27.12.2012 Views

Presentation - University of Colorado Denver

Presentation - University of Colorado Denver

Presentation - University of Colorado Denver

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Maternal Nutrition and Metabolic Programming<br />

in Mouse, Monkey, and Man<br />

JACOB E. (JED) FRIEDMAN, PHD<br />

DEPARTMENT OF PEDIATRICS, BIOCHEMISTRY & MOLECULAR GENETICS<br />

UNIVERSITY OF COLORADO-DENVER SCHOOL OF MEDICINE<br />

Director, <strong>Colorado</strong> Program for Nutrition and Healthy Development<br />

Developmental Psychobiology Research Retreat<br />

Morrison, <strong>Colorado</strong> May 07, 2012


Acknowledgements:<br />

Oregon National Primate Research Ctr<br />

Kevin Grove, Ph.D.<br />

Dan Marks, MD, Ph.D.<br />

Antonio Frias, MD, PhD<br />

Diana Takahashi, MS.<br />

Staff and support Oregon National Primate<br />

Research Center, Beaverton Oregon<br />

NIH-RO1 DK060685, RO1 DK074643,<br />

R24 DK90964, P30 DK048520 , ADA<br />

<strong>University</strong> <strong>of</strong> <strong>Colorado</strong> Nutrition & Obesity<br />

Research -Center (NORC); <strong>University</strong> <strong>of</strong> <strong>Colorado</strong><br />

Maternal-Child Clinical Translational Research<br />

Center<br />

<strong>University</strong> <strong>of</strong> <strong>Colorado</strong>-<strong>Denver</strong><br />

Center for Proteomics:<br />

�Karen Jonscher, Ph.D.<br />

�Aga Kendrick, M.S.<br />

Baylor College <strong>of</strong> Medicine:<br />

Kjersti Agaard-Tillery, M.D. Ph.D.<br />

<strong>University</strong> <strong>of</strong> <strong>Colorado</strong>-<strong>Denver</strong><br />

Carrie McCurdy, Ph.D.<br />

Stephanie Thorn, Ph.D.<br />

Lynn Barbour, M.D.<br />

Teri Hernandez, Ph.D.<br />

Margaret Heerwagen, B.S.<br />

Becky De La Houssaye, M.S.<br />

Rachel Van Pelt, Ph.D.<br />

Michael Stewart, M.D.<br />

Sean Newsom, Ph.D.<br />

Kristen Boyle, Ph.D.<br />

David Brumbaugh, M.D.<br />

Rachel Janssen, M.S.<br />

Rebecca Aiken, M.S.


<strong>Colorado</strong> Program in Nutrition and Health Development<br />

Jed Friedman, Director, Lynn Barbour-Co-director<br />

Goals <strong>of</strong> the Program:<br />

• To understand basic mechanisms underlying the role <strong>of</strong><br />

nutrition and the environment on maternal-infant health in<br />

animal models that can be translated to humans.<br />

• To develop safe nutritional/interventional strategies to<br />

achieve a healthier pregnancy and improve newborn health<br />

during the first 1000 days <strong>of</strong> life.<br />

• To facilitate collaborative research within <strong>Colorado</strong> and<br />

beyond.<br />

• To provide education for trainees, medical pr<strong>of</strong>essionals, and<br />

the lay public.


<strong>Colorado</strong> Program for Nutrition and Healthy Development


Outline <strong>of</strong> Talk:<br />

1) The new science <strong>of</strong> Fetal Programming<br />

- Fetal Programming: What is it?<br />

- Maternal Obesity and the fetus:<br />

Response to an Epidemic<br />

2) Studies in Non-Human Primate<br />

3) Studies in Human pregnancy<br />

4) - Omega-3’s<br />

- Fat-1 mouse model<br />

5) Future Directions


Fetal Programming:<br />

The intrauterine environment can<br />

impact fetal development at both<br />

a morphological and a molecular<br />

level.<br />

An “adverse” environment can<br />

predispose an infant to later life<br />

diseases, such as obesity,<br />

diabetes, and CVD.


Oct. 6, 2010


How Big Is the Problem?<br />

% Women with BMI > 30<br />

(OBESE) (Overweight)<br />

Catalano OM, Ehrenberg HM. BJOG. 2006 Oct;113(10):1126-33.


March 18, 2010<br />

700,000 children and teens (2-19) in Southern California<br />

1/6 <strong>of</strong> children are obese (>95%)<br />

7% boys and 5% girls extremely obese<br />

“These kids face 10-20 years shorter life span and will<br />

develop health problems in their 20s that we typically see<br />

in 40-60 yr olds”<br />

Fatty Liver Disease in Obese Youth: 1 in 5.


Trends in child and adolescent overweight<br />

Age 6-11<br />

Age 12-19<br />

Age 2-5<br />

Note: Overweight is defined as BMI>=gender and weight-specific 95th percentile from the 2000 CDC<br />

Growth Charts. Source: National Health Examination Surveys II (ages 6-11) and III (ages 12-17),<br />

National Examination Surveys, I, II, III and 1999-204, NCHS, CDC.


World-Wide Childhood Obesity Epidemic<br />

Critical Early Life Factors affect Health<br />

Across the Lifespan<br />

Genes Gestational Exposure Post-natal Environment<br />

The Childhood Obesity Pipeline is Full and getting worse


NIH Consensus Conference,<br />

Sept 23-24, 2005 Bethesda MD<br />

The Maternal Intrauterine Environment and<br />

the Origins <strong>of</strong> Obesity<br />

• When does it Occur?<br />

• How does it Occur?<br />

• What can we do about it?<br />

“Programming” effects on Obesity, CV-disease, and Cancer


Prevalence (%)<br />

Prevalence <strong>of</strong> Type 2 DM In Pima Indians,<br />

by Mothers Diabetes in Pregnancy<br />

75<br />

60<br />

45<br />

30<br />

15<br />

0<br />

Offspring <strong>of</strong> non-diabetic mothers<br />

Offspring <strong>of</strong> pre-diabetic mothers<br />

Offspring <strong>of</strong> diabetic mothers<br />

5-9 10-14 15-19 20-24 25-29 30-34<br />

Age (years)<br />

Dabelea D, Pettitt DJ, J Mat. Fetal Med. 2000; 9:83.


Development is characterized by early windows <strong>of</strong> plasticity:<br />

.<br />

Cells in this window are highly sensitive to environmental stimuli that impact:<br />

- differentiation<br />

- death/proliferation<br />

- gene expression programs<br />

Fowden A L et al. Physiology 2006;21:29-37


The “Obese Environment”<br />

• Adipose Tissue Hypertrophy<br />

• Insulin Resistance<br />

• Hyperlipidemia<br />

• Hyperglycemia<br />

• Hyperinsulinemia<br />

• Inflammation<br />

But we see this kind <strong>of</strong> metabolic pr<strong>of</strong>ile somewhere else too…


Metabolic changes during pregnancy:<br />

In the mother, in order to mobilize energy stores<br />

and fuel fetal growth:<br />

Hyperlipidemia<br />

Hyperglycemia<br />

Insulin Resistance<br />

Adipose Hypertrophy<br />

What happens when obesity and pregnancy combine?


When the two combine: Maternal Obesity<br />

Significant evidence here<br />

Heerwagen et.al. AJP Review September 2010


Long Term Implications for Fetus<br />

• Obese infants are up to 2-9 times<br />

as likely to be obese as adults Baird J,<br />

BMJ 2005;331:929<br />

• Maternal BMI ≥ 30 conferred 25%<br />

obesity risk at age 4 (~3-fold) indep<br />

<strong>of</strong> BW Whitaker RC Pediatrics 2004;114:29<br />

• 25% <strong>of</strong> obese children age 4-10<br />

have IGT


Co-Morbidities <strong>of</strong><br />

Childhood Obesity<br />

• Obesity has tripled in last 2 decades:<br />

– 20-25% <strong>of</strong> girls 11-15 are obese<br />

• Type 2 DM in children/adolescents has ↑ 300%<br />

– Type 2 > Type 1 in children 10-19 in most ethnicities<br />

• Pediatric fatty liver disease 13% children<br />

• 1 in 3 children born in the year 2000 will<br />

develop DM in their lifetime


Diabetes "massive challenge" as cases hit 366 million<br />

LONDON | Tue Sep 13, 2011 7:36am EDT<br />

(Reuters) - The number <strong>of</strong> people living with diabetes has soared to 366 million, and the<br />

disease kills one person every seven seconds, posing a "massive challenge" to healthcare<br />

systems worldwide, experts said on Tuesday.<br />

The vast majority <strong>of</strong> those with the disease have Type 2 -- the kind linked to poor diet, obesity<br />

and lack <strong>of</strong> exercise -- and the problem is spreading as people in the developing world adopt<br />

more Western lifestyles.<br />

Worldwide deaths from the disease are now running at 4.6 million a year.


Global projections for the diabetes epidemic: 2010–2030 –Nature Reviews-<br />

Endocrinology, 2012


World-wide Food Insecurity


The Developing World is catching up<br />

NYTimes, 3-11-2012


THE FAT-THIN INDIAN BABY<br />

Caucasian, 3500g Indian, 2700g<br />

8% fat<br />

16% fat<br />

Yajnik, Proc Nutr Soc; 2004


Fetal Origin <strong>of</strong> Adult Disease<br />

Fetal Growth Restriction:<br />

• Diabetes<br />

• Adiposity<br />

• Cardiovascular disease<br />

• Osteoporosis<br />

Excessive Fetal Growth:<br />

• Diabetes<br />

• Obesity<br />

• Cardiovascular disease<br />

• Some cancers<br />

Is the mechanism<br />

The same?


High Risk Outcomes<br />

In Low or High** Birthweight Adults<br />

Insulin resistance **<br />

Hyperglycemia **<br />

Islet dysfunction **<br />

Dyslipidemia **<br />

Endothelial dysfunction<br />

Hypertension **<br />

Prothrombotic State<br />

Cardiac vulnerability **<br />

Increased ANS activity<br />

Appetite dysregulation **<br />

Reduced immune function<br />

Osteoporosis


Infant Adiposity vs. BW<br />

Catalano, Am J Clin Nutr 2009:<br />

• 47% <strong>of</strong> difference in birth weight<br />

related to Fat.<br />

• SGA vs AGA vs LGA have about the<br />

same lean body mass.<br />

• AGA infants <strong>of</strong> GDM or Obese moms<br />

have higher %fat than AGA infants <strong>of</strong><br />

controls moms.<br />

*Fat Accretion by Species:<br />

Rats/Mice 1%<br />

Sheep: 2-3%<br />

Non-human Primates: 3-4%<br />

Guinea Pigs ~10-14%<br />

Humans: 12-15%<br />

Infant DEXA at 2 wks <strong>of</strong> Age:<br />

Mother: Lean Obese & GDM<br />

BW = 3370g<br />

Fat = 7.7%<br />

BW = 2893g<br />

Fat = 16.8%


Top Intrauterine Contributors to Neonatal Adiposity<br />

� Maternal Insulin Resistance (could explain chunk <strong>of</strong><br />

below)<br />

� Maternal BMI<br />

� Hyperglycemia<br />

� Maternal TG and FFA (Lipolysis, CM-TG, VLDL-TG?;<br />

indep <strong>of</strong> IR?)<br />

� Maternal High Fat Diet (Indep <strong>of</strong> mat obesity through<br />

changes infant metabolome, appetite regulation,<br />

behaviors, NAFLD, mitochondrial oxidation)<br />

� Excess Gestational Weight Gain<br />

� Maternal Inflammatory Cytokines (change in placental<br />

gene expression and transport)<br />

� What About?<br />

� Oxidative Stress and Increased Lipid Exposure in early life?<br />

� Placental and Fetal Growth Factors (fetal hyperinsulinemia<br />

response to hyperglycemia, placental IGFs)<br />

� Psychological stressors? ↑CRH and IL1β in mom; ↑GR and<br />

insulin in fetus.


First take home message:<br />

Its not all about birth weight<br />

Adiposity Matters!


Taveras E, et al. Pediatrics, 2009;123:1177-83.<br />

• Faster weight gain 0-3 months is<br />

positively associated with adiposity<br />

at 21 yo.<br />

Leunissen RW et al. JAMA, 2009; 301(21):2234-42.<br />

• Weight gain 0-9 months is positively<br />

associated with BMI at 17 yo (p=.002)<br />

even after adjustment for parents’<br />

BMI, sex, and birthweight<br />

Larkjaer A et al. Am J Clin Nutr, 2010; 91:1675-83.


Figure 1. Complex Pathogenesis <strong>of</strong> Type 2 Diabetes.<br />

Genetic and environmental factors may influence the risk <strong>of</strong> diabetes through<br />

the pathways illustrated in the figure or through as-yet-unidentifed mechanisms<br />

affecting insulin sensitivity and/or insulin secretion. Kahn, CR, Cell Metabolism , 2008.


Prevalence (%)<br />

Prevalence <strong>of</strong> Diabetes in Offspring from<br />

Women with Diabetes -Pima Indians<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Offspring <strong>of</strong>:<br />

NonDiabetic<br />

PreDiabetic<br />

GDM<br />

5-9 10-14 15-19<br />

Age (yr)<br />

20-24 25-29 30-34<br />

Dabelea, Knowler, Pettitt J MFM 2000:9:83


Obese Pregnancy and Fetal Nutrients:<br />

nd Take home message:It’s not just glucose…<br />

Most Large for Gestational Age (LGA) infants are born to<br />

mothers without GDM.<br />

In multivariate analyses <strong>of</strong> pregnant women, glucose<br />

accounted for


Epigenetics:<br />

It’s not what you have, but<br />

what you do with it that counts!<br />

Modifications to DNA/chromatin<br />

Effect TF binding and chromatin<br />

structure<br />

Established largely during early<br />

development<br />

Why our body is composed <strong>of</strong><br />

different cell types, though same<br />

genetic sequence.<br />

Time Magazine, February 19, 2010


NEWS & VIEWS<br />

Childhood obesity—methylate now, pay later?<br />

Choudhury, M. & Friedman, J. E. Nat. Rev. Endocrinol. 7, 439–440 (2011).<br />

A recent report has found an association between the methylation status <strong>of</strong><br />

specific genes in human fetal tissue and the subsequent development <strong>of</strong><br />

childhood adiposity in two longitudinal cohorts. Would epigenetic analysis at<br />

birth, therefore, have utility in identifying future risk <strong>of</strong> obesity?


Fetal Biochemistry:<br />

Limited capacity for de novo lipogenesis in the fetus implies<br />

that most precursors for fetal fat accretion are supplied by<br />

transfer <strong>of</strong> maternal substrates derived from lipid rather than<br />

from glucose sources.<br />

NEFA<br />

TG<br />

lipase<br />

lipase<br />

Placenta Lipid droplet<br />

Triglycerides<br />

Palmitate<br />

phospholipids<br />

PLA2<br />

PLA2<br />

PUFAs<br />

PUFAs<br />

Omega-3<br />

Omega-3<br />

Omega-6<br />

Omega-6<br />

Fatty Acid Oxidation is present in most fetal tissues (liver,<br />

heart, etc) during development. Therefore the concept that<br />

glucose provides the majority <strong>of</strong> fuel necessary for fetal<br />

energy metabolism may need to be re-examined.


Adult<br />

NAFLD<br />

Insulin Resistance<br />

Obesity<br />

Appetite, behavior<br />

Diabetes


Nature Medicine<br />

Vol:18,<br />

363–374:<br />

(2012)<br />

“Metainflammation”


Maternal diet-induced obesity alters mitochondrial activity and redox<br />

status in mouse oocytes and zygotes. PLoS One. 2010 Apr 9;5(4):e10074.<br />

Igosheva et al.<br />

Abnormal mitochondrial distribution<br />

and increased activity in oocytes and<br />

zygotes from DIO mice<br />

ROS production<br />

Glutathione levels<br />

Maternal DIO increases ROS generation<br />

And depletes glutathione in oocytes & zygotes.


Mitochondrial Defects<br />

Obesity is accompanied by<br />

� Reduced SkM Mitochondrial Function (OXPHOS)<br />

� Incomplete FAO<br />

� Decreased Mitochondrial Biogenesis<br />

� Impaired Insulin Action


Metabolic Programming in the<br />

Fetus:<br />

Is it simply a matter <strong>of</strong> FAT?


Collaborative Obesity Research<br />

<strong>University</strong> <strong>of</strong> <strong>Colorado</strong> & Oregon National<br />

Primate Research Center, <strong>University</strong> <strong>of</strong> Utah<br />

Long-Term Goal:<br />

• To develop a Non-Human Primate Model to study the<br />

effects <strong>of</strong> Maternal Diet, Obesity and GDM on the<br />

development <strong>of</strong> metabolic systems (liver, muscle, px, brain)<br />

in utero, and beyond.


Benefits and Obstacles to<br />

working in NHP model<br />

• Longer gestation period<br />

(175d)<br />

• Similar Placentation<br />

• Organ development<br />

occurs in utero<br />

– pancreas, brain, adipose<br />

• Perform invasive studies<br />

that cannot be done in<br />

humans or fetal mice<br />

• Heterogenity<br />

• Free-living<br />

– Difficult to control<br />

food intake and<br />

exercise<br />

• Studies/data<br />

collection take a lot<br />

longer<br />

• Collaborative<br />

• Expensive<br />

• Heterogenity


STUDY QUESTIONS<br />

1. Does Maternal Diet Influence<br />

Fetal Mitochondrial<br />

Biogenesis and Subsequent<br />

Mitochondrial Function?<br />

2. Does Skeletal Muscle Insulin<br />

Resistance Begin In Utero?


A Primate Model<br />

Japanese<br />

Macaques<br />

@ ONPRC


CTR = 15% Fat Calories<br />

MODEL<br />

Young adult female Japanese macaques - CTR<br />

or HFD for 2-6 years<br />

HFD = 35% Fat Calories – Western Style Diet<br />

Diet sensitive (HFD-S) vs resistant (HFD-R)<br />

Diet reversal group (DR) – HFD animals switched<br />

back to CTR diet just prior to pregnancy


High Fat Diet Animals<br />

High Fat Diet Resistant<br />

(HFD-R)<br />

Triglycerides<br />

Saturated FFA<br />

Frias AE et al., Endocrinology 2011<br />

McCurdy CE et al, JCI, 2009<br />

Grant WF et al., Plos One, 2011<br />

High Fat Diet Sensitive<br />

(HFD-S)<br />

Body Weight<br />

Adiposity<br />

Insulin<br />

Leptin<br />

Triglycerides<br />

Saturated FFA


▪Maternal HF diet/obesity leads to an early<br />

Fetal exposure (day 130) to elevated plasma TG<br />

J. Clin. Invest. 2009


Fetal Hepatic Pathology Under<br />

Conditions <strong>of</strong> Maternal Obesity<br />

Fetal liver triglycerides, mg/g<br />

8.0<br />

6.0<br />

4.<br />

0<br />

2.0<br />

0<br />

Maternal<br />

Diet<br />

* p


▪Elevated Fetal Liver TG occurred in all HF Y2-Y4 G130 fetuses<br />

REGARDLESS <strong>of</strong> maternal diet responsiveness<br />

McCurdy, CE et al. J. Clin. Invest. 119(2), 2009.


-Elevated Stress Response in Fetal Y2-Y3 Livers<br />

Elevated Stress in Response 3 pattern in Fat Y2/Y3<br />

Fetal Livers<br />

rd Trimester- G130<br />

C-FOS p-JNK1 p38 MAPK<br />

McCurdy, CE et al. J. Clin. Invest. 119(2), 2009.


Mito Biogenesis in Skeletal Muscle<br />

Copy Number (mtDNA/Nuc DNA)<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

N=5-8 for males<br />

*<br />

Males<br />

CON HFD_R HFD_S


Model showing loss <strong>of</strong> Sirtuin 3 function in fatty liver:<br />

Potential impact on reduced mitochondrial ETC activity<br />

Lys<br />

NADH--->NAD


Why Does the Fetus Store Excess Lipids in<br />

Liver and other organs?<br />

• Excess HFD exposure exceeds fetal storage capacity<br />

during normal development <strong>of</strong> adipose tissue depots.<br />

• Hormonal factors (such as fetal hyperinsulinemia)<br />

drive lipid storage.<br />

• Exposure to increased dietary n6/n3 ratio promotes<br />

inflammation and causes metabolic re-programming?


Chow<br />

Maternal Fetal Breast Milk<br />

*<br />

*<br />

Plos One (2011)<br />

The increased n6/n3 ratio in the<br />

chow is made worse in the fetus<br />

N3s are critical for development<br />

* *<br />

*<br />

*


Placental function is key to a healthy<br />

pregnancy and normal fetal development<br />

• Hyperinsulinemia and<br />

hyperglycemia (GDM) cause<br />

complications in placental<br />

function.<br />

• What are the potential impacts<br />

<strong>of</strong> HFD consumption?<br />

– Inflammation<br />

– Vascular dysfunction<br />

Ragavendra et al., Placenta 2001


Placenta Histology<br />

Control<br />

Pregnancy complications resulting in fetal death:<br />

CTRs 1 in 5 yrs (3%)<br />

HFD 8 in 5 yrs (24%); 7 in HFD-S animals<br />

HFD-S<br />

Frias et al, Endocrinology 2011


Maternal Circulation Control vs HF diet Fetal Placenta<br />

These are actually decreases in<br />

inflammatory markers.<br />

Sex differences in inflammation<br />

associated with obesity.<br />

These two significant differences<br />

were not observed in fetal <strong>of</strong>fspring<br />

Frias et al, Endocrinology 2010


Fetal circulating cytokines<br />

Includes both HFD-S and HFD-R <strong>of</strong>fspring<br />

McCurdy CE et al, JCI, 2009


Summary - Placenta<br />

Dietary Lipids<br />

`<br />

MATERNAL Fetal<br />

Hyperglycemia<br />

hyperinsulinemia<br />

Postprandial sat. FFA<br />

N3-FFA<br />

N6/N3 ratio<br />

Placenta<br />

Cytokines<br />

TLR4<br />

Cytokines<br />

Oxidative damage<br />

Insulin resistance<br />

Metabolic mal-programming<br />

Pregnancy complications<br />

Postprandial sat. FFA<br />

N3-FFA<br />

N6/N3 ratio


Summary: Maternal HFD:<br />

• Significant impact on placental function & development<br />

– Cytokine production – n6/n3 increased in developing fetus<br />

– Decreased placental function – exacerbated in HFD-S mothers<br />

• Increased early adiposity and glucose intolerance<br />

– Fatty liver (Inflammation, steatosis), insulin resistance maintained in<br />

Juvenile livers.<br />

– Epigenetics –HSP70, Bmal1 (clock gene family) (FASEB J, 2010).<br />

– Pancreatic islet hyperplasia<br />

– Hyperphagia <strong>of</strong> palatable diets<br />

– Abnormalities in the melanocortin system (Endocrinology 2010).<br />

• Social Behavior<br />

– Decreased Serotonin (J Neurosci, 2010)<br />

– Female Offspring – increased anxiety<br />

– Male <strong>of</strong>fspring – increased aggressive behavior<br />

– Both sexes display decreases in social behavior<br />

• Is NOT solely dependent on maternal obesity


Juvenile<br />

Hypotheses<br />

1. Maternal high fat diet exposure will result in hepatic<br />

steatosis, inflammation and insulin resistance in<br />

juvenile <strong>of</strong>fspring at 1 yr <strong>of</strong> age.<br />

2. These metabolic abnormalities will be exacerbated<br />

when <strong>of</strong>fspring are fed a high fat diet after weaning<br />

to 1 yr <strong>of</strong> age.<br />

3. Mechanism may involve persistent activation <strong>of</strong><br />

inflammatory pathways in liver


Consumption During the Food Preference<br />

Testing is Influenced by Current Diet,<br />

Maternal Diet, and Age<br />

*<br />

*<br />

Age/Experience with post-weaning diet:<br />

F 1,11=93.57, p


Temperament Assessment at 4 months <strong>of</strong><br />

Age<br />

Human Intruder Test<br />

Acclimation (12 min)<br />

Pr<strong>of</strong>ile (2 min)<br />

Control period (2 min)<br />

Stare (2 min)<br />

Control period (2 min)<br />

Novel fruit test (kiwi; 5 min)<br />

Novel toy 1 (Mr. potato head; 5 min)<br />

Novel toy 2 (hanging toy; 5 min)<br />

Novel toy 3 (snake; 5 min)<br />

Anxiety:<br />

•Latency to examine novel objects<br />

•Response to Human Intruder<br />

•Fear grimace<br />

•Teeth grind<br />

•Cage bite<br />

•Escape<br />

•Hiding<br />

•Stereotypy<br />

•Scratching<br />

Aggression:<br />

•Threats<br />

•Attacks


Offspring from HFD fed mothers<br />

exhibit increased latency to explore<br />

novel objects suggesting increased<br />

anxiety<br />

*


Maternal and post-weaning HFD increases<br />

early measures <strong>of</strong> insulin resistance


Maternal HFD increases liver triglycerides


Macrophage/Kupffer Cell TLR Signaling<br />

Macrophage/KC<br />

TLR2/6<br />

Bacteria<br />

LPS<br />

TLR1/6<br />

TLR5<br />

NFκB<br />

TNFα, IL6, TGFβ<br />

Crispe. Annu. Rev. Immunol. 2009;27:147-63<br />

Sat fatty<br />

acids<br />

TLR4<br />

TRIF<br />

ds<br />

RNA<br />

“Apoptosis”<br />

TLR3<br />

IRF3<br />

IFNα<br />

IFNβ<br />

Viral ss<br />

RNA<br />

RIG-I MDA-I<br />

IPS-1


(N=2-3 per group)<br />

Increased inflammatory response<br />

in Kupffer cells from animals exposed to<br />

maternal HFD – 1 year later<br />

Similar results for TNFa and IL-6<br />

Kupffer Cells = 100X ↑ in IL-1b vs Hepatocytes


Non-human primate Data: Focal Cell Death<br />

G130 fetal livers show increased lipids, oxidative stress and apoptosis with<br />

maternal HFD….<br />

Oil Red-O<br />

4-HNE<br />

CONTROL HFD<br />

McCurdy et.al. J. Clin. Invest. 119:323–335 (2009)<br />

CONTROL HFD<br />

Grant et.al. PLoS One. 2011 Feb 25;6(2):e17261.


Putative Natural History <strong>of</strong> Fatty Liver Disease<br />

“first hit”<br />

“second hit”<br />

Steatosis<br />

US adults: 20-30%<br />

Obese adults: 60%<br />

US kids 9-19*: 17%<br />

Obese kids: 55%


Our Approach in Moms & Infants<br />

–Work in Progress<br />

Hepatic Fat<br />

Subcutaneous<br />

Fat<br />

Visceral Fat<br />

Can we observe physiologic differences in harmful fat deposition that predate<br />

Influence <strong>of</strong> diet and lifestyle?


1<br />

Lean<br />

Obese<br />

GDM Hx<br />

Screen:<br />

Consent<br />

H&P<br />

Dietitian<br />

12<br />

2<br />

NIH RO1: Regulation <strong>of</strong> Maternal Fuel Supply<br />

And Neonatal Adiposity – 9 VISITS<br />

DEXA/<br />

CGMS #1<br />

3 days<br />

Prepared<br />

Diet<br />

Liquid Feed #1<br />

Day 4 <strong>of</strong> CGMS<br />

Fasting Blood<br />

BMR and RER<br />

Liquid Meal: q20 min<br />

Blood draws x 4 hrs<br />

13 14 15 16 17 18 19 20 21 22 23<br />

3<br />

4<br />

CGMS #2-<br />

Biopsy<br />

AT biopsy<br />

on Day 1<br />

3 days<br />

Prepared<br />

Diet<br />

24<br />

5<br />

Liquid Feed #2<br />

Day 4 <strong>of</strong> CGMS<br />

Fasting Blood<br />

BMR and RER<br />

Liquid Meal: q20 min<br />

Blood draws x 4 hrs<br />

6 7<br />

Fetal U/S #1<br />

3-hr OGTT<br />

25 26 27 28 29 30 31 32 33 34 35<br />

Obtain placenta<br />

and Cord Blood<br />

9<br />

Fetal<br />

U/S #2<br />

37 38 39<br />

36<br />

8<br />

40<br />

Delivery<br />

Neonatal Blood/<br />

Anthropometrics<br />

2 weeks PP<br />

Maternal DEXA<br />

Neonatal DEXA/<br />

Anthropometrics


Study Groups: 20 each: Normal Weight (NW) (Pre-Pregnant BMI between 19.0 – 24.0)<br />

Overweight/Obese (OW/Ob) (Pre-Pregnant BMI between 26.0 – 39.9)<br />

Gestational Diabetic (GDM) (Pre-Pregnant BMI between 26.0 – 39.9)<br />

Type II Diabetic (T2D) (Pre-Pregnant BMI between 26.0 – 39.9)<br />

Birth<br />

28-38 weeks<br />

Recruitment 48 hours 2 weeks 1 month<br />

1 2 months 3 months<br />

In Hospital:<br />

Infant<br />

• Anthropometry<br />

• Blood Sample 2<br />

Maternal<br />

• Colostrum<br />

Collection<br />

• Weight<br />

• Chart Review<br />

(Pregnancy)<br />

Clinic Visit:<br />

Infant<br />

• Anthropometry<br />

• PeaPod<br />

• Infant Feeding<br />

Questionnaire<br />

• Feeding Practices<br />

Questionnaire<br />

• Stool<br />

• Urine<br />

Maternal<br />

• Weight<br />

• Fasting Milk<br />

Collection<br />

• Fasting Blood<br />

Sample<br />

• 3-day Food Recall<br />

• Physical Activity<br />

Questionnaire<br />

• Health History<br />

• Optional: Stool<br />

Home Visit:<br />

Infant<br />

• Anthropometry<br />

• Infant Feeding<br />

Questionnaire<br />

• Optional: Stool<br />

Maternal<br />

• Weight<br />

• Fasting Milk<br />

Collection<br />

Study Design:<br />

Home Visit:<br />

Infant<br />

• Anthropometry<br />

• Infant Feeding<br />

Questionnaire<br />

• Optional: Stool<br />

Maternal<br />

• Weight<br />

• Fasting Milk<br />

Collection<br />

Home Visit:<br />

Infant<br />

• Anthropometry<br />

• Infant Feeding<br />

Questionnaire<br />

• Optional: Stool<br />

Maternal<br />

• Weight<br />

• Fasting Milk<br />

Collection<br />

1 At recruitment, participants will be provided with lactation support materials and breast pump if desired.<br />

2 Infant blood sample to be collected at the time <strong>of</strong> the routine 48 hour infant screening blood sample.<br />

4 months<br />

Clinic Visit:<br />

Infant<br />

• Anthropometry<br />

• PeaPod<br />

• Infant Feeding<br />

Questionnaire<br />

• Feeding Practices<br />

Questionnaire<br />

• Blood Sample<br />

(Heel Stick)<br />

• Stool<br />

• Urine<br />

Maternal<br />

• Weight<br />

• Fasting Milk<br />

Collection<br />

• Fasting Blood<br />

Sample<br />

• 3-day Food Recall<br />

• Physical Activity<br />

Questionnaire<br />

• Health History<br />

• Optional: Stool


Composition<br />

•Calories<br />

oLactose<br />

oProtein<br />

oFat<br />

•Glucose<br />

•Fatty Acid<br />

Pr<strong>of</strong>ile*<br />

•Free Fatty Acids<br />

•Triglycerides<br />

Composition<br />

• Glucose<br />

• RBC Membrane Fatty<br />

Acid Composition*<br />

• Free Fatty Acids<br />

• Triglycerides<br />

• Hb-A1C<br />

Breast Milk (6 samples/Participant = 480 total samples)<br />

Cytokines<br />

•IL-6*<br />

•IL-8*<br />

•IL-10*<br />

•TNF-α*<br />

•IFN-γ*<br />

•CRP<br />

Cytokines<br />

•IL-6*<br />

•IL-8*<br />

•IL-10*<br />

•TNF-α*<br />

•IFN-γ*<br />

•CRP<br />

Biochemical Analyses<br />

Hormones &<br />

Adipokines<br />

•Insulin<br />

•Leptin<br />

•Adiponectin<br />

•Ghrelin (total)<br />

•Ghrelin (acylated)<br />

Maternal Blood (2 Samples/Participant = 160 total samples)<br />

Hormones &<br />

Adipokines<br />

•Insulin<br />

•Leptin<br />

•Adiponectin<br />

•Ghrelin (total)<br />

•Ghrelin (acylated)<br />

Antioxidants Microbiota<br />

• Total antioxidant • Probiotic Content*<br />

capacity<br />

• DPH Radical<br />

Scavenging Activity<br />

• Catalase Activity<br />

Oxidative Stress<br />

•F2-Isoprostanes<br />

•Oxidized-LDL<br />

•TBARS<br />

•8-OH-dG<br />

•4-HNE<br />

Infant Urine and Stool (2 Samples/Participant = 160 total samples)<br />

Oxidative Stress (urine)<br />

•F2-Isoprostanes<br />

Oxidative Stress<br />

•F2-Isoprostanes<br />

•Oxidized-LDL<br />

•TBARS<br />

•8-OH-dG<br />

•4-HNE<br />

Microbiota (stool)<br />

• Intestinal Microbiome Pr<strong>of</strong>ile*<br />

* All cytokines except CRP will be analyzed on a multiplex panel, microbiota analyses, fatty acid pr<strong>of</strong>ile, and<br />

membrane fatty acid composition will be analyzed in the labs <strong>of</strong> Dr. Daniel Frank and Dr. Mary Harris, respectively.<br />

All other analyses can be undertaken in our lab, but analytes highlighted in purple are <strong>of</strong>fered by the CTRC core<br />

labs.


Key Outcome: Infant Infant DEXA DEXA at 2 wks at <strong>of</strong> 2 Age: Weeks <strong>of</strong> Age<br />

Mother: Obese & GDM Mother: Lean Normal GT<br />

Birth weight = 2.9 kg<br />

body fat = 16.8%<br />

Birth weight = 3.4 kg<br />

body fat 7.7%


Neonatal %Body Fat<br />

Correlation Between Neonatal % Body Fat and<br />

Change in Maternal Fasting TGs<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

R 2 = 0.831<br />

p = 0.001<br />

r=0.890<br />

0 20 40 60 80 100 120<br />

Maternal ∆ Fasting Triglycerides (Late - Early Gestation)<br />

Neonatal % Body Fa<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

r =0.110<br />

15 20 25 30 35 40 45<br />

Maternal % Body Fat


18 obese mothers w/ GDM<br />

17 lean mothers<br />

Exclusion Criteria:<br />

Pre-Pregnancy Diabetes<br />

IUGR<br />

Premature delivery<br />

NICU admission<br />

birth<br />

Single study visit<br />

1-3 weeks <strong>of</strong> age<br />

Pea Pod<br />

MRI<br />

MRS<br />

Anthropometrics<br />

Feeding<br />

Questionnaire


Roland-Valadez E et al. Ann Hepatol, 2008.


SubQ<br />

Fat<br />

Adiposity Outcomes<br />

Normal Weight Mothers (n=13) Obese/GDM Mothers(n=12)<br />

Outcome Mean (SD) Mean (SD) p-value*<br />

PEA POD (% body fat) 13.1(5.0) 14.7 (3.0) NS<br />

MRI subcutaneous fat (cm 3 ) 707 (138) 777 (159) NS<br />

Sum Skin Folds (mm) 9.9 (2.0) 11.7 (1.3)


Variable ß - coefficient P-value<br />

Maternal Pre-pregnancy BMI 0.03170 0.0456<br />

Infant Sex 0.20682 0.4877<br />

Infant Age at Study -0.00480 0.9620<br />

Infant Total Adiposity by Peapod 0.03540 0.5510<br />

-after adjusting for sex, age, and overall adiposity, the infant’s liver fat increases<br />

over 3% for every 1 kg/m2 increase in maternal pre-pregnancy BMI.


Conclusions – Spectroscopy Data<br />

• Maternal pre-pregnancy BMI is the strongest<br />

predictor <strong>of</strong> early liver fat deposition<br />

• This appears to be independent <strong>of</strong> total<br />

adiposity.<br />

• Maternal obesity/GDM will predispose infants<br />

to increased visceral fat storage?


Fetal Hepatic Fat Accumulation<br />

Oxidative Stress<br />

Inflammation<br />

Gluconeogenesis<br />

Recruitment and<br />

Activation <strong>of</strong> Bone<br />

Marrow WBC<br />

Precursors<br />

Consequences <strong>of</strong> Maternal Overfeeding on Fetal Liver<br />

Lifelong Increased Risk <strong>of</strong> a<br />

Proinflammatory Response<br />

to Overnutrition<br />

US adults: 20-30%<br />

Obese adults: 60%<br />

US kids 9-19*: 17%<br />

Obese kids: 55%<br />

Placental Inflammation<br />

Placental Nutrient Transfer<br />

Excess FFA/TG Delivery


How do we modify this?<br />

Reduce inflammation, insulin resistance, hyperlipidemia…<br />

Pregnant population limits drug options, especially in<br />

non-diabetic patients…<br />

• Pre-pregnancy lifestyle modifications<br />

• Controlling gestational weight gain<br />

• Exercise<br />

• Dietary modifications


Western Diet:<br />

High Saturated Fat<br />

High Omega-6<br />

Low Omega-3<br />

Types and sources <strong>of</strong> dietary fat:<br />

Hunter-Gatherer Diet:<br />

Low Saturated Fat<br />

Omega-3/6 about 1:1<br />

Copyright ©2004 BMJ Publishing Group Ltd.


Why Balance is important:


Substrate competition reduces pro-inflammatory<br />

eicosanoid production:<br />

(Omega-6 PUFA)<br />

(Omega-3 PUFA)<br />

Massaro et.al. Prostaglandins Leukot Essent Fatty Acids. 2008 Oct 22


Omega-3 Fatty Acids<br />

In Non-Pregnant Studies (Humans, Rodents):<br />

Treatment <strong>of</strong> obesity/HFD subjects with dietary or omega-3<br />

fatty acid supplementation has been shown to:<br />

- Lower Chronic Inflammation (AT, Systemic)<br />

- Lower blood lipid levels and ectopic lipid deposition<br />

- Improve insulin sensitivity<br />

(potentially due to above)


Omega-3 Fatty Acids and Pregnancy:<br />

Maternal supply <strong>of</strong> PUFA essential for fetal development<br />

Current Research:<br />

Focus on DHA for Cognitive<br />

development<br />

Reports <strong>of</strong> impaired<br />

Omega-3 transfer in obese<br />

pregnancy<br />

No focus on use as an<br />

intervention in obese<br />

pregnancy


Hypothesis:<br />

Increasing maternal omega-3 (relative to omega-6)<br />

fatty acids will mitigate the effects <strong>of</strong> maternal obesity<br />

on adolescent metabolic health by reducing both<br />

placental and fetal exposure to excess maternal lipids<br />

and inflammation.


Transgenic Animal Model: The Fat-1 Mouse<br />

- Endogenously converts omega-6s to omega-3s<br />

- Expressed under actin promoter<br />

- Results in a tissue n-6:n-3 ratio ~1:1, without dietary change<br />

�<br />

fat-1 (C. elegans):<br />

Encodes n-3 desaturase<br />

J.X. Kang. Prostaglandins, Leukotrienes and Essential Fatty Acids: 77 (2007) 263–267.<br />

Kang et.al. Nature. 2004 Feb 19;427(6976):698.


Early evidence <strong>of</strong> Fat-1 benefits:<br />

- Improved insulin sensitivity on HFD<br />

(White et.al. Diabetes, December 2010)<br />

- Reduced tissue inflammation<br />

(Above and Gravaghi et.al., J Nutr. Biochem, July 2010)<br />

- Increased mitochondrial lipid oxidation and reduced ROS production.<br />

(Hagopian et.al. PLoS One, September 2010)


Experiment Outline:<br />

8 week-old Virgin Females:<br />

WT�CtrlD WT�HFD Fat-1�HFD<br />

E18.5 (= very late gestation)<br />

Maternal/Fetal Harvest:<br />

Maternal, placental & fetal<br />

weights and measures<br />

taken.<br />

Blood and tissue collected.<br />

**Only WT fetuses/placentas analyzed<br />

8 weeks<br />

Cross with WT chow-fed male:<br />

Experimental diet<br />

maintained through<br />

pregnancy<br />

x<br />

OR…. Birth.<br />

Offspring weaned onto HFD or CtrlD


HFD Mothers are significantly heavier prior to<br />

pregnancy, but gain less weight over gestation.<br />

37<br />

35<br />

33<br />

31<br />

29<br />

27<br />

25<br />

23<br />

21<br />

19<br />

17<br />

Maternal Weight Gain (g)<br />

(Litter and placenta weight subtracted)<br />

mated<br />

0 2 4 6 8 p18.5 -<br />

litter<br />

WT-Ctrl<br />

WT-HFD<br />

Fat1-HFD<br />

n=11-13 mothers/group


Fetuses from WT-HFD mothers have significantly larger<br />

placentas relative to fetal size:<br />

n=11-13 mothers/group:<br />

WT-Ctrl WT-HFD Fat1-HFD


20<br />

15<br />

10<br />

5<br />

0<br />

However, lipid deposition within the placenta is<br />

increased in WT-HFD mothers, but not Fat1:<br />

Placenta TG<br />

(ug/mg dry weight)<br />

p


What could be causing placental overgrowth?<br />

What is the placenta seeing?<br />

MATERNAL OBESITY, OVERNUTRITION:<br />

↑ INFLAMMATION<br />

− INSULIN RESISTANCE (Insulin, Glucose)<br />

↑ Il-1, Il-6,<br />

TNF-a, MCP-1<br />

FFA<br />

CM-TG<br />

VLDL-TG<br />

− LYPOLYSIS<br />

− VLDL SECRETION<br />

LPL


Increase in placental lipids also may correspond with<br />

increased placental F480+ Cells:<br />

WT-Ctrl WT-HFD Fat1-HFD<br />

N=4mothers/group<br />

(*p


Lipoprotein Lipase (LPL) activity increased in<br />

WT-HFD placentas:<br />

n=4 mothers/group<br />

(p


Fetal serum


20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Fetal liver TG content increased in WT-HFD<br />

mothers, not seen in Fat1-HFD mothers:<br />

Fetal Liver TG<br />

(ug/mg dry weight)<br />

p


Preliminary Microarray:<br />

How does this impact the fetal liver?<br />

Is there a potential “program”?<br />

6 maternally-unique fetal livers (all male), pooled into sets <strong>of</strong> 3<br />

WT-Ctrl – Pool #1, Pool #2<br />

WT-HFD – Pool #1, Pool #2<br />

Fat1-HFD – Pool #1, Pool #2<br />

Key transcription programs up/down with HFD:<br />

Proliferation FA Oxidation/Metabolism<br />

Inflammation (APR) Oxidative Stress<br />

Fibrosis Apoptosis


Transcription expression patterns similar to chronic liver injury:<br />

Tilg H and Day CP (2007) Management strategies in alcoholic liver disease<br />

Nat Clin Pract Gastroenterol Hepatol 4: 24–34 doi:10.1038/ncpgasthep0683


So what might this mean for adolescent <strong>of</strong>fspring?<br />

Aim 3:<br />

WT-Ctrl (n=10)<br />

WT-HFD (n=6)<br />

Fat1-HFD (n=9)<br />

Ctrl<br />

HFD<br />

16wks<br />

ITT, EchoMRI<br />

ITT, EchoMRI<br />

Harvest<br />

Tissue Collection:<br />

RBCs, Serum<br />

Adipose Tissue<br />

Liver<br />

Muscle<br />

(RNA, Protein, Histology, Lipids)<br />

Immediate Analyses:<br />

Muscle and Liver FA oxidation<br />

AT macrophage quant (flow)


Pups from WT-HFD moms are heavier,<br />

and gain more weight on HFD<br />

BUT this is mitigated in Fat1-HFD mothers


Unlike traditional Barker Hypothesis, this is not a case<br />

<strong>of</strong> nutrient mismatch – but instead more <strong>of</strong> a<br />

malaptation.<br />

Possible targets:<br />

• Lipid metabolic pathways:<br />

– Oxidation<br />

– Storage<br />

– Synthesis<br />

So… What’s the Program?<br />

• Inflammatory pathways<br />

– Priming <strong>of</strong> a pro-inflammatory state


Could the “liver injury” pathway suggested by microarray be leading to<br />

“passive” programming?<br />

Death <strong>of</strong> more oxidative<br />

cells, repopulation by less<br />

oxidative, pro-storage<br />

cells…?


Previous reports in<br />

adolescents from<br />

HFD moms:<br />

↑Lipogenesis<br />

↓Lipid Oxidation<br />

Corresponding with<br />

increased weight gain<br />

and development <strong>of</strong><br />

fatty liver<br />

Previous programming studies:<br />

Hepatology Vol.50, 6 Pages: 1796-1808. Copyright © 2009 American Association for the Study <strong>of</strong> Liver Diseases


Summary:<br />

Maternal obesity/HFD increased<br />

- Maternal fasting blood glucose<br />

- Maternal HOMA-IR score<br />

- Maternal AT Macrophages<br />

- Placental LPL activity<br />

- Placental lipid deposition<br />

- Placental Macrophages<br />

- Fetal hepatic lipid deposition<br />

- Adolescent weight gain, male IR<br />

All were ameliorated (by differing degrees) by maternal<br />

expression <strong>of</strong> fat-1 transgene.


Next Steps:<br />

- Analysis <strong>of</strong> maternal frozen tissues: Inflammation, metabolic pathways<br />

- Analysis <strong>of</strong> maternal lipid trafficking<br />

(oxidation, storage)<br />

- Localize placental LPL and Macs by IHC<br />

- Staining <strong>of</strong> Fetal liver for apoptosis,<br />

fibrosis, oxidative stress<br />

- Fetal liver FA oxidation analysis<br />

- Continuation <strong>of</strong> juvenile <strong>of</strong>fspring analyses


Acknowledgments:<br />

Mentor: Jed Friedman CTSI Clinical Mentor: Lynn Barbour<br />

Committee Members:<br />

Jim McManaman (Chair)<br />

Lynn Barbour<br />

Dwight Klemm<br />

Paul MacLean<br />

Pepper Schedin<br />

Virginia Winn<br />

Friedman Lab<br />

Rachel Janssen<br />

Becky DelaHoussaye<br />

Karalee Baquero<br />

Kristen Boyle<br />

Teri Hernandez<br />

Stephanie Thorn<br />

Mahua Choudhury<br />

Mizanoor Rahman<br />

David Brumbaugh<br />

Michael Stewart<br />

Emily Busta<br />

McCurdy Lab<br />

Carrie McCurdy<br />

Julie Houck<br />

Carlos Ainza<br />

Bergman Lab<br />

Bryan Bergman<br />

David Howard<br />

Funding:<br />

American Heart Association<br />

<strong>Colorado</strong> CTSI


Last Take Home Message:


Thank You !

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!