mixture<br />

<strong>of</strong> enzymes c<strong>on</strong>tains bacterial luciferase from Photobacterium leiognathi and NADH:FMNoxidoreductase<br />

from Benecia harveyi. Only <strong>the</strong> delayed fluorescence <strong>of</strong> erythrosin B was observed<br />

in a pure aqueous soluti<strong>on</strong>, which spectrum coincides with <strong>the</strong> steady-state fluorescence. The<br />

presence <strong>of</strong> enzymes reveals <strong>the</strong> sec<strong>on</strong>d peak <strong>of</strong> 695 nm in <strong>the</strong> l<strong>on</strong>g-wavelength regi<strong>on</strong> attributed<br />

to phosphorescence. The intensity <strong>of</strong> dye phosphorescence increases sharply (up to 4-fold) with <strong>the</strong><br />

increase <strong>of</strong> enzymes c<strong>on</strong>centrati<strong>on</strong>, whereas <strong>the</strong> intensity <strong>of</strong> delayed fluorescence increases slightly<br />

(up to 1.3-fold). The relati<strong>on</strong> <strong>of</strong> quantum yields <strong>of</strong> dye delayed fluorescence to phosphorescence<br />

Φdf/Φp was found to decrease as enzymes c<strong>on</strong>centrati<strong>on</strong> increases. For <strong>the</strong> dye to enzymes<br />

c<strong>on</strong>centrati<strong>on</strong> ratios <strong>of</strong> 5:1 and 1:1 <strong>the</strong> values <strong>of</strong> Φdf/Φp are 0.42 and 0.14 respectively. The<br />

excitati<strong>on</strong> wavelength <strong>of</strong> 260 nm attributed to <strong>the</strong> high excited states <strong>of</strong> dye was proved to pump<br />

T1 state more efficiently (6.7-fold) in comparis<strong>on</strong> with <strong>the</strong> excitati<strong>on</strong> wavelength <strong>of</strong> 500 nm<br />

according to S1 state. It should be noted that <strong>the</strong> peak and spectra shape <strong>of</strong> dye phosphorescence in<br />

<strong>the</strong> presence <strong>of</strong> enzymes do not change, while <strong>the</strong> delayed fluorescence spectra have <strong>the</strong> red shifts<br />

(up to 13 nm). The delayed and steady-state fluorescence spectra <strong>of</strong> dye in <strong>the</strong> presence and<br />

absence <strong>of</strong> <strong>the</strong> enzymes red shifted, while <strong>the</strong> delayed fluorescence tends to broaden spectra.<br />

Hence <strong>the</strong> energy gap between S1 and T1 states <strong>of</strong> erythrosin B decreased (from 3415 sm − 1 to<br />

3197 sm − 1) with increased enzymes c<strong>on</strong>centrati<strong>on</strong>, which facilitates <strong>the</strong> intersystem crossing. The<br />

linear correlati<strong>on</strong> <strong>of</strong> erythrosin B phosphorescence intensity and tryptophan delayed fluorescence<br />

intensity was dem<strong>on</strong>strated. The average phosphorescence lifetime <strong>of</strong> erythrosin B bound to <strong>the</strong><br />

enzymes was determined with double-exp<strong>on</strong>ential fitting <strong>of</strong> <strong>the</strong> intensity decay. The lifetime <strong>of</strong><br />

phosphorescence is 4-fold shorter (~ 0.1 ms) than <strong>the</strong> lifetime <strong>of</strong> delayed fluorescence. The delayed<br />

fluorescence lifetime <strong>of</strong> erythrosin B does not change up<strong>on</strong> additi<strong>on</strong> <strong>of</strong> <strong>the</strong> enzymes (0.4−0.6 ms),<br />

but depends <strong>on</strong> <strong>the</strong> excitati<strong>on</strong> wavelength [4].<br />

References<br />

[1] R. Duchowicz, M. L. Ferrer, A. U. Acuna, Photochem. Photobiol. 68, 494-501 (1998).<br />

[2] M. A. Gerasimova, A. G. Sizykh, N. S. Kudryasheva, Vestnik KGU 1, 58-70 (2005).<br />

[3] P. B. Garland, C. H. Moore, Biochem. J. 183, 561-572 (1979).<br />

[4] L. C. Pravinata, Y. You, R. D. Ludescher, Biophys. J. 88, 3551-3561 (2005).<br />

PA 48


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

FTIR spectral signature for antitumoral drug effect <strong>on</strong><br />

prostate cell lines<br />

RÉGIS GASPER 1 , DERENNE A, MIJATOVIC T 2 ., KISS R. 3 , GOORMAGHTIGH ERIK 1<br />

1. Structure et F<strong>on</strong>cti<strong>on</strong> de Membrane Biologique (SFMB), Université<br />

Libre de Bruxelles, Brussels 1050, Belgium<br />

2. Unibioscreen SA, 1070 Brussels, Belgium<br />

3. Service de Toxicologie, Université Libre de Bruxelles, Brussels 1050,<br />

Belgium<br />

The number <strong>of</strong> anticancer agents that fail in <strong>the</strong> clinic far outweighs those c<strong>on</strong>sidered to be<br />

effective, suggesting that <strong>the</strong> selecti<strong>on</strong> procedure for progressi<strong>on</strong> <strong>of</strong> molecules into <strong>the</strong> clinic<br />

requires improvement. New drugs are usually evaluated for <strong>the</strong>ir potential to kill cancer cell lines.<br />

Yet, <strong>the</strong>re is a tremendous interest to obtain a fingerprint <strong>of</strong> <strong>the</strong>ir mechanism <strong>of</strong> acti<strong>on</strong> <strong>on</strong> <strong>the</strong> cells<br />

as identificati<strong>on</strong> <strong>of</strong> new mechanisms could lead to <strong>the</strong> development <strong>of</strong> new drug families.<br />

Presently, unless a new drug had a large cytostatic effect, it would be discarded from fur<strong>the</strong>r<br />

testing. In turn, we are missing a large number <strong>of</strong> interesting compounds. Screening for "modes <strong>of</strong><br />

acti<strong>on</strong>" presents a technical challenge that is bey<strong>on</strong>d <strong>the</strong> capability <strong>of</strong> c<strong>on</strong>venti<strong>on</strong>al methods used<br />

in cellular or molecular biology. We suggest in <strong>the</strong> present work that <strong>the</strong> infrared (IR) spectrum <strong>of</strong><br />

cells exposed to anticancer drugs could <strong>of</strong>fers a unique opportunity to get a fingerprint <strong>of</strong> all <strong>the</strong><br />

molecules present in <strong>the</strong> cells and to identify, with a high sensitivity, <strong>the</strong> metabolic changes<br />

induced by potential anticancer drugs. Recently, it has been shown that cardiot<strong>on</strong>ic steroids (CS)<br />

inhibit all proliferati<strong>on</strong> and induce cell death in tumour cell lines. Our group evidenced that<br />

metabolic perturbati<strong>on</strong> induced by such a drug <strong>on</strong> a prostate cancer cell line (PC-3) at very low<br />

c<strong>on</strong>centrati<strong>on</strong> (~nM) can be m<strong>on</strong>itored by infrared spectroscopy. To <strong>of</strong>fer any relevance in drug<br />

screening, FT-IR spectroscopy should give a very characteristic fingerprint <strong>of</strong> <strong>the</strong> mode <strong>of</strong> acti<strong>on</strong><br />

induced by <strong>on</strong>e drug. To test this specificity, <strong>the</strong> effect <strong>of</strong> 4 molecules with a really close chemical<br />

structure will be tested in <strong>the</strong> presence <strong>of</strong> prostate cell line PC-3. The cells were incubated during 6,<br />

12, 24 and 36hrs in <strong>the</strong> presence <strong>of</strong> CS before analysis. We recorded about 20 spectra from at least 7<br />

independent cultures to achieve a good statistics sampling. All <strong>the</strong> spectra were recorded <strong>on</strong> a<br />

diam<strong>on</strong>d ATR crystal and each sample (about 30000 cells) was rapidly evaporated under N2 flow<br />

to form a homogenous film <strong>on</strong> <strong>the</strong> crystal. We used multivariate statistical analyses to shed light<br />

<strong>on</strong> <strong>the</strong> metabolic changes induced by <strong>the</strong> different drugs. As all <strong>the</strong> molecules bel<strong>on</strong>g to <strong>the</strong> CS<br />

family, we did not expect large differences in <strong>the</strong>ir mode <strong>of</strong> acti<strong>on</strong>. Yet, we show here that FTIR<br />

spectroscopy is sensitive enough to identify at least 3 different metabolic perturbati<strong>on</strong> signatures<br />

am<strong>on</strong>g <strong>the</strong> 4 molecules.<br />

PA 49


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Room temperature phosphorescence spectroscopy <strong>of</strong><br />

fluor<strong>on</strong>e dyes bound to bacterial luciferase<br />

M. A. GERASIMOVA<br />

Dept. <strong>of</strong> Experimental and Medical Physics, Siberian Federal University,<br />

79 Prospekt Svobodny, Krasnoyarsk, 660041, Russia<br />

Phosphorescence is usually not observed in fluid soluti<strong>on</strong>s at room temperature. This is because<br />

<strong>the</strong>re exist many deactivati<strong>on</strong> processes that compete with emissi<strong>on</strong>, such as n<strong>on</strong>-radiative decay<br />

and quenching processes, and result in vanishingly small phosphorescence quantum yields in<br />

room-temperature aqueous soluti<strong>on</strong>s. When dyes are located in highly protected envir<strong>on</strong>ments<br />

within macromolecules <strong>the</strong> collisi<strong>on</strong>al de-excitati<strong>on</strong>s <strong>of</strong> triplet states are reduced, and <strong>the</strong> internal<br />

moti<strong>on</strong>s <strong>of</strong> molecules are restricted. In additi<strong>on</strong>, N2 and sodium sulfite are <strong>of</strong>ten used as <strong>the</strong><br />

oxygen scavengers. Phosphorescence has been observed for dyes in various biopolymers, such as<br />

amorphous sucrose [1], micelles [2], bovine serum albumin [3], and sol-gel silica [4]. In <strong>the</strong> paper,<br />

time-resolved and steady-state fluorescence spectroscopy was used to study <strong>the</strong> energy<br />

redistributi<strong>on</strong> <strong>of</strong> <strong>the</strong> first excited triplet and singlet states <strong>of</strong> fluor<strong>on</strong>e dyes (eosin Y, erythrosin B,<br />

rose Bengal) bound to bacterial luciferase from Photobacterium leiognathi. The spectra <strong>of</strong> room<br />

temperature phosphorescence and delayed fluorescence <strong>of</strong> 50 μM dyes were obtained at excitati<strong>on</strong><br />

wavelength <strong>of</strong> 260 nm (fig 1a). The efficiency <strong>of</strong> dye phosphorescence signal increases as <strong>the</strong><br />

luciferase c<strong>on</strong>centrati<strong>on</strong> increases and depends <strong>on</strong> excitati<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s. The relati<strong>on</strong> <strong>of</strong> Φph/Φdf<br />

correlates with biopolymer c<strong>on</strong>centrati<strong>on</strong> (fig. 1b) and tryptophan delayed fluorescence. The<br />

obtained trends become more significant for erythrosin B, and even more − for rose Bengal. The<br />

energy gap S1-T1 evaluated for halogenated derivatives <strong>of</strong> fluorescein decreases with increasing<br />

luciferase c<strong>on</strong>centrati<strong>on</strong>. Hence, increased spin-orbit coupling facilitates <strong>the</strong> intersystem crossing.<br />

References<br />

Fig. 1 – (a) Delayed luminescence spectra <strong>of</strong> erythrosin B free in soluti<strong>on</strong> and bound<br />

to luciferase. (b) Correlati<strong>on</strong> <strong>of</strong> <strong>the</strong> relative quantum yields <strong>of</strong> phosphorescence to<br />

delayed fluorescence for fluor<strong>on</strong>e dyes with biopolymer c<strong>on</strong>centrati<strong>on</strong>.<br />

[1] S. Shirke, Y. You, R. D. Ludescher, Biophys. Chem. 123, 122-133 (2006).<br />

[2] N. J. Turro, K.-C. Liu, M.-F. Chow, P. Lee, Photochem. Photobiol. 27, 523-529 (1978).<br />

[3] P. B. Garland, C. H. Moore, Biochem. J. 183, 561-572 (1979).<br />

[4] S. K. Lam, D. Lo, Chem. Phys. Lett. 281, 35-43 (1997).<br />

PA 50


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

MbCO↔matrix reciprocal effects in low hydrati<strong>on</strong><br />

amorphous saccharide systems: a FTIR study<br />

S. GIUFFRIDA 1 , G. COTTONE 1 AND L. CORDONE 1<br />

Dipartimento di Scienze Fisiche ed Astr<strong>on</strong>omiche, Università di<br />

Palermo, Via Archirafi 36, Palermo, I-90123, Italy<br />

Saccharides, and in particular, trehalose are well known for <strong>the</strong>ir high efficiency in protecting<br />

biostructures against adverse envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s. Experiments and simulati<strong>on</strong>s [1] <strong>on</strong><br />

carboxy-myoglobin (MbCO) have shown that <strong>the</strong> protein dynamics is highly inhibited in a lowwater<br />

trehalose host medium, <strong>the</strong> inhibiti<strong>on</strong> being markedly dependent <strong>on</strong> <strong>the</strong> amount <strong>of</strong> residual<br />

water. Fur<strong>the</strong>rmore, a mutual protein↔matrix structural and dynamic influence (coupling) has<br />

been recently observed in systems <strong>of</strong> very low hydrati<strong>on</strong>, which indicated that, at least in <strong>the</strong>se<br />

systems, <strong>the</strong> protein-solvent master and slave relati<strong>on</strong>ship does not apply [2]. To better characterize<br />

<strong>the</strong>se reciprocal effects, we performed an Infrared <strong>Spectroscopy</strong> (FTIR) study <strong>on</strong> <strong>the</strong> stretching<br />

band <strong>of</strong> <strong>the</strong> bound CO molecule (COB) and <strong>on</strong> <strong>the</strong> Water Associati<strong>on</strong> Band (WAB) in dry<br />

amorphous matrices <strong>of</strong> various sugars (trehalose, maltose, sucrose, lactose, raffinose), at different<br />

protein/sugar ratios. Such bands have already been successfully exploited for <strong>the</strong> simultaneous<br />

study <strong>of</strong> <strong>the</strong> <strong>the</strong>rmal evoluti<strong>on</strong> (20-300K) <strong>of</strong> <strong>the</strong> embedded biostructure and <strong>of</strong> <strong>the</strong> matrix; indeed,<br />

<strong>the</strong> COB is <strong>on</strong>e <strong>of</strong> most studied protein spectroscopical marker, and <strong>the</strong> WAB a very sensitive<br />

probe for <strong>the</strong> low-water matrix. As for <strong>the</strong> COB, in all <strong>the</strong> systems, <strong>the</strong> reducti<strong>on</strong> <strong>of</strong> sugar c<strong>on</strong>tent<br />

is reflected in <strong>the</strong> progressive increase <strong>of</strong> <strong>the</strong> A0 comp<strong>on</strong>ent, as expected, and <strong>the</strong> extent <strong>of</strong> such<br />

increase is peculiar <strong>of</strong> <strong>the</strong> each sugar. At variance, <strong>the</strong> WAB shows an unusual dependence <strong>on</strong> <strong>the</strong><br />

protein/sugar ratio, which we ascribe to changes in <strong>the</strong> strength <strong>of</strong> <strong>the</strong> hydrogen-b<strong>on</strong>d network,<br />

due to <strong>the</strong> different local envir<strong>on</strong>ments experienced by <strong>the</strong> water molecules. This behaviour allows<br />

to classify protein-sugar systems <strong>on</strong> <strong>the</strong> basis <strong>of</strong> <strong>the</strong> mutual protein-sugar interacti<strong>on</strong>s (or different<br />

protein-solvent coupling). We suggest a str<strong>on</strong>g coupling is needed for an efficient protecti<strong>on</strong> <strong>of</strong> <strong>the</strong><br />

protein.<br />

References<br />

[1] L. Cord<strong>on</strong>e, G. Cott<strong>on</strong>e, S. Giuffrida, G. Palazzo, G.Venturoli, C. Viappiani, Biochim. Biophys. Acta-Prot. Proteom.<br />

1749, 252-281 (2005) and references <strong>the</strong>rein.<br />

[2] S. Giuffrida, G. Cott<strong>on</strong>e, L. Cord<strong>on</strong>e, Biophys. J. 91, 968-980 (2006)<br />

PA 51


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Effect <strong>of</strong> cosolvents <strong>on</strong> preferential c<strong>on</strong>formati<strong>on</strong>s <strong>of</strong><br />

blocked dipeptides<br />

M. GLUŠIČ AND J. GRDADOLNIK<br />

Laboratory <strong>of</strong> Biomolecular Structure, Nati<strong>on</strong>al Institute <strong>of</strong> Chemistry,<br />

Hajdrihova 19, 1001 Ljubljana, Slovenia<br />

The elucidati<strong>on</strong> <strong>of</strong> <strong>the</strong> protein folding mechanism and related protein stability are unsolved<br />

problems <strong>of</strong> fundamental importance in molecular and particular in medicinal biochemistry.<br />

Protein misfolding and aggregati<strong>on</strong> are <strong>the</strong> cause <strong>of</strong> some mayor diseases as <strong>the</strong> acquired<br />

sp<strong>on</strong>giform encephalopathies, Alzheimer’s disease, Parkins<strong>on</strong>’s disease, cystic fibrosis, and many<br />

cancers. Protein stability is <strong>the</strong> result <strong>of</strong> a balance between intramolecular interacti<strong>on</strong>s <strong>of</strong> protein<br />

functi<strong>on</strong>al groups and <strong>the</strong>ir interacti<strong>on</strong>s with <strong>the</strong> solvent envir<strong>on</strong>ment. Adding cosolvents into <strong>the</strong><br />

protein soluti<strong>on</strong> can modify this balance. Because <strong>of</strong> that are cosolvents useful in investigating <strong>the</strong><br />

physical origins <strong>of</strong> protein folding and <strong>the</strong> interacti<strong>on</strong>s that stabilize protein structure. Therefore,<br />

we studied <strong>the</strong> influence <strong>of</strong> three cosolvents <strong>on</strong> <strong>the</strong> structure <strong>of</strong> <strong>the</strong> dipeptides in <strong>the</strong> form <strong>of</strong> Ac-X-<br />

NHMe, where X represents an amino acid. We applied cosolvents, which have different effects <strong>on</strong><br />

<strong>the</strong> protein structure and stability. Trimethylamine-N-oxide (TMANO) stabilizes <strong>the</strong><br />

c<strong>on</strong>formati<strong>on</strong>s <strong>of</strong> proteins, urea denatures proteins and trifluoroethanol (TFE) enhances helix<br />

formati<strong>on</strong> in protein parts that have an inherent helix-forming tendency. A recent NMR [1] and<br />

vibrati<strong>on</strong>al studies [2] <strong>of</strong> dipeptides have shown that dipeptides possess c<strong>on</strong>formati<strong>on</strong>al<br />

preferences for <strong>the</strong> dihedral angles φ and ψ. To study <strong>the</strong> influence <strong>of</strong> TMANO, urea and TFE <strong>on</strong><br />

<strong>the</strong> dipeptide c<strong>on</strong>formati<strong>on</strong> we analysed amide III regi<strong>on</strong> in Raman and infrared spectra <strong>of</strong> pure<br />

dipeptides in water and dipeptides in water with added cosolvent. These measurements were<br />

compared with <strong>the</strong> measured 3JHNα NMR coupling c<strong>on</strong>stants. We found three different types <strong>of</strong><br />

c<strong>on</strong>formati<strong>on</strong>al populati<strong>on</strong>s (PII, αR and β) in all examined dipeptides. The occupati<strong>on</strong> <strong>of</strong> <strong>the</strong>se<br />

three c<strong>on</strong>formati<strong>on</strong>al states depends <strong>on</strong> <strong>the</strong> type <strong>of</strong> side chain. The PII is <strong>the</strong> prevailing<br />

c<strong>on</strong>formati<strong>on</strong> in alanine and leucine dipeptide; however thre<strong>on</strong>ine, isoleucine and valine<br />

dipeptides adopt predominately <strong>the</strong> β c<strong>on</strong>formati<strong>on</strong>. The least populated c<strong>on</strong>formati<strong>on</strong> <strong>of</strong><br />

dipeptides in aqueous soluti<strong>on</strong> is αR c<strong>on</strong>formati<strong>on</strong>. The <strong>on</strong>ly excepti<strong>on</strong> is glycine dipeptide.<br />

Surprisingly, added cosolvents do not change <strong>the</strong> distributi<strong>on</strong> <strong>of</strong> preferential c<strong>on</strong>formati<strong>on</strong>s in<br />

dipeptides. The expected interacti<strong>on</strong>s between <strong>the</strong> cosolvents and dipeptides were analyzed by<br />

difference infrared spectroscopy, analyses <strong>of</strong> prot<strong>on</strong> chemical shifts and measuring <strong>of</strong> <strong>the</strong><br />

halfwidths <strong>of</strong> prot<strong>on</strong> signals.<br />

References<br />

[1] F. Avbelj, S. Golič Grdadolnik, J. Grdadolnik, R. L. Baldwin, Proc. Natl. Acad. Sci. USA 103, 1272-1277 (2006).<br />

[2] J. Grdadolnik, S. Golič Grdadolnik, F. Avbelj, J. Phys. Chem. B 112, 2712-2718 (2008).<br />

PA 52


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

YY1 is an intrinsically unstructured protein<br />

A. GÓRECKI, P. BONAREK, F. GOŁĘBIOWSKI, M. DZIEDZICKA-WASYLEWSKA<br />

Faculty <strong>of</strong> Biochemistry, Biophysics and Biotechnology, Jagiell<strong>on</strong>ian<br />

University, Gr<strong>on</strong>ostajowa 7 str., 30-387 Krakow, Poland<br />

Human transcripti<strong>on</strong> factor Yin Yang 1 (YY1) is ubiquitously expressed (and c<strong>on</strong>served am<strong>on</strong>g<br />

mammals) C2H2-type zinc finger protein, which regulates various promoters including viral and<br />

proto<strong>on</strong>cogenic genes. Unusually, it can act ei<strong>the</strong>r as repressor, activator or initiator <strong>of</strong><br />

transcripti<strong>on</strong> that probably depends <strong>on</strong> specific DNA sequence or cellular c<strong>on</strong>text. The<br />

experiments performed so far do not allow to elucidate <strong>the</strong> mechanism <strong>of</strong> YY1 acti<strong>on</strong> related to<br />

particular functi<strong>on</strong>. It is generally accepted that understanding <strong>of</strong> protein functi<strong>on</strong> str<strong>on</strong>gly<br />

depends <strong>on</strong> determinati<strong>on</strong> <strong>of</strong> protein structure; <strong>the</strong>refore <strong>the</strong> lack <strong>of</strong> structural informati<strong>on</strong><br />

c<strong>on</strong>cerning YY1 is <strong>the</strong> main handicap. However, using various complementary computati<strong>on</strong>al<br />

approaches, we predict that YY1 do not posses <strong>the</strong> features typical <strong>of</strong> ordered protein and it<br />

bel<strong>on</strong>gs to <strong>the</strong> class <strong>of</strong> intrinsically unfolded proteins (IUPs). Both, <strong>the</strong> omnipotence <strong>of</strong> YY1 and<br />

lack <strong>of</strong> reports <strong>on</strong> structural studies c<strong>on</strong>firm our suppositi<strong>on</strong>. Using different biochemical and<br />

biophysical approaches, we show that YY1 is indeed unstructured in soluti<strong>on</strong>. Spectroscopic<br />

studies, using am<strong>on</strong>g o<strong>the</strong>rs circular dichroism, fluorescence and dynamic light scattering<br />

performed for E. coli expressed YY1 will be presented.<br />

PA 53


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Distributi<strong>on</strong> <strong>of</strong> c<strong>on</strong>formati<strong>on</strong>s sampled by <strong>the</strong> central<br />

amino acid residue in GXG peptides inferred from amide<br />

I’ band pr<strong>of</strong>iles and NMR scalar coupling c<strong>on</strong>stants<br />

A. HAGARMAN 1 , T. MEASEY 1 , D. MATTHIEU 2 , H. SCHWALBE 2 , R. SCHWEITZER-STENNER 1<br />

1. Department <strong>of</strong> Chemistry, Drexel University, 3141 Chestnut St. Philadelphia PA 19104<br />

2. Institut für Organische Chemie und Chemische Biologie, Johann Wolfgang Goe<strong>the</strong><br />

Universität, 60439 Frankfurt, Germany<br />

The c<strong>on</strong>formati<strong>on</strong>al propensity <strong>of</strong> individual amino acids in <strong>the</strong> unfolded state <strong>of</strong> peptides and<br />

proteins is <strong>the</strong> subject <strong>of</strong> <strong>on</strong>going deliberati<strong>on</strong>. Recent research has mostly focused <strong>on</strong> alanine,<br />

owing to its abundance in proteins and its relevance for <strong>the</strong> understanding <strong>of</strong> helix coil<br />

transiti<strong>on</strong>s. In <strong>the</strong> current study, we have analyzed <strong>the</strong> amide I’ band pr<strong>of</strong>iles <strong>of</strong> <strong>the</strong> IR, isotropic<br />

and anisotropic Raman, and VCD pr<strong>of</strong>iles <strong>of</strong> a series <strong>of</strong> GXG peptides, X representing a subset <strong>of</strong><br />

<strong>the</strong> naturally occurring amino acids, in terms <strong>of</strong> a c<strong>on</strong>formati<strong>on</strong>al model which explicitly c<strong>on</strong>siders<br />

an ensemble <strong>of</strong> possible c<strong>on</strong>formati<strong>on</strong>s ra<strong>the</strong>r than representative structures. [1] The distributi<strong>on</strong><br />

functi<strong>on</strong> is expressed as a superpositi<strong>on</strong> <strong>of</strong> two-dimensi<strong>on</strong>al Gaussian functi<strong>on</strong>s associated with<br />

polyproline II (PPII), β-strand, helix and turn like c<strong>on</strong>formati<strong>on</strong>s. We utilized <strong>the</strong>se distributi<strong>on</strong>s to<br />

simulate <strong>the</strong> amide I’ band pr<strong>of</strong>iles as well as a set <strong>of</strong> J‐coupling c<strong>on</strong>stants obtained from twodimensi<strong>on</strong>al<br />

NMR experiments. [2] The results <strong>of</strong> our analysis reveal a PPII fracti<strong>on</strong> <strong>of</strong> 0.79 for <strong>the</strong><br />

central alanine residue in GAG, which str<strong>on</strong>gly corroborates <strong>the</strong> noti<strong>on</strong> that alanine has a very<br />

high PPII propensity. We performed a similar analysis for X=E, F, S, V, K, L and M. Our results<br />

indicate that S, E, M, K and L exhibit an intermediate PPII propensity (0.46-0.64), whereas F and V<br />

exhibit a less pr<strong>on</strong>ounced PPII propensity (


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Identificati<strong>on</strong> <strong>of</strong> binding interacti<strong>on</strong>s between<br />

myeloperoxidase and its antibody using SERS<br />

D.R. HANSBERRY 1 , N.S. BABU 1 , C. PATEL 1 , AND E.S. PAPAZOGLOU 1<br />

1. Dept. <strong>of</strong> Biomedical Engineering, Drexel University, 3141 Chestnut<br />

Street, Philadelphia 19104, USA<br />

Surface Enhanced Raman <strong>Spectroscopy</strong> (SERS) is a widely used spectroscopic method that can<br />

significantly increase <strong>the</strong> sensitivity <strong>of</strong> Raman spectroscopy and has dem<strong>on</strong>strated significant<br />

benefit in <strong>the</strong> identificati<strong>on</strong> <strong>of</strong> biological molecules. We report <strong>the</strong> use <strong>of</strong> SERS to differentiate<br />

native myeloperoxidase (MPO) and a MPO polycl<strong>on</strong>al antibody (pAb) from <strong>the</strong> bound<br />

immunocomplex <strong>of</strong> MPO/pAb. The SERS signal was enabled by gold nanoparticles attached to<br />

MPO, pAb and <strong>the</strong>ir immunocomplex using an excitati<strong>on</strong> wavelength <strong>of</strong> 785 nm. The SERS<br />

spectrum <strong>of</strong> MPO resulted in a signal with str<strong>on</strong>g peaks in <strong>the</strong> 1356-1379cm -1 and 1548-1615cm -1<br />

regi<strong>on</strong>s, which is in agreement with previous literature <strong>on</strong> <strong>the</strong> Raman spectrum <strong>of</strong> MPO.<br />

Comparative SERS spectrum analysis <strong>of</strong> MPO, pAb, and <strong>the</strong>ir immunocomplex provides insight to<br />

<strong>the</strong> significant peak shifts and intensity variati<strong>on</strong>s brought <strong>on</strong> by <strong>the</strong> c<strong>on</strong>formati<strong>on</strong>al changes due<br />

to <strong>the</strong> formati<strong>on</strong> <strong>of</strong> <strong>the</strong>ir immunocomplex. Several key areas have been identified and indicate<br />

specific amino acids being shielded from undergoing res<strong>on</strong>ance while new amino acids residues<br />

are made visible in <strong>the</strong> immunocomplex SERS spectrum and may be a result <strong>of</strong> c<strong>on</strong>formati<strong>on</strong>al<br />

binding. Our work dem<strong>on</strong>strates <strong>the</strong> capability <strong>of</strong> SERS to identify binding events and<br />

differentiate an immunocomplex from unbound compounds with direct applicati<strong>on</strong>s in<br />

biosensing.<br />

PA 55


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Development <strong>of</strong> a protein infrared spectral databank for<br />

proteomics research<br />

P.I. HARIS & J.A. HERING<br />

Faculty <strong>of</strong> Health & Life Sciences, De M<strong>on</strong>tfort University, Leicester, LE1<br />

9BH, United Kingdom, E-Mail: pharis@dmu.ac.uk<br />

The advent <strong>of</strong> Fourier transform infrared (FTIR) spectrometers has led to a surge in <strong>the</strong> applicati<strong>on</strong><br />

<strong>of</strong> infrared spectroscopy for biological studies especially proteins. FTIR spectroscopy can be used<br />

to analyse protein sec<strong>on</strong>dary structure in aqueous soluti<strong>on</strong> as well in <strong>the</strong> solid state. Due to <strong>the</strong><br />

rapid speed <strong>of</strong> spectral recording and subsequent interpretati<strong>on</strong> <strong>of</strong> <strong>the</strong> data, infrared spectroscopy<br />

is potentially a valuable tool for proteomics research [1-2]. The availability <strong>of</strong> protein structural<br />

data that can be readily accessed by <strong>the</strong> scientific community is an important factor in advancing<br />

scientific research and is also helpful for publicising a particular technique. Thus for example, <strong>the</strong><br />

Protein Data Bank (PDB) has been a powerful publicity tool for X-ray crystallography and NMR<br />

spectroscopy. Currently, <strong>the</strong>re are over 50,000 protein structures deposited in <strong>the</strong> PDB. Although<br />

<strong>the</strong> databank became functi<strong>on</strong>al in 1972, <strong>on</strong>ly 13 protein structures were deposited in 1976. In<br />

c<strong>on</strong>trast, <strong>the</strong> number <strong>of</strong> structures deposited in 2008 is over 6,000. The growth <strong>of</strong> this databank<br />

has been remarkable. Unfortunately, <strong>the</strong>re is no equivalent databank <strong>of</strong> protein infrared spectra<br />

c<strong>on</strong>taining as few as 100 proteins. Over <strong>the</strong> last few years we have been engaged in c<strong>on</strong>tacting<br />

various infrared spectroscopists to send us <strong>the</strong>ir infrared spectra for inclusi<strong>on</strong> in our PISD (Protein<br />

Infrared Spectra Databank) but this has met with some success. However, we are c<strong>on</strong>tinuing our<br />

work in this area and are engaged in producing a user friendly databank that can be easily<br />

accessed by scientists who can upload and/or download spectral data with relative ease.<br />

Fur<strong>the</strong>rmore, <strong>the</strong> databank will be hosted in a web-site that will provide an opportunity for<br />

carrying out analysis <strong>on</strong> <strong>the</strong> spectral data especially for quantificati<strong>on</strong> <strong>of</strong> protein sec<strong>on</strong>dary<br />

structure. The site will provide an opportunity to provide access to diverse algorithms for<br />

quantificati<strong>on</strong> <strong>of</strong> protein structure and will include, am<strong>on</strong>gst o<strong>the</strong>rs, a neural network based<br />

algorithm developed by us [2]. Results <strong>of</strong> our work <strong>on</strong> <strong>the</strong> development <strong>of</strong> <strong>the</strong> databank and <strong>the</strong><br />

methods for quantificati<strong>on</strong> <strong>of</strong> protein structure from infrared spectral data will be presented.<br />

References<br />

[1]. J.A. Hering, P.R. Innocent, P.I. Haris, Proteomics 4, 2310–2319 (2004)<br />

[2]. J.A. Hering, P.R., Innocent, P.I. Haris, Proteomics, 2, 839–849 (2002)<br />

PA 56


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Rapid identificati<strong>on</strong> <strong>of</strong> apoptotic T-cells using infrared<br />

microscopy<br />

G. HASTINGS 1 , R. WANG 1 , P. FUCHS 2 , Y. HSU 3 AND J. HILLIARD 2<br />

1. Dept. <strong>of</strong> Physics and Astr<strong>on</strong>omy, Georgia State University, Atlanta<br />

GA 30303 USA<br />

2. Dept. <strong>of</strong> Biology, Georgia State University, Atlanta GA 30303 USA<br />

3. Dept. <strong>of</strong> Ma<strong>the</strong>matics and Statistics, Georgia State University, Atlanta<br />

GA 30303 USA<br />

Many anti-leukemic <strong>the</strong>rapies are aimed at inducing or restoring apoptosis in malignant B or T<br />

cells. With knowledge <strong>of</strong> apoptosis induced spectral biomarkers we will be able to use<br />

spectroscopic techniques to assess how malignant cells resp<strong>on</strong>d (via apoptosis) to some <strong>of</strong> <strong>the</strong>se<br />

new <strong>the</strong>rapies. With that goal in mind we have used FTIR transflecti<strong>on</strong> microscopy to study<br />

apoptosis inducti<strong>on</strong> in acute lymphoblastic leukemia T-cells (T-ALL cells). Apoptosis was induced<br />

in T-ALL cells in three ways: 1) Apoptosis was induced biochemically by incubating cells in <strong>the</strong><br />

presence <strong>of</strong> <strong>the</strong> anti-Fas antibody. Fas is a member <strong>of</strong> <strong>the</strong> TNF receptor super-family, and its<br />

activati<strong>on</strong> results in <strong>the</strong> activati<strong>on</strong> <strong>of</strong> caspase-8, which results in a caspase cascade that leads to<br />

apoptosis. 2) Apoptosis was induced physically by irradiati<strong>on</strong> <strong>of</strong> <strong>the</strong> cells with UVC light. 3)<br />

Apoptosis was induced by hyper-osmotic shock by incubating cells in 1 M sorbitol. Following<br />

apoptosis inducti<strong>on</strong> cells were incubated for an additi<strong>on</strong>al 3 hours at 37 oC. Inducti<strong>on</strong> <strong>of</strong> apoptosis<br />

in cells gave rise to significant IR spectral changes. In additi<strong>on</strong>, <strong>the</strong> spectral changes observed for<br />

anti-FAs and sorbitol induced apoptosis were different from that induced by UVC irradiati<strong>on</strong>. In<br />

particular, significant differences were found between spectra <strong>of</strong> normal and apoptotic cells in <strong>the</strong><br />

1100-1000 cm -1 spectral regi<strong>on</strong>, with a band at 1086 cm -1 being significantly decreased for cells<br />

where apoptosis was induced using anti-Fas and sorbitol. We also used partial least squares<br />

multivariate regressi<strong>on</strong> methods and ROC curve analysis to establish with what specificity and<br />

sensitivity we could spectrally discriminate between apoptotic and n<strong>on</strong>-apoptotic T-ALL cells.<br />

PA 57


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Does <strong>the</strong> disulfide bridge have an effect <strong>on</strong> <strong>the</strong><br />

c<strong>on</strong>formati<strong>on</strong>al properties <strong>of</strong> <strong>the</strong> peptide horm<strong>on</strong>e<br />

somatostatin-14?<br />

B. HERNÁNDEZ 1 , C. CARELLI 1 , Y. M. COÏC 2 AND M. GHOMI 1<br />

1. Groupe de Biophysique Moléculaire, UFR SMBH, Université Paris 13,<br />

74 rue Marcel Cachin, 93017 Bobigny cedex France<br />

2. Unité de Chimie des Biomolécules, URA 2128, Institut Pasteur, 28 rue<br />

du Docteur Roux, 75724 Paris cedex 15, France<br />

To emphasize <strong>the</strong> role played by <strong>the</strong> S-S bridge in <strong>the</strong> structural features <strong>of</strong> somatostatin-14 (SST-<br />

14) [1], we have applied our previously described experimental protocol to this peptide horm<strong>on</strong>e<br />

[2]. Newly recorded CD and Raman spectra <strong>of</strong> this cyclic peptide and its open analogue obtained<br />

by Cys→Ser substituti<strong>on</strong>, are presented. CD spectra <strong>of</strong> both peptides recorded in aqueous<br />

soluti<strong>on</strong>s in <strong>the</strong> 100-500 µM c<strong>on</strong>centrati<strong>on</strong> range are strikingly similar. They reveal principally that<br />

random c<strong>on</strong>formers c<strong>on</strong>stitute <strong>the</strong> major populati<strong>on</strong> in both peptides. C<strong>on</strong>sequently <strong>the</strong> S-S bridge<br />

has no structuring effect at submilimolar c<strong>on</strong>centrati<strong>on</strong>s. In methanol, <strong>the</strong> CD spectrum <strong>of</strong><br />

somatostatin-14 keeps globally <strong>the</strong> same spectral shape as that observed in water, whereas its open<br />

analogue presents a major populati<strong>on</strong> <strong>of</strong> helical c<strong>on</strong>formers. Raman spectra recorded as a functi<strong>on</strong><br />

<strong>of</strong> peptide c<strong>on</strong>centrati<strong>on</strong> (5-20 mM) and also in <strong>the</strong> presence <strong>of</strong> 150 mM NaCl, provide valuable<br />

c<strong>on</strong>formati<strong>on</strong>al informati<strong>on</strong>. All Raman spectra present a mixture <strong>of</strong> random and β-hairpin<br />

structures for both cyclic and open peptides. More importantly, <strong>the</strong> presence or <strong>the</strong> absence <strong>of</strong> <strong>the</strong><br />

disulfide bridge, do not seem to influence c<strong>on</strong>siderably different populati<strong>on</strong>s <strong>of</strong> sec<strong>on</strong>dary<br />

structures within this range <strong>of</strong> c<strong>on</strong>centrati<strong>on</strong>. However, Raman spectra <strong>of</strong> SST-14 reveal a peptide<br />

c<strong>on</strong>centrati<strong>on</strong> effect <strong>on</strong> <strong>the</strong> flexibility <strong>of</strong> <strong>the</strong> S-S linkage, and c<strong>on</strong>sequently <strong>on</strong> that <strong>of</strong> its cyclic part.<br />

In c<strong>on</strong>clusi<strong>on</strong>, although <strong>the</strong> disulfide linkage does not seem to markedly influence <strong>the</strong> SST-14<br />

c<strong>on</strong>formati<strong>on</strong>al features in aqueous soluti<strong>on</strong>s, its presence seems to be necessary to assure <strong>the</strong><br />

flexibility <strong>of</strong> <strong>the</strong> cyclic part <strong>of</strong> this peptide, and to maintain its closed structure in lower dielectric<br />

c<strong>on</strong>stant envir<strong>on</strong>ments.<br />

References<br />

[1] M. Pawlikowski, G. Meleń-Mucha, Curr. Op. Pharmacol. 4, 608-613 (2004).<br />

[2] G.Guiffo Soh, B. Hernández, Y.M.Coïc, F.Z. Boukhalfa-Heniche, M. Ghomi, J. Phys. Chem. B 111, 12563-12572<br />

(2007).<br />

PA 58


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Spectroscopic investigati<strong>on</strong>s <strong>of</strong> n<strong>on</strong>linear optical<br />

material Benzaldehyde phenylhydraz<strong>on</strong>e<br />

I. HUBERT JOE AND C. RAVIKUMAR<br />

1 Centre for Molecular and Biophysics Research, Department <strong>of</strong> Physics,<br />

Mar Ivanios College, Thiruvananthapuram – 695 015, Kerala, India<br />

Infrared and Raman spectra in c<strong>on</strong>juncti<strong>on</strong> with quantum chemical computati<strong>on</strong>s, lead to precise<br />

informati<strong>on</strong> about <strong>the</strong> structure <strong>of</strong> molecules. In <strong>the</strong> present investigati<strong>on</strong>, <strong>the</strong> detailed spectral<br />

analysis <strong>of</strong> <strong>the</strong> molecule in <strong>the</strong> crystalline state is taken up to understand <strong>the</strong> correlati<strong>on</strong> <strong>of</strong> <strong>the</strong><br />

NLO activity, charge transfer interacti<strong>on</strong>s <strong>of</strong> <strong>the</strong> molecule supported by using <strong>the</strong> scaled quantum<br />

mechanical (SQM) force field technique based <strong>on</strong> Hartree Fock (HF) level with standard 6-31G*<br />

basis set. Single crystals <strong>of</strong> benzaldehyde phenylhydraz<strong>on</strong>e (BPH) were prepared in acet<strong>on</strong>e<br />

soluti<strong>on</strong> by slow evaporati<strong>on</strong> technique. The IR spectrum <strong>of</strong> BPH was recorded using Perkin Elmer<br />

FTIR spectrometer in <strong>the</strong> regi<strong>on</strong> 400 -4000 cm -1 with <strong>the</strong> samples in KBr pellets .The resoluti<strong>on</strong> <strong>of</strong> IR<br />

spectrometer was 4 cm -1. The NIR-FT Raman spectrum was recorded using Bruker RFS 100 FT<br />

Raman spectrometer in <strong>the</strong> regi<strong>on</strong> 3500-100 cm -1. The quantum chemical computati<strong>on</strong>s <strong>of</strong> BPH has<br />

been performed using Gaussian '98 program package [1] at HF/6-31G* basis set. Normal<br />

coordinate analysis has been performed to obtain full descripti<strong>on</strong> <strong>of</strong> <strong>the</strong> molecular moti<strong>on</strong><br />

pertaining to <strong>the</strong> normal modes using <strong>the</strong> MOLVIB program versi<strong>on</strong> 7.0 written by Sundius [2].<br />

The optimized molecular structure is shown in Fig. 1. From <strong>the</strong> optimized geometry, <strong>the</strong> two<br />

phenyl rings are essentially planar with <strong>the</strong> dihedral angles C2-C3-C9-N14 (-179.318°) and N14-N15-<br />

C17-C18 (178.012°). The calculated first hyperpolarizability <strong>of</strong> BPH is 3.011x10 -30 e.s.u which is 16<br />

times that <strong>of</strong> urea. The normal mode 8a has been observed in IR at 1606 and in Raman at 1604 cm -1.<br />

The str<strong>on</strong>g bands observed at 1584 in IR and 1589 cm -1 in Raman are assigned to 8b mode. The<br />

enhanced intensity clearly dem<strong>on</strong>strates <strong>the</strong> higher degree <strong>of</strong> <strong>the</strong> c<strong>on</strong>jugati<strong>on</strong> between two rings.<br />

The str<strong>on</strong>g bands observed in IR at 1497 cm -1 have c<strong>on</strong>tributi<strong>on</strong>s <strong>of</strong> <strong>the</strong> 19a mode. The 19b mode is<br />

observed as str<strong>on</strong>g band at 1454 cm -1 in <strong>the</strong> IR spectrum and <strong>the</strong> counterpart in Raman spectrum<br />

appear as a medium band at 1450 cm -1. The simultaneous occurrence <strong>of</strong> 8a and 19b provide<br />

evidences for <strong>the</strong> charge transfer interacti<strong>on</strong>s.<br />

References<br />

Fig. 1 – Optimized molecular structure <strong>of</strong> BPH.<br />

[1] M. J. Frisch, et. al GAUSSIAN 98, Revisi<strong>on</strong> A9, Gaussian, Inc., Pittsburgh, PA, (1998).<br />

[2] T. Sundius, J. Mol. Struct. 218, 321 (1990).<br />

PA 59


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

The photophysics and –chemistry in eumelanin<br />

building block 5,6-dihydroxyindole-2-carboxylic acid<br />

A. HUIJSER 1 , A. PEZZELLA 2 , M. D’ISCHIA 2 , L. PANZELLA 2 , A. NAPOLITANO 2 , V. SUNDSTRÖM 1<br />

1. Dept. <strong>of</strong> Chemical Physics, Lund University, Box 124, S 22100 Lund,<br />

Sweden<br />

2. Dept. <strong>of</strong> Organic Chemistry and Biochemistry, University <strong>of</strong> Naples<br />

Frederico II, Naples, Italy<br />

The UV-dissipative mechanisms in eumelanin building block 5,6-dihydroxyindole-2-carboxylic<br />

acid (DHICA) in aqueous envir<strong>on</strong>ment at various degrees <strong>of</strong> prot<strong>on</strong>ati<strong>on</strong> have been studied using<br />

ultrafast (sub-ps) time-resolved fluorescence spectroscopy. In additi<strong>on</strong>, <strong>the</strong> effect <strong>of</strong> deuterati<strong>on</strong> <strong>on</strong><br />

<strong>the</strong> decay kinetics has been investigated. The excited fully prot<strong>on</strong>ated molecule is c<strong>on</strong>cluded to<br />

decay by sub-ps intramolecular prot<strong>on</strong> transfer, via <strong>the</strong> existing H-b<strong>on</strong>d, from <strong>the</strong> carboxylic acid<br />

group towards <strong>the</strong> indole nitrogen, followed by (n<strong>on</strong>)radiative decay to <strong>the</strong> ground state. The<br />

m<strong>on</strong>o-ani<strong>on</strong> with <strong>the</strong> carboxylic group deprot<strong>on</strong>ated dissipates absorbed energy ei<strong>the</strong>r via a)<br />

(n<strong>on</strong>)radiative decay to <strong>the</strong> ground state or b) ns intramolecular prot<strong>on</strong> transfer from <strong>the</strong> 5hydroxyl<br />

group towards <strong>the</strong> carboxylic group, followed by (n<strong>on</strong>)radiative decay to <strong>the</strong> ground<br />

state. Optical excitati<strong>on</strong> <strong>of</strong> <strong>the</strong> third ground state geometry, <strong>the</strong> m<strong>on</strong>o-ani<strong>on</strong> with <strong>the</strong> 6-hydroxyl<br />

group deprot<strong>on</strong>ated, leads to sub-ps intramolecular prot<strong>on</strong> transfer from <strong>the</strong> 5-hydroxyl towards<br />

<strong>the</strong> deprot<strong>on</strong>ated 6-hydroxyl group, as also deduced from quantum-chemical calculati<strong>on</strong>s before<br />

[1], followed by (n<strong>on</strong>)radiative decay to <strong>the</strong> ground state. These findings show that excited state<br />

intramolecular prot<strong>on</strong> transfer, in combinati<strong>on</strong> with radiative and n<strong>on</strong>radiative decay, are<br />

comm<strong>on</strong>ly occurring UV-dissipative mechanisms in DHICA. These mechanisms might be <strong>the</strong> basis<br />

<strong>of</strong> a built-in photoprotective functi<strong>on</strong>. This knowledge is <strong>of</strong> prime importance for future studies <strong>on</strong><br />

larger sub-units <strong>of</strong> <strong>the</strong> eumelanin pigment. [2]<br />

References<br />

Fig. 1 – Chemical structure and labeling <strong>of</strong> C atoms <strong>of</strong> 5,6dihydroxyindole-2-carboxylic<br />

acid (DHICA).<br />

[1] S. Olsen, J. Riesz, I. Mahadevan, A. Coutts, J.P. Bothma, B.J. Powell, R.H. McKenzie, S.C. Smith, P. Meredith,<br />

Journal <strong>of</strong> <strong>the</strong> American Chemical Society 129, 6672-6673 (2007).<br />

[2] A. Huijser, A. Pezzella, M. d’Ischia, L. Panzella, A. Napolitano, V. Sundström, The photophysics and –chemistry <strong>of</strong><br />

eumelanin building block 5,6-dihydroxyindole-2-carboxylic acid, in preparati<strong>on</strong>.<br />

PA 60


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Infrared spectroscopic investigati<strong>on</strong>s elucidating <strong>the</strong><br />

origin <strong>of</strong> <strong>the</strong> CO ligand at <strong>the</strong> active site <strong>of</strong> [NiFe]hydrogenase<br />

PHILIPP HUMMEL 1 , INGMAR BÜRSTEL 2 , OLVER LENZ², NATTAWADEE WISITRUANGSAKUL¹,<br />

BÄRBEL FRIEDRICH², PETER HILDEBRANDT 1 AND INGO ZEBGER¹<br />

1. Max-Volmer-Laboratory for Biophysical Chemistry, TU Berlin, Straße<br />

des 17. Juni 135, 10623 Berlin, Germany<br />

2. Institute <strong>of</strong> Biology / Microbiology, HU Berlin, Chausseestr. 117,<br />

10115 Berlin, Germany<br />

Hydrogenases catalyze <strong>the</strong> cleavage and producti<strong>on</strong> <strong>of</strong> H2 in various microorganisms [1]. One<br />

important subclass <strong>of</strong> hydrogenase possesses an active site c<strong>on</strong>sisting <strong>of</strong> <strong>on</strong>e ir<strong>on</strong> and <strong>on</strong>e nickel<br />

atom coordinated by four cystein residues. In <strong>the</strong> catalytic process, <strong>the</strong> oxidati<strong>on</strong> state <strong>of</strong> <strong>the</strong> nickel<br />

is changed, while <strong>the</strong> ir<strong>on</strong> remains in a low-spin Fe(II) state. The persistant Fe(II) state is<br />

maintained by ligati<strong>on</strong> <strong>of</strong> three diatomic ligands to <strong>the</strong> ir<strong>on</strong>, namely two cyanides and <strong>on</strong>e carb<strong>on</strong><br />

m<strong>on</strong>oxide. C<strong>on</strong>sidering <strong>the</strong> toxicity <strong>of</strong> <strong>the</strong>se ligands, <strong>the</strong> assembly <strong>of</strong> <strong>the</strong> CO and CN ligands is<br />

c<strong>on</strong>ducted via a sophisticated maturati<strong>on</strong> machinery composed <strong>of</strong> at least six auxiliary proteins [2].<br />

FTIR spectroscopy represents a powerful tool for <strong>the</strong> investigati<strong>on</strong> <strong>of</strong> hydrogenases, as <strong>the</strong> spectral<br />

regi<strong>on</strong> <strong>of</strong> <strong>the</strong> vibrati<strong>on</strong>s <strong>of</strong> <strong>the</strong> CO and CN - ligands (about 2150 to 1850 cm -¹) is not overlapped by<br />

any protein or water absorpti<strong>on</strong> bands. Fur<strong>the</strong>rmore, substrate-labeling experiments allow <strong>the</strong><br />

selective assignment <strong>of</strong> <strong>the</strong> two ligand types <strong>on</strong> <strong>the</strong> basis <strong>of</strong> characteristic isotope-shifts <strong>of</strong> <strong>the</strong><br />

respective vibrati<strong>on</strong>s [3-4]. The CN - ligands have been shown to be derived from carbamoyl<br />

phosphate, while <strong>the</strong> CO ligand originates from a different source, which still remains unclear [3-<br />

5]. In order to reveal <strong>the</strong> origin <strong>of</strong> CO, ¹³C labeling experiments were performed using FTIR<br />

spectroscopy <strong>on</strong> <strong>the</strong> regulatory [NiFe]-hydrogenase <strong>of</strong> Ralst<strong>on</strong>ia eutropha as a model system. It was<br />

shown that externally added CO is incorporated into <strong>the</strong> active site if provided in ample amounts.<br />

Ambient c<strong>on</strong>centrati<strong>on</strong>s <strong>of</strong> CO, however, are not sufficient to be incorporated into <strong>the</strong> active site <strong>of</strong><br />

hydrogenase. We, <strong>the</strong>refore, c<strong>on</strong>clude that <strong>the</strong> CO ligand must be derived from <strong>the</strong> cellular<br />

metabolism.<br />

References<br />

[1] Cammack, Frey, and Robs<strong>on</strong> (2001) Hydrogen As a Fuel: Learning from Nature, Taylor and Francis Ltd., L<strong>on</strong>d<strong>on</strong><br />

[2] Böck et al., Adv. Microb. Physiol. 51, 1-71 (2006).<br />

[3] Reissmann et al., Science 299, 1067-1070 (2003).<br />

[4] Lenz et al., FEBS Lett. 58, 3322-3326 (2007).<br />

[5] Forzi et al., FEBS Lett. 58, 3331-3337 (2007).<br />

PA 61


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Abnormal shifts in Raman spectra <strong>of</strong> deuterated<br />

cytidine and 6-azacytidine<br />

S. GARASEVYCH, M. IAKHNENKO, O. SLOBODYANYUK AND I. VASKIVSKYI<br />

Department <strong>of</strong> Physics, Taras Shevchenko Nati<strong>on</strong>al University <strong>of</strong> Kyiv,<br />

64, Volodymyrs’ka St., 01033 Kyiv, Ukraine<br />

Raman study <strong>of</strong> cytidine, its structural analogue an anomalous nucleoside 6-azacytidine (6-azaC)<br />

and cytosine both in crystalline state and in water and DMSO soluti<strong>on</strong>s was performed. It was<br />

revealed that some peaks in spectra <strong>of</strong> 6-azaC dissolved in D2O are shifted to high frequencies in<br />

c<strong>on</strong>trast to <strong>the</strong> <strong>on</strong>es in H2O soluti<strong>on</strong>. In <strong>the</strong> table below wavenumber positi<strong>on</strong>s ν and shifts ∆ν for<br />

<strong>the</strong> most two prominent lines in Raman spectra <strong>of</strong> cytidine, 6-azaC and cytosine are listed as<br />

example <strong>of</strong> normal and abnormal Raman shifts. Such abnormal Raman shifts apparently are<br />

caused by substituti<strong>on</strong> <strong>of</strong> H with D atoms in solvent and/or nucleoside molecule. To discriminate<br />

effect <strong>of</strong> deuterated solvent and deuterati<strong>on</strong> effect <strong>of</strong> <strong>the</strong> nucleoside molecule itself we have<br />

accomplished recrystallizati<strong>on</strong> <strong>of</strong> 6-azaC and cytidine from <strong>the</strong>ir H2O and D2O soluti<strong>on</strong>s. It occurs<br />

that abnormal Raman isotopic shift in 6-azaC crystals recrystallized from D2O soluti<strong>on</strong> takes place<br />

too. It proves noticeable deuterati<strong>on</strong> <strong>of</strong> <strong>the</strong> nucleoside molecule itself. Similar results were<br />

obtained for recrystallized cytidine. An increasing <strong>of</strong> mode frequency under increasing <strong>of</strong> reduced<br />

mass due deuterati<strong>on</strong> may be explained by advance streng<strong>the</strong>ning <strong>of</strong> mode force c<strong>on</strong>stants. The<br />

last may be caused by substituti<strong>on</strong> <strong>of</strong> intramolecular H-b<strong>on</strong>ds with D-b<strong>on</strong>ds. This assumpti<strong>on</strong> is<br />

c<strong>on</strong>firmed in part by calculati<strong>on</strong>s <strong>of</strong> Raman spectra performed both for free molecules <strong>of</strong> studied<br />

compounds and <strong>the</strong>ir water soluti<strong>on</strong>s using Gaussian 03 package. Both normal and abnormal<br />

shifts close to <strong>the</strong> experimentally observed were obtained in <strong>the</strong> calculated spectra <strong>of</strong> 6-azaC and<br />

cytidine. Additi<strong>on</strong>al arguments were derived from experiments and calculati<strong>on</strong>s for normal and<br />

fully deuterated benzophen<strong>on</strong>e that have no H/D-b<strong>on</strong>ds and for normal and fully deuterated 2,2´dihydroxybenzophen<strong>on</strong>e<br />

that c<strong>on</strong>tain two adjacent OH/OD groups. We believe this is <strong>the</strong> first<br />

observati<strong>on</strong> <strong>of</strong> abnormal Raman frequency shifts <strong>of</strong> intramolecular modes under deuterati<strong>on</strong>. It<br />

has essentially different origin than recently reported blue-shift due to improper H-b<strong>on</strong>ding CH Y<br />

interacti<strong>on</strong>s [1]. This work was supported by <strong>the</strong> Fundamental Researches State Fund <strong>of</strong> <strong>the</strong><br />

Ministry <strong>of</strong> Educati<strong>on</strong> and Science <strong>of</strong> Ukraine (grant № F25/137-2008).<br />

References<br />

Raman peak positi<strong>on</strong>s ν and shifts ∆ν<br />

in H2O and D2O soluti<strong>on</strong>s, cm-1 Normal shifts Abnormal shifts<br />

Substance ν(H2O) ν(D2O) ∆ν ν(H2O) ν(D2O) ∆ν<br />

6-azacytidine<br />

exp*<br />

cal**<br />

759,6<br />

774,5<br />

748,8<br />

761,8<br />

10,8 1288,9<br />

12,7 1292,4<br />

1302,6<br />

1299,9<br />

-13,7<br />

-7,5<br />

cytidine<br />

exp<br />

cal<br />

784<br />

786<br />

773,5<br />

773,6<br />

10,5<br />

12,4<br />

1244<br />

1266,9<br />

1247,6<br />

1270,3<br />

-3,6<br />

-3,4<br />

cytosine<br />

exp<br />

cal<br />

786,8<br />

785,1<br />

777,3<br />

772,3<br />

9,5<br />

12,8<br />

1290,2<br />

1296,8<br />

1291,3<br />

1303,2<br />

-1,1<br />

-6,4<br />

* – experimental, **– calculated<br />

[1] C. Dale Keefe, Elizabeth A. L. Gillis, L. MacD<strong>on</strong>ald, J. Phys. Chem. A 113, 2544-2550 (<strong>2009</strong>).<br />

PA 62


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

DFT predicti<strong>on</strong> <strong>of</strong> molecular geometry and vibrati<strong>on</strong>al<br />

characteristics <strong>of</strong> 1,3,4,6-tetrathiapentalene-2,5-di<strong>on</strong>e<br />

and its radical cati<strong>on</strong><br />

S. JAISWAL, M. KUMAR, R. SINGH, G. SRIVASTAV, P. SINGH AND R. A. YADAV<br />

Laser and <strong>Spectroscopy</strong> Laboratory, Department <strong>of</strong> Physics, Banaras<br />

Hindu University, Varanasi-221005, India<br />

The molecular properties <strong>of</strong> 1,3,4,6-tetrathiapentalene-2,5-di<strong>on</strong>e (TTP-DO), an important building<br />

block <strong>of</strong> organic c<strong>on</strong>ductors, and <strong>of</strong> its radical cati<strong>on</strong> (TTP-DO +) have been studied by using DFT<br />

method at B3LYP/6-311++g** level [1]. Our result shows that significant changes are noticed in<br />

<strong>the</strong> geometrical parameters and vibrati<strong>on</strong>al characteristics <strong>of</strong> TTP-DO as <strong>the</strong> result <strong>of</strong> its<br />

radicalizati<strong>on</strong>. The TTP-DO and its radical cati<strong>on</strong> have planar structure with D2h symmetry. The<br />

C=C b<strong>on</strong>d loses its double b<strong>on</strong>d character and magnitude <strong>of</strong> <strong>the</strong> C=C stretching frequency<br />

decreases significantly by 217 cm -1 with increased Raman activity as a result <strong>of</strong> radicalizati<strong>on</strong> [2].<br />

The magnitudes <strong>of</strong> <strong>the</strong> four C-S b<strong>on</strong>d lengths which are attached to <strong>the</strong> oxygen atom is found to<br />

increase by 0.027 Å where <strong>the</strong> magnitudes <strong>of</strong> <strong>the</strong> remaining C-S b<strong>on</strong>d lengths is found to decrease<br />

by 0.036 Å due to <strong>the</strong> radicalizati<strong>on</strong> process. The C=O b<strong>on</strong>d lengths are calculated decrease<br />

slightly by 0.018Å and <strong>the</strong> C=O stretching frequencies are found to increase by ~ 80 cm -1 in TTP-<br />

DO + as compared to its neutral molecule. In c<strong>on</strong>trast to <strong>the</strong> C=O stretching frequencies, <strong>the</strong><br />

magnitude <strong>of</strong> <strong>the</strong> C=O in-plane and out-<strong>of</strong>-plane bending frequencies for <strong>the</strong> two molecules due to<br />

<strong>the</strong> radicalizati<strong>on</strong> process are unaffected.<br />

References<br />

Fig.1 - Fr<strong>on</strong>t View <strong>of</strong> TTP-DO<br />

[1] M. J. Frisch et al., Gaussian 03, Revisi<strong>on</strong> C.02, Gaussian, Inc.Wallingford CT (2004).<br />

[2] C. Adamo, R. Arnaud, G. Scalmani, H. Muller, F. Sahli and V. Bar<strong>on</strong>e; J. Phys. Chem. B 103, 6863-6869 (1999).<br />

PA 63


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Structural fluctuati<strong>on</strong> <strong>of</strong> proteins revealed by terahertz<br />

time-domain spectroscopy<br />

O. KAMBARA, K. TOMINAGA<br />

Molecular Photoscience Research Center, Kobe University, 1-1,<br />

Rokkodai-cho, Nada, Kobe, 657-8501, Japan<br />

To understand <strong>the</strong> expressi<strong>on</strong> mechanisms <strong>of</strong> protein functi<strong>on</strong>, our knowledge <strong>of</strong> <strong>the</strong> dynamical<br />

aspects <strong>of</strong> <strong>the</strong> protein molecules must be deepen. Such a structural fluctuati<strong>on</strong>, which is c<strong>on</strong>nected<br />

directly with <strong>the</strong> protein functi<strong>on</strong>, is known to have a characteristic vibrati<strong>on</strong>al frequency in <strong>the</strong><br />

low-frequency regi<strong>on</strong> below 100 cm -1 . Terahertz time-domain spectroscopy (THz-TDS) provides<br />

absorpti<strong>on</strong> coefficient and refractive index in <strong>the</strong> wavenumber regi<strong>on</strong> above 3 cm -1 from <strong>the</strong><br />

changes <strong>of</strong> signal intensity and phase shift, respectively. We introduce a temperature correlati<strong>on</strong><br />

value <strong>of</strong> a product <strong>of</strong> <strong>the</strong>se values as <strong>the</strong> novel physical quantity; reduced absorpti<strong>on</strong> cross secti<strong>on</strong><br />

(RACS) [1]. In physicochemical, RACS is c<strong>on</strong>sidered as a product <strong>of</strong> IR activity and density <strong>of</strong><br />

states (DOS). If we assume that <strong>the</strong> IR activity is c<strong>on</strong>stant in <strong>the</strong> low-frequency regi<strong>on</strong>, <strong>the</strong> RACS is<br />

proporti<strong>on</strong>al to <strong>the</strong> DOS. We use a hen egg white lysozyme (HEWL) as a model protein. First <strong>of</strong> all,<br />

THz spectrum <strong>of</strong> HEWL without any preparati<strong>on</strong> is measured at ambient temperature and <strong>the</strong>n,<br />

RACS <strong>of</strong> <strong>the</strong> HEWL is obtained. Fig. 1 shows <strong>the</strong> frequency-dependent RACS <strong>of</strong> HEWL in <strong>the</strong><br />

double logarithmic plot. The spectrum is approximately proporti<strong>on</strong>al to <strong>the</strong> power <strong>of</strong> <strong>the</strong><br />

wavenumber in this spectral regi<strong>on</strong>. The exp<strong>on</strong>ent from 12 to 24 cm -1 is 1.8 (RACS ‐ ν 1.8), which is<br />

c<strong>on</strong>sistent with <strong>the</strong> DOS obtained by incoherent inelastic neutr<strong>on</strong> scattering in <strong>the</strong> same spectral<br />

regi<strong>on</strong> (1.5-3.0 meV) [2]. This result directly suggests that <strong>the</strong> RACS for protein in <strong>the</strong> same<br />

c<strong>on</strong>diti<strong>on</strong> is proporti<strong>on</strong>al to <strong>the</strong> vibrati<strong>on</strong>al density <strong>of</strong> states. Temperature and hydrati<strong>on</strong> effect <strong>on</strong><br />

<strong>the</strong> low-frequency dynamics <strong>of</strong> proteins will be discussed from <strong>the</strong> RACS standpoint.<br />

References<br />

Fig. 1 – Double logarithmic plot <strong>of</strong> reduced absorpti<strong>on</strong> cross secti<strong>on</strong><br />

<strong>of</strong> HEWL versus frequency.<br />

[1] K. Yamamoto, K. Tominaga, H. Sasakawa, A. Tamura, H. Murakami, H. Ohtake, and N. Sarukura, Biophys. J. 89,<br />

L22–L24 (2005).<br />

[2] S. G. Lushnikov, A. V. Svanidze, and I. L. Sashin, JETP lett. 82, 30-33 (2005).<br />

PA 64


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Multiway chemometric approaches for<br />

spectrophotometric analysis <strong>of</strong> creatinine in serum<br />

samples from patients with renal failure<br />

M. KHANMOHAMMADI AND M. RAMIN<br />

Chemistry Department, Faculty <strong>of</strong> Science, IKIU, Qazvin, Iran<br />

Quantificati<strong>on</strong> <strong>of</strong> creatinine is an important standard measurement to assess <strong>the</strong> functi<strong>on</strong> <strong>of</strong><br />

kidney. Moreover, abnormal creatinine c<strong>on</strong>centrati<strong>on</strong> is correlated with some kidney diseases, for<br />

instance; acute nephritis, acute or chr<strong>on</strong>ic renal failure, renal tubule defect and urinary tract<br />

infecti<strong>on</strong>. Low levels <strong>of</strong> creatinine in blood may also indicate a decrease in muscle mass, caused by<br />

disease, such as muscular dystrophy, some types <strong>of</strong> severe liver disease, low protein diets,<br />

pregnancy or by aging [1]. Most <strong>of</strong> developed methods for quantitative determinati<strong>on</strong> <strong>of</strong><br />

creatinine, which would be applied in clinical activities, are primarily based <strong>on</strong> reacti<strong>on</strong> with<br />

alkaline picrate, called "Jaffe Method". The reacti<strong>on</strong> takes place in an alkaline medium between<br />

creatinine and picric acid to form an orange- red compound, which can be measured<br />

spectrophotometrically at 500 nm. This procedure is simple and inexpensive but Jaffe reacti<strong>on</strong> is<br />

not specific for creatinine. However, this reacti<strong>on</strong> is affected by more than 50 endogenous<br />

compounds. One <strong>of</strong> <strong>the</strong> main issues for improving <strong>the</strong> analytical methods is to use chemometrics<br />

techniques. There are several useful techniques, introduced in analytical routes, providing more<br />

reliable results e.g. sec<strong>on</strong>d-order calibrati<strong>on</strong>s. These calibrati<strong>on</strong> techniques have been<br />

dem<strong>on</strong>strated to be powerful methods for extracting qualitative and quantitative informati<strong>on</strong> from<br />

three-way data arrays such as multivariate spectroscopic-kinetic measurements with<br />

spectrophotometers. The main advantage <strong>of</strong> three-way multivariate calibrati<strong>on</strong> is that it allows<br />

c<strong>on</strong>centrati<strong>on</strong> informati<strong>on</strong> <strong>of</strong> an individual comp<strong>on</strong>ent to be extracted in <strong>the</strong> presence <strong>of</strong> any<br />

number <strong>of</strong> n<strong>on</strong>-calibrated c<strong>on</strong>stituents. Therefore, it is highly useful to overcome analytical<br />

problems involving a complex matrix. It is well known that ma<strong>the</strong>matical methods like parallel<br />

factor analysis (PARAFAC) or multivariate curve resoluti<strong>on</strong>-alternating least squares (MCR-ALS),<br />

used for sec<strong>on</strong>d order calibrati<strong>on</strong> are capable <strong>of</strong> resolving <strong>the</strong> underlying pr<strong>of</strong>iles and <strong>the</strong> relative<br />

c<strong>on</strong>centrati<strong>on</strong>s <strong>of</strong> each comp<strong>on</strong>ent in <strong>the</strong> system. C<strong>on</strong>sequently, <strong>on</strong>ly a small number <strong>of</strong> standards<br />

<strong>of</strong> <strong>the</strong> analyte are required for analysis. Sec<strong>on</strong>d-order calibrati<strong>on</strong> and multivariate spectroscopickinetic<br />

measurements in <strong>the</strong> visible regi<strong>on</strong> were proposed to improve <strong>the</strong> Jaffe reacti<strong>on</strong> for<br />

creatinine assay. Quantitative determinati<strong>on</strong> <strong>of</strong> creatinine by spectrophotometry, utilizing <strong>the</strong><br />

PARAFAC and MCR-ALS techniques were compared. It was c<strong>on</strong>cluded that both methods can be<br />

used for creatinine determinati<strong>on</strong> in human serum, while <strong>the</strong> accuracy <strong>of</strong> <strong>the</strong> method, evaluated<br />

through <strong>the</strong> root mean square error <strong>of</strong> predicti<strong>on</strong> (RMSEP), was 0.69 and 0.91 for PARAFAC and<br />

MCR-ALS respectively.<br />

References<br />

[1] R. Perr<strong>on</strong>e, N. Madias and A. Levey, Clin. Chem., 38, 1933–1953 (1992).<br />

[2] J. Ghasemi, A. Niazi, Analytica Chimica Acta 533, 169–177 (2005).<br />

PA 65


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

From discrete multi-exp<strong>on</strong>ential model to lifetime distributi<strong>on</strong><br />

model and power law fluorescence decay functi<strong>on</strong><br />

BORYS KIERDASZUK<br />

University <strong>of</strong> Warsaw, Institute <strong>of</strong> Experimental Physics, Department <strong>of</strong><br />

Biophysics, 93 Zwirki i Wigury St., 02-089 Warsaw, Poland<br />

borys@biogeo.uw.edu.pl<br />

Experimental and <strong>the</strong>oretical studies <strong>of</strong> <strong>the</strong> fluorescence intensity decays in biomacromolecular<br />

systems showed that under c<strong>on</strong>straints <strong>of</strong> typical experiment fluorescence lifetime distributi<strong>on</strong> is<br />

given by gamma functi<strong>on</strong> [1], which led to a power-like decay functi<strong>on</strong> I(t)=[(2-q)/τ0][1-(1q)t/τ0]<br />

(1/(1-q)). The factor (2-q)/τo results from normalizati<strong>on</strong>, and <strong>the</strong> mean decay time is given<br />

by =τ0/(3-2q). Decays are described by mean value <strong>of</strong> lifetime distributi<strong>on</strong> (τ0) and <strong>on</strong>e new<br />

parameter <strong>of</strong> heterogeneity (q) related to <strong>the</strong> relative variance <strong>of</strong> fluctuati<strong>on</strong>s <strong>of</strong> γ=1/τ around <strong>the</strong><br />

=1/τ0 value: q-1=/ 2. Taking into account decay with N decay channels, <strong>the</strong> total<br />

decay rate γ is expected to be a sum Σγi <strong>of</strong> a number N <strong>of</strong> partial rates γ i . In that case, q=2/N+1,<br />

i.e. N=2/(q-1). It is worth noticing that <strong>the</strong> normalizati<strong>on</strong> <strong>of</strong> power-like decay functi<strong>on</strong> leads to<br />

c<strong>on</strong>straint <strong>on</strong> <strong>the</strong> q values (q2).<br />

Fur<strong>the</strong>rmore, requirement <strong>of</strong> existence <strong>of</strong> <strong>the</strong> mean value <strong>of</strong> decay time =τ0/(3-2q) implies that<br />

1 P(γγ)<br />

1.5<br />

1.0<br />

0.5<br />

N=1<br />

N → ∞, q → 1<br />

N=2<br />

N=4 q=1.5<br />

N=16 q=1.125<br />

0.0<br />

0 1<br />

γ / < γ ><br />

2 3<br />

PA 66<br />

→1, <strong>the</strong> gamma distributi<strong>on</strong> becomes <strong>the</strong> Dirac<br />

delta functi<strong>on</strong>, and decay functi<strong>on</strong> c<strong>on</strong>verges from<br />

power-like form to <strong>the</strong> single-exp<strong>on</strong>ential form.<br />

When <strong>the</strong> heterogeneity parameter value increases<br />

stepwise from 1 to 3/2, deviati<strong>on</strong> from singleexp<strong>on</strong>ential<br />

form increases, and it is more<br />

pr<strong>on</strong>ounced for <strong>the</strong> tail part <strong>of</strong> each decay. The<br />

power-like functi<strong>on</strong> well fits complex<br />

(heterogeneous) as well as simple m<strong>on</strong>oexp<strong>on</strong>ential<br />

decays, and describes fluorescence<br />

decay kinetics by <strong>the</strong> parameter <strong>of</strong> heterogeneity –<br />

objectively reflecting physical heterogeneity <strong>of</strong> <strong>the</strong><br />

system, and <strong>the</strong> mean lifetime value from<br />

distributi<strong>on</strong> – characterizing <strong>the</strong> average rate <strong>of</strong> <strong>the</strong> excited-state decay. Numerous examples<br />

illustrate applicati<strong>on</strong>s <strong>of</strong> a new model to rati<strong>on</strong>al analysis <strong>of</strong> complex fluorescence decays <strong>of</strong><br />

biomacromolecules [1-4], e.g. protein-ligand complexes [2], which led to identificati<strong>on</strong> <strong>of</strong><br />

tautomeric forms selectively bound by <strong>the</strong> enzyme [2, 3]. The latter is <strong>of</strong> great importance for <strong>the</strong><br />

studies <strong>of</strong> <strong>the</strong> mechanism <strong>of</strong> protein (enzyme) acti<strong>on</strong> as well as for more rati<strong>on</strong>al drug design.<br />

[1] J. Wlodarczyk, B. Kierdaszuk, Biophys J. 85, 589-598 (2003).<br />

[2] J. Wlodarczyk, G. Stoychev-Galit<strong>on</strong>ov, B. Kierdaszuk, Eur. Biophys. J. 33,377-385 (2004).<br />

[3] J. Wlodarczyk, B. Kierdaszuk, Biophys. Chem.123, 146-153 (2006).<br />

[4] B. Kierdaszuk, J. Wlodarczyk, Eur. Biophys. J. 36, 253-259 (2007).


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Cobalt- siroheme c<strong>on</strong>taining enzyme<br />

A. V. KLADOVA 1 , O. YU. GAVEL 1 , J. J. CALVETE 2 , Z. GOUVEIA 3 , S. TODOROVIC 3 , I. MOURA 1 , J.<br />

J.G.MOURA 1 , S.A. BURSAKOV 1,4<br />

1. REQUIMTE, Departamento de Química, Centro de Química Fina e Biotecnologia, Faculdade<br />

de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal<br />

2. Instituto de Investigaci<strong>on</strong>es Biomédicas, 46010 C.S.I.C., Valencia, Spain<br />

3. ITQB, Universidade Nova de Lisboa Av. da República – EAN, 2780-157 Oeiras, Portugal<br />

4. Departamento de Protección Ambiental, Estación Experimental del Zaidin (EEZ-CSIC), 18008<br />

Granada, Spain<br />

anna@dq.fct.unl.pt<br />

A cobalt- porphyrin c<strong>on</strong>taining protein (CoPf) was isolated from <strong>the</strong> sulphate-reducing bacteria<br />

Desulfovibrio gigas. CoPf was sequenced and characterized by different spectroscopic techniques.<br />

The sequence c<strong>on</strong>firms that this protein is a free form <strong>of</strong> <strong>the</strong> γ subunit <strong>of</strong> desulfoviridin <strong>of</strong> D. gigas.<br />

As isolated <strong>the</strong> protein is EPR silent, suggesting <strong>the</strong> presence <strong>of</strong> diamagnetic Co 3+. According to <strong>the</strong><br />

results <strong>of</strong> mass spectrometry and modificati<strong>on</strong> by iodoacetamide (IA) and vinylpyridine (VP), <strong>the</strong><br />

apo- CoPf c<strong>on</strong>tains two cysteines linked by disulfide bridge and <strong>on</strong>e <strong>of</strong> <strong>the</strong>m is <strong>on</strong>ly accessible to<br />

IA and VP, in presence denaturing agent (5 M ClGu). The m<strong>on</strong>omeric violet coloured protein<br />

c<strong>on</strong>tains 1 Co/molecule <strong>of</strong> protein in a n<strong>on</strong> covalently bound Co (III) porphyrin-like c<strong>of</strong>actor and<br />

exhibits UV-visible spectrum with peaks at 279 nm, 420 nm and 590 nm with shoulders at 300 nm,<br />

395 nm and 550 nm. The frequencies <strong>of</strong> <strong>the</strong> vibrati<strong>on</strong>al modes observed in <strong>the</strong> res<strong>on</strong>ance Raman<br />

spectra <strong>of</strong> CoPf clearly indicate that <strong>the</strong> porphyrin, that houses <strong>the</strong> Co(III) i<strong>on</strong>, is a siroheme.<br />

PA 67


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Interacti<strong>on</strong> <strong>of</strong> porphyrin/olig<strong>on</strong>ucleotide complex with<br />

liposomes studied by drop coating depositi<strong>on</strong> Raman<br />

spectroscopy<br />

E. KOČIŠOVÁ, M. PROCHÁZKA AND J. ŠTĚPÁNEK<br />

Charles University, Faculty <strong>of</strong> Ma<strong>the</strong>matics and Physics, Institute <strong>of</strong><br />

Physics, Ke Karlovu 5, Prague 2, CZ-121 16, Czech Republic<br />

kocisova@karlov.mff.cuni.cz<br />

Olig<strong>on</strong>ucleotides – short strands <strong>of</strong> nucleic acid - represent potential tools in <strong>the</strong> effort to<br />

specifically modulate protein expressi<strong>on</strong> inside living cells [1]. Since <strong>the</strong>y are not able al<strong>on</strong>e to<br />

penetrate <strong>the</strong> cellular membrane, some delivery mediator should to be used. Water soluble cati<strong>on</strong>ic<br />

porphyrins that can bind to olig<strong>on</strong>ucleotides and compensate <strong>the</strong>ir negative charge seem to be<br />

appropriate candidates for this purpose [2]. We have studied interacti<strong>on</strong> <strong>of</strong> <strong>the</strong><br />

porphyrin/olig<strong>on</strong>ucleotide complex - cati<strong>on</strong>ic copper 5,10,15,20-tetrakis (1-methyl-4-pyridyl)<br />

porphyrin (CuTMPyP) and 15 bases l<strong>on</strong>g oligothymidylate (dT15) - with liposomes prepared from<br />

asolectin representing a realistic model <strong>of</strong> <strong>the</strong> nature biomembrane, by using drop coating<br />

depositi<strong>on</strong> Raman (DCDR). DCDR method [3] is based <strong>on</strong> depositi<strong>on</strong> <strong>of</strong> a small droplet <strong>of</strong> <strong>the</strong><br />

sample (units <strong>of</strong> µL) <strong>on</strong> a Tefl<strong>on</strong>-coated stainless steel surface (SpectRIM slides, Tienta Sciences)<br />

with almost no intrinsic Raman signal. The hydrophobic surface enables drying <strong>of</strong> a sample by <strong>the</strong><br />

“c<strong>of</strong>fee ring effect” when <strong>the</strong> resulting flow <strong>of</strong> a liquid in <strong>the</strong> evaporating droplet carries dispersed<br />

material to its edge where it forms a ring. This method enables to obtain by means <strong>of</strong> Raman<br />

c<strong>on</strong>focal microscope spectra <strong>of</strong> biomolecules in original c<strong>on</strong>centrati<strong>on</strong>s down to 1 µM [4]. Dried<br />

droplet <strong>of</strong> our studied system <strong>on</strong> <strong>the</strong> SpectRIM slide revealed partial separati<strong>on</strong> <strong>of</strong> <strong>the</strong> free<br />

CuTMPyP/dT15 complex and <strong>the</strong> CuTMPyP/dT15 complex interacting with liposome. This<br />

enabled obtaining Raman spectra <strong>of</strong> particular comp<strong>on</strong>ents. Factor analysis <strong>of</strong> Raman spectra<br />

showed various spectral changes, <strong>the</strong> most pr<strong>on</strong>ounced <strong>of</strong> which appeared in <strong>the</strong> CH stretching<br />

vibrati<strong>on</strong> regi<strong>on</strong> (2800-3000 cm -1). They corresp<strong>on</strong>d to reorientati<strong>on</strong> <strong>of</strong> lipid chains in liposome as a<br />

c<strong>on</strong>sequence <strong>of</strong> <strong>the</strong>ir interacti<strong>on</strong> with <strong>the</strong> CuTMPyP/dT15 complex.<br />

References<br />

[1] J. Goodchild, Curr Opin Mol Ther. 6, 120-128 (2004).<br />

[2] P. Praus, E. Kočišová, O. Seksek, F. Sureau, J. Štěpánek, P.-Y. Turpin, Current Organic Chemistry 11, 515 – 527<br />

(2007) and references <strong>the</strong>rein.<br />

[3] D. Zhang, Y. Xie, M. F. Mrozek, C. Ortiz, V. J. Daviss<strong>on</strong>, D. Ben-Amotz, Anal. Chem. 75, 5703-5709 (2003).<br />

[4] V. Kopecký Jr., V. Baumruk, Vib. Spectrosc. 42, 184-187 (2006).<br />

PA 68


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Time-resolved and steady-state study <strong>of</strong> FMN<br />

fluorescence quenching by halides<br />

M. A. GERASIMOVA AND K. V. KOSHKOV<br />

Dept. <strong>of</strong> Experimental and Medical Physics, Siberian Federal University,<br />

79 Prospekt Svobodnyi, Krasnoyarsk, 660041, Russia<br />

Introducti<strong>on</strong> <strong>of</strong> heavy atoms increases spin-orbit coupling and thus favors intersystem crossing in<br />

a molecule [1], leading to fluorescence quenching [2]. In <strong>the</strong> paper, influence <strong>of</strong> <strong>the</strong> heavy halide<br />

i<strong>on</strong>s <strong>on</strong> <strong>the</strong> photophysical and spectral properties <strong>of</strong> flavin m<strong>on</strong><strong>on</strong>ucleotide (FMN) being a crucial<br />

biochemical c<strong>of</strong>actor is treated. Both time-resolved and steady-state fluorescence methods used in<br />

<strong>the</strong> research are helpful in understanding complex photophysical behavior. The single-exp<strong>on</strong>ential<br />

intensity decay <strong>of</strong> 5⋅10 − 6 M FMN in buffer is fit using lifetime <strong>of</strong> 4.73 ns, which agree with <strong>the</strong><br />

previous works (4.70 ns) [3]. The presence <strong>of</strong> halides results in two-decay-time model. Increasing<br />

<strong>the</strong> potassium halides c<strong>on</strong>centrati<strong>on</strong> from 10 − 3 to 10 − 1 M caused an additi<strong>on</strong>al redistributi<strong>on</strong> <strong>of</strong> two<br />

lifetimes and a sharp decrease <strong>of</strong> FMN average lifetime. Namely, at halide c<strong>on</strong>centrati<strong>on</strong> <strong>of</strong> 0.3 M a<br />

l<strong>on</strong>ger lifetime <strong>of</strong> two-comp<strong>on</strong>ent mixture attributed to FMN in buffer decrease 5.6–, 4.4–, 1.2–fold<br />

for I − , Br − , Cl − respectively. The fracti<strong>on</strong>al c<strong>on</strong>tributi<strong>on</strong> <strong>of</strong> this comp<strong>on</strong>ent also decreases abruptly to<br />

8% for I − , to 36% for Br − , and to 95% for Cl − . A shorter lifetime <strong>of</strong> FMN (~ 2 ns) decreases to 0.42 ns<br />

for iodide and 0.63 ns for bromide. In <strong>the</strong> case <strong>of</strong> 0.3 M KI intensity decay indicates <strong>the</strong> dominati<strong>on</strong><br />

<strong>of</strong> this shorter lifetime. Up<strong>on</strong> additi<strong>on</strong> <strong>of</strong> halides to FMN <strong>the</strong>re was a decrease in intensity and no<br />

shifts in maximum or shape <strong>of</strong> steady-state emissi<strong>on</strong> spectra. The quenching data based <strong>on</strong> <strong>the</strong><br />

average lifetime as well as steady-state measurements were represented as Stern-Volmer<br />

dependencies (Fig. 1). The Stern-Volmer plots deviate from linearity toward <strong>the</strong> y-axis for TCSPC<br />

data, which indicates that ano<strong>the</strong>r type <strong>of</strong> quencher emerges at highest c<strong>on</strong>centrati<strong>on</strong>s <strong>of</strong> halide.<br />

Lifetime data analysis reveals a 14–fold increase <strong>of</strong> FMN intersystem crossing rate c<strong>on</strong>stant in <strong>the</strong><br />

presence <strong>of</strong> I − , a sevenfold increase in <strong>the</strong> case <strong>of</strong> Br − . Hence, up<strong>on</strong> additi<strong>on</strong> <strong>of</strong> 0.3 M halides <strong>the</strong><br />

fluorescence quantum yield <strong>of</strong> FMN decreased from 0.26 [3] to 0.03 for I − and to 0.05 for Br − .<br />

References<br />

PA 69<br />

Fluorescence yield<br />

16<br />

12<br />

8<br />

4<br />

0<br />

I −<br />

Br −<br />

F0<br />

F<br />

τ0<br />

τ<br />

F0<br />

F<br />

τ0<br />

τ<br />

0 0.08 0.16 0.24<br />

Halide c<strong>on</strong>centrati<strong>on</strong>, M<br />

Fig. 1 – Stern-Volmer plots for <strong>the</strong> halides quenching <strong>of</strong> FMN.<br />

[1] S. K. Lower, M. A. El-Sayed, Chem. Rev. 66, 199-241 (1966).<br />

[2] K. N. Solov’ev, E. A. Borisevich, Uspekhi Fizicheskikh Nauk 175, 247-270 (2005).<br />

[3] P. H. Heelis, Chem. Soc. Rev. 11, 15-49 (1982).


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Mechanistic studies <strong>of</strong> <strong>the</strong> Ras-superfamily by timeresolved<br />

FTIR spectroscopy<br />

C. KÖTTING AND K. GERWERT<br />

Ruhr-Universität Bochum, Lehrstuhl für Biophysik, ND04/352, D-44780<br />

Bochum, Germany, carsten.koetting@rub.de<br />

We report <strong>on</strong> trFTIR [1] investigati<strong>on</strong>s <strong>on</strong> <strong>the</strong> Ras protein, which is mutated in 30% <strong>of</strong> <strong>the</strong> human<br />

tumors. Ras plays a central role in cell signaling pathways, transducing growth signals from <strong>the</strong><br />

plasma membrane to <strong>the</strong> nucleus. Ras acts as a switch, transmitting <strong>the</strong> signal in an active GTPbound<br />

form and turning <strong>the</strong> signal <strong>of</strong>f in an inactive GDP-bound form. The switch <strong>of</strong>f is<br />

accomplished by GTP hydrolysis, which is catalyzed by Ras and can be fur<strong>the</strong>r accelerated by<br />

GTPase activating proteins (GAPs). Mutati<strong>on</strong>s which prevent hydrolysis cause severe diseases<br />

including cancer. A highly c<strong>on</strong>served “arginine-finger” <strong>of</strong> GAP is a key residue [2]. We investigate<br />

<strong>the</strong> reacti<strong>on</strong> <strong>of</strong> <strong>the</strong> Ras GAP protein-protein complex within <strong>the</strong> FTIR spectrometer by means <strong>of</strong> a<br />

photolabile trigger. Detailed informati<strong>on</strong> <strong>on</strong> <strong>the</strong> reacti<strong>on</strong> mechanism was revealed utilizing<br />

isotopic labels <strong>of</strong> <strong>the</strong> nucleotide, <strong>the</strong> GTPase and <strong>the</strong> GAP [3]: We assigned <strong>the</strong> absorpti<strong>on</strong> <strong>of</strong> <strong>the</strong><br />

arginine-finger and showed, <strong>the</strong> finger does not point into <strong>the</strong> binding pocket in <strong>the</strong> ground state<br />

[4]. Once <strong>the</strong> arginine-finger points into <strong>the</strong> binding pocket, cleavage <strong>of</strong> GTP is fast and as an<br />

intermediate H2PO4 − hydrogen-b<strong>on</strong>ded in an eclipsed c<strong>on</strong>formati<strong>on</strong> to <strong>the</strong> β-phosphate <strong>of</strong> GDP<br />

was found [5]. It is in a positi<strong>on</strong> to ei<strong>the</strong>r reform GTP or be released from <strong>the</strong> protein in <strong>the</strong> rate<br />

limiting step <strong>of</strong> <strong>the</strong> GTPase reacti<strong>on</strong>. While <strong>the</strong> catalysis <strong>of</strong> GTP hydrolysis by Ras is entirely due to<br />

enthalpic effects, which are caused by a charge shift towards <strong>the</strong> β-phosphate <strong>of</strong> GTP [6], <strong>the</strong> GAP<br />

increases <strong>the</strong> entropy <strong>of</strong> activati<strong>on</strong>, probably by pushing ordered water molecules out <strong>of</strong> <strong>the</strong><br />

binding pocket into <strong>the</strong> bulk [4]. Ras undergoes distinct post-translati<strong>on</strong>al lipid modificati<strong>on</strong>s that<br />

are required for appropriate targeting to membranes. We established a system to m<strong>on</strong>itor lipid<br />

modified Ras at a single lipid bilayer with ATR-FTIR spectroscopy [7]. With this setup we are able<br />

to observe <strong>the</strong> absorpti<strong>on</strong> <strong>of</strong> individual functi<strong>on</strong>al groups <strong>of</strong> lipid anchored Ras and we can<br />

compare <strong>the</strong> reacti<strong>on</strong>s <strong>of</strong> Ras in soluti<strong>on</strong> with <strong>the</strong> reacti<strong>on</strong>s <strong>of</strong> Ras at <strong>the</strong> membrane at <strong>the</strong> atomic<br />

level.<br />

References<br />

1. C. Kötting, K. Gerwert, ChemPhysChem 6, 881-888 (2005).<br />

2. A. Wittingh<strong>of</strong>er, Biol. Chem. 379, 933-937 (1998).<br />

3. B. Warscheid, S. Brucker, A. Kallenbach, H.E. Meyer, K. Gerwert, C. Kötting, Vib. Spec. 48, 28-36 (2008).<br />

4. C. Kötting, A. Kallenbach, Y. Suveyzdis, A. Wittingh<strong>of</strong>er, K. Gerwert, PNAS 105, 6260-6265 (2008).<br />

5. C. Kötting, M. Blessenohl, Y. Suveyzdis, R. Goody, A. Wittingh<strong>of</strong>er, K. Gerwert, PNAS 103, 13911 (2006).<br />

6. C. Kötting, K. Gerwert, Chemical Physics 307, 227-232 (2004).<br />

7. J. Güldenhaupt, Y. Adigüzel, J. Kuhlmann, H. Waldmann, C. Kötting, K. Gerwert, FEBS J. 275 5910-5918 (2008).<br />

PA 70


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Evaluati<strong>on</strong> <strong>of</strong> b<strong>on</strong>e site and sex as parameters for <strong>the</strong><br />

Fourier transform infrared spectroscopic study <strong>of</strong><br />

normal b<strong>on</strong>e.<br />

N. KOURKOUMELIS 1 AND M. TZAPHLIDOU 1<br />

1. Dept. <strong>of</strong> Medical Physics, Medical School, University <strong>of</strong> Ioannina,<br />

45110, Ioannina, Greece<br />

B<strong>on</strong>e at <strong>the</strong> molecular level, is described as a composite material c<strong>on</strong>sisting essentially <strong>of</strong> calcium<br />

phosphate crystals, water and s<strong>of</strong>t organic material, mostly collagen, which surrounds <strong>the</strong> mineral<br />

crystals by an excepti<strong>on</strong>ally dense filling [1]. These c<strong>on</strong>stituents are comm<strong>on</strong>ly referred as mineral<br />

and matrix comp<strong>on</strong>ents and are distributed in diverse patterns am<strong>on</strong>g different b<strong>on</strong>e types. The<br />

mineral phase in calcified tissues plays a significant role mostly because it str<strong>on</strong>gly affects <strong>the</strong>ir<br />

strength and quality. Parameters such as mineral crystal perfecti<strong>on</strong>, compositi<strong>on</strong> and size, vary<br />

c<strong>on</strong>siderably in relati<strong>on</strong> to b<strong>on</strong>e age, type and disorders or diseases. Fur<strong>the</strong>rmore, <strong>the</strong> mechanical<br />

strength <strong>of</strong> b<strong>on</strong>e depends mainly <strong>on</strong> <strong>the</strong> state <strong>of</strong> <strong>the</strong> cortical b<strong>on</strong>e [2]. In <strong>the</strong> present work we have<br />

incorporated two additi<strong>on</strong>al parameters, b<strong>on</strong>e site and sex, in order to study <strong>the</strong>ir effect to mineral<br />

c<strong>on</strong>tent (ash weight) and compositi<strong>on</strong> <strong>of</strong> <strong>the</strong> cortical b<strong>on</strong>e. Ten female and male Wistar rats, eight<br />

m<strong>on</strong>ths <strong>of</strong> age and cortical secti<strong>on</strong>s from three different b<strong>on</strong>e sites, femur, tibia and forearm (ulna)<br />

were analyzed by FT-IR spectroscopy via integrati<strong>on</strong> <strong>of</strong> <strong>the</strong> PO4 3- v4 (500-650 cm -1), CO3 2- v2 (855-890<br />

cm -1) and Amide I (1600-1700 cm -1) absorpti<strong>on</strong> bands in order to assess mineralizati<strong>on</strong>, maturity <strong>of</strong><br />

mineral crystal and collagen, carb<strong>on</strong>ate accumulati<strong>on</strong> and envir<strong>on</strong>ment, and acid phosphate<br />

c<strong>on</strong>tent [3]. Our results showed that all inorganic phases c<strong>on</strong>sist <strong>of</strong> poorly crystalline B-type<br />

carb<strong>on</strong>ated apatite while mineralizati<strong>on</strong> and carb<strong>on</strong>ate c<strong>on</strong>tent was virtually unaffected for all<br />

samples. The same c<strong>on</strong>clusi<strong>on</strong> was extracted for <strong>the</strong> maturity <strong>of</strong> collagen fibrils. Statistically<br />

significant differences however, were discovered for <strong>the</strong> n<strong>on</strong> apatitic envir<strong>on</strong>ments <strong>of</strong> both acid<br />

phosphate (P


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Spectral comp<strong>on</strong>ents in coelenterate bioluminescence<br />

and in photoluminescence <strong>of</strong> Ca 2+-discharged<br />

photoproteins<br />

N.KUDRYASHEVA AND N. BELOGUROVA<br />

Institute <strong>of</strong> Biophysics SB RAS, Akademgorodok, Krasnoyarsk, 660036, Russia<br />

Ca 2+-regulated photoproteins are resp<strong>on</strong>sible for bioluminescence <strong>of</strong> marine coelenterates. The<br />

photoprotein is a stable enzyme-substrate complex c<strong>on</strong>sisting <strong>of</strong>: a single polypeptide chain (near<br />

20 kDa, c<strong>on</strong>taining three EF-hand Ca 2+-binding c<strong>on</strong>sensus sequences), substrate molecules –<br />

coelenterazine (imidazopyrazin<strong>on</strong>e derivative) and oxygen. The additi<strong>on</strong> <strong>of</strong> calcium i<strong>on</strong>s to Ca 2+regulated<br />

photoproteins results in light emissi<strong>on</strong>. This peculiar feature <strong>of</strong> <strong>the</strong> photoproteins serves<br />

<strong>the</strong> basis for <strong>the</strong>ir analytical applicati<strong>on</strong>, mainly in m<strong>on</strong>itoring <strong>of</strong> intracellular biomedical processes<br />

in <strong>the</strong> presence <strong>of</strong> calcium i<strong>on</strong>s [1-2]. The reacti<strong>on</strong> generates a protein bound product,<br />

coelenteramide, in its excited state. The excited coelenteramide relaxes to its ground state<br />

producing blue light, with a spectrum maximum being in <strong>the</strong> range <strong>of</strong> 465 – 495 nm depending <strong>on</strong><br />

<strong>the</strong> photoprotein type. Bioluminescent and photoluminescent spectra <strong>of</strong> products <strong>of</strong> <strong>the</strong><br />

bioluminescent reacti<strong>on</strong>s (Ca 2+-discharged photoproteins) are complex, wide, and asymmetric. In<br />

our work, bioluminescence spectra <strong>of</strong> photoproteins from marine coelenterates – jellyfish Aequorea<br />

victoria and hydroid Obelia l<strong>on</strong>gissima, and photoluminescence spectra <strong>of</strong> <strong>the</strong>ir Ca 2+-discharged<br />

photoproteins were dec<strong>on</strong>volved into spectral comp<strong>on</strong>ents. Resoluti<strong>on</strong> <strong>of</strong> <strong>the</strong> spectra was<br />

performed in a combined way involving <strong>the</strong> methods <strong>of</strong> (1) functi<strong>on</strong> increment based <strong>on</strong> Gauss<br />

distributi<strong>on</strong>, (2) sec<strong>on</strong>dary derivative, and (3) optimizati<strong>on</strong> <strong>of</strong> spectral comp<strong>on</strong>ents’ parameters<br />

and minimizati<strong>on</strong> <strong>of</strong> divergence. Four spectral comp<strong>on</strong>ents were found in original bioluminescent<br />

and photoluminescent (excitati<strong>on</strong> and emissi<strong>on</strong>) spectra. Spectral maxima and c<strong>on</strong>tributi<strong>on</strong>s <strong>of</strong> <strong>the</strong><br />

spectral comp<strong>on</strong>ents into <strong>the</strong> original spectra were determined. The spectral comp<strong>on</strong>ents were<br />

attributed to four forms <strong>of</strong> coelenteramide – <strong>on</strong>e uni<strong>on</strong>ized and three i<strong>on</strong>ized forms. The<br />

differences in bioluminescence spectra and photoluminescence spectra <strong>of</strong> Ca 2+-discharged<br />

photoproteins were discussed with prot<strong>on</strong>ic envir<strong>on</strong>ment <strong>of</strong> coelenteramide taking into<br />

c<strong>on</strong>siderati<strong>on</strong>. C<strong>on</strong>tributi<strong>on</strong>s <strong>of</strong> spectral comp<strong>on</strong>ents into <strong>the</strong> photoluminescence spectra <strong>of</strong> Ca 2+discharged<br />

obelin were found to depend <strong>on</strong> calcium c<strong>on</strong>centrati<strong>on</strong>, but bioluminescence spectra<br />

were not. Dependence <strong>of</strong> <strong>the</strong> photoluminescence spectra <strong>on</strong> excitati<strong>on</strong> (for emissi<strong>on</strong> spectra) and<br />

registrati<strong>on</strong> (for excitati<strong>on</strong> spectra) wavelength have been revealed. Photoluminescence spectra <strong>of</strong><br />

Ca 2+-discharged photoprotein obelin have been shown to serve as respective colored marker to<br />

m<strong>on</strong>itor intracellular processes with a resource for color variati<strong>on</strong>.<br />

References<br />

[1] E.S. Vysotski, J. Lee, Acc. Chem. Res., 37, 405-415 (2004).<br />

[2] J.R. Blinks, W.G. Wier, P. Hess and F.G. Prendergast, Prog. Biophys. Mol. Biol., 40, 1-114 (1982)<br />

PA 72


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Characterisati<strong>on</strong> <strong>of</strong> fatty acid compositi<strong>on</strong> <strong>of</strong> human<br />

hair follicle dermal papilla cells using Fourier transform<br />

infrared microspectroscopy<br />

K. LAU 1 , B. R. WOOD 2 , D. NAUMANN 3 , P. LASCH 3 , A. HERMELINK 3 , R. PAUS 4 AND V. DECKERT 5,6<br />

1. Interface Department, Institute for Analytical Sciences, Bunsen-Kirchh<strong>of</strong>f Str 11, 44139 Dortmund,<br />

Germany<br />

2. Centre for Biospectroscopy, M<strong>on</strong>ash University, 3800 Victoria, Australia<br />

3. Robert Koch Institute, Nordufer Str 20, 13353 Berlin, Germany<br />

4. Klinik für Dermatologie, Allergologie und Venerologie, Universitätklinikum Schleswig-Holstein, 23538<br />

Lübeck, Germany<br />

5. Institut für Physikalische Chemie, Friedrich-Schiller-Universitaet Jena, 07743 Jena, Germany<br />

6. Institut für Phot<strong>on</strong>ische Technologien, 07745 Jena, Germany<br />

The hair follicles in <strong>the</strong> skin present a rich source <strong>of</strong> stem cells important in regenerative medicine.<br />

In particular, <strong>the</strong> mesenchymal stem cells (MSC) located in <strong>the</strong> mesenchyme – dermal papilla(DP)<br />

and c<strong>on</strong>nective tissue sheath(CTS)- <strong>of</strong> <strong>the</strong> hair follicle, have been shown to be multipotent¹ ,² and<br />

participate in <strong>the</strong> dermal regenerati<strong>on</strong> during cutaneous wound healing³. So far, <strong>the</strong>re are no<br />

definitive markers for <strong>the</strong> human hair follicle MSC apart from <strong>the</strong>ir nestin expressi<strong>on</strong>, hindering<br />

<strong>the</strong> progress <strong>of</strong> isolating, characterising and exploiting <strong>the</strong>m in regenerative medicine. In order to<br />

develop a label-free and n<strong>on</strong>-destructive method to identify <strong>the</strong> human hair follicle MSC, Fourier<br />

Transform Infrared (FTIR) microspectroscopy was employed. FTIR spectra <strong>of</strong> <strong>the</strong> DP in a human<br />

skin cryosecti<strong>on</strong> were recorded in reflecti<strong>on</strong> mode using a Bruker IR Scope II instrument. Based <strong>on</strong><br />

<strong>the</strong> literature <strong>on</strong> fatty acid (FA) in stem cells 4-6, we postulated <strong>the</strong> following features may be linked<br />

to 'stemness': low overall lipid c<strong>on</strong>tents in line with <strong>the</strong>ir quiescent character; high saturated FA to<br />

unsaturated FA ratio and low lipid chain disorder, both <strong>of</strong> which are linked to reduced membrane<br />

fluidity. A chemical map based <strong>on</strong> <strong>the</strong> integrated intensity <strong>of</strong> <strong>the</strong> 2880-2848 cm -1 regi<strong>on</strong> showed<br />

very low lipid in <strong>the</strong> DP compared to <strong>the</strong> surrounding cell layers indicating <strong>the</strong> FA in <strong>the</strong> DP cells<br />

are attributed not to lipid vacuoles but mostly to cellular membranes. An unsupervised<br />

hierarchical cluster analysis (UHCA) was performed <strong>on</strong> <strong>the</strong> 1 st derivative <strong>of</strong> <strong>the</strong> spectra over 3099-<br />

2840 cm -1. By correlating <strong>the</strong> chemical map to <strong>the</strong> UHCA false colour map, <strong>the</strong> DP clusters were<br />

distinguished. Their corresp<strong>on</strong>ding average spectra showed <strong>the</strong> stem cell-related features<br />

menti<strong>on</strong>ed above, e.g. a cluster in <strong>the</strong> periphery <strong>of</strong> <strong>the</strong> DP with particularly high saturated FA:<br />

unsaturated FA ratio (I2864-2840/I3120-3020); and a cluster was found to c<strong>on</strong>tain νsym and νassym CH2<br />

peaks (2920 and 2850 cm -1) shifted to lower wavenumber values, suggesting a higher state <strong>of</strong> lipid<br />

chains order. The results <strong>the</strong>refore dem<strong>on</strong>strate that it is possible to identify stem cells in <strong>the</strong> hair<br />

follicle with FTIR <strong>on</strong>ce we fur<strong>the</strong>r increase <strong>the</strong> spatial resoluti<strong>on</strong>.<br />

References<br />

[1] C. A. B. Jahoda, C. J. Whitehouse, A. J. Reynolds, N. Hole, Exp. Dermatol 12, 849-859 (2003).<br />

[2] G. Richards<strong>on</strong>, E. Arnott, C. Whitehouse et al, J. Invest. Dermatol. Symp. Proc. 10, 180-183 (2005).<br />

[3] C. A. B. Jahoda and A. J. Reynolds, The Lancet, 358, 1445-1448 (2001)<br />

[4] L. DiMascio, C. Voermans, M. Uqoezwa et al, J. Immuno 178, 3511-3120 (2007).<br />

[5] A. J. Bentley, T. Nakamura, A. Hammiche et al, Mol. Vis. 13, 237-242 (2007).<br />

[6] L. Teboul, D. Gaillard, L. Staccini et al, J. Biol. Chem, 270, 28183-28187 (1995)<br />

PA 73


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

In vivo eluti<strong>on</strong> properties <strong>of</strong> doxorubicin loaded beads<br />

revealed by microspectroscopies<br />

J. NAMUR 1, M. WASSEF 2, S. CITRON 3, A. LEWIS 4, JM. MILLOT 1, M. MANFAIT 1, A. LAURENT 5,6<br />

1. MEDyC UMR CNRS 6237, Reims, France,<br />

2. Pathology, Lariboisiere Hospital, Paris France<br />

3. Radiology, Piedm<strong>on</strong>t Hospital, Atlanta, GA, United States<br />

4. Biocompatibles UK Ltd, Farnham, United Kingdom<br />

5. Neuroradiology, Lariboisiere Hospital, Paris, France.<br />

6. Matière et Systèmes Complexes UMR CNRS 7057, Paris, France.<br />

Drug eluting beads (DEB) are polymeric calibrated microspheres measuring 100µm to 300µm in<br />

diameter, and loaded with <strong>the</strong> anticancer molecule doxorubicin (DOXO) [1]. They are used in <strong>the</strong><br />

treatment <strong>of</strong> liver cancers [2,3] with <strong>the</strong> idea that, compared to intravenous chemo<strong>the</strong>rapy, <strong>the</strong>y<br />

can increase <strong>the</strong> local dwell time and c<strong>on</strong>centrati<strong>on</strong> <strong>of</strong> drug inside <strong>the</strong> tumor. While DOXO-DEB<br />

have dem<strong>on</strong>strated <strong>the</strong>y can provide a sustained release <strong>of</strong> drug for at several m<strong>on</strong>ths in vitro [4],<br />

<strong>the</strong>ir eluti<strong>on</strong> properties have never been assessed in vivo. We aimed to apply Fourier transform<br />

infrared microspectroscopy (FTIR-MS) and microspectr<strong>of</strong>luorimetry <strong>on</strong> tissue secti<strong>on</strong>s <strong>of</strong> DOXO-<br />

DEB treated livers to determine in situ 1) <strong>the</strong> amount <strong>of</strong> drug still retained inside <strong>the</strong> DEB and 2)<br />

<strong>the</strong> distributi<strong>on</strong> and <strong>the</strong> c<strong>on</strong>centrati<strong>on</strong> <strong>of</strong> <strong>the</strong> drug in <strong>the</strong> tissue around <strong>the</strong> beads. In a pig liver<br />

model without any tumor, we first evidenced that DOXO-DEB can release <strong>the</strong>ir drug load in vivo<br />

for a period <strong>of</strong> at least 3 m<strong>on</strong>ths after <strong>the</strong> injecti<strong>on</strong> and that <strong>the</strong> drug may diffuse up to a distance<br />

<strong>of</strong> 600µm from <strong>the</strong> bead. In liver tumors explanted from 6 patients after DOXO-DEB injecti<strong>on</strong>, we<br />

fur<strong>the</strong>r c<strong>on</strong>firmed that DOXO-DEB can provide levels <strong>of</strong> drug above cytotoxic threshold (>1µM)<br />

[5], with a maximum delivery in <strong>the</strong> first hours after implantati<strong>on</strong>. High c<strong>on</strong>centrati<strong>on</strong>s <strong>of</strong> DOXO<br />

are associated with necrosis <strong>of</strong> <strong>the</strong> tissue fur<strong>the</strong>r supporting <strong>the</strong> efficacy <strong>of</strong> <strong>the</strong> drug eluting system<br />

in <strong>the</strong> killing <strong>of</strong> tumor cells. Microspectroscopies are a very valuable tool to evaluate in vivo<br />

eluti<strong>on</strong> properties <strong>of</strong> drug eluting systems.<br />

Fig. 1 – DOXO c<strong>on</strong>centrati<strong>on</strong> pr<strong>of</strong>iles in <strong>the</strong><br />

tissue around DEB in liver tumors resected<br />

at different time points after DOXO-DEB<br />

treatment. Dot line : cytotoxic level [5].<br />

References<br />

[1] A. L. Lewis, M. W. G<strong>on</strong>zalez, A. W. Loyd et al. J. Vasc. Interv. Radiol. 17, 335-342 (2006)<br />

[2] M. Varela, M. I. Real, M. Burrel et al. J. Hepatol. 46 (3), 474-481 (2007)<br />

[3] K. Malagari, K. Chatzimichael, E. Alexopoulou. Cardiovasc. Intervent. Radiol. 31 (2), 269-280 (2008)<br />

[4] M. V. G<strong>on</strong>zalez MV, Y. Tang, G. J. Phillips et al. J. Mater. Sci. Mater. Med. 19, 767-775 (2008)<br />

[5] J. J. Chuu, J. M. Liu, M. H. Tsou et al. J. Biomed. Sci.14 (2), 233-244 (2007)<br />

PA 74


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

The effect <strong>of</strong> alkali metal i<strong>on</strong>s <strong>on</strong> <strong>the</strong> electr<strong>on</strong>ic<br />

structure <strong>of</strong> p-anisic acid<br />

M. KALINOWSKA1, R. ŚWISŁOCKA 1,2 , E. REGULSKA 1 AND W. LEWANDOWSKI 1,2<br />

1 Department <strong>of</strong> Chemistry, Białystok Technical University,<br />

Zamenh<strong>of</strong>a 29, 15-435 Białystok, Poland<br />

2 College <strong>of</strong> Computer Science and Business Administrati<strong>on</strong> in ŁomŜa,<br />

Poznańska 141B Street, 18-400 ŁomŜa, Poland<br />

In order to understand <strong>the</strong> nature <strong>of</strong> <strong>the</strong> interacti<strong>on</strong>s <strong>of</strong> biologically important ligands it is<br />

necessary to carry out <strong>the</strong> physico-chemical studies <strong>of</strong> <strong>the</strong>se compounds with <strong>the</strong>ir biological<br />

targets (e.g., receptors in <strong>the</strong> cell or important cell comp<strong>on</strong>ents). Results <strong>of</strong> this study make it<br />

possible to predict some properties <strong>of</strong> a molecule, such as its reactivity, durability <strong>of</strong> complex<br />

compounds, and kinship to enzymes. In this paper <strong>the</strong> effect <strong>of</strong> alkali metal cati<strong>on</strong>s (Li, Na, K, Rb,<br />

Cs) <strong>on</strong> <strong>the</strong> electr<strong>on</strong>ic and molecular structure <strong>of</strong> p-methoxybenzoic acid (p-anisic acis) was studied.<br />

Methoxybenzoic acids are known to be important inhibitors in growth <strong>of</strong> bacteria and <strong>the</strong>y<br />

influence <strong>the</strong> catalytic activity <strong>of</strong> many enzymes [1]. From this point <strong>of</strong> view it is very important to<br />

study <strong>the</strong> effect <strong>of</strong> substitutents and metals <strong>on</strong> <strong>the</strong> above menti<strong>on</strong>ed biologically important ligands<br />

[2]. In this work <strong>the</strong> experimental IR (in solid state and soluti<strong>on</strong>), Raman, UV (in solid state and<br />

soluti<strong>on</strong>) and 1H, 13C NMR spectra <strong>of</strong> p-methoxybenzoic acid and its salts were registered, assigned<br />

and analyzed. Some <strong>of</strong> <strong>the</strong> obtained results were compared with published data for o- and m-anisic<br />

acid as well as o- and m-anisates. The structures <strong>of</strong> anisic acid and Li, Na and K p-anisates were<br />

optimised at <strong>the</strong> B3LYP/6-311++G** level. The IR, 1H and 13C NMR spectra and NPA, ChelpG and<br />

MK atomic charges were calculated.<br />

References<br />

[1] Qing-Xi Chen, Kang-Kang S<strong>on</strong>g, Ling Qiu, Xiao-Dan Liu, Huang Huang, Hua-Yun Guo, Food Chem. 91, 269-274<br />

(2005).<br />

[2] W. Lewandowski, M. Kalinowska, H. Lewandowska, J. Inorg. Biochem. 99, 1407-1423 (2005).<br />

PA 75


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

A differentiati<strong>on</strong> <strong>of</strong> <strong>the</strong> affinity <strong>of</strong> uranium(VI) to<br />

phosphate and carboxylic groups in native phosvitin<br />

studied by ATR FT-IR spectroscopy<br />

B. LI, J. RAFF, G BERNHARD AND H. FOERSTENDORF<br />

Institute <strong>of</strong> Radiochemistry, Forschungszentrum Dresden-Rossendorf,<br />

P.O Box 510119, D-01314 Dresden, Germany<br />

The toxicity <strong>of</strong> <strong>the</strong> uranium to <strong>the</strong> living organisms is because <strong>of</strong> its heavy metal characteristic.<br />

Proteins, <strong>the</strong> fundamental comp<strong>on</strong>ent <strong>of</strong> all living cells and <strong>the</strong> key to <strong>the</strong>ir metabolism, undergo<br />

c<strong>on</strong>formati<strong>on</strong>al changes up<strong>on</strong> <strong>the</strong> heavy metal complexati<strong>on</strong>, thus loss <strong>the</strong>ir proper cellular<br />

functi<strong>on</strong>. In this study, phosvitin, a highly water soluble 34 kDa protein c<strong>on</strong>taining roughly 35<br />

phosphate groups and 29 carboxylic residues, 1 is chosen as an ideal model system for <strong>the</strong><br />

spectroscopic investigati<strong>on</strong> <strong>of</strong> <strong>the</strong> interacti<strong>on</strong> <strong>of</strong> U(VI) with proteins allowing <strong>the</strong> differentiati<strong>on</strong><br />

between <strong>the</strong> U(VI)-phosphate and U(VI)-carboxylic complexati<strong>on</strong>. For this purpose, two different<br />

U(VI) c<strong>on</strong>centrati<strong>on</strong>s (10 − 4 M and 10 − 5 M) are set up at pH 4 with various amounts <strong>of</strong> phosvitin to<br />

acquire complexes with different U(VI)/phosphate group ratios. The aqueous soluti<strong>on</strong>s were<br />

investigated by ATR FT-IR spectroscopy. For <strong>the</strong> very first time, soluble protein U(VI) complexes<br />

are achieved in aqueous soluti<strong>on</strong> providing spectral evidence for U(VI) complexati<strong>on</strong> by <strong>the</strong><br />

unequivocal identificati<strong>on</strong> <strong>of</strong> <strong>the</strong> νas(UO2 2+) mode. The spectra <strong>of</strong> <strong>the</strong> soluble complex show that at<br />

a low U(VI)/phosphate ratio (1:10.2) U(VI) preferentially binds to <strong>the</strong> phosphate groups.<br />

Interestingly, <strong>the</strong> νas(UO2 2+) mode is found at 905 cm − 1 which is bathochromic shifted about 60 cm −1<br />

compared to <strong>the</strong> free uranyl i<strong>on</strong> 2 reflecting a str<strong>on</strong>g coordinati<strong>on</strong> to several phosphate groups.<br />

With increasing U(VI)/phosphate ratio, U(VI) complexati<strong>on</strong> to carboxylic groups is observed by a<br />

hypsochromic shift <strong>of</strong> <strong>the</strong> νas(UO2 2+) mode and characteristic bands <strong>of</strong> <strong>the</strong> νs(COO − ) and νas(COO − )<br />

modes. At a higher U(VI)/phosphate ratio (10:1), complexati<strong>on</strong> between U(VI) and carboxylic<br />

groups becomes dominant. From <strong>the</strong> observed frequency <strong>of</strong> this mode (925 cm −1) a typical bidental<br />

complexati<strong>on</strong> to U(VI) by carboxylic group can be assumed. 3 In order to reduce <strong>the</strong> impact <strong>of</strong> <strong>the</strong><br />

carboxylic groups <strong>on</strong> <strong>the</strong> U(VI) binding, phosvitin is modified using EDC. After subsequent<br />

incubati<strong>on</strong> with 10 − 3 M U(VI) in aqueous soluti<strong>on</strong> at pH 4, <strong>the</strong> obtained IR spectra <strong>of</strong> <strong>the</strong><br />

precipitated U(VI)-protein complex c<strong>on</strong>firm this assumpti<strong>on</strong>.<br />

References<br />

[1] Byrne, B. M., Van het Schip, A. D., Van de Klundert, J. A. M, Arnberg,´A. C., Gruber, M., Ab, G. Biochemistry<br />

(1984)<br />

[2] Müller, K.; Foerstendorf, H.; Tsushima, S.; Brendler, V.; Bernhard, G. J. Phys. Chem. A (<strong>2009</strong>) Accepted.<br />

[3] Kakihana, M., Nagumo, T., J. Phys. Chem. (1987)<br />

PA 76


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Charge transfer processes in potentially antioxidant<br />

benzopyranes: a SERS study<br />

N.F.L. MACHADO 1 , C. RUANO 2 , J.L. CASTRO 2 , J.C. OTERO 2 , M.P.M. MARQUES 1<br />

1. Molecular Physical-Chemistry R & D Unit, University <strong>of</strong> Coimbra,<br />

Rua Larga, 3005-535, Coimbra, Portugal<br />

2. Dept. <strong>of</strong> Physical Chemistry, Faculty <strong>of</strong> Sciences, University <strong>of</strong><br />

Málaga, E-29071, Málaga, Spain<br />

Benzopyrane-type heterocyclic compounds are natural products, widely distributed in plants,<br />

which are presently being studied as promising antioxidant agents. In view <strong>of</strong> <strong>the</strong>ir stability and<br />

low toxicity, this kind <strong>of</strong> compounds may c<strong>on</strong>stitute a safe and reliable opti<strong>on</strong> for use as additives<br />

in food and pharmaceutical industries, since a great number <strong>of</strong> <strong>the</strong> antioxidants currently<br />

employed are being rejected due to <strong>the</strong>ir toxicity [1]. Fur<strong>the</strong>rmore, benzopyrane-derivatives such<br />

as 1,4-benzopyr<strong>on</strong>es (also known as chrom<strong>on</strong>es) display recognised pharmacological properties,<br />

from anti-inflammatory to antimicrobial, antiallergic, antispasmodic and antitumor activities [2].<br />

Therefore, <strong>the</strong> study <strong>of</strong> <strong>the</strong> mechanisms through which <strong>the</strong>se compounds act, both in vitro and in<br />

vivo, is <strong>of</strong> <strong>the</strong> utmost relevance for understanding <strong>the</strong>ir biological role, allowing a rati<strong>on</strong>al design<br />

<strong>of</strong> novel and more efficient antioxidants for use as anti-inflammatory and anticancer agents. Since<br />

<strong>the</strong>re is a close relati<strong>on</strong>ship between activity and structure, it is essential to ga<strong>the</strong>r accurate<br />

c<strong>on</strong>formati<strong>on</strong>al data <strong>on</strong> <strong>the</strong> systems under investigati<strong>on</strong>. The present study aims at achieving this<br />

goal, using SERS (Surface Enhanced Raman Scattering) in silver colloids for <strong>the</strong> study <strong>of</strong> several<br />

benzopyrane derivates, in combinati<strong>on</strong> with quantum-mechanical calculati<strong>on</strong>s. The latter yields<br />

<strong>the</strong> lowest energy c<strong>on</strong>formers, <strong>the</strong>ir predicted vibrati<strong>on</strong>al spectra, as well as <strong>the</strong> Raman enhanced<br />

bands when <strong>the</strong> molecule is involved in metal-adsorbate res<strong>on</strong>ant charge transfer process. The<br />

widely employed hybrid method B3LYP, which includes a mixture <strong>of</strong> HF (Hartree-Fock) and DFT<br />

functi<strong>on</strong>als was applied. The harm<strong>on</strong>ic vibrati<strong>on</strong>al frequencies and <strong>the</strong> force field were calculated<br />

for <strong>the</strong> lowest energy c<strong>on</strong>former <strong>of</strong> each compound, while <strong>the</strong> force gradients in <strong>the</strong> excited CT<br />

state were obtained for <strong>the</strong> corresp<strong>on</strong>ding radical <strong>of</strong> each molecule, thus allowing <strong>the</strong> calculati<strong>on</strong><br />

<strong>of</strong> <strong>the</strong> corresp<strong>on</strong>ding CT-SERS intensities [3,4]. This approach allow us to detect charge transfer<br />

processes taking place between <strong>the</strong> molecule and <strong>the</strong> metal in a particular SERS by combining <strong>the</strong><br />

experimental results with <strong>the</strong> <strong>the</strong>oretical data and analysing <strong>the</strong> bands undergoing SERS<br />

enhancement.<br />

References<br />

[1] G. Williams et al., J Food Chem. Toxicol. 37, 1027–1038 (1999).<br />

[2] A. Foroumadi et al., Bioorg. & Med. Chem. Lett. 17, 6764-6769 (2007).<br />

[3] A. ten Wolde et al., J. Phys Chem. 98, 9437-9445 (1994).<br />

[4] F. Avila et al., J. Phys. Chem. C, , 113, 105-108 (<strong>2009</strong>).<br />

PA 77


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Ultrafast dynamics in heme<br />

and in heme-CO adduct <strong>of</strong> Tf-trHb<br />

A. MARCELLI 1 , I. JELOVICA BADOVINAC 2 , P. FOGGI 1,3 , C. GELLINI 4 , A. FEIS 4 , P. R. SALVI 4 ,<br />

G. SMULEVICH 4 , AND A. BOFFI 5<br />

1. LENS, University <strong>of</strong> Florence, Via N. Carrara 1, Sesto F.no (Fi), 50019,<br />

Italy, marcelli@lens.unifi.it<br />

2. Dept. <strong>of</strong> Physics, University <strong>of</strong> Rijeka, Omladinska 14, Rijeka, Croatia<br />

3. Dept. <strong>of</strong> Chemistry, University <strong>of</strong> Perugia, Via Elce di Sotto 8, Perugia,<br />

06100, Italy, and INOA-CNR, Florence, Italy<br />

4. Dept. <strong>of</strong> Chemistry, University <strong>of</strong> Florence, Via della Lastruccia 3,<br />

Sesto F.no (Fi), 50019, Italy<br />

5. Dept. <strong>of</strong> Biochemical Sciences, Università “La Sapienza” , Piazzale<br />

Aldo Moro 5, Roma, 00185, Italy<br />

Ligand photodissociati<strong>on</strong> with ultrashort laser pulses in hemoproteins-CO adducts is widely<br />

employed to unravel <strong>the</strong> elementary dynamical processes related to <strong>the</strong> functi<strong>on</strong>al properties <strong>of</strong><br />

<strong>the</strong>se proteins [1]. The characterizati<strong>on</strong> <strong>of</strong> <strong>the</strong> rebinding processes following CO photolysis allows<br />

us to obtain informati<strong>on</strong> about <strong>the</strong> active site organizati<strong>on</strong>. If <strong>the</strong> ligand remains near <strong>the</strong> metal, <strong>the</strong><br />

geminate recombinati<strong>on</strong> takes place; instead, if <strong>the</strong> ligand easily diffuses away, <strong>the</strong> chance <strong>of</strong><br />

ligand-metal encounters decreases. Here we present <strong>the</strong> results <strong>of</strong> a study <strong>on</strong> truncated<br />

hemoglobin from Thermobifida fusca (Tf-trHb) investigated with femtosec<strong>on</strong>d time-resolved UVvisible<br />

absorpti<strong>on</strong> spectroscopy. A fast geminate recombinati<strong>on</strong> following CO photolysis has been<br />

observed, suggesting that <strong>the</strong> ligand is c<strong>on</strong>fined within <strong>the</strong> heme pocket. The distal single<br />

TrpG8Phe and triple TyrB10Phe, TyrCD1Phe, TrpG8Phe mutants have been also investigated in<br />

order to understand <strong>the</strong> role <strong>of</strong> specific amino acids in <strong>the</strong> distal pocket. The phot<strong>on</strong> energy in<br />

excess to dissociati<strong>on</strong> is deposited initially into <strong>the</strong> heme, triggering a cascade <strong>of</strong> dynamical<br />

processes. The nature <strong>of</strong> <strong>the</strong> short lived intermediates generated instantaneously after photolysis is<br />

a topic <strong>of</strong> current interest in hemoprotein dynamics [2]. The time-resolved behavior <strong>of</strong> <strong>the</strong> Tf-trHb<br />

is discussed <strong>on</strong> <strong>the</strong> basis <strong>of</strong> electr<strong>on</strong>ic/vibrati<strong>on</strong>al results <strong>on</strong> heme [3] and porphyrin macrocycle<br />

[4].<br />

References<br />

[1] J.-L. Martin, M. H. Vos, Annu. Rev. Biophys. Biomol. Struct. 21, 199-222 (1992).<br />

[2] X. Ye, A. Demidov, F. Rosca, W. Wang, A. Kumar, D. I<strong>on</strong>ascu, L. Zhu, D. Barrick, D. Whart<strong>on</strong>, P. M. Champi<strong>on</strong>, J.<br />

Phys. Chem. A 107, 8156-8165 (2003).<br />

[3] J. R. Challa, T. C. Gunaratne, M. C. Simps<strong>on</strong>, J. Phys. Chem. B 110, 19956-19965 (2006).<br />

[4] A. Marcelli, P. Foggi, L. Mor<strong>on</strong>i, C. Gellini, P. R. Salvi, J. Phys. Chem. A 112, 1864-1872 (2008).<br />

PA 78


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Syn<strong>the</strong>sis and vibrati<strong>on</strong>al characterizati<strong>on</strong> <strong>of</strong><br />

dimethylsilanediol<br />

M.P.G. RODRÍGUEZ ORTEGA 1 , M. MONTEJO 1 , F. MÁRQUEZ 1 , A. MARCHAL 2 AND J. J. LÓPEZ<br />

GONZÁLEZ 1<br />

1. Dept. <strong>of</strong> Physical and Analytical Chemistry, University <strong>of</strong> Jaén,<br />

Campus Las Lagunillas, Ed. B3, Jaén, E-23071, Spain<br />

2. Dept. <strong>of</strong> Inorganic and Organic Chemistry, University <strong>of</strong> Jaén,<br />

Campus Las Lagunillas, Ed. B3, Jaén, E-23071, Spain<br />

Proteases are <strong>on</strong>e <strong>of</strong> <strong>the</strong> largest enzyme family encoded by <strong>the</strong> human genome, and <strong>the</strong> reacti<strong>on</strong><br />

that <strong>the</strong>y catalyze, <strong>the</strong> proteolysis, is <strong>of</strong> key importance in many physiological and pathological<br />

processes. Thus, <strong>the</strong> development <strong>of</strong> inhibitors <strong>of</strong> this type <strong>of</strong> enzymes has become an important<br />

target <strong>of</strong> pharmaceutical research.[1] In this field, peptidomimetics c<strong>on</strong>taining <strong>the</strong> silanediol group<br />

(silic<strong>on</strong> bio-isosteres), that have proven activity as inhibitors <strong>of</strong> metallo-proteases (namely, ACE<br />

and Thermolysin) and aspartic-proteases (e.g. <strong>the</strong> HIV protease) are being a matter <strong>of</strong> study.[2,3]<br />

Since <strong>the</strong> inhibiti<strong>on</strong> process occurs via <strong>the</strong> establishment <strong>of</strong> hydrogen b<strong>on</strong>ds between <strong>the</strong> inhibitor<br />

and <strong>the</strong> active site <strong>of</strong> <strong>the</strong> enzyme, <strong>the</strong> growing interest <strong>of</strong> this type <strong>of</strong> compounds could be justified<br />

by <strong>the</strong> remarkable properties <strong>of</strong> <strong>the</strong> silanodiol group as acceptor/d<strong>on</strong>or <strong>of</strong> hydrogen b<strong>on</strong>ds, <strong>the</strong><br />

stability <strong>of</strong> <strong>the</strong> diolic form <strong>of</strong> silanediols c<strong>on</strong>trasting <strong>the</strong> intrinsic instability towards <strong>the</strong> cet<strong>on</strong>ic<br />

form <strong>of</strong> <strong>the</strong>ir C analogs (gem-diols) and <strong>the</strong> slightly l<strong>on</strong>ger Si-OH distances comparing with <strong>the</strong> C-<br />

OH distances, am<strong>on</strong>g o<strong>the</strong>rs. Besides, <strong>the</strong> incidence <strong>of</strong> intramolecular hydrogen b<strong>on</strong>ding in <strong>the</strong>se<br />

silanediol derivatives seems to play a role in <strong>the</strong> stabilizati<strong>on</strong> <strong>of</strong> <strong>the</strong>ir molecular structures and,<br />

fur<strong>the</strong>r, in <strong>the</strong>ir biological activities. For <strong>the</strong>se reas<strong>on</strong>s, we think that a deep knowledge <strong>of</strong> <strong>the</strong><br />

chemistry <strong>of</strong> <strong>the</strong> silanodiol group in envir<strong>on</strong>ments <strong>of</strong> increasing complexity would result <strong>of</strong> capital<br />

interest to: (i) understand <strong>the</strong> relati<strong>on</strong>s between <strong>the</strong> molecular structure and <strong>the</strong> biological activity<br />

<strong>of</strong> <strong>the</strong>se compounds; (ii) achieve a better comprehensi<strong>on</strong> <strong>of</strong> <strong>the</strong> inhibiti<strong>on</strong> process; and (iii) lay <strong>the</strong><br />

foundati<strong>on</strong>s for <strong>the</strong> development <strong>of</strong> a methodology <strong>of</strong> rati<strong>on</strong>al design <strong>of</strong> silanodiol-based<br />

proteases’ inhibitors. Never<strong>the</strong>less, despite <strong>the</strong> growing interest in <strong>the</strong>se species, <strong>the</strong>re is a lack <strong>of</strong><br />

ei<strong>the</strong>r <strong>the</strong>oretical or experimental works dealing with <strong>the</strong>ir structural characterizati<strong>on</strong>, maybe<br />

because <strong>of</strong> <strong>the</strong> size <strong>of</strong> <strong>the</strong> systems and <strong>the</strong> complexity <strong>of</strong> <strong>the</strong>ir c<strong>on</strong>formati<strong>on</strong>al space. For <strong>the</strong>se<br />

reas<strong>on</strong>s, to accomplish <strong>the</strong>ir study, studying systematically <strong>the</strong> molecular structures and<br />

vibrati<strong>on</strong>al spectra (as a tool for structural characterizati<strong>on</strong>) <strong>of</strong> relatively simple alkylsilanediols <strong>of</strong><br />

moderate size, such as dimethylsilanediol, diethylsilanediol, diphenylsilanediol, etc., will result<br />

useful. Following this methodology, <strong>the</strong> goal <strong>of</strong> <strong>the</strong> present work has been <strong>the</strong> syn<strong>the</strong>sis <strong>of</strong> <strong>the</strong><br />

simplest possible alkylsilanediol, namely dimethylsilanediol, and <strong>the</strong> study <strong>of</strong> its relati<strong>on</strong>s<br />

vibrati<strong>on</strong>al spectra/structure by means <strong>of</strong> <strong>the</strong> combined use <strong>of</strong> quantum chemical calculati<strong>on</strong>s and<br />

IR and Raman spectroscopies.<br />

References<br />

[1] J-T. Nguyen, Y. Hamada, T. Kimura, Y. Kiso, Arch. Pharm. Chem. Life Sci. 341, 523-535 (2008) and references<br />

<strong>the</strong>rein.<br />

[2] S. McN. Sieburth, C-A. Chen, Eur. J. Org. Chem. 2, 311-322 (2006) and references <strong>the</strong>rein.<br />

[3] L. Nielsen, T. Skrydstrup, J. Am. Chem. Soc. 130, 13145-13151 (2008).<br />

PA 79


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Semiempirical model for <strong>the</strong> combined analysis <strong>of</strong><br />

structural and spectral observables <strong>of</strong> heme proteins<br />

M. P. MARZOCCHI AND A. BELSHI<br />

Dept. <strong>of</strong> Chemistry, University <strong>of</strong> Firenze, Via della Lastruccia 3, Sesto<br />

Fiorentino (FI), I-50019, Italy<br />

A comprehensive analysis <strong>of</strong> informati<strong>on</strong> available from absorpti<strong>on</strong> and res<strong>on</strong>ance Raman (RR)<br />

spectra, and X-ray crystallography <strong>of</strong> heme peroxidases and mutants involving residues close to<br />

<strong>the</strong> heme has been recently published [1]. The extensive data <strong>of</strong> <strong>the</strong> ferric state show that <strong>the</strong> heme<br />

ir<strong>on</strong> sixth coordinati<strong>on</strong> site is vacant or bound weakly to water. The c<strong>on</strong>formati<strong>on</strong> <strong>of</strong> <strong>the</strong> heme<br />

chromophore which is affected by both <strong>the</strong> peripheral substituents and heme-protein interacti<strong>on</strong>s<br />

can play an important role <strong>on</strong> <strong>the</strong> enzyme functi<strong>on</strong>ality [2]. An empirical relati<strong>on</strong>ship between <strong>the</strong><br />

c<strong>on</strong>formati<strong>on</strong> <strong>of</strong> vinyl group in positi<strong>on</strong> 2 and <strong>the</strong> RR νC=C stretching frequencies (cm -1) has been<br />

established [3]. In <strong>the</strong> present work we propose a semiempirical model involving spectroscopic<br />

(electr<strong>on</strong>ic absorpti<strong>on</strong> and RR spectra) and structural (Fe-Ligand distances) observables which are<br />

functi<strong>on</strong>, f(τ2), f(τ4), and f(τN), <strong>of</strong> <strong>the</strong> torsi<strong>on</strong> angles <strong>of</strong> <strong>the</strong> peripheral substituents, 2- and 4-vinyl<br />

groups, and <strong>the</strong> proximal imidazole <strong>of</strong> <strong>the</strong> histidine residue. The model is applied to plant<br />

peroxidases (Fig. 1, points 1-9), metmyoglobins (10-13), and a hemoglobin (14). The Cartesian f(τ),<br />

2D polar f(φ), and 3D polar f(θ,φ) functi<strong>on</strong>s are characterized by δ, <strong>the</strong> phase angle, defining <strong>the</strong><br />

orientati<strong>on</strong> <strong>of</strong> <strong>the</strong> torsi<strong>on</strong> axis about <strong>the</strong> Fe-N axis and by <strong>the</strong> maximal and minimal values <strong>of</strong> <strong>the</strong><br />

observable, taken as parameters. For δ=0, f(τ) shows maxima at τ = ± π/4, ± 3π/4 radiants, f(φ)<br />

points at <strong>the</strong> same angles, and f(θ,φ) represents <strong>the</strong> real angular part <strong>of</strong> <strong>the</strong> Fe 3dπ orbitals in terms<br />

<strong>of</strong> spherical harm<strong>on</strong>ics. The combined analysis <strong>of</strong> spectral and structural data allowed us to find: a)<br />

<strong>the</strong> absorpti<strong>on</strong> and RR frequency from <strong>the</strong> Fe-ligand distance and viceversa (Fig.1), b) <strong>the</strong><br />

dispositi<strong>on</strong> <strong>of</strong> <strong>the</strong> chain <strong>of</strong> atoms involved in electr<strong>on</strong> c<strong>on</strong>jugati<strong>on</strong>, and c) <strong>the</strong> interati<strong>on</strong>s between<br />

<strong>the</strong> heme and protein helices, <strong>the</strong> helix axis orientati<strong>on</strong>s being related to <strong>the</strong> torsi<strong>on</strong> axis<br />

orientati<strong>on</strong>s <strong>of</strong> <strong>the</strong> observable as indicated by <strong>the</strong> phase angles, δ.<br />

Fig. 1 – Observed and calculated frequencies <strong>of</strong> RR ν 3 mode (left) and distances r(Fe-O) (right)<br />

References<br />

[1] G. Smulevich, A. Feis, B.D. Howes, Acc.Chem.Res. 38, 433-440 (2005)<br />

[2] B. D. Howes, C.B. Schiødt, K.G. Welinder, M.P. Marzocchi, J.-G. Ma, J. Zhang, J. Shelnutt, G. Smulevich,<br />

Biophys.J. 77, 478-492 (1999)<br />

[3] M. P. Marzocchi, G. Smulevich, J. Raman Spectrosc. 34, 725-736 (2003)<br />

PA 80


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Raman spectra <strong>of</strong> hemoglobin: Three excitati<strong>on</strong> wavelengths<br />

M.POLAKOVS 1 , N. MIRONOVA-ULMANE 1 , I. SILDOS 2 , AND M. PÄRS 2<br />

1. Institute <strong>of</strong> Solid State Physics, University <strong>of</strong> Latvia, Kengaraga 8 LV-1063, Riga, Latvia<br />

2. Institute <strong>of</strong> Physics, University <strong>of</strong> Tartu, Rija 142 Tartu, Est<strong>on</strong>ia<br />

Res<strong>on</strong>ance Raman (RR) spectroscopy is a particularly sensitive probe for studying <strong>the</strong> electr<strong>on</strong>ic<br />

and structural properties <strong>of</strong> metalloporphyrin complexes including haemoglobin (Hb) and<br />

myoglobin. The interpretati<strong>on</strong> <strong>of</strong> <strong>the</strong> intense spectra obtained from metalloporphyrin complexes<br />

has been based <strong>on</strong> vibr<strong>on</strong>ically induced scattering from <strong>the</strong> B (Soret) or Q states from <strong>the</strong><br />

porphyrin macrocycle. Res<strong>on</strong>ance Raman scattering from Hb occurs <strong>on</strong>ly at its surrounding<br />

ligands group because <strong>on</strong>ly this part <strong>of</strong> <strong>the</strong> molecule absorbs in <strong>the</strong> visible and near ultraviolet<br />

regi<strong>on</strong>. Thus it is possible to investigate exclusively vibrati<strong>on</strong>s <strong>of</strong> <strong>the</strong> four heme groups <strong>of</strong> Hb<br />

without interference by scattering <strong>of</strong> <strong>the</strong> surrounding globin or o<strong>the</strong>r parts <strong>of</strong> <strong>the</strong> red blood cell<br />

(RBC) or erythrocyte. In this technique, laser excitati<strong>on</strong> within an electr<strong>on</strong>ic absorpti<strong>on</strong> band<br />

produces selective enhancement <strong>of</strong> Raman bands associated with vibrati<strong>on</strong>s <strong>of</strong> <strong>the</strong> protein. In <strong>the</strong><br />

case <strong>of</strong> heme proteins, vibrati<strong>on</strong>s <strong>of</strong> <strong>the</strong> porphyrin ring are enhanced due to res<strong>on</strong>ance with <strong>the</strong> ̟-<br />

̟* transiti<strong>on</strong>s which dominate near ultraviolet absorpti<strong>on</strong> spectra. (<strong>the</strong> Soret band) and <strong>the</strong> visible<br />

(<strong>the</strong> α-β band). Different Raman scattering bands are brought out by excitati<strong>on</strong> in <strong>the</strong> regi<strong>on</strong>s <strong>of</strong> <strong>the</strong><br />

Soret absorpti<strong>on</strong> band or <strong>of</strong> <strong>the</strong> α-β absorpti<strong>on</strong> bands [1-3]. In this paper, we report <strong>the</strong> applicati<strong>on</strong><br />

<strong>of</strong> <strong>the</strong> Raman technique to study hemoglobin (Hb) in single erythrocyte using three different laser<br />

excitati<strong>on</strong> lines: ultraviolet (441.6), visible (514.5 nm) and near-infrared (NIR; 830 nm). The Raman<br />

spectra <strong>of</strong> <strong>the</strong> hemoglobin in single erythrocytes were recorded <strong>on</strong> ”Nan<strong>of</strong>inder-S” using <strong>the</strong> 441.6<br />

nm excitati<strong>on</strong> line and <strong>on</strong> a Renishaw Via instrument using 514.5 nm excitati<strong>on</strong> radiati<strong>on</strong> from a<br />

arg<strong>on</strong> laser system and 830 nm from diode laser. The Raman excitati<strong>on</strong> line used in 441.6 nm<br />

cause res<strong>on</strong>ance enhancement with absorpti<strong>on</strong> band 415 nm (Soret band). The local coordinate <strong>of</strong><br />

this band (pyrrole half ring stretching vibrati<strong>on</strong>) involves principally C–N stretching. We report<br />

<strong>the</strong> unusual enhancement <strong>of</strong> several bands in Raman scattering spectra <strong>of</strong> hemoglobin at excitati<strong>on</strong><br />

line 830 nm compared with <strong>the</strong> 441.6 and 514.5 nm wavelengths investigated. The origin <strong>of</strong><br />

unusual enhancement <strong>of</strong> Raman scattering bands <strong>of</strong> hemoglobin will be discussed.<br />

References<br />

[1] B. R. Wood and D. McNaught<strong>on</strong>, Biopolymers 67, 259–262, 2002<br />

[2] B. R. Wood and D. McNaught<strong>on</strong>, J. Raman Spectrosc. 517–523, 2002<br />

[3] K.Ramser, K. Logg Goksör J. Enger, M. Käll, D. Hanstorp, Journal <strong>of</strong> Biomedical Optics 9(3), 593–600, 2004<br />

PA 81


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Vibrati<strong>on</strong>al spectroscopic investigati<strong>on</strong> <strong>of</strong> efavirenz<br />

using density-functi<strong>on</strong>al <strong>the</strong>ory<br />

S. MISHRA 1 , D. CHTURVEDI 1 , A. SRIVASTAVA 1 , P. TANDON 1 AND A.P. AYALA 2<br />

1. Dept. <strong>of</strong> Physics, University <strong>of</strong> Lucknow, Lucknow 226 007, India<br />

2. Departamento de Física, Universidade Federal do Ceará, C. P. 6030,<br />

60.455-900 Fortaleza, CE, Brazil<br />

Efavirenz, (S)-6-chloro-4(cyclopropylethynyl)-1, 4-dihydro-4-(trifluoromethyl)-2H-3,1-benzoxazin-<br />

2-<strong>on</strong>e, is a novel anti HIV agent bel<strong>on</strong>ging to <strong>the</strong> class <strong>of</strong> <strong>the</strong> n<strong>on</strong>-nucleoside inhibitors <strong>of</strong> <strong>the</strong> HIV-<br />

1 virus reverse transcriptase [1]. Experimentally, infrared and Raman spectroscopy and<br />

<strong>the</strong>oretically DFT based quantum chemical calculati<strong>on</strong>s have been used to understand <strong>the</strong><br />

structural and spectral characteristics <strong>of</strong> efavirenz. Based <strong>on</strong> <strong>the</strong>se results, we have discussed <strong>the</strong><br />

correlati<strong>on</strong> between <strong>the</strong> vibrati<strong>on</strong>al modes and <strong>the</strong> crystalline structure <strong>of</strong> <strong>the</strong> most stable form <strong>of</strong><br />

efavirenz. Electrostatic potential surfaces have been mapped over <strong>the</strong> electr<strong>on</strong> density isosurfaces<br />

to obtain informati<strong>on</strong> about <strong>the</strong> size, shape, charge density distributi<strong>on</strong> and chemical reactivity <strong>of</strong><br />

<strong>the</strong> molecules. A complete analysis <strong>of</strong> <strong>the</strong> experimental infrared and Raman spectra has been<br />

reported <strong>on</strong> <strong>the</strong> basis <strong>of</strong> frequency <strong>of</strong> <strong>the</strong> vibrati<strong>on</strong>al bands and potential energy distributi<strong>on</strong> over<br />

<strong>the</strong> internal coordinates from DFT/6-311G computati<strong>on</strong>s and characteristic bands have been<br />

identified. Plots <strong>of</strong> infrared and Raman spectra <strong>of</strong> <strong>the</strong> molecule based <strong>on</strong> DFT calculati<strong>on</strong>s show<br />

reas<strong>on</strong>able agreement with <strong>the</strong> experimental spectra.<br />

References<br />

Fig. 1 – Structure <strong>of</strong> molecule Efavirenz.<br />

[1] J. C. Adkins, S. Noble, Efavirenz Drugs 56, 1055–1064 (1998).<br />

PA 82


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

FTIR spectroscopic investigati<strong>on</strong>s <strong>of</strong> Co(II)-dextran<br />

complexes by using D2O isotopic exchange<br />

Z. MITIC 1 , M. CAKIC 2 AND G. S. NIKOLIC 2<br />

1. Dept. <strong>of</strong> Pharmacy, Faculty <strong>of</strong> Medicine, University <strong>of</strong> Niš, Bul. dr<br />

Zorana ðinñića 81, RS-18000 Niš, Serbia<br />

2. Dept. <strong>of</strong> Chemistry, Faculty <strong>of</strong> Technology, University <strong>of</strong> Niš, Bul.<br />

Osloboñenja 124, RS-16000 Leskovac, Serbia<br />

In <strong>the</strong> field <strong>of</strong> biocoordinati<strong>on</strong> chemistry a lot <strong>of</strong> investigati<strong>on</strong>s are based <strong>on</strong> <strong>the</strong> syn<strong>the</strong>sis and<br />

characterizati<strong>on</strong>s <strong>of</strong> different metal complexes <strong>of</strong> ligands <strong>the</strong>y present in biological systems, or<br />

syn<strong>the</strong>tic ligands, which will serve like <strong>the</strong> model-molecules for complex biomolecular structures.<br />

Bio- or syn<strong>the</strong>tic ligands are mainly natural chemical compounds <strong>of</strong> macromolecular type. In this<br />

group <strong>of</strong> products <strong>of</strong> <strong>the</strong> special importance are chemical compounds <strong>of</strong> polysaccharide dextran,<br />

pullulan and inulin with cati<strong>on</strong>s <strong>of</strong> <strong>the</strong> different d-biometals (Cu(II), Co(II), Zn(II) and Fe(III)). It is<br />

well known that raw microbiological exopolysaccharides dextran and pullulan, are glucose<br />

polymers with <strong>the</strong> large molar mass from a few milli<strong>on</strong>s g/mol, with own toxic and antigen<br />

characteristics so that <strong>the</strong>y are not <strong>of</strong> pharmaceutical importance. For commercial reas<strong>on</strong>s raw<br />

polysaccharides were depolymerized to <strong>the</strong> products with adequate molar masses, with <strong>the</strong> aim <strong>of</strong><br />

getting fracti<strong>on</strong>s with narrow molar mass distributi<strong>on</strong>. FTIR spectroscopic techniques (RT-FTIR,<br />

LNT-FTIR, D2O-FTIR, and ATR-FTIR) are applying in <strong>the</strong> structure analysis <strong>of</strong> polysaccharides<br />

and syn<strong>the</strong>sized complexes, as well as for <strong>the</strong> c<strong>on</strong>firmati<strong>on</strong> <strong>of</strong> suggested types <strong>of</strong> complex<br />

structure and for <strong>the</strong> testing <strong>of</strong> homogeneities <strong>of</strong> samples [1−5]. Complexes <strong>of</strong> Co(II) i<strong>on</strong> with<br />

reduced low-molar dextran (RLMD) derivatives Mw=5000−6000 g/mol, were syn<strong>the</strong>sized in <strong>the</strong><br />

water soluti<strong>on</strong>s, at <strong>the</strong> boiling temperature and at different pH values (7−13.5). Complexes <strong>of</strong><br />

bivalent Co i<strong>on</strong> with RLMD, <strong>the</strong>ir spectroscopic RT-FTIR and D2O-FTIR characterizati<strong>on</strong>, as well as<br />

<strong>the</strong> spectra-structure correlati<strong>on</strong>, was investigated in this work. The samples <strong>of</strong> Co(II) i<strong>on</strong><br />

complexes with RLMD were deuterated (D2O, Merck) for 2 hours, at room temperature, in<br />

vacuum. FTIR spectra as an average <strong>of</strong> 40 scans were recorded at room temperature (RT) <strong>on</strong> a<br />

BOMEM MB-100 FTIR spectrometer (Hartmann & Braun, Canada) equipped with a standard<br />

DTGS/KBr detector in <strong>the</strong> range 4000−400 cm − 1 with a resoluti<strong>on</strong> <strong>of</strong> 2 cm − 1 by <strong>the</strong> Win–Bomem<br />

Easy s<strong>of</strong>tware. FTIR investigati<strong>on</strong> <strong>of</strong> Co(II)-RLMD complexes by D2O isotopic exchange proved to<br />

be a very sensitive method for determining OH group coordinati<strong>on</strong> and is related to <strong>the</strong> hydrogen<br />

b<strong>on</strong>d strength. Results <strong>of</strong> our investigati<strong>on</strong>s points to <strong>the</strong> dextran and <strong>the</strong>ir complexes with Co(II)<br />

i<strong>on</strong> are crystal hydrate molecules. Correlati<strong>on</strong> <strong>of</strong> physicochemical, spectrophotometric and<br />

spectroscopic investigati<strong>on</strong>s <strong>of</strong> <strong>the</strong>se complexes, coordinati<strong>on</strong> chemistry <strong>of</strong> Co(II) i<strong>on</strong>, structure <strong>of</strong><br />

exopolysaccharide chain, are suggesting different model structures <strong>of</strong> <strong>the</strong> syn<strong>the</strong>sized complexes.<br />

References<br />

[1] M. Cakić, Ž. Mitić, G.S. Nikolić, Lj. Ilić, G.M. Nikolić, <strong>Spectroscopy</strong> 22(2–3), 177–185 (2008).<br />

[2] R.G. Zhbankov, V.M. Andrianova, M.K. Marchewka, J. Mol. Struct. 436−437, 637−654 (1997).<br />

[3] Ž. Mitić, G.S. Nikolić, M. Cakić, P. Premović, Lj. Ilić, J. Mol. Struct. 924–926, 264–273 (<strong>2009</strong>).<br />

[4] Ž. Mitić, G.S. Nikolić, M. Cakić, et al., Russ. J. Phys. Chem. 81(9), 1433–1437 (2007).<br />

[5] Ž. Mitić, G.S. Nikolić, M. Cakić, et al., XII <str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Spectroscopy</strong> <strong>of</strong> Biological Molecules<br />

(ECSBM'2007), Paris France, 319 (2007).<br />

PA 83


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Adsorbate-induced aggregati<strong>on</strong> <strong>of</strong> silver colloids and<br />

irreversible loss <strong>of</strong> SERS signal due to irradiati<strong>on</strong><br />

P. MOJZEŠ, J. PALACKÝ, AND B. LÁSKOVÁ<br />

Institute <strong>of</strong> Physics, Faculty <strong>of</strong> Ma<strong>the</strong>matics and Physics, Charles<br />

University in Prague, Ke Karlovu 5, Prague 2, CZ-12116, Czech Republic<br />

Temporal evoluti<strong>on</strong> <strong>of</strong> <strong>the</strong> SERS spectra <strong>of</strong> a cati<strong>on</strong>ic porphyrin CuTMPyP4 was studied as a<br />

functi<strong>on</strong> <strong>of</strong> aggregati<strong>on</strong> state <strong>of</strong> <strong>the</strong> borohydride-reduced Ag colloids. As <strong>the</strong> CuTMPyP4 is known<br />

to be an effective aggregating agent and excellent SERS-reporting molecule [1], using Ag colloids<br />

differing in surface potential and/or various c<strong>on</strong>centrati<strong>on</strong> ratio between <strong>the</strong> colloidal particles<br />

and adsorbate molecules, different aggregati<strong>on</strong> states can be finely tuned. Laser excitati<strong>on</strong> at 441.6<br />

nm coincident with both <strong>the</strong> CuTMPyP4 Soret absorpti<strong>on</strong> band and <strong>the</strong> <strong>on</strong>set <strong>of</strong> plasm<strong>on</strong><br />

absorpti<strong>on</strong> <strong>of</strong> n<strong>on</strong>aggregated as well as aggregated Ag colloids was selected to ensure comparable<br />

plasm<strong>on</strong> res<strong>on</strong>ances for entire range <strong>of</strong> aggregati<strong>on</strong> states [1]. SERS spectra were acquired as<br />

temporal series with short accumulati<strong>on</strong> times (0.1 – 1 s), covering at a time spectral range<br />

including also stretching bands <strong>of</strong> bulk water (~3400 cm -1) employed as an internal intensity<br />

standard for precise SERS intensity normalizati<strong>on</strong>. It was found that normalized SERS intensity<br />

from macroscopic volumes <strong>of</strong> <strong>the</strong> colloids aggregated by additi<strong>on</strong> <strong>of</strong> <strong>the</strong> CuTMPyP4 exhibits<br />

exp<strong>on</strong>ential decay in <strong>the</strong> course <strong>of</strong> c<strong>on</strong>tinuous laser irradiati<strong>on</strong>, similar to that reported recently for<br />

Au colloids [2]. Although SERS signal from more aggregated colloids was more intense<br />

immediately after exposure to <strong>the</strong> laser beam, it decreased rapidly to a c<strong>on</strong>stant level as <strong>the</strong><br />

irradiati<strong>on</strong> c<strong>on</strong>tinued for dozens <strong>of</strong> sec<strong>on</strong>ds. No Raman signs <strong>of</strong> graphitic carb<strong>on</strong> or o<strong>the</strong>r<br />

photoproducts were identified in <strong>the</strong> spectra. Total intensity loss (up to 80% decrease) and decay<br />

rates (typically two-exp<strong>on</strong>ential; time c<strong>on</strong>stants τ1~10 s and τ2~100 s) were found to be related to<br />

aggregati<strong>on</strong> induced by <strong>the</strong> absorbate. C<strong>on</strong>versely, SERS signal from colloidal systems exhibiting<br />

no apparent signs <strong>of</strong> aggregati<strong>on</strong> <strong>on</strong> additi<strong>on</strong> <strong>of</strong> <strong>the</strong> CuTMPyP4 remained c<strong>on</strong>stant even over l<strong>on</strong>grun<br />

exposures. Signal decrease can be explained supposing two SERS c<strong>on</strong>tributi<strong>on</strong> from <strong>the</strong><br />

adsorbates localized at <strong>the</strong> sites <strong>of</strong> different morphology. The porphyrin fracti<strong>on</strong> attached to <strong>the</strong><br />

surface <strong>of</strong> isolated colloidal particles seems to be resp<strong>on</strong>sible for lower but exposure-time<br />

independent SERS signal. Molecules residing between aggregated colloidal particles, i.e. in <strong>the</strong> hot<br />

spots [2, 3], are exposed to c<strong>on</strong>siderably str<strong>on</strong>ger electric fields [2, 3], <strong>the</strong>ir SERS enhancement is<br />

greater, however irreversibly disappearing with <strong>the</strong> exposure time. Similar loss <strong>of</strong> <strong>the</strong> signal was<br />

reported previously [3] at microscopic level as an abrupt terminati<strong>on</strong> <strong>of</strong> spectral and intensity<br />

fluctuati<strong>on</strong>s <strong>of</strong> single-molecule SERS due to irreversible photoinduced desorpti<strong>on</strong> <strong>of</strong> <strong>the</strong> adsorbate<br />

from <strong>the</strong> hot spot. Presence <strong>of</strong> two slightly different spectral forms <strong>of</strong> <strong>the</strong> CuTMPyP4 disclosed by<br />

multivariate statistical treatment <strong>of</strong> <strong>the</strong> time-evolving SERS spectra seems to indicate that spectral<br />

fluctuati<strong>on</strong>s in <strong>the</strong> hot spots or spectral differences due distinct microenvir<strong>on</strong>ments are not<br />

completely masked ei<strong>the</strong>r in <strong>the</strong> macroscopic colloidal ensembles.<br />

References<br />

[1] M. Prochazka, P. Mojzes, B. Vlckova, P.-Y. Turpin, J. Phys. Chem. B 101, 3161-3167 (1997).<br />

[2] K. W. Kho, Z. X. Shen, Z. Lei, F. Watt, K. C. Soo, M. Olivo, Anal. Chem. 79, 8870-8882 (2007).<br />

[3] A. Weiss, G. Haran, J. Phys. Chem. B 105, 12348-12354 (2001).<br />

PA 84


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Raman <strong>Spectroscopy</strong> for Arsenic Speciati<strong>on</strong><br />

D. GLORIA 1 , D.B. HIBBERT 1 , G. MORAN 1,2 , S. FOSTER 3 AND W. MAHER 3<br />

1. School <strong>of</strong> Chemistry, University <strong>of</strong> New South Wales, Sydney, NSW<br />

2052, Australia<br />

2. UNSW Analytical Centre, University <strong>of</strong> New South Wales, Sydney,<br />

NSW 2052, Australia<br />

3. Institute for Applied Ecology, University <strong>of</strong> Canberra, Canberra, ACT<br />

2601, Australia<br />

Arsenic speciati<strong>on</strong> is <strong>of</strong> c<strong>on</strong>siderable importance in envir<strong>on</strong>mental toxicology, with effects ranging<br />

from very high toxicity for inorganic arsenite to low toxicity for arsenobetaine. In this work, we<br />

explore <strong>the</strong> potential <strong>of</strong> Surface Enhanced Raman <strong>Spectroscopy</strong> (SERS) as a technique for arsenic<br />

speciati<strong>on</strong>. Few arsenic compounds have been characterized by Raman spectroscopy. Many <strong>of</strong> <strong>the</strong><br />

important species <strong>of</strong> envir<strong>on</strong>mental significance are not commercially available and must be<br />

extracted and chromatographically purified from marine or o<strong>the</strong>r organisms. In collaborati<strong>on</strong> with<br />

<strong>the</strong> Institute for Applied Ecology at <strong>the</strong> University <strong>of</strong> Canberra we are setting up a Raman and a<br />

SERS library <strong>of</strong> envir<strong>on</strong>mental arsenic compounds. We are also exploring SERS-based sensing as<br />

an approach to portable analysers for arsenic compounds. Nanostructured gold SERS substrates<br />

are prepared electrochemically and characterized by atomic force microscopy. Optimisati<strong>on</strong> <strong>of</strong><br />

SERS substrates is carried out using a two-level full factorial experimental design with aromatic<br />

thiols as test analytes. These gold surfaces are also being compared with commercial SERS<br />

substrates for applicati<strong>on</strong> to arsenic analysis.<br />

PA 85


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Unique perspective <strong>of</strong> FTIR-microscopy: Predicting<br />

relapse <strong>of</strong> col<strong>on</strong>ic malignancy<br />

R. K. SAHU 1 , S. ARGOV 2 , S. WALFISCH 3 , E. BOGOMOLNY 1 , R. MOREH 1 AND<br />

S. MORDECHAI 1 *<br />

1. Department <strong>of</strong> Physics and <strong>the</strong> Cancer Research Center, BGU, Beer-<br />

Sheva, 84105, Israel<br />

2. Department <strong>of</strong> Pathology, SUMC, Beer-Sheva 84105, Israel.<br />

3. Colorectal Unit, SUMC, Beer-Sheva, 84105, Israel.<br />

This study aimed to determine <strong>the</strong> potential <strong>of</strong> IR-spectroscopy to diagnose abnormality in<br />

histologically normal resecti<strong>on</strong> margins for predicting relapse in col<strong>on</strong> cancer patients. The present<br />

study re-evaluates normal looking resecti<strong>on</strong> margins for abnormal crypt proliferati<strong>on</strong>. Resecti<strong>on</strong><br />

margins <strong>of</strong> 10 col<strong>on</strong> cancer patients (27 biopsies and 225 crypts in total), found completely normal<br />

by standard histology were reevaluated to identify signs <strong>of</strong> abnormality using Fourier transform<br />

infrared microscopy (FTIR-MSP). Absorbance in <strong>the</strong> regi<strong>on</strong> 900-1185 cm -1 arising from<br />

carbohydrates and nucleic acids was found to be <strong>the</strong> most effective variate for such evaluati<strong>on</strong>.<br />

Discriminant Classificati<strong>on</strong> Functi<strong>on</strong> (DCF) analysis was also used in parallel to c<strong>on</strong>firm <strong>the</strong><br />

diagnosis. The abnormal crypts detected using <strong>the</strong> above optical method were correlated with a<br />

relapse in <strong>the</strong> patients’ history. The good agreement between <strong>the</strong> biopsy status as determined by<br />

<strong>the</strong> optical methodology and <strong>the</strong> relapse <strong>of</strong> col<strong>on</strong>ic malignancy based <strong>on</strong> <strong>the</strong> patients’ medical files,<br />

establishes <strong>the</strong> potential <strong>of</strong> FTIR-MSP for medical purposes and hints at future clinical evaluati<strong>on</strong><br />

<strong>of</strong> <strong>the</strong> biopsies using this technique to predict relapse <strong>of</strong> col<strong>on</strong>ic malignancy.<br />

References<br />

DCF value<br />

-15<br />

0 5 10 15 20 25<br />

PA 86<br />

15<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

Biopsy number<br />

Fig. 1 - Classificati<strong>on</strong> <strong>of</strong> biopsies based <strong>on</strong> <strong>the</strong> DCF scores to show<br />

abnormal and normal biopsies. Abnormal biopsies lie above <strong>the</strong> 0-0<br />

line and indicate a high risk <strong>of</strong> relapse for <strong>the</strong> patient. The sigmoid<br />

curve indicates a transiti<strong>on</strong> from normal to abnormal.<br />

[1] Sahu, R. K. et al. Detecti<strong>on</strong> <strong>of</strong> abnormal proliferati<strong>on</strong> in histologically 'normal' col<strong>on</strong>ic biopsies using FTIRmicrospectroscopy.<br />

Scand. J Gastroenterology, 39, 557-66 (2004).<br />

[2] Eastwood, G. L. Gastrointestinal epi<strong>the</strong>lial renewal. Gastroenterology, 72, 962-75 (1977)


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Gas-phase IR/UV spectroscopy <strong>of</strong> prot<strong>on</strong>ated antibiotic<br />

gramicidin S<br />

N. S. NAGORNOVA, T. R. RIZZO AND O. V. BOYARKIN<br />

Laboratoire de Chimie Physique Moléculaire, École Polytechnique<br />

Fédérale de Lausanne, Stati<strong>on</strong>-6, CH-1015 Lausanne, Switzerland<br />

Infrared (IR) spectroscopy <strong>of</strong> biomolecules in <strong>the</strong> gas-phase is capable to provide data for isolated,<br />

solvent free species, in <strong>the</strong> form <strong>of</strong> sets <strong>of</strong> vibrati<strong>on</strong>al frequencies. Each set, if measured <strong>on</strong> <strong>the</strong><br />

same c<strong>on</strong>former <strong>of</strong> a molecule, c<strong>on</strong>stitutes a spectroscopic signature that can be used to test and to<br />

calibrate <strong>the</strong>ory. We employ an IR-UV laser double res<strong>on</strong>ance photo-fragmentati<strong>on</strong> approach to<br />

measure c<strong>on</strong>former-selective IR spectra <strong>of</strong> prot<strong>on</strong>ated peptides, cooled to T=10K in a 22-pole linear<br />

i<strong>on</strong> trap [1, 2]. Deep cooling allows suppressi<strong>on</strong> <strong>of</strong> <strong>the</strong>rmal c<strong>on</strong>gesti<strong>on</strong> and drastically increases<br />

spectral resoluti<strong>on</strong> in UV and IR spectra. Here we study str<strong>on</strong>gly bounded cyclic peptide<br />

gramicidin S. This molecule is a natural antibiotic, and its beta-sheet structures in soluti<strong>on</strong> and in<br />

crystal have been determined by NMR and by X-ray methods. In <strong>the</strong> gas phase it serves as a<br />

moderate size benchmark peptide to test calculati<strong>on</strong>s. We have measured IR-UV depleti<strong>on</strong> spectra<br />

<strong>of</strong> gramicidin S in <strong>the</strong> finger print regi<strong>on</strong>s <strong>of</strong> amide I and amide II (C=O stretch, N-H bending<br />

vibrati<strong>on</strong>s) and N-H stretch [3]. We have also obtained similar spectra for a complex <strong>of</strong> this peptide<br />

with 18-crown-6 e<strong>the</strong>r. This compound has a high prot<strong>on</strong> affinity and it solvates charges <strong>on</strong> Orn<br />

side chains <strong>of</strong> gramicidin S, significantly shifting <strong>the</strong> near-by vibrati<strong>on</strong>al frequencies. Detecti<strong>on</strong> <strong>of</strong><br />

<strong>the</strong>se shifts facilitates assignment <strong>of</strong> <strong>the</strong> observed IR transiti<strong>on</strong>s. To finally sort out different<br />

vibrati<strong>on</strong>s we have recorded IR spectra in 15N isotopically labeled gramicidin-S and also in N-H<br />

deuterated species. We thus obtained a spectroscopic signature <strong>of</strong> gramicidin S that is to be<br />

reproduced by <strong>the</strong>ory. Once validated <strong>the</strong> <strong>the</strong>ory may predict <strong>the</strong> number <strong>of</strong> water molecules that<br />

make structure <strong>of</strong> a solvated gramicidin S similar to that measured in vivo. This predicti<strong>on</strong> would<br />

challenge experiment to verify it through a measurement <strong>of</strong> IR spectra <strong>of</strong> <strong>the</strong> solvated species.<br />

References<br />

[1] O. V. Boyarkin, S. R. Mercier, A. Kamariotis, and T. R. Rizzo, J. Am. Chem. Soc. 128 (9), 2816 (2006).<br />

[2] J. A. Stearns, S. Mercier, C. Seaiby, M. Guidi, O. V. Boyarkin, and T. R. Rizzo, J. Am. Chem. Soc. 129 (38), 11814<br />

(2007).<br />

[3] N. S. Nagornova, T. R. Rizzo and O. V. Boyarkin, J. Am. Chem. Soc. <strong>2009</strong> (in preparati<strong>on</strong>).<br />

PA 87


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Spectral properties <strong>of</strong> <strong>the</strong> comp<strong>on</strong>ents <strong>of</strong><br />

bioluminescent reacti<strong>on</strong> in viscous media<br />

E. NEMTSEVA 1,2 , D. GULNOV 1 , E. ESIMBEKOVA 1,2 AND V. A. KRATASYUK 1,2<br />

1. Dept. <strong>of</strong> Physico-Chemical Biology, Siberian Federal University, 79<br />

Svobodny Prospect, Krasnoyarsk, 660041, Russia<br />

2. Lab. <strong>of</strong> Photobiology, Institute <strong>of</strong> Biophysics SB RAS, 50<br />

Akademgorodok, Krasnoyarsk, 660036, Russia<br />

Bioluminescent reacti<strong>on</strong>s are catalyzed by special enzymes called luciferases and emit light as <strong>on</strong>e<br />

<strong>of</strong> <strong>the</strong> products. In luminous bacteria luciferase is coupled with NAD(P)H:FMN-oxidoreductase.<br />

The spectral properties <strong>of</strong> bacterial luciferase (Photobacterium leiognathi), oxidoreductase (Vibrio<br />

fischeri) and <strong>the</strong>ir substrate flavin m<strong>on</strong><strong>on</strong>ucleotide (FMN) in viscous media were studied to reveal<br />

<strong>the</strong> mechanism <strong>of</strong> bioluminescence intensity regulati<strong>on</strong> in cells. Different c<strong>on</strong>centrati<strong>on</strong>s <strong>of</strong><br />

glycerol, sucrose, gelatin and starch were used to modify <strong>the</strong> viscosity <strong>of</strong> micro- and macroenvir<strong>on</strong>ment<br />

<strong>of</strong> fluorophores. The following fluorescent characteristics <strong>of</strong> bacterial luciferase,<br />

oxidoreductase and FMN were measured: <strong>the</strong> emissi<strong>on</strong> and excitati<strong>on</strong> spectra, <strong>the</strong> steady-state<br />

anisotropy and <strong>the</strong> lifetimes <strong>of</strong> excited states. Small shifts (up to 5 nm) <strong>of</strong> <strong>the</strong> protein emissi<strong>on</strong><br />

spectra in <strong>the</strong> presence <strong>of</strong> glycerol, sucrose and gelatin were detected. Substantial change <strong>of</strong><br />

fluorescence quantum yield for all comp<strong>on</strong>ents was registered. It was found that fluorescence<br />

lifetime <strong>of</strong> FMN is shorter in gelatin media and l<strong>on</strong>ger in glycerol and sucrose <strong>on</strong>es (in comparis<strong>on</strong><br />

with buffer soluti<strong>on</strong>). The data obtained were used to explain <strong>the</strong> change <strong>of</strong> bioluminescence<br />

intensity in modified viscous media: decreasing in <strong>the</strong> presence <strong>of</strong> glycerol and increasing in <strong>the</strong><br />

presence <strong>of</strong> sucrose and gelatin.<br />

PA 88


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Resistance to heavy metal i<strong>on</strong>s- spectroscopic<br />

experimental approaches.<br />

C. NGONLONG E 1 , M. KHEIRO-DERFOUFI 1 , F. DE ANGELIS 1 , JM RUYSSCHAERT 1 AND G.<br />

VANDENBUSSCHE 1<br />

1. Dept. <strong>of</strong> Structure and functi<strong>on</strong> <strong>of</strong> biological membranes , Free<br />

University <strong>of</strong> Brussels, Boulevard du Triomphe, Brussels, 1050, Belgium<br />

The systems <strong>of</strong> transport play an important role in <strong>the</strong> ability <strong>of</strong> bacteria to grow in extreme<br />

biotopes such as soils highly c<strong>on</strong>taminated by heavy metal i<strong>on</strong>s. The proteins <strong>of</strong> <strong>the</strong> Superfamilly<br />

HME-RND (Heavy Metal I<strong>on</strong>-Resistance Nodulati<strong>on</strong> and cell Divisi<strong>on</strong>) are notably involved in <strong>the</strong><br />

transport <strong>of</strong> <strong>the</strong>se i<strong>on</strong>s out <strong>of</strong> cell [1].Cupriavidus metallidurans CH34 is a Gram negative βproteobacterium<br />

which is a model in resistance to heavy metal i<strong>on</strong>s because it owns 12 putative<br />

HME-RND systems involved in <strong>the</strong> detoxificati<strong>on</strong> <strong>of</strong> Co, Zn, Cd, Cu, Ag. The Sil system has been<br />

recently identified in C. metallidurans CH34 by a two dimensi<strong>on</strong>al gel electrophoresis approach. It<br />

has been shown that <strong>the</strong> proteins are overexpressed by <strong>the</strong> strain in <strong>the</strong> presence <strong>of</strong> copper or<br />

silver in <strong>the</strong> culture medium. The inner and outer membrane proteins SilA (RND) and SilC (OMF)<br />

respectively and <strong>the</strong> periplasmic <strong>on</strong>e SilB (MFP) form a tripartite complex. The RND protein is<br />

resp<strong>on</strong>sible for <strong>the</strong> substrate specificity and uses <strong>the</strong> dissipati<strong>on</strong> <strong>of</strong> a prot<strong>on</strong> gradient as driving<br />

force [2]. We have overexpressed and rec<strong>on</strong>stituted into proteoliposomes, <strong>the</strong> RND protein SilA.<br />

Its structure and activity have been characterized by Infrared spectroscopy and fluorescence. We<br />

determined, by IR, <strong>the</strong> sec<strong>on</strong>dary structure <strong>of</strong> <strong>the</strong> protein and its orientati<strong>on</strong> in rec<strong>on</strong>stituted<br />

proteoliposomes by enzymatic digesti<strong>on</strong>. The results are in accordance with previous structural<br />

data obtained for AcrB, <strong>the</strong> first HAE1-RND (Hydrophobic and Amphiphilic compounds) protein<br />

<strong>of</strong> <strong>the</strong> group that has been crystallized [3]. Fur<strong>the</strong>rmore, <strong>the</strong> fluorescence measurements showed<br />

that SilA can transport selectively copper i<strong>on</strong>s in vitro when a prot<strong>on</strong> gradient is imposed across<br />

<strong>the</strong> bilayer.<br />

References<br />

[1] Tseng T.T., Gratwick K.S., Kollman J., Park D., Nies D.H., G<strong>of</strong>feau A., and Saier M.H. Jr. (1999) J. Mol. Microbiol.<br />

Biotechnol. 1, 107-125.<br />

[2] Elkins C.A., and Nikaido H. (2002) J. Bacteriol. 184,6490-6498.<br />

[3] Murakami S., Nakashima R., Yamashita E., and Yamaguchi A. (2002) Nature 419, 587-593.<br />

PA 89


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

The striking flexibility <strong>of</strong> <strong>the</strong> distal histidine in<br />

dehaloperoxidase<br />

F. P. NICOLETTI 1 , M. K. THOMPSON 2 , B. D. HOWES 1 , S. FRANZEN 2 AND G. SMULEVICH 1<br />

1. Dipartimento di Chimica, Università di Firenze, Via della Lastruccia 3,<br />

I-50019 Sesto Fiorentino (FI), Italy<br />

2. Department <strong>of</strong> Chemistry, North Carolina State University, 2620<br />

Yarbrough Drive, Raleigh, North Carolina 27695, USA.<br />

Dehaloperoxidase (DHP) from Amphitrite ornata is a catalytically active hemoglobin-peroxidase,<br />

being able to oxidise phenolic substrates to quin<strong>on</strong>e (1). Peroxidases are characterized by an<br />

increased polarity <strong>of</strong> <strong>the</strong> distal cavity compared to globins, however, a distal cavity Arg, which is a<br />

key residue in peroxidases promoting heterolysis <strong>of</strong> hydrogen peroxide during <strong>the</strong> catalytic cycle<br />

(3), is missing in DHP (2). It is well-known that heme pocket distal amino acid residues c<strong>on</strong>trol<br />

ligand binding in hemoproteins. In fact, <strong>the</strong> comparis<strong>on</strong> <strong>of</strong> <strong>the</strong> UV-Vis and res<strong>on</strong>ance Raman (RR)<br />

spectra <strong>of</strong> <strong>the</strong> fluoride and hydroxide complexes <strong>of</strong> various peroxidases and selected mutants has<br />

highlighted <strong>the</strong> complex mechanism <strong>of</strong> stabilizati<strong>on</strong> <strong>of</strong> ani<strong>on</strong>ic ligands exerted by <strong>the</strong> distal amino<br />

acids. Moreover, this process resembles that <strong>of</strong> compound I formati<strong>on</strong> during peroxidase catalysis,<br />

where ligand stabilizati<strong>on</strong> by <strong>the</strong> distal arginine is coupled to prot<strong>on</strong>ati<strong>on</strong> <strong>of</strong> <strong>the</strong> distal histidine (4).<br />

It is <strong>of</strong> interest, <strong>the</strong>refore, to understand whe<strong>the</strong>r <strong>the</strong> different cavity characteristics <strong>of</strong> DHP,<br />

globins and peroxidases are also reflected in <strong>the</strong> binding <strong>of</strong> exogenous ligands. Since <strong>the</strong><br />

spectroscopic study <strong>of</strong> <strong>the</strong> fluoride and hydroxyl adducts <strong>of</strong> heme proteins has furnished<br />

important informati<strong>on</strong> <strong>on</strong> how <strong>the</strong> distal heme protein cavity interacts with <strong>the</strong> exogenous ligand<br />

(4), in <strong>the</strong> present work we focus our interest <strong>on</strong> <strong>the</strong> RR and electr<strong>on</strong>ic absorpti<strong>on</strong> spectra <strong>of</strong> <strong>the</strong><br />

fluoride and metaquo/hydroxyl adducts <strong>of</strong> DHP, and compare <strong>the</strong> results with those <strong>of</strong><br />

myoglobin and peroxidases. In order to investigate <strong>the</strong> structural changes in <strong>the</strong> heme distal<br />

pocket up<strong>on</strong> binding <strong>of</strong> a substrate analog to DHP, <strong>the</strong> interacti<strong>on</strong> <strong>of</strong> <strong>the</strong> ferric protein at pH 6.0<br />

with various m<strong>on</strong>o-, di-, and tri-halogenated phenols has been studied. Comparis<strong>on</strong> <strong>of</strong> <strong>the</strong><br />

spectroscopic data with <strong>the</strong> available X-ray structures provides detailed insight into <strong>the</strong> role<br />

played by <strong>the</strong> distal histidine in <strong>the</strong> DHP reacti<strong>on</strong> mechanism.<br />

References<br />

[1] J. Belyea, L. B. Gilvey, M. F. Davis, M. Godek, M. T. L. Sit, S.T. Lommel, S. Franzen, Biochemistry 44, 15637-<br />

15644 (2005).<br />

[2] V. de Serrano, Z. Chen, M.F. Davis, S. Franzen, Acta Crystallogr D Biol Crystallogr 63, 1094-1101 (2007).<br />

[3] A.T. Smith, N.C. Veitch Curr Opin Chem Biol 2, 2692-78 (1998).<br />

[4] G. Smulevich, A. Feis, B.D. Howes Acc Chem Res 38, 433-440 (2005).<br />

PA 90


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

M<strong>on</strong>itoring complexati<strong>on</strong> <strong>of</strong> artificial peptide receptors<br />

by UV res<strong>on</strong>ance Raman spectroscopy<br />

S. Niebling 1 , S. K. SRIVASTAVA 1 , P. C. WICH 2 , C. SCHMUCK 2 AND S. SCHLÜCKER 1<br />

1. Department <strong>of</strong> Physics, University <strong>of</strong> Osnabrück, Barbarastr. 7, 49076<br />

Osnabrück, Germany<br />

2. Department <strong>of</strong> Chemistry, University <strong>of</strong> Duisburg-Essen,<br />

Universitätsstr. 5, 45141 Essen, Germany<br />

Guanidiniocarb<strong>on</strong>yl pyrroles are artificial receptors for <strong>the</strong> efficient complexati<strong>on</strong> <strong>of</strong> peptides even<br />

in polar solvents such as water [1]. Their carboxylate binding site (CBS) can be probed selectively<br />

by ultraviolet res<strong>on</strong>ance Raman (UV RR) scattering. As this vibrati<strong>on</strong>al technique is extremely<br />

sensitive to small changes in b<strong>on</strong>d lengths and force c<strong>on</strong>stants, it was chosen for a label-free<br />

binding study <strong>of</strong> <strong>the</strong>se receptors with tetrapeptide substrates in water [2]. In soluti<strong>on</strong> <strong>the</strong>re is an<br />

equilibrium between different species <strong>of</strong> <strong>the</strong> receptor, which is not <strong>on</strong>ly dependent <strong>on</strong> substrate<br />

c<strong>on</strong>centrati<strong>on</strong>, but also <strong>on</strong> pH (Fig. 1). Studying <strong>the</strong> pH dependent UV RR spectra <strong>of</strong> <strong>the</strong> neat<br />

receptor was <strong>the</strong> first step <strong>of</strong> our Raman spectroscopic characterizati<strong>on</strong>. The corresp<strong>on</strong>ding acidbase<br />

equilibrium between <strong>the</strong> neutral and <strong>the</strong> prot<strong>on</strong>ated species is shown in Fig. 1. By using<br />

n<strong>on</strong>negative matrix factorizati<strong>on</strong> (NMF), <strong>the</strong> corresp<strong>on</strong>ding comp<strong>on</strong>ent spectra could be<br />

determined. The experimental spectra are accurately modeled as a linear combinati<strong>on</strong> <strong>of</strong> <strong>the</strong> two<br />

comp<strong>on</strong>ent spectra [3]. The prot<strong>on</strong>ated receptor species is capable <strong>of</strong> effectively binding a<br />

carboxylate (e.g. <strong>the</strong> C-terminus <strong>of</strong> a peptide). By adding substrate to a receptor soluti<strong>on</strong>, <strong>the</strong><br />

complexed receptor as a third species is formed (Fig. 1 right). A UV RR binding study at c<strong>on</strong>stant<br />

pH was performed in order to obtain <strong>the</strong> comp<strong>on</strong>ent spectrum <strong>of</strong> <strong>the</strong> complex. NMF comp<strong>on</strong>ent<br />

analysis yielded <strong>on</strong>ly two relevant spectra, <strong>on</strong>e being <strong>the</strong> spectrum <strong>of</strong> <strong>the</strong> complexed species. The<br />

o<strong>the</strong>r comp<strong>on</strong>ent spectrum represents <strong>the</strong> sum <strong>of</strong> <strong>the</strong> unbound receptor species (prot<strong>on</strong>ated plus<br />

neutral form, c<strong>on</strong>stant ratio due to c<strong>on</strong>stant pH). Fur<strong>the</strong>r studies will be focused <strong>on</strong> quantifying<br />

complexati<strong>on</strong> <strong>of</strong> <strong>the</strong>se receptors by tetrapeptide substrates.<br />

Fig. 1 – Acid-base (left) and complexati<strong>on</strong> equilibrium (right) for guanidiniocarb<strong>on</strong>yl-based peptide<br />

receptors.<br />

References<br />

[1] C. Schmuck, Coord. Chem. Rev. 250, 3053–3067 (2006).<br />

[2] B. Küstner, C. Schmuck, P. Wich, C. Jehn, S. Srivastava, S. Schlücker, Phys. Chem. Chem. Phys. 9, 4598–4603<br />

(2007).<br />

[3] S. Srivastava, S. Niebling, B. Küstner, P. Wich, C. Schmuck, S. Schlücker, Phys. Chem. Chem. Phys. 10, 6770–<br />

6775 (2008).<br />

PA 91


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

SAXS and FTIR study <strong>on</strong> MbCO-Saccharide amorphous<br />

systems<br />

A. LONGO 1 , S. GIUFFRIDA 2 , M. PANZICA 2 , G. COTTONE 2 AND L. CORDONE 2<br />

1. Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), CNR,<br />

Via Ugo La Malfa 153, Palermo, I-90146, Italy<br />

2. Dipartimento di Scienze Fisiche ed Astr<strong>on</strong>omiche, Università di<br />

Palermo, Via Archirafi 36, Palermo, I-90123, Italy<br />

Trehalose is a well-known bioprotecting disaccharide. Although its efficiency has been l<strong>on</strong>g<br />

assessed, <strong>the</strong> mechanism <strong>of</strong> trehalose-based bioprotecti<strong>on</strong> is still matter <strong>of</strong> debate. Many <strong>the</strong>ories<br />

have been proposed, which rely <strong>on</strong> <strong>the</strong> role <strong>of</strong> water <strong>on</strong> <strong>the</strong> physical properties <strong>of</strong> <strong>the</strong> external<br />

matrix [1,2]. Here we report Small Angle X-Ray scattering (SAXS) and Infrared <strong>Spectroscopy</strong><br />

(FTIR) results <strong>on</strong> carb<strong>on</strong>m<strong>on</strong>oxy-myoglobin (MbCO) embedded in amorphous matrices <strong>of</strong><br />

trehalose and sucrose, at very low hydrati<strong>on</strong> level. SAXS data show <strong>the</strong> occurrence <strong>of</strong> ~15 nm local<br />

domains in protein-trehalose systems, which are absent in protein-sucrose systems and in <strong>the</strong><br />

absence <strong>of</strong> protein. These domains become larger by increasing <strong>the</strong> sample hydrati<strong>on</strong>. The<br />

comparis<strong>on</strong> between SAXS and FTIR data led us to assign this feature to protein-deprived regi<strong>on</strong>s,<br />

which better incorporate water than <strong>the</strong> protein rich background. We suggest that <strong>the</strong>se domains<br />

might play a buffering role against <strong>the</strong> daily variati<strong>on</strong>s <strong>of</strong> atmospheric moisture in anhydrobiotic<br />

organisms, giving a hint for rati<strong>on</strong>alizing <strong>the</strong> superior trehalose protective effects, in terms <strong>of</strong><br />

structural properties <strong>of</strong> <strong>the</strong> whole protein-sugar system.<br />

References<br />

Fig. 1 – Pictorial view <strong>of</strong> samples from <strong>the</strong> SAXS results. A)<br />

trehalose/water: homogeneous domains are sketched in dark gray.<br />

B) sucrose/water: small size inhomogeneities are sketched in white.<br />

C) protein/trehalose/water: proteins are sketched in black, while<br />

trehalose/water domains are sketched in white. D)<br />

sucrose/protein/water:small size inhomogeneities are sketched in<br />

white; proteins are sketched in black.<br />

[1] J. H. Crowe, Adv. Exp. Med. Biol. 594, 143–158 and reference <strong>the</strong>rein (2007)<br />

[2] L. Cord<strong>on</strong>e, G. Cott<strong>on</strong>e, S. Giuffrida, J. Phys.: C<strong>on</strong>dens. Matter 19, 205110 (2007)<br />

PA 92


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Spectroscopic study <strong>of</strong> marine microorganism adhesi<strong>on</strong>:<br />

unraveling biomolecules and functi<strong>on</strong>al groups<br />

at <strong>the</strong> interface.<br />

L. PETRONE 1 , N. C. RAGG 2 AND A. J. MCQUILLAN 1<br />

1. Dept. <strong>of</strong> Chemistry, University <strong>of</strong> Otago, P. O. Box 56, Dunedin, New<br />

Zealand<br />

2. Cawthr<strong>on</strong> Institute, 98 Halifax Street East, Private Bag 2, Nels<strong>on</strong>, New Zealand<br />

All benthic marine organisms having a dispersal phase in <strong>the</strong>ir life histories require an adhesive<br />

strategy that allows <strong>the</strong>m to form a str<strong>on</strong>g and permanent b<strong>on</strong>d to a range <strong>of</strong> substrates, under<br />

water, over a wide range <strong>of</strong> temperatures, salinities and c<strong>on</strong>diti<strong>on</strong>s <strong>of</strong> turbulence. Algae and adult<br />

mussels are classical examples <strong>of</strong> permanent adhesi<strong>on</strong>, secreting holdfasts to stick <strong>on</strong> virtually any<br />

hard surface in <strong>the</strong> tidal marine envir<strong>on</strong>ment [1]. We present results for <strong>the</strong> adhesi<strong>on</strong> study <strong>of</strong> <strong>the</strong><br />

Perna canaliculus mussel larvae and Undaria pinnatifida algal spores. The presence <strong>of</strong> <strong>the</strong><br />

bioadhesives was revealed by c<strong>on</strong>venti<strong>on</strong>al scanning electr<strong>on</strong> microscopy (SEM). Envir<strong>on</strong>mental<br />

scanning electr<strong>on</strong> microscopy (ESEM) imaged <strong>the</strong> mussel larvae in its natural hydrated state,<br />

providing informati<strong>on</strong> <strong>on</strong> its hydrophilic nature. Energy dispersive X-ray (EDX) microanalysis was<br />

also performed, revealing in particular <strong>the</strong> presence <strong>of</strong> S, P and Ca in <strong>the</strong> mussel larvae adhesive<br />

[2]. Mg was detected in <strong>the</strong> algal spore adhesive. Additi<strong>on</strong>ally, algal spores and mussel larvae<br />

adhesi<strong>on</strong> were studied by attenuated total reflecti<strong>on</strong> infrared (ATR-IR) spectroscopy. The infrared<br />

spectra showed protein and polysaccharide absorpti<strong>on</strong>s al<strong>on</strong>g with carboxylate, sulphated and<br />

phosphorylated vibrati<strong>on</strong>al modes. Spectroscopic studies <strong>on</strong> <strong>the</strong> adsorpti<strong>on</strong> <strong>of</strong> model compounds<br />

<strong>on</strong> a TiO2 surface c<strong>on</strong>firmed <strong>the</strong> presence <strong>of</strong> sulphated, phosphorylated and carboxylated groups<br />

in <strong>the</strong> algal spore secreti<strong>on</strong>. Such functi<strong>on</strong>al groups are resp<strong>on</strong>sible for <strong>the</strong> underwater initial<br />

interacti<strong>on</strong>s <strong>of</strong> <strong>the</strong> bioadhesives with <strong>the</strong> substratum surface, and <strong>the</strong> divalent cati<strong>on</strong>s are<br />

resp<strong>on</strong>sible <strong>of</strong> <strong>the</strong> cross-linkages <strong>of</strong> <strong>the</strong> bioadhesive leading to <strong>the</strong> formati<strong>on</strong> <strong>of</strong> a gel-like adhesive<br />

[3]. Integrating <strong>the</strong> data obtained from surface chemistry, physical-chemistry and biochemistry<br />

experiments appear to be a necessary strategy to be able to elucidate <strong>the</strong> adhesi<strong>on</strong> process <strong>of</strong><br />

marine microorganisms in order to develop novel approaches to enhance <strong>the</strong> settlement, for<br />

instance, in <strong>the</strong> aquaculture industry or, <strong>on</strong> <strong>the</strong> o<strong>the</strong>r hand, to inhibit bi<strong>of</strong>ouling <strong>of</strong> underwater<br />

surfaces.<br />

References<br />

[1] K. J. Coyne, X. X. Qin, J. H. Waite, Science 227, 1830-1832 (1997).<br />

[2] L. Petr<strong>on</strong>e, N. L. C. Ragg, E. Girvan and A. J. McQuillan, The Journal <strong>of</strong> Adhesi<strong>on</strong> 85, 78-96 (<strong>2009</strong>).<br />

[3] L. Petr<strong>on</strong>e, N. L. C. Ragg, A. J. McQuillan, Bi<strong>of</strong>ouling 24, 405-413 (2008).<br />

PA 93


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Potential-dependend characterizati<strong>on</strong> <strong>of</strong> bombesin<br />

adsorbed states <strong>on</strong> roughened Ag, Au, and Cu electrode<br />

surfaces at physiological pH<br />

E. PODSTAWKA 1 AND G. NIAURA 2<br />

1. Regi<strong>on</strong>al Laboratory <strong>of</strong> Physicochemical Analysis and Structural<br />

Research, Faculty <strong>of</strong> Chemistry, Jagiell<strong>on</strong>ian University, ul. Ingardena 3,<br />

30-060 Krakow, Poland<br />

2. Department <strong>of</strong> Bioelectrochemistry and Biospectroscopy, Institute <strong>of</strong><br />

Biochemistry, Mokslininkų 12, LT-08662 Vilnius, Lithuania<br />

This work reports <strong>the</strong> direct surface-enhanced Raman spectroscopic (SERS) and Generalized Two-<br />

Dimensi<strong>on</strong>al Correlati<strong>on</strong> Analysis (G2DCA) observati<strong>on</strong>s <strong>of</strong> <strong>the</strong> different orientati<strong>on</strong>s <strong>of</strong> <strong>the</strong><br />

neurotransmitter bombesin (BN) chemisorbed <strong>on</strong> electrochemically roughened Ag, Au, and Cu<br />

electrode surfaces at different applied electrode potentials and at physiological pH [1]. The<br />

presence <strong>of</strong> <strong>the</strong> indole ring <strong>of</strong> Trp 8 and <strong>the</strong> amide b<strong>on</strong>d between Gln 7 and Trp 8 <strong>of</strong> BN <strong>on</strong> <strong>the</strong>se<br />

surfaces generates a specific SERS pr<strong>of</strong>ile <strong>of</strong> BN adsorbed <strong>on</strong> <strong>the</strong> roughened Ag and Au electrodes<br />

that is affected by <strong>the</strong> electrode potential. Fur<strong>the</strong>rmore, for BN <strong>on</strong> Au, slight changes are observed<br />

in <strong>the</strong> band enhancement in comparis<strong>on</strong> to what is observed for this neurotransmitter immobilized<br />

<strong>on</strong> Ag. In additi<strong>on</strong>, <strong>the</strong>re are larger changes in <strong>the</strong> spectra triggered by <strong>the</strong> substituti<strong>on</strong> <strong>of</strong> Ag with<br />

Au electrodes and Ag with Cu electrodes than by substituti<strong>on</strong> <strong>of</strong> Au with Cu electrodes.<br />

References<br />

Wavenumber / cm -1<br />

PA 94<br />

Raman intensity / cps<br />

160<br />

120<br />

80<br />

40<br />

0<br />

Ag<br />

575<br />

641<br />

641<br />

745<br />

758<br />

758<br />

836<br />

875<br />

875<br />

835<br />

882<br />

835<br />

757<br />

736<br />

760<br />

835<br />

878<br />

1004<br />

1002<br />

978<br />

1002<br />

1111<br />

1188<br />

1113<br />

1127<br />

1188<br />

1189 1125<br />

1010<br />

1114<br />

1303<br />

1259<br />

1298<br />

1258<br />

1304<br />

1272<br />

1034<br />

1114<br />

1127<br />

1235<br />

1277<br />

1012<br />

1663<br />

1607<br />

1565<br />

(a)<br />

(b)<br />

600 800 1000 1200 1400 1600 1800<br />

1356<br />

1355<br />

1344<br />

1342<br />

1439<br />

1439<br />

1530<br />

1563<br />

1606<br />

1658<br />

1439<br />

1530<br />

1557<br />

1604<br />

1432<br />

1666<br />

1668<br />

1593<br />

1550<br />

Fig. 1 - SERS spectra <strong>of</strong> BN adsorbed <strong>on</strong> a roughened Ag electrode<br />

at -1.200 V (a), -0.800 V (b), -0.400 V (c), and 0.000 V (d)<br />

potentials over <strong>the</strong> 500 – 1800 cm -1 spectral regi<strong>on</strong>.<br />

[1] E. Podstawka, G. Niaura, J. Phys. Chem. B submitted (<strong>2009</strong>).<br />

(c)<br />

(d)


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Acesulfame-Potassium (additive E950) High-Intensity<br />

N<strong>on</strong>-Nutritive Sweetener: Computati<strong>on</strong>al and IR<br />

Studies <strong>on</strong> <strong>the</strong> Azani<strong>on</strong>, <strong>the</strong> C<strong>on</strong>jugated NH Acid and<br />

its Dimer<br />

A. D. POPOVA, E. A. VELCHEVA, I. G. BINEV<br />

Department <strong>of</strong> Structural Organic Analysis, Institute <strong>of</strong> Organic<br />

Chemistry with Center <strong>of</strong> Phytochemistry, Bulgarian Academy <strong>of</strong><br />

Sciences, Acad. G. B<strong>on</strong>chev Str., Bl.9, 1113 S<strong>of</strong>ia, Bulgaria<br />

6-Methyl-1,2,3-oxathiazine-4(3K)-<strong>on</strong>-2,2-dioxide (Acesulfame-potassium, Ace -K +) is a high<br />

intensity n<strong>on</strong>-nutrive sweetener (Additive E950). The structures <strong>of</strong> Ace -, <strong>the</strong> corresp<strong>on</strong>ding<br />

c<strong>on</strong>jugated NH acid Ace-H and its dimer (Ace-H)2 have been studied <strong>on</strong> <strong>the</strong> basis <strong>of</strong> both infrared<br />

spectra and density functi<strong>on</strong>al <strong>the</strong>ory (DFT) computati<strong>on</strong>s. A good agreement has been found<br />

between <strong>the</strong>oretical and experimental spectroscopic characteristics <strong>of</strong> <strong>the</strong> species studied.<br />

According to both <strong>the</strong>ory and experiment, like o-sulfobenzamide (saccharin), Ace-H exists as <strong>the</strong><br />

dimer (Ace-H)2 in <strong>the</strong> solid state. The essential changes in <strong>the</strong> steric structure <strong>of</strong> Ace-H, caused by<br />

<strong>the</strong> c<strong>on</strong>versi<strong>on</strong> into Ace -, are spread over <strong>the</strong> whole sulfocarboximide group and <strong>the</strong> adjacent<br />

b<strong>on</strong>ds. The new (azani<strong>on</strong>ic) charge is distributed as follows: azani<strong>on</strong>ic center (0.27 e -), carb<strong>on</strong>yl<br />

group (0.16 e -), –SO2O– (0.32 e -) and alkenylene group (0.25 e -).<br />

PA 95


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Time-resolved microspectr<strong>of</strong>luorimetry and<br />

fluorescence imaging techniques in cellular uptake<br />

studies<br />

P.PRAUS 1 , E.KOČIŠOVÁ 1 , P.MOJZEŠ 1 , J. ŠTĚPÁNEK 1 , F.SUREAU 2 AND P.-Y. TURPIN 2<br />

1. Charles University in Prague, Faculty <strong>of</strong> Ma<strong>the</strong>matics and Physics, Ke<br />

Karlovu 3, Prague 2, CZ-121 16, Czech Republic.<br />

2. ANBioPhy (Acides Nucleiques & Biophot<strong>on</strong>ique) – UPMC/CNRS<br />

FRE 3207 GENOPOLE Campus 1, 5, rue Henri Desbruères 91030 EVRY<br />

Cedex, France<br />

C<strong>on</strong>focal microspectr<strong>of</strong>luorimeter has been adapted for time-resolved fluorescence measurements<br />

by using a phase-modulati<strong>on</strong> principle and homodyne data acquisiti<strong>on</strong> method. This approach<br />

was employed to acquire intracellular spectra, which enabled us to determine lifetimes from<br />

selected intracellular sites. Modified olig<strong>on</strong>ucleotides (ON) as sequences <strong>of</strong> chemically prepared<br />

deoxyribo- or rib<strong>on</strong>ucleotides are able to regulate <strong>the</strong> gene expressi<strong>on</strong> [1]. Potential healing<br />

properties <strong>of</strong> ON are c<strong>on</strong>diti<strong>on</strong>ed by effective cellular uptake. Syn<strong>the</strong>tic cati<strong>on</strong>ic derivatives <strong>of</strong><br />

porphyrins seem to be <strong>on</strong>e <strong>of</strong> <strong>the</strong> promising candidates for this purpose. ZnTMPYP4 assisted<br />

delivery system is now studied to be used for ON intracellular transport. Time-resolved<br />

fluorescence spectra can reveal <strong>the</strong> ON and porphyrin interacti<strong>on</strong>s with present biomolecules [2].<br />

Fluorescence c<strong>on</strong>focal microimaging (Fig.1) has been complementarily employed to visualize<br />

penetrati<strong>on</strong> <strong>of</strong> <strong>the</strong> ON and porphyrin through cellular membrane and <strong>the</strong>ir distributi<strong>on</strong> inside <strong>the</strong><br />

cell.<br />

References<br />

Fig. 1 – Fluorescence image <strong>of</strong> 3T3 cell incubated with ATTO 425<br />

labeled dT 15 phosphorothioate complexed with cati<strong>on</strong>ic porphyrin<br />

used as delivery agent shows different intracellular distributi<strong>on</strong> <strong>of</strong><br />

ON (blue, artificial colors) and porphyrin (red).<br />

[1] J. Goodchild, Curr Opin Mol Ther, (2004), 6, 120-8.<br />

[2] P. Praus et.al., Ann. N.Y. Acad. Sci. 1130 (2008),117 – 121<br />

PA 96


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

SERRS microspectroscopy <strong>of</strong> porphyrins: improvement<br />

<strong>of</strong> sensitivity and spectral reproducibility<br />

M. PROCHÁZKA, P. ŠIMÁKOVÁ AND N. HAJDUKOVÁ-ŠMÍDOVÁ<br />

Charles University, Faculty <strong>of</strong> Ma<strong>the</strong>matics and Physics, Institute <strong>of</strong><br />

Physics, Ke Karlovu 5, Prague 2, CZ-121 16, Czech Republic<br />

prochaz@karlov.mff.cuni.cz<br />

Syn<strong>the</strong>tic derivatives <strong>of</strong> porphyrins, natural forms <strong>of</strong> which are important biomolecules, are or can<br />

potentially be applied in photodynamic <strong>the</strong>rapy <strong>of</strong> cancer, antiviral treatments, molecular biology,<br />

specific sensing <strong>of</strong> DNA sequences, selective cleavage <strong>of</strong> nucleic acids, etc. Porphyrins have been<br />

extensively studied by using surface-enhanced res<strong>on</strong>ance Raman scattering (SERRS) spectroscopy,<br />

employing various metal surfaces including silver colloids [1]. This c<strong>on</strong>tributi<strong>on</strong> is devoted to<br />

improvement <strong>of</strong> sensitivity and spectral reproducibility <strong>of</strong> SERRS microspectroscopy <strong>of</strong><br />

porphyrins. We measured SERRS spectra <strong>of</strong> cati<strong>on</strong>ic free-base 5,10,15,20-tetrakis(1-methyl-4pyridyl)<br />

porphyrin (TMPyP) from gold or silver colloidal nanoparticles immobilized <strong>on</strong> glass (by<br />

silane [2,3] as well as by drying). Integrated c<strong>on</strong>focal Raman microscopic system (LabRam HR800,<br />

Horiba Jobin-Yv<strong>on</strong>, with 632.8 nm and 514.5 nm laser lines) allowed us to improve sensitivity, to<br />

use short collecti<strong>on</strong> times and to scan Raman spectra point by point over <strong>the</strong> metal surface. SERS<br />

mapping provides very important informati<strong>on</strong> about spectral reproducibility <strong>of</strong> metal surfaces. We<br />

determined limits <strong>of</strong> detecti<strong>on</strong> (LOD) <strong>of</strong> TMPyP <strong>on</strong> gold and silver surfaces as ~ 5x10 -8 M and ~<br />

1x10 -8 M, respectively. SERRS spectral mapping <strong>of</strong> gold immobilized nanoparticles shows <strong>the</strong>ir<br />

excellent reproducibility. In <strong>the</strong> case <strong>of</strong> silver immobilized nanoparticles, amorphous carb<strong>on</strong> with<br />

two broad bands at ~ 1300-1600 cm -1 and/or rapidly fluctuating peaks are frequently observed<br />

originating from decompositi<strong>on</strong> <strong>of</strong> <strong>the</strong> adsorbate and/or silane or from c<strong>on</strong>taminants adsorbed <strong>on</strong><br />

<strong>the</strong> metal surface. Thus, <strong>the</strong>se surfaces do not give reproducible data. In <strong>the</strong> case <strong>of</strong> silver<br />

nanoparticles, we <strong>the</strong>refore recommend to measure spectra directly from dried drops <strong>on</strong> pure<br />

glass. Surprisingly, dried drops <strong>of</strong> Ag colloid/TMPyP systems with varying TMPyP<br />

c<strong>on</strong>centrati<strong>on</strong>s show <strong>the</strong> c<strong>of</strong>fee ring effect similar to that used in drop coating depositi<strong>on</strong> Raman<br />

(DCDR) technique [4]. This effect carries all nanoparticles to <strong>the</strong> edge where a ring from <strong>the</strong>ir<br />

aggregates is formed. If we measure from this ring, we obtain good SERRS spectra even in 1x10 -10<br />

M TMPyP c<strong>on</strong>centrati<strong>on</strong> (by 1 s accumulati<strong>on</strong> time) and also good reproducibility from point to<br />

point inside <strong>the</strong> ring.<br />

References<br />

[1] M. Procházka, J. Štěpánek, P.-Y. Turpin, J. Bok, J. Phys. Chem. B 106, 1543–1549 (2002) and references <strong>the</strong>rein.<br />

[2] N. Hajduková, M. Procházka, J. Štěpánek, M. Špírková, Colloid Surf. A: Physicochem. Eng. Aspects 301, 264-270<br />

(2007).<br />

[3] N. Hajduková, M. Procházka, J. Štěpánek, P. Molnár, Vib. Spectrosc. 48, 142-147 (2008).<br />

[4] V. Kopecký Jr., V. Baumruk, Vib. Spectrosc. 42, 184-187 (2006).<br />

PA 97


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Raman optical activity study <strong>of</strong> poly-L-proline chains <strong>of</strong><br />

various lengths<br />

V. PROFANT 1 , V.BAUMRUK 1 AND P. BOUR 2<br />

1. Institute <strong>of</strong> Physics, Faculty <strong>of</strong> Ma<strong>the</strong>matics and Physics, Charles<br />

University, Ke Karlovu 5, 121 16, Prague, Czech Republic<br />

2. Institute <strong>of</strong> Organic Chemistry and Biochemistry, Academy <strong>of</strong><br />

Sciences, Flemingovo nám 2, 166 10, Prague, Czech Republic<br />

In this c<strong>on</strong>tributi<strong>on</strong> we focus <strong>on</strong> <strong>the</strong> dynamic behavior <strong>of</strong> peptides mostly in aqueous soluti<strong>on</strong><br />

where <strong>the</strong> peptide structural properties are most relevant to <strong>the</strong>ir biological role. In our experiment<br />

we measured Raman and Raman optical activity (ROA) spectra <strong>of</strong> oligo- and poly-L-proline<br />

samples in a wide frequency range and analyzed <strong>the</strong>m with respect to <strong>the</strong> length <strong>of</strong> <strong>the</strong> proline<br />

chain. The relatively new technique <strong>of</strong> ROA [1,2] , which is based <strong>on</strong> different interacti<strong>on</strong> <strong>of</strong> a<br />

specimen with right- and left-handed circularly polarized laser light, represents an ideal<br />

methodology for this type <strong>of</strong> observati<strong>on</strong>. The stress is laid <strong>on</strong> <strong>the</strong> interc<strong>on</strong>necti<strong>on</strong> between<br />

experimental and <strong>the</strong>oretical approach, so <strong>the</strong> interpretati<strong>on</strong> <strong>of</strong> observed phenomena is supported<br />

by ab initio calculati<strong>on</strong>s <strong>of</strong> spectral bands and <strong>the</strong>ir intensities. Our current study is str<strong>on</strong>gly related<br />

to previous experiments [3] which were focused <strong>on</strong> <strong>the</strong> characterizati<strong>on</strong> <strong>of</strong> proline side chain<br />

c<strong>on</strong>formati<strong>on</strong> and its interacti<strong>on</strong> with solvent. Measurements took place both in aqueous and in<br />

TFE soluti<strong>on</strong>s and we were able to obtain spectra <strong>of</strong> proline di-, tri-, tetra-, hexa-, n<strong>on</strong>a- and<br />

dodekamer as well as <strong>of</strong> three commercial poly-L-proline samples <strong>of</strong> different mean molecular<br />

weight.<br />

References<br />

Fig. 1 – Poly-L-proline Raman (I R +I L ) and ROA (I R -I L ) experimental spectra measured<br />

in aqueous soluti<strong>on</strong>. The intensity scale expresses <strong>the</strong> total number <strong>of</strong> detected counts.<br />

[1] P.W. Atkins , L.D. Barr<strong>on</strong>, Mol. Phys. 16, 453-466 (1969).<br />

[2] L.D. Barr<strong>on</strong>, M.P. Boggard, A.D. Buckingham, Nature 241, 113-114 (1973).<br />

[3] J. Kapitan, V. Baumruk, P. Bour, JACS 128, 2438-2443 (2006).<br />

PA 98


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Vibrati<strong>on</strong>al spectral analysis <strong>of</strong> biologically active<br />

crystal: Melaminium chloride hemihydrate<br />

C. RAVIKUMAR 1 , I. HUBERT JOE 1 AND V. K. RASTOGI 2<br />

Centre for Molecular and Biophysics Research, Department <strong>of</strong> Physics,<br />

Mar Ivanios College, Thiruvananthapuram – 695 015, Kerala, India<br />

2 Department <strong>of</strong> Physics, CCS University, Meerut, India.<br />

Melamine derivatives have attracted great attenti<strong>on</strong> in medical research, especially <strong>the</strong>ir antitumoral<br />

activity, used for <strong>the</strong> treatment <strong>of</strong> skin cancer. Also <strong>the</strong>y are widely used in commercial<br />

field for making fibers and <strong>the</strong>rmo setting plastics and industrial areas as a fire resistant foam [1,2].<br />

Single crystals <strong>of</strong> Melaminium chloride hemihydrate (MCH) were grown by slow evaporati<strong>on</strong><br />

method and a vibrati<strong>on</strong>al spectral analysis was carried out using FT-IR and NIR FT Raman<br />

spectroscopy techniques. Ab initio quantum chemical computati<strong>on</strong>s were performed at <strong>the</strong> HF/6-<br />

31G(d) level to derive <strong>the</strong> equilibrium geometry, vibrati<strong>on</strong>al wavenumbers and intensities and first<br />

hyperpolarizability. Vibrati<strong>on</strong>al spectral analysis indicates <strong>the</strong> presence <strong>of</strong> peculiar N-H---O and<br />

N-H---Cl hydrogen b<strong>on</strong>ding interacti<strong>on</strong>s. Hartree-Fock calculati<strong>on</strong>s reveal that prot<strong>on</strong>ati<strong>on</strong> affect<br />

systematic changes in lengths <strong>of</strong> C-N b<strong>on</strong>ds. N-H---Cl hydrogen b<strong>on</strong>ding causes <strong>the</strong> shortening <strong>of</strong><br />

d<strong>on</strong>or-acceptor b<strong>on</strong>d lengths and linearity <strong>of</strong> b<strong>on</strong>d angles. The optimized molecular structure <strong>of</strong><br />

MCH is shown in Fig. 1. The existence <strong>of</strong> intermolecular N-H---Cl hydrogen b<strong>on</strong>ds due to <strong>the</strong><br />

interacti<strong>on</strong> between <strong>the</strong> l<strong>on</strong>e pair <strong>of</strong> oxygen LP2Cl20 and LP2Cl37 with <strong>the</strong> antib<strong>on</strong>ding orbital σ *N5–<br />

H19 and σ *N26-H36 has been c<strong>on</strong>firmed by <strong>the</strong> results <strong>of</strong> NBO analysis. The splitting <strong>of</strong> Raman bands<br />

are observed at 107 and 104 cm -1 corresp<strong>on</strong>ds to N---O and N---Cl stretching H- b<strong>on</strong>ds vibrati<strong>on</strong>s,<br />

through which <strong>the</strong> charge transfer can takes place inside <strong>the</strong> crystal providing <strong>the</strong> n<strong>on</strong>centrosymmetric<br />

crystal structure.<br />

References<br />

Fig. 1 – molecular structure <strong>of</strong> MCH.<br />

[1] Z. W. Wicks, P. N. J<strong>on</strong>es, S. P. Pappas, Film formati<strong>on</strong>, compounds and appearance, Organic Coatings: Science<br />

and Technology, Vol. 1, Chap. 6, Wiley, New York, (1992).<br />

[2] A. J. Kirsch, N. Albrecht, C. Brogan, F. Lee, Amino coating resins: <strong>the</strong>ir inventi<strong>on</strong> and reinventi<strong>on</strong>, Marketing<br />

communicati<strong>on</strong>s Assoc. for CYTEC Industries, (1995).<br />

PA 99


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

The FT-IR, FT-Raman, 1H and 13C NMR study <strong>on</strong><br />

molecular structure <strong>of</strong> sodium(I), calcium(II),<br />

lanthanum(III) and thorium(IV) cinnamates<br />

M. KALINOWSKA1 , W. LEWANDOWSKI 1,2 , R. ŚWISŁOCKA 1,2 AND E. REGULSKA 1<br />

1 Department <strong>of</strong> Chemistry, Białystok Technical University,<br />

Zamenh<strong>of</strong>a 29, 15-435 Białystok, Poland<br />

2 College <strong>of</strong> Computer Science and Business Administrati<strong>on</strong> in ŁomŜa,<br />

Poznańska 141B Street, 18-400 ŁomŜa, Poland<br />

The estimati<strong>on</strong> <strong>of</strong> <strong>the</strong> electr<strong>on</strong>ic charge distributi<strong>on</strong> in metal complexes allows more precise<br />

interpretati<strong>on</strong> <strong>of</strong> <strong>the</strong> mechanism by which particular metals affect <strong>the</strong> chemical and biochemical<br />

properties <strong>of</strong> ligands as well as it makes possible to predict, what kind <strong>of</strong> deformati<strong>on</strong> <strong>of</strong> <strong>the</strong><br />

electr<strong>on</strong>ic system <strong>of</strong> ligands would undergo during complexati<strong>on</strong> [1]. Cinnamic acid (3-phenyl-2propenoic<br />

acid), a derivative <strong>of</strong> phenylalanine, composes a relatively large family <strong>of</strong> organic acid<br />

isomers [2]. Cinnamic acid is extensively studied not <strong>on</strong>ly due to its important biological activity,<br />

but also because <strong>of</strong> its very specific structure. In <strong>the</strong> molecule <strong>of</strong> cinnamic acid <strong>the</strong> carboxylic<br />

group is being separated from <strong>the</strong> aromatic ring by a double b<strong>on</strong>d. It causes <strong>the</strong> c<strong>on</strong>jugati<strong>on</strong>s<br />

between <strong>the</strong> -C=C- b<strong>on</strong>d and ̟-electr<strong>on</strong> system. In this work <strong>the</strong> effect <strong>of</strong> sodium(I), calcium(II),<br />

lanthanum(III) and thorium(IV) i<strong>on</strong>s <strong>on</strong> <strong>the</strong> electr<strong>on</strong>ic structure and molecular structure <strong>of</strong><br />

cinnamic acid (phenylacrylic acid) was studied. In this research many miscellaneous analytical<br />

methods, which complement <strong>on</strong>e ano<strong>the</strong>r, were used: infrared (FT-IR), Raman (FT-Raman),<br />

nuclear magnetic res<strong>on</strong>ance ( 1H, 13C NMR). The spectroscopic studies provide some knowledge <strong>on</strong><br />

<strong>the</strong> distributi<strong>on</strong> <strong>of</strong> <strong>the</strong> electr<strong>on</strong>ic charge in molecule, <strong>the</strong> delocalizati<strong>on</strong> energy <strong>of</strong> π-electr<strong>on</strong>s and<br />

<strong>the</strong> reactivity <strong>of</strong> metal complexes. In <strong>the</strong> series <strong>of</strong> Na(I)→Ca(II)→La(III)→Th(IV) cinnamates: (1)<br />

systematic shifts <strong>of</strong> several bands in <strong>the</strong> experimental and <strong>the</strong>oretical IR and Raman spectra, and<br />

(2) regular chemical shifts <strong>of</strong> prot<strong>on</strong>s 1H and 13C nuclei were observed.<br />

References<br />

[1] W. Lewandowski, M. Kalinowska, H. Lewandowska, J. Inorg. Biochem. 99, 1407-1423 (2005).<br />

[2] L. Bravo, Nutr. Rev. 56, 317-333 (1998).<br />

PA 100


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Polarised IR spectroscopy <strong>on</strong> macroscopically aligned<br />

amyloid fibrils.<br />

J. C. RODRIGUEZ-PEREZ , I. W. HAMLEY AND A. M. SQUIRES*<br />

School <strong>of</strong> Chemistry, University <strong>of</strong> Reading, Whiteknights, PO Box 217,<br />

Reading, RH6 6AH, UK<br />

E-mail: a.m.squires@reading.ac.uk<br />

Amyloid fibrils are self-assembled protein fibres related to some degenerative disorders like<br />

Alzheimer's or Huntingt<strong>on</strong>'s diseases. The most used method for <strong>the</strong> study <strong>of</strong> protein structure, Xray<br />

crystallography, has had limited success with amyloids because <strong>of</strong> <strong>the</strong> difficulty to obtain<br />

crystals from <strong>the</strong>m. In this report, we describe experiments where we align amyloid fibrils and<br />

study <strong>the</strong>m with polarised vibrati<strong>on</strong>al (IR/Raman) spectroscopy. Such experiments can give new<br />

informati<strong>on</strong> about <strong>the</strong> structure and orientati<strong>on</strong> <strong>of</strong> <strong>the</strong> peptide or protein chains within <strong>the</strong> fibril.<br />

We have used a number <strong>of</strong> methods to obtain aligned fibrils. These include “molecular combing”,<br />

a simple and inexpensive method where <strong>the</strong> receding meniscus <strong>of</strong> a liquid aligns <strong>the</strong> fibrils present<br />

in a soluti<strong>on</strong> in a directi<strong>on</strong> parallel to its movement by means <strong>of</strong> solute-surface interacti<strong>on</strong>s. This<br />

technique has been used in o<strong>the</strong>r systems, for example, to obtain highly aligned strands <strong>of</strong> DNA.<br />

Here, we present results from three amyloid samples. These are made from <strong>the</strong> protein Lysozyme,<br />

and from two short syn<strong>the</strong>tic peptides, TTR105-115 and YYKLVFFC [1]. In each case, <strong>the</strong> fibrils were<br />

successfully aligned, as revealed by <strong>the</strong> dichroic vibrati<strong>on</strong>al bands <strong>of</strong> <strong>the</strong>ir polarised IR spectra;<br />

and calculati<strong>on</strong> <strong>of</strong> <strong>the</strong> orientati<strong>on</strong>al parameters <strong>of</strong> <strong>the</strong> groups involved in <strong>the</strong> vibrati<strong>on</strong>s was<br />

performed. We have also syn<strong>the</strong>sised ano<strong>the</strong>r peptide introducing a double isotope label (C 13, O 18)<br />

at two different positi<strong>on</strong>s to obtain residue specific informati<strong>on</strong> about <strong>the</strong> c<strong>on</strong>formati<strong>on</strong> <strong>of</strong> different<br />

parts <strong>of</strong> <strong>the</strong> peptide chain when it is assembled into amyloid fibrils.<br />

References<br />

[1] I. W. Hamley, V. Castelletto, C. M. Moult<strong>on</strong>, D. Myatt, G. Siligardi, C. L. P. Oliveira, J. Skov Pedersen, I. Abutbul,<br />

D. Danino, “Self-assembly <strong>of</strong> a modified amyloid peptide fragment: pH resp<strong>on</strong>siveness and nematic phase<br />

formati<strong>on</strong>”, Langmuir, submitted for publicati<strong>on</strong> (<strong>2009</strong>).<br />

PA 101


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Molecular structure <strong>of</strong> calcium, magnesium, str<strong>on</strong>tium<br />

and barium m-nitrobenzoates<br />

M. SAMSONOWICZ<br />

Department <strong>of</strong> Chemistry, Bialystok Technical University,<br />

Zamenh<strong>of</strong>a 29, 15-435 Bialystok, Poland<br />

Nitroaromatics are important priority pollutants entering <strong>the</strong> envir<strong>on</strong>ment primarily through<br />

anthropogenic activities associated with <strong>the</strong> industrial producti<strong>on</strong> <strong>of</strong> dyes, explosives, pesticides,<br />

insecticides and pharmaceuticals. Discharge <strong>of</strong> <strong>the</strong>se compounds into <strong>the</strong> envir<strong>on</strong>ment poses<br />

serious health hazards as <strong>the</strong>y are mutagenic and bioaccumulate in <strong>the</strong> food chain [1]. The changes<br />

in physical, chemical and biological properties <strong>of</strong> <strong>the</strong>m decided about <strong>the</strong>ir effect <strong>on</strong> biological<br />

system. The aim <strong>of</strong> our works is <strong>the</strong> investigati<strong>on</strong> <strong>of</strong> specific effect <strong>of</strong> various metals <strong>on</strong> <strong>the</strong><br />

electr<strong>on</strong>ic system and molecular structure <strong>of</strong> some benzoic acid derivatives [2–5]. In this work <strong>the</strong><br />

effect <strong>of</strong> calcium, magnesium, str<strong>on</strong>tium and barium i<strong>on</strong>s <strong>on</strong> <strong>the</strong> electr<strong>on</strong>ic structure <strong>of</strong> pnitrobenzoates<br />

was studied. The experimental IR (in solid state and soluti<strong>on</strong>), UV (in soluti<strong>on</strong>)<br />

spectra <strong>of</strong> m-nitrobenzoic acids and its salts were registered, assigned and analyzed. Characteristic<br />

shifts and changes in intensities <strong>of</strong> bands al<strong>on</strong>g <strong>the</strong> metal series were observed. The structures <strong>of</strong><br />

m-nitrobenzoic and beryllium, calcium, magnesium, str<strong>on</strong>tium and barium were optimised at <strong>the</strong><br />

B3LYP/LANL2DZ level. Geometric aromaticity indices, NICS indices, atomic charges, dipole<br />

moments and energies were also calculated.<br />

References<br />

[1] I., Soojhaw<strong>on</strong>, P.D. Lokhande, K.M. Kodam, K.R. Gawai, Enzeme Microb Technol 37, 527-533 (2005).<br />

[2] R. Śwsłocka, M. Sams<strong>on</strong>owicz, E. Regulska, W. Lewandowski, J. Mol. Struct. 6, 227-238 (2006).<br />

[3] W. Lewandowski, M. Kalinowska, H. Lewandowska, J. Inorg. Biochem. 99, 1407-1423 (2005).<br />

[4] R. Świsłocka, E. Regulska, M. Sams<strong>on</strong>owicz, T. Hrynaszkiewicz, W. Lewandowski, Spectrochim. Acta A 61, 2966-<br />

2973 (2005).<br />

[5] P. Koczoń, T. Hrynaszkiewicz, R. Świsłocka, M. Sams<strong>on</strong>owicz, W. Lewandowski, Vib. Spectrosc. 33, 215-222<br />

(2003).<br />

PA 102


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Raman <strong>Spectroscopy</strong>, DFT calculati<strong>on</strong>s and <strong>the</strong>rmal<br />

analysis as tools in host:guest interacti<strong>on</strong> studies<br />

M. SARDO 1 , A.M. AMADO 2 AND P.J.A. RIBEIRO-CLARO 1<br />

1. CICECO, Chemistry Dept. University <strong>of</strong> Aveiro, Campus de Santiago,<br />

P-3810-193 Aveiro, Portugal<br />

2. Química-Física molecular, Chemistry Dept. University <strong>of</strong> Coimbra,<br />

P-3004-535 Coimbra, Portugal<br />

Different analytical techniques are comm<strong>on</strong>ly used to analyse <strong>the</strong> molecular structure and<br />

interacti<strong>on</strong>s established in a host-guest compound [1-3]. Moreover, <strong>the</strong> effects <strong>of</strong> <strong>the</strong> inclusi<strong>on</strong><br />

process <strong>on</strong> <strong>the</strong> guest molecules, in particular <strong>the</strong> c<strong>on</strong>formati<strong>on</strong>al selectivity, have been <strong>the</strong> subject<br />

<strong>of</strong> several studies using Raman <strong>Spectroscopy</strong> [4,5]. In this work, studies were carried out into <strong>the</strong><br />

effects <strong>of</strong> <strong>the</strong> inclusi<strong>on</strong> process <strong>on</strong> α-, β- and γ-Cyclodextrins <strong>of</strong> a number <strong>of</strong> phenol derivatives (3-<br />

Methoxyphenol, 2-Methoxyphenol and 3-Methylphenol). The combined results from Raman<br />

spectroscopy, DFT calculati<strong>on</strong>s, DSC and TG analysis allow a c<strong>on</strong>sistent descripti<strong>on</strong> <strong>of</strong> <strong>the</strong><br />

inclusi<strong>on</strong> compounds, providing fur<strong>the</strong>r informati<strong>on</strong> <strong>on</strong> <strong>the</strong> inclusi<strong>on</strong> process in CD hosts. The<br />

data collected from TG and DSC analysis suggest that <strong>the</strong> stoichiometry <strong>of</strong> <strong>the</strong> inclusi<strong>on</strong><br />

compounds ranges from 2:1 to 1:2, depending not <strong>on</strong>ly <strong>on</strong> <strong>the</strong> cavity size <strong>of</strong> <strong>the</strong> host but also <strong>on</strong> <strong>the</strong><br />

structural features <strong>of</strong> <strong>the</strong> guest. For example, in <strong>the</strong> case <strong>of</strong> α-CD inclusi<strong>on</strong> compounds, <strong>the</strong> 1:2 and<br />

1:1.5 stoichiometries were obtained for <strong>the</strong> meta substituted phenols while a 2:1 stoichiometry was<br />

observed for <strong>the</strong> ortho substituted derivative. The Raman spectra (Fig. 1) <strong>of</strong> <strong>the</strong> meta substituted<br />

guests clearly reveal <strong>the</strong> band splitting <strong>of</strong> several modes, c<strong>on</strong>sistent with <strong>the</strong> stoichiometry<br />

proposed in <strong>the</strong> <strong>the</strong>rmal analysis secti<strong>on</strong>. This behaviour can be interpreted c<strong>on</strong>sidering that <strong>the</strong>re<br />

are two different chemical envir<strong>on</strong>ments for <strong>the</strong> guest molecule: inside <strong>the</strong> CD cavity (A) and<br />

outside <strong>the</strong> cavity (B).<br />

References<br />

[1] S. Braga, et al., J Incl. Phenom. Macro. Chem. 43, 115-125 (2002).<br />

[2] J.C. Netto-Ferreira et al., Langmuir 16, 10392-10397 (1996).<br />

[3] T. Van Hees et al., Eur. J. Pharm. Sci. 15, 347-353 (2002).<br />

[4] P.J.A. Ribeiro-Claro et al., J. Raman Spectrosc. 27, 155-161 (1996).<br />

[5] A.M. Amado et al., J. Raman Spectrosc. 31, 971-978 (2000).<br />

PA 103<br />

A<br />

B<br />

B<br />

7<br />

0<br />

2<br />

6<br />

1<br />

2<br />

A<br />

5<br />

2<br />

B<br />

A<br />

239 249<br />

4<br />

2<br />

Wavenumber / cm-1 200 220 240 260<br />

αCD����3MePh<br />

3MePh


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

HPTLC-supported and in-situ res<strong>on</strong>ance Raman<br />

spectroscopy <strong>of</strong> carotenoid signature in pollen<br />

F. SCHULTE1, 2 , J. MÄDER3 , L.-W. KROH3 , U. PANNE 1, 2 AND J. KNEIPP 1, 2<br />

1. Humboldt Universität zu Berlin, Chemistry Dept., Brook-Taylor-Str.,<br />

D-12489 Berlin, Germany<br />

2. Federal Institute for Materials Research and Testing, I.42, Richard-<br />

Willstätter-Str. 11, D 12489 Berlin, Germany<br />

3. Berlin University <strong>of</strong> Technology, Institute <strong>of</strong> Food Technology and<br />

Food Chemistry, Department <strong>of</strong> Food Analysis, Gustav-Meyer-Allee 25,<br />

D-13355 Berlin, Germany<br />

The examinati<strong>on</strong> <strong>of</strong> carotenoids c<strong>on</strong>tained in tree pollen was accomplished by High Performance<br />

Thin Layer Chromatography (HPTLC) aided res<strong>on</strong>ance Raman spectroscopy. Raman spectra were<br />

excited with 488 nm so that <strong>the</strong> laser light coincided with an electr<strong>on</strong>ic transiti<strong>on</strong> <strong>of</strong> <strong>the</strong> carotenoids<br />

and according signals were enhanced. Combinati<strong>on</strong> t<strong>on</strong>es and overt<strong>on</strong>es could be observed in <strong>the</strong><br />

range from 2000 cm -1 to 4000 cm -1. The carotenoid signature <strong>of</strong> whole pollen grains was recorded<br />

and compared to Raman spectra <strong>of</strong> separated carotenoids. Extracts c<strong>on</strong>taining carotenoids derived<br />

from pollen were separated by HPTLC. For <strong>the</strong> separati<strong>on</strong> <strong>of</strong> <strong>the</strong>se carotenoids a new highly<br />

effective multiple development protocol for HPTLC was established using a gradient <strong>of</strong><br />

methylenchloride, tetrahydr<strong>of</strong>urane and n-hexane as mobile phase. The informati<strong>on</strong> in <strong>the</strong> in-situ<br />

carotenoid signatures is c<strong>on</strong>firmed to a great extent by <strong>the</strong> res<strong>on</strong>ance Raman spectra <strong>of</strong> <strong>the</strong><br />

HPTLC-separated carotenoids. In particular, shape and positi<strong>on</strong> <strong>of</strong> <strong>the</strong> ν1 signal around 1530 cm -1<br />

vary for different plant species and for particular carotenoids molecules. As <strong>the</strong> Raman scattering<br />

was excited in res<strong>on</strong>ance (with an excitati<strong>on</strong> wavelength <strong>of</strong> 488 nm), carotenoids were detected<br />

more sensitively with in-situ Raman spectroscopy than with HPTLC. Raman spectra were<br />

measured directly <strong>on</strong> <strong>the</strong> HPTLC plates with as less loss <strong>of</strong> time as possible to minimize <strong>the</strong><br />

rearrangement <strong>of</strong> carotenoids as <strong>the</strong>y are very sensitive to light induced isomerisati<strong>on</strong>. The<br />

carotenoid compositi<strong>on</strong> <strong>of</strong> six tree pollen species was analysed (horse chestnut, large-leaved<br />

linden, european ash, sallow, mahaleb cherry, tree <strong>of</strong> heaven) and <strong>the</strong> c<strong>on</strong>centrati<strong>on</strong>s <strong>of</strong> four<br />

prominent carotenoids (beta-carotene, cryptoxanthin, lutein, zeaxanthin) in <strong>the</strong>se pollen species<br />

were determined.<br />

PA 104


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Analysis <strong>of</strong> human skin cancer biopsies by IR<br />

spectroscopy and fuzzy clustering<br />

D. SEBISKVERADZE 1 , C. GOBINET 1 , E. LY 1 , M. MANFAIT 1 , P. JEANNESSON 1 , O. PIOT 1 AND V.<br />

VRABIE 2<br />

1. MéDIAN, CNRS UMR 6237 MEDyC, IFR 53, University <strong>of</strong> Reims<br />

Champagne-Ardenne, 51 rue Cognacq-Jay, Reims, 51096, France<br />

2. CReSTIC, University <strong>of</strong> Reims Champagne-Ardenne, Chaussée du<br />

Port, Châl<strong>on</strong>s-en-Champagne, 51000, France<br />

Infrared (IR) micro-spectral imaging is an efficient label-free optical method to analyze biological<br />

samples and to provide spatially resolved informati<strong>on</strong> <strong>on</strong> <strong>the</strong> basis <strong>of</strong> <strong>the</strong>ir biochemical<br />

compositi<strong>on</strong>. Recent studies have shown its potential to detect and characterize cancerous tissues<br />

in <strong>the</strong>ir early stages, independently <strong>of</strong> visual morphology. IR micro-imaging could thus be<br />

developed as a sensitive, n<strong>on</strong>-destructive and objective diagnostic tool in clinical <strong>on</strong>cology. The<br />

discriminati<strong>on</strong> between tumoral and peritumoral tissues relies <strong>on</strong> <strong>the</strong> highlighting <strong>of</strong> subtle IR<br />

spectral differences. For this, <strong>the</strong> spectral dataset acquired <strong>on</strong> biomedical samples is generally<br />

classified by c<strong>on</strong>venti<strong>on</strong>al “hard” clustering algorithms (such as K-means). These clustering<br />

techniques assign each recorded spectrum to <strong>on</strong>e cluster automatically. K-means <strong>of</strong> IR data was<br />

proved to be very efficient to characterize tumoral tissue, but its main drawback is that it cannot<br />

differentiate <strong>the</strong> nuances in <strong>the</strong> assignment <strong>of</strong> pixels, particularly those located at <strong>the</strong> interfaces<br />

between different tissue structures. In this study, we will focus <strong>on</strong> fuzzy clustering techniques to<br />

classify data from IR images directly acquired <strong>on</strong> formalin-fixed paraffin-embedded tissue secti<strong>on</strong>s<br />

<strong>of</strong> human skin cancers (squamous cell carcinoma and melanoma), without chemical dewaxing. The<br />

fuzzy clustering extends <strong>the</strong> traditi<strong>on</strong>al clustering c<strong>on</strong>cept by allowing each recorded spectrum to<br />

be assigned to every cluster with an associated membership value. Therefore, for unclear cluster<br />

boundaries, fuzzy clustering may obtain more reas<strong>on</strong>able results. However, as with <strong>the</strong> K-means<br />

algorithm, fuzzy c-means needs <strong>the</strong> number <strong>of</strong> clusters to be pre-specified in advance as an input<br />

parameter to <strong>the</strong> algorithm. This algorithm also needs a sec<strong>on</strong>d input parameter called “fuzziness<br />

index” which c<strong>on</strong>trols <strong>the</strong> fuzziness <strong>of</strong> <strong>the</strong> membership. We developed an algorithm, which can<br />

generate <strong>the</strong> optimal number <strong>of</strong> clusters and optimal “fuzziness index” automatically without a<br />

priori knowledge about <strong>the</strong> specificity <strong>of</strong> <strong>the</strong> sample. The c<strong>on</strong>structed IR color-coded spectral<br />

images allow recovering <strong>the</strong> different histological structures automatically. However, more than<br />

reproducing classical histology, our algorithm can give access to interesting informati<strong>on</strong> <strong>on</strong> <strong>the</strong><br />

assignment <strong>of</strong> <strong>the</strong> IR images pixels to <strong>the</strong> tissular structures. For each pixel, fuzzy classificati<strong>on</strong><br />

provides with membership values, permitting to nuance <strong>the</strong>ir assignment. Such data are very<br />

valuable for <strong>the</strong> pixels located at <strong>the</strong> interface between tumoral tissue and its microenvir<strong>on</strong>ment.<br />

Thus, heterogeneous transiti<strong>on</strong>al areas between tumor and envir<strong>on</strong>mental normal tissue were<br />

identified for <strong>the</strong> examined tissue secti<strong>on</strong>s. These areas cannot be identified <strong>on</strong> hematoxylin-eosin<br />

staining or by K-means. Experiments are underway to define <strong>the</strong> molecular assignments <strong>of</strong> <strong>the</strong><br />

spectral variati<strong>on</strong>s observed in <strong>the</strong>se peritumoral areas.<br />

PA 105


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

SERS+SEF study <strong>on</strong> piroxicam over Ag nanoparticles<br />

P. SEVILLA 1, 2 , R. DE LLANOS 2 , C. DOMINGO 2 , S. SÁNCHEZ-CORTÉS 2 AND J.V. GARCÍA-RAMOS 2<br />

1. Departamento de Química Física II, Facultad de Farmacia,<br />

Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n,<br />

28040, Spain.<br />

2. Instituto de Estructura de la Materia, C<strong>on</strong>sejo Superior de<br />

Investigaci<strong>on</strong>es Científicas, Serrano 121, Madrid, 28006, Spain.<br />

Piroxicam (4-hydroxyl-2-methyl-N-2-pyridinyl-2H-1,2,-benzothiazine-3-carboxamide 1,1-dioxide)<br />

is a n<strong>on</strong>steroidal anti-inflamatory drug (NSAID). The <str<strong>on</strong>g>European</str<strong>on</strong>g> Medicines Agency (EMEA 25 June<br />

2007) has recommended restricti<strong>on</strong>s <strong>on</strong> <strong>the</strong> use <strong>of</strong> piroxicam-c<strong>on</strong>taining medicinal products<br />

because <strong>of</strong> <strong>the</strong> risk <strong>of</strong> gastrointestinal side effects and serious skin reacti<strong>on</strong>s. Topical medicines<br />

c<strong>on</strong>taining piroxicam are not c<strong>on</strong>cerned by <strong>the</strong>se restricti<strong>on</strong>s. It occurs as a white crystalline solid<br />

slightly soluble in alcohol and in aqueous soluti<strong>on</strong>. It exhibits acid-basic equilibrium with two pKs<br />

at 1.8 and 5.8. Only <strong>the</strong> neutral forms <strong>of</strong> <strong>the</strong> oxicam drugs are suggested to be medically active.<br />

Several studies <strong>on</strong> <strong>the</strong> behaviour <strong>of</strong> piroxicam <strong>on</strong> water soluti<strong>on</strong> have appeared recently [1-2]. On<br />

<strong>the</strong> o<strong>the</strong>r hand metal nanoparticles have become an efficient method to store and deliver drugs in<br />

sick patients. In this sense, <strong>the</strong> study <strong>of</strong> piroxicam in presence <strong>of</strong> Ag nanoparticles can help to <strong>the</strong><br />

development <strong>of</strong> new target systems that can avoid <strong>the</strong> aforementi<strong>on</strong>ed side effects and can<br />

c<strong>on</strong>tribute to <strong>the</strong> understanding <strong>of</strong> <strong>the</strong>ir biological effects. The aim <strong>of</strong> this work is to characterize<br />

<strong>the</strong> piroxicam molecules when <strong>the</strong>y are adsorbed <strong>on</strong> Ag nanoparticules, using colloids prepared<br />

through two different methods and at different pHs. We have used metal surface enhanced<br />

spectroscopy techniques to obtain SERS (surface enhanced raman spectroscopy) and SEF (surfaced<br />

enhanced fluorescence spectroscopy) spectra. Preliminary results <strong>of</strong> our work are presented here,<br />

indicating as well as <strong>the</strong> molecular characterizati<strong>on</strong> <strong>the</strong> possibility <strong>of</strong> using SERS as a new method<br />

for <strong>the</strong> quantificati<strong>on</strong> <strong>of</strong> <strong>the</strong> different species <strong>of</strong> <strong>the</strong> drug.<br />

References<br />

Fig. 1 – Structure <strong>of</strong> piroxicam<br />

[1] M.L.S. Silva, M.B.Q. Garcia, J.L.F.C. Lima, E. Barrado, Electroanalysis 19, 1362-1367 (2008).<br />

[2] M. Gil, A. Douhal, J. Phys. Chem. A 112, 8231-8237 (2008).<br />

PA 106


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Redox dynamics and catalytic activity <strong>of</strong> Human Sulfite<br />

Oxidase immobilized <strong>on</strong> electrodes studied by potential<br />

c<strong>on</strong>trolled Surface Enhanced Raman <strong>Spectroscopy</strong><br />

M. SEZER, R. SPRICIGO, U. WOLLENBERGER, P. HILDEBRANDT, I. M. WEIDINGER<br />

1. Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni<br />

135, 10623 Berlin Germany<br />

2. Institut für Biochemie und Biologie, Universität Potsdam, Karl-<br />

Liebknechtstrasse 24-25, 14476 Golm, Germany<br />

Human Sulfite Oxidase (HSO) is an enzyme in <strong>the</strong> mitoch<strong>on</strong>dria, which catalyses <strong>the</strong> oxidati<strong>on</strong> <strong>of</strong><br />

sulfite to sulfate [1]. HSO is present as a dimer where each m<strong>on</strong>omer c<strong>on</strong>tains a cytochrome b5<br />

(heme) and molybdophterin-binding subdomain (Moco domain). Catalytic sulfite oxidati<strong>on</strong> takes<br />

place at <strong>the</strong> Moco domain followed by a fast electr<strong>on</strong> transfer to <strong>the</strong> heme center <strong>of</strong> <strong>the</strong> Cyt b5.<br />

Both domains are c<strong>on</strong>nected by a loop regi<strong>on</strong>, which provides high flexibility between <strong>the</strong><br />

subdomains. Immobilisati<strong>on</strong> <strong>of</strong> HSO <strong>on</strong> metal electrodes makes it possible to c<strong>on</strong>trol <strong>the</strong> catalytic<br />

activity <strong>of</strong> <strong>the</strong> enzyme and to use it as an ultrasensitive sulfite biosensor. Electrochemical<br />

investigati<strong>on</strong>s <strong>of</strong> surface-bound HSO in single-and multilayer systems showed that <strong>the</strong> catalytic<br />

activity can be preserved under certain c<strong>on</strong>diti<strong>on</strong>s in <strong>the</strong> immobilized state [2]. Surface enhanced<br />

res<strong>on</strong>ance Raman (SERR) spectroscopy represents an instructive alternative to electrochemical<br />

methods since it can selectively probe <strong>the</strong> active site structure <strong>of</strong> immobilized proteins, if <strong>the</strong><br />

excitati<strong>on</strong> line coincides with an electr<strong>on</strong>ic transiti<strong>on</strong> <strong>of</strong> <strong>the</strong> protein c<strong>of</strong>actor (molecular res<strong>on</strong>ance<br />

enhancement) and <strong>the</strong> surface plasm<strong>on</strong> res<strong>on</strong>ance <strong>of</strong> <strong>the</strong> metal (surface enhancement). Using <strong>the</strong><br />

potential jump technique time resolved SERR spectra can give detailed informati<strong>on</strong> about electr<strong>on</strong><br />

transfer kinetic as well as protein dynamics and changes <strong>of</strong> <strong>the</strong> c<strong>of</strong>actor structure during <strong>the</strong><br />

catalytic cycle [3]. We could successfully immobilize HSO <strong>on</strong> <strong>the</strong> electrode via electrostatic<br />

interacti<strong>on</strong>s <strong>of</strong> <strong>the</strong> negatively charged Cyt b5 subdomain with positively charged self assembled<br />

m<strong>on</strong>olayers (SAM). Using <strong>the</strong> 413 nm line <strong>of</strong> a Kr laser we could m<strong>on</strong>itor <strong>the</strong> heme in <strong>the</strong> Cyt b5<br />

subdomain by SERR spectroscopy. The structure and redox-properties <strong>of</strong> <strong>the</strong> heme and <strong>the</strong><br />

catalytic activity <strong>of</strong> <strong>the</strong> immobilized enzyme have been studied by time-resolved potential<br />

c<strong>on</strong>trolled SERR spectroscopy. The results are compared with measurements <strong>on</strong> <strong>the</strong> isolated Cyt<br />

b5 domain.<br />

References<br />

Fig. 1 – Catalytic mechanism <strong>of</strong> <strong>the</strong> immobilized Human Sulfate Oxidase.<br />

[1] R.M. Garrett, K.V. Rajagopalan, Proc. Natl. Acad. Sci. USA 95, 6394-6398 (1998).<br />

[2] R, Spricigo, U. Wollenberger, S<strong>of</strong>t Matter 4, 972 (2008).<br />

[3] D.H. Murgida, P. Hildebrandt, Chem. Soc Rev. 37, 937-945 (2008).<br />

PA 107


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Molecular Structure and Vibrati<strong>on</strong>al Studies <strong>of</strong> 1, 4naphthoqui<strong>on</strong>e<br />

Using Quantum Mechanical Methods<br />

P. SINGH , G. SRIVASTAV AND R. A. YADAV<br />

Dept. <strong>of</strong> Physics, Banaras Hindu University, India<br />

Ab initio restricted Hartree-Fock RHF and density functi<strong>on</strong>al <strong>the</strong>ory B3LYP calculati<strong>on</strong>s were<br />

carried out to study <strong>the</strong> molecular structure, atomic charges and Vibrati<strong>on</strong>al spectrum <strong>of</strong> 1, 4-<br />

naphthoqui<strong>on</strong>e (NQ, see figure - 1) molecule. Harm<strong>on</strong>ic forced field and vibrati<strong>on</strong>al mode<br />

calculati<strong>on</strong>s provided c<strong>on</strong>vinced <strong>the</strong>oretical evidence for assignments <strong>of</strong> fundamental vibrati<strong>on</strong>al<br />

mode. This study shows that density functi<strong>on</strong>al <strong>the</strong>ory is a powerful approach for understanding<br />

<strong>the</strong> vibrati<strong>on</strong>al spectra <strong>of</strong> organic molecules. The calculati<strong>on</strong>s predicted a planar structure with C2v<br />

symmetry for NQ molecule. The qui<strong>on</strong>es and <strong>the</strong>ir <strong>on</strong>e electr<strong>on</strong> reduce forms occupy central place<br />

in electr<strong>on</strong> transfer chemistry and biological energy c<strong>on</strong>versi<strong>on</strong> [1-2].<br />

References<br />

Fig. 1 – The structure <strong>of</strong> 1, 4 – naphthoqui<strong>on</strong>e (NQ)<br />

[1] A. Cr<strong>of</strong>ts, A. C. Wraight, Biochim. Biophys. Acta 726, 149-185 (1983).<br />

[2] H. H. Robins<strong>on</strong>, R. A. Cr<strong>of</strong>ts, FEBS Lett. 153, 221-226 (1983).<br />

PA 108


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Comparative study <strong>of</strong> cytosine and its radicals by<br />

quantum mechanical method<br />

R. SINGH, S. JAISWAL, M. KUMAR, P. SINGH, G. SRIVASTAV AND R. A. YADAV<br />

Lasers and <strong>Spectroscopy</strong> Laboratory, Department <strong>of</strong> Physics, Banaras<br />

Hindu University, Varanasi-221005, India<br />

Cytosine and its derivatives are <strong>the</strong> compounds <strong>of</strong> great biological importance because <strong>the</strong>y are<br />

<strong>on</strong>e <strong>of</strong> <strong>the</strong> c<strong>on</strong>stituents <strong>of</strong> nucleic acids [1, 2]. In <strong>the</strong> present study <strong>the</strong> vibrati<strong>on</strong>al characteristics <strong>of</strong><br />

cytosine and its cati<strong>on</strong>ic and ani<strong>on</strong>ic radicals have been calculated with <strong>the</strong> B3LYP level using <strong>the</strong><br />

standard 6-311++G** basis set [3]. It is found that <strong>the</strong> neutral and <strong>the</strong> cati<strong>on</strong>ic radical have planar<br />

structures while <strong>the</strong> ani<strong>on</strong>ic radical have n<strong>on</strong>-planar structure with C1 symmetry. In <strong>the</strong> case <strong>of</strong><br />

ani<strong>on</strong>ic radical, both <strong>the</strong> H atoms <strong>of</strong> <strong>the</strong> NH2 group are slightly out <strong>of</strong> <strong>the</strong> molecular plane. All H<br />

atoms carries negative charge and positive charge <strong>on</strong> <strong>the</strong> N9 site in <strong>the</strong> ani<strong>on</strong>ic radical irrespective<br />

<strong>of</strong> <strong>the</strong> neutral and cati<strong>on</strong>ic radical <strong>of</strong> cytosine molecule. The C4-N9 b<strong>on</strong>d length is calculated to be<br />

smaller in <strong>the</strong> cati<strong>on</strong>ic radical <strong>of</strong> cytosine than <strong>the</strong> neutral and ani<strong>on</strong>ic radical <strong>of</strong> cytosine. The<br />

magnitude <strong>of</strong> <strong>the</strong> C=O out-<strong>of</strong>-plane vibrati<strong>on</strong>al frequency is calculated to be nearly equal for<br />

neutral and its ani<strong>on</strong>ic radical while increases in its cati<strong>on</strong>ic radical by ~ 75 cm -1. The C=O<br />

stretching frequency is calculated to be highest for <strong>the</strong> neutral cytosine (1769 cm -1) and almost<br />

equal for its ani<strong>on</strong>ic and cati<strong>on</strong>ic radical (1670 cm -1).<br />

References<br />

Fig. 1 – Fr<strong>on</strong>t view <strong>of</strong> cytosine Molecule<br />

[1] M. Rozenberg, G. Shoham, I. Reva, R. Fausto, Spectrochim. Acta Part A 60, 463 (2004).<br />

[2] H.O. Schild, Applied Pharmacology, ELBS, Edinburgh, (1998).<br />

[3] M. J. Frisch et al., Gaussian 03, Revisi<strong>on</strong> C.02, Gaussian, Inc.Wallingford CT (2004).<br />

PA 109


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Low frequency vibrati<strong>on</strong> modes from large viruses<br />

S. SIROTKIN 1 , M. BERGOIN 2 , J. VAN ETTEN 3 AND A. MERMET 1<br />

1. Université Ly<strong>on</strong> 1, Villeurbanne, F-69622, France ; CNRS, UMR5620,<br />

Laboratoire de Physico-Chimie des Matériaux Luminescents,<br />

Villeurbanne, F-69622, France. sirotkin@pcml.univ-ly<strong>on</strong>1.fr<br />

2. Unité de Biologie Intégrative et Virologie des Insectes UMR1231<br />

INRA - Université M<strong>on</strong>tpellier II 34095 M<strong>on</strong>tpellier Cedex 5, France<br />

3. Deparment <strong>of</strong> Plant Pathology, University <strong>of</strong> Nebraska, Lincoln,<br />

Nebraska, USA<br />

From <strong>the</strong>ir rigid and compact globular structures, viruses can be c<strong>on</strong>sidered as “biological<br />

nanoparticles”. As such, <strong>the</strong>y are expected to feature low frequency vibrati<strong>on</strong>al modes that are<br />

routinely detected from solid nanoparticles [1]. These optical-like modes c<strong>on</strong>sist in overall<br />

oscillatory moti<strong>on</strong>s <strong>of</strong> <strong>the</strong> nanoparticles <strong>on</strong> a timescale <strong>of</strong> <strong>the</strong> order <strong>of</strong> <strong>the</strong> nanosec<strong>on</strong>d to <strong>the</strong><br />

picosec<strong>on</strong>d, depending <strong>on</strong> <strong>the</strong> size <strong>of</strong> <strong>the</strong> particles. Although l<strong>on</strong>g predicted through <strong>the</strong>oretical<br />

calculati<strong>on</strong>s [2,3] and admittedly c<strong>on</strong>ceived as potentially important ingredients <strong>of</strong> <strong>the</strong> dynamical<br />

and elastic behaviors <strong>of</strong> viruses, <strong>the</strong>se low frequency modes have proved hard pressed to be<br />

detected experimentally. Our works aim at detecting <strong>the</strong>se modes through low frequency inelastic<br />

light scattering. Following an investigati<strong>on</strong> dedicated to <strong>the</strong> search <strong>of</strong> low frequency vibrati<strong>on</strong><br />

modes from small (~15-30 nm) plant viruses [4], we have recently focused our interest <strong>on</strong> larger<br />

viruses, namely <strong>the</strong> Chilo Iridescent Virus (CIV) and <strong>the</strong> Paramecium Bursaria Chlorella Virus<br />

type-1 (PBCV-1). Both viruses have a diameter <strong>of</strong> 190 nm and have a well characterized structure.<br />

We have performed very low frequency Raman/Brillouin measurements <strong>on</strong> diluted aqueous<br />

suspensi<strong>on</strong>s and highly c<strong>on</strong>centrated pellets <strong>of</strong> both viruses. The corresp<strong>on</strong>ding spectra show a<br />

broad inelastic feature around 6 GHz, which is q-independent <strong>the</strong>reby certifying <strong>the</strong> optical<br />

character <strong>of</strong> <strong>the</strong> detected mode. In order to interpret <strong>the</strong>se data, we have compared <strong>the</strong> virus<br />

results to those <strong>of</strong> polystyrene nanoparticles <strong>of</strong> identical sizes, in comparable c<strong>on</strong>diti<strong>on</strong>s (soluti<strong>on</strong>s<br />

and pellets). This comparis<strong>on</strong> enables <strong>the</strong> identificati<strong>on</strong> <strong>of</strong> <strong>the</strong> observed signals from <strong>the</strong> viruses as<br />

low frequency modes <strong>of</strong> <strong>the</strong>ir globular structures.<br />

References<br />

[1] Duval et al, Phys. Rev. Lett. 56, 2052 (1986), Kuok et al, Phys. Rev. Lett., 90, 25502 (2003)<br />

[2] H. Ford, Phys. Rev. E 67 (2002), 051924; L. Saviot, D. Murray, A. Mermet, and E. Duval, Phys. Rev. E 67 (2002),<br />

051924<br />

[3] F. Tama and C.L. Brooks III, J. Mol. Biol. 318 (2002), 733<br />

[4] B. Stephanidis, S. Adichtchev, P. Gouet, A. McPhers<strong>on</strong> and A. Mermet, Biophys. J. 93 (2007) 1354<br />

PA 110


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Raman study <strong>of</strong> biologically active 6-azacytidine and<br />

related compounds<br />

I.ALEXEEVA 1 , S. GARASEVYCH 2 , M. IAKHNENKO 2 , L. PALCHYKOVSKA 1 , O. SLOBODYANYUK 2 AND<br />

I. VASKIVSKYI 2<br />

1. Institute <strong>of</strong> Molecular Biology and Genetics, Nati<strong>on</strong>al Academy <strong>of</strong><br />

Science <strong>of</strong> Ukraine, 150 Zabolotnogo Street, Kyiv 03143, Ukraine<br />

2. Department <strong>of</strong> Physics, Taras Shevchenko Nati<strong>on</strong>al University <strong>of</strong><br />

Kyiv, 64, Volodymyrs’ka St., 01033 Kyiv, Ukraine<br />

Anomalous nucleoside 6-azaC is known as an antimetabolite with wide spectrum <strong>of</strong> <strong>the</strong>rapeutic<br />

activities. Reported Raman spectra <strong>of</strong> anomalous nucleoside 6-azacytidine (6-azaC) were measured<br />

for <strong>the</strong> first time. The space group P212121 and perfect quality <strong>of</strong> 6-azaC microcrystals syn<strong>the</strong>sized<br />

by us were proved by X-ray characterizati<strong>on</strong>. The spectra <strong>of</strong> <strong>the</strong> 6-azaC as well as related<br />

compounds (i.e. cytidine, cytosine, ribose and o<strong>the</strong>rs) in microcrystalline state and in different<br />

soluti<strong>on</strong>s were measured in range 30-3800 cm -1. Raman peaks positi<strong>on</strong>s <strong>of</strong> <strong>the</strong> 6-azaC and o<strong>the</strong>r<br />

compounds in <strong>the</strong> range 500-1800 cm -1 corresp<strong>on</strong>ding to intramolecular vibrati<strong>on</strong>s remain<br />

approximately <strong>the</strong> same when going from microcrystals to soluti<strong>on</strong>s (Fig.1). Also spectra <strong>of</strong> 6azaC,<br />

cytidine and cytosine have high degree <strong>of</strong> similarity. It was revealed that some Raman peaks<br />

<strong>of</strong> 6-azaC dissolved in D2O have manifested abnormal high frequency shifts with respect to <strong>the</strong>ir<br />

positi<strong>on</strong> in H2O soluti<strong>on</strong>. Similar results were obtained for 6-azaC microcrystals recrystallized<br />

from D2O soluti<strong>on</strong> as well as for cytidine. To <strong>the</strong> best <strong>of</strong> our knowledge this is <strong>the</strong> first observati<strong>on</strong><br />

<strong>of</strong> abnormal Raman frequency shifts <strong>of</strong> intramolecular modes under deuterati<strong>on</strong>. In <strong>the</strong> spectra <strong>of</strong><br />

6-azaC and cytidine calculated with Gaussian 03 package were obtained both normal and<br />

abnormal shifts close to <strong>the</strong> measured <strong>on</strong>es. We assume that abnormal shift occurs due to<br />

deuterati<strong>on</strong> <strong>of</strong> intramolecular H-b<strong>on</strong>ds. Details <strong>of</strong> <strong>the</strong> abnormal shifts study will be presented at<br />

<strong>the</strong> poster sessi<strong>on</strong>. This work was supported by <strong>the</strong> Fundamental Researches State Fund <strong>of</strong> <strong>the</strong><br />

Ministry <strong>of</strong> Educati<strong>on</strong> and Science <strong>of</strong> Ukraine (grant № F25/137-2008).<br />

Fig. 1 – Raman spectra <strong>of</strong> 6-azaC in microcrystalline form (a) and<br />

in water soluti<strong>on</strong>s: D 2O (b) and H 2O (c).<br />

PA 111


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Spectral properties <strong>of</strong> GFP S65T at cryogenic<br />

temperatures<br />

A. SPILOTROS 1 , M. LEVANTINO AND A. CUPANE<br />

1. Dept. <strong>of</strong> Physical and Astr<strong>on</strong>omical Sciences, University <strong>of</strong> Palermo,<br />

Via Archirafi 36, Palermo, I-90123, Italy<br />

To obtain a c<strong>on</strong>sistent interpretati<strong>on</strong> <strong>of</strong> <strong>the</strong> temperature dependence <strong>of</strong> <strong>the</strong> optical spectra <strong>of</strong> GFP<br />

and its mutants both emissi<strong>on</strong> and absorpti<strong>on</strong> spectra are necessary. Moreover, in <strong>the</strong> GFP case<br />

absorbing and emitting chromophores differ: <strong>the</strong> latter is deprot<strong>on</strong>ated. Hence, to address <strong>the</strong><br />

problem <strong>of</strong> <strong>the</strong> nature <strong>of</strong> <strong>the</strong> temperature dependence <strong>of</strong> <strong>the</strong> optical spectra <strong>of</strong> GFP <strong>on</strong>e has to start<br />

with mutants, chromophore <strong>of</strong> which does not change its prot<strong>on</strong>ati<strong>on</strong> state up<strong>on</strong> <strong>the</strong> excitati<strong>on</strong> [1].<br />

The absorpti<strong>on</strong> spectra <strong>of</strong> GFP mutant S65T were obtained in <strong>the</strong> 20-290 K temperature range in<br />

glycerol/water solvent at different pH values. The low temperature spectra revealed two pHdependent<br />

absorpti<strong>on</strong> peaks in <strong>the</strong> visible range. Varying <strong>the</strong> pH from acidic (pH 5) to basic (pH 8)<br />

<strong>the</strong> equilibrium between <strong>the</strong>se two bands <strong>of</strong> <strong>the</strong> spectrum was moved from <strong>on</strong>e to <strong>the</strong> o<strong>the</strong>r to<br />

study <strong>the</strong> spectral pr<strong>of</strong>ile <strong>of</strong> <strong>the</strong> bands individually. At intermediate pH values <strong>the</strong> temperature<br />

dependence <strong>of</strong> <strong>the</strong> spectra gave informati<strong>on</strong> about inter-c<strong>on</strong>versi<strong>on</strong> dynamics. At cryogenic<br />

temperatures <strong>the</strong> pr<strong>of</strong>ile <strong>of</strong> <strong>the</strong> peaks became narrower and clearly revealed <strong>the</strong> presence <strong>of</strong> at least<br />

three sub bands for each peak.<br />

References<br />

320 340 360 380 400 420 440 460 480 500 520<br />

PA 112<br />

Abs (O.D.)<br />

1.0<br />

0.5<br />

0.0<br />

pH6<br />

20K<br />

50K<br />

80K<br />

110K<br />

140K<br />

170K<br />

200K<br />

230K<br />

260K<br />

290K<br />

Wavelength (nm)<br />

Fig. 1 Absorpti<strong>on</strong> spectrum <strong>of</strong> GFP S65T at pH6 in <strong>the</strong> temperature<br />

range 20-290 K.<br />

[1] Solom<strong>on</strong> S. Stavrov, Kyril M. Solntsev, Laren M. Tolbert, and Dan Huppert, J. Am. Chem. Soc. 128, 1540-1546<br />

(2006).


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Electr<strong>on</strong> impact excitati<strong>on</strong> functi<strong>on</strong>s <strong>of</strong> gas-phase<br />

adenine molecules<br />

M.I.SUKHOVIYA, M.O.MARGITICH, M.M.CHAVARHA, I.I.SHAFRANYOSH<br />

Uzhgorod Nati<strong>on</strong>al University, Uzhgorod, 88000 Ukraine<br />

lshafr@rambler.ru<br />

In this paper we report <strong>the</strong> results <strong>of</strong> <strong>the</strong> study <strong>of</strong> <strong>the</strong> specific features <strong>of</strong> <strong>the</strong> excitati<strong>on</strong> and<br />

i<strong>on</strong>izati<strong>on</strong> <strong>of</strong> gas-phase biomolecules by slow electr<strong>on</strong>s. The electr<strong>on</strong> impact excitati<strong>on</strong> and<br />

i<strong>on</strong>izati<strong>on</strong> <strong>of</strong> gas-phase thymine molecules is studied in crossed electr<strong>on</strong> and molecular beams. The<br />

nucleotide base molecules were transported as a molecular beams to <strong>the</strong> regi<strong>on</strong> <strong>of</strong> <strong>the</strong>ir interacti<strong>on</strong><br />

with an electr<strong>on</strong> beam. The technique <strong>of</strong> crossed electr<strong>on</strong> and heterocyclic biomolecular beams<br />

used in this study has been described in our previous papers [1,2]. The molecular beam is formed<br />

by an effusi<strong>on</strong> <strong>the</strong>rmal source <strong>of</strong> a multichannel type and a system <strong>of</strong> collimating slits. A fiveelectrode<br />

electr<strong>on</strong> gun with a tungsten cathode was used as an electr<strong>on</strong> beam source. The<br />

experiments were performed under <strong>the</strong> following c<strong>on</strong>diti<strong>on</strong>s: <strong>the</strong> electr<strong>on</strong> beam current was<br />

(0.1-3) .10 --5 A, ∆E1/2~(0.3-0.5)eV (FWHM) energy spread; <strong>the</strong> c<strong>on</strong>centrati<strong>on</strong> <strong>of</strong> <strong>the</strong> molecules was<br />

2 .10 10 cm -3, and <strong>the</strong> vacuum was at 1 .10 -5 Pa. The emissi<strong>on</strong> spectra <strong>of</strong> adenine were studied in <strong>the</strong><br />

wavelength range 160-600 nm, as well as <strong>the</strong> electr<strong>on</strong> energy dependences <strong>of</strong> <strong>the</strong> effective<br />

excitati<strong>on</strong> cross secti<strong>on</strong>s (excitati<strong>on</strong> functi<strong>on</strong>s) <strong>of</strong> <strong>the</strong> molecular bands at <strong>the</strong>ir peaks. The electr<strong>on</strong><br />

beam energy was scanned within 0--200 eV. The molecular emissi<strong>on</strong> spectra were obtained and<br />

<strong>the</strong> bands are identified. It can be assumed that <strong>the</strong> nature <strong>of</strong> <strong>the</strong> band origin is associated with <strong>the</strong><br />

excitati<strong>on</strong> <strong>of</strong> <strong>the</strong> electr<strong>on</strong>ic states <strong>of</strong> both <strong>the</strong> whole molecule and its nucleotide base nucleotide<br />

base fragments (dissociative excitati<strong>on</strong>). Note that <strong>the</strong> spectrum substantially differs from <strong>the</strong><br />

luminescence spectra <strong>of</strong> <strong>the</strong> molecules in soluti<strong>on</strong>s and polycrystalline films. For example, <strong>the</strong><br />

excitati<strong>on</strong> functi<strong>on</strong> for <strong>the</strong> band at λmax=354 nm has a smooth form and a broad maximum at 80 eV,<br />

which is characteristic <strong>of</strong> <strong>the</strong> excitati<strong>on</strong> <strong>of</strong> <strong>the</strong> singlet states. The excitati<strong>on</strong> functi<strong>on</strong> for <strong>the</strong> band at<br />

435 nm has a maximum located near <strong>the</strong> threshold, which is characteristic <strong>of</strong> <strong>the</strong> excitati<strong>on</strong> <strong>of</strong> <strong>the</strong><br />

triplet states. The molecular band at 308 nm is <strong>the</strong> most str<strong>on</strong>g and has <strong>the</strong> energy threshold 13.7<br />

eV. The sum <strong>of</strong> <strong>the</strong> energy <strong>of</strong> this spectral transiti<strong>on</strong> (4.3 eV) and <strong>the</strong> i<strong>on</strong>izati<strong>on</strong> energy (9.4 eV)<br />

amounts to 13.7 eV, which coincides with <strong>the</strong> excitati<strong>on</strong> energy <strong>of</strong> this band. Therefore, <strong>the</strong> upper<br />

state <strong>of</strong> this band can be treated as <strong>the</strong> i<strong>on</strong>ic state <strong>of</strong> a thymine molecule. Note that <strong>the</strong> maximum<br />

<strong>of</strong> <strong>the</strong> excitati<strong>on</strong> functi<strong>on</strong> <strong>of</strong> <strong>the</strong> 286.5nm band is located at <strong>the</strong> same energy as that <strong>of</strong> <strong>the</strong><br />

i<strong>on</strong>izati<strong>on</strong> functi<strong>on</strong>.<br />

References<br />

[1] M.I.Sukhoviya, V.N.Slavik, I.I.Shafranyosh, L.L.Shim<strong>on</strong>, Biopolim. Klet.,7,77 (1991).<br />

[2] I.I.Shafranyosh, M.I.Sukhoviya, M.I.Shafranyosh, J.Phys.B;At.Mol.Opt.Phys.39,4155 (2006).<br />

PA 113


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Raman spectroscopy methods for studying supported<br />

lipid bilayers<br />

C. S. SWEETENHAM AND I. NOTINGHER<br />

Nanoscience Group, School <strong>of</strong> Physics and Astr<strong>on</strong>omy, University <strong>of</strong><br />

Nottingham, University Park, Nottingham, NG7 2RD, UK<br />

Supported lipid bilayers (SLB) have found wide applicati<strong>on</strong> as models <strong>of</strong> cellular membranes in<br />

biophysical research. SLB c<strong>on</strong>sist <strong>of</strong> amphiphilic molecules that can self-assemble into bilayer<br />

structures when deposited <strong>on</strong>to a hydrophilic support from an aqueous soluti<strong>on</strong>, ei<strong>the</strong>r by vesicle<br />

fusi<strong>on</strong> or <strong>the</strong> Langmuir-Blodgett technique [1]. Comm<strong>on</strong> features <strong>of</strong> SLB are <strong>the</strong> presence <strong>of</strong><br />

defects or holes, which can be used to measure <strong>the</strong>ir thickness, and phase-separated<br />

microdomains, which affect <strong>the</strong> structure and functi<strong>on</strong> <strong>of</strong> membranes and are an important feature<br />

in many cellular processes. These artificial membranes are well-defined and stable under a variety<br />

<strong>of</strong> c<strong>on</strong>diti<strong>on</strong>s, allowing characterisati<strong>on</strong> with a broad range <strong>of</strong> physical methods. Imaging<br />

techniques such as electr<strong>on</strong> microscopy and atomic force microscopy (AFM) have been used to<br />

study SLB [2], but <strong>the</strong>se provide purely topographical and mechanical informati<strong>on</strong>. Alternatively,<br />

optical techniques such as Raman spectroscopy can <strong>of</strong>fer a detailed chemical and structural<br />

analysis <strong>of</strong> SLB. However <strong>the</strong> sensitivity and spatial resoluti<strong>on</strong> that can be achieved with <strong>the</strong>se<br />

methods can restrict <strong>the</strong>ir effectiveness. Surface-enhanced Raman spectroscopy (SERS) has been<br />

developed to overcome <strong>the</strong>se limitati<strong>on</strong>s, but <strong>the</strong>re is uncertainty c<strong>on</strong>cerning <strong>the</strong> level <strong>of</strong> signal<br />

enhancement this technique can provide and whe<strong>the</strong>r <strong>the</strong> localised heating associated with SERS<br />

may damage SLB [3]. We present a c<strong>on</strong>focal Raman microspectroscopy system optimised for<br />

studying SLB. This system combines <strong>the</strong> benefits <strong>of</strong> Raman spectroscopy with <strong>the</strong> high spatial<br />

resoluti<strong>on</strong> <strong>of</strong> c<strong>on</strong>focal microscopy. Fur<strong>the</strong>rmore, <strong>the</strong> additi<strong>on</strong>al incorporati<strong>on</strong> <strong>of</strong> AFM makes it<br />

possible to directly correlate chemical informati<strong>on</strong> with spatial features. We focus <strong>on</strong> <strong>the</strong> limits <strong>of</strong><br />

this system for detecting a single SLB and imaging its microdomains, and investigate how SERS<br />

can be implemented to enhance <strong>the</strong> signal achieved with c<strong>on</strong>focal Raman microspectroscopy.<br />

References<br />

[1] E. T. Castellana, P. S. Cremer, Surface Science Reports 61, 429-444 (2006).<br />

[2] Y. F. Dufrêne, G. U. Lee, Biochimica et Biophysica Acta 1509, 14-41 (2000).<br />

[3] E. C. Le Ru, P. G. Etchegoin, Faraday Discussi<strong>on</strong>s 132, 63-75 (2006).<br />

PA 114


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Comparis<strong>on</strong> <strong>of</strong> molecular structure <strong>of</strong> alkali metal ortho<br />

substituted benzoates<br />

R. ŚWISŁOCKA<br />

Department <strong>of</strong> Chemistry, Białystok Technical University, Zamenh<strong>of</strong>a 29, 15-435 Białystok, Poland<br />

Benzoic acid derivatives represent a wide group <strong>of</strong> aromatic ligands, which are c<strong>on</strong>stituent parts <strong>of</strong><br />

enzymes and o<strong>the</strong>r biologically important molecules. The changes in physical, chemical and<br />

biological properties <strong>of</strong> <strong>the</strong>m decided about <strong>the</strong>ir effect <strong>on</strong> <strong>the</strong> biological systems. Benzoic acid and<br />

its derivatives are comm<strong>on</strong>ly used food preservatives as well as antiseptic agents applied in<br />

various industrial branches: pharmaceutics, textile and cosmetics. The present work is a<br />

c<strong>on</strong>tinuati<strong>on</strong> <strong>of</strong> our recent reports <strong>on</strong> <strong>the</strong> vibrati<strong>on</strong>al and NMR spectra as well as geometric<br />

characteristic <strong>of</strong> benzoic acid derivatives [1-4]. The influence <strong>of</strong> amino-, nitro-, methoxy-, hydroxy-<br />

and halogeno substituents in <strong>the</strong> ortho positi<strong>on</strong> towards <strong>the</strong> carboxylic group as well as alkali<br />

metal <strong>on</strong> molecular structure <strong>of</strong> benzoates were estimated. FT-IR, FT-Raman and NMR spectra <strong>of</strong><br />

<strong>the</strong> title compounds were recorded and analyzed. Data <strong>of</strong> chemical shifts in 1H and 13C NMR as<br />

well as wavenumbers and intensities in IR and Raman spectra <strong>of</strong> studied benzoate derivatives<br />

were analyzed in comparis<strong>on</strong> with alkali metal benzoates. Optimized geometrical structures were<br />

calculated by B3LYP/6-311++G** method. The calculated parameters are compared with<br />

experimental characteristics <strong>of</strong> <strong>the</strong>se molecules.<br />

References<br />

[1] M. Sams<strong>on</strong>owicz, R. Świsłocka, E. Regulska, W Lewandowski J. Mol. Struct.837, 220-228 (2008).<br />

[2] R. Świsłocka, M. Sams<strong>on</strong>owicz, E. Regulska, W Lewandowski J. Mol. Struct.834-836, 389-398 (2007).<br />

[3] M. Kalinowska, R. Świsłocka, W Lewandowski J. Mol. Struct.792-793, 130-138 (2006).<br />

[3] W. Lewandowski, M. Kalinowska, H. Lewandowska, J. Inorg. Biochem. 99, 1407-1423 (2005).<br />

PA 115


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Res<strong>on</strong>ance Raman study <strong>of</strong> sensor domain <strong>of</strong><br />

chemotaxis proteins from G. sulfurreducens<br />

S. TODOROVIC 1 , M. PESSANHA 1 , Z. GOUVEIA 1 , A. P. FERNANDES 2 , P. R. POKKULURI 3 , Y. Y.<br />

LONDER 3 , M. SCHIFFER 3 AND C. SALGUEIRO 2<br />

1. ITQB, Universidade Nova de Lisboa, Av. da Republica EAN, 2780-157<br />

Oeiras, Portugal<br />

2. Requimte, Dep. de Química, Faculdade de Ciências e Tecnologia,<br />

Universidade Nova de Lisboa, 2829-516 Caparica, Portugal<br />

3. Biosciences Divisi<strong>on</strong>, Arg<strong>on</strong>ne Nati<strong>on</strong>al Laboratory, Arg<strong>on</strong>ne, Il 60439, USA.<br />

Proteins <strong>of</strong> sensory systems enable bacteria to resp<strong>on</strong>d to envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s. Typically, a<br />

domain in <strong>the</strong> periplasm senses some external stimulus (CO, NO, O2, metal i<strong>on</strong>s, redox potential<br />

changes, etc. ), transduces <strong>the</strong> signal through <strong>the</strong> cell membrane, subsequently activating <strong>the</strong><br />

cytoplasmic domain. The changes in <strong>the</strong> latter <strong>the</strong>n generate an intracellular signal that can trigger<br />

a specific physiological functi<strong>on</strong>. Geobacter sulfurreducens, a protobacterium found in subsurface<br />

soil, possesses an unusually high number <strong>of</strong> signal transducti<strong>on</strong> proteins. Two out <strong>of</strong> ten c-type<br />

heme c<strong>on</strong>taining sensor domains were cl<strong>on</strong>ed, expressed in E. coli and purified [1]. In order to<br />

distinguish between <strong>the</strong>ir sensing properties and preferences, we undertook detailed res<strong>on</strong>ance<br />

Raman (RR) spectroscopic study. RR spectra <strong>of</strong> heme proteins, obtained under Soret band<br />

excitati<strong>on</strong>, provide informati<strong>on</strong> <strong>on</strong> redox, spin and coordinati<strong>on</strong> state <strong>of</strong> <strong>the</strong> heme group.<br />

Comp<strong>on</strong>ent analysis <strong>of</strong> <strong>the</strong> RR spectra <strong>of</strong> soluble domains <strong>of</strong> chemotaxis proteins from G. s.,<br />

GSU0582 and GSU0935, revealed differences in spin and coordinati<strong>on</strong> states <strong>of</strong> <strong>the</strong> two proteins in<br />

<strong>the</strong> resting states. Moreover, it provided detailed insight into CO and NO binding properties <strong>of</strong> <strong>the</strong><br />

two proteins in <strong>the</strong> ferrous for <strong>the</strong> former, and ferric and ferrous states for <strong>the</strong> latter ligand.<br />

References<br />

1300 1350 1400 1450 1500 1550 1600<br />

-1<br />

Raman shift (cm )<br />

PA 116<br />

1300<br />

1372<br />

1379<br />

1592<br />

1502<br />

1509 1571 1607<br />

1408<br />

1434<br />

1553<br />

1644<br />

1636<br />

Fig. 1 – Experimental and comp<strong>on</strong>ent RR spectra <strong>of</strong> ferrous<br />

GSU0935-NO adduct, showing distributi<strong>on</strong> between 6cLS species<br />

and 5cHS species with up-shifted frequencies.<br />

[1] R.R. Pokkuluri, M. Pessanha, Y.Y. L<strong>on</strong>der, S. J. Wood, N. E. C. H. Duke, R. Wilt<strong>on</strong>, T. Catarino, C. A. Salgueiro, M.<br />

Schiffer, J. Mol. Biol. 377, 1498-1517 (2008)


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PROPERTIES OF RHODOBACTER SPHAEROIDES<br />

MUTANT I(L177)H REACTION CENTER<br />

L. G. VASILIEVA, T.Y. FUFINA, R. A. KHATYPOV, V. A. SHUVALOV<br />

Institute <strong>of</strong> Basic Biological Problems, RAS, Pushchino, Moscow Regi<strong>on</strong>,<br />

142290 Russia, vasilieva@issp.serpukhov.su, tel: 4967-73-26-80, fax: 4967-<br />

33-05-33<br />

The bacterial photosyn<strong>the</strong>tic reacti<strong>on</strong> center (RC) c<strong>on</strong>sists <strong>of</strong> three protein subunits and 10<br />

c<strong>of</strong>actors. The RC c<strong>of</strong>actors are arranged in two symmetrical branches labeled A and B. Each<br />

branch starts with <strong>the</strong> primary electr<strong>on</strong> d<strong>on</strong>or P, proceeds via a m<strong>on</strong>omeric bacteriochlorophyll<br />

(BChl) molecule and a bacteriopheophytin molecule and terminates with a quinine acceptor. The<br />

efficiency <strong>of</strong> <strong>the</strong> photochemical charge separati<strong>on</strong> in RC depends <strong>on</strong> <strong>the</strong> properties <strong>of</strong> electr<strong>on</strong><br />

transfer c<strong>of</strong>actors, <strong>the</strong>ir positi<strong>on</strong>s and interacti<strong>on</strong>s with each o<strong>the</strong>r and with <strong>the</strong> surrounding<br />

protein envir<strong>on</strong>ment. Recently new mutant <strong>of</strong> Rb. sphaeroides was described that had I(L177)H<br />

substituti<strong>on</strong> in <strong>the</strong> RC [1]. L177 positi<strong>on</strong> is located in <strong>the</strong> vicinity <strong>of</strong> BB and PA. Our results show<br />

that <strong>the</strong> mutati<strong>on</strong> str<strong>on</strong>gly affects <strong>the</strong> spectral properties <strong>of</strong> BChls. The mutant RCs were found to<br />

be active in charge separati<strong>on</strong> with <strong>the</strong> quantum yield <strong>of</strong> P +QA - state formati<strong>on</strong> similar to that in<br />

<strong>the</strong> wild-type RC. Em P/P + in I(L177)H RC was shown to be decreased by 50 mV. Pigment analysis shows<br />

different BChl c<strong>on</strong>tent in pigment extracts from RCs I(L177)H and <strong>the</strong> wild type RCs. The acenote -<br />

methanol (7:2) extract from <strong>the</strong> wild type RCs c<strong>on</strong>tains four BChls and two BPheos per RC and <strong>the</strong><br />

extract from <strong>the</strong> mutant I(L177)H RCs c<strong>on</strong>tains three BChl molecules and two BPheos per RC. It<br />

was noticed that <strong>the</strong> color <strong>of</strong> <strong>the</strong> denaturated I(L177)H RC protein remained green even after<br />

multiple steps <strong>of</strong> pigment extracti<strong>on</strong> by variety <strong>of</strong> organic solvents. It was estimated that<br />

approximately <strong>on</strong>e BChl molecule (0.7+ 0.05 ) per <strong>on</strong>e I(L177)H RC remains attached to <strong>the</strong> RC<br />

protein. During SDS PAGE <strong>the</strong> attached BChl moves through <strong>the</strong> gel al<strong>on</strong>g with L-subunit <strong>of</strong><br />

I(L177)H RC indicating covalent binding <strong>of</strong> <strong>the</strong> pigment and <strong>the</strong> mutated protein [2]. Hi<strong>the</strong>rto<br />

<strong>the</strong>re is no data <strong>on</strong> a chromophore - protein covalent binding in photosyn<strong>the</strong>tic membrane<br />

pigment - protein complexes. Putative origin <strong>of</strong> <strong>the</strong> pigment-protein covalent binding will be<br />

discussed. The RC I(L177)H seems to be a promising example for <strong>the</strong> study <strong>of</strong> protein-c<strong>of</strong>actor<br />

interacti<strong>on</strong>s in photosyn<strong>the</strong>tic complexes.<br />

References<br />

[1] R.A. Khatypov, L.G. Vasilieva, T.Y. Fufina, T.I. Bolgarina, and V.A. Shuvalov, Biochemistry (Rus) 2005, 70, 1256-<br />

1261<br />

[2] Fufina T. Y., Vasilieva L. G., Khatypov R. A., Shkuropatov A. Ya., Shuvalov V. A., FEBS Lett., 2007, 581, 30, 5769-<br />

5773<br />

PA 117


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Probing c<strong>on</strong>formati<strong>on</strong>al changes in G protein-coupled<br />

receptors using FTIR spectroscopy <strong>on</strong> azido-labeled<br />

rhodopsin<br />

S. YE 1 , T.P.SAKMAR 1 AND R. VOGEL 2<br />

1. Laboratory <strong>of</strong> Molecular Biology and Biochemistry, The Rockefeller<br />

University, 1230 York Ave., New York, NY 10065, USA<br />

2. Biophysics Group, Institute <strong>of</strong> Molecular Medicine, University <strong>of</strong><br />

Freiburg, Hermann-Herder-Str. 9, 79104 Freiburg, Germany<br />

Fourier-transform infrared (FTIR) difference spectroscopy is a powerful experimental tool for<br />

characterizing changes within a protein <strong>on</strong> a molecular level, though its applicati<strong>on</strong> is <strong>of</strong>ten<br />

hampered by c<strong>on</strong>gesti<strong>on</strong> and identificati<strong>on</strong> <strong>of</strong> spectral bands and <strong>on</strong>ly limited site-specificity <strong>of</strong> <strong>the</strong><br />

spectral informati<strong>on</strong>. Here we report <strong>on</strong> a c<strong>on</strong>ceptual advance <strong>of</strong> FTIR difference spectroscopy by<br />

combining it with cutting-edge molecular biology technologies. Amber cod<strong>on</strong> suppressi<strong>on</strong> allows<br />

<strong>the</strong> site-directed incorporati<strong>on</strong> <strong>of</strong> an IR-active unnatural amino acide, p-azido-L-phenylalanine<br />

(azidoF) into <strong>the</strong> G protein-coupled receptor (GPCR) rhodopsin. The intense anti-symmetric<br />

stretch vibrati<strong>on</strong> <strong>of</strong> <strong>the</strong> azido label absorbs at around 2100 cm -1 in a clear spectral window devoid<br />

<strong>of</strong> o<strong>the</strong>r protein bands and is excepti<strong>on</strong>ally sensitive to <strong>the</strong> polarity <strong>of</strong> its surroundings. We show<br />

<strong>the</strong> applicati<strong>on</strong> <strong>of</strong> this new technique by following movements <strong>of</strong> single helices <strong>of</strong> <strong>the</strong> transmembrane<br />

receptor in different intermediates <strong>of</strong> <strong>the</strong> activati<strong>on</strong> pathway [1], which are c<strong>on</strong>trolled<br />

by <strong>the</strong> triggering <strong>of</strong> electrostatic switches in interhelical networks [2]. The combinati<strong>on</strong> with sitedirected<br />

azido labeling c<strong>on</strong>siderably expands <strong>the</strong> capability <strong>of</strong> FTIR difference spectroscopy by<br />

adding <strong>the</strong> site-specific electrostatic informati<strong>on</strong> while maintaining its sensitivity to m<strong>on</strong>itoring<br />

changes <strong>of</strong> side chains, backb<strong>on</strong>e, and ligands <strong>of</strong> <strong>the</strong> whole protein.<br />

References<br />

Fig. 1 – The antisymmetric stretch vibrati<strong>on</strong> <strong>of</strong> <strong>the</strong> azidoF side chain<br />

absorbs in a clear spectral window and allows to follow helix<br />

movement during rhodopsin activati<strong>on</strong> and <strong>the</strong> translocati<strong>on</strong> <strong>of</strong> <strong>the</strong><br />

azidoF227 side chain from a hydrophobic to a polar envir<strong>on</strong>ment.<br />

[1] S. Ye, T. Huber, R. Vogel, T.P. Sakmar, Nature Chem. Biol., in press (<strong>2009</strong>).<br />

[2] M. Mahalingam, K. Martinez-Mayorga, M.F. Brown, R. Vogel, Proc. Natl. Acad. Sci. USA 105, 17795-17800 (2008).<br />

PA 118


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Investigati<strong>on</strong> <strong>of</strong> soil microorganisms by means <strong>of</strong><br />

various spectroscopic methods in combinati<strong>on</strong> with<br />

statistical analysis<br />

A. WALTER 1 , S. ERDMANN 2 , W. SCHUMACHER 1 , T. BOCKLITZ 1 , M. REINICKE 2 , P. RÖSCH 1 ,<br />

E. KOTHE 2 AND J. POPP 1,3<br />

1. Dept. <strong>of</strong> Physical Chemistry, Friedrich Schiller University,<br />

Helmholtzweg 4, 07743 Jena, Germany<br />

2. Dept. <strong>of</strong> Microbiology, Friedrich Schiller University, Neugasse 25,<br />

07743 Jena, Germany<br />

3. Institute <strong>of</strong> Phot<strong>on</strong>ic Technology, Albert Einstein Str. 9, 07745 Jena,<br />

Germany<br />

Microbial life has c<strong>on</strong>quered highly c<strong>on</strong>taminated envir<strong>on</strong>ments and developed resistance<br />

mechanisms, which bear high potential for <strong>the</strong> development <strong>of</strong> new bioremediati<strong>on</strong> approaches <strong>of</strong><br />

polluted sites. This requires <strong>the</strong> isolati<strong>on</strong> and identificati<strong>on</strong> <strong>of</strong> adapted microorganisms and<br />

analysis <strong>of</strong> <strong>the</strong>ir resistance mechanisms. Raman spectroscopy in combinati<strong>on</strong> with chemometrical<br />

analysis is capable for in vivo investigati<strong>on</strong> and fast identificati<strong>on</strong> <strong>of</strong> microorganisms <strong>on</strong> molecular<br />

basis [1, 2]. The filamentous fungi Schizophyllum commune [3] and species <strong>of</strong> <strong>the</strong> soil bacteria<br />

Streptomyces [4] have been isolated from a former disused mining district, located near R<strong>on</strong>neburg<br />

(Eastern Thuringia, Germany). Several Streptomyces strains isolated from <strong>the</strong> c<strong>on</strong>taminated sites<br />

exhibiting heavy metal resistances [4]. The characterizati<strong>on</strong>, classificati<strong>on</strong> and identificati<strong>on</strong> <strong>of</strong><br />

different Streptomyces species by various spectroscopic methods were carried out in combinati<strong>on</strong><br />

with supervised and unsupervised statistics. Within different hyphal parts <strong>of</strong> S. commune<br />

mitoch<strong>on</strong>dria localizati<strong>on</strong> via cytochrome detecti<strong>on</strong> by means <strong>of</strong> Raman spectroscopy in<br />

combinati<strong>on</strong> with k-mean cluster analysis was achieved. The activity <strong>of</strong> apical versus subapical<br />

mitoch<strong>on</strong>dria was detected by peak analysis <strong>of</strong> a Raman marker band.<br />

References<br />

[1] M. Schmitt, J. Popp, J. Raman Spectrosc. 37, 20-28, (2006).<br />

[2] K. C. Schuster, I. Reese, E. Urlaub, J. R. Gapes, B. Lendl, Anal. Chem. 72, 5529-5534, (2000).<br />

[3] E. Ko<strong>the</strong>, H. Bergmann, G. Buechel, Chem. Erde 65, 7-27, (2005).<br />

[4] A. Schmidt, G. Haferburg, M. Sineriz, D. Merten, G. Buechel, E. Ko<strong>the</strong>, Chem. Erde 65, 131-144 (2005).<br />

PA 119


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

C<strong>on</strong>tinuous-flow step-scan IR spectroscopy for study <strong>of</strong><br />

ligand binding and enzyme catalysis<br />

C.W.WHARTON<br />

School <strong>of</strong> Biosciences, University <strong>of</strong> Birmingham, Birmingham B15 2TT, UK<br />

IR spectroscopy has proved useful in <strong>the</strong> simultaneous determinati<strong>on</strong> <strong>of</strong> chemical processes and<br />

<strong>the</strong> associated c<strong>on</strong>formati<strong>on</strong>al changes that occur during enzyme catalysis. Rapid scan<br />

spectroscopy can measure processes in <strong>the</strong> 10’s <strong>of</strong> millisec<strong>on</strong>d time range but is limited by<br />

mechanical factors to this time range or slower. It is <strong>of</strong>ten possible to slow down natural processes<br />

that are faster than this time range by changing <strong>the</strong> pH or temperature so that <strong>the</strong>y can be brought<br />

within <strong>the</strong> range <strong>of</strong> rapid scan FTIR. However this is not a comfortable process since it can change<br />

<strong>the</strong> rate-limiting step <strong>of</strong> a reacti<strong>on</strong> & <strong>on</strong>e is left with <strong>the</strong> feeling that <strong>the</strong> ‘true’ reacti<strong>on</strong> is no l<strong>on</strong>ger<br />

being studied. In particular, it is not possible to measure ligand binding kinetics, which always<br />

occur <strong>on</strong> a faster time scale in <strong>the</strong> low microsec<strong>on</strong>ds. There is almost no structural informati<strong>on</strong><br />

available c<strong>on</strong>cerning <strong>the</strong> detailed dynamics <strong>of</strong> binding (or dissociati<strong>on</strong>) <strong>of</strong> substrates to enzymes <strong>of</strong><br />

neurotransmitters to <strong>the</strong>ir receptors – an important ‘black hole’ in our knowledge <strong>of</strong> molecular<br />

recogniti<strong>on</strong> processes. Step-scan IR spectroscopy can access <strong>the</strong> time range down to nanosec<strong>on</strong>ds,<br />

and has been applied to bacterio-rhodopsin prot<strong>on</strong> pumping in a most incisive manner. The drawback<br />

is that it requires <strong>the</strong> repetitive stimulati<strong>on</strong> <strong>of</strong> <strong>the</strong> reacti<strong>on</strong> process many times in order to<br />

record a spectrum. It works by building up <strong>the</strong> interferogram step by step, ra<strong>the</strong>r than in a<br />

c<strong>on</strong>tinuous sweep as in normal FTIR. For processes where <strong>the</strong> change in absorbance is small a<br />

large number <strong>of</strong> kinetic transients must be recorded at each interferometer positi<strong>on</strong>. This is fine for<br />

a photo-stable system such as bacterio-rhodopsin that can be repetitively excited but very difficult<br />

to achieve for a ‘<strong>on</strong>e-shot’ reacti<strong>on</strong> system since a new sample has to be supplied for every kinetic<br />

transient at every interferometer positi<strong>on</strong> (typically overall a value <strong>of</strong> several thousand). This<br />

difficulty could be overcome by using a large number <strong>of</strong> stopped-flow shots but this would be<br />

prohibitively expensive in materials. It has been overcome by using c<strong>on</strong>tinuous flow in a<br />

microcuvette and by making use <strong>of</strong> a caged substrate (or neurotransmitter), which is photoactivated<br />

at each measurement step <strong>of</strong> <strong>the</strong> interferogram. I will describe how <strong>the</strong> method has been<br />

applied to <strong>the</strong> study <strong>of</strong> glutamate binding to its neuro-receptor by Jayaraman [1] and how<br />

chymotrypsin, transpeptidase and β-lactamase catalyses are being studied using this method.<br />

Reference<br />

[1] Q. Cheng, M. Du, G. Ramanoudjame, V. Jayaraman, Nature Chem. Biol. 1, 325-331 (2005)<br />

PA 120


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Ultrafast infrared spectroscopy <strong>of</strong> isotope labeled<br />

Rib<strong>of</strong>lavin compounds<br />

M. M. N. WOLF 1 , R. GROß 1 , T. DOMREATCHEVA 2 AND R. DILLER 1<br />

1. Fachbereich Physik, TU Kaiserslautern, Kaiserslautern, 67663,<br />

Deutschland, mawolf@physik.uni-kl.de<br />

2. Max-Planck Institut für medizinische Forschung, Jahnstraße 29,<br />

Heidelberg, 69120, Deutschland<br />

Flavin molecules are well known for <strong>the</strong>ir role in biochemistry, as for <strong>the</strong>ir enzymatic role in <strong>the</strong><br />

citric acid cycle. Due to <strong>the</strong>ir absorpti<strong>on</strong> <strong>of</strong> blue light <strong>the</strong>y are also found as chromophores in blue<br />

light receptors. This includes <strong>the</strong> class <strong>of</strong> Cryptochromes and <strong>the</strong> BLUF domain <strong>of</strong> <strong>the</strong> AppA<br />

protein, which both bind Flavin-Adenine-Dinucleotide (FAD), as well as <strong>the</strong> class <strong>of</strong> phototropins,<br />

binding Flavin-M<strong>on</strong><strong>on</strong>ucleotide (FMN). In our recent work [1] we presented sub-picosec<strong>on</strong>d time<br />

resolved infrared spectroscopy <strong>of</strong> Rib<strong>of</strong>lavin in DMSO soluti<strong>on</strong> in a wide spectral range from 1100<br />

cm -1 to 1750 cm -1. The vibrati<strong>on</strong>al modes <strong>of</strong> <strong>the</strong> electr<strong>on</strong>ic ground and first excited states were<br />

assigned based <strong>on</strong> quantum chemical calculati<strong>on</strong>s. While <strong>the</strong>re was a str<strong>on</strong>g accordance between<br />

<strong>the</strong> calculati<strong>on</strong>s and <strong>the</strong> experiment, <strong>the</strong>re were some discrepancies in <strong>the</strong> carb<strong>on</strong>yl stretch regi<strong>on</strong>,<br />

possibly due to different hydrogen b<strong>on</strong>ding schemes. In this presentati<strong>on</strong> we will show similar<br />

measurements toge<strong>the</strong>r with calculati<strong>on</strong>s <strong>of</strong> two different isotopic labeled Rib<strong>of</strong>lavin<br />

chromophores – Rib<strong>of</strong>lavin-2- 13C and Rib<strong>of</strong>lavin-4,10a- 13C. With <strong>the</strong>ir different positi<strong>on</strong> inside <strong>the</strong><br />

flavin ring system <strong>the</strong> isotopic labels cause distinct couplings resp. downshifts <strong>of</strong> <strong>the</strong> carb<strong>on</strong>yl<br />

stretch vibrati<strong>on</strong>al modes, which eases <strong>the</strong>ir assignment. Implicati<strong>on</strong>s for various intra- and intermolecular<br />

hydrogen b<strong>on</strong>ding schemes are discussed.<br />

References<br />

Fig. 1 – Absorpti<strong>on</strong> difference spectra <strong>of</strong> both isotopic labeled<br />

Rib<strong>of</strong>lavin (RF) compounds at a delay time <strong>of</strong> 100 ps after photo<br />

excitati<strong>on</strong>.<br />

[1] M. M. N. Wolf, C. Schumann, R. Groß, T. Domratcheva, R. Diller, J. Phys. Chem. B 112 13424-13432 (2008).<br />

PA 121


Optical spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

New insights in <strong>the</strong> oxygen-tolerant membrane bound<br />

[NiFe]-hydrogenase from Ralst<strong>on</strong>ia Eutropha by means<br />

<strong>of</strong><br />

FTIR and EPR spectroscopy<br />

I. ZEBGER 1 , M. SAGGU 1 , T. GORIS 2 , S. FRIELINGSDORF 2 , M. LUDWIG 2 , O. LENZ², N. HEIDARY 1 ,<br />

P. HUMMEL 1 , D. MILLO 1 , M. HORCH 1 , M.E. PANDELIA 3 , W. LUBITZ 3 , B. FRIEDRICH², R. BITTL 4 ,<br />

P. HILDEBRANDT 1 AND F. LENDZIAN¹<br />

1. Max-Volmer-Laboratory for Biophysical Chemistry, TU Berlin, Straße<br />

des 17. Juni 135, 10623 Berlin, Germany<br />

2. Institute <strong>of</strong> Biology / Microbiology, HU Berlin, Chausseestr. 117,<br />

10115 Berlin, Germany<br />

3. Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36,<br />

45470 Mülheim/Ruhr, Germany<br />

4. Institut für Experimentalphysik, WE 1, FU Berlin, Arnimallee 14,<br />

14195 Berlin, Germany<br />

[NiFe]-hydrogenases catalyze <strong>the</strong> reversible cleavage <strong>of</strong> molecular hydrogen [1]. The EPR and<br />

FTIR study presented here provides <strong>the</strong> first spectroscopic characterizati<strong>on</strong> <strong>of</strong> <strong>the</strong> membranebound,<br />

oxygen-tolerant [NiFe]-hydrogenase (MBH) from Ralst<strong>on</strong>ia eutropha H16 in its natural<br />

envir<strong>on</strong>ment, <strong>the</strong> cytoplasmic membrane [2]. In additi<strong>on</strong>, we have investigated and <strong>the</strong> isolated<br />

hetero-trimeric form <strong>of</strong> <strong>the</strong> MBH c<strong>on</strong>sisting <strong>of</strong> <strong>the</strong> subunits HoxG, HoxK and HoxZ. The large<br />

subunit HoxG harbors <strong>the</strong> Ni-Fe active site whereas <strong>the</strong> small subunit HoxK is dedicated to<br />

electr<strong>on</strong> transfer via <strong>on</strong>e [3Fe4S] cluster and two [4Fe4S] clusters to <strong>the</strong> membrane-integral HoxZ<br />

protein – a cytochrome b which serves as <strong>the</strong> natural electr<strong>on</strong> acceptor. Initial surface-enhanced<br />

infrared absorpti<strong>on</strong> spectroscopic (SEIRAS) investigati<strong>on</strong>s were carried out with a His-tagged<br />

hetero-dimeric HoxKG form <strong>of</strong> <strong>the</strong> MBH [3]. The spectroscopic data reveal a str<strong>on</strong>g similarity <strong>of</strong><br />

<strong>the</strong> MBH active site with known Ni-Fe centers from strictly anaerobic hydrogenases, like that from<br />

Desulfovibrio vulgaris Miyazaki F [4]. Most redox states characteristic for anaerobic [NiFe]<br />

hydrogenases were also identified for <strong>the</strong> MBH except for <strong>on</strong>e remarkable difference. The<br />

formati<strong>on</strong> <strong>of</strong> <strong>the</strong> oxygen-inhibited Niu-A state was never observed. This observati<strong>on</strong> is directly<br />

related to <strong>the</strong> unusual oxygen-tolerance <strong>of</strong> <strong>the</strong> enzyme. Fur<strong>the</strong>rmore, EPR data showed <strong>the</strong><br />

presence <strong>of</strong> an additi<strong>on</strong>al paramagnetic center at high redox potential (+290 mV), which couples<br />

magnetically to <strong>the</strong> [3Fe4S] center in <strong>the</strong> MBH small subunit. The data indicate a structural and/or<br />

redox modificati<strong>on</strong> at or near <strong>the</strong> proximal [4Fe4S] cluster. Fur<strong>the</strong>r insights were derived from<br />

mutant proteins c<strong>on</strong>taining amino acid exchanges close to <strong>the</strong> proximal Fe-S cluster. The<br />

spectroscopic results are discussed in light <strong>of</strong> <strong>the</strong> oxygen tolerance <strong>of</strong> <strong>the</strong> MBH from R. eutropha.<br />

References<br />

[1] R. Cammack, M. Frey, R. Robs<strong>on</strong> (2001) Hydrogen As a Fuel: Learning from Nature, Taylor and Francis Ltd.,<br />

L<strong>on</strong>d<strong>on</strong><br />

[2] M. Saggu, et al. J. Biol. Chem., in press, DOI 10.1074/jbc.M805690200<br />

[3] N. Wisitruangsakul et. al, Angew. Chem 48, 611-613 (<strong>2009</strong>).<br />

[4] C. Fichtner, C. Laurich, E. Bo<strong>the</strong>, W. Lubitz, Biochemistry 45, 9706-9716 (2006)<br />

PA 122


Synchrotr<strong>on</strong> and XFEL spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PA<br />

Synchrotr<strong>on</strong> based X-ray and FTIR micro-spectroscopy<br />

<strong>of</strong> myelin<br />

T. DUČIĆ 1 , S. QUINTES 2 , K.A. NAVE 2 , J. SUSINI 3 , M. RAK 3 AND T. SALDITT 1<br />

1. Institute for X-Ray Physics, Georg-August University, Friedrich-<br />

Hund-Platz 1, 37077 Göttingen, Germany<br />

2. Max-Planck-Institute <strong>of</strong> Experimental Medicine, Hermann-Rein-Str. 3,<br />

37075 Göttingen, Germany<br />

3. <str<strong>on</strong>g>European</str<strong>on</strong>g> Synchrotr<strong>on</strong> Radiati<strong>on</strong> Facility, rue Jules Horowitz 6, 38000<br />

Grenoble, France<br />

Myelin is a spiral structure formed by extensi<strong>on</strong>s <strong>of</strong> <strong>the</strong> plasma membrane <strong>of</strong> <strong>the</strong> oligodendrocytes<br />

in <strong>the</strong> central nerve system and <strong>the</strong> Schwann cells in <strong>the</strong> peripheral nervous system [1, 2]. Each<br />

myelin sheath segment is separated by spaces where myelin is lacking, <strong>the</strong> nodes <strong>of</strong> Ranvier (150–<br />

200 µm in length), which play a major role in nerve impulse c<strong>on</strong>ducti<strong>on</strong>. In this study single<br />

isolated myelinated neur<strong>on</strong>s were structurally and functi<strong>on</strong>ally characterized using synchrotr<strong>on</strong><br />

based micro- and nano-beam imaging. In situ analyse <strong>of</strong> elements and especially trace metals in<br />

neur<strong>on</strong>s in recent years by synchrotr<strong>on</strong>-based X-ray fluorescence (XRF) achieve significant<br />

progress. Using <strong>the</strong> recently developed cryo facility at <strong>the</strong> <str<strong>on</strong>g>European</str<strong>on</strong>g> Synchrotr<strong>on</strong> Radiati<strong>on</strong><br />

Facility (ESRF), we performed element determinati<strong>on</strong> in single separated neur<strong>on</strong>s under<br />

physiological c<strong>on</strong>diti<strong>on</strong>. Here we present recent progress in synchrotr<strong>on</strong> X-ray optics to map <strong>the</strong><br />

elemental compositi<strong>on</strong> <strong>on</strong> <strong>the</strong> subcellular level <strong>of</strong> myelinated sciatic neur<strong>on</strong> using highly focussed<br />

synchrotr<strong>on</strong> radiati<strong>on</strong> for spectro-microscopy and synchrotr<strong>on</strong> based infrared spectroscopy (FTIR),<br />

in particular close to <strong>the</strong> node <strong>of</strong> Ranvier. Mapping <strong>of</strong> organic compounds, lipids, phosphorus<br />

comp<strong>on</strong>ents, as well as protein c<strong>on</strong>formati<strong>on</strong> were performed with FTIR microscopy. Our results<br />

showed high accumulati<strong>on</strong> <strong>of</strong> phosphorus compounds <strong>of</strong> <strong>the</strong> node <strong>of</strong> Ranvier (Fig. 1.) It is known<br />

that <strong>the</strong>se parts <strong>of</strong> neur<strong>on</strong>s are rich in sodium channels [2]; however high c<strong>on</strong>centrati<strong>on</strong> and str<strong>on</strong>g<br />

locati<strong>on</strong> <strong>of</strong> phosphorus compounds was unexpected. After FTIR analysis cAMP and NADPH are<br />

possible candidates to explain this result. Overall, <strong>the</strong> high resoluti<strong>on</strong> spectroscopy imaging <strong>of</strong><br />

single neur<strong>on</strong>al cells <strong>of</strong>fers unique informati<strong>on</strong> to understand <strong>the</strong> structural organisati<strong>on</strong> and <strong>the</strong><br />

role <strong>of</strong> different compounds and especially trace metals in neurochemistry and <strong>the</strong> process <strong>of</strong><br />

myelinisati<strong>on</strong>.<br />

Fig. 1 X-ray fluorescence image <strong>of</strong> sodium (A), phosphorus (B), chloride (C) and sulphur (D) in <strong>the</strong> single<br />

isolated ax<strong>on</strong>. Colour scale indicates elements c<strong>on</strong>centrati<strong>on</strong> in µg/cm². Image size 50x25 µm, 246x125<br />

pixels with dwell time 180 ms per pixel.<br />

References<br />

[1] A.Peteres J Anat 98, 125–134 (1964).<br />

[2] T. Boiko, B. Winckler J. Cell Biol. 172:799-801 (2006).<br />

123


Synchrotr<strong>on</strong> and XFEL spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PA<br />

Protein in soluti<strong>on</strong>: analysis <strong>of</strong> hydrati<strong>on</strong>al properties<br />

and stability by neutr<strong>on</strong> and X-ray scattering techniques<br />

P. MARIANI, F. SPINOZZI, F. CARSUGHI, M. G. ORTORE AND R. SINIBALDI<br />

Sezi<strong>on</strong>e Scienze Fisiche, Dipartimento SAIFET, Università Politecnica<br />

delle Marche, Via Ranieri 65, I-60131 Anc<strong>on</strong>a, Italy; e-mail:<br />

mariani@univpm.it<br />

Small angle scattering (SAS) <strong>of</strong> X-rays and neutr<strong>on</strong>s (SAXS and SANS) technique is particularly<br />

suitable to study structural properties <strong>of</strong> proteins in soluti<strong>on</strong>. With respect to crystallography or<br />

NMR-based techniques, <strong>the</strong> main advantage is its capability to investigate all protein species in <strong>the</strong><br />

sample. Processes that can be studied with SAS include shape determinati<strong>on</strong>, c<strong>on</strong>formati<strong>on</strong>al<br />

transiti<strong>on</strong>s that occur up<strong>on</strong> binding <strong>of</strong> effectors or changes in physicochemical c<strong>on</strong>diti<strong>on</strong>s, l<strong>on</strong>grange<br />

protein-protein interacti<strong>on</strong>, aggregati<strong>on</strong>, solvati<strong>on</strong>, folding and unfolding. In <strong>the</strong> case <strong>of</strong><br />

poly-disperse systems (as during <strong>the</strong> unfolding process, when <strong>the</strong> protein c<strong>on</strong>formati<strong>on</strong> is not<br />

unique) data analysis could be very tricky. However, we have recently shown that a global fit<br />

strategy, i.e., <strong>the</strong> simultaneous fit <strong>of</strong> all <strong>the</strong> scattering curves based <strong>on</strong> a suitable physical model,<br />

can successfully provide relevant structural and <strong>the</strong>rmodynamical informati<strong>on</strong> even for mixed<br />

systems. Three examples will be presented. The first regards <strong>the</strong> study by SAXS <strong>of</strong> <strong>the</strong> unfolding <strong>of</strong><br />

met-myoglobin at pH 4.5 during pressure-induced and pressure-assisted, cold denaturati<strong>on</strong><br />

processes. The sec<strong>on</strong>d c<strong>on</strong>cerns <strong>the</strong> behaviour <strong>of</strong> β-lactoglobulin in acidic soluti<strong>on</strong> as a functi<strong>on</strong> <strong>of</strong><br />

<strong>the</strong> i<strong>on</strong>ic strength, <strong>the</strong> pressure and <strong>the</strong> ethylene-glycol co-solvent as studied by SAXS and SANS<br />

techniques. The last regards a SANS and SAXS study <strong>of</strong> <strong>the</strong> solvati<strong>on</strong> properties <strong>of</strong> model proteins<br />

(namely, lysozyme and BSA) dissolved in water/glycerol and in water/urea mixtures. In all cases,<br />

<strong>the</strong> relevant role that <strong>the</strong> solvent plays in maintaining <strong>the</strong> stability <strong>of</strong> <strong>the</strong> different proteins has<br />

been quantitatively described by determining <strong>the</strong> volume and compressibility changes at<br />

dissociati<strong>on</strong> or during <strong>the</strong> unfolding process and by estimating <strong>the</strong> solvent preferential binding<br />

coefficients.<br />

References<br />

[1] F. Spinozzi, F. Carsughi, P. Mariani, L. Saturni, S. Bernstorff, S. Cinelli, and G. Onori. J. Phys. Chem. B, 111,<br />

3822-3830 (2007).<br />

[2] M.G. Ortore, F. Spinozzi, F. Carsughi, P. Mariani, M. B<strong>on</strong>etti, and G. Onori. Chem. Phys. Lett., 418, 342-346<br />

(2006).<br />

[3] R. Sinibaldi, M. G. Ortore, F. Spinozzi, F. Carsughi, H. Frielinghaus, S. Cinelli, G. Onori, and P. Mariani. J. Chem.<br />

Phys., 126, 235101(1-9) (2007).<br />

[4] R. Sinibaldi, M. G. Ortore, F. Spinozzi, S. Funari, J. Teixeira, P. Mariani. <str<strong>on</strong>g>European</str<strong>on</strong>g> Biophys. Journal, 37, 673–681<br />

(2008).<br />

[5] F. Spinozzi, M. G. Ortore, R. Sinibaldi, P. Mariani, A. Esposito, S. Cinelli, G. Onori. Journal <strong>of</strong> Chemical Physics,<br />

129, 035101(1-9) (2008)<br />

[6] M. G. Ortore, A. Paciar<strong>on</strong>i, F. Spinozzi, P. Mariani, H. Amenitsch, J. Ollivier, L. R. S. Barbosa, M. Steinhart, D.<br />

Russo. The Journal <strong>of</strong> <strong>the</strong> Royal Society Interface, in print (<strong>2009</strong>).<br />

124


Synchrotr<strong>on</strong> and XFEL spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PA<br />

Theoretical and experimental study <strong>of</strong> tautomerism in<br />

guanine and cytosine spectra<br />

I. L. ZAYTSEVA 1, A. B. TROFIMOV 1 , O. PLEKAN 2 , V. FEYER 2 , K. C. PRINCE 2 , R. RICHTER 2 ,<br />

M. CORENO 3<br />

1. Quantum Chemistry, Irkutsk State University, 664003 Irkutsk, Russia<br />

2. Sincrotr<strong>on</strong>e Trieste, in Area Science Park, I-34012 Trieste, Italy<br />

3. CNR-IMIP, I-00016 M<strong>on</strong>telibretti (Rome), Italy<br />

The core level i<strong>on</strong>izati<strong>on</strong> and excitati<strong>on</strong> spectra and <strong>the</strong> valence shell i<strong>on</strong>izati<strong>on</strong> spectra <strong>of</strong> guanine<br />

and cytosine were studied <strong>the</strong>oretically using <strong>the</strong> algebraic-diagrammatic c<strong>on</strong>structi<strong>on</strong> (ADC) ab<br />

initio Green's functi<strong>on</strong> approach. The calculati<strong>on</strong>s were used to interpret <strong>the</strong> results <strong>of</strong> recent gasphase<br />

synchrotr<strong>on</strong> radiati<strong>on</strong> experiments which for <strong>the</strong> first time allowed for clear observati<strong>on</strong> <strong>of</strong><br />

signals due to various tautomers in <strong>the</strong> XPS, NEXAFS and valence-shell photoelectr<strong>on</strong> spectra <strong>of</strong><br />

<strong>the</strong> molecules under study. The Boltzmann populati<strong>on</strong> ratios (BPRs) <strong>of</strong> guanine and cytosine<br />

tautomers at <strong>the</strong> experimental temperatures (T = 600 K and 450 K, respectively) were established<br />

from <strong>the</strong> results <strong>of</strong> high-level ab initio <strong>the</strong>rmochemical calculati<strong>on</strong>s and were used in <strong>the</strong>oretical<br />

modeling. The <strong>the</strong>oretical spectra obtained are in good agreement with <strong>the</strong> experimental results,<br />

allowing for unambiguous assignment <strong>of</strong> <strong>the</strong> observed structures in terms <strong>of</strong> signals from <strong>the</strong><br />

individual atoms and tautomers. In guanine, as well as in cytosine, essentially three tautomers, <strong>on</strong>e<br />

<strong>of</strong> which c<strong>on</strong>sists <strong>of</strong> two rotamers, c<strong>on</strong>tribute significantly to <strong>the</strong> resulting spectra. The<br />

tautomerism is most pr<strong>on</strong>ounced in core photoemissi<strong>on</strong> spectra, enabling determinati<strong>on</strong> <strong>of</strong> ratios<br />

<strong>of</strong> oxo and hydroxy tautomer forms from <strong>the</strong> experimental data. The experimental tautomer ratios<br />

agree well with <strong>the</strong> present <strong>the</strong>oretical estimates. The core photoabsorpti<strong>on</strong> and valence shell<br />

photoelectr<strong>on</strong> spectra <strong>of</strong> guanine and cytosine also dem<strong>on</strong>strate important signatures <strong>of</strong><br />

tautomerism, but most <strong>of</strong> <strong>the</strong> bands here are more complex and formed by numerous overlapping<br />

transiti<strong>on</strong>s <strong>of</strong> different final states and tautomers, so that <strong>the</strong> observed features are less tautomer<br />

specific.<br />

Fig. 1 – Four most stable tautomers <strong>of</strong> guanine. Experimental (dotted line) and<br />

<strong>the</strong>oretical (full lines) O 1s photoi<strong>on</strong>izati<strong>on</strong> spectra <strong>of</strong> guanine showing signals <strong>of</strong> oxo<br />

(1, 2) and hydroxy (3, 4) tautomers (shift <strong>of</strong> <strong>the</strong>oretical spectrum: -1.0 eV; Gaussian<br />

broadening: 1.0 eV).<br />

125


Synchrotr<strong>on</strong> and XFEL spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PA<br />

126


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

POSTER CONTRIBUTIONS<br />

SESSION B


Palermo, August 28 – September 2, <strong>2009</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts


Biomedical applicati<strong>on</strong>s 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Structures and interacti<strong>on</strong>s <strong>of</strong> nucleolipids based<br />

vectors for gene delivery<br />

N.ARAZAM 1, 2 , S. KHIATI 3 , F. NALLET 1 , P. BARTHÉLÉMY 3 , B.DESBAT 2 AND L. NAVAILLES 1<br />

1. Centre de Recherche Paul Pascal, Université Bordeaux1-CNRS, 115 av<br />

Schweitzer, 33600 Pessac, France<br />

2. Chimie et Biologie des Membranes et Nanoobjets, Université<br />

Bordeaux1, UMR 5248 CNRS, ENITAB, 2 rue Robert Escarpit 33600<br />

Pessac, France<br />

3. INSERM U869, 146 rue Léo Seignat, 33076 Bordeaux, France<br />

Gene <strong>the</strong>rapy is a promising tool for developing new strategies against genetic diseases and<br />

cancers. For medical applicati<strong>on</strong>s, <strong>the</strong> vector must be prepared to allow <strong>the</strong> greatest transfecti<strong>on</strong><br />

efficiency and <strong>the</strong> lowest cytotoxicity. Various syn<strong>the</strong>tic vectors designs were used in <strong>the</strong> past<br />

years. Recently, DNA delivery systems based <strong>on</strong> ani<strong>on</strong>ic lipids have emerged as a possible<br />

alternative to cati<strong>on</strong>ic lipids [1]. Here, we present a study <strong>on</strong> ani<strong>on</strong>ic nucleolipids [2]. The main<br />

advantage <strong>of</strong> those systems is <strong>the</strong> possibility to modulate <strong>the</strong> interacti<strong>on</strong>s with nucleic acids<br />

between i<strong>on</strong>ic and base-pairing interacti<strong>on</strong>s. We used The Langmuir method coupled to Brewster<br />

angle microscopy and PMIRRAS infrared spectroscopy to investigate interacti<strong>on</strong>s between<br />

nucleolipids and nucleic acids. We have been able to characterize nucleolipids films and determine<br />

<strong>the</strong> different types <strong>of</strong> interacti<strong>on</strong>s according to various physicochemical parameters. We also have<br />

performed x-ray studies to determine structural properties <strong>of</strong> nucleolipids-DNA complexes [3].<br />

Finally, we have identified a multiphasic organizati<strong>on</strong> and <strong>the</strong> results allow us to establish a<br />

correlati<strong>on</strong> between <strong>the</strong> structure <strong>of</strong> <strong>the</strong> complexes and <strong>the</strong>ir transfecti<strong>on</strong> efficiency.<br />

References<br />

[1] H. Liang, D. Harries, G.C.L. W<strong>on</strong>g, Proc. Natl. Acad. Sci. USA 102, 11173-11178 (2005).<br />

[2] A. Gissot, M. Camplo, M.W. Grinstaff, P. Barthélémy, Org. Biomol. Chem. 6, 1324–1333 (2008).<br />

[3] S. Khiati, N. Pierre, S. Andriamanarivo, M.W. Grinstaff, N. Arazam, F. Nallet, L. Navailles, P. Barthélémy,<br />

submitted to bioc<strong>on</strong>jugate chemistry.<br />

PB 1


Biomedical applicati<strong>on</strong>s 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

The use <strong>of</strong> <strong>the</strong> Raman <strong>Spectroscopy</strong> for <strong>the</strong> study <strong>of</strong><br />

Bi<strong>of</strong>ilm caused by <strong>the</strong> E. faecalis bacteria in<br />

period<strong>on</strong>titis<br />

R. AVILA RODRÍGUEZ 1 , A. GONZÁLEZ AMARO 2 , D. RODRÍGUEZ<br />

OVIEDO 2 , C ARAUJO ANDRADE 3 , FACUNDO RUÍZ 4 , J. R. MARTÍNEZ 4<br />

1. Programa de Posgrado en Ingeniería Eléctrica, Facultad de Ingeniería,<br />

Universidad Autónoma de San Luis Potosi. Av. Salvador Nava S/N<br />

2. Programa de Posgrado en Endod<strong>on</strong>cia de la Facultad de<br />

Estomatología de la Universidad Autónoma de San Luis Potosi, Av.<br />

Salvador Nava S/N<br />

3. Unidad Académica de Física de la Universidad Autónoma de<br />

Zacatecas. Zacatecas, Zac<br />

3. Facultad de Ciencias, Universidad Autónoma de San Luis Potosi,<br />

78000 San Luis Potosí, S.L.P., México<br />

In Endod<strong>on</strong>tics <strong>the</strong> E. faecalis has <strong>the</strong> hability to invade and to col<strong>on</strong>ize <strong>the</strong> root canal [1], can<br />

survive without <strong>the</strong> support <strong>of</strong> o<strong>the</strong>r bacterium, it has <strong>the</strong> special capability <strong>of</strong> building a bi<strong>of</strong>ilm to<br />

protect and to survive, that is why it can resist against <strong>the</strong> antimicrobials, and begins to infect <strong>the</strong><br />

roots canals [2,3,4,5]. The bacteriological bi<strong>of</strong>ilm is a community <strong>of</strong> bacteria that is in a matrix <strong>of</strong><br />

exopolysaccharides [6, 7] produced by <strong>the</strong>mselves and adhered to a organic or inorganic surface<br />

to provide protecti<strong>on</strong> and more resistance to <strong>the</strong> external influences, which is why <strong>the</strong>y are<br />

protected against <strong>the</strong> acti<strong>on</strong> <strong>of</strong> <strong>the</strong> antibodies, and protected for <strong>the</strong> fagocitosis and for <strong>the</strong><br />

antimicrobians treatment. The bi<strong>of</strong>ilm can be 1000 times more resistant to <strong>the</strong> antimicrobians, that<br />

is way <strong>the</strong> bi<strong>of</strong>ilm is so important to study, to be able to learn what <strong>the</strong>ir structure c<strong>on</strong>sists <strong>of</strong> and<br />

try to make it disappear and to enable <strong>the</strong> antibiotics to produce <strong>the</strong>ir effects. Actually, at this<br />

time <strong>the</strong> study <strong>of</strong> bi<strong>of</strong>ilm “in situ“ is limited, but <strong>the</strong>re has been some research with <strong>the</strong> electr<strong>on</strong>ic<br />

microscopy, and o<strong>the</strong>r molecular biology techniques. The Raman spectroscopy is a feasible<br />

technique to detect <strong>the</strong> bi<strong>of</strong>ilm which has multiple bands due to <strong>the</strong> bi<strong>of</strong>ilm comp<strong>on</strong>ents such as<br />

carbohydrates, cytocine, amino acids. The advantage <strong>of</strong> this techique is that it is not necesary to<br />

prepare <strong>the</strong> bi<strong>of</strong>ilm and goes direct over <strong>the</strong> sample.<br />

References<br />

[1] Love R.M., et al Enterococcus faecalis- A mechanism for its role in endod<strong>on</strong>tic failure, IEJ, 34,399-405,2001.<br />

[2] Distel J.W. et al., Bi<strong>of</strong>ilm Formati<strong>on</strong> in Medical Root Canals, JOE 2002, Vol 28, No. 10 689-693.<br />

[3] Stuart Charles H., et al., Enterococcus faecalis: Its Role in Root Canal Treatment Failure and Current C<strong>on</strong>cepts in<br />

Retreatment.<br />

[4] Chavez de Paz L. Resp<strong>on</strong>se to alkaline stress by root canal bacteria in bi<strong>of</strong>ilms, IEJ, 40 344-355,2007.<br />

[5] Craig J., et al, Comparris<strong>on</strong> <strong>of</strong> <strong>the</strong> antimicrobial efficacy <strong>of</strong> 1.3% NaOCl/Biopure MTAD to 5.25% NaOCl/15% EDTA<br />

for Root canal irrigati<strong>on</strong>, JOE, Vol. 33, No. 1, January 2007<br />

[6] Bi<strong>of</strong>ilms Bacterianos: Cr<strong>on</strong>ificación, 2005.<br />

[7] Lasa I., Bi<strong>of</strong>ilms Bacterianos. Actualidad, Vol. 28, Num 2. 2004<br />

PB 2


Biomedical applicati<strong>on</strong>s 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Chemometric analysis <strong>of</strong> biospectroscopic data in R:<br />

hyperSpec<br />

C. BELEITES 1 AND V. SERGO 1<br />

1. CENMAT, Materials and Natural Resources Dept.,<br />

University <strong>of</strong> Trieste, Via Valerio 6/a, Trieste, I-34127, Italy<br />

We present a new s<strong>of</strong>tware package, hyperSpec, that greatly facilitates <strong>the</strong> analysis <strong>of</strong> spectral data<br />

in R [1]. hyperSpec makes R a c<strong>on</strong>venient platform for <strong>the</strong> analysis <strong>of</strong> spectral data sets, including<br />

spectral images and maps. It takes care <strong>of</strong> data import and export, supplies <strong>the</strong> means to plot <strong>the</strong><br />

data (spectra, false-color maps, time series, depth pr<strong>of</strong>iles, calibrati<strong>on</strong> curves) and can be used for<br />

handling and processing spectra. The actual statistical calculati<strong>on</strong>s are performed by functi<strong>on</strong>s<br />

supplied by within <strong>the</strong> R envir<strong>on</strong>ment: chemometric methods such as regressi<strong>on</strong>, classificati<strong>on</strong> and<br />

cluster analysis are readily available in <strong>the</strong> statistical s<strong>of</strong>tware R, as well as <strong>the</strong> means for<br />

validati<strong>on</strong>, determinati<strong>on</strong> <strong>of</strong> c<strong>on</strong>fidence intervals, etc. In hyperSpec, <strong>the</strong> spectra can be stored with<br />

arbitrary amounts <strong>of</strong> meta-informati<strong>on</strong> such as positi<strong>on</strong>, sample numbers, c<strong>on</strong>stituent<br />

c<strong>on</strong>centrati<strong>on</strong>s, diagnoses, etc. Also, spectral maps/images need nei<strong>the</strong>r be rectangular nor evenly<br />

spaced, and may be combined with spectra without spatial informati<strong>on</strong>. Specialized and<br />

customized methods are needed for <strong>the</strong> chemometric analysis <strong>of</strong> biomedical spectroscopic data<br />

sets (e. g. validati<strong>on</strong> schemes that take into account varying numbers <strong>of</strong> spectra per patient and<br />

diagnosis, or robust statistical methods). hyperSpec can easily be extended or used toge<strong>the</strong>r with<br />

o<strong>the</strong>r R packages.. R is developed with a quality assurance work cycle and participated in a test <strong>of</strong><br />

statistical s<strong>of</strong>tware [2]. A standardized interface for different data types (classes) and statistical<br />

methods greatly facilitates <strong>the</strong> flexible interacti<strong>on</strong> between specialized data (like hyperSpec data<br />

sets) and specialized data analysis methods. Also interacti<strong>on</strong> with Matlab is easy using R.matlab<br />

[3]. hyperSpec allows scripting <strong>of</strong> <strong>the</strong> data analysis so that computati<strong>on</strong>ally intensive calculati<strong>on</strong>s<br />

can be run as batch jobs but <strong>the</strong>re are also functi<strong>on</strong>s for user interacti<strong>on</strong> <strong>on</strong> <strong>the</strong> plots. Sophisticated<br />

graphical user interfaces (GUIs) tailored for specific tasks may be built using hyperSpec toge<strong>the</strong>r<br />

with o<strong>the</strong>r R packages that supply GUI elements. While several s<strong>of</strong>tware soluti<strong>on</strong>s for <strong>the</strong><br />

chemometric analysis <strong>of</strong> spectral data <strong>of</strong> biomedical samples exist, n<strong>on</strong>e could meet all key<br />

requirements for <strong>the</strong> use <strong>of</strong> spectral data as a diagnostic tool in medicine. Here we present two<br />

examples <strong>of</strong> how hyperSpec is used: a cluster analysis <strong>of</strong> a Raman map <strong>of</strong> ch<strong>on</strong>drocytes in cartilage,<br />

and a linear calibrati<strong>on</strong> <strong>of</strong> fluorescence emissi<strong>on</strong> <strong>of</strong> quinine. hyperSpec is hosted at http://r-forge.rproject.org/projects/hyperspec/.<br />

References<br />

[1] R Development Core Team, R, A language and envir<strong>on</strong>ment for statistical computing, Vienna: R Foundati<strong>on</strong> for<br />

Statistical Computing, ISBN 3-900051-07-0, URL http://www.R-project.org. (<strong>2009</strong>)<br />

[2] K. B. Keeling, R. J. Pavur, Computati<strong>on</strong>al Statistics & Data Analysis 51, 3811 – 3831 (2007)<br />

[3] H. Bengtss<strong>on</strong>, R.matlab - Local and remote Matlab c<strong>on</strong>nectivity in R, Ma<strong>the</strong>matical Statistics, Centre for<br />

Ma<strong>the</strong>matical Sciences, Lund University, Sweden, URL http://www.maths.lth.se/help/R/R.matlab/ (2005)<br />

PB 3


Biomedical applicati<strong>on</strong>s 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Infrared imaging: a new tool to refine breast cancer<br />

prognosis<br />

A. BÉNARD 1 , C. DESMEDT 2 , V. DURBECQ 2 , G. ROUAS 2 , D. LARSIMONT 3 , C. SOTIRIOU 2 AND<br />

E. GOORMAGHTIGH 1<br />

1. Laboratory for <strong>the</strong> Structure and Functi<strong>on</strong> <strong>of</strong> Biological Membranes,<br />

Université Libre de Bruxelles, Belgium<br />

2. Functi<strong>on</strong>al Genomics and Translati<strong>on</strong>al Research Unit, Department <strong>of</strong><br />

Medical Oncology, Institut J. Bordet, Brussels, Belgium<br />

3. Department <strong>of</strong> Pathology, Institut J. Bordet, Brussels, Belgium<br />

Currently for breast cancer prognosis, clinical guidelines are based <strong>on</strong> lymph node status, tumor<br />

size, histological grade, age <strong>of</strong> <strong>the</strong> patient, as well expressi<strong>on</strong> <strong>of</strong> various cellular receptors (ER, PgR,<br />

HER2). However, <strong>the</strong> existing predicti<strong>on</strong>s remain unsatisfactory to identify <strong>the</strong> best treatment for<br />

<strong>the</strong> individual patient. Recently gene expressi<strong>on</strong> pr<strong>of</strong>iling based <strong>on</strong> DNA microarrays has brought<br />

promising results in <strong>the</strong> field [1]. Even though this approach may help to improve decisi<strong>on</strong>-making<br />

by <strong>the</strong> <strong>on</strong>cologist, it remains expensive and does not take into account <strong>the</strong> cellular heterogeneity <strong>of</strong><br />

<strong>the</strong> tumor sample. The recently developed IR imaging systems allow <strong>the</strong> analysis <strong>of</strong> <strong>the</strong> different<br />

comp<strong>on</strong>ents <strong>of</strong> a tumor, taking into c<strong>on</strong>siderati<strong>on</strong> <strong>the</strong> spatial resoluti<strong>on</strong> <strong>of</strong> <strong>the</strong> cells. Here, we<br />

applied for <strong>the</strong> first time <strong>the</strong>se new IR imaging systems to breast cancer samples. IR spectroscopy<br />

is based <strong>on</strong> <strong>the</strong> absorpti<strong>on</strong> <strong>of</strong> infrared light by vibrati<strong>on</strong>al transiti<strong>on</strong>s in covalent b<strong>on</strong>ds. While <strong>the</strong><br />

intensities provide quantitative informati<strong>on</strong>, <strong>the</strong> frequencies relate to <strong>the</strong> nature <strong>of</strong> <strong>the</strong>se b<strong>on</strong>ds,<br />

<strong>the</strong>ir structure, and <strong>the</strong>ir molecular envir<strong>on</strong>ment. In complex systems such as cells, an infrared<br />

spectrum is <strong>the</strong> sum <strong>of</strong> <strong>the</strong> c<strong>on</strong>tributi<strong>on</strong>s arising from proteins, lipids, nucleic acids, and all o<strong>the</strong>r<br />

chemical species present in <strong>the</strong> cells. IR spectroscopy provides a complete signature which can be<br />

correlated with <strong>the</strong> biological properties <strong>of</strong> <strong>the</strong> sample. Hundreds <strong>of</strong> biological applicati<strong>on</strong>s <strong>of</strong> this<br />

technology have been published since it was dem<strong>on</strong>strated, in <strong>the</strong> eighties, that <strong>the</strong> FTIR spectrum<br />

<strong>of</strong> bacteria provides a unique fingerprint that allows <strong>the</strong> identificati<strong>on</strong> <strong>of</strong> bacteria species [2]. Here,<br />

we analyzed formalin fixed paraffin embedded (FFPE) tissues from breast cancer patients. Good<br />

quality imaging <strong>of</strong> <strong>the</strong> different types <strong>of</strong> molecules present in <strong>the</strong> FFPE tissue was obtained <strong>on</strong> 3<br />

µm slices. This preliminary study has been made <strong>on</strong> Tissue Microarrays <strong>of</strong> invasive breast<br />

carcinomas. A supervised statistical analysis (Student t-test) was computed between histologic<br />

grade 1 patients and grade 3 patients. All <strong>the</strong> significant differences were located in <strong>the</strong> spectral<br />

regi<strong>on</strong> characteristic <strong>of</strong> DNA and RNA. A n<strong>on</strong> supervised statistical test (Principal Comp<strong>on</strong>ent<br />

Analysis) made <strong>on</strong> this regi<strong>on</strong> <strong>of</strong> <strong>the</strong> spectra allows <strong>the</strong> separati<strong>on</strong> <strong>of</strong> <strong>the</strong> two groups <strong>of</strong> patients. It<br />

is <strong>the</strong> first principal comp<strong>on</strong>ent (CP1) which represents 80% <strong>of</strong> <strong>the</strong> variance that is discriminant.<br />

We show here in an exploratory study that IR imaging can be applied <strong>on</strong> FFPE samples, paving <strong>the</strong><br />

way to retrospective studies. It should be possible in a near future to correlate <strong>the</strong> infrared features<br />

<strong>of</strong> <strong>the</strong> spectra to prognostic parameters.<br />

References<br />

[1] C. Sotiriou, C. Desmedt, D. Larsim<strong>on</strong>t, M. Piccart, M. Delorenzi, J. Nati<strong>on</strong>al Cancer Inst. 98 (4) 262-272 (2006)<br />

[2] D. Naumann, D. Helm, H. Labischinski, Nature 351:81-82 (1991)<br />

PB 4


Biomedical applicati<strong>on</strong>s 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Interacti<strong>on</strong>s <strong>of</strong> <strong>the</strong> beta-blocker drug, propranolol, with<br />

detergents, cyclodextrins, membranes and living cells studied<br />

using fluorescence spectroscopy<br />

R. H. BISBY 1 , S. W. BOTCHWAY 2 , A. G. CRISOSTOMO 1 , J. KAROLIN 3 , A. W. PARKER 2 AND<br />

L. SCHRÖDER 1<br />

1. Biomedical Sciences Research Institute, University <strong>of</strong> Salford, UK<br />

2. Lasers for Science Facility, Central Laser Facility, STFC, UK<br />

3. Department <strong>of</strong> Physics, University <strong>of</strong> Strathclyde, UK<br />

Propranolol (I) was developed as a blocker <strong>of</strong> <strong>the</strong> beta-adrenergic<br />

receptor <strong>of</strong> cells and has been widely used in <strong>the</strong> treatment <strong>of</strong><br />

hypertensi<strong>on</strong> and anxiety. It has previously been noted that<br />

propranolol is relatively hydrophobic and that its fluorescence<br />

spectrum in a range <strong>of</strong> solvents reflects solvent polarity [1], allowing<br />

membrane interacti<strong>on</strong>s to be detected [2].<br />

The uptake <strong>of</strong> propranolol into several cell types, including rat aorta smooth muscle cells, has now<br />

been imaged using 2-phot<strong>on</strong> (630 nm) excitati<strong>on</strong> <strong>of</strong> ultraviolet fluorescence (340 nm) using similar<br />

methods to those described previously for serot<strong>on</strong>in imaging [3]. The results indicate selective<br />

uptake <strong>of</strong> propranolol into acidic organelles, most probably lysosomes, through co-localizati<strong>on</strong><br />

with Lysotracker® Green DND – 26 dye. Quantitative analysis using fluorescence lifetime<br />

imaging shows that intracellular c<strong>on</strong>centrati<strong>on</strong>s reach levels <strong>of</strong> several millimolar and are<br />

sufficient for self quenching <strong>of</strong> <strong>the</strong> fluorescence lifetime to be observed. Comparable fluorescence<br />

lifetimes determined with ultraviolet excitati<strong>on</strong> indicate that spectral changes in solvent systems<br />

generally are accompanied by shortening <strong>of</strong> <strong>the</strong> average excited state fluorescence lifetime and<br />

development <strong>of</strong> multiple exp<strong>on</strong>ential comp<strong>on</strong>ents, compared with behaviour in neutral aqueous<br />

soluti<strong>on</strong>s where a good single exp<strong>on</strong>ential decay with a lifetime <strong>of</strong> 10.0 ns was measured. In<br />

c<strong>on</strong>trast, significant changes in <strong>the</strong> fluorescence spectrum <strong>of</strong> propranolol <strong>on</strong> associati<strong>on</strong> with <strong>the</strong><br />

hydrophobic envir<strong>on</strong>ment within sodium dodecyl sulphate (SDS) micelles reflect an increase in <strong>the</strong><br />

fluorescence lifetime to about 18 ns. These results suggest that in <strong>the</strong> cellular systems, propranolol<br />

remains str<strong>on</strong>gly associated with <strong>the</strong> aqueous phase. Fur<strong>the</strong>r experiments to probe interacti<strong>on</strong>s <strong>of</strong><br />

propranolol with amphipathic systems have been undertaken using fluorescence quenching.<br />

Binding <strong>of</strong> propranolol to SDS micelles and β-cyclodextrin resulted in substantial decreases in <strong>the</strong><br />

Stern-Volmer c<strong>on</strong>stant for steady-state quenching by iodide. This is particularly useful in<br />

dem<strong>on</strong>strating associati<strong>on</strong> with β-cyclodextrin, where previous experiments based <strong>on</strong>ly <strong>on</strong><br />

changes in fluorescence intensity showed a very weak effect [4].<br />

References<br />

[1] C.E.Hunt and R.J.Ansell (2006) Analyst 131: 678-683.<br />

[2] W.K.Surewicz and W.Leyko (1981) Biochim.Biophys.Acta 643: 387-397.<br />

[3] S.W.Botchway, A.W.Parker, R.H.Bisby and A.G.Crisostomo (2008) Microsc.Res.Techniq. 71: 267–273.<br />

[4] A.Y.Glenn, C.A.Fortier, I.V.Jack, X.Zhu and I.M.W|arner (2005) J.Incl.Phenom.Macro. 51: 87-91.<br />

PB 5<br />

O NH 2 +<br />

I


Biomedical applicati<strong>on</strong>s 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Chemical imaging <strong>of</strong> articular cartilage<br />

with Raman mapping<br />

A. BONIFACIO 1 , C. BELEITES 1, F.VITTUR 2 , E.MARSICH 1 ,<br />

S.SEMERARO 2 , A.FLAMIGNI 2 , S.PAOLETTI 2 AND V. SERGO 1<br />

1. Dept. <strong>of</strong> Materials and Natural Resources, University <strong>of</strong> Trieste, Via Valerio 6a, Trieste, 34100, Italy<br />

2. Dept. <strong>of</strong> Life Sciences, University <strong>of</strong> Trieste, Via Giorgeri 1, Trieste, 34100, Italy<br />

Cartilage is c<strong>on</strong>sidered <strong>on</strong>e <strong>of</strong> <strong>the</strong> simplest tissues in <strong>the</strong> body, c<strong>on</strong>sisting <strong>of</strong> <strong>on</strong>e type <strong>of</strong> cells (i.e.<br />

ch<strong>on</strong>drocytes) and an extracellular matrix whose main comp<strong>on</strong>ents are collagen, proteoglycans<br />

and water [1]. Despite its simple structure, <strong>the</strong> processes involved in arthritis, a widespread<br />

pathology, are still largely unknown. In <strong>the</strong> last decade, <strong>the</strong> need for tools to characterize this<br />

tissue at molecular level led to <strong>the</strong> applicati<strong>on</strong> <strong>of</strong> several imaging techniques to articular cartilage.<br />

In particular, FT-IR showed to be a valuable tool to characterize this tissue [2]. We applied ano<strong>the</strong>r<br />

imaging technique based <strong>on</strong> vibrati<strong>on</strong>al spectroscopy, i.e. Raman mapping [3], to obtain detailed<br />

informati<strong>on</strong> about <strong>the</strong> distributi<strong>on</strong> <strong>of</strong> different chemical species in articular cartilage. The images<br />

obtained with Raman mapping show <strong>the</strong> distributi<strong>on</strong> <strong>of</strong> <strong>the</strong> different cartilage c<strong>on</strong>stituents with a<br />

lateral resoluti<strong>on</strong> <strong>of</strong> 1 micr<strong>on</strong>. With this resoluti<strong>on</strong>, details about <strong>the</strong> sub-cellular structure <strong>of</strong><br />

ch<strong>on</strong>drocytes have been resolved, and <strong>the</strong> distributi<strong>on</strong> <strong>of</strong> <strong>the</strong> tissue comp<strong>on</strong>ents in <strong>the</strong> matrix<br />

immediately adjacent to cells is depicted with unprecedented detail. Moreover, by using <strong>the</strong><br />

hyperSpec s<strong>of</strong>tware package [4], multivariate data analysis has been applied to cartilage Raman<br />

maps, yielding additi<strong>on</strong>al informati<strong>on</strong> o<strong>the</strong>rwise difficult to extract from <strong>the</strong> univariate analysis<br />

employed in <strong>the</strong> previous FT-IR studies <strong>on</strong> this tissue. These results show <strong>the</strong> potential <strong>of</strong> Raman<br />

mapping for <strong>the</strong> detailed characterizati<strong>on</strong> <strong>of</strong> articular cartilage, and open <strong>the</strong> way to fur<strong>the</strong>r<br />

studies <strong>on</strong> <strong>the</strong> differences between healthy and arthritic tissue at molecular level.<br />

Fig. 1 – (from left to right): bright field image <strong>of</strong> a cartilage tissue secti<strong>on</strong> <strong>of</strong> 100x80 micr<strong>on</strong>s toge<strong>the</strong>r<br />

with false color images obtained by multivariate analysis (e.g. PCA, HCA) showing <strong>the</strong> relative distributi<strong>on</strong><br />

<strong>of</strong> several chemical species; <strong>the</strong> average spectrum for <strong>the</strong> whole secti<strong>on</strong> is shown <strong>on</strong> <strong>the</strong> right.<br />

References<br />

[1] Serafini-Fracassini A. and Smith J.W. (1974), Churchill Livingst<strong>on</strong>e, L<strong>on</strong>d<strong>on</strong><br />

[2] Boskey A., Camacho N.P. (2007) Biomaterials, 28, 2465-2478<br />

[3] Krafft C. and Sergo V. (2006) <strong>Spectroscopy</strong>, 20 (5-6), 195-218<br />

[4] C.Beleites and V.Sergo, J.Stat.S<strong>of</strong>t., in preparati<strong>on</strong> (see http://r-forge.r-project.org/projects/hyperspec)<br />

PB 6


Biomedical applicati<strong>on</strong>s 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Development <strong>of</strong> biosensor based <strong>on</strong> hyperpolarized<br />

Xen<strong>on</strong>-129 for NMR and MRI<br />

A. STOPIN 1 , T. BROTIN 1 , J.P. DUTASTA 1<br />

C. BOUTIN 2 , Y. BOULARD 2 , F. LETEURTRE 2 , A. SANSON 2 , N. JAMIN 2<br />

G. HUBER 3 , H. DESVAUX 3 , M. CARRIERE 3 , P. BERTHAULT 3<br />

1. CNRS, Ecole Normale Supérieure de Ly<strong>on</strong>, Laboratoire de Chimie, 46<br />

Allée d’Italie, F-69364 Ly<strong>on</strong>, France<br />

2. CEA,iBiTecS, 91191 Gif-sur-Yvette, France<br />

3. CEA, IRAMIS, SIS2M et URA CEA/CNRS 331, Laboratoire Structure<br />

et Dynamique par Rés<strong>on</strong>ance Magnétique, 91191 Gif-sur-Yvette, France<br />

Nuclear magnetic res<strong>on</strong>ance is widely used to get spectroscopic and imaging informati<strong>on</strong> <strong>on</strong><br />

biological samples. One <strong>of</strong> <strong>the</strong> main challenges is to develop biomarkers as c<strong>on</strong>trast agents, <strong>of</strong> high<br />

sensitivity and relevant for biomedical applicati<strong>on</strong>. Hyperpolarized Xen<strong>on</strong>-129 appears to be an<br />

interesting candidate because <strong>of</strong> a) its biocompatibility and solubility in biological tissues, b) <strong>the</strong><br />

enhancement <strong>of</strong> its NMR signal as a result <strong>of</strong> <strong>the</strong> hyperpolarizati<strong>on</strong>, which should allow <strong>the</strong><br />

detecti<strong>on</strong> <strong>of</strong> low metabolite or receptor c<strong>on</strong>centrati<strong>on</strong>s. c) its resp<strong>on</strong>se to <strong>the</strong> local envir<strong>on</strong>ment<br />

leading to a wide chemical shift bandwidth [1]. In a recent approach, it has been shown that xen<strong>on</strong><br />

can be directed to given biological targets through encapsulati<strong>on</strong> in functi<strong>on</strong>alized cage-molecules<br />

[2, 3]. In this purpose, some 129Xe-NMR based biosensors have been built from cryptophane cores,<br />

hosts known to interact str<strong>on</strong>gly with xen<strong>on</strong> [4, 5]. These cryptophanes are te<strong>the</strong>red with ligands <strong>of</strong><br />

interest [6] (Fig. 1). Targeting <strong>the</strong> transferring receptor highly expressed at cell surface is used as a<br />

model to evaluate and develop <strong>the</strong> technique. The first in vitro data using hyperpolarized 129Xe<br />

have been obtained <strong>on</strong> transferring-cryptophane biosensor in <strong>the</strong> presence <strong>of</strong> K562 cells. These<br />

results are promising for future work <strong>on</strong> MRI techniques using small animal models.<br />

References<br />

Fig. 1 – schematic representati<strong>on</strong> <strong>of</strong> <strong>the</strong> transferrin-cryptophane biosensor<br />

[1] B.M. Goods<strong>on</strong>, Using injectable carriers <strong>of</strong> laser-polarized noble gases for enhancing NMR, MRI, C<strong>on</strong>c. Magn. Res<strong>on</strong><br />

11, 203- 223 (1999).<br />

[2] M. M. Spence, S. M. Rubin, I. E. Dimitrov, E. J. Ruiz, D. E. Wemmer, A. Pines, S. Qin Yao, F. Tian and P. G. Schultz<br />

Proc. Natl. Acad. Sci. USA 98, 10654-10657 (2001)<br />

[3] P. Berthault, G. Huber and H. Desvaux Prog. NMR Spectrosc. 55, 35-60 (<strong>2009</strong>).<br />

[4] G. Huber, L. Beguin, H. Desvaux, T. Brotin, HA. Fogarty, JP. Dutasta, P. Berthault, J Phys Chem A. 112, 11363-72<br />

(2008).<br />

[5] Thierry Brotin, and Jean-Pierre Dutasta Chem. Rev. 109, 88-130 (<strong>2009</strong>).<br />

[6] V. Roy, T. Brotin, J.-P. Dutasta, M.-H. Charles, T. Delair, F. Mallet, G. Huber, H. Desvaux, Y. Boulard and<br />

P.Berthault ChemPhysChem, 8, 2082-2085 (2007).<br />

PB 7


Biomedical applicati<strong>on</strong>s 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

APOMORPHINE VIBRATIONAL STRUCTURE REVEALED BY RAMAN AND SERS<br />

SPECTROSCOPIES<br />

M. Casella (1,3, ����), A. Lucotti (2), M. Tommasini (2), F. Gramatica (1), E. Di Fabrizio (3,4)<br />

and G. Zerbi (2)<br />

(1) Lab. Bi<strong>of</strong>isica e Nanomedicina, Polo Tecnologico, F<strong>on</strong>dazi<strong>on</strong>e D<strong>on</strong> Gnocchi IRCCS-ONLUS,<br />

Via Capecelatro 66, 20148 Milan, Italy<br />

(2) Dip. di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano,<br />

Piazza L. Da Vinci 32, I-20133 Milan, Italy<br />

(3) BIONEM Lab, Dip. di Medicina Sperimentale e Clinica, Università Magna Graecia,<br />

viale Europa, 88100 Catanzaro, Italy<br />

(4) INFM-TASC (Nati<strong>on</strong>al Institute for <strong>the</strong> Physics <strong>of</strong> Matter)- S.S.14 km 163,5 in Area Science Park,<br />

34012 Basovizza-Trieste, Italy<br />

� Corresp<strong>on</strong>ding Author: mcasella@d<strong>on</strong>gnocchi.it<br />

Apomorphine (APO - aporphine-10,11-diol, CA Registry Number 58004) is a not narcotic<br />

derivative <strong>of</strong> morphine discovered in 1869 by Mat<strong>the</strong>isen and Wright [1]. It is a well-known str<strong>on</strong>g<br />

short-acting dopamine ag<strong>on</strong>ist at D1 and D2 dopamine receptors, used in <strong>the</strong> treatment <strong>of</strong> patients<br />

with advanced Parkins<strong>on</strong>’s Disease (PD).<br />

Its inherent instability complicates its applicati<strong>on</strong> in clinical practice. In fact, aqueous soluti<strong>on</strong>s <strong>of</strong><br />

apomorphine undergo sp<strong>on</strong>taneous oxidative decompositi<strong>on</strong> turning green in <strong>the</strong> presence <strong>of</strong> light<br />

and air [2]. Thus, because <strong>of</strong> its unfavourable pharmacokinetic properties (it is usually required a<br />

c<strong>on</strong>stant level <strong>of</strong> APO in <strong>the</strong> blood during PD treatment) and its chemical instability, m<strong>on</strong>itoring <strong>of</strong><br />

<strong>the</strong> haematic drug level by means <strong>of</strong> laser spectroscopy methods (e.g. Raman spectroscopies based<br />

methods) would represent a turning point for <strong>the</strong> PD treatment planning.<br />

In order to understand <strong>the</strong> vibrati<strong>on</strong>al spectrum <strong>of</strong> this compound, apomorphine hydrochloride and<br />

its commercial drug formulati<strong>on</strong> (Ap<strong>of</strong>in ® ) were examined by means <strong>of</strong> Raman and SERS<br />

spectroscopies.<br />

In this work Raman and SERS spectra <strong>of</strong> apomorphine (both salt and commercial drug) and<br />

oxidati<strong>on</strong> products <strong>of</strong> apomorphine (acqueous soluti<strong>on</strong>) are reported.<br />

Moreover, <strong>the</strong> vibrati<strong>on</strong>al structure <strong>of</strong> Apomorphine and Oxoapomorphine have been calculated by<br />

means <strong>of</strong> density functi<strong>on</strong>al <strong>the</strong>ory (DFT), thus allowing to assign <strong>the</strong> main peaks observed in <strong>the</strong><br />

experimental Raman and SERS spectra.<br />

The spectroscopic features identified are fingerprints <strong>of</strong> <strong>the</strong> molecule and c<strong>on</strong>stitute <strong>the</strong> basis <strong>of</strong><br />

fur<strong>the</strong>r experimental works aimed to <strong>the</strong> development <strong>of</strong> suitable biomedical SERS sensors.<br />

References<br />

[1] A. Mat<strong>the</strong>isen et al, Proc. R. Soc. L<strong>on</strong>d. B. Biol.Sci. 17, 455 (1869)<br />

[2] J. M. P. J. Garrido et al, J. Chem. Soc. Perkin Trans. 2, 1713 (2002)<br />

PB 8


Biomedical applicati<strong>on</strong>s 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Effect <strong>of</strong> different anticancer drugs <strong>on</strong> prostate cancer<br />

PC-3 cells classified by imaging FTIR.<br />

A. DERENNE 1 , R. GASPER 1 , A. BÉNARD 1 AND E. GOORMAGHTIGH 1<br />

1. Laboratory for <strong>the</strong> Structure and Functi<strong>on</strong> <strong>of</strong> Biological Membranes, Center for Structural Biology and<br />

Bioinformatics, Université Libre de Bruxelles (ULB)<br />

The number <strong>of</strong> anticancer agents that fail in <strong>the</strong> clinic far outweighs those c<strong>on</strong>sidered effective,<br />

suggesting that <strong>the</strong> selecti<strong>on</strong> procedure for progressi<strong>on</strong> <strong>of</strong> drug molecules into <strong>the</strong> clinic requires<br />

improvement. Traditi<strong>on</strong>ally, new drugs are evaluated for <strong>the</strong>ir potential to kill cancer cell lines.<br />

This approach is obviously not sufficient, and molecules with new modes <strong>of</strong> acti<strong>on</strong> are required.<br />

We suggest here that <strong>the</strong> infrared spectrum <strong>of</strong> cells exposed to anticancer drugs could <strong>of</strong>fer an<br />

opportunity to obtain a fingerprint <strong>the</strong> metabolic changes induced by <strong>the</strong> drugs. Because <strong>the</strong><br />

infrared spectrum <strong>of</strong> cells yields a precise image <strong>of</strong> all <strong>the</strong> chemical b<strong>on</strong>ds present in <strong>the</strong> sample,<br />

different drug acti<strong>on</strong>s are likely to each yield a unique fingerprint characteristic <strong>of</strong> <strong>the</strong> “mode <strong>of</strong><br />

acti<strong>on</strong>” <strong>of</strong> <strong>the</strong> <strong>the</strong>rapeutical agent under investigati<strong>on</strong>. In turn, drug-induced metabolic disorders<br />

should be amenable to classificati<strong>on</strong> similar to <strong>the</strong> ways in which bacteria gender, species, and<br />

strains can be classified [1]. Our laboratory has already shown IR spectroscopy can be used to<br />

evidence metabolic changes induced by <strong>on</strong>e drug <strong>on</strong> a cell line as a functi<strong>on</strong> <strong>of</strong> time [2]. In <strong>the</strong><br />

present communicati<strong>on</strong> we examine human prostate cancer PC-3 cell line exposed to 8 well<br />

described antimitotics. In a first step <strong>the</strong> IC50 at 72 hrs incubati<strong>on</strong> time were determined. For FTIR<br />

imaging, PC-3 cells were exposed to <strong>the</strong> IC50 c<strong>on</strong>centrati<strong>on</strong> <strong>of</strong> each drug for 48 hrs. Cells were <strong>the</strong>n<br />

harvested, washed in an isot<strong>on</strong>ic soluti<strong>on</strong> and deposited <strong>on</strong> a BaF2 window. IR spectroscopic<br />

images were recorded using a Bruker FTIR spectrometer equinox coupled to a Hyperi<strong>on</strong> 3000<br />

imaging system equipped with a mercury cadmium telluride (MCT)-based focal plane array (FPA)<br />

detector <strong>of</strong> 64×64 pixels (Bruker Optik, Ettlingen, Germany). Images <strong>of</strong> 4096 IR spectra at 8 cm -1<br />

spectral resoluti<strong>on</strong> were acquired by coadding 256 interferograms. All <strong>the</strong> data processing was<br />

carried out by <strong>the</strong> program “Kinetics” running under Matlab. Using principal comp<strong>on</strong>ent analysis<br />

(PCA), it was found that after 48 hrs <strong>of</strong> incubati<strong>on</strong>, cells treated with drugs inducing DNA or<br />

metabolic alterati<strong>on</strong>s could be distinguished from <strong>the</strong> n<strong>on</strong>-treated <strong>on</strong>es while spectra arising from<br />

cells blocked in metaphase by <strong>the</strong> drug were c<strong>on</strong>fined in a delineated space am<strong>on</strong>g <strong>the</strong> n<strong>on</strong> treated<br />

cells. We show with Student test performed between each drug and <strong>the</strong> n<strong>on</strong> treated cell spectra<br />

that <strong>the</strong> different molecules tested induced different spectral modificati<strong>on</strong>s. Fur<strong>the</strong>rmore, drugs<br />

known to induce <strong>the</strong> similar type <strong>of</strong> metabolic disturbances appeared to cluster when <strong>the</strong> spectrum<br />

shapes were analyzed. Finally, supervised statistical methods (PLS) were used to point out spectral<br />

modificati<strong>on</strong>s specific <strong>of</strong> each molecule and each drug family. Taken all toge<strong>the</strong>r <strong>the</strong>se data<br />

suggest that FTIR could be used for <strong>the</strong> classificati<strong>on</strong> <strong>of</strong> drug acti<strong>on</strong>.<br />

References<br />

[1] Naumann,D., D.Helm, and H.Labischinski. Nature 351 (1991) 81-82.<br />

[2] Gasper,R., J.Dewelle, R.Kiss, T.Mijatovic, and E.Goormaghtigh. Biochim.Biophys.Acta 1788 (<strong>2009</strong>) 1263-1270.<br />

PB 9


Biomedical applicati<strong>on</strong>s 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

FT-Raman and SERS characterizati<strong>on</strong> <strong>of</strong> self-assembling<br />

oligopeptides<br />

M. DI FOGGIA 1 , C. FAGNANO 1 , P. TADDEI 1 , A. TORREGGIANI 2 ,<br />

M. DETTIN 3 , S. SANCHEZ-CORTES 4 , A. TINTI 1<br />

1. Dept. <strong>of</strong> Biochemistry “G. Moruzzi”, University <strong>of</strong> Bologna, Via Belmeloro 8/2 , Bologna, I-40126, Italy<br />

2. ISOF-CNR, Via P. Gobetti 101, Bologna, I-40129, Italy<br />

3. Dept. <strong>of</strong> Chemical Process <strong>of</strong> Engineering , University <strong>of</strong> Padova, Via Marzolo 9, Padova, I-35131, Italy<br />

4. IEM-CSIC, Serrano 121, Madrid, E-28006, Spain<br />

The interest in functi<strong>on</strong>alised biomimetic materials used in pros<strong>the</strong>tic applicati<strong>on</strong>s as b<strong>on</strong>e<br />

substitutes has led to studies <strong>on</strong> regular alternating polar/n<strong>on</strong>-polar oligopeptides such as EAK-16<br />

(AEAEAKAK)2, first syn<strong>the</strong>sised by Zhang et al. [1]. These peptides have a preferential beta-sheet<br />

structure, are resistant to proteolytic cleavage and able to self-assemble into an insoluble<br />

macroscopic membrane under physiological c<strong>on</strong>diti<strong>on</strong>s. Their ability to create such stable<br />

structures derive from <strong>the</strong> hydrophobic interacti<strong>on</strong>s between <strong>the</strong> aliphatic groups <strong>of</strong> n<strong>on</strong>-i<strong>on</strong>ic<br />

residues and complementary i<strong>on</strong>ic b<strong>on</strong>ds between acidic and basic amino acids: this stability can<br />

be enhanced by <strong>the</strong> regulati<strong>on</strong> <strong>of</strong> pH and <strong>the</strong> presence <strong>of</strong> m<strong>on</strong>ovalent i<strong>on</strong>s. In this c<strong>on</strong>text, we<br />

studied different oligopeptides derived from EAK-16, but modified in <strong>the</strong>ir sequence by amino<br />

acid substituti<strong>on</strong> or by adding at <strong>the</strong> N-terminus <strong>of</strong> <strong>the</strong> sequence <strong>the</strong> RGD motif. The latter is<br />

present in <strong>the</strong> integrins located in <strong>the</strong> b<strong>on</strong>e extracellular matrix and is able to c<strong>on</strong>trol osteoblast<br />

adhesi<strong>on</strong>. Raman spectroscopy was used to investigate <strong>the</strong> influence <strong>of</strong> <strong>the</strong> modificati<strong>on</strong>s in <strong>the</strong><br />

sequences <strong>on</strong> <strong>the</strong> self-assembly capability <strong>of</strong> <strong>the</strong> peptides. In particular, useful qualitative and<br />

quantitative informati<strong>on</strong> <strong>on</strong> <strong>the</strong> sec<strong>on</strong>dary structure and <strong>the</strong> hydrogen b<strong>on</strong>ding strength were<br />

provided by <strong>the</strong> different amide stretching modes [2]. A SERS study in soluti<strong>on</strong> was performed in<br />

order to understand <strong>the</strong> interacti<strong>on</strong> way <strong>of</strong> <strong>the</strong> EAK-16 derivatives and a titanium oxide rough<br />

surface: similar interacti<strong>on</strong>s are supposed to take place when oligopeptides interact with <strong>the</strong><br />

surface <strong>of</strong> pros<strong>the</strong>tic devices. Peptides resulted to interact with silver colloids through <strong>the</strong>ir i<strong>on</strong>ic<br />

moieties, in particular <strong>the</strong> carboxylate i<strong>on</strong>s <strong>of</strong> Glutamate and Aspartate residues (as revealed by<br />

<strong>the</strong> enhancement <strong>of</strong> <strong>the</strong> COO - symmetric stretching band) as well as by <strong>the</strong> amino groups <strong>of</strong> Lysine<br />

residues. The inserti<strong>on</strong> <strong>of</strong> Tyrosine as spacer did not alter <strong>the</strong> peptide sec<strong>on</strong>dary structure but gave<br />

a very interesting SERS spectrum, indicating <strong>the</strong> establishment <strong>of</strong> <strong>the</strong> metal-surface interacti<strong>on</strong><br />

through <strong>the</strong> i<strong>on</strong>ic moieties <strong>of</strong> <strong>the</strong> peptide, as well as <strong>the</strong> aromatic ring <strong>of</strong> Tyrosine residues.<br />

References<br />

[1] S. G. Zhang, T. Holmes, C. Lockshin, A. Rich, Proc. Natl. Acad. Sci. USA 90, 3334-3338 (1993).<br />

[2] A. Tinti, M. Di Foggia, P. Taddei, A. Torreggiani, M. Dettin, C. Fagnano, J. Raman Spectr. 39, 250-259 (2008).<br />

10


Biomedical applicati<strong>on</strong>s 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Unsupervised tissue characterizati<strong>on</strong> <strong>of</strong> a rabbit liver Vx2<br />

carcinoma model using infrared imaging<br />

H. D’INCA 1 , M. WASSEF 2 , J. NAMUR 1 , F. PASCALE 3 , E. LY 1 ,<br />

M. MANFAIT 1 AND A. LAURENT 4<br />

1. MEDyC UMR CNRS 6237, Reims, France<br />

2. APHP- Lariboisiere Hospital, Dept <strong>of</strong> Pathology, Paris, France<br />

3. CR2i APHP- INRA, Jouy-En-Josas, France<br />

4. APHP- Lariboisiere Hospital, Dept <strong>of</strong> Interventi<strong>on</strong>al Neuroradiology, Paris, France<br />

Hepatocellular carcinoma (HCC) is <strong>the</strong> most comm<strong>on</strong> form <strong>of</strong> primary liver cancer. The difficulties<br />

posed by HCC management have prompted <strong>the</strong> development <strong>of</strong> numerous potential curative<br />

treatments such as drug eluting implants or percutaneous injecti<strong>on</strong> <strong>of</strong> materials that kill cancer<br />

cells. As such, an animal model <strong>of</strong> liver tumour is very important in <strong>the</strong> search for an efficient<br />

<strong>the</strong>rapeutic method. The rabbit Vx2 tumor is a fast-growing carcinoma model, which is being used<br />

comm<strong>on</strong>ly to study different aspects <strong>of</strong> tumour behaviour under <strong>the</strong>se new <strong>the</strong>rapeutic<br />

approaches [1]. But it requires analytical techniques which can detect and quantify <strong>the</strong> tissue<br />

changes induced by <strong>the</strong>se treatments. FTIR spectral imaging (FTIR SI) <strong>of</strong> histology secti<strong>on</strong>s has<br />

been recently described as an accurate tool for characterizati<strong>on</strong> <strong>of</strong> tumor tissue [2]. This technique<br />

has <strong>the</strong> advantage to be automated and unsupervised. Our aim was to apply FTIR SI for <strong>the</strong><br />

discriminati<strong>on</strong> <strong>of</strong> <strong>the</strong> different tissular areas <strong>of</strong> rabbit liver Vx2 model (tumoral area, necrosis and<br />

intact liver) in view <strong>of</strong> <strong>the</strong>ir quantificati<strong>on</strong>. Nine rabbit livers were injected with Vx2 carcinoma cell<br />

preparati<strong>on</strong>. Tumor bearing livers were resected 14 days after, formalin fixed and paraffin<br />

embedded. Two adjacent secti<strong>on</strong>s (10µm) were cut from each sample: <strong>on</strong>e stained with<br />

hematoxylin-eosine (H&E) and <strong>on</strong>e analyzed with FTIR SI. Spectral data were processed by<br />

multivariate analysis. Firstly, spectral images were computed by K-means in 5 clusters and were<br />

<strong>the</strong>n correlated with classical H&E histology for validati<strong>on</strong> <strong>of</strong> clusters assignment. Sec<strong>on</strong>dly, a<br />

predictive model based <strong>on</strong> <strong>the</strong>se clusters was created using linear discriminant analysis (LDA).<br />

LDA model was validated by leave-<strong>on</strong>e-sample-out cross-validati<strong>on</strong> method [3] and by correlati<strong>on</strong><br />

with H&E histology. K-means classificati<strong>on</strong> correlated str<strong>on</strong>gly with H&E images for <strong>the</strong> three<br />

types <strong>of</strong> tissue: normal liver parenchyma (93.5%), viable tumor (93.2%) and intratumoral necrosis<br />

(98.5%). The sensitivity and specificity <strong>of</strong> <strong>the</strong> LDA model was 97.6% and 98% respectively for<br />

normal liver parenchyma, 96.9% and 94.2% for viable tumor, and 88.4% and 98.8% for intratumoral<br />

necrosis. The surface <strong>of</strong> necrotic tissue represented 35±13% <strong>of</strong> <strong>the</strong> tumor area as predicted by <strong>the</strong><br />

LDA model, which is in good agreement with <strong>the</strong> observati<strong>on</strong>s <strong>on</strong> radiological images. FTIR SI<br />

coupled with LDA modelling allows n<strong>on</strong>-supervised characterizati<strong>on</strong> and quantificati<strong>on</strong> <strong>of</strong> tissular<br />

lesi<strong>on</strong> in Vx2 liver tumor with a good accuracy. Perspectives are to apply FTIR SI <strong>on</strong> treated<br />

samples by drug eluting implants.<br />

References<br />

[1] EM. Mostafa, S. Ganguli, S. Faintuch, P. Mertyna, SN. Goldberg, J Vasc Inter Radiol 19, 1740-1748 (2008).<br />

[2] RK. Sahu, S. Mordechai, Future Oncol 1, 635-647 (2005).<br />

[3] C. Beleites, R. Salzer, Anal Bioanal Chem 390, 1261–1271 (2008).<br />

11


Biomedical applicati<strong>on</strong>s 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Vibrati<strong>on</strong>al characterizati<strong>on</strong> <strong>of</strong> birch bark extract,<br />

betulin anti-cancer agent<br />

S. PINZARU 1 , A. FALAMAS 1 AND C. DEHELEAN 2<br />

1. Dept. <strong>of</strong> Physics, Babes Bolyai University, Kogalniceanu 1, RO 400084, Cluj-Napoca, Romania<br />

2. Victor Babeş University <strong>of</strong> Medicine and Pharmacy, Faculty <strong>of</strong> Pharmacy, Eftimie Murgu Square 2, RO-<br />

300041, Timişoara, România<br />

Most <strong>of</strong> <strong>the</strong> pentacyclic triterpenes species from extract possess an extremely important<br />

antitumour activity, with a low toxicity [1, 2]. Therefore, <strong>the</strong>ir structure-functi<strong>on</strong> relati<strong>on</strong>ship is <strong>of</strong><br />

highly importance in <strong>the</strong> field. In this respect, <strong>the</strong> Fourier transform- Raman (FT-Raman) and FT-<br />

IR spectra <strong>of</strong> birch bark natural extract from Betula Pendula Roth were analyzed with <strong>the</strong> intenti<strong>on</strong><br />

<strong>of</strong> gaining a deeper insight into <strong>the</strong> structure and vibrati<strong>on</strong>al spectra <strong>of</strong> betulin and <strong>of</strong> fur<strong>the</strong>r<br />

suggesting <strong>the</strong> possibility <strong>of</strong> cyclodextrin complexati<strong>on</strong> [3]. Betulin (lup-20(29)-ene-3β,28-diol),<br />

found mainly as crystalline deposits in <strong>the</strong> outer layer <strong>of</strong> <strong>the</strong> bark, can be extracted by sublimati<strong>on</strong><br />

or extracti<strong>on</strong> using organic solvents, as proved from our earlier study [4], in which <strong>the</strong> best solvent<br />

was found to be dichloromethane [3]. The promising biological activity <strong>of</strong> this compound has led<br />

us to perform detailed spectroscopic and <strong>the</strong>oretical DFT investigati<strong>on</strong> <strong>on</strong> its molecular structure.<br />

The <strong>the</strong>oretical spectra <strong>of</strong> betulin resemble well <strong>the</strong> experimental <strong>on</strong>es, acquired using a Bruker<br />

spectrometer as shown in <strong>the</strong> Fig. 1. The most intense bands in <strong>the</strong> Raman spectrum were 1195 cm -<br />

1(assigned to mixed CH bending, CH3 rocking and C-CH3 stretching), 1440 cm -1 (attributed to CH3<br />

and CH2 bending), 1645 cm -1 (assigned to CH2-CH3 bending and H2C-CH3 stretching) and <strong>the</strong> very<br />

str<strong>on</strong>g band at 2927 cm -1 (assigned to CH, CH2 and CH3 stretching). To achieve a precise<br />

assignment <strong>of</strong> Raman bands observed experimentally and for a detailed understanding <strong>of</strong> <strong>the</strong><br />

optimized geometry <strong>of</strong> <strong>the</strong> molecular structure, we employed density functi<strong>on</strong>al calculati<strong>on</strong>s. First<br />

<strong>of</strong> all, a geometry optimizati<strong>on</strong> calculus was employed using Gaussian 03 s<strong>of</strong>tware package at <strong>the</strong><br />

B3LYP/6-31G(d) level <strong>of</strong> <strong>the</strong>ory. Afterwards, a frequency <strong>the</strong>oretical calculus was performed using<br />

<strong>the</strong> same basis set, in order to predict <strong>the</strong> IR and Raman spectra <strong>of</strong> <strong>the</strong> molecule. No negative<br />

frequency modes were obtained, proving that a true minimum <strong>on</strong> <strong>the</strong> potential energy surface was<br />

found.<br />

References<br />

[1] C. A. Dehelean, C. Tatu, S. Cîntă Pânzaru, C. Peev, C. Soica. G. Tanasie, S. Anghel, Toxicology Letters, 164, 1,<br />

(2006) S228.<br />

[2] S. C. Pinzaru, N. Leopold, W. Kiefer, “Vibrati<strong>on</strong>al spectroscopy <strong>of</strong> betulinic acid HIV inhibitor and <strong>of</strong> its birch bark<br />

natural source”, Talanta, 57, 2002, 625-631.<br />

[3] C. M. Soica, C. A. Dehelean, C. I. Peev, G. C<strong>on</strong>eac, A. T. Gruia, “ Complexati<strong>on</strong> with HPGCD <strong>of</strong> some pentacyclic<br />

triterpenes. Characterizati<strong>on</strong> <strong>of</strong> <strong>the</strong>ir binary products”, Farmacia, vol. LVI, 2, 2008, 182-190.<br />

[4] C. A. Dehelean, S. Cîntă Pînzaru, C. I. Peev, C. Soica, D. S. Antal Characterizati<strong>on</strong> <strong>of</strong> birch tree leaves, buds and<br />

bark dry extracts with antitumor activity”, J Optoelectr. Adv. Mat. 9, 3, 2007, 783-787.<br />

12


Biomedical applicati<strong>on</strong>s 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

SERS prospect <strong>of</strong> different organs from mouse and rat<br />

specimens exposed to UV radiati<strong>on</strong><br />

A. FALAMAS 1, 3 , S. CINTA PINZARU 1 , C. DEHELEAN 2 , CH. KRAFFT 3 AND J. POPP 3,4<br />

1. Babes Bolyai University, Dept. <strong>of</strong> Physics, Kogalniceanu 1, RO 400084, Cluj-Napoca, România<br />

2. Victor Babeş University <strong>of</strong> Medicine and Pharmacy, Faculty <strong>of</strong> Pharmacy, Eftimie Murgu Square 2, RO-<br />

300041, Timişoara, România<br />

3. Institute <strong>of</strong> Phot<strong>on</strong>ic Technology, Albert-Einstein-Straße 9, 07745, Jena, Germany<br />

4. Institute <strong>of</strong> Physical Chemistry, Helmholtzweg 4, 07743, Jena, Germany<br />

This study is trying to evaluate <strong>the</strong> capacity <strong>of</strong> Raman and surface enhanced Raman spectroscopy<br />

(SERS) to differentiate organs and to detect <strong>the</strong> structure and c<strong>on</strong>formati<strong>on</strong> <strong>of</strong> molecular<br />

comp<strong>on</strong>ents from healthy and cancerous tissues. Since most diseases are induced by biochemical<br />

processes including mutati<strong>on</strong> and/or infecti<strong>on</strong>, <strong>the</strong>y are accompanied by molecular compositi<strong>on</strong><br />

changes in <strong>the</strong> tissues. Raman spectroscopy provides detailed informati<strong>on</strong> about <strong>the</strong> biomolecular<br />

compositi<strong>on</strong> <strong>of</strong> tissues, which might be used to distinguish between normal and malignant <strong>on</strong>es. In<br />

this study Raman spectra from liver, lung, skin and tumor tissues originating from two types <strong>of</strong><br />

mice species, C57 and NMRI and <strong>on</strong>e type <strong>of</strong> rat, Spraghe Dawley respectively, were acquired.<br />

Several specimens were previously exposed to UV-B radiati<strong>on</strong> and were treated with oral DMBA<br />

(dimethyl 1,2 benzanthrazen) soluti<strong>on</strong>, known to induce cancer in different organs. In <strong>the</strong> end <strong>the</strong><br />

subjects presented skin injuries in a variety <strong>of</strong> ways, including both acute and chr<strong>on</strong>ic resp<strong>on</strong>ses.<br />

Cryosecti<strong>on</strong>s were prepared from <strong>the</strong> samples collected from organs immersed in formalin<br />

soluti<strong>on</strong> mixed with colloidal silver and single point Raman spectra were acquired. The Raman<br />

signatures <strong>of</strong> normal lung and liver tissue samples from mice and rats were characterized in vitro.<br />

Lung spectra exhibited characteristic peaks which were attributed to CH2 bending vibrati<strong>on</strong>s <strong>of</strong><br />

lipids and CH2 and CH3 bending vibrati<strong>on</strong>s <strong>of</strong> proteins, amino acid side chain vibrati<strong>on</strong>s and<br />

amide I band <strong>of</strong> proteins. These bands can also be seen in liver spectra, though <strong>the</strong>re are slight<br />

differences in intensity and wavenumbers. The spectra <strong>of</strong> <strong>the</strong> skin samples, show vibrati<strong>on</strong>s <strong>of</strong><br />

water, proteins and lipids. The Raman spectra <strong>of</strong> normal skin are dominated by collagen, but also<br />

bands from lipids, DNA and <strong>the</strong> amide III and I bands. Raman images were collected to identify<br />

regi<strong>on</strong>s showing SERS effect and FTIR imaging was also applied as a complementary technique.<br />

First results will be presented.<br />

References<br />

[1] Dehelean C, Soica C, Peev C. et al. Pentacyclic triterpenes interventi<strong>on</strong>s in skin pathology/toxicity and treatment:<br />

in vitro and in vivo correlati<strong>on</strong>s, Buletin USAMV-CN, 65, 2008.<br />

[2] A.Lorincz, D.Haddad, et al., Raman spectroscopy for neoplastic tissue differentiati<strong>on</strong>: a pilot study, Journal <strong>of</strong><br />

Pediatric Surgery, 39, 6, 953-956.<br />

[3] Barry B.W, Edwards H.G.M., Williams A. C., Fourier Transform Raman and Infrared vibrati<strong>on</strong>al study <strong>of</strong> human<br />

skin: Assignment <strong>of</strong> spectral bands, J. Raman <strong>Spectroscopy</strong>, 23, 641-645, 1992.<br />

[4] Rachel E. Kast, Gulay K. Serhatkulu, et al., Raman <strong>Spectroscopy</strong> Can Differentiate Malignant Tumors from Normal<br />

Breast Tissue and Detect Early Neoplastic Changes in a Mouse Model, Biopolymers, 89, 235-241, 2007.<br />

13


Biomedical applicati<strong>on</strong>s 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

CD spectroscopy as a tool in studying <strong>the</strong> interacti<strong>on</strong><br />

between metal i<strong>on</strong>s and antitumor compounds<br />

M.M.L. FIALLO 1 , P. SHARROCK, 1 V. BRUMAS, 1 AND C. METHENITIS 2<br />

1. LERISM LU 48, Paul Sabatier University Toulouse 3, F-31062, Toulouse, France<br />

2. Inorg. Chem. Lab., Dept. Chemistry, University <strong>of</strong> A<strong>the</strong>ns, 15771 Panepistimiopolis, A<strong>the</strong>ns, Greece<br />

Metal i<strong>on</strong>s are involved in <strong>the</strong> biological mechanisms <strong>of</strong> antitumor compounds, such as bleomycin<br />

[1] and streptogrin [2]. More recently it has been shown that <strong>the</strong> biological activity <strong>of</strong> a derivative<br />

<strong>of</strong> CC-1065 could be tuned by <strong>the</strong> interacti<strong>on</strong> <strong>of</strong> metal i<strong>on</strong>s [3]. However, for o<strong>the</strong>r antitumor<br />

compounds, such as anthracycline, mitomycin C (MMC) or altromycin B (AltroB), <strong>the</strong> role <strong>of</strong> metal<br />

i<strong>on</strong>s <strong>on</strong> its antitumor properties remains unclear. Our interest in <strong>the</strong> biological effects <strong>of</strong> metal<br />

complexes <strong>of</strong> antitumor compounds prompted us to investigate if MMC, its derivative 2,7diamino-1-hydroxymitosene<br />

(MEC) and ALB form stable complexes. As a part <strong>of</strong> a project aimed<br />

at <strong>the</strong> characterizati<strong>on</strong> <strong>on</strong> <strong>the</strong> interacti<strong>on</strong> between antitumor compounds and metal i<strong>on</strong>s by CD<br />

spectroscopy, in a first step we assigned <strong>the</strong> electr<strong>on</strong>ic transiti<strong>on</strong>s <strong>of</strong> <strong>the</strong> chromophores <strong>of</strong> MMC,<br />

MEC and AltroB to <strong>the</strong> specific bands in <strong>the</strong>ir CD spectra, as a functi<strong>on</strong> <strong>of</strong> <strong>the</strong> pH. In a sec<strong>on</strong>d part,<br />

this phenomenological approach was applied in studying <strong>the</strong> spectroscopic modificati<strong>on</strong>s<br />

occurring in <strong>the</strong> interacti<strong>on</strong>s <strong>of</strong> <strong>the</strong>se antitumor compounds with metal i<strong>on</strong>s, such as copper(II),<br />

palladium(II), platinum(II) and gold(III). By using CD spectroscopy we observed that MMC forms<br />

a stable complex with palladium(II) [4], whereas MEC can bind ei<strong>the</strong>r copper(II), palladium(II),<br />

and gold(III). For <strong>the</strong> latter ligand, <strong>the</strong> binding mode <strong>of</strong> <strong>the</strong> metal i<strong>on</strong> is related to <strong>the</strong> c<strong>on</strong>formati<strong>on</strong><br />

assumed by <strong>the</strong> organic molecule. In <strong>the</strong> case <strong>of</strong> AltroB, CD spectroscopy allows to identify <strong>the</strong><br />

soluti<strong>on</strong> structure <strong>of</strong> its complexes with copper(II), palladium(II), and platinum(II) [5].<br />

References<br />

[1] Y. Sugiura, T. Takita, H. Umezawa, Met. I<strong>on</strong>s Biol. Syst. 19, 81-108 (1985).<br />

[2] J. Hadju, Met. I<strong>on</strong>s Biol. Syst 19, 53-80 (1985).<br />

[3] D.L. Boger, S.E. Wolkenberg, C.W. Boyce, J. Am. Chem. Soc. 122, 6325-6326 (2000).<br />

[3] M.M.L. Fiallo, E. Deydier, M. Bracci, A. Garnier-Suillerot, K. Halvorsen, J. Med. Chem. 46, 1683-1689 (2003).<br />

[5] N. Nikolis, C. Me<strong>the</strong>nitis, G. Pneumatikakis, M.M.L. Fiallo, J. Inorg. Biochem. 89,131-141 (2002).<br />

14


Biomedical applicati<strong>on</strong>s 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Study <strong>of</strong> porcine cutaneous wound healing<br />

by Fourier transform infrared microspectroscopy<br />

P. FLOCH 1, J. NAMUR 1, M. WASSEF 2, H. D’INCA 1, M. MANFAIT 1, A. LAURENT 3,4<br />

1. MEDyC UMR CNRS 6237, Reims, France<br />

2. APHP- Lariboisiere Hospital, Dept <strong>of</strong> Pathology, Paris, France<br />

3. CR2i APHP- INRA, Jouy-En-Josas, France<br />

4. APHP- Lariboisiere Hospital, Dept <strong>of</strong> Interventi<strong>on</strong>al Neuroradiology, Paris, France<br />

Cutaneous wound healing is a complex phenomen<strong>on</strong> with c<strong>on</strong>siderable medical applicati<strong>on</strong>s. The<br />

aim <strong>of</strong> this study is to show <strong>the</strong> potential <strong>of</strong> Fourier transform infrared microspectroscopy (FTIR-<br />

MS) to assess quantitatively <strong>the</strong> molecular changes induced by cutaneous wound healing. We<br />

developed an animal model c<strong>on</strong>sisting <strong>of</strong> small punch biopsies in <strong>the</strong> back skin <strong>of</strong> pigs. Skin<br />

samples were <strong>the</strong>n obtained at different times and analysed in histology with comm<strong>on</strong> stainings,<br />

for classical morphological descripti<strong>on</strong> and quantificati<strong>on</strong>. The distributi<strong>on</strong> <strong>of</strong> collagen, <strong>the</strong> key<br />

comp<strong>on</strong>ent <strong>of</strong> skin wound healing, could be assessed using Red Sirius stain. Additi<strong>on</strong>ally, FTIR-<br />

MS was performed <strong>on</strong> thin tissue secti<strong>on</strong>s (8µm) <strong>of</strong> pig skin obtained at different time points after<br />

punching (4, 8, 15 and 29 days) to look for quantitative biochemical informati<strong>on</strong> about several<br />

elements simultaneously. FTIR images were obtained <strong>on</strong> 21 different biopsies with a Perkin Elmer<br />

Spectrum Spotlight 300 FTIR Imaging system using <strong>the</strong> “image” mode and a 25µm/pixel<br />

resoluti<strong>on</strong>. Characteristic spectra <strong>of</strong> each skin type tissue (epidermis/dermis/scar tissue), localized<br />

with a c<strong>on</strong>trol HES stained slide, were extracted from each infrared image. Spectra were compared<br />

statistically using univariate n<strong>on</strong> parametric (Kruskal-Wallis KW) and multivariate (Hierarchical<br />

Cluster Analysis HCA) analysis. HCA could differentiate between scar tissue, epidermis and<br />

dermis at each time <strong>of</strong> wound healing. Scar tissue was associated with epidermis for time points<br />

between 4 and 15 days and with dermis at 29 days. Peak assignment showed that <strong>the</strong> three types <strong>of</strong><br />

tissue were differentiated <strong>on</strong> collagen specific bands (1035 cm -1, 1204 cm -1, 1280 cm -1, 1330cm -1) [1].<br />

The absorbance <strong>on</strong> collagen peaks increased significantly with time in scar tissue (p


Biomedical applicati<strong>on</strong>s 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

C<strong>on</strong>cepti<strong>on</strong> and realizati<strong>on</strong> <strong>of</strong> new Biosensors based <strong>on</strong><br />

FTIR-ATR devices<br />

1 A.GOLDSZTEIN, 2 M.VOUÉ, 2 J.DE CONINCK, 2 J.CONTI, 3 J.MARCHAND-BRYNAERT, 3 S.DEVOUGE,<br />

4 P.TULKENS, 4 S.CARYN, 4 K.BETHOIN, 1 F.HOMBLÉ , 1 E.GOORMAGHTIGH.<br />

1. Laboratory for <strong>the</strong> Structure and F<strong>on</strong>cti<strong>on</strong> <strong>of</strong> Biological Membranes,<br />

Center for Structural Biology and Bioinformatics. Free University <strong>of</strong><br />

Brussels (ULB), Belgium<br />

2. Center <strong>of</strong> Molecular Modelisati<strong>on</strong> Research. University <strong>of</strong> M<strong>on</strong>s-<br />

Hainaut, Belium.<br />

3. Laboratory <strong>of</strong> Organic and Medicinal Chemistry. Catholic University<br />

<strong>of</strong> Leuven, Belgium.<br />

4. Unit <strong>of</strong> Cellular and Molecular Pharmacology. Catholic University <strong>of</strong><br />

Leuven, Belgium<br />

Biosensors are devices based <strong>on</strong> <strong>the</strong> specific recogniti<strong>on</strong> <strong>of</strong> an analyte <strong>of</strong> interest by a target [1-2].<br />

The biodetecti<strong>on</strong> process is based <strong>on</strong> <strong>the</strong> transformati<strong>on</strong> <strong>of</strong> <strong>the</strong> interacti<strong>on</strong> into an electrical, optical<br />

or o<strong>the</strong>r signal. Biosensors have already attracted intensive interest in many different fields such as<br />

medical diagnostics and c<strong>on</strong>trol, envir<strong>on</strong>mental analysis and m<strong>on</strong>itoring <strong>of</strong> biotechnological<br />

processes. Different surface sensitive techniques can be applied to detect <strong>the</strong> ligand-receptor<br />

interacti<strong>on</strong>s depending <strong>of</strong> <strong>the</strong> nature <strong>of</strong> <strong>the</strong> sensor support [3-4]. We are developing a new device<br />

based <strong>on</strong> FTIR spectroscopy which is suitable for <strong>the</strong> investigati<strong>on</strong> <strong>of</strong> ligand-receptor interacti<strong>on</strong>s.<br />

The new biosensor chip is c<strong>on</strong>stituted <strong>of</strong> an attenuated total internal reflecti<strong>on</strong> (ATR) germanium<br />

element, transparent in <strong>the</strong> infrared, whose surface has been modified to obtain a covalent binding<br />

<strong>of</strong> a receptor [5]. The infrared resp<strong>on</strong>se is close to zero until <strong>the</strong> ligand binds in <strong>the</strong> vicinity <strong>of</strong> <strong>the</strong><br />

interface . The functi<strong>on</strong>alized surfaces have already been successfully used for detecti<strong>on</strong> <strong>of</strong><br />

proteins or <strong>of</strong> small molecules (biotin, ATP) [6]. In <strong>the</strong> present communicati<strong>on</strong> we dem<strong>on</strong>strate <strong>the</strong><br />

validity <strong>of</strong> <strong>the</strong> approach for measuring <strong>the</strong> binding <strong>of</strong> antibiotic molecules. We show that<br />

vancomycine is easily detected when binding <strong>on</strong>to a D-Ala D-Ala peptide immobilized <strong>on</strong> <strong>the</strong><br />

surface <strong>of</strong> <strong>the</strong> sensor. The major advantage <strong>of</strong> <strong>the</strong> present device, called BIA-ATR sensor, is that it<br />

provides <strong>the</strong> user with <strong>the</strong> entire IR spectrum <strong>of</strong> <strong>the</strong> analyte, i.e it allows <strong>the</strong> accurate identificati<strong>on</strong><br />

<strong>of</strong> <strong>the</strong> nature <strong>of</strong> <strong>the</strong> analyte binding <strong>on</strong>to <strong>the</strong> receptor. Ano<strong>the</strong>r advantage is it sensitivity. Small<br />

antibiotics, short peptides or protein phosphorylati<strong>on</strong> are easily picked up.<br />

References<br />

[1] Leech, D. Chem. Soc. ReV. 1994, 23, 205-213.<br />

[2] Andreescu, S.; Sadik, O. A. Pure Appl. Chem. 2004, 76, 861-878.<br />

[3] Lo¨fas, S.; Malmqvist, M.; Ro¨nnberg, I.; Stenberg, E.; Liedberg, B.;Lunsdtro¨m, I. Sens. Actuators B 1991, 5,<br />

79-84.<br />

[4] Malmqvist, M. Nature (L<strong>on</strong>d<strong>on</strong>) 1993, 361, 186-187.<br />

[5] Devouge, S.; Salvagnini, C.; Marchand-Brynaert, J. Bioorg. Med. Chem. Lett. 2005, 15, 3252-3256.<br />

[6] Goormaghtigh, E.; Raussens, V.; Ruysschaert, J. M. Biochim. Biophys. Acta 1999, 1422, 105-185.<br />

16


Biomedical applicati<strong>on</strong>s 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Multivariate analysis <strong>of</strong> FTIR and Raman spectra <strong>of</strong><br />

lactobacilli isolated from kefir grains<br />

P. MOBILI 1 , C. ARAUJO-ANDRADE 2 , A. LONDERO 1 , C. FRAUSTO-<br />

REYES 3 , J. R. MARTÍNEZ-MENDOZA 4 , R. IVANOV-TZONCHEV 2 ,<br />

G. DE ANTONI 1 AND A. GÓMEZ-ZAVAGLIA 1<br />

1. Centro de Investigación y Desarrollo en Criotecnología de Alimentos, La Plata, Argentina<br />

2. Unidad Académica de Física de la Universidad Autónoma de Zacatecas, México<br />

3. Centro de Investigaci<strong>on</strong>es en Óptica, A.C, Aguascalientes, Ags. México<br />

4. Facultad de Ciencias, UASLP, San Luis Potosí, S.L.P. México<br />

Modern technical developments have made Raman and FTIR spectroscopy fast, powerful and<br />

easy-to-use analytical techniques, combining detailed spectral fingerprints, n<strong>on</strong>-destructivity and<br />

minimal sample preparati<strong>on</strong>. Over <strong>the</strong> years, both methodologies have been developed and<br />

utilized for microbiological applicati<strong>on</strong>s. Several research groups have already worked out <strong>on</strong> <strong>the</strong><br />

identificati<strong>on</strong> procedures for bacteria using FTIR and Raman spectroscopies [1]. For <strong>the</strong>se<br />

purposes, spectroscopic informati<strong>on</strong> is c<strong>on</strong>sidered as ma<strong>the</strong>matical data <strong>on</strong> which chemometric<br />

techniques, such as Principal Comp<strong>on</strong>ent Analysis (PCA), Partial Least Square-Discriminant<br />

Analysis (PLS-DA) am<strong>on</strong>g o<strong>the</strong>rs [2] are applied, allowing discriminati<strong>on</strong> and classificati<strong>on</strong> <strong>of</strong><br />

bacteria at <strong>the</strong> species and even at <strong>the</strong> strain level [3]. In this work, a combined approach <strong>of</strong><br />

vibrati<strong>on</strong>al spectroscopic methodologies and multivariate analysis was used for <strong>the</strong><br />

characterizati<strong>on</strong> <strong>of</strong> three species <strong>of</strong> heter<strong>of</strong>ermentative lactobacilli isolated from kefir grains: L.<br />

kefir, L. parakefir and L. brevis [4,5]. The microorganisms were cultured and harvested in <strong>the</strong><br />

stati<strong>on</strong>ary phase and fur<strong>the</strong>r liophylized for <strong>the</strong> registrati<strong>on</strong> <strong>of</strong> <strong>the</strong> FTIR and Raman spectra. A<br />

sec<strong>on</strong>d derivative algorithm was used to enhance and differentiate <strong>the</strong> FTIR features. The Raman<br />

spectra could be analysed without any fur<strong>the</strong>r treatment. Cluster analysis enabled strains to be<br />

grouped according to <strong>the</strong>ir spectral diversity. Using principal comp<strong>on</strong>ent analysis (PCA), L. kefir<br />

and n<strong>on</strong>-L. kefir strains could be clearly differentiated in <strong>the</strong> principal comp<strong>on</strong>ent space when <strong>the</strong><br />

1700-1500 cm -1 Raman range was analysed. No clear discriminati<strong>on</strong> was found when <strong>the</strong> FTIR<br />

sec<strong>on</strong>d derivative spectra were used for <strong>the</strong> analysis. To develop a classificati<strong>on</strong> rule, partial least<br />

squares discriminant analysis (PLS-DA) was carried out. This method allowed <strong>the</strong> discriminati<strong>on</strong><br />

and classificati<strong>on</strong> <strong>of</strong> <strong>the</strong> sixteen strains under study in two groups: L. kefir and n<strong>on</strong>- L. kefir. The<br />

predicti<strong>on</strong> model was better for <strong>the</strong> FTIR data. The novelty <strong>of</strong> this work resides from <strong>on</strong>e side, in<br />

<strong>the</strong> use <strong>of</strong> two complementary methodologies (Raman and FTIR spectroscopy) for <strong>the</strong><br />

discriminati<strong>on</strong> <strong>of</strong> heter<strong>of</strong>ermentative species isolated from kefir. From <strong>the</strong> o<strong>the</strong>r side, multivariate<br />

analysis was used for <strong>the</strong> first time in <strong>the</strong> classificati<strong>on</strong> and discriminati<strong>on</strong> <strong>of</strong> L. kefir from <strong>the</strong> n<strong>on</strong>-<br />

L. kefir <strong>on</strong>es.<br />

References<br />

[1] H A. Bosch, M. A. Golowczyc, A. G. Abraham, G. L. Garrote, G. L. De Ant<strong>on</strong>i, O. Yantorno, Int. J. Food Microbiol.<br />

111, 280-287 (2006).<br />

[2] M H. Martens, T. Næs, “Methods for calibrati<strong>on</strong>”, in Multivariate Calibrati<strong>on</strong>, Chapter 3, Wiley, Chichester, England,<br />

(1989).<br />

[3] C. Mello, D. Ribeiro, F. Novaes, R. J. Popi, Anal. Bioanal. Chem. 383, 701-706 (2005).<br />

[4] P. Mobili, A. L<strong>on</strong>dero, T. Roseiro, E. Eusebio, G. De Ant<strong>on</strong>i, R. Fausto, A. Gómez-Zavaglia, Vibrat. Spectrosc. doi:<br />

10.1016/j.vibspec.2008.07.016. (2008).<br />

[5] P. Mobili, C. Araujo-Andrade, A. L<strong>on</strong>dero, C. Frausto Reyes, E. A. Araiza-Reyna, F. Ruiz, J. R. Martínez-Mendoza,<br />

G. De Ant<strong>on</strong>i, A. Gómez-Zavaglia, Vibrat. Spectrosc. submitted VIBSPEC-D-09-00041.<br />

17


Biomedical applicati<strong>on</strong>s 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Influence <strong>of</strong> growth c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> hydrophobicity <strong>of</strong><br />

Lactobacillus acidophilus LA5 and Bifidobacterium<br />

lactis Bb12 cells and characteristics <strong>of</strong> FT-IR spectra<br />

L. SHAKIROVA, L. AUZINA, P. ZIKMANIS, M. GAVARE AND M. GRUBE<br />

Institute <strong>of</strong> Microbiology & Biotechnology, University <strong>of</strong> Latvia,<br />

Kr<strong>on</strong>valda boulevard 4, LV-1010, Riga, Latvia<br />

Lactic acid bacteria, such as Lactobacillus acidophilus and Bifidobacterium lactis are <strong>of</strong> c<strong>on</strong>siderable<br />

technological and commercial importance because <strong>of</strong> <strong>the</strong>ir role in <strong>the</strong> manufacturing and<br />

preservati<strong>on</strong> <strong>of</strong> many fermented food products, but <strong>the</strong>y also have probiotic properties and shown<br />

beneficial effect <strong>on</strong> health. We have found, that <strong>the</strong> values <strong>of</strong> cell surface hydrophobicity (CSH) <strong>of</strong><br />

L. acidophilus LA5 and B. lactis Bb12 cells change in resp<strong>on</strong>se to varied growth c<strong>on</strong>diti<strong>on</strong>s (phase <strong>of</strong><br />

growth, c<strong>on</strong>centrati<strong>on</strong> or type <strong>of</strong> carb<strong>on</strong> source, presence <strong>of</strong> oxygen). An evaluati<strong>on</strong> <strong>of</strong> FT-IR<br />

spectra (Vertex, HTS-XT, cluster and quantitative analyses) obtained for cells c<strong>on</strong>vectively dried<br />

under mild (≤ 50°C) c<strong>on</strong>diti<strong>on</strong>s revealed substantial changes <strong>of</strong> chemical compositi<strong>on</strong> depending<br />

<strong>on</strong> <strong>the</strong> CSH level <strong>of</strong> L. acidophilus LA5 and B. lactis Bb12. A decrease <strong>of</strong> <strong>the</strong> carbohydrate level was<br />

observed in proporti<strong>on</strong> to increased CSH values <strong>of</strong> both cultures al<strong>on</strong>gside with <strong>the</strong> elevated<br />

protein c<strong>on</strong>tent <strong>of</strong> more hydrophobic cells. Similar relati<strong>on</strong>ships we have detected and recently<br />

reported by bacteria Zymom<strong>on</strong>as mobilis 113S [1]. The results <strong>of</strong> present study could help to specify<br />

<strong>the</strong> appropriate physiological state <strong>of</strong> L. acidophilus LA5 and B. lactis Bb12 to perform <strong>the</strong>ir<br />

probiotic properties.<br />

References<br />

[1] L. Shakirova, L. Auzina, M. Grube, P. Zikmanis, J. Ind. Microbiol. Biotechnol. 35, 1175-1180 (2008).<br />

18


Biomedical applicati<strong>on</strong>s 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Applicati<strong>on</strong> <strong>of</strong> FT-IR for characterizati<strong>on</strong> <strong>of</strong> biomass<br />

isolated from drinking water<br />

K. TIHOMIROVA 1 , M. GRUBE 2 AND T. JUHNA 1<br />

1. Dept. <strong>of</strong> Water Engineering and Technology, Riga Technical<br />

University, Azenes street 16/20-263, Riga, LV 1048, Latvia<br />

2. Institute <strong>of</strong> Microbiology and Biotechnology, University <strong>of</strong> Latvia,<br />

Kr<strong>on</strong>valda blvd. 4, Riga, LV 1586, Latvia.<br />

Drinking water companies are resp<strong>on</strong>sible for producing and supplying safe, high quality water<br />

for costumers. The drinking water quality should meet <strong>the</strong> standard at <strong>the</strong> customer tap, <strong>the</strong>refore<br />

<strong>the</strong> supplier is forced to analyze <strong>the</strong> water quality not <strong>on</strong>ly at <strong>the</strong> outlet from <strong>the</strong> treatment plant<br />

but in <strong>the</strong> distributi<strong>on</strong> network as well. The aim <strong>of</strong> this study was identificati<strong>on</strong> and discriminati<strong>on</strong><br />

<strong>of</strong> microorganisms in water samples from different points <strong>of</strong> distributi<strong>on</strong> network in Riga, Latvia.<br />

The classificati<strong>on</strong> <strong>of</strong> bacteria is generally based <strong>on</strong> <strong>the</strong> morphology and biochemical reacti<strong>on</strong>s <strong>of</strong><br />

<strong>the</strong> bacteria. These measurements are time c<strong>on</strong>suming, requiring training and expertise. Infrared<br />

(IR) spectroscopic measurements <strong>of</strong> bacteria followed by a formal chemometrics analysis could<br />

<strong>of</strong>fer advantages <strong>of</strong> speed and c<strong>on</strong>sistency [1]. Since <strong>the</strong> amount <strong>of</strong> pathogenic micro-organisms in<br />

water is low, after <strong>on</strong>e or more purificati<strong>on</strong> processes, c<strong>on</strong>centrati<strong>on</strong> is necessary to detect and<br />

quantify <strong>the</strong>se organisms. Simm<strong>on</strong>s [2] describes a cross flow ultra filter (Hem<strong>of</strong>low-filter) that is<br />

used for <strong>the</strong> c<strong>on</strong>centrati<strong>on</strong> <strong>of</strong> microorganisms in water. An important advantage <strong>of</strong> this filter is that<br />

it c<strong>on</strong>centrates parasitic protozoa, bacteria, spores and viruses/phages. This study was performed<br />

<strong>on</strong> drinking water from drinking water plants from Riga, used as water sources surface water and<br />

groundwater. Here we present results <strong>of</strong> c<strong>on</strong>centrated drinking water samples which were<br />

investigated by Fourier Transform Infrared (FT-IR) spectroscopy. Presence <strong>of</strong> all typical peaks <strong>of</strong><br />

main biochemical cell comp<strong>on</strong>ents: lipids – 2928 – 2856 cm -1 (CH2, CH3 simetric/asimetric<br />

stretching vibrati<strong>on</strong>s); proteins - Amide I and II – 1549 and 1655 cm -1 ; nucleic acids – 1242 cm -1<br />

(P=O), and carbohydrates - 1080 cm -1 (C-O-C, C-O, C-O-H, P=O <strong>of</strong> PO2 -, valent stretching<br />

vibrati<strong>on</strong>s <strong>of</strong> COC groups and ring vibrati<strong>on</strong> modes in <strong>the</strong> compositi<strong>on</strong> <strong>of</strong> cyclic structures)<br />

verified biomass while qualitative and quantitative differences <strong>of</strong> comp<strong>on</strong>ents indicated various<br />

strains or <strong>the</strong>ir mix/c<strong>on</strong>sortium. Results <strong>of</strong> both analytical methods showed that water samples<br />

c<strong>on</strong>tain significant amount <strong>of</strong> biomass. We found distinct difference in <strong>the</strong> FT-IR spectra <strong>of</strong><br />

biomass isolated from treated groundwater or surface water. In some Hem<strong>of</strong>low samples<br />

Fluorescence in Situ Hybridizati<strong>on</strong> (FISH) method indicated E. coli while Pseudom<strong>on</strong>as fluorescens<br />

was identified in all samples. This study showed that combinati<strong>on</strong> <strong>of</strong> biomass separati<strong>on</strong> and FT-<br />

IR spectral analysis is a rapid and simple approach for characterizati<strong>on</strong> <strong>of</strong> microorganisms in<br />

drinking water.<br />

References<br />

[1] D. Lefier, B. Beccard, M. Bradley, “Classificati<strong>on</strong> <strong>of</strong> bacteria using FT-IR”, Thermo Fisher Scientific, USA,<br />

AN51396_E 04/07M (2007).<br />

[2] Simm<strong>on</strong>s III, D. Otto, M. D. Sobsey, C. D. Heaney, F. W. Shaefer III, D. S. Francy, “C<strong>on</strong>centrati<strong>on</strong> and detecti<strong>on</strong><br />

<strong>of</strong> Cryptosporidium oocysts in surface water samples by method 1622 usinf filtrati<strong>on</strong> and capsule filtrati<strong>on</strong>”,<br />

Applied and Envir<strong>on</strong>mental Microbiology, 67(3), 1123-1127 (2001).<br />

19


Biomedical applicati<strong>on</strong>s 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

FT-Raman spectroscopic study <strong>of</strong> thoracic aortic wall<br />

subjected to uniaxial stress<br />

M. GĄSIOR-GŁOGOWSKA 3 , M. KOMOROWSKA 3 , J. HANUZA, 1<br />

M. MĄCZKA 2 , M. KOBIELARZ, 4 R. BĘDZIŃSKI, 4 S. SZOTEK, 4<br />

K.MAKSYMOWICZ, 5 AND K. HERMANOWICZ 2<br />

1. Department <strong>of</strong> Bioorganic Chemistry, Wrocław University <strong>of</strong> Ec<strong>on</strong>omics, Komandorska 118, 53-345<br />

Wroclaw, Poland<br />

2. Institute <strong>of</strong> Low Temperature and Structure Research, Polish Academy<br />

<strong>of</strong> Sciences, P.O.Box 1410, 50-950 Wrocław 2, Poland<br />

3. Institute <strong>of</strong> Biomedical Engineering and Instrumentati<strong>on</strong> Wroclaw University <strong>of</strong> Technology, WybrzeŜe<br />

Wyspiańskiego 27, Wrocław 50-370, Poland<br />

4. Divisi<strong>on</strong> <strong>of</strong> Biomedical Engineering, Experimental Mechanics, Institute <strong>of</strong> Machine Design and Operati<strong>on</strong>,<br />

Wroclaw University <strong>of</strong> Technology, WybrzeŜe Wyspiańskiego 27, Wrocław 50-370, Poland,<br />

5. Department <strong>of</strong> Forensic Medicine, Medical Faculty, Wrocław Medical University, Borowska 213, 50-556<br />

Wrocław, Poland<br />

The combinati<strong>on</strong> <strong>of</strong> FT-Raman spectroscopy and uniaxial tensile tests (MTS Synergie 100 testing<br />

machine) was used to probe <strong>the</strong> microstructural changes in sec<strong>on</strong>dary protein structure <strong>of</strong> an<br />

aortic wall, when subjected to different stress levels. The analysis in c<strong>on</strong>trolled strain clearly<br />

highlights different tresholds <strong>of</strong> tensi<strong>on</strong> for <strong>the</strong> harvested material cut in two directi<strong>on</strong>s:<br />

circumferential and l<strong>on</strong>gitudinal and in agreement with <strong>the</strong> macroscopic mechanical analyses.<br />

Applicati<strong>on</strong> <strong>of</strong> strain in <strong>the</strong> circumferential directi<strong>on</strong> does not lead to any noticeable changes in<br />

bandwidths <strong>of</strong> <strong>the</strong> Raman bands. When sample is strained in l<strong>on</strong>gitudinal directi<strong>on</strong>, some Raman<br />

bands become narrower and <strong>the</strong> bands situated at similar wavenumbers are better resolved.<br />

Stress-c<strong>on</strong>trolled Raman’s band analysis shows that modes: 938 cm -1 assigned as (Cα-C) <strong>of</strong> α-helix,<br />

1660 cm -1 - amide I (unordered structure <strong>of</strong> elastin) and 1668 cm -1 amide I (collagen triple helix)<br />

undergo a wavenumber shifting, althought <strong>the</strong> modes 1004 cm -1 assigned as a phenyl ring<br />

breathing mode and 2940 cm -1 δ(CH3), ν(CH2) are not affected during <strong>the</strong> elastic behaviour (0 –<br />

35%). Explicit correlati<strong>on</strong> were found between <strong>the</strong> Raman's band shifting and <strong>the</strong> level <strong>of</strong><br />

mechanical stress, involving participati<strong>on</strong> <strong>of</strong> elastin al<strong>on</strong>e transmitting low stresses in <strong>the</strong> fibers<br />

directi<strong>on</strong> (circumferential) and <strong>of</strong> both elastin and collagen (l<strong>on</strong>gitudinal) in transmitting<br />

physiologic and high stresses.<br />

20


Biomedical applicati<strong>on</strong>s 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

A c<strong>on</strong>formati<strong>on</strong>al study <strong>of</strong> usnic acid<br />

M.P.M. MARQUES 1 , J.B.P. DA SILVA 2 , C.S.M. MENDES 2 ,<br />

J. TOMKINSON 3 AND L.A.E. BATISTA DE CARVALHO 1<br />

1. “Molecular Physical-Chemistry”, Univ. Coimbra, Portugal<br />

2. Fundamental Chem. Dep., Fed.Univ. Pernambuco, Brazil<br />

3. ISIS Facility, The Ru<strong>the</strong>rford Applet<strong>on</strong> Laboratory, Chilt<strong>on</strong>, Didcot, OX11 0QX, United Kingdom<br />

Usnic acid is a naturally occurring polyphenolic derivative (2,6-diacetyl-1,2,3,9b-tetrahydro-7,9dihydroxy-8,9b-dimethyldibenz<strong>of</strong>uran-1,3-di<strong>on</strong>e)<br />

found in lichen [1]. It is c<strong>on</strong>sidered a potentially<br />

valuable <strong>the</strong>rapeutic agent, in view <strong>of</strong> its wide range <strong>of</strong> pharmacological properties [2-4], such as<br />

antibiotic, antibacterial, antiviral, anti-malarial, anti-inflammatory, analgesic, antioxidant and<br />

anticancer. Therefore, interest in this compound has grown since <strong>the</strong> 1990´s, partly due to <strong>the</strong><br />

increasing resistance to <strong>the</strong> traditi<strong>on</strong>al antibiotics developed by patients, which has led to a search<br />

for novel <strong>the</strong>rapeutic alternatives (e.g. phytochemicals and o<strong>the</strong>r n<strong>on</strong>-syn<strong>the</strong>tic drugs). Since usnic<br />

acid occurs in distinct tautomeric forms (Fig. 1), its activity being dependent <strong>on</strong> <strong>the</strong> species present,<br />

it is <strong>of</strong> <strong>the</strong> utmost importance to determine which <strong>on</strong>e predominates at physiological c<strong>on</strong>diti<strong>on</strong>s. A<br />

complete c<strong>on</strong>formati<strong>on</strong>al analysis is presently reported, through a combinati<strong>on</strong> <strong>of</strong> quantum<br />

mechanical (DFT) calculati<strong>on</strong>s and vibrati<strong>on</strong>al spectroscopy (Raman, FTIR and INS), aiming at a<br />

detailed elucidati<strong>on</strong> <strong>of</strong> <strong>the</strong> structural preferences <strong>of</strong> <strong>the</strong> compound, including its intra-<br />

/intermolecular H-b<strong>on</strong>ding pattern and <strong>the</strong> keto-enol tautomerism. Apart from <strong>the</strong> solid state<br />

analysis, spectra were also obtained for soluti<strong>on</strong>s, with solvents and distinct c<strong>on</strong>centrati<strong>on</strong>s, in<br />

view <strong>of</strong> determining <strong>the</strong> effect <strong>of</strong> <strong>the</strong> envir<strong>on</strong>ment <strong>on</strong> <strong>the</strong> compound´s c<strong>on</strong>formati<strong>on</strong>al behaviour.<br />

Combinati<strong>on</strong> between <strong>the</strong> complementary data yielded by <strong>the</strong> optical Raman/FTIR techniques, <strong>the</strong><br />

INS experiments and <strong>the</strong> calculati<strong>on</strong>s, enables a complete assignement <strong>of</strong> <strong>the</strong> vibrati<strong>on</strong>al spectra <strong>of</strong><br />

usnic acid, as well as an understanding <strong>of</strong> its H-b<strong>on</strong>ding motif, both in c<strong>on</strong>densed phase and in<br />

soluti<strong>on</strong>. This allows to identify <strong>the</strong> predominant tautomer in physiological medium, i.e. <strong>the</strong> major<br />

species interacting with <strong>the</strong> compound´s biological receptor(s) and hence resp<strong>on</strong>sible for its<br />

pharmacological activity.<br />

Fig. 1 – Most stable structures calculated (B3LYP/6-31G**) for <strong>the</strong> keto (A) and enol (B) tautomers <strong>of</strong><br />

usnic acid.<br />

References<br />

A B<br />

[1] B. Dix<strong>on</strong>, Lancet Infectious Diseases 5, 534 (2005)<br />

[2] M. Cocchietto et al. Naturwissenschaften, 89, 137 (2002)<br />

[3] I. Francolini et al. Antimicrobial Agents and Chemo<strong>the</strong>rapy, 48, 4360 (2004)<br />

[4] E. Fernández et al. Photochem.Photobiol., 84, 1065 (2006)<br />

21


Biomedical applicati<strong>on</strong>s 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Study <strong>of</strong> heparin-protamine complexati<strong>on</strong> by means <strong>of</strong><br />

fluorescence spectroscopy, light scattering and<br />

analytical ultracentrifugati<strong>on</strong><br />

J. MAURER, V. VOGEL, W. MÄNTELE<br />

Institute <strong>of</strong> Biophysics, Johann Wolfgang Goe<strong>the</strong>-University<br />

Frankfurt/Main, Max v<strong>on</strong> Laue-Str. 1, 60438 Frankfurt a. M., Germany<br />

The administrati<strong>on</strong> <strong>of</strong> heparin, a linear glycosaminoglycan, has been used clinically for many years<br />

as <strong>the</strong> standard procedure for anticoagulati<strong>on</strong> treatment [1]. Particularly in surgery, heparin is<br />

applied in very high doses. But so far, <strong>the</strong>re is no method available for a precise determinati<strong>on</strong> <strong>of</strong><br />

<strong>the</strong> heparin c<strong>on</strong>centrati<strong>on</strong> (activity). Often, an additi<strong>on</strong>al dose, partly in <strong>the</strong> range <strong>of</strong> <strong>the</strong> already<br />

applied amount, has to be given because <strong>the</strong> degradati<strong>on</strong> <strong>of</strong> heparin varies individually. These<br />

problems do not assure a precise blood coagulati<strong>on</strong> management for <strong>the</strong> individual patient and<br />

frequently lead ei<strong>the</strong>r to internal bleeding or local coagulati<strong>on</strong>s. Here we present two different<br />

methods for <strong>the</strong> direct determinati<strong>on</strong> <strong>of</strong> heparin in human blood plasma. Both methods use <strong>the</strong><br />

specific binding between heparin and protamine. Protamine is a small, highly positive charged<br />

polypeptide, which is clinically used to neutralize <strong>the</strong> activity <strong>of</strong> heparin [2]. Both multi-angle light<br />

scattering technique and analytical ultracentrifugati<strong>on</strong> were used for characterisati<strong>on</strong> <strong>of</strong> heparinprotamine<br />

complex size distributi<strong>on</strong>. The observed radius <strong>of</strong> <strong>the</strong> heparin-protamine complexes<br />

was in <strong>the</strong> range between 10 nm and 200 nm and <strong>the</strong> complexati<strong>on</strong> process was completed after a<br />

time between 5 min and 15 min. Both parameters depend <strong>on</strong> <strong>the</strong> type <strong>of</strong> soluti<strong>on</strong> in which <strong>the</strong><br />

experiments were carried out (physiological saline soluti<strong>on</strong>, model HSA soluti<strong>on</strong> and blood<br />

plasma). The first method for <strong>the</strong> determinati<strong>on</strong> <strong>of</strong> heparin in human blood plasma which is<br />

presented here is based <strong>on</strong> our multi-angle light scattering technique and uses <strong>the</strong> fact that<br />

protamine and heparin form nanoscale particles which can be observed through an increased<br />

intensity <strong>of</strong> <strong>the</strong> scattered light [3, 4]. This intensity is proporti<strong>on</strong>al to <strong>the</strong> number <strong>of</strong> <strong>the</strong> heparinprotamine<br />

particles and <strong>the</strong>refore gives direct evidence to <strong>the</strong> heparin c<strong>on</strong>centrati<strong>on</strong> being present<br />

in <strong>the</strong> soluti<strong>on</strong>. This system is currently being tested in different clinical centres. The sec<strong>on</strong>d<br />

method is a fluorescent spectroscopic technique that also uses <strong>the</strong> complex formati<strong>on</strong> between<br />

heparin and protamine. Protamine was labelled with a fluorescent dye and <strong>the</strong> change <strong>of</strong> its<br />

fluorescence characteristics up<strong>on</strong> binding with heparin was m<strong>on</strong>itored. The intensity <strong>of</strong> that<br />

change gives informati<strong>on</strong> about <strong>the</strong> existent heparin c<strong>on</strong>centrati<strong>on</strong>. This method is very sensitive<br />

and can <strong>the</strong>refore complement <strong>the</strong> light scattering technique especially for low heparin<br />

c<strong>on</strong>centrati<strong>on</strong>s. Both techniques will be combined to a reliable, quick, sensitive and inexpensive<br />

clinical heparin test which will help to improve blood coagulati<strong>on</strong> management.<br />

References<br />

[1]: Harenberg, J., Fenyvesi, T., Hämostaseologie 2004; 24 (4); 261-278.<br />

[2]: Chargaff E, Ols<strong>on</strong> KB, Journal <strong>of</strong> Biological Chemistry 1937; 122 (1); 153-167.<br />

[3]: Vogel, V.; Häse, C.; Baykut, D.; Mäntele, W.; Zeitschrift für Herz-, Thorax- und Gefäßchirurgie 2007, 21 (4); 140-<br />

147.<br />

[4]: GIT SPEZIAL SEPARATION 01/2007, 25-27, GIT VERLAG GmbH & Co. KG, Darmstadt (http://www.biophys.unifrankfurt.de/layout/pdf/2007-GIT-Separati<strong>on</strong>-Heparin.pdf)<br />

22


Biomedical applicati<strong>on</strong>s 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Theoretical DFT modeling <strong>of</strong> <strong>the</strong> Raman spectra <strong>of</strong><br />

platinum anti-cancer drugs: picoplatin (AMD473)<br />

R. WYSOKINSKI, K. HELIOS AND D. MICHALSKA<br />

Faculty <strong>of</strong> Chemistry, Wroclaw University <strong>of</strong> Technology, Wybrzeze<br />

Wyspianskiego 27, 50-370 Wroclaw, Poland<br />

Picoplatin, AMD473, cis-[PtCl2(NH3)(2-picoline)] is a new generati<strong>on</strong> platinum complex designed<br />

to overcome platinum resistance associated with <strong>the</strong> chemo<strong>the</strong>rapy <strong>of</strong> cancer. It shows a<br />

remarkable activity superior to cisplatin and carboplatin in a variety <strong>of</strong> solid tumors. Picoplatin is<br />

currently under <strong>the</strong> clinical phase III trial in SCLC (small cell lung cancer) and phase II trial in<br />

metastatic colorectal and prostate cancers [1]. Raman spectroscopy is a very useful tool for study<br />

<strong>the</strong> binding <strong>of</strong> platinum drugs to DNA in aqueous soluti<strong>on</strong>, because water is a weak Raman<br />

scatterer, and <strong>the</strong> bands corresp<strong>on</strong>ding to Pt-ligand vibrati<strong>on</strong>s are quite str<strong>on</strong>g in <strong>the</strong> Raman<br />

spectra. In our earlier studies [2,3] we have shown that <strong>the</strong> <strong>the</strong>oretical Raman spectra <strong>of</strong> cisplatin<br />

and carboplatin calculated by <strong>the</strong> modified mPW1PW91 density functi<strong>on</strong>al method show very<br />

good agreement with experiment. In this work we present <strong>the</strong> molecular structures and <strong>the</strong><br />

Raman spectra predicted for picoplatin, two transient species formed during its hydrolysis, and for<br />

its complex with model DNA base (9-methylguanine). The unequivocal assignments <strong>of</strong> <strong>the</strong><br />

platinum-ligand vibrati<strong>on</strong>s in <strong>the</strong> spectra have been made <strong>on</strong> <strong>the</strong> basis <strong>of</strong> normal coordinate<br />

analysis. The presented results can greatly facilitate <strong>the</strong> identificati<strong>on</strong> <strong>of</strong> transient species, which<br />

are formed during <strong>the</strong> stepwise hydrolysis, and <strong>the</strong> formati<strong>on</strong> <strong>of</strong> <strong>the</strong> DNA-picoplatin adduct, by<br />

using Raman spectroscopy.<br />

References<br />

[1] J. R. Eckardt, D. L. Bentsi<strong>on</strong>, O.N. Lipatov, J. Clin. Oncol. 27, 2046-2051 (<strong>2009</strong>).<br />

[2] R. Wysokinski, J. Kuduk-Jaworska, D. Michalska, J. Mol. Structure (Theochem) 758, 169-179 (2006).<br />

[3] D. Michalska, R. Wysokinski, Chem. Phys. Lett. 403, 211-217 (2005).<br />

23


Biomedical applicati<strong>on</strong>s 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Vibrati<strong>on</strong>al study <strong>of</strong> portland cement-derived materials<br />

for dental applicati<strong>on</strong>s<br />

E. MODENA 1 , P.TADDEI 1 , A. TINTI 1 , M.G. GANDOLFI 2,3 , P.L. ROSSI 2 AND C. PRATI 3<br />

1. Biochemistry Department, University <strong>of</strong> Bologna, Via Belmeloro 8/2, Bologna, I-40126, Italy<br />

2. Department <strong>of</strong> Od<strong>on</strong>tostomatological Sciences, Endod<strong>on</strong>tic Clinical Secti<strong>on</strong>, Laboratory <strong>of</strong><br />

Biomaterials and Oral Pathology, University <strong>of</strong> Bologna, Via S. Vitale 59, Bologna, I-40126, Italy<br />

3. Department <strong>of</strong> Earth Sciences, University <strong>of</strong> Bologna, Piazza di Porta S. D<strong>on</strong>ato 1, Bologna, I-<br />

40126, Italy<br />

Calcium silicate cements have been recently developed as root-end filling materials. They are<br />

hydraulic materials able to set in <strong>the</strong> presence <strong>of</strong> moisture, allowing <strong>the</strong>ir use in oral surgery and<br />

in all c<strong>on</strong>diti<strong>on</strong>s where blood and fluid c<strong>on</strong>taminati<strong>on</strong> hampers <strong>the</strong> correct use <strong>of</strong> o<strong>the</strong>r materials.<br />

Calcium silicate cements, such as mineral trioxide aggregate (MTA) and white portland cements,<br />

have shown satisfactory biological properties; moreover, <strong>the</strong>y may induce remineralisati<strong>on</strong> <strong>of</strong><br />

partially demineralised dentine. Our study was aimed at comparatively investigating <strong>the</strong> in vitro<br />

bioactivity <strong>of</strong> three calcium-silicate cements derived from modified white portland cement: wTC<br />

(white tetrasilicate cement), FTC (wTC added with fluoride because <strong>of</strong> its mitogenic effect <strong>on</strong><br />

osteoblasts) and Pro-Root MTA, a commercial cement used as reference. Bismuth oxide was<br />

included in all cements as radioopacifier. To elucidate <strong>the</strong> influence <strong>of</strong> <strong>the</strong> fluoride doping agent<br />

<strong>on</strong> bioactivity, <strong>the</strong> cements were aged for different times (from 1 to 28 days), at 37°C, in a<br />

phosphate-c<strong>on</strong>taining physiological soluti<strong>on</strong>, i.e. Dulbecco’s Phosphate buffered saline, DPBS.<br />

ATR/FT-IR and micro-Raman spectroscopy were used to investigate <strong>the</strong> presence <strong>of</strong> deposits <strong>on</strong><br />

<strong>the</strong> surface <strong>of</strong> <strong>the</strong> cements and <strong>the</strong> compositi<strong>on</strong> changes <strong>of</strong> <strong>the</strong> cement as a functi<strong>on</strong> <strong>of</strong> <strong>the</strong> ageing<br />

time. Vibrati<strong>on</strong>al spectroscopy allowed to identify <strong>the</strong> phases present in <strong>the</strong> unhydrated cement<br />

powders (alite, belite, gypsum, anhydrite, calcium carb<strong>on</strong>ate) as well as <strong>the</strong>ir different hydrati<strong>on</strong><br />

rates (alite > belite; anhydrite > gypsum). Interestingly, <strong>the</strong> portlandite phase was found <strong>on</strong>ly in<br />

<strong>the</strong> interior <strong>of</strong> <strong>the</strong> cements, indicating its release into <strong>the</strong> storage medium, which c<strong>on</strong>sequently<br />

increased its pH. After <strong>on</strong>e day <strong>of</strong> ageing, all <strong>the</strong> cements showed <strong>the</strong> presence <strong>of</strong> a carb<strong>on</strong>ated<br />

apatite deposit; both IR and Raman spectroscopy revealed that this deposit was meanly thicker<br />

and more homogeneous <strong>on</strong> FTC. From a quantitative point <strong>of</strong> view, <strong>the</strong> Raman I960(Apatite)/I311(Bismuth<br />

oxide) intensity ratio was identified as marker <strong>of</strong> <strong>the</strong> deposit thickness. This ratio attained meanly<br />

higher values for FTC especially at short ageing times. At increasing ageing time <strong>the</strong> maturati<strong>on</strong> <strong>of</strong><br />

<strong>the</strong> apatite phase proceeded, as revealed by <strong>the</strong> progressive decrease in intensity <strong>of</strong> <strong>the</strong> Raman<br />

band at about 1000 cm -1 (attributable to <strong>the</strong> HPO4 2- i<strong>on</strong>). In <strong>the</strong> light <strong>of</strong> <strong>the</strong>se results and <strong>of</strong> <strong>the</strong><br />

ability to support cell growth, attachment and cell-surface interacti<strong>on</strong>s, <strong>the</strong>se cements appear<br />

promising as endod<strong>on</strong>tic sealers and root-end filling materials.<br />

24


Biomedical applicati<strong>on</strong>s 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

In vivo eluti<strong>on</strong> properties <strong>of</strong> doxorubicin loaded beads<br />

revealed by microspectroscopies<br />

J. NAMUR 1 , M. WASSEF 2 , S. CITRON 3 , A. LEWIS 4 , JM. MILLOT 1 ,<br />

M. MANFAIT 1 , A. LAURENT 5,6<br />

1. MEDyC UMR CNRS 6237, Reims, France,<br />

2. Pathology, Lariboisiere Hospital, Paris France<br />

3. Radiology, Piedm<strong>on</strong>t Hospital, Atlanta, GA, United States<br />

4. Biocompatibles UK Ltd, Farnham, United Kingdom<br />

5. Neuroradiology, Lariboisiere Hospital, Paris, France.<br />

6. Matière et Systèmes Complexes UMR CNRS 7057, Paris, France.<br />

Drug eluting beads (DEB) are polymeric calibrated microspheres measuring 100µm to 300µm in<br />

diameter, and loaded with <strong>the</strong> anticancer molecule doxorubicin (DOXO) [1]. They are used in <strong>the</strong><br />

treatment <strong>of</strong> liver cancers [2,3] with <strong>the</strong> idea that, compared to intravenous chemo<strong>the</strong>rapy, <strong>the</strong>y<br />

can increase <strong>the</strong> local dwell time and c<strong>on</strong>centrati<strong>on</strong> <strong>of</strong> drug inside <strong>the</strong> tumor. While DOXO-DEB<br />

have dem<strong>on</strong>strated <strong>the</strong>y can provide a sustained release <strong>of</strong> drug for at several m<strong>on</strong>ths in vitro [4],<br />

<strong>the</strong>ir eluti<strong>on</strong> properties have never been assessed in vivo. We aimed to apply Fourier transform<br />

infrared microspectroscopy (FTIR-MS) and microspectr<strong>of</strong>luorimetry <strong>on</strong> tissue secti<strong>on</strong>s <strong>of</strong> DOXO-<br />

DEB treated livers to determine in situ 1) <strong>the</strong> amount <strong>of</strong> drug still retained inside <strong>the</strong> DEB and 2)<br />

<strong>the</strong> distributi<strong>on</strong> and <strong>the</strong> c<strong>on</strong>centrati<strong>on</strong> <strong>of</strong> <strong>the</strong> drug in <strong>the</strong> tissue around <strong>the</strong> beads. In a pig liver<br />

model without any tumor, we first evidenced that DOXO-DEB can release <strong>the</strong>ir drug load in vivo<br />

for a period <strong>of</strong> at least 3 m<strong>on</strong>ths after <strong>the</strong> injecti<strong>on</strong> and that <strong>the</strong> drug may diffuse up to a distance<br />

<strong>of</strong> 600µm from <strong>the</strong> bead. In liver tumors explanted from 6 patients after DOXO-DEB injecti<strong>on</strong>, we<br />

fur<strong>the</strong>r c<strong>on</strong>firmed that DOXO-DEB can provide levels <strong>of</strong> drug above cytotoxic threshold (>1µM)<br />

[5], with a maximum delivery in <strong>the</strong> first hours after implantati<strong>on</strong>. High c<strong>on</strong>centrati<strong>on</strong>s <strong>of</strong> DOXO<br />

are associated with necrosis <strong>of</strong> <strong>the</strong> tissue fur<strong>the</strong>r supporting <strong>the</strong> efficacy <strong>of</strong> <strong>the</strong> drug eluting system<br />

in <strong>the</strong> killing <strong>of</strong> tumor cells. Microspectroscopies are a very valuable tool to evaluate in vivo<br />

eluti<strong>on</strong> properties <strong>of</strong> drug eluting systems.<br />

Fig. 1 – DOXO c<strong>on</strong>centrati<strong>on</strong> pr<strong>of</strong>iles in <strong>the</strong><br />

tissue around DEB in liver tumors resected<br />

at different time points after DOXO-DEB<br />

treatment. Dot line : cytotoxic level [5].<br />

References<br />

[1] A. L. Lewis, M. W. G<strong>on</strong>zalez, A. W. Loyd et al. J. Vasc. Interv. Radiol. 17, 335-342 (2006)<br />

[2] M. Varela, M. I. Real, M. Burrel et al. J. Hepatol. 46 (3), 474-481 (2007)<br />

[3] K. Malagari, K. Chatzimichael, E. Alexopoulou. Cardiovasc. Intervent. Radiol. 31 (2), 269-280 (2008)<br />

[4] M. V. G<strong>on</strong>zalez MV, Y. Tang, G. J. Phillips et al. J. Mater. Sci. Mater. Med. 19, 767-775 (2008)<br />

[5] J. J. Chuu, J. M. Liu, M. H. Tsou et al. J. Biomed. Sci.14 (2), 233-244 (2007)<br />

25


Biomedical applicati<strong>on</strong>s 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Investigating Phenotypic Microbial Heterogeneity by<br />

Infrared and C<strong>on</strong>focal Raman Microspectroscopy<br />

DIETER NAUMANN, PETER LASCH AND ANTJE HERMELINK<br />

Robert Koch-Institute, Berlin Germany<br />

A whole plethora <strong>of</strong> techniques has been used to get insight into <strong>the</strong> development, structure and<br />

compositi<strong>on</strong> <strong>of</strong> various complex multi-cellular microbial communities like col<strong>on</strong>ies, fruiting bodies<br />

or bi<strong>of</strong>ilms. We have developed vibrati<strong>on</strong>al spectroscopic techniques to investigate <strong>the</strong> phenotypic<br />

heterogeneity <strong>of</strong> microbial growth in liquid cultures and macro-col<strong>on</strong>ies, which can be adapted<br />

also to <strong>the</strong> analysis <strong>of</strong> more complex multi -cellular communities such as fruiting bodies, bi<strong>of</strong>ilms,<br />

or col<strong>on</strong>ies growing under natural c<strong>on</strong>diti<strong>on</strong>s. Macro-col<strong>on</strong>ies from Legi<strong>on</strong>ella, Bacillus, and Candida<br />

strains were chosen as model systems <strong>of</strong> multi-cellular communities to evaluate <strong>the</strong> technique. We<br />

used an infrared micro-spectroscopic (IR-MSP) approach that implicates excisi<strong>on</strong> <strong>of</strong> <strong>the</strong> intact<br />

macro-col<strong>on</strong>ies toge<strong>the</strong>r with <strong>the</strong> underlying agar, freezing and subsequent cryotoming, followed<br />

by micro- spectroscopic mapping <strong>of</strong> <strong>the</strong> cryosecti<strong>on</strong>s to get spatial informati<strong>on</strong> <strong>on</strong> growth<br />

heterogeneity within <strong>the</strong> col<strong>on</strong>ies [1].<br />

We also used c<strong>on</strong>focal Raman micro-spectroscopy(cR-MSP) as a method to investigate<br />

heterogeneity in microbial cell populati<strong>on</strong>s at <strong>the</strong> single cell level. cR-MSP is an evolving technique<br />

for <strong>the</strong> rapid, n<strong>on</strong>-invasive chemical imaging <strong>of</strong> composite microscopic structures in biological<br />

materials at a sub-micr<strong>on</strong> spatial resoluti<strong>on</strong>, which allows <strong>the</strong> investigati<strong>on</strong> <strong>of</strong> both, <strong>the</strong> spatial<br />

distributi<strong>on</strong> <strong>of</strong> cell comp<strong>on</strong>ents, and <strong>the</strong>ir chemical or structural nature. We used <strong>the</strong> same test<br />

organisms as for <strong>the</strong> IR-MSP experiments and detected pr<strong>on</strong>ounced intra- and inter-cellular<br />

heterogeneity in macro-col<strong>on</strong>ies and even liquid cultures cultivated under laboratory c<strong>on</strong>diti<strong>on</strong>s.<br />

Our Raman imaging results unequivocally proved <strong>the</strong> presence <strong>of</strong> heterogeneous multicomp<strong>on</strong>ent<br />

systems in genetically homogeneous microbiological samples [2]. Thus, cR-MSP<br />

qualifies as an ideal tool to identify and visualize single comp<strong>on</strong>ent distributi<strong>on</strong> within multicomp<strong>on</strong>ent<br />

systems without <strong>the</strong> need <strong>of</strong> any dye or c<strong>on</strong>trasting agents.<br />

References<br />

[1] N.A. Ngo Thi, D. Naumann, Anal. Bioanal. Chem. 387, 1769-1777 (2007).<br />

[2] A. Hermelink, A. Brauer, P. Lasch, D. Naumann, Analyst 134, 1149-1153 (<strong>2009</strong>).<br />

26


Biomedical applicati<strong>on</strong>s 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Applicati<strong>on</strong> <strong>of</strong> raman spectroscopy to study <strong>the</strong> interacti<strong>on</strong> <strong>of</strong><br />

anti-cancer drugs with cells<br />

HAQ NAWAZ 1 , AIDAN MEADE 1 , FRANCK BONNIER 1 ,<br />

FIONA LYNG 2 AND HUGH J. BYRNE 1<br />

1. Focas Institute, Dublin Institute <strong>of</strong> Technology;<br />

2. Radiati<strong>on</strong> and Envir<strong>on</strong>mental Science Centre (RESC), Focas Institute, Dublin Institute <strong>of</strong> Technology,<br />

Dublin 8, Ireland.<br />

Early assessment <strong>of</strong> chemo<strong>the</strong>rapeutic drug efficacy is very important for <strong>the</strong> better development<br />

and screening <strong>of</strong> new drug candidates. A cost-effective way for determining drug efficacy at <strong>the</strong><br />

early stage <strong>of</strong> drug development is to understand its mechanism <strong>of</strong> acti<strong>on</strong> at <strong>the</strong> cellular and<br />

molecular level. Vibrati<strong>on</strong>al spectroscopy, particularly Raman spectroscopy, has dem<strong>on</strong>strated<br />

potential in <strong>the</strong> analysis <strong>of</strong> chemical changes resulting from external agents at <strong>the</strong> sub-cellular<br />

level. In <strong>the</strong> current studies, <strong>the</strong> interacti<strong>on</strong> <strong>of</strong> cis-Diamminedichloroplatinum (II) (Cisplatin) with<br />

<strong>the</strong> human lung adenocarcinoma, A549, cell line was investigated using Raman spectroscopy. The<br />

identificati<strong>on</strong> <strong>of</strong> molecular changes occurring in <strong>the</strong> cells after interacti<strong>on</strong> with <strong>the</strong> drug was made<br />

<strong>on</strong> <strong>the</strong> basis <strong>of</strong> spectral changes. The results obtained were also compared with <strong>the</strong> classical<br />

cytotoxicological test, <strong>the</strong> MTT assay. Raman spectroscopic analysis <strong>of</strong> isolated DNA, RNA and<br />

protein from cisplatin treated A549 cells will be carried out. This study will be extended to<br />

anticancer drugs <strong>of</strong> varying mechanism <strong>of</strong> acti<strong>on</strong> and different cell lines.<br />

27


Biomedical applicati<strong>on</strong>s 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Differentiati<strong>on</strong> <strong>of</strong> cells from peripheral blood by<br />

vibrati<strong>on</strong>al spectroscopic imaging<br />

U. NEUGEBAUER 1 , J. H. CLEMENT 2 , T. BOCKLITZ 3 , C. KRAFFT 1 AND J. POPP 1,3<br />

1. Institute <strong>of</strong> Phot<strong>on</strong>ic Technology, Albert-Einstein-Str. 9, D-07745 Jena,<br />

Germany<br />

2. Department <strong>of</strong> Internal Medicine II, Friedrich-Schiller-University Jena,<br />

Erlanger Allee 101, D-07740 Jena, Germany<br />

3. Institute <strong>of</strong> Physical Chemistry, Friedrich-Schiller-University Jena,<br />

Helmholtzweg 4, D-07743 Jena, Germany<br />

Cancer can originate in almost any part <strong>of</strong> <strong>the</strong> body. Once a tumour is formed, it can invade <strong>the</strong><br />

surrounding tissue and disseminate cells via <strong>the</strong> blood and lymph vessels all over <strong>the</strong> body. It is <strong>of</strong><br />

high diagnostic interest to separate and differentiate <strong>the</strong> tumour cells from <strong>the</strong> healthy cells in<br />

peripheral blood [1]. However, established cell sorting techniques are not yet sufficient to fulfil this<br />

demand. Raman and IR spectroscopic imaging <strong>of</strong>fer high potential for n<strong>on</strong>-destructive and label<br />

free characterizati<strong>on</strong> <strong>of</strong> cells [2-4]. Here, we apply those techniques to identify different cells that<br />

can be found in peripheral blood: tumour cells, fibroblasts and leukocytes. Breast carcinoma<br />

derived tumour cells (MCF-7, BT-474) were grown in cell culture as well as lymphoblasts (OCI).<br />

Leukocytes were isolated from healthy d<strong>on</strong>ors. All cells are prepared <strong>on</strong> CaF2 slides for<br />

measurement. Differentiati<strong>on</strong> <strong>of</strong> <strong>the</strong>se cells can be achieved using a combinati<strong>on</strong> <strong>of</strong> multivariate<br />

tools including k-means cluster analysis, hierarchical cluster analysis and principal comp<strong>on</strong>ent<br />

analysis. With <strong>the</strong> help <strong>of</strong> supervised statistical methods it is possible to identify <strong>the</strong> cells with<br />

more than 90% accuracy based <strong>on</strong> <strong>the</strong>ir vibrati<strong>on</strong>al spectra.<br />

References<br />

Fig. 1: Averaged Raman spectra <strong>of</strong> different cells whose white light<br />

images and Raman maps (amid I band) are shown <strong>on</strong> <strong>the</strong> right<br />

[1] J. H. Clement, M. Schwalbe, N. Buske, K. Wagner, M. Schnabelrauch, P. Görnert, K. O. Kliche, K. Pachmann, W.<br />

Weitschies, K. Höffken, J Cancer Res Clin Oncol 132, 287-292 (2006).<br />

[2] P. Rösch, M. Harz, K. D. Peschke, O. R<strong>on</strong>neberger, H. Burkhardt, J Popp Biopolymers 82, 312-316 (2006).<br />

[3] C. Krafft, R.Salzer, S. Seitz, C. Ern, M. Schieker Analyst 132, 647-653 (2007).<br />

[4] C. Krafft, T. Knetschke, R. Funk, R. Salzer Analytical Chemistry 78, 4424-4429 (2006).<br />

28


Biomedical applicati<strong>on</strong>s 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Cooling <strong>of</strong> E. coli Tryptophanase leads to a covalent b<strong>on</strong>d<br />

scissi<strong>on</strong> and cold lability<br />

A. KOGAN 1 , GA. Y. GDALEVSKY 1 , R. COHEN-LURIA 1 , Y.<br />

GOLDGUR 1 , R. S. PHILLIPS 2 , O. ALMOG 3 , A. H. PAROLA 1<br />

1 Department <strong>of</strong> Chemistry, Ben-Guri<strong>on</strong> University <strong>of</strong> <strong>the</strong> Negev, POB 653, Beer-Sheva 84105, Israel.<br />

2 Departments <strong>of</strong> Chemistry and Biochemistry and Molecular Biology, University <strong>of</strong> Georgia, A<strong>the</strong>ns, GA<br />

30602, USA.<br />

3 Department <strong>of</strong> Clinical Biochemistry, Faculty <strong>of</strong> Health Sciences, Ben-Guri<strong>on</strong> University, Beer-Sheva 84105,<br />

Israel.<br />

Oligomeric enzymes can undergo a reversible loss <strong>of</strong> activity at low temperatures. One such enzyme<br />

is tryptophanase (Trpase) from Escherichia coli. Trpase is a pyridoxal phosphate (PLP)-dependent<br />

tetrameric enzyme with a Mw <strong>of</strong> 210 kD. PLP is covalently bound through an enamine b<strong>on</strong>d to Lys270<br />

at <strong>the</strong> active site. The incubati<strong>on</strong> <strong>of</strong> holo E. coli Trpases at 2ºC for 20 h results in breaking this enamine<br />

b<strong>on</strong>d and PLP release, as well as a reversible loss <strong>of</strong> activity and dissociati<strong>on</strong> into dimers. This<br />

sequence <strong>of</strong> events is termed cold lability and its understanding bears relevance to protein stability<br />

and shelf life [1, 2]. We studied <strong>the</strong> reversible cold lability <strong>of</strong> E. coli Trpase and its Y74F, C298S and<br />

W330F mutants. In c<strong>on</strong>trast to <strong>the</strong> holo E. coli Trpase all apo forms <strong>of</strong> Trpase dissociated into dimers<br />

already at 25ºC and even fur<strong>the</strong>r up<strong>on</strong> cooling to 2ºC. The crystal structures <strong>of</strong> <strong>the</strong> two mutants, Y74F<br />

and C298S in <strong>the</strong>ir apo form were determined at 1.9Å resoluti<strong>on</strong>. These apo mutants were found in an<br />

open c<strong>on</strong>formati<strong>on</strong> compared to <strong>the</strong> closed c<strong>on</strong>formati<strong>on</strong> found for P. vulgaris in its holo form. This<br />

c<strong>on</strong>formati<strong>on</strong>al change is fur<strong>the</strong>r supported by a high pressure study. We suggest that cold lability <strong>of</strong><br />

E. coli Trpases is primarily affected by PLP release. The enhanced loss <strong>of</strong> activity <strong>of</strong> <strong>the</strong> three mutants<br />

is presumably due to <strong>the</strong> reduced size <strong>of</strong> <strong>the</strong> side chain <strong>of</strong> <strong>the</strong> amino acids. This prevents <strong>the</strong> tight<br />

assembly <strong>of</strong> <strong>the</strong> active tetramer, making it more susceptible to <strong>the</strong> cold driven changes in hydrophobic<br />

interacti<strong>on</strong>s which facilitate PLP release. The hydrophobic interacti<strong>on</strong>s around <strong>the</strong> central tetrameric<br />

axis overshadow <strong>the</strong> effect <strong>of</strong> point mutati<strong>on</strong>s and may account for <strong>the</strong> differences in <strong>the</strong> dissociati<strong>on</strong><br />

<strong>of</strong> E. coli Trpase to dimers and P. vulgaris Trpase to m<strong>on</strong>omers.<br />

References<br />

[1] N. Tsesin, A. Kogen, G. Y. Gdalevsky, J.-P. Himanen, R. Cohen-Luria, A. H. Parola, Y. Goldgur, and O. Almog, Acta<br />

Cryst. Sec. D63, 969–974 (2007).<br />

[2] O. Almog, A. Kogen, M. de Leeuw, G. Gadlevsky R. Cohen-Luria, and A. H. Parola. Biopolymers, 89(5), 354-359,<br />

(2008).<br />

29


Biomedical applicati<strong>on</strong>s 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Diagnosis <strong>of</strong> prostate cancer by Raman spectroscopy<br />

correlated to tissue biomarkers<br />

K. W. C. POON 1 , O. HOWE 2 , F. LYNG 2 AND H. J. BYRNE 1<br />

1. FOCAS Institute, Dublin Institute <strong>of</strong> Technology, Camden Row, Dublin 8, Dublin, Republic <strong>of</strong> Ireland<br />

2. Radiati<strong>on</strong> and Envir<strong>on</strong>mental Science Centre, Focas Institute, Dublin Institute <strong>of</strong> Technology, Camden<br />

Row, Dublin 8, Dublin, Republic <strong>of</strong> Ireland<br />

Annually, over 670,000 men are diagnosed with prostate cancer worldwide, accounting for<br />

approximately <strong>on</strong>e quarter <strong>of</strong> all diagnosed cancer cases in men[1]. The advent <strong>of</strong> <strong>the</strong> PSA<br />

(Prostate Specific Antigen) blood test has revoluti<strong>on</strong>ised early detecti<strong>on</strong> <strong>of</strong> prostate cancer,<br />

however, it is unable to distinguish between benign growths and aggressive cancerous forms.<br />

Definitive diagnosis is <strong>on</strong>ly possible through a biopsy <strong>of</strong> <strong>the</strong> prostate, from which a skilled<br />

histopathologist is required to observe changes related to tissue/cell ultrastructure based <strong>on</strong> <strong>the</strong><br />

universally accepted Gleas<strong>on</strong> tumour grading system. This system focuses <strong>on</strong> a variety <strong>of</strong> complex<br />

transformati<strong>on</strong>s in <strong>the</strong> prostate glandular morphology known to occur during <strong>the</strong> progressi<strong>on</strong> <strong>of</strong><br />

<strong>the</strong> cancer. However, Gleas<strong>on</strong> scoring suffers from intra/inter observer subjectivity, with studies<br />

showing 70.8% <strong>of</strong> prostate cancer biopsies being misgraded [2]. Raman spectroscopy has been<br />

shown to discriminate between normal and pathological tissue samples initially processed by<br />

formalin fixati<strong>on</strong> and paraffin embedding (FFPE)[3]. As tissue samples sourced from hospitals and<br />

medical instituti<strong>on</strong>s use FFPE as <strong>the</strong> standard processing technique, it is important to correlate<br />

spectroscopic studies with such protocols. Results will be presented regarding <strong>the</strong> capability <strong>of</strong><br />

Raman spectroscopy to distinguish between FFPE tissue secti<strong>on</strong>s <strong>of</strong> normal, benign prostate<br />

hyperplasia (BPH) and prostate cancer in combinati<strong>on</strong> with multivariate analysis. The results will<br />

also be correlated with various immunohistochemical stains such as AMACR (α-methylacyl-CoA<br />

racemase) and <strong>the</strong>ir relati<strong>on</strong>ship to existing data regarding aberrant G2 radiosensitivities in<br />

patients.[4]<br />

References<br />

[1] Cancer Research UK CancerStats Key Facts: Prostate Cancer.<br />

http://info.cancerresearchuk.org/cancerstats/types/prostate/ (25/05/<strong>2009</strong>).<br />

[2] Lattouf, J.-B.; Saad, F., Gleas<strong>on</strong>, BJU Internati<strong>on</strong>al, 90, 694-698 (2002).<br />

[3] Lyng, F. M.; Faoláin, E. Ó.; C<strong>on</strong>roy, J., et al., Experimental and Molecular Pathology, 82, 121-129, (2007).<br />

[4] Howe, O.; O'Malley, K.; Lavin, M., et al., Radiati<strong>on</strong> Research, 164, 627-634, (2005).<br />

30


Biomedical applicati<strong>on</strong>s 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Resistance to irradiati<strong>on</strong> <strong>of</strong> micro-algae growing in<br />

<strong>the</strong> storage pools <strong>of</strong> a nuclear reactor investigated by<br />

NMR and neutr<strong>on</strong> spectroscopies<br />

C. RIVASSEAU 1 , E. FARHI 2 , M. GROMOVA 1 , J. OLLIVIER 2 , R. BLIGNY 1<br />

1. Laboratoire de Physiologie Cellulaire Végétale, CEA, CNRS, 17 rue des Martyrs, 38054<br />

Grenoble cedex 9, France<br />

2. Institut Laue Langevin, BP156, 38042 Grenoble cedex 9, France<br />

Life develops everywhere <strong>on</strong> earth including extreme envir<strong>on</strong>ments. The extremophile species<br />

include for instance organisms surviving high salt c<strong>on</strong>centrati<strong>on</strong>s, toxic metals, high pressures,<br />

acidity, low or high temperatures [1,2], vacuum, and desiccati<strong>on</strong>. Additi<strong>on</strong>ally, some bacteria,<br />

am<strong>on</strong>g which <strong>the</strong> champi<strong>on</strong> Deinococcus radiodurans, have been found to exhibit an<br />

extraordinary ability to survive i<strong>on</strong>izing irradiati<strong>on</strong>, up to 15 kGy. We discovered an i<strong>on</strong>izingirradiati<strong>on</strong><br />

tolerant micro alga growing in <strong>the</strong> light water cooling systems and in <strong>the</strong> nuclear waste<br />

fuel elements storage pool <strong>of</strong> <strong>the</strong> ILL research reactor. This unicellular green micro alga bel<strong>on</strong>ging<br />

to <strong>the</strong> Chlorophyceae class lives just a few meters away from <strong>the</strong> core in a highly radio-active<br />

envir<strong>on</strong>ment and in a very poor nutrient medium. It is <strong>the</strong> <strong>on</strong>ly eukaryotic autotrophic organism<br />

to grow in such envir<strong>on</strong>ment, for at least 15 years, although c<strong>on</strong>taminati<strong>on</strong> possibilities from<br />

outside envir<strong>on</strong>ment are not unusual. This adaptati<strong>on</strong> indicates an irradiati<strong>on</strong> tolerance capacity<br />

higher than that <strong>of</strong> o<strong>the</strong>r eukaryotes, and a probable adaptati<strong>on</strong> to this envir<strong>on</strong>ment. Moreover,<br />

after being exposed to up to 20 kGy, <strong>the</strong>se algae re-col<strong>on</strong>ize <strong>the</strong>ir culture medium within some<br />

weeks [3]. The ability <strong>of</strong> this micro algae whose genus has been identified to tolerate i<strong>on</strong>izing<br />

irradiati<strong>on</strong> has never been reported. More generally, <strong>the</strong>re is little knowledge <strong>on</strong> algae resistance to<br />

gamma irradiati<strong>on</strong>. The study <strong>of</strong> this micro-alga is c<strong>on</strong>sequently <strong>of</strong> peculiar interest, all <strong>the</strong> more as<br />

it c<strong>on</strong>cerns a eukaryotic organism which is much more complex and fragile than a bacteria.<br />

Understanding mechanisms involved in resistance to irradiati<strong>on</strong> in this organism might bring new<br />

insights into radiati<strong>on</strong> resp<strong>on</strong>se <strong>of</strong> o<strong>the</strong>r eukaryotic organisms including animals. We investigated<br />

<strong>the</strong> effects <strong>of</strong> irradiati<strong>on</strong> <strong>on</strong> <strong>the</strong> micro algae physiology, metabolism, and internal dynamics. Micro<br />

algae were stressed with irradiati<strong>on</strong> doses up to 20 kGy (2 Mrad), <strong>the</strong>ir survival was assessed as a<br />

functi<strong>on</strong> <strong>of</strong> <strong>the</strong> irradiati<strong>on</strong> dose, and changes in metabolism, internal dynamics, and structure<br />

brought by irradiati<strong>on</strong> were studied respectively using nuclear magnetic res<strong>on</strong>ance (1H NMR) and<br />

neutr<strong>on</strong> backscattering <strong>on</strong> <strong>the</strong> IN13 instrument at <strong>the</strong> ILL (elastic incoherent backscattering as a<br />

functi<strong>on</strong> <strong>of</strong> temperature) [3]. It was found that this Chlorophyceae green micro alga resisted high<br />

γ-irradiati<strong>on</strong> doses, up to 6 kGy. Higher doses induced a sensible decrease in <strong>the</strong> survival rate, but<br />

<strong>the</strong> micro algae col<strong>on</strong>ies may still recover after a m<strong>on</strong>th as shown by <strong>the</strong> recovery <strong>of</strong> <strong>the</strong><br />

physiological parameter photosyn<strong>the</strong>sis. Even though <strong>the</strong> associated tolerance mechanism is not<br />

known today, we performed spectroscopic investigati<strong>on</strong>s which provided a few macroscopic<br />

indicators about <strong>the</strong> cell behaviour during irradiati<strong>on</strong>. […]<br />

References<br />

[1] Tehei M, Franzetti B, Wood K, Gabel F, Fabiani E, Jasnin M, Zamp<strong>on</strong>i M, Oesterhelt D, Zaccai G, Ginzburg M,<br />

Ginzburg B-Z, Proc. Natl Acad. Sci. 104 (2007) 766<br />

[2] Tehei M, Zaccai G, Biochimica et Biophysica Acta 1724 (2005) 404<br />

[3] Farhi E, Rivasseau C, Gromova M, Compagn<strong>on</strong> E, Marzl<strong>of</strong>f V, Ollivier J, Boiss<strong>on</strong> AM, Bligny R, Natali F, Russo D,<br />

and Couté A, J. Phys.: C<strong>on</strong>dens. Matter 20 (2008) 104216<br />

31


Biomedical applicati<strong>on</strong>s 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Reagent-free quantitative determinati<strong>on</strong> <strong>of</strong> ingredients<br />

<strong>of</strong> body and related fluids in real time using ATR-FTIR<br />

spectroscopy<br />

A. ROTH 1 , O. KLEIN 1 , I. KLEIN 2 AND W. MÄNTELE 1<br />

1. Institute <strong>of</strong> Biophysics, Johann Wolfgang Goe<strong>the</strong>-University, Max-v<strong>on</strong>-Laue-Strasse 1, 60438 Frankfurt am<br />

Main, Germany<br />

2. Innovectis GmbH, Altenhöferallee 3, 60438 Frankfurt am Main, Germany<br />

Especially for realtime point-<strong>of</strong>-care diagnostics <strong>of</strong> fluids in <strong>the</strong> medical envir<strong>on</strong>ment <strong>the</strong>re is a<br />

demand for portable analysis soluti<strong>on</strong>s without any sample preparati<strong>on</strong> or reagents. The technique<br />

<strong>of</strong> attenuated total reflecti<strong>on</strong> Fourier-transform infrared (ATR-FTIR) spectroscopy <strong>of</strong>fers <strong>the</strong>se<br />

possibilities for various ingredients <strong>of</strong> body fluids such as whole blood, blood plasm or urine and<br />

related fluids such as blood filtrates. By using multivariate ma<strong>the</strong>matical models like partial leastsquares<br />

regressi<strong>on</strong> <strong>on</strong>e can determine simultaneously <strong>the</strong> absolute c<strong>on</strong>centrati<strong>on</strong> <strong>of</strong> relevant<br />

comp<strong>on</strong>ents, such as for example albumin, cholesterol, glucose, hemoglobin, total protein,<br />

triglycerides and urea in whole blood or creatinine, phosphate, urea and uric acid in urine [1]. The<br />

absolute precisi<strong>on</strong> and reproducibility <strong>of</strong> <strong>the</strong> determined values is <strong>the</strong>reby <strong>on</strong>ly limited by <strong>the</strong><br />

precisi<strong>on</strong> <strong>of</strong> <strong>the</strong> reference analysis used for calibrati<strong>on</strong> and complies to clinical standards. Based <strong>on</strong><br />

a compact, portable FT-IR spectrometer two special ATR measuring cells were developed, <strong>on</strong>e for<br />

small discrete sample volumes <strong>of</strong> less than 10 µL to be used for a single blood droplet drawn from<br />

<strong>the</strong> fingertip. A sec<strong>on</strong>d cell was developed for quasi-c<strong>on</strong>tinuous flow-through measurements in a<br />

c<strong>on</strong>tinuous flow at flow rates up to 1000 mL/min in intense care to analyse time-dependent<br />

c<strong>on</strong>centrati<strong>on</strong> changes. Time pr<strong>of</strong>iles are possible because <strong>on</strong>e measurement <strong>on</strong>ly takes about <strong>on</strong>e<br />

minute. Both measuring cells will be evaluated in <strong>the</strong> clinical routine in comparis<strong>on</strong> to<br />

c<strong>on</strong>venti<strong>on</strong>ally used laboratory equipment working with reagents and requiring some sample<br />

preparati<strong>on</strong>. Fur<strong>the</strong>rmore, <strong>the</strong> system can easily be adapted to o<strong>the</strong>r types <strong>of</strong> fluids simply by<br />

recalibrati<strong>on</strong>. For example, a flow-through cell was recently used to determine <strong>the</strong> main<br />

parameters <strong>of</strong> beer [2].<br />

References<br />

[1] G. Hosafci, O. Klein, G. Oremek, W. Mäntele, Anal Bioanal Chem 387, 1815–1822 (2007)<br />

[2] O. Klein, W. Mäntele, GIT Labor-Fachzeitschrift 10, 824-827 (2005)<br />

32


Biomedical applicati<strong>on</strong>s 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Breast tissue diagnosis by Raman spectroscopy<br />

J. SURMACKI 1 , B. BROśEK-PŁUSKA 1 , J. JABŁOŃSKA 2 , R. KORDEK 2 AND H. ABRAMCZYK 1,3<br />

1. Technical University <strong>of</strong> Lodz, Chemistry Department, Laboratory <strong>of</strong><br />

Laser Molecular <strong>Spectroscopy</strong>, 93-590 Lodz Wroblewskiego 15 str<br />

Poland, e-mail: jsurmacki@mitr.p.lodz.pl<br />

2. Department <strong>of</strong> Oncology, Medical University <strong>of</strong> Lodz, 93-509 Lodz<br />

Paderewskiego 4, Poland<br />

3. Max-Born-Institute Fax: +49 30 6392 1409 Max-Born-Str. 2A 12489<br />

Berlin Germany, e-mail: abramczy@mbi-berlin.de<br />

We present Raman spectra <strong>on</strong> ex-vivo samples from breast tissue (for 134 patients) and compare<br />

<strong>the</strong>m with <strong>the</strong> results <strong>of</strong> histopathological analysis to estimate <strong>the</strong> sensitivity and specificity <strong>of</strong> <strong>the</strong><br />

method. The results dem<strong>on</strong>strate <strong>the</strong> ability <strong>of</strong> Raman spectroscopy to accurately characterize<br />

breast cancer tissue and distinguish between normal, malignant and benign types. We provide<br />

evidence that carotenoids and lipids <strong>of</strong> <strong>the</strong> tissue play an essential role as a Raman biomarkers.<br />

The normal tissue has characteristic bands: C-C (1156cm -1) and C=C (1520cm -1) stretching bands <strong>of</strong><br />

carotenoids and at 2840-2900 cm -1 for C-H symmetric and asymmetric bands <strong>of</strong> lipids (fat) which<br />

are not observed in malignat tumor tissue.<br />

Fig. 1 Raman spectra and histopatological image: a) normal tissue,<br />

b) carcinoma ductale G3 infiltrans mammae.<br />

The support from MEXC-CT-2006-042630 and Nr3 T11E 04729 projects is acknowledged.<br />

References<br />

[1] H. Abramczyk, I. Placek, B. BroŜek-Płuska, K. Kurczewski, Z. Morawiec, M. Tazbir, J. Mol. Liquid 141, 145-148<br />

(2008)<br />

[2] H. Abramczyk, I. Placek, B. BroŜek-Płuska, K. Kurczewski, Z. Morawiec, M. Tazbir, <strong>Spectroscopy</strong> 22, 113-121<br />

(2008)<br />

[3] H. Abramczyk, I. Placek, B. BroŜek-Płuska, K. Kurczewski, Z. Morawiec, M. Tazbir, ISRAPS Bulletin, 20, no 1<br />

(2008)<br />

[4] H. Abramczyk, J. Surmacki, B. BroŜek-Płuska, Z. Morawiec, M. Tazbir, J. Mol. Struc. 924-926, 175-182 (<strong>2009</strong>)<br />

33


Biomedical applicati<strong>on</strong>s 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Affinity towards sulphati<strong>on</strong> <strong>of</strong> wool and silk fibres<br />

P. TADDEI 1 , M. TSUKADA 2 , T. ARAI 2 AND G. FREDDI 3<br />

1. Biochemistry Department, University <strong>of</strong> Bologna, Via Belmeloro 8/2,<br />

Bologna, I-40126, Italy<br />

2. Divisi<strong>on</strong> <strong>of</strong> Applied Biology, Faculty <strong>of</strong> Textile Science and<br />

Technology, Shinshu University, 3-15-1, Tokida, Ueda, Nagano 386-8567,<br />

Japan<br />

3. Stazi<strong>on</strong>e Sperimentale per la Seta, Via G. Colombo 83, Milan, I-20133,<br />

Italy<br />

Wool keratin and silk fibroin are excellent biopolymers with outstanding properties that make<br />

<strong>the</strong>m extremely valuable in biomedical field. Coatings are comm<strong>on</strong>ly applied to <strong>the</strong> surface <strong>of</strong><br />

materials to improve <strong>the</strong>ir surface properties. The biocompatibility and n<strong>on</strong>-immunogenicity <strong>of</strong><br />

silk proteins should allow <strong>the</strong>ir applicati<strong>on</strong> as coatings for biomedical implants, potentially as<br />

anticoagulants, and ei<strong>the</strong>r promoters or inhibitors <strong>of</strong> cell adhesi<strong>on</strong>. Incorporati<strong>on</strong> <strong>of</strong> sulphate and<br />

sulph<strong>on</strong>ate groups c<strong>on</strong>fers anticoagulant and anti-thrombogenic properties to polymers. In view <strong>of</strong><br />

widening <strong>the</strong> biomedical utility <strong>of</strong> natural polymers as biomaterials, here we present a<br />

comparative vibrati<strong>on</strong>al study <strong>on</strong> wool, B. mori and A. pernyi silk fibroin fibres sulphated with<br />

chlorosulph<strong>on</strong>ic acid in pyridine, which is known to enhance <strong>the</strong> yield <strong>of</strong> sulphati<strong>on</strong>. Our aim is to<br />

prepare sulphated fibres by keeping <strong>the</strong> intrinsic fibre properties and texture unchanged, using<br />

short reacti<strong>on</strong> times (i.e. 3h). The fibres were analyzed by Attenuated Total Reflectance, ATR/FT-<br />

IR and FT-Raman spectroscopy to comparatively elucidate <strong>the</strong> affinity for sulphate groups, <strong>the</strong><br />

mechanism and <strong>the</strong> mode <strong>of</strong> linkage, <strong>the</strong> amino acid side-chains involved, and <strong>the</strong> possible<br />

c<strong>on</strong>formati<strong>on</strong>al changes caused by sulphati<strong>on</strong>. Am<strong>on</strong>g <strong>the</strong> analysed samples, <strong>the</strong> vibrati<strong>on</strong>al<br />

spectra <strong>of</strong> sulphated wool fibres showed <strong>the</strong> most pr<strong>on</strong>ounced changes, suggesting <strong>the</strong> highest<br />

affinity towards sulphati<strong>on</strong>. New bands in <strong>the</strong> 1300-1200 and 1100-900 cm -1 ranges were assigned<br />

to <strong>the</strong> formati<strong>on</strong> <strong>of</strong> alkyl and aryl sulphate salts, sulph<strong>on</strong>amides, sulphoamines and covalent arylalkyl<br />

sulphates. Vibrati<strong>on</strong>al spectra revealed <strong>the</strong> occurrence <strong>of</strong> a certain fibre degradati<strong>on</strong> as well<br />

as rearrangements with c<strong>on</strong>sequent changes in sec<strong>on</strong>dary structure, c<strong>on</strong>formati<strong>on</strong> <strong>of</strong> disulphide<br />

bridges and tyrosine envir<strong>on</strong>ment. The amino acid residues mainly involved in sulphati<strong>on</strong> were<br />

identified as serine, thre<strong>on</strong>ine, tyrosine and tryptophan. Up<strong>on</strong> sulphati<strong>on</strong>, <strong>the</strong> IR and Raman<br />

spectra <strong>of</strong> B. mori silk fibroin fibres showed analogous changes although less pr<strong>on</strong>ounced than for<br />

wool fibres. No significant changes were detected for A. pernyi silk fibroin fibres: <strong>on</strong>ly slight<br />

c<strong>on</strong>formati<strong>on</strong>al rearrangements were observed. The reactivity towards sulphati<strong>on</strong> was found to<br />

decrease al<strong>on</strong>g <strong>the</strong> series: wool > B. mori silk fibroin > A. pernyi silk fibroin, in agreement with <strong>the</strong><br />

weight gain measurements which decreased al<strong>on</strong>g <strong>the</strong> same series. These results can be explained<br />

in relati<strong>on</strong> to <strong>the</strong> different compositi<strong>on</strong> <strong>of</strong> <strong>the</strong> analysed fibres. Wool fibres were characterised by<br />

<strong>the</strong> highest c<strong>on</strong>tent <strong>of</strong> <strong>the</strong> potentially reactive sites; evidently, <strong>the</strong>se groups had also a good<br />

accessibility for <strong>the</strong> sulphating agent.<br />

34


Biomedical applicati<strong>on</strong>s 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Zn-metallothi<strong>on</strong>ein complexes studied by Raman<br />

spectroscopy<br />

A. TINTI1 , A. TORREGGIANI, 2 J. DOMÈNECH, 2, 3<br />

1. Dept. Biochemistry “G. Moruzzi”, University <strong>of</strong> Bologna, Via Belmeloro 8/2 , Bologna, I-40126, Italy<br />

2. ISOF-CNR, Via P. Gobetti 101, Bologna, I-40129, Italy<br />

3. Dep. Genètica, Univ. Barcel<strong>on</strong>a, Av. Diag<strong>on</strong>al 645, 08028 Barcel<strong>on</strong>a, Spain<br />

Metallothi<strong>on</strong>eins (MTs) are low molecular weight, cysteine-rich proteins, with an excepti<strong>on</strong>al heavy<br />

metal coordinati<strong>on</strong> capacity. These metal chelating peptides play an active role in zinc homeostasis.<br />

Although <strong>the</strong>ir high heterogeneity, structural and functi<strong>on</strong>al studies have been mainly devoted to<br />

vertebrate and fungal MTs. Participati<strong>on</strong> <strong>of</strong> metal ligands o<strong>the</strong>r than Cys and <strong>the</strong> presence <strong>of</strong><br />

sec<strong>on</strong>dary structure elements in metal-MT complexes are fairly unknown, especially in n<strong>on</strong>vertebrate<br />

MTs. Six in vivo-syn<strong>the</strong>sized Zn-MTs, representative <strong>of</strong> different MT families (mollusc,<br />

insect, nematode, echinoderm, plant and vertebrate) were studied by analytic and spectroscopic<br />

techniques. The examined MTs c<strong>on</strong>tain from 43 to 73 amino acids, am<strong>on</strong>g which at least a 30% are<br />

Cys, whereas very few are aromatic residues. Zn(II)-MT complexes were heterologously<br />

syn<strong>the</strong>sized in E.coli, to obtain aggregates representative <strong>of</strong> those formed in biological systems.<br />

These complexes c<strong>on</strong>tain variable amounts <strong>of</strong> metal and sulfide i<strong>on</strong>s, quantitatively evaluated by<br />

analytical measurements. The formati<strong>on</strong> <strong>of</strong> more than <strong>on</strong>e species (S 2- -c<strong>on</strong>taining and S 2- -devoid<br />

complexes), revealed by ESI-MS spectra, is a c<strong>on</strong>stant for all <strong>the</strong>se MTs. The analysis <strong>of</strong> <strong>the</strong><br />

Raman spectra gave informati<strong>on</strong> about <strong>the</strong> sec<strong>on</strong>dary structure <strong>of</strong> <strong>the</strong> metal-MT aggregates. For all<br />

<strong>the</strong> MT examined, a relevant c<strong>on</strong>tributi<strong>on</strong> <strong>of</strong> β-turns was shown, whereas in all cases <strong>the</strong> α-helix<br />

c<strong>on</strong>tent resulted almost negligible. As regards Cys sulfurs, almost all Cys residues present in MTs<br />

resulted to be involved in <strong>the</strong> metal coordinati<strong>on</strong>, as indicated by <strong>the</strong> presence <strong>of</strong> several bands<br />

attributable to <strong>the</strong> metal-S stretching modes at low wavenumbers (< 500 cm -1 ). The high number <strong>of</strong><br />

νM-S bands and <strong>the</strong>ir broadening suggest <strong>the</strong> formati<strong>on</strong> <strong>of</strong> different metal centres. Significantly,<br />

Raman bands useful as markers <strong>of</strong> sulfide bridging ligands were identified. In Zn-CeMT2 (from<br />

C.Elegans) and Zn-QsMT (from plant – Quercus suber) <strong>the</strong> eventual participati<strong>on</strong> <strong>of</strong> <strong>the</strong> His residue<br />

in metal binding was evaluated through a curve fitting analysis <strong>of</strong> <strong>the</strong> 1630-1565 cm -1 Raman<br />

spectral range. His residues resulted to be mainly coordinated in Zn-CeMT2 (≈ 90%), whereas in<br />

Zn-QsMT His is mainly present as free tautomer (≈ 90%) [1]. Raman spectroscopy showed to be a<br />

powerful technique, able to provide informati<strong>on</strong> <strong>on</strong> <strong>the</strong> state <strong>of</strong> <strong>the</strong> Cys sulfur (metal coordinated<br />

and oxidised), <strong>the</strong> metal binding envir<strong>on</strong>ment (i.e. <strong>the</strong> participati<strong>on</strong> <strong>of</strong> His in metal coordinati<strong>on</strong>), as<br />

well as <strong>on</strong> <strong>the</strong> sec<strong>on</strong>dary structure.<br />

References<br />

[1] A. Torreggiani, J. Domenech, S. Atrian, M. Capdevila, A. Tinti, Biopolymers 89 (2008) 1114-1124.<br />

35


Biomedical applicati<strong>on</strong>s 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Raman-based diagnostic tools to distinguish anemias and<br />

to evaluate <strong>the</strong> expressi<strong>on</strong> ratio <strong>of</strong> S and C hemoglobins<br />

ALESSANDRO VERGARA 1 , VISHNU PULLY 2 , GIULIA RUSCIANO 3 , ANNA BALSAMO 1 ,<br />

FILOMENA SICA 1 , ANTONELLO MERLINO 1 , MICHELA GROSSO 4 , ANTONIO SASSO 3 ,<br />

LELIO MAZZARELLA 1 , CEES OTTO 2<br />

1 “Paolo Corradini” Dept. <strong>of</strong> Chemistry, University <strong>of</strong> Naples Federico II. anna.balsamo@unina.it.<br />

2 MESA+ Institute, Biophysical Engeenering Group, University <strong>of</strong> Twente, Enschede, Ne<strong>the</strong>rland.<br />

3 Dept. <strong>of</strong> Physical Sciences, University <strong>of</strong> Naples Federico II.<br />

4 Dept. <strong>of</strong> Biochemistry and Medical Biotechnologies, University <strong>of</strong> Naples Federico II.<br />

Cellular imaging techniques based <strong>on</strong> vibrati<strong>on</strong>al spectroscopy (Raman) are powerful tools in cell<br />

biology because <strong>the</strong> molecular compositi<strong>on</strong> <strong>of</strong> sub-cellular compartments can be visualized<br />

without <strong>the</strong> need for labeling [1]. Moreover res<strong>on</strong>ance Raman (RR) spectroscopy is an ideal<br />

method to elucidate <strong>the</strong> structural characteristics <strong>of</strong> heme domains in hemoproteins, directly<br />

m<strong>on</strong>itoring <strong>the</strong> ir<strong>on</strong>-axial ligand b<strong>on</strong>d strength. The informati<strong>on</strong> provided is important in<br />

understanding <strong>the</strong> mechanisms <strong>of</strong> protein c<strong>on</strong>trol <strong>of</strong> heme reactivity [2]. In this c<strong>on</strong>text, Optical<br />

Tweezers (OT) have revealed a formidable tool to select and manipulate single particles, included<br />

cells or cellular organelles, allowing a rapid identificati<strong>on</strong> <strong>of</strong> <strong>the</strong> changes, at single cell level, in<br />

resp<strong>on</strong>se to external agents, envir<strong>on</strong>mental stress, or in presence <strong>of</strong> cellular disorders [3].<br />

Haemoglobinopathies are inherited disorders defined as qualitative or quantitative deficiency <strong>of</strong><br />

haemoglobin (Hb) in red blood cells (RBCs). Herein we analyze anemic RBCs with two human Hb<br />

variants, HbS and HbC (Gluβ6Val and GlubβLys, respectively). A comparative study in a family<br />

(mo<strong>the</strong>r, fa<strong>the</strong>r and daughter, respectively heterozygous for HbS, HbC and Hb C+S) shows that<br />

different Raman images and mechanical properties <strong>of</strong> healthy and anemic RBCs could help to<br />

evaluate <strong>the</strong> expressi<strong>on</strong> ratios between HbS and HbC, and correlate <strong>the</strong>se data with varied clinical<br />

c<strong>on</strong>diti<strong>on</strong>s.<br />

References<br />

[1] van Manen H.J., et al., Proc. Natl. Acad. Sci. 2005, 102, 10159.<br />

[2] Vitagliano L., et al., J. Am. Chem. Soc. 2008, 130, 10527.<br />

[3] De Luca A.C., et al., Opt. Exp. 2008, 16, 7943.<br />

AV and LM acknowledge PRIN 2007 funds.<br />

36


Biomedical applicati<strong>on</strong>s 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Study <strong>of</strong> c<strong>on</strong>trolled release <strong>of</strong> model dyes and drugs<br />

from poly(D,L lactic-co-glycolic) acid nanoparticles and<br />

rod-shaped PLGA pellets by fluorimetry, analytical<br />

ultracentrifugati<strong>on</strong> and fluorimetry imaging<br />

V.VOGEL, 1 K. LANGER, 2 W. MÄNTELE 1<br />

1. Institute <strong>of</strong> Biophysics, Johann Wolfgang Goe<strong>the</strong>-University, D-60438 ,<br />

Frankfurt , Germany<br />

2. Institute <strong>of</strong> Pharmaceutical Technology and Biopharmacy, WWU Münster,<br />

Correnstrasse 1, 48149 Münster Germany<br />

The development <strong>of</strong> sustained release systems capable <strong>of</strong> delivering low molecular drug and<br />

peptides over extended periods <strong>of</strong> time is an actual problem for a variety <strong>of</strong> biomedical<br />

applicati<strong>on</strong>s. Poly(D,L lactic-co-glycolic acid) nanoparticles (PLGA-NP) and rod-shaped PLGA<br />

pellets represent promising biodegradable carriers for c<strong>on</strong>trolled drug delivery. We present <strong>the</strong><br />

analysis <strong>of</strong> model dye-loaded PLGA nanoparticles and rod-shaped PLGA pellets as models for a<br />

drug delivery system. Model drug loaded PLGA nanoparticles were prepared by a solvent<br />

extracti<strong>on</strong>/evaporati<strong>on</strong> method with polyvinyl alcohol (PVA) as an emulsifier and rod-shaped<br />

PLGA pellets were prepared by compressi<strong>on</strong>. Loaded PLGA nanoparticles and rod-shaped PLGA<br />

pellets were characterized for drug encapsulati<strong>on</strong> efficiency and in vitro drug-release kinetics by<br />

fluorimetry, analytical ultracentrifugati<strong>on</strong> and fluorimetry imaging. Carbocyanine fluorescence<br />

dyes and model drugs were used for release kinetic measurements.<br />

References<br />

[1] M.Holzer, V.Vogel, W.Mäntele, D Schwartz, W.Haase, K.Langer, Eur J Pharm Biopharm., <strong>2009</strong>, 72, 428 – 437.<br />

37


Biomedical applicati<strong>on</strong>s 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Extended X-ray Absorpti<strong>on</strong> Fine Structure Studies <strong>of</strong><br />

Formati<strong>on</strong> <strong>of</strong> Ir<strong>on</strong>/GT56-252 Complex<br />

DONGHUI WANG, EUGENE ZHOROV, AHARON COHEN<br />

Analytical R&D, Genzyme Corporati<strong>on</strong><br />

211 Sec<strong>on</strong>d Ave, Waltham MA 02451, USA<br />

Binding chemistry between Ir<strong>on</strong> (III) and a carboxylic acid (GT56-252) in aqueous and bovine<br />

serum was studied by using XAFS (X-Ray Absorpti<strong>on</strong> Fine Structure) at <strong>the</strong> Nati<strong>on</strong>al Synchrotr<strong>on</strong><br />

Light Source, Brookhaven Nati<strong>on</strong>al Laboratory in Upt<strong>on</strong>, NY, USA. Significant changes <strong>of</strong> Ir<strong>on</strong><br />

coordinati<strong>on</strong> chemistry up<strong>on</strong> additi<strong>on</strong> <strong>of</strong> GT56-252 were experimentally c<strong>on</strong>firmed, and such<br />

changes can be well explained by <strong>the</strong> formati<strong>on</strong> <strong>of</strong> Ir<strong>on</strong>/GT56-252 complex with both Fe-O and Fe-<br />

N b<strong>on</strong>ds. In additi<strong>on</strong>, a basic envir<strong>on</strong>ment (pH = 9) and a higher temperature (up to 60°C)<br />

appeared to be favorable for <strong>the</strong> complex formati<strong>on</strong>.<br />

The following work will be presented to understand <strong>the</strong> binding between Ir<strong>on</strong> and GT56-252:<br />

1. Ir<strong>on</strong> coordinati<strong>on</strong> in aqueous soluti<strong>on</strong> before and after GT56-252 additi<strong>on</strong>.<br />

2. Ir<strong>on</strong> coordinati<strong>on</strong> in bovine serum before and after GT56-252 additi<strong>on</strong>.<br />

3. pH effect <strong>on</strong> Fe/GT56-252 formati<strong>on</strong> in aqueous soluti<strong>on</strong>.<br />

4. Temperature effect <strong>on</strong> Fe/GT56-252 formati<strong>on</strong> in aqueous soluti<strong>on</strong>.<br />

5. Reacti<strong>on</strong> rate <strong>of</strong> ir<strong>on</strong> with GT56-252 in bovine serum.<br />

The major findings from this study are:<br />

1. Ir<strong>on</strong>/GT56-252 complex was formed in ei<strong>the</strong>r aqueous soluti<strong>on</strong> or in bovine serum.<br />

2. In ir<strong>on</strong> (III) aqueous soluti<strong>on</strong>, up<strong>on</strong> additi<strong>on</strong> <strong>of</strong> GT56-252, a significant change <strong>of</strong> Ir<strong>on</strong><br />

absorpti<strong>on</strong> edge positi<strong>on</strong> was observed. This c<strong>on</strong>firmed <strong>the</strong> formati<strong>on</strong> <strong>of</strong> Ir<strong>on</strong>/GT56-252 complex.<br />

Same Ir<strong>on</strong>/GT56-252 complex was formed in bovine serum.<br />

3. The Ir<strong>on</strong>/GT56-252 complex formati<strong>on</strong> appears to increase with increasing pH.<br />

4. Increasing temperature appears to be favorable for <strong>the</strong> complex formati<strong>on</strong>.<br />

5. In bovine serum, equilibrium in <strong>the</strong> complex formati<strong>on</strong> was achieved in <strong>the</strong> first few<br />

minutes if not faster<br />

38


Dielectric spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Thermally Stimulated Depolarizati<strong>on</strong> Currents (TSDC):<br />

a Sensitive Technique for Analyzing Proteins Structure<br />

M. G. BRIDELLI, R. CAPELLETTI, E. POLVERINI, AND R. BEDOTTI<br />

Department <strong>of</strong> Physics, University <strong>of</strong> Parma, Via G. P Usberti 7/A, Parco<br />

Area delle Scienze, Parma I-43100, Italy<br />

Thermally Stimulated Depolarizati<strong>on</strong> Current (TSDC) technique has been widely employed to<br />

m<strong>on</strong>itor <strong>the</strong> state <strong>of</strong> water in proteins and o<strong>the</strong>r biomolecules at low hydrati<strong>on</strong> levels [1]. The<br />

technique, thanks to its very high sensitivity, is able to detect <strong>the</strong> solvent organizati<strong>on</strong> around <strong>the</strong><br />

“solute” structure by distinguishing water dipoles in terms <strong>of</strong> <strong>the</strong>ir order degree and mobility,<br />

although <strong>the</strong> relati<strong>on</strong> between <strong>the</strong> biopolymer c<strong>on</strong>formati<strong>on</strong> and <strong>the</strong> structure <strong>of</strong> water network<br />

has not yet been completely understood. As c<strong>on</strong>cerns proteins, <strong>the</strong> typical TSDC spectrum (a plot<br />

<strong>of</strong> <strong>the</strong> depolarizati<strong>on</strong> current as a functi<strong>on</strong> <strong>of</strong> <strong>the</strong> temperature) c<strong>on</strong>sists, as a rule, <strong>of</strong> two main<br />

peaks, generally called Low Temperature (LT) and High Temperature (HT) peak, respectively, <strong>the</strong><br />

former being related to water molecules located in <strong>the</strong> grooves <strong>of</strong> <strong>the</strong> folded structure and <strong>the</strong><br />

latter to <strong>the</strong> external <strong>on</strong>es, decorating <strong>the</strong> polypeptide surface. However, <strong>the</strong> differences in <strong>the</strong><br />

positi<strong>on</strong>, amplitude, and shape <strong>of</strong> <strong>the</strong> two peaks for different proteins are meaningful (see Figure)<br />

and have suggested a novel applicati<strong>on</strong> <strong>of</strong> <strong>the</strong> technique in <strong>the</strong> biophysical field: <strong>the</strong> H2O dipoles,<br />

bel<strong>on</strong>ging to <strong>the</strong> solvati<strong>on</strong> shell, are exploited as probes to gain informati<strong>on</strong> about <strong>the</strong> structural<br />

and c<strong>on</strong>formati<strong>on</strong>al features <strong>of</strong> proteins. On <strong>the</strong>se bases, correlati<strong>on</strong> between TSDC peak<br />

parameters and polypeptide structure has been recently proven for Lysozyme in native and<br />

amyloid form [2]. The present work can be regarded as a survey <strong>of</strong> <strong>the</strong> TSDC spectra recorded for<br />

a number <strong>of</strong> proteins with different structures and c<strong>on</strong>formati<strong>on</strong>s : <strong>the</strong> c<strong>on</strong>tributi<strong>on</strong>s, deriving both<br />

from <strong>the</strong> different sec<strong>on</strong>dary structure and from <strong>the</strong> “preference” <strong>of</strong> water molecules to be bound<br />

at particular sites, are qualitatively distinguished. Complementary FTIR and CD spectra are<br />

measured and <strong>the</strong> results are compared to those already published.<br />

Fig. 1 – TSDC spectra <strong>of</strong> β-lactoglobulin ( ), pepsin ( ) and α-chymotrypsin (----) pellets prepared at<br />

relative humidity h=0.92. Polarizati<strong>on</strong> range (displayed by segment and arrow ): T p=300K, T f = 85K.<br />

References<br />

current / pA<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

50 100 150 200 250 300 350<br />

Temperature /K<br />

[1] M.G. Bridelli, R. Capelletti, F. Maraia, C.Mora and L.Pirola, J. Phys. D: Appl. Phys. 35, 1039-1048 (2002).<br />

[2] M. G. Bridelli and R. Capelletti, <strong>Spectroscopy</strong> 22, 165-176 (2008).<br />

39


Dielectric spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Modulati<strong>on</strong> Instability <strong>of</strong> Patterns in a passive n<strong>on</strong>linear<br />

photorefractive ring oscillator<br />

M. K. MAURYA*, T. K. YADAV AND R. A. YADAV<br />

Lasers and <strong>Spectroscopy</strong> Laboratory, Department <strong>of</strong> physics<br />

Banaras Hindu University, Varanasi-221005, India<br />

*Email: mahendrabhu@gmail.com<br />

The study <strong>of</strong> Modulati<strong>on</strong> instabilities in n<strong>on</strong>linear optical systems has been a very active field <strong>of</strong><br />

research in recent years [1-2]. These instabilities arise from diffracti<strong>on</strong> phenomena affecting <strong>the</strong><br />

light beam as it propagates through <strong>the</strong> n<strong>on</strong>linear medium and lead to <strong>the</strong> appearance <strong>of</strong><br />

n<strong>on</strong>trivial e.g., n<strong>on</strong>-Gaussian structures <strong>of</strong> <strong>the</strong> electromagnetic field in a plane orthog<strong>on</strong>al to <strong>the</strong><br />

directi<strong>on</strong> <strong>of</strong> propagati<strong>on</strong> [3]. From <strong>the</strong> applicati<strong>on</strong> point <strong>of</strong> view, such system can be engineered to<br />

perform as useful devices for switching, storing and manipulating informati<strong>on</strong> [3-5]. We have been<br />

studied <strong>the</strong>oretically, <strong>the</strong> modulati<strong>on</strong> instability and it has been also studied <strong>the</strong> process <strong>of</strong><br />

modulati<strong>on</strong> instability in a temporally incoherent cavity below <strong>the</strong> cavity threshold and also <strong>the</strong><br />

influence <strong>of</strong> various parameters such as cavity length, intensity feedback and spatial frequency <strong>on</strong><br />

<strong>the</strong> gain factor and spectral density have also been studied.<br />

References<br />

[1] T. Carm<strong>on</strong>, H. Buljan, and M. Segev, Opt. Express 12, 3481-3487 (2004).<br />

[2] Hrvoje Buljan, Marin Soljacic, Tal Carm<strong>on</strong>, and Mordechai Segev, Phys.Rev. E 68, 016616 (2003).<br />

[3] F.T. Arecchi, S. Boccaletti and PL. Ramazza, Phy.Rep. 318, 1 (1999)<br />

[4]T. Carm<strong>on</strong>, M. Soljacic, and M. SegevPhy. Rev. Lett. 89, 183902 (2002).<br />

[5]L. A. Lugiato and R. Lefever, Phy.Rev. Lett. 58 ,2209-2211 (1987).<br />

40


DNA & RNA 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

1H NMR studies <strong>on</strong> <strong>the</strong> binding <strong>of</strong> pixantr<strong>on</strong>e<br />

anticancer drug to d(ACGATCGT)2<br />

N. ADNAN 1 , D.P.BUCK 2 AND J. G. COLLINS 2<br />

1. Dept. <strong>of</strong> Physical and Ma<strong>the</strong>matical Sciences, University <strong>of</strong> New South<br />

Wales @ ADFA, Via Northcott Drive, Canberra, 2600, Australia.<br />

The study <strong>of</strong> binding <strong>of</strong> Pixantr<strong>on</strong>e to a range <strong>of</strong> olig<strong>on</strong>ucleotide d(ACGATCGT)2 has been studies<br />

by 1H NMR spectroscopy. The n<strong>on</strong>-exchangeable base and sugar prot<strong>on</strong>s <strong>of</strong> <strong>the</strong> d(ACGATCGT)2<br />

and drug/DNA sample were assigned by <strong>the</strong> combined use <strong>of</strong> <strong>on</strong>e and two dimensi<strong>on</strong>al NMR<br />

spectroscopy[1][2].The additi<strong>on</strong> <strong>of</strong> <strong>the</strong> anticancer drug pixantr<strong>on</strong>e to d(ACGATCGT)2 induced<br />

significant changes in chemical shifts <strong>of</strong> base and sugar res<strong>on</strong>ances <strong>of</strong> <strong>the</strong> res<strong>on</strong>ances from A1, T8,<br />

T5, G7, G3, C2 residues from olig<strong>on</strong>ucleotide.In NOESY spectra <strong>of</strong> olig<strong>on</strong>ucleotide bound with<br />

ei<strong>the</strong>r pixatr<strong>on</strong>e, NOEs were observed from C2H5, C6H5 prot<strong>on</strong>s <strong>of</strong> <strong>the</strong> nucleotides residues. This<br />

result indicate that <strong>the</strong> pixantr<strong>on</strong>e bind at or near <strong>the</strong> C.G in <strong>the</strong> major groove. This result suggests<br />

that <strong>the</strong> pixantr<strong>on</strong>e selectively bind at C.G in <strong>the</strong> major grooves <strong>of</strong> DNA. A model was built for <strong>the</strong><br />

binding <strong>of</strong> pixantr<strong>on</strong>e to d(ACGATCGT)2; drug was inserted manually into <strong>the</strong> free<br />

olig<strong>on</strong>ucleotide, pixantr<strong>on</strong>e intercalates between <strong>the</strong> base pairs <strong>of</strong> G7, G6 and G3, C2 due to absence<br />

<strong>of</strong> NOEs between <strong>the</strong>se pairs.The result presented here suggests that pixantr<strong>on</strong>e may be excellent<br />

diagnostic agents for <strong>the</strong> d(ACGATCGT)2.<br />

Fig. 1<br />

Residue H8/H6 H2 H1' H2' H2'' Methyl<br />

A1 8.10(-0.12) 8.03(-0.14) 6.08 (-0.15) 2.53(-0.1) 2.69(-0.08)<br />

C2 7.34(-0.06) 5.28(-0.09) 2.16(-0.1) 2.32(-0.03)<br />

G3 7.84(-0.06) 5.47(-0.22) 2.62(-0.09) 2.62(-0.09)<br />

A4 8.26(0.04) 7.65(-0.17) 6.19(-0.1) 2.60(-0.05) 2.60(-0.16)<br />

T5 7.06(-0.1) 5.89(-0.04) 1.95(-0.08) 2.39(-0.04) 1.35<br />

C6 7.40(-0.02) 5.73(0) 1.90(-0.05) 2.39(-0.11)<br />

G7 7.90(-0.07) 5.94(-0.13) 2.60(-0.08) 2.70(-0.05) 1.64<br />

T8 7.30(-0.11) 6.16(-0.09) 2.24 (-0.03) 2.24(-0.02) 1.46<br />

1H DNA Assignments <strong>of</strong> <strong>the</strong> DNA res<strong>on</strong>ances at R=2.3 molar ratio pixantr<strong>on</strong>e-c<strong>on</strong>trols DNA-<br />

NOESY (35⁰C)<br />

References<br />

[1] J.G. Collins, Biochemistry. Int., Vol.16. 819-828 (1988).<br />

[2] Belinda S. Parker, Trevor Buley, Ben J. Evis<strong>on</strong>, Suzanne M.Cutts, Greg M.Neumann, Magdy N. Iskander and D<strong>on</strong><br />

R. Phillips, A molecular understanding <strong>of</strong> Mitoxantr<strong>on</strong>e-DNA adducts formati<strong>on</strong>, Department <strong>of</strong> Biochemistry, La<br />

Trobe University, Victoria (2004).<br />

41


DNA & RNA 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Virus + Metalloprotein Electrostatic Assembly<br />

P. NUNES 1 , C.SANTOS 1 , P. EATON 2 AND C. J. CALDEIRA 1<br />

1. REQUIMTE FCTUNL M<strong>on</strong>te de Caparica 2825-516 Caparica, Portugal<br />

2. REQUIMTE FCUP Campo Alegre 4169-007 Porto, Portugal<br />

This work aims to develop and study novel magnetically induced and self-assembly materials. The<br />

applicati<strong>on</strong> <strong>of</strong> external field (electric, mechanic or magnetic) imposed a macroscopic directi<strong>on</strong> to<br />

<strong>the</strong> aut<strong>on</strong>omous organized ensemble <strong>of</strong> molecules. We developed a partially aligned material<br />

based <strong>on</strong> <strong>the</strong> electrostatic assembly <strong>of</strong> Pf1 virus and a metalloprotein (cytochrome c). Pf1 virus can<br />

be magnetically aligned ( > 7 Tesla) in order to produce an aligned matrix. These bacteriophage<br />

has a tubular structure (l=2μm, Ø=6,7 nm) with a single strain DNA inside and a capsid <strong>of</strong> 7620<br />

subunits <strong>of</strong> 46 amino acids (<strong>on</strong>e subunit per DNA Base). The virus surface is str<strong>on</strong>gly negatively<br />

charged (-0,475e/nm 2, pI=4.0), due to <strong>the</strong> presence <strong>of</strong> 3 aspartic acid and no o<strong>the</strong>r charged residues<br />

per subunit. Cytochrome c (horse heart) is a simple protein (12384 Da) with <strong>on</strong>e heme and positive<br />

surface charge (pI = 10.2). Experimentally we have determined a reversible binding between Pf1<br />

bacteriophage and cytochrome c at ~120mM <strong>of</strong> amm<strong>on</strong>ium acetate pH 6,8 at 25ºC with a specific<br />

stochiometry producing a neutrally charged complex. This complex was characterized by Atomic<br />

Force Microscopy (Figure 1), Dynamic Light Scattering, Zeta Potential, Diffusi<strong>on</strong>-Ordered<br />

Nuclear Magnetic <strong>Spectroscopy</strong>, and <strong>the</strong>rmodynamic statistical M<strong>on</strong>te Carlo simulati<strong>on</strong>s. This<br />

work is supported by POCTI/QUI/58973/2004 FCT – MCTES.<br />

Fig. 1 Assembly <strong>of</strong> Pf1 bactriophage and cytochrome c observed in a liquid cell AFM.<br />

References<br />

[1] L. Makowski, D.L. Caspar and D.A. Marvin,. J. Mol. Biol. 140,149–181. (1980).<br />

[2] Pil J. Yoo, Ki Tae Nam,Angela M. Belcher, and Paula T. Hamm<strong>on</strong>d, Nanoletters, 8 1081-1089, (2008).<br />

[3] Nam, K. T., Kim, D. W., Yoo, P. J., Chiang, C. Y., Meeth<strong>on</strong>g, N., Hamm<strong>on</strong>d, P. T., Chang, Y. M., Belcher, A. M.<br />

Science, 312, 885-888, (2006).<br />

[4] Yoo, P.J., Nam, K., Qi, J., Lee, S.K., Park, J., Belcher, A.M., Hamm<strong>on</strong>d, P.T., Nature Materials,5, 234-240. (2006).<br />

[5] J. Caldeira, J. L. Figueirinhas, C. Santos and M. H. Godinho J. Mag. Res<strong>on</strong>an., 170, 213-219, (2004).<br />

[6] Marie Adams, Zv<strong>on</strong>imir Dogic, Sarah L. Keller , Seth Fraden. Nature, 393, 349-352, (1998).<br />

42


DNA & RNA 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

SEIRA markers <strong>of</strong> DNA c<strong>on</strong>densati<strong>on</strong>s by La 3+ i<strong>on</strong>s.<br />

G. DOVBESHKO1 , O. FESENKO 1, O. GNATIUK1, B. DRIBINSKY 2 AND N. KASYANENKO 2<br />

1. Institute <strong>of</strong> physics <strong>of</strong> Nati<strong>on</strong>al Academy <strong>of</strong> Science <strong>of</strong> Ukraine, 46<br />

Prospect Nauki, Kiev 03028, Ukraine.<br />

2. Dept. <strong>of</strong> Physics, Saint-Petersburg State University, 7-9<br />

Universitetskaya nab., Saint-Petersburg 199034, Russia.<br />

Spectroscopic features <strong>of</strong> DNA c<strong>on</strong>dense by La 3+ from aqueous soluti<strong>on</strong> was studied by SEIRA<br />

(Surface enhanced infrared absorpti<strong>on</strong>) spectroscopy and AFM methods. C<strong>on</strong>centrati<strong>on</strong> <strong>of</strong> La<br />

changes from 2*10 -6 M to 5*10 -5 M. The c<strong>on</strong>formati<strong>on</strong> states <strong>of</strong> DNA during <strong>the</strong> processes <strong>of</strong><br />

c<strong>on</strong>densati<strong>on</strong> could be characterized as B-form. The positi<strong>on</strong> <strong>of</strong> antisymmetrical phosphate band in<br />

c<strong>on</strong>dense DNA equals to 1224-1229 cm -1. We have registered <strong>the</strong> increase intensity about two times<br />

for both vibrati<strong>on</strong> <strong>of</strong> phosphates and bases, as well as increase <strong>of</strong> shoulder <strong>of</strong> band resp<strong>on</strong>sible <strong>of</strong><br />

base paring in <strong>the</strong> regi<strong>on</strong> <strong>of</strong> 1710-1700 cm -1. A number <strong>of</strong> water molecules per nucleotide decreases<br />

in c<strong>on</strong>dense state <strong>of</strong> DNA for all La c<strong>on</strong>centrati<strong>on</strong> about two times and maximum <strong>of</strong> stretching<br />

vibrati<strong>on</strong> <strong>of</strong> NH-OH band shifts in high frequency regi<strong>on</strong> from 3360 to 3400 cm -1. Under <strong>the</strong><br />

smallest c<strong>on</strong>centrati<strong>on</strong> <strong>of</strong> La <strong>the</strong> Z – form <strong>of</strong> sugar-phosphate backb<strong>on</strong>e is registered and <strong>the</strong>n<br />

under more La c<strong>on</strong>centrati<strong>on</strong> it c<strong>on</strong>verted in B-form. La improves an ordering in double helix<br />

structure.<br />

Acknowledgments. The authors are grateful for <strong>the</strong> support to this research by Ukraine<br />

program “Nanostructured Systems, Nanomaterials, Nanotechnology”.<br />

References<br />

Absorpti<strong>on</strong><br />

2,0<br />

1,8<br />

1,6<br />

1,4<br />

1,2<br />

1,0<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

0,0<br />

1800 1700 1600 1500 1400 1300 1200 1100 1000 900 800<br />

Wavenumber, cm -1<br />

43<br />

La 2*10-6<br />

La 8*10-6<br />

La 2*10-5<br />

La 5*10-5<br />

контроль<br />

Fig. 1 – SEIRA spectra <strong>of</strong> DNA in <strong>the</strong> regi<strong>on</strong> 1800-800 cm -1 .<br />

Spectra are normalized according to band at 3400 cm -1 .<br />

[1] G. I. Dovbeshko, O. P. Gnatyuk, V. I. Chegel, Y. M. Shirshov, D. V. Kosenkov, E. A. Andreev, H. A. Tajmir-Riahi, P.<br />

Litvin, Semic<strong>on</strong>ductor physics, quantum electr<strong>on</strong>ics & optoelectr<strong>on</strong>ics 7 (3), 318-325 (2004).<br />

[2] V.A. Bloomfield, Current Opini<strong>on</strong> in Structural Biology, 6, 334–341 (1996).


DNA & RNA 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Pyrene-modified RNA – c<strong>on</strong>formati<strong>on</strong> and dynamics<br />

U. FOERSTER 1 , C. GRUENEWALD 2 , J.W. ENGELS 2 AND J. WACHTVEITL 1<br />

1. Institute <strong>of</strong> Biophysics, Goe<strong>the</strong>-University, Frankfurt, Max-v<strong>on</strong>-Laue-<br />

Str. 1 , 60438 Frankfurt, Germany<br />

2.Institute <strong>of</strong> Organic Chemistry and Chemical Biology, Goe<strong>the</strong>-<br />

University, Frankfurt, Max-v<strong>on</strong>-Laue-Str. 7, 60438 Frankfurt, Germany<br />

We present <strong>the</strong> photophysics <strong>of</strong> pyrene-modified RNA examined by several ultrafast spectroscopic<br />

techniques. Attached to <strong>the</strong> 2-positi<strong>on</strong> <strong>of</strong> <strong>the</strong> adenine base, pyrene has proven to be a useful<br />

marker to m<strong>on</strong>itor <strong>the</strong> structure and dynamics <strong>of</strong> RNA. Singly and doubly modified strands as<br />

well as <strong>the</strong> pyrene modified adenine have been studied via time resolved absorpti<strong>on</strong> and<br />

fluorescence spectroscopy. The measurements showed a complex photophysical behavior <strong>of</strong> <strong>the</strong><br />

label, indicative for a structured excited state leading to several decay. The pyrene-adenine<br />

photophysics is solvent dependent and influenced by <strong>the</strong> sequence <strong>of</strong> <strong>the</strong> adjacent nucleobases[1].<br />

Doubly modified RNA was prepared in a way, that a pyrene was attached to each strand <strong>of</strong> a<br />

duplex, allowing <strong>the</strong> two dyes to approach each o<strong>the</strong>r closely enough for excimer interacti<strong>on</strong> up<strong>on</strong><br />

hybridizati<strong>on</strong>[2]. A detailed study <strong>of</strong> <strong>the</strong> melting process <strong>of</strong> singly and doubly modified RNA<br />

duplexes revealed details about <strong>the</strong> unfolding dynamics <strong>of</strong> <strong>the</strong> RNA strands as well as structural<br />

informati<strong>on</strong> c<strong>on</strong>cerning <strong>the</strong> pyrene label. Time-resolved studies <strong>of</strong> <strong>the</strong> doubly modified RNA<br />

showed a coexistence <strong>of</strong> m<strong>on</strong>omer and exciplex states <strong>of</strong> <strong>the</strong> pyrene label.<br />

References<br />

Fig. 1 Left: Fluorescence upc<strong>on</strong>versi<strong>on</strong> <strong>of</strong> <strong>the</strong> pyrene-modified base<br />

in isopropanol at two different excitati<strong>on</strong> wavelengths. The data<br />

show an excitati<strong>on</strong> energy dependent decay from a higher excited<br />

state into <strong>the</strong> fluorescent state. Right: Melting curve <strong>of</strong> doubly<br />

pyrene-modified RNA. Evaluati<strong>on</strong> <strong>of</strong> fluorescence wavelength<br />

corresp<strong>on</strong>ds to a loss <strong>of</strong> <strong>the</strong> pyrene-pyrene interacti<strong>on</strong>, which<br />

happens earlier than <strong>the</strong> melting <strong>of</strong> <strong>the</strong> whole RNA strand, that<br />

causes a change in fluorescence intensity.<br />

[1] U. Foerster, C. Gruenewald, J.W. Engels, J. Wachtveitl, submitted (<strong>2009</strong>)<br />

[2] C. Gruenewald, T. Kw<strong>on</strong>, N. Pit<strong>on</strong>, U. Foerster, J. Wachtveitl, J.W. Engels, Bioorg. Med. Chem 16, 19-26 (2008).<br />

44


DNA & RNA 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

FRET and pulsed EPR spectroscopies to investigate<br />

biochemical and structural features <strong>of</strong> DNA lesi<strong>on</strong>s<br />

D. GASPARUTTO 1 , M. FLAENDER 1 , S. GAMBARELLI 2 AND G. SICOLI 2<br />

1. Lab. Lési<strong>on</strong>s Acides Nucléiques and<br />

2. Lab. Rés<strong>on</strong>ances Magnétiques, SCIB – UMR E3 CEA-UJF-CNRS / INAC / CEA Grenoble, 17 avenue des<br />

Martyrs 38054 Grenoble, France<br />

DNA is <strong>the</strong> target <strong>of</strong> several endogenous and exogenous processes that give rise to a large set <strong>of</strong> DNA<br />

lesi<strong>on</strong>s that include base modificati<strong>on</strong>s, base losses, cross-links and strand-breaks. Such genetic alterati<strong>on</strong>s if<br />

not repaired are able to evolve in lethal and mutagenic events during DNA replicati<strong>on</strong> and transcripti<strong>on</strong><br />

steps. To determine <strong>the</strong> toxicity and <strong>the</strong> reparability <strong>of</strong> <strong>the</strong> different DNA lesi<strong>on</strong>s, we have developed new<br />

tools c<strong>on</strong>sisting in DNA fragments that c<strong>on</strong>tain a selective lesi<strong>on</strong> at a defined site toge<strong>the</strong>r with fluorescent<br />

or nitroxide dyes. Such double-stranded modified DNA probes have been used in FRET- or pulsed EPRbased<br />

spectroscopic studies to evaluate <strong>the</strong> structural modificati<strong>on</strong>s and <strong>the</strong> reparability <strong>of</strong> <strong>the</strong> targeted DNA<br />

lesi<strong>on</strong>s. The FRET-based probes c<strong>on</strong>taining a lesi<strong>on</strong> were labelled with a fluorophore and a quencher (Fig.<br />

part (A)) and <strong>the</strong>n used as substrates for DNA repair enzymes. The fragments resulting from <strong>the</strong> cleavage at<br />

<strong>the</strong> lesi<strong>on</strong> site are rapidly separated from each o<strong>the</strong>r because <strong>of</strong> <strong>the</strong>ir low melting temperatures.<br />

C<strong>on</strong>sequently, <strong>the</strong> excisi<strong>on</strong> <strong>of</strong> <strong>the</strong> lesi<strong>on</strong> from <strong>the</strong> DNA leads to an irreversible fluorescent enhancement. This<br />

c<strong>on</strong>stitutes <strong>the</strong> basis for a quantitative analysis <strong>of</strong> DNA repair activities [1, 2]. Regarding <strong>the</strong> pulsed EPR<br />

approach, double electr<strong>on</strong>-electr<strong>on</strong> res<strong>on</strong>ance (DEER) was applied to determine nanometre spin-spin<br />

distances <strong>on</strong> DNA duplexes that c<strong>on</strong>tain selected structural alterati<strong>on</strong>s (Fig., part(B)). The lesi<strong>on</strong>-induced<br />

c<strong>on</strong>formati<strong>on</strong>al changes observed are c<strong>on</strong>sistent with previous results obtained by NMR and<br />

crystallographic methods, and prove <strong>the</strong> capability for pulsed EPR to probe structural modificati<strong>on</strong>s within<br />

damaged DNA [3]. Finally, <strong>the</strong> results obtained with such DNA biosensors coupled with advanced<br />

spectroscopy methods are powerful to assess <strong>the</strong> biological significance <strong>of</strong> DNA alterati<strong>on</strong>s and <strong>the</strong>n better<br />

understand <strong>the</strong>ir potential implicati<strong>on</strong>s in mutagenic and carcinogenic processes.<br />

(A)<br />

Strand cleavage<br />

by repair enzyme<br />

(at <strong>the</strong> damaged site)<br />

Fig. 1 Principle <strong>of</strong> <strong>the</strong> FRET-based DNA repair assay (A) and <strong>the</strong> pulsed EPR approach (B)<br />

developed to evaluate biological and structural features <strong>of</strong> DNA lesi<strong>on</strong>s.<br />

References<br />

Fluorescence<br />

quenching or not<br />

(On/Off probe)<br />

[1] A. Chollat-Namy et al., Chemistry <strong>of</strong> Nucleic Acid Comp<strong>on</strong>ents- Coll. Symp. Series (2005)<br />

[2] D. Jary et al., Nanotech. (2006)<br />

[3] G. Sicoli et al., Nucleic Acids Research (<strong>2009</strong>)<br />

45<br />

(B)<br />

Damaged site<br />

Interspin distance<br />

measurements<br />

by EPR


DNA & RNA 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Circular dichroism and c<strong>on</strong>formati<strong>on</strong>al<br />

polymorphism <strong>of</strong> DNA<br />

I. KEJNOVSKÁ, M. VORLÍČKOVÁ, D. RENČIUK AND J. KYPR<br />

Institute <strong>of</strong> Biophysics, v. v. i. Academy <strong>of</strong> Sciences <strong>of</strong> <strong>the</strong> Czech Republic, Královopolská 135, CZ-<br />

612 65, Brno, Czech Republic<br />

Circular dichroism (CD) spectroscopy is a very effective method for DNA c<strong>on</strong>formati<strong>on</strong>al studies<br />

[1,2]. C<strong>on</strong>formati<strong>on</strong>al properties <strong>of</strong> DNA include <strong>the</strong> B-family <strong>of</strong> structures, A-form, Z-form,<br />

guanine quadruplexes, cytosine quadruplexes, triplexes and o<strong>the</strong>r less characterized structures [3-<br />

5]. CD spectroscopy is extremely sensitive and relatively inexpensive. This fast and simple method<br />

can be used at low as well as high DNA c<strong>on</strong>centrati<strong>on</strong>s and with short as well as l<strong>on</strong>g DNA<br />

molecules. The samples can easily be titrated with various agents to cause c<strong>on</strong>formati<strong>on</strong>al<br />

isomerizati<strong>on</strong>s <strong>of</strong> DNA. The course <strong>of</strong> detected CD spectral changes makes possible to distinguish<br />

between gradual changes within a single DNA c<strong>on</strong>formati<strong>on</strong> and cooperative isomerizati<strong>on</strong>s<br />

between discrete structural states. It enables measuring kinetics <strong>of</strong> <strong>the</strong> appearance <strong>of</strong> particular<br />

c<strong>on</strong>formers and determinati<strong>on</strong> <strong>of</strong> <strong>the</strong>ir <strong>the</strong>rmodynamic parameters. In careful hands, CD<br />

spectroscopy is a valuable tool for mapping c<strong>on</strong>formati<strong>on</strong>al properties <strong>of</strong> particular DNA<br />

molecules. Due to its numerous advantages, CD spectroscopy significantly participated in all basic<br />

c<strong>on</strong>formati<strong>on</strong>al findings <strong>on</strong> DNA.<br />

Acknowledgements:<br />

The study was granted by Grant Agency <strong>of</strong> <strong>the</strong> Czech Republic (grant 204/07/0057 and 204/00/D012), and Grant<br />

Agency <strong>of</strong> <strong>the</strong> Academy <strong>of</strong> Sciences <strong>of</strong> <strong>the</strong> Czech Republic (grant IAA 500040903 and IAA 100040701).<br />

References<br />

[1] J. Kypr, I. Kejnovská, D. Renčiuk, M. Vorlíčková, Nucleic Acids Res. 37, 1713-1725 (<strong>2009</strong>).<br />

[2] M Vorlíčková, J. Kypr, V. Sklenář, “Nucleic Acids: Spectroscopic methods”, in Encyclopedia <strong>of</strong> Analytical Science,<br />

Sec<strong>on</strong>d Editi<strong>on</strong> edited by P.J. Worsfold, A. Townshend and C.F. Poole, Oxford: Elsevier, 391 (2005).<br />

[3] I. Kejnovská, M. Tůmová, M. Vorlíčková, Biochim. Biophys. Acta 1527, 73-80 (2001).<br />

[4] M. Vorlíčková, J. Chládková, I. Kejnovská, M. Fialová, J. Kypr, Nucleic Acids Res. 33, 5851-5860 (2005).<br />

[5] D. Renčiuk, M. Zemánek, I. Kejnovská, M. Vorlíčková, Biochimie 91, 416-422 (<strong>2009</strong>).<br />

46


DNA & RNA 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Complexati<strong>on</strong> DNA with an anti-cancer drug<br />

M. KLAJNER 1, 2 , C. GAIDDON 3 , C. SIRLIN 4 , P. HEBRAUD 1 AND S. HARLEPP 1<br />

1. I.P.C.M.S.,UMR7504, Université de Strasbourg, Strasbourg, France<br />

2. Institute <strong>of</strong> Physics, Wroclaw University <strong>of</strong> Technology, Wroclaw, Poland<br />

3. INSERM U692-Université de Strasbourg, Signalisati<strong>on</strong>s Moleculaires et<br />

Neurodegenerescence, Strasbourg, France.<br />

4. Unite Mixte de Recherche 7513-Université de Strasbourg, Laboratoire de Syn<strong>the</strong>ses Metallo-<br />

Induites, Strasbourg, France.<br />

Organometallic compounds based <strong>on</strong> Platinum are used as anticancer drugs. Never<strong>the</strong>less, <strong>the</strong>y<br />

exhibit str<strong>on</strong>g sec<strong>on</strong>d side effects, and affect <strong>the</strong> neur<strong>on</strong>al activity. O<strong>the</strong>r new organometallic<br />

derivatives, and am<strong>on</strong>g <strong>the</strong>m those based up<strong>on</strong> Ru<strong>the</strong>nium are good candidates as alternative<br />

anti-cancer drugs. In our presentati<strong>on</strong>, we study <strong>on</strong>e <strong>of</strong> <strong>the</strong>se Ru<strong>the</strong>nium Derived Compounds (1-4)<br />

(RDCs), and show that it exhibits a str<strong>on</strong>g affinity to DNA. Using Förster Res<strong>on</strong>ant Energy<br />

Transfer (FRET), and mechanical stretching <strong>of</strong> a single DNA molecule, we show that <strong>the</strong><br />

complexati<strong>on</strong> <strong>of</strong> DNA with RDC is reversible, measure <strong>the</strong> affinity c<strong>on</strong>stant <strong>of</strong> RDC for DNA and<br />

we lastly probe <strong>the</strong> c<strong>on</strong>formati<strong>on</strong>al changes <strong>on</strong> DNA structure induced by <strong>the</strong> adsorpti<strong>on</strong> <strong>of</strong> RDC.<br />

References<br />

[1] C. Gaidd<strong>on</strong>, P. Jeannequin, P. Bischo, M. Pfeffer, C. Sirlin, J. Loeffler, Journal <strong>of</strong> Pharmacology and Experimental<br />

Therapeutics 315, 1403 (2005).<br />

[2] L. Leyva, C. Sirlin, L. Rubio, C. Franco, R. Le Lagadec, J. Spencer, P. Bischo, C. Gaidd<strong>on</strong>, J.-P. Loeffler, M. Pfeffer,<br />

<str<strong>on</strong>g>European</str<strong>on</strong>g> Journal <strong>of</strong> Inorganic Chemistry, 3055-3066 (2007).<br />

[3] W. H. Ang, E. Daldini, C. Scolaro, R. Scopelliti, L. Juillerat-Jeanneret, P. J. Dys<strong>on</strong>, Inorganic chemistry 45, 9006-<br />

9013 (2006).<br />

[4] R. E. Morris, R. E. Aird, Pdel S. Murdoch, H. Chen, J. Cummings, N. D. Hughes, S. Pars<strong>on</strong>s, A. Parkin, G. Boyd, D.<br />

I. Jodrell, P. J. Sadler, Journal <strong>of</strong> Medical Chemistry 44, 3616–3621 (2001).<br />

[5] J. Weiss, FASEB Journal 11, 835 (1997).<br />

[6] J. Genereux, K. Augustyn, M. Davis, F. Shao, J. Bart<strong>on</strong>, Journal <strong>of</strong> American Chemical Society 130, 15150 (2001).<br />

47


DNA & RNA 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Cisplatin to DNA binding kinetics m<strong>on</strong>itored by<br />

Raman spectroscopy<br />

V. MASEK 1 , P. MOJZES 2 , J. PALACKY 2 AND P. ANZENBACHER 1<br />

1. Dept. <strong>of</strong> Pharmacology, Faculty <strong>of</strong> Medicine and Dentistry, Palacky<br />

University, Hnevotinska 3, Olomouc CZ-77515, Czech Republic<br />

2. Institute <strong>of</strong> Physics, Faculty <strong>of</strong> Ma<strong>the</strong>matics and Physics, Charles<br />

University in Prague, Ke Karlovu 5, Prague 2, CZ-12116, Czech Republic<br />

It is widely accepted that <strong>the</strong> DNA is <strong>the</strong> pharmacological target for anticancer drug cisplatin [1]<br />

and that <strong>the</strong> cytotoxicity <strong>of</strong> cisplatin and o<strong>the</strong>r platinum compounds is primarily determined by<br />

<strong>the</strong>ir DNA adducts [2]. Cisplatin forms covalent b<strong>on</strong>ds preferentially with nucleophilic sites <strong>on</strong><br />

guanine residues present in all DNA. As cisplatin is a bifuncti<strong>on</strong>al agent, it is able to bind to <strong>on</strong>e or<br />

two sites in a DNA chain. Structures, o<strong>the</strong>r physical properties <strong>of</strong> <strong>the</strong>se adducts and <strong>the</strong>ir<br />

recogniti<strong>on</strong> by <strong>the</strong> comp<strong>on</strong>ents <strong>of</strong><br />

downstream cellular systems processing<br />

DNA damage have been intensively<br />

studied [4-6]. In this study we employed<br />

Raman spectroscopy to m<strong>on</strong>itor kinetics<br />

<strong>of</strong> cisplatin binding to model DNA (800bp<br />

l<strong>on</strong>g fragments <strong>of</strong> polynucleotide poly<br />

(dG-dC)*poly (dG-dC) and Escherichia coli<br />

plasmid pUC19, 2686 bp). The set <strong>of</strong> data<br />

was analysed using Factor Analysis<br />

(Singular Value Decompositi<strong>on</strong>) and <strong>the</strong><br />

results show that <strong>the</strong> process <strong>of</strong> cisplatin<br />

to DNA binding cannot be described <strong>on</strong>ly<br />

by two subspectra. It means that Raman<br />

spectroscopy can distinguish phases <strong>of</strong><br />

formati<strong>on</strong> <strong>of</strong> m<strong>on</strong><strong>of</strong>uncti<strong>on</strong>al and<br />

bifuncti<strong>on</strong>al adducts.<br />

Acknowledgement<br />

This work was supported by <strong>the</strong> Academy <strong>of</strong> Sciences <strong>of</strong> <strong>the</strong> Czech Republic (KAN 200200651), <strong>the</strong> Ministry <strong>of</strong><br />

Educati<strong>on</strong> <strong>of</strong> <strong>the</strong> Czech Republic (MSM6198959216 and MSM0021620835), <strong>the</strong> Grant Agency <strong>of</strong> <strong>the</strong> Charles University<br />

in Prague (204/2006/B-FYZ/MFF) and <strong>the</strong> Grant Agency <strong>of</strong> <strong>the</strong> Czech Republic (203/07/0717).<br />

References<br />

[1] N. P. Johns<strong>on</strong>, J.-L. Butour, G. Villani, F. L. Wimmer, M. Defais, V. Piers<strong>on</strong>, and V. Brabec, Metal antitumor<br />

compounds: The mechanism <strong>of</strong> acti<strong>on</strong> <strong>of</strong> platinum complexes, Prog. Clin. Biochem. Med. 10 (1989) 1-24.<br />

[2] V. Brabec, DNA modificati<strong>on</strong>s by antitumor platinum and ru<strong>the</strong>nium compounds: <strong>the</strong>ir recogniti<strong>on</strong> and repair, Prog.<br />

Nucleic Acid Res. Mol. Biol. 71 (2002) 1-68.<br />

[4] S. M. Cohen, and S. J. Lippard, Cisplatin: From DNA damage to cancer chemo<strong>the</strong>rapy, Prog. Nucleic Acid Res. Mol.<br />

Biol. 67 (2001) 93-130.<br />

[5] M. A. Fuertes, C. Al<strong>on</strong>so, and J. M. Perez, Biochemical modulati<strong>on</strong> <strong>of</strong> cisplatin mechanisms <strong>of</strong> acti<strong>on</strong>: Enhancement<br />

<strong>of</strong> antitumor activity and circumventi<strong>on</strong> <strong>of</strong> drug resistance, Chem. Rev. 103 (2003) 645-662.<br />

[6] D. Wang, and S. J. Lippard, Cellular processing <strong>of</strong> platinum anticancer drugs, Nature Reviews Drug Discovery 4<br />

(2005) 307-320.<br />

48


DNA & RNA 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

The influence <strong>of</strong> nitric oxide <strong>on</strong> DNA glycosylase-MutY<br />

S.MĘCZYŃSKA-WIELGOSZ, J. SADŁO AND M. KRUSZEWSKI<br />

Institute <strong>of</strong> Nuclear Chemistry and Technology, 16 Dorodna Str,<br />

Warsaw, 03-195 Poland<br />

The nitric oxide (NO ●) is a very reactive molecule produced in biological systems from <strong>the</strong> arginine<br />

by synthases <strong>of</strong> <strong>the</strong> nitric oxide. The nitric oxide and his derivatives can directly affect<br />

macromolecules appearing in cells , eg. <strong>on</strong> proteins and DNA. The nitric oxide can also influence<br />

indirectly <strong>on</strong> homeostasis <strong>of</strong> <strong>the</strong> cell, bearing <strong>on</strong> <strong>the</strong> expressi<strong>on</strong> <strong>of</strong> genes, <strong>the</strong> activity <strong>of</strong> proteins or<br />

upsetting <strong>the</strong> i<strong>on</strong>ic balance. One <strong>of</strong> postulated mechanisms <strong>of</strong> <strong>the</strong> influence <strong>of</strong> <strong>the</strong> nitric oxide <strong>on</strong><br />

proteins is freeing <strong>of</strong> i<strong>on</strong>s <strong>of</strong> ir<strong>on</strong> from ir<strong>on</strong>-sulphur clusters, which are sensitive to <strong>the</strong> activity <strong>of</strong><br />

free radicals. Proteins c<strong>on</strong>taining ir<strong>on</strong> universally appear in living organisms. An example <strong>of</strong> such<br />

proteins are DNA glycosylases, enzymes participating in <strong>the</strong> repair DNA with <strong>the</strong> excisi<strong>on</strong> <strong>of</strong> <strong>the</strong><br />

base and preventing genotoxic and mutagenic results <strong>of</strong> <strong>the</strong> formati<strong>on</strong> <strong>of</strong> oxidized bases. Some<br />

glycosylases, eg. end<strong>on</strong>uclease III and <strong>the</strong> MutY protein and <strong>the</strong>ir mammiferous homologues,<br />

c<strong>on</strong>tains ir<strong>on</strong>-sulphur cluster [4Fe-4S]. MutY protein, <strong>on</strong>e <strong>of</strong> <strong>the</strong> enzymes, so called „<strong>the</strong> GO<br />

system”, preventing to disadvantageous results <strong>of</strong> <strong>the</strong> formati<strong>on</strong> 8-oxoguanine. As c<strong>on</strong>trasted with<br />

o<strong>the</strong>r DNA glycosylases, <strong>the</strong> MutY protein removes mismatched, but undamaged adenine from 8oxoguanine:adenine<br />

mispairs. The MutY protein c<strong>on</strong>tains [4Fe-4S] ir<strong>on</strong>-sulphur cluster<br />

coordinated by cysteines. The cluster c<strong>on</strong>fers a sec<strong>on</strong>dary structure <strong>of</strong> <strong>the</strong> enzyme and is probably<br />

resp<strong>on</strong>sible for <strong>the</strong> regulati<strong>on</strong> <strong>of</strong> its activity. Recent research showed that <strong>the</strong> nitric oxide and its<br />

oxidized derivatives, i.e.peroxynitrite, can knock out <strong>the</strong> ir<strong>on</strong>-sulphur cluster from proteins or to<br />

form dinitrosyl ir<strong>on</strong> complexes (DNIC) c<strong>on</strong>taing such clusters. This modificati<strong>on</strong> causes<br />

c<strong>on</strong>formati<strong>on</strong>al changes <strong>of</strong> <strong>the</strong> protein and likely changes or inhibits its biological activity. In<br />

presented work we examined <strong>the</strong> influence <strong>of</strong> <strong>the</strong> nitric oxide <strong>on</strong> <strong>the</strong> c<strong>on</strong>formati<strong>on</strong> and <strong>the</strong> activity<br />

<strong>of</strong> <strong>the</strong> MutY protein. We explored <strong>the</strong> interacti<strong>on</strong>s <strong>of</strong> <strong>the</strong> nitric oxide and its derivatives with ir<strong>on</strong>sulphur<br />

cluster in vitro and in vivo by means <strong>of</strong> EPR, UV/VIS spectroscopy and its influence <strong>on</strong><br />

biological activity <strong>of</strong> MutY. We showed that treating <strong>of</strong> E.coli producing MutY, DEANO (nitric<br />

oxide d<strong>on</strong>or) causes <strong>the</strong> formati<strong>on</strong> <strong>of</strong> <strong>the</strong> dinitrosyl ir<strong>on</strong> complexes which disappear during <strong>the</strong><br />

isolati<strong>on</strong> <strong>of</strong> <strong>the</strong> protein from <strong>the</strong>se bacteria. Native MutY protein has a typical UV-Vis absorpti<strong>on</strong><br />

spectrum <strong>of</strong> an oxidized [4Fe-4S] cluster with a major absorpti<strong>on</strong> peak at 419 nm The absorpti<strong>on</strong><br />

peak at 419 nm has been attributed to <strong>the</strong> thiolate-to-ir<strong>on</strong> charge transfer transiti<strong>on</strong>s <strong>of</strong> <strong>the</strong> [4Fe-4S]<br />

clusters. Treating <strong>of</strong> <strong>the</strong> MutY protein with different c<strong>on</strong>centrati<strong>on</strong>s <strong>of</strong> <strong>the</strong> nitric oxide did not<br />

cause <strong>the</strong> disappearance <strong>the</strong> absorpti<strong>on</strong> peak characteristic for <strong>the</strong> ir<strong>on</strong>-sulphur cluster. We<br />

compared also <strong>the</strong> biological activity <strong>of</strong> native protein and isolated from bacteria treated nitric<br />

oxide d<strong>on</strong>or. Nitric oxide treatment (50 micromoles) diminish <strong>the</strong> activity <strong>of</strong> native MutY protein<br />

in vitro , however <strong>the</strong> activity <strong>of</strong> <strong>the</strong> protein isolated from bacteria treated 50 micromolar nitric<br />

oxide remains unchanged.<br />

49


DNA & RNA 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Structure <strong>of</strong> a 25mer HCV RNA studied by Raman<br />

spectroscopy<br />

P. CARMONA 1 , M. MOLINA 2 AND A. RODRIGUEZ-CASADO 3<br />

1. Instituto de Estructura de la Materia (CSIC), Serrano 121, 28006 Madrid, Spain.<br />

2. Departamento de Química Orgánica I, Escuela Universitaria de Óptica, 28037 Madrid, Spain.<br />

3. IMDEA Alimentación, 28049 Madrid, Spain<br />

Hepatitis C virus (HCV) is an RNA virus that causes acute and chr<strong>on</strong>ic liver disease in humans,<br />

including chr<strong>on</strong>ic hepatitis, cirrhosis, and hepatocellular carcinoma [1]. The HCV genome is a<br />

single-stranded RNA molecule <strong>of</strong> positive polarity which c<strong>on</strong>tains a highly c<strong>on</strong>served 5’<br />

untranslated regi<strong>on</strong> (5’UTR) <strong>of</strong> 341 nucleotides in length. We carried out here <strong>the</strong> Raman analysis<br />

<strong>of</strong> an HCV RNA 25mer (1-25 nucleotides) comprising <strong>the</strong> domain I <strong>of</strong> <strong>the</strong> 5’UTR, in aqueous and<br />

heavy water soluti<strong>on</strong>. The intensity ratio (R) 1.25 obtained <strong>of</strong> lines near 810 cm -1 (diester OPO<br />

stretching vibrati<strong>on</strong>) and 1100 cm -1 (PO2 - symmetric stretching vibrati<strong>on</strong>) in Raman spectra is an<br />

indicati<strong>on</strong> that around 76% <strong>of</strong> <strong>the</strong> bases in this HCV RNA are ordered (with <strong>the</strong> C3’-endo/anti<br />

rib<strong>of</strong>uranose pucker), and A-form sec<strong>on</strong>dary structure is found to be predominant. The Raman<br />

data show that some uridine and guanosine nucleoside can adopt C2’-endo/anti c<strong>on</strong>formati<strong>on</strong>s,<br />

which are characteristic <strong>of</strong> <strong>the</strong> backb<strong>on</strong>e B-form, and C3’-endo/syn c<strong>on</strong>formati<strong>on</strong>s respectively. This<br />

can be attributable to positi<strong>on</strong>s where chain foldings switch abruptly from helical to looped. The<br />

analysis <strong>of</strong> <strong>the</strong> D2O soluti<strong>on</strong> Raman spectrum through curve fitting, in <strong>the</strong> C=O regi<strong>on</strong>, to a sum <strong>of</strong><br />

Gaussians representing paired and unpaired structures indicate that 6 out <strong>of</strong> 9 guanine residues<br />

are Wats<strong>on</strong>-Crick base paired. The spectral data suggest that this HCV RNA 25mer sequence<br />

adopts a hairpin form whose sec<strong>on</strong>dary structure is c<strong>on</strong>sistent with that proposed <strong>on</strong> <strong>the</strong> basis <strong>of</strong><br />

phylogenetic comparis<strong>on</strong>s whit o<strong>the</strong>r viral RNAs [2].<br />

References<br />

Raman Intensity/Arbitr. Units<br />

1705<br />

1599<br />

1575<br />

1530<br />

1482<br />

1600 1400 1200 1000 800 600<br />

Wavenumber/cm -1<br />

Fig. 1 – Raman spectrum <strong>of</strong> <strong>the</strong> 25mer HCV RNA in H 2O buffer.<br />

[1] F. Penin, J. Dubuiss<strong>on</strong>, F.A. Rey D. Moradpour, J.M. Pawlotsky. Hepatology, 39, 5-19 (2004)<br />

[2] M. Kunkel, M. Lorinczi, R. Rijnbrand, S.M. Lwm<strong>on</strong>, S.J. Watowich, J. Virol, 75, 2119-2129 (2001).<br />

1368<br />

1416<br />

1317<br />

1250<br />

50<br />

1098<br />

1043<br />

983<br />

921<br />

867<br />

812<br />

783<br />

724<br />

668<br />

629


DNA & RNA 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Dimeric structure <strong>of</strong> quadruplex-forming thrombinbinding<br />

aptamer in complexes with cati<strong>on</strong>ic porphyrin<br />

J. PALACKÝ AND P. MOJZEŠ<br />

Institute <strong>of</strong> Physics, Faculty <strong>of</strong> Ma<strong>the</strong>matics and Physics, Charles<br />

University in Prague, Ke Karlovu 5, Prague 2, CZ-12116, Czech Republic<br />

Guanine quadruplexes are structurally interesting inter- or intramolecular four-stranded DNA<br />

structures with biological and technological importance [1]. Depending <strong>on</strong> <strong>the</strong> olig<strong>on</strong>ucleotide<br />

sequence and physico-chemical c<strong>on</strong>diti<strong>on</strong>s, wide range <strong>of</strong> G-qaudruplexes with different<br />

stoichiometry, topology and structural features can be formed. Despite numerous studies, certain<br />

ambiguities and discrepancies still exist even about structures <strong>of</strong> <strong>the</strong> most frequently studied<br />

quadruplexes, notably if determined by various experimental methods at diametrically different<br />

c<strong>on</strong>diti<strong>on</strong>s. For instance, <strong>the</strong> thrombin-binding aptamer 5’-d(GGTTGGTGTGGTTGG)-3’ (TBA),<br />

generally taken as a prototype <strong>of</strong> a chair-type intramolecular quadruplex [1], was recently<br />

suggested to exist as a bimolecular complex in aqueous soluti<strong>on</strong>s [2]. Present work reports certain<br />

hints in favor <strong>of</strong> dimerizati<strong>on</strong> or bimolecular nature <strong>of</strong> TBA quadruplexes in aqueous soluti<strong>on</strong>s, as<br />

deduced from structural features <strong>of</strong> <strong>the</strong> TBA complexes with tetracati<strong>on</strong>ic Cu 2+-5,10,15,20-tetrakis-<br />

[4-(N-methylpyridyl)]-porphine (CuTMPyP4). Structure and <strong>the</strong>rmal stability <strong>of</strong> <strong>the</strong> TBA<br />

olig<strong>on</strong>ucleotide and <strong>of</strong> its complexes with CuTMPyP4 were thoroughly studied under various<br />

c<strong>on</strong>diti<strong>on</strong>s (c<strong>on</strong>centrati<strong>on</strong>, CuTMPyP4/TBA ratio, i<strong>on</strong>ic strength) by a combinati<strong>on</strong> <strong>of</strong> UV-vis<br />

absorpti<strong>on</strong>, CD and Raman spectroscopies in <strong>the</strong> presence <strong>of</strong> three cati<strong>on</strong>s (K +, Na +, Li +) differing<br />

in ability to induce G-quadruplex. It was found that CuTMPyP4 bound to TBA in <strong>the</strong> presence <strong>of</strong> 1<br />

– 100 mM K + displays large c<strong>on</strong>servative CD pr<strong>of</strong>ile within its Soret band (~430 nm), <strong>the</strong> feature<br />

characteristic <strong>of</strong> porphyrin-porphyrin interacti<strong>on</strong>s <strong>on</strong> a chiral matrix reported previously for<br />

CuTMPyP4 complexes with single-stranded poly(dA) [3]. The same effect <strong>of</strong> c<strong>on</strong>siderably lower<br />

extent was observed in <strong>the</strong> presence <strong>of</strong> 100 mM Na + but not with Li +. To relate c<strong>on</strong>sistently selfassociati<strong>on</strong><br />

<strong>of</strong> <strong>the</strong> CuTMPyP4 molecules bound to TBA-quadruplexes with <strong>the</strong> 1:1 complex<br />

stoichiometry reported previously [4], formati<strong>on</strong> <strong>of</strong> a specific binding site accommodating two<br />

porphyrins has been suggested due to dimerisati<strong>on</strong> <strong>of</strong> two intramolecular quadruplexes or<br />

formati<strong>on</strong> <strong>of</strong> an antiparallel bimolecular quadruplex. Melting pr<strong>of</strong>iles based <strong>on</strong> <strong>the</strong> CD spectra<br />

revealed apparently lower <strong>the</strong>rmal stability <strong>of</strong> <strong>the</strong> porphyrin c<strong>on</strong>servative CD features<br />

(Tm~39.6±0.8°C) than <strong>of</strong> <strong>the</strong> quadruplex <strong>on</strong>es (Tm~47.5±0.8°C). In <strong>the</strong> presence <strong>of</strong> 1 - 100 mM K +,<br />

binding <strong>of</strong> <strong>the</strong> CuTMPyP4 has no effect <strong>on</strong> <strong>the</strong> quadruplex <strong>the</strong>rmal stability. On <strong>the</strong> c<strong>on</strong>trary,<br />

binding to <strong>the</strong> Na +-induced quadruplex destabilizes its structure and <strong>the</strong>rmal stability, <strong>the</strong> effect<br />

being much greater at low Na + c<strong>on</strong>centrati<strong>on</strong>. In <strong>the</strong> presence <strong>of</strong> 10 – 100 mM Li +, no spectral signs<br />

<strong>of</strong> quadruplex persisting after additi<strong>on</strong> <strong>of</strong> <strong>the</strong> CuTMPyP4 were found, <strong>the</strong> spectral features <strong>of</strong> <strong>the</strong><br />

complex being c<strong>on</strong>sistent with partial intercalati<strong>on</strong> <strong>of</strong> <strong>the</strong> porphyrin into <strong>the</strong> single-stranded TBA.<br />

References<br />

[1] Quadruplex Nucleic Acids; S. Neidle, S. Balasubramanian (Eds.), RSC Publishing, 2006.<br />

[2] M. Fialova, J. Kypr, M. Vorlickova, Biochem. Biophys. Res. Commun. 344, 50-54 (2006).<br />

[3] R. F. Pasternack, R. A. Brigandini, M. J. Abrams, A. P. Williams, E. J. Gibbs, Inorg. Chem. 29, 4483-4486 (1990).<br />

[4] M. Toro, R. Gargallo, R. Eritja, J. Jaum<strong>on</strong>t, Anal. Biochem. 379, 8-15 (2008).<br />

51


DNA & RNA 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Spectroscopic Characterizati<strong>on</strong> <strong>of</strong> Biologically Active<br />

Complex <strong>of</strong> Mn(II) with 5-Bromouracil<br />

HITESH KUMAR 1 , MEENAKSHI SHARMA 1 , B.K. RAI 2 , J.K. VATS 1 , T.V.S. ARUNMURTHHY 3 , M.<br />

ALCOLEA PALAFOX 4 , AND V.K. RASTOGI 1<br />

1. Department <strong>of</strong> Physics, CCS University, Meerut-250 004, India<br />

2. Department <strong>of</strong> Chemistry, L.N.T. College, Muzaffarpur-842 001 (Bihar), India<br />

3. Department <strong>of</strong> Physics, SSGM College <strong>of</strong> Engineering, Shega<strong>on</strong> (MS), India<br />

4. Departamento de Química-Física I, Facultad de Ciencias Químicas, Universidad<br />

Complutense, Madrid-28040, Spain, alcolea@quim.ucm.es<br />

The structure <strong>of</strong> molecules is primary basis for understanding and predicting <strong>the</strong>ir physical,<br />

chemical, biological and material properties [1]. The essential biological importance <strong>of</strong> uracil and<br />

its derivatives has motivated a number <strong>of</strong> recent studies <strong>on</strong> <strong>the</strong> structure and spectroscopy <strong>of</strong> <strong>the</strong>se<br />

molecules [2, 3]. DNA c<strong>on</strong>tains uncomm<strong>on</strong> nucleotides usually in very small amount. 5bromouracil<br />

is <strong>on</strong>e <strong>of</strong> <strong>the</strong> well known uncomm<strong>on</strong> nucleotide base have <strong>the</strong> ability to bind metal or<br />

to bind to tissues via metals. As <strong>the</strong> metal complexes play an important role in <strong>the</strong> biological<br />

activity <strong>of</strong> drugs, <strong>the</strong>refore in <strong>the</strong> present study, we report <strong>the</strong> isolati<strong>on</strong> and characterizati<strong>on</strong> <strong>of</strong> <strong>the</strong><br />

complex <strong>of</strong> Mn(II) with 5-bromouracil. The metal complex was isolated by mixing <strong>the</strong> hydrated<br />

manganese nitrate soluti<strong>on</strong> (1 ml mole) prepared in ethanol (14 ml)-water (100 ml) mixture and hot<br />

alcoholic soluti<strong>on</strong> <strong>of</strong> 5-bromouracil (1 ml mole). The resulting mixture was heated to about 65 °C<br />

and <strong>the</strong> NaOH was added to adjust <strong>the</strong> pH to about 4-6. The white precipitate <strong>the</strong>n obtained was<br />

filtered, washed several times with ethyl alcohol from <strong>the</strong> same solvent. The residue was dried in<br />

an oven at about 90 °C. The complex formed possesses 1:1 stoichiometry and <strong>the</strong> chemical<br />

compositi<strong>on</strong> corresp<strong>on</strong>ds to molecular formula [Mn(L)(OH)2.3H2O]; L = C4H2N2O2Br. On<br />

comparing <strong>the</strong> spectra (IR, Raman) <strong>of</strong> 5-BrU with <strong>the</strong> spectra <strong>of</strong> its Mn(II) complex it was found<br />

that <strong>the</strong> spectra <strong>of</strong> <strong>the</strong> complex show some bands shifts relative to free 5-BrU in <strong>the</strong> C=O regi<strong>on</strong>.<br />

The intensity <strong>of</strong> some bands also changes. The ν(C4=O) mode, which appears at 1655 cm —1 in<br />

spectra <strong>of</strong> 5-BrU, shifted to lower frequency by ~ 40 cm —1, suggesting that 5-BrU coordinates to<br />

Mn(II) through C4=O group as <strong>the</strong> bands due to ν(C2=O), ν(N-H) and ν(C5-Br) modes remain<br />

almost unaltered. The appearance <strong>of</strong> a b<strong>on</strong>d ~ 350 cm —1 due to ν(M-O)aquo c<strong>on</strong>firms <strong>the</strong> presence <strong>of</strong><br />

coordinated water molecules in <strong>the</strong> complexes. On <strong>the</strong> basis <strong>of</strong> above studies an octahedral<br />

polyatomic structure have been suggested for <strong>the</strong> complex. The polymerizati<strong>on</strong> involves bridging<br />

through OH.<br />

References<br />

[1] P. Pulay, X. Zhou, G. Fogarasi. Recent Experimental and Computati<strong>on</strong>al Advance in Molecular <strong>Spectroscopy</strong>, p-99,<br />

(Kluwer Academic Publishers Ne<strong>the</strong>rlands) (1993).<br />

[2] M.A. Palafox, G. Tardajos, A. Guerrero-Martinez, V.K. Rastogi, D. Mishra, S.P. Ojha, W. Kiefer, Chem. Phys., 340,<br />

1227 (2007).<br />

[3] V.K. Rastogi, M.A. Palafox, L. Mittal, N. Peica, W. Kiefer, K. Lang, S.P. Ojha, J. Raman Spectroc., 38, 1227 (2007).<br />

52


DNA & RNA 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Study <strong>of</strong> influence <strong>of</strong> NIR radiati<strong>on</strong> <strong>on</strong> herring sperm DNA<br />

by ATR-FTIR, UV spectroscopies and DSC<br />

K. SZYMBORSKA-MALEK 1 , B. CZARNIK–MATUSEWICZ 2 AND M. KOMOROWSKA 3<br />

1. Institute <strong>of</strong> Physical and Theoretical Chemistry, Wroclaw University<br />

<strong>of</strong> Technology, Wybrzeze Wyspianskiego 27, Wroclaw, Poland<br />

2. Faculty <strong>of</strong> Chemistry, University <strong>of</strong> Wroclaw, F. Joliot-Curie 14,<br />

Wroclaw, Poland<br />

3. Institute <strong>of</strong> Biomedical Engineering and Instrumentati<strong>on</strong>, Wroclaw<br />

University <strong>of</strong> Technology, Wybrzeze Wyspianskiego 27, Wroclaw,<br />

Poland<br />

Our previous studies let us suppose that <strong>the</strong> Near Infrared (NIR) radiati<strong>on</strong> <strong>of</strong> aqueous soluti<strong>on</strong> <strong>of</strong><br />

biomolecules causes specific modificati<strong>on</strong> <strong>of</strong> water structure in <strong>the</strong>ir vicinity. This hypo<strong>the</strong>sis was<br />

already evidenced both for whole cells (erythrocytes and liposomes) and single molecules<br />

(phenylalanine) [1],[2]. It was postulated that <strong>the</strong> NIR modified water enhances prot<strong>on</strong>ati<strong>on</strong> <strong>of</strong><br />

investigated molecules that facilitates <strong>the</strong>ir aggregati<strong>on</strong> and c<strong>on</strong>formati<strong>on</strong>al changes [3]. The<br />

experimental phenomena were c<strong>on</strong>firmed by <strong>the</strong> results <strong>of</strong> quantum chemical calculati<strong>on</strong>s[4].<br />

Presented results c<strong>on</strong>cern investigati<strong>on</strong> <strong>of</strong> <strong>the</strong> influence <strong>of</strong> <strong>the</strong> NIR radiati<strong>on</strong>, for different time <strong>of</strong><br />

expositi<strong>on</strong>, <strong>on</strong> <strong>the</strong>rmal stability <strong>of</strong> herring sperm DNA. Studied samples were irradiated for<br />

periods <strong>of</strong> 5, 10, and 20 minutes. UV (ultraviolet) and ATR-FTIR (attenuated total reflectance-<br />

Fourier transform infrared) measurements were performed in <strong>the</strong> temperature range from 25 oC to<br />

90 oC to m<strong>on</strong>itor <strong>the</strong> c<strong>on</strong>formati<strong>on</strong>al changes in this biomolecule. Also DSC (differential scanning<br />

calorimetry) data were collected for <strong>the</strong> unirradiated and irradiated samples <strong>of</strong> DNA. The<br />

presented study has provided a new insight into following points:<br />

1. UV melting pr<strong>of</strong>iles show three stages <strong>of</strong> DNA denaturati<strong>on</strong> at T1 (25 – 50 oC), T2 (50 - 70 oC) and<br />

T3 (70 - 95 oC), however <strong>on</strong>ly T2 is sensitive to NIR radiati<strong>on</strong>. Results obtained from DSC<br />

measurements are c<strong>on</strong>sistent with c<strong>on</strong>clusi<strong>on</strong>s gained from <strong>the</strong> UV experiment.<br />

2. PCA (principal comp<strong>on</strong>ents analysis) <strong>of</strong> ATR-FTIR spectra measured in functi<strong>on</strong> <strong>of</strong><br />

temperature and irradiati<strong>on</strong> time also points <strong>the</strong> three stages <strong>of</strong> <strong>the</strong> melting process. Effect <strong>of</strong><br />

short time <strong>of</strong> expositi<strong>on</strong> to NIR differs markedly from c<strong>on</strong>trol, 10, and 20 minutes irradiated<br />

samples.<br />

3. ATR-FTIR spectra allow us to c<strong>on</strong>clude that <strong>the</strong> water activity in <strong>the</strong> base, phosphate and sugar<br />

regi<strong>on</strong> depends <strong>on</strong> NIR radiati<strong>on</strong> period. Short time irradiati<strong>on</strong> (5 min.) modifies mainly<br />

hydrati<strong>on</strong> <strong>of</strong> <strong>the</strong> base and phosphate groups what protects DNA against denaturati<strong>on</strong>. L<strong>on</strong>ger<br />

time <strong>of</strong> expositi<strong>on</strong> to NIR influences dehydrated bases, phosphates and sugar groups what<br />

promotes <strong>the</strong> process <strong>of</strong> denaturati<strong>on</strong>.<br />

References<br />

[1] M. Komorowska, A. Cuissot, A. Czarnoleski, W. Bialas, J. Photochem. Photobiol. B, 6S, 93-100 (2002)<br />

[2] S. Olsztynska, M. Komorowska, N. Dupuy, Appl. Spectrosc., 60(6), 648-652 (2006)<br />

[3] S. Olsztynska, N. Dupuy, L. Vrielynck, M. Komorowska, Appl. Spectrosc., 60(9), 1040-1053 (2006)<br />

[4] S. Olsztynska, K. Szymborska, M. Komorowska, J. Lipinski, Acta Bioeng. Biomech., 10, 45-49 (2008)<br />

53


DNA & RNA 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Where Structural Alterati<strong>on</strong>s Start for <strong>the</strong> Allosteric Mechanism<br />

<strong>of</strong> Catabolite Repressor Protein (Crp); from a M<strong>on</strong>omeric Apo-<br />

Crp Structure or from a Dimer Apo-Crp Structure?<br />

PB<br />

B.A. FAS 1, T. HALILOGLU 1, Y. TUTAR 2<br />

1. Dept. <strong>of</strong> Chemical Engineering, Bogazici University, Bebek, Ýstanbul, 34342<br />

2. Dept. <strong>of</strong> Chemistry, Cumhuriyet University, Merkez, Sivas, 58140, TURKEY<br />

The adaptability <strong>of</strong> cells to its envir<strong>on</strong>ment is essential for viability. Therefore, transcripti<strong>on</strong><br />

initiati<strong>on</strong> mechanism <strong>of</strong> lac oper<strong>on</strong> in E. coli under short glucose supply has been investigated for<br />

over three decades [1, 2]. Here, 80 ns molecular dynamics (MD) simulati<strong>on</strong>s are performed for<br />

each <strong>of</strong> <strong>the</strong> two modeled Catabolite Repressor Protein (CRP) structures: I) m<strong>on</strong>omeric CRP and ii)<br />

dimeric CRP to search for <strong>the</strong> apo c<strong>on</strong>formati<strong>on</strong> <strong>of</strong> CRP. The simulati<strong>on</strong>s suggest that <strong>the</strong><br />

m<strong>on</strong>omeric state is a plausible structure for <strong>the</strong> apo state in comparis<strong>on</strong> with <strong>the</strong> experimental<br />

observati<strong>on</strong>s <strong>of</strong> salt bridge formati<strong>on</strong> and <strong>the</strong> sec<strong>on</strong>dary structure c<strong>on</strong>tent <strong>of</strong> <strong>the</strong> apo form. Also,<br />

<strong>the</strong> hinge movement towards <strong>the</strong> C-proximal domain is observed in <strong>the</strong> simulati<strong>on</strong>s agree with <strong>the</strong><br />

experimental findings. Never<strong>the</strong>less, <strong>the</strong> simulati<strong>on</strong> also suggest that <strong>the</strong> dimerizati<strong>on</strong> stabilizes<br />

<strong>the</strong> domains and <strong>the</strong> associati<strong>on</strong> <strong>of</strong> <strong>the</strong> two domains through <strong>the</strong> DNA binding site. All <strong>the</strong>se with<br />

<strong>the</strong> biochemical data point out that <strong>the</strong> allosteric mechanism <strong>of</strong> transcripti<strong>on</strong> initiati<strong>on</strong> may rely <strong>on</strong><br />

m<strong>on</strong>omer-dimer equilibrium. cAMP binding shifts <strong>the</strong> equilibrium to right and increases specific<br />

DNA binding affinity. On <strong>the</strong> o<strong>the</strong>r hand, protein-DNA complex dissociate by stepwise removal <strong>of</strong><br />

<strong>the</strong> m<strong>on</strong>omers up<strong>on</strong> an increase at local DNA c<strong>on</strong>centrati<strong>on</strong>. Key residues involved in this<br />

mechanism are Glu72,Arg82, and Arg123 [3]. First two residues form a salt bridge and this process<br />

expels Arg123 side chain to solvent at apo state, which is <strong>on</strong>ly observed during <strong>the</strong> m<strong>on</strong>omer<br />

simulati<strong>on</strong>. Up<strong>on</strong> cAMP binding Glu72 forms a salt bridge with Arg123 and Arg82 forms an<br />

interior pair with <strong>the</strong> phosphate oxygen <strong>of</strong> <strong>the</strong> cAMP. In <strong>the</strong> absence <strong>of</strong> cAMP and DNA, Glu72-<br />

Arg123 salt bridge is observed in <strong>the</strong> dimer simulati<strong>on</strong>. Previous mechanisms can not explain<br />

milimolar cAMP c<strong>on</strong>centrati<strong>on</strong> during activati<strong>on</strong> process which is quite different than in vivo<br />

cAMP c<strong>on</strong>centrati<strong>on</strong> however our data provides a plausible model for allostery with in <strong>the</strong> limits<br />

<strong>of</strong> micromolar ligand c<strong>on</strong>centrati<strong>on</strong> [4, unpublished data].<br />

References<br />

[1] Y. Tutar, Cell Biochem Func 26, 399-405 (2008).<br />

[2] S. R. Tomlins<strong>on</strong>, Y. Tutar, J. G. Harman, Biochemistry, 45, 13438-13446 (2006)<br />

[3] Y. Tutar, J. G. Harman, Arch Biochem Biophys 15, 217-223 (2006).<br />

[4] Y. Tutar, Protein J, 27, 21-29, 212 (2007).<br />

54


Nanotechnology 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Simulati<strong>on</strong> <strong>of</strong> dissipative dynamics in light-harvesting<br />

complexes: eliminating fitting parameters from<br />

Redfield equati<strong>on</strong>s<br />

A. S. BELOV, V.V. EREMIN<br />

Chemistry Dept., Moscow State University, Leninskiye Gory 1/3,<br />

Moscow, 119991, Russia<br />

The equati<strong>on</strong>s <strong>of</strong> dissipative dynamics, given by Redfield <strong>the</strong>ory [1], are widely used for modeling<br />

<strong>the</strong> excitati<strong>on</strong> energy or charge transfer in light-harvesting complexes (LHCs), including natural<br />

photosystems. Since Redfield <strong>the</strong>ory is a “system plus reservoir” model, its practical applicati<strong>on</strong><br />

heavily depends <strong>on</strong> <strong>the</strong> availability <strong>of</strong> <strong>the</strong> data <strong>on</strong> <strong>the</strong> so-called spectral density – <strong>the</strong> generalized<br />

properties <strong>of</strong> <strong>the</strong> reservoir. Being an elusive property, <strong>the</strong> spectral density requires n<strong>on</strong>trivial<br />

techniques for its determinati<strong>on</strong> [2]. We propose an improvement <strong>of</strong> <strong>the</strong> comm<strong>on</strong>ly used model,<br />

which allows to overcome this difficulty. We begin with microscopic descripti<strong>on</strong> <strong>of</strong> <strong>the</strong> reservoir,<br />

which is c<strong>on</strong>sidered as a homogeneous isotropic media, filled with harm<strong>on</strong>ically coupled point<br />

charges. After assuming <strong>the</strong> dipole-dipole approximati<strong>on</strong> for all interacti<strong>on</strong>s and averaging with<br />

respect to reservoir coordinates, we arrive at <strong>the</strong> analytical expressi<strong>on</strong> for <strong>the</strong> elements <strong>of</strong> <strong>the</strong><br />

Redfield tensor [3]. This expressi<strong>on</strong> can be linked to <strong>the</strong> vibrati<strong>on</strong>al spectrum <strong>of</strong> <strong>the</strong> reservoir,<br />

which makes it possible to express dynamic rate c<strong>on</strong>stants in terms <strong>of</strong> electr<strong>on</strong>ic and photophysical<br />

properties <strong>of</strong> <strong>the</strong> chromophores within <strong>the</strong> light-harvesting complex. The accuracy <strong>of</strong> <strong>the</strong> proposed<br />

model was checked by comparing calculated rates with those obtained from femtosec<strong>on</strong>d<br />

experiments for <strong>the</strong> LH2 antenna <strong>of</strong> purple bacteria [4-6]. The model was recognized to be valid for<br />

semi-quantitative simulati<strong>on</strong>s. The sources <strong>of</strong> simulati<strong>on</strong> inaccuracies and prospects <strong>of</strong> fur<strong>the</strong>r<br />

development are discussed.<br />

References<br />

[1] U. Weiss, “Quantum Dissipative Dynamics 2 nd editi<strong>on</strong>”, Singapore: World Scientific Publishing Co., 9 (1999)<br />

[2] V. I. Novoderezhkin, M. A. Palacios, H. van Amer<strong>on</strong>gen, and R. van Gr<strong>on</strong>delle J. Phys. Chem. B 108 10363-10375<br />

(2004)<br />

[3] Belov A.S., Eremin V.V. Moscow Univ. Bullet. Chemistry series in press (<strong>2009</strong>)<br />

[4] J. M. Salverda, F. van Mourik, G. van der Zwan, and R. van Gr<strong>on</strong>delle J. Phys. Chem. B 104 11395-11408 (2000)<br />

[5] Y.-Z. Ma, R. J. Cogdell, T. Gillbro J. Phys. Chem. B 101 1087-1095 (1997)<br />

[6] H.-M. Wu, S. Savikhin, N. R. S. Reddy, R. Jankowiak, R. J. Cogdell, W. S. Struve, and G. J. Small J. Phys. Chem.<br />

100 12022-12033 (1996)<br />

55


Nanotechnology 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

Development and validati<strong>on</strong> <strong>of</strong> an improved Oxygen Radical<br />

Absorbance Capacity assay using biomimetic systems<br />

PB<br />

C. M. CASTRO, M. LÚCIO, M. A. SEGUNDO, S. REIS AND J. L. F. C. LIMA<br />

REQUIMTE, Serviço de Química Física, Faculdade de Farmácia da<br />

Universidade do Porto, Rua Aníbal Cunha 164, 4099-033 Porto, Portugal<br />

In <strong>the</strong> past years, <strong>the</strong> importance <strong>of</strong> antioxidants in <strong>the</strong> protecti<strong>on</strong> <strong>of</strong> organisms or tissues has<br />

become evident. This statement is supported by studies performed in a variety <strong>of</strong> areas, including<br />

physiology, pharmacology, nutriti<strong>on</strong> and even food processing [1]. In all <strong>the</strong>se areas <strong>of</strong> research<br />

fast, reliable methods for antioxidant assessment are needed [2]. Generally, <strong>the</strong> ideal method for<br />

determinati<strong>on</strong> <strong>of</strong> antioxidant properties should assess <strong>the</strong> effect <strong>of</strong> a compound/sample in reacti<strong>on</strong><br />

c<strong>on</strong>diti<strong>on</strong>s that mimic those found when oxidative stress is induced in vivo by reactive nitrogen<br />

species (RNS) and reactive oxygen species (ROS). At <strong>the</strong> present moment <strong>the</strong>re is no standard<br />

methodology to fulfill this task [3], but several assays have been proposed to take this role,<br />

including <strong>the</strong> ORAC (Oxygen Radical Absorbance Capacity) assay [4]. This assay is based <strong>on</strong> <strong>the</strong><br />

intensity <strong>of</strong> fluorescence decrease <strong>of</strong> <strong>the</strong> target/probe al<strong>on</strong>g time under reproducible and c<strong>on</strong>stant<br />

flux <strong>of</strong> peroxyl radicals, generated from <strong>the</strong> <strong>the</strong>rmal decompositi<strong>on</strong> <strong>of</strong> 2,2′-azobis(2amidinopropane)<br />

dihydrochloride (AAPH) in aqueous buffer. In <strong>the</strong> presence <strong>of</strong> a sample that<br />

c<strong>on</strong>tains chain-breaking antioxidants, <strong>the</strong> decay <strong>of</strong> fluorescence is inhibited. However, this method<br />

has been criticized as <strong>the</strong> fluorescent probe (fluorescein) does not mimic any target structure found<br />

in vivo. Hence, in order to address this problem and make c<strong>on</strong>diti<strong>on</strong>s more closer to those found in<br />

vivo, biomimetic systems, such as liposomes have been employed [5]. In this case, liposome works<br />

as a model <strong>of</strong> biological membranes, c<strong>on</strong>taining lipids that are also a target for peroxidati<strong>on</strong> from<br />

ROO·. In <strong>the</strong> present work a novel competitive liposome method is compared to <strong>the</strong> c<strong>on</strong>venti<strong>on</strong>al<br />

ORAC method. Assays were performed in a microplate reader and involved <strong>the</strong> additi<strong>on</strong> <strong>of</strong> AAPH<br />

soluti<strong>on</strong> to reacti<strong>on</strong> media c<strong>on</strong>taining fluorescein and antioxidant compound (at different<br />

c<strong>on</strong>centrati<strong>on</strong>s). Multilamellar vesicles prepared from phosphatidylcholine were also added in <strong>the</strong><br />

competitive assay. Preliminary results using Trolox, a water soluble analogue <strong>of</strong> vitamin E, shown<br />

that <strong>the</strong> reacti<strong>on</strong> time, defined as <strong>the</strong> time necessary to attain a value <strong>of</strong> fluorescence intensity<br />

lower than 1% <strong>of</strong> <strong>the</strong> initial value, was significantly higher for <strong>the</strong> competitive assay when<br />

compared to <strong>the</strong> c<strong>on</strong>venti<strong>on</strong>al approach. This is due to <strong>the</strong> lower c<strong>on</strong>centrati<strong>on</strong> <strong>of</strong> ROO· available<br />

to interact with <strong>the</strong> antioxidant compound, as part <strong>of</strong> ROO· is c<strong>on</strong>sumed by <strong>the</strong>ir attack to <strong>the</strong><br />

lipids present in <strong>the</strong> liposome. This was c<strong>on</strong>firmed when analysis time values similar to those<br />

verified in <strong>the</strong> c<strong>on</strong>venti<strong>on</strong>al assay were attained when <strong>the</strong> AAPH c<strong>on</strong>centrati<strong>on</strong> was increased 3<br />

times. Biologically relevant compounds with known antioxidant activity (reduced glutathi<strong>on</strong>e, uric<br />

acid, ascorbic acid) are presently under study by applicati<strong>on</strong> <strong>of</strong> both methodologies, with<br />

evaluati<strong>on</strong> <strong>of</strong> different parameters (area under curve, lag time, slope <strong>of</strong> fluorescein decay, endpoint<br />

time) derived from <strong>the</strong> fluorescence intensity pr<strong>of</strong>ile obtained al<strong>on</strong>g reacti<strong>on</strong> time.<br />

References<br />

[1] B. Halliwell, J.M.C. Gutteridge, Free Radicals in Biology and Medicine, 4 th ed., Oxford: Oxford University Press,<br />

(2007).<br />

[2] L.M. Magalhães, M.A. Segundo, S. Reis, J.L.F.C. Lima, Anal. Chim. Acta 613, 1-19 (2008).<br />

[3] R.L. Prior, X.L. Wu, K. Schaich, J. Agric. Food Chem. 53, 4290-4302 (2005).<br />

[4] A.N. Glazer, Methods Enzymol. 186, 161-168 (1990).<br />

[5] M. Lúcio, H. Ferreira, J.L.F.C. Lima, S. Reis, Anal. Chim. Acta 597, 163-170 (2007).<br />

56


Nanotechnology 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Study Of In-Vitro Release Kinetics And Metabololites<br />

Of A Antidepressant Drug In Ani<strong>on</strong>ic Mceller Media- A<br />

New Approach For Nanotechnology In Medical Science<br />

R JAIN AND A PANDEY<br />

Department <strong>of</strong> Chemistry, Dr. Harisingh Gour University, Sagar, India<br />

Depressi<strong>on</strong> is estimated to affect nearly 340 milli<strong>on</strong> people worldwide and 18 milli<strong>on</strong> people in <strong>the</strong><br />

US at any given time making it <strong>the</strong> third most costly and disabling illness in <strong>the</strong> US. Duloxetine<br />

hydrochloride is <strong>on</strong>e <strong>of</strong> <strong>the</strong> main antidepressant used as a selective serot<strong>on</strong>in and norepinephrine<br />

reuptake inhibitor (SSNRI) for oral administrati<strong>on</strong>. As it works <strong>on</strong> central nervous system (CNS),<br />

drug should be more available to <strong>the</strong> cells. To increase <strong>the</strong> bioavailability and solubility drug can<br />

be formulated with SLS. In this work we propose and analyzed different approaches to study <strong>the</strong><br />

in vitro kinetics dissoluti<strong>on</strong> behavior , major metabolites, and oxidati<strong>on</strong> metabolic pathway in<br />

ani<strong>on</strong>ic miceller media with <strong>the</strong> help <strong>of</strong> Vanadium (V) as an oxidant. The drug obeyed <strong>the</strong> beers<br />

law over <strong>the</strong> range <strong>of</strong> 5-50µg/ml at λmax 230nm . 0.5% SLS in 6.8phasphate buffer is proposed<br />

good discriminative dissoluti<strong>on</strong> media for Duloxitine hydrochloride delayed release formulati<strong>on</strong>.<br />

The quantizati<strong>on</strong> <strong>of</strong> drug release studied by high performance liquid chromatography.( HPLC). By<br />

fitting <strong>the</strong> dissoluti<strong>on</strong> data in various kinetic models find out delayed release formulati<strong>on</strong> <strong>of</strong><br />

Duloxitine hydrochloride obey <strong>the</strong> Higuchi model kinetics having linearity range 0.99 and release<br />

comp<strong>on</strong>ent ‘n’ obtain by <strong>the</strong> Korsmyer Pappas model indicate release mechanism followed by <strong>the</strong><br />

anomalous diffusi<strong>on</strong> process. As far as <strong>the</strong> oxidati<strong>on</strong> <strong>of</strong> Duloxetine is c<strong>on</strong>cerns, no mechanistic<br />

studies have been published. In this study activati<strong>on</strong> parameters for <strong>the</strong> oxidati<strong>on</strong> <strong>of</strong> Duloxetine<br />

by V(V) in both aqueous and micellar medium have been proposed and Duloxetine epoxide is<br />

identified as a oxidati<strong>on</strong> product <strong>of</strong> duloxetine. Its c<strong>on</strong>formed by <strong>the</strong> LC/MS and<br />

Spectrophotometrically.<br />

Keywords: Delayed release, Duloxitine hydrochloride, Ani<strong>on</strong>ic Micelles, Vanadium, HPLC,<br />

LC/MS, Korsmyer Pappas model, UV <strong>Spectroscopy</strong><br />

57


Nanotechnology 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Pourous Nanoparticles formati<strong>on</strong> using a Dendrimer<br />

Template<br />

L. BONACCORSI 1 , D. LOMBARDO 2 , A. LONGO 3 , E. PROVERBIO 1<br />

1. Dipartimento di Chimica Industriale e Ingegneria dei Materiali,<br />

Università Messina, Salita Sper<strong>on</strong>e 31, S. Agata (Messina), I -98166, Italy<br />

2. CNR – IPCF, Istituto per i Processi Chimico Fisici - sez. Messina, C.da<br />

Papardo Salita Sper<strong>on</strong>e, Messina, I-98158, Italy.<br />

3. CNR–ISMN, Istituto per lo studio dei Materiali Nanostrutturati - sez.<br />

Palermo, Via Ugo La Malfa 153, I-90146, Palermo, Italy<br />

Recently <strong>the</strong>re has been increasing interest in <strong>the</strong> syn<strong>the</strong>sis, characterizati<strong>on</strong> and processing <strong>of</strong><br />

novel materials with c<strong>on</strong>trolled structural characteristics [1-5]. Particularly interesting in this<br />

respect is <strong>the</strong> c<strong>on</strong>structi<strong>on</strong> <strong>of</strong> supra-molecular organic-inorganic nanostructured materials based<br />

<strong>on</strong> microporous and nanoporous materials [6]. We describe <strong>the</strong> self-assembly <strong>of</strong> a spherical<br />

complex driven by molecular recogniti<strong>on</strong> and <strong>the</strong> incorporati<strong>on</strong> <strong>of</strong> alluminosilicate in a dendrimer<br />

charged surface. By using a carboxyl-terminated dendrimer species as a macromolecular template<br />

for zeolite formati<strong>on</strong>, we detected <strong>the</strong> formati<strong>on</strong> <strong>of</strong> porous, stable and nearly m<strong>on</strong>odisperse<br />

spherical aggregates with an average radius <strong>of</strong> R=3500 Å. The c<strong>on</strong>densed charge in <strong>the</strong> surface <strong>of</strong><br />

<strong>the</strong> dendrimer, acting as <strong>the</strong> main driving force, influence <strong>the</strong> crystallites aggregati<strong>on</strong> as well as <strong>the</strong><br />

l<strong>on</strong>g-range assembly c<strong>on</strong>diti<strong>on</strong>s for <strong>the</strong> zeolite growth. The main features <strong>of</strong> <strong>the</strong> self-assembly<br />

process has been characterised by means <strong>of</strong> Small Angle X-ray Scattering (SAXS), Scanning<br />

Electr<strong>on</strong> Microscopy (SEM), X-ray Diffract<strong>on</strong> (XRD) and Energy Dispersive X-ray (EDX)<br />

microprobe analysis techniques. The main finding <strong>of</strong> our results suggest a possible mechanism for<br />

nano-aggregates formati<strong>on</strong> based <strong>on</strong> a sec<strong>on</strong>dary aggregati<strong>on</strong> process between (dendrimers-based)<br />

primary units. According to this view <strong>the</strong> growth <strong>of</strong> <strong>the</strong> zeolite <strong>on</strong> <strong>the</strong> dendrimer surface and <strong>the</strong><br />

c<strong>on</strong>sequent screening <strong>of</strong> <strong>the</strong> surface charge promote <strong>the</strong> entanglement process between <strong>the</strong><br />

primary units. This study put novel insight in <strong>the</strong> investigati<strong>on</strong> <strong>of</strong> alternative protocols for <strong>the</strong><br />

assembly mechanism <strong>of</strong> pourous materials [7, 8].<br />

References<br />

[1] (a) C. J. Brinker, G. W. Scherrer, “Sol-Gel Science, The Physics and Chemistry <strong>of</strong> Sol-gel Processing”, Academic<br />

Press, San Diego (1990).<br />

[2].P. Judenstein and C. Sanchez, J. Mater. Chem., 6 (1996) 511-525.<br />

[3] Israelachvili, J. Intermolecular and Surface Forces. L<strong>on</strong>d<strong>on</strong>: Academic; 1991.<br />

[4] D. Lombardo. Langmuir 25(5), 3271-3275, (<strong>2009</strong>).<br />

[5] (a) Lombardo, D.; L<strong>on</strong>go, A.; Darcy, R.; Mazzaglia, A. Langmuir 20, 1057, (2004). (b) D. Lombardo, N. Micali, V.<br />

Villari, M. Kiselev Phys. Rev. E, 70, 21402, (2004). (c) A. Mazzglia, N. Angelini, D. Lombardo, N. Micali, S. Patane,<br />

V. Villari, L. M. Scolaro J. Phys. Chem. B, 109 (15), 7258, (2005).<br />

[6] Velev, O. D.; Tessier, P. M.; Lenh<strong>of</strong>f, A. M.; Kaler, E. W. Nature, 401, 548, (1999)<br />

[7] Barrer R. M. Syn<strong>the</strong>sis <strong>of</strong> zeolites. In: Zeolites. Drzaj B, Hocevar S, Pejovnik S (eds) Elsevier Science Publishers<br />

BV, Amsterdam (1985)<br />

[8] L. B<strong>on</strong>accorsi, D. Lombardo, A. L<strong>on</strong>go, E. Proverbio, A. Triolo. Macromolecules 42(2), 1239-1243 (<strong>2009</strong>).<br />

58


Nanotechnology 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Surface enhanced raman spectroscopy for <strong>the</strong> direct<br />

detecti<strong>on</strong> <strong>of</strong> human thrombin interacting with <strong>the</strong><br />

thrombin binding aptamer<br />

M. A. OCHSENKÜHN 1 AND C. J. CAMPBELL 1,2<br />

1. School <strong>of</strong> Chemistry, University <strong>of</strong> Edinburgh, Joseph Black Builidng,<br />

Kings Builidings, Edinburgh, EH9 3JJ,UK<br />

2. Divisi<strong>on</strong> <strong>of</strong> Pathway Medicine, University <strong>of</strong> Edinburgh, 49 Little<br />

France Crescent, Edinburgh, EH16 4SB, UK<br />

Surface enhanced Raman spectroscopy (SERS) is developing into a powerful method for various<br />

sensor applicati<strong>on</strong>s. The use <strong>of</strong> surface plasm<strong>on</strong> res<strong>on</strong>ant nanoscale roughend nobel metal surfaces<br />

or particles allows Raman spectroscopy down to single molecules and provides signal strengths<br />

similar to fluorescence. Here we prove that it is possible to detect <strong>the</strong> interacti<strong>on</strong> between human<br />

α thrombin and and <strong>the</strong> specific thrombin binding DNA aptamer (TBA). In our experiments we<br />

use AuroShells (Nanospectra Biosciences, Inc) nanoshells (NS) c<strong>on</strong>sisting <strong>of</strong> a dielectric silica<br />

core covered with a layer <strong>of</strong> gold which are designed for excitement with near infrared light<br />

(780 nm). The particles were self aggregated <strong>on</strong> aminopropyl triethoxy silaninzed glass slides for<br />

fixati<strong>on</strong>. We functi<strong>on</strong>alised <strong>the</strong> NS aggregates with <strong>the</strong> 5’-SH-TTTTTT modified 15 base TBA<br />

(GGTTGGTGTGGTTGG) hybridized to a hairpin loop structure[1]. As standard procedure<br />

preventing unspecific binding a SAM <strong>of</strong> mercaptohexanol was formed <strong>on</strong> <strong>the</strong> uncovered areas <strong>of</strong><br />

<strong>the</strong> metal. SERS <strong>of</strong> <strong>the</strong> functi<strong>on</strong>alized surface do not show str<strong>on</strong>g signals, <strong>on</strong>ly weak and broad<br />

signals from <strong>the</strong> olig<strong>on</strong>ucleotide. On incubati<strong>on</strong> with thrombin str<strong>on</strong>g signals appear at 822 cm -1,<br />

1130 cm -1 and 1540 cm -1 which can be assigned to different aromatic ring stretches and appear due<br />

to <strong>the</strong> G-quadruplex formati<strong>on</strong>[2] <strong>of</strong> <strong>the</strong> aptamer. We suggest that <strong>the</strong> stacking <strong>of</strong> <strong>the</strong> guanine<br />

bases lead to a raised amount <strong>of</strong> order increasing <strong>the</strong> Raman cross-secti<strong>on</strong> and <strong>the</strong>refore amplifies<br />

certain stretching modes after <strong>the</strong> tertiary folding <strong>of</strong> <strong>the</strong> olig<strong>on</strong>ucleotide. We also show that <strong>the</strong><br />

used sample spot can be recovered with high signal reproducibility. Tests with extremely low<br />

target protein c<strong>on</strong>centrati<strong>on</strong>s down to zeptomolar values, correlating to less <strong>the</strong>n 10 molecules in<br />

<strong>the</strong> probing volume, also resulted in <strong>the</strong> same characteristic signals. In this case <strong>the</strong> interacti<strong>on</strong> is<br />

<strong>on</strong>ly temporary and signal is lost after about 30 sec<strong>on</strong>ds but can be found at different timepoints <strong>of</strong><br />

<strong>the</strong> experiment probably caused by diffusi<strong>on</strong> <strong>of</strong> <strong>the</strong> target in equilibrium with <strong>the</strong> binding related<br />

g-quartet stabilisati<strong>on</strong>. This simple approach for <strong>the</strong> detecti<strong>on</strong> <strong>of</strong> specific proteinbinding by SERS<br />

<strong>on</strong> NS can be used for highly sensitive sensing with <strong>the</strong> potential for intracellular live cell<br />

applicati<strong>on</strong>s.<br />

References<br />

[1] Yao,W., et al., Biosens. Bioelectr<strong>on</strong>. (<strong>2009</strong>), doi:10.1016/j.bios.<strong>2009</strong>.04.016.<br />

[2] Padmanabhan, K. and A. Tulinsky, Acta Crystallogr D Biol Crystallogr, 1996. 52(Pt 2): p. 272-82.<br />

59


Nanotechnology 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Raman and SERS spectra <strong>of</strong> benzoic and related<br />

m<strong>on</strong>ocarboxylic aromatic acids<br />

M.R. LOPEZ-RAMIREZ, J.L. CASTRO, J.F. ARENAS AND J.C. OTERO<br />

Department <strong>of</strong> Physical Chemistry, Faculty <strong>of</strong> Science,<br />

University <strong>of</strong> Málaga, E-29071-Málaga, Spain. jc_otero@uma.es<br />

Benzoic acid is <strong>the</strong> simplest carboxylic acid derived from benzene and <strong>on</strong>e <strong>of</strong> <strong>the</strong> most important<br />

from <strong>the</strong> chemical and biochemical points <strong>of</strong> view. Its many applicati<strong>on</strong>s include syn<strong>the</strong>sizing a<br />

large number <strong>of</strong> chemicals, food preservative and, toge<strong>the</strong>r with salicylic acid, it is used in <strong>the</strong><br />

treatment <strong>of</strong> fungal skin diseases. On <strong>the</strong> o<strong>the</strong>r hand, phenylacetic and 3-phenylpropi<strong>on</strong>ic acids<br />

have shown a broad range <strong>of</strong> biological activity. One <strong>of</strong> <strong>the</strong> aims <strong>of</strong> this work is to c<strong>on</strong>tribute to <strong>the</strong><br />

research <strong>on</strong> <strong>the</strong> vibrati<strong>on</strong>al spectra <strong>of</strong> this series <strong>of</strong> molecules due to <strong>the</strong> lack <strong>of</strong> any complete<br />

vibrati<strong>on</strong>al study <strong>of</strong> <strong>the</strong>se two related acids. Therefore <strong>the</strong> Raman spectra <strong>of</strong> benzoic, phenylacetic<br />

and 3-phenylpropi<strong>on</strong>ic acids have been assigned by applying <strong>the</strong> scaled quantum mechanical force<br />

field (SQMFF) methodology <strong>of</strong> Pulay et al. [1] to DFT force fields in order to fit <strong>the</strong> calculated<br />

frequencies to <strong>the</strong> experimental <strong>on</strong>es (Fig. 1). Given <strong>the</strong> agreement achieved between <strong>the</strong> computed<br />

and experimental frequencies, we think that <strong>the</strong> here obtained results provide a fairly good<br />

example <strong>of</strong> <strong>the</strong> usefulness <strong>of</strong> <strong>the</strong> SQMFF methodology to study <strong>the</strong> vibrati<strong>on</strong>al spectra <strong>of</strong> complex<br />

molecules. Fur<strong>the</strong>rmore, thanks to <strong>the</strong> huge potential <strong>of</strong> <strong>the</strong> experimental and <strong>the</strong>oretical<br />

approaches to modern surface science we can understand much better <strong>the</strong> properties <strong>of</strong> <strong>the</strong> ground<br />

electr<strong>on</strong>ic states <strong>of</strong> molecules adsorbed <strong>on</strong> solid surfaces. However, our knowledgment <strong>of</strong> <strong>the</strong><br />

excited electr<strong>on</strong>ic states <strong>of</strong> adsorbed species, and <strong>the</strong> way <strong>the</strong>y interact with <strong>the</strong> substrate is much<br />

lesser due to <strong>the</strong> relatively scarce number <strong>of</strong> techniques available to probe such states. Molecules<br />

adsorbed <strong>on</strong> some metal surfaces can exhibit enormously enhanced Raman scattering, and such<br />

technique has become known as Surface-Enhanced Raman Scattering (SERS) [2–4]. The SERS<br />

analysis methodology proposed by our group [5-6], is based <strong>on</strong> <strong>the</strong> use <strong>of</strong> ab initio calculati<strong>on</strong>s, and<br />

has shown its ability to explain in detail <strong>the</strong> observed experimental behavior and <strong>the</strong> differences<br />

between <strong>the</strong> SERS <strong>of</strong> <strong>the</strong>se m<strong>on</strong>ocarboxylic aromatic acids, c<strong>on</strong>firming so <strong>the</strong> relevance <strong>of</strong> <strong>the</strong><br />

charge transfer mechanism in <strong>the</strong> enhancement <strong>of</strong> <strong>the</strong> Raman signal.<br />

References<br />

Fig. 1 – Transferring Scale factors between related acids (SQMFF).<br />

[1] W. L. Peticolas, D.P. Strommen, V.J. Lakshminarayanan, Chem. Phys. 73, 4185-4191 (1980).<br />

[2] M. Moskovits, Rev. Mod. Phys 57, 783-826 (1985).<br />

[3] B. Pettinger, “Adsorpti<strong>on</strong> <strong>of</strong> Molecules at Metal Electrodes” Edited by J. Lipkowski, P.N. Ross, VCH, New York, 285<br />

(1992).<br />

[4] A. Campi<strong>on</strong>, P. Kambhampati, Chem. Soc. Rev. 27 241-250 (1998).<br />

[5] I. Lopez-Toc<strong>on</strong>, S. Centeno, J.L. Castro, M.R. Lopez-Ramirez, J.C. Otero, Chem. Phys. Lett. 377, 111-118 (2003).<br />

[6] J.F. Arenas, I.López-Tocón, J.L. Castro, S.P. Centeno, J.C. Otero, J. Raman Spectrosc. 36, 515-521 (2005).<br />

60


Nanotechnology 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Talbot – Lau interferometry with bio-molecules and<br />

organic clusters<br />

M. SCLAFANI 1 , M. MARKSTEINER 1 , P. HASLINGER 1 , P. SCHMID 1 AND M. ARNDT 1<br />

1. Faculty <strong>of</strong> Physics, University Vienna, Quantum Optics, Quantum<br />

Nanophysics und Quantum Informati<strong>on</strong> Boltzmanngasse 5, 1090 Wien,<br />

Austria<br />

We discuss <strong>the</strong> prospects for Talbot - Lau quantum interferometry for testing <strong>the</strong> matter-wave<br />

duality <strong>of</strong> biological molecules and organo-metallic clusters. The quantum behaviour <strong>of</strong> large<br />

massive objects has already been successfully proved [1], but interferometry with organic<br />

molecules is still challenging, because <strong>of</strong> <strong>the</strong> required molecular beam and detecti<strong>on</strong> techniques for<br />

large neutral molecules. The present setup is designed for amino acids since <strong>the</strong>y are <strong>of</strong>ten<br />

c<strong>on</strong>sidered to be a model for larger bio-molecules such as peptides or proteins. Molecules are<br />

promoted into <strong>the</strong> gas phase by laser desorpti<strong>on</strong> into a supers<strong>on</strong>ically expanding gas jet, and <strong>the</strong><br />

individual particles are detected by VUV photo-i<strong>on</strong>izati<strong>on</strong>. We discuss <strong>the</strong> state <strong>of</strong> our experiment<br />

and we explore future applicati<strong>on</strong>s <strong>of</strong> near-field matter wave interference [2] with regard to <strong>the</strong><br />

determinati<strong>on</strong> <strong>of</strong> molecular polarizabilities, dipole moments or even c<strong>on</strong>formati<strong>on</strong>s <strong>of</strong> small<br />

organic molecules. We fur<strong>the</strong>r report <strong>on</strong> <strong>the</strong> producti<strong>on</strong> <strong>of</strong> large neutral tryptophan-metal<br />

complexes [3] as interesting objects for future matter wave experiments and <strong>on</strong> <strong>the</strong> first promising<br />

steps towards <strong>the</strong> detecti<strong>on</strong> <strong>of</strong> single neutral gas phase molecules using superc<strong>on</strong>ducting single<br />

phot<strong>on</strong> detectors.<br />

References<br />

[1] M. Arndt, O. Nairz, J. Vos-Andreae, C. Keller, G. Van der Zouw and A. Zeilinger, Nature 401, (1999)<br />

[2] B. Brezger, M. Arndt and A. Zeilinger, J. Opt. B: Quantum Semiclass. Opt. 5, 82-89 (2003)<br />

[3] M. Marksteiner, P. Haslinger, H. Ulbricht, M. Sclafani, H. Oberh<strong>of</strong>er, C. Dellago and M. Arndt, J. Am. Mass<br />

Spectrom. 19-7, 1021-1026 (2008)<br />

61


Nanotechnology 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Structure and stability <strong>of</strong> D-galactose/D-glucosebinding<br />

protein. The role <strong>of</strong> D-glucose binding and Ca<br />

i<strong>on</strong> depleti<strong>on</strong><br />

OLGA V. STEPANENKO 1 , O.I. POVAROVA 1 , OLESYA V. STEPANENKO 1 , A.V. FONIN 1 , I.M.<br />

KUZNETSOVA 1 , K.K. TUROVEROV 1 , M. STAIANO 2 , S.D’AURIA 2<br />

1 Institute <strong>of</strong> Cytology <strong>of</strong> <strong>the</strong> Russian Academy <strong>of</strong> Sciences, Tikhoretsky<br />

av. 4, Saint-Petersburg, 194064, Russia,<br />

2 Institute <strong>of</strong> Protein Biochemistry CNR, Via Pietro Castellino 111,<br />

Napoli, 80131, Italy<br />

Protein folding remains <strong>on</strong>e <strong>of</strong> <strong>the</strong> most intriguing problems <strong>of</strong> molecular biology. When it seems<br />

that we were quite near <strong>the</strong> explanati<strong>on</strong> <strong>of</strong> protein folding in compact globular structure it<br />

appeared that many proteins in principle cannot have such structure al<strong>on</strong>e, without <strong>the</strong>ir partners<br />

(o<strong>the</strong>r proteins, DNA molecules, and inorganic ligand). In view <strong>of</strong> this new c<strong>on</strong>cept it is interesting<br />

to study <strong>the</strong> role <strong>of</strong> ligands in proteins structure and stability. The periplasmic binding proteins<br />

which can exist both in ligand-free and ligand-bound form seem to be an interesting candidate for<br />

such investigati<strong>on</strong>s. The aim <strong>of</strong> this work was <strong>the</strong> study <strong>of</strong> <strong>the</strong> structure, folding and stability <strong>of</strong> Dgalactose/D-glucose-binding<br />

protein (GGBP) from E. coli bel<strong>on</strong>ging to this protein family. GGBP<br />

molecule al<strong>on</strong>gside with sugar has <strong>on</strong>e more ligand – calcium i<strong>on</strong> localized in <strong>the</strong> loop <strong>of</strong> <strong>the</strong> Cterminal<br />

domain. Investigati<strong>on</strong>s were carried out by intrinsic and ANS fluorescence, far- and near-<br />

UV circular dichroism, scanning microcalorimetry. Parametric presentati<strong>on</strong> <strong>of</strong> protein fluorescence<br />

intensity changes <strong>on</strong> <strong>the</strong> pathway <strong>of</strong> its unfolding were used to reveal <strong>the</strong> c<strong>on</strong>cealed intermediate<br />

states in <strong>the</strong> pathway <strong>of</strong> protein folding—unfolding if <strong>the</strong>re is any. Kinetics <strong>of</strong> structural changes <strong>of</strong><br />

GGBP and its complex with D-glucose (GGBP/Glc) induced by Ca depleti<strong>on</strong> were recorded by <strong>the</strong><br />

change <strong>of</strong> <strong>the</strong> intrinsic fluorescence intensity. Unfolding—refolding process <strong>of</strong> ligand-free and<br />

ligand-bound protein were induced by chemical agent guanidine hydrochloride (GdnHCl) and by<br />

heat, or both <strong>of</strong> <strong>the</strong>m. It was shown that unfolding processes <strong>of</strong> both GGBP and its complex with<br />

D-glucose are <strong>on</strong>e step reversible processes. Stability <strong>of</strong> GGBP and GGBP/Glc was evaluated in<br />

terms <strong>of</strong> <strong>the</strong> difference <strong>of</strong> free energy between native and unfolded state (ΔG). Calcium depleti<strong>on</strong><br />

results in 3D structure changes <strong>of</strong> GGBP. At <strong>the</strong> same time, <strong>the</strong> presence <strong>of</strong> bounded sugar makes<br />

GGBP more resistant to structure reorganizati<strong>on</strong> induced by calcium removal. Kinetic experiments<br />

have revealed that GGBP-Ca is less stable than GGBP while D-glucose binding increases GGBP-<br />

Ca/Glc resistance against denaturant. Stability <strong>of</strong> proteins is arranged as follows: GGBP-Ca <<br />

GGBP < GGBP-Ca/Glc < GGBP/Glc. The results <strong>of</strong> <strong>the</strong> work can have practical value as <strong>the</strong><br />

differences in <strong>the</strong> structures <strong>of</strong> <strong>the</strong> ligand-bound and ligand-free proteins make GGBP good<br />

candidates for biological recogniti<strong>on</strong> element in <strong>the</strong> biosensor system for permanent n<strong>on</strong>invasive<br />

m<strong>on</strong>itoring <strong>of</strong> glucose level in blood <strong>of</strong> diabetic patients.<br />

Acknowledgement: This work was supported by INTAS (YS 06-1000014-5586), NATO (CLG.983088),<br />

FASI (02.512.11.2277) and Program "Leading Scientific School <strong>of</strong> RF" (1961.2008.4).<br />

62


Nanotechnology 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Using Nanodisks as a carrier for immobilizati<strong>on</strong> <strong>of</strong><br />

membrane receptors in surface-enhanced infrared<br />

spectroscopy studies<br />

E. ZAITSEVA 1 , M.C. SAAVEDRA SAGREDO 1,2 , S. BANERJEE 3 , A. GRUNBECK 3 , T.P. SAKMAR 3<br />

AND R. VOGEL 3<br />

1. Institute <strong>of</strong> Molecular Medicine and Cell Research, University <strong>of</strong><br />

Freiburg, Hermann-Herder Str. 9, Freiburg, 79104, Germany.<br />

2. Department <strong>of</strong> Physical Chemistry, Faculty <strong>of</strong> Chemical Sciences,<br />

University <strong>of</strong> C<strong>on</strong>cepti<strong>on</strong>, Casilla 160-C, C<strong>on</strong>cepci<strong>on</strong>, Chile.<br />

3. Laboratory <strong>of</strong> Molecular Biology and Biochemistry, 1230 York<br />

Avenue, New York, NY 10065, USA.<br />

G protein-coupled receptors (GPCRs) are involved in a broad range <strong>of</strong> physiological processes.<br />

Despite <strong>the</strong>ir crucial importance very little is known about <strong>the</strong> molecular mechanisms <strong>of</strong> signal<br />

transducti<strong>on</strong>, bridging extracellular ligand binding with intracellular G protein activati<strong>on</strong>. This is<br />

primarily due to <strong>the</strong> lack <strong>of</strong> techniques capable <strong>of</strong> following structural changes in GPCRs in <strong>the</strong><br />

physiological lipid envir<strong>on</strong>ment up<strong>on</strong> activati<strong>on</strong>. Using surface-enhanced infrared spectroscopy<br />

(SEIRA), structure-functi<strong>on</strong> relati<strong>on</strong>ships <strong>of</strong> membrane receptors can be probed in a protein<br />

m<strong>on</strong>olayer [1]. It is <strong>of</strong> importance to keep <strong>the</strong> receptors in a native-like envir<strong>on</strong>ment to stabilize<br />

<strong>the</strong>ir functi<strong>on</strong>al structure. For SEIRA spectroscopy, this is a particular challenge as proximity <strong>of</strong> <strong>the</strong><br />

receptor to <strong>the</strong> underlying gold surface has to be maintained in order to ensure sufficient infrared<br />

signal enhancement. On <strong>the</strong> o<strong>the</strong>r hand, destructive n<strong>on</strong>-specific metal-protein interacti<strong>on</strong>s have to<br />

be avoided. An appealing possibility to achieve this goal is to rec<strong>on</strong>stitute GPCRs into Nanodisks,<br />

c<strong>on</strong>sisting <strong>of</strong> a discoidal lipid bilayer encirculated by an apolipoprotein belt derived from<br />

lipoproteins [2]. Here we incorporate rhodopsin, a prototypical GPCR, into Nanodisks comprising<br />

zebrafisch apolipoprotein (zap-1) and palmitoyloleoyl phosphatidylcholine lipids (POPC).<br />

Nanodiscs with rec<strong>on</strong>stituted rhodopsin were <strong>the</strong>n te<strong>the</strong>red <strong>on</strong> a SEIRA-active gold surface while<br />

preserving functi<strong>on</strong> <strong>of</strong> <strong>the</strong> receptor. For SEIRA experiments nano-structured gold films deposited<br />

<strong>on</strong> <strong>the</strong> top <strong>of</strong> a trapezoid silic<strong>on</strong> prism were modified via thiol chemistry to produce a self<br />

assembled m<strong>on</strong>olayer with nickel chelating nitrilo-triacetic acid (Ni-NTA) exposed to soluti<strong>on</strong>, and<br />

having a total thickness <strong>of</strong> about 3 nm. Loaded Nanodisks were <strong>the</strong>n specifically bound to <strong>the</strong><br />

surface using <strong>the</strong> his-tag <strong>of</strong> <strong>the</strong> zap-1. Formati<strong>on</strong> <strong>of</strong> <strong>the</strong> m<strong>on</strong>olayer <strong>of</strong> Nanodiscs <strong>on</strong> a SEIRA active<br />

surface was m<strong>on</strong>itored using lipid and protein absorpti<strong>on</strong> bands. SEIRA difference spectroscopy<br />

was used to dem<strong>on</strong>strate that <strong>the</strong> immobilized receptor preserves its functi<strong>on</strong>al properties. In our<br />

experiments light-induced rhodopsin activati<strong>on</strong> has resulted in reliably detectable SEIRA<br />

difference spectra, characteristic for <strong>the</strong> transiti<strong>on</strong> between <strong>the</strong> inactive and <strong>the</strong> signaling state<br />

Meta II. It can be c<strong>on</strong>cluded that Nanodisks is a suitable system to attach membrane proteins to a<br />

modified metal surface. They can be used to assess functi<strong>on</strong>al changes up<strong>on</strong> GPCR activati<strong>on</strong> and<br />

ligand-protein interacti<strong>on</strong>s by means <strong>of</strong> vibrati<strong>on</strong>al spectroscopy. The results <strong>of</strong> this pilot study<br />

form a basis for investigati<strong>on</strong>s <strong>of</strong> o<strong>the</strong>r GPCRs activated by diffusible ligands.<br />

References<br />

[1] X. Jiang, E. Zaitseva, M. Schmidt, F. Siebert, M. Engelhard, R. Schlesinger, K. Ataka, R. Vogel, J. Heberle, Proc<br />

Natl Acad Sci USA. 105, 12113-7 (2008).<br />

[2] S. Banerjee, T. Huber, T.P. Sakmar, J.Mol.Biol. 377, 1067-1081 (2008).<br />

63


Protein dynamics 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Theoretical study <strong>on</strong> correlati<strong>on</strong> <strong>of</strong> geometrical<br />

structures and biological side effect in different drugs<br />

A. R. BEKHRADNIA AND M. A. EBRAHIMZADEH<br />

Dept. <strong>of</strong> Chemistry and Pharmaceutical Sciences Research Center<br />

Mazandaran, University <strong>of</strong> Medical Sciences, Sari, Iran<br />

Complete geometry optimizati<strong>on</strong>s were performed <strong>on</strong> diverse drugs with similar side effect. The<br />

c<strong>on</strong>sidered drugs were selected apart from <strong>the</strong> more comm<strong>on</strong> biological effects. Frequency<br />

calculati<strong>on</strong>s and geometrical optimizati<strong>on</strong>s were carried out at <strong>the</strong> abinitio level <strong>of</strong> <strong>the</strong>ory using <strong>the</strong><br />

Gaussian s<strong>of</strong>tware. The best c<strong>on</strong>formers were found for <strong>the</strong>se molecules and set up apparent<br />

pictures. These figures are al<strong>on</strong>g with <strong>the</strong>rmodynamic data such as <strong>the</strong>rmal energies (E), <strong>the</strong>rmal<br />

enthalpies (H) and <strong>the</strong>rmal Gibbs free energies (G) have also included in this study. All <strong>of</strong> <strong>the</strong><br />

menti<strong>on</strong>ed drugs were revealed that <strong>the</strong> structural requirements include an electr<strong>on</strong>-rich<br />

functi<strong>on</strong>al group in <strong>the</strong> molecular plane <strong>of</strong> and separated from <strong>the</strong> center <strong>of</strong> an aromatic ring. In<br />

order to evaluate scope and investigati<strong>on</strong> <strong>of</strong> <strong>the</strong>se different drugs as <strong>the</strong>ir similar side effect (like<br />

hair-loss side effect), <strong>the</strong> geometrical center <strong>of</strong> <strong>the</strong> aromatic rings were served as <strong>the</strong> most easily<br />

defined reference point. The electr<strong>on</strong>-rich functi<strong>on</strong>al group was c<strong>on</strong>sidered in <strong>the</strong> plane <strong>of</strong> and<br />

separated from <strong>the</strong> aromatic ring center. For <strong>the</strong> best choice <strong>of</strong> electr<strong>on</strong>-rich functi<strong>on</strong>al group and<br />

also a deeper investigati<strong>on</strong> in c<strong>on</strong>sidered drugs, it was used <strong>the</strong> calculated atomic charges. Then,<br />

<strong>the</strong> measurement <strong>of</strong> distance parameter between <strong>the</strong> related functi<strong>on</strong>al group and defined<br />

reference point was employed Gaussian program and its correlated s<strong>of</strong>twares. These kinds <strong>of</strong><br />

parameters are <strong>the</strong> most important factors in explanati<strong>on</strong> <strong>of</strong> relati<strong>on</strong>ships in structure and<br />

reactivity and it is used to clarify some pharmacokinetic properties and biological effects. For<br />

drugs with hair-loss side effect, <strong>the</strong> calculated c<strong>on</strong>sidered distances have had high c<strong>on</strong>sistency<br />

with 95% c<strong>on</strong>fidence limits (ca. 7.68 angstroms). Therefore, <strong>on</strong>e can recognize that <strong>the</strong> related<br />

distance, is important and effective factor in structure <strong>of</strong> drugs with similar side effect. Therefore,<br />

<strong>on</strong>e can recognize that <strong>the</strong> <strong>the</strong>oretical attempts are made to circumvent to biological side effect for<br />

<strong>the</strong> new syn<strong>the</strong>sis in experimental study.<br />

64


Protein dynamics 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Thermal denaturati<strong>on</strong> <strong>of</strong> myoglobin in water-sugar<br />

matrices and relati<strong>on</strong>ship with <strong>the</strong> glass transiti<strong>on</strong> <strong>of</strong><br />

<strong>the</strong> system<br />

G. BELLAVIA 1 , G. COTTONE 1 , S. GIUFFRIDA 1 , L. CORDONE 1 AND A. CUPANE 1<br />

1. Dept. <strong>of</strong> Physical and Astr<strong>on</strong>omical Sciences, University <strong>of</strong> Palermo,<br />

Via Archirafi 36, Palermo, I-90123, Italy<br />

Glassy saccharide matrices protect proteins against denaturati<strong>on</strong> under extreme envir<strong>on</strong>mental<br />

c<strong>on</strong>diti<strong>on</strong>s as extreme drought, high or low temperature. The disaccharide trehalose is <strong>the</strong> best<br />

stabilizer largely used in nature [1]. The molecular mechanisms behind this effect are not yet fully<br />

understood and are, at present, matter <strong>of</strong> challenge. An hypo<strong>the</strong>sis relates <strong>the</strong> stabilizing effects <strong>of</strong><br />

disaccharides to <strong>the</strong> collective dynamic properties <strong>of</strong> <strong>the</strong> water/sugar matrix [2]. To fur<strong>the</strong>r<br />

investigate this hypo<strong>the</strong>sis we studied <strong>the</strong> relati<strong>on</strong>ship between <strong>the</strong> <strong>the</strong>rmal denaturati<strong>on</strong> (Tden) <strong>of</strong><br />

a protein embedded in disaccharide/water and <strong>the</strong> glass transiti<strong>on</strong> temperature (Tg) <strong>of</strong> <strong>the</strong> system.<br />

To this end, we investigated by Differential Scanning Calorimetry <strong>the</strong> <strong>the</strong>rmal denaturati<strong>on</strong> <strong>of</strong><br />

ferric myoglobin in water/sugar mixtures c<strong>on</strong>taining n<strong>on</strong>–reducing (trehalose [3], sucrose) or<br />

reducing (maltose, lactose) disaccharides. All <strong>the</strong> samples studied are, at room temperature, liquid<br />

systems whose viscosity varies from very low to very large values depending <strong>on</strong> <strong>the</strong> water c<strong>on</strong>tent.<br />

At high water/saccharide mole ratio, homogeneous glass formati<strong>on</strong> does not occur; regi<strong>on</strong>s <strong>of</strong><br />

glass form, whose Tg does not vary by varying <strong>the</strong> saccharide c<strong>on</strong>tent, and <strong>the</strong> sugar barely affects<br />

<strong>the</strong> myoglobin denaturati<strong>on</strong> temperature. At suitably low water/saccharide mole ratio, by<br />

lowering <strong>the</strong> temperature, <strong>the</strong> whole systems undergo transiti<strong>on</strong> to a glassy state whose Tg is<br />

determined by <strong>the</strong> water c<strong>on</strong>tent; <strong>the</strong> Gord<strong>on</strong> Taylor relati<strong>on</strong>ship [4] between Tg and <strong>the</strong><br />

water/disaccharide mole ratio is obeyed; Tden increases by decreasing <strong>the</strong> hydrati<strong>on</strong> regardless <strong>of</strong><br />

<strong>the</strong> sugar, such effect being entropy driven. The presence <strong>of</strong> <strong>the</strong> protein found to lower <strong>the</strong> Tg<br />

respect to binary water-disaccharide systems [5]. Fur<strong>the</strong>rmore, for n<strong>on</strong>–reducing sugars, plots <strong>of</strong><br />

Tden vs. Tg give linear correlati<strong>on</strong>s, while for reducing sugars data exhibit an erratic behaviour<br />

below a critical water/sugar ratio, which depends <strong>on</strong> <strong>the</strong> particular disaccharide. We ascribe this<br />

behaviour to <strong>the</strong> likelihood that in <strong>the</strong> latter samples proteins have underg<strong>on</strong>e Maillard reacti<strong>on</strong><br />

[6] before <strong>the</strong>rmal denaturati<strong>on</strong>.<br />

References<br />

[1] J.H. Crowe, Adv. in Experim. Med. and Biol., 594, 143, (2007).<br />

[2] J.L. Green, C.A. Angell, J. Phys. Chem., 93 (1989) 2880–82.<br />

[3] G. Bellavia, L. Cord<strong>on</strong>e, A. Cupane, J. Therm. Anal. Calor., 95, (<strong>2009</strong>) 699–702.<br />

[4] M. Gord<strong>on</strong>, J.S. Taylor, J. Appl. Chem., 2 (1952) 493–500.<br />

[5] Y. Roos, J. Therm. Anal. Calor., 48 (1997) 535–544.<br />

[6] F. Ledl, E. Schleicher, Angewandte Chemie – Int. Ed., 29 (1990) 565–706.<br />

65


Protein dynamics 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

TFE induced denaturati<strong>on</strong> <strong>of</strong> YY1 protein<br />

P. BONAREK, A. GÓRECKI, E. KOWALCZYK, M. DZIEDZICKA-WASYLEWSKA<br />

Faculty <strong>of</strong> Biochemistry, Biophysics and Biotechnology, Jagiell<strong>on</strong>ian<br />

University, Gr<strong>on</strong>ostajowa 7 str., 30-387 Krakow, Poland<br />

2,2,2-Trifluoroethanol (TFE) stabilizes sec<strong>on</strong>dary structure formati<strong>on</strong> in peptides and proteins<br />

<strong>the</strong>refore is widely used as a structure inducing cosolvent. Since we believe, that <strong>the</strong> human<br />

transcripti<strong>on</strong> factor bel<strong>on</strong>gs to family <strong>of</strong> intrinsically unstructured proteins, we investigated <strong>the</strong><br />

TFE-induced denaturati<strong>on</strong> <strong>of</strong> that protein. The circular dichroism and fluorescence spectroscopy<br />

studies indicate that <strong>the</strong> TFE-induced structural transiti<strong>on</strong> <strong>of</strong> YY1 proceeds via two distinct states,<br />

depending <strong>on</strong> TFE c<strong>on</strong>cetrati<strong>on</strong>. The experiments were performed using circular dichroism<br />

spectroscopy in <strong>the</strong> far- and near-UV regi<strong>on</strong> to m<strong>on</strong>itor changes in <strong>the</strong> sec<strong>on</strong>dary and tertiary<br />

structures, respectively. Size exclusi<strong>on</strong> chromatography and dynamic light scattering were used to<br />

measure <strong>the</strong> hydrodynamic properties in different c<strong>on</strong>formati<strong>on</strong>al states.<br />

66


Protein dynamics 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Dielectric properties <strong>of</strong> myoglobin at 10 GHz by<br />

microwave cavity perturbati<strong>on</strong> measurements<br />

M. BONURA 1 , G. SCHIRÒ 1 AND A. CUPANE 1<br />

1. Dept. <strong>of</strong> Physical and Astr<strong>on</strong>omical Sciences, University <strong>of</strong> Palermo,<br />

Via Archirafi 36, Palermo, I-90123, Italy<br />

We report <strong>on</strong> <strong>the</strong> temperature dependence <strong>of</strong> <strong>the</strong> imaginary part <strong>of</strong> <strong>the</strong> dielectric c<strong>on</strong>stant (ε’’) in<br />

myoglobin (Mb) samples with different hydrati<strong>on</strong> (h= gr[H2O]/gr[Mb]). The measurements have<br />

been performed by <strong>the</strong> cavity perturbati<strong>on</strong> technique, in <strong>the</strong> range <strong>of</strong> temperature 80÷345 K. The<br />

sample is located inside a NMR capillary al<strong>on</strong>g <strong>the</strong> axis <strong>of</strong> a cylindrical copper cavity, res<strong>on</strong>ating in<br />

<strong>the</strong> TE011 mode at 9.6 GHz, where <strong>the</strong> electric field has a node. By measuring <strong>the</strong> variati<strong>on</strong> <strong>of</strong> <strong>the</strong><br />

quality factor <strong>of</strong> <strong>the</strong> res<strong>on</strong>ant cavity, <strong>on</strong>e can extract <strong>the</strong> imaginary part <strong>of</strong> <strong>the</strong> dielectric c<strong>on</strong>stant<br />

[1]. We have observed an evident increase <strong>of</strong> <strong>the</strong> dielectric energy losses <strong>on</strong> increasing <strong>the</strong><br />

temperature from T~ 210 K; fur<strong>the</strong>rmore, <strong>the</strong> intensity <strong>of</strong> <strong>the</strong> variati<strong>on</strong> is str<strong>on</strong>gly dependent <strong>on</strong><br />

<strong>the</strong> hydrati<strong>on</strong>. Since our working frequency is inside <strong>the</strong> regi<strong>on</strong> <strong>of</strong> dispersi<strong>on</strong> <strong>of</strong> water molecules<br />

[2,3], our experimental technique allows us to investigate <strong>the</strong> role <strong>of</strong> hydrati<strong>on</strong> in protein<br />

dynamics.<br />

References<br />

Fig. 1 – Temperature dependence <strong>of</strong> <strong>the</strong> imaginary part <strong>of</strong> <strong>the</strong><br />

dielectric c<strong>on</strong>stant in myoglobin-powder samples with different<br />

water c<strong>on</strong>tent.<br />

[1] Z. Zai, C. Kusko, N. Hakim, S. Sridhar, A. Revcolevschi and A. Vietkine, Rev. Sci. Inst. 71(8), 3151-3160 (1991).<br />

[2] R. Buchner, J. Bar<strong>the</strong>l, J. Stauber, Chem. Phys. Lett. 306, 57–63 (1999).<br />

[3] G. P. Singh, F. Parak, S. Hunklinger, K. Dransfeld, Phys. Rev. Lett. 47, 685-688 (1981).<br />

67


Protein dynamics 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Reacti<strong>on</strong> mechanism <strong>of</strong> <strong>the</strong> GTPase Ran revealed by<br />

trFTIR studies utilizing isotopic labeling.<br />

S. BRUCKER, C. KÖTTING, K. GERWERT<br />

Department <strong>of</strong> Biophysics, Ruhr-University Bochum, Germany<br />

The GTPase Ran, member <strong>of</strong> <strong>the</strong> Ras super family, has a key role in eukaryotic cells during <strong>the</strong><br />

nucleocytoplasmatic transport, regulates mitotic spindle and post mitotic nuclear assembly [1].<br />

Ran is a molecular switch, characterized be <strong>the</strong> change between <strong>the</strong> GDP- and <strong>the</strong> GTP-bound<br />

form. Ran itself is up-regulated by guanine exchange factor (GEF) RCC1, down-regulated by<br />

GTPase-activating protein (GAP) Rna1p and is stabilized by Ran binding protein 1 (RanBP1). For<br />

<strong>the</strong> investigati<strong>on</strong> <strong>of</strong> <strong>the</strong> reacti<strong>on</strong>-mechanism by time resolved Fourier Transform Infrared<br />

<strong>Spectroscopy</strong> (trFTIR) isotopic labeled amino acids were incorporated into <strong>the</strong> protein [2]. The<br />

incorporati<strong>on</strong> <strong>of</strong> <strong>the</strong> amino acids into <strong>the</strong> protein was d<strong>on</strong>e by optimized M9-media, <strong>the</strong> analysis <strong>of</strong><br />

incorporati<strong>on</strong>-rate and spreading <strong>of</strong> <strong>the</strong> label was d<strong>on</strong>e by mass spectrometric analysis. The<br />

bacteria cultures were optimized for <strong>the</strong> respective amino acid increasing incorporati<strong>on</strong> and<br />

decreasing transformati<strong>on</strong> <strong>of</strong> <strong>the</strong> label. Therefore also E. coli-strains auxotroph for <strong>the</strong> respective<br />

isotope-coded amino acid were used after optimizati<strong>on</strong> in c<strong>on</strong>siderati<strong>on</strong> <strong>of</strong> growing and protein<br />

expressi<strong>on</strong>. By isotopic labeling accurate assignment <strong>of</strong> signals in trFTIR-spectroscopy by band<br />

shifts <strong>of</strong> <strong>the</strong> labeled groups c<strong>on</strong>trary to <strong>the</strong> unlabeled <strong>on</strong>es is possible. Tyrosine 39 <strong>of</strong> switch I <strong>of</strong><br />

Ran is located at <strong>the</strong> same positi<strong>on</strong> as <strong>the</strong> ‘argininefinger’ <strong>of</strong> Ras and coordinates glutamine 69 and<br />

<strong>the</strong> γ-phosphate [3]. During <strong>the</strong> interacti<strong>on</strong> <strong>of</strong> Ran with its effectors in <strong>the</strong> GTP-bound form<br />

tyrosine 39 seals <strong>the</strong> binding pocket and excludes all waters o<strong>the</strong>r than <strong>the</strong> attacking water needed<br />

during hydrolysis, but at a misplaced positi<strong>on</strong>. It becomes positi<strong>on</strong>ed correctly when RanGAP<br />

binds and repositi<strong>on</strong>s glutamine 69. If tyrosine 39 is missing intrinsic hydrolysis gets faster, but for<br />

<strong>the</strong> GAP-catalyzed reacti<strong>on</strong> tyrosine 39 has no influence.<br />

References<br />

Fig. 1 – 3D trFTIR spectrum <strong>of</strong> <strong>the</strong> GAP-catalyzed GTP hydrolysis <strong>of</strong><br />

<strong>the</strong> Ran RanBP1 Rna1p complex (<strong>on</strong> <strong>the</strong> right).<br />

[1] M. Stewart (2007) Molecular mechanism <strong>of</strong> <strong>the</strong> nuclear protein import cycle, Nature Reviews Molecular Cell Biology<br />

8, 195-208.<br />

[2] B. Warscheid, S. Brucker, A. Kallenbach, H. E. Meyer, K. Gerwert, C. Kötting (2008) Systematic approach to<br />

group-specific isotopic labeling <strong>of</strong> proteins for vibrati<strong>on</strong>al spectroscopy, Vibrati<strong>on</strong>al <strong>Spectroscopy</strong> 48, 28-36.<br />

[3] M. J. Seewald, C. Körner, A. Wittingh<strong>of</strong>er, I. R. Vetter (2002) RanGAP mediates GTP hydrolysis without an arginine<br />

finger, Nature 415, 662-666.<br />

68


Protein dynamics 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Dynamics <strong>of</strong> interacti<strong>on</strong> <strong>of</strong> hypericin with low-density<br />

lipoproteins<br />

D. BUZOVA1 , L. BURIANKOVA1 , D. BRAULT3 , D. CHORVAT JR. 2 , D. JANCURA1 , P. MISKOVSKY1, 2<br />

AND F. SUREAU3 1. Dept. <strong>of</strong> Biophysics, P.J. Safarik University, Kosice, Slovakia<br />

2. Internati<strong>on</strong>al Laser Center, Bratislava, Slovakia<br />

3. Univ. Paris 06, CNRS, Lab. Biophys. Mol. Cellulaire and Tissulaire,<br />

Evry, France<br />

Fluorescence spectroscopy and stopped-flow technique were utilized for <strong>the</strong> study <strong>of</strong> <strong>the</strong> kinetics<br />

<strong>of</strong> incorporati<strong>on</strong> <strong>of</strong> hypericin (Hyp) into low-density lipoproteins (LDL). Hypericin, major<br />

comp<strong>on</strong>ent <strong>of</strong> <strong>the</strong> plants <strong>of</strong> <strong>the</strong> genus Hypericum, is a powerful naturally occurring photosensitizer<br />

with broad spectrum <strong>of</strong> light-induced biological activities [1, 2]. Up<strong>on</strong> administrati<strong>on</strong> into <strong>the</strong><br />

blood stream Hyp associates with serum proteins, mainly with LDL [3], which are attractive<br />

vehicles for drug delivery and targeting [4]. Triphasic kinetics <strong>of</strong> Hyp associati<strong>on</strong> with LDL was<br />

observed when soluti<strong>on</strong>s <strong>of</strong> Hyp and LDL were mixed toge<strong>the</strong>r. The most rapid phase <strong>of</strong> Hyp<br />

incorporati<strong>on</strong> is completed within tens <strong>of</strong> msec, while <strong>the</strong> slowest <strong>on</strong>e lasts 10-20 min. The most <strong>of</strong><br />

Hyp molecules are incorporated into LDL in <strong>the</strong> slowest phase. The kinetics <strong>of</strong> <strong>the</strong> incorporati<strong>on</strong> <strong>of</strong><br />

Hyp into LDL particles pre-loaded with Hyp were also investigated. The observed decrease <strong>of</strong> <strong>the</strong><br />

lifetime and total intensity <strong>of</strong> Hyp fluorescence with <strong>the</strong> increase <strong>of</strong> <strong>the</strong> incubati<strong>on</strong> time <strong>of</strong> Hyp<br />

with Hyp/LDL complex is a sign <strong>of</strong> <strong>the</strong> formati<strong>on</strong> <strong>of</strong> aggregates and <strong>the</strong> dynamic quenching <strong>of</strong><br />

singlet excitati<strong>on</strong> state <strong>of</strong> Hyp inside LDL [5]. To study <strong>the</strong> kinetics <strong>of</strong> a transfer <strong>of</strong> Hyp molecules<br />

between LDL particles, <strong>the</strong> time evoluti<strong>on</strong> <strong>of</strong> <strong>the</strong> stopped-flow and time-resolved fluorescence<br />

experiments were investigated after <strong>the</strong> mixing <strong>of</strong> <strong>the</strong> complex Hyp/LDL=200:1 with appropriate<br />

amounts <strong>of</strong> free LDL. For each final Hyp/LDL ratio <strong>the</strong> increase <strong>of</strong> <strong>the</strong> lifetime and total intensity<br />

<strong>of</strong> Hyp fluorescence was observed. The half-time <strong>of</strong> this process is similar to that <strong>on</strong>e <strong>of</strong> <strong>the</strong> slowest<br />

phase <strong>of</strong> Hyp incorporati<strong>on</strong> into free LDL.<br />

References<br />

[1] H. Falk, Angew. Chem. Int. Ed. Engl. 38, 3117-3136 (1999).<br />

[2] T. Kiesslich, B. Krammer, K. Plaetzer, Current Medical Chemistry 13, 2189-2204 (2006).<br />

[3] B. Chen, Y. Xu, T. Roskams, E. Delaey, P. Agostinis, J. R. Vandenheede, P. de Witte, Int. J. Cancer 93, 275-282<br />

(2001).<br />

[4] G. Jori, J. Photochem. Photobiol. B, 36, 87-93 (1996).<br />

[5] S. Kascakova, M. Refregiers, D. Jancura, F. Sureau, J.C. Mauriz<strong>on</strong>t, P. Miskovsky, Photochem. Photobiol. 81, 1395-<br />

1403 (2005).<br />

69


Protein dynamics 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

CONFORMATIONAL ANALYSIS, FT-IR AND<br />

RAMAN SPECTROSCOPIC STUDY OF Cyclo(His-Phe)<br />

DIPEPTIDE<br />

SEFA CELIK 1 , AYSEN E. OZEL 2 , SEVIM AKYUZ 3 AND SERDA KECEL 2<br />

1. Istanbul University, Engineering Faculty, Electrical-Electr<strong>on</strong>ics<br />

Eng. Department, 34320-Avcilar, Istanbul, Turkey<br />

2. Istanbul University, Faculty <strong>of</strong> Science, Department <strong>of</strong> Physics,<br />

Vezneciler, 34134, Istanbul, Turkey<br />

3 Istanbul Kultur University, Faculty <strong>of</strong> Science and Letters,<br />

Department <strong>of</strong> Physics, Atakoy Campus, 34156 Istanbul, Turkey<br />

Theoretical c<strong>on</strong>formati<strong>on</strong>al analysis method was applied to examine <strong>the</strong> three-dimensi<strong>on</strong>al<br />

structure and c<strong>on</strong>formati<strong>on</strong>al properties <strong>of</strong> <strong>the</strong> cyclic dipeptides which have anticancer activity.<br />

Explorati<strong>on</strong> <strong>of</strong> <strong>the</strong> c<strong>on</strong>formati<strong>on</strong>al properties is necessary in order to understand <strong>the</strong> mechanism <strong>of</strong><br />

<strong>the</strong> activity <strong>of</strong> a drug. In this study combined experimental study <strong>on</strong> molecular vibrati<strong>on</strong>s <strong>of</strong><br />

cyclo(his-phe) has been investigated by molecular mechanics and ab-initio calculati<strong>on</strong>s. The<br />

calculati<strong>on</strong>s <strong>of</strong> cyclo(his-phe) dipeptide as a functi<strong>on</strong> <strong>of</strong> side chain torsi<strong>on</strong> angles enable us to<br />

determine <strong>the</strong>ir energetically preferred c<strong>on</strong>formati<strong>on</strong>s. The relative positi<strong>on</strong>s <strong>of</strong> <strong>the</strong> side chain<br />

residues <strong>of</strong> <strong>the</strong> stable c<strong>on</strong>formati<strong>on</strong>s <strong>of</strong> dipeptide were obtained depending <strong>on</strong> <strong>the</strong> obtained<br />

c<strong>on</strong>formati<strong>on</strong>al analysis results <strong>of</strong> using program proposed by Godjaev et al in FORTRAN[1]. The<br />

most stable c<strong>on</strong>formati<strong>on</strong> <strong>of</strong> <strong>the</strong> cyclo(his-phe) was found and <strong>the</strong> geometry were optimized using<br />

DFT method at B3LYP/6-31++G(d,p) level <strong>of</strong> <strong>the</strong>ory. For computati<strong>on</strong>al studies Gaussian program<br />

were used.The vibrati<strong>on</strong>al normal modes and associated wavenumbers, IR intensities and Raman<br />

activities were calculated and <strong>the</strong> results were compared with <strong>the</strong>se experimental data. The<br />

fundamental vibrati<strong>on</strong>al modes were assigned depending <strong>on</strong> <strong>the</strong>ir total energy distributi<strong>on</strong>s.<br />

References<br />

[1] N. M. Godjaev, I. S. Maksumov, I.J. L. I. Ismailova; J. Chem. Struc. (Russian) 24 147-152 (1983).<br />

70


Protein dynamics 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Structure and dynamics <strong>of</strong> Trop<strong>on</strong>in I in thin filaments<br />

using SDSL-EPR<br />

J. COOKE 1 , J. CHAMOUN 2 , M. HOWELL 1 , P. FAJER 2 AND L. BROWN 1<br />

1. Dept. <strong>of</strong> Chemistry & Biomolecular Sciences, Macquarie<br />

University, Sydney, Australia<br />

2. Dept. <strong>of</strong> Molecular Biophysics, Florida State University,<br />

Tallahassee, FL, USA<br />

Trop<strong>on</strong>in (Tn) is <strong>the</strong> molecular switch <strong>of</strong> striated muscle c<strong>on</strong>tracti<strong>on</strong>. It is a heterotrimeric protein<br />

c<strong>on</strong>sisting <strong>of</strong> a calcium (Ca 2+) binding subunit (TnC), an inhibitory subunit (TnI), and a thinfilament<br />

anchoring subunit (TnT). To date, <strong>the</strong> proposed mechanism <strong>of</strong> <strong>the</strong> Ca 2+ dependent<br />

regulati<strong>on</strong> <strong>of</strong> muscle by trop<strong>on</strong>in is based mostly <strong>on</strong> data obtained in <strong>the</strong> absence <strong>of</strong> <strong>the</strong> thinfilament<br />

binding partners <strong>of</strong> Tn; tropomyosin and actin. Site Directed Spin Labeling Electr<strong>on</strong><br />

Paramagnetic Res<strong>on</strong>ance (SDSL-EPR) has <strong>the</strong> advantage over o<strong>the</strong>r structural techniques as it<br />

enables <strong>the</strong> structural analysis <strong>of</strong> <strong>the</strong> Tn complex in <strong>the</strong> rec<strong>on</strong>stituted thin filament. Several regi<strong>on</strong>s<br />

<strong>of</strong> <strong>the</strong> Tn complex are highly flexible causing difficulties with structural elucidati<strong>on</strong> using<br />

traditi<strong>on</strong>al high-resoluti<strong>on</strong> techniques. One such important regi<strong>on</strong> is <strong>the</strong> C-terminal regi<strong>on</strong> <strong>of</strong> <strong>the</strong><br />

Tn inhibitory subunit (C-TnI), a proposed sec<strong>on</strong>dary actin-binding domain. Several c<strong>on</strong>tradicting<br />

structural models <strong>of</strong> C-TnI have been suggested, all in <strong>the</strong> absence <strong>of</strong> actin, with most describing a<br />

highly dynamic domain with some sec<strong>on</strong>dary structural c<strong>on</strong>tent [1-2]. Methane thiosulf<strong>on</strong>ate spin<br />

labels (MTSSL) were introduced at cysteine residues in <strong>the</strong> cardiac is<strong>of</strong>orm <strong>of</strong> TnI (residues<br />

Cys175-206). The mobility trends across <strong>the</strong> C-terminus displayed a weak helical interacti<strong>on</strong> with<br />

actin in <strong>the</strong> rec<strong>on</strong>stituted thin filament. Interspin distances for three double cysteine mutant pairs<br />

(Cys176/178, Cys176/179 & Cys176/180), as measured by CW-EPR, correlated with this helical<br />

structure. An additi<strong>on</strong>al double cysteine mutant pair (Cys178/206) fur<strong>the</strong>r c<strong>on</strong>firmed an extended<br />

structure with an interspin distance <strong>of</strong> 34 Å <strong>on</strong> interacti<strong>on</strong> with <strong>the</strong> thin filament. Key actinbinding<br />

residues, as identified by <strong>the</strong> EPR probe-mobility measurements, correlated with a<br />

number <strong>of</strong> C-TnI genetic mutati<strong>on</strong>s implicated in cardiomyopathy. A sec<strong>on</strong>d regi<strong>on</strong> <strong>of</strong> interest is<br />

<strong>the</strong> ‘switch peptide’ <strong>of</strong> TnI which, up<strong>on</strong> Ca 2+ binding to TnC, is proposed to undergo a large-scale<br />

movement, allowing for muscle c<strong>on</strong>tracti<strong>on</strong> (‘ON’ state) to occur. In this ‘ON’ state, <strong>the</strong> switch<br />

peptide (residues 150-159) is believed to be in close proximity to <strong>the</strong> N-lobe <strong>of</strong> TnC. In <strong>the</strong> absence<br />

<strong>of</strong> Ca 2+ (‘OFF’ state), <strong>the</strong> switch peptide is <strong>the</strong>n released from TnC to inhibit <strong>the</strong> interacti<strong>on</strong> <strong>of</strong><br />

myosin with <strong>the</strong> actin thin filament. The proposed mechanism <strong>of</strong> this Ca 2+ dependent regulati<strong>on</strong> is<br />

based <strong>on</strong> static x-ray structures <strong>of</strong> <strong>the</strong> Tn core regi<strong>on</strong>s <strong>of</strong> <strong>the</strong> skeletal is<strong>of</strong>orm, also obtained in <strong>the</strong><br />

absence <strong>of</strong> <strong>the</strong> thin filament [2]. Two spin-labeled cys mutant pairs were designed to m<strong>on</strong>itor <strong>the</strong><br />

proposed movement <strong>of</strong> <strong>the</strong> switch peptide in <strong>the</strong> rec<strong>on</strong>stituted thin filament<br />

(TnI Cys151/TnC Cys35 & TnI Cys151/TnC Cys84). Distances were measured using both CW and<br />

pulsed EPR methods (DEER). The switch peptide was indeed tightly bound to <strong>the</strong> N-domain <strong>of</strong><br />

TnC in <strong>the</strong> ‘ON’ state with short distances with narrow distributi<strong>on</strong>s, while unbound in <strong>the</strong> ‘OFF’<br />

state with l<strong>on</strong>g distances and broad distributi<strong>on</strong>s. Fur<strong>the</strong>r, <strong>the</strong> interacti<strong>on</strong> <strong>of</strong> Tn with <strong>the</strong> actin thin<br />

filament appears necessary for <strong>the</strong> complete release <strong>of</strong> <strong>the</strong> TnI switch regi<strong>on</strong> from TnC.<br />

References<br />

[1] K. Murakami, et al, J Mol Biol 352, 178 (2005)<br />

[2] T. M. Blumenschein, et al, Biophys J. 90, 2436 (2006)<br />

[3] M. V. Vinogradova, et al , PNAS 102. 5038 (2005)<br />

71


Protein dynamics 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

INFLUENCE OF ACETYL-D-GLUCOSAMMINE<br />

(NAG) INHIBITOR ON LOW FREQUENCY<br />

DYNAMICS OF LYSOZYME<br />

C. CRUPI 1 , G. D’ANGELO 1 , U. WANDERLINGH 1 , V. CONTI NIBALI 1 AND C. VASI 2<br />

1. Dept. <strong>of</strong> Physics, University <strong>of</strong> Messina, C.da Papardo - Salita Sper<strong>on</strong>e<br />

31, 98166 Messina, Italy<br />

2. IPCF-CNR, Messina, C.da Papardo - Salita Sper<strong>on</strong>e - 98158 Faro<br />

Superiore Messina, Italy<br />

The verified c<strong>on</strong>necti<strong>on</strong> between biological activity <strong>of</strong> proteins and <strong>the</strong>ir c<strong>on</strong>formati<strong>on</strong>al flexibility<br />

has fomented a growing interest just in low-frequency vibrati<strong>on</strong>s, in <strong>the</strong> THz range. It is believed<br />

that <strong>the</strong>se modes are particularly sensitive to <strong>the</strong> specific c<strong>on</strong>formati<strong>on</strong> <strong>of</strong> <strong>the</strong> protein and that <strong>the</strong>y<br />

drive <strong>the</strong> pathways to functi<strong>on</strong>ally important c<strong>on</strong>formati<strong>on</strong>al transiti<strong>on</strong>s in proteins [1]. The<br />

occurrence <strong>of</strong> <strong>the</strong>se low frequency moti<strong>on</strong>s in proteins is clearly observed in Raman spectra, below<br />

300 cm -1, where <strong>the</strong> presence <strong>of</strong> an asymmetric peak, comm<strong>on</strong>ly named Bos<strong>on</strong> Peak, discloses <strong>the</strong><br />

existence <strong>of</strong> an excess <strong>of</strong> vibrati<strong>on</strong>al density <strong>of</strong> states with respect to <strong>the</strong> Debye regime. Quite<br />

interestingly, a similar excess <strong>of</strong> low frequency vibrati<strong>on</strong>s over <strong>the</strong> Debye model predicti<strong>on</strong> is also<br />

revealed in <strong>the</strong> specific heat, Cp, below 30 K, where, <strong>on</strong>ce more, it appears as a peak in <strong>the</strong> reduced<br />

Cp(T)/T 3 plot [2]. At present, even though <strong>the</strong>re is a general c<strong>on</strong>sensus that <strong>the</strong>se moti<strong>on</strong>s have to<br />

involve ei<strong>the</strong>r all or a very large porti<strong>on</strong> <strong>of</strong> <strong>the</strong> whole protein molecule [3,4,5] <strong>the</strong>ir origin and <strong>the</strong>ir<br />

precise biological role is still missing. In order to gain insights into <strong>the</strong> mysterious mechanisms<br />

which give rise to this excess <strong>of</strong> modes, <strong>the</strong> study <strong>of</strong> changes in low frequency vibrati<strong>on</strong>al<br />

dynamics <strong>of</strong> a protein following its interacti<strong>on</strong> with a ligand and with and without <strong>the</strong> presence <strong>of</strong><br />

water, would be really enlightening. With this aim, Raman scattering (at room temperature) and<br />

low temperature specific heat measurements have been performed <strong>on</strong> both native hen egg white<br />

lysozyme (HEL) and lysozyme including <strong>the</strong> acetyl-D-glucosammine (HEL/NAG) substrate at two<br />

different hydrati<strong>on</strong> degrees (without water and hydrated at h=0.35g water/g HEL or HEL/NAG).<br />

Light scattering results in agreement with calorimetric findings have shown that, <strong>the</strong> presence <strong>of</strong><br />

<strong>the</strong> inhibitor str<strong>on</strong>gly reduces <strong>the</strong> intensity <strong>of</strong> <strong>the</strong> Bos<strong>on</strong> Peak while, up<strong>on</strong> hydrati<strong>on</strong>, in additi<strong>on</strong> to<br />

this decreasing number <strong>of</strong> modes, <strong>the</strong> bump positi<strong>on</strong> shifts toward a higher frequency (or<br />

temperature).<br />

References<br />

[ 1 ] Berendsen, H. J. C., S. Hayward, Curr. Opin. Struct. Biol. 10, 165–169 (2000);<br />

[ 2 ] D'Angelo G. et al. unpublished data;<br />

[ 3 ] Joti Y., Nakagawa H., Kataoka M., Kitao A., Biophys. J. 94, 4435-4443 (2008);<br />

[ 4 ] Tarek M., Tobias D.J., J. Chem. Phys. 115, 1607-1612 (2001);<br />

[ 5 ] Chou K.C., Biophys. Chem. 25, 105 (1986).<br />

72


Protein dynamics 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Molecular modeling <strong>of</strong> <strong>the</strong> S-S bridges reducti<strong>on</strong> in<br />

proteins<br />

C. DAVID 1 AND M. ENESCU 1<br />

1. Laboratoire de Chimie Physique et Ray<strong>on</strong>nement -Alain Chambaudet,<br />

Université de Franche Comté UMR CEA E4, 16, route de Gray, 25030<br />

Besanç<strong>on</strong> CEDEX, France<br />

The native disulfide bridges (S–S) are c<strong>on</strong>sidered to be a very important key in <strong>the</strong> folding and<br />

structure stabilisati<strong>on</strong> <strong>of</strong> many proteins. The importance <strong>of</strong> <strong>the</strong> study <strong>of</strong> <strong>the</strong> protein disulfide<br />

bridges reducti<strong>on</strong> comes to light in protein unfolding/refolding experiments. [1] The protein<br />

structure plays a significant role in <strong>the</strong> reducti<strong>on</strong> mechanism.. It affects <strong>the</strong> reactivity <strong>of</strong> <strong>the</strong><br />

bridges by three factors : <strong>the</strong> electrostatic interacti<strong>on</strong>s between reagents and <strong>the</strong> charged<br />

envir<strong>on</strong>ment, <strong>the</strong> accessibility <strong>of</strong> <strong>the</strong> reacti<strong>on</strong> site and <strong>the</strong> stabilisati<strong>on</strong> <strong>of</strong> <strong>the</strong> reacti<strong>on</strong> products by<br />

subsequent protein unfolding. The molecular modeling methods provide important informati<strong>on</strong><br />

about this mechanism. We report here a systematic <strong>the</strong>oretical study <strong>on</strong> <strong>the</strong> reactivity <strong>of</strong> <strong>the</strong> four<br />

lysozyme S–S bridges. The bridges accessibility with respect to <strong>the</strong> reducing reagent TCEP is<br />

characterized by calculating QM/MM (PM3/Amber) potentials <strong>of</strong> mean force (PMF) curves. [2]<br />

The quantum mechanics-free energy perturbati<strong>on</strong> (QM-FEP) method [3] was <strong>the</strong>n employed for<br />

obtaining reacti<strong>on</strong> free energy pr<strong>of</strong>iles. In this approach <strong>the</strong> chemical system c<strong>on</strong>figurati<strong>on</strong>s and<br />

point charges <strong>on</strong> <strong>the</strong> reacti<strong>on</strong> trajectory were derived from QM (DFT) calculati<strong>on</strong>s <strong>on</strong> model<br />

systems. They were <strong>the</strong>n used in classical dynamic simulati<strong>on</strong>s where <strong>on</strong>ly <strong>the</strong> changes in <strong>the</strong><br />

reacti<strong>on</strong> envir<strong>on</strong>ment were sampled. Significant differences in <strong>the</strong> lysozyme S–S bridges’ reactivity<br />

were found (with a maximum for <strong>the</strong> cys6-cys127 bridge) thus proving <strong>the</strong> role <strong>of</strong> <strong>the</strong> protein<br />

structure in this reacti<strong>on</strong>.<br />

References<br />

Fig. 1 –Free energy pr<strong>of</strong>iles for <strong>the</strong> reducti<strong>on</strong> <strong>of</strong> a S-S bridge<br />

model.<br />

[1] W. J. Wedemeyer, E. Welker, M. Narayan, H. A. Scheraga, Biochemistry, 39, 4207-4216 (2000).<br />

[2] B. Roux, Comput. Phys. Commun., 91, 275-282 (1995).<br />

[3] J. J. Ruiz-Perna, E. Silla, I. Tun, S. Mart, V. Moliner, J. Phys. Chem. B, 108, 8427-8433 (2004).<br />

73


Protein dynamics 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Microstructure at <strong>the</strong> water lipid protein interface<br />

c<strong>on</strong>trols c<strong>on</strong>formati<strong>on</strong>al switching mechanisms in <strong>the</strong><br />

c<strong>on</strong>served D(E)RY motif <strong>of</strong> G-protein coupled receptors<br />

S. EICHLER , S. MADATHIL AND K.FAHMY<br />

Dept. <strong>of</strong> Biophysics, Institute <strong>of</strong> Radiochemistry, Forschungszentrum<br />

Dresden-Rossendorf, PF 510119, Dresden, D-01314, Germany<br />

G-Protein coupled receptors (GPCRs) play a fundamental role in many physiological processes<br />

due to <strong>the</strong>ir ability to switch between different structures up<strong>on</strong> activati<strong>on</strong>. The prototypical GPCR<br />

rhodopsin serves as a model to study molecular switching mechanisms. Up<strong>on</strong> photoisomerizati<strong>on</strong><br />

<strong>of</strong> <strong>the</strong> chromophore retinal, prot<strong>on</strong>ati<strong>on</strong> <strong>of</strong> a glutamic acid (Glu 134) in <strong>the</strong> highly c<strong>on</strong>served<br />

D(E)RY motif at <strong>the</strong> cytosolic end <strong>of</strong> transmembrane helix 3 (TM3) leads to breakage <strong>of</strong> an i<strong>on</strong>ic<br />

lock which stabilizes <strong>the</strong> inactive state [1]. Due to <strong>the</strong> low dielectricity <strong>of</strong> <strong>the</strong> lipidic envir<strong>on</strong>ment,<br />

side chain charges and <strong>the</strong>ir neutralizati<strong>on</strong> c<strong>on</strong>tribute to <strong>the</strong> energetics <strong>of</strong> c<strong>on</strong>formati<strong>on</strong>al<br />

transiti<strong>on</strong>s much more than in a purely aqueous envir<strong>on</strong>ment. Our aim is to elucidate <strong>the</strong><br />

functi<strong>on</strong>al implicati<strong>on</strong> <strong>of</strong> lipid protein interacti<strong>on</strong>s and microstructure at <strong>the</strong> water lipid protein<br />

interface in c<strong>on</strong>trolling protein c<strong>on</strong>formati<strong>on</strong>. We have studied syn<strong>the</strong>tic peptides derived from<br />

rhodopsin TM3 by fluorescence spectroscopy at different pH in a hydrophobic envir<strong>on</strong>ment. In [2]<br />

pH dependency <strong>of</strong> FRET between Trp at <strong>the</strong> cytosolic side <strong>of</strong> a TM3-derived peptide and<br />

DANSYL-PE was used as a m<strong>on</strong>itor for helix moti<strong>on</strong>. The observed pH dependency argues for<br />

stabilizati<strong>on</strong> <strong>of</strong> <strong>the</strong> prot<strong>on</strong>ated state by lipid protein interacti<strong>on</strong>s. In additi<strong>on</strong>, we studied a TM3derived<br />

peptide with a Trp probe shifted into <strong>the</strong> hydrophobic regi<strong>on</strong>. This peptide showed a redshifted<br />

emissi<strong>on</strong> maximum <strong>of</strong> Trp, indicative <strong>of</strong> water accessibility. Moreover, at low pH <strong>the</strong> redshift<br />

was less pr<strong>on</strong>ounced supporting <strong>the</strong> hypo<strong>the</strong>sis that <strong>the</strong> neutralized Glu134 repels water and<br />

in general provides a pH-regulated hydrati<strong>on</strong> site. We c<strong>on</strong>clude that microstructure at <strong>the</strong> water<br />

lipid protein interface and lipid protein interacti<strong>on</strong> play a key role in <strong>the</strong> switching mechanism <strong>of</strong><br />

GPCRs. The predominance <strong>of</strong> <strong>the</strong>se local interacti<strong>on</strong>s which are not strictly dependent <strong>on</strong><br />

intramolecular c<strong>on</strong>tacts to specific amino acids rec<strong>on</strong>ciles <strong>the</strong> highly c<strong>on</strong>served prot<strong>on</strong> uptake at<br />

<strong>the</strong> D(E)RY motif in GPCR activati<strong>on</strong> <strong>on</strong> <strong>the</strong> <strong>on</strong>e hand and <strong>the</strong> diverse ligand specificity <strong>of</strong> class-A<br />

GPCRs <strong>on</strong> <strong>the</strong> o<strong>the</strong>r hand.<br />

References<br />

[1] J. A. Ballesteros, A. D. Jensen, G. Liapakis, S. G.F. Rasmussen, L. Shi, U. Ge<strong>the</strong>r, J. A. Javitch, J. Biol. Chem. 276,<br />

29171-29177 (2001).<br />

[2] S. Madathil, G. Furlinski, K.Fahmy, Biopolymers 82, 329-333 (2006).<br />

74


Protein dynamics 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Time-Resolved Surface Enhanced Res<strong>on</strong>ance Raman<br />

Spectro-Electrochemistry <strong>of</strong> Heme Proteins<br />

M. GROßERÜSCHKAMP 1, 2 , C. NOWAK 1, 2 , W. KNOLL 2 AND R.L.C. NAUMANN 1<br />

1. Max Planck Institute for Polymer Research, Ackermannweg 10,<br />

55128 Mainz, Germany<br />

2. Austrian Research Centers GmbH - ARC, D<strong>on</strong>au-City-Straße 1,<br />

1220 Wien, Austria<br />

The major part <strong>of</strong> <strong>the</strong> energy requirement <strong>of</strong> <strong>the</strong> human body is provided by <strong>the</strong> respiratory chain<br />

in form <strong>of</strong> adenosine triphosphate (ATP) by <strong>the</strong> respiratory chain. The multi redox center protein<br />

Cytochrome C Oxidase (CcO) plays a key role in this process [1]. Four coupled redox centers, CuA,<br />

heme a, heme a3 and CuB, are involved in <strong>the</strong> catalytic turnover <strong>of</strong> <strong>the</strong> protein. Surface enhanced<br />

res<strong>on</strong>ance Raman spectroscopy (SERRS) combined with electrochemical methods is an adequate<br />

tool to study <strong>the</strong> redox processes <strong>of</strong> heme proteins such as CcO [2]. In c<strong>on</strong>trast to CcO <strong>the</strong> heme<br />

protein cytochrome c exhibits <strong>on</strong>ly <strong>on</strong>e heme structure. It was used as a benchmark system to<br />

develop a novel SERRS active substrate based <strong>on</strong> Ag nanoparticles as well as a measuring cell<br />

design allowing for high sensitive time-resolved SERRS measurements [3].<br />

References<br />

Fig. 1 – Cytochrome c adsorbed <strong>on</strong> a self assembled m<strong>on</strong>olayer <strong>of</strong><br />

mercaptoethanol <strong>on</strong> a SER(R)S-active silver substrate (left) and <strong>the</strong><br />

SERR spectra resulting from a potentiostatic titrati<strong>on</strong> <strong>of</strong> <strong>the</strong> protein<br />

(right).<br />

[1] M.K.F. Wikström, Nature 266, 271-273 (1977).<br />

[2] S. Lecomte, H. Wackerbarth, T. Soulimane, G. Buse, P. Hildebrandt, J. Am. Chem. Soc., 120, 7381-7382 (1998).<br />

[3] M.Grosserueschkamp, M. Friedrich, M. Plum, W.Knoll, R.L.C. Naumann, J. Phys. Chem B, 113, 2492-2497 (<strong>2009</strong>).<br />

75


Protein dynamics 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Protein diffusi<strong>on</strong> in crowded electrolyte soluti<strong>on</strong>s<br />

M. HENNIG 1,2 , F. ROOSEN-RUNGE 1,2 , T. SEYDEL 1 , F. ZHANG 2 , M. W. A. SKODA 3 , R. M. J. JACOBS 4 ,<br />

S. ZORN 1 , M. MACCARINI 1 , P. FOUQUET 1 AND F. SCHREIBER 2<br />

1. Institut Laue-Langevin, 6 Rue Jules Horowitz, Grenoble, F-38000,<br />

France<br />

2. Dept. <strong>of</strong> Applied Physics, University <strong>of</strong> Tuebingen, Auf der<br />

Morgenstelle 10, Tuebingen, D-72076, Germany<br />

3. ISIS, Ru<strong>the</strong>rford Applet<strong>on</strong> Laboratory, Chilt<strong>on</strong>, Didcot, UK<br />

4. Chemistry Research Laboratory, University <strong>of</strong> Oxford, Oxford, UK<br />

In a simplified picture, living cells operate through <strong>the</strong> moti<strong>on</strong> <strong>of</strong> proteins embedded in a<br />

"crowded" aqueous soluti<strong>on</strong> <strong>of</strong> various macromolecules and salts [1]. C<strong>on</strong>siderable debate<br />

<strong>the</strong>refore addresses <strong>the</strong> c<strong>on</strong>necti<strong>on</strong> <strong>of</strong> protein functi<strong>on</strong> and protein moti<strong>on</strong> in an aqueous<br />

envir<strong>on</strong>ment as a functi<strong>on</strong> <strong>of</strong> envir<strong>on</strong>mental parameters such as charges and temperature. It can be<br />

assumed that protein functi<strong>on</strong> cannot be understood without taking into account protein moti<strong>on</strong> in<br />

an aqueous envir<strong>on</strong>ment and <strong>the</strong> interacti<strong>on</strong> <strong>of</strong> proteins, i<strong>on</strong>s, and water [2]. Neutr<strong>on</strong> spectroscopy<br />

has since l<strong>on</strong>g been proven to be a unique tool to investigate protein dynamics [3]. Neutr<strong>on</strong>s probe<br />

moti<strong>on</strong> as a functi<strong>on</strong> <strong>of</strong> length scale from interatomic to mesoscopic distances in <strong>the</strong> sample, <strong>on</strong><br />

time scales from sub-picosec<strong>on</strong>ds to approximately 200 nanosec<strong>on</strong>ds. Most <strong>of</strong> <strong>the</strong> early neutr<strong>on</strong><br />

spectroscopy work c<strong>on</strong>cerning protein dynamics has been performed <strong>on</strong> powders or hydrated<br />

powder samples [4]. Interestingly, <strong>the</strong> biologically highly relevant case <strong>of</strong> protein soluti<strong>on</strong>s has<br />

rarely been studied, inter alia due to <strong>the</strong> difficulty <strong>of</strong> discriminating <strong>the</strong> c<strong>on</strong>tributi<strong>on</strong> from <strong>the</strong><br />

centre-<strong>of</strong>-mass diffusi<strong>on</strong> <strong>of</strong> both protein and solvent molecules and also <strong>the</strong> problem <strong>of</strong> obtaining<br />

<strong>the</strong> required protein scattering volume whilst keeping <strong>the</strong> solvent scattering c<strong>on</strong>tributi<strong>on</strong> low. We<br />

present a combined cold neutr<strong>on</strong> backscattering and spin-echo study <strong>of</strong> <strong>the</strong> self-diffusive and<br />

collective center <strong>of</strong> mass diffusi<strong>on</strong> <strong>of</strong> <strong>the</strong> model globular protein Bovine Serum Albumin (BSA)<br />

under <strong>the</strong> c<strong>on</strong>diti<strong>on</strong> <strong>of</strong> ”protein crowding” in aqueous soluti<strong>on</strong>. We investigate <strong>the</strong> protein<br />

diffusi<strong>on</strong> <strong>on</strong> <strong>the</strong> nanosec<strong>on</strong>d timescale as a functi<strong>on</strong> <strong>of</strong> protein volume fracti<strong>on</strong>, i<strong>on</strong>ic strength and<br />

temperature. Complementary, small-angle X-ray scattering data are used to obtain informati<strong>on</strong> <strong>on</strong><br />

<strong>the</strong> correlati<strong>on</strong>s <strong>of</strong> BSA molecules in soluti<strong>on</strong>. Particular emphasise is put <strong>on</strong> <strong>the</strong> effect <strong>of</strong><br />

crowding, i.e. c<strong>on</strong>diti<strong>on</strong>s under which <strong>the</strong> proteins cannot be c<strong>on</strong>sidered as objects independent <strong>of</strong><br />

each o<strong>the</strong>r. We thus address <strong>the</strong> questi<strong>on</strong> at which c<strong>on</strong>centrati<strong>on</strong> this crowding starts to influence<br />

<strong>the</strong> static and especially <strong>the</strong> dynamical behavior. The interpretati<strong>on</strong> <strong>of</strong> <strong>the</strong> data is put in <strong>the</strong> c<strong>on</strong>text<br />

<strong>of</strong> existing studies <strong>on</strong> related systems and <strong>of</strong> existing <strong>the</strong>oretical models.<br />

References<br />

[1] R. Ellis, Macromolecular crowding: an important but neglected aspect <strong>of</strong> <strong>the</strong> intracellular envir<strong>on</strong>ment, Current<br />

Opini<strong>on</strong> in Structural Biology 11 (1) (2001) 114-119.<br />

[2] P. Ball, Water as an active c<strong>on</strong>stituent in cell biology, Chem. Rev 108 (1) (2008) 74-108.<br />

[3] M. Bee, Localized and l<strong>on</strong>g-range diffusi<strong>on</strong> in c<strong>on</strong>densed matter: state <strong>of</strong> <strong>the</strong> art <strong>of</strong> QENS studies and future<br />

prospects, Chemical Physics 292 (2-3) (2003) 121-141.<br />

[4] F. Gabel, D. Bicout, U. Lehnert, M. Tehei, M. Weik, G. Zaccai, Protein dynamics studied by neutr<strong>on</strong> scattering,<br />

Quarterly Reviews <strong>of</strong> Biophysics 35 (04) (2003) 327-367.<br />

76


Protein dynamics 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Structure differences between protein crystals and<br />

soluti<strong>on</strong> structures m<strong>on</strong>itored by Raman spectroscopy<br />

V. KOPECKÝ JR. 1 , K. HOFBAUEROVÁ 1,2 , J. KOHOUTOVÁ 3 , J. ŠTĚPÁNEK 1 AND R. ETTRICH 3<br />

1. Institute <strong>of</strong> Physics, Faculty <strong>of</strong> Ma<strong>the</strong>matics and Physics, Charles<br />

University in Prague, Ke Karlovu 5, Prague 2, CZ-121 16, Czech Republic<br />

2. Institute <strong>of</strong> Microbiology, Academy <strong>of</strong> Sciences <strong>of</strong> <strong>the</strong> Czech Republic,<br />

Vídeňská 1083, Prague 4, CZ-142 20, Czech Republic<br />

3. Institute <strong>of</strong> Systems Biology and Ecology, Academy <strong>of</strong> Sciences <strong>of</strong> <strong>the</strong><br />

Czech Republic, Zámek 136, Nové Hrady, CZ-373 33 Czech Republic<br />

Raman spectroscopy gives a unique opportunity to study protein samples in different phases. It is<br />

possible to measure intact protein crystals directly in hanging drops in crystallizati<strong>on</strong> boxes were<br />

<strong>the</strong>y growth and to study <strong>the</strong> protein structure in crystals as well as chemical reacti<strong>on</strong>s in single<br />

crystals [1]. Moreover, we apply a new technique <strong>of</strong> Raman spectroscopy – a drop coating<br />

depositi<strong>on</strong> Raman (DCDR) method [2], based <strong>on</strong> a c<strong>of</strong>fee ring effect, that enables measurements <strong>of</strong><br />

soluti<strong>on</strong>s down to 1 µM c<strong>on</strong>centrati<strong>on</strong>s. However, our recent work adverted to subtle differences<br />

which corresp<strong>on</strong>d to <strong>the</strong> glass-like phase <strong>of</strong> <strong>the</strong> deposited samples [3]. Thus, DCDR protein<br />

samples represent a "phase transiti<strong>on</strong>" between oversaturated protein soluti<strong>on</strong>s and crystals. This<br />

enables to distinguish spectral differences given by <strong>the</strong> density <strong>of</strong> molecules in crystals from those<br />

caused by protein crystal artifacts. Here we illustrate, <strong>on</strong> several examples, applicability <strong>of</strong> <strong>the</strong><br />

method for distinguishing <strong>the</strong>se differences and improving X-ray protein structures by molecular<br />

modeling based <strong>on</strong> informati<strong>on</strong> from Raman spectroscopy.<br />

Fig. 1 – I) Crystals <strong>of</strong> PsbP protein; II) DCDR ring <strong>of</strong> PsbP protein; III) Raman spectra <strong>of</strong><br />

PsbP protein measured in (A) solvent, as (B) DCDR deposit and in (C) <strong>the</strong> crystal form.<br />

Appropriate spectral differences are depicted down <strong>the</strong> figure.<br />

References<br />

[1] P. R. Carey, J. D<strong>on</strong>g, Biochemistry 43, 8885–8893 (2004).<br />

[2] D. Zhang, Y. Xie, M. F. Mrozek, C. Ortiz, V. J. Daviss<strong>on</strong>, D. Ben-Amotz, Anal. Chem. 75, 5703–5709 (2003).<br />

[3] J. Kapitán J., V. Baumruk, V. Kopecký Jr., R. Pohl, P. Bouř, J. Am. Chem. Soc. 128, 13451–13462 (2006).<br />

77


Protein dynamics 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Volume fluctuati<strong>on</strong>s in solvated protein by ultras<strong>on</strong>ic<br />

spectroscopy and molecular dynamics simulati<strong>on</strong><br />

T. HUSHCHA 1 AND S. YESYLEVSKYY 2<br />

1. Institute <strong>of</strong> Bioorganic Chemistry and Petrochemistry, Nati<strong>on</strong>al<br />

Academy <strong>of</strong> Sciences <strong>of</strong> Ukraine, Murmanska str.1, Kyiv – 94, 02660,<br />

Ukraine<br />

2. Institute <strong>of</strong> Physics, Nati<strong>on</strong>al Academy <strong>of</strong> Sciences <strong>of</strong> Ukraine,<br />

Prospect Nauki 46, Kyiv, 03039, Ukraine<br />

C<strong>on</strong>stant pressure molecular dynamics techniques have been employed to investigate <strong>the</strong> changes<br />

in structure and volume <strong>of</strong> globular protein, human serum albumin, <strong>on</strong> <strong>the</strong> time scale <strong>of</strong> 100 ns.<br />

Computed apparent volume and compressibility <strong>of</strong> protein are close to experimental values that<br />

have been also estimated in this paper by density and sound velocity measurements. Relaxati<strong>on</strong> <strong>of</strong><br />

apparent protein volume after external pressure change has been investigated by molecular<br />

dynamics simulati<strong>on</strong> that mimics <strong>the</strong> broadband ultras<strong>on</strong>ic spectroscopy measurements<br />

performed in our previous paper [1]. The structural effects observed in <strong>the</strong> simulati<strong>on</strong>s can well<br />

explain protein compressibility measurements carried out by ultras<strong>on</strong>ic technique. We observe<br />

that <strong>the</strong> protein apparent volume relaxes involving two time scales: a slower <strong>on</strong>e with <strong>the</strong><br />

characteristic time close to 100 ns due probably to c<strong>on</strong>formati<strong>on</strong>al changes in protein chain and a<br />

faster <strong>on</strong>e exhibiting distributi<strong>on</strong> <strong>of</strong> relaxati<strong>on</strong> times around 0.1 ns. The latter can be attributed to<br />

protein-solvent interacti<strong>on</strong>s. We find that two phenomena give unequivalent c<strong>on</strong>tributi<strong>on</strong>s to<br />

fluctuati<strong>on</strong>s <strong>of</strong> <strong>the</strong> protein apparent volume. The total fluctuati<strong>on</strong>s resulting from hydrati<strong>on</strong><br />

changes significantly exceed those resulting from <strong>the</strong> protein intrinsic moti<strong>on</strong>s. It is interesting that<br />

<strong>the</strong> principal comp<strong>on</strong>ent analysis <strong>of</strong> molecular dynamics trajectories shows that <strong>the</strong> main<br />

c<strong>on</strong>tributi<strong>on</strong> to protein intrinsic volume fluctuati<strong>on</strong>s comes from low frequency modes related to<br />

large and slow moti<strong>on</strong>s <strong>of</strong> proteins [2]. We c<strong>on</strong>clude that even within <strong>the</strong> 100 ns time scale intrinsic<br />

volume fluctuati<strong>on</strong>s <strong>of</strong> protein do not exceed its partial volume changes resulting from hydrati<strong>on</strong><br />

rearrangements.<br />

References<br />

[1] T. Hushcha, U. Kaatze, A. Peytcheva, Biopolymers 74, 32-36 (2004).<br />

[2] F. Tama, O. Miyashita, A. Kitao, N. Go, Eur. Biophys. J. 29, 472-480 (2000).<br />

78


Protein dynamics 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

CONFORMATIONAL ANALYSIS AND VIBRATIONAL<br />

SPECTROSCOPIC INVESTIGATION OF L-ALANYL-L-<br />

GLUTAMINE DIPEPTIDE<br />

SERDA KECEL 1 , AYSEN E. OZEL 1 , SEVIM AKYUZ 2 AND SEFA CELIK 3<br />

1. Istanbul University, Faculty <strong>of</strong> Science, Department <strong>of</strong> Physics,<br />

Vezneciler, 34134, Istanbul, Turkey<br />

2 Istanbul Kultur University, Faculty <strong>of</strong> Science and Letters,<br />

Department <strong>of</strong> Physics, Atakoy Campus, 34156 Istanbul, Turkey<br />

1. Istanbul University, Engineering Faculty, Electrical-Electr<strong>on</strong>ics Eng.<br />

Department, 34320-Avcilar, Istanbul, Turkey<br />

Glutamine is <strong>the</strong> most abundant amino acid in <strong>the</strong> human body, and is <strong>the</strong> important intermediate<br />

<strong>of</strong> nitrogen metabolism. It was shown that surgical patients greatly benefit from supplementary<br />

glutamine dipeptides and glutamine dipeptides help to reduce <strong>the</strong> infectious complicati<strong>on</strong>s [1].<br />

Glutamine is also found to prevent chemo<strong>the</strong>rapy and radiati<strong>on</strong>-induced toxicity [2]. L-alanyl-Lglutamine<br />

(Ala-Gln) dipeptide helps to diminish tumor growth by restoring <strong>the</strong> functi<strong>on</strong> <strong>of</strong> natural<br />

killer cells increasing selectivity <strong>of</strong> antitumor drugs [3]. In spite <strong>of</strong> its great biological importance<br />

<strong>the</strong>re is no study <strong>on</strong> experimental and <strong>the</strong>oretical vibrati<strong>on</strong>al spectra <strong>of</strong> Ala-Gln dipeptide was<br />

reported. In <strong>the</strong> first part <strong>of</strong> this study <strong>the</strong> c<strong>on</strong>formati<strong>on</strong>al behavior <strong>of</strong> Ala-Gln dipeptide has been<br />

investigated by molecular mechanic and ab-initio calculati<strong>on</strong>s. The energy calculati<strong>on</strong>s <strong>of</strong> Ala-Gln<br />

dipeptide as a functi<strong>on</strong> <strong>of</strong> side chain torsi<strong>on</strong> angles enable us to determine <strong>the</strong>ir energetically<br />

preferred c<strong>on</strong>formati<strong>on</strong>s. The relative positi<strong>on</strong>s <strong>of</strong> <strong>the</strong> side chain residues <strong>of</strong> <strong>the</strong> stable<br />

c<strong>on</strong>formati<strong>on</strong>s <strong>of</strong> dipeptide were obtained depending <strong>on</strong> <strong>the</strong> obtained c<strong>on</strong>formati<strong>on</strong>al analysis<br />

results <strong>of</strong> using program proposed by Godjaev et al in FORTRAN. The lowest energy c<strong>on</strong>former<br />

has been determinate by using <strong>the</strong> Ramachandran maps and compared with <strong>the</strong> quantum<br />

chemical ab-initio results. The geometry optimizati<strong>on</strong>, vibrati<strong>on</strong>al wavenumber and intensity<br />

calculati<strong>on</strong>s <strong>of</strong> Ala-Gln dipeptide were carried out with <strong>the</strong> Gaussian03 program by using DFT<br />

with B3LYP functi<strong>on</strong>al and 6-31++G(d,p) basis set. The IR spectra (4000-400cm-1) and micro<br />

Raman spectra <strong>of</strong> <strong>the</strong> la-Gln dipeptide, in solid phase, have been reported and compared with <strong>the</strong><br />

<strong>the</strong>oretical vibrati<strong>on</strong>al data.<br />

References<br />

[1] N. M. Godjaev, I. S. Maksumov, I.J. L. I. Ismailova; J. Chem. Struc. (Russian) 24 147-152 (1983).<br />

79


Protein dynamics 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

N<strong>on</strong>-trivial quantum effects in radical-i<strong>on</strong>-pair<br />

reacti<strong>on</strong>s<br />

I. KOMINIS<br />

Dept. <strong>of</strong> Physics, University <strong>of</strong> Crete, Herakli<strong>on</strong> 71103, Greece and<br />

Institute <strong>of</strong> Electr<strong>on</strong>ic Structure and Laser, Foundati<strong>on</strong> for Research and<br />

Technology, Herakli<strong>on</strong> 71110, Greece<br />

N<strong>on</strong>-trivial quantum effects in biology have been sought after for a l<strong>on</strong>g time. It was recently<br />

discovered that a familiar biological system, namely radical-i<strong>on</strong> pairs and <strong>the</strong>ir reacti<strong>on</strong>s, exhibits a<br />

number <strong>of</strong> quantum effects until now manifested <strong>on</strong>ly in carefully prepared quantum physics<br />

experiments with well-isolated atomic systems. Radical-i<strong>on</strong>-pairs are bio-molecules fundamental<br />

in <strong>the</strong> photosyn<strong>the</strong>tic reacti<strong>on</strong> dynamics, are understood to underlie <strong>the</strong> chemical compass used by<br />

avian species for navigati<strong>on</strong> and are found in several o<strong>the</strong>r biochemical c<strong>on</strong>texts. It has been<br />

shown that magnetic-sensitive radical-i<strong>on</strong>-pair reacti<strong>on</strong>s sustain quantum coherence, exhibit<br />

quantum jumps and <strong>the</strong> quantum Zeno effect and are <strong>the</strong> first biological system where <strong>the</strong> full<br />

machinery <strong>of</strong> quantum measurement <strong>the</strong>ory can be fruitfully applied. This opens <strong>the</strong> way to<br />

several vistas in <strong>the</strong>oretical and experimental quantum biology, from <strong>the</strong> understanding <strong>of</strong> <strong>the</strong><br />

fundamental c<strong>on</strong>necti<strong>on</strong>s between quantum-dynamic effects and biology, to <strong>the</strong> design and<br />

experimental dem<strong>on</strong>strati<strong>on</strong> <strong>of</strong> novel quantum-limited biochemical-reacti<strong>on</strong> magnetometers and<br />

last but not least to <strong>the</strong> explorati<strong>on</strong> <strong>of</strong> quantum informati<strong>on</strong> processing at <strong>the</strong> biological level.<br />

References<br />

[1] I. K. Kominis, http://aps.arxiv.org/abs/0806.0739<br />

80


Protein dynamics 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Ultrafast spectroscopy <strong>of</strong> photoactive flavoproteins<br />

A. LUKACS 1,2 , M. H. VOS 2 AND S. R. MEECH 1<br />

1. Faculty <strong>of</strong> Chemical Sciences and Pharmacy, University <strong>of</strong> East<br />

Anglia, United Kingdom<br />

2. Laboratoire d’Optique et Biosciences, Ecole Polytechnique, France<br />

More than a hundred enzymes exist which use <strong>the</strong> flavin chromophore as a c<strong>of</strong>actor. Flavoproteins<br />

exhibit a rich redox chemistry as <strong>the</strong> flavin chromophore can adopt three redox states, oxidized,<br />

<strong>on</strong>e electr<strong>on</strong> reduced (semi-reduced), two electr<strong>on</strong> reduced (fully reduced). The different forms <strong>of</strong><br />

<strong>the</strong> flavin chromophore have characteristic absorpti<strong>on</strong> spectra in <strong>the</strong> visible and near UV, but <strong>the</strong><br />

physiological functi<strong>on</strong>s <strong>of</strong> most flavoproteins are light independent. A special class <strong>of</strong><br />

flavoproteins comprises those proteins where <strong>the</strong> redox process is initiated by light. This specific<br />

property makes photoactive flavoproteins, phothotropins, photolyases, cryptochromes, and BLUF<br />

(blue light sensing using FAD) proteins suitable for investigati<strong>on</strong> with laser spectroscopy, where<br />

<strong>the</strong> laser flash triggers <strong>the</strong> photochemical process. In this study we present experiments made <strong>on</strong><br />

photolyase and AppA. Photolyase is a photoactive flavoprotein where <strong>the</strong> absorpti<strong>on</strong> <strong>of</strong> blue light<br />

results in repair <strong>of</strong> UV induced DNA lesi<strong>on</strong>s, via an electr<strong>on</strong> transfer process from <strong>the</strong> fully<br />

reduced flavin c<strong>of</strong>actor (FADH–) to <strong>the</strong> substrate [1]. Ultrafast transient absorpti<strong>on</strong> measurements<br />

were performed <strong>on</strong> different mutant photolyases in order to describe <strong>the</strong> photoreducti<strong>on</strong> [2]<br />

process in photolyase which c<strong>on</strong>verts <strong>the</strong> semi-reduced flavin chromophore in its catalytically<br />

active (fully reduced) form. We also present ultrafast time-resolved infrared (TRIR) studies <strong>of</strong> a<br />

BLUF c<strong>on</strong>taining flavoprotein, <strong>the</strong> transcripti<strong>on</strong>al antirepressor AppA in which <strong>the</strong> formati<strong>on</strong> <strong>of</strong><br />

<strong>the</strong> light-induced signaling state is thought to be a result <strong>of</strong> multi-step electr<strong>on</strong> and prot<strong>on</strong> transfer<br />

processes [3,4]. Light and dark adapted forms <strong>of</strong> <strong>the</strong> protein are investigated by ultrafast TRIR and<br />

isotopic substituti<strong>on</strong>.[5]<br />

Fig. 1 – A) p53 labeled with 4-aminothiophenol (4-ATP)-Np SERS marker; B) p53-Az biorecogniti<strong>on</strong><br />

event.<br />

References<br />

[1] N. L. Rosi and C. A. Mirkin. Chemical Reviews 105 (2005) 1547.<br />

[2] A. Otto, I. Mrozek, H. Grabhorn, and Y. Pommier, J. Phys.: C<strong>on</strong>dens. Matter 4 (1992) 1143.<br />

[3] A. R. Bizzarri, S. Cannistraro, Nanomedicine 3 (2007) 306.<br />

[4] M. Taranta, A. R. Bizzarri and S. Cannistraro, J. Mol. Recognit. 21 (2008) 63.<br />

81


Protein dynamics 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Spectroelectrochemical study <strong>of</strong> [NiFe] hydrogenase <strong>of</strong><br />

Desulfovibrio vulgaris Miyazaki F in soluti<strong>on</strong> and<br />

immobilized <strong>on</strong> biocompatible gold surfaces<br />

D. MILLO 1 , M. E. PANDELIA 2 , T. UTESCH 1 , N. WISITRUANGSAKUL 1 , M. A. MROGINSKI 1 , W.<br />

LUBITZ 2 , F. LENDZIAN 1 , P. HILDEBRANDT 1 AND I. ZEBGER 1<br />

1. Institut für Chemie, Technische Universität Berlin, Str. des 17. Juni<br />

135, Sekr. PC14, D10623-Berlin, Germany<br />

2. Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-<br />

45470 Mülheim/Ruhr, Germany<br />

The [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F was immobilized at biocompatible<br />

Au electrodes and studied by surface-enhanced infrared absorpti<strong>on</strong> (SEIRA) spectroscopy in<br />

combinati<strong>on</strong> with direct electrochemistry. The advantage <strong>of</strong> this approach is that electrochemical<br />

investigati<strong>on</strong>s, such as cyclic voltammetry (CV), can benefit from <strong>the</strong> unique structural insight<br />

given by SEIRA. In fact, in <strong>the</strong> case <strong>of</strong> hydrogenase, SEIRA spectroscopy provides informati<strong>on</strong><br />

about <strong>the</strong> sec<strong>on</strong>dary structure <strong>of</strong> <strong>the</strong> protein backb<strong>on</strong>e (in <strong>the</strong> spectral regi<strong>on</strong> between 1500 and<br />

1700 cm -1) and about <strong>the</strong> redox state <strong>of</strong> <strong>the</strong> catalytic active site as reflected by <strong>the</strong> stretching modes<br />

<strong>of</strong> <strong>the</strong> CO and CN - ligands (in <strong>the</strong> spectral regi<strong>on</strong> between 1900 and 2100 cm -1). [1] Comparis<strong>on</strong><br />

between IR spectra <strong>of</strong> <strong>the</strong> enzyme obtained in soluti<strong>on</strong> [2] with those obtained <strong>on</strong> <strong>the</strong> surface<br />

(SEIRA) reveals that protein immobilizati<strong>on</strong> does not alter <strong>the</strong> active site structure. Moreover, after<br />

immobilizati<strong>on</strong>, <strong>the</strong> adsorbed enzyme undergoes a slow reductive activati<strong>on</strong> under H2, followed<br />

by a fast inactivati<strong>on</strong> under O2 gas exchange, as observed in soluti<strong>on</strong>. Protein film voltammetry<br />

(PFV) proved that <strong>the</strong> adsorbed enzyme is catalytically active and undergoes reversible anaerobic<br />

inactivati<strong>on</strong> up<strong>on</strong> increasing <strong>the</strong> applied potential. The reductive activati<strong>on</strong> occurs at a potential<br />

(Eswitch) <strong>of</strong> -33 mV (vs NHE). SEIRA measurements in combinati<strong>on</strong> with PFV revealed that<br />

applying a potential to <strong>the</strong> electrode leads to a slow but steady irreversible decrease <strong>of</strong> <strong>the</strong> catalytic<br />

activity <strong>of</strong> <strong>the</strong> immobilized enzyme. The studies aim to gain deeper insight into <strong>the</strong> mechanism <strong>of</strong><br />

<strong>the</strong> catalytic cycle <strong>of</strong> <strong>the</strong> [NiFe] hydrogenase as well as into protein-surface interacti<strong>on</strong>s, and may<br />

c<strong>on</strong>tribute to establish a novel methodology for studying interfacial biocatalytic processes.<br />

References<br />

[1] N. Wisitruangsakul, O. Lenz, M. Ludwig, B. Friedrich, F. Lendzian, P. Hildebrandt, I. Zebger, Angew. Chem 48,<br />

611-613 (<strong>2009</strong>).<br />

[2] C. Fichtner, C. Laurich, E. Bo<strong>the</strong>, W. Lubitz, Biochemistry 45, 9706-9716 (2006).<br />

82


Protein dynamics 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Two C<strong>on</strong>formati<strong>on</strong>s <strong>of</strong> <strong>the</strong> Cytochrome c Oxidase<br />

Discriminated by Spectro-Electrochemistry Using<br />

SEIRAS<br />

CHRISTOPH NOWAK 1, 3 , JIAPENG ZHU 2 , ROBERT B. GENNIS 2 , WOLFGANG KNOLL 3 , RENATE L. C.<br />

NAUMANN 1<br />

1 Max Planck Institute for Polymer Research, Ackermannweg 10, 55128<br />

Mainz, Germany<br />

2 University <strong>of</strong> Illinois, Department <strong>of</strong> Biochemistry, 600 South Ma<strong>the</strong>ws<br />

Street, Urbana, IL 61801, USA<br />

3 Austrian Research Centers GmbH, ARC, D<strong>on</strong>au-City Str. 1, 1220<br />

Vienna, Austria<br />

Electr<strong>on</strong>ic wiring <strong>of</strong> cytochrome c oxidase (CcO) from R. sphaeroides to gold surfaces was employed<br />

to m<strong>on</strong>itor redox changes through redox centers, CuA, heme a, heme a3 and CuB. Electrochemical<br />

investigati<strong>on</strong>s revealed that under aerobic and reducing c<strong>on</strong>diti<strong>on</strong>s <strong>the</strong> enzyme undergoes a<br />

gradual transiti<strong>on</strong> into an activated state. It is <strong>on</strong>ly in this state that prot<strong>on</strong> pumping and catalytic<br />

currents can be observed. The potential <strong>of</strong> <strong>the</strong> catalytic current, however, is shifted by 450 mV<br />

negative from <strong>the</strong> standard redox potential <strong>of</strong> CuA. In c<strong>on</strong>trast, “correct” standard redox potentials<br />

<strong>of</strong> all <strong>the</strong> centers in <strong>the</strong> positive potential range can be observed if <strong>the</strong> enzyme kept under<br />

anaerobic and oxidizing c<strong>on</strong>diti<strong>on</strong>s. Then no prot<strong>on</strong> pumping does take place. This state is<br />

<strong>the</strong>refore c<strong>on</strong>sidered as a n<strong>on</strong>-activated state. The transiti<strong>on</strong> between <strong>the</strong> two states is fully<br />

reversible. This was also verified by electrochemically-c<strong>on</strong>trolled surface-enhanced infrared<br />

absorpti<strong>on</strong> spectroscopy (SEIRAS).<br />

absorbance / a.u.<br />

9.0x10 -3<br />

8.0x10 -3<br />

7.0x10 -3<br />

6.0x10 -3<br />

5.0x10 -3<br />

4.0x10 -3<br />

3.0x10 -3<br />

2.0x10 -3<br />

1.0x10 -3<br />

0.0<br />

References<br />

ACTIVATED NON-ACTIVTED<br />

1700<br />

1654<br />

1682 1638<br />

1623<br />

2200 2100 2000 1900 1800 1700 1600 1500 1400 1300<br />

wavenumber / cm -1<br />

1600<br />

1435<br />

A<br />

[1] Ch. Nowak, Ch. Luening, W. Knoll, R. L. C. Naumann, A two-layer gold surface with improved surfaceenhancement<br />

for spectro-electrochemistry using SEIRAS, Appl. Spec. under review<br />

83<br />

absorbance / a.u.<br />

9.0x10 -3<br />

8.0x10 -3<br />

7.0x10 -3<br />

6.0x10 -3<br />

5.0x10 -3<br />

4.0x10 -3<br />

3.0x10 -3<br />

2.0x10 -3<br />

1.0x10 -3<br />

0.0<br />

1656<br />

1639<br />

1681 1620<br />

1607<br />

1435<br />

B<br />

2200 2100 2000 1900 1800 1700 1600 1500 1400 1300<br />

wavenumbe in cm -1


Protein dynamics 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Molecular dynamics simulati<strong>on</strong>s in <strong>the</strong> presence <strong>of</strong><br />

lipids <strong>on</strong> a functi<strong>on</strong>ally relevant fragment <strong>of</strong> myelin<br />

basic protein<br />

E. POLVERINI 1 AND G. HARAUZ 2<br />

1. Dept. <strong>of</strong> Physics and CNISM, University <strong>of</strong> Parma, Viale G.B. Usberti<br />

7/A, Parma 43124, Italy<br />

2. Dept. <strong>of</strong> Molecular and Cellular Biology and Biophysics<br />

Interdepartmental Group, University <strong>of</strong> Guelph, 50 St<strong>on</strong>e Road East,<br />

Guelph, Ontario, Canada N1G 2W1<br />

Myelin basic protein (MBP) is a multifuncti<strong>on</strong>al protein <strong>of</strong> <strong>the</strong> central nervous system whose<br />

principal role is to maintain <strong>the</strong> compactness and integrity <strong>of</strong> <strong>the</strong> myelin sheath, <strong>the</strong> multilamellar<br />

membrane wrapped around nerve ax<strong>on</strong>s that allows efficient transmissi<strong>on</strong> <strong>of</strong> acti<strong>on</strong> potentials<br />

al<strong>on</strong>g <strong>the</strong>m. MBP is involved in human demyelinating diseases and it is a candidate autoantigen in<br />

multiple sclerosis. However, MBP also interacts with o<strong>the</strong>r proteins such as cytoskeletal and<br />

signaling proteins, adapting its structure to its different roles. The three-dimensi<strong>on</strong>al structure <strong>of</strong><br />

MBP is still unknown, due to its intrinsic flexibility and <strong>the</strong> dependence <strong>of</strong> c<strong>on</strong>formati<strong>on</strong> <strong>on</strong> local<br />

envir<strong>on</strong>ment. This study investigates <strong>the</strong> c<strong>on</strong>formati<strong>on</strong> and dynamics <strong>of</strong> a highly c<strong>on</strong>served central<br />

fragment <strong>of</strong> MBP, c<strong>on</strong>sisting <strong>of</strong> two c<strong>on</strong>secutive regi<strong>on</strong>s with different relevant functi<strong>on</strong>alities. The<br />

first <strong>on</strong>e is associated with <strong>the</strong> membrane and comprises <strong>the</strong> primary immunodominant epitope in<br />

multiple sclerosis; <strong>the</strong> sec<strong>on</strong>d <strong>on</strong>e was predicted to be a ligand for SH3-domains <strong>of</strong> signaling<br />

proteins. Molecular dynamics simulati<strong>on</strong>s were performed both in aqueous envir<strong>on</strong>ment <strong>on</strong>ly and<br />

in <strong>the</strong> presence <strong>of</strong> a dodecylphosphocholine micelle, starting from a structure extrapolated from<br />

experimental data [1]. The results c<strong>on</strong>firm <strong>the</strong> experimental hypo<strong>the</strong>sis and provide fur<strong>the</strong>r<br />

informati<strong>on</strong> at atomic detail. In water, a flexible starting structure forms a small transient alphahelix<br />

in <strong>the</strong> first regi<strong>on</strong>, and a core <strong>of</strong> poly-proline type II (PPII) helix in <strong>the</strong> sec<strong>on</strong>d <strong>on</strong>e. In <strong>the</strong><br />

micelle system, <strong>the</strong> first regi<strong>on</strong> remains anchored to <strong>the</strong> lipids in an alpha-helical c<strong>on</strong>formati<strong>on</strong>,<br />

while <strong>the</strong> proline-rich sec<strong>on</strong>d regi<strong>on</strong> is a l<strong>on</strong>g PPII helix pointing outwards, ready to interact with<br />

signaling proteins.<br />

References<br />

[1] G. Harauz, D. S. Libich, Current Protein & Peptide Science (<strong>2009</strong>), 10(3), in press.<br />

84


Protein dynamics 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Local flexibility <strong>of</strong> Human Serum Albumin complexed<br />

with fatty acids<br />

B. RIZZUTI 1 , M. PANTUSA 2 , R. BARTUCCI 2 , L. SPORTELLI 2 AND R. GUZZI 2<br />

1. Licryl laboratory CNR-INFM, University <strong>of</strong> Calabria, P<strong>on</strong>te Bucci, Rende, I-87036, Italy<br />

2. Molecular Biophysics Laboratory, Dept. <strong>of</strong> Physics and CNISM Research Unit, University <strong>of</strong><br />

Calabria, P<strong>on</strong>te Bucci, Rende, I-87036, Italy<br />

Human Serum Albumin (HSA) is <strong>the</strong> most abundant protein in human blood plasma and provides<br />

<strong>the</strong> transport <strong>of</strong> a broad spectrum <strong>of</strong> molecules that include i<strong>on</strong>s, drugs, horm<strong>on</strong>es and fatty acids.<br />

Molecular dynamics has been used to investigate <strong>the</strong> structural and dynamical properties <strong>of</strong> HSA<br />

in soluti<strong>on</strong>, both in <strong>the</strong> absence and presence <strong>of</strong> palmitate molecules docked into its three highaffinity<br />

fatty acid binding sites. Simulati<strong>on</strong>s were performed under full hydrati<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s for 5<br />

ns by using <strong>the</strong> GROMOS force-field [1]. HSA maintains its characteristic heart-shaped tertiary<br />

structure and almost (70%) all-alpha sec<strong>on</strong>dary structure. Domain III comes slightly closer to<br />

Domain I and deviati<strong>on</strong>s from <strong>the</strong> starting structures are also observed at <strong>the</strong> three interfaces <strong>of</strong> <strong>the</strong><br />

protein subdomains. Each protein ensemble clusters around a single structure, as determined with<br />

<strong>the</strong> Jarvis-Patrick method [2], and no major domain dislocati<strong>on</strong> is detected in <strong>the</strong> analysis <strong>of</strong><br />

rotati<strong>on</strong> vectors in <strong>the</strong> protein mainchain performed with <strong>the</strong> DynDom s<strong>of</strong>tware [3]. Fluctuati<strong>on</strong>s<br />

in <strong>the</strong> protein backb<strong>on</strong>e are more pr<strong>on</strong>ounced in <strong>the</strong> presence <strong>of</strong> palmitate molecules and, as a<br />

c<strong>on</strong>sequence, <strong>the</strong> protein structure equilibrates more slowly and to higher values <strong>of</strong> atomic<br />

deviati<strong>on</strong>s in <strong>the</strong> simulati<strong>on</strong>s. The palmitic acid molecules remain bound to HSA in <strong>the</strong>ir protein<br />

pockets because <strong>of</strong> a combinati<strong>on</strong> <strong>of</strong> hydrophobic and steric effects, with electrostatic interacti<strong>on</strong>s<br />

also playing an important role. In particular, <strong>the</strong> palmitate at Site 5 fluctuates around an almost<br />

extended c<strong>on</strong>formati<strong>on</strong> within <strong>the</strong> subdomain III-b with its carboxylate head attached by means <strong>of</strong><br />

Coulombic interacti<strong>on</strong>s with both <strong>the</strong> hydroxyl group in <strong>the</strong> sidechain <strong>of</strong> Tyr401 and <strong>the</strong><br />

prot<strong>on</strong>ated amine group <strong>of</strong> Lys525, while <strong>the</strong> first methylene groups <strong>of</strong> <strong>the</strong> lipid chain interact<br />

closely with <strong>the</strong> rest <strong>of</strong> <strong>the</strong> flexible Lys sidechain (see Fig. 1). The intrinsic flexibility observed in<br />

<strong>the</strong> simulati<strong>on</strong> for <strong>the</strong> anchoring <strong>of</strong> <strong>the</strong> palmitate molecule at Site 5 could explain <strong>the</strong> higher local<br />

heterogeneity observed in <strong>the</strong> experiment [4] when different fatty acids are complexed with HSA<br />

at this site, as compared with <strong>the</strong> o<strong>the</strong>r two high-affinity binding site, i.e. Site 2 and Site 4.<br />

References<br />

Fig. 1 – Simulated average structure <strong>of</strong> Site 5 in HSA.<br />

[1] C. Oostenbrink, A. Villa, A. E. Mark, W. F. van Gunsteren, J. Comput. Chem. 25, 1656-1676 (2004).<br />

[2] R. A. Jarvis, E. A. Patrick, IEEE Trans. Comp. 22, 1025–1034 (1973).<br />

[3] S. Hayward, H. J. C. Berendsen, Proteins: Struct. Funct. Genet. 30, 144-154 (1998).<br />

[4] A. B. Bhattacharaya, T. Grüne, S. Curry, J. Mol. Biol. 303, 721-732 (2000).<br />

85


Protein dynamics 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Separable influences <strong>of</strong> protein self-dynamics and lipid<br />

envir<strong>on</strong>ment <strong>on</strong> H/D exchange and heat denaturing <strong>of</strong><br />

membrane proteins<br />

H. LACZKÓ-DOBOS 1 AND B. SZALONTAI 2<br />

1. Institute <strong>of</strong> Plant Biology, Biological Research Centre, Hungarian<br />

Academy <strong>of</strong> Sciences, H-6726 Szeged, Temesvári krt. 62, Hungary<br />

2. Institute <strong>of</strong> Plant Biology, Biological Research Centre, Hungarian<br />

Academy <strong>of</strong> Sciences, H-6726 Szeged, Temesvári krt. 62, Hungary<br />

To reveal <strong>the</strong> roles <strong>of</strong> lipids and proteins in membrane dynamics, wild type and desaturase deficient<br />

desA - /desD - mutant <strong>of</strong> <strong>the</strong> cyanobacterium Synechocystis PCC 6803 were grown at 25 °C and<br />

35 °C, close to its physiological low- and high-temperature limits. Thus, a large difference in lipid<br />

unsaturati<strong>on</strong> could be generated between wild type cells since <strong>the</strong>y adapt to different growth<br />

temperatures by altering <strong>the</strong> level <strong>of</strong> unsaturati<strong>on</strong> <strong>of</strong> <strong>the</strong>ir poly-unsaturated lipid fatty acyl chains. In<br />

c<strong>on</strong>trast, in <strong>the</strong> mutant cells, lipid unsaturati<strong>on</strong> could not largely changed with <strong>the</strong> growth<br />

temperature since desA - /desD - mutant c<strong>on</strong>tains <strong>on</strong>ly m<strong>on</strong>o-unsaturated fatty acyl chains. Infrared<br />

spectra <strong>of</strong> thylakoid and cytoplasmic membranes isolated from both types <strong>of</strong> cells were recorded in<br />

3 °C steps between 8 and 92 °C. By analyzing <strong>the</strong> rates <strong>of</strong> protein structural changes, hydrogendeuterium<br />

exchange, trans- and lateral membrane lipid disorders as functi<strong>on</strong>s <strong>of</strong> <strong>the</strong> temperature<br />

(<strong>the</strong> details <strong>of</strong> <strong>the</strong> method were described earlier [1]), we c<strong>on</strong>cluded that (i) in <strong>the</strong> low-temperature<br />

stress regi<strong>on</strong>, in <strong>the</strong> wild type cells, <strong>the</strong> gel-to-liquid crystalline phase transiti<strong>on</strong> <strong>of</strong> <strong>the</strong> lipids<br />

correlates with <strong>the</strong> growth temperature but does not in <strong>the</strong> desA - /desD - mutants; (ii) at physiological<br />

temperatures, both protein and lipid dynamics are regulating/regulated providing remarkably<br />

c<strong>on</strong>stant dynamics for <strong>the</strong> thylakoid membrane over a 15-20 °C wide temperature range; (iii) in <strong>the</strong><br />

high-temperature stress regi<strong>on</strong>, protein structure and dynamics are changing sharply without any<br />

correlati<strong>on</strong> with growth temperature or mutati<strong>on</strong>. This finding points to <strong>the</strong> possible primacy <strong>of</strong><br />

proteins as initiators <strong>of</strong> heat-shock alarms; (iv) <strong>the</strong>re are substantial differences between <strong>the</strong><br />

dynamics <strong>of</strong> <strong>the</strong> proteins in <strong>the</strong> thylakoid and in <strong>the</strong> cytoplasmic membranes, which can be related<br />

to <strong>the</strong>ir different biological roles.<br />

References<br />

[1] B. Szal<strong>on</strong>tai, PMC Biophysics, 2:1 (<strong>2009</strong>).<br />

86


Protein dynamics 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Expressi<strong>on</strong> and biophysical characterizati<strong>on</strong> <strong>of</strong> exportin6<br />

DAVID SZATMARI, REKA DUDAS, ATTILA NAGY, GABOR HILD AND MIKLOS NYITRAI<br />

University <strong>of</strong> Pecs, Medical School, Department <strong>of</strong> Biophysics<br />

Active macromolecular transport between <strong>the</strong> nucleus and cytoplasm proceeds across nuclear pore<br />

complexes and is mainly regulated by <strong>the</strong> importin-β protein family. A novel family member from<br />

higher eukaryotes is <strong>the</strong> exportin6, which is working like a special transport receptor <strong>of</strong> <strong>the</strong><br />

corresp<strong>on</strong>ding proteins. The structural and kinetic properties <strong>of</strong> a protein could give important<br />

informati<strong>on</strong> to understand <strong>the</strong> intramolecular events underlying its functi<strong>on</strong>. We are interested in<br />

which protein pathway proceeds <strong>the</strong> export and import <strong>of</strong> <strong>the</strong> cytoskeletal comp<strong>on</strong>ents between<br />

<strong>the</strong> nucleus and cytoplams? Which proteins regulate <strong>the</strong> transport from <strong>the</strong> nucleus, and how?<br />

There is a verified functi<strong>on</strong> <strong>of</strong> <strong>the</strong> exportin6, namely <strong>the</strong> pr<strong>of</strong>ilin regulated actin export. [1]<br />

However, <strong>the</strong> molecular mechanisms by which <strong>the</strong> formati<strong>on</strong> <strong>of</strong> <strong>the</strong> exportin6-pr<strong>of</strong>ilin-actin<br />

complexes occurs are unknown. We are aiming to determine <strong>the</strong> affinities describing <strong>the</strong><br />

complexes; <strong>the</strong> affinity <strong>of</strong> exportin6 epitopes for G-actin or F-actin. We also attempt to find out<br />

how <strong>the</strong> stability <strong>of</strong> complexes is maintained by various pr<strong>of</strong>ilin is<strong>of</strong>orms. To achieve <strong>the</strong>se aims<br />

we express and purify <strong>the</strong> involved proteins and carry out <strong>the</strong> biophysical characterizati<strong>on</strong> <strong>of</strong><br />

exportin6-pr<strong>of</strong>ilin-actin complexes. The human exportin6 (GeneBank reference ID:<br />

ref|NT_010393.15|Hs16_10550 Homo sapiens chromosome 16 genomic c<strong>on</strong>tig, reference assembly<br />

Length=25336229) is a 124 kDa molecular weight protein. We use a pET-19b vector that c<strong>on</strong>tains an<br />

amplicylin resistance gene. The expressi<strong>on</strong> <strong>of</strong> <strong>the</strong> protein was carried out in BL21 E.coli cells. The<br />

exportin6 was expressed with an N-terminal his-tag and purified by Ni-NTA and Co-NTA<br />

chromatography, in denaturant and native c<strong>on</strong>diti<strong>on</strong>s. After <strong>the</strong> purificati<strong>on</strong> we obtained exportin<br />

6 in a few micromolar c<strong>on</strong>centrati<strong>on</strong>. Having <strong>the</strong> protein in hand we measure <strong>the</strong> c<strong>on</strong>formati<strong>on</strong>al<br />

and kinetic properties <strong>of</strong> <strong>the</strong> exportin6-pr<strong>of</strong>ilin-actin complexes with EPR- and fluorescence<br />

spectroscopic, calorimetric and rapid-kinetic methods.<br />

References<br />

[1] Theis Stüven, Enno Hartmann and Dirk Görlich: Exportin 6: a novel nuclear export receptor that is specific for<br />

pr<strong>of</strong>ilin-actin complexes. The EMBO Journal Vol. 22 No. 21 pp. 5928±5940, 2003<br />

87


Protein dynamics 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Metal complexes <strong>of</strong> a plant metallothi<strong>on</strong>ein under<br />

radical stress: assessment <strong>of</strong> structural modificati<strong>on</strong>s<br />

and transfer <strong>of</strong> radical damage<br />

A. TORREGGIANI 1 , C. FERRERI 1 , A. TINTI 2 , S. ATRIAN 3 , M. CAPDEVILA 4 AND C. CHATGILIALOGLU 1<br />

1. Institute I.S.O.F. (C.N.R.) via P. Gobetti 101, I-40129 Bologna, Italy<br />

2. Dep. <strong>of</strong> Biochemistry, Univ. Bologna, I-40126 Bologna, Italy<br />

3. Dept. Genètica, Univ. Barcel<strong>on</strong>a, 08028-Barcel<strong>on</strong>a, Spain<br />

4. Dep. Quimica, Univ. Autòn., E-08193 Bellaterra, Barcell<strong>on</strong>a, Spain<br />

Damages to Zn 2+and Cd 2+ complexes <strong>of</strong> a metallothi<strong>on</strong>ein (MT) from a plant (Quercus suber - Qs),<br />

due to radical stress exposure, were investigated. QsMT, obtained by in vivo syn<strong>the</strong>sis, is a lowmolecular<br />

weight cysteine-rich protein with high capacity for binding metal i<strong>on</strong>s. Although MTs do<br />

not appear to be essential for life, <strong>the</strong>re is mounting evidences for a survival advantage <strong>of</strong> MT in<br />

situati<strong>on</strong>s <strong>of</strong> stress, including exposure to radicals and toxic metals. Gamma-irradiati<strong>on</strong> was used<br />

to simulate <strong>the</strong> c<strong>on</strong>diti<strong>on</strong>s <strong>of</strong> an endogenous radical stress. The degradati<strong>on</strong> <strong>of</strong> <strong>the</strong> metal complexes<br />

was followed by Raman spectroscopy and <strong>the</strong> occurrence <strong>of</strong> tandem protein/lipid damage was<br />

shown by using a biomimetic model based <strong>on</strong> unsaturated lipid vesicle suspensi<strong>on</strong>s [1,2]. The H •<br />

and eaq – attacks <strong>on</strong> <strong>the</strong> metal-QsMT aggregates are able to induce significant structural changes<br />

such as partial dec<strong>on</strong>structi<strong>on</strong> and/or rearrangement <strong>of</strong> <strong>the</strong> metal clusters, and breaking <strong>of</strong> <strong>the</strong><br />

protein backb<strong>on</strong>e. Sulfur-c<strong>on</strong>taining residues resulted to be selectively attacked; in particular, Cys<br />

resulted to be am<strong>on</strong>g <strong>the</strong> most sensitive residues towards radical attack, suggesting that <strong>the</strong><br />

thiolate clusters <strong>of</strong> both metal-QsMTs act as efficient interceptors <strong>of</strong> reducing species (Fig. 1).<br />

Under reductive stress Zn-QsMT undergoes a significant thiolate group oxidati<strong>on</strong>. The<br />

participati<strong>on</strong> <strong>of</strong> His to metal coordinati<strong>on</strong> became necessary for protein stabilizati<strong>on</strong> after radical<br />

stress. The radical-induced effects were dependent <strong>on</strong> <strong>the</strong> divalent metal bound. The reacti<strong>on</strong>s <strong>of</strong><br />

reductive reactive species with Met residues and/or sulfur-c<strong>on</strong>taining ligands afford diffusible<br />

sulfur-centered radicals, which migrate from <strong>the</strong> aqueous phase to <strong>the</strong> lipid bilayer and transform<br />

<strong>the</strong> cis double b<strong>on</strong>d <strong>of</strong> <strong>the</strong> oleate moiety to <strong>the</strong> trans isomer (Fig. 1).<br />

References<br />

Fig. 1 – Raman Spectra <strong>of</strong> Zn-QsMT subjected to different gammairradiati<strong>on</strong><br />

doses and mechanism <strong>of</strong> <strong>the</strong> tandem radical damage.<br />

[1] A. Torreggiani, J. Domenech, A. Tinti, J. Raman Spectrosc. DOI 10.1002/jrs.2328<br />

[2] A. Torreggiani, J. Domenech, R. Oriuela, C.Ferreri, S.Atrian, M. Capdevila, C. Chatgilialoglu, Chem.Europ.J. DOI:<br />

10.1002/chem.200802533<br />

88


Protein dynamics 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Temperature Dependence Radiati<strong>on</strong>less Transiti<strong>on</strong> <strong>of</strong><br />

G4 Wires and dGMP<br />

A. URITSKI 1 , S. KOTLYAR 2 AND D. HUPPERT 1<br />

1. Raym<strong>on</strong>d and Beverly Sackler Faculty <strong>of</strong> Exact Science, School <strong>of</strong><br />

Chemistry, Tel Aviv University, Tel Aviv 69978, Israel<br />

2. George S. Wise Faculty <strong>of</strong> Life Science, Department <strong>of</strong> Biochemistry,<br />

Tel Aviv University, Tel Aviv 69978, Israel<br />

Steady state and time resolved emissi<strong>on</strong> techniques were employed to study <strong>the</strong> n<strong>on</strong>radiative<br />

process <strong>of</strong> deoxygunaosine m<strong>on</strong>ophosphate (dGMP) and <strong>the</strong> novel uniform c<strong>on</strong>tinuous G4 wires<br />

c<strong>on</strong>taining hundreds <strong>of</strong> stacked tetrads. We found that <strong>the</strong> time resolved emissi<strong>on</strong> <strong>of</strong> both dGMP<br />

and G4 wires decays n<strong>on</strong>exp<strong>on</strong>entialy. At room temperature <strong>the</strong> short time decay <strong>of</strong> <strong>the</strong> G4 wires<br />

is about 10 ps. At low temperatures in ice <strong>the</strong> fluorescence quantum yield <strong>of</strong> both dGMP and G4<br />

wires increases as <strong>the</strong> temperature decreases. For G4 wires <strong>the</strong> fluorescence quantum yield<br />

increases from about 10 -3 at room temperature to about 0.03 at liquid nitrogen temperatures. The<br />

asymptotic l<strong>on</strong>g time decay <strong>of</strong> <strong>the</strong> lifetime corrected G4 wires emissi<strong>on</strong> obeys a power law. At all<br />

temperatures <strong>the</strong> average fluorescence decay time <strong>of</strong> G4 wires is l<strong>on</strong>ger than that <strong>of</strong> dGMP. We<br />

successfully used an inhomogeneous n<strong>on</strong>radiative model to fit <strong>the</strong> experimental results.<br />

References<br />

ln [k PT ]<br />

25.5<br />

25.0<br />

24.5<br />

24.0<br />

23.5<br />

23.0<br />

22.5<br />

k 1<br />

k 2<br />

22.0<br />

0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.010<br />

1/T [K -1 ]<br />

Fig. 1 – Arrhenius plot <strong>of</strong> ln[k PT] versus 1/T for G4 wire samples in<br />

ice with calculated fit.<br />

[1] T. Gustavss<strong>on</strong>k, A. Shar<strong>on</strong>ov, M. Onidas, D. Markovitsi, Chem. Phys. Lett. 356, 49-54 (2002).<br />

[2] C.E. Crespo-Hernăndez, B. Cohen, M. P. Hare, B. Kohler, Chem. Rev. 104, 1977-2020 (2004).<br />

89


Protein dynamics 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Protein moti<strong>on</strong> in <strong>the</strong> ns to ms range at a molecular<br />

resoluti<strong>on</strong><br />

K. WALTER 1 , N.-A. LAKOMEK 1 , M. FUNK 1 , C. FARES 1 , D. EGGER 2 , R. GULICH 2 , M. PETRI 3 , J.<br />

MEILER 4 , A. LOIDL 2 , M. GRUEBELE 5 , S. TECHERT 3 , P. LUNKENHEIMER 2 , S. BECKER 1 , D. LEE 1 , C.<br />

GRIESINGER 1<br />

1. Dept. <strong>of</strong> NMR based Structural Biology, Max-Planck-Institute for<br />

Biophysical Chemistry, Am Faßberg 11, Göttingen, D-37077, Germany<br />

2. Centre for Electr<strong>on</strong>ic Correlati<strong>on</strong>s and Magnetism, University <strong>of</strong><br />

Augsburg, Universitätsstraße 2, D-86135 Augsburg, Germany<br />

3. Structural Dynamics <strong>of</strong> (Bio)chemical Systems, Max-Planck-Institute<br />

for Biophysical Chemistry, Am Faßberg 11, Göttingen, D-37077,<br />

Germany<br />

4. Center for Structural Biology, Vanderbilt University, 465 21st Ave<br />

South, Nashville, 37212, USA<br />

Complete geometry optimizati<strong>on</strong>s were performed <strong>on</strong> diverse drugs with similar side effect. The<br />

c<strong>on</strong>sidered drugs were selected apart from <strong>the</strong> more comm<strong>on</strong> biological effects. Frequency<br />

calculati<strong>on</strong>s and geometrical optimizati<strong>on</strong>s were carried out at <strong>the</strong> abinitio level <strong>of</strong> <strong>the</strong>ory using <strong>the</strong><br />

Gaussian s<strong>of</strong>tware. The best c<strong>on</strong>formers were found for <strong>the</strong>se molecules and set up apparent<br />

pictures. These figures are al<strong>on</strong>g with <strong>the</strong>rmodynamic data such as <strong>the</strong>rmal energies (E), <strong>the</strong>rmal<br />

enthalpies (H) and <strong>the</strong>rmal Gibbs free energies (G) have also included in this study. All <strong>of</strong> <strong>the</strong><br />

menti<strong>on</strong>ed drugs were revealed that <strong>the</strong> structural requirements include an electr<strong>on</strong>-rich<br />

functi<strong>on</strong>al group in <strong>the</strong> molecular plane <strong>of</strong> and separated from <strong>the</strong> center <strong>of</strong> an aromatic ring. In<br />

order to evaluate scope and investigati<strong>on</strong> <strong>of</strong> <strong>the</strong>se different drugs as <strong>the</strong>ir similar side effect (like<br />

hair-loss side effect), <strong>the</strong> geometrical center <strong>of</strong> <strong>the</strong> aromatic rings were served as <strong>the</strong> most easily<br />

defined reference point. The electr<strong>on</strong>-rich functi<strong>on</strong>al group was c<strong>on</strong>sidered in <strong>the</strong> plane <strong>of</strong> and<br />

separated from <strong>the</strong> aromatic ring center. For <strong>the</strong> best choice <strong>of</strong> electr<strong>on</strong>-rich functi<strong>on</strong>al group and<br />

also a deeper investigati<strong>on</strong> in c<strong>on</strong>sidered drugs, it was used <strong>the</strong> calculated atomic charges. Then,<br />

<strong>the</strong> measurement <strong>of</strong> distance parameter between <strong>the</strong> related functi<strong>on</strong>al group and defined<br />

reference point was employed Gaussian program and its correlated s<strong>of</strong>twares. These kinds <strong>of</strong><br />

parameters are <strong>the</strong> most important factors in explanati<strong>on</strong> <strong>of</strong> relati<strong>on</strong>ships in structure and<br />

reactivity and it is used to clarify some pharmacokinetic properties and biological effects. For<br />

drugs with hair-loss side effect, <strong>the</strong> calculated c<strong>on</strong>sidered distances have had high c<strong>on</strong>sistency<br />

with 95% c<strong>on</strong>fidence limits (ca. 7.68 angstroms). Therefore, <strong>on</strong>e can recognize that <strong>the</strong> related<br />

distance, is important and effective factor in structure <strong>of</strong> drugs with similar side effect. Therefore,<br />

<strong>on</strong>e can recognize that <strong>the</strong> <strong>the</strong>oretical attempts are made to circumvent to biological side effect for<br />

<strong>the</strong> new syn<strong>the</strong>sis in experimental study.<br />

90


Protein dynamics 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Carboxylati<strong>on</strong> reacti<strong>on</strong>s m<strong>on</strong>itored by time-resolved<br />

FTIR spectroscopy and caged-CO2<br />

G. SCHÄFER, W. MÄNTELE AND G. WILLE<br />

Inst. <strong>of</strong> Biophysics, Goe<strong>the</strong>-University Frankfurt, Max-v<strong>on</strong>-Laue-Str. 1,<br />

60438 Frankfurt, Germany<br />

We present here a new method for <strong>the</strong> time-resolved study <strong>of</strong> carboxylati<strong>on</strong> reacti<strong>on</strong>s using<br />

Fourier Transform Infrared spectroscopy (FTIR). Although compounds that release a desired<br />

molecule up<strong>on</strong> photoexcitati<strong>on</strong> ("caged compounds") are well established, this technology has not<br />

been applied to <strong>the</strong> study <strong>of</strong> reacti<strong>on</strong>s with carb<strong>on</strong> dioxide as educt [1]. We release CO2 from<br />

nitrophenylacetate [2] by a laser flash and follow its subsequent reacti<strong>on</strong>s. Rapid-scan FTIR is<br />

ideally suited to this purpose as <strong>the</strong> carb<strong>on</strong> dioxide IR band is str<strong>on</strong>g and set well apart from<br />

typical protein, buffer and water vibrati<strong>on</strong>s. The "caged carb<strong>on</strong> dioxide" yielded CO2 <strong>on</strong> a very fast<br />

time scale (~200 ps) and with sufficient quantum yield [3]. It was <strong>the</strong>n employed to observe two<br />

exemplary reacti<strong>on</strong>s <strong>of</strong> carb<strong>on</strong> dioxide: <strong>the</strong> reversible formati<strong>on</strong> <strong>of</strong> a carbamate with<br />

diethylethanolamine, and <strong>the</strong> accelerating effect <strong>of</strong> carb<strong>on</strong>ic anhydrase <strong>on</strong> CO2 hydrati<strong>on</strong>. Both<br />

examples prove <strong>the</strong> applicability <strong>of</strong> <strong>the</strong> method. We <strong>the</strong>n used it for <strong>the</strong> study <strong>of</strong> carb<strong>on</strong> dioxidebinding<br />

in Ribulose-1,5-bisphosphate-carboxylase/oxygenase (RuBisCO). Although RuBisCO is<br />

<strong>the</strong> most abundant enzyme <strong>on</strong> our planet, its catalytic mechanism is still not fully understood.<br />

Prior to catalysis, RuBisCO must be activated by binding <strong>of</strong> carb<strong>on</strong> dioxide to a lysine in <strong>the</strong> active<br />

site. The resulting carbamate can <strong>the</strong>n act as a ligand for a catalytically important magnesium i<strong>on</strong><br />

[4]. This activati<strong>on</strong> process is very difficult to study with classical methods. We could dem<strong>on</strong>strate<br />

that <strong>the</strong> binding <strong>of</strong> a carb<strong>on</strong> dioxide molecule in <strong>the</strong> active site is very fast, independent <strong>of</strong> <strong>the</strong><br />

presence <strong>of</strong> magnesium, and that it can be inhibited with <strong>the</strong> isoelectr<strong>on</strong>ic azide i<strong>on</strong>. Fur<strong>the</strong>rmore,<br />

<strong>the</strong>re are IR peaks c<strong>on</strong>sistent with <strong>the</strong> expected lysine-bound carbamate and possibly with a<br />

localized water molecule that is being displaced by CO2. Our new method can now be applied to<br />

fur<strong>the</strong>r studies <strong>on</strong> carb<strong>on</strong> dioxide processing enzymes. In <strong>the</strong> future, we will also syn<strong>the</strong>size a 13Clabeled<br />

caged-CO2. This will allow <strong>the</strong> assignment <strong>of</strong> absorpti<strong>on</strong> bands in <strong>the</strong> fingerprint regi<strong>on</strong> <strong>of</strong><br />

<strong>the</strong> IR spectrum to reacti<strong>on</strong> intermediates and products <strong>of</strong> <strong>the</strong> enzymes.<br />

References<br />

[1] J.A. McCray, D.R. Trentham, Annu. Rev. Biophys. Biophys. Chem. 18, 239-270 (1989).<br />

[2] D.J .Margerum, C.T. Petrusis, J. Am. Chem. Soc. 2467-2472 (1969).<br />

[3] K. Neumann et al., manuscript in preparati<strong>on</strong><br />

[4] A.R. Portis, M.E. Salvucci, W.L. Ogren, Plant Physiol. 82, 967-971 (1986).<br />

91


Protein dynamics 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Comparative Studies <strong>of</strong> Human Indoleamine 2,3-<br />

Dioxygenase and Tryptophan 2,3-Dioxygenase<br />

SYUN-RU YEH, ARIEL LEWIS-BALLESTER, DIPANWITA BATABYAL, TSUYOSHI<br />

EGAWA, CHANGYUAN LU, YU LIN<br />

Albert Einstein College <strong>of</strong> Medicine, Department <strong>of</strong> Physiology and<br />

Biophysics, 1300 Morris Park Ave, Br<strong>on</strong>x, NY 10461, USA<br />

In c<strong>on</strong>trast to <strong>the</strong> wide spectrum <strong>of</strong> P450 m<strong>on</strong>ooxygenases, <strong>the</strong>re are <strong>on</strong>ly two heme-based<br />

dioxygenases in humans, tryptophan dioxygenase (hTDO) and indoleamine 2,3-dioxygenase<br />

(hIDO). hTDO and hIDO catalyze <strong>the</strong> same oxidative ring cleavage reacti<strong>on</strong> <strong>of</strong> L-tryptophan<br />

(LTrp) to N-formyl kynurenine (NFK), <strong>the</strong> initial and rate-limiting step <strong>of</strong> <strong>the</strong> kynurenine<br />

pathway. Although <strong>the</strong>y carry out <strong>the</strong> same reacti<strong>on</strong>, <strong>the</strong> two enzymes engage in two distinct<br />

physiological functi<strong>on</strong>s: hTDO is a hepatic enzyme, which c<strong>on</strong>trols homeostatic serum tryptophan<br />

c<strong>on</strong>centrati<strong>on</strong>s, whereas hIDO is a ubiquitous enzyme, which regulates T-cell mediated immune<br />

resp<strong>on</strong>ses. Despite its importance, <strong>the</strong> mechanism by which <strong>the</strong> two enzymes execute <strong>the</strong><br />

dioxygenase reacti<strong>on</strong> remains elusive. We have used res<strong>on</strong>ance Raman spectroscopy to study <strong>the</strong><br />

structural and functi<strong>on</strong>al properties <strong>of</strong> hIDO and hTDO.1-3 Our data reveal <strong>the</strong> importance <strong>of</strong><br />

stereoelectr<strong>on</strong>ic factors in hTDO and hIDO, as well as <strong>the</strong> subtle mechanistic differences between<br />

<strong>the</strong> two enzymes. Recently, hIDO has attracted a great deal <strong>of</strong> attenti<strong>on</strong>, as a result <strong>of</strong> <strong>the</strong><br />

recogniti<strong>on</strong> <strong>of</strong> its potential as a <strong>the</strong>rapeutic target for cancer. Our data <strong>of</strong>fer a starting point for<br />

additi<strong>on</strong>al computati<strong>on</strong>al and structural investigati<strong>on</strong>s, which are anticipated to provide valuable<br />

insights for <strong>the</strong> development <strong>of</strong> anti-cancer drugs specifically targeting hIDO.<br />

References<br />

Fig. 1 – The crystallographic structure (PDB: 2NW8) <strong>of</strong> a bacterial<br />

analog <strong>of</strong> hTDO(a) and <strong>the</strong> hIDO and hTDO data points in <strong>the</strong> ν C-O vs<br />

ν Fe-CO correlati<strong>on</strong> plot (b).<br />

[1] Batabyal D, Yeh SR., Substrate-Protein Interacti<strong>on</strong> in Human Tryptophan Dioxygenase: The Critical Role <strong>of</strong> H76. J Am<br />

Chem Soc. 131, 3260–3270, <strong>2009</strong>.<br />

[2] Batabyal D., Yeh SR., Human tryptophan dioxygenase: a comparis<strong>on</strong> to indoleamine 2,3-dioxygenase. J Am Chem Soc,<br />

129, 15690-701, 2007.<br />

[3] Samels<strong>on</strong>-J<strong>on</strong>es BJ, Yeh SR., Interacti<strong>on</strong>s between nitric oxide and indoleamine 2,3-dioxygenase. Biochemistry. 45, 8527-<br />

38, 2006.<br />

92


Protein folding and aggregati<strong>on</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Pathogenic E4 is<strong>of</strong>orm <strong>of</strong> apolipoprotein E stabilizes<br />

amyloid-β oligomers<br />

E. CERF 1 , J-M. RUYSSCHAERT 1 , E. GOORMAGHTIGH 1 , V. NARAYANASWAMI 2 AND V. RAUSSENS 1<br />

1. Structure and Functi<strong>on</strong> <strong>of</strong> Biological Membranes, Université Libre de<br />

Bruxelles, Boulevard du Triomphe CP206/2, Brussels, 1050, Belgium<br />

2. Children’s Hospital Oakland Research Institute, 5700 Martin Lu<strong>the</strong>r<br />

King Jr. Way, Oakland, California 94609, USA<br />

The Alzheimer’s disease (AD) is <strong>the</strong> most comm<strong>on</strong> neurodegenerative disorder, which provokes<br />

dementia in <strong>the</strong> elderly. The aggregati<strong>on</strong> <strong>of</strong> <strong>the</strong> highly hydrophobic amyloid-beta peptide (Aβ) is<br />

most probably <strong>the</strong> early event that subsequently leads to amyloid plaques depositi<strong>on</strong> in <strong>the</strong> brain,<br />

synapses degenerati<strong>on</strong> and eventually neur<strong>on</strong>al death [1]. Although Aβ aggregati<strong>on</strong> pathway still<br />

remains unclear, many recent studies point out <strong>the</strong> enhanced toxicity <strong>of</strong> soluble oligomers in<br />

comparis<strong>on</strong> to m<strong>on</strong>omers or insoluble fibrillar species [2]. The ε4 allele <strong>of</strong> <strong>the</strong> apolipoprotein E<br />

(ApoE) gene is <strong>the</strong> major known genetic risk factor in late <strong>on</strong>set AD as people carrying <strong>on</strong>e ε4<br />

allele have significantly higher chances to develop <strong>the</strong> disease [3]. A few mechanisms underlying<br />

this pathogenic nature have been identified. Never<strong>the</strong>less, n<strong>on</strong>e <strong>of</strong> <strong>the</strong>m have been completely<br />

elucidated. Our group has shown that ATR-FTIR spectroscopy could discriminate between Aβ<br />

oligomers and fibrils. Indeed, oligomers display anti-parallel β-sheet spectral comp<strong>on</strong>ents while<br />

fibrils are characterized by a parallel β-sheet organizati<strong>on</strong> [4]. Using those structural spectral<br />

features to characterize <strong>the</strong> oligomeric c<strong>on</strong>tent <strong>of</strong> our samples, we studied here <strong>the</strong> influence <strong>of</strong><br />

lipid-free ApoE <strong>on</strong> Aβ aggregati<strong>on</strong>. Our experiments clearly dem<strong>on</strong>strated that <strong>the</strong> presence <strong>of</strong><br />

ApoE4 prevented <strong>the</strong> formati<strong>on</strong> <strong>of</strong> insoluble fibrils and decreased Aβ aggregati<strong>on</strong> rate by<br />

stabilizing <strong>the</strong> oligomeric forms <strong>of</strong> <strong>the</strong> peptide. This result was also observed in <strong>the</strong> presence <strong>of</strong> E3<br />

is<strong>of</strong>orm but in markedly lower proporti<strong>on</strong>s. Since it is now well-established that oligomers are <strong>the</strong><br />

most toxic Aβ entities, <strong>the</strong> higher ability <strong>of</strong> ApoE4 to stabilize Aβ oligomers could partly explain its<br />

impact <strong>on</strong> AD compared to E3 is<strong>of</strong>orm.<br />

References<br />

[1] J. Hardy, D.J. Selkoe, Science 297, 353-356 (2002).<br />

[2] M.D. Kirkitadze, G. Bitan, D.B. Teplow, J. Neurosci. Res. 69, 567-577 (2002).<br />

[3] E.H. Corder, A.M. Saunders, W.J. Strittmatter, D.E. Schmechel, P.C. Gaskell, G.W. Small, A.D. Roses, J.L. Haines,<br />

M.A. Pericak-Vance, Science 261, 921-923 (1993).<br />

[4] E. Cerf, R. Sarroukh, S. Tamamizu-Kato, L. Breydo, S. Derclaye, Y. Dufrêne, V. Narayanaswami, E. Goormaghtigh,<br />

J-M. Ruysschaert, V. Raussens, Biochem. J., accepted manuscript (<strong>2009</strong>).<br />

93


Protein folding and aggregati<strong>on</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

The mystery <strong>of</strong> rec<strong>on</strong>structive denaturati<strong>on</strong> <strong>of</strong> proteins<br />

in <strong>the</strong> presence <strong>of</strong> certain surfactants<br />

M. VOLLMAR, M. DZIUK, K.-J. TIEFENBACH AND H. DURCHSCHLAG<br />

Institute <strong>of</strong> Biophysics and Physical Biochemistry, University <strong>of</strong><br />

Regensburg, Universitaetsstrasse 31, D-93040 Regensburg, Germany<br />

A few proteins were reported to show a pr<strong>on</strong>ounced structural rearrangement <strong>of</strong> <strong>the</strong>ir sec<strong>on</strong>dary<br />

structure up<strong>on</strong> <strong>the</strong> impact <strong>of</strong> high c<strong>on</strong>centrati<strong>on</strong>s <strong>of</strong> <strong>the</strong> ani<strong>on</strong>ic surfactant sodium dodecyl sulfate<br />

(SDS) [1, 2]. Pr<strong>on</strong>ounced rec<strong>on</strong>structive denaturati<strong>on</strong> effects were found with proteins <strong>of</strong> low or<br />

high helix c<strong>on</strong>tent, finally leading to a medium helicity (about 30 %); proteins <strong>of</strong> medium helix<br />

c<strong>on</strong>tent adhered to <strong>the</strong>ir initial, intermediate helicity. Though this puzzling phenomen<strong>on</strong> is known<br />

since many years, details, possible generalizati<strong>on</strong>s, and <strong>the</strong> rati<strong>on</strong>ale behind <strong>the</strong> changes are<br />

completely unclear to date. Currently we are studying <strong>the</strong> enigmatic behavior <strong>of</strong> rec<strong>on</strong>structive<br />

denaturati<strong>on</strong> in fur<strong>the</strong>r detail, in particular with respect to <strong>the</strong> nature <strong>of</strong> eligible proteins<br />

(exhibiting different molecular characteristics such as amount <strong>of</strong> initial helicity, charge, mass, and<br />

number <strong>of</strong> disulfides), <strong>the</strong> surfactants used (ani<strong>on</strong>ic, cati<strong>on</strong>ic, zwitteri<strong>on</strong>ic, n<strong>on</strong>i<strong>on</strong>ic), and by<br />

applying different spectroscopic techniques (absorpti<strong>on</strong>, fluorescence, CD) under a variety <strong>of</strong><br />

experimental c<strong>on</strong>diti<strong>on</strong>s (e.g., variable c<strong>on</strong>centrati<strong>on</strong>s <strong>of</strong> proteins and surfactants, presence <strong>of</strong><br />

reducing agents). The most relevant informati<strong>on</strong> c<strong>on</strong>cerning sec<strong>on</strong>dary structural changes can be<br />

obtained from far-UV CD spectra, in combinati<strong>on</strong> with computer-aided approaches for evaluating<br />

<strong>the</strong> informati<strong>on</strong> obtained at several wavelengths and applying a set <strong>of</strong> reference spectra (CDNN,<br />

Selc<strong>on</strong> 3, C<strong>on</strong>tin LL), in additi<strong>on</strong> to c<strong>on</strong>venti<strong>on</strong>al evaluati<strong>on</strong>s <strong>of</strong> <strong>the</strong> helix c<strong>on</strong>tent according to<br />

Chen and Yang or Greenfield and Fasman at a definite wavelength (λ = 220 or 208 nm) [3].<br />

Visualizati<strong>on</strong> procedures for protein molecules (e.g., by RasMol or PyMol) turned out to be<br />

indispensable tools as well, for illustrating <strong>the</strong> precise 3D structure, surface envelopes, distributi<strong>on</strong><br />

<strong>of</strong> amino acid (AA) residues <strong>on</strong> <strong>the</strong> protein surface and in <strong>the</strong> interior [4]. According to our results,<br />

<strong>the</strong> phenomen<strong>on</strong> <strong>of</strong> rec<strong>on</strong>structive denaturati<strong>on</strong> is not c<strong>on</strong>fined to a few proteins and SDS, but<br />

seems to be a more general phenomen<strong>on</strong> occurring with several proteins <strong>of</strong> low or high helicity in<br />

<strong>the</strong> presence <strong>of</strong> ani<strong>on</strong>ic, cati<strong>on</strong>ic and zwitteri<strong>on</strong>ic surfactants. For example, prominent effects were<br />

obtained with <strong>the</strong> protein β-lactoglobulin, after <strong>the</strong> preceding impact <strong>of</strong> elevated c<strong>on</strong>centrati<strong>on</strong>s <strong>of</strong><br />

SDS, C16-trimethylamm<strong>on</strong>ium bromide, or C16-dimethylamm<strong>on</strong>iopropane sulf<strong>on</strong>ate.<br />

Explanati<strong>on</strong>s can be ascribed to <strong>the</strong> specific characteristics <strong>of</strong> <strong>the</strong> proteins and surfactants applied.<br />

The highly intricate balance between hydrophilicity/hydrophobicity, positive/negative charge<br />

and hydrati<strong>on</strong> <strong>on</strong> <strong>the</strong> surface and <strong>the</strong> interior <strong>of</strong> <strong>the</strong> proteins, toge<strong>the</strong>r with <strong>the</strong> surfactant<br />

characteristics such as extent and nature <strong>of</strong> <strong>the</strong>ir hydrophilic and hydrophobic parts are<br />

resp<strong>on</strong>sible for <strong>the</strong> surfactant-induced effects. Both i<strong>on</strong>ic and hydrophobic interacti<strong>on</strong>s seem to be<br />

resp<strong>on</strong>sible for <strong>the</strong> highly complicated interplay between proteins and surfactants, toge<strong>the</strong>r with<br />

<strong>the</strong> presence/absence <strong>of</strong> certain AAs <strong>on</strong> <strong>the</strong> protein surface and <strong>the</strong> interior (e.g., presence <strong>of</strong> helixforming<br />

AAs, absence <strong>of</strong> too much SS b<strong>on</strong>ds, presence <strong>of</strong> various positive charges and absence <strong>of</strong><br />

too many negative charges <strong>on</strong> <strong>the</strong> protein surface in <strong>the</strong> case <strong>of</strong> an ani<strong>on</strong>ic surfactant).<br />

References<br />

[1] B. Jirgens<strong>on</strong>s, Biochim. Biophys. Acta 434, 58-68 (1976).<br />

[2] B. Jirgens<strong>on</strong>s, J. Protein Chem. 1, 71-84 (1982).<br />

[3] H. Durchschlag, M. Vollmar, M. Dziuk, K.-J. Tiefenbach, Jorn. Com. Esp. Deterg. 38, 213-223 (2008).<br />

[4] H. Durchschlag, A. Behr, M. Bartlang, M. Dziuk, D. Roderer, B. Salecker, M. Vollmar, K.-J. Tiefenbach, Jorn. Com.<br />

Esp. Deterg. 39, 65-76 (<strong>2009</strong>).<br />

94


Protein folding and aggregati<strong>on</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Interacti<strong>on</strong> between linker hist<strong>on</strong>e H1 and n<strong>on</strong>-hist<strong>on</strong>e<br />

chromatin protein HMGB1<br />

A.V. FONIN 1, 2 , OLGA V. STEPANENKO 1 , I.M. KUZNETSOVA 1 , K.K. TUROVEROV 1 , E.I.<br />

KOSTYLEVA 1 , V.I. VOROBYEV 1<br />

1 Institute <strong>of</strong> Cytology <strong>of</strong> <strong>the</strong> Russian Academy <strong>of</strong> Sciences, Tikhoretsky<br />

av. 4, St.-Petersburg, 194064, Russia,<br />

2 St.-Petersburg State Politechnical University, Polytechnicheskaya,<br />

av.29, St.-Petersburg, 195251,Russia<br />

It is known that many proteins can form compact ordered structure <strong>on</strong>ly in c<strong>on</strong>tact with <strong>the</strong>ir<br />

partners, e.g. DNA or RNA molecules, different proteins, metal i<strong>on</strong>s, etc. Interacti<strong>on</strong> with partners<br />

is <strong>the</strong> main functi<strong>on</strong> <strong>of</strong> such intrinsically disordered proteins. N<strong>on</strong>-hist<strong>on</strong>e chromatin protein<br />

HMGB1 and linker hist<strong>on</strong>e H1 bel<strong>on</strong>g to such protein class. Both <strong>of</strong> <strong>the</strong>m are <strong>the</strong> main chromatin<br />

proteins taking part in formati<strong>on</strong> <strong>of</strong> high levels <strong>of</strong> chromatin structural organizati<strong>on</strong>. It can not be<br />

excluded that HMGB1 and H1 being <strong>the</strong> comp<strong>on</strong>ents <strong>of</strong> chromatin can interact not <strong>on</strong>ly with DNA<br />

but also with each o<strong>the</strong>r. There are <strong>on</strong>ly few works devoted to this problem and <strong>the</strong>re is no<br />

unanimous view <strong>on</strong> it in literature. In this work <strong>the</strong> investigati<strong>on</strong> <strong>of</strong> interacti<strong>on</strong> between <strong>the</strong> H1<br />

and HMGB1 in <strong>the</strong> wide range <strong>of</strong> i<strong>on</strong>ic strength soluti<strong>on</strong> was carried out using absorpti<strong>on</strong> spectra,<br />

intrinsic tryptophan and tyrosine fluorescence spectra, far- and near-UV CD spectra. H1 to<br />

HMGB1 molar ratio was varied from 1:4 to 4:1. The decrease <strong>of</strong> light scattering in HMGB1<br />

soluti<strong>on</strong>s with <strong>the</strong> increase <strong>of</strong> i<strong>on</strong>ic strength suggests <strong>the</strong> destructi<strong>on</strong> <strong>of</strong> associates which HMGB1 is<br />

known to form at low i<strong>on</strong>ic strength. The increase <strong>of</strong> H1 c<strong>on</strong>tent in soluti<strong>on</strong> also causes decrease <strong>of</strong><br />

<strong>the</strong> light scattering, which can be explained by disintegrati<strong>on</strong> <strong>of</strong> HMGB1 associates due to HMGB1<br />

interacti<strong>on</strong> with H1. So <strong>the</strong> significant decrease <strong>of</strong> HMGB1 light scattering in <strong>the</strong> presence <strong>of</strong> H1 in<br />

low i<strong>on</strong>ic strength soluti<strong>on</strong>s can be regarded as <strong>the</strong> main evidence <strong>of</strong> protein interacti<strong>on</strong>. The<br />

changes in far-UV CD spectra suggest <strong>the</strong> increase <strong>of</strong> α-helical regi<strong>on</strong>s in protein structure with <strong>the</strong><br />

increase <strong>of</strong> H1 c<strong>on</strong>tent in soluti<strong>on</strong>s <strong>of</strong> HMGB1. Intrinsic UV-fluorescence revealed <strong>on</strong>ly small<br />

changes <strong>of</strong> HMGB1 tertiary structure in <strong>the</strong> presence <strong>of</strong> H1 at all experimental c<strong>on</strong>diti<strong>on</strong>s.<br />

Insignificant quenching <strong>of</strong> <strong>the</strong> HMGB1 tryptophan fluorescence was observed in all soluti<strong>on</strong>s<br />

c<strong>on</strong>taining both proteins. Thus, <strong>the</strong> data obtained allow us to c<strong>on</strong>clude that <strong>the</strong>re is interacti<strong>on</strong><br />

between n<strong>on</strong>-hist<strong>on</strong>e chromatin protein HMGB1 and linker hist<strong>on</strong>e H1. The protein interacti<strong>on</strong> is<br />

accompanied by <strong>the</strong> increase <strong>of</strong> ordered regi<strong>on</strong>s in <strong>the</strong> protein molecules and by minor changes in<br />

protein tertiary structure.<br />

95


Protein folding and aggregati<strong>on</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Can insulin avoid cell degenerati<strong>on</strong> induced by a-beta<br />

amyloid<br />

P. PICONE 1, 2 , R. CARROTTA 3 , D. GIACOMAZZA 3 , P.L. SAN BIAGIO AND M. DI CARLO 2<br />

1. Dipartimento di Chimica e Tecnologie Farmaceutiche, University <strong>of</strong><br />

Palermo, Via Archirafi 32, 90123 Palermo<br />

2. IBIM – CNR, Via U. La Malfa 153, 90146 Palermo<br />

3. IBF – CNR, Via U. La Malfa 153, 90146 Palermo<br />

It has been recentely accepted that Alzheimer's patients also have problems with glucose<br />

utilizati<strong>on</strong>, in a way that still is not completely understood thus suggesting a relati<strong>on</strong>ship between<br />

Alzheimer’s disease (AD) and diabetes. Fur<strong>the</strong>r some diabetes drugs appear to slow <strong>the</strong> cognitive<br />

decline associated with AD. It has, also, been recently dem<strong>on</strong>strated that extracellular injecti<strong>on</strong> <strong>of</strong><br />

insulin is able to protect neur<strong>on</strong>s against A-beta amyloid cell death. One <strong>of</strong> <strong>the</strong> proposed <strong>the</strong>ories<br />

to explain such an effect is that <strong>the</strong> hematic glucose levels affect <strong>the</strong> metabolism <strong>of</strong> <strong>the</strong><br />

hippocampus, a part <strong>of</strong> <strong>the</strong> brain (associated with memory, emoti<strong>on</strong> and motor skills) which is<br />

str<strong>on</strong>gly damaged in Alzheimer’s patients. The aim <strong>of</strong> this study is to investigate <strong>the</strong> effect <strong>of</strong><br />

insulin <strong>on</strong> <strong>the</strong> A-beta induced degenerati<strong>on</strong> and oxidative stress observed <strong>on</strong> <strong>the</strong> neuroblastoma<br />

LAN5 cell line. In particular, <strong>the</strong> present study looks into <strong>the</strong> role <strong>of</strong> insulin in <strong>the</strong> inhibiti<strong>on</strong> <strong>of</strong> Abeta<br />

specific degenerative apoptotic pathways. Preliminary results indicate that insulin dissolved<br />

in culture medium in its hexameric form (as tested by absolute scale light scattering) is able to<br />

reduce neurodegenerati<strong>on</strong> induced by A-beta amyloid in a dose dependent manner. The link<br />

between diabetes and Alzheimer's disease may provide new targets for future Alzheimer's<br />

treatments. Moreover, due to <strong>the</strong> increased incidence <strong>of</strong> diabetes in western countries, a deeper<br />

understanding <strong>of</strong> such a link is relevant in order to c<strong>on</strong>trol <strong>the</strong> possible escalati<strong>on</strong> in <strong>the</strong> number <strong>of</strong><br />

people dealing with dementia.<br />

96


Protein folding and aggregati<strong>on</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Influence <strong>of</strong> TFE <strong>on</strong> <strong>the</strong> proteins interacti<strong>on</strong>s <strong>of</strong> a<br />

lysozyme soluti<strong>on</strong>: a small angle X-ray scattering study.<br />

F. M. GIORDANO 1 , A. LONGO 1 , M. MANNO 2 , M. D’AMICO 2 , S. RACCOSTA 2, 3 AND V.<br />

MARTORANA 2<br />

1. Institute <strong>of</strong> Nanostructured Materials at Palermo, Italian Nati<strong>on</strong>al<br />

Research Council, Via Ugo La Malfa 153, Palermo, I-90146, Italy<br />

2. Institute <strong>of</strong> Biophysics at Palermo, Italian Nati<strong>on</strong>al Research Council,<br />

Via Ugo La Malfa 153, Palermo, I-90146, Italy<br />

3. Dept. <strong>of</strong> Physical and Astr<strong>on</strong>omical Sciences, University <strong>of</strong> Palermo,<br />

Via Archirafi 36, Palermo, I-90123, Italy<br />

Intermolecular proteins interacti<strong>on</strong>s play a fundamental role in determining <strong>the</strong> solubility, <strong>the</strong><br />

misfolding and aggregati<strong>on</strong> processes <strong>of</strong> proteins in soluti<strong>on</strong>. For instance, alcohols are known to<br />

affect protein interacti<strong>on</strong>s and c<strong>on</strong>formati<strong>on</strong>. Trifluoroethanol (TFE) is an alcohol, which induces<br />

c<strong>on</strong>formati<strong>on</strong>al changes in proteins, ei<strong>the</strong>r by a “macroscopic” solvent-mediated effect or by a<br />

direct interacti<strong>on</strong> with <strong>the</strong> protein [1]. In particular for a protein model, <strong>the</strong> Bovine Serum Albumin<br />

(BSA), diluted at different c<strong>on</strong>centrati<strong>on</strong> <strong>of</strong> TFE, <strong>the</strong> solvent-mediated pair wise interacti<strong>on</strong> was<br />

investigated by small angle X-ray scattering [2]. It was found that TFE affects intermolecular<br />

interacti<strong>on</strong> <strong>on</strong> BSA forming a preferential solvatati<strong>on</strong> shell around <strong>the</strong> protein: at low TFE<br />

c<strong>on</strong>centrati<strong>on</strong> it is possible to model protein-protein interacti<strong>on</strong> with a repulsive hard sphere<br />

potential, accompanied by electrostatic repulsi<strong>on</strong>. On <strong>the</strong> o<strong>the</strong>r hand, at TFE c<strong>on</strong>centrati<strong>on</strong>s above<br />

<strong>the</strong> threshold <strong>of</strong> 16% v/v, attractive interacti<strong>on</strong>s become prevalent [2]. Here, we study <strong>the</strong><br />

influence <strong>of</strong> <strong>the</strong> trifluoroethanol (TFE), <strong>on</strong> <strong>the</strong> intermolecular interacti<strong>on</strong>s <strong>of</strong> ano<strong>the</strong>r model<br />

protein, <strong>the</strong> hen egg-white lysozyme, to extend <strong>the</strong> previous studies checking if <strong>the</strong> preferential<br />

solvatati<strong>on</strong> is a general feature <strong>of</strong> protein in water-TFE mixtures.<br />

References<br />

[1] R. Walgers, T. C. Lee, A. Cammers-Goodwin, J. Am. Chem. Soc. 120, 5073-5079 (1998).<br />

[2] R. Carrotta, M. Manno, F. M. Giordano, A. L<strong>on</strong>go, G. Portale, V. Martorana, P. L. San Biagio, Phys. Chem. Chem<br />

Phys 11, 4007-4018 (<strong>2009</strong>).<br />

97


Protein folding and aggregati<strong>on</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

The <strong>the</strong>rmodynamic c<strong>on</strong>sequences <strong>of</strong> loop mutati<strong>on</strong>s in<br />

azurin<br />

R. GUZZI 1 , L. SPORTELLI 1 AND C. DENNISON 2<br />

1. Dept. <strong>of</strong> Physics, University <strong>of</strong> Calabria, P<strong>on</strong>te P. Bucci, Rende, I-<br />

87036, Italy<br />

2. Institute for Cell and Molecular Biosciences, Medical School,<br />

Newcastle University, Newcastle up<strong>on</strong> Tyne NE2 4HH, UK<br />

Loop-directed mutagenesis has been used to insert <strong>the</strong> amicyanin (AMI) and plastocyanin (PC)<br />

type 1 (T1) copper-binding loops into azurin (AZ) to obtain <strong>the</strong> chimeric variants, AZAMI and<br />

AZPC, respectively. In both proteins <strong>the</strong> metal binding site has typical T1 properties and <strong>the</strong><br />

overall structures <strong>of</strong> AZAMI and AZPC are remarkably similar to that <strong>of</strong> AZ. The c<strong>on</strong>formati<strong>on</strong> <strong>of</strong><br />

<strong>the</strong> loop in <strong>the</strong>se chimeric proteins resembles that <strong>of</strong> <strong>the</strong> native protein. To assess <strong>the</strong> influence <strong>of</strong><br />

<strong>the</strong>se loop mutati<strong>on</strong>s <strong>on</strong> stability, <strong>the</strong> <strong>the</strong>rmal unfolding <strong>of</strong> AZAMI and AZPC has been<br />

investigated by differential scanning calorimetry, optical absorpti<strong>on</strong> and fluorescence<br />

spectroscopy. The calorimetric pr<strong>of</strong>iles <strong>of</strong> both AZ variants exhibit a complex shape c<strong>on</strong>sisting <strong>of</strong><br />

two endo<strong>the</strong>rmic peaks and an exo<strong>the</strong>rmic peak, suggesting a multistep-unfolding pathway<br />

similar to that observed in AMI (La Rosa et al. EBJ 2002, 30; 559-570). The <strong>the</strong>rmal transiti<strong>on</strong><br />

between <strong>the</strong> native and <strong>the</strong> denaturated states is irreversible and is scan rate dependent. The<br />

stability <strong>of</strong> <strong>the</strong> loop variants is noticeably reduced when compared to <strong>the</strong> wild type protein. When<br />

comparing <strong>the</strong> temperature <strong>of</strong> <strong>the</strong> maximum heat absorpti<strong>on</strong>, Tmax, <strong>the</strong> single endo<strong>the</strong>rmic peak <strong>of</strong><br />

AZ is at 83.7 °C (at <strong>the</strong> scan rate <strong>of</strong> 60 °C/h), whereas for AZAMI and AZPC this peak is at 74.0 °C<br />

and 67.0 °C respectively. The temperature dependence <strong>of</strong> <strong>the</strong> absorbance at 608 nm, due to an<br />

active site ligand-to-metal transiti<strong>on</strong>, has a similar trend in AZAMI and AZPC to that observed for<br />

AZ, although <strong>the</strong> transiti<strong>on</strong> temperatures are decreased, especially for AZPC (by about 15 °C). The<br />

mutated cupredoxins also exhibit lower stability when investigated by fluorescence spectroscopy.<br />

Despite <strong>the</strong>se loop mutati<strong>on</strong>s having limited effect <strong>on</strong> <strong>the</strong> structure <strong>of</strong> <strong>the</strong> metal binding site and<br />

<strong>the</strong> overall protein fold, <strong>the</strong>ir <strong>the</strong>rmodynamic c<strong>on</strong>sequences are dramatic both in terms <strong>of</strong> stability<br />

and unfolding pathway.<br />

Reference<br />

[1] C. La Rosa, D. Milardi, D. M. Grasso, M. Ph. Verbeet, G. W. Canters, L. Sportelli, R. Guzzi, Eur. Biophys. J. 30,<br />

559-570 (2002).<br />

98


Protein folding and aggregati<strong>on</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Characterizing peptide helices by site-specific coupling<br />

through use <strong>of</strong> isotopic labeling<br />

HENG CHI, AHMED LAKHANI, ANJAN ROY, TIMOTHY A. KEIDERLING<br />

Department <strong>of</strong> Chemistry, University <strong>of</strong> Illinois at Chicago,<br />

845 W. Taylor St., Chicago IL, 60607-7061 USA<br />

Spectroscopic determinati<strong>on</strong> <strong>of</strong> c<strong>on</strong>formati<strong>on</strong> in peptides and proteins is ultimately due to<br />

utilizati<strong>on</strong> <strong>of</strong> a physical observable dependent <strong>on</strong> coupling between repeating units in a polymeric<br />

chain. Determinati<strong>on</strong> <strong>of</strong> such couplings and <strong>the</strong>ir impact <strong>on</strong> <strong>the</strong> usable observables such as IR or<br />

Raman spectra is thus important for unraveling <strong>the</strong> spectra-structure relati<strong>on</strong>ships that underlie<br />

utilizati<strong>on</strong> <strong>of</strong> such techniques. In terms <strong>of</strong> vibrati<strong>on</strong>al spectroscopy, this is equivalent to<br />

determinati<strong>on</strong> <strong>of</strong> <strong>the</strong> <strong>of</strong>f-diag<strong>on</strong>al force field comp<strong>on</strong>ents between sites in <strong>the</strong> sequence, which<br />

manifest <strong>the</strong>mselves as frequency shifts from <strong>the</strong> isolated oscillator positi<strong>on</strong> (determined from<br />

diag<strong>on</strong>al FF). With isotopic labeling, transiti<strong>on</strong>s for specific sites in a peptide sequence can<br />

identified, and if <strong>the</strong> peptide is double labeled, couplings between <strong>the</strong> sites can be determined.[1,2]<br />

Since <strong>the</strong> vibrati<strong>on</strong>al coupling shift is small compared to <strong>the</strong> bandwidth, <strong>the</strong> relati<strong>on</strong>ship <strong>of</strong><br />

spectral pr<strong>of</strong>iles obtained with various techniques, which give rise to differently weighted<br />

intensity patterns, can used to dec<strong>on</strong>volve <strong>the</strong> desired parameters. Here <strong>the</strong>oretical modeling <strong>of</strong><br />

<strong>the</strong> expected spectral patterns is an essential part <strong>of</strong> <strong>the</strong> analysis. We have prepared a number <strong>of</strong><br />

short peptides with lengths varying from 8 to 14 residues that are rich in Pro and favor a 31-helical<br />

geometry (poly-Pro II like). Since “random coils” are now routinely assigned as having this same<br />

c<strong>on</strong>formati<strong>on</strong>, we prepared ano<strong>the</strong>r series based <strong>on</strong> Lys oligomers for comparis<strong>on</strong>. Variants <strong>of</strong> a<br />

given sequence were labeled with 13C <strong>on</strong> <strong>the</strong> amide C=O in sequential and alternate positi<strong>on</strong>s in<br />

<strong>the</strong> center <strong>of</strong> <strong>the</strong> sequence, and <strong>the</strong> couplings were dec<strong>on</strong>volved using IR and vibrati<strong>on</strong>al circular<br />

dichroism (VCD) spectra <strong>of</strong> <strong>the</strong> amide I transiti<strong>on</strong>. In <strong>the</strong>se examples Raman proved to be less<br />

useful in yielding differentiable intensity patterns. These couplings are small but vary in a way<br />

predicted by our DFT derived FF. They show a different pattern than for α-helices, previously<br />

published [2], and for 310-helices, currently under study.<br />

References<br />

[1] R<strong>on</strong>g Huang, Ling Wu, Dan McElheny, Petr Bour, Anjan Roy, Timothy A. Keiderling, J.Phys. Chem. B 113, 5661-<br />

5674 (<strong>2009</strong>); R<strong>on</strong>g Huang, Vladimir Setnicka, Marcus. A. Etienne, Joohyun Kim, Jan Kubelka, Robert P. Hammer,<br />

Timothy A. Keiderling, Journal <strong>of</strong> <strong>the</strong> American Chemical Society 129, 13592 -13603 (2007)<br />

[2] R. Huang, J. Kubelka, W. Barber-Armstr<strong>on</strong>g, R. A. G. D Silva, S. M. Decatur, and T. A. Keiderling, J. Amer. Chem.<br />

Soc., 126, 2346-2354 (2004).<br />

99


Protein folding and aggregati<strong>on</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Unusual structural characteristics <strong>of</strong> <strong>the</strong><br />

Mycobacterium tuberculosis pentapeptide repeat protein<br />

MfpA<br />

S.KHRAPUNOV, H.CHENG, S.HEGDE, J.BLANCHARD, AND M. BRENOWITZ<br />

Dept. <strong>of</strong> Biochemistry, Albert Einstein College <strong>of</strong> Medicine<br />

1300 Morris Park Avenue, Br<strong>on</strong>x, NY 104161, USA<br />

Mycobacterium tuberculosis MfpA is a founding member <strong>of</strong> <strong>the</strong> Pentapeptide Repeat Protein (PRP)<br />

family that c<strong>on</strong>fers resistance to <strong>the</strong> antibiotic fluoroquinol<strong>on</strong>e by binding to DNA gyrase and<br />

inhibiting its activity [1]. MfpA’s size, shape and surface potential mimics duplex DNA. We have<br />

explored <strong>the</strong> soluti<strong>on</strong> structure and refolding <strong>of</strong> MfpA by fluorescence spectroscopy, circular<br />

dichroism (CD) and analytical centrifugati<strong>on</strong>. A unique CD spectrum for <strong>the</strong> pentapeptide repeat<br />

fold is described. This spectrum reveals a native structure whose β-strands and turns within <strong>the</strong><br />

right-handed quadrilateral β-helix that define <strong>the</strong> PRP fold differ from can<strong>on</strong>ical sec<strong>on</strong>dary<br />

structure types [2]. Differences between soluti<strong>on</strong> and crystallographic structures <strong>of</strong> MfpA reveal<br />

some intrinsic limitati<strong>on</strong>s <strong>of</strong> CD spectroscopy for protein sec<strong>on</strong>dary structure analysis. MfpA<br />

refolded from high temperature, urea or guanidium forms stable aggregates <strong>of</strong> m<strong>on</strong>omers whose<br />

sec<strong>on</strong>dary and tertiary structure are not native. In c<strong>on</strong>trast, MfpA refolded using a novel ‘timedependent<br />

renaturati<strong>on</strong>’ protocol yields protein with native sec<strong>on</strong>dary, tertiary and quaternary<br />

structure. The generality <strong>of</strong> ‘time-dependent renaturati<strong>on</strong>’ to o<strong>the</strong>r proteins and denaturati<strong>on</strong><br />

methods is discussed.<br />

References<br />

[1] S.Hegde, M.Vetting, S.Roderick, L.Mitchenall, A.Maxwell, H.Takiff and J.Blanchard, Science 308, 1480-1483<br />

(2005).<br />

[2] S.Khrapunov, H.Cheng, S.Hegde, J.Blanchard, and M. Brenowitz, J. Biol.Chem. 283, 36290-36299 (2008).<br />

100


Protein folding and aggregati<strong>on</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Towards an early diagnosis <strong>of</strong> Alzheimer’s disease :<br />

development <strong>of</strong> quantitative and c<strong>on</strong>formati<strong>on</strong>sensitive<br />

biosensor for <strong>the</strong> Aβ peptide<br />

E. KLEIREN 1, J-M RUYSSCHAERT 1, E. GOORMAGHTIGH 1 AND V. RAUSSENS 1<br />

1. Center for Structural Biology and Bioinformatics, Laboratory <strong>of</strong><br />

Structure and Functi<strong>on</strong> <strong>of</strong> Biological Membranes, Faculté des Sciences,<br />

Université Libre de Bruxelles, CP 206/2, Blvd du Triomphe, B-1050<br />

Brussels, Belgium<br />

Alzheimer’s disease is <strong>the</strong> most comm<strong>on</strong> form <strong>of</strong> dementia worldwide and with <strong>the</strong> expansi<strong>on</strong> <strong>of</strong><br />

<strong>the</strong> at risk-ageing populati<strong>on</strong>, <strong>the</strong> tally <strong>of</strong> cases is expected to quadruple during <strong>the</strong> next decades.<br />

There is a widespread c<strong>on</strong>sensus am<strong>on</strong>g <strong>the</strong> medical and Alzheimer disease research communities<br />

that <strong>the</strong> development <strong>of</strong> an improved, sensitive, specific, n<strong>on</strong>-invasive, diagnostic standard is<br />

mandatory. This neurodegenerative disorder reveals itself <strong>on</strong>ly late and, to date, reliable diagnosis<br />

is <strong>on</strong>ly indisputably obtained by <strong>the</strong> autopsy <strong>of</strong> <strong>the</strong> patient by <strong>the</strong> observati<strong>on</strong> <strong>of</strong> neuropathological<br />

characteristics <strong>of</strong> <strong>the</strong> illness in <strong>the</strong> brain. One <strong>of</strong> <strong>the</strong>se hallmarks is <strong>the</strong> presence <strong>of</strong> polymorphous<br />

extracellular deposits called “senile plaques”, mainly c<strong>on</strong>stituted <strong>of</strong> <strong>the</strong> aggregated 40-42 residue<br />

Amyloid-β peptide (Aβ), wich results (derives) from <strong>the</strong> proteolytic cleavage <strong>of</strong> <strong>the</strong> Amyloid<br />

Precursor Protein. Studies report that <strong>the</strong> Aβ peptide plays a major role in <strong>the</strong> <strong>on</strong>set <strong>of</strong> <strong>the</strong> disease<br />

and becomes neurotoxic up<strong>on</strong> aggregati<strong>on</strong> [1]. Aβ can adopt different c<strong>on</strong>formati<strong>on</strong>s, ranging from<br />

m<strong>on</strong>omers to soluble oligomers and insoluble fibrils. It is now widely recognized that soluble<br />

amyloid oligomers are <strong>the</strong> primary pathogenic structure [1] and are correlated to <strong>the</strong> first signs <strong>of</strong><br />

cognitive impairment, ra<strong>the</strong>r than <strong>the</strong> mature amyloid fibrils. Using attenuated total reflecti<strong>on</strong> -<br />

Fourier transform infrared (ATR-FTIR) spectroscopy, our group has recently shown that <strong>the</strong>se<br />

species possess distinct spectral features : fibrils are characterized by a parallel β-sheet<br />

c<strong>on</strong>formati<strong>on</strong> while oligomers display an anti-parallel β-sheet structure [2]. According to <strong>the</strong>se<br />

observati<strong>on</strong>s, our purpose is to develop a new reliable and highly-sensitive diagnostic tool, based<br />

<strong>on</strong> ATR-FTIR spectroscopy [3], that would be able to specifically detect and quantify <strong>the</strong> presence<br />

<strong>of</strong> <strong>the</strong> different forms <strong>of</strong> <strong>the</strong> Aβ peptide in soluti<strong>on</strong>. First results show that our biosensor is able to<br />

detect <strong>the</strong> presence <strong>of</strong> Aβ and discriminate between <strong>the</strong> oligomeric and fibrillar forms <strong>of</strong> Aβ(1-40)<br />

and Aβ(1-42). This c<strong>on</strong>formati<strong>on</strong>-sensitivity represents a major advantage compared to <strong>the</strong> already<br />

existing detecti<strong>on</strong> methods for Alzheimer’s disease.<br />

References<br />

[1] Dalghren KN, Manelli AM, Stine WB Jr, Baker LK, Krafft GA, and LaDu MJ J Biol Chem (2002) 277, 32046–32053<br />

[2] Cerf E, Sarroukh R, Tamamizu-Kato S, Breydo L, Derclaye S, Dufrêne Y, Narayanaswami V, Goormaghtigh E,<br />

Ruysschaert JM, Raussens V. Biochem J (<strong>2009</strong>) Accepted Manuscript<br />

[3] R. Voue M, Goormaghtigh E, Homble F, Marchand-Brynaert J, C<strong>on</strong>ti J, Devouge S, De C<strong>on</strong>inck J Langmuir (2007)<br />

23, 949-955<br />

101


Protein folding and aggregati<strong>on</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Two-dimensi<strong>on</strong>al Raman and Raman optical activity<br />

correlati<strong>on</strong> and factor analysis <strong>of</strong> lysozyme fibrillati<strong>on</strong><br />

T. PAZDERKA 1 , V. KOPECKÝ JR. 1 , K. HOFBAUEROVÁ 1,2 AND V. BAUMRUK 1<br />

1. Institute <strong>of</strong> Physics, Faculty <strong>of</strong> Ma<strong>the</strong>matics and Physics, Charles<br />

University in Prague, Ke Karlovu 5, Prague 2, CZ-121 16, Czech Republic<br />

2. Institute <strong>of</strong> Microbiology, Academy <strong>of</strong> Sciences <strong>of</strong> <strong>the</strong> Czech Republic,<br />

Vídeňská 1083, Prague 4, CZ-142 20, Czech Republic<br />

Understanding <strong>of</strong> processes <strong>of</strong> amyloid fibrils formati<strong>on</strong> is <strong>on</strong>e <strong>of</strong> <strong>the</strong> key tasks in searching for<br />

proteins structural origin <strong>of</strong> human neurodegenerative diseases. Therefore, hen egg white<br />

lysozyme (HEWL) can serve as a good model <strong>of</strong> amyloid fibril formati<strong>on</strong>. Fur<strong>the</strong>rmore, this<br />

protein is homologous to human lysozyme, which is <strong>on</strong>e <strong>of</strong> <strong>the</strong> proteins that cause amyloid<br />

diseases [1]. Raman optical activity (ROA) and Raman spectroscopy are very powerful techniques<br />

for study unfolded proteins and promising experiments <strong>on</strong> lysozyme has been d<strong>on</strong>e [2]. Firstly, we<br />

model changes <strong>of</strong> ROA band shapes and positi<strong>on</strong>s and investigate characteristic patterns in 2D<br />

correlati<strong>on</strong> spectra (2DCoS) [3]. Subsequently, temporal and <strong>the</strong>rmal spectral changes in ROA and<br />

Raman spectra <strong>of</strong> HEWL (Fig. 1) were analyzed by means <strong>of</strong> factor analysis and 2DCoS. It gave us<br />

an opportunity to study delicate details <strong>of</strong> HEWL fibrillati<strong>on</strong> and denaturati<strong>on</strong>.<br />

Fig. 1 – A) ROA time dependency <strong>of</strong> hen egg white lysozyme (400 mg/mL, pH 3.7)<br />

fibrillati<strong>on</strong>, B) lysozyme <strong>the</strong>rmal denaturati<strong>on</strong> m<strong>on</strong>itored by Raman spectroscopy<br />

References<br />

[1] D. R. Booth, M. Sunde, V. Bellotti et al., Nature 385, 787–793 (1997).<br />

[2] E. W. Blanch, L. A. Morozova-Roche, D. A. E. Cochran et al., J. Mol. Biol. 301, 553–563 (2000).<br />

[3] I. Noda, Y. Ozaki, Two dimensi<strong>on</strong>al correlati<strong>on</strong> spectroscopy: applicati<strong>on</strong>s in vibrati<strong>on</strong>al and optical spectroscopy,<br />

Chichester: Wiley (2004).<br />

102


Protein folding and aggregati<strong>on</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Effect <strong>of</strong> homologous oligomers in <strong>the</strong> <strong>the</strong>rmal<br />

aggregati<strong>on</strong> <strong>of</strong> a model protein<br />

M.R. MANGIONE, D. BULONE, V. MARTORANA AND P.L. SAN BIAGIO<br />

CNR - Istituto di Bi<strong>of</strong>isica, Via Ugo La Malfa, 153 90146 Palermo (Italy)<br />

The study <strong>of</strong> protein aggregati<strong>on</strong> is <strong>of</strong> great interest due to <strong>the</strong> relati<strong>on</strong> between several<br />

pathological diseases (Alzheimer, BSE, Creutzfeldt-Jacob disease, etc.) and <strong>the</strong> formati<strong>on</strong> <strong>of</strong><br />

proteinaceous deposit in plaques, amyloid fibrils and filaments. The aggregati<strong>on</strong> process can be<br />

modulated and/or governed by different factors such as pH, temperature, solvents, protein<br />

c<strong>on</strong>centrati<strong>on</strong>, cosolutes, etc. In <strong>the</strong> last few years it has been dem<strong>on</strong>strated that <strong>the</strong> presence <strong>of</strong><br />

proteins in different c<strong>on</strong>formati<strong>on</strong> or aggregati<strong>on</strong> states can modify <strong>the</strong> aggregati<strong>on</strong> properties <strong>of</strong><br />

homologous wild type proteins. Here we present results c<strong>on</strong>cerning <strong>the</strong> effect <strong>of</strong> small oligomers<br />

(dimer and trimer) <strong>of</strong> Bovine Serum Albumin (BSA) <strong>on</strong> its <strong>the</strong>rmal stability. In fact, soluti<strong>on</strong>s <strong>of</strong><br />

commercial BSA are known to c<strong>on</strong>tain small amount <strong>of</strong> stable proteinaceous oligomers, probably<br />

formed up<strong>on</strong> <strong>the</strong> factory processing. We used HPLC technique to separate oligomers from<br />

m<strong>on</strong>omers and to obtain clean and stable soluti<strong>on</strong>s <strong>of</strong> each species. In this way it was possible to<br />

prepare m<strong>on</strong>omer soluti<strong>on</strong>s c<strong>on</strong>taining a given amounts <strong>of</strong> oligomers. By using Static and<br />

Dynamic Light Scattering (SDLS) to follow <strong>the</strong> <strong>the</strong>rmal aggregati<strong>on</strong> <strong>of</strong> so obtained systems, we<br />

found that <strong>the</strong> presence <strong>of</strong> oligomers slows down <strong>the</strong> aggregati<strong>on</strong> process and reduces <strong>the</strong> final<br />

size <strong>of</strong> aggregates.<br />

103


Protein folding and aggregati<strong>on</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Identificati<strong>on</strong> <strong>of</strong> free radicals induced by UV irradiati<strong>on</strong><br />

in collagen water soluti<strong>on</strong>s<br />

N. METREVELI 1 , L. NAMICHEISHVILI 2 , K. JARIASHVILI 2 , E. CHIKVAIDZE 2 , M. DGEBUADZE 1 , A.<br />

SIONKOWSKA 3<br />

1. Faculty <strong>of</strong> Physics and Ma<strong>the</strong>matics, Ilia. Chavchavadze State<br />

University, Chavchavadze Ave. 32, 0179 Tbilisi, Georgia<br />

2. Dept <strong>of</strong> Exact and Natural Sciences, Iv. Javakhishvili Tbilisi State<br />

University, Chavchavadze Ave. 3, 0128 Tbilisi, Georgia<br />

3. Faculty <strong>of</strong> Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-<br />

100 Torun, Poland<br />

Electr<strong>on</strong> paramagnetic res<strong>on</strong>ance (EPR) method has shown that hydrogen atoms and acetic acid<br />

free radicals appear in surrounding acetic acid – water soluti<strong>on</strong> <strong>of</strong> collagen under ultraviolet (UV)<br />

irradiati<strong>on</strong>. These free radicals interact with <strong>the</strong> collagen molecule; c<strong>on</strong>sequently, seven superfine<br />

comp<strong>on</strong>ents <strong>of</strong> EPR spectrum with <strong>the</strong> split <strong>of</strong> aH = 11.3 G and g-factor 2.001 appear. It is assumed<br />

that this spectrum is related to <strong>the</strong> free radical occurred <strong>on</strong> <strong>the</strong> proline residue in collagen molecule<br />

[1]. In order to discover •OH hydroxyl radicals even in minor c<strong>on</strong>centrati<strong>on</strong>, spin trap 5.5dimethyl-1-pyrroline<br />

N-oxide (DMPO) has been applied. During <strong>the</strong> irradiati<strong>on</strong> <strong>of</strong> collagen water<br />

soluti<strong>on</strong> in <strong>the</strong> presence <strong>of</strong> spin trap, EPR spectrum <strong>of</strong> <strong>the</strong> DMPO/•OH adduct has not been<br />

identified, while <strong>the</strong> above menti<strong>on</strong>ed spectrum has been observed <strong>on</strong>ce <strong>the</strong> hydrogen peroxide<br />

H2O2 and FeSO4 were added to <strong>the</strong> sample. That means that water photolysis does not take place<br />

in collagen water soluti<strong>on</strong> due to UV irradiati<strong>on</strong>. It was suggested that occurrence <strong>of</strong> hydrogen<br />

radical is c<strong>on</strong>nected with <strong>the</strong> electr<strong>on</strong> transmissi<strong>on</strong> to <strong>the</strong> hydrogen i<strong>on</strong>. The possible source <strong>of</strong> free<br />

electr<strong>on</strong>s can be aromatic residues, photo i<strong>on</strong>izati<strong>on</strong> <strong>of</strong> which takes place in collagen molecule due<br />

to UV irradiati<strong>on</strong> [2].<br />

References<br />

[1] N. Metreveli, L. Namicheishvili, K. Jariashvili, G. Mrevlishvili, A. Si<strong>on</strong>kowska, Internati<strong>on</strong>al Journal <strong>of</strong> Photoenergy,<br />

Article ID 76830, 1-4 (2006).<br />

[2] N. Metreveli, L. Namicheishvili, K. Jariashvili, M. Dgebuadze, E. Chikvaidze, A. Si<strong>on</strong>kowska, Journal <strong>of</strong><br />

Photochemistry and Photobiology B: biology, 93(2), 61-65 (2008).<br />

104


Protein folding and aggregati<strong>on</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Multiple aggregati<strong>on</strong> pathways <strong>of</strong> GST-GFP protein<br />

induced by betaine and external perturbati<strong>on</strong>s.<br />

A. NATALELLO 1 , D. AMI 2 , J. LIU 3 , R. SANTARELLA 4 , A. DE MARCO 2 , AND S. M. DOGLIA 1<br />

1. Dept. <strong>of</strong> Biotechnology and Biosciences, University <strong>of</strong> Milano Bicocca,<br />

Piazza della Scienza 2, Milano, I-20126, Italy<br />

2.COGENTECH, Via Adamello 16, Milano, I-20139, Italy<br />

3. Lab. I<strong>on</strong> Beam Eng., Chinese Academy <strong>of</strong> Sciences, Hefei 230031,<br />

Anhui, China<br />

4. Scientific Core Facilities , EMBL, Meyerh<strong>of</strong>str. 1, Heidelberg, D-69117,<br />

Germany<br />

We investigated <strong>the</strong> multiple aggregati<strong>on</strong> pathways <strong>of</strong> <strong>the</strong> model fluorescent fusi<strong>on</strong> protein GST-<br />

GFP (glutathi<strong>on</strong>e S-transferase - green fluorescent protein) induced by different effectors through<br />

complementary techniques, as fluorescence, circular dichroism, Fourier transform infrared<br />

spectroscopy, dynamic light scattering, electr<strong>on</strong> microscopy and biochemical methods. In<br />

particular, we examined <strong>the</strong> effect <strong>of</strong> <strong>the</strong> osmolyte betaine, which is expected to be a protein<br />

stabilizer. We found that betaine affects differently GST-GFP misfolding and aggregati<strong>on</strong><br />

depending <strong>on</strong> its c<strong>on</strong>centrati<strong>on</strong>. Low betaine c<strong>on</strong>centrati<strong>on</strong>s (5-7mM) misfold <strong>the</strong> protein, which<br />

precipitates in assemblies that are rich in β-sheets, inaccessible to protease, and bind thi<strong>of</strong>lavine T.<br />

At higher betaine c<strong>on</strong>centrati<strong>on</strong> (10-20 mM), <strong>the</strong> misfolded protein forms soluble aggregates with<br />

hydrodynamic radius <strong>of</strong> about 16 nm. Interestingly, at this c<strong>on</strong>centrati<strong>on</strong> we also found that<br />

betaine induces <strong>the</strong> disrupti<strong>on</strong> <strong>of</strong> preformed aggregates into soluble assemblies. These results [1]<br />

dem<strong>on</strong>strate that betaine can stabilize, misfold, aggregate and disaggregate proteins depending <strong>on</strong><br />

<strong>the</strong> balance between its unfavorable interacti<strong>on</strong> with <strong>the</strong> protein backb<strong>on</strong>e and <strong>the</strong> favorable <strong>on</strong>e<br />

with side chains. In additi<strong>on</strong>, we investigated <strong>the</strong> GST-GFP aggregati<strong>on</strong> induced by <strong>the</strong>rmal<br />

treatment, freezing and thawing cycles, pH variati<strong>on</strong>, salt, DTT and H2O2 additi<strong>on</strong>. We observed<br />

<strong>the</strong> formati<strong>on</strong> <strong>of</strong> assemblies that, under certain c<strong>on</strong>diti<strong>on</strong>s (salt, DTT , freezing and thawing cycles),<br />

c<strong>on</strong>tained <strong>the</strong> protein in a native-like structure and functi<strong>on</strong>al state [2]. These results indicate that<br />

<strong>the</strong> same protein can undergo to multiple aggregati<strong>on</strong> pathways, leading to end products with<br />

different molecular structure and morphology.<br />

References<br />

Fig. 1 – Multiple aggregati<strong>on</strong> pathway scheme <strong>of</strong> GST-GFP protein.<br />

[1] A. Natalello, J. Liu, D. Ami, S.M. Doglia, A. de Marco. Proteins. 75, 509-517 (<strong>2009</strong>).<br />

[2] A. Natalello, R. Santarella, S.M. Doglia, A. de Marco, Protein Expr. Purif. 58, 356-361 (2008).<br />

105


Protein folding and aggregati<strong>on</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

The role <strong>of</strong> metal i<strong>on</strong>s in <strong>the</strong> <strong>the</strong>rmal aggregati<strong>on</strong> <strong>of</strong><br />

Bovine Serum Albumin<br />

GIOVANNA NAVARRA 1 , ANNA TINTI 2 , MAURIZIO LEONE 1 , VALERIA MILITELLO 1 , ARMIDA<br />

TORREGGIANI 3<br />

1. Dipartimento di Scienze Fisiche ed Astr<strong>on</strong>omiche, Università di<br />

Palermo and CNISM, via Archirafi 36, 90123 Palermo (Italy)<br />

2. Dipartimento di Biochimica, Università di Bologna, Via Belmeloro<br />

8/2, 40126 Bologna (Italy)<br />

3. Istituto I.S.O.F., C<strong>on</strong>siglio Nazi<strong>on</strong>ale delle Ricerche, Via P. Gobetti 101,<br />

40129 Bologna (Italy)<br />

In recent years, <strong>the</strong> study <strong>of</strong> <strong>the</strong> interacti<strong>on</strong> between metal i<strong>on</strong>s and proteins has provoked an<br />

increasing interest. One <strong>of</strong> <strong>the</strong> reas<strong>on</strong>s is <strong>the</strong> involvement <strong>of</strong> metal i<strong>on</strong>s in <strong>the</strong> development <strong>of</strong> some<br />

degenerative pathology, such as Alzheimer disease (AD), and Parkins<strong>on</strong>’s disease [1]. Several<br />

evidences indicate <strong>the</strong>ir implicati<strong>on</strong> in <strong>the</strong> <strong>on</strong>set <strong>of</strong> pathogenic disease: for example, <strong>the</strong> fibrils<br />

formati<strong>on</strong> by beta amyloid peptide (i.e. <strong>the</strong> main comp<strong>on</strong>ent <strong>of</strong> <strong>the</strong> plaques) and <strong>the</strong> formati<strong>on</strong> <strong>of</strong><br />

soluble oligomeric aggregates, whose greater toxicity has been speculated, result to be markedly<br />

accelerated by zinc and copper i<strong>on</strong>s presence[1, 2]. Never<strong>the</strong>less, has been reported that metal i<strong>on</strong>s<br />

may act as inhibitors or promoters in aggregati<strong>on</strong> processes in dependence <strong>on</strong> <strong>the</strong> metal/protein<br />

c<strong>on</strong>centrati<strong>on</strong> [3, 4]. We report <strong>on</strong> <strong>the</strong>rmal aggregati<strong>on</strong> processes <strong>of</strong> bovine serum albumin (BSA)<br />

in presence <strong>of</strong> Cu(II) or Zn(II) i<strong>on</strong>s. Aim <strong>of</strong> this work was to delineate <strong>the</strong> role <strong>of</strong> metal i<strong>on</strong>s in <strong>the</strong><br />

early stages <strong>of</strong> proteins aggregati<strong>on</strong> kinetics. The growth <strong>of</strong> <strong>the</strong> aggregates was followed by<br />

Dynamic Light Scattering (DLS) measurements whereas <strong>the</strong> c<strong>on</strong>formati<strong>on</strong>al changes occurring in<br />

<strong>the</strong> protein structure were m<strong>on</strong>itored by infrared and Raman spectroscopy. Both in absence and in<br />

presence <strong>of</strong> metal i<strong>on</strong>s, heating treatment induced a partial unfolding <strong>of</strong> <strong>the</strong> prevalently α-helix<br />

c<strong>on</strong>formati<strong>on</strong> <strong>of</strong> BSA, giving rise to a prevalent β-sheet structure. The DLS data indicated that <strong>the</strong><br />

temperature <strong>of</strong> protein unfolding is not sensitively affected by <strong>the</strong> presence <strong>of</strong> Zn(II) or Cu(II) i<strong>on</strong>s.<br />

At <strong>the</strong> c<strong>on</strong>trary, oligomeric aggregates <strong>of</strong> about 20 nm was formed by native BSA and BSA-Cu(II),<br />

while bigger species (about 50 and 100 nm) was formed in presence <strong>of</strong> Zn(II) i<strong>on</strong>s. The different<br />

effects played by <strong>the</strong> two types <strong>of</strong> i<strong>on</strong>s were highlighted by Raman measurements. In fact, after<br />

heating, two different 3D coordinati<strong>on</strong> structures <strong>of</strong> metal-protein systems occurred. One is<br />

characterized by <strong>the</strong> metal coordinati<strong>on</strong> to <strong>the</strong> imidazole Nτ� atom <strong>of</strong> His which can promote intermolecular<br />

cross-linking; this manly takes place in <strong>the</strong> Zn-BSA system. The o<strong>the</strong>r involves metal<br />

binding to <strong>the</strong> Nτ�/ Nπ�-histidinate ani<strong>on</strong> as well as to main-chain amide nitrogens, probably leading<br />

to an intra-molecular chelati<strong>on</strong> in <strong>the</strong> Cu-BSA system. This different metal coordinati<strong>on</strong> also<br />

induced differences in local disulfide c<strong>on</strong>formati<strong>on</strong> and in Tyr envir<strong>on</strong>ment.<br />

References<br />

[1] A.I. Bush, W.H. Pettingell, G. Multhaup, M. Paradis, et al., Science 265, 1464-1467 (1994)<br />

[2] K. Garai, P. Sengupta, B. Sahoo, S. Maiti, Biochem. Biophys. Res. Commun. 354, 210-215 (2006)<br />

[3] M.A. Lovell, C. Xie, W.R. Markesbery, Brian Res. 823, 88-95 (1999)<br />

[4] G. Navarra, M. Le<strong>on</strong>e, V. Militello, Biophys. Chem. 161, 52-61 (2007)<br />

106


Protein folding and aggregati<strong>on</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

The influence <strong>of</strong> salt substitutes <strong>on</strong> <strong>the</strong> sec<strong>on</strong>dary<br />

structure <strong>of</strong> food proteins – a vibrati<strong>on</strong>al spectroscopic<br />

study<br />

N. PERISIC 1 , N. K. AFSETH 1, R. OFSTAD 1 AND A. KOHLER 1,2,3<br />

1 Centre for Biospectroscopy and Data Modelling, Matforsk/N<strong>of</strong>ima<br />

Food, Ås, Norway<br />

2 CIGENE – Center for Integrative Genetics, University <strong>of</strong> Life Sciences,<br />

1432 Ås, Norway<br />

3 Department <strong>of</strong> Ma<strong>the</strong>matical Sciences and Technology (IMT),<br />

Norwegian University <strong>of</strong> Life Sciences, Ås, Norway<br />

Salt (NaCl) is <strong>the</strong> world’s most established food additive because <strong>of</strong> its beneficial effects, such as<br />

prol<strong>on</strong>ged preservati<strong>on</strong>, better sensorial properties and increased food processability. Although<br />

sodium is required for normal human body functi<strong>on</strong>s, <strong>the</strong> actual intake in a majority <strong>of</strong> <str<strong>on</strong>g>European</str<strong>on</strong>g><br />

countries is three times higher than necessary (8-12 g/day) [1,2]. Several epidemiological studies<br />

have dem<strong>on</strong>strated that high sodium intake is associated with an increased risk <strong>of</strong> high blood<br />

pressure, which is a significant factor for cardiovascular disease and strokes development [3,4].<br />

Food producers are thus working to reduce <strong>the</strong> c<strong>on</strong>tent <strong>of</strong> NaCl and find feasible salt substitutes<br />

for use in food products. Sodium chloride affects a number <strong>of</strong> functi<strong>on</strong>al properties in meat and<br />

fish products, ranging from hydrati<strong>on</strong> and water binding capacities to textural properties. While<br />

new products are developed, where NaCl c<strong>on</strong>tents are reduced and substituted with o<strong>the</strong>r salts,<br />

<strong>the</strong>re is a need to increase <strong>the</strong> understanding <strong>of</strong> how <strong>the</strong>se changes affect protein structure, water<br />

holding capacities and textural properties <strong>of</strong> <strong>the</strong> new products. Vibrati<strong>on</strong>al spectroscopy<br />

techniques are feasible tools for studying protein structural changes, and previous studies have<br />

shown that <strong>the</strong> Amide I band in FTIR spectra (1700 – 1600 cm -1) is highly sensitive to <strong>the</strong> changes<br />

in <strong>the</strong> sec<strong>on</strong>dary structure <strong>of</strong> proteins. Thus, in <strong>the</strong> present study, vibrati<strong>on</strong>al spectroscopic<br />

techniques like FT-IR and Raman spectroscopy are used to m<strong>on</strong>itor <strong>the</strong> structural changes in<br />

proteins due to <strong>the</strong> additi<strong>on</strong> <strong>of</strong> different salt substitutes. Two model systems have been established<br />

to investigate how salt substitutes like MgSO4 and KCl affects protein structure: (1) aqueous<br />

soluti<strong>on</strong>s <strong>of</strong> pure protein, and (2) low-lipid bovine meat. In <strong>the</strong> first step, <strong>the</strong> protein soluti<strong>on</strong> is<br />

used to determine <strong>the</strong> structural changes <strong>of</strong> globular proteins that have occurred in <strong>the</strong> interacti<strong>on</strong><br />

with salt i<strong>on</strong>s. Subsequently, this is to be used for fur<strong>the</strong>r explanati<strong>on</strong> <strong>of</strong> <strong>the</strong> structural changes in<br />

far more complex matrices, such as bovine meat samples.<br />

References<br />

[1] Brandsma, I., 2006, Reducing sodium, a <str<strong>on</strong>g>European</str<strong>on</strong>g> perspective, Food Technology 03.06 pp 24-29.<br />

[2] Kilcast, D. and Angus, F., 2007, Reducing salt in foods, practical strategies. CRC Press, Cambridge; England<br />

[3] Intersalt. 1988. An internati<strong>on</strong>al study <strong>of</strong> electrolyte excreti<strong>on</strong> and blood pressure. Intersalt Cooperative Research<br />

Group. Brit. Med. J., 279:319-328.<br />

[4] Cook, N.R. et al. (2007) L<strong>on</strong>g term effects <strong>of</strong> dietary sodium reducti<strong>on</strong> <strong>on</strong> cardiovascular disease outcomes:<br />

observati<strong>on</strong>al follow-ups <strong>of</strong> <strong>the</strong> trials <strong>of</strong> hypertensi<strong>on</strong> preventi<strong>on</strong>. British Medical Journal, April 28, 334 (7599):855.<br />

107


Protein folding and aggregati<strong>on</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Structural organizati<strong>on</strong> <strong>of</strong> DNA-protein complexes <strong>of</strong><br />

chromatin studied by vibrati<strong>on</strong>al and electr<strong>on</strong>ic circular<br />

dichroism and atomic force microscopy<br />

A. POLYANICHKO 1 AND H. WIESER 2<br />

1. Dept. <strong>of</strong> Molecular Biophysics, Faculty <strong>of</strong> Physics <strong>of</strong> Saint-Petersburg<br />

State University, 1 Uljanovskaya Str., Stary Peterg<strong>of</strong>f, Saint-Petersburg,<br />

198504, Russian Federati<strong>on</strong><br />

2. Dept. <strong>of</strong> Chemistry, University <strong>of</strong> Calgary, 2500 University Dr.,<br />

Calgary, Alberta, T2N 1N4, Canada<br />

Structure and functi<strong>on</strong>ing <strong>of</strong> chromatin is determined by interacti<strong>on</strong>s <strong>of</strong> DNA with numerous<br />

nuclear proteins. The most abundant and yet not completely understood n<strong>on</strong>-hist<strong>on</strong>e<br />

chromosomal proteins are those bel<strong>on</strong>ging to a High Mobility Group (HMG) superfamily [1]. The<br />

object <strong>of</strong> our study is a member <strong>of</strong> <strong>the</strong> family named HMGB1. The characteristic feature <strong>of</strong> this<br />

protein is HMGB DNA-binding domain dem<strong>on</strong>strating ra<strong>the</strong>r unusual structural and functi<strong>on</strong>al<br />

properties [2]. The interplay <strong>of</strong> this protein <strong>on</strong> DNA with linker hist<strong>on</strong>e H1 and o<strong>the</strong>r proteins<br />

determines both structure and functi<strong>on</strong>ing <strong>of</strong> <strong>the</strong> chromatin. A combinati<strong>on</strong> <strong>of</strong> UV and IR<br />

absorpti<strong>on</strong> and circular dichroism (CD) spectroscopy was applied to investigate <strong>the</strong> structure and<br />

formati<strong>on</strong> <strong>of</strong> large supramolecular DNA-protein complexes. This combinati<strong>on</strong> <strong>of</strong> techniques was<br />

used to overcome limitati<strong>on</strong>s <strong>of</strong> UV-CD (ECD) spectroscopy due to c<strong>on</strong>siderable light scattering in<br />

such soluti<strong>on</strong>s [3]. Based <strong>on</strong> <strong>the</strong> analysis <strong>of</strong> FTIR and UV circular dichroism spectra <strong>the</strong> interacti<strong>on</strong><br />

<strong>of</strong> DNA with high-mobility group n<strong>on</strong>-hist<strong>on</strong>e chromatin protein HMGB1 and linker hist<strong>on</strong>e H1<br />

was studied. We have also studied <strong>the</strong> influence <strong>of</strong> biologically relevant metal i<strong>on</strong>s, such as Mn2+<br />

and Ca2+, <strong>on</strong> <strong>the</strong> structure <strong>of</strong> <strong>the</strong> DNA-protein complexes. The data obtained showed that under<br />

<strong>the</strong> c<strong>on</strong>diti<strong>on</strong>s <strong>of</strong> <strong>the</strong> experiment (15 mM NaCl, protein/DNA ratio r < 1 w/w) <strong>the</strong> proteins did not<br />

reveal any AT or GC specificity in binding to DNA. In <strong>the</strong> presence <strong>of</strong> both proteins, mainly<br />

interacti<strong>on</strong>s in <strong>the</strong> DNA minor groove were observed, which were attributed to HMGB1 binding.<br />

Hist<strong>on</strong>e H1 facilitated binding <strong>of</strong> HMGB1 to DNA by interacting with <strong>the</strong> sugar-phosphate<br />

backb<strong>on</strong>e and binding <strong>of</strong> Asp and Glu amino acid residues <strong>of</strong> HMGB1. Acting toge<strong>the</strong>r, HMGB1<br />

and H1 stimulated <strong>the</strong> assemblage <strong>of</strong> supramolecular DNA-protein structures. The structural<br />

organizati<strong>on</strong> <strong>of</strong> <strong>the</strong> ternary complexes is modulated by <strong>the</strong> interacti<strong>on</strong>s between HMGB1 and H1<br />

molecules. The DNA-proteins interacti<strong>on</strong>s in <strong>the</strong> presence <strong>of</strong> metal i<strong>on</strong>s were different, causing<br />

prominent DNA compacti<strong>on</strong> and formati<strong>on</strong> <strong>of</strong> large inter-molecular complexes. The interacti<strong>on</strong>s <strong>of</strong><br />

Mn2+ take place now mostly in <strong>the</strong> major groove <strong>of</strong> DNA involving N7(G), while interacti<strong>on</strong>s<br />

between Mn2+ and DNA phosphate groups are weakened by hist<strong>on</strong>e molecules. C<strong>on</strong>siderable<br />

interacti<strong>on</strong>s <strong>of</strong> Mn2+ i<strong>on</strong>s with Asp and Glu amino acid residues <strong>of</strong> <strong>the</strong> proteins were also<br />

detected, while Ca2+ interacts directly to HMGB DNA binding domain.<br />

References<br />

[1] Johns E.W. The HMG chromosomal proteins, Academic Press Inc., L<strong>on</strong>d<strong>on</strong> (1982).<br />

[2] Bustin M., Reeves R. Prog. Nucleic Acid Res. Mol. Biol., 54, 35-100 (1996).<br />

[3] Polyanichko A, Wieser H. Biopolymers, 78, 329-339 (2005).<br />

108


Protein folding and aggregati<strong>on</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

FTIR and CD spectroscopy investigati<strong>on</strong>s <strong>of</strong> <strong>the</strong><br />

structure and functi<strong>on</strong> <strong>of</strong> an intrinsically disordered<br />

plant desiccati<strong>on</strong> stress protein (LEA7) in <strong>the</strong> hydrated<br />

and dry state<br />

A.V. POPOVA 1 , M. HUNDERTMARK 1,2 , R. SECKLER 3 AND D. K. HINCHA 1<br />

1. Max-Planck-Institute <strong>of</strong> Molecular Plant Physiology, Am Mühlenberg<br />

1, D-14476 Potsdam, Germany<br />

2. present address: UMR 1191 Physiologie Moleculaire des Semences, 16<br />

Bvd Lavoisier, 49045 Anders Cedex 1, France<br />

3. Institute for Physical Biochemistry, University <strong>of</strong> Potsdam, Karl-<br />

Liebknecht-Str. 24-25, D-14476 Potsdam, Germany<br />

Late Embryogenesis Abundant (LEA) proteins have been first discovered in plant seeds and were<br />

later also found in vegetative organs <strong>of</strong> plants, and in some bacteria and invertebrates under<br />

envir<strong>on</strong>mental stress c<strong>on</strong>diti<strong>on</strong>s such as cold, salinity, or desiccati<strong>on</strong> [1]. LEA proteins are<br />

generally assumed to play an important role in cellular desiccati<strong>on</strong> tolerance, but <strong>the</strong>ir molecular<br />

functi<strong>on</strong>s are not well understood. Some have been shown to stabilize desiccati<strong>on</strong> sensitive<br />

enzymes, to prevent dehydrati<strong>on</strong>-induced protein aggregati<strong>on</strong> or to stabilize biological<br />

membranes against desiccati<strong>on</strong> injury. LEA proteins are very diverse but share some comm<strong>on</strong><br />

features such as small size and high hydrophilicity, and most are predicted to be natively<br />

disordered under fully hydrated c<strong>on</strong>diti<strong>on</strong>s [2]. On dehydrati<strong>on</strong> it has been shown that some LEA<br />

proteins gain sec<strong>on</strong>dary structure. Here, a structural and functi<strong>on</strong>al characterizati<strong>on</strong> <strong>of</strong> <strong>the</strong> protein<br />

LEA7 from Arabidopsis thaliana is presented. CD spectroscopy showed that under hydrated<br />

c<strong>on</strong>diti<strong>on</strong>s 80% <strong>of</strong> <strong>the</strong> protein is unstructured, but that after drying this is decreased to about 30%<br />

with <strong>the</strong> α-helical c<strong>on</strong>tent increased. LEA7 was able to preserve <strong>the</strong> activity <strong>of</strong> <strong>the</strong> sensitive<br />

enzyme lactate dehydrogenase (LDH) during drying and FTIR analysis showed that <strong>the</strong> structure<br />

<strong>of</strong> both LEA7 and LDH were mutually influenced. The massive desiccati<strong>on</strong>-induced aggregati<strong>on</strong> <strong>of</strong><br />

proteins in leaf extracts from Arabidopsis thaliana was prevented by <strong>the</strong> presence <strong>of</strong> LEA7. Under<br />

fully hydrated c<strong>on</strong>diti<strong>on</strong>s <strong>the</strong> structure <strong>of</strong> LEA7 was not influenced by <strong>the</strong> presence <strong>of</strong> model<br />

membranes, while in <strong>the</strong> dry state LEA7 interacted with model membranes. This interacti<strong>on</strong> had<br />

clear effects <strong>on</strong> <strong>the</strong> structure <strong>of</strong> both membranes and protein, as revealed by FTIR spectroscopy.<br />

References<br />

[1] J. Ingram, D. Bartels, Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 377-403 (1996).<br />

[2] M. Hundertmark, D. K. Hincha, BMC Genomics 9, 118 (2008).<br />

109


Protein folding and aggregati<strong>on</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Unusual stabilizing properties <strong>of</strong> trehalose/maltose<br />

binding protein from Thermococcus litoralis make it a<br />

good candidate as a sensitive element in biosensor<br />

systems for sugar c<strong>on</strong>trol<br />

O.I. POVAROVA 1 , OLGA V. STEPANENKO 1 , A.I. SULATSKAYA 1 , I.M. KUZNETSOVA 1 , K.K.<br />

TUROVEROV 1 , M. STAIANO 2 , A. VITALE 2 , S.D'AURIA 2<br />

1. Institute <strong>of</strong> Cytology <strong>of</strong> <strong>the</strong> Russian Academy <strong>of</strong> Sciences,<br />

Tikhoretsky av. 4, Saint-Petersburg, 194064, Russia<br />

2. Institute <strong>of</strong> Protein Biochemistry CNR, Via Pietro Castellino 111,<br />

Napoli, 80131, Italy<br />

It is difficult to overestimate <strong>the</strong> possibility to perform c<strong>on</strong>tinuous, n<strong>on</strong>-invasive m<strong>on</strong>itoring <strong>of</strong> <strong>the</strong><br />

glucose level in blood <strong>of</strong> diabetic patients. The potential use <strong>of</strong> glucose-binding protein (GBP) as a<br />

probe for <strong>the</strong> development <strong>of</strong> advanced biosensors for m<strong>on</strong>itoring <strong>the</strong> level <strong>of</strong> glucose in <strong>the</strong> blood<br />

<strong>of</strong> diabetic patients has been already shown. N<strong>on</strong>e<strong>the</strong>less, investigati<strong>on</strong>s in this directi<strong>on</strong> meet<br />

several problems. Am<strong>on</strong>g <strong>the</strong>m are relatively low stability <strong>of</strong> GBP and too high glucose binding<br />

c<strong>on</strong>stant. Both problems can be solved if we use trehalose/maltose binding protein from T.<br />

litoralis. Firstly, as D-glucose is not natural ligand <strong>of</strong> TMBP its sufficiently high dissociati<strong>on</strong><br />

c<strong>on</strong>stant (3–8 mM) corresp<strong>on</strong>ds to <strong>the</strong> c<strong>on</strong>tent <strong>of</strong> glucose in human blood in normal (3.9 – 5.9 mM).<br />

Sec<strong>on</strong>dly, <strong>the</strong> stability <strong>of</strong> TMBP is in several times higher than GBP from mesophilic organism<br />

(E.coli). The stability <strong>of</strong> TMBP and its complex with D-glucose (TMBP/Glc) was studied by<br />

intrinsic fluorescence and circular dichroism in far-UV regi<strong>on</strong>. All recorded characteristics remain<br />

stable up to 3.8 M <strong>of</strong> GdnHCl and dramatically change in <strong>the</strong> narrow regi<strong>on</strong> <strong>of</strong> GdnHCl<br />

c<strong>on</strong>centrati<strong>on</strong> (3.8–4.2M GdnHCl). TMBP being a hyper<strong>the</strong>rmophilic protein remains native up to<br />

95 °C. The melting temperatures for TMBP and TMBP/Glc were reached <strong>on</strong>ly for proteins in 2.8 M<br />

GdnHCl. On <strong>the</strong> basis <strong>of</strong> protein denaturing by GdnHCl at different temperature <strong>the</strong> difference <strong>of</strong><br />

free energy in native and unfolded state were determined for different temperatures both for<br />

TMBP and TMBP/Glc.<br />

Fl. intensity<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

I 320<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

0.2 0.4 0.6 0.8 1.0 1.2<br />

I 365<br />

0 1 2 3 4 5 6<br />

[GdnHCl], M<br />

0<br />

-2<br />

-4<br />

-6<br />

-8<br />

-10<br />

Fl. intensity<br />

[θ222]x10 -3 , deg cm 2 dmol -1<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

110<br />

ΔG0, kcal/mol<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

T, 0 -6<br />

0 20 40 60 80 100<br />

C<br />

1.3<br />

1.2<br />

1.1<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

Temperature, 0 0 20 40 60 80<br />

0.5<br />

100<br />

C<br />

Parameter A


Protein folding and aggregati<strong>on</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Fibrillogenesis <strong>of</strong> Hen Egg-White Lysozyme at acidic pH<br />

S. RACCOSTA 1,2 , V. MARTORANA 1 , M. MANNO 1 AND P. L. SAN BIAGIO 1<br />

1. Inst. <strong>of</strong> Biophysics (O.U. Palermo), Italian Nati<strong>on</strong>al Researh Council,<br />

Via U. La Malfa 153, Palermo, I-90146, Italy<br />

2. Dept. <strong>of</strong> Physical and Astr<strong>on</strong>omical Sciences, University <strong>of</strong> Palermo,<br />

Via Archirafi 36, Palermo, I-90123, Italy<br />

The formati<strong>on</strong> <strong>of</strong> amyloid fibrils has a relevant interest in medical research, since several<br />

neurodegenerative pathologies (Parkins<strong>on</strong>’s, Alzheimer’s and Creutzfeldt-Jakob diseases, cystic<br />

fibrosis, diabetes Type II, etc) are linked to <strong>the</strong>se highly structured protein deposits in living<br />

tissues. Several proteins, also not related to pathologies, can form fibrils under given<br />

envir<strong>on</strong>mental or <strong>the</strong>rmodynamic c<strong>on</strong>diti<strong>on</strong>s that affect <strong>the</strong>ir native c<strong>on</strong>formati<strong>on</strong>. A basic<br />

comprehensi<strong>on</strong> <strong>of</strong> <strong>the</strong> molecular mechanism <strong>of</strong> amyloid formati<strong>on</strong> and growth is fundamental in<br />

order to c<strong>on</strong>trol and inhibit <strong>the</strong> critical step <strong>of</strong> this harmful process. We use Hen Egg White<br />

Lysozyme (HEWL) as a model system to study <strong>the</strong> self-assembly <strong>of</strong> amyloid fibrils at acid pH.<br />

Indeed, <strong>the</strong> best known method to produce fibrils <strong>of</strong> wild-type lysozyme c<strong>on</strong>sists <strong>of</strong> keeping a 20<br />

mg/ml pH 2 protein soluti<strong>on</strong> at 65 °C for a few days [2,3]. Also, aggregati<strong>on</strong> studies at acidic pH<br />

are <strong>of</strong> particular interest, since <strong>the</strong>y elicit <strong>the</strong> role <strong>of</strong> repulsive electrostatic interacti<strong>on</strong> in protein<br />

unfolding and self-assembly. We performed Differential Scanning Calorimetry (DSC) experiments<br />

<strong>of</strong> lysozyme soluti<strong>on</strong>s at pH 2. These measurements c<strong>on</strong>firm that lysozyme is mainly unfolded<br />

above 60 °C, c<strong>on</strong>sistent with previous works. Also, we m<strong>on</strong>itored <strong>the</strong> kinetics <strong>of</strong> aggregati<strong>on</strong> by<br />

Phot<strong>on</strong> Correlati<strong>on</strong> <strong>Spectroscopy</strong> (PCS) for some days, in order to study <strong>the</strong> growth <strong>of</strong> aggregate<br />

size and <strong>the</strong>ir structure. The physical parameters used to understand <strong>the</strong> mechanism <strong>of</strong> <strong>the</strong><br />

aggregati<strong>on</strong> process were protein c<strong>on</strong>centrati<strong>on</strong> and temperature. Our results show that <strong>the</strong><br />

fibrillogenesis is characterized by an initial apparent lag phase and a subsequent growth with<br />

quadratic dependence up<strong>on</strong> time. This behaviour recalls a simple kinetic model (proposed by<br />

Oosawa and Asakura) <strong>of</strong> nucleati<strong>on</strong> and el<strong>on</strong>gati<strong>on</strong>, with nuclei in equilibrium with m<strong>on</strong>omers. At<br />

<strong>the</strong> end <strong>of</strong> <strong>the</strong> incubati<strong>on</strong> at high temperature, we observed diluted samples by Atomic Force<br />

Microscopy (AFM). The AFM images show linear fibrils with a diameter <strong>of</strong> a few tens <strong>of</strong><br />

nanometers and a length <strong>of</strong> a few micr<strong>on</strong>s, characterized by a periodicity al<strong>on</strong>g <strong>the</strong> el<strong>on</strong>gati<strong>on</strong> axis.<br />

Interestingly, <strong>the</strong> fibrils morphology exhibits no relevant sec<strong>on</strong>dary mechanisms like branching or<br />

thickening[1]. Indeed, this is c<strong>on</strong>sistent with <strong>the</strong> n<strong>on</strong>-exp<strong>on</strong>ential growth observed in light<br />

scattering experiments. In order to elicit <strong>the</strong> role <strong>of</strong> repulsive electrostatic interacti<strong>on</strong> in protein<br />

unfolding and self-assembly we extended our study at different pH.<br />

References<br />

[1] C. B. Andersen, H. Yagi, M. Manno, V. Martorana, T. Ban, G. Christiansen, D. E. Otzen, Y. Goto, C. Rischel,<br />

Biophys. J. 96, 1529-1536 (<strong>2009</strong>).<br />

[2] L. N. Arnaudov, R. de Vries, Biophys. J. 88, 515-526 (2005).<br />

[3] M. R. H. Krebs, D. K. Wilkins, E. W. Chung, M. C. Pitkeathly, A. K. Chamberlain, J. Zurdo, C. V. Robins<strong>on</strong>, C. M.<br />

Dobs<strong>on</strong>, J. Mol. Biol. 300, 541-549 (2000).<br />

111


Protein folding and aggregati<strong>on</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Self aggregati<strong>on</strong> mechanisms in fungal proteins by<br />

AFM studies<br />

F. SBRANA 1 , D. FANELLI 2 , L. PAZZAGLI 3 , G. CAPPUGI 3 , M.VASSALLI 4 AND B. TIRIBILLI 5<br />

1. Dept. <strong>of</strong> Physics, University <strong>of</strong> Firenze, Via Sans<strong>on</strong>e 1, Sesto<br />

Fiorentino, Firenze, I-50019, Italy<br />

2. Dept <strong>of</strong> Energetics, University, <strong>of</strong> Firenze, Via S. Marta 3, Firenze I -<br />

50139, Italy<br />

3. Dept. <strong>of</strong> Bioch. Science, University <strong>of</strong> Firenze, Viale Morgagni 50,<br />

Firenze I-50134 – Italy<br />

4. Biophysics Institute (IBF – CNR), Via De Marini 6, Genova I-16149<br />

Italy<br />

5. Inst. for Complex Systems ISC – CNR – Via Mad<strong>on</strong>na del Piano 10,<br />

Sesto Fiorentino, Firenze I-50019, Italy<br />

We report <strong>on</strong> AFM studies c<strong>on</strong>cerning two fungal secreted proteins, Cerato-ulmin (CU) and Cerato<br />

platanin (CP), in which <strong>the</strong> morphological analysis <strong>of</strong> in vitro aggregates has pointed out some<br />

simple self aggregati<strong>on</strong> mechanisms. Cerato-ulmin is a fungal toxin class II hydrophobin involved<br />

in Dutch elm disease. The formati<strong>on</strong> <strong>of</strong> hydrophobin films at <strong>the</strong> air-water interface plays an<br />

important role at different stages <strong>of</strong> <strong>the</strong> fungal development. Protein aggregati<strong>on</strong> <strong>of</strong> CU has been<br />

obtained in vitro and samples were imaged with AFM <strong>on</strong> mica substrates. Images reveal that <strong>the</strong><br />

system self-organizes in almost <strong>on</strong>e dimensi<strong>on</strong>al pearl necklace-like chains, which subsequently<br />

collapse and possibly merge to form extended and ra<strong>the</strong>r compact planar films. We propose and<br />

verify a simple geometrical argument to describe <strong>the</strong> self aggregati<strong>on</strong> mechanism in terms <strong>of</strong> a<br />

progressive thickening <strong>of</strong> <strong>the</strong> pearl chains due to <strong>the</strong> successive merging and collapse <strong>of</strong> <strong>the</strong><br />

elementary c<strong>on</strong>stitutive units. Cerato-platanin, <strong>the</strong> first member <strong>of</strong> <strong>the</strong> “Cerato-platanin<br />

family’’[1,2], is a moderately hydrophobic protein produced by Ceratocystis fimbriata, <strong>the</strong> causal<br />

agent <strong>of</strong> a severe plant disease called Canker stain. The protein is localized in <strong>the</strong> cell wall <strong>of</strong> <strong>the</strong><br />

fungus and it seems to be involved in <strong>the</strong> host-plant interacti<strong>on</strong> inducing both cell necrosis and<br />

phytoalexin syn<strong>the</strong>sis. The AFM characterizati<strong>on</strong> <strong>of</strong> CP aggregates deposited <strong>on</strong> mica substrates<br />

reveal <strong>the</strong> formati<strong>on</strong> <strong>of</strong> early annular-shaped oligomers that tend to form large macr<strong>of</strong>ibrillar<br />

assemblies. The annular-shaped oligomers seem to be <strong>the</strong> fundamental bricks <strong>of</strong> a hierarchical<br />

aggregati<strong>on</strong> process. A simple model, based <strong>on</strong> <strong>the</strong> hypo<strong>the</strong>sis that <strong>the</strong> aggregati<strong>on</strong> is energetically<br />

favourable when <strong>the</strong> exposed CP aggregate surface is reduced, is suggested and substantiated with<br />

<strong>the</strong> measured aggregates’ shape and size. The proposed models can c<strong>on</strong>tribute to shed new light<br />

<strong>on</strong>to <strong>the</strong> crucial mechanism by which CU, CP and many o<strong>the</strong>r fungal surface proteins exert <strong>the</strong>ir<br />

effects, e.g. interact with <strong>the</strong>ir hosts.<br />

References<br />

[1] Pazzagli L, et al. J Biol Chem 274:24959–24964 (1999).<br />

[2] F. Sbrana et al. <str<strong>on</strong>g>European</str<strong>on</strong>g> Biophisical Journal, Vol 36 pag.727-732 (2007).<br />

112


Protein folding and aggregati<strong>on</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Are <strong>the</strong> properties <strong>of</strong> milk proteins influenced by<br />

perfluorinated c<strong>on</strong>taminants?<br />

C. SCHWIEGER, M. AUDEBRAND AND M. H. ROPERS<br />

Institut Nati<strong>on</strong>ale de la Recherche Agr<strong>on</strong>omque (INRA) Nantes-Angers<br />

Unité Biopolymers, Interfaces, Assemblies (BIA) 44316 Nantes, France<br />

During <strong>the</strong> last years it was found that perfluorinated surfactants, originating from industrial<br />

processes (by-, wast- and degradati<strong>on</strong> products), c<strong>on</strong>taminate nature. Due to <strong>the</strong>ir high stability<br />

<strong>the</strong>y bioaccumulate and enter <strong>the</strong> food chain. Perfluorooctanoic acid (PFOA) is <strong>on</strong>e <strong>of</strong> <strong>the</strong> final<br />

products <strong>of</strong> degradati<strong>on</strong> <strong>of</strong> numerous fluorochemicals. It was found different body tissue, in blood<br />

and in cow milk. However <strong>the</strong> impact <strong>on</strong> health and food quality is not yet clear. Therefore we<br />

investigated <strong>the</strong> binding <strong>of</strong> PFOA to whey proteins (β-lactoglobilin, α−lactalbimin and bovine<br />

serum albumin) in order to elucidate <strong>the</strong> interacti<strong>on</strong> mechanism as well as <strong>the</strong> impact <strong>of</strong> PFOA <strong>on</strong><br />

<strong>the</strong> structure and <strong>the</strong> <strong>the</strong>rmal stability <strong>of</strong> <strong>the</strong> proteins. The interacti<strong>on</strong>s in aqueous bulk were<br />

thoroughly studied by iso<strong>the</strong>rmal titrati<strong>on</strong> and differential scanning calorimetry, by infrared and<br />

fluorescence spectroscopy. Since whey proteins are widely used as in food industry to stabilize<br />

foams and emulsi<strong>on</strong>s, <strong>the</strong> effect <strong>of</strong> <strong>the</strong> c<strong>on</strong>taminants was fur<strong>the</strong>rmore studied at <strong>the</strong> air-water<br />

interface, by means <strong>of</strong> infrared reflecti<strong>on</strong> absorpti<strong>on</strong> spectroscopy (IRRAS). We will show that that<br />

PFOA interacts <strong>on</strong>ly weakly with b-lactoglobulin and α-lactalbumin, whereas it is str<strong>on</strong>gly<br />

interacting with bovine serum albumin. However, PFOA influences <strong>the</strong> <strong>the</strong>rmal unfolding <strong>of</strong> all<br />

three whey proteins and it str<strong>on</strong>gly influences its interfacial behaviour.<br />

113


Protein folding and aggregati<strong>on</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Spectral properties and factors determining high<br />

quantum yield <strong>of</strong> thi<strong>of</strong>lavin T incorporated in amyloid<br />

fibrils<br />

A.I. SULATSKAYA 1, 2, K.K. TUROVEROV 1, I.M. KUZNETSOVA 1<br />

1 Institute <strong>of</strong> Cytology <strong>of</strong> <strong>the</strong> Russian Academy <strong>of</strong> Sciences, Tikhoretsky<br />

av. 4, St.Petersburg, 194064, Russia,<br />

2 St.Petersburg State Polytechnical University, 29 Polytechnicheskaya st.,<br />

St.Petersburg, 195251,Russia<br />

Thi<strong>of</strong>lavin T (ThT) is widely used for studying amyloid fibrils structure and formati<strong>on</strong> .<br />

Never<strong>the</strong>less, till now <strong>the</strong>re is no comm<strong>on</strong> opini<strong>on</strong> c<strong>on</strong>cerning <strong>the</strong> reas<strong>on</strong>s <strong>of</strong> <strong>the</strong> increase <strong>of</strong><br />

fluorescence quantum yield <strong>of</strong> ThT incorporated in amyloid fibrils. Absorpti<strong>on</strong> spectrum,<br />

fluorescence lifetime and fluorescence intensity <strong>of</strong> ThT recorded in a wide range <strong>of</strong> dye<br />

c<strong>on</strong>centrati<strong>on</strong> allowed to show <strong>the</strong> failure <strong>of</strong> <strong>the</strong> c<strong>on</strong>cepts according to which ThT incorporates in<br />

amyloid fibrils, in <strong>the</strong> form <strong>of</strong> dimers, eximers, or micells. All experimental data prove <strong>the</strong> model<br />

according to which ThT incorporates in amyloid fibrils in m<strong>on</strong>omer form. The binding occures in<br />

“channels” that run al<strong>on</strong>g <strong>the</strong> l<strong>on</strong>g axis <strong>of</strong> amyloid fibril . Fluorescence quantum yield <strong>of</strong> ThT<br />

recorded in a wide range <strong>of</strong> solvent temperatures and viscosity c<strong>on</strong>firmed <strong>the</strong> assumpti<strong>on</strong> that <strong>the</strong><br />

increase <strong>of</strong> quantum yield <strong>of</strong> ThT incorporated in amyloid fibrils is caused by restricti<strong>on</strong> <strong>of</strong><br />

benzthiazole and aminobenzene rings torsi<strong>on</strong> fluctuati<strong>on</strong>s about each o<strong>the</strong>r. The presence <strong>of</strong> <strong>the</strong><br />

methyl group at nitrogen atom in benzthiazole ring makes n<strong>on</strong>planar c<strong>on</strong>formati<strong>on</strong> <strong>of</strong> ThT<br />

energetically pr<strong>of</strong>itable and decreases barrier <strong>of</strong> intramolecular rotati<strong>on</strong> <strong>of</strong> benzthiazole and<br />

aminobenzole rings relative to each o<strong>the</strong>r. Therefore in water soluti<strong>on</strong>s ThT represents dynamic<br />

ensemble <strong>of</strong> molecules with π-c<strong>on</strong>jugated b<strong>on</strong>ds <strong>of</strong> <strong>the</strong> benzthiazole and aminobenzene rings<br />

disturbed in various degree and <strong>the</strong> part <strong>of</strong> molecules would have <strong>the</strong> angle between <strong>the</strong> planes <strong>of</strong><br />

<strong>the</strong> rings close to 90 ˚. In this case <strong>the</strong> isolated fragments <strong>of</strong> ThT should have shorter wavelength<br />

positi<strong>on</strong>s <strong>of</strong> <strong>the</strong> absorpti<strong>on</strong> and fluorescence spectra in comparis<strong>on</strong> with those <strong>of</strong> <strong>the</strong> whole ThT<br />

molecule. It explains <strong>the</strong> existence <strong>of</strong> short wavelength bands <strong>of</strong> ThT fluorescence and fluorescence<br />

excitati<strong>on</strong> spectra in solvents with low viscosity, e.g. in aqueous soluti<strong>on</strong>s at a room temperature.<br />

ThT absorpti<strong>on</strong> spectrum in <strong>the</strong> water soluti<strong>on</strong> <strong>of</strong> amyloid fibrils represents superpositi<strong>on</strong> <strong>of</strong> <strong>the</strong><br />

absorpti<strong>on</strong> spectrum <strong>of</strong> free dye molecule and that incorporated in <strong>the</strong> amyloid fibrils. It was<br />

determined that ThT incorporati<strong>on</strong> in amyloid fibrils is accompanied by str<strong>on</strong>g l<strong>on</strong>g-wavelenght<br />

shift <strong>of</strong> <strong>the</strong> absorpti<strong>on</strong> spectrum (from 413 to 450 nm) and increase in molar extincti<strong>on</strong> coefficient<br />

(from 26620 to 34000 M -1.cm -1 and 45000 M -1.cm -1 for insulin and lysozyme fibrills, respectively) in<br />

<strong>the</strong> spectrum maximum. The short-wavelength positi<strong>on</strong> <strong>of</strong> ThT absorpti<strong>on</strong> spectrum in water<br />

soluti<strong>on</strong> is explained by <strong>the</strong> fact that <strong>the</strong> ground state is stabilized by <strong>the</strong> orientati<strong>on</strong>al interacti<strong>on</strong>s<br />

<strong>of</strong> <strong>the</strong> polar solvent dipoles with <strong>the</strong> positively charged ThT fragments, whereas <strong>the</strong> c<strong>on</strong>figurati<strong>on</strong><br />

<strong>of</strong> <strong>the</strong> solvati<strong>on</strong> shell <strong>of</strong> <strong>the</strong> ThT molecule in <strong>the</strong> excited Franck-C<strong>on</strong>d<strong>on</strong> state is likely far from<br />

being equilibrium. The increase <strong>of</strong> molar extincti<strong>on</strong> coefficient <strong>of</strong> ThT <strong>on</strong> incorporati<strong>on</strong> in amyloid<br />

fibrils can be explained by <strong>the</strong> increase <strong>of</strong> <strong>the</strong> c<strong>on</strong>jugati<strong>on</strong> <strong>of</strong> π-electr<strong>on</strong> system <strong>of</strong> <strong>the</strong> benzthiazole<br />

and aminobenzene rings because at incorporated molecules are more plane.<br />

114


Protein folding and aggregati<strong>on</strong> 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Competiti<strong>on</strong> between folding de novo and aggregati<strong>on</strong><br />

<strong>of</strong> enhanced green fluorescent protein (EGFP) –<br />

spectroscopic studies<br />

J. KRASOWSKA 1, M. OLASEK 1, A. BZOWSKA 1, P. L. CLARK 2 AND B. WIELGUS-KUTROWSKA 1<br />

1. Dept. <strong>of</strong> Biophysics, Institute <strong>of</strong> Experimental Physics, University <strong>of</strong><br />

Warsaw, świrki iWigury 93, Warsaw, 02-089, Poland<br />

2. Dept. <strong>of</strong> Chemistry and Biochemistry, University <strong>of</strong> Notre Dame, 251<br />

Nieuwland Science Hall, Notre Dame, IN 4656-5670 USA<br />

GFP is a small (238 aa), globular protein with a β-barrel structure and a central α-helix, isolated<br />

from <strong>the</strong> Pacific jellyfish, Aequoria Victoria [1]. In correct native structure three residues in <strong>the</strong><br />

central helix – S65, Y66 and G67 – cyclize to form a chromophore able to emit visible light with a<br />

maximum <strong>of</strong> emissi<strong>on</strong> at 508 nm. Its absorbance spectrum has a complicated shape c<strong>on</strong>sisting <strong>of</strong><br />

two peaks (395 nm and 470 nm) arising from two i<strong>on</strong>ic forms <strong>of</strong> <strong>the</strong> chromophore: neutral phenol<br />

and ani<strong>on</strong>ic phenolate [2]. EGFP (enhanced Green Fluorescent Protein, mutant S65T/F64L - GFP)<br />

has maximum <strong>of</strong> excitati<strong>on</strong> at 489 nm and maximum <strong>of</strong> emissi<strong>on</strong> at 509-511 nm (quantum yield<br />

0.6) [2]. The S65T mutati<strong>on</strong> simplifies <strong>the</strong> absorpti<strong>on</strong> spectrum <strong>of</strong> GFP and <strong>the</strong> F64L mutati<strong>on</strong><br />

enhances <strong>the</strong> fluorescence. Due to its unusual chromophore GFP has became a widely used<br />

reporter protein in molecular biology and biotechnology. It can be easily fused to any protein <strong>of</strong><br />

interest and coexpressed in cells; <strong>the</strong> GFP fluorescence is <strong>the</strong>n used to visualize <strong>the</strong> distributi<strong>on</strong>,<br />

transport and aggregati<strong>on</strong> <strong>of</strong> <strong>the</strong> protein in <strong>the</strong> cell [3] (although GFP has a tendency to aggregate<br />

itself). The importance <strong>of</strong> GFP has been appreciated and <strong>the</strong> scientists who discovered and studied<br />

it were awarded <strong>the</strong> Nobel Prize in Chemistry in 2008. Recently, much interest has arisen around<br />

<strong>the</strong> competiti<strong>on</strong> between proper folding and aggregati<strong>on</strong> <strong>of</strong> proteins due to <strong>the</strong> role <strong>of</strong> <strong>the</strong>se<br />

processes in various human neurodegenerative diseases. Moreover, aggregati<strong>on</strong> causes problems<br />

in <strong>the</strong> producti<strong>on</strong> and purificati<strong>on</strong> <strong>of</strong> large amounts <strong>of</strong> proteins during <strong>the</strong>ir overexpressi<strong>on</strong> in<br />

bacterial or yeast cells. Because <strong>of</strong> those <strong>the</strong> promoti<strong>on</strong> <strong>of</strong> productive protein folding, and <strong>the</strong><br />

suppressi<strong>on</strong> <strong>of</strong> competing, <strong>of</strong>f pathway aggregati<strong>on</strong> processes, are in major medicinal, biochemical<br />

and biotechnological interest. Here, in c<strong>on</strong>trast to o<strong>the</strong>r studies describing unfolding and refolding<br />

processes [4,5], we have undertaken spectroscopic experiments <strong>of</strong> EGFP folding de novo and<br />

aggregati<strong>on</strong>, in order to fur<strong>the</strong>r develop our understanding <strong>of</strong> this important biotechnological and<br />

cell biological tool. We have performed equilibrium and kinetic studies by m<strong>on</strong>itoring changes <strong>of</strong><br />

tryptophan and chromophore fluorescence emissi<strong>on</strong>, changes <strong>of</strong> chromophore absorpti<strong>on</strong>, and also<br />

light scattering at 640 nm, as a functi<strong>on</strong> <strong>of</strong> guanidinium hydrochloride c<strong>on</strong>centrati<strong>on</strong> and as a<br />

change <strong>of</strong> pH. A range <strong>of</strong> reducing agents has been also checked in order to identify c<strong>on</strong>diti<strong>on</strong>s<br />

under which <strong>the</strong> efficiency <strong>of</strong> EGFP folding de novo is highest.<br />

References<br />

[1] O. Shimomura, F. H. Johns<strong>on</strong> and Y. Saiga, J. Cell. Comp. Physiol., 59: 223-229 (1962)<br />

[2] R. Y. Tsien, Annu. Rev.Biochem. 67, 509-44 (1998)<br />

[3] “Green Fluorescent Protein – Properties and Applicati<strong>on</strong>s” edited by Chalfie M and Kain S, New York: Willey-Liss<br />

Inc. (1998)<br />

[4] S. Enoki, K. Saeki, K. Maki and K. Kuwajima, Biochem. 43, 14238-14248 (2004)<br />

[5] J. Huang, T. D. Craggs, J. Christodoulou and S. E. Jacks<strong>on</strong>, J. Mol. Biol., 370, 356-371 (2007)<br />

115


Single molecule and single cell spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Raman spectroscopic investigati<strong>on</strong>s <strong>on</strong> breast cancer<br />

cell lines<br />

THOMAS BOCKLITZ 1 , MELANIE PUTSCHE 1 , CARSTEN STÜBER 3 , JOSEF KÄS 3 , PETRA RÖSCH 1 AND<br />

JÜRGEN POPP 1,2<br />

1. Institute <strong>of</strong> Physical Chemistry, Friedrich-Schiller-University Jena,<br />

Helmholtzweg 4, D-07743 Jena, Germany<br />

2. Institute <strong>of</strong> Phot<strong>on</strong>ic Technology, Albert-Einstein-Strasse 9,<br />

D-07745 Jena, Germany<br />

3. Institute <strong>of</strong> S<strong>of</strong>t Matter Physics, University <strong>of</strong> Leipzig, Linnéstr. 5,<br />

D-04103 Leipzig, Germany<br />

Cancer is a fatal disease, 22.4 milli<strong>on</strong> people lived with <strong>the</strong> disease and 6.2 milli<strong>on</strong> died <strong>of</strong><br />

malignant neoplasia (2000). This represents an increase <strong>of</strong> 18% mortality since 1990 [1]. The<br />

worldwide cancer mortality-to-incidence ratio is nearly 40%, but <strong>the</strong> 5-year relative survival rates<br />

are str<strong>on</strong>gly dependent <strong>on</strong> <strong>the</strong> stage and grade <strong>of</strong> <strong>the</strong> tumor when it is diagnosed. For breast cancer<br />

this effect is obvious if <strong>the</strong> 5-year relative survival rates <strong>of</strong> <strong>the</strong> local stage <strong>of</strong> tumor (97.5%) is<br />

compared with <strong>the</strong> distant stage (25.5%) [1]. Thus, cancer must be diagnosed and treated in an<br />

early stage. Since Raman spectroscopy m<strong>on</strong>itors <strong>the</strong> chemical compositi<strong>on</strong> <strong>of</strong> a sample it can be<br />

used to investigate <strong>the</strong> chemical changes introduced by a disease [2], [3]. In order to display <strong>the</strong><br />

ability <strong>of</strong> Raman spectroscopy as clinical diagnosis tool for breast cancer, epi<strong>the</strong>lial cell lines were<br />

investigated. It was shown that supervised pattern recogniti<strong>on</strong> techniques like Linear Discriminant<br />

Analysis (LDA), Artificial Neural Network (ANN) and Support Vector Machine (SVM) are capable<br />

to classify malignant and benign cells. The identificati<strong>on</strong> rate which was estimated using a<br />

Holdout method was 99:11% while <strong>the</strong> sensitivity and <strong>the</strong> specificity were 99:71% and 96:62%,<br />

respectively. In order to achieve such properties it was necessary to focus <strong>on</strong> <strong>on</strong>e compartment <strong>of</strong><br />

<strong>the</strong> cell. The cell nucleus was chosen because <strong>the</strong> nucleus <strong>of</strong> malignant cells show major differences<br />

compared with a benign cell nucleus. This property is also used from pathologists for cancer<br />

diagnosis by visual inspecti<strong>on</strong>.<br />

References<br />

[1] J. Helfmann, U. Bindig, B. Meckelein, K. Wehry, N. Röckendorf, D. Schädel, M.A. Schmidt, M. Bürger, and A. Frey,<br />

“Early Diagnosis <strong>of</strong> Cancer (PLOMS)”, in Biophot<strong>on</strong>ics: Visi<strong>on</strong>s for Better Health Care, edited by J. Popp and M.<br />

Strehle, Wiley-VCH, 231 (2006)<br />

[2] M. Harz, R. A. Claus, C. L. Bockmeyer, M. Baum, P. Rösch, K. Kentouche, H.-P. Deigner, and J. Popp, Biopolymers,<br />

8, 317-324 (2006).<br />

[3] M. Harz, M. Kiehntopf, S. Stöckel, P. Rösch, T. Deufel, and J. Popp, Analyst, 133, 1416-1423 (2008).<br />

116


Single molecule and single cell spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

TERS <strong>on</strong> bio membrane related structures<br />

R. BÖHME 1 , M. RICHTER 1 , P. RÖSCH 1 , V. DECKERT 1,2 AND J. POPP 1,2<br />

1. Institute <strong>of</strong> Physical Chemistry, Friedrich-Schiller-University Jena,<br />

Helmholtzweg 4, 07743 Jena, Germany<br />

2. Institute <strong>of</strong> Phot<strong>on</strong>ic Technology (IPHT), Albert-Einstein-Straße 9,<br />

07745 Jena, Germany<br />

To understand biological processes located <strong>on</strong> cellular surfaces, an explicit descripti<strong>on</strong> <strong>of</strong> <strong>the</strong><br />

underlying molecular mechanisms is required. Although c<strong>on</strong>venti<strong>on</strong>al Raman spectroscopy allows<br />

<strong>the</strong> investigati<strong>on</strong> <strong>of</strong> even small structural and chemical modificati<strong>on</strong>s, it cannot achieve spatial<br />

resoluti<strong>on</strong> <strong>on</strong> <strong>the</strong> nanometer scale, where many crucial processes are expected to take place.<br />

Combining Atomic Force Microscopy (AFM) with Surface Enhanced Raman <strong>Spectroscopy</strong> (SERS)<br />

results in so called Tip-enhanced Raman spectroscopy (TERS). [1] In this case <strong>the</strong> spectral<br />

informati<strong>on</strong> stems from a very small scattering volume, hence, a spatial resoluti<strong>on</strong> down to 10nm<br />

and below is possible. [2] Motivated by investigati<strong>on</strong>s <strong>on</strong> biological structures like single RNA<br />

strands [3], virus particles [4] and bacteria [5], we aim towards <strong>the</strong> descripti<strong>on</strong> <strong>of</strong> cellular surfaces<br />

<strong>on</strong> a nanometer scale. In additi<strong>on</strong> to direct TERS measurements <strong>on</strong> eukaryotic cells, we focus <strong>on</strong><br />

supported lipid bilayers (SLB) labeled with proteins acting as models for bio membranes. TERS<br />

spectra, recorded <strong>on</strong> <strong>the</strong>se SLB structures, present a way to investigate <strong>the</strong> local distributi<strong>on</strong> <strong>of</strong><br />

protein and lipid domains. Accordingly, ei<strong>the</strong>r Raman spectra characteristic for lipid or protein<br />

c<strong>on</strong>tributi<strong>on</strong> can be found and correlated with <strong>the</strong> synchr<strong>on</strong>ously determined AFM images. This,<br />

combinati<strong>on</strong> <strong>of</strong> topographic and spectral informati<strong>on</strong> c<strong>on</strong>sequently provides direct bio molecular<br />

imaging with nanometer scaled resoluti<strong>on</strong> without <strong>the</strong> need for any labeling. Hence, this approach<br />

provides an initial step towards a label free and fast descripti<strong>on</strong> <strong>of</strong> molecular processes located<br />

into a bio membrane.<br />

References<br />

[1] R. Stöckle, Y. Suh, V. Deckert, R. Zenobi, Chem Phys Lett 318, 131-136 (2000) .<br />

[2] A. Downes, D. Salter, A. Elfick, J. Phys. Chem. B 110, 6692-6698 (2006)<br />

[3] E. Bailo, V. Deckert, Angew. Chem., Int. Ed. 47, 1658-1661 (2008).<br />

[4] D. Cialla, T. Deckert-Gaudig, C. Budich, M. Laue, R. Möller, D. Naumann, V. Deckert, J. Popp, J. Raman Spectrosc.<br />

40, 240-243 (<strong>2009</strong>).<br />

[5] U. Neugebauer, P. Rösch, M. Schmitt, J. Popp, C. Julien, A. Rasmussen, C. Budich, V. Deckert, ChemPhysChem 7,<br />

1428-1430 (2006).<br />

117


Single molecule and single cell spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Inorganic Probes <strong>of</strong> Protein & Cellular Envir<strong>on</strong>ments<br />

L. COSGRAVE 1 , M. DEVOCELLE 2 , N. MORAN 2 , R.FORSTER 1 AND T.E. KEYES 1<br />

1. School <strong>of</strong> Chemical Sciences, Dublin City University, Glasnevin,<br />

Dublin 9, Ireland<br />

2. Royal Society <strong>of</strong> Chemistry, St. Stephens Green West, Dublin 2,<br />

Ireland.<br />

Ru<strong>the</strong>nium polypyridyl complexes exhibit a range <strong>of</strong> photophysical properties that make <strong>the</strong>m<br />

ideally suited as probes for <strong>the</strong> life sciences. They are photostable, absorb and emit light in <strong>the</strong><br />

visible spectral regi<strong>on</strong>, display a large Stokes shifted and polarised emissi<strong>on</strong> and have l<strong>on</strong>g<br />

luminescent lifetimes rendering <strong>the</strong>m envir<strong>on</strong>mentally sensitive. Muted for a l<strong>on</strong>g time as<br />

potential regents for cell imaging, <strong>the</strong>y have not heret<strong>of</strong>ore been applied significantly in this area<br />

because <strong>the</strong>y are incapable <strong>of</strong> crossing <strong>the</strong> cell membrane. In this c<strong>on</strong>tributi<strong>on</strong> we describe our<br />

approach to overcome this problem: whereby we c<strong>on</strong>jugated ru<strong>the</strong>nium polypyridyl complexes to<br />

a carrier peptide; octoarginine (Arg8). Octoarginine is a cell penetrating peptide that enters <strong>the</strong> cell<br />

via endocytosis and transports <strong>the</strong> inorganic dye with it. There is no requirement for cell damaging<br />

permeablisati<strong>on</strong> protocols or for fixing <strong>the</strong> cells, so live cells can now be imaged with <strong>the</strong>se<br />

reagents. Importantly, using <strong>the</strong>se materials cell imaging can be achieved via both res<strong>on</strong>ance<br />

raman and luminescence imaging techniques due to <strong>the</strong> large Stokes shift <strong>of</strong> <strong>the</strong> ru<strong>the</strong>nium<br />

molecules. This reduces interference in <strong>the</strong> res<strong>on</strong>ance raman method and increases <strong>the</strong> informati<strong>on</strong><br />

available from an imaged cell. In <strong>the</strong> sec<strong>on</strong>d part <strong>of</strong> this c<strong>on</strong>tributi<strong>on</strong> we describe <strong>the</strong> use <strong>of</strong><br />

ru<strong>the</strong>nium probes in direct labelling <strong>of</strong> <strong>the</strong> platelet glycoprotein GPIIbIIIa via <strong>the</strong> carbohydrate<br />

c<strong>on</strong>jugati<strong>on</strong>. GPIIbIIIa is transmembrane protein <strong>of</strong> <strong>the</strong> blood platelet, central in thrombosis and<br />

haemostasis, which undergoes c<strong>on</strong>formati<strong>on</strong>al change and clustering at <strong>the</strong> platelet surface which<br />

renders it high affinity for its primary ligand fibrinogen as clot formati<strong>on</strong> proceeds. The l<strong>on</strong>g-lived<br />

emissi<strong>on</strong> <strong>of</strong> <strong>the</strong>se inorganic complexes is exploited for anisotropy experiments and <strong>the</strong> molecularlight<br />

switch nature <strong>of</strong> <strong>on</strong>e <strong>of</strong> <strong>the</strong> probes will be extremely useful in assessing <strong>the</strong> c<strong>on</strong>formati<strong>on</strong>al<br />

state <strong>of</strong> <strong>the</strong> protein. Finally we describe a family <strong>of</strong> peptides that can be used indirectly to label and<br />

m<strong>on</strong>itor activati<strong>on</strong> protein with <strong>the</strong>se probes for fur<strong>the</strong>r examinati<strong>on</strong> and to selectively activate <strong>the</strong><br />

protein via <strong>on</strong>e <strong>of</strong> its pathways.<br />

118


Single molecule and single cell spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

C<strong>on</strong>formati<strong>on</strong>al analysis <strong>of</strong> nucleoside analogue<br />

dideoxycytidine and comparis<strong>on</strong> with <strong>the</strong> natural<br />

nucleoside deoxycytidine<br />

F. DÍEZ AND M. DE LA FUENTE<br />

Dept. <strong>of</strong> Ciencias y Técnicas Fisicoquímicas, Universidad Naci<strong>on</strong>al de<br />

Educación a Distancia (UNED), c/ Senda del Rey s/n, E-28040, Spain,<br />

mfuente@ccia.uned.es<br />

A <strong>the</strong>oretical c<strong>on</strong>formati<strong>on</strong>al analysis <strong>of</strong> <strong>the</strong> 2’,3’-dideoxycytidine (ddC) nucleoside analogue and a<br />

comparis<strong>on</strong> with <strong>the</strong> natural nucleoside 2’-deoxicitydine (dC) was carried out. The potential<br />

energy scanning (PES) <strong>of</strong> both molecules by rotati<strong>on</strong> <strong>of</strong> torsi<strong>on</strong>al angles χ (glycosidic b<strong>on</strong>d) ,γ<br />

(C4´-C5´b<strong>on</strong>d) and β (C5´-O5´ b<strong>on</strong>d) was computed. These dihedral angles simultaneously were<br />

fixed at values varying between 0 and 360º in steps <strong>of</strong> 60º, all o<strong>the</strong>r geometrical parameters were<br />

relaxed during optimizati<strong>on</strong>s. The calculati<strong>on</strong>s were completed by using density functi<strong>on</strong>al<br />

methods including <strong>the</strong> Beck’s three parameters exchange functi<strong>on</strong>al (B3) in combinati<strong>on</strong> with <strong>the</strong><br />

correlati<strong>on</strong> functi<strong>on</strong>al <strong>of</strong> Lee, Yang and Parr (LYP). Fur<strong>the</strong>r geometry optimizati<strong>on</strong>s, without any<br />

restricti<strong>on</strong>, were accomplished for selected c<strong>on</strong>formers, using <strong>the</strong> MP2 approach (Mφller-Plessett<br />

sec<strong>on</strong>d-order perturbative method). The 6-31G(d,p) base set represents a compromise between<br />

accuracy and computati<strong>on</strong>al cost, <strong>the</strong>refore, this was <strong>the</strong> base set selected for <strong>the</strong>se studies. All <strong>the</strong><br />

calculati<strong>on</strong>s were performed by using <strong>the</strong> Gaussian 03 program package [1] running <strong>on</strong><br />

Computati<strong>on</strong>al Chemistry Laboratory from Universidad Naci<strong>on</strong>al de Educaci<strong>on</strong> a Distancia<br />

(UNED) [2]. The energetic and geometrical data were analyzed, and energy distributi<strong>on</strong>s <strong>of</strong><br />

different c<strong>on</strong>formers as a functi<strong>on</strong> <strong>of</strong> <strong>the</strong> three scanned angles, as well as <strong>the</strong> sugar puckering<br />

(pseudorotati<strong>on</strong>al and maximum torsi<strong>on</strong> angles) were evaluated. Syn/anti c<strong>on</strong>formati<strong>on</strong><br />

distributi<strong>on</strong> and North/South c<strong>on</strong>formati<strong>on</strong> populati<strong>on</strong>s were estimated. Although both<br />

nucleosides shown similarity in all <strong>the</strong> tested parameters, a very significant difference is found in<br />

deoxyribosa c<strong>on</strong>formati<strong>on</strong>. That is, while in dC <strong>the</strong> south c<strong>on</strong>formati<strong>on</strong> was predominant (86 %),<br />

most <strong>of</strong> <strong>the</strong> c<strong>on</strong>formers show North puckering (87.5%) in ddC. Fur<strong>the</strong>r studies will be realized to<br />

analyze <strong>the</strong>se differences in c<strong>on</strong>densed phase, closer to physiological c<strong>on</strong>diti<strong>on</strong>s.<br />

References<br />

[1] Gaussian 03, revisi<strong>on</strong> B.0.4 and B.0.5 Gaussian INC ,Pittsburgh PA 2003.<br />

[2] Laboratorio de química computaci<strong>on</strong>al (Lab-QC), UNED, http://www.uned.es/lab-qc, 2004.<br />

119


Single molecule and single cell spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Raman mapping <strong>of</strong> single gold nanoparticles in cells<br />

L. HARTSUIKER, R.G. RAYAVARAPU, W. PETERSEN, S. MANOHAR, T.G. VAN LEEUWEN AND C.<br />

OTTO<br />

Biophysical Engineering Group, University <strong>of</strong> Twente, P.O. Box 217,<br />

7500 AE, Enschede, The Ne<strong>the</strong>rlands<br />

Gold nanorods are rapidly emerging for use in biomedical applicati<strong>on</strong>s due to <strong>the</strong>ir<br />

biocompatibility and <strong>the</strong>ir favourable optical properties, such as an enhanced absorpti<strong>on</strong> crosssecti<strong>on</strong>.<br />

The latter is a result <strong>of</strong> surface plasm<strong>on</strong> res<strong>on</strong>ance bands (SPB). These bands can be tuned<br />

to <strong>the</strong> near-infrared regi<strong>on</strong> (NIR) by changing <strong>the</strong> aspects ratio <strong>of</strong> <strong>the</strong> rods. Tissue is relatively<br />

transparent in <strong>the</strong> NIR, enabling increased penetrati<strong>on</strong> depths for NIR optical imaging.<br />

C<strong>on</strong>venti<strong>on</strong>al tumour imaging suffers from low c<strong>on</strong>trast with respect to <strong>the</strong> surrounding tissue,<br />

but by administering gold nanoparticles with NIR-SPB to <strong>the</strong> tumour site, high c<strong>on</strong>trast n<strong>on</strong>invasive<br />

cancer imaging can be achieved, which is essential for diagnostics and treatment <strong>of</strong> early<br />

stage carcinomas. CTAB (cetyl trimethylamm<strong>on</strong>ium ) so far seems to be an essential surfactant for<br />

<strong>the</strong> producti<strong>on</strong> <strong>of</strong> gold nanorods. CTAB is however highly cytotoxic and particles are <strong>the</strong>refore<br />

subjected to surface modificati<strong>on</strong> before administrati<strong>on</strong> to cells. Rods treated with methoxy-<br />

(polyethylene glycol)-thiol (mPEG-SH) appear completely n<strong>on</strong>toxic. The aggregati<strong>on</strong> <strong>of</strong> metal<br />

nanoparticles is a well known phenomen<strong>on</strong>. Aggregated metal nanoparticles have complex optical<br />

properties, which seem to be related to <strong>the</strong> precise compositi<strong>on</strong>, extent and size <strong>of</strong> <strong>the</strong> aggregate.<br />

The Raman signals <strong>of</strong> n<strong>on</strong>-aggregated gold nanorods in soluti<strong>on</strong> are measured before and after<br />

PEGylati<strong>on</strong>. The Raman spectra c<strong>on</strong>tain various signals characteristic for broad-background<br />

fluorescence-like emissi<strong>on</strong> and narrow-band characteristic Raman features <strong>of</strong> surface-adsorbed<br />

molecules. Raman images are made to m<strong>on</strong>itor <strong>the</strong> interacti<strong>on</strong> <strong>of</strong> gold nanorods with cells. Gold<br />

nanorod detecti<strong>on</strong> in cells may be facilitated by <strong>the</strong> use <strong>of</strong> dyes as Raman markers. We have<br />

explored <strong>the</strong> use <strong>of</strong> indocyanine green (ICG), which is an FDA-approved dye for clinical<br />

applicati<strong>on</strong>s. Extremely intense Raman spectra can be acquired, which will eventually result in<br />

molecular diagnostic intracellular particles. O<strong>the</strong>r biomedical applicati<strong>on</strong>s can be foreseen. We will<br />

discuss <strong>the</strong> relati<strong>on</strong> <strong>of</strong> <strong>the</strong> molecule-to-particle ratio to <strong>the</strong> intensity <strong>of</strong> <strong>the</strong> Raman scattering.<br />

120


Single molecule and single cell spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Tautomerism <strong>of</strong> <strong>the</strong> most stable c<strong>on</strong>formers <strong>of</strong> analogue<br />

D4T and natural Thymidine nucleosides. Influence <strong>of</strong><br />

an aqueous envir<strong>on</strong>ment using MP2 and DFT methods.<br />

M. ALCOLEA PALAFOX AND N. IZA<br />

Dept. de Química Física I, Universidad Complutense, Ciudad<br />

Universitaria, Madrid, 28040, Spain<br />

The energies <strong>of</strong> <strong>the</strong> most stable c<strong>on</strong>formers <strong>of</strong> <strong>the</strong> anti-HIV agent D4T (stavudine) and Thymidine<br />

(Thy) nucleosides were calculated in a previous work [1]. In <strong>the</strong> present communicati<strong>on</strong>, a<br />

comparative <strong>the</strong>oretical c<strong>on</strong>formeral analysis <strong>of</strong> <strong>the</strong> tautomerism <strong>of</strong> <strong>the</strong> two most stable<br />

c<strong>on</strong>formers <strong>of</strong> D4T and Thy was carried out, by using <strong>the</strong> B3LYP and MP2 quantum chemical<br />

methods with <strong>the</strong> Gaussian 03 package [2]. For each c<strong>on</strong>former <strong>on</strong>ly two stable enol forms T3 and<br />

T5 were obtained when c<strong>on</strong>sidering different positi<strong>on</strong>es <strong>of</strong> hydrogen around <strong>the</strong> base. The<br />

calculated structure data and energy values for both nucleosides in <strong>the</strong>se tautomers were<br />

compared to <strong>the</strong> T1 keto form as reference (see Table). Relative stabilities <strong>of</strong> all tautomers were<br />

established. Tautomer T3 appears always more estable than T5. Also T3 appears more stable in <strong>the</strong><br />

natural nucleoside Thy than in D4T. The effect <strong>of</strong> water <strong>on</strong> <strong>the</strong> tautomers was estimated by an<br />

explicit number <strong>of</strong> water molecules surrounding <strong>the</strong> nucleoside up to five, and <strong>on</strong> <strong>the</strong> o<strong>the</strong>r hand<br />

by <strong>the</strong> Tomasi’s Polarized C<strong>on</strong>tinuum Model (PCM). A total <strong>of</strong> about 200 clusters were optimised<br />

and <strong>the</strong> geometrical parameters and energies discussed. The deformati<strong>on</strong> and interacti<strong>on</strong> CPcorrected<br />

energies [3] between <strong>the</strong> nucleoside and water molecules were determined. The<br />

microhydrated envir<strong>on</strong>ment stabilizes remarkably <strong>the</strong> enol forms more than <strong>the</strong> can<strong>on</strong>ical keto <strong>on</strong>e,<br />

although <strong>the</strong> latter c<strong>on</strong>tinues being as <strong>the</strong> most stable. Fur<strong>the</strong>r increase in <strong>the</strong> number <strong>of</strong> water<br />

molecules reinforces <strong>the</strong> tautomerism. The changes in <strong>the</strong> intramolecular H-b<strong>on</strong>ds and in <strong>the</strong> total<br />

atomic charges with hydrati<strong>on</strong> were discussed, showing an increase <strong>of</strong> <strong>the</strong> reactivity <strong>on</strong> <strong>the</strong> O2 and<br />

O4 carb<strong>on</strong>yl atoms.<br />

Table . Relative energies (in kcal/mol) calculated in <strong>the</strong> three tautomers <strong>of</strong> <strong>the</strong> two most<br />

stable c<strong>on</strong>formers <strong>of</strong> <strong>the</strong> D4T and Thy molecules.<br />

D4T Thy<br />

C<strong>on</strong>former I C<strong>on</strong>former II C<strong>on</strong>former I C<strong>on</strong>former II<br />

Level <strong>of</strong> <strong>the</strong>ory T1 T3 T5 T1 T3 T5 T1 T3 T5 T1 T3 T5<br />

Isolated state<br />

B3LYP/6-31G** (+ZPE)<br />

B3LYP/6-311++G(3df,pd)<br />

MP2/6-31G**<br />

Water soluti<strong>on</strong> (PCM)<br />

B3LYP/6-31G**(+ZPE)<br />

B3LYP/6-311++G(2d,p)<br />

0<br />

0<br />

0<br />

0& 0& 12.68<br />

12.76<br />

13.25<br />

10.05& 9.79& 20.34<br />

19.59<br />

20.16<br />

15.50& 14.18& 0<br />

0<br />

0<br />

0<br />

0 &<br />

121<br />

12.50<br />

12.51<br />

13.00<br />

9.84<br />

9.85 &<br />

20.63<br />

20.00<br />

20.43<br />

15.56<br />

14.44 &<br />

0 a<br />

0 b<br />

0 c<br />

0 d<br />

11.52<br />

12.31<br />

11.64<br />

(n)<br />

20.14<br />

19.63<br />

19.98<br />

(n)<br />

0 e<br />

0 f<br />

0 g<br />

0 h<br />

12.36<br />

12.46<br />

12.95<br />

&Saddle point. a -874.903915 AU. b –875.458056 AU. c –872.671789 AU. d -874.903912 AU<br />

e -874.905374 AU. f –875.458447 AU. g –872.673866 AU. h -874.946535 AU. (n) not stable<br />

References<br />

[1] M. Alcolea Palafox, N. Iza, M. de la Fuente, and R. Navarro, J. Phys. Chem. B, 113, 2458-2476 (<strong>2009</strong>).<br />

[2] Gaussian 03, Revisi<strong>on</strong> B.04, Gaussian Inc., Pittsburg, PA (2003).<br />

[3] V. I. Danilov, T. van Mourik, and V. I. Poltev, Chem Phys. Letters, 429, 255-260 (2006).<br />

9.87<br />

20.29<br />

19.67<br />

20.10<br />

15.32


Single molecule and single cell spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Single turnover event detecti<strong>on</strong> <strong>of</strong> chymotrypsin catalysis<br />

T. TERENTYEVA 1 , G. DE CREMER 1 , K. BLANK 2 , M. B.J. ROEFFAERS 1 AND J. HOFKENS 1<br />

1. Dept. <strong>of</strong> Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium<br />

2. Inst. for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ<br />

Nijmegen, The Ne<strong>the</strong>rlands<br />

Chymotrypsin is an abounded enzyme in nature. The chemical mechanism <strong>of</strong> its catalysis is well<br />

understood, however, enzymes are dynamic molecules which exert structural fluctuati<strong>on</strong>s. The<br />

influence <strong>of</strong> enzyme’s dynamics <strong>on</strong> <strong>the</strong> kinetics <strong>of</strong> <strong>the</strong>ir catalysis still remains <strong>the</strong> challenging<br />

questi<strong>on</strong> in enzymology. Fluorescence based single-molecule experiments enable to overcome<br />

ensemble averaging, to get detailed mechanistic insight in catalysis and to follow c<strong>on</strong>formati<strong>on</strong><br />

changes. There is a wide range <strong>of</strong> single-molecule approaches to study catalytic activity <strong>of</strong><br />

enzymes. Their main differences are <strong>the</strong> time resoluti<strong>on</strong> and <strong>the</strong> time window <strong>of</strong> <strong>the</strong> experiment.<br />

One <strong>of</strong> <strong>the</strong> sophisticated tools that allow <strong>the</strong> detecti<strong>on</strong> <strong>of</strong> individual fluorescent reporter molecules<br />

changing <strong>the</strong>ir properties in <strong>the</strong> enzymatic reacti<strong>on</strong> during <strong>the</strong> time is c<strong>on</strong>focal fluorescence<br />

microscopy. The direct and real-time observati<strong>on</strong> for extended periods <strong>of</strong> time <strong>of</strong> individual<br />

chymotrypsin enzymes immobilized in an agarose gel is performed with this technique. To follow<br />

single enzyme turnovers we use <strong>the</strong> c<strong>on</strong>versi<strong>on</strong> up<strong>on</strong> enzymatic hydrolysis <strong>of</strong> a n<strong>on</strong>-fluorescent<br />

substrate, rhodamine 110 bis-(suc-Ala-Ala-Pro-Phe), into a str<strong>on</strong>gly fluorescent product,<br />

rhodamine 110. Analysis <strong>of</strong> <strong>the</strong> recorded single turnover time traces is d<strong>on</strong>e in two different ways.<br />

In <strong>the</strong> first method successive enzyme turnovers are counted by thresholding <strong>the</strong> binned<br />

fluorescence intensity time trace to distinguish signal from noise and applying <strong>the</strong> <strong>on</strong>- and <strong>of</strong>f-state<br />

events. Plotting <strong>of</strong>f-times into histogram shows that its probability density functi<strong>on</strong> exhibits a<br />

stretched exp<strong>on</strong>ential behavior. This refers to <strong>the</strong> fluctuati<strong>on</strong>s in <strong>the</strong> rate c<strong>on</strong>stants and<br />

corresp<strong>on</strong>ds to <strong>the</strong> c<strong>on</strong>formati<strong>on</strong>al changes. In <strong>the</strong> sec<strong>on</strong>d method <strong>the</strong> autocorrelati<strong>on</strong> functi<strong>on</strong> <strong>of</strong><br />

<strong>the</strong> intensity is calculated directly <strong>on</strong> phot<strong>on</strong> arrival times. The data in <strong>the</strong> relevant time scale (0,1 –<br />

10 s) does not fit m<strong>on</strong>o exp<strong>on</strong>ential decay nei<strong>the</strong>r. We have investigated <strong>the</strong> resp<strong>on</strong>se <strong>of</strong> <strong>the</strong> singleenzyme<br />

activity <strong>on</strong> pH-increase. Up<strong>on</strong> additi<strong>on</strong> <strong>of</strong> base to <strong>the</strong> substrate soluti<strong>on</strong>, we have observed<br />

a gradual decrease <strong>of</strong> enzyme activity without emphatic changes in dynamics. Though, not all<br />

individual enzymes resp<strong>on</strong>d similarly to <strong>the</strong> applied alterati<strong>on</strong> and moreover, <strong>the</strong>re is a slight<br />

spread <strong>of</strong> <strong>the</strong> pH-optimum. Thus, for <strong>the</strong> first time we prove that <strong>the</strong> c<strong>on</strong>cepts <strong>of</strong> dynamic and<br />

static disorder can be applied not <strong>on</strong>ly to activity, but also to deactivati<strong>on</strong> processes <strong>of</strong> individual<br />

enzymes.<br />

References<br />

Fig. 1 – C<strong>on</strong>focal setup and data processing <strong>of</strong> single turnover transient trace.<br />

[1] Vel<strong>on</strong>ia,K.etal.Angew.Chemie-Int.Ed.44,560-564(2005).<br />

[2] DeCremer,G.etal.JACS129,15458-15459(2007).<br />

122


Single molecule and single cell spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Determinati<strong>on</strong> <strong>of</strong> physical properties <strong>of</strong> a single peptide<br />

by AFM experiments<br />

M. VASSALLI 1,2 , F.SBRANA 2 , B.TIRIBILLI 2,3 , B.BOCHICCHIO 4 , A.M.TAMBURRO 4<br />

1. IBF – CNR ; Genoa (GE) ; Italy<br />

2] CSDC – Physics Dept. ; University <strong>of</strong> Florence ; Italy<br />

3] ISC – CNR ; Sesto Fiorentino (FI) ; Italy<br />

4] Chemistry Dept. ; University <strong>of</strong> Basilicata ; Potenza ; Italy<br />

By stretching a polymer in soluti<strong>on</strong> [1] using single molecule techniques it is possible to infer about<br />

its physical properties. In particular, AFM stretching experiments allow for a full characterizati<strong>on</strong><br />

<strong>of</strong> <strong>the</strong> elasto-mechanical properties <strong>of</strong> <strong>the</strong> sample under study, taking into account both statical<br />

and dynamical regimes [2]. In <strong>the</strong> presented work, single molecule AFM force spectroscopy<br />

experiments have been used to determine mechanical properties <strong>of</strong> a polymer obtained starting<br />

from <strong>the</strong> Ex<strong>on</strong> 28 (Ex28) <strong>of</strong> <strong>the</strong> human elastin gene. Elastin is a protein with important mechanical<br />

properties and, in particular, it shows quasi ideal elastic behavior associated to <strong>the</strong> presence <strong>of</strong><br />

many hydrophobic unstructured domains (such as Ex28) into <strong>the</strong> protein structure. The Ex28<br />

coded polymer has been used as a starting point to obtain bio-materials with specialized elastomechanical<br />

functi<strong>on</strong>s. In particular, a mutated polypeptide based <strong>on</strong> <strong>the</strong> EX28 sequence has been<br />

syn<strong>the</strong>sisized (named EX28K) with <strong>the</strong> aim <strong>of</strong> obtaining a new polymer with <strong>the</strong> same mechanical<br />

and physical properties <strong>of</strong> <strong>the</strong> native molecule but with increased aggregati<strong>on</strong> properties, induced<br />

by a cross-linking reacti<strong>on</strong>. AFM stretching experiments have been used to verify <strong>the</strong> mechanical<br />

properties <strong>of</strong> <strong>the</strong> engineered proteins at a single molecule level. The obtained results allowed us<br />

not <strong>on</strong>ly to answer this questi<strong>on</strong>, but also to give some insight into <strong>the</strong> first aggregati<strong>on</strong> steps <strong>of</strong> <strong>the</strong><br />

polymer towards <strong>the</strong> formati<strong>on</strong> <strong>of</strong> reticulated structures.<br />

References<br />

Fig. 1 – single molecule AFM stretching experiments <strong>on</strong> EX28K<br />

coded polymer after cross-linking<br />

[2] C.Bustamante, J.F.Marko, E.D.Siggia, S.Smith; Science 265, 1599 – 1600 (1994)<br />

[2] R.A.Harris, J.E.Hearst; J. Chem. Phys. 44, 2595 (1966)<br />

123


Single molecule and single cell spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Optical tweezers assisted dynamic force spectroscopy<br />

<strong>on</strong> single receptor/ligand c<strong>on</strong>tacts<br />

C.WAGNER, M. SALOMO, F.KREMER<br />

1. Dept. <strong>of</strong> Experimental Physics 1, University <strong>of</strong> Leipzig, Linnéstraße 5,<br />

Leipzig, D-04103, Leipzig<br />

The extraordinary features <strong>of</strong> optical tweezers having a nm- resoluti<strong>on</strong> in positi<strong>on</strong>ing a micr<strong>on</strong>sized<br />

colloid and an accuracy <strong>of</strong> (±50 fN) in measuring <strong>the</strong> forces acting <strong>on</strong> it enable <strong>on</strong>e to study<br />

<strong>the</strong> interacti<strong>on</strong> within a single receptor/ligand-c<strong>on</strong>tact. To establish a model system, <strong>the</strong><br />

interacti<strong>on</strong> between Protein A from Staphylococcus aureus and Immunoglobulin G from rabbit<br />

serum (RIgG) is investigated (Fig. 1). It is dem<strong>on</strong>strated that <strong>the</strong> rupture forces depend <strong>on</strong> <strong>the</strong><br />

loading rate. This effect is well known in <strong>the</strong> literature and <strong>the</strong> data obtained were found to be in<br />

good agreement with an already published <strong>the</strong>oretical model [1]. By use <strong>of</strong> this model, <strong>the</strong> <strong>of</strong>f-rate<br />

at zero force is determined. The comparis<strong>on</strong> <strong>of</strong> <strong>the</strong> <strong>of</strong>f-rates from Immunoglobulin G molecules<br />

from rabbit, human and bovine serum, each binding to Protein A, yields different values. These<br />

can be related to <strong>the</strong> varying affinities measured with bulk methods. Our experimental setup can<br />

probe <strong>the</strong> interacti<strong>on</strong> between a single receptor and its specific ligand under changing c<strong>on</strong>diti<strong>on</strong>s<br />

and hence <strong>of</strong>fers manifold applicati<strong>on</strong>s in single molecule biotechnology.<br />

References<br />

Fig. 1 – Force-Distance trace. Inset: Scheme <strong>of</strong> <strong>the</strong> experimental<br />

setup. For investigating <strong>the</strong> interacti<strong>on</strong> between Receptor and<br />

Ligand, <strong>the</strong> particular molecules are immobilized <strong>on</strong> <strong>the</strong> surface <strong>of</strong><br />

microparticles.<br />

[1] M. Salomo, U.F. Keyser, and F. Kremer, <str<strong>on</strong>g>European</str<strong>on</strong>g> Biophysics Journal 37, 927-934 (2008)<br />

124


Single molecule and single cell spectroscopy 13 th ECSBM −−−− Book <strong>of</strong> Abstracts<br />

PB<br />

Development <strong>of</strong> Raman microspectrometer for timecourse<br />

imaging <strong>of</strong> single living cells<br />

A. ZOLADEK, F. PASCUT AND I. NOTINGHER<br />

Nanoscience Group, School <strong>of</strong> Physics and Astr<strong>on</strong>omy, University <strong>of</strong><br />

Nottingham, University Park, NOTTINGHAM, NG7 2RD<br />

Cells are <strong>the</strong> smallest units <strong>of</strong> life and structural comp<strong>on</strong>ents <strong>of</strong> all living organisms. Nearly all<br />

diseases arise from cellular abnormalities that originate in biochemical intracellular changes.<br />

Therefore studying cells behavior, metabolism and biochemistry is an important area <strong>of</strong> current<br />

research. A compelling technique for studying live cells is Raman microspectroscopy. Raman<br />

spectroscopy is extremely informati<strong>on</strong> rich. It has many advantages when used to study biological<br />

samples as <strong>the</strong>re is no requirement <strong>of</strong> special sample preparati<strong>on</strong>, it is n<strong>on</strong>-invasive and has high<br />

chemical specificati<strong>on</strong>. However <strong>the</strong> unique advantage <strong>of</strong> Raman microspectroscopy is ability to<br />

provide <strong>the</strong> biochemical informati<strong>on</strong> in n<strong>on</strong>-invasive way <strong>the</strong>refore it allows time-course<br />

experiments <strong>on</strong> single living cell, which no o<strong>the</strong>r techniques can <strong>of</strong>fer. The major aim <strong>of</strong> our work<br />

was to c<strong>on</strong>struct an inverted Raman micro-spectrometer with <strong>the</strong> ability to perform multi-hours<br />

spectral measurements and minimal possible interventi<strong>on</strong> in biochemical processes <strong>of</strong> cells. The<br />

choice <strong>of</strong> laser wavelength and power is crucial when dealing with biological materials, as it has to<br />

allow <strong>the</strong> collecti<strong>on</strong> <strong>of</strong> good quality Raman spectra in short time and avoid inducing cell damage<br />

or aut<strong>of</strong>luorescence, which could hinder <strong>the</strong> much weaker Raman Effect. For <strong>the</strong>se reas<strong>on</strong>s <strong>the</strong><br />

laser chosen falls in <strong>the</strong> near-IR regi<strong>on</strong>. Our system allows point measurement as well as high<br />

quality Raman maps <strong>of</strong> cells with micrometer spatial resoluti<strong>on</strong>. The setup has <strong>the</strong> ability to<br />

perform fluorescence imaging <strong>of</strong> cells in several filter setups. Therefore it is possible to accomplish<br />

a Raman map <strong>of</strong> <strong>the</strong> live cell and <strong>the</strong>n after obtain fluorescence image <strong>of</strong> <strong>the</strong> molecules <strong>of</strong> interest<br />

<strong>on</strong> <strong>the</strong> same sample. Incorporating this well-known technique in cell biology into <strong>the</strong> Raman<br />

system will allow correlati<strong>on</strong> between Raman spectroscopic changes and biological activity <strong>of</strong> cells.<br />

To maintain feasible c<strong>on</strong>diti<strong>on</strong>s and ensuring cell viability for several hours <strong>of</strong> measurement, an<br />

inverted microscope was chosen enclosed in an incubator to provide <strong>the</strong> appropriate temperature<br />

and CO2 stability. The use <strong>of</strong> <strong>the</strong> inverted Raman micro-spectrometer <strong>of</strong>fers more flexibility for<br />

performing Raman spectral imaging and time-course experiments <strong>on</strong> live cells, since cells are not<br />

disturbed during experiments and issues related to bacterial c<strong>on</strong>taminati<strong>on</strong> are avoided. Several<br />

measurements <strong>of</strong> cells were applied by both point measurement and by Raman spectral imaging<br />

maps <strong>of</strong> cells <strong>on</strong> our system to show <strong>the</strong> potential <strong>of</strong> Raman techniques in cell biology studies; this<br />

included experiments <strong>of</strong> apoptotic cells after applicati<strong>on</strong> <strong>of</strong> anticancer drug or measurements <strong>of</strong><br />

juncti<strong>on</strong>s between two cell types.<br />

125


Abramczyk H. 61, PA-37, PB-33<br />

Ackermann K.R. 86<br />

Adnan N. PB-41<br />

Afseth N.K. 73, PB-107<br />

Ahmad S. PA-20<br />

Akyuz S. PB-70, PB-79<br />

Alcolea Palafox M. 75, PB-52, PB-121<br />

Alenkina I.V. 60<br />

Alessi M. PA-21<br />

Alexeeva I. PA-111<br />

Alexiev U. 27<br />

Alieva R. 76<br />

Almog O. PB-29<br />

Amado A.M. PA-29, PA-103<br />

Ami D. PA-22, PB-105<br />

Ammenti A. 100<br />

Andersen K.B. 62<br />

Andreeva A. PA-23<br />

Ant<strong>on</strong>icelli F. 90<br />

Anzenbacher P. PB-48<br />

Apostolova I. PA-23<br />

Arai T. PB-34<br />

Araiza-Reyna E.A. PA-24<br />

Araujo-Andrade C. PA-24, PB-2, PB-17<br />

Arazam N. PB-1<br />

Arcovito A 12<br />

Ardicci<strong>on</strong>i C. 12<br />

Arenas J.F. PB-60<br />

Argov S. PA-86<br />

Arndt M. PB-61<br />

Arr<strong>on</strong>do J.L.R. 59<br />

Arunmurthhy T.V.S. PB-52<br />

Atrian S. PB-88<br />

Astilean S. PA-25<br />

Atta D. 78<br />

Audebrand M. PB-113<br />

Auxina L. PB-18<br />

Avila-D<strong>on</strong>oso H. PA-24<br />

Avila Rodriguez R. PB-2<br />

Ayala A.P. PA-82<br />

Babu N.S. PA-55<br />

Badache A. PA-5<br />

Bagheri-Garmarudi A. PA-26<br />

Baia M. PA-25<br />

Balsamo A. PB-36<br />

Banerjee S. PB-63<br />

Bar I. PA-27<br />

Baranska M. PA-28<br />

Barko Sz. 44<br />

Barth A. 43<br />

Barthélémy P. PB-1<br />

Bartucci R. PB-85<br />

Batabyal D.A. PB-92<br />

Batista de Carvalho LAE PA-29, PB-21<br />

Baumruk V. 46, PA-98, PB-102<br />

Becker S. PB-90<br />

Beckford G. 88<br />

Bednarova L. 46<br />

Bedotti R. PB-39<br />

Bedzinski R. PB-20<br />

Bekhradnia A.R. PB-64<br />

Belagyi J. 44<br />

AUTHOR INDEX<br />

xv<br />

Beleites C. PB-3, PB-6<br />

Bell D. 89<br />

Bellavia G. PB-65<br />

Belogurova N. 76, PA-72<br />

Belov A.S. PB-55<br />

Belshi A. PA-80<br />

Benard A. 81, PB-4, PB-9<br />

Benedetto A. PA-17<br />

Benner D. 83<br />

Bergoin M. PA-110<br />

Bernard P. 63<br />

Bernhard G. PA-76<br />

Berthault P. PB-7<br />

Bethoin K. PB-16<br />

Bhattacharya K. 79<br />

Bian N. 89<br />

Bichenkova E.V. 32<br />

Bilbao P. 59<br />

Binev I.G. PA-95<br />

Bisby R.H. PB-5<br />

Bittl R. PA-122<br />

Bizzarri A.R. PA-30<br />

Blackledge C.W. PA-31<br />

Blanchard J. PB-100<br />

Blanchet L. 71<br />

Blank K. PB-122<br />

Blaszczack Z. PA-32<br />

Blazka S. 89<br />

Bligny R. PB-31<br />

Boca S. PA-25<br />

Bochicchio B. PB-123<br />

Bocklitz T. 86, PA-119, PB-28,<br />

PB-116<br />

Bode B.E. PA-3<br />

B<strong>of</strong>fi A. 13, PA-47, PA-78<br />

Bogomolny E. PA-86<br />

Böhme R. PB-117<br />

Böhme S. PA-1<br />

B<strong>on</strong>accorsi L. PB-58<br />

B<strong>on</strong>arek P. PA-53, PB-66<br />

B<strong>on</strong>ifacio A. PB-6<br />

B<strong>on</strong>nier F. 79, PA-15, PB-27<br />

B<strong>on</strong>ura M. PB-67<br />

Botchway S.W. PB-5<br />

Boulard Y. PB-7<br />

Bour P. PA-98<br />

Boutin C. PB-7<br />

Boyarkin O.V. 23, PA-87<br />

Brault D. PB-69<br />

Breer K. PA-33<br />

Brenowitz M. PB-100<br />

Bridelli M.G. PB-39<br />

Br<strong>on</strong>dino C. PA-34<br />

Brotin T. PB-7<br />

Brown L. PB-71<br />

Brozek-Pluska B. 61, PB-33<br />

Brucker S. PB-68<br />

Brumas V. PB-14<br />

Bruni F. 39<br />

Brunori M. 12<br />

Buchwald T. PA-32<br />

Buck D.P. PB-41


Buck S. PA-2<br />

Bul<strong>on</strong>e D. PB-103<br />

Buriankova L. PB-69<br />

Bursakov S.A. PA-34, PA-67<br />

Bürstel I. PA-61<br />

Buzova D. PB-69<br />

Byrne H.J. 79, PA-12, PA-15,<br />

PB-27, PB-30<br />

Bzowska A. PA-33, PB-115<br />

Cakic M. PA-83<br />

Caldeira C.J. PB-42<br />

Callens F. PA-9<br />

Calvete J.J. PA-67<br />

Cammarata M. 37<br />

Campbell C.J. PB-59<br />

Cannas M. PA-41<br />

Cannistraro S. 14, PA-30<br />

Canpean V. PA-25<br />

Capdevila M. PB-88<br />

Capelletti R. PB-39<br />

Capozzi F. PA-7<br />

Capozzi V. PA-35<br />

Cappugi G. PB-112<br />

Cardot-Leccia N. 63<br />

Carelli C. 72, PA-58<br />

Carm<strong>on</strong>a P. PB-50<br />

Carravetta V. 41<br />

Carriere M. PB-7<br />

Carrotta R. PB-96<br />

Carsughi F. PA-124<br />

Caryn S. PB-16<br />

Casella M. PB-8<br />

Castro A. PA-35<br />

Castro C.M. PB-56<br />

Castro J.L. PA-77, PB-60<br />

Casu 101<br />

Ceccarelli 101<br />

Cecc<strong>on</strong>i F. 100<br />

Celik S. PB-70, PB-79<br />

Cerf E. 58, PB-93<br />

Chamoun J. PB-71<br />

Champi<strong>on</strong> P.M. 19<br />

Chatgilialoglu C. PB-88<br />

Chavarha M.M. PA-113<br />

Chen S.H. 8<br />

Cheng H. PB-100<br />

Chi H. PB-99<br />

Chikhirzhina E. 95<br />

Chikvaidze E. 55, PB-104<br />

Chirico G. 80<br />

Chorvat D. Jr. PB-69<br />

Chowdhury P. PA-36<br />

Chturvedi D. PA-82<br />

Ciacka P. 61, PA-37<br />

Cinta-Pinzaru S. 85, PB-13<br />

Citr<strong>on</strong> S. PA-74, PB-25<br />

Clark I.P. 92<br />

Clark P.L. PB-115<br />

Clement J.H. PB-28<br />

Clivio P. 94<br />

Coelho C. PA-38<br />

Cohen A. PB-38<br />

xvi<br />

Cohen-Luria R. 87, PB-29<br />

Coic Y.M. 72, PA-58<br />

Colette Y. PA-5<br />

Colindres M. PA-39<br />

Collini M. 80<br />

Collins J. G. PB-41<br />

C<strong>on</strong>ti F. 31<br />

C<strong>on</strong>ti J. PB-16<br />

C<strong>on</strong>ti Nibali V. PA-6, PB-72<br />

Cooke J. PB-71<br />

Cord<strong>on</strong>e L. 9, PA-51, PA-92, PB-65<br />

Coreno M. 41, PA-125<br />

Corsaro C. PA-6<br />

Cosgrave L. PB-118<br />

Cot<strong>on</strong>i K. 89<br />

Cott<strong>on</strong>e G. PA-51, PA-92, PB-65<br />

Crisostomo A.G. PB-5<br />

Crupi C. PB-72<br />

Cupane A. PA-112, PB-65, PB-67<br />

Czarnik-Matusewicz B. PA-40, PB-53<br />

D’Alf<strong>on</strong>so L. 80<br />

D’Amico M. PA-41, PB-97<br />

D’Angelo G. PA-6, PB-72<br />

Da Silva J.B.P. PB-21<br />

D’Auria S. 57, PB-62, PB-110<br />

David C. PB-73<br />

Das T. 42<br />

Dastvan R. PA-3<br />

De Angelis F. PA-89<br />

De Ant<strong>on</strong>i G. PA-24, PB-17<br />

De Chaum<strong>on</strong>t C. 49<br />

Deckert V. PA-73, PB-117<br />

De C<strong>on</strong>inck J. PB-16<br />

De Cooman H. PA-9<br />

De Cremer G. PB-122<br />

De Fries N. 62<br />

De Juan A. 71<br />

Dehelean C. 85, PB-12, PB-13<br />

De llanos R. PA-42, PA-106<br />

De la Arada I. 59<br />

De La Fuente M. PB-119<br />

Dellago C. 16<br />

De Marco A. PB-105<br />

Dembska A. 93<br />

Dennis<strong>on</strong> C. PB-98<br />

Derclaye S. 58<br />

Derenne A. 81, PA-49, PB-9<br />

Desbat B. PB-1<br />

De Sim<strong>on</strong>e M. 41<br />

Desmedt C. PB-4<br />

Desvaux H. PB-7<br />

Dettin M. PB-10<br />

Devocelle M. PB-118<br />

Devouge S. PB-16<br />

Dgebuadze M. PB-104<br />

Dhamelincourt M.C. PA-43<br />

Dicko C. 54<br />

Diez F. PB-119<br />

Di Fabrizio E. PB-8<br />

Di Carlo M. PB-96<br />

Di Foggia M. PB-10<br />

Diller R. 22, PA-39, PA-45,


PA-121<br />

D’Inca H. PB-11, PB-15<br />

D’Ischia M. 31, PA-60<br />

Dlouha H. 46<br />

Dobrowolski J. Cz. PA-28, PA-44<br />

Dockter C. 6<br />

Doglia S.M. PA-22, PB-105<br />

Domenech J. PB-35<br />

Dominaci F. PA-30<br />

Domingo C. PA-42, PA-106<br />

Domreatcheva T. PA-121<br />

Doorley G.W. 92<br />

Dovbeshko G. PB-43<br />

Draux F. 91<br />

Drescher D. 82<br />

Dribinsky B. PB-43<br />

Droghetti E. 13<br />

Ducic T. PA-123<br />

Dudas R. PB-87<br />

Dufrene Y. 58<br />

Dumas P. 91<br />

Durbecq V. PB-4<br />

Durchschlag H. PB-94<br />

Durlach A. 63<br />

Dutasta J.P. PB-7<br />

Dziedzicka-Wasylewska PA-53, PB-66<br />

Dziuk M. PB-94<br />

Eat<strong>on</strong> P. PB-42<br />

Ebrahimzadeh M.A. PB-64<br />

Egawa T. 42, PB-92<br />

Egger D. PB-90<br />

Ehmer D. PA-45<br />

Eichler S. PB-74<br />

Enderlein J. 78<br />

Enescu M. PB-73<br />

Engdhal A. 62<br />

Engelhard M. 22<br />

Engels J.W. PB-44<br />

Engelsen S.B. PA-7<br />

Erdmann S. PA-119<br />

Eremin V.V. PB-55<br />

Eremina N. 43<br />

Esimbekova E. PA-88<br />

Espinoza Herrera SJ. PA-46<br />

Ettrich R. PB-77<br />

Fagnano C. PB-10<br />

Fahmy K. 27, PB-74<br />

Fajer P. PB-71<br />

Falamas A. 85, PB-12, PB-13<br />

Fanelli D. PB-112<br />

Farcau C. PA-25<br />

Fares C. PB-90<br />

Farhi E. PB-31<br />

Fas B.A. PB-54<br />

Feis A. 13, PA-47, PA-78<br />

Feracci, M. PA-5<br />

Fernandes A.P. PA-116<br />

Ferreri C. PB-88<br />

Fersht A. 3<br />

Fesenko O. PB-43<br />

Feyer V. 41, PA-125<br />

Fiallo M.M.L. PB-14<br />

xvii<br />

Fitter J. 78<br />

Flaender M. PB-45<br />

Flamigni A. PB-6<br />

Floch P. PB-15<br />

Foerstendorf H. PA-76<br />

Foerster U. PB-44<br />

Foggi P. PA-78<br />

Fomina M.G. PA-48<br />

F<strong>on</strong>in A.V. PB-62, PB-95<br />

Formaggio F. 34<br />

Forster R.J. 49, PA-31, PB-118<br />

Forte C. PA-4<br />

Foster S. PA-85<br />

Fouquet P. PB-76<br />

Franzen S. PA-90<br />

Frausto-Reyes C. PA-24, PB-17<br />

Freddi G. PB-34<br />

Freddi S. 80<br />

Friedman J.M. 5<br />

Friedman N. 22<br />

Friedrich B. PA-61, PA-122<br />

Frielingsdorf S. PA-122<br />

Frosch T. 64<br />

Fuchs P. PA-57<br />

Fucina T.Y. PA-117<br />

Fuller F. PA-13, PA-14<br />

Funk M. PB-90<br />

Fürtig B. PA-2<br />

Gaidd<strong>on</strong> C. PB-47<br />

Gambarelli S. PB-45<br />

Gandolfi M.G. PB-24<br />

Garagna S. PA-22<br />

Garasevych S. PA-62, PA-111<br />

Garcia-Ramos J.V. PA-42, PA-106<br />

Gasior-Glogowska M. PB-20<br />

Gasparutto D. PB-45<br />

Gasper R. 81, PA-49, PB-9<br />

Gavare M. PB-18<br />

Gavel O.Yu. PA-34, PA-67<br />

Gdalevsky Ga. Y. PB-29<br />

Gebrezgiabher M.B. 32<br />

Gellini C. PA-47, PA-78<br />

Gellner M. 84<br />

Gennis R.B. PB-83<br />

Gepshtein R. 48<br />

Gerasimova M.A. PA-48, PA-50, PA-69<br />

Gershanik A. 87<br />

Gerwert K. 38, PA-70, PB-68<br />

Ghasemi K. PA-26<br />

Gheber L.A. PA-27<br />

Ghomi M. 72, PA-58<br />

Giacomazza D. PB-96<br />

Gilch P. 94<br />

Giordano F.M. PB-97<br />

Girstun A. PA-33<br />

Giuffrè A. 12<br />

Giuffrida, S. PA-51, PA-92, PB-65<br />

Glaubitz C. 30<br />

Gloria D. PA-85<br />

Glotova O. PA-11<br />

Glusic M. PA-52<br />

Gnatiuk O. PB-43


Gobinet C. PA-105<br />

Goldgur Y. PB-29<br />

Goldsztein A. PB-16<br />

Golebiowski F. PA-53<br />

Gomez-Zavaglia A. PA-24, PB-17<br />

G<strong>on</strong>zalez M.A. PA-17<br />

G<strong>on</strong>zalez Amaro A. PB-2<br />

G<strong>on</strong>zalez Velasco J. 59<br />

Goormaghtigh E. 58, 81, PA-49, PB-4, PB-<br />

9, PB-16, PB-93, PB-101<br />

Gorecki A. PA-53, PB-66<br />

Goris T. PA-122<br />

Gouveia Z. PA-67, PA-116<br />

Gramatica F. PB-8<br />

Grdadolnik J. PA-52<br />

Gregor J. 78<br />

Greve T.M. 62<br />

Griesinger C. PB-90<br />

Gromova M. PB-31<br />

Gross R. 22, PA-39, PA-45,<br />

PA-121<br />

Grosserüschkamp M. PB-75<br />

Grosso M. PB-36<br />

Grube M. PB-18, PB-19<br />

Gruebele M. PB-90<br />

Grzelakowski M. 78<br />

Grucci<strong>on</strong>e A. PA-47<br />

Gruenewald C. PB-44<br />

Grunbeck A. PB-63<br />

Guerlesquin F. PA-5<br />

Guerrero Martinez A. 75<br />

Guidi M. 23<br />

Guid<strong>on</strong>i L. 99<br />

Gulic R. PB-90<br />

Gulnov D. PA-88<br />

Gutberlet T. PA-19<br />

Guyot G. PA-38<br />

Guzzi R. PB-85, PB-98<br />

Hagarman A. 53, PA-4, PA-21, PA-54<br />

Hajdukova-Smidova N. PA-97<br />

Haliloglu T. PB-54<br />

Hall S.A. 24<br />

Hamley I.W. PA-101<br />

Hamm P. 4<br />

Handgraaf J.-W. 34<br />

Hansberry D.R. PA-55<br />

Hanuza J. PB-20<br />

Harauz G. PB-84<br />

Haris P.I. PA-56<br />

Harlepp S. PB-47<br />

Hartsuiker L. PB-120<br />

Haslinger P. PB-61<br />

Hastings G. PA-57<br />

Haupt K. PA-27<br />

Hauser K. 40<br />

Havlicek V. 65<br />

Hayes S.C. 70<br />

Hebraud P. PB-47<br />

Hedge S. PB-100<br />

Heidary N. PA-122<br />

Heisler I.A. 20<br />

Helios K. PB-23<br />

xviii<br />

Henary M. 88<br />

Henkel T. 86<br />

Hennemann L.E. 83<br />

Hennig M. PB-76<br />

Hering J.A. PA-56<br />

Hermann G. PA-39<br />

Hermanowicz K. PB-20<br />

Hermelink A. PA-73, PB-26<br />

Hernandez B. 72, PA-58<br />

Hibbert D.B. PA-85<br />

Hild G. 44, PB-87<br />

Hildebrandt P. PA-61, PA-107, PA-122,<br />

PB-82<br />

Hilger D. 6<br />

Hilliard J. PA-57<br />

Hincha D.K. PB-109<br />

H<strong>of</strong>bauerova K. PB-77, PB-102<br />

H<strong>of</strong>fmann S.V. 54<br />

H<strong>of</strong>kens J. PB-122<br />

Homblé F. PB-16<br />

Horch M. PA-122<br />

Hore D.K. 24<br />

Howe O. PB-30<br />

Howell M. PB-71<br />

Howes B. D. 13, PA-90<br />

Hsu Y. PA-57<br />

Huang R. 40<br />

Huber G. PB-7<br />

Hubert Joe I. PA-59, PA-99<br />

Huijser A. PA-60<br />

Huleihel M. 77<br />

Hummel P. PA-61, PA-122<br />

Hundertmark H. PB-109<br />

Huppert D. 48, PB-89<br />

Hushcha T. PB-78<br />

Iakhnenko M. PA-62, PA-111<br />

Ihee H. 7<br />

Iosin M. PA-25<br />

Itkin A. 58<br />

Ivanov-Tz<strong>on</strong>chev R. PB-17<br />

Iza N. PB-121<br />

Jabl<strong>on</strong>ska J. 61, PB-33<br />

Jacobs R.M.J. PB-76<br />

Jadzyn M. PA-8, PA-11<br />

Jain R. PB-57<br />

Jaiswal S. PA-63, PA-109<br />

Jamin N. PB-7<br />

Jamroz M.H. PA-44<br />

Jancura D. PB-69<br />

Jariashvili K. 55, PB-104<br />

Jeanness<strong>on</strong> P. PA-105<br />

Jelovica Badovinac I. PA-78<br />

Jena K.C. 24<br />

Jeschke G. 6<br />

Ji H. 42<br />

Joseph V. 82<br />

Juhna T. PB-19<br />

Jung H. 6<br />

Jung Y.M. PA-40<br />

Juranyi F. PA-19<br />

Juskowiak B. 93<br />

Kalinowska M. PA-75, PA-100


Kalisky Y. 87<br />

Kambara O. PA-64<br />

Kandori H. 29<br />

Kantarovich K. PA-27<br />

Karjalainen E.-L. 43<br />

Karolin J. PB-5<br />

Käs J. PB-116<br />

Kasyanenko N. PB-43<br />

Katranidis A. 78<br />

Kawaguchi S. 29<br />

Keane P. 92<br />

Kecel S. PB-70, PB-79<br />

Keiderling T.A. 40, 56, PB-99<br />

Kejnovska I. PB-46<br />

Kelly J.M. 92<br />

Keyes T.E. 49, PA-31, PB-118<br />

Khanmohammadi M. PA-26, PA-65<br />

Khatypov R.A. PA-117<br />

Kheiro-Derfoufi M. PA-89<br />

Khiati S. PB-1<br />

Khrapunov S. PB-100<br />

Kierdaszuk B. PA-66<br />

Kim S.H. 88<br />

Kiss R. PA-49<br />

Kladova A.V. PA-34, PA-67<br />

Klajner M. PB-47<br />

Klare J.P. PA-1<br />

Klein I. PB-32<br />

Klein O. PB-32<br />

Kleiren E. PB-101<br />

Kneipp J. 82, PA-104<br />

Knief P. 79, PA-12<br />

Knoll W. 45, PA-18, PB-75, PB-83<br />

Kobayashi T. 69<br />

Kobielarz M. PB-20<br />

Kocisova E. PA-68, PA-96<br />

Kogan A. PB-29<br />

Kohler A. 73, 91, PB-107<br />

Kohoutova J. PB-77<br />

Kolos R. PA-44<br />

Kominis I. PB-80<br />

Komorowska M. PB-20, PB-53<br />

K<strong>on</strong>do M. 20<br />

K<strong>on</strong>ing V. 26<br />

Kopecky V. Jr. PB-77, PB-102<br />

Kordek R. 61, PB-33<br />

Koshkov K.V. PA-69<br />

Kostyleva E. 95, PB-95<br />

Ko<strong>the</strong> E. PA-119<br />

Kotlyar S. PB-89<br />

Kötting C. PA-70, PB-68<br />

Kourkoumelis N. PA-71<br />

Kowalczyk E. PB-66<br />

Kozielski M. PA-32<br />

Krafft C. PB-13, PB-28<br />

Krasowska J. PB-115<br />

Kratasyuk V.A. PA-88<br />

Krejtschi C. 40<br />

Kremer F. PB-124<br />

Kroh L.W. PA-104<br />

Kruppa G. 65<br />

Kruszewski M. PB-49<br />

xix<br />

Kubanova M. 46<br />

Kub<strong>on</strong> J. 94<br />

Kudryasheva N. 76, PA-72<br />

Kumar H. 43, 75, PB-52<br />

Kumar M. PA-63<br />

Kumar S. 43, PA-109<br />

Kupi T. 44<br />

Kursula P. 45, PA-18<br />

Kustner B. 84<br />

Kuznetsova I.M. 57, PB-62, PB-95,<br />

PB-110, PB-114<br />

Kypr J. PB-46<br />

L’Abbate N. PA-35<br />

Laczko-Dobos H. PB-86<br />

Lakhani A. PB-99<br />

Lakomek N.A. PB-90<br />

Lamparter T. PA-45<br />

Langer K. PB-37<br />

Larsen N.W. 62<br />

Larsim<strong>on</strong>t D. PB-4<br />

Lasalvia M. PA-35<br />

Lasch P. PA-73, PB-26<br />

Laskova B. PA-84<br />

Lau K. PA-73<br />

Laurent A. PA-74, PB-11, PB-15,<br />

PB-25<br />

Lee D. PB-90<br />

Lehene C. 85<br />

Leibl W. 71<br />

Lemr K. 65<br />

Lendzian F. PA-122, PB-82<br />

Lenferink A. 74<br />

Lenz O. PA-61, PA-122<br />

Le<strong>on</strong>e M. PB-106<br />

Leteurtre F. PB-7<br />

Levantino M. PA-112<br />

Lewandowski W. PA-75, PA-100<br />

Lewis A. PA-74, PB-25<br />

Lewis K.L.M. PA-13, PA-14<br />

Lewis-Ballester A. PB-92<br />

Li B. PA-76<br />

Li L. 22<br />

Lima J.L.F.C. PB-56<br />

Lin J. PA-45<br />

Lin Y. PB-92<br />

Liu J. PB-105<br />

Loidl A. PB-90<br />

Lombardo D. PB-58<br />

L<strong>on</strong>der Y.Y. PA-116<br />

L<strong>on</strong>go A. PA-92, PB-58, PB-97<br />

Lopez G<strong>on</strong>zalez J.J. PA-79<br />

Lopez-Ramirez M.R. PB-60<br />

L<strong>on</strong>dero A. PA-24, PB-17<br />

Lu C. PB-92<br />

Lubitz W. PA-122, PB-82<br />

Lucio M. PB-56<br />

Lucotti A. PB-8<br />

Ludwig M. PA-122<br />

Lukacs A. PB-81<br />

Lunkenheimer P. PB-90<br />

Ly E. 63, PA-105, PB-11<br />

Lyng F.M. 79, PA-12, PA-15,


PB-27, PB-30<br />

Maccarini M. PB-76<br />

Machado N.F.L. PA-77<br />

Maczka M. PB-20<br />

Madathil S. 27, PB-74<br />

Mäder J. PA-104<br />

Maerz A. 86<br />

Magazù S. PA-17<br />

Maher W. PA-85<br />

Maksymowicz K. PB-20<br />

Mainreck N. 90<br />

Mal<strong>on</strong> P. 46<br />

Malsch D. 86<br />

Manfait M. 63, 90, PA-74, PA-105,<br />

PB-11, PB-15, PB-25<br />

Mangi<strong>on</strong>e M.R. PB-103<br />

Maniu D. PA-25<br />

Manno M. PA-41, PB-97, PB-111<br />

Manohar S. PB-120<br />

Mäntele W. 30, PB-22, PB-32,<br />

PB-37, PB-91<br />

Marcelli A. PA-78<br />

Marchal A. PA-79<br />

Marchand-Brynaert J. PB-16<br />

Margitich M.O. PA-113<br />

Marksteiner M. PB-61<br />

Marini U. 100<br />

Mariani P. PA-124<br />

Marquez F. PA-79<br />

Marques M.P.M. PA-77, PB-21<br />

Martens H. 73<br />

Martinez J.R. PB-2<br />

Martinez-Mendoza J.R. PB-17<br />

Martorana V. PA-41, PB-97, PB-103,<br />

PB-111<br />

Marsich E. PB-6<br />

Marzocchi M.P. PA-80<br />

Masek V. PB-48<br />

Masino L. 11<br />

Matschulat A. 82<br />

Matthieu D. PA-54<br />

Maurer J. PB-22<br />

Maurya M.K. PB-40<br />

Mazzarella L. PB-36<br />

McElheny D. 56<br />

McNally A. 49<br />

McQuillan A.J. PA-93<br />

Meade A.D. 79, PA-12, PA-15, PB-27<br />

Measey T.J. 53, PA-4, PA-54<br />

Meczynska-Wielgosz S. PB-49<br />

Meech S.R. 20, PB-81<br />

Meier B.H. PA-4<br />

Meier W. 78<br />

Meiler J. PB-90<br />

Meixner A.J. 83<br />

Mendes C.S.M. PB-21<br />

Mereghetti P. PA-22<br />

Merlino A. PB-36<br />

Mermet A. PA-110<br />

Me<strong>the</strong>nitis C. PB-14<br />

Metreveli N. 55, PB-104<br />

Meyer S. PA-1<br />

xx<br />

Mezzenga E. PA-35<br />

Mezzetti A. 71, PA-43<br />

Michalska D. PB-23<br />

Migliardo F. PA-17<br />

Mijatovic T. PA-49<br />

Milder O.B. 60<br />

Milecki J. PA-8<br />

Miles S.M. 32<br />

Militello V. PB-106<br />

Millo D. PA-122, PB-82<br />

Millot J.M. PA-74, PB-25<br />

Milov A.D. 34<br />

Mir<strong>on</strong>ova N.L. 32<br />

Mir<strong>on</strong>ova-Ulmane N. PA-81<br />

Mishra S. PA-82<br />

Miskovsky P. PB-69<br />

Mitic Z. PA-83<br />

Mobili P. PA-24, PB-17<br />

Modena E. PB-24<br />

Mojzes P. PA-84, PA-96, PB-48,<br />

PB-51<br />

Molina M. PB-50<br />

M<strong>on</strong>delli C. PA-17<br />

M<strong>on</strong>tejo M. PA-79<br />

M<strong>on</strong>ti S. PA-4<br />

Moran G. PA-85<br />

Moran N. 49, PA-31, PB-118<br />

Mordechai S. 77, PA-86<br />

Moreh R. PA-86<br />

Moschetti T. 12<br />

Moura I. PA-34, PA-67<br />

Moura J.J.G. PA-34, PA-67<br />

Mroginski M.A. PB-82<br />

Mukamel S. PA-16<br />

Myers J.A. PA-13, PA-14<br />

Nagornova N.S. 23, PA-87<br />

Nagy A. PB-87<br />

Nakas<strong>on</strong>e Y. 21<br />

Nallet F. PB-1<br />

Namicheishvili L. 55, PB-104<br />

Namur J. PA-74, PB-11, PB-15,<br />

PB-25<br />

Napolitano A. 31, PA-60<br />

Narayanaswami V. PB-93<br />

Natalello A. PA-22, PB-105<br />

Natali F. 45, PA-18<br />

Naumann D. PA-73, PB-26<br />

Naumann R.L.C. PB-75, PB-83<br />

Navailles L. PB-1<br />

Navarra G. PB-106<br />

Nave K.A. PA-123<br />

Nawaz H. PB-27<br />

Nelander B. 62<br />

Nema N. 66<br />

Nemtseva E. PA-88<br />

Neri T. PA-22<br />

Neugebauer U. PB-28<br />

Neuhaus E.H. 22<br />

Ngol<strong>on</strong>g E C. PA-89<br />

Niaura G. PA-94<br />

Nicoletti F.P. 13, PA-90<br />

Niebling S. PA-91


Nielsen O.F. 62<br />

Nikolic G.S. PA-83<br />

Noeske J. PA-2<br />

Nogaj B. PA-8, PA-11<br />

Notingher I. PA-114, PB-125<br />

Novikov E.G. 60<br />

Nowak C. PB-75, PB-83<br />

Nunes P. PB-42<br />

Nyitrai M. 44, PB-87<br />

Ochsenkühn M.A. PB-59<br />

Ofstad R. PB-107<br />

Ogilvie J.P. PA-13; PA-14<br />

Olasek M. PB-115<br />

Ollivier J. PB-31<br />

O’Neill S. PA-31<br />

Ort<strong>on</strong>ne J.-P. 63<br />

Ortore M.G. PA-124<br />

Ostafin M. PA-11<br />

Oshtrakh M.I. 60<br />

Otero J.C. PA-77, PB-60<br />

Otto C. 74, PB-36, PB-120<br />

Ozel A.E. PB-70, PB-79<br />

Padan E. 6<br />

Padrão S. PA-29<br />

Pagnotta S.E. 39<br />

Palacky J. PA-84, PB-48, PB-51<br />

Palchykovska L. PA-111<br />

Pallavicini S. 80<br />

Pandelia M.E. PA-122, PB-82<br />

Pandey A. 66, PB-57<br />

Panne U. PA-104<br />

Pantusa M. PB-85<br />

Panzella L. 31, PA-60<br />

Panzica M. PA-92<br />

Paoletti S. PB-6<br />

Papazoglou E.S. PA-55<br />

Papiashvili N. 87<br />

Parker A.W. 92, PB-5<br />

Parkes G. 91<br />

Parola A.H. 87, PB-29<br />

Pärs M. PA-81<br />

Pascale F. PB-11<br />

Pascut F. PB-125<br />

Patel C. PA-55<br />

Pat<strong>on</strong>ay G. 88<br />

Paulsen H. 6<br />

Paus R. PA-73<br />

Pauwels E. PA-9<br />

Pazderka T. PB-102<br />

Pazzagli L. PB-112<br />

Pedzinski T. 93<br />

Perisic N. PB-107<br />

Perlik V. PA-16<br />

Perna G. PA-35<br />

Pessanha M. PA-116<br />

Peters J. 45, PA-18, PA-19<br />

Petersen W. PB-120<br />

Petrace H.I. 33<br />

Petri M. PB-90<br />

Petr<strong>on</strong>e L. PA-93<br />

Pezzella A. PA-60<br />

Phillips R.S. PB-29<br />

xxi<br />

Pic<strong>on</strong>e G. PA-7<br />

Pic<strong>on</strong>e P. PB-96<br />

Pieridou G. 70<br />

Pijanka 91<br />

Pinzaru S. PB-12<br />

Piot O. 63, 90, PA-105<br />

Pizzanelli S. PA-4<br />

Plekan O. 41, PA-125<br />

Podstawka E. PA-94<br />

Pokkuluri P.R. PA-116<br />

Pol J. 65<br />

Polakovs M. PA-81<br />

Polverini E. PB-39, PB-84<br />

Polyanichko A. 95, PB-108<br />

Polyhach Y. 6<br />

Po<strong>on</strong> K.W.C. PB-30<br />

Popova A.D. PA-95<br />

Popova A.V. PB-109<br />

Popp J. 64, 86, PA-119, PB-13,<br />

PB-28, PB-116, PB-117<br />

Potara M. PA-25<br />

Povarova O.I. PB-62, PB-110<br />

Prati C. PB-24<br />

Praus P. PA-96<br />

Prince K.C. 41, PA-125<br />

Prisner T.F. PA-3<br />

Prochazka M. PA-68, PA-97<br />

Pr<strong>of</strong>ant V. PA-98<br />

Proverbio E. PB-58<br />

Pully V.V. 74, PB-36<br />

Purchase R. 26<br />

Putsche M. PB-116<br />

Puustinin A. 42<br />

Pyshnyi D.V. 32<br />

Quartucci G. PA-35<br />

Quinn S.J. 92<br />

Quintes S. PA-123<br />

Raap J. 34<br />

Raccosta S. PA-41, PB-97, PB-111<br />

Raff J. PA-76<br />

Ragg N.C. PA-93<br />

Rak M. PA-123<br />

Rai B.K. PB-52<br />

Ramin M. PA-65<br />

Rasheed T. PA-20<br />

Rastogi V.K. 75, PA-20, PA-99, PB-52<br />

Raussens V. 58, PB-93, PB-101<br />

Ravikumar C. PA-59, PA-99<br />

Rayavarapu R.G. PB-120<br />

Reddy E. PA-31<br />

Redi C.A. PA-22<br />

Regulska E. PA-75, PA-100<br />

Reinicke M. PA-119<br />

Reis S. PB-56<br />

Remingt<strong>on</strong> S.J. 48<br />

Renciuk D. PB-46<br />

Ribeiro-Claro P.J.A. PA-103<br />

Richard C. PA-38<br />

Richter M. PB-117<br />

Richter R. 41, PA-125<br />

Ridderbusch O. 40<br />

Rifici S. PA-6


Rigler P. 78<br />

Rivasseau C. PB-31<br />

Rizzo T.R. 23, PA-87<br />

Rizzuti B. PB-85<br />

Robertazzi A. 101<br />

Rode J.E. PA-44<br />

Rodger A. 54<br />

Rodriguez-Casado A. PB-50<br />

Rodriguez Ortega PA-79<br />

M.P.G.<br />

Rodriguez Oviedo D. PB-2<br />

Rodriguez-Perez J.C. PA-101<br />

Roeffaers M.B.J. PB-122<br />

Roman M. PA-28<br />

R<strong>on</strong>dinelli C. 12<br />

Roosen-Runge F. PB-76<br />

Ropers M.H. PB-113<br />

Rösch P. PA-119, PB-116, PB-117<br />

Rosenkranz T. 78<br />

Rossi P.L. PB-24<br />

Roth A. PB-32<br />

Rouas G. PB-4<br />

Rousseau D.L. 42<br />

Roy A. 56, PB-99<br />

Ruano C. PA-77<br />

Ruckebusch C. 71<br />

Rudbeck M. 43<br />

Rugger<strong>on</strong>e P. 101<br />

Ruiz F. PA-24, PB-2<br />

Rusciano G. PB-36<br />

Ruysschaert J.M. 58, PA-89, PB-93,<br />

PB-101<br />

Ryu S.R. PA-40<br />

Saavedra Sagredo M.C. PB-63<br />

Sadlej J. PA-44<br />

Sadlo J. PB-49<br />

Saggu M. PA-122<br />

Sagstuen E. PA-9<br />

Sahu R.K. PA-86<br />

Sakmar T.P. PA-118, PB-63<br />

Salditt T. PA-123<br />

Salford L. PA-15<br />

Salgueiro C. PA-116<br />

Salman A. 77<br />

Salomo M. PB-124<br />

Salvi P.R. PA-47, PA-78<br />

Samoilova R.I. 34<br />

Sams<strong>on</strong>owicz M. PA-102<br />

San Biagio P.L. PB-96, PB-103, PB-111<br />

Sanchez-Cortés S. PA-42, PA-106, PB-10<br />

Sanda F. PA-16<br />

Sandt C. 91<br />

Sans<strong>on</strong> A. PB-7<br />

Santarella R. PB-105<br />

Santos C. PB-42<br />

Sardo M. PA-103<br />

Sarroukh R. 58<br />

Sasso A. PB-36<br />

Sauer M. 10<br />

Savorani F. PA-7<br />

Sbrana F. PB-112, PB-123<br />

Schäfer G. 30, PB-91<br />

xxii<br />

Schiffer M. PA-116<br />

Schirò G. PB-67<br />

Schlücker S. 84, PA-91<br />

Schmid P. PB-61<br />

Schmuck C.S. PA-91<br />

Schreiber F. PB-76<br />

Schreirer W.J. 94<br />

Schröder L. PB-5<br />

Schulte F. PA-104<br />

Schumacher W. PA-119<br />

Schumann C. 22, PA-45<br />

Schutz M. 84<br />

Schwalbe H. PA-2, PA-54<br />

Schweitzer-Stenner R. 53, PA-4, PA-21, PA-54<br />

Schwieger C. PB-113<br />

Sclafani M. PB-61<br />

Scorciapino M.A. 101<br />

Sebiskveradze D. PA-105<br />

Segundo A. PB-56<br />

Seckler R. PB-109<br />

Seidel S. PA-39<br />

Semeraro S. PB-6<br />

Semi<strong>on</strong>kin V.A. 60<br />

Sergo V. PB-3, PB-6<br />

Sevilla P. PA-42, PA-106<br />

Seydel T. PB-76<br />

Sezer M. PA-107<br />

Shafranyosh I.I. PA-113<br />

Shakirova L. PB-18<br />

Sharma D. K. PA-20<br />

Sharma M. PB-52<br />

Sharrock P. PB-14<br />

Shastri S. 30<br />

Sheves M. 22<br />

Shibata M. 29<br />

Shnyrov V.L. PA-34<br />

Shu X. 48<br />

Shuvalov V.A. PA-117<br />

Skoda M.W.A. PB-76<br />

Sica F. PB-36<br />

Sicoli G. PB-45<br />

Silbey R.J. 26<br />

Silos I. PA-81<br />

Simakova P. PA-97<br />

Singh P. PA-63, PA-108, PA-109<br />

Singh R. PA-63, PA-109<br />

Sinibaldi R. PA-124<br />

Si<strong>on</strong>kowska A. 55, PB-104<br />

Sirlin C. PB-47<br />

Sir<strong>on</strong>i L. 80<br />

Sirotkin S. PA-110<br />

Skopinska J. 55<br />

Sinyavsky N. PA-11<br />

Slobodyanyuk O. PA-62, PA-111<br />

Smulevich G. 13, PA-78, PA-90<br />

Sobolewski A.L. 15<br />

Sockalingum G.D. 73, 91<br />

Sotiriou C. PB-4<br />

Spilotros A. PA-112<br />

Spinozzi F. PA-124<br />

Sportelli L. PB-85, PB-98<br />

Spricigo R. PA-107


Squires A.M. PA-101<br />

Srivastav G. PA-63, PA-108, PA-109<br />

Srivastava A. PA-82<br />

Srivastava S.K. PA-91<br />

Staiano M. 57, PB-62, PB-110<br />

Star<strong>on</strong> K. PA-33<br />

Stavrov S.S. 28<br />

Stec H. PA-8<br />

Stefan R. 49<br />

Steinh<strong>of</strong>f H.J. PA-1<br />

Stepanek J. PA-46, PA-68, PA-96,<br />

PB-77<br />

Stepanenko Olesya 57, PB-62<br />

Stepanenko Olga V. PB-62, PB-95, PB-110<br />

Stirnal E. PA-2<br />

Stopin A. PB-7<br />

Strashenikov N. 87<br />

Strekowski L. 88<br />

Strohalm M. 65<br />

Stüber C. PB-116<br />

Subramaniam V. 74<br />

Sukhoviya M.I. PA-113<br />

Sulatskaya A.I. PB-110, PB-114<br />

Sulè-Suso J. 91<br />

Sundström V. PA-60<br />

Sureau F. PA-96, PB-69<br />

Surmacki J. 61, PB-33<br />

Susini J. PA-123<br />

Sweetenham C.S. PA-114<br />

Swislocka R. PA-75, PA-100, PA-115<br />

Szal<strong>on</strong>tai B. PB-86<br />

Szatmari D. PB-87<br />

Szotek S. PB-20<br />

Szymborska-Malek K. PB-53<br />

Taddei P. PB-10, PB-24, PB-34<br />

Takekiyo T. 56<br />

Takenaka S. 93<br />

Talaya J. 75<br />

Tamburro A.M. PB-123<br />

Tand<strong>on</strong> P. PA-82<br />

Tardajos G. 75<br />

Tarpan M.A. PA-9<br />

Tatulian S.A. 25<br />

Techert S. PB-90<br />

Tehei M. PA-19<br />

Tekavec P.F. PA-13, PA-14<br />

Terazima M. 21<br />

Terentyeva T. PB-122<br />

Ter Halle A. PA-38<br />

Thomps<strong>on</strong> M.K. PA-90<br />

Tiefenbach K.J. PB-94<br />

Tihomirova K. PB-19<br />

Tinti A. PB-10, PB-24, PB-35,<br />

PB-88, PB-106<br />

Tiribilli B. PB-112, PB-123<br />

Toderas F. PA-25<br />

Todorovic S. PA-67, PA-116<br />

T<strong>of</strong>foletti A. 31<br />

Tokutomi S. 21<br />

Tomkins<strong>on</strong> J. PB-21<br />

Tominaga K. 29, PA-64<br />

Tommasini M. PB-8<br />

xxiii<br />

T<strong>on</strong>iolo C. 34<br />

Torreggiani A. PB-10, PB-35, PB-88,<br />

PB-106<br />

Towrie M. 92<br />

Trapp M. PA-19<br />

Trentmann O. 22<br />

Trimarchi A. PA-6<br />

Tr<strong>of</strong>imov A.B. PA-125<br />

Trubetskaya O. PA-38<br />

Trubetskoj O. PA-38<br />

Trudeau T. 24<br />

Tsarfati I. PA-27<br />

Tsror L. 77<br />

Tsukada M. PB-34<br />

Tsvetkov Y.D. 34<br />

Tulkens P. PB-16<br />

Turoverov K.K. 57, PB-62, PB-95,<br />

PB-110, PB-114<br />

Turpin P.Y. PA-96<br />

Tutar Y. PB-54<br />

Tzaphlidou M. PA-71<br />

Ujfalusi Z. 44<br />

Untereiner V. 91<br />

Unruh T. PA-19<br />

Uritski A. PB-89<br />

Utesch T. PB-82<br />

Vall<strong>on</strong>e B. 12<br />

Van Blitterswijk C.A. 74<br />

Vandenbussche G. PA-89<br />

Van Gr<strong>on</strong>delle R. 47<br />

Van Pittius D.G. 91<br />

Van Etten J. PA-110<br />

Van Leeuwen T.G. PB-120<br />

Vaskivskyi L. PA-62, PA-111<br />

Vasi C. PB-72<br />

Vasilieva L.G. PA-117<br />

Vassalli M. PB-112, PB-123<br />

Vats J.K. 75, PB-52<br />

Vecoli M. PA-43<br />

Velcheva E.A. PA-95<br />

Velitchkova M. PA-23<br />

Verde C. 13<br />

Vergara A. PB-36<br />

Verhart N. 26<br />

Verhoefen M.-K. 30<br />

Verkhusha V.V. 57<br />

Versteegh G. PA-43<br />

Vidova V. 65<br />

Vitale A. PB-110<br />

Vitiur F. PB-6<br />

Vlassov V.V. 32<br />

Vogel R. PA-118, PB-63<br />

Vogel V. PB-22, PB-37<br />

Volker S. 26<br />

Volkov A. 6<br />

Vollmar M. PB-94<br />

Vollrath F. 54<br />

Volny M. 65<br />

Vorlickova M. PB-46<br />

Vorob’ev M.M. 96<br />

Vorobyev V. 95, PB-95<br />

Vos M.H. PB-81


Voué M. PB-16<br />

Vrabie V. PA-105<br />

Vrielinck H. PA-9<br />

Vulpiani A. 100<br />

Wachtveitl J. 30, PB-44<br />

Wagner C. PB-124<br />

Walfisch S. PA-86<br />

Walter A. PA-119<br />

Walter K. PB-90<br />

Wanderlingh U. PA-6, PB-72<br />

Wang D. PB-38<br />

Wang R. PA-57<br />

Waroquier M. PA-9<br />

Wassef M. PA-74, PB-11, PB-15,<br />

PB-25<br />

Weber I. 30<br />

Weidinger I.M. PA-107<br />

Whart<strong>on</strong> C.W. PA-120<br />

Wich P.C. PA-91<br />

Wielgus-Kutrowska B. PA-33, PB-115<br />

Wieser H. PB-108<br />

Wikstrom M. 42<br />

Wille G. PB-91<br />

Wisitruangsakul N. PA-61, PB-82<br />

Wittingh<strong>of</strong>er A. PA-1<br />

Wöhnert J. PA-2<br />

Wojdyla M. 92<br />

Wolf M. PA-45<br />

Wolf M.M.N. PA-121<br />

Wollenberger U. PA-107<br />

Wood B.R. PA-73<br />

Wrobel T. PA-10<br />

Wu L. 40, 56<br />

Wysokinski R. PB-23<br />

Yabushita A. 69<br />

Yadav R. A. PA-63, PA-108, PA-109,<br />

PB-40<br />

Yadav T.K. PB-40<br />

Yang Y. 91<br />

Ye S. PA-118<br />

Yeh S.-R. 42, PB-92<br />

Yesylevskyy S. PB-78<br />

Zaitseva E. PB-63<br />

Zalloum W.A. 32<br />

Zandomeneghi G. PA-4<br />

Zan<strong>on</strong>i M. PA-22<br />

Zaytseva I.L. PA-125<br />

Zebger I. PA-61, PA-122, PB-82<br />

Zenkova M.A. 32<br />

Zerbi G. PB-8<br />

Zhang D. 83<br />

Zhang F. PB-76<br />

Zhang W. 41<br />

Zhorov E. PB-38<br />

Zhu J. PB-83<br />

Zienicke B. PA-45<br />

Zikmanis P. PB-18<br />

Zinth W. 94<br />

Zoladek A. PB-125<br />

Zorn S. PB-76<br />

Zuccotti M. PA-22<br />

xxiv

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!